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Abstract

This thesis considers plurality consensus problems in the population protocol model.
These are fundamental problems in distributed computing. We design and analyze pro-
tocols to solve these consensus problems time and space efficiently. In the population
protocol model, we consider n agents that interact in randomly chosen pairs, one pair per
time step. In the plurality consensus problem, each of the n agents initially has one of the
k opinions. The goal is for all agents to agree on the initial most frequent opinion among
the population. We consider both exact and approximate plurality consensus. This refers
to the initial bias defined as the difference between the largest and second largest opinion.
In the exact case, the initial largest opinion must win eventually. In the approximate
case, only with a sufficiently large initial bias. We consider a synchronized variant of
the Undecided State Dynamics in the population protocol model. Our main result solves
approximate plurality consensus for k = O

(√
n/ log n

)
in O

(
n log2 n

)
interactions using

k · O
(
log n

)
states w.h.p. In the presence of an initial additive (multiplicative) bias, all

agents agree on the initial largest opinion, and we lose the constraint on k and improve
the convergence time. We solve the approximate plurality consensus for k > 2 via the
(unsynchronized) Undecided State Dynamics in the population protocols model. In fact,
we study this protocol for the first time in this regime and model. The main result
solves approximate plurality consensus in O

(
n2/xmax log n

)
interactions w.h.p. under a

mild constraint on the initial largest opinion. Similar holds under the assumption of an
initial additive (multiplicative) bias. We design and analyze tournament-based protocols
for exact plurality consensus that beat the quadratic lower bound on the states by al-
lowing a negligible failure probability. Our main result solves exact plurality w.h.p. in
O
(
n2/xmax · log n+n · log2 n

)
interactions and O

(
k · log logn+log n

)
states under a mild

constraint on the initial largest opinion. We solve a parameterized variant of the approx-
imate majority consensus problem with a preferred opinion 1 and unpreferred opinion 2.
Our main result shows a phase transition concerning the stubbornness parameter p. If
the stubbornness is sufficiently larger (smaller) than the threshold 1− x1/x2, all agents
agree on the preferred (unpreferred) opinion in O

(
n log n

)
interactions w.h.p. Otherwise,

all agents agree on the same opinion in O
(
n log2 n

)
interactions w.h.p.
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Zusammenfassung

In dieser Thesis geht es um Pluralitäts-Konsensus Probleme im Populationsprotokoll-
Modell. Dies sind fundamentale Probleme im verteilten Rechnen. Wir konstruieren und
analysieren Protokolle, welche diese Probleme zeit- und platzeffizient lösen. In diesem
Modell betrachten wir n Agenten, welche zufällig paarweise miteinander interagieren,
jeweils ein Paar pro Zeitschritt. Beim Pluralitäts-Konsensus Problem hat jeder der n
Agenten initial eine von k Meinungen. Das Ziel ist es, dass sich alle Agenten auf die ini-
tial am häufigsten auftretende Meinung einigen. Wir betrachten jeweils die exakte und
approximierte Variante des Pluralitäts-Konsensus Problems. Diese Varianten beziehen
sich auf den initialen Bias, welcher als Differenz zwischen der größten und zweitgrößten
Meinung definiert ist. In der exakten Variante muss die initial größte Meinung letz-
tendlich gewinnen. In der approximierten Variante muss dies nur erfüllt werden, falls der
initiale Bias ausreichend groß ist.

Wir betrachten die synchronisierte Variante der Undecided State Dynamics im
Populationsprotokoll-Modell. Unser Hauptresultat löst das approximierte Pluralitäts-
Konsensus Problem für k = O

(√
n/ log n

)
in O

(
n log2 n

)
Interaktionen und k ·O

(
log n

)
Zuständen mit hoher Wahrscheinlichkeit. Falls ein initialer additiver (multiplikative)
Bias vorliegt, dann nehmen alle Agenten die initial größte Meinung an. Zudem ist
k unbeschränkt und die Konvergenzzeit verbessert sich. Wir lösen das approximierte
Pluralitäts-Konsensus Problem für k > 2 mit Hilfe der (unsynchronisierten) Undecided
State Dynamics im Populationsprotokoll-Model. In der Tat untersuchen wir dieses Pro-
tokoll als Erstes in dieser Konstellation. Unser Hauptresultat löst das approximierte
Pluralitäts-Konsensus Problem für k > 2 in O

(
n2/xmax log n

)
Interaktionen mit ho-

her Wahrscheinlichkeit unter einer schwachen Annahme über die initial größte Meinung.
Ähnliches gilt auch bei der Annahme eines initialen additiven (multiplikativen) Bias.
Wir konstruieren und analysieren turnierbasierte Protokolle für das exakte Pluralität-
Konsensus Problem, welche die quadratische untere Schranke der Zustände mit dem
Zulassen von vernachlässigbarer Fehlerwahrscheinlichkeit unterbietet. Unser Hauptre-
sultatt löst das exakte Pluralität-Konsensus Problem mit hoher Wahrscheinlichkeit in
O
(
n2/xmax · log n+n · log2 n

)
Interaktionen und O

(
k · log logn+ log n

)
Zuständen unter

einer schwachen Annahme über die initial größte Meinung. Wir lösen eine parametrisierte
Variante des approximierten Majorität-Konsensus Problems mit einer bevorzugten Mein-
ung 1 und einer unbevorzugten Meinung 2. Unser Hauptresultät weist einen Phasenüber-
gang bezüglich des Hartnäckigkeitsparameters p. Falls dieser Parameter wesentlich größer
(kleiner) als der Schwellenwert 1−x1/x2 ausfällt, dann werden alle Agenten die bevorzugte
(unbevorzugte) Meinung in O

(
n log n

)
Interaktionen mit hoher Wahrscheinlichkeit an-

nehmen. Andernfalls nehmen alle Agenten dieselbe Meinung in O
(
n log2 n

)
Interaktionen

mit hoher Wahrscheinlichkeit an.
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Chapter 1.
Introduction

A distributed system consists of a set of devices that are connected by a communica-
tion network. The communication network provides the facility for information exchange
among devices. The devices usually cannot access a shared (global) memory and can only
communicate by passing messages over the communication network. This includes the
observation of another device’s state. Note that a shared memory model is a completely
different approach towards distributed systems. In contrast to the message-passing ap-
proach, where the devices communicate directly with each other, communication in this
model occurs indirectly via a shared memory.

The devices have no access to a physical global clock. Inherent to that is usually
asynchronous communication among the devices. Each device works on its own but
serves a common goal with the other devices. Roughly speaking, every device has its
own state and a local view of the global problem by gathering information through
communication. All device states as a whole unit form a configuration. Note that
synchronous communication works in a similar way, except all devices simultaneously
perform their actions.

Given a distributed system, the characteristic of such a system is to perform distributed
computing. That is, to solve a problem based on the action and information of the
whole collection of devices. There are various complexity measures of common interest.
Naturally, time and space complexity have to be considered. Additionally, the number
and size of messages and the number of faulty devices are relevant. Further information
about distributed systems and distributed computing can be found in the books by Attiya
and Welch [14] and Kshemkalyani and Singhal [62]. In this thesis, we focus strongly on
consensus problems as one of the field’s fundamental problems (see Section 1.2 for more
details). To do that, we first formally introduce the population protocol model proposed
by Angluin et al. [8] as a realization of distributed computing in a distributed system.

1.1. Population protocol model

A population protocol consists of a collection of agents, the so-called population, that
interact with each other to compute a function over the whole population.

A way to think of an agent is a finite state machine. The agents work on a common
state space Q, and agents may change their state by interacting with another agent.
Agents are rather limited in their storage and computational power for simplicity and
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Chapter 1. Introduction

robustness. Additionally, agents are anonymous and indistinguishable. In the real world,
you can think of mobile ad hoc networks or sensor networks.

In general, given a certain problem, designing a population protocol that solves the
problem eventually among the population. An output function provides an explicit so-
lution while reaching the desired configuration, a more implicit solution. Note that a
population protocol does not necessarily terminate but rather converges since the agents
do not necessarily detect the end of the computation. Formally, such protocol consists of

• the state space Q

• initial states of each agent

• output function, mapping from state to output value

• transition function δ : Q×Q 7→ Q×Q

An interaction involves an initiator agent u and responder agent v. Such an interaction
allows both agents to view each other’s state and update their own state according to
the transition function. The transition function is usually deterministic and represented
explicitly by state transitions or implicitly by an algorithmic protocol. A configuration
C represents the current state of the agents in the population. It represents essentially
the global state of the population that is not known to any of the agents. An execution
of a population protocol is a sequence of configurations C0, C1, . . . where the next con-
figuration is obtained by its previous one updated according to a single interaction,i.e.,
a sequence of interactions provides the changes in the sequence of configurations.

A scheduler provides the sequence of interactions. Originally, the schedule is given
by an adversary under a certain fairness condition. The fairness condition forces the
adversary to schedule interactions between two agents so that, eventually, every reachable
configuration may appear.

Originally, the focus was on the spectrum of computable functions by population proto-
cols. In fact, it suffices to consider a function’s so-called predicate, i.e., a boolean-valued
verifying function. It turns out that only semilinear predicates are computable in the
original basic model as shown by Angluin et al. [11]. Essentially, functions that are not
representable by the so-called Presburger arithmetic are not computable. This caused
the introduction of the random scheduler as an alternative. Now, pairwise interactions
between two agents are chosen uniformly at random. This leads to a natural notion of
time by examining the number of interactions. Before that, the adversarial scheduler
may cause long sequences of nonproductive interactions that do not lead to any progress.
In fact, the random scheduler makes the model more powerful. For example, it allows
the simulation of register machines. From here on, more complex problems like leader
election and consensus are considered. The latter will be investigated throughout the
remainder of the thesis. A formal definition definition follows in the next section.

The natural measurements of the quality of a population protocol are based on its space
and time complexity: the number of states per agent and the number of interactions to
reach the desired configuration. This leads to extensive trade-off discussions between
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1.2. Overview of the Problems

space and time. Space efficiency is relevant in its own right in the context of population
protocols using simple and robust agents.

1.2. Overview of the Problems

We study variants of the plurality consensus problem in the population protocols model.
It is one of the fundamental problems in distributed computing. We are given a popula-
tion of n agents connected via a complete graph and a set of k opinions. Initially, every
agent has one of the k opinions. The goal is that all agents eventually agree on the same
opinion, preferably on the initial largest opinion.

Figure 1.1.: Approximate Plurality Problem

For the record, plurality refers to the number of opinions larger than two. Otherwise,
it is called the majority consensus problem for k = 2.

In Practical applications, it plays an important role in fault-tolerant sensor networks
(where most sensors must confirm a trustworthy result) or majority-based conflict res-
olution (e.g., for CRCW PRAMs). They are also used in physics and biology to model
massive dynamic systems of particles or bacteria or in social sciences to study how opin-
ions form and spread through social interactions. See [19] for references and further
applications. On an intuitive level, the initial larger opinions are supposed to be more
likely to win than the smaller ones. This leads to the common notion of bias. In the
literature, there is usually a distinction between additive and multiplicative bias. An
additive bias is the difference between the support of the largest and second-largest opin-
ion. The multiplicative bias refers to the ratio between the support of the largest and
second-largest opinion. Regarding that notion, there are two popular forms of consensus
problems: exact plurality and approximate plurality. In the first case, the initial largest
opinion must win eventually, regardless of the initial (additive) bias. In the other case,
the initial largest opinion is only required to win under the assumption that the initial
bias is sufficiently large, like Ω

(√
n log n

)
. Otherwise, it is sufficient to reach a consensus,

i.e., eventually, all agents agree on the same opinion.
Regardless of the consensus variant, the core aspect of a protocol solving such a problem

is its convergence time, i.e., how long does it take until all agents agree on the same
opinion? In particular, it is important to define and identify proper measurements for
the convergence time. The literature has two rather obvious and established choices: the
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Chapter 1. Introduction

number of initial opinions k and the initial bias. The latter is more subtle and hidden
in the convergence time and rather noticeable in a direct comparison with an unbiased
case; i.e., a bias speeds up the convergence time of most protocols. Dealing with the
number of opinions k is usually one of the main challenges in the analysis. There exist
lots of configurations that are often not properly captured by these measurements alone.
Consider the following example in Fig. 1.2. Both configurations have the same number
of opinions, and the additive bias is roughly the same. Intuitively, the first configuration
converges faster than the second one. The reason is that in the skewed configuration,
almost all opinions are relatively small compared to the largest opinion. On the other
hand, it usually requires non-trivial approaches and techniques to deal with larger subsets
of opinions at once instead of one after the other.

Figure 1.2.: Skewed and almost uniform configurations

Another quantity to consider is the space complexity of protocols. In the population
protocol model, we are looking at the state space complexity. Actually, the state overhead
of an agent is more interesting in this setting, i.e., the information in addition to storing
one of the mandatory opinions. A typical example is an additional synchronization tool,
especially in an asynchronous model like the population protocol model.

At last, we also consider a variant of the approximate majority consensus problem
with preference. It is a form of biased opinion dynamics in that one opinion is preferable.
Initially, each agent holds one of two possible opinions (1 and 2 in the following), but
Opinion 1 is the preferred one. The notion of preference is rather abstract. There
are various ways to model preference. Usually, the preferred opinion is more powerful
than the unpreferred opinion, e.g., agents with the preferred opinion are more resilient
in maintaining their opinion, or agents adopt the preferred opinion more likely than
another opinion. The primary goal remains that all agents eventually agree on the same
opinion. In contrast to the classical (approximate) majority consensus problem, the focus
is not necessarily on the initial largest opinion but rather the preferred opinion. In this
sense, how the disadvantage of initial support being the minority can be balanced out
by preference and eventually even lead to being the winning opinion.

14



1.3. Undecided State Dynamics

1.3. Undecided State Dynamics

The Undecided State Dynamics (USD) is a popular protocol for solving consensus prob-
lems in various distributed models. It plays a crucial role throughout the remainder of
this thesis. Given its suitability as a primitive for other distributed tasks, a substan-
tial amount of recent work has analyzed this process as a protocol for consensus under
varying settings. The USD was originally introduced by Angluin et al. [9] for k=2 opin-
ions in the population protocol model. Independently, Perron et al. [75] analyzed the
two opinions USD in the asynchronous gossip model of Boyd et al. [33], which can be
viewed as the continuous-time variant of the population protocol model. It belongs to
the classes of protocols using additional information in the form of an extra state, the
so-called undecided state. The undecided state can be viewed as an additional (special)
opinion. The protocol in the population protocol model is rather simple. There are two
types of state changes (see Fig. 1.3):

Figure 1.3.: Undecided State Dynamics: Pairwise interactions between agents with op-
posite opinions (blue and red) and undecided agent (grey)

First, whenever two agents with opposite opinions interact, the initiator loses its opin-
ion and becomes undecided, i.e., it temporally does not have any opinion. Second,
whenever the initiator is an undecided agent, it adopts the responder’s opinion. In a
certain sense, this resembles a delayed Voter process. Recall that the Voter rule states
that the initiator adopts the responder’s opinion regardless of its own opinion. In this
case, adopting another opinion is delayed by becoming undecided first.

A couple of variants of the original USD are introduced in the literature. One of them
can be viewed as a synchronized version introduced by Berenbrink et al. [29] and Ghaffari
and Parter [53] in the gossip model. The gossip model is a synchronous time model, where
in each (parallel) round, every agent selects uniformly at random interaction partners. In
the synchronized USD, a sequence of (parallel) rounds forms a phase of two parts. In the
first part, an agent becomes undecided if its interaction partner has a different opinion.
In the second part, an undecided agent adopts the opinion of its interaction partner.
Note that the first part only lasts a single round due to the gossip model. Essentially,
if an agent loses its opinion in the first part, it tries to recover an opinion during the
remainder of a phase.
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Chapter 1. Introduction

1.4. Results

We investigate plurality consensus problems in the population protocol model. In Chap-
ter 2, we consider a synchronized variant of the Undecided State Dynamics in the pop-
ulation protocol model. This variant has been introduced by Berenbrink et al. [29] and
Ghaffari and Parter [53] in the gossip model. Both works provide a polylogarithmic time
bound on the number of parallel rounds solving plurality majority for k > 2 and initial
additive bias of order Ω

(√
n log n

)
. In contrast to the gossip model, we need an additional

tool, so-called phase clocks, to properly synchronize the population. We solve the ap-
proximate plurality consensus problem for k = O

(√
n/ log n

)
with no assumption on the

bias in O
(
n log2 n

)
interactions using k ·O

(
log n

)
states w.h.p. Furthermore, despite the

absence of any bias, we can restrict the set of contenders from being the winning opinion.
We call such opinions significant. Roughly speaking, a significant opinion is almost as
large as the largest opinion except for an additive difference of order o

(√
n log n

)
. In the

spirit of approximate plurality, all agents agree only on one of the significant opinions. In
addition, we provide improved runtimes in case the initial configuration has a sufficiently
large additive or multiplicative bias (replacing a log n by log logn) for the whole range
of k.

In Chapter 3, we solve the plurality consensus problem for k > 2 opinions via the
(unsynchronized) Undecided State Dynamics in the population protocols model. Sur-
prisingly, in contrast to the majority problem, the k > 2 regime has not been studied
under these circumstances. Under mild constraints on the initial largest opinion and
number of undecided agents, we show that the Undecided State Dynamics solves plural-
ity consensus for one of the initial significant opinions in O

(
n2/xmax log n

)
interactions

w.h.p. Furthermore, all agents agree on the initial largest opinion in O
(
n2/xmax log n

)
interactions w.h.p. if there exists an additive bias of order Ω

(√
n log n

)
. In case of a

constant (1 + ε) multiplicative bias, the runtime improves to O
(
n2/xmax + n log n

)
. The

runtime dependency on the support of the initial largest opinion provides a more detailed
perspective on the convergence time than solely relying on the initial number of opinions
k.

In Chapter 4, we consider the exact plurality consensus problem in the population pro-
tocol model. In contrast to the approximate plurality problem, the initial largest opinion
must win regardless of bias. There is a well-known lower bound Ω

(
k2
)

on the number of
states stable protocols by Natale and Ramezani [72]. We have to deal with this negative
obstacle to explore the plurality variant with k > 2 opinions. To overcome this issue, we
relax the statement by allowing a negligible failure probability to significantly beat the
state space lower bound. We provide protocols that solve the exact plurality problem
w.h.p. The first protocol is tournament-based, assuming an ordering on the opinions and
solving the problem in O

(
kn log n

)
interactions using O

(
k+ log n

)
states. In the second

protocol, we get rid of the ordering assumption at the cost of a slightly increased number
of interactions O

(
kn log n + n log2 n

)
. At last, we reduce the number of tournaments

by pruning the number of participating opinions at the cost of a slightly increased state
space O

(
k log logn+log n

)
. Essentially, we filter out smaller opinions during the prepro-
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1.5. Related Work

cessing. This leads to a trade-off between time and space: the number of interactions is
O
(
n2/xmax log n+n log2 n

)
where xmax denote the support of the initial largest opinion.

On the other hand, it improves the runtime of a broad range of configurations (e.g., large
initial bias in a skewed configuration with many small opinions).

In Chapter 5, we solve a variant of the approximate majority consensus problem with a
preferred opinion 1 and unpreferred opinion 2. We characterize agents with the preferred
opinion as stubborn. The stubbornness is described by a parameter p and used in the
so-called stubborn USD. This variant works the same way as the known USD with one
exception (see Fig. 1.4): Whenever an agent with the preferred opinion interacts with
an agent with the opposite opinion, it keeps its opinion with probability p. Otherwise,
it becomes undecided.

Figure 1.4.: Stubborn-USD: preferred opinion (blue), unpreferred opinion (red), unde-
cided (grey)

Due to this advantage of the preferred opinion, we are especially interested in initial
configurations where the unpreferred opinion is the initial majority.

We show that for any configuration with linear support for both opinions, there exists
a threshold ps such that Opinion 1 wins after O

(
n log n

)
interactions if the stubbornness

parameter p is slightly larger than ps. If p is slightly smaller than ps, Opinion 2 wins
after O

(
n log n

)
interactions. If p ≈ ps, we show that one of the two opinions wins in

O
(
n log2 n

)
interactions, but which of the two opinions wins is unclear. Our results show

that even if the initial support for Opinion 2 is larger, for sufficiently large p, the agents
will still agree on Opinion 1.

1.5. Related Work

In this section, we provide an overview of the related research.

Undecided State Dynamics and its variants The two-opinion USD was introduced
independently by Angluin et al. [9] for the population protocol model and by Perron
et al. [75] for the closely related (continuous time) asynchronous gossip model. Both
works show that the process converges w.h.p. in O

(
n log n

)
steps (respectively, O

(
log n

)
continuous time). Condon et al. [35] give an improved analysis for the two-opinion
case in the population model and show the process solves the approximate majority
of the problem assuming an initial additive bias of Ω

(√
n log n

)
, which improves over

the additive bias of ω
(√
n log n

)
needed in the analysis of Angluin et al. It is worth

mentioning that they also consider a variant of plurality consensus with k opinions in a
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Chapter 1. Introduction

communication model in which three randomly chosen agents interact in a step. In this
variant, if an agent interacts with two other agents of the same opinion, it adopts this
opinion. They show that the system converges to the initial majority within O

(
kn log n

)
interactions w.h.p., provided the initial bias is large enough.

Clementi et al. [34] study the USD in the gossip model. Note that the gossip model is
a synchronous time model, where in each (parallel) round, every agent selects uniformly
at random interaction partners. They consider the unbiased case with k = 2 opinions
and show that, w.h.p., the protocol reaches consensus in O

(
log n

)
rounds. Moreover,

they show that the plurality opinion prevails if the initial bias is Ω
(√
n log n

)
. Their

analysis partitions the configuration space into seven cases, depending on the magni-
tude of a possible bias and the number of undecided agents, making it hard to apply
the approach to arbitrary values of k. Another recent work by D’Amore et al. [42] also
considers the USD with k = 2. While they require the usual initial bias of Ω

(√
n log n

)
,

they introduce noise in their model, which may modify sent messages with a certain
probability p. Within O

(
log n

)
time, their protocol reaches a Θ

(
n
)

bias towards the
initial majority. Becchetti et al. [20] adopt the USD to the gossip model and generalize
it to k = O

(
(n/ log n)1/3

)
opinions. Central to their analysis is the introduction of the

monochromatic distance, which measures the uniformity (i.e., lack of bias) of a config-
uration. Roughly speaking, this distance is the sum of squares of the support of each
opinion, normalized by the square of the most popular opinion. They show convergence
within O

(
md(x) · log n

)
parallel rounds, where md(x) is the monochromatic distance of

the initial configuration, which is always bounded above by k. This analysis only holds
when the initial configuration has a multiplicative bias.

Deviating slightly from the original USD definition, Berenbrink et al. [29] and Ghaffari
and Parter [53] consider a synchronized version of the USD. For the synchronization,
both suggest basically the same protocol, which uses counters to partition time into
phases of length Θ

(
log k

)
. Agents can become undecided only at the start of such a

phase and use the rest of the phase to obtain a new opinion. Both protocols achieve
consensus in O

(
log k log n

)
rounds w.h.p., using log k +O

(
log log k

)
bits per agent. The

runtime can be slightly reduced to O
(
log k · log logα n + log logn

)
, where α denotes the

initial multiplicative bias [29]. Both [29, 53] proceed to use (different) more sophisticated
synchronization mechanisms to design protocols that require only log k +O

(
1
)

bits and
maintain (essentially) the same runtime bounds (the refined runtime of [29] becomes
O
(
log(n) · log logα n

)
). Note that neither [53] nor [29] extend to the case without bias or

very large k: their techniques are based on chains of concentration bounds, which are no
longer applicable in the general setting.

Other Consensus Dynamics A large number of works [1, 3, 22, 27, 28, 47] aim to
identify the majority opinion with k = 2 even if the initial winning margin is as small as 1.
The best-known result [47] solves this exact majority problem in O

(
n log n

)
interactions

using O
(
log n

)
states, both in expectation.

The majority problem is a special case of plurality consensus.As a fundamental problem
in distributed computing, a lot of work has been invested to find an (asymptotically)
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1.5. Related Work

optimal, stable population protocol for exact majority [1, 3, 22, 27, 28], culminating
in [47], which solves majority using both O

(
log n

)
states and expected parallel time.

This is optimal in that no stable protocol can solve majority faster (Ω
(
log n

)
is the time

until each agent interacted at least once), and any polylogarithmic-time stable majority
protocol requires Ω

(
log n

)
states (under two natural conditions, see [1]). Note that the

difficulty here stems from requiring exactness. Focusing on constant-state protocols that
might fail, [61] mentions a protocol with constant state space and which w.h.p. determines
the exact majority in time O

(
log3 n

)
.

Population protocols for general plurality consensus are scarce. One line of research
studies the state complexity (ignoring time) required to always identify the plurality
opinion. While one needs at least k states to represent k opinions, Natale and Ramezani
[72] show that always correct plurality consensus requires even Ω

(
k2
)

states. The cur-
rently best always correct protocol needs O

(
k11
)

states, which can be reduced to O
(
k6
)

if there is a total ordering on the opinions [50]. The quadratic lower bound makes it
apparent that always guaranteeing a correctly identified plurality opinion comes at the
cost of high space complexity.

A related family of protocols is the j-Majority processes. The idea is that every agent
adopts the majority opinion among a random sample of j other agents (breaking ties
randomly). The most simple variant (for j=1) is also known as the so-called Voter
process [31, 36, 55, 59, 71]. Here, every agent adopts the opinion of a single, randomly
chosen agent. The protocols for j = 2 and j = 3 have been analyzed under the names
of TwoChoices process [37, 38, 39] and the 3-Majority dynamics [21, 25, 52]. In the
TwoChoices process, lazy tie-breaking towards an agent’s original opinion is assumed.
Ghaffari and Lengler [52] show for the TwoChoices process with k = O

(√
n/ log n

)
and

for 3-Majority with k = O
(
n1/3/log n

)
that consensus is reached in O

(
k · log n

)
rounds

w.h.p. For arbitrary k they show that 3-Majority reaches consensus in O
(
n2/3 log3/2 n

)
rounds w.h.p. Schoenebeck and Yu [76] analyze the convergence time of a generalization
of multi-sample consensus protocols for two opinions on complete graphs and Erdős-Rényi
graphs. In the MedianRule process [46], the authors assume that opinions are ordered. In
every step, every agent adopts the median of its own opinion and two randomly sampled
opinions. This protocol reaches consensus in O(log k log log n+ log n) rounds w.h.p. In
contrast to the Median Rule, we remark that the USD does not require a total order
among the opinions.

The authors in [43] study the 2-USD with uniform noise in a synchronous time model
(gossip). Whenever an agent communicates with another agent, it observes its actual
state only with probability 1− p. Otherwise, it observes any state uniformly at random.
The main result is a phase transition regarding the probability p. When the probability
p is less than 1/6, the configuration quickly reaches a meta-stable almost consensus. On
the other hand, when the probability is greater than 1/6, the initial majority is lost in
O(log n) rounds.

D’Amore and Ziccardi [44] consider uniform communication noise for the 3-Majority
dynamics. They observe a similar phase transition as in [43].

In [67], Mobilia examined the role of a single so-called zealot – an agent that never

19
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changes its opinion – for the Voter dynamics. Mobilia et al. [68] pursued this further for
several zealots. Yildiz et al. [77] examined the role of two sets of zealots with opposing
opinions – which they named stubborn agents.

In [18], Becchetti et al. consider a constant number of opinions and a single stubborn
agent. In each time step, an agent is activated uniformly at random and samples ℓ
opinions of other agents uniformly at random. They show for a constant number of
initial opinions that every memoryless dynamics requires Ω(n2) time steps in expectation
to converge.

Alistarh et al. [2] introduce the catalytic input model (CI model) as a special variant
of the population protocols model. In this model, the agents are either catalytic or
non-catalytic agents. Catalytic agents never change their state. On the other hand, non-
catalytic agents are allowed to change their state. Additionally, non-catalytic agents can
perform spontaneous state changes; the so-called leak rate specifies the frequency of the
spontaneous interactions. The goal of the non-catalytic agents is to compute a function
over the states of the catalytic agents. The authors develop a protocol to detect whether
there is a catalytic agent in a given state D. Note that non-catalysts can compute false
positives due to the leaky interactions.

Amir et al. [6] considerthe catalytic input model with n catalytic agents and m non-
catalytic agents which they call worker agents (N = n+m). They solve the approximate
majority problem for two opinions w.h.p. in O

(
N logN

)
interactions when the initial

bias among the catalytic agents is Ω
(√
N logN

)
and m = Θ

(
n
)
. They show that the

size of the initial bias is tight up to a O
(√

logN
)

factor. Additionally, they consider
the approximate majority problem in the CI and population models with leaks. Their
protocols tolerate a leak rate of at most β = O

(√
N logN/N

)
in the CI model and a

leak rate of at most β = O
(√
n log n/n

)
in the population model. They also show a

separation between the CI and population models’ computational power.

Alistarh et al. [4] consider the CI model and introduce the robust comparison problem.
The catalytic agents are either in state A or B. The goal of the worker agents is to decide
the majority state, i.e., whether A or B has the larger support. In the dynamic version,
the number of agents in state A or B can change during the execution as long as the
counts for A and B remain stable sufficiently long, allowing the algorithm to stabilize on
an output. If at time t at least Ω

(
log n

)
catalytic agents are in either A or B and the ratio

between the numbers of agents supporting agents A and B is at least a constant, then
most non-catalytic agents (up to O

(
n log n

)
agents) outputs w.h.p. the correct majority.

The protocol needs O
(
log n · log log n

)
states per agent, assuming that the number of

catalytic agents in A and B does not change in the meantime. Additionally, the authors
show that their protocol is robust to leaky transitions at a rate of O

(
1/n

)
. If the initial

support of A and B states is Ω
(
log2 n

)
the authors can strengthen their results such that

a ratio between the two base states of 1 + o
(
1
)

is sufficient.

Dudek and Kosowski [48] develop population protocols for broadcasting and source
detection (the agents must decide if at least one agent in a dedicated source state is
present in the population). Both protocols are based on oscillatory dynamics.
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Biased Opinions All results for biased opinion dynamics consider the case with two
opinions. One of the opinions is the preferred one. Anagnostopoulos et al. [7] consider
biased opinion dynamics consisting of two steps. In each time step, an agent is selected
uniformly at random and adopts the preferred opinion with probability α. Otherwise, the
agent adopts the majority of its neighbors’ opinions. Note that an agent can adopt the
preferred opinion in this setting even if none of its neighbors share it. Hence, in contrast
to our model, the system has only one absorbing state where all agents agree on the
preferred opinion. The authors show a phase transition for α = 1/2 in dense graphs for
the majority rule. For the process with voter rule (the node adopts a random neighbor’s
opinion), they do not observe any phase transition; the absorption time is O(n log n).

Mukhopadhyay et al. [70] consider the same biased opinion variant as [7] but with the
2-choices rule. They bound the expected absorption time for the complete graph and
observed a phase transition around α = 1/9. For large α > 1/9, the process converges
to the preferred opinion in time O(n log n). On the other hand, for small α < 1/9,
the convergence time depends on the initial fraction of the preferred opinion among the
population. Suppose the initial support of the preferred opinion is sufficiently large. In
that case, the process converges fast (O(n log n)), and for a small initial support the
process needs at least Ω(exp(n)) steps.

Cruciani et al. [41] consider a variant of the biased opinion dynamics on core-periphery
networks. The network consists of a core that is a densely-connected subset of agents
with the same opinion. The remaining agents form the periphery with another opinion.
They observe a phase transition that depends on the cut between the core and periphery.
Either all agents agree relatively fast on the initial opinion of the core agents. Otherwise,
the process remains in a meta-stable where both opinions remain in the network for at
least polynomial many rounds.

Cruciani et al. [40] study the j-majority dynamics. In each time step, each agent
simultaneously samples j neighbors’ uniform at random, and it adopts the majority
opinion. They consider two different noise models that alter the communication between
agents with probability p. In the first variant, an agent may observe the preferred opinion
instead of the sampled opinion. In the second variant, an agent’s opinion may change
directly to the preferred one. Both variants show phase transitions for some p∗, with the
preferred opinion being the initial minority. Eventually, all agents agree on the preferred
opinion w.h.p. For small p < p∗ and j ≥ 3, it requires nω(1) parallel rounds. Large p > p∗

and j ≥ 3 only require O(1) parallel rounds. At last, for j < 3, it requires O(1) parallel
rounds for every p > 0.

1.6. Own Publications

Parts of the thesis are based on the following publications [5, 15, 16, 23]:

[5] T. Amir, J. Aspnes, P. Berenbrink, F. Biermeier, C. Hahn, D. Kaaser, and J. Lazars-
feld. “Fast Convergence of k-Opinion Undecided State Dynamics in the Population
Protocol Model”. In: Proceedings of the 2023 ACM Symposium on Principles of
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Distributed Computing, PODC 2023, Orlando, FL, USA, June 19-23, 2023. Ed. by
R. Oshman, A. Nolin, M. M. Halldórsson, and A. Balliu. ACM, 2023, pp. 13–23.
doi: 10.1145/3583668.3594589.

[15] G. Bankhamer, P. Berenbrink, F. Biermeier, R. Elsässer, H. Hosseinpour, D. Kaaser,
and P. Kling. “Fast Consensus via the Unconstrained Undecided State Dynamics”.
In: Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA
2022. SIAM, 2022, pp. 3417–3429. doi: 10.1137/1.9781611977073.135.

[16] G. Bankhamer, P. Berenbrink, F. Biermeier, R. Elsässer, H. Hosseinpour, D. Kaaser,
and P. Kling. “Population Protocols for Exact Plurality Consensus: How a small
chance of failure helps to eliminate insignificant opinions”. In: PODC ’22: ACM
Symposium on Principles of Distributed Computing. ACM, 2022, pp. 224–234. doi:
10.1145/3519270.3538447.

[23] P. Berenbrink, F. Biermeier, and C. Hahn. Undecided State Dynamics with Stubborn
Agents. 2024. arXiv: 2406.07335 [cs.DC].

Further publications [12, 24] that are not part of the thesis :

[12] A. Antoniadis, F. Biermeier, A. Cristi, C. Damerius, R. Hoeksma, D. Kaaser, P.
Kling, and L. Nölke. “On the Complexity of Anchored Rectangle Packing”. In: 27th
Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019,
Munich/Garching, Germany. Ed. by M. A. Bender, O. Svensson, and G. Herman.
Vol. 144. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 8:1–
8:14. doi: 10.4230/LIPICS.ESA.2019.8.

[24] P. Berenbrink, F. Biermeier, C. Hahn, and D. Kaaser. “Loosely-Stabilizing Phase
Clocks and The Adaptive Majority Problem”. In: 1st Symposium on Algorithmic
Foundations of Dynamic Networks, SAND 2022, March 28-30, 2022, Virtual Con-
ference. Ed. by J. Aspnes and O. Michail. Vol. 221. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022, 7:1–7:17. doi: 10 . 4230 / LIPICS . SAND .
2022.7.

Almost all works are accepted publications of peer-reviewed conferences during my
time as a PhD student.

Declaration on the Own Contribution The papers are a joint work of all authors.
The thesis mostly contains parts of the papers in which I was primarily involved. There
are certain exceptions, like necessary technical results to remain self-contained.

In the publication [15], the concentration bounds of a single phase are a necessity with
no major contribution by myself. My focus was the unbiased case with a small number
of opinions k and the proof draft of the biased case.

In the publication [16], we developed the protocols jointly. The proof of the initial-
ization phase in the protocols is necessary, with no major contribution by myself. I
mainly focused on the tournament phase’s proofs and removing the ordering assump-
tion. Furthermore, I was involved in drafting the last protocol’s proof of the phase clock
subpopulation approach.
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1.7. Further Notation

In the publication [5], the bounds on the undecided agents are a necessity with no
major contribution by myself. I focused on creating a sufficiently large additive and
multiplicative bias. In contrast to the original paper, I extended the former result by
removing the constraint on the initial number of opinions k. I replaced it with a mild
constraint on the initial largest opinion. Furthermore, I also relaxed the constraint on
the initial number of undecided. In this course, I especially revised the first phase, which
mainly deals with the evolution of the undecided agents.

In the unpublished work [23], I proposed the protocol and focused on the proof of the
biased case. Furthermore, I was involved in the discussion and draft of creating an initial
bias.

1.7. Further Notation

A configuration x(t) at time t is a vector (x1(t), x2(t), . . . xk(t), u(t)) of length k+1. For
1 ≤ i ≤ k, xi(t) is the number of agents of Opinion i and u(t) = n −

∑k
i=1 xi(t) is the

number of undecided agents. In the beginning we assume x1(0) ≥ x2(0) ≥ · · · ≥ xk(0).
For t > 0, we define max(t) as the index of the opinion with the largest support at step
t (if there are several opinions with the same maximum support, we pick an arbitrary
one). Furthermore we introduce the notation xmax(t) = xmax(t)(t) = maxi∈[k] {xi(t) } for
the support of the largest opinion at time t. Note that xmax(t) can refer to the support
of different opinions over time.

A configuration x has an additive bias β if there exists an Opinion m such that for
all other opinions i ̸= m, we have xm ≥ xi + β. We say that a configuration x has a
multiplicative bias α if there exists an Opinion m such that for all other opinions i ̸= m
we have xm ≥ α ·xi. In the following, we use upper case letters for random variables (for
example, X(t) and U(t)) and lower case letters (x(t) and u(t)) for fixed configurations
or values.

We use Ft = (Fi)
t
i=0 to denote the natural filtration consisting of the initial config-

uration at time 0 and all random choices up to time t: the interacting agents, and the
outcome of the interaction based on the stubbornness p whenever it is part of the model
(see Chapter 5). I.e., We write Ft for X(0) = x(0),X(1) = x(1), . . . ,X(t) = x(t) and for
the sake of readability we may use x instead of x(t).

23





Chapter 2.
Approximate Plurality Consensus via
Synchronized Undecided State Dynamics

In this part, we consider approximate plurality consensus in the population protocol
model. Initially, all n agents have one of the k opinions. Recall that agents interact
in pairs (randomly chosen) and update their state according to the underlying protocol.
Eventually, all agents must agree on the same opinion. Moreover, if there is a sufficiently
large bias – i.e., the difference between the number of agents initially assigned to the
largest and second largest opinion – the initial largest opinion should prevail.

Berenbrink et al. [29] and Ghaffari and Parter [53] introduced a synchronized version of
the Undecided State Dynamics (USD) in the gossip model. Recall that the gossip model
is a synchronous time model, where in each (parallel) round, every agent selects uniformly
at random interaction partners. In the synchronized USD, a sequence of (parallel) rounds
forms a phase of two parts. In the first part, an agent becomes undecided if its interaction
partner has a different opinion. In the second part, an undecided agent adopts the opinion
of its interaction partner. Note that the first part only lasts a single round due to the
gossip model. Essentially, if an agent loses its opinion in the first part, it tries to recover
an opinion during the remainder of a phase.

We consider the synchronized USD protocol in the population protocol model. Here,
a synchronization mechanism known as phase clocks is used to make the agents jointly
progress through phases of length Θ

(
n log n

)
, alternating between decision parts (where

agents become undecided if they encounter a different opinion) and boosting parts (where
undecided agents adopt one of the remaining opinions).

Results and Methodology Our protocol reaches, w.h.p., plurality consensus in
O
(
n log2 n

)
interactions under a mild assumption on the initial number of opinions k (see

Theorem 2.1). To be more precise, all agents agree on what we call a significant opinion
(an opinion whose support is at most O

(√
n log n

)
smaller than the largest opinion).

Theorem 2.1. Consider Algorithm 2.1 on an initial configuration x with k=O
(√
n/ logn

)
opinions. The algorithm uses k·Θ

(
log n

)
states per agent and has the following properties:

All agents agree on a significant opinion in O
(
n · log2 n

)
interactions, w.h.p.

If the initial configuration has an additive bias of order Ω
(√
n log n

)
(see Theorem 2.2),

all agents agree on the initial largest opinion. A similar result holds for a multiplicative
bias and essentially matches the known results from [29, 53] in the gossip model.
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Theorem 2.2. Consider Algorithm 2.1 on an initial configuration x with k ≤ n opinions.
The algorithm uses k ·Θ

(
log n

)
states per agent and has the following properties:

1. Assume x has additive bias of ξ ·
√
n · log n and multiplicative bias of α. W.h.p. the

algorithm reaches a configuration in which all agents agree on the initial plurality
opinion in time

• O
(
n · log n · log logα n

)
if k ≤

√
n/ log n and

• O
(
n · log n · (log logα n+ log log n)

)
if k >

√
n/ log n.

Considering the parameter α, an initial additive bias of order Ω
(√
n log n

)
implies

α = Ω
(√

n/ log n
)

and hence, log logα n = O
(
log n

)
. On the other hand, a constant

multiplicative bias α improves the runtime in Theorem 2.1 by replacing a log n term
with a O

(
log log n

)
term.

The main challenge is to handle the case without a clear bias, i.e., there is almost
no difference between the number of agents initially assigned to the most common and
second most common opinion. The analysis of our protocol relies on specialized tail
bounds based on the Pólya-Eggenberger distribution.

For the unbiased case with k = O
(√
n/log n

)
, we adopt an idea suggested (but not

followed completely through) by Ghaffari and Lengler [52] for the TwoChoices and 3Ma-
jority process: Depending on their support, opinions are categorized as either strong,
weak, or super-weak. Roughly speaking, the support of strong opinions is at least a
constant fraction of the largest opinion. We first show that w.h.p., weak and super-
weak opinions never become strong. Then, we consider an arbitrary pair of opinions
and show that, w.h.p., one of them becomes super-weak after O

(
log n

)
phases. Thus, a

union bounds yields that, w.h.p., a single strong opinion (note that the opinion of max-
imum support is always strong) prevails and eventually becomes the consensus opinion.
A crucial part is dealing with two strong opinions of roughly the same support. We
combine anti-concentration and concentration bounds to create a sufficient gap between
both opinions. This allows us to apply a known drift result such that their support drifts
further apart. Although we cannot guarantee that the initial largest opinion will win, as
mentioned before, the contenders must be significant.

Note that we cannot necessarily apply this categorization of the opinions to larger
values of k, e.g., k = Ω

(√
n
)
. In this case, the variance becomes too high. It makes

it likely that weak or even super-weak opinions become strong again, violating the key
invariant used to analyze that case. In fact, there are configurations in which even the
initial largest opinion is, by definition, both strong and super-weak.

In contrast to the unbiased case, assuming an initial (large enough) bias, we can track
the ratio between the largest and second-largest opinions over the phases. This allows
us to cover a large range of values for k.

2.1. Synchronized Undecided State Dynamics

This section formally presents the synchronized variant of the undecided state dynamics.
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2.1. Synchronized Undecided State Dynamics

Algorithm 2.1: Synchronized USD

1

Actions performed when agents (u, v) interact:
3 ▷ Decision Part: clock[u] < 2τ log n

if clock[u] < 2τ log n and not decision[u] then
5 if opinion[u] ̸= opinion[v] then

undecided[u]← True
7 else

undecided[u]← False
9 decision[u]← True

11 ▷ Boosting Part: clock[u] ≥ 2τ log n

if clock[u] ≥ 2τ log n and undecided[u] then
13 if not undecided[v] then

undecided[u]← False
15 opinion[u]← opinion[v]

decision[u]← False
17

▷ Leaderless Phase Clock [1]
19 if clock[u] ≤(6τ logn) clock[v] then

clock[u]← (clock[u] + 1) mod 6τ log n
21 else

clock[v]← (clock[v] + 1) mod 6τ log n

The state of an agent u is a tuple (clock[u], opinion[u], decision[u], undecided[u]) (see
Algorithm 2.1). opinion[u] ∈ { 1, 2, . . . , k } stores the current opinion of agent u. The
Boolean variable undecided[u] indicates whether agent u is currently undecided, and
decision[u] indicates whether agent u has already performed an interaction in the decision
part. Both flags are initialized to False.

Our protocol uses the leaderless phase clock from [1] (which runs on every agent)
to divide the interactions into phases, each consisting of O

(
n log n

)
interactions. The

first part of a phase is called decision part, and the second part is called boosting part.
In the decision part, every agent becomes undecided if and only if its first interaction
partner has a different opinion. It sets its undecided bit in that case. In the boosting
part, every undecided agent adopts the opinion of a randomly sampled agent that is not
undecided. This agent propagates its opinion to other undecided agents in subsequent
steps. The clock of agent u uses the variable clock[u] (initially 0) which can take values in
{ 0, . . . , 6τ log n− 1 } for a suitably chosen constant τ . In each interaction, the smaller1 of
the two values clock[u] and clock[v] is increased by one modulo 6τ log n. For a polynomial
number of interactions it guarantees [1, see Section 4] that for any pair of agents u and v
the distance2 between clock[u] and clock[v] is at most τ log n, and every agent participates

1Smaller w.r.t. the circular order modulo m = 6τ logn, defined as a ≤(m) b ≡ (a ≤ b xor |a−b| > m/2).
2Distance w.r.t. the circular order modulo m = 6τ logn, defined as |a − b|(m) =
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in Ω
(
log n

)
interactions in every phase. Hence, it cleanly separates the decision and

boosting parts.

2.2. Analysis for the Population Protocol Model

This section introduces preliminary notions and observations to handle the synchronized
USD.

We consider a system of n identical, anonymous agents. Initially, each agent has one
of k possible opinions, which we represent as numbers from the set { 1, 2, . . . , k }. We do
not assume an order among the opinions. A configuration describes the current state of
the system and can be represented as an (unsorted) vector x = (xi)

k
i=1 ∈ { 0, 1, . . . , n }

k,
where xi is the support of opinion i, defined as the number of agents with opinion i.

The (additive) bias of a configuration x is x(1)−x(2), where x(i) denotes the support of
the i-th largest opinion (ties broken arbitrarily but consistently). The multiplicative bias
is defined as x(1)/x(2). In the analysis, we also use xmax = x(1) to denote the support of
the largest opinion. For any opinion i with xi = xmax we say opinion i provides xmax.
We use S(x) to denote the set of significant opinions in configuration x.

In our analysis, we assume that the phase clocks properly separate the boosting and
decision parts of the considered phases. This follows from [1, 74], where it is shown that
for a polynomial number of phases and any pair of agents u and v, the distance between
clock[u] and clock[v] w.r.t. the circular order modulo 6τ log n is less than τ log n, w.h.p.
The choice of τ also ensures that every undecided agent can adopt an opinion in the
boosting part of a phase, w.h.p.

The strict phase synchronization allows us to define a series of random vectors X =
(X(t))t∈N that describe the configurations at the beginning of phase t where the i-th entry
Xi(t) is the number of agents with opinion i. For the analysis, we also define a series of
random vectors Y = (Y(t))t∈N where Yi(t) is the number of decided agents with opinion i
at the beginning of the boosting part of phase t. Finally, the series Xmax = (Xmax(t))t∈N
describes the size of the support of the largest opinion. We generally use bold font to
denote vectors, non-bold font to denote vector components, and capital letters for random
variables. When we fix the value of a random variable at the beginning of a phase t, we
use lowercase letters, e.g., X(t) = x(t). When it is clear from the context, we omit the
parameter t in the proofs.

The following observation shows that a binomial distribution can describe the opinion
distribution after the decision part. Note that ∥Y(t)∥1 denotes the number of decided
agents at the beginning of the t-th boosting part.

Observation 2.3 (Decision Part). Assume X(t) = x(t) is fixed and let Y(t) be the con-
figuration at the beginning of the boosting part of phase t. Then, for 1 ≤ i ≤ k, the Yi(t)
have an independent binomial distribution with Yi(t) ∼ Bin(xi(t), xi(t)/n). Additionally,
for ψ(t) := E [∥Y(t)∥1] =

∑k
i=1 xi(t)

2/n we have n/k ≤ ψ(t) ≤ xmax(t).

min { |a− b|,m− |a− b| }.
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The opinion distribution after the boosting part can be modeled by a so-called Pólya-
Eggenberger distribution. The Pólya-Eggenberger process is a simple urn process that
runs in multiple steps. Initially, the urn contains a red and b blue balls, where a, b ∈
N0. In each process step, one ball is drawn uniformly at random from the urn, its
color is observed, and it is returned with one additional ball of the same color. The
corresponding Pólya-Eggenberger distribution PE(a, b,m) describes the number of total
red balls contained in the urn after m steps. To bound Xi(t+1), we use tail inequalities
(Theorem 1 and Theorem 47) shown in the full version of [17]. We state these bounds in
Appendix A.3 for convenience.

Observation 2.4 (Boosting Part). Assume Y(t) = y(t) is fixed and ∥y(t)∥1 ≥ 1. Let
X(t+1) be the configuration at the beginning of the decision part of phase t+1. Then, for
1 ≤ i ≤ k, Xi(t+ 1) has Pólya-Eggenberger distribution Xi(t+ 1) ∼ PE(yi(t), ∥y(t)∥1 −
yi(t), n− ∥y(t)∥1) with E [Xi(t+ 1)] = yi(t) · (n/∥y(t)∥1).

Proof. This follows from an easy coupling of the boosting part with the Pólya-Eggenberger
process, defined as follows. Let ℓ0 ≥ 1 be the number of decided agents at the beginning
of the boosting part. For ℓ0 < i ≤ n, the process picks an arbitrary one of the undecided
agents. This agent chooses one of the ℓi−1 decided agents uniformly at random and
adopts its opinion, resulting in ℓi := ℓi−1 + 1. Our process’s coupling with this process
is now straightforward, as we discard all interactions that do not change the number of
decided agents.

Finally, we introduce some important constants that we use throughout our analysis.

Definition 2.5. We define ξ := (160 · cw)2+(148 · cp)2, cw := 8
√
1 + 2/ε∗, ε∗ := εp/192

and ck := 4 · (2625 + cp)
2. The constants 1 > εp > 0 and cp > 1 originate from the

Pólya-Eggenberger concentration results of [17].

Definition 2.6. Opinion i in configuration x is called super-weak iff xi ≤ cw ·
√
n log n,

weak iff cw ·
√
n log n < xi < 0.9 · xmax, and strong iff xi ≥ 0.9 · xmax. Additionally,

we call an opinion i significant if x(i) ≥ x(1) − ξ ·
√
n log n (the constant ξ is specified in

Definition 2.5 and originates from our analysis in Section 2.2). An opinion that is not
significant is called insignificant.

2.3. Analysis of a Single Phase

In this section, we analyze the evolution of opinions throughout some fixed phase t. The
following lemma gives Chernoff-like guarantees for a large range of deviations and opinion
sizes.

Lemma 2.7. Fix X(t) = x(t) and an opinion i with support xi(t). Furthermore, let
ψ =

∑k
j=1 xj(t)

2/n. Then, for any 0 < δ < xi(t)/
√
n and a suitable small constant
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ε∗ > 0

Pr

[
Xi(t+ 1) <

xi(t)
2

ψ
− xi(t)

ψ

√
nδ

]
≤ 7e−ε

∗δ2 ,

Pr

[
Xi(t+ 1) >

xi(t)
2

ψ
+
xi(t)

ψ

√
nδ

]
≤ 7e−ε

∗δ2 .

Proof. We focus on the upper bound and consider some fixed opinion i throughout phase
t. At first we analyze the evolution of i throughout decision part t and consider Yi(t)
and ∥Y(t)∥. Recall (see Observation 2.3) that Yi(t) ∼ Bin(xi, xi/n) and ∥Y(t)∥1 =∑k

j=1 Yj(t). We define the event Ei as follows

Ei =
{
Yi(t) <

x2i
n
·
(
1 +

δ
√
n

8 · xi

)
and ∥Y(t)∥1 > ψ ·

(
1− δ

√
n

8 · xi

)}
.

First, we bound the probability of the event Ei complement. To do so, we apply Chernoff
Bounds (Theorem A.1) to Yi(t) and ∥Y(t)∥1. Hence, for δ′ = δ ·

√
n/(8 · xi) < 1 and

using ψ ≥ x2i /n

Pr

[
Yi(t) ≥

x2i
n
·
(
1 + δ′

)]
≤ exp

(
−x

2
i · δ′

2

3 · n

)
≤ exp

(
− x2i · n · δ2

192 · x2i · n

)
≤ exp

(
− δ2

192

)

Pr
[
∥Y(t)∥1 ≤ ψ ·

(
1− δ′

)]
≤ exp

(
−δ

′2 · ψ
2

)
≤ exp

(
− x2i · n · δ2

128 · x2i · n

)
≤ exp

(
− δ2

192

)

An application of the union bound yields

Pr
[
Ēi
]
≤ 2 exp

(
− δ2

192

)
. (2.1)

Now, we deal with the outcome of the boosting part conditioned on the event Ei. We
fix Yi(t) = yi and define d := ∥Y(t)∥1 =

∑k
j=1 yj . As mentioned in Observation 2.4 we

model Xi(t+1) ∼ PE(yi, d−yi, n−d). Applying the tail bound for the Pólya Eggenberger
distribution from Theorem A.11 we get for 0 < δ

8 <
√
yi and some constant 1 > εp > 0

that

Pr

[
Xi(t+ 1) >

yi
d
· n+

√
yi

d
· n · δ

8
| Ei
]
< 4 exp

(
−εp ·

δ2

64

)
. (2.2)
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Since yi <
x2i
n ·
(
1 + δ

√
n

8xi

)
and d > ψ ·

(
1− δ

√
n

8xi

)
we get

yi
d
· n+

√
yi

d
· n · δ

8
<
x2i
ψ
·

(
1 + δ·

√
n

8·xi

)
(
1− δ·

√
n

8·xi

) +

√
x2i
n ·
(
1 + δ·

√
n

8·xi

)
ψ ·
(
1− δ·

√
n

8·xi

) · n · δ
8

=
x2i
ψ
·

(
1 + δ·

√
n

8·xi

)
(
1− δ·

√
n

8·xi

) +
xi
ψ
·

√(
1 + δ·

√
n

8·xi

)
(
1− δ·

√
n

8·xi

) · √n · δ
8

(∗)
<
x2i
ψ
·
(
1 + 3 · δ ·

√
n

8 · xi

)
+
xi ·
√
n · δ

8ψ
·
(
1 + 3 · δ ·

√
n

8 · xi

)
<
x2i
ψ
·
(
1 + 3 · δ ·

√
n

8 · xi

)
+ 2 · xi ·

√
n · δ

8 · ψ

=
x2i
ψ

+ 5 · xi ·
√
n · δ

8 · ψ
<
x2i
ψ

+
xi ·
√
n · δ

ψ
.

In (*) we apply the inequality (1 + a)/(1 − a) ≤ 1 + 3a which holds for all a ≤ 1/3.
Hence, a combination of this and Inequality (Eq. (2.2)) results in

Pr

[
Xi(t+ 1) >

x2i
ψ

+
xi
ψ
·
√
nδ | Ei

]
< Pr

[
Xi(t+ 1) >

yi
d
n+

√
yi

d
· n · δ

8
| Ei
]

< 4 exp

(
−εp ·

δ2

64

)
.

At last, we combine this with Inequality (Eq. (2.1)) by applying the law of total proba-
bility. Then we get that

Pr

[
Xi(t+ 1) >

x2i
ψ

+
x2i
ψ
·
√
n · δ

]
= Pr

[
Xi(t+ 1) >

x2i
ψ

+
xi
ψ
·
√
n · δ | Ei

]
· Pr [Ei]

+ Pr

[
Xi(t+ 1) >

x2i
ψ

+
xi
ψ
·
√
n · δ | Ēi

]
· Pr

[
Ēi
]

< 4 exp

(
−εp ·

δ2

64

)
+ 2 exp

(
− δ2

192

)
< 7 exp

(
−ε∗ · δ2

)
for some suitably chosen constant ε∗ = εp/192 > 0. As a symmetric approach can
develop a matching lower bound, we omit the detailed proof for this case.

Lemma 2.7 does not give a high probability for opinions with small support. These
cases are handled in the following lemma, providing a coarse bound for this regime.

Lemma 2.8. Fix X(t) = x(t) and an opinion i with xi(t) ≤ c
√
n log n. For any constant

c > 0 and ψ =
∑k

j=1 xj(t)
2/n, it holds that Pr[Xi(t+ 1) >

(
12c2 + 74cp

)
· n · log n/ψ] <

4n−2.
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Proof. We track opinion i with support xi(t) ≤ c
√
n log n throughout the decision and

boosting part t. Similar to the proof of Lemma 2.7 first we analyze Yi(t) and ∥Y(t)∥.
Again we model Yi(t) ∼ Bin(xi, xi/n) and ∥Y(t)∥1 ∼

∑k
j=1Bin(xj , xj/n). Let c′ =

max{c,
√
6}. Then, our goal is to bound Pr[Xi(t+ 1) > n/ψ · (12c′2 + 2cp) · log n].

First, note that if ψ < (12c′2 + 2cp) · log n then n/ψ · (12c′2 + 2cp) · log n > n and

Pr

[
Xi(t+ 1) >

n

ψ
· (12c′2 + 2cp) · log n

]
= 0

and the statement of the lemma follows immediately. Hence, in the following, we can
assume that ψ ≥ (12c′2 + 2cp) · log n. We define the event Ei as follows

Ei =
{
Yi(t) < 2c′

2 · log n ∧ ∥Y(t)∥1 >
ψ

2

}
.

First, we bound the probability of Ēi. We apply general Chernoff upper Bound (Theo-
rem A.2) and get for δ′ = 1 that

Pr
[
Yi(t) ≥ 2c′

2 · log n
]
≤ exp

(
−c

′2 · log n
3

)
≤ exp

(
−6 · log n

3

)
≤ n−2.

Due to the definition of c′ we have ψ ≥ (12c′2 + 2cp) log n ≥ 10 log n. Applying Chernoff
bounds with (Theorem A.1) δ′ =

√
(4 log n)/ψ ≤ 1/2 we get

Pr

[
∥Y(t)∥1≤

ψ

2

]
≤Pr

[
∥Y(t)∥1≤ψ ·

(
1−

√
4 · logn
ψ

)]
≤exp

(
−4 ·ψ · logn

2 ·ψ

)
≤n−2.

An application of the union bound yields

Pr
[
Ēi
]
≤ 2n−2. (2.3)

The outcome of boosting part t remains to be considered. We fix Yi(t) = yi and define
d := ∥Y(t)∥1.

Similar to Lemma 2.7, we model Xi(t + 1) ∼ PE(yi, d − yi, n − d) and apply Theo-
rem A.12, which states a tail bound for this Pólya Eggenberger distribution, to deduce
that

Pr
[
Xi(t+ 1) >

n

d
· (3yi + cp · log n)

∣∣∣ Ei] < 2n−2. (2.4)

Conditioned on Ei we have yi < 2c′2 log n and d > ψ
2 . Therefore,

n

d
· (3yi + cp · log n) <

n

ψ
· (6yi + 2cp · log n) <

n

ψ
·
((

12c′
2
+ 2cp

)
· log n

)
Together with Inequality (Eq. (2.4)), this yields

Pr

[
Xi(t+1)>

n

ψ
·((12c′2+2cp) · logn)

∣∣∣ Ei]<Pr
[
Xi(t+1)>

n

d
·(3yi+2cp logn)

∣∣∣ Ei]
<2n−2.
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Similar to Lemma 2.7, the statement follows by applying the law of total probability.
Note that cp > 1, therefore 12c′2 + 2cp < 12c2 + 74cp.

The following lemma shows that the bias between two opinions roughly squares if their
size and the difference between them are Ω

(√
n log n

)
.

Lemma 2.9. Fix X(t) = x(t) and consider two opinions i, j with support xi(t)−xj(t) ≥
ξ
√
n log n and xj(t) ≥ cw

√
n log n, then Pr[Xi(t+ 1)/Xj(t+ 1) ≥ (xi(t)/xj(t))

1.5] ≥
1− 2n−2.

Proof. First we lower bound the support of opinion i and upper bound the support of
opinion j. To do so, we apply Lemma 2.7 to both opinions with δ =

√
(ln 7 + 2 log n)/ε∗.

Note that cw ≥ 8δ√
logn

. In this way, we get

Pr

[
Xi(t+1)≥ x

2
i

ψ
− xi
ψ
·
√
n ·δ
]
≥1−n−2 and Pr

[
Xj(t+1)≤

x2j
ψ

+
xj
ψ
·
√
n ·δ

]
≥1−n−2.

An application of the union bound yields with probability at least 1− 2n−2

Xi(t+ 1)

Xj(t+ 1)
≥

 x2i
ψ −

xi
ψ ·
√
n · δ

x2j
ψ +

xj
ψ ·
√
n · δ

 ≥ (xi
xj

)2

·

1−
√
nδ
xi

1 +
√
nδ
xj

 ≥ (xi
xj

)2

·
(
1− 2

√
nδ

xj

)

where we applied the inequality (1− a)/(1 + a) ≥ 1− 2a for any a. For the moment, let
us assume 1− (2

√
n · δ/xj) ≥ (xi/xj)

−1/2, then we have

Xi(t+ 1)

Xj(t+ 1)
≥
(
xi
xj

)2

·
(
1− 2

√
nδ

xj

)
≥
(
xi
xj

)1.5

.

and the statement follows immediately. Hence, we prove the following claim in the
remaining part of the proof.

Claim 2.10. If xi − xj ≥ ξ
√
n log n and xj ≥ cw

√
n log n then,

1−
(
xi
xj

)−1/2

≥ 2
√
nδ

xj
.

First assume that xi/xj ≥ 2.
Then

1−
(
xi
xj

)−1/2

≥ 1/4 ≥ 2δ

cw
√
log n

≥ 2
√
nδ

xj

Next, assume that xi/xj < 2. Let 1 > ε > 0 be defined s.t. xi/xj = 1 + ε. Observe
that

1−
(
xi
xj

)−1/2

= 1− (1 + ε)−1/2 ≥ ε/10 (2.5)
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By using the assumptions, it follows that

ε/10 =
xi − xj
10xj

≥ ξ
√
n log n

10xj
≥ cw

√
n log n

xj
≥ 2
√
nδ

xj
. (2.6)

Then, it follows by combining (Eq. (2.5)) and (Eq. (2.6)).

Recall that opinion j is insignificant in configuration x if xj < xmax − ξ
√
n log n, and

S(x) is the set of significant opinions in configuration x. Note that any significant opinion
can win in our setting, and the largest opinion (which provides Xmax) can change over
time. The next lemma shows that if an opinion becomes insignificant, it cannot become
significant again w.h.p.

Lemma 2.11. Fix X(t) = x(t). Then, S(X(t+ 1)) ⊆ S(x(t)) w.h.p.

Proof. Recall that an opinion j is insignificant if xmax − xj > ξ ·
√
n · log n.

Let A(t) be the set of insignificant opinions with support larger than 4 · cw ·
√
n · log n

and let B(t) be the set of insignificant opinions with support smaller than 4·cw ·
√
n · log n

and larger than zero. We show that every member of A(t) and B(t) remains insignificant
at the start of phase t+ 1.

First, we deal with A(t) by fixing an opinion j ∈ A(t). Note that A(t) = ∅ directly
implies this case’s statement. We lower bound the support of opinion with maximum
support, and we upper bound the support of opinion j. To do so, we apply Lemma 2.7
to both opinions with δ =

√
(ln 7 + 2 log n)/ε∗ and yield

Pr

[
Xmax(t+ 1) ≥ x2max

ψ
− xmax

ψ
·
√
n · δ

]
≥ 1− n−2 (2.7)

and

Pr

[
Xj(t+ 1) ≤

x2j
ψ

+
xj
ψ
·
√
n · δ

]
≥ 1− n−2.

By a simple union bound, we have with probability at least 1− 2 · n−2 that

Xmax(t+ 1)−Xj(t+ 1) >
x2max − x2j

ψ
−
(
(xmax + xj) ·

√
n · δ

ψ

)
=
xmax + xj

ψ
· ((xmax − xj)− δ) . (2.8)

Since xmax > ψ (see Observation 2.3) and xmax > xj we have

xmax + xj
ψ

· ((xmax − xj)− δ) ≥
(
1 +

xj
xmax

)
· (xmax − xj)−

(
1 +

xj
xmax

)
· δ

= (xmax − xj) +
xj
xmax

· (xmax − xj)−
(
1 +

xj
xmax

)
· δ

≥ (xmax − xj) +
xj
xmax

· (xmax − xj)− 2 · δ.
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In the observation below we show xj/xmax · (xmax − xj) − 2δ > 0. From that follows
Xmax(t + 1) −Xj(t + 1) ≥ (xmax − xj) ≥ ξ ·

√
n · log n where the last Inequality holds

since opinion j is insignificant.

Observation 2.12. Assume xj > 4 · cw ·
√
n · log n and xmax − xj ≥ ξ

√
n log n then

xj
xmax

· (xmax − xj)− 2δ > 0.

Proof. To ease the calculations, let

∆′ := (xmax − xj)/
√
n log n and c1 =

√
(ln 7 + 2 log n)/(ε∗ · log n).

Recall that δ = c1 ·
√
log n, then

xj
xmax

· (xmax − xj)− 2δ ≥
√
n log n ·

(
xj · (xmax − xj)
xmax ·

√
n · log n

− 2c1

)
≥
√
n log n ·

(
xj ·∆′

xj + xmax − xj
− 2c1

)

=
√
n log n ·

 ∆′

1 +
xmax−xj

xj

− 2c1


(a)

≥
√
n log n ·

(
∆′

1 + ∆′

4cw

− 2c1

)

=
√
n log n ·

(
4cw ·∆′ − 2c1 · (4cw +∆′)

4cw +∆′

)
=
√
n log n ·

(
4cw(∆

′ − 2c1) + ∆′(4cw − 2c1)

4cw +∆′

)
(b)
> 0

where we use (a) (xmax − xj)/xj ≤ xmax−xj
4·cw·

√
n·logn = ∆′

4cw
due to xj ≥ 4cw

√
n log n and (b)

∆′ = (xmax−xj)/
√
n log n ≥ ξ > 2 ·c1 and cw = 8

√
1 + 2/ε∗ > c1/2 (Definition 2.5).

Another union bound application on (Eq. (2.8)) over all opinions j ∈ A(t) yields with
probability at least 1−2 ·n−1 that all opinions j ∈ A(t) remains insignificant at the start
of phase t+ 1.

Next, we deal with B(t) by fixing an opinion j ∈ B(t) (assuming B(t) ̸= ∅). Again, We
lower bound the support of the largest opinion and upper bound the support of opinion
j. For the largest opinion we have (Eq. (2.7)) where for opinion j we get by Lemma 2.8
for c = 4 · cw that

Pr

[
Xj(t+ 1) <

n

ψ
· (192 · c2w + 74cp) · log n

]
≥ 1− 4n−2. (2.9)
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An application of the union bound yields with probability at least 1− 5n−2 that

Xmax(t+ 1)−Xj(t+ 1) ≥ x2max
ψ
− xmax

ψ
·
√
n · δ − n

ψ
· (192 · c2w + 74cp) · log n (2.10)

=
x2max
ψ
·
(
1− δ ·

√
n

xmax
− (192 · c2w + 74cp) · n · log n

x2max

)
≥ xmax ·

(
1− δ ·

√
n√

n · log n
− (192 · c2w + 74cp) · n · log n

n · log2 n

)
≥ xmax ·

(
1− δ

log n
− (192 · c2w + 74cp)

log n

)
≥ ξ ·

√
n log n

where we use xmax > ψ (see Observation 2.3) and xmax ≥ n/k ≥
√
n · log n. Another

union bound application on (Eq. (2.10)) over all opinions j ∈ B(t) yields with probability
at least 1− 5 · n−1 that all opinions j ∈ B(t) remains insignificant at the start of phase
t+ 1.

2.4. Analysis of the Unbiased Case

This section provides the necessary statements to prove one of the main results Theo-
rem 2.1. The analysis is inspired by the general approach from [52], where the authors
analyze the majority process for k opinions. Opinions are classified as strong, weak, or
super-weak, depending on their support. The authors of [52] divide time into epochs of
length O

(
(56)

i · k log n
)

and show that at the end of the i-th epoch the support of the
largest opinion grows by a constant factor and the fraction of non-super-weak opinions
decreases by a constant factor. As super-weak opinions remain super-weak, this implies
that eventually, consensus is reached in time O

(
k log n

)
.

Our approach is different and exploits the properties of the undecided state dynamics
(USD), which, for example, allows us to avoid both epochs of different lengths and a total
runtime that is linear in k. Throughout our analysis, we consider all pairs of opinions.
We show that during O

(
log n

)
phases, at least one opinion in each pair becomes weak

and, eventually, super-weak. If both opinions in a pair are initially strong, we apply
(similar to [52]) the drift result of [46] to show that their support drifts apart. Hence,
only one of the strong opinions prevails, which will be adopted by every agent within a
constant number of additional phases.

Proposition 2.13. Assume X(t) is a configuration with k <
√
n/ log n opinions. Then,

after O
(
log n

)
phases, all agents agree on some opinion i ∈ S(X(t)), w.h.p.

Proof. First, we show that all agents agree on one opinion. We fix X(t) = x(t) and
consider two arbitrary opinions i and j. If both opinions are strong Lemma 2.14 shows
that one of them becomes weak or super-weak within O

(
log n

)
phases with probability

at least 1 − O
(
n−1.9

)
. As soon as either i or j are weak Lemma 2.16 shows that the
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weak opinion becomes super-weak within the next O
(
log logn

)
phases and remains super-

weak for the rest of the process (Lemma 2.16). This happens again with a probability
of 1 − O

(
n−1.9

)
. Hence, after O

(
log n

)
phases either i or j are super-weak. Since we

have at most k2 ≤ (
√
n/ log n)2 = o(n) pairs of distinct opinions, we can apply the

union bound over all such pairs to show that all but a single opinion are super-weak
within t′ = O

(
log n

)
phases w.h.p. In Lemma 2.17, we show that the single remaining

non-super-weak opinion wins within two additional phases.
It remains to show that the winning opinion is one of the initially significant opinions.

Recall that S(X(t)) denotes the set of all significant opinions at the start of phase t. We
show for t′ = O

(
log n

)
that S(X(t+ t′)) ⊆ S(X(t)). This means that no insignificant

opinion in phase t can become significant in phase t + t′. As the subset relation is
transitive, we have that

Pr
[
S
(
X(t+ t′)

)
⊆ S(X(t))

]
≥ Pr

[
∀t < t1 ≤ t+ t′ : S(X(t1)) ⊆ S(X(t1 − 1))

]
= 1− Pr

[
∃t < t1 ≤ t+ t′ : S(X(t1)) ̸⊆ S(X(t1 − 1))

]
.

Furthermore, from Lemma 2.11 we have that for any t1 ≥ 0 it holds Pr[S(X(t1)) ⊆
S(X(t1 − 1))] ≥ 1 − n−Ω

(
1
)
. Together with the Union bound application, this implies

that

1− Pr
[
∃t < t1 ≤ t+ t′ : S(X(t1)) ̸⊆ S(X(t1 − 1))

]
≥ 1−

t+t′∑
t1=t+1

Pr [S(X(t1)) ̸⊆ S(X(t1 − 1))]

≥ 1− t′ · n−Ω
(
1
)
≥ 1− n−Ω

(
1
)
.

Therefore, we have w.h.p. that S(X(t+ t′)) ⊆ S(X(t)). In the first part of the proof,
we also established that w.h.p., only a single opinion i remains in phase t + t′. Clearly,
the remaining opinion i is significant in X(t+ t′). In other words, Opinion i belongs to
the set S(X(t+ t′)), which is a subset of S(X(t)) w.h.p. Therefore, Opinion i is also in
S(X(t)), and the result follows.

Lemma 2.14. Fix X(t) = x(t) and any two distinct strong opinions i and j. Then, at
least one of them will become weak or super-weak within O

(
log n

)
phases with probability

at least 1−O
(
n−1.9

)
.

Proof. First, we show that at least one of the opinions i and j will become weak or super-
weak. We consider the difference between opinion i and opinion j via a case study. If
the difference is o

(√
n log n

)
, we apply the drift result from Theorem A.8 to increase the

difference up to Ω
(√
n log n

)
. To be more precise, we map the difference |Xi(t)−Xj(t)|

to the state space of W (t) = ⌊|Xi(t)−Xj(t)|/(ca ·
√
n)⌋ ∈ {0, . . . , (ξ/ca) ·

√
log n} where

ca originates from Lemma 2.15. Observe that, for some t′, W (t′) = (ξ/ca) ·
√
log n implies

that |Xi(t
′)−Xj(t

′)| ≥ ξ ·
√
n log n. Now, we deal with the two requirements within the
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drift result with the help of Lemma 2.15. The first requirement is fulfilled by the first
result in Lemma 2.15. That is,

Pr [W (t+ 1) ≥ 1] ≥ Pr
[
⌊|Xi(t+ 1)−Xj(t+ 1)|⌋ ≥ ca ·

√
n
]
= Ω

(
1
)
.

The second requirement is fulfilled by the second result in Lemma 2.15. Assuming ca ·√
n ≤ |Xi(t)−Xj(t)| ≤ ξ ·

√
n log n, it holds for a suitable constant c2 > 0 that

Pr
[
W (t+ 1) ≥ min{(5/4) ·W (t), (ξ/ca) ·

√
log n}

]
≥ Pr

[
|Xi(t+ 1)−Xj(t+ 1)| ≥ min{(1 + ε) · |xi − xj |, ξ ·

√
n log n}

]
≥ 1− 14 · exp

(
−ε∗ · (|xi − xj |)2/16n

)
≥ 1− 14 · exp

(
−ε∗/16 · ca · (|xi − xj |)/

√
n · (|xi − xj |)/ca

√
n
)

≥ 1− exp (−c2 ·W (t))

Thus, due to the drift result, the difference between opinion i and j is at least ξ·
√
n log n

in O
(
log n

)
phases.

Now, we assume that |Xi(t)−Xj(t)| ≥ ξ ·
√
n log n. Since both opinions are strong and

their difference is sufficiently large, we apply Lemma 2.9, which yields with probability
at least 1−O

(
n−2

)
that

Xi(t+ 1)

Xj(t+ 1)
≥
(
xi
xj

)1.5

. (2.11)

Our goal is to apply the above result over multiple phases repeatedly. We establish that
Lemma 2.9 may also be applied in the following phase. To this end, we need to check
the two conditions that fulfill the requirements of Lemma 2.9: (i) Xi(t+1)−Xj(t+1) ≥
ξ ·
√
n log n holds, and (ii) opinions i and j remain strong opinions in X(t + 1). Note

that the lemma statement immediately follows in case (ii) is violated. In the following,
we will establish that (i) indeed holds. We apply Lemma 2.7 to both i and j and set
δ =

√
(ln 7 + 2 log n)/ε∗. This way, we get, w.h.p., that

Xi(t+ 1)−Xj(t+ 1) ≥ 1

ψ
·
(
x2i − x2j − (xi + xj) ·

√
(ln 7 + 2 log n)/ε∗ ·

√
n
)

≥ xi + xj
ψ

·
(
(xi − xj)−

√
(ln 7 + 2 log n)/ε∗ ·

√
n
)

Since both opinions are strong and ψ ≤ xmax (see Observation 2.3), it follows that
(xi + xj)/ψ > 9/5. This, together with the above inequality chain, implies that, indeed,
Xi(t + 1) −Xj(t + 1) > ξ ·

√
n log n. The above argument can easily be translated into

an induction, which yields that Xi(t+ t′)−Xj(t+ t′) ≥ ξ ·
√
n log n until a round t+ t′

is reached where opinion j becomes weak (i.e., condition (ii) above is violated). Note
that, w.h.p., t′ = O

(
log n

)
must hold as otherwise, it follows by a repeated application

of (Eq. (2.11)) that

Xi(t+ t′)

Xj(t+ t′)
≥
(
1 +

ξ ·
√
n log n

xj

)1.5t
′

≫
(
1 +

1√
n

)1.5t
′

> n.
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Hence opinion j will become either weak or super-weak within O
(
log n

)
phases with

probability at least 1−O
(
n−1.9

)
.

Lemma 2.15. Fix X(t) = x(t) and two distinct strong opinions i and j. Let ca =
max{1/εp , 100}.

1. If |xi(t)− xj(t)| < ca ·
√
n, then Pr [|Xi(t+ 1)−Xj(t+ 1)| ≥ ca ·

√
n] = Ω

(
1
)
.

2. If ca ·
√
n ≤ |xi(t)− xj(t)| < ξ ·

√
n log n, then

Pr [|Xi(t+ 1)−Xj(t+ 1)| ≥ (5/4) · (xi(t)− xj(t))] ≥ 1− 14 · e−ε∗·
|xi(t)−xj(t)|

2

16n .

Proof. We track the difference between two strong opinions, i and j, throughout a single
phase. We start with the first statement and assume, w.l.o.g., that xi ≥ xj . The idea is
to apply an anti-concentration result during the decision part to establish a sufficiently
large difference between the support of both opinions. Additionally, we want to roughly
maintain such difference throughout the following boosting part.
At first we analyze the decision part and consider Yi(t), Yj(t) and ∥Y(t)∥1. Recall (see
Observation 2.3) that Yi(t) ∼ Bin(xi, xi/n), Yj(t) ∼ Bin(xj , xj/n) and ∥Y(t)∥1 can be
modeled as a sequence of n Poisson trials. We define the event E as follows

E =
{
Yi(t) ≥

x2i
n

+
10

7
· ca ·

xi√
n

and
(
1− 2√

log n

)
·
x2j
n
≤ Yj(t) ≤

x2j
n
− 10

7
· ca ·

xj√
n

and ∥Y(t)∥1 = ψ ·
(
1± 6√

log n

)}
.

Now, we bound the probability of Ē . We apply Lemma A.15 to both opinions i and j
with δi = ((10/7) · ca

√
n)/xi and δj = ((10/7) · ca

√
n)/xj and yield

Pr

[
Yi(t) ≥

x2i
n

+
10

7
· ca ·

xi√
n

]
≥ exp

(
−9 · ((10/7) · ca)2

)
≥ exp

(
−20 · c2a

)
(2.12)

Pr

[
Yj(t) ≤

x2j
n
− 10

7
· ca ·

xj√
n

]
≥ exp

(
−9 · ((10/7) · ca)2

)
≥ exp

(
−20 · c2a

)
(2.13)

Next, we apply Chernoff Bound(Theorem A.1) to ∥Y(t)∥1 and Yj(t) where in the latter
case, we only need an additional lower bound. Note that E [∥Y(t)∥1] ≥ x2max/n =
Ω
(
log2 n

)
due to xmax ≥ n/k and k ≤

√
n/ log n. Hence, for δ′ = 6/

√
log n we get

Pr
[
∥Y(t)∥1 ≤ ψ ·

(
1− δ′

) ]
≤ n−2 and Pr

[
∥Y(t)∥1 ≥ ψ ·

(
1 + δ′

) ]
≤ n−2.

In the case of Yj(t), we use the fact that opinion j is strong and hence, similar to the pre-
vious case, xj ≥ 0.9·xmax ≥ 0.9·

√
n log n. Again we apply Chernoff Bound(Theorem A.1)

for δ′ =
√
2 · n · log n/xj ≤ 4/

√
log n and yield

Pr

[
Yj(t) ≤

(
1− 4√

log n

)
·
x2j
n

]
≤ Pr

[
Yj(t) ≤

(
1−
√
2 · n · log n

xj

)
·
x2j
n

]
≤ n−2.
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An application of the union bound on the bounds of Yj(t) yields

Pr

[
Yj(t) /∈

((
1− 4√

logn

)
·
x2j
n
,
x2j
n
− 10

7
·ca ·

xj√
n

)]
≤1−exp

(
−9 ·((10/7) ·ca)2

)
+n−2

≤1−
(
exp

(
−10 ·c2a

)
−n−2

)
.

Since Yi(t) and Yj(t) are independent, another application of the Union bound yields

Pr
[
Ē
]
≤ 1−

((
exp

(
−10 · c2a

)
− n−2

)
· exp

(
−20 · c2a

))
+ 2n−2 = p < 1 (2.14)

where p < 1 is a constant probability.
Now, we deal with the outcome of the boosting part conditioned on the event E . We fix
Yi(t) = yi, Yj(t) = yj and define d = ∥Y(t)∥1. Again, recall (see Observation 2.3 and
Observation 2.4) that Xi(t+1) ∼ PE(yi, d−yi, n−d) and Xj(t+1) ∼ PE(yj , d−yj , n−d).
We apply the tail bound for this Pólya Eggenberger distribution from Theorem A.11.
Note that conditioned on the event E and the previous observations about strong opinions
we have √yi ≥

√
yj ≥ 0.9 ·

√
1− 4/

√
log n · log n. Thus, clearly δ = (2 · ca)/7 <

√
yj and

hence we get

Pr
[
Xi(t+ 1) < yi ·

n

d
−√yi · δ ·

n

d

∣∣∣ E] ≤ 4 exp
(
−εp · δ2

)
≤ 4 exp

(
−4 · εp · c2a/49

)
(2.15)

Pr
[
Xj(t+ 1) > yj ·

n

d
+
√
yj · δ ·

n

d

∣∣∣ E] ≤ 4 exp
(
−εp · δ2

)
≤ 4 exp

(
−4 · εp · c2a/49

)
(2.16)

Now we show that the difference between Xi(t + 1) and Xj(t + 1) is still sufficiently
large. Conditioned on the event E we get that

Xi(t+ 1)−Xj(t+ 1) ≥ n

d
·
(
yi − yj − δ · (

√
yi +

√
yj)
)

≥ n

d
·

(
x2i − x2j

n
+

10

7
· ca ·

xi + xj√
n

− δ · xi√
n
·

√1 +
10 · ca

√
n

7 · xi
+

√
1− 10 · ca

√
n

7 · xj

)

By the definition of strong opinions and the inequality
√
1− z +

√
1 + z ≤ 2 for z ∈

(−1,+1), z ̸= 1 it follows that

Xi(t+ 1)−Xj(t+ 1) ≥ n

d
·
(
10

7
· ca ·

xi + xj√
n
− 2 · δ · xi√

n

)
≥
√
n · xmax

d
·
(
2 · 9

10
· (10/7) · ca − 2 · δ

)
≥ 2 ·

√
n · xmax

d
·
(
9

7
· ca − δ

)
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Again by the event E and the fact that ψ ≤ xmax (see Observation 2.3) it follows that

Xi(t+ 1)−Xj(t+ 1) ≥
√
n · 2 · xmax

(1 + 6/
√
log n) · xmax

·
(
9

7
· ca −

2

7
· ca
)
≥ ca ·

√
n.

An application of the Union bound yields that the difference between Xi(t + 1) and
Xj(t+1) holds with probability 1− 8 exp(−4 · εp · c2a/49). At last, we combine this with
(Eq. (2.14)) by applying the law of total probability to deduce that the first statement
follows with constant probability. Due to the choice of ca, it holds, with at least constant
probability, that

Pr
[
|Xi(t+ 1)−Xj(t+ 1)| ≥ ca ·

√
n
]

= Pr
[
|Xi(t+ 1)−Xj(t+ 1)| ≥ ca ·

√
n
∣∣∣ E] · Pr [E ]

+ Pr
[
|Xi(t+ 1)−Xj(t+ 1)| ≥ ca ·

√
n
∣∣∣ Ē] · Pr [Ē]

≥ Pr
[
|Xi(t+ 1)−Xj(t+ 1)| ≥ ca ·

√
n
∣∣∣ E] · Pr [E ]

≥
(
1− 8 · exp

(
−4 · εp · c2a/49

))
·
(((

exp
(
−10 · c2a

)
− n−2

)
· exp

(
−20 · c2a

))
− 2n−2

)
We continue with the proof of the second statement and assume xi−xj ≥ ca ·

√
n. We

apply Lemma 2.7 to both opinions with δ = (xi − xj)/4 ·
√
n and yield

Pr

[
Xi(t+ 1) ≤ x2i

ψ
− xi
ψ
·
√
n · δ

]
≤ 7 · exp

(
−ε∗ · δ2

)
= 7 · exp

(
−ε∗ · (xi − xj)

2

16n

)
Pr

[
Xj(t+ 1) ≥

x2j
ψ

+
xj
ψ
·
√
n · δ

]
≤ 7 · exp

(
−ε∗ · δ2

)
= 7 · exp

(
−ε∗ · (xi − xj)

2

16n

)
As i and j are assumed to be strong opinions, it follows that (xi + xj)/ψ > 9/5. An
application of the union bound yields the second statement, with probability at least
1− 14 · exp

(
−ε∗ · (|xi − xj |)2/4n

)
, due to

Xi(t+ 1)−Xj(t+ 1) ≥ xi + xj
ψ

·
(
1−

√
n · δ

xi − xj

)
· (xi − xj) ≥

5

4
· (xi − xj).

Lemma 2.16. Fix X(t) = x(t) and an opinion j. If opinion j is weak, then it will become
super-weak in O

(
log logn

)
phases with probability at least 1 − O

(
n−1.9

)
. If opinion j is

super-weak, then it will remain super-weak in at least Ω
(
log2 n

)
following phases with

probability more than 1−O
(
n−1.9

)
.

Proof. First, we show that a weak opinion will become super-weak. Let opinion j be
weak but not super-weak opinion in x, i.e., cw ·

√
n log n < xj < 0.9 · xmax. As opinion

j is weak, it follows that the difference xmax − xj ≥ n/(10 · k) = ω(
√
n log n) is large

enough, and we can apply Lemma 2.9. This yields w.h.p. that

Xmax(t+ 1)

Xj(t+ 1)
≥
(
xmax
xj

)1.5

. (2.17)
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This result has two implications. For one, it states that the ratio between the largest
opinion and opinion j grows substantially. Second, it implies that opinion j cannot
become strong in X(t + 1). To see this, we combine (Eq. (2.17)) together with the fact
that j is weak in x

Xj(t+1)
(Eq. (2.17))
≤ Xmax(t+1) ·

(
xj
xmax

)1.5

< Xmax(t+1) ·
(

9

10

)1.5

< Xmax(t+1) ·0.9.

Hence, j is either weak or super-weak in phase t+1. If j is super-weak, we are done. Oth-
erwise, we may again apply Lemma 2.9. We follow this approach for t′ = log1.5 log9/10 n
phases, at which point, either (i) j already became super-weak in some phase < t + t′,
or (ii) it follows by the growth of the ratio that with probability at least 1−O

(
n−1.9

)
Xmax(t+ t′)

Xi(t+ t′)
≥
(
10

9

)1.5t
′

≥ n.

This implies that opinion j must have already become super-weak.

In this second part of the proof, we show that a super-weak opinion j in x remains
super-weak. We apply Lemma 2.8 on this opinion j and yield

Pr

[
Xj(t+ 1) >

n

ψ
· (12c2w + 74cp) log n

]
< 4n−2. (2.18)

Using that ψ = E [∥Y(t)∥1] ≥ n/k ≥
√
n log n then implies

Pr
[
Xj(t+ 1) > (12c2w + 74cp) ·

√
n
]
< 4n−2.

As (12c2w +74cp) ·
√
n = o

(√
n log n

)
it follows that opinion j remains super-weak at the

start phase t+1. A repetition of this argument, together with a union bound application,
yields that opinion j will remain super-weak for at least Ω

(
log2 n

)
phases with probability

more than 1−O
(
n−1.9

)
.

Lemma 2.17. Fix X(t) = x(t). If all but a single opinion i are super-weak, then only
opinion i remains in phase t+ 2 w.h.p.

Proof. Let opinion i be the only non super-weak opinion. It follows that xi ≥ n−(k−1) ·
cw ·
√
n log n. As we consider k ≤

√
n/ log n, this implies that xi ≥ n−n · (cw/

√
log n) =

n · (1 − o
(
1
)
). Furthermore, as ψ = E [∥Y(t)∥1] =

∑k
j=1 x

2
j/n ≥ x2i /n this also implies

that ψ = Ω
(
n
)
.

Now we fix some opinion j that is super-weak. We apply Lemma 2.8 and use that
ψ = Ω

(
n
)

which immediately yields

Pr [Xj(t+ 1) = ω(log n)] < 4n−2.
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Such an opinion j will, w.h.p., not have a single decided agent at the start of boosting
part t+ 1 because

Pr
[
Yj(t+ 1) > 0

∣∣∣ Xj(t+ 1) = O
(
log n

)]
< 1−

(
1−

O
(
log n

)
n

)O
(
logn

)

<
polylog n

n
.

Therefore, j will vanish before phase t+ 2 w.h.p. A simple union bound argument now
yields that, w.h.p., none of the super-weak opinions at the beginning of phase t will
survive until phase t+ 2.

2.5. Analysis of the Biased Case

The proof of Theorem 2.2 closely resembles the proofs conducted in [29, 53]. Unfortu-
nately, it is not sufficient to adapt the proof of Theorem 2.1 since the number of phases
for the biased case is O

(
log n

)
, which is too high. Roughly speaking, we track the ratio

between the largest and second-largest opinions over the phases. For this, we rely on the
following two technical results (Lemma 2.18 and Lemma 2.22).

Lemma 2.18. Fix X(0) = x and let i∗ := argmaxi{xi}. Assume x has an additive bias
of at least ξ

√
n log n and a multiplicative bias of α.

1. If k ≤
√
n/ log n, then all agents agree on opinion i∗ in O

(
log logα n

)
phases, w.h.p.

2. If k >
√
n/ log n, then for t∗ = O

(
log logα n+log log n

)
we have Xi∗(t

∗) > (5/8) ·n
w.h.p.

Proof. In this proof, we will use the following notions for some configuration X(t): we let
Xmax(t) and Xsec(t) denote the largest and second-largest opinion in X(t). Furthermore,
we define

α(t) := Xmax(t)/Xsec(t) and γ(t) := min
{
α(t) , Xmax(t)/(cw

√
n log n

}
.

We first show three intermediate results to facilitate the proof: Claim 2.19, Claim 2.20,
and Claim 2.21.

Claim 2.19. Fix X(t) = x. If xmax − xsec > ξ
√
n log n then

α(t+ 1) > γ(t)3/2 (2.19)

Proof. We start by considering a fixed opinion j with xmax > xj ≥ cw
√
n log n. An

application of Lemma 2.9 immediately yields with probability 1− n−2 that

Xmax(t+ 1)

Xj(t+ 1)

Lemma 2.9
≥

(
xmax(t)

xj(t)

)1.5

≥ α(t)1.5 ≥ γ(t)3/2. (2.20)
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On the other hand, consider now some fixed opinion j with xj < cw
√
n log n. We

lower and upper bound the support of the largest opinion and j, respectively. We define
c1 :=

√
(ln 7 + 2 log n)/(ε∗ log n) and apply Lemma 2.7 with δ = c1

√
log n and Lemma 2.8

with c = cw we get that with probability at least 1− 5n−2

Xmax(t+ 1)

Xj(t+ 1)
≥

x2max(t)
ψ ·

(
1− c1·

√
n logn

xmax(t)

)
n
ψ · (12c2w + 74cp) · log n

=

(
xmax(t)√

(12c2w + 74cp) · n log n

)2

·
(
1− c1 ·

√
n log n

xmax(t)

)

=

(
xmax(t)√
n log n

)3/2

·
(
xmax(t)√
n log n

)1/2

· 1

(12c2w + 74cp)
·
(
1− c1 ·

√
n log n

xmax(t)

)
(a)

≥
(
xmax(t)√
n log n

)3/2

·
√
ξ · 1

(12c2w + 74cp)
·
(
1− c1

ξ

)
(b)

≥
(
xmax(t)√
n log n

)3/2

·
√
ξ

24c2w + 148cp

(c)

≥
(
xmax(t)√
n log n

)3/2

·
(

1

cw

)3/2

≥ γ(t)3/2.

in which for (a) we use xmax(t)/(cw
√
n log n) < xmax(t)/xj(t) and xmax(t) ≥ ξ

√
n log n,

for (b) we utilize 1 − c1/ξ > 1/2 and for (c) we consider ξ = (160 · cw)2 + (148 · cp)2 ≥
((24c2w + 148cp)/c

3/2
w )2 (see Definition 2.5). Summarizing, we show for any fixed opinion

j with xj < xmax we have with probability at least 1−O
(
n−2

)
.

Xmax(t+ 1)

Xj(t+ 1)
≥ γ(t)3/2.

A union bound over all opinions j yields that, w.h.p., α(t+ 1) > γ(t)3/2 as desired.

Claim 2.20. Fix X(t) = x. If (i) xmax−xsec ≥ ξ ·
√
n log n , (ii) γ(t) ≥ ξ/cw = 1+Ω(1),

and (iii) x2max/n < xsec/3, then w.h.p.

γ(t+ 1) ≥ γ(t)5/4.

Proof. We again fix a configuration X(t) = x at the start of some phase t and assume
that x fulfills the requirements of the claim. We will show that w.h.p.,

Xmax(t+ 1)

cw ·
√
n log n

≥ γ(t)5/4.

Note that, together with the result of Claim 2.19 this also implies γ(t+ 1) ≥ γ(t)5/4.
To show this, we distinguish between two cases. First, consider the case of xsec < cw ·√
n log n. For c1 =

√
(ln 7 + 2 log n)/(ε∗ log n) we apply Lemma 2.7 with δ = c1·

√
n log n.

This yields for ψ =
∑k

j=1 x
2
j/n and with probability 1− 5n−2 that

Xmax(t+ 1)
Lemma 2.7

>
x2max
ψ
·
(
1− c1

√
n log n

xmax

)
>
x2max
ψ

(
1− c1

ξ

)
>
x2max
ψ

(
1− 1

100

)
.
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Here we used in the second step that xmax > ξ
√
n log n as per assumption (i), and the last

step follows from the definition of the constants c1 and ξ (see Definition 2.5). To further
simplify the above result, we note the following. First, ψ =

∑k
j=1 x

2
j/n ≤ x2max/n+xsec is

true for any configuration x. Second, because we additionally assume xsec < cw
√
n log n

and x2max/n < xsec/3 this further implies ψ ≤ (1 + 1/3)cw ·
√
n log n. When using this,

we get

Xmax(t+1) ≥ x2max
(1 + 1/3) · cw ·

√
n log n

·
(
1− 1

100

)
>

x2max
cw ·
√
n log n

· 5
8
= xmax · γ(t) ·

5

8
.

When dividing by cw ·
√
n log n on both ends of this inequality chain, we get

Xmax(t+ 1)

cw ·
√
n log n

≥ xmax

cw ·
√
n log n

· γ(t) · 5
8
≥ γ(t)2 · 5

8
> γ(t)5/4.

In the last step, we rely on assumption (ii), which implies that γ(t) > ξ/cw ≫ 100.
We must consider the remaining case xsec ≥ cw

√
n log n. Let j denote an opinion with

xj = xsec. First, we argue that Xj(t+1) > xj/2. To that end we again apply Lemma 2.7
with δ = c1 ·

√
n log n which yields with probability 1− 5n−2 that

Xj(t+ 1)
Lemma 2.7

>
x2j
ψ
·
(
1− c1 ·

√
n log n

xj

)
>
x2j
ψ
· 2
3
.

In the second step, we used xj > cw ·
√
n log n and cw > 3c1 (see Definition 2.5). Just

as before, we argue that ψ ≤ x2max/n+ xj < (1 + 1/3) · xj is implied by assumption (i).
This implies

Xj(t+ 1) >
x2j
ψ
· 2
3
≥ xj ·

1

(1 + 1/3)
· 2
3
≥ xj

2

When first using that xj ≥ cw ·
√
n log n followed by the above Inequality in the next

step, we get
Xmax(t+ 1)

cw ·
√
n log n

≥ Xmax(t+ 1)

xj
>

1

2
· Xmax(t+ 1)

Xj(t+ 1)
. (2.21)

Recall, throughout the proof of Claim 2.19, we established in inequality (Eq. (2.20)) that
Xmax(t+ 1)/Xj(t+ 1) > (xmax/xj)

1.5 in case opinion j has xj > cw ·
√
n log n. As this

is indeed the case, we have with probability at least 1−O
(
n−2

)
Xmax(t+ 1)

Xj(t+ 1)

(Eq. (2.20))
>

(
xmax
xj

)3/2

≥ γ(t)3/2

Now, when combining this with (Eq. (2.21)) we get with probability at least 1−O
(
n−2

)
that

Xmax(t+ 1)

cw
√
n log n

≥ 1

2
·
(
Xmax(t+ 1)

Xj(t+ 1)

)3/2

=
1

2
γ(t)3/2 > γ(t)5/4.

Where we use in the last step that per assumption (ii) γ(t) > ξ/cw ≫ 100 is large enough
(see Definition 2.5).
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Claim 2.21. Assume X(0) has an additive bias of at least ξ
√
n log n. Then, w.h.p., it

holds for all t < log2 n that

1. Xmax(t)−Xsec(t) > ξ
√
n log n and

2. S(X(t)) = S(X(0))

The first statement implies that the bias does not fall below ξ
√
n log n in the first log2 n

rounds.

Proof. To show this claim, we first consider some fixed phase t and assume thatXmax(t)−
Xsec(t) > ξ

√
n log n. Note that this is equivalent to assuming that |S(X(t))| = 1, or in

other words, assuming that there exists exactly one significant opinion. From Lemma 2.11
it now follows that S(X(t+ 1)) ⊆ S(X(t)) w.h.p. On the other hand, we know that
S(X(t+ 1)) ̸= ∅ as the largest opinion is always significant. When combining these
two observations, we therefore get w.h.p. that S(X(t+ 1)) = S(X(t)). An inductive
application of this approach yields that, w.h.p.,

∀0 < t ≤ log2 n : S(X(t)) = S(X(0)).

This immediately yields the second result of Claim 2.21. The second result follows as
|S(X(t))| = |S(X(0))| = 1, which implies the existence of an additive bias of at least
ξ
√
n log n in phase t.

We are ready to start with the proof of Lemma 2.18. We first repeatedly apply the
result of Claim 2.19 until we hit a phase t1 with γ(t1) < α(t1). From the definition of
γ(t1) this is equivalent to Xsec(t1) < cw

√
n log n. Recall, Claim 2.19 states that if in

some phase t we have Xmax(t)−Xsec(t) > ε
√
n log n, then α(t+ 1) > γ(t)3/2 w.h.p. In

Claim 2.21, we established that this requirement on the additive bias is fulfilled in the
first log2 n phases w.h.p. Therefore, the result of Claim 2.19 is applicable to the first
t′ = log3/2 logα(0) n = O

(
log n

)
phases w.h.p. That is, w.h.p., we have

∀0 ≤ t < t′ : α(t+ 1) ≥ γ(t)3/2.

Now, assume that t1 > t′, i.e., we have γ(t1) < α(t1) for the first time in some phase
after t′. Therefore, in every phase t with t ≤ t′ we have γ(t) = α(t). This implies α(t′) ≥
α(0)(3/2)

t′
> n. This further implies Xsec(t

′) < cw
√
n log n and from the definition of

γ(t′), it follows that γ(t′) < α(t′). This is a contradiction to our assumption of t1 > t′.
Hence t1 < log5/4 logα(0) n = O

(
log n

)
w.h.p.

Starting with phase t1, we split our analysis into two cases. First assume that k <√
n/ log n. Per definition of phase t1 we have Xsec(t1) < cw

√
n log n. This implies from

the definition of super-weak (see Definition 2.6) that all opinions besides the first are
super-weak in X(t1). From Lemma 2.17, it follows that in phase t1 + 2, only a single
opinion prevails w.h.p. As t1 = O

(
log n

)
w.h.p., the second statement of Claim 2.21

implies that this opinion must be the initially significant opinion. The first statement of
Lemma 2.18 follows.
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The case of k ≥
√
n/ log n is more involved. In this case, we must follow a different

approach from phase t1 onward. In the following, we define three events. We say that a
phase t fulfills

1. event E1(t) iff Xmax(t)−Xsec(t) > ξ
√
n log n

2. event E2(t) iff γ(t) ≥ ξ/cw

3. event E3(t) iff Xmax(t)
2/n < Xsec(t)/3.

Observe, if t fulfills all three events, then we may apply Claim 2.20 and get γ(t + 1) ≥
γ(t)5/4. We now show that we will soon arrive at a phase t1 + t2 such that E3(t) does
not hold.

Recall that we have t1 = O
(
log n

)
w.h.p. It follows from Claim 2.21 that E1(t1) is

fulfilled. Additionally, it follows from the definition of γ(t1) that γ(t1) = Xmax(t1)

cw
√
n logn

≥
ξ/cw > 1. Therefore E2(t1) also holds. Now, in case E3(t1) does not hold, we are finished.
Otherwise, we may apply Claim 2.20 and get w.h.p. that γ(t1 + 1) ≥ γ(t1)5/4.

Note that, in such case, E2(t1 +1) will also be satisfied because γ(t1 +1) ≥ γ(t1)5/4 ≥
ξ/cw. Furthermore, Claim 2.21 still guarantees that, w.h.p., E1(t1 + 1) still holds. In
case E3(t1 + 1) is fulfilled we again apply Claim 2.20 and get γ(t1 + 2) ≥ γ(t1)(5/4)

2 . We
repeat this approach for t′ = log5/4 logξ/cw n = O

(
log log n

)
phases. Even if there is no t

with 0 ≤ t < t′ such that E3(t1 + t) is violated, we have w.h.p. that

γ(t1 + t′) ≥ γ(t1)(5/4)
t′
>

(
ξ

cw

)(5/4)t
′

= n.

At this point E3(t1 + t′) must be violated. It follows that t2 ≤ t′ = O
(
log log n

)
holds

w.h.p.
Now fix the configuration X(t1 + t2) = x and assume that E3(t1 + t2) does not hold.

This implies that x2max/n ≥ xsec/3. As ψ < x2max/n + xsec this further implies ψ ≤
(x2max/n) · (1 + 1/3). We now apply Lemma 2.7 with δ = c1 ·

√
n log n which yields that

Xmax(t1 + t2 + 1) ≥ x2max
ψ

(
1− c1

√
n log n

xmax

)
≥ x2max

x2max
n (4/3)

(
1− 1

100

)
> n · 5

8

Summarizing, in phase t1+t2+1 = O
(
log logα(0) n+log log n)

)
we haveXmax(t1+t2+1) >

n · (5/8) w.h.p. Additionally, as in the case of k ≤
√
n log n, we argue that Claim 2.21

implies that this maximum must be the initial largest opinion.

Lemma 2.22. Assume k >
√
n/ log n. Fix X(t) = x. Assume x1(t) ≥ (5/8) · n. Then

all agents agree on this opinion within O
(
log log n

)
phases, w.h.p.

Proof. We start by showing that 4 phases following t, at most
√
n/ log n opinions will

have non-zero support. Let i be an opinion which provides xmax. From the assumption
we have xi > (5/8) ·n. Let L(t) denote the set of opinions with support at most

√
n log n

and fix an opinion j ∈ L(t). Since xi > (5/8) · n, it follows that ψ := E [∥Y(t)∥1] =
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∑k
j=1 x

2
j/n ≥

x2i
n > (25/64) · n. We now distinguish two cases, depending on the size

of xj , and show that Xj(t + 1) = O
(
log2 n

)
. First, assume that xj <

√
2/ε∗ ·

√
n log n

(remember, the constant ε∗is stated in Definition 2.5). In this case, we apply Lemma 2.8
and use that ψ = Θ

(
n
)

which immediately yields that

Pr
[
Xj(t+ 1) = ω

(
log n

)]
< 4n−2. (2.22)

In the case of xj >
√

2/ε∗ ·
√
n log n, we apply Lemma 2.7 together with δ = xj/2

√
n

and get

Pr

[
Xj(t+ 1) >

x2j
ψ
· 3
2

]
= Pr

[
Xj(t+ 1) >

x2j
ψ

(
1 +

δ ·
√
n

xj

)]
< 7n−2. (2.23)

When using that ψ > (25/64) · n and xj <
√
n log n (remember, j ∈ L(t)) we have

(x2j/ψ) · (3/2) ≤ 4 log2 n. The inequality in (Eq. (2.23)) then implies that

Pr
[
Xj(t+ 1) ≥ 4 log2 n

]
< 7n−2.

Hence, in any case, we have that Xj(t+1) < 4 log2 n with probability at least 1−O
(
n−2

)
.

By a union bound application, we get that this holds for every j ∈ L(t) w.h.p. Note that
this also implies that L(t) ⊆ L(t + 1) w.h.p. Additionally, it follows from Lemma 2.7
that, w.h.p., Xi(t+ 1) > xi(1− o

(
1
)
). Now observe that

Pr[Yj(t+ 2) = 0 | Xj(t+ 1) < 4 log2 n] >

(
1− 4 log2 n

n

)4 log2 n

> 1− polylog n

n
.

This implies that some fixed opinion j ∈ L(t) vanishes after decision part t+2 w.h.p. As
L(t) ⊆ L(t+ 1) w.h.p. this approach can be repeated, and we deduce that Yj(t+ 3) = 0
with probability at least 1−polylog n/n2. By a union bound application it follows w.h.p.
for every j ∈ L(t) that Yj(t+ 3) = 0, and by a counting argument we have that all but√
n/ log n opinions lie in L(t). Therefore, at the start of decision part t+4, only

√
n/ log n

opinions remain.
Additionally, consider how the largest opinion i evolves from the decision part of phase

t until t+ 4. By Lemma 2.7 we have for δ =
√
log n that, w.h.p.,

Xi(t+ 1) >
x2i
ψ
− xi
ψ

√
n log n (2.24)

The inequality ψ =
∑k

i=1 x
2
i /n ≥ xmax is true for every configuration x and additionally

we assumed xi = xmax. We use this to lower-bound the right-hand side of (Eq. (2.24))
and get that Xi(t + 1) > xi(1 − o

(
1
)
) w.h.p. Note, as xi ≥ (5/8) · n, this easily implies

that Xi(t + 1) > n/2 and therefore i will remain the opinion with the largest support.
When repeating this argument three more times from decision part t+ 1 until t+ 4, we
therefore get that Xi(t+ 4) > (5/8) · n · (1− o

(
1
)
) > (24/64) · n w.h.p.
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Summarizing, we get by a union-bound application that in decision part t + 4 (i)
less than

√
n/ log n distinct opinions remain, and (ii) the largest opinion i has at least

(24/64) · n support w.h.p. The small amount of remaining opinions allows us the apply
results from the analysis in Section 2.4. According to the definition of weak in Section 2.4,
all opinions besides i must be weak in phase t+ 4. Let j with j ̸= i be such an opinion.
As j is weak, it follows from Lemma 2.16 (which states that weak opinions become super-
weak and stay super-weak) that opinion j will be super-weak at some phase t+4+t′ with
t′ = O

(
log log n

)
and probability at least 1−O

(
n−1.9

)
. By a union bound application it

follows w.h.p. that every such opinion j is super-weak in decision part t + 4 + t′. Next
we apply Lemma 2.17 which implies that after further 2 phases only opinion i remains
and the result follows.

2.6. Proof of Main Results

We first show that the correctness of the synchronization follows from [1, 74]. There, it
is shown that for a polynomial number of phases and any pair of agents u and v, the
distance between clock[u] and clock[v] w.r.t. the circular order modulo 6τ log n is less
than τ log n, w.h.p. The choice of τ also ensures that every undecided agent can adopt
an opinion in the boosting part of a phase, w.h.p.

Proof of Synchronization Properties. In every interaction, every agent is either in the
decision or boosting part of a fixed phase. We call an agent u active in a decision
part as long as decision[u] = False. An agent u is active in a boosting part as long as
clock[u] ≤ 5τ log n. Furthermore, we define Pu(θ) as the number of the phase to which
agent u belongs in interaction θ. Intuitively, we aim to show that the leaderless phase
clock separates the phases of agents such that no agent is active in the decision part while
another agent is simultaneously active in the boosting part. Recall that the leaderless
phase clock works as follows. The clock of agent u uses the variable clock[u], which can
take values in { 0, . . . , 6τ log n− 1 } for a suitably chosen constant τ . The circular order
modulo m, a ≤(m) b, is defined as a ≤(m) b ≡ (a ≤ b xor |a − b| > m/2), and the
distance w.r.t. the circular order modulo m is defined as min { |a− b|, m− |a− b| }. In
every interaction (u, v), the smaller of the two values clock[u] and clock[v] is increased
by one modulo 6τ log n. Smaller refers to the circular order modulo 6τ log n. For the
correctness of our protocol, it is sufficient that the following synchronization properties
hold for a polynomial number of interactions.

1. For any pair of agents u and v we have Pu(θ) = Pv(θ)± 1.

2. Assume agent u with Pu(θ) = t is interacting at time θ, and u is active in the
decision part of phase t. Then, there exists no agent v that is already active in the
boosting part of phase t or is still active in the boosting part of phase t− 1.

3. Assume agent u with Pu(θ) = t is interacting at time θ, and u is active in the
boosting part of phase t. Then, no agent v exists that is already active in the
decision part of phase t+ 1 or still active in the decision part of phase t.
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4. Let Z(t) be defined as the interval of interactions during which all agents u are
together and active in the boosting part of the same phase t, i.e.,

Z(t) =
⋂
u

{ t | Pu(θ) = t and 2τ log n ≤ clock[u](t) ≤ 5τ log n } .

Then for each 1 ≤ t ≤ poly log n we have |Z(t)| > nτ log n.

The first condition directly follows from [1, 74]. There, it is shown that for a polynomial
number of phases and any pair of agents u and v, the distance between clock[u] and
clock[v] w.r.t. the circular order modulo 6τ log n is smaller than τ log n, w.h.p.

To show the second and third conditions, it suffices to show that a) no agent becomes
active in the boosting part of phase t while another agent is still active in the decision
part of phase t, and b) no agent becomes active in the decision part of a phase t+1 while
another agent is still active in the boosting part of phase t.

To show a), fix a phase t ≤ poly log n and let θ be the first interaction in which any
agent u has Pu(θ) = t and clock[u] = 2τ log n − 1. As before, observe that clock[u] and
clock[v] differ by less than τ log n for any pair of agents u and v at interaction θ w.h.p.
Hence, at interaction θ, no other agent v has a clock value clock[v] ≤ τ log n w.h.p.
It follows that every other agent v has already set decision[v] = True at interaction
θ and thus is not active in the decision part w.h.p. This guarantees (w.h.p.) a clean
separation between decision parts and boosting parts. (Technically, it is also necessary
that agent v has been at least once the initiator in an interaction pair (v, w). This
condition follows from a simple Chernoff bound since every agent was part of at least
τ log n many interactions, and in each interaction, an involved agent is the initiator with
probability 1/2.)

To show b), fix again a phase t ≤ poly log n and let θ be the first interaction in which
any agent u has Pu(θ) = t and clock[u] = 6τ log n − 1. As before, observe that clock[u]
and clock[v] differ by less than τ log n for any pair of agents u and v at interaction θ
w.h.p. Hence, at interaction θ, no other agent v has a clock value clock[v] ≤ 5τ log n
w.h.p., and thus no other agent is active in interaction θ w.h.p. This now guarantees
(w.h.p.) the clean separation between boosting and decision parts.

It remains to show the fourth condition. Fix a phase t ≤ poly log n and let zmin =
minZ(t) and zmax = maxZ(t). At interaction zmin, there exists an agent u with
clock[u] = 2τ log n. Hence no agent can have a clock value larger than or equal to
3τ log n w.h.p. (since clock[u] and clock[v] differ by less than τ log n w.h.p., see above).
Analogously, at interaction zmax, there exists an agent u with clock[u] = 5τ log n − 1.
As before, no agent can have a clock value smaller than 4τ log n w.h.p. It takes at least
nτ log n interactions for all agents to advance their clocks from 3τ log n to 4τ log n and
hence |Z(t)| ≥ nτ log n w.h.p.

The fourth condition guarantees that all undecided agents become decided again at
the end of a boosting phase. This holds since the interval of interactions during which
all agents are in the boosting part of a phase is long enough for a so-called broadcast to
succeed, and how agents become decided can be seen as a simple broadcast process. It
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is folklore that for a sufficiently large constant τ , a broadcast succeeds within nτ log n
interactions w.h.p. (see, e.g., the notion of "one-way epidemics" in [10]). Note that all
agents becoming decided in the boosting part is also crucial to modeling the boosting
part by a Pólya-Eggenberger distribution.

Above, we showed that the clocks properly separate the parts of each phase and guar-
antee w.h.p., long enough phases (of length O

(
log n

)
time) such that Observation 2.3

and Observation 2.4 hold w.h.p. In the rest of the section, we assume that this indeed
holds.

Next, we wrap up the unbiased case.

Proof of Theorem 2.1. Proposition 2.13 shows that after O
(
log n

)
phases, only one of the

initial significant opinions remains, w.h.p. Then, the theorem follows with the observation
that one phase consists of O

(
n log n

)
interactions.

Finally, we prove the biased case.

Proof of Theorem 2.2. In case k ≤
√
n/ log n, it follows directly from Lemma 2.18 that

after O
(
log logα n

)
phases all agents agree on the initial majority opinion w.h.p. In

case of k >
√
n/ log n, we first rely on Lemma 2.18, where we establish that after

O
(
log logα n+ log log n

)
time the initial majority grows to size (5/8) ·n w.h.p. Then, we

apply Lemma 2.22, which shows that after further O
(
log logn

)
phases again, all agents

agree on this majority opinion w.h.p. The runtime of the result follows as each phase
lasts for O

(
n log n

)
interactions. This concludes the proof.
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Chapter 3.
Approximate Plurality Consensus via
Undecided State Dynamics

In this part, we analyze the Undecided State Dynamics(USD) in the population protocol
model in the high dimensional k > 2 regime. Recall the USD is defined as follows. Each
agent has either one of k opinions or is undecided, i.e., Q = { 1, . . . k,⊥} where ⊥ stands
for undecided. The protocol is given by the transition function

(q, q′)→


(⊥, q′) if q, q′ ̸= ⊥ ∧ q ̸= q′

(q′, q′) if q = ⊥, q′ ̸= ⊥
(q, q′) otherwise.

Observe that only the responder q changes its state.
It has remained an open problem to analyze the convergence time of the USD for

k > 2 in this model. 1 In the gossip model with parallel rounds, the USD has been
analyzed by Becchetti et al. [20] in the higher dimensional regime k > 2. Assuming an
initial multiplicative bias and moderate assumption on k, they show the process achieves
plurality consensus in O

(
md(x(0)) · log n

)
rounds, where (assuming x1 has largest initial

support)

md(x(0)) =
∑
i∈[k]

( xi(0)
x1(0)

)2
.

The so-called monochromatic distance md(x) is an interesting parameter for the con-
vergence time since it captures the whole configuration. We consider a simpler but not
necessarily worse parameter: the support of the initial largest opinion.

Results and Methodology As mentioned before, we bound the convergence time in
terms of xmax(0), where xmax(0) = x1(0) is the support of the initially largest opinion.
Furthermore, we lose the constraint on the number of initial opinions k and focus solely
on the largest opinion. Under a mild assumption on the size of the support (x1(0) =
Ω
(√
n log2 n

)
), we show the following result:

1Our analysis can also be applied when k = 2 and recovers the existing convergence results [9, 35] in
this setting.
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Theorem 3.1. Let c, cu > 0 be arbitrary constants and let x(0) be an initial configuration
with x1(0) ≥ c ·

√
n log2(n), u(0) ≤ cu · n, and x1(0) ≥ xi(0) for all i ∈ [k]. Then w.h.p.

all agents agree on Opinion 1 within

1. O
(
n2 log n/x1(0)

)
interactions if x(0) has an additive bias of at least Ω

(√
n log n

)
.

2. O
(
n2/x1(0) + n log n

)
interactions if x(0) has a multiplicative bias of at least 1+ ϵ

for an arbitrary constant ϵ.

Without any bias, all agents agree on a significant opinion within O
(
n2 log n/x1(0)

)
interactions w.h.p.

The convergence time heavily depends on the magnitude of the opinion with the largest
initial support. Roughly speaking, the convergence time of our result is analogous to that
of Becchetti et al. [20] for the gossip model: in that model, plurality consensus is reached
within O

(
md(x(0)) · log n

)
= O

(
k · log n

)
rounds for k = O

(
(n/ log n)1/3

)
. Our result

matches their result in this regime by assuming the worst case on xmax(0) ≈ n/k.
However, we do not require a constant multiplicative bias to reach plurality consensus.

We cover the cases with an additive bias of Ω
(√
n log n

)
and no initial bias. In the

latter, we can only guarantee that one of the significant opinions wins, i.e., one of the
initial largest opinions. Note that when the initial configuration does contain a constant
multiplicative bias, our analysis gives a faster convergence time than in the additive
bias regime. Moreover, our convergence time under a multiplicative bias is faster (when
considering its corresponding parallel time) than the time given by Becchetti et al. when
the support of the initially largest opinion is close to the average opinion support. In this
setting, our results for the population protocol model can be viewed as improvements
to the analogous results of Becchetti et al. for the gossip model. If there is a large
multiplicative bias (larger than log n), Becchetti et al. results give better bounds on the
convergence time.

On the other hand, we extend the result by replacing the constraint on k by the support
of the initial largest opinion. That is, we originally restricted the initial number of
opinions k to fulfill this technical necessity in the analysis. This change further improves
the result by dealing with a broader family of configurations, like skewed configurations
with many opinions.

Similar to previous analyses in both models [9, 20, 21, 35] our analysis requires care-
fully defining a sequence of phases throughout which the (qualitative and quantitative)
behavior of the process varies. The straightforward approach in the analysis of consensus
processes is to track the growth of the support of the plurality Opinion 1 via change of the
ratio x1(t)/xi(t) over time t. Unfortunately, the change in support for a single opinion
depends on the entire configuration: the support of all other opinions and the number of
undecided agents. Let us fix two opinions i and j with xi > xj . Then, depending on the
number of undecided agents, the support of Opinion j may grow faster than the support
of Opinion i and vice versa. Hence, to track the progress of the plurality opinion, one has
to examine the number of undecided agents closely. This, in turn, is heavily influenced by
the support of all opinions. To cope with this “nonlinearity” we use the potential function
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3.1. Evolution of the Undecided (Phase 1)

Zα(t) = n − 2u(t) − α · xmax(t), where we use different values of α for different phases.
We analyze the drift of Zα(t), which allows us to show that the number of undecided
agents quickly approaches an “unstable equilibrium” u∗. Whenever the process is close to
equilibrium (which changes over time), we can perform a "classical" analysis and show,
for example, that bias between two agents doubles in a certain number of interactions.
We also deal with a large initial fraction of undecided agents. In this case, we essentially
use −Z0(t) to show the number of undecided agents quickly reaches n/2.

As mentioned before, our analysis also handles the case when there is no bias. For
this, we proceed in two steps. First, we show that the support difference between two
arbitrary but fixed large opinions quickly reaches a value of

√
n via an anti-concentration

bound. From there, we bound the probability that the opinions drift apart further. In our
analysis, we rely heavily on existing concentration bounds for the hitting times of one-
dimensional random walks with drift, which we can use after establishing the appropriate
reductions and potential functions in each phase of the process. The analysis is divided
into five parts corresponding to different phases of the process. The phases are listed in
the following table:

Phase Section End Condition Running Time Main Lemma

1 Section 3.1 u ∈ [(n− xmax)/2, n/2] O(n log n) Lemma 3.2
2 Section 3.2 ∀i : xmax ≥ xi +Ω(

√
n log n) O(n2 log n/xmax) Lemma 3.12

3 Section 3.3 ∀i : xmax ≥ 2xi O(n2 log n/xmax) Lemma 3.16
4 Section 3.4 xmax ≥ 2n/3 O(n2/xmax + n log n) Lemma 3.21
5 Section 3.5 xmax = n O(n log n) Lemma 3.25

Note that the process does not have to pass through all five phases. For example,
the second phase is not needed if there is a large bias in the initial configuration. Our
analysis shows that the identity of the majority opinion does not change after the end
of the second phase (or not at all if a large enough additive bias is present from the
beginning).

3.1. Evolution of the Undecided (Phase 1)

In this section, we analyze the running time of Phase 1, which ends as soon as we have an
appropriate amount of undecided agents (Lemma 3.2). Additionally, we show that the
largest opinion roughly maintains its initial support w.h.p. (Lemma 3.3). Furthermore,
an additive and multiplicative bias is preserved as long as x(0) is an initial configuration
with bias. At the end of this section, we show an upper bound on the number of undecided
agents that hold during the whole running time of the process (Lemma 3.4). This lemma
will be used to estimate the running time of the remaining phases.

In the analysis of Lemma 3.2 we use the potential functions

Z1(t) = n− 2u(t)− xmax(t) and Z2(t) = 2u(t)− n
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to track the evolution of the undecided agents. Essentially, the first one Z1(t) covers the
case with an initial small amount of undecided agents while Z2(t) deals with the relative
large case. Observe that Phase 1 ends as soon as Z1(t) ≤ 0 and Z2(t) ≤ 0, since in this
case u(t) ∈ [n/2− xmax(t)/2, n/2].

Lemma 3.2. Let T1 = inf{t ≥ 0 | u(t) ∈ [n/2− xmax(t)/2, n/2]}. Then

Pr [T1 ≤ ⌈7n lnn⌉] ≥ 1− 2n−3.

Proof. To show the lemma, we calculate the expected change in Z1(t) and Z2(t) for
Z1(t) ≥ 0 and Z2(t) ≥ 0 and apply a drift theorem from [63]. Note that by definition of
both potential functions, it is not possible that both are positive, i.e., at least one of them
is trivially fulfilled. We do a case distinction by the initial support of undecided agents.
We start with u(0) ≤ (n − xmax)/2 and the expected change of Z1(t). Considering all
possible interactions, there are three cases to be considered. First we consider the case
U(t+1) = u(t)−1. In this case, a decided agent interacts with an undecided agent, who
adopts the decided agent’s opinion Let M(t) = { i ∈ [k] | xi(t) = xmax(t) } be the set of
all opinions with maximum support at time t. For each Opinion i, an undecided initiator
interacts with a responder of Opinion i with probability xi(t) · u/n2. If i ∈ M(t), then
Z(t) increases by 1. Otherwise Z(t) increases by 2.

Next, we consider the case U(t+1) = u(t)+1. In this case, a decided initiator interacts
with a responder who has a different opinion and becomes undecided. For each Opinion
i, this happens with probability xi(t) · (n − u(t) − xi(t))/n

2. If i ∈ M(t), then Z(t)
decreases by 1 or 2. Otherwise Z(t) decreases by 2.

With the remaining probability, a step is unproductive, and Z(t) does not change.
Using these cases, we bound the expected drift of Z(t) as

E [Z(t)− Z(t+ 1)|X(t) = x]

≥ −
∑

i∈M(t)

xi · u
n2
− 2

∑
i/∈M(t)

xi · u
n2

+
∑

i∈M(t)

xi(n− u− xi)
n2

+ 2
∑

i/∈M(t)

xi(n− u− xi)
n2

≥
∑
i∈[k]

xi(n− 2u− xmax)

n2
+
∑

i/∈M(t)

xi(n− 2u− xmax)

n2

≥ (n− u)(n− 2u− xmax)

n2
≥ Z(t)

2n
,

where we used that xi ≤ xmax, Z(t) = n − 2u − xmax ≥ 0, and u < n/2 by definition
of Phase 1. We now apply the multiplicative drift result of [63] with r = 3 lnn, s0 =
n− 2u(0)− xmax(0) ≤ n, smin = 1, δ = 1/(2n) and get

Pr [T1 > ⌈7n lnn⌉] ≤ Pr

[
T1 >

⌈
6 lnn+ ln(n− 2u(0)− xmax(0))

1/(2n)

⌉]
≤ e−3·ln(n) = n−3 .
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3.1. Evolution of the Undecided (Phase 1)

Now we deal with the other case where we initially start with u(0) = c · n > n/2
and the expected change of Z2(t). Before we do that, we require an upper bound on the
undecided agents during the first Ω(n log n) interactions to compute the expected change.
It follows from Lemma 3.5 that d(t) = n− u(t) ≥ (1− c)n−∆ for all t ∈ [0, ω(n log n)].

Similar to the first part, we calculate the expected change in Z2(t) by considering all
possible interactions.

E [Z2(t+1)−Z2(t)|X(t)=x]

=

k∑
i=1

xi(n−u−xi)
n2

·(Z2(t)+2)+

k∑
i=1

uxi
n2
·(Z2(t)−2)+

k∑
i=1

x2i +xiu

n2
·Z2(t)−Z2(t)

=
2

n2
·((n−u)2−r2)− 2

n2
·u(n−u)

=− 2

n2
·(u(n−u)−(n−u)2+r2)

≤ 2(n−u)(2u−n)
n2

=
2(n−u)

n
· Z2(t)

n

where we used that r2 =
∑
x2i ≥ 0 and d = Ω(n). We now apply the multiplicative drift

result of [63] with r = 3 lnn, s0 = n − 2u(0) − xmax(0) ≤ n, smin = 1, δ = 1/(2n) and
get

Pr [T1 > ⌈7n lnn⌉] ≤ Pr

[
T1 >

⌈
6 lnn+ ln(n− 2u(0)− xmax(0))

1/(2n)

⌉]
≤ e−3·ln(n) = n−3 .

The statement follows by the union bound.

Given the bound on T1, we proceed to show that both the support of the most popular
opinion and the bias of the initial configuration do not decrease too much until time T1.
Recall that initially, Opinion 1 has the largest support.

Lemma 3.3. Let α, ε > 0 be arbitrary constants. Then, each of the following statements
holds with probability at least 1− 4n−3:

1. If x1(0)− xi(0) ≥ α ·
√
n log n, then X1(T1)−Xi(T1) ≥ α/3 ·

√
n log n.

2. If x1(0) ≥ (1 + ε) · xi(0), then X1(T1) ≥ 1 + ε/2 ·Xi(T1).

3. For the largest opinion we have X1(T1) ≥ x1(0)/3.

Proof. We start with the proof of the first statement. Fix an Opinion i ̸= 1. We consider

Ψt =
x1(t)− xi(t)
n− u(t)

and show via a version of the Hoeffding bound (see Lemma A.7) that this quantity does
not decrease significantly throughout the first phase. Recall that T1 is defined as the
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first time t where u(t) ∈ [n/2 − xmax(t)/2, n/2] and that by definition xmax(0) = x1(0).
Let T̂ = inf { t ≥ 0 | u(t) ≥ cu · n+∆ } be a stopping time and let (X̂(t))t∈N denote
the process with X̂(t) = X(t) for all t ≤ T̂ and X̂(t) = X(T̂ ) for t > T̂ . From
Lemma 3.5 it follows T̂ ≥ n3 with probability at least 1 − n−3. Also, from Lemma 3.2
it follows that T1 ≤ 7 · n lnn with probability 1 − n−3. Thus, w.h.p. (X(t))t∈N and
(X̂(t))t∈N behave the same during the first phase. For readability, we slightly abuse
the notation and continue the proof with Zt and X(t) instead of Ẑt and X̂(t). In the
following we define Zt+1 = Ψt+1 − Ψt and µt+1 = E [Zt+1|X<t+1]. Our goal is to apply
Lemma A.7 to Z1, Z2, . . .. First we calculate µt+1 = E [Zt+1|X<t+1]. Considering all
possible interactions yields

E [Zt+1 | X<t+1]

=
x1(n−u−x1)

n2
·
(
x1−xi−1

n−u−1

)
+
xi(n−u−xi)

n2
·
(
x1−xi+1

n−u−1

)
+
∑
j ̸=1,i

xj(n−u−xj)
n2

·
(
x1−xi
n−u−1

)
+
ux1
n2
·
(
x1−xi+1

n−u+1

)
+
uxi
n2
·
(
x1−xi−1

n−u+1

)

+
∑
i ̸=1,j

uxj
n2
·
(
x1−xi
n−u+1

)
+
r2+nu

n2
·Ψt−Ψt

=
x1(n−u−x1)

n2
·
(

Ψt−1

n−u−1

)
+
xi(n−u−xi)

n2
·
(

Ψt+1

n−u−1

)
+
∑
j ̸=1,i

xj(n−u−xj)
n2

·
(

Ψt

n−u−1

)
+
ux1
n2
·
(
−Ψt+1

n−u+1

)
+
uxi
n2
·
(
−Ψt−1

n−u+1

)

+
∑
i ̸=1,j

uxj
n2
·
(
−Ψt

n−u+1

)
=

1

n2(n−u−1)
·(((n−u)2−r2)Ψt−x1(n−u−x1)+xi(n−u−xi))

− u

n2(n−u+1)
((n−u)Ψt−(x1−xi))

=
x1−xi

n2(n−u)(n−u−1)
·((x1+xi)(n−u)−r2)

=
x1−xi

n2(n−u)(n−u−1)
·

 k∑
j=1

(xj(x1−xj))+xi ·(n−u)

≥0

Now we show that |Zt+1| ≤ a with a = 4/(n− 2) for all t < τ . To do so, we consider
every possible outcome of

x1(t+ 1)− xi(t+ 1)

n− u(t+ 1)
− x1(t)− xi(t)

n− u(t)
,

i.e., either the number of undecided agents u is increased and decreased by one, or xi or
x1 are increased by one.
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3.1. Evolution of the Undecided (Phase 1)

It is easy to see that

|Zt+1| ≤
x1 − xi

(n− u)(n− u− 1)
≤ n− u+ (x1 − xi)

(n− u)(n− u− 1)
≤ (n− u) + (n− u)

(n− u)(n− u− 1)
=

2

n− u− 1

By definition of T̂ we know u(t) < cu · n+∆ and thus |Zt+1| < 4/((1− cu)n). Observe
that for every t we have

t∑
i=1

Zi =
t∑
i=1

(Ψi −Ψi−1) = Ψt −Ψ0.

Finally, the application of Lemma A.7 with |Zt+1| ≤ 4/((1 − cu)n) , τ = 7n lnn, λ =∑τ
i=1 µi + c′ log n/

√
n and c′ = 15 ·

√
3 · ln 2 yields

Pr

[
Ψτ −Ψ0 < −c′ ·

log n√
n

]
= Pr

[
τ∑
i=1

Zi −
τ∑
i=1

µi < −λ

]
≤ n−3.

Recall that from Lemma 3.2 it follows that T1 ≤ 7 · n lnn with probability 1 − n−3.
Thus Ψτ > Ψ0− c′ · log n/

√
n with probability at least 1−n−3. Again, since u(t) < n/2,

we have

x1(T1)− xi(T1)
n− u(T1)

= ΨT1 > Ψ0 − c′ · log n/
√
n =

x1(0)− xi(0)
n− u(0)

− c′ · log n/
√
n

⇔ x1(T1)− xi(T1) > (x1(0)− xi(0))
n− u(T1)
n− u(0)

− (n− u)(T1)c′ · log n/
√
n

=⇒ x1(T1)− xi(T1) >
x1(0)− xi(0)

2
− c′
√
n log n

Due to the assumption x1(0)−xi(0) ≥ c
√
n log n with c = 6c′ we have x1(T1)−xi(T1) >

(x1(0) − xi(0))/3. By application of the union bound over all opinions i ̸= 1, the first
statement holds with probability at least 1− n−2.

For the second statement, we consider Φ(t) = x1(t)/xi(t) for an opinion i ̸= 1 and show
via a concentration result that this quantity does not decrease significantly throughout
the first phase. To do that we define Wt+1 = Φ(t+ 1)− Φ(t) and µt+1 = E [Wt+1 | Ft].
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First we calculate µt+1.

E [Φ(t+ 1)− Φ(t) | Ft]

=
x1(n− u− x1)

n2

(
x1 − 1

xi

)
+
xi(n− u− xi)

n2

(
x1

xi − 1

)
+
∑
j ̸=1,i

xj(n− u− xj)
n2

Φ(t)

+
ux1
n2

(
x1 + 1

xi

)
+
uxi
n2

(
x1

xi + 1

)
+
u(n− u− x1 − xi)

n2
Φ(t)

+
(n− u)2 −

∑
x2i + un

n2
Φ(t)− Φ(t)

= −(n− u− x1)Φ(t)
n2

+
xi(n− u− xi)Φ(t)

n2(xi − 1)
+
uΦ(t)

n2
− uxiΦ(t)

n2(xi + 1)

=
Φ(t)

n2

(
x1 − xi +

n− u− xi
xi − 1

+
u

xi + 1

)
≥ 0

Next, by considering every possible outcome it follows that |Wt+1| ≤ 4/n for all t < τ .
Observe that

∑
Wt = Φ(t)−Φ(0). Finally, the application of Lemma A.7 with |Wt+1| ≤

4/n, τ = cn log n, λ =
∑
µi + c log n/

√
n yields

Pr
[
Φ(τ) < Φ(0)− c log n/

√
n
]
= Pr [Wτ − µ < −λ] ≤ e

− 2λ2

τ ·16/n2 ≤ e−
−c2 logn

8 ≤ n−
c2

8

Thus,

Φ(τ) =
x1(τ)

xi(τ)
≥ x1(0)

xi(0)
− c log n√

n
≥ (1 + ε)− c log n√

n
≥ 1 + ε/2

For the third statement, we consider 1-productive interactions. The proof follows the
analysis of the classical Gambler’s ruin problem by tracking the evolution of x1(t) over
time. An interaction is 1-productive with probability at least

x1(n− x1)
n2

Thus, an application of Chernoff bounds provides at most τ productive interactions in T
interactions w.h.p.

For 1 ≤ i ≤ τ we define ti as the i-th 1-productive interaction in [0, T ]. Then for an
arbitrary i ∈ [1, τ ] we have

Conditioned on a 1-productive interaction, the probability that the support of the
largest opinion increases by one is at least

Pr [x1(ti + 1) = x1 + 1|X(ti) = x] =
1

2
+

2u− n+ x1
2(n− x1)

≥ 1

2
+
x1
2n

where we use u ≥ n/2.
Observe that starting at time t0 with ∆ = x1(t0) as long as x1(ti)− ≥ ∆/2 for the

first i ≤ τ many (1, i)-productive interactions in [0, T ] the evolution of x1(ti) can be
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3.1. Evolution of the Undecided (Phase 1)

viewed as a biased random walk on the line starting at ∆ where a ”right step” happens
with probability p = 1/2 + ∆/4n and ”left step” with probability 1 − p, otherwise.
The correctness follows from a standard coupling argument between two biased coins.
Formally let Tmin = inf{t′ ≥ t0 | x1(t′) = (1/2) · x1(t0)} We bound Pr [Tmin > τ ]. It
follows from Lemma A.18 the probability of ever having an excess of (5/12) · ∆ ”left
steps” to ”right steps” is at most

(
1− p
p

)(5/12)·∆
≤ n−5

In the other case,the third statement is a direct consequence of the first statement.
To see this, consider n agents with k opinions and let x be a vector of size k + 1 that
denotes the configuration (xk+1 is the number of undecided agents). Let y be a vector
of size k + 2 where yk+2 = xk+1, yk+1 = 0 and otherwise yi = xi. The process does not
depend on whether we use x or y to describe the configuration, and thus yk+1(t) = 0 for
all t ≥ 0. Therefore, any statement that holds for x also holds for y (using k+1 instead
of k). The second statement assumes that y1(0) = x1(0) = Ω

(√
n log2 n

)
. Hence, we

can apply the first statement to y and get x1(T1) = y1(T1) − 0 = y1(T1) − yk+1(T1) ≥
(y1(0)− yk+1(0))/3 = y1(0)/3 = x1(0)/3.

Next, we prove the upper bound on the number of undecided agents. The lemma
shows that the number of undecided agents stays close to a threshold value u∗ = n ·
(k − 1)/(2k − 1) ≈ n/2. Intuitively, this threshold u∗ can be regarded as an (unstable)
equilibrium for the number of undecided agents: in configurations with more than u∗

undecided agents, it is more likely that an undecided agent becomes decided than vice
versa, whereas in configurations with less than u∗ undecided agents, it is more likely that
a decided agent becomes undecided than vice versa.

Lemma 3.4.

Pr
[
∀t ∈ [T1, T1 + n3] : u(t) ≤ n

2
+ 2∆u

]
> 1− n−3.

Proof. We model the number of undecided agents over time t as a random walk U(t)
with state space { 0, . . . , n− 1 } and denote the corresponding non-lazy random walk
Z(r). The transition probabilities of Z(r) are denoted as

Pr [Z(r + 1) = z(r) + 1|Z(r) = z(r)] = p̃+(r)

Pr [Z(r + 1) = z(r)− 1|Z(r) = z(r)] = 1− p̃+(r).

Unfortunately the transition probabilities of Z(r) depend on the configuration at time
r and thus the random walk is not time-homogeneous. However, we can bound the
transition probabilities as follows. From calculations it follows that p̃+(r) ≤ 1/2−∆u/n
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if Z(r) ≥ n/2 + ∆u. That is, conditioned on a productive interaction at time t, it holds

Pr [U(t+ 1) = u(t+ 1) + 1 | X(t) = x] =
1

2
− u(n− u) + r2 − (n− u)2

2(u(n− u) + (n− u)2 − r2)

≤ 1

2
− u(n− u)− (n− u)2

2(u(n− u) + (n− u)2)

=
1

2
− 2u− n

2n
≤ 1

2
− ∆u

n

where in the last inequality, we use u ≥ n/2 + ∆u.
For Z(r) we know that we have a drift “in the right direction” between n/2 +∆u and

n/2 + 2∆u. Therefore, it suffices to bound the probability that a random walk traverses
from n/2+∆u to n/2+2∆u. To do so, we define a random walkW (r) on the non-negative
integers with a reflecting barrier at 0 and otherwise transition probabilities

Pr [W (r + 1) = w(r) + 1|W (r) = w(r)] = p = 1/2−∆u/n

Pr [W (r + 1) = w(r)− 1|W (r) = w(r)] = q = 1/2 + ∆u/n.

To show the statement we now define Z ′(r) = Z(r)−(n/2+∆u) and couple Z ′(r) with
W (r). From the definitions of the random walks Z ′(r) and W (r) the following two state-
ments follow. If Z ′(r) < 0, then Z ′(r+1) ≤W (r+1) since W (r) has a reflecting barrier
at 0. Otherwise, Z ′(r+1) ≤W (r+1) follows from the coupling between Z ′(r) and W (r)
since Pr [Z ′(r + 1) = z(r) + 1|Z ′(r) = z(r)] ≤ Pr [W (r + 1) = w(r) + 1|W (r) = w(r)] for
any z(r) and w(r). It therefore follows that, deterministically, Z(r) ≤ n/2+∆u+W (r).

We now proceed to prove that W (r) ≤ ∆u w.h.p. It is straightforward to verify
that the stationary distribution W of W (r) is given by Pr [W = n] = (p/q)n · (1− p/q).
Therefore Pr [W ≥ n] = (p/q)n. When we start with W (0) = 0, it holds from a union
bound over n3 steps that Pr

[
∃t ∈ [n3] : W (t) ≥ m

]
≤ n3 · Pr [W ≥ m] ≤ n3 · (p/q)m for

some value m > 0. It yields

Pr
[
∃t ∈ [n3] :W (t) ≥ ∆u

]
≤ n3 ·

(
1/2−∆u/n

1/2 + ∆u/n

)∆u

≤ n3 · e−
4∆2

u
n+2∆u < n−3.

Lemma 3.5. Let x(0) be an initial configuration with u(0) ≤ cu · n for an abitrary
constant cu ∈ (1/2, 1). Then

Pr
[

for all t ∈ [n3] : u(t) ≤ cu · n+∆
]
≥ 1− n−3

Proof. The idea is to track the evolution of undecided agents over time via a biased
random walk. Whenever the support of the undecided agents exceeds a certain upper
threshold, it tends to decrease again. That is, whenever u(t) ≥ cn, i.e., crosses the
threshold from below, it does not reach cn+∆ in the next polynomial many interactions.
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3.2. Generation of an Additive Bias (Phase 2)

Let ti denote the time whenever u(ti) ≥ cn crosses for the i-th time, i.e., u(ti − 1) < cn.
Conditioned on a productive interaction at time t ≥ ti, it holds

Pr [U(t+ 1) = u(t+ 1) + 1 | X(t) = x] =
1

2
− u(n− u) + r2 − (n− u)2

2(u(n− u) + (n− u)2 − r2)

≤ 1

2
− u(n− u)− (n− u)2

2(u(n− u) + (n− u)2)

=
1

2
− 2u− n

2n
= 1− u

n
< 1/2

where in the last inequality we use u ≥ cn. Similar to Lemma 3.4, the statement follows
w.h.p. by a known Gambler’s ruin result and the union bound.

3.2. Generation of an Additive Bias (Phase 2)

Recall that T1 is defined as the end of Phase 1. This section considers configurations
at time T1 without any additive bias. These configurations will have several significant
opinions. We define T2 as the first time t ≥ T1 where x(t) has only one opinion left,
which is significant.

Note that xmax(t)) ≥ xmax(0)/2 = Ω
(√
n · log2(n)

)
for each interaction t in this phase.

This follows from Lemma 3.4 together with the pigeonhole principle. In Lemma 3.12 we
show that w.h.p. the running time of this phase is O

(
n2 · log n/xmax(T1)

)
. To show that

result, we first need a lower bound (as opposed to the upper bound of Lemma 3.4) on
the number of undecided agents. Again, this bound holds until the end of the process.

Lemma 3.6. Pr
[
for all t ∈ [T1, n

3] : u(t) ≥ n/2− xmax(t)/2− 8
√
n · lnn

]
≥ 1− n−5 .

Proof. Recall that we defined Z(t) = n − 2u(t) − xmax(t) and that Z(T1) ≤ 0. In the
following, we show that w.h.p. Z(t) ≤ c

√
n · log n for all T1 ≤ t ≤ n3.

We follow the proof idea of Theorem 6 in [64]. We define a new set of random variables
with Y (t) = exp(η · Z(t)) for t ≥ T1 and η =

√
lnn/n and let z0 = 4η · n.

Fix an arbitrary i ≥ 0. We first give a bound for E [Y (i+ 1)− Y (i) | Z(i) = z]. Note
that Z(i+ 1)− Z(i) ∈ [−2, 2]. We get

E [Y (i+ 1)− Y (i) | Z(i) = z] = E
[
eη·Z(i+1) − eη·Z(t) | Z(i) = z

]
= eη·z · E

[
eη·(Z(i+1)−z) − 1 | Z(i) = z

]
= eη·z ·

∑
j∈[−2,2]

(eη·j − 1) · Pr [Z(i+ 1)− z = j | Z(i) = z]

We derive the following bound for exp(η · j)− 1. Since exp(x) ≤ 1 + x+ x2 for x ≤ 1
and η → 0 for large n, we have exp(2η) ≤ 1 + 2η + (2η)2 = 1 + 2η + η · z0/n. For
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j ∈ [−2, 2], we thus have exp(ηj) − 1 ≤ ηj + η · z0/n. In Lemma 3.2 we calculated
E [Z(i+ 1)− Z(i) | Z(i) = z] ≤ − z

n .
Thus, for all z ≥ z0 we have

E [Y (i+ 1)− Y (i) | Z(i) = z]

≤ eη·z ·
∑

j∈[−2,2]

(η · j + η · z0/n) · Pr [Z(i+ 1)− z = j|Z(i) = z]

= eη·z · η · (E [Z(i+ 1)− Z(i)|Z(i) = z] + z0/n) ≤ 0.

In total, we get

E [Y (t)] = E [Y (0)] +
t−1∑
i=0

E [Y (i+ 1)− Y (i)] ≤ 1.

We can apply Markov’s inequality since ∀t ≥ 0 : Y (t) ≥ 0. Thus,

Pr [Z(t) ≥ 2z0] = Pr [Y (t) ≥ exp(2ηz0)] ≤
E [Y (t)]

n8
≤ n−8.

Finally, we apply the union bound over n3 − T1 ≤ n3 interactions.

In the following lemma, we show that the support of the largest opinion does not shrink
by more than a factor of two during Phase 2.

Lemma 3.7. Let c > 0 be an arbitrary constant and define T = c · n2 · log n/xmax(T1).
Then

Pr [for all t ∈ [T1, T1 + T ] : xmax(t) ≥ xmax(T1)/2] ≥ 1− n−5.

Proof. We show that xmax(t) ≥ xmax(T1)/2 for all t ∈ [T1, T1+cn
2 log n/xmax(T1)]. First,

we bound the number of productive interactions w.r.t. xmax(t) within cn2 log n/xmax(T1)
interactions, and then we bound its effect on the support of the largest opinion. Let

T̂ = inf { t ≥ T1 | u(t) /∈ [(n− xmax(t
′))/2− 8 ·

√
n lnn, n/2 + ∆u] }

be a stopping time and let (X̂(t))t denote the process with X̂(t) = X(t) for all t ≤ T̂
and X̂(t) = X(T̂ ) for t > T̂ . From Lemma 3.4 and Lemma 3.6 it follows T̂ − t =
Ω
(
n2/xmax(t) · log n

)
w.h.p. Thus, (X(t))t and (X̂(t))t behave the same between time t

and t+O
(
n2/xmax(T1) · log n

)
.

As long as xmax(t) ≤ 2 · xmax(T1) an interaction is productive w.r.t. xmax(t) with
probability

u · xmax + xmax · (n− u− xmax)

n2
=
xmax · (n− xmax)

n2
≤ 2 · x(T1)

n

It follows from an application of Chernoff bounds that within a sequence of c · n2 ·
log n/xmax(T1) interactions, the number of such productive interactions is at most 4 · c ·
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3.2. Generation of an Additive Bias (Phase 2)

n log n with probability at least 1−n−10. Now consider τ = 4 · c ·n log n such productive
interactions and let Zt denote the change w.r.t. xmax(t), i.e., the support of the largest
opinion increase or decrease by one, respectively. That is, assuming the next interaction
is such a productive interaction for x(t), we have

Pr [Zt = 1] =
u · xmax

u · xmax + xmax · (n− u− xmax)
=

u

(n− xmax)

Pr [Zt = −1] = 1− Pr [Zt = 1]

Therefore

E [Zt] =
u− (n− u− xmax)

n− xmax
=

2 · u+ xmax − n
n− xmax

≥ −48 ·
√
n lnn

n

Let Z be the sum of Zt for all t ∈ [1, τ ]. Then it follows from Hoeffding bound with
λ = xmax(T1)/2− 200 ·

√
n ln3/2 n

Pr

[
Z < −1

2
· xmax(T1)

]
≤ Pr [Z < E [Z]− λ] ≤ e−

2λ2

4τ ≤ n−10

Note that if (ever) xmax(t
′) > 2 ·xmax(T1) for some t′ ∈ [T1, T1+T ] the statement hold as

well by the union bound and the previous part. Thus, starting with xmax(T1) throughout
the next c ·n2/xmax(T1) · log n interactions xmax(t) ≥ xmax(T1)/2 with probability at least
1− n−5.

In the following, we define two observations that are frequently used in our proofs.
That is, we need some statements about the process , e.g., bounds on the support of
undecided agents, that last throughout the phases and hold with high probability. Thus,
we formally define another process with such properties and show that both processes
behave the same for a sufficiently larger number of interactions.

Observation 3.8. For a given time t̂ and configuration x(t̂) let

T̂ = inf { t ≥ t̂ } | u(t) /∈ [(n− xmax(t
′))/2− 8 ·

√
n lnn, n/2 + ∆u]

be a stopping time and let (X̂(t))t denote the process with X̂(t) = X(t) for all t ≤ T̂ and
X̂(t) = X(T̂ ) for t > T̂ .

Observation 3.9. For a given time Ti and configuration x(Ti) let

T̂ = inf { t ≥ Ti | u(t) /∈ [(n− xmax(t))/2− 8 ·
√
n lnn, n/2 + ∆u] or xmax(t) < xmax(t̂)/2 }

be a stopping time and let (X̂(t))t denote the process with X̂(t) = X(t) for all t ≤ T̂
and X̂(t) = X(T̂ ) for t > T̂ . Then (X̂(t))t and (X(t))t behave the same for every
t ∈ [Ti, Ti +O

(
n2/xmax(Ti) · log n

)
] w.h.p.
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Proof. From Lemma 3.6 it follows that u(t) ≥ (n − xmax(t))/2 − 8 ·
√
n lnn for all

t ∈ [T1, n
3], w.h.p. From Lemma 3.4 it follows that u(t) ≤ n/2 + ∆u for all t ∈ [T1, n

3],
w.h.p. Finally, Lemma 3.7 gives us that xmax(t) ≥ xmax(T1)/3 for all t ∈ [T1, T1 +
cn2 log n/xmax(T1)], w.h.p. Thus, T̂ − T1 = Ω

(
n2 · log n/xmax(T1)

)
w.h.p. and we can

assume that (X)t≥T1 and (X̂)t≥T1 are identical for t ∈ [T1, T1+O
(
n2·log n/xmax(T1)

)
].

In Lemma 3.10, we first show that “small opinions” remain small (they only double
their support). With small opinion, we mean opinions having support which have sup-
port at most 20

√
n log n and are thus at least a polylogarithmic factor smaller compared

to xmax(t). Then, in the second part, we show that insignificant opinions remain insignif-
icant. Recall that an Opinion i is insignificant if xmax(t)− xi(t) = Ω

(√
n log n

)
.

Lemma 3.10. Let c, c′ > 0 be arbitrary constants and define T = c ·n2 · log n/xmax(T1).
Assume for Opinion j there exists a time t0 ∈ [T1, T1 + T ] with

1. xj(t0) ≤ 20
√
n log n. Then

Pr
[
for all t ∈ [t0, T1 + T ] : xj(t) ≤ 40

√
n log n

]
≥ 1− 2n−3.

2. xmax(t0)− xj(t0) ≥ c′ ·
√
n log n. Then

Pr
[
for all t ∈ [t0, T1 + T ] : xmax(t)− xi(t) ≥ c′/2 ·

√
n log n

]
≤ 1− 2n−3.

Proof. We use Observation 3.9 to utilize the stopped process (X̂(t))t. Now, we start
with the first statement. First, we bound the number of i-productive interactions in the
interval [t0, T1 + T ]. Recall that only i-productive interactions change the support of
Opinion i. As long as xi(t) ≤ 40

√
n log n for t ∈ [t0, T1+T ] an interaction is i-productive

with probability

u · xi + xi · (n− u− xi)
n2

=
xi · (n− xi)

n2
≤ 40

√
n log n

n

It follows from an application of Chernoff bounds that the number of such productive
interactions is at most n/ log1/4 n w.h.p.

Now consider τ = n/ log1/4 n i-productive interactions and let Zℓ denote the respective
change of the ℓth i-productive interaction. That is,

Pr [Zℓ = 1] =
u · xi

u · xi + xi · (n− u− xi)
=

u

(n− xi)
Pr [Zℓ = −1] = 1− Pr [Zℓ = 1]

Therefore

E [Zℓ] =
u− (n− u− xi)

n− xi
=

2 · u+ xi − n
n− xi

≤ 2∆u + 40
√
n log n

n− 40
√
n log n

≤ cu
√
n log n

n− 40
√
n log n
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Let Z be the sum of Zℓ for all ℓ ∈ [1, τ ]. Then it follows from Hoeffding bound with
λ =
√
n log n− E [Z]

Pr
[
Z >

√
n log n

]
≤ Pr [Z > E [Z] + λ] ≤ e−

2λ2

4τ ≤ n−6

Thus, starting with xi(t0) ≤ 20
√
n log n it holds that xi(t) ≤ 40

√
n log n for all t ∈

[t0, T1 + τ ] w.h.p.

We now show the second statement. Our proof follows the analysis of the classical
Gambler’s ruin problem on the quantity xmax(t)− xj(t). That is, for T interactions we
show that xmax(t)− xj(t) ≥ (xmax(t0)− xj(t0))/2 for all t ∈ [t0, T1 + T ].

Let B(t) = { i | xi(t) ≥ xmax(t) } denotes the set of all opinions i with maximum
support at time t. Note that |B(t)| ≥ 1 for all t. Consider an arbitrary time t ∈
[t0, T1 + T ]. By the definition of USD, it follows that

Pr
[
X ′
max −Xj = xmax − xj + 1|X(t) = x(t)

]
=

{
u·
∑

i∈B xi+xj ·(n−u−xj)
n2 , |B| > 1

u·xmax+xj ·(n−u−xj)
n2 , |B| = 1

(3.1)

Pr
[
X ′
max −Xj = xmax − xj − 1 | X(t) = x(t)

]
=

{
u·xj
n2 , |B| > 1
xmax·(n−u−xmax)+u·xj

n2 , |B| = 1

Let p1(t) and p2(t) denote the first and second probability from Eq. (3.1), respectively.
Now assuming for x(t) the next interaction is productive w.r.t. xmax(t)− xj(t) then we
have

Pr
[
X ′
max −Xj = xmax − xj + 1|X(t) = x(t)

]
=

p1(t)

p1(t) + p2(t)

We consider two cases. In the first case assume xj(t) ≥ 20·
√
n lnn for all t ∈ [t0, T1+T ].

Then for p′1(t) = (u(t) · xmax(t) + xj(t
′) · (n− u(t)− xj(t))) · n−2 and p′2(t) = (xmax(t) ·

(n− u(t)− xmax(t)) + u(t) · xj(t)) · n−2 we have

p1
p1 + p2

≥ p′1
p′1 + p′2

=
1

2
+

p′1 − p′2
2(p′1 + p′2)

=
1

2
+

(2 · u+ xmax + xj − n) · (xmax − xj)
2((xmax + xj) · n− x2max − x2j )

≥ 1

2
+

(xj − 16
√
n lnn) · (xmax − xj)

2((xmax + xj) · n

≥ 1

2
+

(xmax − xj)
25n
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Observe that if ever xmax(t
′)−xj(t′) ≤ (xmax(t0)−xj(t0))/2 for some t′ ∈ [t0, T1+T ] the

probability to increase xmax(t
′)−xj(t′) by one is at least 1/2+(xmax(t0)−xj(t0))/50n ≥

1/2+ (c′ ·
√
n log(n))/(50n) assuming a productive interaction. Finally an application of

Lemma A.18 for b = (xmax(t0)− xj(t0))/2 and p = 1/2 + c
√
n log n/50n yields that the

probability xmax(t
′)− xj(t′) ≥ (xmax(t)− xj(t))/2 for all t′ ∈ (t, T ] is ever violated is at

most (
1− p
p

)b
=

(
25n− 2c′

√
n log n

25n+ 2c′
√
n log n

)b
=

(
1− 4c′

√
n log n

25n+ 2c′
√
n log n

)b
≤ n−6.

It remains to show the second case. That is, there exists a time t ∈ [t0, T1 + τ ] such
that xj(t) < 20

√
n lnn. From the first statement it follows that x(t′) ≤ 40

√
n log n

for all t′ ∈ [t, T1 + τ ]. Additionally, we know that xmax(t
′) ≥ ·

√
n log n and hence, the

statement follows by a union bound over both cases w.h.p.

The following lemma constitutes the foundation of applying the drifting result from
[46] which will be used in the proof of Lemma 3.12. In the first part of Lemma 3.11,
we consider two important opinions with (almost) the same support. We use an anti-
concentration result to show that their support difference quickly reaches Ω(

√
n). In

the second part, we again consider two important opinions and give precise bounds on
the probability that their support difference increases by a constant factor. Our proof is
based on the gambler’s ruin problem.

Lemma 3.11. Fix two opinions i and j and assume there exists t0 ≥ T1 with xi(t0) ≥
xj(t0) ≥ xmax(t0)− 4α

√
n log n . Let T = 40 · n2/xmax(T1). Then

1. If xi(t0)− xj(t0) < 4α ·
√
n then

Pr
[
Xi(t0 + T )−Xj(t0 + T ) ≥ 4α ·

√
n
]
≥ e−

α2

16 .

2. If xi(t0)− xj(t0) ≥ 4α ·
√
n then

Pr

[
Xi(t0+T )−Xj(t0+T )≥min

{
3(xi(t0)−xj(t0))

2
,4α
√
n logn

}]
≥1−e−

xi(t0)−xj(t0)√
n

Proof. We use Observation 3.9 to utilize the stopped process (X̂(t))t. We consider a
pair of opinions i and j, which are important at time t0, and track the evolution of the
difference between the support of i and j within the next T interactions.

First, we bound the (i, j)-productive interactions in the time interval [t0, t0+T ] inter-
actions. Recall that only (i, j)-productive interactions change the support of Opinion i
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or Opinion j. An interaction is (i, j)-productive with probability

u(t) · xi(t) + xi(t) · (n− u(t)− xi(t)) + u(t) · xj(t) + xj(t) · (n− u(t)− xj(t))
n2

=
(xi(t) + xj(t)) · n− xi(t)2 − xj(t)2

n2

=
(xi(t) + xj(t)) · (n+ xi(t)− xj(t))− 2xi(t)

2

n2

≥ (2xmax − 8α
√
n log n) · n− 2x2max

n2
≥ 2xmax

n
·
(
1− xmax

n
− 8α

√
n log n

2xmax

)
≥ xmax(T1)

2n

In the first inequality, we used that i and j are both important. Additionally we use
xmax(t) ≥ xmax(T1)/2 and xmax(t) ≤ 2n/3. Thus, assuming i and j both remain impor-
tant during the whole time interval, an application of Chernoff bounds provides at least
16 · n many (i, j)-productive interactions in [t0, t0 + T ], w.h.p. For 1 ≤ i ≤ 16 · n we
define ti as the ith (i, j)-productive interaction in [t0, t0 + T ].

Recall that only (i, j)-productive interactions change the quantity xi(t) − xj(t), but
other interactions may change the remainder of the configuration, e.g., an additional
undecided agent is created. If an interaction is not (i, j)-productive then

Pr [Xi(t+ 1)−Xj(t+ 1) ̸= xi − xj |X(t) = x] = 0.

If an interaction is (i, j)-productive then

Pr [Xi(t+ 1)−Xj(t+ 1) = xi − xj + 1|X(t) = x]

=
1

2
+

u · xi + xj · (n− u− xj)− (u · xj + xi · (n− u− xi))
2(u · xi + xj · (n− u− xj) + (u · xj + xi · (n− u− xi)))

=
1

2
+

(xi + xj + 2u− n) · (xi − xj)
2((xi + xj) · n− x2i + x2j )

Now, we consider two cases. In the first case assume xi(t0) − xj(t0) < 4α
√
n. W.l.o.g.

we assume for the rest of the proof that xi(t) ≥ xj(t) (otherwise, we simply switch the
roles of i and j). We consider an (arbitrary) (i, j)-productive interaction ti and refine

69



Chapter 3. Approximate Plurality Consensus via Undecided State Dynamics

the probability from above in the following way

Pr [Xi(ti + 1)−Xj(ti + 1) = xi − xj + 1|X(ti) = x]

=
1

2
+

(xi + xj + 2u− n) · (xi − xj)
2((xi + xj) · n− (x2i + x2j ))

≥ 1

2
+

(2xmax − 8α
√
n log n+ 2u− n) · (xi − xj)

2((xi + xj) · n− (x2i + x2j ))

≥ 1

2
+

(xmax − 8α
√
n log n− 16

√
n lnn) · (xi − xj)

2((xi + xj) · n− (x2i + x2j ))

≥ 1

2

where we use that xi(ti), xj(ti) ≥ xmax(ti) − 4α
√
n log n and xmax(ti) ≥ 8α

√
n log n −

16
√
n lnn. Thus, the evolution of xi(t) − xj(t) over a sequence of 16 · n many (i, j)-

productive interactions can be viewed as tossing biased coins with success probability
larger than 1/2 via standard coupling argument between biased and fair coins. Applying
Lemma A.15 with δ = α/(2

√
n) yields

Pr
[
Bin(16 · n, 1/2) ≥ n

8
+ 4α

√
n
]
≥ e−9δ2·8·n = e−

9·α2

32

Hence, the first statement follows by the union bound with the high probability of events
from above.

In the second case we assume xi(t)−xj(t) ≥ 4α
√
n. Similar to the first case, we refine

the probability from above assuming a (i, j)-productive interaction occur

Pr [Xi(ti + 1)−Xj(ti + 1) = xi − xj + 1|X(ti) = x]

=
1

2
+

(xi + xj + 2u− n) · (xi − xj)
2((xi + xj) · n− (x2i + x2j ))

≥ 1

2
+

(2xmax − 8α
√
n log n+ 2u− n) · (xi − xj)

2((xi + xj) · n− (x2i + x2j ))

≥ 1

2
+

(xmax − 8α
√
n log n− 8 ·

√
n lnn) · (xi − xj)

4 · xmax · n)

≥ 1

2
+

(
1− 4α ·

√
n log n+ 16 ·

√
n lnn

xmax(t0)

)
· xi − xj

4n

≥ 1

2
+
xi − xj
12n

Thus, the quantity xi(ti)− x(ti)j increases by 1 with probability at least 1/2 + (xi(t)−
x(t)j)/(12n) and decreases by 1, otherwise. Observe that starting at time t0 with ∆ =
xi(t0)−xj(t0) as long as xi(ti)−xj(ti) ≥ (3/4) ·∆ for the first i ≤ 16 ·n (i, j)-productive
interactions in [t0, t0+T ] the evolution of xi(t)−xj(t) can be viewed as a biased random
walk on the line starting at ∆ with success probability (i.e., ”right step”) p = 1

2 + ∆
16n .
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Let Tmin = inf{t′ ∈ [t1, tc3·n] | xi(t′) − x(t′)j = (3/4) · (xi(t0) − xj(t0))} and Tmax =
inf{t′ ≥ [t1, t16·n] | xi(t′)− x(t′)j = 2(xi(t0)− xj(t0))}.

First we bound Pr [Tmax > Tmin]. It follows from Lemma A.18 the probability of ever
having an excess of ∆/8 ”left steps” to ”right steps” is at most(

1− p
p

)∆/8

=

(
8n−∆

8n+∆

)∆/8

=

(
1− 2∆

8n+∆

)∆/8

≤ e−
∆2

4·(8n+∆)

Next we bound Pr [Tmax > 16 · n]. Again we use the assumption xi(ti)−xj(ti) ≥ (3/4)·∆.
Now consider τ = 16 · n independent Poisson trials (Si ∈ {−1, 1} for all i ≤ 16 · n) each
with success probability p = 1/2+∆/16n. Let S =

∑16·n
i=1 Si. Using the Hoeffding bound

(Theorem A.6) for λ = ∆ we get

Pr [Tmax > 16 · n] ≤ Pr [S < ∆]

= Pr [S − E [S] < ∆− E [S]]

≤ Pr [|S − E [S]| > E [S]−∆]

≤ 2 · e−
2∆2

4·16·n

≤ 2 · e−
∆2

32·n

At last we compute the probability of the event E that if there exists a time t ∈
[Tmax, t0+T ],i.e., xi(t)−x(t)j = 2∆, then xi(t′)−x′j ≥ 3/2·∆ for all t′ ∈ [t, t0+T ]. We can
similarly compute this probability with Lemma A.18 as we have shown Pr [Tmax > Tmin].
In fact we can simply use Pr [Tmax > Tmin] as an upper bound for Pr

[
Ē
]
.

To conclude the second statement, we have to show that

Pr [Tmax ≤ c3 · n ∧ Tmax ≤ Tmin ∧ E ] ≥ 1− e−(xi(t)−xj(t))/
√
n (3.2)

it remains to show

Pr [Tmax > 16 · n] + Pr [Tmax > Tmin] + Pr
[
Ē
]
≤ e−(xi(t)−xj(t))/

√
n

To do so, recall ∆ = xi(t) − xj(t) ≥ 4α
√
n. Then, starting from the left-hand side, we

have

2 · e−
∆2

32n + 2 · e−
∆2

4·(8n+∆) = 2 ·
(
e−

∆2

32n + e
− ∆2

4·(8n+∆)

)
≤ 2 ·

(
e−

∆2

32n + e−
∆2

36n

)
·
(
e
− ∆√

n · e
∆√
n

)
= 2 ·

(
e

∆√
n
·
(
1− ∆

32
√
n

)
+ e

∆√
n
·
(
1− ∆

36
√
n

))
· e−

∆√
n ≤ 2 ·

(
1

10
+

1

10

)
· e−

∆√
n ≤ 1

5
· e−

∆√
n

where we use that the constant α (from the definition of the additive bias) is sufficiently
large. Hence, the second statement follows by the union bound with the high probability
events from above.

Now, we are ready to analyze the running time of Phase 2.
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Lemma 3.12. Let T2 = inf { t ≥ T1 | ∃i ∈ [k] : ∀j ̸= i : xi(t)− xj(t) ≥ α
√
n log n }.

Then Pr
[
T2 − T1 ≤ 40 · c · n2 · log n/xmax(T1)

]
≥ 1− 2n−2.

Proof. We use Observation 3.9 to utilize the stopped process (X̂(t))t.
Recall that an Opinion i is significant at time t if xi(t) > xmax(t)− α

√
n log n. In the

following we call an Opinion i important at time t if xi(t) > xmax(t)− 4 · α
√
n log n. In

the following, we will show that for each pair of important opinions, i and j at time T1,
at least one of them becomes unimportant. Furthermore, we show that no unimportant
opinion ever becomes significant. From this, it follows that after O

(
n2/xmax(T1) · log n

)
,

only one significant opinion remains.
First, we consider a pair of opinions i and j which are important at time T1 and show

that w.h.p. at least one of them becomes unimportant within the next τ = 40 · cn2 ·
log n/xmax(T1) interactions.

We divide the interactions from [T1, T1+τ ] into c1 log n subphases of length 40·n2/x(T1)
each. For 1 ≤ i ≤ c log n we define ℓ1 = 1 and ℓi = 1 + (i − 1) · n2/x(T1). Then the
ith subphase contains interactions ℓi to (ℓi+1 − 1). Furthermore, we define ti as the first
interaction in subphase i.

Now, we fix an arbitrary subphase i and consider two cases. If xi(ti)− xj(ti) < 4α
√
n

then it follows from Lemma 3.11

Pr
[
Xi(ti+1)−Xj(ti+1) ≥ 4α

√
n
]
≥ e−

α2

16 (3.3)

Otherwise, if xi(ti)− xj(ti) ≥ 4α
√
n then

Pr
[
Xi(ti+1)−Xj(ti+1) ≥ min { (3/2) · (xi(ti)− xj(ti)), 4α

√
n log n }

]
≥ 1− e−

xi(ti)−xj(ti)√
n

(3.4)

In either case, we call such a subphase successful.
In the following, we show that in the interval [T1, T1 + τ ], there is a sufficient amount

of consecutive successful subphases such that at least one of the two opinions becomes
unimportant. To do so, we define a function f : [1, c1 log n]→ [0, log log n], which counts
the consecutive number of successful subphases.

f(i) =

{
0 if |xi(ti)− xj(ti)| < 4α

√
n

j if (3/2)j−1 · 4α
√
n ≤ |xi(ti)− xj(ti)| < (3/2)j · 4α

√
n

Note that either Opinion i or Opinion j is unimportant at the beginning of subphase i if
f(ti) = log log n.

We define a random walk W over the state space [0, log log n] as follows. W has
a reflective state 0 and an absorbing state log log n. Initially, W (1) = 0. For w ∈
[0, log logn− 1] the transition probabilities are defined as follows

Pr [W (t+ 1) = 1|W (t) = 0] = e−
α2

16

Pr [W (t+ 1) = w + 1|W (t) = w] = 1− e−2w

Pr [W (t+ 1) = 0|W (t) = w] = e−2w .
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To show that either Opinion i or Opinion j becomes unimportant, which is equivalent to
our function f taking on the value log logn, we define coupling between f(i) and W (i)
such that f(i) ≥W (i) for all i ∈ [1, c1 log n].

For i = 1 the claim holds trivially since we have W (1) = 0 and f(1) ≥ 0. Now
assume for i ≥ 1 that f(i) ≥W (i). Now, we consider two cases. In the first case assume
|xi(ti)− xj(ti)| < 4α

√
n. Then we know f(i) = 0 and hence, W (i) = 0. It follows from

Eq. (3.3) and |xi(ti)− xj(ti)| ≥ 0

Pr [f(i+ 1) ≥ f(i) + 1|f(i) = 0] ≥ e−
α2

16 and

Pr [f(i+ 1) ≥ 0|f(i) = 0] < 1− e−
α2

16

Likewise, from the definition of W it follows

Pr [W (i+ 1) =W (i) + 1|W (i) = 0] = e−
α2

16 and

Pr [W (i+ 1) = 0|W (i) = 0] = 1− e−
α2

16

Hence, we can couple the two processes such that the following holds: whenever W (i) is
increased by one, then f(i) is increased, too. Whenever f(i) is decreased, W (i) jumps
back to zero.

In the second case, we assume

4α
√
n ≤ |xi(ti)− xj(ti)| < min { 2(xi(ti)− xj(ti)), 4α

√
n log n } .

Then it follows from Eq. (3.4) and |xi(ti)− xj(ti)| ≥ 0

Pr [f(i+ 1) ≥ f(i) + 1|f(i) = 0] ≥ 1− e−(xi(ti)−xj(ti))/
√
n and

Pr [f(i+ 1) ≥ 0|f(i) = 0] < e−(xi(ti)−xj(ti))/
√
n

Likewise, from the definition of W it follows

Pr [W (i+ 1) =W (i) + 1|W (i) = m] = 1− e−2m and

Pr [W (i+ 1) = 0|W (ℓ) = m] = e−2m

Observe that

1− e−(xi(ti)−xj(ti))/
√
n ≥ 1− e−2f(i) ≥ 1− e−2m .

Again, we can couple the two processes such that f(i) ≥W (i).
Finally an application of Lemma A.10 that w.h.p. there exists i ∈ [1, c1 log n] such that

W (i) = log log n. From this follows that there exists a time t′ ≤ [T1, T1 + τ ] such that
xi(t

′)−xj(t′) ≥ 4α
√
n log n. This implies, in turn, that at least Opinion j is unimportant.

From Statement 2 in Lemma 3.10 it follows that xmax(t) − xj(t) ≥ 2α
√
n log n for all

t ∈ [t′, T1 + τ ] w.h.p. Hence, the Opinion j does not become significant during the
interval. Finally, a union bound over all pairs of initial important opinions at time T1
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yields that all but a single opinion of those important opinions becomes insignificant in
the time interval w.h.p.

Now we show that none of the unimportant opinions at time T1 ever becomes significant
during [T1, T1 + τ ]. First, we fix an Opinion j, which is unimportant at time T1. Again
from Statement 2 in Lemma 3.10 it follows that xmax(t) − xj(t) ≥ 2α

√
n log n for all

t ∈ [T1, T1 + τ ] w.h.p. Hence, all unimportant opinions at time T1 do not become
significant during the time interval by a union bound. At last, the statement follows
because all but a single opinion becomes insignificant, hence, T2 − T1 ≤ τ .

3.3. From Additive to Multiplicative Bias (Phase 3)

Recall that T2 is defined as the end of Phase 2, and x(T2) is a configuration with an addi-
tive bias of Ω

(√
n log n

)
. In the following we assume w.l.o.g. that x1(T2) ≥ x2(T2) . . . ≥

xk(T2).
We start our analysis of Phase 3 with Lemma 3.13 where we show that the support of

the largest opinion does not shrink by more than a factor of two. The lemma is equivalent
to Statement 2 of Lemma 3.10 from Phase 2.

Lemma 3.13. Let c > 0 be an arbitrary constant and define T = c · n2 · log n/x1(T2).
Then

Pr [for all t ∈ [T2, T2 + T ] : x1(t) ≥ x1(T1)/2] ≥ 1− n−5.

Observation 3.14. For a given time Ti and configuration x(Ti) let

T̂ =inf {t≥Ti | u(t) /∈ [(n−xmax(t))/2−8 ·
√
n lnn,n/2+∆u] or xmax(t)<xmax(t̂)/2}

be a stopping time and let (X̂(t))t denote the process with X̂(t) = X(t) for all t ≤ T̂
and X̂(t) = X(T̂ ) for t > T̂ . Then (X̂(t))t and (X(t))t behave the same for every
t ∈ [Ti, Ti +O

(
n2/xmax(Ti) · log n

)
] w.h.p.

We proceed to show that the support difference between Opinion 1 and each other
opinion doubles every O

(
n2/x1(T2)

)
interaction until the ratio between the support of

both opinions is sufficiently large. This will be used in Lemma 3.16 to show that after
O
(
log n · n2/x1(T2)

)
interactions we reach w.h.p. a configuration with a constant factor

multiplicative bias.

Lemma 3.15. Fix an Opinion i ̸= 1 and assume there exists t0 ≥ T2 with xi(t0) ≥
20
√
n log n and x1(t0) − xi(t0) ≥ α

√
n log n. Let T = 420 · n2/x1(T2) and let ∆0 =

x1(t0)− xi(t0). Then

Pr
[
∃t∈ [t0, t0+T ] : x1(t)−xi(t)≥min{2 ·∆0, 3 ·xi(t)} or xi(t)<20

√
n logn

]
≥1−2n−3.

Proof. Our proof follows the analysis of the classical Gambler’s ruin problem that within
O
(
n2/x1(t0)

)
interactions we track the evolution of x1(t) − xi(t) and show it reaches

2(x1(t0)−xi(t0)) before (x1(t0)−xi(t0))/2 as long as xi(t) remains larger than 20
√
n log n.
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We use Observation 3.14 to utilize the stopped process (X̂(t))t. First we bound the
number of (1, i)-productive interactions in the interval [t0, t0+T ]. Assume for the remain-
der of the proof that xi(t) ≥ 20

√
n log n for all t ∈ [t0, t0 + T ] (otherwise the statement

follows immediately). Recall that only (1, i)-productive interactions change the quantity
x1(t) − xi(t). Still, other interactions may change the remainder of the configuration,
e.g., an additional undecided agent is created. An interaction is (1, i)-productive with
probability

u(t) · x1(t) + x1(t) · (n− u(t)− x1(t)) + u(t) · xi(t) + xi(t)(n− u(t)− xi(t))
n2

=
(x1 + xi) · n− x21 − x2i

n2
=
x1 · (n− x1) + xi · (n− xi)

n2
≥ x1 · (n− x1)

n2
≥ x1(T2)

6n

where we use x1(T2)/2 ≤ x1(t) ≤ 2n/3. Thus, an application of Chernoff bounds provides
for c1 = c/7 at least c1 · n many (1, i)-productive interactions in [t0, t0 + T ] w.h.p.

For 1 ≤ i ≤ c1 · n we define ti as the ith (1, i)-productive interaction in [t0, t0 + τ ].
Then for an arbitrary i ∈ [1, c1 · n] we have

Pr [X1(ti + 1)−Xi(ti + 1) = x1 − xi + 1|X(ti) = x]

=
1

2
+

u · x1 + xi · (n− u− xi)− (u · xi + x1 · (n− u− x1))
2(u · x1 + xi · (n− u− xi) + (u · xi + x1 · (n− u− x1)))

=
1

2
+

(x1 + xi + 2u− n) · (x1 − xi)
2((x1 + xi) · n− (x21 + x2i ))

≥ 1

2
+

(xi − 16
√
n lnn)(x1 − xi)

2(n(x1 + xi)− (x21 + x2i ))

≥ 1

2
+

(xi − 16
√
n lnn)(x1 − xi)

2n(4xi + xi)

=
1

2
+

(
1− 16

√
n lnn

xi

)
· (x1 − xi)

10n

≥ 1

2
+
x1(t0)− xi(t0)

60n

where we use x1 < 4 · xi and xi > 20
√
n log n (otherwise the statement follows im-

mediately). Additionally note that the last inequality holds as long as x1(t) − xi(t) ≥
(5/6) · (x1(t0)− xi(t0)).

Thus, the quantity x1(ti) − xi(ti) increases by 1 with probability at least p = 1/2 +
(x1(t0) − xi(t0))/(60n) and decreases by 1, otherwise. Observe that starting at time t0
with ∆ = x1(t0) − xi(t0) as long as x1(ti) − xi(ti) ≥ ∆/2 for the first i ≤ c1 · n many
(1, i)-productive interactions in [t0, t0 + T ] the evolution of x1(ti)− xi(ti) can be viewed
as a biased random walk on the line starting at ∆ where a ”right step” happens with
probability p and ”left step” with probability 1−p, otherwise. The correctness follows from
a standard coupling argument between two biased coins. Formally let Tmin = inf{t′ ≥
t0 | x1(t′) − xi(t′) = (5/6) · (x1(t0) − xi(t0))} and Tmax = inf{t′ ≥ t0 | x1(t′) − xi(t′) =
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2(x1(t0) − xi(t0))}. First we bound Pr [Tmax > Tmin]. It follows from Lemma A.18 the
probability of ever having an excess of (5/12) ·∆ ”left steps” to ”right steps” is at most(

1− p
p

)(5/12)·∆
=

(
30n−∆

30n+∆

)(5/12)·∆
=

(
1− 2∆

30n+∆

)(5/12)·∆
≤ e−

(5/6)·∆2

30n+∆ ≤ n−5

where we use ∆ ≥ α
√
n log n.

Next we bound Pr [Tmax > c1 · n]. Again we use the assumption xi(ti) − xj(ti) ≥
(1/2) · ∆. Now consider τ = c1 · n independent Poisson trials (Si ∈ {−1, 1} for all
i ≤ c1 · n) each with success probability p = 1/2 + ∆/60n. Let S =

∑c1·n
i=1 Si. Using the

Hoeffding bound (Theorem A.6) for λ = ∆ we get

Pr [Tmax > c1 · n] ≤ Pr [S < ∆]

= Pr [S − E [S] < ∆− E [S]]

≤ Pr [|S − E [S]| > E [S]−∆]

≤ 2 · e−
2∆2

4·c1·n

≤ 2 · e−
∆2

2·c1·n

≤ n−5

Hence, the statement follows by the union bound over the high probability events from
above.

Now, we are ready to analyze the running time of Phase 3.

Lemma 3.16. Assume that x(T2) is a configuration with x1(T2) − xi(T2) ≥ α
√
n log n

for all i ̸= 1. Let T3 = inf { t ≥ T2 | ∀i ̸= 1 : x1(t) ≥ 2xi(t) }. Then

Pr
[
T3 − T2 ≤ 420 · n2 · log n/x1(T2)

]
≥ 1− 2n−2.

Proof. The main idea of this proof is to repeatedly apply Lemma 3.15 to each Opinion i ̸=
1 until either the support of Opinion 1 becomes larger than 2n/3 or the support of Opinion
i becomes less than 20 ·

√
n log n. In both cases, it then follows that the ratio between

the support of Opinion 1 and Opinion i is larger than two, and there is a time when
there is a multiplicative bias between the first opinion and each other opinion. We use
Observation 3.14 to utilize the stopped process (X̂(t))t. Let τ = 420 ·n2 · log n/xmax(T2)
and fix an Opinion i ̸= 1 at time T2 with xi(T2) ≥ 20

√
n log n. We divide the interactions

from [T2, T2 + τ ] into log n subphases of length 420 · n2/x1(T2) each. For 1 ≤ j ≤ log n
we define ℓ1 = 1 and ℓj = 1 + (j − 1) · 420 · n2/x1(T2). Then the jth subphase contains
interactions ℓj to (ℓj+1−1). Furthermore, we define tj as the first interaction in subphase
j. Now fix an arbitrary subphase j. It follows from Lemma 3.15 that there exists a time
t′ ∈ [tj , tj+1] such that w.h.p. either x1(t)− xi(t) ≥ min{2 · (x1(tj)− xi(tj)), 3 · xi(t)} or
xi(t) < 20

√
n log n.

We apply Lemma 3.15 to each subphase. From the union bound over all subphases
and all opinions, it follows that after at most log n subphases w.h.p. there exists for
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each Opinion i a time t′i ∈ [T2, T2 + τ ] with either (a) x1(t′i) − xi(t
′
i) ≥ 2n/3 or (b)

xi(t
′
i) < 20

√
n log n or (c) x1(t′i) ≥ 4 · xi(t′i). In the following, we consider three cases.

Case (a) There exists an Opinion i ̸= 1 such that x1(t′i) − xi(t′i) ≥ 2n/3. Hence, we
have at t′i a constant multiplicative bias between Opinion 1 and all other opinions i ̸= 1.
From this, the statement follows immediately with T3 = t′i.

Case (b) For Opinion i there exists a t′i such that xi(t′i) < 20
√
n log n. From Lemma 3.10

it follows that xi(t) ≤ 40
√
n log n for all t ∈ [t′i, T2 + τ ] w.h.p. Additionally we know

x1(t) ≥ x1(T2)/2 ≥ c′
√
n log2 n for all t ∈ [t′i, T2 + τ ]. Hence, x1(t)/xi(t) ≫ 2 for all

t ∈ [t′i, T2 + τ ] and, from the viewpoint of Opinion i we have that T3 can take on an
arbitrary value in [t′i, T2 + τ ].

Case (c) For Opinion i there exists a t′i such that x1(t′i) ≥ 4 · xi(t′i). From the claim
below it follows that w.h.p. x1(t) ≥ 2xi(t) for all t ∈ [t′i, T2 + τ ] and from the viewpoint
of Opinion i we have that T3 can take on an arbitrary value in [t′i, T2 + τ ].

Now Lemma 3.16 follows either immediately from Case (a). Or we can apply Case (b)
or Case (c) for each Opinion i ̸= 1 and then we can choose T3 = T2 + τ . It remains to
show the following claim.

Claim 3.17. Let j be an arbitrary subphase and let t0 ∈ [tj , tj+1]. Fix an Opinion i and
assume xi(t0) ∈ [20 ·

√
n log n, x1(t0)/4]. Then x1(t) ≥ 2 · xi(t) for all t ∈ [t0, T2 + τ ].

Proof. Recall that we showed for “small” opinions with xi < 20 ·
√
n log n that the mul-

tiplicative bias is always larger than a constant. Furthermore recall that τ = 420 · n2 ·
log n/x1(T2) and T2 is the end of Phase 2. Assume w.l.o.g. that we start with the anal-
ysis at time t0 = 0. We use Observation 3.14 to utilize the stopped process (X̂(t))t. An
interaction is productive w.r.t. to x1 and xi (meaning that either x1 or xi change) with
probability

p =
u · x1 + x1 · (n− u− x1) + u · xi + xi · (n− xi)

n2
≤ 3 · x1(T2)

n

for x1 ≥ 2 · xi. It follows from an application of Chernoff bounds that within a sequence
of T interactions, the number of 1-productive interactions is at most 2T ·p = 6T ·(x(T2)) ·
log n/n ≤ 2520n · log n with probability at least 1 − n−10. We define τ ′ = 2520n · log n
and consider τ ′ productive interactions. Let Z(t) = x1(t) − 2xi(t). We aim to use the
Hoeffding bound (Lemma A.7) to show that this quantity does not decrease significantly
throughout τ ′ productive interactions. Hence, we must calculate the probability that Z(t)
increases or decreases. Note that the maximum one step change in ∈ [−2, 2]. Assuming
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the next interaction is a 1-productive interaction for x(t) we have

Pr[Z(t+1)−Z(t)=1|X(t)=x]=
1

p
· x1 ·u
n2

=
x1 ·u

x1 ·(n−x1)+xi ·(n−xi)

Pr[Z(t+1)−Z(t)=−1|X(t)=x]=
1

p
· x1 ·(n−u−x1)

n2
=

x1 ·(n−x1)
x1 ·(n−x1)+xi ·(n−xi)

Pr[Z(t+1)−Z(t)=−2|X(t)=x]=
1

p
· xi ·u
n2

=
xi ·(n−xi)

x1 ·(n−x1)+xi ·(n−xi)

Pr[Z(t+1)−Z(t)=2|X(t)=x]=
1

p
· xi ·(n−u−xi)

n2
=

x1 ·u
x1 ·(n−x1)+xi ·(n−xi)

Therefore

E [Z(t+ 1)− Z(t)|X(t) = x] =
x1 · u− 2xi · u− x1(n− u− x1) + 2xi(n− u− xi)

x1 · (n− x1) + xi · (n− xi)

≥ (x1 − 2xi) · (2u− n+ x1) + x1 · xi
n− x1 + xi · (n− xi)

where we used that x1 ≥ 2 ·xi. Since xi ≥ 20 ·
√
n log n and u ≥ n/2−x1/2−8 ·

√
n log n

(Lemma 3.6), we get

E [Z(t+ 1)− Z(t)|X(t) = x] ≥ (x1 − 2xi) · (2u− n+ x1) + x1 · xi
n− x1 + xi · (n− xi)

≥ (x1 − 2xi) · (−16
√
n log n) + 4x1 · xi/5 + x1 · xi/5

n− x1 + xi · (n− xi)

≥ 2xi · 16
√
n log n+ x1 · xi/5

n− x1 + xi · (n− xi)
> 0

Thus, we have E [Z(t+ 1)− Z(t)|X(t) = x] ≥ 0 if x1 ≥ 2 · xi and xi ≥ 20 ·
√
n log n.

We are ready to apply the Hoeffding bound from Lemma A.7. Observe that |Z(t +
1)− Z(t)| ≤ 2 for all t ∈ [0, τ ′ − 1] and

S =

τ ′−1∑
t=0

Z(t+ 1)− Z(t) = Z(τ ′)− Z(0)

Then it follows from Hoeffding bound (Lemma A.7) with λ = Z(0) ≥ x1(0)/2 that

Pr [S < Z(0)− c1 · Z(0)] ≤ Pr [S − E [S] < −λ] ≤ exp

(
− 2λ2

16τ ′

)
≤ n−c·log

2(n)

for some constant c. Thus, we have that w.h.p. Z(τ ′) ≥ Z(0). Then,

x1(τ
′)

xi(τ ′)
=
x1(τ

′)− 2xi(τ
′)

xi(τ ′)
+

2xi(τ
′)

xi(τ ′)
=
x1(τ

′)− 2xi(τ
′)

xi(τ ′)
+ 2 =

Z(τ ′)

xi(τ ′)
+ 2 ≥ 2.

Thus, w.h.p. x1(τ ′) ≥ xi(τ
′). The claim follows from the union bound over all τ ′ < n3

interactions.
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3.4. From Multiplicative Bias To Absolute Majority (Phase
4)

Recall that T3 is the end of Phase 3, and X(T3) is a configuration with multiplicative
bias. In the remainder we assume that the bias is at least two. 2 In the following we
assume w.l.o.g. that x1(T3) > x2(T3) ≥ . . . ≥ xk(T3). The main result for this phase is
Lemma 3.21, where we show that the multiplicative bias is grown into a unique majority
opinion with support at least 2n/3 within O

(
n log n+n2/x1(T3)

)
interactions, w.h.p. To

do so, we first need an improved bound on the number of undecided agents that we reach
at the time T3 + O

(
n log n

)
. Additionally, we have to show that in the meantime, both

x1 and the multiplicative bias decrease only by a small constant fraction (Lemma 3.18
and Lemma 3.19). The proofs of both lemmas are similar to the proofs of Lemma 3.7
and Claim 3.17, respectively.

Lemma 3.18. Let c > 0 be an arbitrary constant and define T = c · n2 log n/x1(T3).
Then

Pr [for all t ∈ [T3, T3 + T ] : x1(t) ≥ x1(T3)/2] ≥ 1− n−5.

Proof. Let

T̂ = inf { t ≥ T3 | u(t) /∈ [(n− xmax(t
′))/2− 8 ·

√
n lnn, n/2 + ∆u] }

be a stopping time and let (X̂(t))t denote the process with X̂(t) = X(t) for all t ≤ T̂
and X̂(t) = X(T̂ ) for t > T̂ . From Lemma 3.4 and Lemma 3.6 it follows T̂ − t =
Ω
(
n2/xmax(t) · log n

)
w.h.p. Thus, (X(t))t and (X̂(t))t behave the same between time t

and t+O
(
n2/xmax(T3)·log n

)
. As long as x1(t′) ≤ 2·x1(T3) an interaction is 1-productive

with probability

u · x1 + x1 · (n− u− x1)
n2

=
x1 · (n− x1)

n2
≤ 2 · x(T3)

n

It follows from an application of Chernoff bounds that within a sequence of c · n2 ·
log n/x1(T3) interactions, the number of 1-productive interactions is at most 4 · c ·n log n
with probability at least 1 − n−10. Now consider τ = 4 · c · n log n such productive
interactions and let Zt denote the change w.r.t. x1(t), i.e., the support of the largest
opinion increase or decrease by one, respectively. That is, assuming the next interaction
is a 1-productive interaction for x(t) we have

Pr [Zt = 1] =
u · x1

u · x1 + x1 · (n− u− x1)
=

u

(n− x1)
Pr [Zt = −1] = 1− Pr [Zt = 1]

2If we start with an initial multiplicative bias (1+ ϵ) < 2, we skip Phase 2 and Phase 3. Technically, we
follow the proof of Lemma 3.16 to amplify the bias from (1 + ϵ) up to factor 2 where we essentially
apply Lemma 3.15 constantly many times.
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Therefore

E [Zt] =
u− (n− u− x1)

n− x1
=

2 · u+ x1 − n
n− x1

≥ −48 ·
√
n lnn

n

Let Z be the sum of Zt for all t ∈ [1, τ ]. Then it follows from Hoeffding bound with
λ = x1(T2)/2− 200 ·

√
n ln3/2 n

Pr

[
Z < −1

2
· x1(T1)

]
≤ Pr [Z < E [Z]− λ] ≤ e−

2λ2

4τ ≤ n−10

Note that if (ever) x1(t′) > 2 · x1(T3) for some t′ ∈ [T3, T3 + T ] the statement hold
by the union bound and the previous part. Thus, starting with x1(T3) throughout the
next c · n2/xmax(T2) · log n interactions xmax(t) ≥ xmax(T3)/2 with probability at least
1− n−5.

Lemma 3.19. Assume that x(T3) is a configuration with x1(T3) ≥ 2·xi(T3) for all i ̸= 1.
Then

for all i ̸= 1 Pr
[
for all t ∈ [T3, 111 · n2/x1(T3)] : x1(t) ≥ 7/4 · xi(t)

]
≥ 1− 2n−3.

Proof. The proof is similar to the proof of Claim 3.17 using Z(t) = x1(t) − 7xi(t)/4
instead of Z(t) = (t) − 2xi(t). We have Z(0) = x1(0) − 7xi(0)/4 ≥ x1(0)/8 and
E [Z(t+ 1)− Z(t)] ≥ 0.

Next, we improve the lower bound on the number of undecided agents from Lemma 3.4.
Recall that T4 is the end of Phase 4, defined as T4 = inf { t ≥ T3 | x1(t) ≥ 2n/3 }.

Lemma 3.20. Let Tu = inf { t ≥ T3 | u(t) ≥ n/2− 7/8 · x1(t) }. Then

Pr [min(T4, Tu)− T3 ≤ ⌈7n lnn⌉] ≥ 1− 4n−3.

Proof. To bound Tu − T3, we follow the proof of Lemma 3.2. Let α = 7/8 and let
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Z(t) = n− 2u(t)− α · x1(t) and let r2 =
∑

i∈[k] x
2
i . Then

E [Z(t)−Z(t+1)|X(t)=x]

=−x1 ·u
n2
·(2−α)−

k∑
i=2

xi ·u
n2
·2− x1(n−u−x1)

n2
·(−2+α)−

k∑
i=2

xi(n−u−xi)
n2

·(−2)

=(2−α) · −(x1 ·u)+x1 ·(n−u−x1)
n2

+2 ·
k∑
i=2

−(xi ·u)+xi ·(n−u−xi)
n2

=(2−α) · x1 ·(n−2u−x1)
n2

+2 ·
k∑
i=2

xi ·(n−2u)−x2i
n2

=2 · x1 ·(n−2u)−x21
n2

−α · x1 ·(n−2u−x1)
n2

+2 · (n−u−x1)(n−2u)

n2
−2 · r

2−x21
n2

=2 · x1 ·(n−2u)+(n−u−x1)(n−2u)−r2

n2
− α ·x1 ·(n−2u−x1)

n2

=2 · (n−2u) ·(n−u)−r2

n2
− α ·x1 ·(n−2u−x1)

n2

=2 · (n−2u−α ·x1) ·(n−u)+α ·x1 ·(n−u)−r2

n2
− 2α ·x1 ·(n−u)−α ·x1 ·(n+x1)

n2

=2 · (n−2u−α ·x1) ·(n−u)
n2

+
2α ·x1 ·(n−u)−2r2

n2
− 2α ·x1 ·(n−u)−α ·x1 ·(n+x1)

n2

=2 · Z(t) ·(n−u)
n2

+
α ·x1 ·(n+x1)−2r2

n2

=
Z(t)

2n
+

1

n2
·
(
3n2/2−2n ·u+α ·x1 ·n+α ·x21−2r2

)
Note that r2 =

∑k
i=1 x

2
i ≤ x21 + (4/7) · x1 ·

∑k
i=2 xi = x21 + (4/7) · x1 · (n − u − x1).

Furthermore, by Lemma 3.6 and Lemma 3.4 and using x1 ≤ 2n/3, we have w.h.p.
u < n/2 + ∆u and u ≥ n/2 − x1/2 − o(x1) ≥ n/8 for sufficiently large n. For the last
expression in parentheses, we calculate

3n2/2− 2n · u+ α · x1 · n+ α · x21 − 2r2

≥ 3n2/2− 2n · u+ α · x1 · n+ α · x21 − 2(x21 + (4/7) · x1 · (n− u− x1))
≥ n2/2− 2n ·∆u + α · x1 · n+ α · x21 − 2(x21 + (4/7) · x1 · (n− u− x1))
≥ n2/2− 2n ·∆u + α · x1 · n+ α · x21 − 2(x21 + (4/7) · x1 · ((7/8) · n− x1))

≥ 0

for α = 7/8.
The remainder of the proof is identical to that of Lemma 3.2 except that we note

that either E [Z(t)− Z(t+ 1)|X(t) = x] ≥ Z/(n) or at some time t ∈ [T3, n
3] : x1(t) <

7/4 · xi(t) for some i > 1. The latter event is ruled out w.h.p. by Lemma 3.19.

81



Chapter 3. Approximate Plurality Consensus via Undecided State Dynamics

We now apply Theorem A.9 with r = 3 lnn, s0 = n−2u(0)−7/8 ·x1(0) ≤ n, smin = 1,
δ = 1/(2n) and get with T = inf { t ≥ T3 | Z(t) ≤ 0 }

Pr [T − T3 > ⌈7n lnn⌉] ≤ Pr

[
T − T3 >

⌈
6 · lnn+ ln(n− 2u(T3)− 7/8 · x1(T3))

1/(2n)

⌉]
≤ e−3·ln(n) = n−3 .

Note that if ever x1(t) ≥ 2n/3 for t < ⌈7n lnn⌉, we have T4 ≤ ⌈7n lnn⌉. Otherwise, we
have shown that Tu ≤ ⌈7n lnn⌉. Hence, overall we get min{Tu, T4}−T3 ≤ ⌈7n lnn⌉.

We are ready to analyze the running time of Phase 4.

Lemma 3.21. Assume that x(T3) is a configuration with x1(T3) ≥ 2·xi(T3) for all i ̸= 1.
Then, there exists a constant c such that Then

Pr
[
T4 − T3 ≤ 7n lnn+ 444 · n2/x1(T3)

]
≥ 1− 2n−2.

Proof. To show the statement, we require the following two auxiliary results. First,
we establish in Claim 3.22 that the improved bound on the undecided agents from
Lemma 3.20 holds throughout the remainder of the phase. As before, we define Tu =
inf { t ≥ T3 | u(t) ≥ n/2− 7/8 · x1(t)/2 } and recall that T4 denotes the end of the phase.
The proof follows along the lines of the proof of Lemma 3.6 with the new Z(t).

Claim 3.22. Pr
[
for all t ∈ [Tu,min{n3, T4}] : u(t) ≥ n/2− 7/16 · x1(t)− 8 ·

√
n lnn

]
≥

1− 4n−3.

Proof. We follow the proof idea of Theorem 6 in [64]. We define a new set of random
variables with Y (t) = exp(η · Z(t)) for t ≥ T and η =

√
lnn/n and let z0 = 4η · n.

Fix an arbitrary i ≥ 0. We first give a bound for E [Y (i+ 1)− Y (i) | Z(i) = z]. Note
that Z(i+ 1)− Z(i) ∈ [−2, 2]. We get

E [Y (i+ 1)− Y (i) | Z(i) = z]

= E
[
eη·Z(i+1) − eη·Z(t) | Z(i) = z

]
= eη·z · E

[
eη·(Z(i+1)−z) − 1 | Z(i) = z

]
= eη·z ·

∑
j∈{−2,−9/8,0,9/8,2 }

(eη·j − 1) · Pr [Z(i+ 1)− z = j|Z(i) = z]

We derive the following bound for exp(η ·j)−1. Since exp(x) ≤ 1+x+x2 for x ≤ 1 and
η → 0 for large n, we have exp(2η) ≤ 1+2η+(2η)2 = 1+2η+η ·z0/n. For j ∈ [−2, 2], we
thus have exp(ηj)− 1 ≤ ηj + η · z0/n. We know that E [Z(i+ 1)− Z(i)|Z(i) = z] ≤ − z

n
w.h.p. from Part 1.
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Thus, for all z ≥ z0 we have

E [Y (i+ 1)− Y (i) | Z(i) = z]

≤ eη·z ·
∑

j∈{−2,−9/8,0,9/8,2 }

(η · j + η · z0/n) · Pr [Z(i+ 1)− z = j | Z(i) = z]

= eη·z · η · (E [Z(i+ 1)− Z(i) | Z(i) = z] + z0/n) ≤ 0.

In total, we get

E [Y (t)] = E [Y (0)] +
t−1∑
i=0

E [Y (i+ 1)− Y (i)] ≤ 1.

We can apply Markov’s inequality since ∀t ≥ 0 : Y (t) ≥ 0. Thus,

Pr [Z(t) ≥ 2z0] = Pr [Y (t) ≥ exp(2ηz0)] ≤
E [Y (t)]

n8
≤ n−8.

Finally, we apply the union bound over n3 − T ≤ n3 interactions.

Observation 3.23. For a given time Ti and configuration x(Ti) let

T̂ =inf {t≥Ti | u(t) /∈ [(n−7/8 ·x1(t))/2−8 ·
√
n lnn,n/2+∆u] or xmax(t)<xmax(t̂)/2}

be a stopping time and let (X̂(t))t denote the process with X̂(t) = X(t) for all t ≤ T̂
and X̂(t) = X(T̂ ) for t > T̂ . Then (X̂(t))t and (X(t))t behave the same for every
t ∈ [Ti, Ti +O

(
n2/xmax(Ti) · log n

)
] w.h.p.

Next, in Claim 3.24, we bound the number of interactions until the support of Opinion
1 has doubled. Similarly to Lemma 3.15, the proof uses the classical gambler’s ruin
problem to show that in a sequence of c ·n2/x1(t) interactions, the support of Opinion 1
doubles w.h.p. before it halves.

Claim 3.24. Let x(t) be a configuration with u(t) ≥ n/2− 7/16 · x1(t)− 8 ·
√
n lnn and

x1(t) < 2n/3. We define t′ = c · n2/x1(t) for a suitable chosen constant c. Then

Pr
[
∃t′ ∈ [t, t+ t′] : x1(t

′) ≥ 2 · x1(t) or x1(t) ≥ 2n/3
]
≥ 1− n−3.

Proof. The proof is similar to the proof of Lemma 3.15, but instead of analyzing the quan-
tity x1(t)− xi(t), we only analyze the growth of x1(t) directly. We use Observation 3.23
to utilize the stopped process (X̂(t))t. First we bound the number of 1-productive in-
teractions in the interval [t0, t0 + τ ] for τ = 111 · n2/x1(t0). Assume for the remainder
of the proof that x1(t) < 2n/3 for all t ∈ [t0, t0 + τ ] (otherwise the statement follows
immediately). Recall that only 1-productive interactions change the quantity x1(t), but
other interactions may change the remainder of the configuration, e.g., an additional
undecided agent is created.
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An interaction is 1-productive with probability

u(t) · x1(t) + x1(t) · (n− u(t)− x1(t))
n2

≥ x1(t) · (n− x1(t))
n2

≥ x1(t)

3n
≥ x1(t0)

10n

where we use x1(t0)/2 ≤ x1(t) < 2n/3.
Thus, an application of Chernoff bounds provides for c1 = 110 at least c1 · n many

1-productive interactions in [t0, t0 + τ ] w.h.p. For 1 ≤ i ≤ c1 · n we define ti as the ith
1-productive interaction in [t0, t0 + τ ]. Then for an arbitrary i ∈ [1, c1 · n] we have

Pr [X1(ti + 1) = x1 + 1 | X(ti) = x]

=
1

2
+

x1 · u− x1(n− u− x1)
2 · (x1 · u+ x1(n− u− x1))

=
1

2
+

2u− n+ x1
2(n− x1)

≥ 1

2
+
x1(t0)

110n

Note that the last inequality holds as long as x1(t) ≥ x1(t0)/2. Thus, the quantity x1(ti)
increases by 1 with probability at least p = 1/2 + x1(t0)/(110n) and decreases by 1,
otherwise. Observe that starting at time t0 with ∆ = x1(t0) as long as x1(ti) ≥ ∆/2 for
the first i ≤ c1 ·n many 1-productive interactions in [t0, t0+τ ] the evolution of x1(ti) can
be viewed as a biased random walk on the line starting at ∆ where a ”right step” happens
with probability p and ”left step” with probability 1−p, otherwise. The correctness follows
from a standard coupling argument between two biased coins. Formally let Tmin =
inf{t′ ≥ t0 | x1(t′) = x1(t0)/2} and Tmax = inf{t′ ≥ t0 | x1(t′) = 2x1(t0)}.

First we bound Pr [Tmax > Tmin]. It follows from Lemma A.18 the probability of ever
having an excess of ∆/4 ”left steps” to ”right steps” is at most(

1− p
p

)∆/4

=

(
55n−∆

55n+∆

)∆/4

=

(
1− 2∆

55n+∆

)∆/4

≤ e−
∆2

2(55n+∆) ≤ n−5

where we use ∆ ≥ x1(t0)/2.
Next we bound Pr [T1 > c1 · n]. Now consider τ = c1 · n independent Poisson trials

(Si ∈ {−1, 1} for all i ≤ c1 ·n) each with success probability p = 1/2+x1(t0)/(36n). Let
S =

∑c1·n
i=1 Si. Using the Hoeffding bound (Theorem A.6) for λ = ∆ we get

Pr [T1 > c1 · n] ≤ Pr [S < ∆]

= Pr [S − E [S] < ∆− E [S]]

≤ Pr [|S − E [S]| > E [S]−∆]

≤ 2 · e−
2∆2

4·c1·n

≤ 2 · e−
∆2

2·c1·n

≤ n−5

Hence, the statement follows by the union bound over the high probability events from
above.
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We are now ready to show the lemma with these two auxiliary claims. We start with
a brief overview of the proof. The proof is similar to the proof of Lemma 3.16, but we
only have to consider the analog to Case (a). We repeatedly apply Claim 3.24 to Opinion
1. Then the support of the largest opinion, x1(t) doubles every O

(
n2/x1(t)

)
interactions

until its support becomes larger than 2n/3. After doubling at most log n times, we reach
a configuration where x1(t) ≥ 2n/3. This will be our time T4.

To show that there exists a t with x1(t) ≥ 2n/3, we use Observation 3.23 to utilize the
stopped process (X̂(t))t.

To track the progress of Opinion 1, we divide the interactions from [T3 + t0, T3 +
t0 + c · n2/x1(T3)] into subphases of varying length. Let T(0) = T3 + t0 and define for
1 ≤ ℓ ≤ log n

T(ℓ) = inf { t ≥ T(0) | x1(t) ≥ 2ℓ · x1(T(0)) or x1(t) ≥ 2n/3 } .

We call the interactions in the interval
[
T(ℓ−1), T(ℓ)

)
subphase ℓ. Note that by definition

of T(ℓ), the support of x1 doubles in every subphase (or x1 ≥ 2/3n and Phase 4 ends). In
more detail, for a fixed but arbitrary subphase ℓ it follows from Claim 3.24 that the length
of subphase ℓ is at most c · n2/x(T(ℓ−1)) ≤ c · n2/(2ℓ−1 · x1(T(0)), w.h.p. Hence, it follows
that there exists a time t′ ∈ [T(ℓ−1), T(ℓ−1)+c·n2/x(T(ℓ−1))] such that x1(t′) ≥ 2ℓ ·x1(T(0))
or x1(t′) ≥ 2/3 ·n, w.h.p. From the union bound over all subphases, we get that after at
most log n subphases, there exists w.h.p. a time t′ ∈ [T(0), T(logn)] such that x1(t′) ≥ 2n/3.
This holds since otherwise x1(t′) ≥ 2logn · x1(T(0)) ≥ n ·

√
n log2 n > n., a contradiction.

Summing up the length of all subphases for c = 111 gives us

logn∑
i=1

c · n2

2i−1 · x1(T(0))
=

c · n2

x1(T(0))
·
logn∑
i=1

1

2i−1
≤ 2 · c · n2

x1(T(0))

and hence, T4 − T3 ≤ 7n lnn+ 4 · c · n2

x1(T3)
as claimed.

3.5. From Absolute Majority to Consensus (Phase 5)

Recall that T4 is the end of Phase 4, and X(T4) is a configuration where the support of
the largest opinion, xmax(T4), is at least 2n/3. The fifth phase ends when all agents agree
on the Opinion max(T4). In the following we assume w.l.o.g. that x1(T4) ≥ x2(T4) ≥
. . . ≥ xk(T4).

Lemma 3.25. Assume that x(T4) is a configuration with x1(T3) ≥ (2/3) · n. Let T5 =
inf { t ≥ T4 | x1(t) = n }. Then

Pr [T5 − T4 ≤ c · n log n] ≥ 1− n−3.

Proof. The idea is to show that all but Opinion 1 lose their support, and then the
remaining undecided agents eventually adopt the only remaining opinion. We start with
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the first part by defining the potential function Ψ(t) = xi(t)/x1(t) for a fixed opinion
i ̸= 1. We show that Ψ(t) decreases in expectation and apply a known multiplicative drift
theorem. We calculate the expected change of Ψ by considering all possible interactions.

E [Ψ(t+ 1)−Ψ(t) | |X(t) = x]

=
x1(n− u− x1)

n2
·
(

xi
x1 − 1

)
+
xi(n− u− xi)

n2
·
(
xi − 1

x1

)
+
∑
j ̸=1,i

xj(n− u− xj)
n2

·
(
xi
x1

)
+
ux1
n2
·
(

xi
x1 + 1

)
+
uxi
n2
·
(
xi + 1

x1

)

+
∑
j ̸=1,i

uxj
n2
·
(
xi
x1

)
+

∑
x2j +

∑
xju+ u2

n2
·
(
xi
x1

)
−Ψ(t)

=
Ψ(t)

n2
·
(
x1(n− u− x1)

x1 − 1
+

u

x1 + 1
− (n− u− xi)

)
= −Ψ(t)

n2
·
(
(x1 − xi)−

n− u− x1
x1 − 1

− u

x1 + 1

)
≤ −Ψ(t)(x1 − xi)

2n2
≤ − Ψ

20n

where we use x1 ≥ (6/10) · n (follows by Lemma 3.26). We now apply the multiplicative
drift result (Theorem A.9) with r = 3 lnn, s0 = xi(T4)/x1(T4), smin = (n − 1)−1 and
δ = n−1 · c−1. Then, we get for Ti = inf { t ≥ T4 | xi(t) = 0 }

Pr
[
T − T4 > c′n log n

]
≤ Pr

[
T − T4 >

⌈
r + ln(s0/smin)

δ

⌉]
≤ e−r = n−3

From the union bound, it follows w.h.p. that all but Opinion 1 vanishes. It remains to
show that all undecided agents vanish as well by adopting the only remaining opinion
in the population. This follows by a simple argument about the one-way epidemics in
O(n log n) interactions w.h.p.

Lemma 3.26. Let c > 0 be an arbitrary constant and define T = c · n2 log n/x1(T4).
Then

Pr [for all t ∈ [T4, T4 + T ] : x1(t) ≥ (6/10) · n] ≥ 1− n−5.

Proof. Let

T̂ = inf { t ≥ T4 | u(t) /∈ [(n− xmax(t
′))/2− 8 ·

√
n lnn, n/2 + ∆u] }

be a stopping time and let (X̂(t))t denote the process with X̂(t) = X(t) for all t ≤ T̂
and X̂(t) = X(T̂ ) for t > T̂ . From Lemma 3.4 and Lemma 3.6 it follows T̂ − t =
Ω
(
n2/xmax(t) · log n

)
w.h.p. Thus, (X(t))t and (X̂(t))t behave the same between time t

and t+O
(
n2/xmax(T4) · log n

)
. An interaction is 1-productive with probability

u · x1 + x1 · (n− u− x1)
n2

=
x1 · (n− x1)

n2
≤ 1

4
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It follows from an application of Chernoff bounds that within a sequence of c · n · log n
interactions, the number of 1-productive interactions is at most (c/4) ·n log n with prob-
ability at least 1 − n−10. Now consider τ = (c/4) · n log n such productive interactions
and let Zt denote the change w.r.t. x1(t), i.e., the support of the largest opinion increase
or decrease by one, respectively. That is, assuming the next interaction is a 1-productive
interaction for x(t) we have

Pr [Zt = 1] =
u · x1

u · x1 + x1 · (n− u− x1)
=

u

(n− x1)
Pr [Zt = −1] = 1− Pr [Zt = 1]

Therefore

E [Zt] =
u− (n− u− x1)

n− x1
=

2 · u+ x1 − n
n− x1

≥ −48 ·
√
n lnn

n

Let Z be the sum of Zt for all t ∈ [1, τ ]. Then it follows from Hoeffding bound with
λ = n/15− 200 ·

√
n ln3/2 n

Pr
[
Z < − n

15

]
≤ Pr [Z < E [Z]− λ] ≤ e−

2λ2

4τ ≤ n−10

The statement follows by the union bound.

87





Chapter 4.
Exact Plurality Consensus

In this part, we propose and analyze protocols for the exact plurality consensus problem
in the population protocol model. Recall that plurality opinion refers to the opinion
with the initially largest support (assuming it is unique), and bias denotes the difference
between that opinion’s initial support and that of the second largest opinion. A major
part of research seeks to identify this plurality opinion for any initial bias, even if it is
only 1.

We present new population protocols for plurality consensus with a primary focus on
space complexity. Commonly, exact consensus problems are preferably solved by stable
protocols. The exact majority problem for k = 2 opinions has been solved stably time-
and space-optimal by Doty et al. [47]. Unfortunately, there is a known Ω

(
k2
)

lower
bound on the state space by Natale and Ramezani [72]. To beat this quadratic lower
bound, we allow our protocols to fail with negligible probability as an essential aspect.

Results and Methodology We design protocols that, w.h.p., identify the plurality
opinion quickly and have an almost optimal space complexity, even if the initial bias is
only 1 (hence we solve exact plurality consensus). With this goal, allowing a negligible
failure probability is essential, as otherwise – independently of the runtime – any protocol
requires Ω

(
k2
)

states [72].
Our first protocol uses O

(
k + log n

)
states. It consists of k − 1 tournaments, during

which a defender and challenger opinion compete. To be more precise, we utilize the
optimal majority protocol of Doty et al. [47] in each tournament and update the champion
and challenger opinions afterward. W.h.p., the plurality opinion emerges victorious from
all tournaments in time O

(
k · log n

)
. This protocol relies on ordering the opinions to

determine the next challenger opinion.
Our second protocol avoids the requirement of such an order by using instead a leader

election subprotocol to determine the next challenger opinion. Using the leader election
protocol of Gasieniec and Stachowiak [51] for this,1 our protocol for unordered opinions
still uses O

(
k+log n

)
states but has a slightly increased runtime of O

(
k·n·log n+n·log2 n

)
interactions. Avoiding such an ordering might seem like an esoteric challenge by itself.
Still, this approach plays a crucial role in our third protocol (see below), where it is used

1W.h.p., that protocol finishes in O
(
log2 n

)
time, leading to the corresponding term in our increased

runtime. While there is a O
(
logn

)
time leader election protocol [32], that runtime holds only in

expectation, which is too weak for our purpose.
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to perform tournaments only for a subset of a priori unknown (significant) opinions that
remain after an initial pruning phase. The following theorem states the properties of our
first two protocols.

Theorem 4.1. Assume we have a population of size n with k ≤ n/40 initial opinions.

1. If the opinions are numbered 1, . . . , k then SimpleAlgorithmconverges w.h.p. to the
plurality opinion in O

(
k · n · log n

)
interactions using O

(
k + log n

)
states.

2. If there is no order among the opinions, SimpleAlgorithmcan be modified to converge
w.h.p. to the initial plurality opinion in O

(
k ·n · log n+n · log2 n

)
interactions using

O(k + log n) states.

For constant values of k, the unmodified SimpleAlgorithmconverges w.h.p. in optimal
O
(
log n

)
parallel time and requires only O

(
log n

)
states. This matches the state and time

complexities of the state-of-the-art exact majority protocol [47]. Note that the protocol
from [47] is stable but ours gives w.h.p. guarantees only.

Our main contribution is the third protocol, which uses a pruning process to remove
insignificant opinions before the tournaments start, reducing their number from k− 1 to
n/xmax (remember that xmax denotes the initial size of the plurality opinion).

The following theorem states the results for our final population protocol formally.

Theorem 4.2. Assume we have a population of size n with k initial opinions where
xmax > n1/2+ε for some small constant 1/2 > ε > 0. ImprovedAlgorithmconverges w.h.p.
to the plurality opinion in O

(
n2/xmax ·log n+n·log2 n

)
interactions using O

(
k ·log logn+

log n
)

states.

The idea of the pruning process is to have each subpopulation of opinions run through
a few preprocessing phases controlled by their own dedicated phase clock. Phase clocks
[1, 10, 28, 51] are a common tool in population protocols to synchronize agents into
phases. We will show that larger subpopulations finish their preprocessing phase faster
than smaller subpopulations.

This way, we can filter out smaller opinions during the preprocessing before starting the

tournaments. Assuming the initial largest opinion is of order n1/2+Ω
(
1
)
, we solve exact

plurality in O
(
n2/xmax log n+log2 n

)
interactions using O

(
k log logn+log n

)
states. Note

that if k < n1/2−ε, the requirement xmax > n1/2+ε is always fulfilled (this follows from
xmax ≥ n/k). The assumption on xmax is necessary to wrap up the preprocessing and
initiate the tournament part. In addition to the slightly increased state space due to using
phase clocks, we cover a broader range of initial configurations. Furthermore, the runtime
is improved in many cases since it does not only depend on k anymore. For example, in
Fig. 4.1, we observe the power of the pruning process in a skewed configuration. After
the pruning, all but the two largest opinions (below the threshold) are eliminated and
do not proceed towards the tournament phase.
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4.1. The Simple Algorithm

Figure 4.1.: Skewed configuration: Pruning Process

4.1. The Simple Algorithm

In this section, we present our first algorithm called SimpleAlgorithm, where each agent
has one of k possible opinions numbered from 1 to k. The main idea of the protocol
is as follows. It performs a sequence of tournaments of length O

(
n log n

)
synchronized

by a phase clock [1]. In each tournament, two fixed opinions are chosen, and an exact
majority protocol [47] is used to determine the majority opinion among the two of them.
In the first tournament, opinions 1 and 2 compete. In tournament i > 1 the winner of
tournament i − 1 (called defender) competes against opinion i + 1 (called challenger).
The winner of tournament i has the largest support among the first i+ 1 opinions, and
the last tournament winner is the plurality opinion.

To reach our state bound of O
(
k+log n

)
, our protocol has to be very economical with

the states. For example, an agent can’t store two different opinions, which would already
require Ω

(
k2
)

states. Our protocol starts with an initialization phase, which splits the
agents into four roles: collector, player, clock, and tracker. Every agent u has a
variable role[u] to store its role in the protocol. The protocol consists of an initialization
part (see Algorithm 4.3) and three different subprotocols specific to the corresponding
roles.

We already argued that no agent can store two different opinions. Hence, the initial-
ization phase is used to “collect” opinions: Initially, each agent is a collector-agent for
its initial opinion. Each agent has a variable tokens, which can take on values between
1 and 10. The total number of tokens equals the number of agents initially supporting
that opinion. When a collector-agent meets another agent with the same opinion,
it increases the token counter accordingly. This frees up the other agent, which takes
on a role in { clock, tracker, player }. During the tournament, the collector-agents
are responsible for initiating the majority protocols between the actual challenger and
defender. To this end, they have two Boolean variables defender and challenger, which
indicate that their opinion participates in the match as defender or challenger, respec-
tively. Additionally, all collector-agents have a bit winner, which indicates the majority
opinion of the last tournament. This bit is used to broadcast the final majority opinion.
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Figure 4.2.: State Space S. Note that [i] = { 1, . . . , i } and [−i; j] = {−i, . . . , j }.

Finally, a value ℓ ∈ [−10, 10] cancels opposing opinions before a match.

Internally, the clock agents run the leaderless phase clock from [1] on a local counter
count (see Section 4.2). Whenever the local counter passes through zero, the agent
increases a variable phase modulo 10. The new value is disseminated to all other agents
via one-way epidemics. The role of the tracker-agents is to store the number of the
current challenger in a variable tcnt (short for tournament counter). Whenever one of
the tournaments is over, this variable is increased by one. The Collector-agents use this
to set the challenger bit at the beginning of a new tournament. The player-agents are
the ones performing the k − 1 tournaments. At the beginning of a tournament, these
agents adopt the opinions from collector-agents, which have either the defender or
challenger bit set and set their playeropinion to A or B, respectively.

Overview of the State Space We use Smaj to denote the set of states used by the
exact majority protocol. Figure 4.2 gives an overview of the variables used by our protocol
and how some can be attributed to the different roles. Note that S is not the actual
state space used by our protocol. Our actual state space is much smaller since the role-
specific variables must only be tracked by the corresponding roles. We describe this more
thoroughly in the corresponding proof of the state complexity in Section 4.5.

Simplifications for the Pseudocode In our formal algorithms, we define how both
involved agents (u, v) update their states in an interaction: u is the initiator, and v
is the responder of that interaction. To simplify the exposition of our protocols, we
allow the use of a "do once" statement in the pseudocode for state transitions that are
to be executed only once in a given phase. For example, consider the scenario where
the challenger wins the match. In the subsequent conclusion phase, all defender agents
are removed, and all challenger agents set the defender bit. This must be done exactly
once since. Otherwise, all bits are lost. See Line 27 to Line 29 in Algorithm 4.4 for
the corresponding pseudocode using a “do once” statement. Similarly to the “do once”
statements, we assume that agents can determine whether they interact for the “first
time” in a phase. Note that these statements can be implemented using constantly many
bits, such that the overall state space size increases only by a constant factor.
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4.2. Clock and Tracker Agents

The clock-agents have two different tasks (see Algorithm 4.1). First, they decide when
the initialization phase is over. They use their local counter count (initialized to zero) for
that. Whenever they interact with a non-collector-agent, they increase count by one.
If they interact with a collector-agent count is decreased by one as long as it is larger
than zero. As soon as count reaches 5 log n, the agent decides that the initialization phase
is over (constant fraction of non-collector–agents is reached) and sets phase = 0, which
is then spread via broadcast (phase is initialized at the beginning of the whole protocol
to −1). From there on, the clock-agents use count to run the leaderless phase clock from
[1] for the synchronization, which works as follows. The counter count is used modulo
Ψ = Θ(log n). Whenever two clock-agents interact, the one with the lower counter value
(w.r.t. the circular order modulo Ψ) increments its count. If both clock-agents have the
same count value, ties are broken arbitrarily. When count = 0, the variable phase is
increased by one (modulo 10). Alternatively to this simple clock, any phase clock that
requires O

(
log n

)
states can be used.

Algorithm 4.1: Clock Synchronization
Clock Synchronization. We assume that u is a clock agent.

2 if phase[u] = −1 then
count[u]←

4

{
count[u] + 1 if role[v] ̸= collector

count[u]− 1 if role[v] = collector ∧ count[u] > 0

if count[u] = 5 · log n then
6 phase[u]← 0

8 if phase[u] ̸= −1 and phase[v] ̸= −1 then
▷ leaderless phase clock from [1]

10 leaderless_phase_clock (count[u], count[v])

12 if count[u] passes through zero then
phase[u]← phase[u] + 1 mod 10

The tracker-agents determine which opinion has to take over the role as a challenger
(see Algorithm 4.2). The state variable tcnt is initialized (see initialization phase) with
1 and incremented by one (modulo k) whenever phase switches over to zero. Note that
tcnt = 2 during the first tournament. This holds due to the initialization of tcnt with one
and the fact that it is incremented as soon as phase is incremented from −1 to 0 when
the initialization phase ends.

Algorithm 4.2: Synchronization-Subroutine
1 We assume that u is a tracker−agent.

3 if phase[u] = 0 and u interacts for the first time in this phase then
tcnt[u]← tcnt[u] + 1.
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4.3. Initialization

The objective of this phase is to partition the population into four different roles: collector,
player, tracker, and clock. Initially, every agent has the collector role, storing one
token of its initial opinion. Whenever two collector-agents with the same opinion and
at most 10 tokens in total interact, the responder sets its tokens variable to the sum of the
tokens of both agents, and the initiator switches to a role in { clock, tracker, player }
uniformly at random. Agents with opinion 1 set defender = 1 during their first in-
teractions. As soon as agent u becomes clock-agent, it uses the state variable count
to determine when the initialization is over by setting phase[u] equals 0, which is then
spread via broadcast. At this point, the first tournament starts with the setup phase.

Algorithm 4.3: Initialization Phase
We assume that u and v are initially in phase[u] = phase[v] = −1.

2

if u is the initiator for the first time and opinion[u] = 1 then
4 defender[u] = True

6 if role[u] = role[v] = collector and opinion[u] = opinion[v]
and tokens[u] + tokens[v] ≤ 10 then

8 (tokens[u], tokens[v])← (0, tokens[u] + tokens[v])

with probability 1/3:


(role[u], count[u]) ← (clock, 0)

(role[u], tcnt[u]) ← (tracker, 1)

(role[u], playeropinion[u]) ← (player, U)

10

if phase[v] = 0 then
12 phase[u]← 0

Lemma 4.3. Let t̂ denote the interaction, in which the first agent sets phase = 0. Then,
the following statements hold w.h.p.:

1. t̂ = O
(
n · (k + log n)

)
.

2. After interaction t̂ each of the roles collector, clock, tracker, and player are
held by at least n/10 agents.

3. After interaction t̂ all collector-agents of opinion 1 have their defender bit set.

Proof. We consider a modified process, which mimics the original process. The only
difference is that in this process, we prevent clock-agents from setting their phase to
0 by removing Line 6 of Algorithm 4.1. This causes all agents to remain in the init
phase, i.e., they have phase set to −1 indefinitely. All agents perform according to
Algorithm 4.3 in this setting. This simplifies the analysis as we do not have to deal
with some agents that have already started the tournament. In the following, we assume
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that this modified process runs alongside the original process and that the same random
choices are made in both processes. Let now τm(x) denote the first interaction in which
at most x · n collector-agents remain in the modified process. Similarly, let t̂m denote
the first interaction in which some clock-agent counts to 5 log n. Additionally, we define
the same notation with subscript o with respect to the original process. Observe that
t̂m = t̂o as until this interaction occurs, both processes are identical.

We start by establishing that, in the modified process, τm(1/3) is reached quickly.
The number of remaining collector-agents decreases fast as long as all nodes follow
Algorithm 4.3.

Claim 4.4. It holds that τm(1/3) = O
(
n · k

)
w.h.p.

Proof. To reach interaction τm(1/3) exactly ⌈2n/3⌉ agents need to leave their collector
role due to the token transfer in Line 8 of Algorithm 4.3. In the following, we say that
an interaction is good if two agents interact that both are collector-agents, have the
same opinion, and have at most 10 tokens. Such an interaction decreases the number
of collector-agents by one. Let zi(t) denote the number collector-agents of opinion
i, which have at most 5 tokens before interaction t is executed. If two such agents of
the same opinion interact, the interaction is guaranteed good. Fix now some interaction
t < τ(1/3), i.e., an interaction before which more than n/3 collector-agents are still
present. Then, the probability for interaction t to be good is

k∑
i=1

zi(t)

n
· zi(t)− 1

n− 1
≥ 1

n2

k∑
i=1

zi(t)
2 − 1

n2

k∑
i=1

zi(t)

(a)

≥ 1

n2

(∑k
i=1 zi(t)

)2
k

− 1

n

(b)

≥ 1

n2
n2

36 · k
− 1

n

(c)

≥ 1

500k

For the third inequality (b), we apply the following counting argument to bound
∑k

i=1 zi(t):
only n/6 agents may have at least 6 tokens as the number of tokens sums to n at all
times. We assume that at time t, there are still n/3 total collector-agents remaining.
Hence,

∑k
i=1 zi(t) ≥ n/3− n/6 = n/6. For the last inequality (c), we use that k ≤ n/40

as assumed in Theorem 4.1. As each interaction is good with a probability of at least
1/500k, independently, we consider a sequence of 500nk interactions and apply Cher-
noff’s bounds. This yields that, w.h.p., there will be at least ⌈2n/3⌉ good interaction
in this sequence, reducing the number of collector-agents below n/3. In other words:
τ(1/3) < 500nk w.h.p.

In the following claim, we bound the time for the first clock-agent to count until
5 log n in the modified process.

Claim 4.5. It holds that τm(2/3) < t̂m and t̂m = O
(
n · (k + log n)

)
w.h.p.

Proof. We consider the modified process and couple the counting procedures of any fixed
clock-agent with a biased random walk on the non-negative line. The current value
of the counter variable corresponds to the position of the walk on the line. Each time
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the clock-agent interacts as an initiator with a non-collector-agent, the random walk
process moves to the right. Similarly, when interacting with a collector-agent the
random walk moves to the left (or remains at 0 if its current position is 0). We are
interested in the interactions required for the random walk to hit the value 5 log n as
this corresponds to the clock-agent counting until 5 log n. Until τm(2/3) is reached, this
hitting time may be minorized with the hitting time of a random walk that has probability
exactly q = 2/3 to move to the left and probability p = 1/3 to move to the right. Due
to the strong drift towards 0, it is known that such a random walk takes poly(n) steps
w.h.p. to hit 5 log n. We utilize a variant of a known random walk result (Lemma A.17)
to determine the constant hidden in poly(n). It implies that this hitting time is at least
n2.5 with probability at least 1−n−2.5. Therefore, w.h.p., the clock-agent will not reach
a counter value of 5 log n before, either, τm(2/3) is reached or n2.5 interactions have
passed. Now, observe that τm(2/3) < τm(1/3) as the number of collector-agents can
only decrease over time. This implies by Claim 4.4 that τm(2/3) < n2.5 w.h.p. for large
enough n. Hence, t̂m(2/3) precedes n2.5 w.h.p. and t̂m > τm(2/3) follows.

To show the upper bound on t̂m, we first argue that soon after τm(1/3) some clock-
agents increases its counter to 5 log n. We follow a similar approach and fix the modified
process at some interaction t ≥ τm(1/3) together with a clock-agent and its correspond-
ing random walk. This time, we majorize the time for the counter to reach 5 log n with
the hitting time of a random walk with p = 2/3 and q = 1/3. Such random walk is known
(e.g., Theorem 18.2 of [65]) to have a hitting time of O

(
log n

)
w.h.p. For convenience, we

included a similar statement in Lemma A.17. Each movement of the random walk cor-
responds to one interaction as the initiator of the clock-agent. As the agent is selected
as an initiator with probability 1/n in each interaction, it follows from a Chernoff bound
that O

(
n log n

)
interactions guarantee sufficient movements of the random walk w.h.p.

Therefore, some clock-agents hits 5 log n before time τm(1/3) +O
(
n log n

)
w.h.p. From

Claim 4.4 we know that τm(1/3) = O
(
n · k

)
w.h.p., allowing us to simplify this upper

bound to O
(
n · (k + log n)

)
.

To show the first two statements of the lemma, we need the guarantees of Claim 4.5
in terms of the original process. Initially, we established that t̂o = t̂m and that until
this interaction, both processes act identically per definition. Additionally, note that
Pr[τo(2/3) = τm(2/3)] ≥ Pr[τm(2/3) ≤ t̂m]. This inequality holds because, if the event
τm(2/3) ≤ t̂m occurs, then both processes acted identically until interaction τm(2/3).
Therefore, the amount of collector-agents is the same in both processes until this
interaction, implying that τm(2/3) = τo(2/3). By Claim 4.5 we have that τm(2/3) ≤ t̂m
w.h.p. and therefore τm(2/3) = τo(2/3) is also a high probability event. Hence, w.h.p.,
Claim 4.5 also holds when exchanging t̂m by t̂o and τm(2/3) by τo(2/3), leading to the
statement: τo(2/3) < t̂o = O

(
n·(k+log n)

)
w.h.p. This inequality immediately yields the

first statement of the lemma. We also use this inequality to show the second statement
of the lemma as it implies that at t̂o at most 2n/3 collector-agents remain w.h.p.
Therefore, at time t̂o, at least n/3 collector-agents must have left their role. Every
agent that switches its role selects a new role uniformly and independently at random.
Hence, it follows from Chernoff bounds that each non-collector role consists of at least
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(n/3) ·(1/3)(1−o(1)) > n/10 agents. Additionally, note that there must be at least n/10
collector-agents at all times. This follows since there are n tokens in total, and only
collector-agents can hold up to 10 tokens each.

The proof for the final statement of the lemma is straightforward. It suffices to show
that every agent interacts at least once before the first clock-agent sets phase to 0. Even
if a clock-agent interacts with a non-collector-agent each time it is selected as initiator,
it takes at least 5 log n such interactions for it to set phase to 0. From Chernoff’s bounds,
it follows w.h.p. that it requires more than 2n log n overall interactions for any clock-
agent to be selected as initiator sufficiently many times. However, any fixed agent acts
as an initiator at least once within 2n log n interactions w.h.p. As each node is selected
with probability 1/n as an initiator, the probability that an arbitrary but fixed agent is
not selected is at most (1 − 1/n)2n logn ≤ exp(−2 log n) ≤ n−2. A union bound over all
agents shows that this is enough time for every agent to act as an initiator at least once
w.h.p.

Algorithm 4.4: Tournament Algorithm
if phase[u] = phase[v] = 0 then ▷ Setup Phase

2

if role[u] = collector and role[v] = tracker and opinion[u] = tcnt[v] then
4 challenger[u]← True

6 if role[u] = collector then

ℓ[u]←


tokens[u] if defender[u]
−tokens[u] if challenger[u]
0 otherwise.

8

if phase[u] = phase[v] = 2 then ▷ Cancellation Phase
10

if role[u] = role[v] = collector then

12 (ℓ[u], ℓ[v])←
(⌊

ℓ[u] + ℓ[v]

2

⌋
,

⌈
ℓ[u] + ℓ[v]

2

⌉)
14 if phase[u] = phase[v] = 4 then ▷ Lineup Phase

16 if role[u] = collector and role[v] = player and playeropinion[v] = U then

playeropinion[v]←


A if ℓ[u] > 0

U if ℓ[u] = 0

B if ℓ[u] < 0.

18 ℓ[u]← sign(ℓ[u]) · (|ℓ[u]| − 1)

20 if phase[u] = phase[v] = 6 then ▷ Match Phase
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22 if role[u] = role[v] = player then
execute majority(Smaj) ▷ execute the exact majority protocol from [47]

24

if phase[u] = phase[v] = 8 then ▷ Conclusion Phase
26

if role[u] = collector and role[v] = player and playeropinion[v] = B do once
28 defender[u]← challenger[u]

challenger[u]← False
30

if role[u] = collector and role[v] = player and playeropinion[v] ∈ {A,U} do once
32 challenger[u]← False

34 if phase[v] >(10) phase[u] then
phase[u]← phase[v]

4.4. Player and Collector Agents

The tournaments are performed by both player- and collector-agents. Each tour-
nament has five phases: setup, cancellation, lineup, match, and conclusion. To
synchronize the beginning of the phases, we assume that there are phases (numbered
with odd numbers) in which none of the player- and collector-agents are activated.

In the setup phase, collector-agents determine if their opinion is the challenger (in
the i-th tournament, Opinion i + 1 is the challenger opinion and tcnt = i). Further-
more, all challenger and defender agents initialize a variable ℓ[u] with the (positive or
negative) amount of tokens they store. In the cancellation phase, the agents use the
load balancing protocol from [30, 69]. At the end of the protocol each agent u will have
ℓ[u] ∈ { ℓ− 1, ℓ, ℓ+ 1 } where ℓ is the average of all the ℓ[u] values from challengers and
defender agents rounded to the nearest integer. This phase reduces the number of tokens
such that each token can be assigned to a different player-agent. This will be done in
the lineup phase. The load balancing protocol can be used (see [47]) to calculate the
majority opinion for the case of k = 2 and large bias. In that case, the majority opinion
is the opinion for which a collector-agent exists with ℓ[u] ≤ −2 or ℓ[u] ≥ 2. For the ease
of presentation of our protocol, we do not distinguish between cases where the majority
is already determined after this phase.

In the match phase, the player-agents, now having opinions A (defender opinion), B
(challenger opinion), or U (undecided, held by player-agents which do not receive any
opinion) determine the majority opinion using the majority protocol of [47]. We assume
that the protocol returns the result in the state playeropinion, which takes the values of
the majority opinion.

Every player-agent u has a variable called output[u], which finally stores (unless there
is a tie) the majority opinion. The initial opinion is stored in input[u]. The protocol uses
a variable bias[u] and sets bias[u] = +1 if input[u] = A and bias[u] = −1 if input[u] = B.
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In our protocol, we execute the exact majority protocol among the player-agents only.
Hence, each player-agent needs the same set of states (additionally to the ones given in
Section 4.1) as the exact majority protocol from [47]. SimpleAlgorithmnow is initialized
as follows. A player-agent u with playeropinion[u] ̸= U sets input[u] = playeropinion[u].
A player-agent u with playeropinion[u] = U sets bias[u] = 0. With this initialization, the
protocol determines the majority in time O

(
n log n

)
since the number of player-agents

is at least Ω
(
n
)
. Note that in contrast to [47] we do not need the slow and always correct

algorithm used since we are only interested in results that hold with high probability. We
assume for every player-agent u that playeropinion[u] stores the output of the protocol.

In the conclusion phase, collector-agents holding the majority opinion set their
defender bit. They have to participate in the next tournament. In Lines 34 and 35
agents broadcast phase to remain synchronized.

The following lemma provides an invariant about the tournament approach. For 1 ≤
j < k, 0 ≤ i ≤ 9, let ti(j) be the interaction in which the first agent enters phase i for
the j-th time. Let ℓj be the plurality opinion ℓ among 1, . . . j.

Lemma 4.6. Fix a j with 1 ≤ j < k and assume that the first j−1 tournaments worked
correctly. Then we have w.h.p.

1. At time t2(j) all collector-agents u with opinion j + 1 have challenger[u] =
True. All other collector-agents have challenger[u] = False. Furthermore, all
collector-agents v not having opinion ℓj have defender[v] = False.

2. Let A be the set of agents u with playeropinion[u] = A and let B be the set of agents
with playeropinion[u] = B. At time t6(j) we have |A| ≥ |B| iff xℓj (0) ≥ xj+1(0).

3. If |A| ≥ |B| (|A| < |B|) at time t8(j) we have playeropinion[u] ∈ {A,U}
(playeropinion[u] = B) for all player-agents u.

4. At time t0(j+1) all collector-agents u with opinion ℓj+1 have defender[u] = True.

Proof. From Lemma 4.3, it follows that each role collector, player, clock, and tracker
is held by at least n/10 agents, w.h.p. We denote the set of player-agents by P and the
set of collector-agents by C. In the following, we prove the statements one after the
other.

Statement (1) First we show that in Phase 0 of tournament j each agent interacts at
least twice with a tracker-agent. w.h.p. we have at least n/10 tracker-agents; hence,
the probability of interacting in a fixed step with a tracker-agent is at least 1/10. The
claim now follows from Chernoff’s bounds.

Fix an agent u with opinion j+1. Since agent u interacts at least once with a tracker-
agent in Phase 0, u sets challenger[u] = True in Line 3 of Algorithm 4.4. defender[u] =
False follows from the initialization phase (see Algorithm 4.3). Now consider an agent
u with opinion ℓ ̸∈ {ℓj , j + 1}. If ℓ > j + 1 challenger[u] = defender[u] = False follows
from the initialization phase (see Algorithm 4.3). Now assume that ℓ < j +1. If opinion
ℓ > 1 the opinion was challenger opinion in tournament ℓ− 1. If ℓ = 1, the opinion was
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the defender in the first tournament. In either case, challenger[u] and defender[u] are set
to = False in Line 17− 21 of Algorithm 4.4 or in Line 5 of Algorithm 4.3.

Statement (2) In this proof we assume w.l.o.g. that xℓj (0) ≥ xj+1(0). Fix a collector-
agent u. From Statement (1) and Statement (4) of the previous tournament, it follows
that in Line 5 of Algorithm 4.4 ℓ[u] is set to tokens[u] if u is a defender agent and to
−tokens[u] if u is a challenger agent. In Line 8 of Algorithm 4.4, the defender and chal-
lenger agents perform a load balancing protocol for the rest of Phase 2. The protocol
is analyzed in [30, 69]). We define L =

∑
u:collector ℓ[u] as the total load at the end

of Phase 2 and L̂ =
∑

u:collector |ℓ[u]| as the total remaining load . From [30, 69] it
follows that at the end of Phase 2 we have w.h.p. (a) L = xℓj (0) − xj+1(0) and (b) for
every collector-agent u it holds either ℓ[u] ∈ {0, 1, 2} if xℓj (0) − xj+1(0) ≥ |C|/2 or
ℓ[u] ∈ {−1, 0, 1}, otherwise.

In Phase 2 of Algorithm 4.4 every collector-agent u recruits |ℓ[u]| many undecided
player-agents v. If ℓ[u] > 0 it sets playeropinion[v] = A and ℓ[u] = ℓ[u] − 1. If ℓ[u] < 0
it sets playeropinion[v] = B and ℓ[u] = ℓ[u] + 1. For rest of the player-agents it remains
playeropinion[v] = U . This is done in Lines 10− 12 of Algorithm 4.4. It remains to show
that each of these agents can recruit the sufficient amount of player-agents. We will
show the following claim.

Claim 4.7. Assume |P | is the number of player-agents. Fix the configuration at the
time of the end of Phase 2. W.h.p. we have either

(i) L̂ ≤ |P |/2 , or

(ii) for every collector-agent u we have ℓ[u] ∈ {0, 1, 2} and then there exists a
collector-agent u with ℓ[u] > 0.

Proof. Statement (i) follows directly for xℓj + xj+1 ≤ |P |/2. Hence, for the rest of
the proof, we can assume that L̂ > |P |/2. (Note that (i) would immediately follow if
|P | ≥ 2|C|, which is, unfortunately, quite unlikely). From the analysis in [30], it follows
that w.h.p. at least |C|/4 agents u have ℓ[u] = 0 (this holds due to the length of the phase
and the fact that in Line 8 of Algorithm 4.4 “+1”-s are canceled against “−1”-s). From
Chernoff’s bounds, it follows that w.h.p. |P | ≥ |C|/2. Statement (ii) follows directly for
xℓj (0)− xj+1(0) ≥ |C|/2 and the fact that L = xℓj (0)− xj+1(0). The claim follows from
a union bound over both statements.

At last it remains to show that Statement (2) follows by the claim and the fact that
L = xℓj (0) − xj+1(0). Assume Statement (i) holds. Chernoff bounds show that every
collector-agent u is able to recruit |ℓ[u]| many player-agents in O

(
n log n

)
interactions

w.h.p.
Now assume Statement (ii) holds instead. That is, no player-agent u is able to sets

playeropinion[u] = B in Line 11 of Algorithm 4.4 and hence, it is sufficient that at least
a collector-agent u with ℓ[u] > 0 is able to recruit a player-agent. Again, this follows
from Chernoff bounds for O

(
n log n

)
interactions w.h.p. Then Statement (2) follows from

a union bound.
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Statement (3) We execute the exact majority protocol from [47] among the player-
agents in Phase 6. (The detailed explanation can be found at the beginning of Sec-
tion 4.4.) Since the player size is at least n/10, Chernoff bounds provide enough mean-
ingful interactions in Θ

(
n log n

)
interactions w.h.p. Together with Statement (2), this

implies the claim.

Statement (4) Similarly to the proof of Statement (1), we can argue that in Phase 8
of tournament j, each agent interacts at least twice with a player-agent. From State-
ment (3), it follows that every player-agent v has playeropinion[v] = A (playeropinion[v] =
B, respectively) if the defender (challenger, respectively) opinion won the majority pro-
tocol in Phase 6. Note that the j-th tournament competition is between opinion j + 1
and ℓj .

First, let us assume that for each player-agent v, we have playeropinion[v] = B, i.e., the
challenger opinion won. Consider collector-agent u. In Phase 8 Algorithm 4.4 sets (see
Line 17-19) defender[u] = challenger[u], i.e., every collector-agent u with the challenger
opinion has defender[u] = True, and afterwards Algorithm 4.4 sets challenger[u] = False.

Now we assume that for each player-agent v we have playeropinion[v] ∈ {A,U}. In
that case, the defender opinion won the competition, and we have defender[u] = True
for all collector-agents with the defender opinion, as before.

4.5. Aftermath

This subsection briefly describes how our protocol finishes after the last tournament.
That is, the agents still need to ensure that the ultimate defender – w.h.p. the initial
plurality opinion – is disseminated to all agents.

The tracker-agents initiate a final broadcast. Recall that the tracker-agents have a
variable tcnt that keeps track of the challenger in each tournament. Once this variable
reaches k+1, all opinions have participated in a tournament, and those collector-agents
with the defender bit set have w.h.p. the initial plurality opinion. Now when a tracker-
agent u with tcnt[u] = k+1 interacts with a collector-agent v with defender[v] = True,
the defender agent sets its winner bit winner[v] ← True. This winner bit and the cor-
responding opinion is disseminated to all agents: any agent w for which winner[w] =
False sets (role[w], opinion[w],winner[w]) to (collector, opinion[v],True) when it inter-
acts with such a winner agent v (with winner[v] = True).

4.6. Proof of Theorem 4.1

Next, we prove the runtime and the bound on the state space from the first statement
in Theorem 4.1.

Proof: Correctness and Runtime for Statement (1) of Theorem 4.1.
We first apply Lemma 4.3. Then it holds that t0(1) = O

(
n · (k + log n)

)
and the

population is partitioned into the roles player, tracker, clock and collector where
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each role consists of at least n/10 agents w.h.p. The clock-agents run the phase clock
from [1] that provides synchronized phases of length Θ

(
n log n

)
w.h.p. In particular, the

separation between even phases is sufficiently large, i.e., it lasts longer than the time to
broadcast a message via one-way epidemic (see [10]). Now, we do an induction over k−1
tournaments to show that opinion ℓk is the defender at the end of the tournaments. At
the beginning of the first tournament, the time t0(1) Lemma 4.3 implies that opinion
1 is the initial defender w.h.p., i.e., ℓ1 = 1. The induction step from tournament j to
j + 1 follows by Lemma 4.6 w.h.p. Thus, the initial plurality opinion is the defender at
the end of the last tournament w.h.p. At last, all agents agree on the unique defender
opinion, followed by a final broadcast in O

(
n log n

)
interactions w.h.p. Summing up over

the initialization phase and all tournaments, SimpleAlgorithmrequires O
(
n · k · log n

)
interactions.

Proof: Space Complexity for Statement (1) of Theorem 4.1.
Figure 4.2 shows a superset S of our protocol’s state space. Depending on their role, the
agents only use a much smaller portion of S as described below.

Each agent’s state space consists of a set of shared variables, which any agent keeps
track of, and of role-specific variables, which only agents of that role keep track of. We
use Sshared to denote the state set represented by all shared variables and Sr to denote
the variables required for role r ∈ { clock, tracker, collector, player }.

Note that |Sshared| = Θ
(
1
)
. Indeed, the shared variables encompass the constant size

role variable, the constant size phase variable, and the constantly many bits required
for the do-once statements (see the overview of the state space at the beginning of
Section 4.1). The gray box in Fig. 4.2 indicates the role-specific variables. Specifically:

• clock-agents use count variable (Θ
(
log n

)
values).

• tracker-agents use the tcnt variable (k values).

• collector-agents use the opinion variable (k values), the tokens variable (10 val-
ues), the defender, challenger, winner bits, and the load balancing values ℓ (21
values).

• player-agents use the playeropinion variable (3 values) and O(log n) states for the
majority protocol from [47].

The maximum number of states required by any agent is then calculated as

|Sshared| ·max { Sclock, Stracker, Scollector, Splayer }
= Θ

(
1
)
·max {Θ

(
log n

)
, k, k · 10 · 23 · 21, 3 ·O

(
log n

)
}

= Θ
(
k + log n

)
,

Finishing the proof of the first protocol’s state complexity.
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4.7. The Improved Algorithm

The goal in this section is to remove insignificant opinions before they even participate
in the tournament. For now, let us assume that every agent u has a counter c[u], which
counts the number of interactions with the same opinion. As soon as the first counter
reaches a fixed value t ∈ O(log n), the agent sets phase[u] = 0, which triggers the be-
ginning of the tournaments. Only agents with at least a t/2 counter will participate in
the tournament. Insignificant opinions (those of support xi < xmax/cs for some con-
stant cs > 1) are effectively out of the race. This reduces the required tournaments to
O
(
n/xmax

)
, improving the runtime. To show the correctness of this approach, it remains

to show that w.h.p. every agent of the initial plurality opinion is among these remaining
agents, while no agents of insignificant opinions participate in the tournament. The rest
of the analysis follows along the lines of Statement (2) of Theorem 4.1. Unfortunately,
this simple approach requires an additional counter per agent, which exceeds the state
space bounds of Theorem 4.2.

Our main idea to save on states is to use phase clocks instead of the counters, one
per opinion. In the following, we call interactions meaningful if an agent interacts with
another agent of the same opinion. We split the agents into subpopulations; agents with
opinion i belong to subpopulation i. Every subpopulation runs its own phase clock as
follows. Every agent u has all states of the junta-driven phase clock (see [10, 28, 51]),
which requires only O

(
log logn

)
states compared to the Θ(log n) used by the simple

counter. The clocks work as follows. First, in every subpopulation, so-called junta
agents are selected in meaningful interactions. Then, the phase clock runs on a counter
in meaningful interactions only. Note that phase clocks of large subpopulations run
faster than phase clocks of small ones. Whenever a phase clock passes through 0, the
agents increment phase, which is initialized to −c (we assume that the value c ∈ N is
a sufficiently large constant). Once phase[u] becomes 0 for some agent u, this value is
broadcasted to all agents as before. All agents u for which phase[u] is still stuck at the
initial value phase[u] = −c will not participate in any tournament. Instead, they change
their role (with probability 1/3 each) from collector to clock, tracker, or player.
Note that in contrast to before, an agent u does not immediately adopt a new role when
it sets tokens[u] = 0 in an interaction with another collector-agent (see Line 11 of
Algorithm 4.5). Instead, agent u waits until phase[u] = 0. Then, agent u adopts a new
role iff. it either has no tokens (tokens[u] = 0) or its phase[u] = −c (the latter implies
that the clock of agent u did not pass through zero even once).

It is now easy to see that this results in a faster convergence time. Indeed, this follows
from how SimpleAlgorithmselects the next challenger opinion if there is no order among
the opinions (see description in Section 4.9): In a modified setup phase, a leader selects
an opinion as challenger randomly from the collector agents who have not yet been
defeated in a tournament (using a cascade of one-way epidemic processes on the way).
Hence, if no collector agents are left for some of the opinions, there will not be a
tournament involving that opinion. Thus, the total runtime will be reduced accordingly.

When the first agent reaches phase[u] = 0, all agents proceed with the modified version
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of SimpleAlgorithm. We remark that it can happen that only o(n) collector-agents
remain after removing all insignificant opinions. In this case, the cancellation phase
will not achieve a balanced state. However, all tokens will fit into the player agents
nonetheless, as we will show in Statement (3) of Lemma 4.12 that there will be a constant
fraction of agents for each role in { clock, tracker, player }.

While the overall approach sounds very easy, the crux lies in the analysis. First of
all, we have to analyze the speed of the clocks running via meaningful interactions only
(Lemma 4.9) Then, we have to show that all agents of the plurality opinion pass through
0 at least once, meaning they will participate in the tournament (Lemma 4.12). Finally,
we have to show that all agents with insignificant opinions will not participate in any
tournament, either because they did not finish the FormJuntaprotocol (Lemma 4.11) or
because their phase clock runs too slow (Lemma 4.12).

Junta-Driven Phase Clock We use the phase clock implementation from [28], which
starts by electing a junta. We select the junta in the same way but using meaningful
interactions only. Each agent is equipped with a level variable, initially 0, and a bit,
indicating whether the agent is still active. Agents progress through levels: They are
initially active and remain active and increase their level as long as they interact (as
initiators) with another agent on the same or higher level. They become inactive if
they initiate an interaction with another agent on a lower level. Finally, agents become
inactive if they hit the maximum level ℓmax = ⌊log logn⌋ − 3. All agents that reach this
maximum level form the junta and start the phase clock protocol.

Every agent is equipped with a phase counter p[u] (initially 0) in the phase clock.
Whenever a junta agent u initiates an interaction with an agent v it sets

p[u] = max{p[u], p[v] + 1}

. If the initiating agent u is not a junta agent, then u sets p[u] = max{p[u], p[v]}. For
i > 0, we say that an agent u passes through zero for the i-th time if its phase counter
p[u] fulfills ⌊p[u]/m⌋ ≥ i for the first time (m ∈ N is a fitting large enough constant).
Note that in [28], the same property is referred to as u reaching hour i for the first time.

Our protocol sets the maximum level to ℓmax = ⌊log log n⌋ − 2. We show in the proof
of Lemma 4.9 that this modified maximum level still allows the election of a junta w.h.p.
as long as the subpopulation has size at least

√
n.

We denote by Sc the Θ(log log n) states required to execute the junta election and
phase clock protocols. We assume that all agents are initially equipped with sufficiently
many additional states to run this clock. As soon as an agent u sets phase[u] to 0; it may
reuse these states. The following lemma states the properties of this phase clock.

Algorithm 4.5: Modified Initialization
1 Modified Initialization. We assume that phase[u] < 0.

3 if opinion[u] = opinion[v] and phase[v] < 0 then
form_junta_protocol (Sc)▷ execute the junta-election protocol from [28]
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5 loglog_phase_clock (Sc) ▷ execute the phase clock protocol from [28]

7 if phase clock of u passes through zero then
phase[u]← phase[u] + 1

9

if tokens[u] + tokens[v] ≤ 10 then
11 (tokens[u], tokens[v])← (0, tokens[u] + tokens[v])

13 if phase[u] = 0 or phase[v] = 0 then
if phase[u] = −c or tokens[u] = 0

15 with probability 1/3:


(role[u], count[u]) ← (clock, 0)

(role[u], tcnt[u]) ← (tracker, 1)

(role[u], playeropinion[u]) ← (player, U)

phase[u]← 0

Lemma 4.8. Assume that we run the junta-election process and phase clock from [28]
on a population of n agents. Let s(0) (e(0), resp.) be the interaction when the first (last,
resp.) junta agent is elected, and let s(i) (e(i), resp.) be the interaction when the first
(last, resp.) agent passes through zero for the i-th time. Then, for any constant a > 0,
there exist two properly chosen constants c′1 and c′2, such that we have with probability at
least 1− n−a,

1. The protocol elects a non-empty junta of size at most n0.98.

2. s(0) ≤ c′2 · n log(n).

3. c′1 · n log n ≤ s(i+ 1)− s(i) ≤ c′2 · n log n for any i = O(poly(n)),

4. s(i+ 1) > e(i) for any i = O(poly(n)).

Proof. Follows from Theorem 1 and Lemma 6 in [28].

We denote by sj(0) (ej(0)) the interaction at which the first (last, respectively) junta
agent is elected in subpopulation j. For i > 0, we denote by sj(i) (ej(i)) the time when
the first (last, respectively) agent of opinion j passes through zero for the i-th time. The
following lemma adjusts the results of Lemma 4.8 to subpopulations.

Lemma 4.9. Fix a subpopulation j and assume that xj ≥ n1/2. Consider the phase
clock driven by subpopulation j. Then, for any constant a > 0, there exist constants
c1 ≤ c2 ∈ N such that the following statements hold with probability 1− xj−a.

1. Subpopulation j elects a non-empty junta with at most (xj)0.98 agents.

2. sj(0) ≤ c2 · n
2

xj
log(n).

3. c1 · n
2

xj
log(n) ≤ sj(i+ 1)− sj(i) ≤ c2 · n

2

xj
log(n) for any i = O(poly(n)).
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4. sj(i+ 1) > ej(i) for any i = O(poly(n)).

Proof. The statements of this lemma would directly follow from Lemma 4.8 by replacing
n with xj . However, the junta-election mentioned in Lemma 4.8 assumes that a maximum
level ⌊log log xj⌋ − 3 is set. Our agents do not know the value xj , so we set this level to
ℓmax = ⌊log log n⌋ − 2 instead. With the following claim, we show that this modification
still leads to a junta of desired size if xj ≥

√
n

Claim 4.10. If xj ≥
√
n then the FormJuntaprotocol [28] configured with maximum level

ℓmax = ⌊log log n⌋ − 2 elects a non-empty junta of ≤ x0.98j agents within O
(
xj log(xj)

)
meaningful interactions and with probability at least 1− x−aj (for any constant a > 0).

Proof. We start by showing the bounds on the junta size. Depending on the size xj ≥√
n of the subpopulation j, we can express ℓmax as either (i) ⌊log log xj⌋ − 3, or (ii)
⌊log log xj⌋ − 2. Consider the first case. In this case, ℓmax matches the maximum level
in the specification of the FormJunta[28] protocol for populations of size xj . Therefore,
we can apply the corresponding Theorem 1, which states that a non-empty junta of size
≤ x0.98j is formed with probability 1− x−aj (for any constant a > 0).

In the other case ℓmax = ⌊log log xj⌋ − 2. Throughout the FormJuntaprocess, only
active agents may modify their level. That is, if an active agent u initiates a meaningful
interaction with a node v, then (i) it becomes inactive if v has a level lower than u,
or (ii) it remains active otherwise.2 Just as in [28], we denote by Bℓ the number of
agents that reach at least level i. Per definition, it must hold that Bℓ ≥ Bℓ+1 for any
level ℓ ≥ 0. First, we show that between 1 and x0.98j agents make it to level ℓmax with
probability 1 − x−aj (for any constant a > 0). The upper bound on this number follows
directly from Lemma 5 of [28]. It states that B⌊log log xj⌋−3 < x0.98j with probability
1− x−aj (again for arbitrary constants a > 0). Due to the monotonicity of Bℓ, it follows
that Bℓmax < x0.98j as well. To show the lower-bound Bℓmax > 1, we would like to use
Lemma 4 of [28]. Unfortunately, it only yields that Bℓmax−1 > 1. Fortunately, in the
proof of Lemma 4, they show the slightly stronger statement of Bℓmax−1 > x

2/3
j with

probability at least 1− x−aj . We argue that this implies that Bℓmax > 1 with probability
1− x−aj . To show this, we rely on the coupling idea described in Footnote 6 on page 100

of [28]. That is, we serialize the points in time {t(l)}
x
2/3
j

l=1 at which the first x2/3j agents
that entered level ℓmax − 1 make their first interaction as an initiator. At time t(l), the
l-th such agent decides whether it stays active and progresses to level ℓmax or becomes
inactive (according to (i) and (ii) above). Observe that for any such agent that makes
its decision after t(x2/3j /2), the probability of remaining active is at least x2/3j /(2xj) (as

at this time already x2/3j /2 agents entered level ℓmax−1). Hence, in expectation, at least

x
2/3
j /(2xj) ·x2/3j = x

1/3
j /2 agents progress to level ℓmax. From Chernoff bounds it follows

that at least x1/3j (1− o(1))/2 agents reach ℓmax with probability 1− x−ω(1)j .

2Note that the state transitions for agents on the first level 0 are slightly different but not relevant for
this proof.
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It remains to show that O
(
xj log(xj)

)
meaningful interactions suffice for the first agent

to reach level ℓmax. This follows from Lemma 3 of [28]. There, it is shown that even if the
maximum level is unbounded, all nodes become inactive within O

(
xj log(xj)

)
interactions

and with probability at least 1− x−ai .

Statement (1) now follows directly from this claim. For Statement (2), we also refer
to this claim and note that the junta election is driven by the subpopulation. Hence, the
O
(
xj log(xj)

)
meaningful interactions need to be converted into global interactions. To

that end, observe that (n2/xj) · (1 + o(1)) global interactions suffice for xj meaningful
interactions to occur with probability 1 − x−ω(1)j . Because the probability for any fixed
interaction to be meaningful is x2j/n

2, this immediately follows from Chernoff’s bounds.
A symmetric approach also yields that at least (n2/xj) · (1 − o(1)) global interactions
are required for xj many meaningful interactions to occur. This implies that sj(0) =
O
(
(n2/xj)·log xj

)
. Due to the constraint on xj , it holds that log(n) ≥ log(xj) ≥ log(n)/2

and Statement (2) follows.
The proof of Statement (3) follows from Statement (3) of Lemma 4.8 and a conversion

to global interactions. Additionally, observe that due to the constraint on xj , we have
poly(n) = poly(xj) and note that the constant hidden in the exponent of poly(n) in
Lemma 4.8 can be made arbitrarily large. The proof of Statement (4) again directly
follows from Lemma 4.8 together with the above observation of poly(n) = poly(xj).

Lemma 4.11. Fix a subpopulation j of xj ≤
√
n agents. Let ε > 0 be an arbitrary small

constant. Then, subpopulation j will not elect a junta agent before interaction n1.5−ε with
probability 1− n−ω(1).

Proof. To join the junta, agents must increase their level from 0 to ℓmax = ⌊log log n⌋−2.
Per the definition of the junta election [28], an agent u may only increase its level if it
interacts as an initiator (and some additional conditions hold). Furthermore, this increase
is, at most, an increment of 1. Therefore, any fixed agent u of subpopulation j requires
at least ℓmax meaningful interactions as an initiator to join the junta. We call such
an interaction bad in the following. The probability that any fixed interaction is bad
is (1/n) · xj/n ≤ n−1.5. Let ε > 0 be an arbitrary small constant. We show that in a
sequence of n1.5−ε there will be less than ℓmax bad interactions with probability 1−n−ω(1).
The lemma’s statement follows from a union bound over all agents in subpopulation i.

The number of bad interactions of u in this may be majorized by Bin(n1.5−ε, n−1.5).
It holds that

Pr
[
Bin(n1.5−ε, n−1.5) ≥ ℓmax

]
=

n1.5−ε−ℓmax∑
i=0

Pr
[
Bin(n1.5−ε, n−1.5) = ℓmax + i

]
(a)

≤ n1.5−ε · Pr
[
Bin(n1.5−ε, n−1.5) = ℓmax

]
In step (a), we use that ℓmax is much larger than the expected value of this distribution.
Hence, the terms in the sum decline with further i. This allows us to upper-bound each

107



Chapter 4. Exact Plurality Consensus

term in the sum by p = Pr
[
Bin(n1.5−ε, n−1.5) = ℓmax

]
. Using the PDF of the binomial

distribution, we can further bound p.

p =

(
n1.5−ε

ℓmax

)
· (n−1.5)ℓmax · (1− n−1.5)n

1.5−ε−ℓmax

≤
(
e · n1.5−ε

ℓmax

)ℓmax

(n−1.5)ℓmax =

(
e

ℓmax

)ℓmax

· 1

nε·ℓmax

Since ℓmax = Θ(log log n), this implies that p = n−ω(1). Hence,

Pr
[
Bin(n1.5−ε, n−1.5) ≥ ℓmax

]
= n1.5−ε · n−ω(1) = n−ω(1)

for sufficiently large n and the result follows.

In the following we define Ti(t) as the total number of tokens for opinion i at interaction
t, i.e.,

Ti(t) :=
∑

{u | opinion[u](t)=i }

tokens[u](t)

where opinion[u](t) and tokens[u](t) denote the values of the variables opinion[u] and
tokens[u], respectively, in interaction t. Note that Ti(0) is the initial support of opinion
i.

Lemma 4.12. Assume that xmax > n1/2+ε for a small constant ε > 0. Let i be the
initial plurality opinion and t̂ denote the first interaction in which phase = 0 for all
agents. Then, w.h.p., t̂ = Θ((n2/xmax) · log n) and the following holds after interaction t̂
w.h.p.:

1. There are at most O
(
n/xmax

)
distinct opinions left.

2. For the initial plurality opinion i it holds that Ti(t̂) = Ti(0).

3. Each of the roles clock, tracker, and player is held by at least n/10 agents.

Proof. We first show the bound on t̂. Recall that si(0) is defined as the interaction when
the first junta agent in subpopulation i is elected, and si(c) is defined as the interaction
when the clock of the first agent of opinion i ticks for the c-th time. We will prove upper
and lower bounds for t̂ based on si(c).

From Statements (1) and (3) of Lemma 4.9 (with a = 4) it follows that si(c) ≤
(c + 1)c2 · n2

xmax
log n with probability at least 1 − (1 + c) · x−4

max ≥ 1 − (1 + c) · n−2−4ε

(since we assume that xi ≥ n1/2+ε). Once an agent u has reached phase[u] = 0, this
phase value is disseminated to all other agents via one-way epidemics. It follows that,
w.h.p., t̂ ≤ si(c) + τBC , where τBC is the broadcast time with τBC ≤ c2 · n2/xmax log n
w.h.p. [10]. Ultimately, t̂ ≤ c2 · (c+ 2) · n2/xmax · log n w.h.p.

For the lower bound, we observe that t̂ ≥ sj(c) ≥ c·c1·n2/xj ·log n ≥ c·c1·n2/xmax·log n
with probability at least 1 − c · n−2−4ε. A union bound over all opinions yields t̂ ≥
c · c1 · n2/xmax · log n w.h.p. Together with the upper bound, the result for t̂ follows.
Next, we show the three statements individually.
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Statement (1) Let c∗ = (c + 2) · c2 be the constant from the upper bound on t̂ and
define cs = c∗/c1. In the following, we show that any insignificant opinion j vanishes.
For this, let j be an arbitrary but fixed opinion with xj < xmax/cs. We distinguish two
cases.

Case 1: xj ≥
√
n From Lemma 4.9 we get that w.h.p.

t̂ ≤ c∗ · n2

xmax
log n , sj(1) ≥ c1 ·

n2

xj
log n > c∗ · n2

xmax
log n,

where the last inequality uses the definition of cs and xj < xmax/cs. Together with a
union bound, this implies that w.h.p. the clocks of all agents of opinion j do not tick
even once. Hence, opinion j vanishes at the latest interaction t̂ w.h.p.

Case 2: xj <
√
n Similarly to before, we get from above bounds on t̂ and from

Lemma 4.11 that w.h.p.

t̂ = O
(
n3/2−ε · log n

)
and sj(1) ≥ sj(0) ≥ n3/2−ε

′
.

With ε′ < ε and a union bound, this again implies that w.h.p. the clocks of all agents of
opinion j do not tick even once. Hence, in this case, opinion j vanishes at the latest in
interaction t̂ w.h.p.

The two cases show that any opinion j with xj < xmax/cs w.h.p. does not compete
in the tournaments. Since we have n agents, at most n · cs/xmax = O

(
n/xmax

)
opinions

remain after t̂ interactions w.h.p.

Statement (2) To show the statement, we need to show that the clocks of any agent
of the initial plurality opinion i pass through zero at least once before the first agent u
hits phase[u] = 0. Recall that sj(c) is the interaction when the clock of any agent with
opinion j passes through zero for the c-th time (this is the first interaction when any
agent u sets phase[u] = 0).

We only consider opinions j with xj = Ω(xi) in the following. The statement for
smaller opinions follows from the above proof of Statement (1). There, we have shown
that the clocks of agents of smaller opinions will not pass through zero even once before
interaction t̂. For significant opinions j, we observe sj(c) ≥ c · c1 · n2/xmax w.h.p. as
shown at the beginning of the proof. From the bound on sj(c) and from Lemma 4.9 we
get that w.h.p.

sj(c) ≥ c · c1 ·
n2

xmax
log n and ei(1) ≤ si(2) ≤ 3c2 ·

n2

xmax
log n.

By choosing a sufficiently large constant c > 3c2/c1 in Algorithm 4.5, this yields sj(c) >
si(2) w.h.p. In other words, when the first agent’s clock has passed through zero for the
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c-th time, all agents of opinion i have passed through zero at least once. In particular,
phase[u] ̸= −c for any agent u with opinion i in that interaction.

The total number of tokens Ti(t) of opinion i can only change in some interaction t if an
agent u of opinion i adopts another role in Line 15 of Algorithm 4.5 while tokens[u] > 0.
However, we have just shown that when the first agent v sets phase[v] = 0, any agent u
of opinion i has phase[u] ̸= −c. Hence, it follows that agent u can adopt a different role
in Line 15 of Algorithm 4.5 only if agent u had tokens[u] = 0 in Line 14 of Algorithm 4.5.
Therefore, such an interaction does not change the total number of tokens for opinion i;
the statement follows.

Statement (3) The proof follows from similar arguments as the proof of Statement
(2) of Lemma 4.3.

4.8. Proof of Theorem 4.2.

We split the proof of Theorem 4.2 into three parts: the proof of the correctness of the
result, the proof of the runtime, and the proof of the state space requirements. Essentially,
the theorem follows from Lemma 4.12 for the correctness of the modified initialization
phase (Algorithm 4.5) and from Statement (2) of Theorem 4.1 for the correctness of
SimpleAlgorithm.

Proof: Correctness of Theorem 4.2.
In ImprovedAlgorithm, all agents start with the modified initialization phase defined in
Algorithm 4.5. After this initialization, they execute the tournament according to the
variant of SimpleAlgorithm, which does not need an order among the opinions (see Sec-
tion 4.9). By Statement (3) of Lemma 4.12, we get that all roles in { clock, tracker, player }
are held by at least a constant fraction of agents at time t̂. The number of agents with
role collector may be asymptotically much smaller. However, their number does not
affect the outcome of SimpleAlgorithm. Statement (2) of Lemma 4.12 guarantees that
the initial plurality still has all of its initial tokens at the beginning of the tournaments.
It follows along the lines of the proof of Statement (1) of Theorem 4.1 that this opinion
will be the defender at the end of the tournament, and all agents will output this opinion
after the final broadcast as described in Section 4.5.

Proof: Runtime of Theorem 4.2.
From Lemma 4.12 we get that, w.h.p., after t̂ = O

(
n2/xmax · log n

)
interactions all

agents u have phase[u] = 0 in Algorithm 4.5. The protocol then proceeds according to
the variant of SimpleAlgorithm, which does not require an order among the opinions
described in Section 4.9. By Statement (2) of Lemma 4.12, at most O

(
n/xmax

)
opinions

have at least one collector agent each, w.h.p. If no single collector agent is left
for some opinion, this opinion cannot become a challenger in any of the tournaments.
Therefore, the total number of tournaments executed in SimpleAlgorithmis bounded
w.h.p. by O

(
n/xmax

)
. As argued in the proof of Statement (1) of Theorem 4.1, each

tournament takes O
(
n log n

)
interactions w.h.p., and the modified SimpleAlgorithmalso
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needs to perform a leader-election, which takes O
(
n log2 n

)
interactions [51]. We conclude

that ImprovedAlgorithmhas a runtime of O
(
n2/xmax · log n+n log2 n

)
interactions w.h.p.

Proof: Space Complexity of Theorem 4.2.
ImprovedAlgorithmrequires the states used in the modified initialization (Algorithm 4.5)
and the states used by SimpleAlgorithm(Statement (2) of Theorem 4.1). In Algo-
rithm 4.5, all collector agents need to store the set of states Sc of size Θ(log log n)
required to run the junta-based phase clocks. Additionally, the size of the phase variable is
increased by a constant, starting now at−c. The remaining states have the same size as in
SimpleAlgorithm. This gives us the claimed state space size of Θ(k · log logn+log n).

4.9. Removing the Order

In this section, we explain how to remove the assumption that there is an order among
the k opinions. Recall that in SimpleAlgorithm, we let opinion 1 be the first defender
and opinion i+ 1 be the challenger of the i-th tournament. The number of tournaments
was counted in the tcnt variable of tracker-agents. Instead, we now assign the tracker
agent a slightly different task, and we use a unique leader agent (from the set of tracker
agents) that randomly samples the next challenger before each match.

The leader agent interacts until it encounters an opinion that has not yet participated in
a tournament. Then, the leader agent informs all collector-agents u with that opinion
that they are the next challenger. Unfortunately, this cannot be done efficiently for each
opinion. If xj = o(n) for some opinion j, it takes too long for the leader to interact with
an agent of that opinion. To solve this, we use the remaining tracker-agents. tracker
agents copy opinions that have not yet competed in a tournament (using the same number
of states as for the counter tcnt before). This effectively amplifies the number of agents
having an opinion that has not yet participated in a tournament, making this opinion
visible to the leader agent.

Challenger and Defender Selection Assume for now that we have a unique leader
agent. At the beginning of each tournament ℓ in Phase 0 the leader agent and tracker-
agents sample until they meet a collector-agent with an opinion j that has not yet
participated in a tournaments. As soon as the leader agent has sampled such an opinion
j (either from a collector-agent directly or from a tracker-agent), it starts to broadcast
among the tracker-agents, and the collector-agents that opinion j is the challenger
of tournament ℓ. (This broadcast is done on a constant fraction of all agents and thus
concludes w.h.p. within one phase.) Now, when a collector-agent u with opinion[u] = j
interacts with an agent v that knows the challenger opinion, it sets challenger[u]← True
and becomes a challenger agent. We can implement this broadcast using one additional
bit in the state space. We can use the same procedure to select the initial defender before
the tournament starts.
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Lemma 4.13. Assume a unique leader agent exists. Then a challenger (defender) opin-
ion is selected in O

(
n log n

)
interactions w.h.p.

Proof. The lemma follows essentially from the following observation. Let u be an arbi-
trary but fixed agent, and let A be a set of agents with |A| = Ω(n). Then it follows from
Chernoff bounds that in O(n log n) interactions u interacts with an agent v ∈ A at least
once.

We now give a detailed proof of the correctness of the challenger selection. The same
arguments follow the defender selection. We call an opinion j remaining challenger
candidate if the opinion has not participated in a tournament yet. First, we show that the
leader agent selects one of the remaining challenger candidates in O

(
n log n

)
interactions

w.h.p. Then we show that every collector-agent with opinion j sets its challenger bit
in O

(
n log n

)
interactions w.h.p.

Let agent w be the leader and let R be the set of agents whose opinions are among
the remaining challenger candidates. If |R| ≥ n/10, the probability that the leader w
interacts in a fixed step with an agent v ∈ R is at least constant. From Chernoff’s
bounds, the leader agent selects a challenger candidate in O

(
n log n

)
interactions w.h.p.

Assume |R| < n/10. In this case, we first argue that every tracker-agent u stores the
opinion of one of the remaining challenger candidates w.h.p. This follows from the one-
way epidemic process [10] where R is the set of infected agents and the tracker-agents
are susceptible. By Lemma 4.3, it follows that the number of tracker-agents is at least
n/10 w.h.p., and hence, the first claim holds.

For the second claim, we argue similarly. The first claim shows that the leader has
chosen a challenger opinion j w.h.p. The one-way epidemic provides that every tracker-
agent learns the identity of opinion j within O(n log n) interactions w.h.p. We utilize
an additional Boolean flag to determine whether a tracker-agent has already stored the
challenger opinion j. It now remains to show every collector-agent with opinion j
interacts at least once with a tracker-agent w.h.p. Again, this follows from Chernoff’s
bounds; hence, the second claim holds.

The statement follows from a union bound over both claims.

Regarding the leader agent, we use the leader election protocol from [51] with the phase
clock from [28]. We run this protocol among the tracker agents. It requires O

(
log log n

)
states and computes a unique leader agent in O

(
n log2 n

)
interactions w.h.p. Note that

the unique leader recognizes when the leader election protocol is concluded. This allows
us to reuse the states from the leader election and integrate the leader-election protocol
in an additional, special phase before the tournaments start.

We now describe how we modify SimpleAlgorithm. The leader election protocol from
[51] determines a unique leader agent. We execute this protocol among the tracker-
agents in a special phase as part of the preprocessing before the first tournament starts.
When a unique leader is elected (w.h.p.), it broadcasts the end of the leader election
and initiates the initial defender selection. The clock-agents wait in phase 0 until they
receive the signal that a unique leader exists. The challenger selection is executed at the
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beginning of a tournament j in Phase 0 and replaces the original challenger selection of
SimpleAlgorithmin Lines 2-3 of Algorithm 4.4.

Proof of Statement (2) of Theorem 4.1. The result mostly follows from the correctness
of SimpleAlgorithm(Statement (1) of Theorem 4.1). Again, by Lemma 4.3, it holds
that the population is partitioned into the roles player, tracker, clock and collector,
where each role consists of at least n/10 agents w.h.p. The key modification affects the
selection of a unique leader agent, the initial defender opinion, and the challenger opinion
for each tournament.

Since the number of tracker-agents is at least n/10, the unique leader agent is com-
puted in O

(
n log2 n

)
interactions w.h.p. by the leader election protocol from [51]. Then,

by Lemma 4.13, we have a defender opinion at the beginning of the first tournament
w.h.p. Similarly to the proof of Statement (1) of Lemma 4.6, we can argue with
Lemma 4.13 that Statement (1) holds. It remains to show that the number of states
is at most O

(
k + log n

)
. The tracker-agents require O

(
log logn

)
states to execute the

leader election protocol. Until the end of this protocol, they do not store any other val-
ues. Once the leader election has concluded, they disregard the O(log log n) states used
for that protocol and instead use their states to store an opinion. Hence, O

(
k + log n

)
many states are sufficient.

The overall state complexity follows from the proof of Statement (1) of Theorem 4.1
along with the observation that the broadcasts can be implemented using constantly
many additional bits.
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Chapter 5.
Undecided State Dynamics with Stubborn
Agents

In this part, we consider a variant of the approximate majority consensus problem with
preference. We introduce the preference by considering a biased variant of the undecided
state dynamics. The following generalization of the USD has a preferred opinion: w.l.o.g.
Opinion 1. We call Opinion 2 unpreferred. To model the preference on Opinion 1, we
assume that agents with Opinion 1 are stubborn in the following sense. Whenever an
agent with Opinion 1 meets an agent with Opinion 2, it does not become undecided
immediately. Instead, it draws a random number in (0, 1] and keeps its opinion if this
number is smaller or equal to a constant p ∈ [0, 1]. Otherwise, it becomes undecided.
We call p the stubbornness in the following. More detail, if the random scheduler picks
a pair of agents with states (1, 2), the initiator remains unchanged with probability p.
With probability 1− p, its new state is δ(1, 2) = ⊥. All other interactions remain as in
the original version of the undecided state dynamics.

Formally, the transition function of the stubborn USD with stubbornness p is

(q, q′) 7→


⊥ if q = 2, q′ = 1

⊥ if q = 1, q′ = 2 with probability 1− p
q′ if q = ⊥
q otherwise.

In the following, we refer to the stubborn USD process with stubbornness p by USDp and
its transition function by δp. USDp(x) is defined as the USDp with initial configuration
x. Consequently, the standard USD process is USD0 and its transition function δ0.

Results and Methodology Our focus is on the convergence time of USDp(x), defined
as the number of interactions until all agents agree on one of the two opinions if USDp

is started on initial configuration x = (x1, x2, u). Let Ti(p,x) be the convergence time of
process USDp(x) assuming opinion i survives.

Note that Ω
(
n log n

)
is a trivial lower bound for the process since this is the time until

each agent is, w.h.p., activated at least once.

Theorem 5.1. Let ϵ, p ∈ (0, 1] be arbitrary constants and let x = (x1, x2, u) be a config-
uration with x1 ∈ [ϵ · n, x2], u ≤ n

2 . Let ps := 1 − x1/x2. Then the following statements
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hold w.h.p.

T1(p,x) = O(n · log n) if p− ps = Ω
(√

n−1 · log n
)
, (5.1)

T2(p,x) = O(n · log n) if ps − p = Ω
(√

n−1 · log n
)
, (5.2)

T1∨2(p,x) = O(n · log2 n) otherwise. (5.3)

In Fig. 5.1, we visualize the main result to highlight the critical configuration regimes.
We essentially show a phase transition around the threshold probability ps = 1 − x1/x2.
If p is sufficiently larger than ps, the process will reverse the initial bias with high prob-
ability, and the agents will agree on Opinion 1 (blue area). For p sufficiently smaller
than ps, with high probability, all agents will agree on Opinion 2 instead (red area). In
the intermediate cases (grey area), either of the two opinions might win, but we can still
provide bounds for the convergence time.

Note that for initial configurations x = (x1, x2, 0) with x1(0) > x2(0), it is known that
Opinion 1 is more likely to win in O(n log n) interactions, even for p = 0 (see [35]). That
is, the preferred opinion with stubbornness p > 0 has an advantage over opinion 2 to
succeed. Therefore, we focus on scenarios where the initial majority opinion is 2.

Figure 5.1.: Overview of the results: The x-coordinate indicates x1 from ε · n to x2. The
y-coordinate indicates the stubbornness p. The black diagonal line represents
p = ps and the dashed lines around it represent p = ps ±Θ

(√
n−1 · log n

)
As mentioned before, the case p = 0 is well-studied. A standard approach for this

case is to track the evolution of the support of the opinions, e.g., using the (additive)
bias x1(t)− x2(t) or the (multiplicative) gap x1(t)/x2(t) as a potential function (see [5,
9, 35]). As a first contribution, we generalized this approach by identifying the driving
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force of the biased version of the undecided state dynamics, which we call weighted bias
(as a function of t) ∆w(t). The weighted bias at time t is defined as x1(t)− (1− p)x2(t).
The initial weighted bias plays a similar role in determining the winning opinion as the
initial bias does in the classical USD with p = 0. Note that an initial weighted bias ∆w(0)
of c · x2(0) is equivalent to p = 1 − x1(0)/x2(0) + c = ps + c. Weighted bias is a more
practical way of looking at the problem.

The most difficult part of our analysis is those configurations where the stubbornness
parameter balances out the initial support deficit of the preferred opinion, i.e., p = ps
and equivalently ∆w(0) = 0. In contrast to the corresponding case with p = 0 and
x1 = x2, where the initial bias is zero, creating a sufficiently large weighted bias is more
involved. The standard way is to define a random walk on the integers and apply known
anti-concentration and concentration bounds. This approach is not viable here, since
|∆w(t + 1) −∆w(t)| ∈ { 0, 1− p, 1 } leads to non-integer states. Instead, we exploit the
submartingale property of ∆w(t) itself and the function Yt = ∆2

w(t)− r · t for a suitably
chosen value of r.

5.1. Cases in which Opinion 1 wins

In this section, we show Statement 5.1 of Theorem 5.1, namely that Opinion 1 wins if
the stubbornness p is sufficiently larger than 1 − x1(0)/x2(0). We show in Lemma 5.3
that the gap increases w.h.p. such that there exists a time T1 = O

(
n log n

)
where each

agent either has Opinion 1 or is undecided. From there on, it is easy to show that all
agents agree on Opinion 1 after an additional O

(
n log n

)
steps. As an auxiliary result

for Lemma 5.3, we first show in Lemma 5.2 that the weighted bias does not halve during
the first interactions.

Lemma 5.2. Let x(t0) be a configuration with weighted bias ∆w(t0) > 0. Let ξ(τ) be the
event that ∆w(t) ≥ ∆w(t0)/2 for all t ∈ [t0, . . . , t0 + τ ]. Then, with probability at least
1− n−6, ξ(T ) holds for all τ ≤ ∆2

w(t0)/(16 lnn).

Proof. We aim to apply an Azuma-Hoeffding-bound (Lemma A.20) to ∆w(t) for each
t ∈ [t0, t0+ τ ] with τ = ∆2

w(t0)/(16 lnn). Fix an arbitrary t ≤ τ . To apply Lemma A.20,
we need to show that E [∆w(t+ 1)−∆w(t)|Ft] ≥ 0 and that |∆w(t + 1) − ∆w(t)| is
bounded.

First, we calculate the expected change in ∆w by considering all possible interactions.
For ease of presentation, we drop the parameter t whenever clear from the context. With
probability x1 · x2/n2, the randomly chosen initiator has Opinion 1, and the responder
has Opinion 2. In that case, the initiator is stubborn (it does not change its state) with
probability p, resulting in ∆w(t+1) = ∆w(t). With probability 1−p the initiator becomes
undecided and ∆w(t+1) = ∆w(t)− 1. With probability x2 ·x1/n2, the initiator loses its
Opinion 2 and becomes undecided, resulting in ∆w(t+ 1) = ∆w(t) + (1− p). Whenever
an undecided agent initiates an interaction where the responder has either Opinion 1 or
Opinion 2, it adopts the responder’s opinion. Such interactions occur with probability
u·x1/n2 and u·x2/n2, resulting in ∆w(t+1) = ∆w(t)+1 and ∆w(t+1) = ∆w(t)−(1−p).
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At last, neutral interactions exist that do not change the potential, i.e., ∆w(t + 1) =
∆w(t). These interactions occur with the remaining probability (x21 + x22 + n · u)/n2.

E [∆w(t+ 1)−∆w(t)|Ft]

=
x1 · x2
n2

· (p · 0 + (1− p) · (−1)) + x2 · x1
n2

· (1− p) + u · x1
n2
· (+1)

+
u · x2
n2
· (−1 + p) +

x21 + x22 + n · u
n2

· 0

= −(1− p) · x1 · x2
n2

+
(1− p) · x2 · x1

n2
+
u · x1
n2
− (1− p) · u · x2

n2

=
u

n2
·∆w(t) ≥ 0.

It remains to show that |∆w(t+1)−∆w(t)| is bounded. Here, we show that the term
is bounded by 1. Consider every possible interaction at time t+ 1. If the initiator does
not change its opinion, |∆w(t+1)−∆w(t)| = 0. If the support of Opinion 1 changes, we
have |∆w(t+ 1)−∆w(t)| = 1. Otherwise, the support of Opinion 2 changes by one and
|∆w(t+ 1)−∆w(t)| = 1− p ≤ 1.

Now we are ready to apply Lemma A.20 with λ = ∆w(t0)/2.

Pr

[
∆w(t) <

∆w(t0)

2

∣∣∣∣ Ft0] = Pr [∆w(t)−∆w(t0) < −λ | Ft0 ] ≤ exp

(
−2λ2

t

)
≤ exp

(
−2λ2

τ

)
≤ exp (−8 lnn) .

By application of the union bound over the first τ interactions, the statement holds with
probability of at least 1− τ · exp(−8 lnn) ≥ 1− n2 · n−8 = 1− n−6.

Note that Lemma 5.2 is an auxiliary result since it only shows that the weighted bias is
not decreasing too much for Ω

(
∆2
w(t0)/ log n

)
time. We use this in the following lemma

to show that the support of the initial majority opinion drops to zero during that time.

Lemma 5.3. Let x(t0) be a configuration with weighted bias ∆w(t0) ≥ cs · n for an ar-
bitrary constant cs. Let T1 = inf{t ≥ 0 | x2(t) = 0}. Then, Pr

[
T1 ≤ 20 · c−1

s · n log n
]
≥

1− n−2.

Proof. Let Ψ(t) = x2(t)/x1(t) denote the inverse of the gap. The idea is to show that
this potential function decreases exponentially and apply a known drift theorem. Similar
to the proof of Lemma 5.2, we calculate the expected change in Ψ by considering all
possible interactions.
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E [Ψ(t+ 1)−Ψ(t) | Ft]

=
x1 · x2
n2

(
p · 0 + (1− p) ·

(
x2

x1 − 1
− x2
x1

))
+
x2 · x1
n2

(
x2 − 1

x1
− x2
x1

)
+
u · x1
n2

(
x2

x1 + 1
− x2
x1

)
+
u · x2
n2

(
x2 + 1

x1
− x2
x1

)
+
x21 + x22 + n · u

n2
· 0

=
(1− p)x1 · x22

n2

(
1

x1(x1 − 1)

)
− x2 · x1
n2 · x1

− u · x1 · x2
n2 · x1(x1 + 1)

+
u · x2
n2 · x1

=
Ψ

n2
·
(
(1− p)x2
x1 − 1

− x1 −
u · x1
x1 + 1

+ u

)
= − Ψ

n2
·
(
x1 − (1− p)x2 +

(1− p)x2
x1 − 1

− u

x1 + 1

)
.

Observe that the expected potential change in Ψ is a function of the weighted bias. We
bound the weighted bias using Lemma 5.2: ∆w(t) ≥ ∆w(t0)/2 with probability at least
1 − n−6 for all t ∈ [t0, t0 + c3n log n]. We trivially bound (1 − p)x2/(x1 − 1) ≥ 0. To
bound the term u/(x1 + 1), we use x1 ≥ ∆w(t) ≥ cs · n/2 and u ≤ n. Then, it holds
w.h.p. that

E [Ψ(t+ 1)−Ψ(t) | Ft] = −
Ψ

n2
·
(
∆w(t) +

(1− p)x2
x1 − 1

− u

x1 + 1

)
≤ − Ψ

n2
·
(
∆w(t)−

u

x1 + 1

)
≤ − Ψ

n2
·
(
cs · n
2
− n

(cs/2) · n+ 1

)
≤ −Ψ

n
·
(
cs
2
− 2

cs · n+ 2

)
≤ −Ψ

n
· cs
4
.

We now apply the multiplicative drift theorem (Theorem A.9, found in the appendix) to
bound T1 with r = 3 lnn, s0 = x2(t0)/x1(t0) ≤ n, smin = (n − 1)−1 and δ = n−1 · cs/4.
Then, we get

Pr

[
T1 >

20n · lnn
cs

]
≤ Pr

[
T1 >

⌈
r + ln(s0/smin)

δ

⌉]
≤ e−r = n−3.

Note that in order to apply Theorem A.9, we have to have E [Ψ(t)−Ψ(t+ 1) | Ft] ≥
δ ·Ψ(t) for all Ψ(t) ̸= 0 and all t ≥ t0. Lemma 5.2 asserts this only with high probability
and for a limited time. But we can consider a process that deterministically jumps
to configuration (n, 0, 0) at time t + 1 if for any t Lemma 5.2 is violated. We can
apply Theorem A.9 to this process, and our original process behaves identical to it with
probability 1− n−6. Thus, the lemma follows from the union bound.

119



Chapter 5. Undecided State Dynamics with Stubborn Agents

Recall that by assumption of Statement 5.1 Theorem 5.1, we have ∆w(0) = Ω
(√
n ·

log n
)
. We now show that the weighted bias doubles every O

(
n
)

interaction until it is
of size Θ

(
n
)

– the concrete bound of n/10 we show was chosen rather arbitrarily. Then
we can apply Lemma 5.3. The proof of Lemma 5.4 requires bounds on the number of
undecided agents (Lemma 5.9 and Lemma 5.10) that we postpone to Section 5.4.

Lemma 5.4. Let x(t0) be a configuration with ∆w(t0) ≥ ξ ·
√
n log n and let T =

inf { t ≥ t0 | ∆w(t) ≥ n/10 }. Then Pr
[
T ≤ (ξ2/6) · n log n

]
≥ 1− n−3.

Proof. The proof idea is inspired by a repetition of the Gambler’s ruin problem. For
1 ≤ ℓ ≤ log n, we define the time intervals Iℓ = {Tℓ−1, . . . , Tℓ − 1 } with T0 = t0 and

Tℓ := inf { t ≥ t0 | ∆w(t) ≥ min(2ℓ ·∆w(t0), (n− u(t))/4) } .

We show that the weighted bias leaves the interval [∆w(Tℓ)/2, 2∆w(Tℓ)] within O
(
n
)

interactions, and that the value 2∆w(Tℓ) is reached before ∆w(Tℓ)/2. We apply this
result repeatedly until ∆w(Tℓ) ≥ (n− u(t))/4. Recall from Lemma 5.2 that (∆w(t))t≥t0
is a submartingale with

E [∆w(t+ 1) | Ft] ≥ ∆w(t) +
u(t) ·∆w(t)

n2
≥ ∆w(t).

Assume that ∆w(Tℓ) ≥ ξ ·
√
n log n and let Tℓ,min := inf { t ≥ Tℓ | ∆w(t) < ∆w(Tℓ)/2 }

and τ := (ξ2/6) ·n. Then we bound Pr [Tℓ,min > τ ] by using the Azuma-Hoeffding bound
(Lemma A.20) with λ = ∆w(Tℓ)/2:

Pr [Tℓ,min < τ ] = Pr [∆w(Tℓ + τ) < ∆w(Tℓ)/2] = Pr [∆w(Tℓ + τ)−∆w(Tℓ) < −λ]

≤ e−
2λ2

(ξ2/6)n ≤ e−
3ξ2n logn

ξ2n ≤ n−3.

Next, let Tℓ,max := inf { t ≥ Tℓ | ∆w(t) ≥ 2∆w(Tℓ) }. We bound Pr [Tℓ,max > τ ] as-
suming ∆w(t) ≥ ∆w(Tℓ)/2 for all t ∈ [Tℓ, Tℓ + τ ]. Let

Z :=

Tℓ+τ∑
t=Tℓ+1

∆w(t) and µ :=

Tℓ+τ∑
t=Tℓ+1

E [∆w(t) | Ft−1] .

In contrast to Lemma 5.2, to establish a sufficiently strong bias in the right direction, we
have to exploit the additional positive term u(t) ·∆w(t)/n

2.
From Lemma 5.10 it follows that w.h.p. u(t) ≥ cu · n for constant cu = (3/10) · (1 −

p)/(2−p) as long as ∆w(t) < (n−u(t))/4 holds. Note that this requires additional O(n)
interactions if it is too small. Lemma 5.2 guarantees that the weighted bias does not lose
too much support during this time. Therefore, as long as ∆w(t) ≥ ∆w(Tℓ)/2 holds, we
have

E [∆w(t+ 1) | Ft] ≥ ∆w(t) +
u(t) ·∆w(t)

n2
≥ ∆w(t) +

cu ·∆w(Tℓ)

2n
=: ∆w(t) + ε.
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5.2. Cases in which Opinion 2 wins

Then, it follows from the conditional Hoeffding bound (full version of [5]) for λ = 2ξ ·
∆w(Tℓ)/2

Pr [∆w(Tℓ + τ) < 2∆w(Tℓ)]

= Pr [∆w(Tℓ + τ) < ∆w(Tℓ) + τ · ε− λ]

= Pr

 Tℓ+τ∑
t=Tℓ+1

∆w(t) <

Tℓ+τ−1∑
t=Tℓ

(∆w(t) + ε)− λ

 = Pr [Z − µ < λ] ≤ e−
2λ2

4(ξ2/6)n ≤ n−3.

It follows by the union bound over the high probability events from above that

Pr [∃t ∈ [Tℓ, Tℓ + τ ] : ∆w(t) ≥ min { 2 ·∆w(Tℓ), (n− u(t))/4 }] ≥ 1− n−2.

Applied to a fixed ℓ, this implies the length of the interval Iℓ is w.h.p. at most (ξ2/6)·n.
From the union bound over all ℓ ≤ log n intervals, we get there exists a time t ∈ [T0, Tlogn]
such that ∆w(t) ≥ n − u(t)/4. Otherwise, ∆w(t) ≥ 2logn · ∆w(t0) > n, leading to a
contradiction. The length of [T0, T(logn)] is at most (ξ2/6) · n · log n. At last, it follows
from Lemma 5.9 that (n− u(t))/4 ≥ n/10.

We are ready to prove Statement 5.1 of Theorem 5.1.

Proof of Statement 5.1. Consider a configuration with x1(0) ∈ [ϵ · n, x2], u(0) ≤ n/2
and p − ps = Ω

(
n−1/2 · log n

)
. Then equivalently ∆w(0) = Ω

(
x2 · n−1/2 · log n

)
and

x1 + x2 ≥ n/2. Since x1 ≤ x2, we have x2 = Θ
(
n
)

and thus ∆w(0) ≥ ξ ·
√
n log n for

some constant ξ.

Ta = inf { t ≥ 0 | ∆w(t) ≥ n/10 }
Tb = inf { t ≥ 0 | x2(t) = 0 } .

From Lemma 5.4, we have w.h.p. Ta = O
(
n log n

)
and due to Lemma 5.3 Tb = Ta +

O
(
n log n

)
.

Note that at no time can all agents be undecided since the last agent with Opinion 1
cannot encounter Opinion 2. Therefore, at time Tb, at least one agent with Opinion 1
exists.

With x2(Tb) = 0, the process simplifies to a single productive rule: δ(1,⊥) = 1.
Let T1 = inf { t ≥ Tb | x1(t) = n }. Assuming that Tb < ∞ and x1(T1) = 1, we have
T1 ≤ Tb + 6n log n with probability at least 1 − n−2. It is easy to see that x1(Tb) = 1
gives an upper bound for T1. The statement then follows from the union bound.

5.2. Cases in which Opinion 2 wins

In this section, we prove Statement 5.2 of Theorem 5.1, namely that Opinion 2 wins if p is
sufficiently smaller than 1−x1(0)/x2(0). The general approach is identical to Section 5.1;
given the asymmetric nature of the problem, some calculations differ slightly. For any
t ≥ 0, we call ∆w̄ = (1 − p)x2(t) − x1(t) the negative weighted bias. Note that for
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Chapter 5. Undecided State Dynamics with Stubborn Agents

p = 1 − x1(0)/x2(0) − γ, the initial negative weighted bias is γ · x2(0). Analogous to
Lemma 5.2, we show that the negative weighted bias does not decrease significantly for
polynomial many interactions in this setting.

Lemma 5.5. Let x(t0) be a configuration with weighted bias ∆w̄(t0) ≥ cs · n. Let ξ(τ)
be the event that ∆w̄(t) ≥ ∆w̄(t0)/2 for all t ∈ [t0, . . . , t0 + τ ]. Then, with probability at
least 1− n−6, ξ(T ) holds for all τ ≤ ∆2

w̄(t0)/(16 lnn).

Proof sketch. The proof follows along the lines of that of Lemma 5.2 with ∆w̄(t) =
−∆w(t).

Lemma 5.6. Let x(t0) be a configuration with weighted bias ∆w̄(t0) ≥ cs · n for an ar-
bitrary constant cs. Let T1 = inf{t ≥ 0 | x2(t) = 0}. Then, Pr

[
T1 ≤ 20 · c−1

s · n log n
]
≥

1− n−2.

Proof. The proof follows along the lines of that of Lemma 5.3 with the potential function
Ψ(t) = x1(t)/x2(t). Recall that the idea is to calculate the expected change of the
potential function Ψ(t) and apply a known drift theorem. From Lemma 5.5 and the
initial size of x2(0) we get that w.h.p. ∆w̄(t) ≥ ∆w̄(t0)/2. In particular, we also get
x2(t) ≥ c2 · n for some constant c2. This allows us to bound the expected change as
follows.

E [Ψ(t+ 1)−Ψ(t) | Ft]

=
x1 · x2
n2

(
pΨ+ (1− p)x1 − 1

x2

)
+
x2 · x1
n2

(
x1

x2 − 1

)
+
u · x1
n2

(
x1 + 1

x2

)
+
u · x2
n2

(
x1

x2 + 1

)
+
x21 + x22 + (x1 + x2 + u)u

n2
·Ψ−Ψ

=
x1 · x2
n2

(
Ψ+

1− p
x2

)
+
x2 · x1
n2

(
Ψ− x1

x2
+

x1
x2 − 1

)
+
u · x1
n2

(
Ψ+

1

x2

)
+
u · x2
n2

(
Ψ− x1

x2
+

x1
x2 + 1

)
+
x21 + x22 + (x1 + x2 + u)u

n2
·Ψ−Ψ

=
Ψ

n2

(
−(1− p)x2 +

x1 · x2
x2 − 1

+ u− u · x2
x2 + 1

)
= − Ψ

n2

(
(1− p)x2 − x1 −

x1
x2 − 1

− u

x2 + 1

)
≤ − Ψ

n2

(
cs · n−

n

c2 · n− 1
− n

c2 · n+ 1

)
= −Ψ

n

(
cs −

1

c2 · n− 1
− 1

c2 · n+ 1

)
≤ − cs

2n
·Ψ
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5.3. Cases in which either Opinion 1 or Opinion 2 wins

We now apply the multiplicative drift theorem (Theorem A.9) with r = 3 lnn, s0 =
x1(0)/x2(0) ≤ n, smin = (n− 1)−1, δ = cs/(2n) and get

Pr
[
T1 > 12c−1

s n lnn
]
= Pr

[
T1 >

⌈
12n lnn

cs

⌉]
≤ Pr

[
T1 >

⌈
3 lnn+ ln(n/(n− 1)−1)

cs/(2n)

⌉]
≤ Pr

[
T1 >

⌈
r + ln(s0/smin)

δ

⌉]
≤ e−r = n−3

Akin to Lemma 5.4, we now consider the case ∆w̄ = o(n).

Lemma 5.7. Let x(t0) be a configuration with ∆w̄(t0) ≥ ξ ·
√
n log n and let T =

inf { t ≥ t0 | ∆w̄(t) ≥ n/10 }. Then Pr
[
T ≤ (ξ2/6) · n log n

]
≥ 1− n−3.

Proof sketch. The proof follows along the lines of that of Lemma 5.4 for ∆w̄ instead of
∆w using Lemma 5.5 instead of Lemma 5.2.

We now prove Statement 5.2 of Theorem 5.1.

Proof of Statement 5.2. Consider a configuration with x1(0) ∈ [ϵ · n, x2], u(0) ≤ n/2
and ps − p = Ω

(
n−1/2 · log n

)
. Then equivalently ∆w̄(0) = Ω

(
x2 · n−1/2 · log n

)
and

x1 + x2 ≥ n/2. Since x1 ≤ x2, we have x2 = Θ
(
n
)

and thus ∆w̄(0) ≥ ξ ·
√
n log n for

some constant ξ.

Ta = inf { t ≥ 0 | ∆w̄(t) ≥ n/10 }
Tb = inf { t ≥ 0 | x1(t) = 0 }

By Lemma 5.7, we have w.h.p. Ta = O
(
n log n

)
and then by Lemma 5.6 Tb = Ta +

O
(
n log n

)
. Note that at no time can all agents be undecided since the last agent with

Opinion 2 cannot encounter Opinion 2. Therefore, at time Tb, at least one agent with
Opinion 2 exists.

With x1(Tb) = 0, the process simplifies to a single productive rule: δ(2,⊥) = 1.
Let T2 = inf { t ≥ Tb | x2(t) = n }. Assuming that Tb < ∞ and x2(T2) = 1, we have
T2 ≤ Tb + 6n log n with probability at least 1 − n−2. It is easy to see that x2(Tb) = 1
gives an upper bound for T2. The statement then follows from the union bound.

5.3. Cases in which either Opinion 1 or Opinion 2 wins

In this section we consider the critical regime of p ≈ 1 − x1(0)/x2(0), i.e., the initial
weighted bias (∆w(0) := x1(0)− (1− p) · x2(0)) is small. We show that we reach a con-
figuration after a while with a sufficiently large weighted bias (|∆w(t)| = Ω

(√
n log n

)
).

We do so by defining a submartingale (Yt)t≥0 as Yt = ∆2
w(t)− r · t for a suitably chosen

constant r and applying tail bounds (Lemma 5.8). At this point, either Statement 5.1
or Statement 5.3 of Theorem 5.1 applies.
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Chapter 5. Undecided State Dynamics with Stubborn Agents

We define Tw as the first time the process reaches such a weighted bias. More for-
mally, Tw := inf { t ≥ 0 : |∆w(t)| ≥ ξ ·

√
n · log n }. We show that Tw = O

(
n · log2 n

)
(Lemma 5.8). One standard approach combines anti-concentration bounds and concen-
tration bounds for random walks. Defining a random walk on the weighted bias ∆w(t)
is rather complicated since this results in a non-integer state space. Instead, we define
two submartingales (Zt)t≥0 with Zt = ∆w(t) and Yt = Z2

t − r · t. We show that Yt is a
submartingale for a suitably chosen constant r and then we prove that E [ZT − Z0] =

√
T

by considering Yt. To bound |Yt+1 − Yt| we use tail bounds (see Lemma A.20). Unfor-
tunately, there is one more challenge we have to address. We can only show that Yt is a
submartingale if the number of undecided agents is not too large (shown in Section 5.4).

Lemma 5.8. Let x(0) be a configuration with |∆w(0)| < ξ ·
√
n · log n for an arbitrary

constant ξ. Let Tw := inf { t ≥ 0 : |∆w(t)| ≥ ξ ·
√
n · log n }. Then w.h.p. Tw = O

(
n ·

log2 n
)
.

Proof. The idea of the proof is to apply the Azuma-Hoeffding bound to a suitable sub-
martingale. Let Tu := inf { t ≥ 0 : u(t) > x1(t) + x2(t) + 6ξ ·

√
n · log n }. We define

Yt = ∆w(t)
2− r · t for t < min {Tw, Tu } where the constant r is chosen later. Otherwise,

Yt = Yt−1. Note that by Lemma 5.9, w.h.p. Tu = ω
(
n log2 n

)
. We show that Y0, Y1, . . . is

a submartingale. The calculation is similar to that in the proof of Lemma 5.2. We con-
sider every possible interaction and the resulting change. Assume that t < min {Tw, Tu }.
Then,

E [Yt+1|Ft,∆w(t) = ∆w]

= E
[
∆2
s(t+ 1)− r · (t+ 1)|Ft,∆w(t) = ∆w

]
=
x1 · x2
n2

·
(
p ·∆2

w + (1− p) · (∆w − 1)2
)
+
x2 · x1
n2

· (∆w + 1− p)2

+
u · x1
n2
· (∆w + 1)2 +

u · x2
n2
· (∆w − 1 + p)2

+
n2 − 2x1 · x2 − u · (x1 + x2)

n2
·∆2

w − r · (t+ 1)

=
x1 · x2
n2

·
(
2∆2

w + (2− p)(1− p)
)
+
u · x1
n2
·
(
∆2
w + 2∆w + 1

)
+
u · x2
n2
·
(
∆2
w − 2(1− p)∆w + (1− p)2

)
+
n2 − 2x1 · x2 − u · (x1 + x2)

n2
·∆2

w − r · (t+ 1)

= ∆2
w +

x1 · x2
n2

· (2− p) · (1− p)

+
u · 2∆w

n2
· (x1 − (1− p)x2) +

u

n2
·
(
x1 + (1− p)2x2

)
− r · (t+ 1)

= Yt +
x1 · x2
n2

· (2− p) · (1− p) + u · 2 ·∆2
w

n2
+

u

n2
· (x1 + (1− p)2x2)− r

≥ Yt +
x1 · (1− p)x2

n2
− r.
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5.4. Bounds on the number of undecided agents

Note that p is constant and for t < min {Tw, Tu } it holds that u < x1 + x2 + o
(
n
)

and
x1 − (1 − p)x2 = o(n). Then x1, (1 − p)x2 = Θ

(
n
)
. So there exists a worst case bound

on (x1 · (1 − p)x2)/n2 that is in Θ
(
1
)
. Using that bound for r yields the desired result

E [Yt+1|Ft] ≥ Yt. For t ≥ min {Tw, Tu }, we have E [Yt+1|Ft] = Yt by definition.
Next, we apply the Azuma-Hoeffding bound (Lemma A.20) with τ = α · n · log2 n

for some constant α that we determine later and λ = ∆2
w(0) + ξ ·

√
10 · τ · n · log n ≥

ξ ·
√
10 · τ · n · log n. Furthermore, for t < min {Tw, Tu } we have

|Yt+1 − Yt| ≤ (∆w(t) + 1)2 − r · (t+ 1)−∆2
w(t) + r · t = 2∆w(t) + 1− r

≤ 2 · ξ ·
√
n · log n+ 1.

Thus we have (b − a)2 ≤
(
2 · (2 · ξ ·

√
n · log n+ 1)

)2 ≤ 5 · ξ2 · n · log n. This yields
probability

exp

(
− 2λ2

τ(b− a)2

)
≤ exp

(
−2 · ξ2 · 10 · τ · n · log2 n

τ · 5 · ξ2 · n · log n

)
= exp (−4 · log n) = n−4

for the event

∆2
w(τ)− r · τ − (∆2

w(0)− 0) < −λ

⇔|∆w(τ)| <
√
r · τ +∆2

w(0)− λ

⇔|∆w(τ)| <
√
r · τ − ξ ·

√
10 · τ · n · log n

⇔|∆w(τ)| <
√
r · α · n · log2 n− ξ ·

√
10 · α · n · log2 n

⇔|∆w(τ)| <
√
r · α− ξ ·

√
10 · α ·

√
n · log n.

It is now clear that there exists a constant α = α(ξ, r) > 0 such that r ·α− ξ ·
√
10 · α ≥

ξ2. Then, |∆w(τ)| ≥
√
r · α−

√
r · α ·

√
n · log n implies |∆w(τ)| ≥ ξ ·

√
n · log n, i.e.,

Tw ≤ τ .

5.4. Bounds on the number of undecided agents

In this section, we show two results. First, we show that from an arbitrary initial state,
we quickly reach a configuration X(t) with

min {x1(t), (1− p)x2(t) } ≤ u(t) ≤ x1(t) + x2(t).

After entering that region, we show that the number of undecided agents will w.h.p.
remain in that region for Ω

(
n log2 n

)
interactions.

Lemma 5.9. Let Φup(t) := u(t)−x1(t)−x2(t) and Tu := inf { t ≥ 0 : Φup(t) > 6ξ ·
√
n log n }.

Let x(0) be an arbitrary configuration with Φup(0) < 2ξ ·
√
n log n. Then w.h.p. it holds

that Tu = ω
(
n log2 n

)
.
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Proof. The idea is to show for any time t > 0 where u(t) crosses the threshold x1(t) +
x2(t) + ∆ (for ∆ := 2ξ ·

√
n · log n) from below, it only ever exceeds it by another 2∆

due to a negative drift that we now calculate. We say the t’th interaction is productive,
if X(t+1) ̸= X(t). We denote this event by prodt. Note that any productive interaction
alters Φup by ±2. Then,

Pr [Φup(t+ 1) = Φup(t) + 2 | Ft] =
(1− p)x1 · x2

n2
+
x2 · x1
n2

=
(2− p)x1 · x2

n2
,

Pr [Φup(t+ 1) = Φup(t)− 2 | Ft] =
u · x1
n2

+
u · x2
n2

=
u · (x1 + x2)

n2
.

Note that for a fixed u, the product x1 · x2 is maximal for x1 = x2 = (x1 + x2)/2.
Then,

Pr [Φup(t+ 1) = Φup(t) + 2 | Ft,prodt] =
(2− p)x1 · x2

(2− p)x1 · x2 + u · (x1 + x2)

=
1

2
+

(2− p)x1 · x2 − u · (x1 + x2)

2 ((2− p)x1 · x2 + u · (x1 + x2))
≤ 1

2
+

(2− p)x1+x22 · x1+x22 − u · (x1 + x2)

2 ((2− p)x1 · x2 + u · (x1 + x2))

=
1

2
+

(x1 + x2) ·
(
2−p
4 · (x1 + x2)− u

)
2 ((2− p)x1 · x2 + u · (x1 + x2))

≤ 1

2
− (x1 + x2) · Φup(t)

2 ((2− p)x1 · x2 + u · (x1 + x2))

So as long as Φup(t) ≥ ∆ > 0 holds at time t, we can bound the denominator by

2 ((2− p)x1 · x2 + u · (x1 + x2))

≤ 2 (2x1 · x2 + u · (x1 + x2))

≤ 2((x1 + x2)
2 + u · (x1 + x2))

= 2(u+ x1 + x2) · (x1 + x2)

= 2n · (x1 + x2).

Therefore, if Φup(t) ≥ ∆ and we condition on a productive step, we have

Pr [Φup(t+ 1) = Φup + 2 | Ft,prodt] ≥
1

2
− ∆ · (x1 + x2)

2n · (x1 + x2)
≥ 1

2
− ∆

2n
.

Now, we consider a sequence of m = ω
(
n · log2 n

)
interactions. We let Ti for i > 0

denote the first time after Ti−1 where Φup(Ti − 1) < ∆ and Φup(Ti) ≥ ∆. We show that
in every sequence of at most m interactions, starting at time Ti, Φup does not exceed
the threshold by more than 3∆ before falling back below ∆ with probability at least
1− n−4ξ2 . To show that, we consider a sequence of independent Bernoulli trials (Zi)i>0

with success probability p̃ = 1/2 + ∆/(2n). Each trial corresponds to a productive
interaction where Φup(t) ≥ ∆ and a success to a −2-step in Φup. The number of failed
trials exceeds the number of successful trials by more than ∆ trials – and thus Φup exceeds
∆+ 2∆ = 6ξ ·

√
n · log n with probability at most (see Lemma A.18):(

1− p̃
p̃

)∆

=

(
1− 2∆

n+∆

)∆

≤ exp

(
− 2∆2

n+∆

)
≤ exp

(
−2 · 4ξ2 · n · log n

2n

)
= n−4ξ2 .
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Finally, every such sequence has at least one interaction; thus, there are at most m
sequences in m interactions. The claim then follows from the union bound.

We complete this section by showing that after creating at least min {x1, (1− p)x2 }
undecided agents, that number does not drop significantly while the weighted bias is not
large enough. The proof idea is the same as in Lemma 5.9.

Lemma 5.10. Let T = inf { t ≥ 0 | u(t) ≥ min {x1(t), (1− p)x2(t) } } . Let x(0) be an
arbitrary initial configuration with u(0) ≤ x1(0)+x2(0). Then, Pr [T ≤ 144 · n] ≥ 1−n−3.
Furthermore, as long as

√
n log n ≤ ∆w(t) ≤ (n − u(t))/4 for t ≥ T , it holds that

u(t) ≥ (3/10) · (1− p)/(2− p) · n w.h.p.

Proof. We track the evolution of the undecided agents over time to show the result.
Let T = inf { t ≥ 0 | u(t) ≥ min {x1(t), (1− p)x2(t) } /2 }. We distinguish between
min {x1(t), (1− p)x2(t) } = x1(t) and min {x1(t), (1− p)x2(t) } = (1 − p)x2(t). In the
first case, as long as t < T , it holds that

Pr [U(t+ 1) = u(t) + 1 | Ft, prodt] =
1

2
+

(2− p)x1x2 − u · (x1 + x2)

2((2− p)x1x2 + u · (x1 + x2))

≥ 1

2
+

(2− p)(x1 + x2)− x1/2 · (x1 + x2)

2((2− p)x1x2 + u · (x1 + x2))

≥ 1

2
+
x1((x1 + x2)/2−∆w)

3x1(x1 + x2)

≥ 1

2
+

1

12
.

In the second case, as long as t < T , it holds that

Pr [U(t+ 1) = u(t) + 1 | Ft, prodt] =
1

2
+

(2− p)x1x2 − u · (x1 + x2)

2((2− p)x1x2 + u · (x1 + x2))

≥ 1

2
+

(2− p)(x1 + x2)− (1− p)/2x2 · (x1 + x2)

2((2− p)x1x2 + u · (x1 + x2))

≥ 1

2
+
x2((1− p)(x1 + x2)/2−∆w)

3x2(x1 + x2)

≥ 1

2
+

1

12
.

Now, we bound the number of productive interactions in the first O
(
n
)

interactions.
An interaction at time t is productive with at least constant probability

(2− p)x1(t)x2(t) + u(t)(n− u(t))
n2

≥ ε

due to Lemma 5.9 and the assumption ∆w(t) ≤ (n − u(t))/4. From Chernoff bound,
it follows Ω

(
n
)

productive interactions in O
(
n
)

interactions w.h.p. Now we show that
the number of undecided agents does not drop below min {x1(t)/2, (1− p)x2/2 } − ∆
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with ∆ =
√
n log n. This allows us to relate this sequence of productive interactions and

the evolution of the undecided agents to a biased random walk on N0 with a reflective
barrier at position 0. The probability of moving to the right is p̃ = 1/2 + 1/12 and the
probability of moving to the left is 1− p̃. Then Lemma A.19 implies T = O

(
n
)

w.h.p.

Now, we show that the number of undecided agents remains relatively large. Similar to
Lemma 5.9, we consider the time steps Ti where for the first time after Ti−1 we have u(Ti−
1) > min {x1(Ti−1)/2, (1− p)x2(Ti−1)/2 } and u(Ti) ≤ min {x1(Ti)/2, (1− p)x2(Ti)/2 }.
We do a case study on u(t). As long as u(t) ≤ x1(t)/2 for t ≥ Ti it holds that

Pr [U(t+ 1) = u(t)− 1 | Ft,prodt] =
1

2
− (2− p)x1x2 − u · (x1 + x2)

2((2− p)x1x2 + u · (x1 + x2))

≤ 1

2
− (2− p)(x1 + x2)− x1/2 · (x1 + x2)

2((2− p)x1x2 + u · (x1 + x2))

≤ 1

2
− x1((x1 + x2)/2−∆w)

3x1(x1 + x2)

≤ 1

2
− 1 + p

12

≤ 1

2
− 1− p

12

where in the last inequalities we use ∆w < (1 − p)(x1 + x2)/4. Similarly, as long as
u(t) ≤ (1− p)x2(t)/2 for t ≥ Ti it holds that

Pr [U(t+ 1) = u(t)− 1 | Ft, prodt] =
1

2
− (2− p)x1x2 − u · (x1 + x2)

2((2− p)x1x2 + u · (x1 + x2))

≤ 1

2
− (2− p)(x1 + x2)− (1− p)/2x2 · (x1 + x2)

2((2− p)x1x2 + u · (x1 + x2))

≤ 1

2
− x2((1− p)(x1 + x2)/2−∆w)

3x2(x1 + x2)

≤ 1

2
− (1− p)(x1 + x2)/4)

3(x1 + x2)

≤ 1

2
− 1− p

12

where in the last inequalities we use ∆w < (1 − p)(x1 + x2)/4. Now we show that
the number of undecided agents does not drop below min {x1(t)/2, (1− p)x2/2 } − ∆
with ∆ =

√
n log n. We consider a sequence of independent Bernoulli trials (Zi)i≥0

with success probability p̃ = 1/2 + (1 − p)/12. Each trial corresponds to a productive
interaction under the assumption from above. From Lemma A.18, it follows the number
of failed trials exceeds the number of successful trials by more than ∆/2 trials with
probability at most (

1− p̃
p̃

)∆/2

=

(
6− (1− p)
6 + (1− p)

)∆/2
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At last, from u ≥ x1/2 − ∆, x1 − (1 − p)x2 > 0 and n = x1 + x2 + u it follows u ≥
(3/10) ·(1−p)/(2−p) ·n. On the other hand, from u ≥ (1−p)x2/2−∆, x1−(1−p)x2 > 0
and n = x1 + x2 + u it follows u ≥ (3/10) · (1 − p)/(2 − p) · n. The claim then follows
from the union bound.
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Chapter 6.
Conclusion

In this thesis, we show fast convergence of plurality consensus problems in the population
protocol model. We demonstrate that the convergence rates depend on the magnitude
of support of the initial largest opinion and the type of bias in the initial configuration.
In fact, we especially observe a typical tradeoff behavior between time and space with
variants of the Undecided State Dynamics.

Regarding the synchronized Undecided State Dynamics, one open question is whether
our result is tight. The main reason for a running time of O

(
log2 n

)
is that our algorithm

needs O
(
log n

)
phases of length O

(
log n

)
for breaking the ties in the case of several

opinions with roughly the same support. It might be possible to work with a phase
length as a function of k, resulting in a refined running time of O

(
log k log n

)
. Moreover,

it may be possible to interleave consecutive phases in order to reduce the running time
even further. Regarding the (unsynchronized) Undecided State Dynamics, it remains
open to prove convergence of the k > 2 opinion USD with no initial bias in the gossip
model and, moreover, to understand whether a unified framework exists for analyzing
the process in both models simultaneously.

Separately, we leave as future work analyzing the k-opinion USD in the presence of
adversarial nodes or communication noise. Recent results of d’Amore et al. [42, 44] and
of Cruciani et al. [40], which analyze the 2-state USD process (as well as other majority
dynamics for k > 2) under such settings, suggest that the k-opinion USD is also robust
to these noise models. Quantifying the effect of such noise on the convergence rate of the
k-opinion USD is thus an interesting open question.

Regarding the Undecided State Dynamics with stubborn agents, it remains an open
question whether a tight runtime of O

(
n log n

)
is also achievable in the hard regime. An

adaption to the synchronous gossip model is an interesting question as well. We believe
that our model would show the same behavior in the parallel gossip model. Interestingly,
we believe this is not the case for a variant where undecided agents can also be stubborn.
This is due to the fact that undecided agents have different effects in sequential and
parallel models. A generalization for more than two opinions seems natural. Describing
the phase transition for this case looks non-trivial. It has certain similarities to measure
the convergence time of consensus protocols.

Regarding the exact plurality consensus problem, our protocols use majority, leader
election, and junta election protocols as black boxes. Improving the guarantees of these
black boxes would also carry over to our protocols. For example, a leader election pro-
tocol that has a with high probability runtime of O

(
log n

)
would immediately improve
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our runtime. Similarly, a constant state majority protocol and a constant state junta
election protocol (that works with high probability) would immediately improve our state
space bounds. Furthermore, we believe that Ω(n/xmax) is a natural lower bound for the
runtime, and thus, the possible improvements mentioned above would lead to a state-
and time-optimal exact plurality consensus protocol.

In our main result we prune small opinions in order to reduce the number of tour-
naments. We conjecture that this yields almost optimal protocols. We believe that
additional techniques are required to further improve the runtime (possibly at the ex-
pense of slightly increased state complexity). In particular, it would be interesting to
find another, more efficient way than pairwise comparison of opinions via tournaments
to identify the plurality opinion.
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Appendix A.
Appendix

A.1. Concentration Results

Theorem A.1 ([66], Theorem 4.4, 4.5). Let X1, . . . , Xn be independent Poisson trials
with Pr[Xi = 1] = pi and let X =

∑
Xi with E [X] = µ. Then the following Chernoff

bounds hold:
For 0 < δ′ ≤ 1:

Pr[X > (1 + δ′)µ] ≤ e−µδ′
2/3.

For 0 < δ′ < 1:
Pr[X < (1− δ′)µ] ≤ e−µδ′

2/2,

Theorem A.2 (General Chernoff upper Bound). Let X1 · · · , Xn be independent 0-1
random variables. Let X =

∑n
i=1Xi and µu ≥ 0 such that E [X] ≤ µu. Then, for any

δ′ > 0

Pr[X ≥ (1 + δ′) · µu] ≤ e−
δ′2·µu
2+δ′ .

Lemma A.3 (Super-exponential Chernoff Bound). Let X1, ..., Xn be n independent ran-
dom variables taking value in {0, 1} and X =

∑n
i=1Xi. Then, for E [X] = µ and δ > 0

it holds that

Pr
[
X > µ+ δ

√
µ
]
< exp(−c · δ2) for δ2 ≤ µ

Pr
[
X > µ+

δ2

1 + ln( δ
2

µ )

]
< exp(−c · δ2) for δ2 > µ

where c > 0 is a universal constant.

Proof. Let X be defined as in the lemmas statement. From the Chernoff bound we have
for λ > 0 that Pr[X > µ(1 + λ)] < exp(−min{λ, λ2} · µ/3). It is easy to see that, for
fitting constants c1, c2 > 0, this implies for δ > 0 that

Pr [X > µ+ δ
√
µ] < exp(−c1 · δ2) if δ2 ≤ µ, and (A.1)

Pr
[
X > µ+ δ2/7

]
< exp(−c2 · δ2) if δ2 > µ. (A.2)

Inequality (A.1) corresponds directly to the first statement of the lemma. However,
observe that (A.2) only implies the second desired inequality in case µ < δ2 ≤ µ · e6.
This results from the fact that δ2/7 ≤ δ2/(1 + ln(δ2/µ)) in this setting.
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In order to tackle the case of δ2 > µ · e6, we employ a different version of the Chernoff
bound, which is tighter for large values of δ. That is, by inequality (1.10.8) of [73] we
have for λ > 0 that Pr[X > µ(1+λ)] < (e/λ)(λ·µ). We now define y = ln(δ2/µ) > 6 and
set λ = δ2(1 + y)−1µ−1 = ey(1 + y)−1. This way, we get

Pr

[
X > µ+

δ2

1 + ln(δ2/µ)

]
<

(
e(1 + y)

ey

) δ2

(1+y)

. (A.3)

For y ≥ 6, it holds that (1 + y) < ey/2−1. This implies that e(1 + y)e−y < e−y/2 and
allows us to upper-bound the term on the right-hand side of (A.3) as follows(

e(1 + y)

ey

) δ2

(1+y)

< e
− y

2
δ2

1+y < e−
δ2

4 .

The results follow when setting c = min{c1, c2, 1/4}.

Next we consider tail bounds for sums of geometrically distributed random variables.

Theorem A.4 ([57, Theorem 2.1]). Let X =
∑n

i=1Xi where Xi, i = 1, . . . , n, are inde-
pendent geometric random variables with Xi ∼ Geo(pi) for pi ∈ (0, 1]. For any λ ≥ 1,

Pr [X ≥ λ · E [X]] ≤ exp(−min
i
{pi} · E [X] · (λ− 1− lnλ)).

Lemma A.5 (Full version of [46]). Suppose that X1, . . . , Xn are independent random
variables on N, such that there is a constant γ > 0 with Pr [Xi = k] ≤ γ(1 − δ)k−1 for
every k ∈ N. Let X =

∑n
i=1Xi, µ = E [X]. Then it holds for all ε > 0 that

Pr [X ≥ (1 + ε)µ+O(n)] ≤ e−
ε2n

2(1+ε) .

Theorem A.6 (rephrased, based on [56]). Let X1, X2, . . . , Xn be independent random
variables and ai ≤ Xi ≤ bi (i = 1, 2, . . . , n), then for λ > 0

Pr

[
n∑
i=1

Xi − E

[
n∑
i=1

Xi

]
≥ λ

]
≤ e

− 2λ2∑n
i=1

(bi−ai)
2
.

Lemma A.7. Consider a sequence of τ random variables Z1, . . . , Zτ w.r.t. a sequence of
random vectors X(0), . . . ,X(τ − 1). Let X<i = {X(0), . . . ,X(i − 1)} for all i ≤ τ . Let
Z =

∑τ
i=1 Zi and µ =

∑τ
i=1 µi with µi = E[Zi | X<i] for i ≤ τ . Assume a ≤ Zi ≤ b for

all i ≤ τ . Then for all λ > 0

Pr[Z − µ < −λ] ≤ e−
2λ2

τ(b−a)2

Proof. We follow the standard proof technique for Hoeffding bounds. For any t < 0 we
have

Pr[Z − µ < −λ] = Pr
[
et(Z−µ) > e−tλ

]
≤
E
[
et(Z−µ)

]
e−tλ
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where in the last inequality we apply Markov’s inequality. First we consider the term
E
[
et(Z−µ)

]
. Since we do not assume any independence among the Zi’s we utilize the

concept of conditional independence via the law of total expectation. That is,

E
[
et(Z−µ)

]
= E

[
e
∑τ

i=1 t(Zi−µi)
]

= E
[
E
[
e
∑τ

i=1 t(Zi−µi) | X<τ

]]
= E

[
e
∑τ−1

i=1 t(Zi−µi) · E
[
et(Zτ−µτ ) | X<τ

]]
= E

[
e
∑τ−1

i=1 t(Zi−µi)
]
· E
[
et(Zτ−µτ ) | X<τ

]
= E

[
e
∑τ−2

i=1 t(Zi−µi) · E
[
et(Zτ−1−µτ−1) | X<τ−1

]]
· E
[
et(Zτ−µτ ) | X<τ

]
= E

[
e
∑τ−2

i=1 t(Zi−µi)
]
· E
[
et(Zτ−1−µτ−1) | X<τ−1

]
· E
[
et(Zτ−µτ ) | X<τ

]
=

τ∏
i=1

E
[
et(Zi−µi) | X<i

]
Due to the conditional expected value we cannot directly apply Hoeffding’s lemma to
yield an upper bound on this expression. Recall that this result states for any real
valued random variable W such that a ≤W ≤ b almost surely that for all λ ∈ R

E
[
eλ(W )

]
≤ eλ·E[W ]

λ2(b−a)2

8 .

Fortunately we can derive a conditional version as well. The key is to define new random
variables Wi = Zi − µi for all i ≤ τ and observe that E[Wi | X<i] = 0. Using the
convexity of eλx we get

E
[
etWi | X<i

]
≤ E

[
b−Wi

b− a
· eta + Wi − a

b− a
· etb | X<i

]
=
b− E[Wi | X<i]

b− a
· eta + E[Wi | X<i]− a

b− a
· etb

=
b

b− a
· eta + −a

b− a
· etb

The remaining steps to proof the conditional version of Hoeffding’s lemma are identical
to the original proof. Thus,

E
[
eλ(Zi−µi) | X<i

]
≤ e

λ2(b−a)2

8 .

At last we combine this with the calculation from the beginning and obtain

Pr[Z − µ < −ε] ≤
E
[
et(Z−m)

]
e−tε

≤ e
τ ·t2(b−a)2

8
+tε

By optimizing the choice of t < 0 we set t = −4λ/(τ(b − a)2) and the desired result
follows.
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A.2. Drift results

The next result is a modified version of a drift result in [46]. We adapted the proof
slightly. The original proof can be found in the full version [45].

Theorem A.8 ([46], Modified version of Claim 2.9). Consider a Markov Chain (W (t))∞t=1

with the state space {0, . . . , c4
√
log n} for an arbitrary constant c4 > 0. For some con-

stants c2 > 0 and ε > 0 it has the following properties:

• Pr[W (t+ 1) ≥ 1|W (t) = 0] = Ω
(
1
)

• Pr[W (t+ 1) ≥ min{(1 + ε)W (t),m}] ≥ 1− e−c2W (t)

Then it holds for t = O
(
log n

)
that

Pr[W (t) ≥ m] ≥ 1− n−2

Proof. We follow the outline of the original proof in the full version [45]. Let B ∈
N ∪ {0,∞} be a random variable that denotes the number of consecutive successful
rounds (abb.: winning streak) when starting at round t0 with Wt0 = 0 until the first
failure similar to a geometrically distributed random variable. Let ℓ∗ ∈ N be the smallest
number such that W (ℓ∗) ≥ c4

√
log n. We know that Pr[B = 0] ≤ 1 − p and for any

1 ≤ ℓ ≤ ℓ∗

Pr[B = ℓ] ≤ p ·
ℓ−1∏
j=1

(1− e−c2(1+ε)2j ) · e−c2(1+ε)2ℓ ≤ p′ · e−c2(1+ε)2ℓ ≤ c3 · δℓ

for some constant p′, δ < 1. It is easy to see that for some constant cq < 1

Pr[B = ℓ|B <∞] ≤ cq · δℓ

Thus, E [B|B <∞] = Θ
(
1
)
. In a similar way, it also follows for any starting value

W (t0) = w0 ≥ 0 that Pr[B = ℓ|W (t0) = w0] ≤ cq · δℓ, i.e., the probability holds
irrespective of W (t0). If a winning streak holds for more than t′ = Θ

(
log logn

)
phases,

then we reach a phase where W (t0 + t′) = c4
√
log n with probability

Pr[B ≥ t′] ≥ p ·
t′∏
j=1

(1− e−c2(1+ε)2j ) ≥ c5

for some constant c5 < 1. Thus, by a standard Chernoff bound, we have to consider
Θ
(
log n

)
attempts such that at least one streak lasts for more than t′ phases w.h.p.

As stated in the original proof, at most Θ
(
log n

)
attempts requires at most Θ

(
log n

)
phases w.h.p. which finishes the proof.

Theorem A.9 (Theorem 18 of [63]). Let (Xt)t≥0 be a sequence of non-negative random
variables with a finite state space S ⊆ R+

0 such that 0 ∈ S. Let smin := min(S \ {0}),

144



A.2. Drift results

and let T := inf{t ≥ 0 | Xt = 0}. Suppose that X0 = s0, and that there exists δ > 0 such
that for all s ∈ S \ {0} and all t ≥ 0,

E[Xt −Xt+1 | Xt = s] ≥ δs.

Then, for all r ≥ 0,

Pr

[
T >

⌈
r + ln(s0/smin)

δ

⌉]
≤ e−r.

The next result is another modified version of a drift result in [46]. For convenience,
we give a slightly adapted and condensed version of the proof.

Lemma A.10 (Modified version of [46]). Let W (t) be the random variable at time t of a
random walk on the state space [0, log logn] with a reflective state 0 and absorbing state
log log n and initially W (0) = 0 The transition probabilities are defined for every t ∈ N
and ℓ ∈ [1, log logn− 1] as follows

Pr[W (t+ 1) = 1 | W (t) = 0] = p

Pr[W (t+ 1) = ℓ+ 1 | W (t) = ℓ] = 1− e−2ℓ

Pr[W (t+ 1) = 0 | W (t) = ℓ] = e−2ℓ

where p ≤ 1 is an arbitrary constant. Let T be the first time that W (T ) = log log n, i.e.,
W reaches the absorbing state. Then T = O(log n) w.h.p.

Proof. We consider a sequence of attempts Z1, Z2, . . . such that W reaches the absorbing
state log log n.

The attempts are identical distributed and each (unsuccessful) attempt can be de-
scribed by a random variable B that denotes the number of consecutive successes (right
steps of W ) starting with W (t) = 0 before its first fail ( falling back to state 0). Note
that a successful attempt ends up in the absorbing state log logn. We show that each at-
tempt is successful with at least constant probability and then apply Chernoff bounds to
conclude that O(log n) attempts are sufficient to provide at least one successful attempt.
Additionally, we show that t = O(log n), i.e., the total number of trials sum up over all
attempts is O(log n). We start with the first statement. For any ℓ ∈ [1, log logn− 1] we
have

Pr [B = ℓ] = p ·
ℓ−1∏
j=1

(1− e−2j ) · e−2ℓ ≤ p · e−2ℓ ≤ e−2ℓ
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and hence,

Pr [B < log logn] =

log logn−1∑
ℓ=0

Pr [B = ℓ]

= Pr [B = 0] +

log logn−1∑
ℓ=1

Pr [B = ℓ]

≤ (1− p) +
log logn−1∑

ℓ=1

p · e−2ℓ

≤ (1− p) + p ·
∞∑
ℓ=1

e−2ℓ

≤ (1− p) + 0.2 · p
= 1− 0.8 · p

Therefore each attempt Zi is successful with probability at least 1 − (1 − 0.8p) = 0.8p.
Now consider r = c log n random variables S1, . . . , Sr each indicates whether the attempt
Zi is successful. We know Pr [Si = 1] ≥ 0.8p for every i ≤ r. An application of Chernoff
bounds (Theorem A.1) yields at least one successful attempt w.h.p.

Now we continue with the second part of the statement. From the first part we
already know that r = c log n attempts are sufficient. We upper bound the total number
of steps of the random walk until it reaches the absorbing state by upper bound the total
number of steps of r = c log n unsuccessful attempts. In order to do that we define new
independent random variables Z ′

i = Zi + 1 for each i ≤ r and Z ′ =
∑r

i=1 Z
′
i. Observe

that Pr [Z ′
i = ℓ] = Pr [Zi = ℓ− 1] for every ℓ ∈ [1, log log n − 1]. Using our results from

the first part we know that

Pr
[
Z ′
i = ℓ

]
≤

{
p · e−2ℓ−1

, ℓ ∈ [2, log log n− 1]

p , ℓ = 1.

By simple calculation it is easy to see that e−2ℓ−1 ≤ e−2(ℓ−1) for ℓ ≥ 2 and hence,
Pr [Z ′

i = ℓ] ≤ p · e−2(ℓ−1) for all ℓ ∈ [1, log logn− 1]. Therefore

E
[
Z ′] = r∑

i=1

E
[
Z ′
i

]
= c log n ·

log logn−1∑
ℓ=1

ℓ · Pr
[
Z ′
i = ℓ

]
≤ c log n · p ·

log logn−1∑
ℓ=1

ℓ · e−2ℓ−1 ≤ p · c · log n.

This allows us to apply the following Chernoff bound (Lemma A.5) that yields for Z ′ =∑r
i=1 Z

′
i, µ = E [Z ′], ε = 2 and c = 6

Pr
[
Z ′ ≥ c′ log n

]
≤ Pr

[
Z ′ ≥ (1 + ε)p · c · log n+O(r)

]
≤ e−

ε2·c·logn
2(1+ε) ≤ n−4

and hence, the second part of the statement holds.
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A.3. Pólya-Eggenberger Distribution

A.3. Pólya-Eggenberger Distribution

The Pólya-Eggenberger process is a simple urn process that consists of n steps. Initially,
the urn contains a red and b blue balls, where a, b ∈ N0. One fixed step of the process
can be described as follows. First, a ball is drawn from the urn uniformly at random with
replacement. Second, an additional ball that matches the color of the drawn ball is added
to the urn. The corresponding Pólya-Eggenberger distribution, denoted by PE(a, b, n),
describes the number of total red balls that are contained in the urn after all n steps.
Alongside a more detailed discussion of this process, the following tail inequalities have
been shown in [17] 1.

Theorem A.11 (Theorem 1 of [17]). Let A ∼ PE(a, b, n − (a + b)), µ = (a/(a + b))n
and a+ b ≥ 1. Then, for any δ with 0 < δ <

√
a and some small constant 1 > εp > 0 it

holds that
Pr
(
A < µ−

√
a · n

a+ b
· δ
)
< 4 exp(−εp · δ2)

Pr
(
A > µ+

√
a · n

a+ b
· δ
)
< 4 exp(−εp · δ2)

Theorem A.12 (simplified Theorem 47 of [17]). Let A ∼ PE(a, b, n − (a + b)) with
1 ≤ a ≤ b. Then, for some large constant cp > 1 it holds that

P
(
A >

n

a+ b
· (3a+ cp log n)

)
< 2n−2,

A.4. Anti-Concentration Results

Lemma A.13. Let X ∼ Bin(n, p) with µ = np. Then, for δ with n/2 > (1 + δ)µ > µ,
it holds that

Pr[X ≥ (1 + δ)µ] ≥ 1√
8(1 + δ)µ

·
(
1− δ2µ2

n− (1 + δ)µ

)
·
(

eδ

(1 + δ)(1+δ)

)µ
.

Proof. We start by considering some k with n/2 > k > µ. By Lemma 4.7.2 of [13] we
have that

Pr[X ≥ k] ≥ 1√
8k

exp

(
−nD

(
k

n

∣∣∣∣∣∣ p)) , (A.4)

where D(·||·) denotes the Kullback-Leibler divergence with

D

(
k

n

∣∣∣∣∣∣ p) =
k

n
ln

(
k

µ

)
+

(
1− k

n

)
ln

(
n− k
n− µ

)
.

Hence, it follows that

exp

(
−nD

(
k

n

∣∣∣∣∣∣ p)) =
(µ
k

)k
·
(
n− µ
n− k

)n−k
. (A.5)

1In [17] the Pólya-Eggenberger distribution is defined to describe the number of added instead of total
red balls at the end of the process. We adapted Theorem A.11 and Theorem A.12 accordingly.
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Next, we use that (1 + x/m)m ≥ ex(1 − x2/m) for m > 1 and |x| < m, which can be
derived with the help of the well-known inequality (1+ 1

x)
x+1 ≥ e as well as the Bernoulli

inequality. This implies(
n− µ
n− k

)n−k
=

(
1 +

k − µ
n− k

)n−k
≥ ek−µ

(
1− (k − µ)2

n− k

)
. (A.6)

When combining (A.4) with (A.5) and then (A.6), the statement follows for k = (1 +
δ)µ.

Lemma A.14. Let X ∼ Bin(n, p) with µ = np. Then, for δ with n/2 > (1 + δ)µ > µ
and δµ <

√
n/2, it holds that

Pr[X ≥ (1 + δ)µ] ≥ 1

6 ·
√

(1 + δ)µ
· exp

(
−δ2µ

)
Proof. The result is implied by Lemma A.13. We lower bound some factors involved in
the right-hand side of Lemma A.13. It follows from δµ <

√
n/2 and µ < n/2 that(

1− δ2µ2

n− (1 + δ)µ

)
>

1

2
(1− o

(
1
)
).

Additionally, when using the well-known inequality ex ≥ (1 + x) twice, we get(
eδ

(1 + δ)(1+δ)

)
≥ 1

(1 + δ)δ
=

(
1

1 + δ

)δ
≥
(

1

eδ

)δ
= e−δ

2
.

Lemma A.15 (Lemma 4 of [60]). Let X ∼ Bin(n, p) with µ = np. For any δ ∈ (0, 1/2]
and p ∈ (0, 1/2], assuming δ2µ ≥ 3, it holds that

Pr[X ≥ (1 + δ)µ] ≥ e−9δ2µ

Pr[X ≤ (1− δ)µ] ≥ e−9δ2µ

Theorem A.16 (Theorem 1 of [54]). Let X ∼ Bin(n, p) with µ = np. If 1/n < p, then

Pr[X ≥ µ] > 1/4.

A.5. Random Walks

The following statement bounds the hitting time for biased random walks. Similar results
have already been shown, e.g., in [26, 49, 65]. For convenience, we give here a combined
version of these standard results that fits our needs.

Lemma A.17 (Random Walk Hitting Time). Let (Wt)t∈N be a biased random walk on
state space N0, initially at 0. Let 0 < p < 1 denote the probability for the walk to move
to the right (increase its current position by 1). Conversely, let q = (1 − p) denote the
probability that it moves to the left (or stays in position in case it currently resides at
position 0). Then, for any N > 0 and hitting time τN = min{t | Wt = N} the following
holds:
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1. If p > q then τN ≤ ( 2
p−q )

2 ·N with probability at least 1− exp(−N).

2. If p < q then τN ≥ (q/p)N/2 with probability at least 1− (p/q)N/2.

Proof. We start with the first statement and assume p > q. We use a similar idea as in
Lemma 3.3 of [26]. That is, we let Xi denote a random variable with Xi = −1 if the
random walk moves to the left, and Xi = 1 if it moves to the right in step i. Observe that
Sm =

∑m
i=1Xi minorizes the position Wm of the random walk for any m ≥ 0. We set

m = (2/p− q)2N and apply Hoeffding’s bound (Theorem 4.12 of [66]). As −1 ≤ Xi ≤ 1
this yields for any t ≥ 0 that

Pr [Sm ≤ E [Sm]− t] ≤ exp(−2t2/4m).

Setting t = E [Sm]−N = m(p− q)−N ≥ 0 this yields that

Pr [Sm ≤ N ] ≤ exp

(
−(m(p− q)−N)2

2m

)
= exp

(
−m(p− q)2

2
+N(p− q)− N2

2m

)
= exp

(
−2N +N(p− q)− N2

2m

)
≤ exp(−N).

As Sm minorizes Wm, this implies that the random walk must have hit N before step m
with probability at least 1− exp(−N).

In order to show the second statement, we assume q < p and couple our process with
a sequence of gamblers ruin instances. The gambler starts with 1 money and repeatedly
gambles: either it wins 1 money with probability p or loses 1 money with probability q.
The gambler continues until it either runs out of money or reaches a budget of N + 1.
Assume our random walk currently resides at position 0. We couple its next moves with
a gamblers ruin process as follows: the random walk moves to the right each time the
gambler wins, otherwise it moves to the left. If the gambler reaches budget N + 1, then
this implies that the random walk hit N before going back to 0. Otherwise, the gambler
runs broke which implies that the random walk is again back at 0. Hence, we may
lower-bound τN by the number of gamblers ruin instances required for the gambler to
hit N +1 for the first time. According to [49] the player reaches the desired budget with
probability

q
p − 1

( qp)
N+1 − 1

≤ (
p

q
)N .

We now apply union bounds, which implies that the gambler wins in any of the first
(q/p)N/2 instances with probability at most

(q/p)N/2 · (p
q
)N =

p

q

N/2
.

Each gamblers ruin instance corresponds to at least one move of the random walk. There-
fore, the number of required gamblers ruin instances serves as a lower bound for the
hitting time.
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Lemma A.18 ([49]). If we run an arbitrarily long sequence of independent trials, each
with success probability at least p, then the probability that the number of failures ever
exceeds the number of successes by b is at most ((1− p)/p)b.

Lemma A.19 ([5]). Let W (t) be the random variable at time t of a random walk on the
positive integers with a reflective border at 0 and W (0) = 0. Let p be the probability of
a +1-step. Let q > p be the probability of a −1-step everywhere except for the origin.
Let r = 1 − p − q be the probability of remaining in place (1 − p for the origin). Let
Tm = inf { t ≥ 0 | W (t) ≥ m }. Then Pr[Tm ≤ nc] ≤ nc · (p/q)m.

Lemma A.20 ([58]). Consider a submartingale Z0, Z1, . . . w.r.t. a filtration F = (Fi)τ−1
i=0 .

Assume a ≤ Zi − Zi−1 ≤ b for all i ≥ 1. Then for all positive integers τ and λ > 0

Pr[Zτ − Z0 < −λ] ≤ e
− 2λ2

τ(b−a)2
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