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Abstract
Collaborative robots could revolutionize industrial and domestic environments by en-
abling seamless human-robot collaboration. However, ensuring both high efficiency and
safety in dynamic, tightly shared workspaces remains a significant challenge. This the-
sis addresses these challenges through an integrated suite of frameworks that enhance
both predictive motion planning and dexterous grasping capabilities, paving the way for
more fluid, efficient and safe human-robot collaboration.

We begin with the development of Pred-HRC-Body, a novel pipeline that lever-
ages recurrent neural networks and Gaussian mixture models to forecast human multi-
joint arm trajectories and estimate intended targets early in the motion. By fusing ob-
served and predicted hand palm trajectories, the framework generates collision-free,
goal-oriented robot trajectories with trajectory optimizer that improve both safety and
operational efficiency in tightly shared environments.

Building upon this foundation, Pred-HRC-EEG integrates electroencephalography
signals using a recently developed brain-computer interface paradigm. This system cap-
italizes on gaze direction derived from steady-state visual evoked potentials to anticipate
human actions even before human start moving. Robot velocity limits are also adjusted
with vigilance metrics calculated from EEG signals to enhance human-robot collabo-
ration safety. By dynamically modulating the robot’s velocity and behavior based on
real-time cognitive state assessments, this approach not only enhances the fluency of
interactions but also further elevates safety standards in collaborative tasks.

To address the parallel critical challenge of dexterous manipulation for collabora-
tive robots, we introduce ADG-Net, a sim-to-real multimodal learning framework de-
signed for adaptive grasping. By integrating RGB-D image, joint angles, and tactile
feedback—including fingertip deformation of the robotic hands—ADG-Net predicts
and optimizes grasp parameters in an adaptive manner. Extensive benchmark experi-
ments in both simulated and real-world settings demonstrate that our approach achieves
superior grasp success rates in scenarios involving both isolated and cluttered objects.

Finally, to seamlessly integrate motion planning and grasping in dynamic human-
robot collaboration environments, we propose an integrated framework—RL-DNLS,
which combines Actor-Critic reinforcement learning with differentiable nonlinear least-
squares optimization. In this approach, reinforcement learning and differentiable trajec-
tory optimization complement each other: the RL module explores optimal goal posi-
tions and adjusts cost weights, while the DNLS optimizer refines trajectories to satisfy
kinodynamic and safety constraints. This synergistic combination ensures robust and op-
timal joint planning for reaching and grasping actions in the dynamic shared workspace.

Collectively, the contributions of this thesis establish a comprehensive approach to
developing collaborative robots with human-like predictive intelligence and dexterous
manipulation skills, fostering safer, more efficient, and fluent human-robot collaboration
in both industrial and everyday settings.
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Zusammenfassung
Kollaborative Roboter könnten industrielle und häusliche Umgebungen revolutionieren,
indem sie eine nahtlose Mensch-Roboter-Kollaboration ermöglichen. Allerdings stellt
die Gewährleistung sowohl hoher Effizienz als auch Sicherheit in dynamischen, eng
genutzten Arbeitsbereichen eine erhebliche Herausforderung dar. Diese Arbeit geht diese
Probleme durch ein integriertes Framework an, das sowohl die prädiktive Bewegungs-
planung als auch die geschickte Greiffähigkeit verbessert und so den Weg für eine
flüssigere, effizientere und sicherere Zusammenarbeit zwischen Mensch und Roboter
ebnet.

Zunächst wird Pred-HRC-Body vorgestellt, eine neuartige Pipeline, die rekurrente
neuronale Netzwerke und Gaußsche Mischmodelle einsetzt, um menschliche Mehrge-
lenkarmtrajektorien vorherzusagen und beabsichtigte Ziele bereits zu Beginn der Bewe-
gung zu schätzen. Durch die Fusion von beobachteten und prognostizierten Handflächen-
bewegungen erzeugt dieses Framework kollisionsfreie, zielgerichtete Robotertrajekto-
rien mithilfe eines Trajektorienoptimierers, wodurch sowohl die Sicherheit als auch die
Betriebseffizienz in eng geteilten Umgebungen verbessert wird.

Auf dieser Grundlage integriert Pred-HRC-EEG Elektroenzephalographie-Signale
mittels eines kürzlich entwickelten Brain-Computer-Interface-Paradigmas. Das Sys-
tem nutzt die aus steadystate-visuell evozierten Potentialen abgeleitete Blickrichtung,
um menschliche Aktionen bereits vor deren Einsetzen zu antizipieren. Zudem werden
die Geschwindigkeitsbegrenzungen des Roboters anhand von Wachsamkeitsmetriken,
die aus EEG-Signalen berechnet werden, dynamisch angepasst, wodurch die Sicher-
heit in der Mensch-Roboter-Kollaboration weiter erhöht und die Interaktionsflüssigkeit
verbessert wird.

Um die ebenso wesentliche Herausforderung der geschickten Manipulation durch
kollaborative Roboter zu bewältigen, wird ADG-Net vorgestellt – ein sim-to-real, mul-
timodales Lernframework für adaptives Greifen. Durch die Integration von RGB-D-
Bildern, Gelenkwinkeln und taktilem Feedback – einschließlich der Deformation der
Fingertips der Roboterhände – prognostiziert und optimiert ADG-Net adaptiv Greifpa-
rameter. Umfangreiche Benchmark-Experimente in simulierten und realen Umgebun-
gen belegen, dass dieser Ansatz überlegene Erfolgsraten beim Greifen in Szenarien mit
isolierten sowie in Unordnung befindlichen Objekten erzielt.

Abschließend wird zur nahtlosen Integration von Bewegungsplanung und Greifen
in dynamischen Mensch-Roboter-Kollaborationsumgebungen ein integriertes Frame-
work namens RL-DNLS vorgeschlagen, das Actor-Critic-Verstärkungslernen mit einem
differenzierbaren nichtlinearen Kleinste-Quadrate-Optimierer kombiniert. In diesem
Ansatz ergänzen sich das Verstärkungslernen und die differenzierbare Trajektorienop-
timierung: Das RL-Modul ermittelt optimale Zielpositionen und passt die Kostenfak-
toren an, während der DNLS-Optimierer die Trajektorien verfeinert, um kinodynamis-
che sowie sicherheitsrelevante Vorgaben zu erfüllen. Diese synergetische Kombination
gewährleistet eine robuste und optimale gemeinsame Planung von Reich- und Greifbe-
wegungen im dynamischen, geteilten Arbeitsbereich.

Insgesamt etabliert diese Arbeit einen umfassenden Ansatz zur Entwicklung
kollaborativer Roboter, die über eine menschenähnliche, prädiktive Intelligenz und
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Abstract

geschickte Manipulationsfähigkeiten verfügen. Damit wird eine sicherere, effizientere
und flüssigere Mensch-Roboter-Kollaboration in industriellen wie auch alltäglichen
Umgebungen gefördert.
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Chapter 1

Introduction

1.1 Motivation

Collaborative robots (cobots) are designed to work alongside humans to complete com-
plex tasks. Equipped with advanced sensing technologies—such as force/torque sensors,
vision systems, and tactile sensors—these robots continuously monitor and respond to
their surroundings. Their sophisticated control systems, which include motion control,
collision detection and avoidance, and Human Robot Interaction (HRI) mechanisms,
enable safe and effective operation in shared workspaces.

One of the key advantages of cobots is their adaptability and ease of deployment.
They can be quickly installed and integrated into a variety of operational scenarios, mak-
ing them highly versatile for industries such as manufacturing, healthcare, and house-
hold robotics. In these settings, cobots assist humans with tasks that require precision,
adaptability, and contextual awareness.

A critical feature of cobots is their ability to interact with humans efficiently and
safely. Advanced Human Robot Collaboration (HRC) frameworks integrate sensing,
planning, and decision-making capabilities so that robots can operate seamlessly and
intuitively in shared workspaces, thereby enhancing productivity and user experience.
The growing deployment of cobots underscores their potential to revolutionize indus-
tries by improving efficiency and enabling safer, more effective collaboration.

HRC can be broadly categorized into two configurations: fenced and fenceless. In
fenced HRC (see Fig.1.1 [47]), robots operate within designated workspaces separated
from human workers by physical barriers. This arrangement ensures high safety levels
by preventing direct contact between humans and robots, allowing robots to operate at
higher speeds. However, physical barriers also increase spatial requirements, prolong
workflows, and necessitate time-consuming setups or relocations.

In contrast, fenceless HRC allows robots and humans to share the same workspace
(see Fig.1.2a and Fig.1.2b). In these scenarios, safety is maintained through advanced
sensing systems that detect proximity or contact forces, enabling the robot to halt im-
mediately upon a potential collision. Although this approach maintains safety, frequent
stop-and-restart cycles can disrupt the fluidity of interactions and reduce overall collab-
oration efficiency.

1



Chapter 1. Introduction

(a) (b)

(c) (d)

Figure 1.1: HRC with fence [47]. (a)When human is not in the robot workspace, the robot works
at its full speed; (b) When human is detected to be inside of robot workspace, the robot will stop
moving; (c) The robot will keep static as long as human is inside its workspace; (d) When the
human is detected to be outside of the robot workspace, the robot will restart to work again.

To improve the fluency and efficiency of HRC, cobots must move beyond reactive
behaviors—such as simply stopping and restarting—and incorporate predictive capabil-
ities. For example, in an assembly line, a cobot working with a human must continuously
monitor and predict human actions, adjust its trajectory proactively to avoid collisions,
and optimize its task schedule to enhance overall system performance. Achieving this
seamless integration requires advanced predictive planning that combines human mo-
tion and intention prediction with proactive robot control.

Furthermore, to operate effectively in diverse scenarios—including everyday envi-
ronments as illustrated in Fig.1.2c and Fig.1.2d—cobots must also possess advanced
manipulation capabilities. A critical aspect is their ability to grasp a wide range of ob-
jects with varying sizes, shapes, and materials. Grasping is a fundamental yet challeng-
ing robotic skill, particularly when relying on a single sensory modality. Vision-based
systems, for example, often face difficulties with occlusions, partial object views, and
varying lighting conditions. Tactile sensors provide valuable information about contact
forces and textures, but they are insufficient on their own. Proprioceptive sensors com-
plement these modalities by offering data on joint positions and forces, ensuring that

2
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(a) (b)

(c) (d)

Figure 1.2: HRC without fence. (a) Collaborative screw assembly [44]; (b) HRC in the axle
drive assembly [8]; (c) Daily cleaning tasks with dexterous hand [31]; (d) Tesla Optimus Gen2:
doing housework with dexterous hand [125].

robots operate safely within their mechanical limits.

Integrating multimodal sensing—combining visual, tactile, and proprioceptive
data—is essential to overcome these challenges. By leveraging the complementary
strengths of these modalities, cobots can achieve a more comprehensive understanding
of object properties and environmental conditions. Multimodal frameworks enable pre-
cise and stable grasps even in cluttered or dynamic environments. For instance, tactile
feedback can enhance grasp stability by detecting slippage, while visual data assists in
dynamic object localization and recognition. Proprioceptive information further ensures
safe operation within the robot’s kinematic and dynamic limits.

The dual challenges of enhancing HRC efficiency through predictive planning and
improving manipulation capabilities via multimodal sensing form the core motivations
of this thesis. This work aims to advance collaborative robotics by addressing these
critical areas, ultimately contributing to the development of cobots that are safer, more
adaptive, and capable of dexterous grasping in real-world scenarios.

3
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Figure 1.3: Research focuses of this thesis. The first focus of this thesis is to address motion
planning and object-grasping tasks separately. The second focus is to develop integrated ap-
proaches that solve motion planning and object-grasping tasks jointly.

1.2 Research Focus

This thesis begins by addressing the critical challenge of enhancing the safety and ef-
ficiency of HRC within tightly shared workspaces. Achieving an effective balance be-
tween safety and efficiency is particularly challenging due to the unpredictable and rapid
nature of human motions. In such environments, robots are often required to slow down
or even stop to ensure safety, significantly impairing the efficiency of collaboration. The
research focuses are illustrated in Fig. 1.3.

The first focus of this thesis is to address motion planning and object-grasping as
separate problems. For motion planning, collaborative robots must be equipped with
the ability to predict human motions and intentions, which enables predictive trajectory
planning and adaptive task scheduling. This approach mitigates the negative impact of
human unpredictability on HRC performance. In the object-grasping problem, the focus
is on enabling cobots to grasp objects of various sizes and shapes in static scenarios.

Motion Planning To address the motion planning problem in dynamic HRC envi-
ronments—without considering the object-grasping task—we introduce a framework
composed of several modules in which the robot’s trajectory optimization and the hu-
man motion/intention prediction modules are treated independently. In this setup, human
motion data and electroencephalography (EEG) signals are used to predict human trajec-
tories and intentions. These predictions then update the robot’s task schedule and inform
a trajectory optimization planner that generates safe and efficient robot trajectories.
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By combining human intention and motion prediction with advanced planning and
learning methodologies, this thesis provides a comprehensive framework for improv-
ing the fluency and effectiveness of HRC in tightly shared workspaces. This work lays
the foundation for safer, more intuitive, and efficient collaboration between humans and
robots. However, a significant challenge remains: seamlessly integrating the predicted
human motions and intentions into the trajectory optimization process. Finding an opti-
mal method to combine these predictions with trajectory planning remains complex.

Object-Grasping This section focuses on improving the general grasping ability of
cobots’ dexterous hands by leveraging multimodal information. Only the static object-
grasping problem is considered here. Although similar work exists, previous studies
have primarily focused on rigid robotic hands without considering fingertip deformation,
and they often rely on pressure feedback rather than comprehensive tactile information
for grasping. Moreover, training the grasping policy in those approaches tends to be
time-consuming. In this thesis, not only is visual information utilized, but hand joint
angles and tactile feedback are also incorporated, enabling the dexterous hand to adapt
to dynamic environments during grasping. Furthermore, the quality of grasp candidates
is calculated and predicted using the proposed method. In addition, a parallel GPU-based
simulator is employed to collect a multimodal grasping dataset, and the grasping policy
network is efficiently trained using supervised learning on this data.

The second focus of this thesis is to jointly address motion planning and object-
grasping in dynamic HRC shared workspaces, thereby overcoming the limitations iden-
tified in the first focus. Reinforcement learning (RL) is employed to optimize the in-
tegration of human motion and intention predictions with the trajectory optimization
process. Specifically, RL is used to determine the optimal goal positions and cost func-
tion weights for the trajectory optimizer, ensuring that task constraints are satisfied while
maximizing both trajectory quality and grasping success. The trajectory optimizer, built
on a differentiable optimization solver, is designed to be trainable jointly with the RL
model. This cohesive design enables the system to dynamically adapt to human behav-
ior while maintaining high levels of safety, efficiency, and grasp success in collaborative
tasks.

Overall, this thesis focuses on enhancing the integrated motion planning and object-
grasping capabilities of cobots to achieve safer and more efficient HRC. Our objective is
to develop cobots with human-like intelligence that can collaborate safely, fluently, and
efficiently with humans—not only in industrial settings but also in everyday life.

1.3 Scientific Contributions
This thesis makes contributions to the field of safe and efficient dynamic HRC in tightly
shared workspaces, as well as to enhancing the dexterous grasping capabilities of col-
laborative robots (cobots). The primary contributions of this work are summarized as
follows:

• We propose a comprehensive HRC pipeline that integrates high-level human body
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multi-joint trajectory prediction and intended target estimation with low-level on-
line collision-free trajectory generation to address the challenges of dynamic HRC
tasks. The pipeline leverages both observed and predicted palm trajectories to en-
hance the accuracy of final intended target estimation during the early stages of
human motion. The proposed HRC pipeline is evaluated through extensive phys-
ical experiments. The results demonstrate that the pipeline enables robots to gen-
erate goal-oriented, collision-free trajectories that effectively enhance both the
efficiency and safety of HRC in tightly shared workspaces. This work is named as
Pred-HRC-Body (detailed in chapter 3).

• To the best of our knowledge, this is the first study to investigate the integra-
tion of Brain-Computer Interaction (BCI) with online trajectory optimization for
HRC tasks in a narrow, shared workspace. In this work, we employed a recently
developed BCI variant capable of recognizing gaze direction relative to a sin-
gle flicker stimulus to predict human intention. The steady-state visual evoked
potential (SSVEP) signal-to-noise ratio (SNR) was utilized as an indicator of hu-
man vigilance, enabling real-time modulation of the robot’s behavior based on the
user’s cognitive state. This study also demonstrates the integration of BCI outputs,
such as gaze direction and vigilance levels, with human arm tracking data within
the robot controller. The resulting system allows for dynamic and adaptive robot
behavior in response to both explicit and implicit human mental states, improving
the fluency and safety of collaboration. This work is referred to as Pred-HRC-
EEG (detailed in chapter 4).

• We develop a pluggable two-stage method for dexterous grasp simulation, lever-
aging the Isaac Gym simulator [74]. This method simulates dexterous grasping
with soft fingertips and generates multimodal sensing data. Over 500,000 multi-
modal grasping scenarios are synthesized to create a comprehensive dataset for
training and evaluation.

To advance dexterous grasping capabilities, we propose a versatile network, ADG-
Net, designed to learn principles for dexterous grasping and status prediction. The
ADG-Net integrates an attention mechanism with a Graph Convolutional Neural
Network (GCN) for efficient information fusion and multimodal learning. The
network operates in two distinct modes:

– Image-based Mode: The ADG-Net processes RGB-D images of a grasping
scene to detect feasible grasp parameters, including hand pose, joint angles,
grasp quality, and grasp status.

– Multimodal Mode: In addition to RGB-D images, the ADG-Net incorpo-
rates real-time tactile force data from fingertips and joint angles to optimize
grasp parameters when the dexterous hand makes contact with an object.

We introduce an adaptive dexterous grasping method based on the ADG-Net,
functioning at a control frequency of 5 Hz. This method optimizes grasp pa-
rameters using multimodal sensing data, enhancing grasp performance. The pro-
posed approach is validated through extensive benchmark experiments conducted
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in both simulated and real-world environments. This work is referred as ADG-Net
(detailed in chapter 5).

• We present an Actor-Critic differentiable optimization framework specifically de-
signed for dynamic grasping tasks in human-robot shared workspaces. The core of
this framework involves reformulating the constrained differentiable Model Pre-
dictive Control (MPC) problem as a convex differentiable nonlinear least-squares
(DNLS) optimization problem. This reformulation not only ensures computa-
tional efficiency but also enables the effective utilization of GPU resources to
solve the optimization problem in real-time. The proposed method has been vali-
dated through simulations and experiments on real-world robotic systems, show-
casing its effectiveness, practicality, and adaptability in dynamic and collabora-
tive environments. By combining reinforcement learning (RL) with the DNLS-
based optimization solver, the framework achieves robust performance in dynamic
grasping tasks, maintaining high efficiency and safety in shared workspaces. This
work is named as RL-DNLS (detailed in chapter 6).

1.4 Thesis Structure
The structure of this thesis is summarized in Fig. 1.4. The remainder of the thesis is or-
ganized into six chapters, each addressing key aspects of motion planning and dexterous
grasping for cobots, as outlined below:

• Chapter 2 Related Work This chapter provides a comprehensive review of the
state-of-the-art in areas relevant to this thesis. Specifically, it examines prior re-
search on human motion and intention prediction, trajectory optimization for HRC,
decoupled grasping generation and motion planning, joint motion and grasping
generation, as well as simulation and sim-to-real multimodal learning for dexter-
ous grasping.

• Chapter 3 Pred-HRC-Body This chapter introduces the Pred-HRC-Body frame-
work, which enhances the efficiency and safety of HRC in assembly tasks. The
framework combines accurate human motion prediction with goal-oriented trajec-
tory generation. Real-world experiments validate the proposed pipeline, demon-
strating its effectiveness in practical applications. This work has been published
in [69].

• Chapter 4 Pred-HRC-EEG This chapter presents the Pred-HRC-EEG frame-
work, which incorporates EEG signals for predicting human intentions and vig-
ilance. The predicted results are seamlessly integrated into an online trajectory
optimization framework, enhancing the safety and efficiency of HRC. Real-world
experiments confirm the framework’s practicality and reliability. This work has
been published in [68].

• Chapter 5 ADG-Net This chapter introduces ADG-Net, a multimodal dexter-
ous grasping framework. A large multimodal dataset for dexterous grasping is
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Figure 1.4: The structure of the thesis.

collected using a GPU-accelerated parallel simulator, including RGB-D images,
joint angles, and tactile information, with fingertip deformation considered dur-
ing data generation. ADG-Net employs supervised learning to train a dexterous
grasp generation network efficiently. The effectiveness of the proposed frame-
work is validated through both simulation and real-world experiments. This work
has been published in [147].

• Chapter 6 RL-DNLS This chapter focuses on the integration of RL with dif-
ferential optimization for safe and efficient dynamic grasping in tightly shared
workspaces. The proposed RL-DNLS framework reformulates the constrained op-
timization problem as a differentiable nonlinear least-squares problem, enabling
efficient GPU-based computation. Both simulation and real-world experiments
validate its effectiveness. This work has been submitted for publication.

• Chapter 7 Conclusions and Future Work The final chapter summarizes the con-
tributions and findings of the thesis and outlines potential directions for future
research in motion planning and dexterous grasping in HRC.
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Chapter 2

Related Work

Cobots are designed to operate in close proximity to humans, often without the need
for extensive safety barriers. In this dynamic HRC environment, online motion plan-
ning and dexterous grasping are two fundamental capabilities required of cobots. Due to
rapid human movements, online motion planning must incorporate human intention and
motion prediction so that cobots can re-plan their trajectories early, ensuring both safety
and efficiency in tightly shared workspaces. Meanwhile, dexterous grasping is essential
for robustly handling the diverse range of objects encountered in daily life. To facili-
tate more fluent and efficient HRC, recent research has increasingly focused on solving
online motion planning and grasping tasks jointly. Consequently, this chapter reviews
the state-of-the-art in online motion planning (human intention and motion prediction,
trajectory optimization), static dexterous grasping, and integrated motion-and-grasping
planning, highlighting foundational studies and recent advancements that inform the
approaches proposed in this thesis.

2.1 Online Motion Planning
In this section, robot motion planning is considered independently of object-grasping
tasks. The robot’s goal pose is manually scheduled based on human intentions, and the
trajectory optimization process accounts for human motions. Accordingly, this section
reviews the state-of-the-art in human intention and motion prediction, as well as trajec-
tory optimization.

2.1.1 Human Motion Prediction and Intention Estimation
Human Motion Prediction

Human motion prediction plays a foundational role in HRC, as it enables robots to antic-
ipate human actions and adapt their behavior accordingly. Different methods have been
proposed for human motion prediction. Human joint-space trajectories are predicted
based on Dynamical Movement Primitives (DMP) and then used to predict human joint
torques for intention estimation during walking [102]. Another category of algorithms
for AH motion prediction is based on Inverse Optimal Control (IOC), which tries to
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Figure 2.1: The subject and robot are standing opposite to each other. The subject’s task is to
touch the yellow or black pads and the robot’s task is to touch either the blue or orange pads [67].

approximate a cost function explaining the observed behavior, e.g., [73]. However, with
IOC the goal information needs to be known first, which is not possible for the task we
are interested in. Other work predicts human motions with explicitly defined dynamic
equations derived from physical theory, such as [5,52,83]. But it is hard to model human
dynamics, and the model-based methods usually only work well for a very short time
horizon.

There are also some pattern-based approaches. They can learn complex dynamic
models from datasets based on all kinds of approximation methods (e.g., neural net-
works, Hidden Markov Models, Gaussian Mixture Models (GMMs)). Luo et al. used
the GMMs to model the human AH trajectory in [67], and the experiment is shown
in Fig. 2.1. This unsupervised method can generalize to new persons by dynamically
updating or generating new models. Wang et al. proposed a position-velocity recurrent
encoder-decoder neural network (PVRED) [132]. A velocity connection is added to the
input of the long short-term memory (LSTM), and their results show that this method
can achieve a better performance than previous results. This work builds on these ap-
proaches by revising and adapting GMMs to improve motion prediction accuracy in
scenarios with closely positioned targets.

Intention Estimation based on Human Motion

Intention estimation complements trajectory prediction by providing insights into hu-
man goals and actions. Approaches leveraging human body motion have been widely
studied. Arpino and Shah predicted the reaching target by time series classification
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in [95]. They encoded each time step as a multivariate Gaussian distribution and calcu-
lated the class posterior probability with the observed trajectory. The result shows that
they can achieve a rather accurate target prediction. A similar idea has been promoted
in [67], where GMMs are used to approximate one class of trajectories. In [54], Landi
et al. combined the minimum jerk model with an adaptive neural network to predict
whether the human will react to the robot end-effector. The similarity between observed
short-term movements and the learned user behavior was used to predict human reach-
ing goal in a teleoperation task [133].

The Q-learning method was also used for this task. Cheng et al. [20] proposed that
humans optimize a reward function during the pick-and-place task, related to the dis-
tance and velocity from the human hand to the target position. Assuming that the human
motion follows a Boltzmann policy, they estimated the posterior probability distribution
over all targets based on the observed trajectory. However, this method does not work so
well when targets are located close to each other (e.g., 10 cm in our scenario), because
there will be several similar probable target positions in this situation, especially during
the initial motion stage.

Therefore, we will use the probabilistic model GMMs for target estimation instead
of end-to-end deep learning methods. The benefit of GMMs is that they are easier to
train and also provide us with probability information. As the target positions in our
task are close to each other, the trajectories are very similar at the early stage. Unlike
the work mentioned above, we make use of both the observed AH trajectory and the
short-term prediction as the input of GMMs to improve the estimation accuracy at the
beginning of the reaching motion.

Intention and Vigilance Estimation based on EEG

The integration of BCIs with HRC systems has gained significant attention in recent
years, particularly for enhancing safety and efficiency in shared workspaces. EEG, a
widely-used non-invasive neuroimaging modality, enables decoding of human intentions
and cognitive states, providing a valuable channel for human-robot communication. This
section reviews related work on EEG-based human intention prediction, highlighting
foundational studies and recent advancements that inform the approaches proposed in
this thesis.

EEG signals, such as movement-related cortical potentials (MRCPs) and readiness
potentials, offer early markers of human movement intention. These slow cortical po-
tentials, detectable several hundred milliseconds before movement onset, have been uti-
lized for predicting the initiation and type of human movement. For instance, readi-
ness potentials have been employed to predict which arm a human will move, enabling
robots to adjust their speed and trajectories in response to human actions in shared
workspaces [11, 28]. Additionally, MRCPs have been demonstrated to provide infor-
mation about upcoming grasp actions, such as distinguishing between palmar and pinch
grasps, enhancing robot adaptability in collaborative scenarios [141].

Motor imagery, involving the mental simulation of movements without physical ex-
ecution, is another prominent EEG paradigm for intention decoding. Imagining move-
ments of the hands, feet, or tongue generates distinct EEG patterns, which can be clas-

11



Chapter 2. Related Work

Figure 2.2: The stimulus (top) and timing (bottom) of the experiment are illustrated. A large
white disc, resembling a clock face, flickers at the specified stimulation frequency, while targets
are highlighted against a steady black background. In the example, the target sequence displayed
is “5” followed by “7” [78].

sified with high accuracy using machine learning methods, including deep neural net-
works [41,146]. This paradigm has been applied to various applications, such as robotic
teleoperation and assistive technologies, where decoding motor imagery allows users to
issue high-level commands to robots.

Steady-state visual evoked potentials (SSVEPs), elicited when individuals focus on
flickering visual stimuli, have been widely employed in BCIs for intention prediction
and target selection. Traditional SSVEP-based systems often require users to switch
gaze between a graphical interface and the workspace, which can disrupt task perfor-
mance [17, 18, 119]. Recent advancements have introduced spatially-coded SSVEPs,
enabling gaze direction decoding relative to a single flickering stimulus [78] as shown
in Fig. 2.2. This approach facilitates seamless intention prediction by projecting the
BCI interface directly onto the workspace, allowing users to naturally integrate inten-
tion signals with their operational tasks. By leveraging the tendency of humans to gaze
at intended action locations, these systems improve the intuitiveness and efficiency of
BCIs in HRC applications [43, 53].

EEG-based vigilance monitoring has been extensively studied as a means to assess
attention levels and detect fatigue during tasks. Variations in the amplitude and signal-
to-noise ratio (SNR) of SSVEPs have been associated with changes in attention and
cognitive load, making them effective indicators of vigilance [14,118]. Integrating vigi-
lance monitoring into HRC systems enables robots to dynamically adapt their behavior
based on the operator’s cognitive state. For instance, modulating robot speed or task
difficulty in response to operator vigilance can enhance both safety and task perfor-
mance [45]. Most existing studies focus on developing standalone BCI components or
evaluating BCI applications in simulated environments [11, 17, 18].

Building on these foundational studies, this thesis investigates a novel approach to
integrating EEG-based human intention prediction with online trajectory optimization
in HRC. The proposed system not only predicts human movement intentions but also
monitors vigilance levels to modulate robot behavior adaptively. The experimental setup
validates the system’s effectiveness through real-world evaluations, demonstrating sig-
nificant improvements in both collaboration efficiency and operator safety.
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2.1.2 Online Trajectory Optimization

Safe and efficient trajectory generation is also critical for HRC, particularly in dynamic
environments with human co-workers. Only specific motion planning algorithms can
deal with the dynamic obstacle avoidance problem, such as trajectory optimization [32]
and sampling-based methods [38]. Considering the whole volume of obstacles across
all prediction time steps for safe trajectory generation results in conservatively planned
trajectories. Zheng et al. [154] propose a framework to deal with this problem. They
reformulate the obstacle avoidance problem into two Quadratic Programming (QP) pro-
grams. This way, they can generate a collision-free trajectory very fast. However, in
some scenarios, e.g., when the separating plane used in their approach is close to ver-
tical, the generated trajectory is not safe anymore because of local minima and the
linearized kinematics. In other work like [9], [115], they generated collision-free and
custom-preferred waypoints in Cartesian space online, during which the dynamics limi-
tation was not considered. They then control the robot end-effector to track these points.

In [112], a trajectory tracking problem in a static environment was solved. In this
thesis, we model a predicted AH trajectory as several moving capsules and solve the
trajectory optimization problem in a MPC style. A set of penalty terms are added into
cost functions to efficiently generate a smooth and safe trajectory for the dynamic HRC
task.

2.2 Static Dexterous Grasping
This section discusses the state-of-the-art in dexterous object-grasping. Here, object
grasping is treated as an independent problem separate from motion planning. The fo-
cus is solely on grasping stability, while robot reachability and motion optimality are
not considered.

2.2.1 Simulation of Dexterous Grasping

The simulation of dexterous grasping plays a crucial role in advancing research and
applications for dexterous hands.

One of the core aspects of dexterous grasping simulation is the development of
sophisticated algorithms that empower dexterous hands to perform various poses for
human-like grasping [24]. Many grasp simulators typically synthesize dexterous grasp
by defining a grasp quality metric to optimize hand kinematics and force-torque clo-
sures, such as GraspIt [80], SynGrasp [75] and UGG [65]. Recent advancements utilize
differential optimizers to identify feasible dexterous grasps via differentiable force clo-
sures [16,63,135,142]. Nevertheless, most works synthesize dexterous grasps for rigid-
body hands, grippers and objects, ignoring their deformations due to the high computa-
tional complexity of dexterous grasp simulation [16,65,75,80,135,142]. Some dexterous
simulation frameworks [63,135,142] analyze contacts of dexterous hands using a set of
limited contact candidates in front of fingers to accelerate simulation speed. These sim-
plifications may result in synthetic grasps that lack the flexibility of a real human hand.
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Figure 2.3: The diverse grasps on the objects from DexGraspNet [135].

In recent years, integrating tactile sensing technologies becomes important for en-
hancing robotic hand dexterity [151]. Many state-of-the-art (SOTA) tactile sensors, such
as BioTac tactile sensors [108] and GelSight sensors [34], are mounted on soft base ma-
terials. Hence, simulation with soft-body sensors is necessary for tactile sensing. Narang
et al. [88] developed a sim-to-real (Sim2Real) framework for the BioTac tactile sensor
to learn representations of tactile sensing with various deformation, using the Isaac Gym
and finite element methods (FEMs). Similarly, a novel simulation method was proposed
for the tactile simulation of GelSight sensors [19]. However, traditional soft-body sim-
ulation methods based on FEMs face computational challenges, limiting their effective-
ness for the large-scale dataset generation.

This thesis proposes a two-stage simulation method that combines rigid-body mod-
eling with soft fingertips to generate diverse multimodal grasping scenarios efficiently.
A dexterous hand is modeled with a rigid-body hand to quickly touch a target object, and
then modeled with a rigid-body hand and soft fingertips to continue optimizing the grasp
and collecting tactile forces from the soft fingertips. Owing to the combination of the
two simulation stages, massive dexterous grasping scenarios with multimodal sending
data can be simulated effectively.

2.2.2 Sim2Real Learning of Dexterous Grasping
Sim2Real learning of dexterous grasping aims to bridge the gap between synthetic dex-
terous grasps and real-world applications. Briefly, this learning approach can be classi-
fied into two categories according to their foundational frameworks. The first category
collects synthetic grasp examples in simulation and then utilizes various deep neural
networks to learn grasp principles for detecting grasp parameters [89, 117, 153]. For
these methods, collecting a dataset in simulation is a pivotal procedure. Therefore, it
is necessary to restrict hand motions in the simulation to prevent neural networks from
learning grasp poses that are impractical for a dexterous hand mounted in real-world set-
tings. Unfortunately, this feature is lacking in some existing simulators [135,142], which
can lead to a Sim2Real gap. Generated diverse grasps in the simulator are visualized in
Fig. 2.3.

Another research line leverages RL, and learning targets can be various tasks be-
yond dexterous grasping [56, 60, 76, 101]. For instance, Liang et al. [60] introduced
a Sim2Real RL framework for ShadowHand that detects grasp position based on the
PointNet [61, 97] and employs a RL algorithm to adapt grasp principles from simple
two-finger jaw grippers to the ShadowHand. Lee et al. [56] developed a DexTouch for
Sim2Real learning of dexterous grasping and manipulation with tactile feedback.
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This thesis introduces a novel Sim2Real grasp learning with two-stage grasp simu-
lation. A multimodal deep learning (DL) method, instead of an RL method, is employed
for grasp learning due to both theoretical and technical aspects. First, RL methods re-
quire feasible learning policies. However, creating effective reward functions and learn-
ing policies for RL methods of dexterous hands presents challenges due to their intricate
kinematic structures [60]. Moreover, dataset collection and retraining are crucial for es-
tablishing benchmarks for the dexterous grasping task. For RL methods, the robotic task
scenarios have to be reconfigured whenever the learning policies or models are updated,
making the dataset non-reusable.

2.2.3 Multimodal Sensing for Dexterous Grasping
Dexterous grasping with multimodal sensing is a critical strategy to enable robots to
perceive and interact with their environments, and thus achieve human-like grasping
[24, 29, 55, 57]. Such methods typically amalgamate diverse types of sensing data, in-
cluding visual, tactile, and wrist force-torque sensing, along with joint states of a dex-
terous hand, to enhance grasp pose detection [57], status monitoring [37, 140] and opti-
mization processes [145]. For instance, Zhang et al. [149] integrated the robotic vision
with gripper wrist force-torque data through a GA-CNN reactive grasping method for
a soft gripper to grasp moving objects. Additional research reveals that the integration
of tactile sensing and gripping forces can markedly refine the accuracy of grasping state
recognition for a multifingered hand [140].

This thesis introduces an adaptive dexterous grasping method utilizing the multi-
modal ADG-Net (Section 5.5). The proposed grasping method initially identifies feasi-
ble grasp parameters from an RGB-D image of a grasp scene and then optimizes these
parameters based on the feedback of tactile forces and joint angles when the dexterous
hand touches a target object.

2.3 Joint Motion and Grasping Planning
The object-grasping task can be classified into static and dynamic scenarios. In static
scenarios, as discussed in Section 2.2, the task is typically divided into separate sub-
tasks for grasp generation and motion planning. In contrast, in dynamic scenarios such
as dynamic HRC, grasp generation and motion planning must be addressed jointly to
accommodate the continuously changing environment. This section discusses the state-
of-the-art methods for jointly solving motion and grasp planning tasks.

2.3.1 Decoupled Grasp Generation and Motion Planning
Traditional grasping frameworks often decouple grasp generation, selection, and motion
planning. Data-driven approaches are widely used to tackle the grasp generation prob-
lem. In these studies, the physics simulators, like GraspIt! [81], [90] and Flex [70], are
utilized to label large datasets of grasp candidates, which are then used to train neural
networks for grasp generation or evaluation using depth images or raw point clouds as
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input. Finally, some motion planning framework like MoveIt! [26] will be used to check
for a collision-free path by looping the generated grasps in descending order of grasp
score [62, 86, 124]. This kind of method is poorly adaptable to dynamic environments.
If the object pose or the environment obstacles change, the entire three processes may
need to be redone.

Some methods for grasp candidate reachability analysis have been proposed to speed
up the process of finding feasible grasps for the robots. CollisionNet [87] is used to clas-
sify if the gripper at the grasp poses collides with the environment based on the point
cloud of the end-effector, object, and obstacles. A collision-aware Reachability Predic-
tor [64] is trained to predict the collision-free probability of the grasp poses. While these
methods can accelerate the process of collision-free grasp selection, they fail to consider
the grasp optimality in motion planning. For instance, with the selected collision-free
grasp candidate, it remains uncertain whether the generated trajectory is both feasible
and shorter.

2.3.2 Joint Grasp and Motion Planning
Integrating motion planning and grasp planning is crucial, as these processes are inher-
ently interdependent in object-grasping tasks. Their joint optimization can significantly
enhance the success rate and efficiency of such tasks.

Simple heuristic methods have been used to select a grasp pose for motion planning
from the multiple grasp candidates provided by existing grasp synthesis methods. The
grasp pose closest to the robot arm’s end-effector is used as the target pose, followed by
trajectory optimization using MPC [143,144]. These algorithms perform well in human-
robot handover scenarios. However, in more complex environments with obstacles, such
as humans operating in tightly shared workspaces with robots, the grasp poses selected
by simple heuristic methods are often suboptimal or even infeasible. Using the nearest
grasp pose as the goal for motion planning can result in the trajectory planner failing to
generate a feasible path for the robot to reach the selected grasp pose.

Joint grasp and motion planning algorithms have been proposed recently. For exam-
ple, CHOMP [106] is employed to compute collision-free trajectories for a set of grasp
candidates while simultaneously updating the grasp candidate distribution during tra-
jectory optimization. The cost function weights in the trajectory optimization problem
significantly impact the grasping task and must be carefully tuned to achieve optimal
performance. In [42], a time-optimal trajectory is computed for each grasp candidate,
and the grasp pose that minimizes motion time while avoiding obstacles is selected
as the optimal candidate. However, the algorithm relies on sequential quadratic pro-
gramming (SQP) to solve the optimization problem for each candidate, resulting in a
significant computational load that limits its applicability in dynamic scenarios

Different from outputting a discrete grasp candidate set, the continuous manifold of
valid grasp poses is modeled as the level set of a neural implicit function [138]. The
neural implicit function takes the 6D query pose and object point cloud as input and
estimates the unsigned distance to the nearest valid grasp on the manifold. It is used as
the cost function for the trajectory waypoints during gradient-based optimization. This
method still has an issue: it is challenging to find appropriate weights for different cost
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Figure 2.4: SE(3)-DiF’s architecture for learning 6D grasp pose distributions [129].

functions, ensuring that the trajectory planning algorithm can both grasp the object and
avoid collisions. Similarly, a smooth SE(3) cost function is learned by a differentiable
diffusion model [129] and integrated into trajectory optimization algorithms as a cost
function. The architecture of the proposed method is shown in Fig. 2.4 The same issue
with weight adjustment still persists.

Numerous studies have already employed RL for object-grasping. The trained policy
is used directly for joint grasp and motion planning. RGB images are used as the ob-
servation in [46, 77, 105]. More recently, Point clouds have been preferred over images
for RL-based object-grasping because they provide rich, direct 3D information that is
critical for accurately planning and executing grasps in a three-dimensional space. Point-
Net [98] and PointNet++ [99] are used to extract object point clouds features in [100]
and [134], respectively. The trained policy is capable of grasping both static and dy-
namic objects, but it does not account for collision issues. A RL-based framework is
proposed for human-to-robot handover tasks in [23]. Human hand safety is considered
by assigning negative rewards when collisions occur. The negative reward for collision
penalties can reduce the frequency of collisions, but it does not guarantee collision-free
behavior as shown in [23].

Differentiable optimization layer [30] proposes an efficient way to add a learnable
optimization layer in neural networks to include structural priors. This approach has
been applied to a wide range of robotic and computer vision learning tasks. Building
on this concept, Differentiable MPC [3] has been developed and evaluated on simple
control tasks, such as pendulum and cartpole systems. By leveraging the differentiable
property of the optimization layer, it can also be integrated into RL, though it slows
down the training process significantly [110]. A GPU acceleration optimization layer
for DNLS problems is proposed in [96], which could speed up the training process a lot.
In this thesis, we use RL to provide the goal pose and tune the cost function weights of
the differentiable MPC controller. So that we could get a better performance in dynamic
grasping tasks within highly dynamic environments. To further accelerate training, the
differentiable MPC optimization problem is reformulated as a DNLS optimization prob-
lem and solved using a DNLS optimizer proposed in [96].

17



Chapter 3

Predictive Planning for HRC Using
Human Motion

HRC plays a critical role in both manufacturing and domestic robotics, yet achieving
both high efficiency and safety remains a formidable challenge. This chapter introduces
an HRC framework that produces collision-free, efficient robot trajectories by leverag-
ing predictions of human AH movements. Specifically, we develop a recurrent neural
network (RNN) trained on the initial segments of observed AH trajectories to forecast
future motions. To enhance early target estimation, our approach fuses the observed
hand palm trajectory with its predicted counterpart using GMMs, thereby identifying the
intended motion target. Additionally, we propose an optimization-based trajectory gen-
eration algorithm that prioritizes human safety during collaboration. The effectiveness
of our system is validated in a shared-workspace scenario involving human pick-and-
place tasks, demonstrating that our pipeline can accurately and promptly predict human
AH trajectories and estimate the intended motion target, ensuring both safe and efficient
collaborative operations.

3.1 Introduction

Robots excel in speed and power, whereas humans possess the intelligence and dex-
terity required for complex manipulation tasks that can be challenging for robots. As a
result, HRC is increasingly adopted to enhance work efficiency and flexibility. However,
balancing human safety with robotic efficiency remains a significant challenge. In this
work, we consider the scenario depicted in Fig. 3.1, where a human and a robot share a
narrow workspace. Although physical interactions such as compliance control (as dis-
cussed in [33]) are not considered here, the robot is expected to operate collaboratively
with the human. To improve the efficiency of joint assembly tasks and ensure safety in
the shared workspace, the robot must be capable of quickly predicting the human AH
trajectory and inferring the human’s target position within a short time horizon

We represent human motion using four key joints—shoulder, elbow, wrist, and palm.
While previous studies in similar scenarios (e.g., [20, 136, 152]) have attempted to pre-
dict human trajectories, they typically focus on just one or two joints, such as the wrist
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Figure 3.1: A side view of the human–robot pick-and-place platform used in our experiments
[69]. In this shared workspace, the human operator places objects at one of twelve designated
target locations. Meanwhile, the robot monitors the current AH trajectory to predict both the
short-term human motion and the intended reaching target. Using these predictions, the robot
generates collision-free, goal-oriented trajectories in real time to collaborate with the human
during the assembly task..

and elbow. This limited approach may not suffice for enabling the robot to effectively
avoid the human AH, particularly within our confined workspace. In [21], an adaptive
method is proposed for predicting the human hand trajectory; however, its applicability
to our task is limited due to the high dimensionality of the problem, which complicates
online weight adjustment. Overall, accurately modeling the dynamic nature of human
AH motion is challenging, especially given individual differences. Consequently, recent
state-of-the-art methods (e.g., [36, 132]) have turned to data-driven models. Inspired
by [132], we adopt a position-velocity encoder-decoder neural network for AH trajec-
tory prediction.

In principle, a neural network could be trained to simultaneously predict short-term
AH trajectories and estimate the intended final target position. However, such a multi-
task network would be challenging to train due to the increased number of parameters
and the difficulty of incorporating semantic information—such as a set of known target
positions—into human intention prediction. Instead, probabilistic methods have been
preferred for target inference or motion regression [66,92] because they generalize well
to new scenarios. When the number of possible target positions is limited (in our work,
there are 12 targets, as shown in Fig. 3.2), these methods impose a low computational
load, making them efficient enough for fast motion prediction. Moreover, probabilistic
methods can be trained quickly in an unsupervised manner. It is worth noting that previ-
ous work using these methods focused solely on estimating human intentions based on
the observed trajectory, which does not fully address the requirements of our task.

In our scenario, the targets are close to each other (separated by 10 cm), and the
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Figure 3.2: Placement of the target and initial positions: The green markers represent the target
positions (numbered 1–12), while the red marker at the front denotes the initial (and resting) po-
sition of the human hand. The black boxes indicate the locations of the motion-capture system’s
cameras used to track human motion. [69]

(a) (b)

Figure 3.3: (a) Recorded human reaching trajectories of the palm from the resting position to
the twelve target positions. (b) A close-up view of the first 40% of several reaching trajectories
for target positions 2–5, illustrating the initial overlap among the trajectories. [69]

initial portions of the trajectories (approximately 50%) are very similar, as shown in
Figures 3.3a and 3.3b. To improve target estimation accuracy during the early phase of
reaching, we propose using both the observed and predicted palm trajectories in con-
junction with GMMs.
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Figure 3.4: The overall design of our HRC framework [69]. It is organized into three primary
modules: human trajectory prediction, target inference, and real-time trajectory generation. First,
the system employs an encoder-decoder network that analyzes the observed motion of the hu-
man arm and predicts its future movement segments. This forecast, combined with the original
trajectory data, is then fed into a Gaussian Mixture Model (GMM) component, which deduces
the intended destination of the human hand. Both the neural network and the GMM are devel-
oped and refined using a custom-collected dataset of human arm movements. Following target
estimation, a goal scheduling unit updates the robot’s objectives to align with the inferred human
intent. Finally, the online trajectory generator computes collision-free paths to ensure safe and
efficient collaboration between the human and the robot.

Previous studies [10,154] generated safe robot trajectories online by solving two op-
timization problems, assuming that the AH trajectory prediction was already available.
In contrast, by leveraging the predicted AH trajectory from our motion prediction mod-
ule, we can efficiently generate a safe robot trajectory by solving a single optimization
problem with fewer objective functions. Furthermore, to significantly reduce the number
of geometric constraints in the trajectory optimization process, we model the AH and
robot links using capsules instead of the numerous spheres employed in earlier work.

3.2 Methodology
As described above, our HRC pipeline is organized into three key modules—trajectory
prediction, final target estimation, and online trajectory generation—as depicted in Fig.
3.4.

3.2.1 Human Trajectory Prediction and Target Estimation
Predicting the human arm trajectory is a critical first step in our system. This prediction
not only helps infer the intended hand position but also enables the controller to generate
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Figure 3.5: The encoder-decoder neural network architecture is composed of two primary mod-
ules: an encoder and a decoder. Both modules are implemented using LSTM cells to effectively
capture long-term dependencies in the sequential data. [69]

safe, collision-free trajectories.
For trajectory forecasting, we employ an encoder-decoder architecture similar to the

Seq2Seq model described in [132]. Our model leverages LSTM networks [40] to capture
long-term dependencies in sequential data. Figure 3.5 illustrates the architecture of our
encoder-decoder network.

Although the Gaussian Mixture Models (GMMs) introduced later in this chapter
could be used for regression tasks [67], our experiments indicate that the trajectories
predicted by the GMMs do not closely resemble the actual trajectories. Consequently,
we continue to rely on the Seq2Seq model for accurate motion prediction.

The Seq2Seq model is defined as

X̂i,t+1:t+T = f (Xi,0:t),

and is trained on a dataset D = {Xi}N
i=1, where N represents the number of demon-

strated trajectories, t is the length of the observed segment, and T is the length of the
segment to be predicted. In this context, Xi,t denotes the Cartesian positions of four
markers placed on the human shoulder, elbow, wrist, and palm. Each trajectory is seg-
mented as Xi,0:t+T , where the input to the model is the observed segment Xi,0:t and the
corresponding target labels are given by Xi,t+1:t+T . Our objective is to train the model so
that the predicted trajectory X̂i,t+1:t+T closely approximates the true trajectory Xi,t+1:t+T .

To achieve this, we define a loss function based on a weighted prediction error over
the four markers:

Loss = ∑
Xi,0:t+T∈D

4

∑
j=1

w j

∥∥∥X̂ ( j)
i,t+1:t+T −X ( j)

i,t+1:t+T

∥∥∥ (1)

where w j is the weight corresponding to the j-th marker.
Using the dataset D , we construct a GMMs library G = {gk}M

k=1 using the standard
unsupervised Expectation Maximization (EM) algorithm, where M denotes the number
of potential target objects. For target position estimation, we focus solely on the trajec-
tory of the human palm since it encodes the most pertinent information for trajectory
classification [67]. The observed trajectory, denoted as Xob, is represented as an m× n
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matrix, where m is the number of waypoints and n is the number of dimensions per
waypoint.

To model each component gi ∈G, we approximate it using K multivariate Gaussians,
{gck}K

k=1. Consequently, the probability that a single trajectory point Xi,t (observed at
time t in demonstration i) belongs to gi is given by

p(Xi,t | gi) =
K

∑
k=1

p(gck | gi) p(Xi,t | gck,gi) (2)

where the conditional probability p(Xi,t | gck,gi) is defined by the Gaussian distribu-
tion:

p(Xi,t | gck,gi) =
1√

(2π)n |Σk|
exp
(
−1

2
(Xi,t−µk)

T
Σ
−1
k (Xi,t−µk)

)
(3)

Due to the high similarity of the trajectories during the initial phase of the reach-
ing motion, we utilize both the observed trajectory Xi,0:t and the predicted trajectory
X̂i,t+1:t+T for target estimation. The joint probability of these trajectories, given a spe-
cific target gi, is calculated as

p(Xi,0:t , X̂i,t+1:t+T | gi) =
t+T

∏
s=0

p(Xi,s | gi) (4)

Applying Bayes’ rule, the log-likelihood of gi given both the observed and predicted
trajectories is expressed as

p(gi | Xi,0:t , X̂i,t+1:t+T ) =
t+T

∑
s=0

log p(Xi,s | gi)+ log p(gi) (5)

We then select the gi with the highest posterior probability as the estimated target
position.

3.2.2 Online Trajectory Generation
Our online trajectory generation method, which is based on optimization, enables the
robot to perform manipulation tasks while simultaneously avoiding collisions with hu-
man arm–hand motions, respecting workspace boundaries, adhering to joint position
limits, and satisfying dynamic constraints.

To achieve this, we define a limited quadratic position loss lP based on the distance
between the end-effector position PE and the goal position PG. This loss is capped at a
maximum value m to ensure that it does not override other critical objectives such as
collision avoidance. Additionally, we minimize a quadratic orientation loss lR that mea-
sures the discrepancy between the end-effector orientation RE and the goal orientation
RG. These loss functions are given by:

lP = min(m,∥PE −PG∥)2 (6)
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lR = ∥RE −RG∥2 (7)

The generated robot trajectory, represented by the joint angles {pi}TR
i=0, must adhere

to constraints on position, velocity, and acceleration. Specifically, each joint angle pi is
required to lie within its corresponding position limits (pi,min, pi,max); the joint velocities
p′i must fall between (vi,min,vi,max); and the joint accelerations p′′i must remain within
(ai,min,ai,max). Here, TR denotes the length of the robot trajectory generated in each
optimization loop. These constraints are formally expressed as:

pi,min < pi < pi,max (8)

vi,min < p′i < vi,max (9)

ai,min < p′′i < ai,max (10)

During real experiments, inherent time delays in computations and communications
among modules can lead to abrupt changes in the robot’s motion when trajectories are
updated. To mitigate these motion jumps between consecutive optimization loops, we
enforce a constraint that requires the first two steps of any newly generated trajectory to
match the corresponding steps in the previous trajectory.

We also add a velocity and acceleration regularizer ri with weights b,c to prefer
smooth motions.

ri = b p′i
2 + c p′′i

2 (11)

Finally, to prevent collisions between the robot and humans—as well as with fixed
workspace boundaries—we model human limbs and robot links as capsule-shaped col-
lision objects (i.e., cylinders with hemispherical ends), as shown in Fig. 3.6a. This ap-
proach significantly reduces the number of collision geometries compared to the con-
ventional method of using multiple collision spheres.

Specifically, we generate capsules with radii (rH, j)
T
j=0 between all consecutive hu-

man joints with predicted positions (PH, j)
T
j=0. Similarly, capsules with radii (rR,k)

TR
k=0

are created between all connected robot joints with positions (PR,k)
TR
k=0. We then calcu-

late the pairwise closest distances between these human limb capsules and robot link
capsules, as depicted in Fig. 3.6b. The directions of the shortest distance vectors are
used as the normals for the separating planes N j,k, as illustrated in Fig. 3.6c.

For human–robot collision avoidance, we incorporate a set of penalty terms q j,k to
enforce a desired minimum distance d between the human and the robot. We opt for
penalty terms rather than hard constraints because a human may approach the robot
at a speed exceeding the robot’s maximum allowable velocity. In such situations, hard
constraints could render the optimization problem infeasible, potentially causing the
robot to halt and inadvertently provoking a collision. By contrast, soft penalties allow
the robot to continue moving away from the human as rapidly as possible. Furthermore,
because the position loss lp is capped, collision avoidance remains the primary objective
over simply reaching the target.
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(a) (b)

(c) (d)

Figure 3.6: Separation Plane Generation and Workspace Constraints for Collision Avoidance.
(a) We employ capsules as efficient collision geometries, constructing several capsules to en-
compass both the robot and the human arm. (b) The white lines illustrate the pairwise closest
distances between each robot capsule and its corresponding human capsule. (c) Separation planes
are then computed between every human capsule and robot capsule; these planes are integrated
into our trajectory optimization process to ensure a safe separation whenever the distance be-
tween the human and robot falls below a specified threshold. (d) In addition, static workspace
boundaries—defined by six planes (four vertical and two horizontal)—constrain the robot’s mo-
tion within a designated volume. [69]

In many scenarios, a large open space is available for the robot to retreat into safely.
When avoiding human motions, it may be advantageous for the robot to move toward
this area. To facilitate this, we introduce an optional bias B. In our experiments, the
robot can safely move upward into the open space above the table, so we set the bias B
to
[
0,0,0.5

]
.

NB, j,l =
N j,k +B
∥N j,k +B∥

(12)

q j,k = min(0,N j,k(PR,k−PH, j)− rH, j− rR,k−d)2 (13)

Finally, the workspace boundaries are enforced by a set of planes with normals
(NB,m)

6
m=1 and offsets (oB,m)

6
m=1, as shown in Fig. 3.6d. We add one inequality con-

straint for each plane and robot sphere.

PR,kNB,m < oB,m (14)
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At each time step, we optimize a trajectory over a horizon of 10 future time steps with a
step size of 0.1 seconds. This trajectory is re-optimized at a rate of 10 Hz, incorporating
the most recent human motion predictions. Our implementation is based on sequential
quadratic programming, which we solve using a primal-dual interior-point method as
described in [112].

3.3 Experiments
In this section, we evaluate the proposed method using real human motion data and
a robotic system in a desktop assembly task scenario, as illustrated in Fig. 3.1. The
experimental results demonstrate that our approach generates collision-free trajectories,
thereby enabling the robot to collaborate with the human more efficiently and safely.

3.3.1 Trajectory Prediction and Target Position Estimation
In our study, we acquired a dataset of pick-and-place trajectories from five healthy par-
ticipants (four males and one female) of varying heights. Each participant had four LED
markers attached to their shoulder, elbow, wrist, and palm (see Fig. 3.1). During the
task, their AH motions were captured using a PhaseSpace Impulse X2 motion-capture
system. The data were initially recorded at 270 Hz and subsequently down-sampled to
27 Hz to match the input requirements of our Seq2Seq neural network. Each subject
performed 240 trajectories, with 20% of the data from each subject reserved for testing.

Figure 3.2 illustrates the layout of the twelve target positions. These targets are ar-
ranged in two rows with six targets per row: within each row, targets are spaced 10 cm
apart, and the two rows are separated by 20 cm. The targets are numbered from the hu-
man operator’s perspective in a top-down, left-to-right order—targets 1 to 6 in the first
row and targets 7 to 12 in the second row. Figure 3.7a shows the test results for trajec-
tory prediction. The results indicate that the palm and wrist exhibit the largest prediction
errors, likely due to the higher variability in their motions. Overall, the prediction errors
for all joints remain below 2 cm over 5 time steps.

For predicting the endpoint of a human reaching motion, we train twelve GMMs
using Python [130] on the dataset D = {Xi,0:T}N

i=1, allocating 80% for training and 20%
for testing. As noted earlier, the initial segments (approximately 40%) of the recorded
human trajectories are very similar and exhibit significant overlap, as shown in Fig.
3.3b. This overlap makes early-stage trajectory classification particularly challenging,
as illustrated in Fig. 3.7b. When relying solely on the observed motion data, the GMM-
based classification (depicted by the orange curve) appears largely random at first, but
improves once around 40% of the trajectory has been observed. However, even after
60% of the motion is known, some misclassifications still occur.

However, our LSTM network has already learned to distinguish among different
reaching motions and can accurately forecast the human palm’s position for the upcom-
ing time steps. Consequently, by providing the GMMs with a combination of predicted
hand positions along with the observed data, we can substantially enhance the accuracy
of reaching target classification during an ongoing motion.
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Figure 3.7: Analysis of Trajectory Prediction and Target Estimation [69]. (a) Average prediction
errors across different time horizons for the four monitored human arm and hand joints. (b)
Comparison of early-stage target estimation accuracy, with and without incorporating short-term
trajectory predictions. The findings clearly demonstrate that integrating the predicted trajectory
markedly enhances early target estimation accuracy.

During training, the Seq2Seq neural network’s dataset was divided into equally sized
trajectory segments, each lasting 0.7 s. The first 0.35 s of each segment (corresponding
to 10 steps) served as the network’s input, while the subsequent 0.35 s (also 10 steps)
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Figure 3.8: The confusion matrices in the upper row depict the intended position estimation
results using solely the observed trajectories, while those in the lower row illustrate the results
when both observed and predicted trajectories are employed. Additionally, each column corre-
sponds to a different observation level—20%, 30%, 40%, 50%, and 60% of the reaching trajec-
tory. [69]

was used as the target output. For context, one complete pick-and-place cycle consists
of approximately 32 steps.

In our initial experiments, we selected an LSTM layer with a 128-dimensional hid-
den state. The Seq2Seq network was implemented in PyTorch [93] and trained using a
batch size of 128, with a teacher forcing ratio of 0.6. The training started with a learning
rate of 0.005, which decayed exponentially at a rate of 0.01. To further accelerate train-
ing, we applied batch normalization. Finally, we determined the loss function weights
through grid search, resulting in hyperparameter values of 0.08, 0.16, 0.32, and 0.44.

Figure 3.7b (blue curve) shows how classification accuracy improves as a larger
portion of the trajectory is observed. To further analyze the algorithm’s performance,
we present the corresponding confusion matrices in Fig. 3.8. These diagrams compare
the classification results obtained without and with LSTM predictions (upper and lower
rows, respectively) at different observation levels—20%, 30%, 40%, 50%, and 60% of
the human reaching trajectory being fed into the GMMs. In the upper row, the classi-
fication is initially nearly random and only shows significant improvement after 50%
and 60% of the human motion is observed. Notably, misclassifications between targets
3 and 10, as well as between targets 6 and 12, persist; these errors can be attributed to
the experimental setup, where the human hand passes over targets 3 and 6 to reach tar-
gets 10 and 12. With trajectory prediction enabled, however, the target estimates become
considerably more accurate and robust once at least 30% of the human motion has been
observed.

3.3.2 Online Trajectory Generation
The proposed online trajectory generation method is evaluated on a 6-DoF UR10e ma-
nipulator arm outfitted with a Shadow C6 hand, as depicted in Fig. 3.1. To ensure human
safety, the arm’s maximum joint velocity is capped at 0.02rads−1 and its acceleration is
limited to 1rads−2 (in accordance with the previously defined constraints). For collision
avoidance, both the robot and human elements are modeled using capsule geometries
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with a fixed radius of 10cm, and the collision margin d between capsules is set to zero.
The trajectory optimizer is implemented in C++ utilizing the Eigen library for linear

algebra operations. All modules communicate via the ROS platform [103]. The robot
model is loaded through MoveIt [25], and real-time commands are sent using Roscontrol
[22] together with the ur modern driver [4]. In our system, predictions from the LSTM
and GMM modules are computed at approximately 20 Hz, while the trajectory optimizer
runs at 10 Hz.

The experiment is divided into two distinct phases: a reaching phase and a staying
phase. During the reaching phase, the human begins by picking up a screw bolt from the
initial position and placing it at target 3. As soon as the human departs from the starting
location, the robot commences its movement from target 7 toward target 6. Once the
bolt is placed, the human remains at target 3 for 5 seconds (the staying phase), while the
robot continues to execute its task. Finally, both the human and the robot return to their
respective starting positions.

To compare the performance of two control strategies—a reactive controller that
considers only the current human arm-hand (AH) positions during trajectory genera-
tion, and a predictive controller that incorporates both current and forecasted AH po-
sitions—we repeated the experiment multiple times, as illustrated in Fig. 3.9 and Fig.
3.10. In this scenario, the predictive controller leverages five predicted palm positions to
enhance target estimation at the early stage of the reaching motion.

Figure 3.9 displays the outcomes for the reactive controller. The first three columns
show the human reaching phase, where the robot begins moving toward its target without
any motion prediction, inadvertently steering its trajectory closer to the human arm.
When the distance between the human arm and the robot falls below a predetermined
threshold (as shown in the third column), the robot adjusts its motion to avoid a collision
before proceeding to target 6. Although the resulting path is collision-free, it is far from
optimal.

In contrast, Fig. 3.10 demonstrates the performance of the predictive controller.
Here, the robot anticipates the human’s entry into the shared workspace much earlier,
allowing it to plan a trajectory toward target 6 that avoids approaching the human arm
too closely. Notably, the minimum separation between the human arm and the robot
is greater than that observed with the reactive controller, indicating that the predictive
approach offers improved safety.

Figure 3.11 offers a side-by-side comparison of the robot trajectories produced by
both controllers over three successive phases—reaching, staying, and returning—in a
single diagram. During the reaching phase, the reactive controller takes a pronounced
detour, whereas the predictive controller, despite some initial variability, quickly con-
verges to a smoother path as the target prediction stabilizes. Both controllers achieve
nearly ideal, straight-line trajectories during the return phase.

We also evaluated several key performance metrics, including the minimum distance
between the human palm and the robot’s index fingertip, the overall length of the robot
trajectories, and the execution time (see TABLE 3.1). As expected, the predictive con-
troller generates shorter trajectories and maintains a larger minimum separation between
the human and the robot compared to the reactive controller. These results indicate that
the predictive controller enhances both the efficiency and safety of the system.
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Figure 3.9: Experiments with a reactive controller (no prediction). The upper row of figures
shows the Cartesian trajectories of both the human and the robot: the blue line depicts the robot’s
path—specifically, the tip of the first finger of the Shadow hand moving from target 7 to target
6—while the red line represents the human palm joint trajectory reaching toward target 3. The
lower row of photos captures the human arm’s movement during the reaching phase, with the
final image showing the human arm holding position at the target for 5 seconds. [69]

Figure 3.10: Experiments with our predictive controller are conducted under the same conditions
as those shown in Fig. 3.9: the human motions, initial and target poses, and the robot’s dynamic
constraints remain unchanged. [69]
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Figure 3.11: The trajectories of the robot’s Shadowhand first fingertip, recorded during experi-
ments with both reactive and predictive trajectory controllers, are presented. [69]

3.3.3 HRC Efficiency

To assess the overall efficiency of our algorithm, we conducted experiments in which
the participant performed the collaborative task under various scenarios. In these exper-
iments, the participant retrieved an object from an initial position and placed it at any of
the 12 target positions in a random order (e.g., 7→12→5→11→3→9→2→8→10→4→1

Table 3.1: Comparison Results Between Predictive and Reactive Controller [69]

Trajectory Controller Trial Minimum Distance (cm) Trajectory Length (cm) Execution Time(s)

Predictive
Controller
(ours)

1 25.40 75.07 3.88
2 26.58 86.73 3.89
3 25.33 99.25 3.89

Average 25.77 87.02 3.89

Reactive
Controller
(baseline)

1 18.31 138.72 4.64
2 14.67 141.24 4.71
3 16.88 144.15 4.95

Average 16.62 141.37 4.77

31



Chapter 3. Predictive Planning for HRC Using Human Motion

→6→7). For example, one task flow involved the participant placing a screw bolt at tar-
get 3 and then waiting for 5 seconds. During this waiting period, the robot had to change
its target from target 3 to target 5 and re-plan its trajectory—based on the predicted hu-
man AH trajectory shown in Fig. 3.12a—to avoid disrupting the human’s work.

The relationship between the human’s intended target and the robot’s available target
positions is summarized in TABLE 3.2. The design of this workflow aims to enable
the human and the robot to work concurrently without interference. Coordination is
managed by the robot goal scheduler module, as illustrated in Fig. 3.4. For instance,
once the robot has reached target 6, it continues to move through the targets in the
order 7→8→9→10→11→12→1 if no human movement is detected in the workspace;
otherwise, the robot’s target is updated online according to the schedule in TABLE 3.2.

We performed this experiment under two different conditions as part of an ablation
study to further investigate the system’s efficiency.

In Situation 1, human target positions were predicted without incorporating any arm-
hand (AH) motion prediction (denoted as NP), and the robot’s trajectory was replanned
using the predictive controller. In Situation 2, human intentions were estimated by incor-
porating predicted AH trajectories (denoted as WP), and the robot’s trajectory was simi-
larly replanned using the predictive controller. Throughout the experiment, we recorded
the number of assembled products produced by the robot. As illustrated in Fig. 3.12b,
our algorithmic strategy yielded a reliable improvement in HRC efficiency. Although
the overall improvement was modest, this can be attributed to the fact that many human-
robot target combinations were inherently conflict-free (for example, when the human’s
intended target was 7 while the robot was moving from target 3 to target 4). Excluding
these conflict-free cases would likely result in a more significant efficiency improvement

Table 3.2: Experiment workflow

Human Intended Target Robot available Targets
1 3, 4, 5, 6, 10, 11, 12
2 4, 5, 6, 7, 11, 12
3 1, 5, 6, 7, 12
4 1, 2, 6, 7, 8, 12
5 1, 2, 3, 7, 8, 9
6 1, 2, 3, 4, 7, 8, 9, 10
7 1, 2, 3, 4, 5, 6, 9, 10, 11, 12
8 1, 2, 3, 4, 5, 6, 10, 11, 12
9 1, 2, 3, 4, 5, 6, 7, 11, 12

10 1, 2, 3, 4, 5, 6, 7, 8, 12
11 1, 2, 3, 4, 5, 6, 7, 8, 9
12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
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Figure 3.12: (a) Initially, the robot is set to proceed to target 3. However, once the system’s hu-
man intention and arm-hand (AH) trajectory prediction—based on the observed data—confirms
that the human is indeed aiming for target 3, the robot re-plans its trajectory in real time (in this
instance, redirecting to target 5 instead of target 3). This adjustment ensures that the robot main-
tains a safe distance and does not disrupt the human’s task. (b) This panel displays the number
of products assembled by the robot under two conditions. NP: Human intention classification
performed without incorporating predicted arm trajectories; WP: Human intention classification
enhanced with predicted arm trajectories. [69]

between WP and NP.

3.4 Summary
We introduce a comprehensive pipeline aimed at enhancing both the efficiency and
safety of HRC assembly tasks. Our approach begins with training a Seq2Seq neural
network to accurately predict the human AH trajectory. Unlike conventional methods,
we feed both the observed and predicted trajectory segments into GMMs for target esti-
mation. Our experiments show that this strategy produces a significantly more accurate
posterior probability distribution over potential target positions, even when the initial
portions of the trajectories are very similar.

Next, we combine the predicted trajectory with the estimated target position to
generate a goal-oriented, collision-free trajectory using a novel trajectory generation
method. Evaluations on our real robot system confirm that the overall pipeline markedly
improves the safety and efficiency of the HRC task.
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Chapter 4

Predictive Planning for HRC Using
EEG

This chapter investigates the use of predictive planning augmented by BCI technology
to improve the HRC performance. By leveraging a novel BCI paradigm that detects a
human’s overt attention, the robot is able to anticipate upcoming actions and proactively
adjust its behavior. This approach contrasts with traditional methods that rely solely
on reactive responses to human postures, by incorporating early intention prediction
to enhance task coordination. Furthermore, the system utilizes the signal-to-noise ratio
(SNR) of brain responses to dynamically modulate the robot’s velocity in accordance
with the human’s level of vigilance. The proposed system is validated through physical
robot experiments, which demonstrate its capacity to improve collaboration efficiency
while maintaining safe working distances.

4.1 Introduction

While the previous chapter provided an overview of human–robot collaboration in in-
dustrial production settings and discussed the inherent challenges of balancing perfor-
mance with safety, this chapter delves into a specialized approach for enhancing HRC
through predictive planning using BCI technology. Here, our focus is on leveraging
early intention prediction to enable robots to anticipate human actions and adjust their
behavior based on human vigilance states.

Multidisciplinary research can open up new communication channels between hu-
mans and robots, potentially enhancing HRC performance [51]. In line with this idea,
we explore the integration of BCIs with online trajectory optimization to achieve safer
and more efficient HRC. BCIs have been widely applied in robot control, ranging from
predicting human intentions for collaborative tasks to providing high-level commands in
teleoperation. For example, the readiness potential—an EEG signal deflection occurring
about 500 ms before movement onset—can indicate which arm a person will move, al-
lowing the robot to adjust its speed based on human presence in the workspace [11,28].
Moreover, movement-related cortical potentials recorded around the time of movement
onset carry valuable information about the upcoming grasp type (such as palmar or
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pinch) [141]. Motor imagery is another effective BCI paradigm, where imagined move-
ments of the hands, feet, or tongue produce distinct EEG patterns that deep neural net-
works can classify with impressive accuracy [41,146]. Additionally, BCIs leveraging the
P300 component have been successfully used to control assistive robot arms and mo-
bile robots, demonstrating the potential to encode a broader range of intentions through
interfaces like BCI spelling applications [119].

While previous studies have explored BCI applications in HRC, our approach intro-
duces two key innovations that differentiate it from existing work. First, rather than re-
lying on traditional P300 or SSVEP paradigms—which often require the user to switch
gaze between a dedicated interface and the workspace—we employ a spatially-coded
SSVEP BCI that detects gaze direction relative to a single flicker stimulus. This design
allows the BCI interface to be directly projected onto the workspace, enabling seamless
and intuitive intention prediction as the operator naturally focuses on the target area.

Second, in addition to capturing overt attention, our system continuously monitors
the operator’s vigilance by analyzing the signal-to-noise ratio (SNR) of the SSVEP re-
sponse. By treating vigilance as a dynamic parameter that can fluctuate over sub-minute
intervals, we use the SNR as an index to adapt the robot’s velocity in real time. This dual
strategy of early intention prediction and dynamic speed modulation is then integrated
with an online trajectory optimizer and real-time human arm tracking, ensuring that the
robot adjusts its workspace target and operating behavior in response to both predicted
human actions and current attention levels.

We validated this integrated system on seventeen participants under three condi-
tions—using only arm tracking, using BCI-based target prediction prior to movement
onset, and combining BCI target prediction with vigilance-based velocity modulation.
Our results demonstrate that this novel integration of spatially-coded SSVEP BCI and
vigilance monitoring can significantly enhance both the efficiency and safety of HRC.

4.2 Methodology

4.2.1 Setup and task description

This study focuses on non-physical collaboration scenarios, where a robot and a hu-
man work in the same workspace but at distinct locations, ensuring they never occupy
the same work area simultaneously. Examples of such tasks include component allot-
ment [58,92,95,128], collaborative assembly [20,152], and daily food preparation [128].
In our work, we investigate a collaborative screw assembly scenario involving five prod-
ucts that each require screwing at different locations. In this setup, the human places
screws into the products, while the robot retrieves screws from a different product to
avoid interference. For simplicity, we simulate this scenario using stand-in touch ges-
tures and define five target locations—indicated by colored blocks—positioned between
the human and the robot.

Experiments were conducted using a UR10e robot arm equipped with a Shadow C6
dexterous left hand. The architecture of the proposed HRC framework is illustrated in
Fig. 4.1.
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Figure 4.1: The proposed HRC framework. [68]

In the experiment, both the human and the robot used their index fingertips to touch
designated blocks. At each target, they hovered their hand above the block for 1.5 sec-
onds before performing a simple finger motion to make contact with the block’s top.
Meanwhile, the robot had to avoid contact with the human’s arm by dynamically adjust-
ing its reach target, and its arm velocity was modulated based on the human’s vigilance
level.

4.2.2 Participants

Seventeen participants took part in the study, five of whom were female. Their ages
ranged from 17 to 40 years (mean age: 27.82 years). All participants had normal vi-
sion and were free from any neurological or ophthalmological disorders. Except for two
individuals, all reported being right-handed; the two left-handed participants indicated
that their right hand would perform equally well in the task. Additionally, eight par-
ticipants were recruited from outside the associated institutions and received financial
compensation for their participation.

Before the experiment commenced, the study’s objectives and procedures were ex-
plained in detail to all participants. Safety measures were thoroughly reviewed, includ-
ing the velocity and force limits of the robot arm, as well as the operation of a foot
pedal and an emergency stop button controlled by the experimenter. Participants were
informed of their right to withdraw from the study at any time without needing to pro-
vide a reason. A consent form was also provided and explained in detail. The study was
approved by the ethics committee of the Medical Association of the City of Hamburg
(for the BCI component) and by the ethics commission of the Department of Informatics
at Universität Hamburg (for the robot experiment).
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4.2.3 Experimental conditions

The study comprised three experimental conditions, each preceded by an initial training
session for BCI calibration. The order of these conditions was randomized and counter-
balanced across participants.

During the training session, the robot hand followed a fixed sequence to approach
and tip each target, as previously described. Participants were instructed to stand still
in front of the table and to direct their gaze toward the target positions indicated by the
BCI cues. The EEG signals recorded during this session were then used to train the BCI
classifier.

In the arm-tracking (AT) condition, the online robot controller relied exclusively on
arm tracking data to ensure safe operation. At each time step, the target location closest
to the participant’s palm was designated as the current reach goal, while the robot’s
velocity limits remained constant. This condition served as the baseline for evaluating
the two BCI-enabled conditions.

In the BCI condition, target information was provided to the robot controller based
on the participant’s gaze direction before the reach movement was initiated. The in-
structions for the operator and the robot control method remained the same as in the AT
condition.

The third condition, termed BCI+VCV, combined the BCI-based target prediction
with a dynamic adjustment of the robot’s velocity based on real-time estimates of the
participant’s vigilance (vigilance-controlled velocity (VCV)). The underlying hypothe-
sis was that a more vigilant participant could safely interact with a faster-moving robot.
Therefore, the estimated vigilance level was used to modify the robot’s joint velocity
limits within a predefined margin.

Between sessions, participants were encouraged to enhance BCI classification ac-
curacy by concentrating their visual attention on the target locations and minimizing
distracting thoughts, thereby improving performance in subsequent sessions.

4.2.4 Brain-computer interface

In our study, we employed a novel spatially coded SSVEP-based BCI to determine the
operator’s gaze direction. Unlike traditional frequency-coded SSVEP systems that rely
on multiple flicker stimuli—each with distinct frequencies or phases—to define different
targets, this method uses only a single flicker stimulus and infers the target based on its
position within the operator’s visual field. Preliminary results indicate that this approach
not only simplifies the stimulation setup but may also reduce visual strain. (A detailed
description of this paradigm and its performance analysis can be found in [78]; here, we
describe its adaptation for HRC.)

The underlying principle is that the brain’s response to the flickering stimulus can
be used to decode target locations. When the white disc flickers at 15 Hz, it induces
a SSVEP in the occipital cortex, creating a standing wave pattern. The spatial distri-
bution of this SSVEP across the scalp provides information about where the operator
is looking. Because EEG topographies can vary significantly between individuals, we
conduct a dedicated training session for each subject to collect personalized data for
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classifier training. EEG signals were recorded using 32 electrodes arranged according
to the 10-20 system and connected to an ActiveTwo amplifier (BioSemi, Amsterdam,
The Netherlands). This system’s active electrodes and common-mode rejection capa-
bilities help minimize external electromagnetic interference, making it suitable for use
in typical noisy environments. Aside from applying a band-pass filter, no additional
artifact-removal techniques were used.

The flicker stimulus was implemented as a white disc, 40 cm in diameter, projected
onto the workspace via a Toshiba TDP P9 overhead projector. Five target locations were
defined on the disc—one at the center and one each at the eastern, southern, western,
and northern peripheries—labeled 1 through 5 (see Fig. 4.1).

Each trial began with a cue: a small red disc appeared near one of the target blocks
for 1 second, instructing the participant to fixate on that target. If the robot’s hand ob-
scured the cued area or if the cue was missed, participants were told to gaze at the target
they believed had been indicated. After the cue, the disc flickered for 2 seconds while
EEG data were recorded. Once the flicker period ended, the participant reached for the
cued target and tapped the top of the wooden block, completing the action within an
allotted 2 seconds (including the return to a resting position). This process was repeated
with a randomly selected target for each trial, with ten trials per target collected during
training. Parameters such as the stimulus size, flicker frequency, number of targets, and
stimulation period were fine-tuned based on pilot experiments to optimize the BCI’s
classification accuracy.

For each trial, canonical correlation analysis (CCA) was performed between the
EEG data and sine/cosine reference signals at the flicker frequency. The resulting corre-
lation coefficients served as features for a linear discriminant analysis (LDA) classifier,
which was trained on the data from the training session. During the experimental phase,
EEG data were classified online after each trial, and the classifier output—representing
the target number that the participant was gazing at—was transmitted to the robot con-
troller.

4.2.5 Robot trajectory generation

Target selection

The robot’s target location was selected online based on the predicted reach goal of
the human. If the operator began moving during the robot’s reaching phase, the cur-
rent target was discarded and a smooth trajectory was re-planned, as described below.
To simplify target selection, we manually encoded the geometric dependencies between
targets using a set of conditions illustrated in Fig. 4.2. These rules ensure that the robot
does not attempt to reach a target that is physically blocked by the human arm during the
reaching motion. In practice, the robot still proceeds through the targets sequentially but
skips those currently occupied according to the human motion prediction. Moreover,
even if an invalid target is chosen due to an erroneous prediction, the trajectory opti-
mization—which relies on real-time arm tracking data—prevents collisions by keeping
the robot in a local minimum until the target is either unblocked or updated.
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Figure 4.2: Relationship between valid robot target locations (light blue) when the human’s
intended target is indicated in green. Targets marked in red are obstructed by the human arm. [68]

Trajectory optimization algorithm

Based on the goal positions and human arm pose data, our trajectory optimization al-
gorithm—implemented in a MPC framework—generates collision-free, goal-directed
trajectories. In MPC, control variables are adjusted to minimize a predefined objective
function while satisfying a set of constraints [84]. In our formulation, the term l1 rep-
resents the pose loss of the robot’s first fingertip (FFT) and is used to drive its pose
(xk, rotk) toward the desired pose (xdes, rotdes) in Cartesian space. The desired orienta-
tion rotdes is specifically chosen to prevent the robot from blocking other target objects
on the table from the operator’s viewpoint. Additionally, a constant c is incorporated to
promote smoother and more consistent trajectories, and N denotes the total number of
waypoints in the robot’s trajectory.

l1 =
N

∑
k=1

min(c, ||xk− xdes||)+ ||rotk− rotdes|| (4.1)

The generated trajectories should satisfy the robot’s kino-dynamic constraints.

q≤ qk ≥ q (4.2)

q̇≤ q̇k ≥ q̇ (4.3)

q̈≤ q̈k ≥ q̈ (4.4)

In the BCI+VCV condition, we modulated the robot’s velocity limits according to
the operator’s vigilance level using the following formula:

−q̇ = q̇ =
(
1+0.3×vigilance

)
×Vmax,

where the vigilance values are clipped to the interval [−1,1]. This results in speed
limits ranging from 0.7×Vmax to 1.3×Vmax. In contrast, for both the BCI and AT con-
ditions, the velocity limit was fixed at 0.7×Vmax. Consequently, the robot arm generally
operated at a higher speed in the BCI+VCV condition than in the other two conditions.

To ensure smooth motion, both the velocity and acceleration were regulated, with c1
and c2 serving as weights in the overall loss function.

l2 =
N

∑
k=1

c1q̇k
2 + c2q̈k

2 (4.5)
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(a) (b)

Figure 4.3: Geometric Model of the Work Cell. In this view, the human stands to the left of the
table, with only the right arm reaching into the shared workspace. In (a), yellow capsules repre-
sent the geometric primitives assigned to various parts of the robot and the human arm (including
the palm, wrist, lower arm, and upper arm). Trajectory planning and collision avoidance rely on
efficiently computed pairwise distances between these capsules. Additionally, two blue separat-
ing planes are shown; their origins, marked in red, are positioned at the midpoints between the
closest capsule pairs (specifically, between the human hand and palm versus the robot palm). In
(b), the static boundaries of the robot workspace are defined by a cuboid formed by six planes,
ensuring that no part of the robot extends outside the designated area. [68]

To prevent collisions between the robot’s and the operator’s arms, we represent both
arms using capsule-shaped collision objects. For the operator’s arm, capsules with radii
{ra,i}4

i=1 are constructed between each pair of connected joints, while for the robot arm,
capsules with radii {rr, j}6

j=1 are generated between all adjacent joints. Next, we calcu-
late the pairwise closest points between each operator capsule and each robot capsule.
The line segment connecting these closest points defines the normal vector Ni, j for the
separation plane between capsule i and capsule j (see Fig. 4.3). The Cartesian positions
of the operator’s arm joints and the robot’s joints are denoted by {Pa,i}4

i=1 and {Pr, j}6
j=1,

respectively. Soft constraints based on these geometric relationships are then applied to
avoid collisions between the robot’s and the operator’s arms.

l3 =
4

∑
i=1

6

∑
j=1

min(0,(NT
i, j(Pa,i−Pr, j)− ra,i− rr, j−d)2) (4.6)

Table 4.1: Trajectory optimizer parameters.

Parameter Radii of Capsule vmax amax N c1,c2 d c
Value 0.1 m 0.02 rad/s 1 rad/s2 3 1 0 m 0.2 m

Six boundary planes, denoted as (Nb,m)
6
m=1, were employed as hard constraints to
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(a) (b) (c) (d) (e)

Figure 4.4: Example scenario for the robot arm trajectory generation based on the operator’s
movement prediction and arm tracking. The purple sphere is the goal position of the robot’s
first finger tip. Red cylinders visualize the current position of the operator’s arm. The green
curve represents the trajectory of the first finger tip. (a) The operator gazed at target object no.
5, and the robot touched object 4. EEG signals were collected in this state (white circle shows
flicker stimulus). (b) The BCI predicted the operator will target object 5, and the robot controller
adjusted its next goal from target object 5 to target object 2 after touching target object 4. (c-e)
The operator touched target object 5, then returned to the rest position. A collision-free robot
trajectory was generated by the proposed trajectory optimization method. [68]

confine the robot’s motion to the designated workspace, as illustrated in Fig. 4.3.

PT
r,kNb,m ≤ 0,∀ k ∈ [1,N],m ∈ [1,6]

During the experiments, the trajectory optimizer was configured with the parameters
listed in Table 4.1. The robot’s trajectory was re-optimized at 10 Hz using the most
recent operator intention predictions and vigilance estimates. A primal-dual interior-
point method, as described in [113], was employed to solve the optimization problem.
Figure 4.4 illustrates a sample trajectory generated during the experiment.

Minimum distance analysis

In the experiment, data capturing the operator’s arm movements, the robot’s joint trajec-
tories, and the cue signals were recorded synchronously. The recorded data were then
segmented into individual trials, and for each trial, the minimum distance (MD) between
the human arm and the robot limbs was calculated following the method described in
the trajectory optimization section. These MD values were subsequently used to assess
the safety of the human–robot collaboration.
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Figure 4.5: Robot performance relative to the training session. The horizontal line within each
box indicates the median performance, while the upper and lower boundaries represent the upper
and lower quartiles, respectively. The whiskers extend to the most extreme data points within 1.5
times the interquartile range from the quartiles. Statistical significance is indicated by ∗p≤ 0.05
and ∗∗p≤ 0.001. [68]

4.3 Experiments

4.3.1 HRC performance

The primary measure of robot performance was the number of targets touched during
a session. We used the performance from the training session—where the operator did
not interfere with the robot—as our baseline, and compared it with the performances
observed in the BCI+VCV, BCI, and AT sessions. Our analysis revealed mean per-
formance levels of approximately 110.28%, 95.04%, and 92.76% for these conditions,
respectively (see Fig. 4.5). Paired t-tests confirmed significant differences between the
conditions (BCI+VCV vs. BCI: p = 1.67×10−13; BCI+VCV vs. AT: p = 1.95×10−11;
BCI vs. AT: p = 0.039), with normality verified via Lilliefors’ test [27]. These results
indicate that while accounting for the operator’s actions during robot planning tends to
lower performance, this adverse effect can be offset by modulating the robot’s velocity
according to the operator’s attentional state.
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Figure 4.6: (a) Distribution of the MMD for each participant across sessions, along with the
results of t-tests for statistical significance. (b) Distribution of the 0.15 quantile of the MD for
each participant across sessions, accompanied by t-test results. ∗ indicates p < 0.05, ∗∗ indicates
p < 0.01, and ”n.s.” denotes non-significant differences where p > 0.05. [68]

4.3.2 Safety distance analysis

In HRC scenarios, robot performance is not the only critical metric; the safety of the
interaction—assessed by maintaining a minimum distance between the robot’s and the
operator’s arms—must also be ensured.

Figure 4.6a shows the distribution of the mean minimum distances (MMDs) across
participants. The results indicate that the BCI condition yielded the largest safety dis-
tances, while the BCI+VCV condition, despite having a higher robot arm velocity, pro-
duced safety distances that were only marginally lower (p > 0.49). In contrast, the AT
condition resulted in substantially smaller MMDs (both comparisons yielding p< 0.01).

To further evaluate whether the BCI+VCV or BCI methods improve HRC safety,
we computed the 0.15 quantile of the MMD for each participant in each session. As
depicted in Fig. 4.6b, the 0.15 quantile in the BCI condition was slightly higher than that
in the BCI+VCV condition (p = 0.058) and markedly higher than in the AT condition
(p < 0.01).

The trajectory optimization algorithm was designed to maintain a minimum distance
of 20 cm between the operator’s and the robot’s arms. Nevertheless, individual samples
(see Fig. 4.6) reveal that this threshold was sometimes breached. To determine whether
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these sub-threshold distances were due to rapid operator movements or limitations in the
trajectory optimization algorithm, we randomly selected five participants for a detailed
analysis. We focused on time steps where the minimum distance dt was less than 20 cm,
and computed dt , along with the velocities (vPt for the operator and vRt for the robot)
and accelerations (aPt and aRt) at the closest points between the operator and the robot
at each time step t.

All time steps were categorized into three groups: 1. Moving Away (MA): dt+1 > dt ,
indicating the robot’s arm is moving away from the operator’s arm. 2. Braking (BR):
dt+1 < dt but with the angles between vPt and vRt , as well as between vPt and aRt , greater
than 90°. 3. Failed Avoidance (FA): Time steps that do not satisfy either the MA or BR
criteria.

In this experiment, the robot was programmed to disregard the operator’s movements
while it was touching a block. However, since the operator’s target could coincide with
the block the robot was already interacting with, several FA cases occurred where the
robot’s velocity dropped to zero.

The distribution of these collision scenarios, as shown in Fig. 4.7, suggests that al-
most all FA instances were triggered by rapid movements of the operator. In these cases,
the robot’s dynamic limitations prevented it from moving quickly enough to maintain
the desired safety distance.
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Figure 4.7: Velocities of the pairwise closest points between the operator’s and the robot’s arm.
MA: robot was moving away; BR: robot was braking; FA: robot failed to avoid operator arm.
[68]
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Figure 4.8: BCI classification accuracy of the participants in the three sessions. Thick black
curve is the median, error bars show the 25% and 75% quantiles. [68]

4.3.3 Target prediction accuracy and vigilance

In the first session following training, the reach target prediction achieved a median
accuracy of 88% across all participants. This performance remained stable in the sub-
sequent two sessions, with median accuracies of 85.6% and 86.4%, respectively (see
Fig. 4.8). Pairwise Kruskal-Wallis tests confirm that there were no significant differ-
ences between sessions (all p > 0.93). Although the majority of participants achieved
a prediction accuracy of 80% or higher, some individuals consistently exhibited accu-
racies as low as 50%. This persistent underperformance across all conditions suggests
that these differences are likely due to inherent individual traits rather than factors such
as lapses in concentration, novelty effects, or training deficiencies.

Figure 4.9 shows an example time course of the operator’s vigilance over the three
application sessions. As expected, vigilance levels varied between trials. However, dis-
tinct episodes of both higher and lower vigilance can be observed. In the example pro-
vided, vigilance gradually decreased toward the end of each session, with overall lower
values in session 3. Additionally, session 2 exhibited periods of high vigilance at both
the beginning and towards the end, separated by a pronounced drop in between.

Averaged across trials and participants, the vigilance values indicate that, similar to
the BCI performance, participants maintained consistent attention throughout the ex-
periment. Pairwise Kruskal-Wallis tests further confirm that there were no systematic
changes in attention levels between sessions (all p > 0.79).

We investigated whether vigilance affects classification accuracy by analyzing the
distribution of vigilance values for trials with correct and incorrect classifications. As
depicted in Fig. 4.10b, the two distributions largely overlap; however, the median vig-
ilance in trials with classification errors was slightly lower than in trials with correct
classifications (–0.1165 vs. –0.1932, p = 0.043, Kruskal-Wallis test). It is important
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Figure 4.10: (a) Median vigilance levels for the three sessions, with error bars representing
the 25th and 75th percentiles. (b) Distribution of vigilance values for trials with correct versus
incorrect classifications. The width of each scatter block corresponds to the number of samples
within that interval, and the dotted lines mark the medians of the two distributions. [68]

to note that factors other than vigilance—such as the robot arm casting a shadow on
the flicker stimulus, obscuring target locations, or participants not fixating on the cued
target—may also contribute to classification errors. These factors might explain the rel-
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Figure 4.11: The relationship between human vigilance and robot performance was modeled
using a linear fit. (a) Under the BCI+VCV condition, the robot’s velocity is modulated by the
operator’s vigilance. (b) Robot velocity is not modulated by vigilance (BCI condition). Numbers
at data points indicate participant number. [68]

atively high vigilance values observed in some error trials, potentially leading to an
underestimation of the true median difference. Overall, although low vigilance seems to
impair classification accuracy, the system remains fairly robust against occasional lapses
in attention.

To verify that vigilance was the key factor driving robot performance in the BCI+VCV
condition, we examined the relationship between each participant’s average normalized
vigilance and their corresponding robot performance during that session. As shown in
Fig. 4.11, a linear model provided an excellent fit for this relationship (p= 5.74×10−8).
In contrast, no similar correlation was observed between BCI classification accuracy and
robot performance. This finding supports the notion that target prediction and vigilance
function as independent information channels provided by the BCI.

4.4 Discussion

In modern industrial environments, HRC is increasingly recognized as a vital approach
to harness the complementary strengths of robots and humans [15]. Although operating
robots at high speeds could enhance efficiency, doing so typically compromises safety.
One promising strategy to address this challenge is to reliably predict human intentions.
Many existing methods rely on tracking the motion of the entire human body—or spe-
cific parts thereof—to forecast the intended action [20,28,67,92,95,107,127]. However,
a common limitation of these approaches is that they can only produce accurate predic-
tions after the human has already initiated movement. This is particularly problematic

47



Chapter 4. Predictive Planning for HRC Using EEG

when potential targets are located close together, as the early segments of the hand’s
trajectory tend to be very similar.

To overcome this limitation, recent studies have investigated EEG-based techniques
for earlier intention prediction [116]. For instance, the Bereitschaftspotential—a dis-
tinct deflection in the EEG signal that occurs approximately 500 ms before movement
onset—has been used to predict not only when a human will start moving their arms but
also the type of grasp that will be executed [11, 141].

Moreover, because hand and eye movements are closely coordinated during task ex-
ecution, analyzing gaze direction offers another avenue for early prediction. Rather than
relying on conventional optical eye-trackers, our approach uses a BCI to capture both
the operator’s gaze direction and aspects of their cognitive state. While previous work
on BCI for robotics has primarily focused on developing the BCI component itself or
testing it in simulation [11], our study advances the field by demonstrating an integrated,
closed-loop system for BCI-controlled HRC.

4.4.1 BCI can improve HRC efficiency and enhance safety
We evaluated our approach in a study where participants performed a pick-and-place
task in a narrow shared workspace alongside a robot arm. Our system continuously
monitored participants’ vigilance via EEG signals and adjusted the robot’s velocity ac-
cordingly—speeding up when vigilance was high and slowing down when it was low.
The results indicate that using BCI-based intention prediction, particularly when com-
bined with vigilance-modulated velocity control, significantly enhances HRC perfor-
mance and safety compared to a motion-tracking–only approach. Notably, the improved
performance achieved with vigilance-controlled velocity did not compromise safety, as
measured by the minimum distance between the operator’s and the robot’s arms.

Because the BCI enables the robot to detect the intended reach target before the
human initiates movement, the robot has sufficient time to adjust its target position. This
early target awareness is reflected in the performance improvements observed in the two
BCI-enabled conditions compared to the arm-tracking condition, which relies solely on
motion data. By dynamically adjusting the robot’s velocity based on the operator’s level
of alertness, the overall performance was further enhanced in the BCI+VCV condition
(see Fig. 4.5).

However, the BCI classifier’s performance varied among participants, with some in-
dividuals achieving accuracies below 80%. This variability is a well-known phenomenon
in BCI research, often referred to as ”BCI illiteracy” [2]. Lower BCI performance may
stem from a mismatch between the fixed stimulation parameters (e.g., flicker frequency,
stimulus size, and stimulation duration) and individual response characteristics. Opti-
mizing these parameters for each participant could improve intention prediction accu-
racy. Even if such optimization fails to yield the desired improvements, the system can
default to using motion-tracking data for target prediction.

Another significant advantage of using BCI for HRC is the potential for enhanced
safety. MPC has been employed for nearly 40 years to generate optimal robot con-
trol commands over a short future horizon by solving constrained optimization prob-
lems [84]. A key requirement for MPC is the ability to predict environmental changes
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in advance. Prior studies have demonstrated that combining human motion prediction
with MPC can improve HRC safety [58, 92, 152]. In our approach, we implemented an
MPC-style trajectory optimization algorithm that, for simplicity, models the predicted
reach trajectory as a cylinder connecting the human’s palm joint to the predicted target
position. This approach accounts for the rapidity of human arm movements and the short
duration of reaching motions, thereby enhancing safety. For more complex scenarios in-
volving non-convex constraints or objective functions, learning-based methods—such
as those described in [121]—could be used to further improve computation speed.

An interesting finding was that the BCI+VCV method, despite resulting in higher av-
erage robot arm velocities, maintained safety metrics comparable to the fixed-velocity
BCI condition. Although faster robot movements typically increase collision risk in
HRC [11], incorporating the operator’s attentional state into the velocity control strat-
egy appears to mitigate this risk, allowing for higher speeds without reducing safety
margins.

4.5 Summary
In conclusion, our study demonstrates that integrating a BCI-based intention prediction
system with vigilance-controlled velocity modulation and an MPC-style trajectory opti-
mization algorithm significantly enhances both the efficiency and safety of human–robot
collaboration. By enabling the robot to anticipate the operator’s intended reach target
before the movement is fully initiated and to dynamically adjust its speed based on
real-time vigilance assessments, our approach allows for proactive trajectory planning
that minimizes interference and maintains robust safety margins, even in tightly shared
workspaces. Experimental results confirm that this integrated strategy outperforms tradi-
tional motion-tracking methods, and further improvements may be achieved through the
use of advanced prediction models, such as artificial neural networks, to further refine
trajectory adjustments and collision avoidance.
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Chapter 5

Sim2Real Adaptive Dexterous
Grasping

Following the predictive motion planning strategies presented in previous chapters,
which enabled collaborative robots to anticipate human actions and adjust their tra-
jectories accordingly, this chapter focuses on enhancing the grasping capabilities of
these robots. We introduce a novel Sim2Real multimodal learning framework for adap-
tive dexterous grasping and grasp status prediction. Our approach employs a two-
stage strategy implemented within the Isaac Gym environment, augmented by several
pluggable modules, to simulate dexterous grasping using diverse multimodal sensing
data—including RGB-D images, joint angles, and 3D tactile forces from soft fingertips.
By generating over 500,000 synthetic grasping scenarios, we trained an adaptive dex-
terous grasping neural network (ADG-Net) that leverages an attention mechanism and
a graph convolutional neural network module to fuse this multimodal information and
learn robust grasping principles. The ADG-Net is designed to first detect feasible grasp
parameters from an RGB-D image of a grasp scene and then to optimize these param-
eters based on additional sensory feedback when the dexterous hand contacts a target
object. Extensive experiments in both simulated and real-world settings demonstrate
that our ADG-Net method outperforms state-of-the-art grasping approaches, achieving
average success rates of 92% for isolated unseen objects and 83% for stacked objects.
This work, therefore, complements our earlier motion planning research by providing
a robust grasping solution, thereby enhancing the overall manipulation ability of the
cobots.

5.1 Introduction

Embodied artificial intelligence (Embodied AI) has garnered significant attention re-
cently as it bridges the gap between computational intelligence and tangible, physi-
cal interactions. This field emphasizes the seamless integration of AI within physical
agents, enabling them to perceive, interpret, and engage with complex, dynamic envi-
ronments [114].

Central to the promise of Embodied AI are capabilities such as dexterous grasping
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Figure 5.1: Overview of the proposed adaptive grasping method. [147]

and manipulation, which underpin its applications in sectors ranging from healthcare
and manufacturing to service and domestic environments [6, 59]. However, despite no-
table advances, achieving robust and adaptive dexterous manipulation remains a chal-
lenging endeavor, particularly when multiple sensory modalities must be integrated for
effective grasping.

Multimodal learning aims to integrate data from a range of sensory inputs—such as
visual, auditory, tactile, haptic, and force-torque measurements—as well as information
about an end effector’s joint states. Such comprehensive integration is essential for en-
abling a robot to dynamically assess grasp status and refine its grasping strategy in real
time. Recent studies have demonstrated that multimodal deep neural networks are capa-
ble of learning feasible hand configurations for dexterous grasping [55, 57]. However,
training these networks effectively requires access to large-scale datasets containing a
vast number of multimodal grasping examples—a resource that is considerably more
challenging to acquire in robotics than the abundant annotated data available for lan-
guage models like ChatGPT or multimedia platforms such as Sora [91].

To address these challenges, the Sim2Real learning paradigm has emerged as a
promising approach for dexterous grasp learning. In this framework, neural networks
are trained in simulated environments or on synthetic datasets, with the aim of transfer-
ring the learned skills to real-world scenarios. Despite its promise, applying Sim2Real
techniques to multimodal dexterous grasping remains a complex endeavor. The intricate
nature of dexterous hand manipulation, combined with the need to fuse multiple sensory
data streams, substantially increases the difficulty of creating accurate simulations and
managing the simulation schedule. Moreover, bridging the gap between simulated and
real environments requires neural networks that are both robust and adaptive [7, 101].

In this work, we introduce an advanced multimodal Sim2Real learning framework
for adaptive dexterous grasping. Figure 5.1 presents a schematic overview of our frame-
work, which is composed of three main modules: a two-stage dexterous grasp simulation
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module, a multimodal learning module for grasp prediction, and a multimodal adaptive
grasping module. By leveraging the flexibility of our two-stage simulation approach
alongside the capabilities of ADG-Net, our framework not only facilitates the collection
of rich, multimodal datasets but also supports the learning of novel grasping skills for
Embodied AI robots.

5.2 Methodology

5.2.1 Motivations

The proposed multimodal Sim2Real learning framework tackles two key challenges in
dexterous grasp learning. First, multimodal sensing—particularly tactile sensing with
soft fingertips—entails significant computational complexity, which renders the collec-
tion of large-scale datasets both time-consuming and inefficient. To address this, we
introduce a two-stage simulation method that minimizes the Sim2Real gap while effi-
ciently generating an extensive multimodal grasp dataset. Second, it is essential to de-
velop a neural network that effectively fuses diverse data types, such as RGB-D images,
joint angles, and tactile force measurements, to learn robust grasping principles. To this
end, we propose ADG-Net, a dexterous grasping method specifically designed for the
multimodal adaptive grasping of ShadowHands.

5.2.2 Coordinate Systems

For dexterous grasping in both simulation and real-world settings, we establish five dis-
tinct coordinate systems: the Camera Coordinate System (CCS), World Coordinate Sys-
tem (WCS), Robot Coordinate System (RCS), Hand Coordinate System (HCS), and
Fingertip Coordinate System (FCS). Detailed illustrations and descriptions of these co-
ordinate systems are provided in Fig. 5.2.

5.2.3 Two-Stage Grasp Simulation

The pluggable two-stage grasp simulation framework presented in this work is de-
signed to efficiently synthesize grasp scenarios, render comprehensive multimodal sen-
sory data, and quantitatively evaluate grasp quality. In our approach, the multimodal
data include RGB-D images of the grasping scene, joint angle configurations of the
dexterous hand, and tactile force measurements at the fingertips. As illustrated in Fig.
5.1, the simulation framework operates in two stages: first, a fast contact phase during
which the dexterous ShadowHand (H) attempts to grasp an object (O) using a pose PH
in SE(3) and joint angles θ ∈ Rdim (with dim = 22 for a ShadowHand, excluding the
wrist joints); and second, a grasp optimization and tactile sensing phase. During the
grasp, contact forces fi and torques τ i are analyzed at each contact point pi, while tactile
forces fk

tac (for k = 1,2, . . . ,5) are computed in the FCS using finite element methods.
Concurrently, an RGB-D image IC is rendered in the ICS to document each grasping

52



5.2. Methodology

RCS

WCS

GCS

FCS
CCS

Figure 5.2: Coordinate Systems for Dexterous Grasp. Note that a unique FCS is established for
each fingertip of the dexterous hand. [147]

scenario. A quantitative grasp quality metric q ∈ [0,1] is then evaluated based on vari-
ables such as the object’s pose PO, the hand’s pose PH, the contact forces and torques,
the tactile feedback, and the visual data. Additionally, a binary grasp status s is recorded
to indicate whether each grasp trial is successful (see Section 5.3).

5.2.4 Multimodal Learning for Grasp Prediction
In this work, we propose a versatile neural network, ADG-Net, designed to learn ro-
bust dexterous grasping principles and predict grasp status through multimodal learning.
ADG-Net is trained on millions of synthetic grasp scenarios generated via our two-stage
grasp simulation framework and operates in two distinct modes corresponding to the
pre-grasp and grasp optimization phases. In the pre-grasp mode, the network processes
an RGB-D image of the grasping scene to predict a feasible grasp pose P̂H, correspond-
ing joint angles θ̂ , a grasp quality score q̂, and a binary grasp status ŝ. This prediction is
denoted as

(P̂H, θ̂ , q̂, ŝ) = ADG-Net(IC,0,0).

Subsequently, once the dexterous hand makes contact with the target object, the network
refines its predictions by integrating real-time joint angles θ and tactile sensing data fk

tac,
resulting in the updated prediction

(P̂H, θ̂ , q̂, ŝ) = ADG-Net(IC,θ , fk
tac).

Detailed architecture and training procedure of ADG-Net are described in Section 5.4.
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5.2.5 Multimodal Adaptive Grasping

During physical grasping experiments, RGB-D images of the grasp scenes are captured
in the CCS. The proposed dexterous grasping method performs each trial in two phases:
a pre-grasp phase and a grasp optimization phase, which correspond to the two oper-
ational modes of ADG-Net described in Section 5.2.4. A detailed explanation of the
dexterous grasp execution process can be found in Section 5.5.

5.3 Two-Stage Grasp Simulation
In this work, we propose a pluggable two-stage simulation framework built on Isaac
Gym to efficiently generate a large-scale grasp dataset—a critical resource for multi-
modal learning in dexterous grasping. To manage computational complexity, our simu-
lation is based on two key assumptions: (1) the dexterous grasp simulation is performed
under quasi-static physics with Coulomb friction, assuming that the maximum static
friction force equals the sliding friction force during grasping; and (2) each target object
is modeled as a rigid body. These assumptions, which are commonly employed in ex-
isting grasp simulation methods [61, 72, 149], not only simplify the simulation but also
help to carefully evaluate grasping trials by reducing the risk of object slippage.

The following subsections (Sections 5.3.1 to 5.3.6) detail the comprehensive pro-
cedures involved in our dexterous grasp simulation using a ShadowHand [108]. These
include an overall framework overview, modeling of the grasping scenarios, the two-
stage grasp simulation process, and the methods used for large-scale dataset generation.

5.3.1 Overview

As illustrated in Fig. 5.3, our pluggable two-stage grasp simulation framework is orga-
nized into three packages: the core Isaac Gym environment, a set of custom pluggable
modules, and additional functional modules from existing Python libraries.

Our framework leverages Isaac Gym’s robust simulation capabilities and GPU ac-
celeration to form the foundation for dexterous grasp simulation. To manage complex
3D objects efficiently, a convex decomposition module divides these shapes into sim-
pler convex parts, facilitating mesh management, collision detection, and object inter-
action. In addition, we introduce a novel grasp configuration module that employs mo-
tion planning to schedule hand configurations—adjusting joint angles and movement
trajectories—to achieve dexterous grasping. Building on Isaac Gym’s collision detec-
tion functions, our framework incorporates dedicated modules for contact detection and
force-torque calculation; an additional mathematical optimization module further re-
fines this process by providing detailed data for each contact point, including coordi-
nates, normals, normal forces fi

n, friction forces fi
r, and torques τ i at contact points pi.

Furthermore, three additional pluggable modules are integrated to assess grasp quality,
simulate tactile sensing, and manage data recording and reconstruction. The mathemat-
ical optimization module is also used to refine the force-torque configurations at contact
points and evaluate grasp robustness for each trial.
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Figure 5.3: Framework of the pluggable two-stage grasp simulation based on Isaac Gym. [147]

To accelerate dataset generation, our two-stage simulation approach divides the
grasping process into two distinct phases. In the first phase, a fast simulation using a
rigid-body hand model is performed—this bypasses the need for tracking soft fingertip
deformations and tactile sensor data until contact occurs, thereby improving simulation
speed. In the second phase, the simulation is refined by modeling the hand with a rigid
structure combined with soft fingertips, enabling precise optimization of the contact
surface and detailed analysis of contact forces fi and torques τ i at each contact point pi

using FEMs. This two-stage approach enables the efficient generation of a large-scale
dexterous grasping dataset that incorporates soft tactile sensing.

Moreover, the proposed pluggable simulation framework is designed to be adaptable
and can be integrated with other simulation platforms such as Isaac Sim, MuJoCo [126],
PyBullet, and Kubric [35] to support a variety of novel simulation tasks.

5.3.2 Grasping Scenario Modeling

A typical grasping scenario in our two-stage simulation framework includes a left Shad-
owHand equipped with tactile sensors (H), a target object (O), a wrist-mounted Kinect
Azure RGB-D camera (C), a UR10e robot (R), and a table, as illustrated in Fig. 5.2. In
this setup, the table is defined by the plane Π(x,y,0) in the WCS of the grasp scene. Fol-
lowing the method described in [71], a sequence of stable poses for the object, denoted
as PO, is computed, and the object is then placed on the table in a randomly selected
stable pose from PO to emulate realistic object placement.
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5.3.3 First Stage: Fast Contact

In this stage, the dexterous ShadowHand is modeled as a rigid-body system with 24
DOFs, a configuration that has been widely adopted in previous studies [63, 135, 142].
Figure 5.4 illustrates the 24 DOFs of the ShadowHand. Unlike some approaches that
limit collision detection to a few predefined fingertip contact candidates, our simu-
lation considers the entire palm and all finger surfaces as potential collision regions
[63, 135, 142]. In the figure, the labels TH, FF, MF, RF, and LF denote the thumb,
first finger, middle finger, ring finger, and little finger, respectively. Corresponding joint
names are assigned as THJ1 to THJ5, FFJ1 to FFJ4, MFJ1 to MFJ4, RFJ1 to RFJ4,
and LFJ1 to LFJ5. The ShadowHand is driven by a cable-actuated system, with joint
torques, speeds, and angles managed by dedicated motors. Some joints are controlled in
pairs (e.g., FFJ1-FFJ2, MFJ1-MFJ2, RFJ1-RFJ2, and LFJ1-LFJ2), while the remaining
joints are independently actuated by motor-cable units. The first stage of our proposed
dexterous grasping simulation is carried out in two sequential steps.

Initialize pre-grasp pose

Prior research has shown that effective initialization can significantly boost the success
rate of dexterous grasp simulation [135, 142]. In our work, we initialize the pre-grasp
configuration of (H) by combining a predefined open-hand pose with a truncated normal
distribution to set the joint angles [135].

To achieve this, we first generate a set of candidate angles, denoted as Φ, for each
joint. This is done by considering the joint’s operational range and sampling from a
truncated normal distribution with a standard deviation of Φσ = 1.0 and a mean set
to the midpoint of that range; for each joint, 10,000 candidate angles are produced. In
a given grasping scenario, a random point c(x,y,z) on the upper surface of the target
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(a) (b)

Figure 5.5: Example of pre-grasp initialization [147]: (a) The dexterous hand adopts an open-
hand configuration; (b) the hand makes contact with the object or the table. Note: To accelerate
large-scale dataset generation, the movement ranges of both the dexterous hand and the robot
are constrained as described in Section 5.3.1, so the robot is not visualized.

object O is selected to serve as the grasp center. We then establish the HCS by assuming
MF is aligned with the x-axis and that a vertical z-axis passes through c; this ensures
that the palm is properly oriented toward the object (see Fig. 5.2). The ShadowHand
is positioned with a pose PH at a distance of 250.0 mm from c, as illustrated in Fig.
5.5(a). To achieve the open-hand configuration, we set THJ4 to 70.0◦ and adjust joints
THJ5, FFJ4, MFJ4, RFJ4, LFJ4, and LFJ5 using the corresponding angles selected from
Φ. Once these joints reach their desired orientations, their positions are fixed for the
subsequent simulation steps.

Move the dexterous hand

In our simulation, the dexterous hand H advances along the negative z axis of the HCS
until it contacts either the table or the object O (see Fig. 5.5(b)). Next, for the remaining
joints, we randomly select a set of desired angles from the candidate set Φ. These joints
then move toward the selected target angles until they collide with either the table or the
object, with each joint’s movement being moderated by its specific torque threshold τ jt .
Once all joints have ceased movement, the initial joints of THJ1, FFJ1, MFJ1, RFJ1,
and LFJ1 are each adjusted by −1.0◦ to ensure that the fingertips do not inadvertently
contact the object prior to the second-stage grasping process described in Section 5.3.4.

All these movements are strictly constrained in both Cartesian and joint spaces
according to the physical setup of the robot, ensuring that the final grasp pose and
joint configurations are achievable on the real-world system. This initialization sched-
ule, which mirrors human grasping strategies, enables the generation of diverse grasp
poses for large-scale dataset simulation. The grasping scenario and the resulting hand
states—including the IC, PO, PH, and θ—are recorded for subsequent processing in
Section 5.3.4.

Figures 5.6(a)–(c) display three representative grasping trials from the first stage
of our simulation. These examples demonstrate that our method can simulate dexter-
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: Three example grasping trials generated by our dexterous grasp simulation frame-
work [147]. Panels (a)–(c) show the first stage of the simulation, where the hand is modeled as
a rigid-body system, with fingertips visualized in grey. Panels (e)–(f) illustrate the second stage,
which incorporates soft fingertip deformations alongside the rigid-body hand; these panels corre-
spond to the grasp scenes shown in Fig. 5.6(a)–(c), with the soft fingertip deformations depicted
using heat maps. Note that grasp scene masks are recorded during simulation to allow for the
application of various textures to the white table, thereby increasing dataset diversity. Addition-
ally, the viewpoints for these grasp scenes have been adjusted to ensure clear and informative
visualization of the grasping trials.

ous grasps with a variety of contact regions. For instance, Fig. 5.6(c) shows a scenario
in which the object is ”squeezed” by the side of the ring finger, a case that would be
challenging to simulate using approaches that limit contact candidates to predefined fin-
gertip regions [135]. Furthermore, the robotic actions in these simulations conform to
the physical limitations of our real-world setup, ensuring that the training data provided
to ADG-Net is grounded in realistic grasping principles, thereby enabling it to learn to
detect feasible grasps in practical applications.

5.3.4 Second Stage: Grasp Optimization and Tactile Sensing

In the second stage, the dexterous hand H is modeled as a rigid-body hand augmented
with soft fingertips. Unlike the first stage, each fingertip is now represented by a rigid
skeleton combined with a high-resolution deformable shell composed of 4,246 vertices
and 15,410 tetrahedrons [88] (see Fig. 5.7). Key material properties—including the fric-
tion coefficient µ , Young’s modulus ξ , and Poisson’s ratio ν—are incorporated into the
soft fingertip model.

To further simulate grasping and tactile sensing, the grasping scenario described
in Section 5.3.3 is reconstructed. In this refined stage, the soft fingertips approach the
target object using the motions of joints THJ1, FFJ1, MFJ1, RFJ1, and LFJ1. A 3D FEM
is then employed to track fingertip deformations and capture tactile interactions. The
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Figure 5.7: Modeling of the dexterous hand and tactile sensing via the FEM in the second
stage. [147]

rotations of these joints continue until they reach their desired angles or until the torque
threshold τ jt is met. At that point, the joint angles θ and the hand pose PH are updated
to record the final grasp configuration. Figures 5.6(d)–(f) present three representative
grasping trials from the second stage of our dexterous grasp simulation.

Finally, the hand H lifts upward by 20.0 mm along the z axis in the WCS to attempt to
grasp the object. During this motion, the simulation identifies all contact points between
H and the object O, denoted as P = {p1,p2, . . . ,pi, . . .}. The tactile forces fk

tac at these
contact points are then computed, and the overall grasp quality q is evaluated based
on the measured forces fi and torques τ i. Detailed principles and formulas for tactile
sensing, grasp quality assessment, and grasp status labeling are provided in Section
5.3.5.

5.3.5 Tactile Sensing and Grasp Quality Evaluation
Assume that N contact points are detected between the dexterous hand H and the object
O. These points can be represented as a set of N elements, denoted by

P = {p1,p2, . . . ,pN}.

For each contact point pi, the corresponding contact force and torque are represented
by fi and τ i, respectively.

Tactile Sensing

In our two-stage simulation, contact points detected on the soft fingertips are incorpo-
rated into the overall set P. As shown in Fig. 5.7 and detailed in Section 5.3.4, tactile
forces are simulated using a finite element model composed of 4,246 nodes. For sim-
plicity, the forces at all contact points on each fingertip are aggregated into a single
three-dimensional force vector, fk

tac (with k = 1,2, . . . ,5 corresponding to the five finger-
tips). To facilitate the training of ADG-Net, these tactile force vectors are normalized
according to Equation (5.1) and then transformed into the FCS. A similar normalization
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process is applied to the joint angles θ using Equation (5.2), where each joint angle θi
is scaled based on its movement range, defined by min(θi) and max(θi).

fk
tac =

fk
tac

max(||f1
tac||, ||f2

tac||, ||f3
tac||, ||f4

tac||, ||f5
tac||)

(5.1)

θi =
θi−min(θi)

max(θi)−min(θi)
(5.2)

Grasp Quality Evaluation

In this work, the force-torque wrench between the dexterous hand H and the object O
is computed in the WCS using a set of orthogonal normal vectors nx, ny, and nz as
defined in Equation (5.3). Given the object’s mass m and the gravitational acceleration
g, the hand H is able to pick up the object O when the force-torque wrench remains in
equilibrium, i.e., when ∑ fi−mgnz = 0 and ∑τ i = 0.

nx = (1,0,0), ny = (0,1,0), nz = (0,0,1) (5.3)

fi = fi
µ + fi

n (5.4)

fi
µ = µ|| f i

n|| · ( f i
µx, f i

µy, f i
µz) (5.5)

fi
µ · fi

n = 0 (5.6)

0≤ ||( f i
µx, f i

µy, f i
µz)|| ≤ 1 (5.7)

f j
n =

τ jt

ri
jt

n j
p, for p j ∈ P f ig (5.8)

fh
n =−

1
H
(

J

∑
j=1

f j
n−mgnz) ·nh

p, for p j ∈ P f ig and ph ∈ Ppalm (5.9)

F =
N

∑
i=1

(fi
µ + fi

n)−mgnz = 0, for pi ∈ P (5.10)

T =
N

∑
i=1

(ri× (fi
µ + fi

n)) = 0, for pi ∈ P (5.11)

q = 1−
min(∑N

i=1 ||µ( f i
µx, f i

µy, f i
µz)||)

∑
N
i=1 µ

(5.12)

s =
{

False, if (5.12) is unsolvable or q < 0.3
True, others (5.13)

As illustrated in Fig. 5.8, each contact force fi is computed as the sum of the normal
component fi

n and the frictional component fi
µ , where the friction coefficient between

H and O is denoted by µ . These forces—fi, fi
µ , and fi

n—are calculated and bounded by
Equations (5.4) through (5.7). Within these constraints, the scalars f i

µx, f i
µy, and f i

µz rep-
resent the components of fi

µ along the directions defined by nx, ny, and nz, respectively.
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Figure 5.8: Basic information on a contact point. [147]

To determine fi
n, we first partition the overall contact point set P into two sub-

sets: one for the palm, Ppalm = {p1,p2, . . . ,ph, . . . ,pH}, and one for the fingers, P f ig =
{p1,p2, . . . ,p j, . . . ,pJ}. Thus, P = Ppalm∪P f ig. For any finger contact point p j ∈ P f ig,
the normal force f j

n is determined based on the corresponding joint torque τ jt , moment
arm r j

jt , and the contact surface normal n j
p, as described in Equation (5.8) and depicted

in Fig. 5.8. For contact points on the palm, ph ∈ Ppalm, we compute fh
n using Equa-

tion (5.9) to simplify calculations. By combining Equations (5.3)–(5.11), we obtain the
overall force-torque wrench for a grasping trial.

A grasp is considered successful when a stable force-torque wrench is established
between H and O, as defined in Equations (5.10) and (5.11). Here, ri denotes the mo-
ment arm between the object’s center of mass and the contact point pi. Recall that the
total force fi is composed of the normal force fi

n (which arises from τ jt) and the frictional
force fi

µ (which depends on µ). Given that friction coefficients vary across different
gripper-object pairs, an optimal force-torque wrench for a stable grasp should minimize
the friction required to maintain equilibrium. Thus, the grasp quality q is evaluated based
on the minimum friction necessary to sustain a stable wrench, with the normalized grasp
quality q ∈ [0,1] defined in Equation (5.12). By combining Equations (5.3)–(5.12), we
compute q by minimizing the frictional components ( f i

µx, f i
µy, f i

µz) via a quadratic pro-
gramming problem solved using IPOPT. A grasp is deemed unsuccessful if the resulting
force-torque wrench does not meet the criteria of Equation (5.12) or if q is less than 0.3;
otherwise, the grasp status s is set to True, as specified in Equation (5.13).

5.3.6 Dataset Generation

Our framework enables the generation of a large-scale multimodal dataset by iteratively
executing the procedures outlined in Sections 5.3.2 to 5.3.4. For dexterous grasp genera-
tion, we selected 40 high-resolution 3D meshes from the YCB dataset [12] and rescaled
each mesh by factors of 0.8, 1.0, and 1.2 to simulate a variety of object sizes. The
simulation was powered by Isaac Gym, configured with a 0.005-second time step, and
deployed across 100 parallel environments—allowing 100 grasping scenarios to be sim-
ulated concurrently.
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Table 5.1: Basic Information of the Proposed Dataset and Five SOTA Datasets

Dataset Framework Gripper Visual data Joint angle Tactile sensing Scenario
DexGraspNet [135] Sim SH - Yes - 1.32M
RealDex [57] Real SH RGB-D image, point cloud Yes - 59K
GPPNs [117] Real SH Lite RGB image - - 8K
DDGdata [63] Sim2Real SH - Yes - 6.9K
GEN [29] Sim2Real RF Point cloud Yes - 36K
Ours Sim2Real SH RGB-D image Yes Yes 500K

During the two-stage grasp simulation, the RGB-D images IC were rendered at a
resolution of 240×240×4 pixels. We set the joint torque threshold to τ jt = 0.01 N·m
and used a friction coefficient of µ = 1.2. After extensive calibration with a real-world
ShadowHand, we determined that setting the Young’s modulus to ξ = 1.5 M and the
Poisson’s ratio to ν = 0.3 yielded the best performance in terms of minimizing the
Sim2Real gap. For each target object, we generated 100 random poses to diversify the
grasping scenarios. Depending on the object’s size, each scenario involved sampling
between 50 and 500 grasp centers c, and for each center, 1,000 grasping trials were
executed using varied hand poses PH and joint angles. The grasp trial achieving the
highest quality score q was then recorded as the optimal configuration for that scenario.
Consequently, each grasp example in our dataset includes the RGB-D image IC, the
object pose PO, the hand pose PH, joint angles θ , tactile sensing data fk

tac, grasp quality
q, and a binary grasp status s.

Dataset generation was performed on a PC running Ubuntu 20.04, equipped with an
AMD Ryzen 9-5960X CPU, 64 GB of DRAM, and two Nvidia RTX 3090 GPUs. Over
a total runtime of 700 hours, more than 1 million grasp trials were synthesized. From
these, 500,000 grasps were selected for multimodal grasp learning, evenly split between
successful and unsuccessful trials (250K each). Furthermore, the synthetic grasps were
archived with object-wise separation to ensure that the objects used for ADG-Net train-
ing were not included in the testing dataset.

Finally, Table 5.1 provides a comparative overview of our proposed dataset alongside
five state-of-the-art dexterous grasping datasets. This comparison demonstrates that our
dataset not only encompasses a wide range of grasp scenarios and multimodal sensing
data but also uniquely includes tactile sensing data from soft fingertips—a feature that
is often absent in existing datasets.

5.4 Multimodal Learning for Grasp Prediction

5.4.1 Architecture of ADG-Net
ADG-Net operates in two distinct modes to infer grasp parameters by fusing information
from both RGB-D images and multimodal sensing data, as outlined in Section 5.2.4.
Specifically, the network accepts as input a 240×240×4 RGB-D image IC, together with
joint angles θ and tactile force measurements fk

tac. From these inputs, ADG-Net predicts
a suite of grasp parameters: an estimated grasp pose P̂H, refined joint angles θ̂ , a grasp
quality score q̂, and a binary grasp status ŝ.
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The architecture of ADG-Net, depicted in Fig. 5.9, is built with multiple input
branches that feed into shared processing layers and then diverge into separate output
streams. In one branch, GCN integrates the joint angles and tactile data; the GCN’s con-
nectivity is defined based on the kinematic chain of the ShadowHand, as illustrated in
Fig. 5.4. This graph-based module enables the network to capture the relational structure
inherent in the sensory inputs, thereby learning key principles of dexterous grasping. In
parallel, an RGB-D image branch processes visual information using ResNet encoders
arranged in a pyramid topology and enhanced by CBAM [139]. The CBAM allows the
network to focus on critical regions of the image that are most informative for deter-
mining the grasp pose. Finally, ADG-Net features four dedicated output branches that
individually predict P̂H, θ̂ , q̂, and ŝ. Each output branch concludes with a Sigmoid acti-
vation to normalize the predictions, helping to avoid extreme output values and enhanc-
ing overall robustness.

5.4.2 Training of ADG-Net

A total of 420K synthetic grasp examples were used to train ADG-Net, with an addi-
tional 30K examples reserved for testing and the remaining 50K allocated for the exper-
iments described in Section 5.6.1. The network was trained on a PC equipped with two
Nvidia H100 GPUs. The training process was divided into two phases—one focusing
on image-based learning and the other on multimodal integration—corresponding to the
dual operational modes outlined in Section 5.4.1.

Image-Based Learning

In this phase, ADG-Net processes an input RGB-D image IC to predict feasible grasp
parameters as specified in (5.14), which is critical for determining a viable grasp con-
figuration prior to any contact with the target object. Because joint angles and tactile
feedback are not available until after grasping, we disable the input channels for θ and
fk
tac (as well as the associated shared layers) during the image-based training phase to

prevent any unintended gradient flow through these components.

(P̂H, θ̂ , q̂, ŝ) = ADG-Net(IC,0,0) (5.14)

Given that ADG-Net exhibits a linear fitting behavior for grasp parameter estimation,
we employ Mean Squared Error (MSE) loss functions—defined in (5.15)–(5.19)—as the
objective for optimizing network parameters, using the Adam optimizer [48]. Specifi-
cally, four separate sub-loss functions (outlined in (5.15)–(5.18)) are assigned to each
output branch. The overall training loss, as detailed in (5.19), is computed as the sum of
these sub-losses, following established practices from previous research [85,150]. After
preliminary training trials, we set the learning rate to 0.0001 and use a batch size of 1000
for the image-based learning phase. The loss weights λP, λθ , λq, and λs are all fixed at
1.0, as this configuration has been shown to yield robust performance.
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Figure 5.9: Architecture of the proposed ADG-Net. Note: 1) The ADG-Net takes in 22-DOF
joint angles without WR1 and WR2, since WR1 and WR2 are integrated into the kinematic chain
of the robot for robotic motion planning. 2) c⃝ means the Channel Concatenation, and +⃝ is the
Element-Wise Addition in the neural network. 3) “Norm.” is the abbreviation of “normalization”.
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LP = MSE(P̂H−PH) (5.15)

Lθ = MSE(θ̂ −θ) (5.16)
Lq = MSE(q̂−q) (5.17)
Ls = MSE(ŝ− s) (5.18)

Lrgbd = λPLP +λθ Lθ +λqLq +λsLs (5.19)

Multimodal Learning

In this phase, ADG-Net processes the RGB-D image IC together with joint angle infor-
mation θ and tactile force data fk

tac to estimate the grasp parameters as defined in (5.20).
These predicted parameters are then used to refine and optimize the grasp configuration
as the dexterous hand contacts the target object. Importantly, because adjusting the pre-
dicted hand pose P̂H after contact could lead to an unstable grasp (and potentially cause
the object to be dropped), the output branch responsible for P̂H is deactivated during this
phase to maintain a fixed hand pose.

Following a similar strategy as in the image-based learning phase, we define the
MSE loss functions for the multimodal learning stage in Equations (5.16)–(5.18) and
(5.21). After preliminary training runs, we set an initial learning rate of 0.0001 and a
batch size of 1,000, with the loss weights λθ = λq = λs = 1.0.

(P̂H, θ̂ , q̂, ŝ) = ADG-Net(IC,θ , fk
tac) (5.20)

Lmlt = λθ Lθ +λqLq +λsLs (5.21)

To optimize the architecture of ADG-Net, we trained over 50 network variants and
evaluated them based on their computational times trgbd and tmlt for image-based and
multimodal processing, respectively, as well as the average prediction errors εP, εθ , εq,
and εs (as defined in (5.22)–(5.23)), where ⊕ represents the exclusive OR operation.
During training, we experimented with various configurations for the RGB-D image
branch by varying the depth of the CBAM modules from 1 to 10 layers, adjusting the
channel dimensions from 32 to 256, and modifying kernel sizes from 1 to 9. Similarly,
we optimized the depth of the GCNs from 1 to 5 layers and varied the depth of the
shared ResNet modules between 1 and 5 layers. The final architecture of ADG-Net
comprises 230 million parameters. Specifically, the RGB-D fusion branch incorporates
four CBAMs configured with channel sizes 128-64-32-32 and kernel sizes 9-3-3-1. Ad-
ditionally, five GCN units with 2048 features are used to fuse tactile force and joint
angle data, while two shared ResNets integrate this multimodal information before it
is passed through three linear layers in each output branch. More detailed information
on the ADG-Net parameters can be found in the source code linked in this work. In
operation, ADG-Net achieves a processing time of trgbd = 22 ms for image-based grasp
estimation and tmlt = 25 ms for multimodal grasp estimation.

Detailed performance metrics are discussed in Section 5.6.
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εP = ||P̂H−PH||, εθ = ||θ̂ −θ ||, εq = |q̂−q|abs (5.22)
εs = ŝ⊕ s (5.23)

5.5 Multimodal Adaptive Grasping
As described in Section 5.2.5, our adaptive dexterous grasping approach using ADG-Net
is implemented in two separate stages: an initial pre-grasp stage and a subsequent grasp
optimization stage. These stages correspond to the two operational modes of ADG-Net,
which are further elaborated in Section 5.4.

Pre-Grasp Stage

In this stage, we first apply a bilateral filter to the real-world depth images to suppress
random noise by averaging pixel values based on both spatial proximity and radiometric
similarity. The resulting normalized depth image, denoted as Ireal , is then provided as
input to ADG-Net. The network subsequently estimates a feasible grasp pose P̂H and
the corresponding joint angles θ̂ required for the dexterous hand to effectively wrap
around the target object. Simultaneously, ADG-Net predicts a grasp quality score q̂ and a
binary grasp status ŝ, as defined in (5.24). Based on these predictions, the hand proceeds
to approach and secure the object. Because ADG-Net’s outputs are normalized using
Sigmoid activations, all predicted parameters must be mapped back to their original
value ranges to ensure that the executed grasp is valid (see Fig. 5.7).

(P̂H, θ̂ , q̂, ŝ) = ADG-Net(Ireal,0,0) (5.24)

(P̂H, θ̂ , q̂, ŝ) = ADG-Net(Ireal,θreal, fk
tac) (5.25)

Grasp Optimization Stage

During the second stage of grasp optimization, once the dexterous hand makes contact
with the object, real-time tactile forces fk

tac and current joint angles θreal are acquired
and normalized (see Section 5.3.5). These multimodal sensing inputs are then fed into
ADG-Net, which refines the joint angles and re-assesses both the grasp quality and status
as outlined in (5.25). Based on the refined predictions, the ShadowHand’s joint angles
are adjusted to improve the grasp configuration, thereby enhancing the overall grasp
execution through better optimization of its motion.

The updated joint angles θ̂ produced by ADG-Net are set as the target configuration
for the dexterous hand. MPC is then used to drive the five fingers toward these target
angles. Each finger’s joint configuration is represented as a vector xi, with the complete
configuration denoted by θ = (x1,x2, . . . ,x5). MPC is formulated as an optimal con-
trol problem over a finite horizon N, starting from the current state θ0 and following
the linear dynamic model θk+1 = θk +vk∆t. In addition, the Jacobian Jm,0 for each fin-
gertip is computed at the current time step. The primary goal of the MPC is to drive
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the hand toward θ while avoiding collisions and respecting the kinematic constraints
defined in (5.26), where dm is the predefined safe distance between the fingers and the
table. This results in a quadratic programming (QP) problem that is efficiently solved
using an interior point optimizer (IPOPT). To prevent collisions with the table, the table
is modeled as a separate plane in WCS with a normal vector n = (0,0,1) and a refer-
ence point ct . In our experiments, two different table configurations were used for tests
with ShadowHands, one with BioTac Sensors and one without (details in Section 5.6.2).
Given that ADG-Net requires 25 ms for each multimodal grasp estimation, the adaptive
control loop is executed at 5 Hz during real-world grasping. Additionally, we integrated
a collision avoidance algorithm from our previous work [148] to prevent unintended
contacts between the robot and non-target objects, even though ADG-Net learns some
collision-avoidance strategies from the synthetic data. Finally, the range of motion for
the WR2 joint (shown in Fig. 5.4) is restricted to protect the electrical cable on the
ShadowHand; this limitation does not hinder grasping performance, as the kinematics
of WR1 and WR2 are coordinated with other joints to compensate for the restriction.

minimize
θ

N−1

∑
k=0
||θk− θ̂ ||2

subject to θ0 = θinit ,

θk+1 = θk +vk∆t,

θ̇ ≤ vk ≤ θ̇ ,

xm,k = xm,init +Jm,init(θm,k−θm,init),

n⊤xm,k ≥ dm, m = 1, . . . ,5.

(5.26)

5.6 Experiments

This section outlines a series of extensive experiments conducted to evaluate the per-
formance of our proposed ADG-Net and the associated dexterous grasping method. All
experiments were performed on the computer system described in Section 5.3.6.

5.6.1 Experiments in Simulation

This subsection details experiments conducted on synthetic grasp scenes to evaluate
ADG-Net’s performance in simulation. We examined two distinct ShadowHand config-
urations, as depicted in Fig. 5.10. In real-world scenarios, a ShadowHand equipped with
BioTac tactile sensors can capture 3D tactile force data from multiple sensing points on
each fingertip. In contrast, a ShadowHand without BioTac sensors is limited to 1D tac-
tile force measurements along the z-axis in FCS. To simulate this latter scenario in our
dataset, we reformulated the tactile force data fk

tac according to Equation (5.27). Conse-
quently, we trained two versions of ADG-Net: ADG-Net I for the ShadowHand without
BioTac sensors and ADG-Net II for the configuration with BioTac sensors.
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Figure 5.10: Two robotic setups with different ShadowHands for our experiments. (a) A UR10e
robot and a ShadowHand without BioTac tactile sensors. (b) A PR2 robot and a ShadowHand
with BioTac tactile sensors. [147]

fk
tac = fk

tac · (0,0,1) (5.27)

Table 5.2 summarizes the average prediction errors for the ADG-Nets over 50K
grasping scenarios, comparing networks trained with and without BioTac sensor data.
The results clearly indicate that the multimodal ADG-Nets yield lower errors in grasp
parameter estimation. In particular, compared to image-based models, ADG-Net II
(which utilizes BioTac data) reduces the prediction errors for joint angles (εθ ), grasp
quality (εq), and grasp status (εs) by 6.0◦, 0.23, and 20.8% respectively—demonstrating
its enhanced capability for successful real-world grasping. In contrast, ADG-Net I, lack-
ing 3D tactile force inputs, shows higher prediction errors, underscoring the importance
of BioTac’s 3D tactile data in boosting both prediction accuracy and the overall efficacy
of ShadowHand’s grasping performance.

Figure 5.11 provides a joint-wise visualization of the average prediction errors cal-
culated over 30K synthetic grasping scenarios, using ADG-Nets that combine RGB-D
and multimodal data. In this figure, the errors εθ are computed according to (5.22) and
presented separately for each joint.

Overall, the ADG-Nets achieve an average joint prediction error of less than 0.6◦

for all hand joints, which compares favorably with the average movement error of 1◦

reported for ShadowHands [108]. Notably, the incorporation of multimodal sensing data
leads to lower average errors for joints such as THJ3, THJ4, FFJ3, FFJ4, MFJ3, MFJ4,
RFJ3, RFJ4, LFJ3, and LFJ4. However, relatively higher errors are observed for the
distal joints FFJ1, MFJ1, RFJ1, and LFJ1. This disparity can be attributed to the fact
that joints like THJ3 and THJ4, which control the base regions of the ShadowHand
fingers (analogous to the metacarpal bones and proximal phalanges of a human hand, as
shown in Fig. 5.4), typically contact the upper surface of the object—a region that is well
captured in a top-down RGB-D image. Conversely, distal joints such as FFJ1, MFJ1,
RFJ1, and LFJ1, which correspond to the middle phalanges and fingertips, interact with
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Table 5.2: Prediction Errors of two ADG-Nets for ShadowHands with/without BioTac sensors.

Neural network RGB-D image Multimodal data

ADG-Net I

εP 0.12 0.12
εθ 14.3◦ 10.8◦

εq 0.28 0.07
εs 24.6% 8.5%

ADG-Net II

εP 0.12 0.12
εθ 14.3◦ 8.3◦

εq 0.28 0.05
εs 24.6% 3.8%

Note: 1) ADG-Net I was trained using synthetic grasp examples without 3D BioTac
tactile forces, while ADG-Net II was trained with these 3D forces. 2) The error εθ

listed in the table represents the total error for all joint angles, as defined in (5.22).
Detailed prediction errors for individual joint angles are illustrated in Fig. 5.11.
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Figure 5.11: Prediction errors of joint angles based on both the RGB-D image and multimodal
data. Note: Red and green dots are overlapping. [147]

the bottle’s sides or lower portions and are less visible from a top-down perspective.
These results highlight that multimodal sensing data can notably improve prediction
accuracy for the distal joints, which are critical for successful grasping in real-world
scenarios.
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Obj.

Figure 5.12: Part of objects for grasping experiments. [147]

5.6.2 Experiments in the Real World

This subsection provides a detailed evaluation of our dexterous grasping approach us-
ing two physical experimental setups for randomly picking unseen objects. The robotic
configurations, interconnected via ROS (see Fig. 5.10), include: (i) a system comprising
a 6-DOF UR10e robot paired with a ShadowHand without BioTac sensors, a wrist-
mounted Microsoft Kinect Azure RGB-D camera, and a PC; and (ii) a configuration
featuring a PR2 robot equipped with a ShadowHand that integrates BioTac sensors, a
head-mounted Microsoft Kinect Azure RGB-D camera, and a PC. In the latter system,
each fingertip of the BioTac-equipped ShadowHand can measure 3D tactile forces at
19 distinct sensing points. Additionally, an extra Azure RGB-D camera mounted on the
PR2’s head ensured high-quality visual input, aligning with the wrist-mounted camera
in the UR10e system to facilitate robust cross-system comparisons.

Figure 5.12 displays the assortment of objects used in these experiments, ranging
from various household items to workpieces—none of which were included in the syn-
thetic dataset described in Section 5.3. Initially, we assessed the grasp pose detection
performance of the ADG-Nets. Figures 5.13(a)–(c) showcase three distinct grasping
scenarios along with the grasp poses detected by ADG-Nets, while Figures 5.13(d)–(f)
illustrate the corresponding execution of grasp trials using the ShadowHand. These re-
sults demonstrate that our ADG-Nets can reliably identify feasible grasp configurations
across a variety of objects and ShadowHand setups. Notably, ADG-Net II exhibits a so-
phisticated grasping strategy—for instance, as shown in Fig. 5.13(c), it effectively per-
forms a “squeezing” maneuver by using the sides of the ring and little fingers, mirroring
similar strategies observed in our simulation results (see Figs. 5.6(c) and (f)).

For a more comprehensive benchmark, we compared seven different grasping ap-
proaches: (1) Baseline I, which sets a grasp pose at the clutter’s center and utilizes a pre-
determined finger-closing sequence; (2) Baseline II, which employs Meta SAM [49] for
grasp scene segmentation followed by Baseline I; (3) the GRU-M3PCA5 method [60];
(4) ADG-Net I operating solely on RGB-D images; (5) ADG-Net I with multimodal
sensing data; (6) ADG-Net II using only RGB-D images; and (7) ADG-Net II leveraging
multimodal data. Note that for the PR2 setup, which uses a right-handed ShadowHand
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Figure 5.13: Three grasp poses detected via the ADG-Net and the corresponding grasp exe-
cutions. (a), (b), (d) and (e) Two grasp poses detected via the ADG-Net I for a ShaodowHand
without BioTac sensors. (c) and (f) A grasp pose detected via the ADG-Net II for a ShadowHand
with BioTac sensors. [147]

as opposed to the left-handed configuration used during dataset generation and in the
UR10e setup, RGB-D images were mirrored before being processed by ADG-Net II. In
these experiments, 3D tactile forces for each fingertip were computed based on contact
point detection and data collected from multiple sensing nodes on the soft fingertips,
and each method was evaluated over 100 grasping trials.
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Table 5.3: Results of the Benchmark Experiments [147]

Method
Isolated Stacked

SRGP SRG SRGP SRG
Baseline I - 57% - <30%

Baseline II - 62% - <30%

GRU-M3PCA5 - 82% - <30%

ADG-Net I, RGB-D 71% 84% 71% 65%

ADG-Net I, multimodal 86% 91% 80% 81%
(+15%) (+7%) (+9%) (+16%)

ADG-Net II, RGB-D 72% 83% 70% 67%
(+1%) (-1%) (-1%) (+2%)

ADG-Net II, multimodal 94% 93% 92% 85%
(+23%) (+9%) (+21%) (+20%)

Note: 1) SRG is the abbreviation of “success rate of grasping”. 2) SRGP is the ab-
breviation of “success rate of grasp status prediction”.

The performance outcomes, summarized in Table 5.3, are reported in terms of the
success rate of grasp status prediction (SRGP) and the actual grasping success rate
(SRG) for both isolated and stacked objects. Baseline I, Baseline II, and GRU-M3PCA5
yielded relatively low success rates for stacked objects, with GRU-M3PCA5 achieving
an SRG of 82% for isolated objects but still underperforming on stacked configurations.
In contrast, advanced methods such as ADG-Net I and ADG-Net II show significant
improvements—especially when multimodal data are incorporated. For example, mul-
timodal ADG-Net I achieved an SRGP of 80% and an SRG of 81% for stacked objects,
while multimodal ADG-Net II reached an SRGP of 92% and an SRG of 85%. Compared
to the RGB-D-only version of ADG-Net I, the multimodal variants typically increased
the grasping SRG by 9% for isolated objects and by 20% for stacked objects, while also
improving SRGP by over 20% in various conditions. These findings clearly demonstrate
the advantages of using advanced neural network architectures combined with multi-
modal data fusion in enhancing robotic grasping, particularly in narrowing the perfor-
mance gap between isolated and stacked object scenarios. However, despite the notable
improvements in prediction accuracy offered by ADG-Net II, its actual grasping success
rates did not increase dramatically compared to ADG-Net I. This limitation is partly at-
tributable to the design constraints of the real-world ShadowHand with BioTac sensors,
where the first joint of each finger is fixed at 20° to accommodate the sensors, thereby
reducing the hand’s overall flexibility. A more detailed discussion of failure cases and
error analyses is provided in Section 5.6.3.
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(a) (b)

(c) (d)

Figure 5.14: Four failed grasping trials. (a) A grasping trial for a slim spoon using the Shad-
owHand without BioTac sensors. (b) A grasping trial for two neighbor objects using the Shad-
owHand with BioTac sensors. (c) A grasping trial for a thin and flat mobile phone using the
ShadowHand without BioTac sensors. (d) A grasping trial for a poorly-supported object using
the ShadowHand without BioTac sensors. [147]

5.6.3 Failed Trials and Limitations

Four typical failure cases were observed during real-world grasping experiments. For
instance, Fig. 5.14(a) illustrates an attempt to grasp a slim object that was unsuccess-
ful, while Fig. 5.14(b) depicts a failure when trying to pick up two objects positioned
close together. These issues largely stem from inherent limitations in the mechanical
design of ShadowHands. Unlike the independently operating thumb joints, the first and
second joints of the other fingers—such as FFJ1 and FFJ2—are mechanically coupled
and driven by a single motor. In the configuration that uses BioTac sensors, additional
constraints are imposed because joints FFJ1, MFJ1, RFJ1, and LFJ1 are fixed at 20°
to accommodate the sensors. This restriction limits the hand’s ability to execute subtle,
flexible movements required for grasping certain objects, even though ADG-Nets can
predict feasible grasp poses and joint configurations, as shown in Fig. 5.13. Improv-
ing the dexterity of the ShadowHand remains a promising yet challenging direction for
future research [111].
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Furthermore, during the experiments, the robot’s movement range was intentionally
limited to prevent collisions with the table and potential damage to the ShadowHand.
As a result, the ShadowHand was unable to make contact with the table or success-
fully grasp thin, flat objects placed on it, as evidenced in Fig. 5.14(c). Additionally, Fig.
5.14(d) presents a case where a grasp failed because the target object, being part of a
cluttered stack with insufficient support, rolled off the table upon being lightly touched
by a finger during approach.

5.7 Summary
In this study, we present a novel Sim2Real multimodal learning framework specifically
designed for dexterous grasping. Our approach features a two-stage simulation process
that not only replicates the complexities of dexterous grasping but also enables the effi-
cient collection of a comprehensive multimodal grasp dataset. Leveraging this dataset,
we developed ADG-Net—a versatile neural network that learns the fundamental prin-
ciples of dexterous grasping and accurately predicts grasp parameters. The resulting
adaptive grasping method reliably identifies feasible grasp configurations, and both sim-
ulation and physical experiments demonstrate its promising performance in challenging
dexterous grasping tasks.
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Chapter 6

Joint Motion and Grasp Planning for
HRC

Building on the advances in predictive motion planning and adaptive dexterous grasping
presented in the previous chapters, this chapter addresses the critical challenge of plan-
ning motion and grasping jointly in dynamic HRC scenarios. Unlike prior approaches
that treated reaching and grasping as independent tasks, our integrated framework com-
bines an Actor-Critic RL strategy with a DNLS optimization module to coordinate
these actions simultaneously. The RL component generates target poses and dynami-
cally tunes cost function weights, mitigating local optimality issues, while the DNLS
module refines these target poses to ensure that kinodynamic and safety constraints are
met. This unified approach not only accelerates the training process but also enables the
seamless integration of the predictive capabilities and grasping accuracy demonstrated
in earlier chapters. Extensive simulations and real-world experiments show that our joint
planning framework achieves higher success rates, smoother trajectories, and enhanced
safety, highlighting its potential for advancing collaborative robotics in dynamic and
safety-critical environments.

6.1 Introduction

In dynamic HRC environments, jointly planning both the robot’s motion and grasp-
ing actions is essential for efficient and safe object manipulation. The selection of an
appropriate grasp pose critically influences the feasibility of generating a valid trajec-
tory that not only minimizes travel distance but also satisfies stringent safety constraints
to avoid collisions with humans and obstacles. While current robotic grasp generation
techniques are largely designed for static settings and evaluate grasp candidates through
time-consuming processes, few approaches address the simultaneous coordination of
motion and grasp planning in dynamic, complex environments.

RL, particularly through the Actor-Critic paradigm [123], offers a powerful solution
by combining policy-based and value-based strategies. In this framework, the Critic
estimates the long-term expected reward—encompassing both immediate safety con-
siderations (like collision avoidance) and long-term outcomes (such as a successful
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grasp)—while the Actor updates its policy to select actions that optimize this balance.
However, end-to-end RL methods typically perform well only within the training distri-
bution and struggle to generalize to unpredictable, safety-critical scenarios [110, 131].

Complementing RL, MPC is a robust control strategy that predicts future system
behavior over a finite horizon by solving a constrained optimization problem at each
time step. Although MPC ensures that control inputs adhere to input, state, and output
constraints, its reliance on simplified dynamic models and hand-crafted cost functions
means that its solutions are optimal only in a local sense over a short horizon [50].

To overcome these limitations and to unify motion and grasp planning, we propose
an integrated framework termed ”Actor-Critic Differentiable MPC.” In our approach, a
differentiable MPC module is embedded as the final layer of the Actor network, thereby
leveraging both RL’s adaptive policy learning and MPC’s constraint-handling capabili-
ties. The RL component generates target joint angles and dynamically adjusts cost func-
tion weights to address local optimality challenges, while the differentiable MPC mod-
ule refines these target poses to ensure that kinodynamic and safety constraints are met.
To mitigate the computational burden associated with solving large-scale constrained
optimization problems at every time step, we reformulate the MPC problem as an un-
constrained DNLS optimization problem [96]. In this formulation, separation planes
between the robot and human—computed following the approach in [69]—are incor-
porated using a hinge loss function to guide the robot away from potential collisions,
thereby preserving the convexity of the problem and enabling efficient GPU accelera-
tion.

At each time step, our integrated Actor-Critic framework uses current observations
to update both the target joint angles and the DNLS cost function weights, ensuring
that the resulting trajectory is both collision-free and compliant with the robot’s kinody-
namic constraints. Extensive simulations and real-world experiments demonstrate that
this joint motion and grasp planning approach not only improves task success rates and
trajectory smoothness but also enhances overall safety in dynamic human–robot shared
workspaces.

The remaining sections are organized as follows. In Section 6.2, we present the ar-
chitecture of our proposed approach. In Section 6.3, we discuss the experimental results
that highlight the effectiveness of our framework. Finally, we conclude with a discussion
and suggest directions for future work in Section 6.4.

6.2 Methodology
In this section, we provide an in-depth discussion of our system’s key components—the
DNLS module and the RL module—and explain how they are integrated to function
cohesively. We begin by outlining the theoretical basis and implementation details of
the DNLS module, which reformulates the traditional MPC problem into an uncon-
strained nonlinear least squares framework. Next, we describe the Actor-Critic RL mod-
ule, which is responsible for generating target joint angles and dynamically adjusting the
cost function weights to guide the DNLS optimization toward safe, feasible trajectories.
Finally, we detail our integration strategy that ensures both modules work seamlessly

76



6.2. Methodology

in real time, allowing the overall system to adapt effectively to dynamic human–robot
interactions while satisfying all kinodynamic and safety constraints.

6.2.1 General Formulation of MPC
MPC relies on a mathematical model to forecast the system’s future behavior over a
fixed, finite time horizon. Using these predictions, MPC computes a sequence of control
actions that optimize a given cost function while adhering to various constraints—such
as limits on system states, control inputs, and safety requirements. Crucially, at each
timestep, only the first control action from this sequence is executed. The process is
then repeated with updated state information in a receding horizon manner, ensuring
that the control strategy remains optimal as the system evolves.

Mathematically, MPC solves an optimization problem to determine the optimal con-
trol u = (u0, . . . ,uN−1) and corresponding system states x = (x0, . . . ,xN) by solving a
nonliear optimization problem:

Mathematically, MPC is formulated as a nonlinear optimization problem as Eq. 6.1
that aims to determine the optimal sequence of control inputs, u = (u0,u1, . . . ,uN−1),
along with the corresponding state trajectory, x = (x0,x1, . . . ,xN). This optimization
minimizes a specified cost function while ensuring that the system dynamics and all
constraints—such as state, control, and safety limits—are satisfied.

min
x,u

N−1

∑
k=0

ℓ(xk,uk)+E(xN)

s.t. x0 = x̄0

xk+1 = f (xk,uk)

0≥ hi(xk,uk), i = 1, . . . ,m
0 = g j(xk,uk), j = 1, . . . , p (6.1)

In Eq. 6.1, the state at time step k is represented by xk ∈X and the control input
by uk ∈U , where X and U denote the continuous state and input spaces, respectively.
The stage cost for non-terminal states is defined by a function l : X ×U → R, while
the terminal cost is given by E : X → R. The system begins at an initial state x̄0, and
its evolution is governed by the dynamic model f : X ×U → X . In addition, the
optimization problem incorporates constraint functions hi : X ×U → R and g j : X ×
U → R to enforce the required restrictions on states and control actions.

6.2.2 Actor-Critic RL
Actor-Critic methods are a hybrid class of reinforcement learning algorithms that blend
the strengths of both value-based and policy-based approaches. In these methods, the
Actor is responsible for selecting actions by following a policy—typically represented
as a probability distribution over actions conditioned on the current state s, denoted by
π(a | s,θ), where θ are the policy parameters. The Critic, on the other hand, evaluates
the actions chosen by the Actor by estimating a value function, which can take the form
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of either the state-value function V (s,w) or the action-value function Q(s,a,w), with
w representing the value function parameters. Both sets of parameters, θ and w, are
iteratively updated using gradient descent to minimize appropriate loss functions, as
detailed in Algorithm 1 [123].

Algorithm 1 One-step Actor–Critic (episodic), for estimating πθ ≈ π∗

Input: a differentiable policy parameterization π(a|s,θ)
Input: a differentiable state-value function parameterization v̂(s,w)
Parameters: step sizes αθ > 0,αw > 0
Initialize policy parameter θ ∈ Rd′ and state-value weights w ∈ Rd

Loop forever (for each episode):
Initialize S (first state of episode)
I← 1
Loop while S is not terminal (for each time step):

A∼ π(·|S,θ)
Take action A, observe S′, R
δ ← R+ γ v̂(S′,w)− v̂(S,w)
w← w+αwδ∇wv̂(S,w)
θ ← θ +αθ Iδ∇θ lnπ(A|S,θ)
I← γI
S← S′

if S′ is terminal, then v̂(S′,w)
.
= 0

6.2.3 Integrating Differentiable MPC with RL
In Eq. 6.1, if the constraint functions (hi)

m
i=1 and (g j)

p
j=1 are linear with respect to the

state x and control u, and if both the stage cost ℓ and the terminal cost E are quadratic
functions of x and u, then the overall nonlinear optimization problem simplifies to a
QP formulation, as shown in Eq. 6.2. In this QP problem, the state xk belongs to a
continuous subset X ⊆ Rn and the control input uk belongs to a continuous subset
U ⊆Rl . Additionally, Qk ∈R(n+l)×(n+l) represents the quadratic cost matrix, pk ∈Rn+l

is the corresponding linear cost vector, Ak ∈ R(m+p)×(n+l) is the matrix defining the
linear constraints, and bk ∈ Rm+p is the associated constraint vector.

min
x,u

N

∑
k=0

[
xk

uk

]⊤
Qk

[
xk

uk

]
+p⊤k

[
xk

uk

]

s.t. Ak

[
xk

uk

]
⪯ bk

(6.2)

QP is a convex optimization method that efficiently solves problems using off-the-
shelf solvers, yet its optimal solution is highly sensitive to the parameters Qk, pk, and
Ak. Finding the ideal values for these parameters is particularly challenging in complex,
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dynamically changing tasks. Drawing inspiration from [3, 109, 110, 120], our approach
employs RL to tune these parameters. Specifically, we incorporate a differentiable MPC
module as the final layer of the Actor network, which takes as inputs Qθ ,k, pθ ,k, and
Aθ ,k produced by earlier layers. This module outputs the optimal control u∗

θ ,k for the
QP defined in Eq. 6.2, and its gradients with respect to the input parameters can be
computed analytically [3]. However, training such a differentiable QP layer with RL is
computationally intensive, as each forward and backward pass requires solving a large
batch of optimization problems—making the computation time directly proportional to
the batch size due to limited GPU acceleration for QP solvers.

To address this bottleneck, we reformulate the QP as an unconstrained DNLS opti-
mization problem (see Eqs. 6.3 and 6.4). Our DNLS optimizer, built on PyTorch [94],
leverages advanced features including second-order gradient computation, automatic
vectorization, batching, and full GPU acceleration. These capabilities enable efficient
optimization even with large batch sizes. The DNLS optimizer computes the gradients
of the optimal solution u∗(θ) with respect to the parameters θ from preceding layers,
as detailed in [96]. Once the optimal control u∗(θ) is determined and forwarded to the
robot, we compute the overall Actor-Critic loss L(u∗(θ)). Using the chain rule, we then
obtain the gradient of this loss with respect to θ and update the network parameters
accordingly, as described in Eq. (6.5).

u∗(θ) = argmin
u

S(u;θ) (6.3)

S(u;θ) =
N

∑
k=0

[xk

uk

]⊤
Qθ ,k

[
xk

uk

]
+p⊤θ ,k

[
xk

uk

]+ELU

(
Ak

[
xk

uk

]
⪯ bk

)
(6.4)

θ
∗ = argmin

θ
L(u∗(θ)) (6.5)

cg =
N

∑
k=0

∥∥wθ ,g
(
qk−qθ ,g

)∥∥2
, (6.6)

cinit = ∥winit (qk−qinit)∥2 , (6.7)

cq =
N

∑
k=0

∥∥wq ELU (qk−qmax)
∥∥2

+
∥∥wq ELU (qmin−qk)

∥∥2
, (6.8)

cv =
N−1

∑
k=0
∥wv ELU (qk+1−qk−vmax dt)∥2 +∥wv ELU (qk−qk+1−vmax dt)∥2 , (6.9)

cws =
N

∑
k=0

6

∑
i=1

4

∑
j=0

∥∥∥wws ELU
(

n⊤i
(
p j,init +J j (qk−qinit)

)
−bi

)∥∥2
, (6.10)

ch =
N

∑
k=0

4

∑
i=1

4

∑
j=1

∥∥∥wθ ,h ELU
(
−n⊤i

(
p j,init +J j (qk−qinit)

)
+bi

)∥∥2
, (6.11)

S(q;θ) = cg + cinit + cang + cvel + cws + ch. (6.12)
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Figure 6.1: Separation plane. For each pair of human and robot arm links—both represented as
capsules (e.g., capsule 1 and capsule 2)—we compute the minimal distance between them along
with their respective closest points, following the method in [69]. Based on these computations,
a separation plane is established that passes through the closest point on capsule 2. The normal
vector of this plane is oriented from this point on capsule 2 toward the corresponding closest
point on capsule 1. By enforcing the constraint that capsule 2 must remain on one side of this
plane, potential collisions with capsule 1 are effectively prevented.

6.2.4 Dynamic Grasp in Shared Human-Robot Workspace

In our collaborative workspace, the human performs pick-and-place tasks while the
robot is responsible for grasping objects on the table—all while ensuring collision-free
interactions. In this framework, the Actor network’s preceding layer outputs two essen-
tial components: a set of cost weights wi ∈R and a target joint angle vector qθ ,g ∈Rn for
robot tracking. These outputs form the basis for constructing a composite cost function
S(q;θ), which is the sum of several individual costs. Specifically, this includes a goal
tracking cost cg (see Eq. 6.6), an initial state constraint cost cinit (Eq. 6.7), joint angle
and velocity constraint costs cq and cv (Eqs. 6.8 and 6.9), as well as a workspace con-
straint cost cws and a human avoidance cost ch (Eqs. 6.10 and 6.11). In these constraints,
the workspace and human avoidance terms are defined using the normal vectors ni and
offsets bi of the respective planes. While cg and cinit are modeled as quadratic functions
of the trajectory (qk)

N
k=0, the remaining cost terms are formulated as hinge functions.

Owing to this structure, the overall cost function S(q;θ) is convex with respect to the
joint trajectory, enabling its global optimum to be efficiently computed using our DNLS
optimizer.
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n⊤

x
y
z

= n⊤Ph = b (6.13)

n⊤(p j,init +Ji(qk−qinit))≥ b, j = 1,2 (6.14)

The cost terms cws and ch are designed to confine the robot’s movements within
the specified workspace and prevent collisions with human operators. Following the
approach in [69], both human arms and robot links are modeled as capsules for efficient
collision detection, as illustrated in Fig. 6.1. Each capsule, defined by a cylinder capped
with hemispheres at both ends, connects two adjacent joints along the kinematic chain
and has a radius r. For each pair of human and robot capsules, the closest points Pr
(on the robot) and Ph (on the human) are computed [122]. A separating plane is then
defined to pass through Ph with its normal vector n directed from Ph toward Pr. To
ensure collision avoidance, the center of the robot capsule is required to lie above this
plane, as expressed in Eq. 6.14, which is reformulated into a hinge loss function in
Eq. 6.11. Workspace constraints are similarly formulated in Eq. 6.10. The entire Actor-
Critic DNLS algorithm, which integrates these constraints into the control framework,
is detailed in Algorithm 2.

Algorithm 2 Actor-Critic DNLS

Input: a DiffNLS policy parameterization DiffNLS(a|s,θ)
Input: a differentiable state-value function parameterization v̂(s,w)
Parameters: step sizes αθ > 0,αw > 0
Initialize policy parameter θ ∈ Rd′ and state-value weights w ∈ Rd (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)
I← 1
Loop while S is not terminal (for each time step):

A∼ DiffNLS(·|S,θ)
Take action A, observe S′, R
δ ← R+ γ v̂(S′,w)− v̂(S,w)
w← w+αwδ∇wv̂(S,w)
θ ← θ +αθ Iδ∇θ ln DiffNLS(A|S,θ)
I← γI
S← S′

if S′ is terminal, then v̂(S′,w)
.
= 0

Details about Actor-Critic

Our observation space is constructed from a range of features, including the robot’s 9-
DoF joint angles and corresponding joint velocities, the Cartesian coordinates of both
grippers, the Cartesian pose of the robot’s tip link, the positions and velocities of the
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Figure 6.2: Method overview. FoundationPose [137] is used to estimate the Cartesian pose of
the target object from its RGB image and 3D model. This estimated pose is then combined
with the robot’s kinematic data to form a comprehensive input for the Actor module. The Ac-
tor processes this combined information and produces two outputs: the target joint angles and
a set of cost function weights that will parameterize the subsequent DNLS module. The DNLS
module—configured with these cost weights, the target joint angles, the robot’s current joint
configuration, the relevant Jacobians, and the positions of the human arm—solves an optimiza-
tion problem to compute the optimal control inputs. These optimal control inputs specify the
desired joint angles for the robot in the next time step, thereby ensuring coordinated and safe
joint motion and grasp planning.

human arm’s three key joints (wrist, elbow, and shoulder), and the Cartesian pose of the
object. Although the gripper positions and tip link pose are redundant when considering
the 9-DoF joint angles, we have found that incorporating this additional information
helps accelerate the learning process.

The action space comprises the following components: the 7-DoF joint velocity
commands for the robot arm, a 1-DoF velocity command for the parallel gripper for
the upcoming time step, and an 8-dimensional weight vector used to modulate the
robot–human collision avoidance cost functions. The action values for both the robot
arm and gripper are constrained within the range (−1.0,1.0) and are scaled by a factor
of 7.5 before being applied to the robot, while each element of the collision avoidance
weight vector is clamped to the interval (0,1.0).

For object placement, the target object is randomly positioned on a table with its
x-coordinate sampled from the interval (0.3,0.6) and its y-coordinate from (−0.5,0.5).
The simulation runs with a time step of 1/60 seconds, ensuring high-frequency updates
for both observation and control.

The reward function R for the dynamic grasp task is composed of four components:
a distance reward Rdist , a reward for successfully gripping the object Rgrip, a reward for
lifting the object Rli f t , and a collision avoidance reward Rcoll..

R = c1Rdist + c2Rgrip + c3Rli f t + c4Rcoll. (6.15)

where:
Rdist = ||Pee f .−Pob j.|| (6.16)
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Rgrip = 1(ob ject gripper contact) (6.17)

Rli f t = 1(ob ject height ≥ 0.2) (6.18)

Rcoll. = 1(robot table human contact) (6.19)

Actor-Critic DNLS Framework

Figure 6.2 illustrates our proposed Actor-Critic DNLS framework. In this approach, an
RGB image and the corresponding 3D model of an object are first processed by Foun-
dationPose [137] to estimate the object’s Cartesian pose. This estimated pose is then
combined with the robot’s kinematic data to form a unified input for the Actor network.
The Actor subsequently outputs target joint angles and a set of cost function weights,
which are passed to the DNLS module. Finally, the DNLS module solves an optimiza-
tion problem to determine the optimal control commands that drive the robot’s move-
ments, ensuring that both motion planning and grasp execution are performed efficiently
and safely.

Environments KL
Threshold

Mini-
batch
Size

Horizon
Length

PPO
Epochs

Hidden
Units

Value
Loss
Coef.

Learning
Rate

8192 0.01 131072 128 8 128, 64,
32

2.0 Adaptive

Table 6.1: PPO Hyperparameters. The activation function used is ELU, and the learning rate
is adapted with a KL threshold of 0.01.

6.3 Experiments
We first train the policy in a simulated environment. The hyperparameters for PPO train-
ing are summarized in Table 6.1, with the reward function coefficients set as c1 = 1,
c2 = 1, c3 = 20, and c4 = −5. To assess the effectiveness of our method, we per-
form evaluations both in simulation and on a physical robot. For these experiments,
we selected three objects from the YCB dataset [13]—a mustard bottle, a banana, and a
mug—chosen to represent a range of shapes and sizes. All training and evaluation were
conducted on an NVIDIA RTX A6000 GPU.

6.3.1 Simulation Evaluation
Simulation Setup

We employ IsaacLab [82] to construct a physical simulation environment that mimics a
real-world setup, featuring a Kuka LWR robotic arm fitted with a WSG-50 parallel jaw
gripper, an upper-body human model, and a YCB object, as depicted in Fig. 6.3. In this
environment, the human torso remains stationary while only the arm is allowed to move.
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Agent Effort Limit Velocity Limit Stiffness damping
Kuka LWR 87 N ·m 2.269 rads−1 100 10
WSG-50 50 N ·m 0.2 rads−1 500 50

Table 6.2: Kinodynamic Parameters for Kuka and WSG-50 in simulation. The velocity limits
for the Kuka LWR and WSG-50 are set to 1 rad/s and 0.2 rad/s, repectively.

Figure 6.3: Learning dynamic grasp in human-robot shared workspace with massively parallel
simulation environments. The human trunk is modeled with a blue cylinder; the human arm is
modeled with three yellow cylinders; the human neck and head are modeled with a grey cylinder
and sphere, separately. The robot is a Kuka LWR robot arm with a WSG-50 parallel jaw gripper.

To bridge the sim-to-real gap, we incorporate domain randomization during training.
Specifically, at each reset of the simulation, the lengths of the human arm segments are
perturbed using Gaussian distributions: the upper arm length is sampled from N (µ =
0.25m,σ2 = 4) and the lower arm length from N (µ = 0.3m,σ2 = 4). To emulate
human arm motion, three shoulder joints and one elbow joint are actively controlled,
with their velocities at each simulation step drawn from a Gaussian distribution N (µ =
1.0m/s,σ2 = 2). When any joint reaches its angular limit, its velocity is instead re-
sampled from N (µ =−1.0m/s,σ2 = 2). This strategy improves the robustness of our
policy by exposing it to a range of realistic variations. The kinodynamic parameters for
the robot arm and gripper used in these simulations are detailed in Table 6.2.
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success (%) mean grasp time (s)
failure (%)

contact drop timeout total
Si

m
. Yang et al. [144] 72 10.2 0 12 16 28

Ours 88 4.9 0 6 6 12

Table 6.3: Evaluation of Grasping Performance in IsaacLab Simulation. Comparison of
our proposed method with the baseline method from Yang et al. [144]. The table highlights the
success rate, mean grasp time, and failure rates under different failure categories (contact, drop,
timeout). Our method achieves a significantly higher success rate and reduced mean grasp time,
which can be attributed to the integration of the global planner (RL) and the local optimization
planner (DNLS).

Metrics

An object-grasping trial is considered successful if the robot lifts the object to a height of
20 cm above the ground. Conversely, an episode is marked as a failure and terminated
if the object collides with the ground or the human body, or if the maximum episode
duration is reached. For each object, 100 grasp attempts are conducted. In every attempt,
the object’s position is randomly initialized within a predefined region, and the robotic
arm begins the grasp from its starting position. Throughout the grasping process, the
human arm moves in a manner consistent with the patterns observed during training.
To evaluate our method’s performance, we measure and analyze the grasp success rate,
the trajectories of both the robot and the human, the number of collisions, and the total
grasping time.

Baseline

Yang et al. [144] is employed as our baseline method. Although originally designed
for human–robot handover tasks, their approach was adapted for our dynamic object-
grasping scenario. In our version, instead of the object being held by a human, it is
placed on a table, and the obstacle representation is modified—from a cylinder posi-
tioned between the camera and the hand to the actual links of a human’s right arm.
Since human arm movements in our experiments occur independently of the object’s
pose and exhibit greater randomness than those considered in [144], the obstacle avoid-
ance challenge during grasping becomes significantly more complex in our task.

Results

In the IsaacLab simulation, we compared our approach against the baseline method
described in [144]. As summarized in Table 6.3, our method consistently achieves a
higher success rate while also significantly reducing the overall task completion time.

This performance improvement stems from the integration of a global plan-
ner—implemented via reinforcement learning (RL)—with a local planner based on Dif-
ferentiable Nonlinear Least Squares (DNLS). The RL module generates globally opti-
mal target joint angles and cost function weights, which the DNLS module then refines
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suc. (%)
fail. (%)

contact w/ human contact w/ ground drop timeout total
w/o human; w/ RL 86 0 7 2 5 14
w/ human; w/ RL 77 2 9 3 9 23
w/o human; w/ RL&DNLS 93 0 0 3 4 7
w/ human; w/ RL&DNLS 88 0 0 4 8 12

Table 6.4: Ablation Study. This table presents the success rates (succ.%) and failure modes
(fail.%) for object-grasping tasks under various conditions, including the presence or absence
of a human, using RL alone, and RL combined with DNLS. Failure modes are categorized into
contact with the human, contact with the ground, object drops, and task timeouts. All results are
averaged over 100 trials per condition.

to produce efficient, collision-free trajectories. This synergy not only minimizes time-
outs but also results in shorter grasp paths and faster grasping times. By contrast, the
baseline approach selects target poses from a precomputed set of grasp candidates [86]
without considering the robot’s reachability. As a result, the baseline often chooses grasp
poses that are not physically attainable, leading to more frequent timeouts and object
drops. Additionally, determining suitable cost function weights in the baseline method
is both complex and time-intensive, further contributing to longer trajectories and lower
grasp success rates. A demonstration of the grasping process using our method is shown
in Fig. 6.4.

Fig. 6.5 presents the robot’s configurations along with their associated value maps
throughout the grasping process. When the robot is at its initial position (Fig. 6.5a),
the value map shows low values, reflecting the distance from the final grasp target. As
the robot moves closer to the object (Fig. 6.5b), the value map transitions from green to
yellow, indicating an increase in value. Once the robot successfully grasps the object, the
value map shifts from red (Fig. 6.5c) to dark red (Fig. 6.5d), signaling the attainment of
the highest value. This progression effectively illustrates the robot’s advancement from
initial approach to successful grasp execution.

Ablation Study

We performed an ablation study to examine the effectiveness of our Actor-Critic DNLS
framework on object-grasping performance. In particular, we evaluated four configura-
tions: (1) grasping using only RL without human presence; (2) grasping using only RL
with human presence; (3) grasping using the combined RL and DNLS approach without
human presence; and (4) grasping using the combined RL and DNLS approach with
human presence. The results, summarized in Table 6.4, reveal that incorporating DNLS
with RL leads to significant performance gains.

Specifically, in scenarios without a human, the success rate improved from 86% to
93% when DNLS was added, completely eliminating ground contact failures. Similarly,
in scenarios with human involvement, the combined method increased the success rate
from 77% to 88% while entirely preventing collisions with both the human and the
ground. Timeout and drop failures remained roughly consistent across all configurations.
These observations indicate that the DNLS module notably enhances the safety of the
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(a) Phase 1 (b) Phase 2

(c) Phase 3 (d) Phase 4

Figure 6.4: Robot motion in different grasp phases. Red spheres trace the robot’s trajectory,
while various colored planes act as hard constraints that prevent the robot from colliding with
the human arm. For example, the red plane delineates the boundary between the gripper’s capsule
and the capsule representing the human’s lower arm, while the green plane separates the gripper
capsule from the capsule of the human’s upper arm. Additionally, the blue plane isolates the
robot’s second capsule from the human’s lower arm, and the light blue plane does the same for
the robot’s second capsule relative to the human’s upper arm. In the depicted scenario, a banana
is placed on the ground, and as the human arm moves between the robot and the banana, the robot
must plan its grasping motion to successfully pick up the object while avoiding any collisions
with the human arm.

grasping policy, particularly in environments where human interaction raises the risk of
contact errors.

Although the integrated approach significantly improves overall performance, the
persistence of timeout failures across all scenarios suggests that further optimization is
needed. Overall, these findings underscore the importance of combining DNLS with RL
to achieve safer, more robust object grasping in collaborative human–robot settings.

Fig. 6.6 displays the mean trajectory jerk magnitude per episode and the time cost per
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(a) (b)

(c) (d)

Figure 6.5: The images above depict the value maps generated by the critic network for various
robot configurations, representing the expected return for each state. The color scale indicates
the magnitude of the value, with dark red corresponding to the highest values and blue to the
lowest values. As the robot approaches the object, the value increases, as reflected by the color
changes.

step for both RL and RL combined with DNLS. The data clearly show that integrating
DNLS with RL results in lower median jerk values and less variability, as evidenced by
a smaller interquartile range (IQR) compared to using RL alone. This reduction in jerk
indicates that trajectories generated with DNLS are smoother and more consistent—an
important factor for ensuring predictable and safe human–robot interactions. However,
this improvement in smoothness comes at the expense of increased computational time
per step. While the RL-only approach is highly efficient, with a per-step cost of roughly
0.0001 s, incorporating DNLS introduces additional computational overhead. Thus, the
trade-off is between faster processing and the production of smoother, safer robot mo-
tions.

6.3.2 Real-World Experiments
Our experimental configuration employs two dedicated computers to operate the entire
system. One computer is directly connected to the KUKA LWR robot’s control box,
which is equipped with a WSG-50 parallel jaw gripper. The second computer, outfitted
with two NVIDIA RTX A6000 GPUs, is responsible for executing the trained policy
as well as running the object pose estimation and human body tracking modules. Data
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Figure 6.6: The left plot illustrates the jerk magnitude per episode for the RL and RL with DNLS
methods, highlighting the smoother trajectories achieved with DNLS. The right plot compares
the time cost per step, showing the increased computational overhead introduced by the DNLS
module.

exchange between these two systems is facilitated by ROS [104], ensuring seamless
communication. In this setup, the robot’s state information, the object’s pose, and human
joint data are concatenated to form the input to the policy network, while a ROS-based
controller handles the low-level trajectory tracking. Fig. 6.7 provides an overview of the
robot setup, and the following sections offer detailed descriptions of each module.

Object Pose Estimation

The object pose estimation module is based on the unified model presented in [137],
which supports both model-based and model-free 6D object pose estimation and track-
ing. This approach can generalize to novel objects at test time without requiring fine-
tuning, as long as a CAD model or a few reference images are available.

In our experiments, we employ an Azure Kinect Camera [79] to capture the task
scenarios. First, Mask R-CNN [39] is used to detect and segment the object from the
background in the acquired images. The resulting RGB image of the segmented object is
then input to the pose estimation network, which computes the object’s 6D pose relative
to the camera coordinate system. This estimated pose is subsequently transformed into
the robot base link frame for use in subsequent modules.

Fig. 6.8 visualizes the performance of the object pose estimation module. Using the
predicted pose and the corresponding object mesh file, we generate a colored point cloud
that overlays the object. The close alignment between this point cloud and the actual ob-
ject demonstrates the accuracy and reliability of our pose estimation framework, thereby
confirming its suitability for integration with downstream components in our system.
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Figure 6.7: Experiment setup. An Azure camera is deployed to track human body movements
and estimate the pose of objects on the table. The robot is programmed to grasp these objects
while actively avoiding contact with the human arm. To accurately determine the camera’s posi-
tion and orientation, an AprilTag is affixed to the table.

Human Body Tracking

MediaPipe [1] is an open-source platform developed by Google that enables the cre-
ation of cross-platform, customizable machine learning solutions for live and streaming
media. Its component, MediaPipe Pose, is tailored for precise body pose estimation,
extracting 33 three-dimensional landmarks and producing a background segmentation
mask for the entire body from RGB video frames. Thanks to its low computational
overhead, it supports real-time processing even on mobile devices. An example of the
output from MediaPipe Pose is shown in Fig. 6.9. Additionally, human joint velocities
are computed by taking the time derivatives of the joint position data.

Results

Table 6.5 summarizes the success and failure rates for grasping three different objects,
each evaluated over 10 trials. The results reveal that performance varies with object type:
the banana and the mustard bottle achieved success rates of 80% and 90%, respectively,
while the mug only reached a 70% success rate, leading to an overall success rate of
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(a) Banana (b) Mustard

(c) Apple (d) Mug

Figure 6.8: The images above illustrate the object pose estimation accuracy for four randomly
selected YCB objects. The colored point cloud represents the predicted object pose.

80% across all objects. Failure modes were classified into three categories: contact with
the ground, object drops, and timeouts. For the banana, there were 2 failures (1 drop
and 1 timeout); the mustard bottle experienced 1 failure due to a timeout; and the mug
exhibited the highest failure rate with 3 failures (2 drops and 1 timeout), resulting in a
total of 6 failures. These findings indicate that the shape and characteristics of the object
can significantly influence grasping performance, with irregularly shaped items like the
mug posing greater challenges for the system.

6.4 Summary

In this chapter, we introduced a novel framework that combines Actor-Critic reinforce-
ment learning with DNLS optimization module for dynamic object grasping in hu-
man–robot shared workspaces. In our approach, the RL component is tasked with gen-
erating target poses and assigning appropriate cost function weights, while the DNLS
module refines these target poses to ensure that the resulting motion adheres to the
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Figure 6.9: Human body tracking using MediaPipe Pose. The three red sphere markers represent
the positions of the human shoulder, elbow, and wrist, respectively.

suc. (%)
fail. (%)

contact w/ human contact w/ ground drop timeout total
banana 80 0 0 1 1 2
mustard 90 0 0 0 1 1
mug 70 0 0 2 1 3
overall 80 0 0 3 3 6

Table 6.5: Experiment Results for Grasping Different Objects. The table presents the success
rates (succ.%) and failure rates (fail.%) for grasping three objects: a banana, a mustard bottle,
and a mug. Failure modes are categorized into contact with the human, contact with the ground,
object drops, and task timeouts. All results are based on 10 trials for each object.

robot’s kinodynamic and safety constraints. Notably, reformulating the problem using
DNLS considerably accelerates the training process compared to previous methods, of-
fering a more computationally efficient solution.

Our integrated framework has demonstrated significant advantages over baseline
methods by achieving higher grasp success rates and smoother trajectory profiles in
the challenging joint planning of motion and grasping. Both simulation and real-world
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experiments confirm the robustness and effectiveness of our approach. However, it is
important to note that the current system relies on having pre-estimated object poses,
highlighting an area for future improvement to handle unknown objects more effec-
tively.
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Conclusions and Future Work

This thesis has presented a series of integrated methods that collectively advance HRC
in dynamic environments by unifying predictive planning, adaptive dexterous grasping,
and joint motion and grasp planning.

Building on our work in predictive planning, we developed two complementary ap-
proaches—Pred-HRC-Body and Pred-HRC-EEG—that leverage both human motion
and intention prediction. Pred-HRC-Body employs a Seq2Seq neural network combined
with GMMs to forecast arm–hand trajectories and accurately estimate target positions,
even during the early phases of motion when trajectories are highly similar. Pred-HRC-
EEG further enhances this capability by incorporating EEG-based BCIs to predict hu-
man intentions and monitor operator vigilance, allowing the robot to proactively adjust
its behavior to ensure both safety and efficiency.

Complementing these predictive strategies, we introduced ADG-Net, a novel frame-
work for adaptive dexterous grasping. ADG-Net integrates multimodal data—including
RGB-D images, tactile feedback, and joint angle information—using attention mecha-
nisms and graph convolutional networks to learn robust grasping principles. To bridge
the simulation-to-real gap, we generated an extensive synthetic dataset of over 500,000
grasp scenarios, which enabled ADG-Net to generalize effectively to real-world tasks,
achieving state-of-the-art performance in grasp parameter prediction.

Finally, we presented RL-DNLS, a joint motion and grasp planning approach that
merges an Actor-Critic reinforcement learning framework with DNLS optimization mod-
ule. In this integrated system, the RL component generates target poses and dynamically
tunes cost function weights, while the DNLS module refines these targets to satisfy kino-
dynamic and safety constraints. This combination not only produces smoother, collision-
free trajectories but also accelerates training via GPU-accelerated computation, leading
to higher grasp success rates compared to baseline methods.

Together, these contributions enhance the performance and safety of HRC by en-
abling predictive planning, adaptive grasping, and coordinated motion and grasp plan-
ning. Nevertheless, limitations remain, such as dependency on accurate object pose es-
timation and the computational overhead of the joint planning framework. Future work
should focus on developing more robust real-time object detection, refining learning
models to better account for human variability, and exploring more efficient optimiza-
tion algorithms to further reduce computational costs. These efforts will pave the way
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Figure 7.1: Overview of the research in this thesis. The yellow blocks are the related to motion
planning modules, and the green blocks are related to the grasping planning modules. These
modules represents the main research fields in this thesis.

for more autonomous and human-friendly robotic systems capable of operating in com-
plex, dynamic environments.

7.1 Limitations
Although the approaches presented in this thesis have yielded promising results, several
limitations remain that restrict their broader applicability. First, the methods developed
for human motion and intention prediction are tailored to the specific HRC scenarios in-
vestigated in this work and may not directly transfer to other applications. For example,
the EEG-based human intention prediction requires a brief individual calibration phase
(approximately 10 trials) for each new participant. Moreover, the strategy used to in-
tegrate vigilance into the trajectory optimizer is relatively simplistic and provides only
modest benefits in overall HRC performance. Additionally, fine-tuning the cost func-
tion weights for the trajectory optimizer to achieve an effective balance between task
execution and collision avoidance remains a time-consuming and non-trivial process.

Second, the dynamic grasping framework based on RL and DNLS suffers from
significant computational overhead due to the need to solve large-batch optimization
problems during training. Although the plane-based collision constraint is efficient, it is
somewhat conservative, which may lead to suboptimal policies. Furthermore, the multi-
modal dexterous grasping system does not incorporate the material properties or defor-
mation characteristics of objects, which can result in grasp failures. Grasping small or
thin objects on the table continues to be particularly challenging. In addition, the current
implementation does not perform object-level grasping, as segmentation information is
not encoded in ADG-Net, and the persistent Sim2Real gap remains an unresolved issue.

These limitations highlight areas for future research, including the development of
more generalized intention prediction methods, more sophisticated integration of vig-
ilance signals, more efficient optimization techniques for large-batch training, and im-
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provements in object modeling and segmentation to further enhance grasping perfor-
mance in real-world scenarios.

7.2 Future Research

This work opens several promising avenues for future research. Building on the ad-
vances presented in this thesis, the following directions are particularly worth exploring:

Human Motion and Intention Prediction Currently, our prediction modules rely pri-
marily on single modalities, such as human body motion or EEG signals. An exciting
future direction is to fuse additional data sources—such as eye gaze and semantic in-
formation extracted from visual scenes—to further improve target estimation accuracy
and robustness. Enhancing multimodal integration could broaden the applicability of
our methods across more diverse and complex scenarios. In particular, reducing the data
collection window for EEG-based intention prediction (which in our current setup re-
quires a 2-second focus period) to only a few hundred milliseconds would markedly
accelerate response times and enhance overall HRC performance. Moreover, exploring
alternative strategies for adjusting robot velocity based on operator alertness—such as
using neural networks to learn more complex relationships from EEG or other physio-
logical signals—could further refine our approach. Finally, integrating additional sens-
ing modalities, such as EMG alongside motion tracking and EEG, holds the promise of
delivering faster, more precise intention and movement predictions.

Multimodal Dexterous Grasping The ADG-Net architecture shows strong promise
for dexterous grasping; however, exploring novel neural network architectures, such as
Transformers, may help overcome the limitations inherent in graph convolutional net-
works. These new architectures could enable a more seamless integration of multimodal
sensory inputs—including RGB-D images and tactile data—and further enhance grasp
prediction accuracy. Additionally, combining ADG-Net with vision-language models
offers a compelling direction for enabling affordance-based and task-oriented manipu-
lation in industrial settings, potentially allowing the system to understand and execute
more complex, context-aware tasks.

Dynamic Grasping in HRC Our current dynamic grasping framework assumes that
object poses are known a priori, which limits its utility in unstructured environments.
Future work should focus on enabling the system to operate on previously unseen ob-
jects by directly incorporating object point clouds into the decision process. In addi-
tion, while our RL-DNLS approach has demonstrated improved performance, the train-
ing speed remains a bottleneck. Leveraging more advanced GPU-accelerated solvers
and optimization techniques could further reduce computation times. Refining collision
avoidance methods to be less conservative would also help in optimizing the balance
between safety and performance, particularly in dynamic and cluttered workspaces.
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Together, these future research directions aim to build on our current contributions
by addressing the remaining challenges and expanding the scope and robustness of hu-
man–robot collaboration in dynamic, real-world environments.
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List of Abbreviations

RNN Recurrent Neural Network

GCN Graph Convolutional Neural Network

MPC Model Predictive Control

DMP Dynamical Movement Primitives

IOC Inverse Optimal Control

AH Arm and Hand

DNLS Differentiable Nonlinear Least-Squares

HRI Human Robot Interaction

HRC Human Robot Collaboration

EEG Electroencephalography

RL Reinforcement Learning

BCI Brain-Computer Interaction
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SSVEP Steady-State Visual Evoked Potential

SNR Signal-to-Noise

GMMs Gaussian Mixture Models

LSTM Long Short-Term Memory

MRCPs Movement-related Cortical Potentials

QP Quadratic Programming

FEMs Finite Element Methods

DL Deep Learning

SOTA State-of-the-Art

Sim2Real Sim-to-Real

SQP Sequential Quadratic Programming

DoF Degree of Freedom

AT Arm Tracking

VCV Vigilance-controlled Velocity

CCA Canonical Correlation Analysis

LDA Linear Discriminant Analysis
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ras, and Ville Kyrki. Benchmarking the sim-to-real gap in cloth manipulation.
9(3):2981–2988, Mar. 2024.

[8] BMW. Human-robot collaboration in the axle drive assembly, bmw group plant
dingolfing, 2017.

[9] Oliver Brock and Oussama Khatib. Elastic strips: A framework for motion gen-
eration in human environments. The International Journal of Robotics Research,
21(12):1031–1052, 2002.

105

https://github.com/google/mediapipe
https://arxiv.org/abs/2011.01975


Bibliography

[10] Stanislas Brossette and Pierre-Brice Wieber. Collision avoidance based on sepa-
rating planes for feet trajectory generation. In 2017 IEEE-RAS 17th International
Conference on Humanoid Robotics (Humanoids), pages 509–514. IEEE, 2017.

[11] Achim Buerkle, William Eaton, Niels Lohse, Thomas Bamber, and Pedro Fer-
reira. EEG based arm movement intention recognition towards enhanced safety in
symbiotic human-robot collaboration. Robotics and Computer-Integrated Manu-
facturing, 70:102137, 2021.

[12] Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter Abbeel,
and Aaron M. Dollar. Benchmarking in manipulation research: using the Yale-
CMU-Berkeley object and model set. 22(3):36–52, Sep. 2015.

[13] Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter Abbeel,
and Aaron M. Dollar. Benchmarking in manipulation research: Using the yale-
cmu-berkeley object and model set. IEEE Robotics and Automation Magazine,
22(3):36–52, 2015.

[14] Teng Cao, Feng Wan, Chi Man Wong, Janir Nuno da Cruz, and Yong Hu.
Objective evaluation of fatigue by EEG spectral analysis in steady-state visual
evoked potential-based brain-computer interfaces. Biomedical Engineering On-
line, 13(1):1–13, 2014.

[15] Afonso Castro, Filipe Silva, and Vitor Santos. Trends of Human-Robot Col-
laboration in Industry Contexts: Handover, Learning, and Metrics. Sensors,
21(12):4113, 2021.

[16] Jiayi Chen, Yuxing Chen, Jialiang Zhang, and He Wang. Task-oriented dexter-
ous grasp synthesis via differentiable grasp wrench boundary estimator. 2023.
arXiv:2309.13586. [Online]. Available: https://arxiv.org/abs/2309.13586.

[17] Xiaogang Chen, Bing Zhao, Yijun Wang, and Xiaorong Gao. Combination of
high-frequency SSVEP-based BCI and computer vision for controlling a robotic
arm. Journal of Neural Engineering, 16(2):026012, 2019.

[18] Xiaogang Chen, Bing Zhao, Yijun Wang, Shengpu Xu, and Xiaorong Gao. Con-
trol of a 7-DOF robotic arm system with an SSVEP-based BCI. International
Journal of Neural Systems, 28(08):1850018, 2018.

[19] Zixi Chen, Shixin Zhang, Shan Luo, Fuchun Sun, and Bin Fang. Tacchi: A plug-
gable and low computational cost elastomer deformation simulator for optical
tactile sensors. 8(3):1239–1246, Jan. 2023.

[20] Yujiao Cheng, Liting Sun, Changliu Liu, and Masayoshi Tomizuka. Towards
efficient human-robot collaboration with robust plan recognition and trajectory
prediction. IEEE Robotics and Automation Letters, 5(2):2602–2609, 2020.

106

https://arxiv.org/abs/2309.13586


Bibliography

[21] Yujiao Cheng, Weiye Zhao, Changliu Liu, and Masayoshi Tomizuka. Human mo-
tion prediction using semi-adaptable neural networks. In 2019 American Control
Conference (ACC), pages 4884–4890. IEEE, 2019.

[22] Sachin Chitta, Eitan Marder-Eppstein, Wim Meeussen, Vijay Pradeep,
Adolfo Rodrı́guez Tsouroukdissian, Jonathan Bohren, David Coleman, Bence
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