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A B S T R A C T

This thesis explores the production of gravitational waves (GWs) dur-
ing first-order cosmological phase transitions (PTs) and presents the
core findings from my doctoral research. Central to my work is the de-
velopment of a novel simulation framework that leverages a Higgsless
approach specifically designed to model the relativistic hydrodynam-
ics and GW production associated with such transitions.

The Higgsless simulations introduce a highly efficient method de-
signed to capture the nonlinear dynamics of the primordial fluid, offer-
ing precise extraction of GW spectra from first-order PTs. By excluding
the Higgs field dynamics, the simulations achieve significant computa-
tional cost reduction without sacrificing accuracy, making it a valuable
tool for further progress within the field and the broader community.

Our Higgsless approach has proven exceptionally effective at solv-
ing the relativistic hydrodynamic equations with great precision, re-
solving high-gradient phenomena such as shocks and nonlinear evolu-
tion - critical for accurate GW predictions - while maintaining compu-
tational efficiency. The Higgsless approach, therefore, effectively bridges
the gap between the traditional semianalytic models and computation-
ally expensive numerical simulations.

This thesis is divided into two main sections. Part I offers a concise
theoretical foundation on GWs and PTs in cosmology, setting the stage
for the subsequent scientific investigations. Part II delves into key theo-
retical concepts for numerical simulations, including central difference
methods, before detailing the implementation, validation, and appli-
cation of the Higgsless simulations. These simulations serve as the
foundation for the thesis’s primary results and scientific contributions.

Major achievements of my research include the development of a 3D,
fully nonlinear hydrodynamical simulation code for modeling PT dy-
namics using the Higgsless approach. This innovation enabled novel
predictions of GW production driven by fluid dynamics in PTs, mark-
ing the first-ever derivation of GW spectra from strong PTs. Addition-
ally, it provided detailed insights into the parametric dependence of
the GW spectrum on fundamental PT quantities across a broad range
of the PT parameters space.
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Z U S A M M E N FA S S U N G

Diese Dissertation untersucht die Erzeugung von Gravitationswellen
(GWs) während kosmologischer Phasenübergänge (PTs) erster Ord-
nung und präsentiert die wesentlichen Ergebnisse meiner Doktorar-
beit. Im Zentrum meiner Arbeit steht die Entwicklung eines neuarti-
gen das Simulationskonzepts, der einen Higgs-losen Ansatz nutzt, der
speziell zur Modellierung der relativistischen Hydrodynamik und der
GW-Erzeugung in solchen Übergängen entwickelt wurde.

Die Higgs-losen Simulationen bieten eine hocheffiziente Methode
zur Erfassung der nichtlinearen Dynamik des primordialen Fluids und
ermöglichen die präzise Extraktion von GW-Spektren aus Phasenüber-
gängen erster Ordnung. Durch den Verzicht auf die Dynamik des
Higgs-Feldes wird eine erhebliche Reduzierung der Rechenkosten er-
reicht, ohne dass die Genauigkeit beeinträchtigt wird. Dies macht die
Methode zu einem wertvollen Werkzeug für die weitere Entwicklung
des Forschungsgebiets und für die wissenschaftliche Gemeinschaft ins-
gesamt.

Unser Higgs-loser Ansatz hat sich als äußerst effektiv bei der Lö-
sung der relativistischen hydrodynamischen Gleichungen mit hoher
Präzision erwiesen und ermöglicht die Auflösung von Hochgradien-
tenphänomenen wie Schocks und nichtlinearer Evolution – entschei-
dend für genaue GW-Vorhersagen – bei gleichzeitiger Erhaltung der
Recheneffizienz. Der Higgs-lose Ansatz schließt somit effektiv die Lücke
zwischen den traditionellen semianalytischen Modellen und rechenin-
tensiven numerischen Simulationen.

Diese Dissertation ist in zwei Hauptteile gegliedert. Teil I bietet eine
prägnante theoretische Einführung zu GWs und PTs in der Kosmolo-
gie und bildet die Grundlage für die nachfolgenden wissenschaftlichen
Untersuchungen. Teil II behandelt die wichtigsten theoretischen Kon-
zepte für numerische Simulationen, einschließlich zentraler Differenz-
methoden, bevor die Implementierung, Validierung und Anwendung
der Higgs-losen Simulationen im Detail erläutert werden. Diese Simu-
lationen bilden die Grundlage für die wesentlichen Ergebnisse und
wissenschaftlichen Beiträge dieser Dissertation.

Zu den wichtigsten Errungenschaften meiner Forschung gehört die
Entwicklung eines 3D, vollständig nichtlinearen hydrodynamischen Si-
mulationscodes zur Modellierung der PT-Dynamik mithilfe des Higgs-
losen Ansatzes. Diese Innovation ermöglichte neuartige Vorhersagen
zur GW-Erzeugung durch die Fluiddynamik bei PTs und markiert die
erste Ableitung von GW-Spektren aus starken PTs. Darüber hinaus lie-
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ferte sie detaillierte Einblicke in die parametrische Abhängigkeit des
GW-Spektrums von den fundamentalen Größen der PTs über einen
weiten Bereich des PT-Parameterraums.
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T H E S I S O U T L I N E

This thesis, titled Higgsless Simulations of Relativistic Hydrodynamics and
Gravitational Wave Production in Cosmological Phase Transitions is based
on the published works [1], [2], [3]. It is divided into Part I, Theory
of gravitational waves and cosmological phase transitions, Part II, Higgsless
Simulations, and Part III, Appendix. Part I is outlined to establish the
theoretical foundation and context necessary for understanding the
scientific work presented in Part II.

Part I is divided into Chapter 2, beginning with Section 2.1, where
I introduce GWs in flat, non-expanding space as small perturbations
of the metric. I describe the GW equations of motion, express the en-
ergy and momentum of GWs, and derive Weinberg’s formula for the
GW production from a generic source of energy and momentum. Then,
in Section 2.2, I review GWs in cosmology, justify the stochasticity of
GW backgrounds, derive the redshifted GW amplitude and wavenum-
ber, formally describe GWs in an expanding space-time, shed light
on Weinberg’s formula, and finally, review the production of GWs by
sound waves.

This is followed by Chapter 3, which reviews cosmological phase
transitions. In Section 3.1, I cover the basic concepts of phase transi-
tions, including the effective potential, bubbles and their nucleation
rate, statistics associated with bubble nucleation and expansion, the
Bag model and equation of state, phase transition strength, and the
hydrodynamics of singular bubbles. In Section 3.2, I review GWs from
first-order phase transitions. I provide estimates of key features of the
GW signal, discuss the scalar-field contribution to GW production in
various models, explore the plasma contribution to GW production in
different scenarios, and conclude with a few comments on the obser-
vational prospects for GW detection.

Part II, focusing on the design, implementation, evaluation, and ap-
plication of our novel Higgsless simulations introduced in [1], is di-
vided into four chapters. Chapter 4 serves as an overview of central
difference methods, with particular emphasis on the method used in
our simulations. In Section 4.1, I introduce hyperbolic conservation
laws. In Section 4.2, I present the Lax-Friedrichs scheme as a proto-
typical example of a central difference method. Then, in Section 4.3, I
introduce the Kurganov-Tadmore central difference method, the back-
bone of the Higgsless simulations, in both its semi-discrete and fully-
discrete formulations, including generalizations to three dimensions,
and offer some concluding remarks.



In Chapter 5, based mainly on the scientific work presented in my
publication [1], I introduce our novel Higgsless simulations and present
the first numerical findings. Section 5.1 provides background and con-
text and outlines the scientific objectives. In Section 5.2, I review the
physical setup governing the simulations. Section 5.3 explores the nu-
merical methods and programmatic choices, detailing their impact on
both the physics and measurements. In Section 5.4, I validate the sim-
ulation code, followed by the presentation of numerical results in Sec-
tion 5.5. A discussion is provided in Section 5.6, with concluding re-
marks in Section 5.7. I close the chapter with a brief digression in
Section 5.8, reviewing the results of my other publication [2], which
constitutes a case applying the Higgsless simulations to PTs seeded by
domain walls.

In Chapter 6, based on the work from my publication [3], I expand
upon the previous Chapter 5, significantly advancing our understand-
ing of the simulation’s performance and, for the first time, deriving
gravitational wave predictions from strong phase transitions. I further
generalize the theoretical framework for gravitational waves generated
by sound waves to incorporate a damped source. Section 6.1 intro-
duces the study and the broader context and outlines its scientific
objectives. In Section 6.2, I extend the model for gravitational wave
production to account for damped sources and cosmic expansion. Sec-
tion 6.3 discusses updates to the simulation code and the chosen pa-
rameters. The main numerical results, including findings from strong
phase transitions and a template for gravitational wave production,
are presented in Section 6.4. Finally, Section 6.5 summarizes the key
findings and concludes the chapter.

I conclude the thesis in Chapter 7, where I reflect on the overarch-
ing scientific goals and achievements and propose avenues for future
research.

Part III contains Appendix A, where I comment on the hydrodynam-
ics and gravitational wave production in inverse phase transitions as a
response to recent advances in the field.
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P U B L I C AT I O N S A N D C O N T R I B U T I O N

This thesis is based on the following publications:

• [1] Ryusuke Jinno, Thomas Konstandin, Henrique Rubira, and
Isak Stomberg. “Higgsless simulations of cosmological phase
transitions and gravitational waves.” JCAP, vol. 02, 011, 2023.
DOI: 10.1088/1475-7516/2023/02/011. arXiv: 2209.04369.

abstract : “First-order cosmological phase transitions in the early
Universe source sound waves and, subsequently, a background of stochas-
tic gravitational waves. Currently, predictions of these gravitational
waves rely heavily on simulations of a Higgs field coupled to the plasma
of the early Universe, the former providing the latent heat of the phase
transition. Numerically, this is a rather demanding task since several
length scales enter the dynamics. From smallest to largest, these are
the thickness of the Higgs interface separating the different phases, the
shell thickness of the sound waves, and the average bubble size. In this
work, we present an approach to perform Higgsless simulations in three
dimensions, producing fully nonlinear results, while at the same time
removing the hierarchically smallest scale from the lattice. This signifi-
cantly reduces the complexity of the problem and contributes to making
our approach highly efficient. We provide spectra for the produced grav-
itational waves for various choices of wall velocity and strength of the
phase transition, as well as introduce a fitting function for the spectral
shape.”

my contribution : My contribution to this work lies primar-
ily in the independent development and implementation of the
Higgsless simulation code, which I used to run simulations for
cross-checking data from the other authors’ independent simu-
lation implementations, ensuring full agreement among the nu-
merical results. Specifically, I cross-checked the data used in the
analysis, which was derived from Dr. Thomas Konstandin’s im-
plementation. Additionally, I assisted in the data analysis, pro-
duced several plots, and contributed to the writing of the publi-
cation.

• [2] Simone Blasi, Ryusuke Jinno, Thomas Konstandin, Hen-
rique Rubira, and Isak Stomberg, “Gravitational waves from
defect-driven phase transitions: domain walls,” JCAP, vol. 10,
051, 2023. DOI: 10.1088/1475-7516/2023/10/051. arXiv: 2302.06952.

https://doi.org/10.1088/1475-7516/2023/02/011
https://arxiv.org/abs/2209.04369
https://doi.org/10.1088/1475-7516/2023/10/051
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abstract : “We discuss the gravitational wave spectrum produced
by first-order phase transitions seeded by domain wall networks. This
setup is important for many two-step phase transitions as seen for ex-
ample in the singlet extension of the standard model. Whenever the
correlation length of the domain wall network is larger than the typi-
cal bubble size, this setup leads to a gravitational wave signal that is
shifted to lower frequencies and with an enhanced amplitude compared
to homogeneous phase transitions without domain walls. We discuss
our results in light of the recent PTA hints for gravitational waves.”

my contribution : In this work, I contributed to the concep-
tion of the project, the theoretical work and implementation of
the Metropolis algorithm, and the writing of the publication. The
numerical data was derived from the Higgsless implementation
by Dr. Thomas Konstandin.

• [3] Chiara Caprini, Ryusuke Jinno, Alberto Roper Pol, Thomas
Konstandin, Henrique Rubira, and Isak Stomberg, "Gravita-
tional waves from decaying sources in strong phase transitions,"
arXiv: 2409.03651.

abstract : “We study the generation of gravitational waves (GWs)
during a first-order cosmological phase transition (PT) using the re-
cently introduced Higgsless approach to numerically evaluate the fluid
motion induced by the PT. We present for the first time spectra from
strong first-order PTs (ω = 0.5), alongside weak (ω = 0.0046) and
intermediate (ω = 0.05) transitions previously considered in the lit-
erature. We test the regime of applicability of the stationary source
assumption, characteristic of the sound-shell model, and show that it
agrees with our numerical results when the kinetic energy, sourcing
GWs, does not decay with time. However, we find in general that for in-
termediate and strong PTs, the kinetic energy in our simulations decays
following a power law in time, and provide a theoretical framework that
extends the stationary assumption to one that allows to include the time
evolution of the source. This decay of the kinetic energy, potentially de-
termined by non-linear dynamics and hence, related to the production
of vorticity, modifies the usually assumed linear growth with the source
duration to an integral over time of the kinetic energy fraction, effec-
tively reducing the growth rate. We validate the novel theoretical model
with the results of our simulations covering a broad range of wall ve-
locities. We provide templates for the GW amplitude and spectral shape
for a broad range of PT parameters.”
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my contribution : In this work, I was responsible for run-
ning the full set of simulations using my own independent Higgs-
less simulation implementation. I contributed to the conception
of the project and the theoretical developments, performed the
data analysis of the numerical simulation results, produced the
vast majority of the plots, and contributed significantly to the
writing of the manuscript.

This thesis will primarily focus on the first and third of these publi-
cations, which form the foundation of Chapters 5 and 6, respectively.
The second publication, being more application-oriented and slightly
diverging from the main theme of the thesis, will be discussed in Sec-
tion 5.8 of Chapter 5, where a more concise overview is provided.

In addition to these publication, during my PhD studies, I was ac-
tively involved in a number of collaborations both within and outside
of DESY and University of Hamburg. These gave rise to the following
publications,

• Hyungjin Kim, Alessandro Lenoci, Isak Stomberg, and Xiao
Xue. “Adiabatically compressed wave dark matter halo and intermediate-
mass-ratio inspirals.” Phys. Rev. D, vol. 107, no. 8, 2023, pp. 083005.
arXiv:2212.07528. DOI: 10.1103/PhysRevD.107.083005,

• Mesut Çalışkan, Yifan Chen, Liang Dai, Neha Anil Kumar, Isak
Stomberg, and Xiao Xue. “Dissecting the stochastic gravitational
wave background with astrometry.” JCAP, vol. 05, 2024, pp. 030.
arXiv:2312.03069. DOI: 10.1088/1475-7516/2024/05/030,

of which I am a co-author. Since these works are topically distinct
and have relatively little relevance to my primary research focus on
simulations of cosmological phase transitions, I have chosen not to
include them in this thesis.
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L I S T O F F I G U R E S

Figure 1 Effective potential for first- and second-order
PTs. Left plot: First-order PT The effective poten-
tial V(ε, T) of (111) is shown for various tem-
peratures T : T > T1, T = T1, T = Tc, and
T = T0. At T > T1, the potential has a single
minimum at ε = 0. As T decreases, a second
minimum appears at T = T1, becomes degen-
erate at T = Tc, and the system transitions to a
new global minimum for T < Tc. At T = T0, the
potential barrier vanishes, and any patch of the
remaining symmetric phase will roll smoothly
to the broken phase. Right plot: Second-order
PT The effective potential V(ε, T) of (111) for
A = 0 is plotted for T = 1.4T0, T = 1.0T0,
T = 0.6T0, and T = 0.1T0. The transition is con-
tinuous, with the minimum shifting smoothly
from ε = 0 as T decreases. 32

Figure 2 Figure adopted from [86]. Fluid velocity pro-
files v(ϑ) in the bubble center frame (where c2s =
1

3
). Detonation curves (dash-dotted line) start

below µ(ϑ, v) = cs and end at (ϑ, v) = (cs, 0).
Deflagration curves (dashed line) start below v =
ϑ and end at µ(ϑ, v)ϑ = c2s , representing the
shock front. Consistent solutions do not exist
in the shaded regions. 43

Figure 3 Self-similar profiles of the fluid velocity (left pan-
els) and enthalpy (right panels) perturbations
for a single bubble nucleated at t = 0 as a func-
tion of the self-similar coordinate ϑ → r/t. The
profiles are shown for weak (upper panels), in-
termediate (middle panels), and strong (lower
panels) PTs, across the range of wall velocities
used in the parameter scan of our simulations. 45

Figure 4 The vacuum energy transfer efficiency ϖω for
single isolated bubbles with developed self-similar
fluid profiles, for weak (ω = 0.0046), intermedi-
ate (ω = 0.05), and strong (ω = 0.5) PTs. 46
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Figure 5 Bubble nucleation histories generated with dif-
ferent random seeds for L̃/vw = 20 (upper panel)
and L̃/vw = 40 (lower panel). The nucleation
times of each bubble nucleation history have
been translated to nucleate the first bubble at
the same time. Black lines indicate bubble nu-
cleation histories used in the study, while col-
ored lines show different realizations using the
same procedure. 97

Figure 6 Minimal smoothing of ε to reduce oscillations.
Blue curves indicate wall positions at adjacent
time steps. Red lines indicate the step func-
tion representing bubble boundary conditions,
while dotted-blue lines show the redefinition al-
lowing to gradually deposit energy even at wall
positions in-between lattice sites. 100

Figure 7 Convergence of self-similar profiles for weak PTs
(ω = 0.0046) and wall velocities vw ↑ {0.32, 0.48}
corresponding to two deflagrations. The box
size is L̃ = 20vw and the resolution N = 512.
The first and third panels show the radial ve-
locity |v|. The second and fourth panels show
the enthalpy w normalized to the enthalpy in
the far symmetric phase ws. The profiles are
obtained from the 2D slices of the simulations
in the left column by binning quantities in 500
radial bins from the bubble center. The middle
(right) column shows fluid profiles in the self-
similar coordinate ϑ = r/t (radial coordinate r)
at various times to indicate the convergence to
self-similar profiles with time. Gray regions in-
dicate the self-similar profiles reviewed in Sec-
tion 3.1.6. 108

Figure 8 Same as figure 7, but for vw ↑ {0.60, 0.80} corre-
sponding to a hybrid and detonation. 109

Figure 9 Same as figure 7, but for intermediate PTs (ω =
0.05). 110

Figure 10 Same as figure 7, but for intermediate PTs and
vw ↑ {0.60, 0.80}. 111
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Figure 11 On the left side, the time evolution of the veloc-
ity profile as a function of ϑ → r/t is depicted
arising from a single bubble nucleated in a sim-
ulation box with dimensions L̃ = 20vw and res-
olution N = 512. The wall velocity is vw = 0.8,
and the PT strength ω = 0.05. On the right,
the velocity profile is shown as a function of
ϑ → r/t for different values of N at t̃ = 3.2,
keeping L̃/vw, vw, and ω constant. In both pan-
els, 100, 000 random points from the lattice are
selected and re-scaled according to the respec-
tive simulation time to present the result in the
self-similar coordinate ϑ. The self-similar solu-
tion from [86] is highlighted in orange. 112

Figure 12 Time evolution of ↓Kµ↔ for an intermediate PT
ω = 0.05 and different grid sizes (N = 64, 128, 256
and 512). The wall velocity vw = 0.8 corre-
sponds to a detonation. The initial energy den-
sity is K0/ws = 3

4
(1+ω), where ws denotes the

enthalpy density before the PT. 113
Figure 13 Left figure: The time evolution of the kinetic en-

ergy for different box sizes N for an intermedi-
ate PT with vw = 0.8 is plotted. Dashed lines
indicate ↓wv2γ2↔ and solid lines ↓v2↔. Right fig-
ure: The kinetic energy value at the first peak
(around t̃ ↗ 7) as a function of N for weak
(lower lines) and intermediate (upper lines). Dashed
lines indicate extrapolation to infinity simula-
tion resolution. 114

Figure 14 Central 2D simulation slices of the fluid velocity
amplitude |v(x̃)| and enthalpy w(x̃). The resolu-
tion is N = 512 and the box size L̃ = 40vw. The
first three slices are chosen at equidistant times
to show the bubble evolution before percolation
while the fourth slice is at the end of the simula-
tion to display the long-term behaviour. Upper
(lower) panels show a weak (intermediate) PT
with wall velocity vw = 0.32 corresponding to
deflagrations. 116

Figure 15 Same as in figure 14 but with vw = 0.6 corre-
sponding to hybrids. 117

Figure 16 Same as in figure 14 but with vw = 0.80 corre-
sponding to detonations. 118
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Figure 17 A few example spectra for weak (ω = 0.0046,
lower lines) and intermediate (ω = 0.05, upper
lines) PTs with N = 512. The specific parame-
ters for these PTs are detailed in the plot subti-
tles. The colored lines represent the shape func-
tion described in Equation (290), with distinct
colors indicating the regions of different power-
law indices 3 (red), 1 (green), and !3 (blue), as
well as the regime of exponential damping (or-
ange), separated by q0, q1, and qe. 120

Figure 18 Example of the impact of the box size L and
grid size N on the resulting GW spectrum. In
this example we use vw = 0.8 and intermedi-
ate strength (ω = 0.05). Note that in order to
distinguish orange dots from green and blue,
the orange dots have been manually shifted to
lower values by a factor of 0.85 as dots would
otherwise overlap. 120

Figure 19 The IR tail of GW spectra obtained from simu-
lations of box size L̃ = 80vw and resolution N =
512 for a PT of intermediate strength, vw = 0.8,
and different simulation durations and integra-
tion time windows (in units of 1/φ) as specified
in the plot legends. The lines are shifted by fac-
tors of 2 relative to each other to make them
better visible. For reference, lines q3 and q5 are
included. 122

Figure 20 Upper panel: The extracted fitting parameters
q0, q1, and qe as functions of the wall veloc-
ity. Blue (red) points correspond to weak (in-
termediate) PTs with ω = 0.0046 (ω = 0.05). In
the upper left figure, we show the IR knee posi-
tion q0 for L̃ = 40vw. In the upper right figure,
we show the UV peak q1 (dots), the shell thick-
ness (crosses) defined in Equation (291), and the
exponential damping qe (solid lines) for L̃ =
20vw. Lower panel: The integral of the GW spec-
trum growth rate Q →

int over momenta, defined in
Equation (289), normalized by ϑshell(ϖω)

2 (left)
and by the kinetic energy squared ↓v2γ2w↔2 mea-
sured in the lattice (right). 125
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Figure 21 Upper panel: The extracted fitting parameters
q0, q1, and qe as functions of the wall veloc-
ity. Blue (red) data points correspond to weak
(intermediate) PTs with ω = 0.0046 (ω = 0.05).
Dots and solid lines are from simulations with
small box size (L̃ = 20vw) while stars and dot-
ted lines are from simulations with large box
size (L̃ = 40vw). In the upper left figure, we
show the IR knee position q0 for L̃ = 40vw. In
the upper right figure, we show the UV peak
q1 (dots), the shell thickness (crosses) defined
in Equation (291), and the exponential damp-
ing qe (solid lines) for L̃ = 20vw. Lower panel:
The integral of the GW spectra Q →

int over mo-
menta defined in Equation (289) normalized by
ϑshell(ϖω)

2 (left) and by the kinetic energy squared
↓v2γ2w↔2 measured in the lattice (right). 128

Figure 23 Left column: A realization of a DW network as
per the method in the main text and footnote 2
is shown as dark lines. The bubble wall inter-
face is shown as expanding red circles at vari-
ous times in the simulation. Right column: The
kinetic energy in the fluid is as obtained in the
simulation at corresponding time steps. The
PT parameters are ω = 0.05, vw = 0.8, L =
160vw/φ, and ϑDW = 0.1L. 142

Figure 24 Final spectra of the gravitational waves with (left)
and without (right) a DW network. The strength
of the PT is ω = 0.05, and the velocities of the
bubble walls are vw = 0.4, 0.55, and 0.8. The
green points indicate the part of the spectrum
used in the fit (shown in red). 143

Figure 25 Central 2D simulation slices of the fluid velocity
amplitude |v(x̃)| and enthalpy w(x̃) for a strong
PT with ω = 0.5 The resolution is N = 512, and
the box size L̃ = 40vw. The first three slices are
chosen at equidistant times to show the bub-
ble evolution before PT completion, while the
fourth slice is at the end of the simulation to dis-
play the long-term behavior. The upper (lower)
panels corresponds to a deflagration with vw =
0.5 (hybrid with vw = 0.6). 164
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Figure 26 Same as the Figure 25, but for vw = 0.8, corre-
sponding to a hybrid. Note that for weak and
intermediate PTs, this wall velocity gives rise to
detonation solutions. 165

Figure 27 Plots showing the kinetic energy fraction K and
the integrated GW spectrum Iint

sim as a function
of grid spacing δx̃/vw = (L̃/vw)/N for simu-
lations with L̃/vw = 20. Upper panel: Fit of
Equation (328) to least-squares fitted values of
the parameter K0 in Equation (309) for simula-
tions of resolutions N ↑ {64, 128, 256, 512}, nor-
malized to Kω (defined from self-similar bub-
bles in Equation (168)). Solid lines indicate the
fits, dots the data, and stars the extrapolated
values. The left, middle, and right panels indi-
cate weak, intermediate, and strong PTs, respec-
tively. Middle panel: Same as upper panel, but
for Krms → Kint/T̃

1/2

GW normalized to Kω. Note
that for strong PTs, the fit is inappropriate as
per the definition in the main text for vw = 0.68
and vw = 0.76, in which case we instead connect
the data points with dotted lines and indicate
extrapolated values with the value at N = 512.
Lower panel: Same as upper panel, but for Iint

sim
normalized by a the product of Ω̃GW ∼ 10!2 [25,
69, 71] and T̃GWK2

ω
R↑φ, based on the expected

scaling of Equation (308). Both Krms and Iint
sim

are computed for t̃init = 16 and t̃end = 32, with
T̃GW = 16. 168
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Figure 28 Time evolution of the kinetic energy fraction in
the broken-phase volume K(t̃)/V(t̃) for multiple-
bubble simulations (solid lines), normalized by
the single-bubble Kω, for different resolutions
N = {64, 128, 256, 512} in increased opacity and
box size L̃/vw = 20. Results are shown for weak
(left panels), intermediate (middle panels), and
strong (right panels) PTs, and for a range of wall
velocities vw = {0.36, 0.48, 0.6, 0.8}. Dashed lines
correspond to the ratio Kε(t̃)/Vε(t̃) computed
from the single-bubble simulations, such that
the departures between the solid and dashed
lines indicate the time when fluid-shell colli-
sions take place in the multiple-bubble simu-
lations. Black dots are the values of K0 ob-
tained from the fit K(t̃) = K0(t̃/t̃0)!b studied
in Section 6.4.5 for different N. Red and green
dots correspond to the estimated values K0 (see
Equation (333)) and K→

0
(obtained from the con-

vergence analysis of Section 6.4.3). Orange stars
correspond to the factor S (see Equation (333))
at the collision t̃coll, used to correct K0. 171

Figure 29 Upper panel: Values of the convergence-corrected
continuum limit estimate K0 of K0 as defined
in (333) for resolution N = 512, normalized to
Kω for self-similar profiles defined in Equation (168),
for weak (left panel), intermediate (middle panel),
and strong (right panel) PTs, as a function of vw.
Lines in increasing opacity correspond to in-
creasing numerical resolution N ↑ {64, 128, 256, 512}.
The vertical solid gray line indicates the sound
speed, cs, while the dashed lines indicate the
Chapman-Jouguet velocity, vCJ. Error bars show
the standard deviation from 10 different bubble
nucleation histories. Lower panel: Kinetic energy
efficiency ϖ0 → K0(1 + ω)/ω defined from K0

as defined in (333) for resolution N = 512, for
weak (blue), intermediate (red), and strong (or-
ange) PTs. I also plot ϖω (black) for self-similar
solutions as defined in Equation (166). The ver-
tical line corresponds to cs, and vCJ is indicated
by the dotted gray line. 174
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Figure 30 Evolution of the measured kinetic energy frac-
tion K(t̃) normalized to the single-bubble val-
ues Kω (see Equation (168)) for weak (left pan-
els), intermediate (middle panels), and strong
(right panels) PTs, for N = 512 (solid lines) and
L̃/vw = 20, and the same wall velocities as those
in Figure 27. Dashed lines indicate the fits to the
power-law decay of Equation (336) at times t̃ >

t̃0. Values corresponding to K0/Kω are marked
with circles. In the lower panels, the kinetic
energy fraction is shown for different numer-
ical discretizations N = {64, 128, 256, 512} (solid
lines with increasing opacity), normalized to the
corresponding values of the fit K0 at each reso-
lution N. The results for each vw are shifted
by a constant to distinguish between wall ve-
locities. The presentation in the lower panels
is chosen to emphasize the dependence of the
time decay on resolution. 176

Figure 31 Decay index b (left panel) and half-life t̃1/2 (right
panel) as a function of vw for N = {256, 512} in
increasing opacity for weak (blue lines), inter-
mediate (red lines), and strong (orange lines)
PTs. Dashed black lines with colored stars in
the right panel correspond to the eddy turnover
time t̃eddy = (φR↑)/

√
Kω that we compare with

t̃1/2 as we expect both time scales to be inversely
proportional to Kω. Error bars in the left panel
show the standard deviation from 10 different
bubble nucleation histories for N = 512. 178

Figure 32 Upper panel: Dependence of the numerical inte-
grated GW amplitude found in the simulations
with L̃/vw = 40 and N = 512 as a function of the
source duration t̃! t̃init for weak (left column),
intermediate (middle column), and strong (right
column) PTs. The integrated GW amplitude is
normalized as in the lower panels of Figure 27
for consistency. Dashed lines exemplify the lin-
ear growth expected under the stationary UETC
assumption. Lower panel: Time evolution of Ω̃GW
computed as in Equation (338). 180
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Figure 33 Gravitational wave production efficiency Ω̃GW
for weak (left), intermediate (middle), and strong
(right) first-order PTs. Solid (dotted) lines cor-
respond to L̃/vw = 20 (40). Black lines with
increasing opacity correspond to increasing res-
olutions N ↑ {64, 128, 256, 512}, while colored
lines indicate Ω̃→

GW as computed from the ex-
trapolated values of Iint,→

sim and K→
int as per the de-

scription in Section 6.4.3. Dots and stars mark
Ω̃GW as presented in Tables 2 and 3 of [72] cor-
responding to predictions from the sound-shell
model (SSM) for exponential nucleation of bub-
bles [72] and scalar field-hydrodynamical sim-
ulations for simultaneous nucleation [71], re-
spectively. Gray dots correspond to SSM values
found using the assumption described in 6.2.2
(following Appendix B of Ref. [73]), and com-
puted using CosmoGW [166]. Error bars in-
dicate the standard deviation from 10 different
bubble nucleation histories for L̃/vw = 20 (darker)
and 40 (lighter). 181

Figure 34 Plots of the GW amplitude growth with the source
duration τ̃sw → t̃ ! t̃init as modeled in Equa-
tion (341) corresponding to φ/H↑ = → (solid
lines) and Equation (342) (dashed lines), for the
two values of φ/H↑ = 1000 (normal opacity)
and 100 (lower opacity). I furthermore indicate
the numerical growth of the GW spectrum as
found in the simulations but re-scaled by a fac-
tor K0/K0 and vertically translated by Iint

→ (t̃0, tinit)
(red line segments). Dots indicate the eddy turnover
time t̃eddy = φR↑/

√
Kω, which determines the

expected scale for nonlinearities to develop (they
do not appear in the plot for weak PTs with
vw = 0.4 and 0.8). 184
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Figure 35 Fits of Equation (343) to the numerical results
from weak, intermediate, and strong PTs (in each
panel, amplitudes increase with larger ω) with
N = 512 for a range of vw, and for L̃/vw = 20

in brighter colors (white dots for the numerical
data), and L̃/vw = 40 in darker colors (black
dots for the numerical data). Red lines indicate
wave numbers below the knee k1, green indi-
cates intermediate wave numbers k1 < k < k2,
and blue corresponds to wave numbers above
the peak k2. The dotted orange lines indicate
wave numbers k > ke, where exponential damp-
ing dominates. The light and dark gray lines in-
dicate the resulting fitted double-broken power
laws excluding the exponential damping. Ver-
tical lines indicate the Nyquist wave numbers
kNyqR↑ = φR↑N/L̃. 187

Figure 36 Fitted UV index n3 ↭ !3. Note that for weak
PTs, we fix n3 → !3 (shown for reference). The
sample standard deviation, as determined from
the seed simulations, is depicted as 1σ error bars
at selected representative velocities. 190

Figure 37 Fitted characteristic wave numbers k1 (left col-
umn), k2 and ke (middle column), and kpeak
(right column) for weak (blue), intermediate (red),
and strong (orange) PTs, using simulations with
N = 512 and L̃/vw = 20 (40) in solid (dotted)
lines. Gray regions indicate the Nyquist fre-
quency k̃Nyq = N/L̃. In the upper panel, wave
numbers are normalized as k/φ, as presented
in [67] and Chapter 5, while in the lower panel,
they are normalized as kR↑. Thick colored lines
of low opacity in middle panels indicate ke for
L̃/vw = 20 (40) in solid (dotted) lines. In the
upper panel (middle and right), thin black-and-
color dashed lines indicate 1/ϑshell, while in the
lower panel, they indicate the fitted value 2π ↘
0.49/∆w (see Equation (349)). In the right col-
umn, the lower opacity regions indicate the peak
as obtained using the double broken power law
fit of Equation (343), neglecting the exponential
numerical damping. 192
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Figure 38 Comparison between the re-scalings associated
with R↑ and Reff. The pink dashed-doted line
corresponds to a fit 1.36/ (vw + 0.24) to facili-
tate using Reff without knowledge of the pro-
files. 193

Figure 39 Time evolution of the GW spectrum I(t̃init, t̃, k̃),
evaluated at times t̃ ↑ [17, 32] with t̃init = 16, for
weak (left column), intermediate (middle col-
umn), and strong (right column) PTs. The wall
velocities are vw = 0.32 (0.36 for strong PTs) in
the upper panels, 0.6 in the middle panels, and
0.8 in the lower panels. The numerical resolu-
tion is N = 512, and the box size is L̃/vw = 40.
The GW spectra are normalized by the refer-
ence value Ω̃GW ↗ 10!2 and the expected scal-
ing K2

ω
R↑φ. 197

Figure 40 Various GW spectral growth rates obtained as
averages over 10 different bubble nucleation his-
tories. Each spectrum shows the mean, the vari-
ance, and the min-max over the ten nucleation
histories. The left (right) plots show spectra
from simulations with box size L̃/vw = 20 (box
size L̃/vw = 40). 198

Figure 41 2D simulation slices of the velocity amplitude
|v(x̃)|, enthalpy w(x̃), and the vorticity |≃̃⇐ v(x̃)|
field for a strong PT with ω = 0.5 and vw =
0.36. The resolution is N = 1024, twice that
of the simulations of the highest resolution in
previous parts of this Chapter, and the box size
L̃/vw = 20. The wall velocity is chosen to be
vw = 0.36 since the production of vorticity is
observed to be maximal at low wall velocity.
Around the expanding bubble, spurious small-
scale vorticity is seen, which is caused in part
by small fluid transients around the shock and
in part by the definition of the central numeri-
cal derivative, which picks up artifacts from the
lattice symmetry. Sizeable macroscopic produc-
tion is, however, observed in the interactions of
overlapping fluid sound shells, indicating the
physical presence and build-up of vorticity. 201
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Figure 42 Longitudinal and transverse velocity power spec-
tra of the fluid for two strong PTs with ω = 0.5
and wall velocities vw = 0.44 (left column) and
vw = 0.8 (right column). The top panel illus-
trates the power in the longitudinal modes, the
middle panel the power in the vortical modes,
and the bottom panel the fraction of power in
the vortical modes. Different lines correspond
to different times in the simulation. For refer-
ence, bubble nucleation begins around t̃ ↗ 0,
first collisions occur around t̃ ↗ 5, and PT com-
pletion takes place around t̃ ↗ 10. 203

Figure 43 Examples of self-similar velocity profiles for in-
verse detonations (left), inverse hybrids (mid-
dle), and inverse deflagrations (right). This Fig-
ure is adopted from [168], to which I refer the
reader for details. 218

Figure 44 Convergence towards the self-similar fluid pro-
file for an inverse deflagration for vw = 0.75
and ω = !0.1202. The pink dashed line for the
self-similar velocity profiles is taken from [168]
for the same parameters. 219

Figure 45 Off-central 2D simulation slices for an inverse-
deflagration of the fluid velocity amplitude |v(x̃)|
(upper panel), and enthalpy w(x̃) (lower panel).
The wall velocity is vw = 0.75 and the strength
ω = !0.1202 (x̃ → x/φ). The resolution is N =
512, and the box size L̃/vw = 20. The first
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1
P R E L I M I N A R I E S

1.1 Background

1.1.1 Cosmological phase transitions: the source

On our sphere of life, the Earth, phase transitions, i.e. processes through
which nature proceeds to change its local state as a result of changes
in conditions, such as the temperature, pressure, or energy density,
crossing a critical threshold, occur in abundance and diversity. They
include the most well-acquainted melting of ice, vaporization of water,
and the transition of a magnet from ferromagnetic to paramagnetic
when heated. Perhaps less-known examples include the transition of
a fluid from a superfluid to a normal fluid, the transition of a regular
conductor into a superconductor, and the transition of a Bose-Einstein
Condensate to an ordinary gas.

The list of examples of observed phase transitions can be made very
long, yet none of them pertain to a cosmological context. In fact, while
many cosmological phase transitions have been suggested, not one of
them has been observed. However, the universal abundance of phase
transitions in diverse physical systems warrants taking seriously the
possibility that phase transitions have occurred, perhaps in abundance,
also throughout cosmological history. Their hypothesized existences
could, if confirmed true, imply a vast set of consequences for our uni-
verse as we know it and even explain conundrums that are difficult to
explain in their absence.

Some such consequences of cosmological phase transition include
primordial magnetic field generation [4, 5], generation of matter-
antimatter asymmetry [6–10], production of topological defects, pri-
mordial black holes–[11–13], and GW production [14, 15]. Clearly, their
phenomenology is vastly rich, and their cosmological consequences
are far-reaching.

In the context of a first-order cosmological phase transition (PT), the
order parameter initially remains in the symmetric phase while a bro-
ken true vacuum minimum develops. Vacuum or thermal fluctuations
can then trigger a transition to the broken phase through the potential
barrier, leading to the formation of small bubbles [16–18]. The vacuum
energy released drives the expansion of these bubbles, which eventu-

1
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ally collide with one another, causing anisotropic stresses in the energy
distribution which source GWs [14, 15].

While bubble collisions themselves are a significant source of
GWs [19–24], it has been demonstrated in [25] that the motion of the
fluid driven by scalar field walls often dominates the GW spectrum in
PTs where the bubble wall reach an asymptotic value rather than ac-
celerate towards the speed of light c. In this case, most of the vacuum
energy is deposited in the primordial fluid, inducing acoustic modes
that continue to propagate through space even after PT completion,
thus sourcing GWs for a possibly long period of time.

Throughout cosmological history, at least two possibly first-order
PTs are likely to have occurred. At a temperature T ∼ 100GeV , the
Higgs field underwent spontaneous symmetry breaking in the elec-
troweak PT (EWPT) responsible for giving particles mass through
the Higgs mechanism. Studies of the electroweak model have found
the EWPT is of second order in the standard model (SM) of parti-
cle physics [26–29]. This would imply that little to no GWs are pro-
duced, making it impossible to observe the EWPT through the chan-
nel of GWs. In extensions of the SM the EWPT may be first-order (see,
e.g., [10, 30, 31]), thus producing a possibly observable amount of GWs
if the PT is strong enough.

As the universe cooled further, at a temperature around T ∼ 100MeV ,
free quarks were confined to form protons and neutrons in what is
known as the QCD phase transition. Again, studies based on lattice
QCD have demonstrated that also the QCD phase transition was of
second order [32]. However, as is shown in, e.g., [33, 34], under certain
conditions, e.g., in the presence of a sufficiently strong magnetic field,
the QCD phase transition may be of first order.

The EWPT and the QCD phase transitions are prototypical examples,
but a PT could have occurred in a hidden sector [35], and at any energy
scale within a broad range spanning QCD scale ∼ O

(
102

)
MeV up to

the inflationary scale ↫ 1016GeV [36]. Probing scales far beyond the
reach of all current and conceivable future experimental means that
observational signatures of PTs may open a plausible and lucrative
window to new physics.

In general, the message I want to deliver is that a first-order PT may
come with rich phenomenological consequences, among which one is
the production of a stochastic background of GWs, and that observa-
tion of such consequences carries the potential of unraveling physics
far beyond the reach of any earthly experimental effort. This may thus
bring us new information on the underlying high energy theory of the
primordial universe, which should serve as a strong justification for
their study.
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1.1.2 Gravitational waves: the signal

The door to a new era with the promise of groundbreaking discov-
ery was opened with the inaugural direct detections by the LIGO-
Virgo collaboration of GWs emanating from mergers of black holes
and neutron stars [37–39]. The forthcoming observing runs by the
LIGO-Virgo-KAGRA (LVK) collaboration are expected to accumulate
more events [40]. Collaborative efforts among Pulsar Timing Arrays
(PTAs) have furthermore unveiled convincing evidence of a stochastic
GW background (SGWB) at nano-Hertz frequencies [41–44]. While a
compelling candidate for the source of this radiation from unresolved
supermassive black hole mergers, i.e., of astrophysical origin, it is im-
portant to point out that primordial sources of cosmological origin
can also explain the observed signal [45, 46]. These breakthroughs in
GW detection gave us ears to astrophysical events and cosmological
history inaccessible through all other means of observation, and we
are poised to gather data that will revolutionize our understanding of
astrophysics and cosmology. Looking ahead to the 2030s, the launch
of the Laser Interferometer Space Antenna (LISA) mission [47–49], de-
signed to probe GWs in the unexplored milli-Hertz frequency band, is
poised to potentially revolutionize modern cosmology [49]. One par-
ticularly intriguing possibility is LISA’s ability to observe GWs from
first-order PTs [14] around the EW scale, as the expected peak of the
GW spectrum would coincide with LISA’s sensitivity band [50–52].

These groundbreaking GW observations have profoundly impacted
astrophysics, offering new insights into the formation and evolution
of black holes and neutron stars [37, 39], including intermediate-
mass black holes, and proving the existence of binary systems with
unexpectedly large massive black holes [53]. A notable example is
GW190521, where the merging black holes had masses of approxi-
mately 85 and 66 solar masses, resulting in a final black hole of around
142 solar masses. This event challenges our understanding of stellar
evolution, as black holes of such large masses are not expected to form
from the collapse of a single star [54].

This surprising discovery underscores the exceptional discovery po-
tential of listening for GWs. Beyond astrophysical insights, current GW
detections serve as powerful probes of fundamental physics and cos-
mology. For instance, the first detection of the coalescence of two
neutron stars, accompanied by the coincident detection of the same
event across various electromagnetic bands [39], has placed strong
constraints on the GW propagation speed, !3 ⇐ 10!15 ↬ cT ! 1 ↬
7⇐ 10!16, in units of c = 1 [55], and has also been used to estimate the
present Hubble rate [56]. In cosmology, the detection of a stochastic
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GW background by PTAs opens new avenues for studying the uni-
verse’s large-scale structure and early cosmological events [41–43].

To shed some light on the importance of an SGWB in cosmology,
let us first consider the Cosmic Microwave Background (CMB) and its
discovery, which triggered a revolution and laid the foundation for
modern precision cosmology. The CMB represents the era of photon
decoupling, after which photons could propagate essentially undis-
turbed along geodesics until, eventually, some were detected by our
telescopes. This unimpeded free propagation has led to the undeni-
able fact that much of what we know about the universe is due to our
ability to see it. This remains true up to the time of the CMB, beyond
which no inference of the universe may be attained through direct vi-
sual inspection.

The time of photon decoupling can be estimated by comparing the
rate at which photons interact with the medium, Γ = neσec, where
ne is the electron number density, σe is the electron cross-section, and
c is the speed of light, to the Hubble expansion rate H ⇒ a!3/2 in
matter-domination, where a is the scale factor. As the universe cooled,
electrons and protons combined to form neutral hydrogen, leading to
a sharp decrease in the free electron density, ne. Decoupling occurred
rapidly when the photon scattering rate, Γ ∼ H, so that the mean free
path, λ, of the photons was comparable to the Hubble horizon H!1,
which can be shown to occur at a time of around 380,000 years after
the Big Bang or at a redshift of around z = 1100 [57]. Following this
decoupling, photons mostly followed geodesics without interactions
along their path, which conveniently rendered the universe transpar-
ent to light or, more generally, electromagnetic radiation. This opened
the venue for us to visually appreciate and learn about the universe
through the observational channel of light up until the CMB, but no
further.

For a SGWB, we may ask the same question: when did GWs decou-
ple from the primordial medium of the universe? Knowing this answer,
we would know the earliest time from which GWs can carry informa-
tion to us. The question is answered by a similar comparison, namely,
at what time did the GW interaction rate Γ equal the Hubble rate H?
Thus, one computes [58]

Γ

H
∼

(
T

MPl

)3

where MPl denotes the Planck mass and T the temperature. From this
estimate, it is clear that the universe is transparent to GWs up until the
Planck scale at a temperature T ∼ MPl ∼ 1019GeV, roughly correspond-
ing to a time of just 10!43 seconds after the big bang. In other words,
GWs propagate freely in the early universe immediately after they are
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generated. This means that contrary to light, GWs carry information
about the processes that produced them throughout most of conceiv-
able cosmic history and can communicate the state of the universe at
epochs and energy scales that are far unreachable by any other means.

We thus understand that the holy grail of early universe cosmology
lay in the detection of a stochastic GW background of confirmed cos-
mological origin, with far-reaching consequences poised to revolution-
ize our understanding. Such a detection, nevertheless, is far from triv-
ial and demands that the source of GWs is sufficiently strong. Phase
transitions, however, potentially constitute such a source.

1.2 Motivation

This brief review highlights that GW astronomy is at the forefront of
a new scientific frontier, poised to revolutionize our understanding of
astrophysics, the universe’s earliest epochs, and fundamental physics.
I have particularly emphasized the generation of GWs from first-order
PTs and the potential of future GW detectors, such as joint PTA efforts
and LISA. The path from detecting new physics to interpreting SGWB
is paved with the need for precise GW predictions. As experimental
advancements bring the detection of new physics within reach, theo-
retical developments must keep pace to enable meaningful inference
from the data.

In this thesis, significant strides are made to deepen our understand-
ing of the violent hydrodynamics associated with vacuum energy re-
lease in first-order PTs and the resulting GW production. The goal is
to provide the physics community with accurate predictions of GW
spectra, parameterized by a few quantities that can be employed in
data analysis and inference studies. This can be achieved through both
analytical and numerical methods. In this work, I introduce a novel
simulation setup, termed Higgsless simulations, to derive such predic-
tions.

As we await the launch of LISA and the commissioning of future de-
tection concepts, joint advancements in data analysis techniques and
theoretical frameworks are essential to fully leverage the missions’ po-
tential. It is within this context that the present thesis finds its motiva-
tion.



Part I

T H E O RY O F G R AV I TAT I O N A L WAV E S A N D
C O S M O L O G I C A L P H A S E T R A N S I T I O N S

In this part, I establish the theoretical foundation. It is di-
vided into Chapter 2, beginning with Section 2.1, where I
introduce GWs in flat, non-expanding space as small per-
turbations of the metric. I describe the GW equations of
motion, express the energy and momentum of GWs, and
derive Weinberg’s formula for the GW production from
a generic source of energy and momentum. Then, in Sec-
tion 2.2, I review GWs in cosmology, justify the stochasticity
of GW backgrounds, derive the redshifted GW amplitude
and wavenumber, formally describe GWs in an expanding
space-time, shed light on Weinberg’s formula, and finally,
review the production of GWs by sound waves.

This is followed by Chapter 3, which reviews cosmological
phase transitions. In Section 3.1, I cover the basic concepts
of phase transitions, including the effective potential, bub-
bles and their nucleation rate, statistics associated with bub-
ble nucleation and expansion, the Bag model and equation
of state, phase transition strength, and the hydrodynamics
of singular bubbles. In Section 3.2, I review GWs from first-
order phase transitions. I provide estimates of key features
of the GW signal, discuss the scalar-field contribution to
GW production in various models, explore the plasma con-
tribution to GW production in different scenarios, and con-
clude with a few comments on the observational prospects
for GW detection.





2
G R AV I TAT I O N A L WAV E S

In this Chapter, I will introduce relevant concepts and theoretical re-
sults from general relativity and cosmology to ensure a somewhat self-
contained treatment. There are countless resources that cover these
subjects in great detail, and I refer the reader seeking a comprehensive
treatment to those. The present Chapter is merely a brief overview,
largely based on the references [58–62].

In Section 2.1, I introduce GWs in flat, non-expanding space as small
perturbations of the metric. I describe the GW equations of motion, ex-
press the energy and momentum of GWs, and derive Weinberg’s for-
mula for the GW production from a generic source of energy and mo-
mentum. Then, in Section 2.2, I review GWs in cosmology, justify the
stochasticity of GW backgrounds, derive the redshifted GW amplitude
and wavenumber, formally describe GWs in an expanding space-time,
shed light on Weinberg’s formula, and finally, review the production
of GWs by sound waves.

2.1 Gravitational waves in flat non-expanding
space

In this Section, I will give a brief introduction to the notion of GWs
as small perturbations to the metric of flat non-expanding space. I will
review basic results and, in particular, derive a formula for the GW
spectrum produced by a generic source of energy and momentum.

2.1.1 GWs as metric perturbations

Since at the fundament of the gravitational waves lay the general the-
ory of relativity (GR), the formula from which we spring is the Einstein
equation

Rµϑ !
1

2
gµϑR = 8πGTµϑ (1)

where the Riemann tensor is defined by

Rµ
ϑϖσ = 0ϖΓ

µ

ϑσ ! 0σΓ
µ

ϑϖ + ΓµαϖΓ
α

ϑσ ! ΓµασΓ
α

ϑϖ, (2)

the Ricci tensor by

Rµϑ = Rα
µαϑ, (3)

8



2.1 gravitational waves in flat non-expanding space 9

the Ricci scalar by

R = gµϑRµϑ, (4)

and the energy-momentum tensor Tµϑ, receiving contributions from
whatever fields are present, is the source of curvature. The Christoffel
symbols are computed from the metric as

Γϖµϑ =
1

2
gϖσ (0µgσϑ + 0ϑgσµ ! 0σgµϑ) . (5)

In this thesis, we will exclusively regard GWs as small perturbations
hµϑ around a flat expanding or non-expanding background. For the
non-expanding case, the background metric is Minkowski, whereby
the metric is perturbed as

gµϑ = 1µϑ + hµϑ, |hµϑ| ⇑ 1 , (6)

working with a negative-time metric signature such that 1µϑ =
diag(!1, 1, 1, 1). Keeping terms at most of order O(h) in the equations
of GR results in what is called linearized theory.

2.1.2 Equations of motion

For future convenience, define

h = 1µϑhµϑ, (7)

h̄µϑ = hµϑ !
1

2
1µϑh , and (8)

hµϑ = h̄µϑ !
1

2
1µϑh̄ . (9)

With these definitions, one can show that to linear order in hµϑ, the
Einstein equation (1) takes the form (see e.g. [60])

⊜h̄µϑ + 1µϑ0
ϖ0σh̄ϖσ ! 0ϖ0ϑh̄µϖ ! 0ϖ0µh̄ϑϖ = !16πGTµϑ. (10)

One of our main reaming tasks in this Section is to exploit gauge
symmetries of linearized GR to bring this equation into a form that, to
the largest possible extent, reflects the physical degrees of freedom as-
sociated with GW propagation. We begin by simplifying the linearized
Einstein equation itself.

It is apparent that if, in the last equation, one could choose h̄µϑ such
that

0ϑh̄µϑ = 0 (11)
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the equation would greatly simplify. Under coordinate transformations
of the form

xµ ⇓ x→µ = xµ + ϑµ(x), (12)

for as long as |0µϑϑ| ∼ |hµϑ| or smaller, the metric perturbation hµϑ

transforms as

hµϑ(x) ⇓ h→
µϑ

(
x→) = hµϑ(x)! (0µϑϑ + 0ϑϑµ) , (13)

which in turn, using that h̄→ ! h̄ = 20αϑα, implies the transformation
property of h̄µϑ

h̄µϑ ⇓ h̄→
µϑ = h̄µϑ ! (0µϑϑ + 0ϑϑµ ! 1µϑ0αϑ

α) → h̄µϑ ! ϑµϑ. (14)

This means that subject to coordinate transformations of the form (12)
and the condition that |0µϑϑ| ∼ |hµϑ| or smaller, the metric perturba-
tion expressed in the new coordinates remain of the same order, thus
ensuring the validity of the linearized Einstein equation (1).

Upon requirement of condition (11) on the transformed metric per-
turbation (14), it is immediately clear the functions ϑµ(x) must satisfy

0ϑϑµϑ = ⊜ϑµ = 0 . (15)

Since this equation always admits solutions, this proves that condi-
tion (11) may always be satisfied under an appropriate choice of ϑµ(x).

Condition (11) constitutes a choice of gauge often denoted Lorentz
gauge, and reduces the number of degrees of freedom from 10 in-
dependent components of hµϑ to 6 through the imposition of 4 con-
straints. In Lorentz gauge, the linearized Einstein equation takes the
simple form

⊜h̄µϑ = !16πGTµϑ . (16)

We should note here that applying the Lorenz gauge condition (11)
to (16) means that, since partial derivatives commute, the energy-
momentum tensor is conserved, i.e. 0µTµϑ = 0, serving as a good
sanity check.

We want to exploit the residual gauge freedom to isolate those de-
grees of freedom in h̄µϑ that are physical and hence consider another
transformation h̄µϑ ⇓ h̄→

µϑ of the form (12). To this end, we therefore
consider the possibility to require also that the trace 1µϑh̄→

µϑ = h̄→ = 0,
for in this case h̄→

µϑ = h→
µϑ, and the metric perturbations have the

formidable property of conserving the volume element. The condition
of tracelessness translates into the requirement on ϑµ that

0αϑ
α = !

1

2
1µϑh̄µϑ. (17)
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But ⊜ϑµ = 0 must simultaneously be satisfied by the Lorentz gauge
condition. Using that partial derivatives commute, the application of
⊜ on (17) implies ⊜h̄µϑ = 0, which are the GW equations of motion
in vacuum, and thus guaranteed to be satisfied for as long as we as
Tµϑ(x) = 0. The imposition of gracelessness, therefore, means we must
be in a vacuum.

We will furthermore impose that h̄0i = 0, which requires of ϑµ that

h̄0i = 00ϑi + 0iϑ0, (18)

while the Lorentz gauge condition implies

00h̄→
00

= 0 ⇔ h̄→
00

= const. → 0, (19)

where in the last equality, we set the constant to 0 since, with GWs,
we really mean the time-varying part evolving over a constant back-
ground. Now, since h = T0µ = 0, the Lorentz gauge condition simply
reads 0ihij = 0, so that the polarization of hij is transverse the direc-
tion k or propagation.

Summarizing the current gauge constraints, we therefore have that

h0µ = 0, hi
i = 0, 0jhij = 0. (20)

The gauge defined by conditions (20) is called transverse-traceless (TT)
gauge, and we will decorate quantities obeying (20) with sub- or su-
perscript TT. Occasionally, and when exclusively Roman subscripts are
used, TT gauge should be impliclty assumed. Thus, in this gauge, the
GW EoMs reduce to

⊜hTT

ij
= 0, (21)

which is a wave-equation admitting solutions of the form

hTT
ij

⇒ eij(k̂)eikµx
µ

(22)

for transverse-traceless polarization tensors eij, thus, satisfying
kieij(k̂) = 0. The two residual degrees of freedom in TT gauge can
be attributed to two polarization states, + (plus) and ⇐ (cross), such
that the most general solution takes the form

hij(x, t) =
↑

r=+,x

↓
d3k
(2π)3

hr(k, t)e!ik·xer
ij
(k̂) (23)

where the polarization tensors are defined by

e+
ij
(k̂) =

1↖
2
(ûiûj! v̂iv̂j), e↓

ij
(k̂) =

1↖
2
(ûiv̂j+ v̂iûj), û, v̂ ↙ k̂, û ↙ v̂
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(24)

with normalization

er
ij
(k̂)er

→,ij(n̂) = δrr
→
, r, r→ ↑ {+, ⇐}. (25)

Provided a generic symmetric tensor Hµϑ which already satisfies the
Lorentz condition (11), such as hµϑ or Tµϑ (which satisfies (11) from
energy-momentum conservation), one can project that tensor onto its
transverse-traceless part following

HTT
ij

= 2ij,klHkl. (26)

The projector, the Lambda tensor, 2ij,kl is constructed as follows: Define
the projector,

Pij(k̂) = δij ! k̂ik̂j, (27)

then,

2ij,kl(k̂) = PikPjl !
1

2
PijPkl. (28)

The action of Pij upon a vector a is thus to project a onto the planar
subspace whose normal is k̂. 2ij,kl(k̂) is the tensor generalization of
this projection. The following properties of the Lambda tensor are use-
ful:

2ij,kl2kl,mn = 2ij,mn, (29)

it is traceless w.r.t. the first and last two indices,

2ii,kl = 2ij,kk = 0, (30)

it is symmetric under (ij) ∝ (kl), (ij) ∝ (ji), and (kl) ∝ (lk)

2ij,kl = 2kl,ij = 2ji,kl = 2ij,lk , (31)

and it is transverse on all indices,

k̂a2ij,kl = 0, a ↑ {i, j,k, l}. (32)

The polarization tensors satisfy the completeness relations

↑

r

er
ij
(k̂)er

lm
(k̂) =

1

2

(
PilPjm + PimPjl ! PijPlm

)
. (33)

An alternative definition of Pij in terms of û and v̂ in the plane
orthogonal to k reads

Pij = ûiûj + v̂iv̂j . (34)
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Therefore, the action of 2 onto a symmetric tensor Hij may be ex-
pressed in terms of the + and ⇐ polarization tensors as

HTT
kl

= 2ij,kl(k)Hij =
[
e+
ij
(k̂)e+

kl
(k̂) + e↓

ij
(k̂)e↓

kl
(k̂)

]
Hij. (35)

If we define the projection of Hij onto the + and ⇐ polarization basis

H+(k) → e+
ij
(k)Hij(k), H↓(k) → e↓

ij
(k)Hij(k) , (36)

we can rewrite

2ij,kl(k)Hij(k)Hkl(k)↑ = H+(k)H↑
+(k) +H↓(k)H↑

↓(k) . (37)

This result will be used in Chapter 5.

2.1.3 Energy and momentum of GWs

The notion of an energy-momentum tensor for GWs can be defined
through (see e.g. [60])

Tµϑ

GW =
1

32πG

〈
0µhαφ0

ϑhαφ
〉

, (38)

where the average is typically taken either over many oscillations in
time or over many wavelengths in space. The energy density associated
with the GWs is given by the 00-component as

T00

GW =
1

32πG

〈
ḣTT
ij
ḣTT
ij

〉
. (39)

To arrive at an expression for the energy flux, i.e., the energy carried
GWs passing through a unit surface per unit time at a large distance
r from the source an expression, consider the flux through a volume
V enclosed by a sphere of radius r whose surface element is given by
dA = r2dΩ. On this sphere sufficiently far away from the source, the
metric perturbations take the general form

hTT
ij
(t, r) =

1

r
fij(t! r) . (40)

Energy-momentum conservation,
↓

V

d3x
(
00T

00

GW + 0iT
i0

GW
)
= 0 , (41)

then implies that

dE

dtdΩ
=

r2

32πG

〈
ḣTT
ij
(t, r)ḣTT

ij
(t, r)

〉
(42)

across the spherical surface.
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2.1.4 Weinberg’s formula

In this Section, I will derive a central expression, Weinberg’s formula
(54) for the GW production by a generic (non-stochastic) source of en-
ergy and momentum Tij, an expression which I will use extensively
to compute the GW spectrum in the Higgsless simulations. Due to its
historical significance, and name conventions used in the literature, I
will outline in this Section the original method through which this re-
sult was obtained. Later in Section 2.2.4 and in a cosmological setting,
I will present an alternative, more rigorous derivation of the same ex-
pression from a stochastic source.

The spectrum of GWs produced by a generic source Tij of energy-
momentum was originally derived by Weinberg in his book [62]. A
somewhat more detailed and digestable derivation was delivered by
Maggiore in his text book [60]. For the completeness of this thesis, and
to form a basis for discussion, I will review this derivation in some
detail.

We will assume that GW production occurs in a flat non-expanding
universe. In this case, the equations of motion for the metric perturba-
tions h̄µϑ subject to non-vanishing energy-momentum and in Lorentz
gauge are given in equation (16). Since (16) is linear in h̄µϑ, the prob-
lem can be reduced to a simpler problem,

⊜xG
(
x! x→) = δ4

(
x! x→) , (43)

which upon finding the solution G (x! x→) allow for the construction
of h̄µϑ through convolution:

h̄µϑ(x) = !16πG

↓

VS

d4x→G
(
x! x→) Tµϑ

(
x→) , (44)

where the integral is taken over the source volume VS. What this
amounts to is studying the response of the system due to a minimal
impulse δ4 (x! x→) at x→. Linearity then allows to construct the full re-
sponse from the linear superposition of impulse responses as obtained
from the convolution.

The solution G (x! x→) that solves (43) is called the (retarded)
Green’s function and is given by [62]

G
(
x! x→) = !

1

4π |x ! x→|
δ

(
t!

∣∣x ! x→∣∣! t→
)

. (45)

Insertion of this expression into (44) and integrating over time, thus
absorbing the delta function, leads to

h̄µϑ(t, x) = 4G

↓
d3x→ 1

|x ! x→|
Tµϑ

(
t!

∣∣x ! x→∣∣ , x→) . (46)
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Assuming that the source is sufficiently far away, we can make the
approximation 1/(|x ! x→|) = r, where r is the distance to the (center of
the) source. For the retarded time, we make the approximation that it
is equal on planes intersecting the source orthogonal to the direction
n̂ → x̂ pointing towards the observer, namely

t!
∣∣x ! x→∣∣ ′ t! r+ x→ · n̂. (47)

Since we are outside of the source, we can furthermore project on the
transverse-traceless part, i.e. hTT

ij
= 2ij,klh̄kl , and thus obtain

hTT
ij
(t, r) =

4G

r

↓
d3x→2ij,kl(n̂)Tkl

(
t! r+ x→ · n̂, x→) . (48)

Using the Fourier convention,

Tkl(t, x) =
↓

d4k

(2π)4
Tkl(q, k)e!iqt+ik·x ,

Tij(q, k) =
↓
dtd3x Tij(t, x)eiqt!ik·x

(49)

one finds that

hTT
ij
(t, r) =

4G

r
2ij,kl(n̂)

↓→

!→

dq

2π
Tkl(q,qn̂)e!iq(t!r) . (50)

At a large distance from the source, the total radiated energy per unit
solid angle dΩ through a spherical surface of radius r is described by
Equation (42). Inserting the strain amplitudes (50) into this expression
and integrating over time, one finds that

dE

dΩ
=

r2

32πG

↓→

!→
dtḣTT

ij
(t, r)ḣTT

ij
(t, r)

=
G

2π2
2ij,kl(n̂)

↓→

0

dqq2Tij(q,qn̂)T↑
kl
(q,qn̂)

(51)

where in the first line the ensemble average is removed since we are
anyway integrating over time, while in the second line, the identity
(29) for the 2 tensor as well as T(!q,!k) = T↑(q, k) were used. Thus,
we can express the total amount of released energy per logarithmic
frequency bin as

dE

d lnq
=

2Gq3

π

↓
dΩ

4π
2ij,kl(n̂)Tij(q,qn̂)T↑

kl
(q,qn̂) . (52)

The interpretation of the expression concerns the total energy re-
leased from a generic source Tij, which is sufficiently far away that
we are in the wave zone where GWs appear as plane waves. Consider
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instead the situation that an unlimited and statistically homogeneous
distribution of similar sources is distributed in space to occupy an av-
erage volume V per source. Provided we are sufficiently far from the
sources, we can apply Equation (52), and conclude that the energy
density in GWs is Equation (52) divided by V , i.e.

d3GW

d lnq
=

2Gq3

πV

↓
dΩ

4π
2ij,kl(n̂)Tij(q,qn̂)T↑

kl
(q,qn̂) . (53)

It appears, therefore, that Weinberg’s formula can be used to compute
the energy density in GWs from an unlimited number of sources dis-
tributed uniformly in space. However, even with just one source in one
spatial volume V , we can estimate the full spectrum. Given a generic
source Tij(t, x), we can thus use Equation (53) to determine the result-
ing GW spectrum at production time (superscript p)

Ωp

GW(q) =
1

3̄

d3GW(q)

d lnq
=

q3

4π2m2

Pl3̄V

↓
dΩ

4π

[
2ij,kl(k̂)Tij(q, k)T↑

kl
(q, k)

]

|k|=q

.

(54)

where I used mPl = 1/
↖
8πG and 3̄ is the average energy density. To

honor the original derivation, to align with the literature, and owing
to its central role in my work, I will call Equation 54 Weinberg’s formula.

2.2 Gravitational waves in Cosmology

In this Section, I will generalize the treatment of GWs in Section 2.1 to
a cosmological setting involving an expanding space-time and relax-
ing the assumption of being in a vacuum. I will review basic results
and, in particular, re-derive Weinberg’s formula (54) in this more real-
istic context, thus shedding light on its applicability in the context of
this thesis and interpretation. Before considering more formal aspects,
I will discuss some general results, giving order-of-magnitude estima-
tions and justifying the description of cosmological sources of GWs as
stochastic backgrounds.

2.2.1 The stochasticity of GW backgrounds

Any cosmological gravitational background that we earnestly want to
measure is expected to be of a stochastic nature. In this Section, I will
briefly review the arguments behind this statement.

In an expanding universe, the largest scale of correlation is set by the
Hubble distance/time H!1. Therefore, at the time of GW production,
the largest spatial and temporal scale over which a GW signal can
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be correlated is (∆xp,∆tp)/H!1
p ↬ 1. We wish to compare this to the

current Hubble scale, and proceed to compute the redshifted value of
the largest correlation scale ∆x0p,

∆x0p

H!1

0

=
∆xp

H!1

0

a0

ap

↬
H!1

p

H!1

0

a0

ap

=
a0/ap√
Ω

p
rad

(55)

where we assumed a radiation-dominated equation of state at produc-
tion and defined Ω

p
rad → 3p/30c and 30c = 3H2

0
/(8πG) is the average

density at production time.
As the universe expands adiabatically to a good approxima-

tion, the entropy per comoving volume is conserved [63], so that
gS(T)T3a3(t) = const.. This allows relating the amount of expansion
that has taken place since production, a0/ap, to the current photon
temperature T0 ↗ 2.35⇐ 10!13GeV [64] and the temperature Tp at pro-
duction through

a0

ap

=

(
gp
S

g0
S

)1/3 (
Tp
T0

)
↗ 1.25⇐ 1013

(
gp
S

100

)1/3 (
Tp

GeV

)
(56)

where we additionally assumed the value g0
S
= 3.91 [65]. Using that

3rad = π
2

30
g↑(T)T4 during radiation domination, we can furthermore

compute

Ωrad(T) = Ω0

rad

(
g0
S

gS(T)

)4/3 (
g↑(T)

g0↑

) (a0

a

)4

. (57)

The redshifted correlation scale can therefore be estimated as

∆x0p

H!1

0

↗ a0/ap√
Ω

p
rad

=
1√
Ω0

rad

(
gp
S

g0
S

)1/3
√

g0↑
gp↑

T0
Tp

′ 10!11

(
100

g
p
↑

)1/6 (
GeV
Tp

)
(58)

where in the last step, we used that gp
↑ ′ g

p
S

and g0↑ = 2 for the two
polarization states of photons. It is immediately apparent that for the
prototypical electroweak PT, Tp ∼ 100GeV, and in fact, any other first-
order PT occurring in the early universe, the maximal scale of the cor-
relation will constitute only an extremely small fraction of the current
Hubble scale 1/H!1

0
. In fact, for the electroweak PT, the celestial sphere

consists of the order of ∼ 1024 uncorrelated patches, rendering the res-
olution of individual causally connected regions unachievable.

Thus, we have seen how GW sources are correlated on scales much
smaller than today’s horizon. The cosmological principle nevertheless
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demands that wherever we look at the celestial sphere, the observation
is a realization of a specific process whose probability distribution is
isotropic. The conclusion is that a cosmological GW background will
be stochastic in nature, justifying call it a stochastic GW background
(SGWB).

2.2.2 Redshifting

The energy in GWs can be characterized by the dimensionless quantity

ΩGW(f) =
1

3c

d3GW(f)

d log f
, (59)

thus indicating how much energy is stored in GWs per logarithmic
frequency interval normalized to the critical density

3c =
3H2

8πG
. (60)

The frequency relates to the wavenumber k and angular frequency q

through k = q = 2πf. We are interested in understanding the evolution
of (59) with cosmic expansion and how wavenumbers at production
time redshift.

Wavenumbers simply grow with the inverse scale factor a!1, while
the GW energy dilutes as radiation, i.e. ΩGW(k) ⇒ a!4. Therefore, the
present-day physical frequency is expressed in terms of the wavenum-
ber kp at production time as

f0 =

(
ap

a0

)
kp
2π

(61)

while the present-day GW spectrum

Ω0

GW(k) =
3pc
30c

(
ap

a0

)4 (
1

3c

d3GW

d logk

)

p

. (62)

Equation (56) tells us that the ratio of scale factors obeys

a0

ap

↗ 1.25⇐ 1013
(
gp↑S
100

)1/3 (
Tp

GeV

)
.

We can thus relate the present-day frequency to the wavenumber at
production through

f0 =
1

2π · 1.25 · 1013kp
(
100

gp↑

)1/3 (
GeV
Tp

)

= 1.27 · 10!14 ⇐Hp

(
kp
Hp

) (
100

gp↑

)1/3 (
GeV
Tp

)
,

(63)
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now replacing g↑S ⇓ g↑ since at relevant temperatures g↑ ′ g↑S. As-
suming radiation domination at GW production, and with the reduced
Planck mass mPl = 2.435⇐ 1018GeV, the Hubble rate at production can
be expressed as

Hp =

√
π2g↑T4

↑
90m2

Pl
= 2.067 · 107

√
gp↑
100

(
Tp

GeV

)
s!1 (64)

so that the present-day frequency is given by

f0 = 2.63 · 10!6 Hz ⇐
(

k↑
Hp

) (
gp↑
100

)1/6 (
Tp

100GeV

)
. (65)

To obtain the redshifted GW spectrum, one makes use of that the
current critical density 30c = h28.18⇐ 10!47 GeV4 [66] and again gp↑ ↗
gp
S

, so that

Ω0

GW(k) = TGW

(
1

3c

d3GW(k)

d logk

)

p

, (66)

where I defined the redshift transfer coefficient

h2TGW = 1.65⇐ 10!5

(
100

gp↑

)1/3

(67)

Thus, redshifted frequencies and the redshifted GW spectrum can be
computed using Equations (63) and (66).

2.2.3 GWs in an expanding space-time

Section 2.1 served well as an introduction to GWs in general. While, as
we shall later see, this description is largely adequate for the computa-
tional tasks in this thesis, the proper stage on which our physics takes
place is Cosmology. This Section aims, therefore, to extend the results
of the previous Section 2.1 to the more realistic setup of a spatially flat
expanding space-time.

The Friedmann-Lemaître-Robertson-Walker metric (FLRW) metric
which governs a spatially flat and expanding universe reads

ds2 = !dt2 + a2(t)δijdxi dxj

= a2(τ)

!dτ2 + δijdxi dxj


,

(68)

where a is the scale factor, xi comoving coordinates, and t and τ the
cosmological and conformal time respectively.

In cosmological perturbation theory, the only physical radiative de-
grees of freedom are the tensor perturbations hij obeying hi

i =
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0, 0jhij = 0, i.e., they are transverse-traceless (TT). Including only
tenor perturbations, these degrees of freedom perturb the FLRW met-
ric (68) as gµϑ = ḡFLRWµϑ + δgµϑ, where the only non-zero components
of δgµϑ are δgij = hij, such that the line element in the perturbed
metric reads

ds2 = a2(τ)

!dτ2 + δijdxi dxj


+ hijdxi dxj

→ a2(τ)

!dτ2 +

(
δij + 4ij

)
dxi dxj


,

(69)

where I defined the re-scaled tensor perturbation 4ij → hij/a
2. The

energy density in GWs is then given by

ΩGW (t0) → 1

32πG3c

〈
4̇ij (t0, x) 4̇ij (t0, x)

〉

=
1

32πGa23c

〈
4→
ij
(t0, x) 4→

ij
(t0, x)

〉

′ 1

12H2
↑

〈
H→

ij
(τ0, x)H→

ij
(τ0, x)

〉
,

(70)

where dot denotes derivative with respect to cosmological time t and
prime to conformal time τ, and I additionally defined Hij = a4ij for
later convenience.

In conformal time, the transverse-traceless metric perturbations 4ij
obey the equations of motion

4→→
ij
(x, τ) + 2H4→

ij
(x, τ)!≃24ij(x, τ) = 16πGa23̄5TT

ij
(x, τ) (71)

where the Laplacian ≃2 = 0i0i is associated with the comoving coordi-
nates xi, H = a→/a = H/a is the conformal Hubble rate where H = ȧ/a

is the Hubble expansion rate, and 5TT

ij
is the transverse-traceless part

of the anisotropic stress normalized to the average and critical density
3̄ → 3H2/

(
8πGa2

)
, where I use an over-bar to distinguish it from the

critical density at the present time. I will use this notation throughout
the thesis.

In Fourier space with comoving momenta k, and with Hij(k, τ) =
a4ij(k, τ), Equation (71) takes the form

H→→
ij
(k, τ)+

(
k2 !

a→→

a

)
Hij(k, τ) = 16πGa33̄5TT

ij
(k, τ) = 6H2a5TT

ij
(k, τ) ,

(72)

using that G = (3H2)(8πa23̄). In Fourier space, the transverse-traceless
part of anisotropic stress is obtained by projecting onto the plane or-
thogonal to the comoving momentum k by means of the lambda tensor
(28),

5TT
ij
(k) =

1

3̄
2ij,klTkl(k). (73)

Note that 2ij,kl obeys a number of identities (29), (30), (31), and (32),
which will be useful shortly.
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2.2.4 Perspectives on Weinberg’s formula

Weinberg’s formula (54), as derived in Section 2.1.4, is, to my knowl-
edge, the simplest way the GW production from a generic source of
energy and momentum can be derived. Presented in this way, it was
originally introduced in Section 3.1 of Weinberg’s textbook [62], and
has been employed as the basis for computing the GW production in
a number of publications (e.g. [23, 24, 67, 68]).

It is not completely transparent, however, that Weinberg’s result is
applicable to a realistic cosmological setting. In this section, I will there-
fore demonstrate a more rigorous and nuanced derivation of Wein-
berg’s formula drawing inspiration from [36]. We will ultimately ar-
rive at an identical result, but along the way, assumptions and approx-
imations are made explicit so as to reveal the meaning of the final
expression in cosmology.

We are interested in solving Equation (72) and eventually arriving
at analytic expressions for the metric perturbations 4ij. To this end,
we make the assumption that GW production occurs during radiation
domination. In this case, we can define the scale factor at the begin-
ning of sourcing a(τ↑) = 1, such that a(τ) = H↑τ. Subject to this
assumption, we can replace in the RHS of Equation (72) a ⇓ H↑τ

and H2 ⇓ 1/τ2, which then becomes 6H↑5
TT

ij
(k, τ)/τ, while the LHS

simplifies from a→→ = 0. The equation that should hereby be solved is
reduced to

H→→
ij
(k, τ) + k2Hij(k, τ) =

6H↑
τ

5TT

ij
(k, τ) , (74)

Introducing the variable x → kτ, this equation further simplifies to

d2Hij

dx2
(k, x) +Hij(k, x) =

6H↑
k

5TT

ij
(k, x)
x

, (75)

The inhomogeneous solution is obtained using the Greens function

G(x, x1) = sin(x! x1) (76)

such that

Hij (k, x↑ < x < xfin) =
6H↑
k

↓
x

x↑

dx1
x1

sin(x! x1)5
TT

ij
(k, x1) (77)

while the homogeneous solution is given by

Hij (k, x ↭ xfin) = Aij(k) cos x+Bij(k) sin x . (78)

The coefficients are obtained by matching at the end of sourcing, and
one finds

Aij(k) =
6H↑
k

↓
xfin

x↑

dx1
x1

sin(!x1)5
TT

ij
(k, x1),

Bij(k) =
6H↑
k

↓
xfin

x↑

dx1
x1

cos(x1)5TT

ij
(k, x1).

(79)
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Note that a simpler way of writing the solution post-sourcing
emerges as

HTT

ij
(k, x ↭ xfin) =

6H↑
k

↓
xfin

x↑

dx1
x1

sin(x! x1)5
TT

ij
(k, x1) . (80)

Migrating back to conformal time, we have found the solutions to
Equation (72) in radiation domination during and after GW produc-
tion

Hij (k, τ↑ ↬ τ < τfin) =
6H↑
k

↓
τ

τ↑

dτ1
τ1

sink(τ! τ1)5
TT

ij
(k, τ1) ,

Hij (k, τ ↭ τfin) =
6H↑
k

↓
τfin

τ↑

dτ1
τ1

sink(τ! τ1)5
TT

ij
(k, τ1) .

(81)

Evaluated at the present time, the total energy fraction in GWs ΩGW
and the GW spectrum ΩGW (τ0,k) are defined by

ΩGW →
↓→

!→
ΩGW (k)d lnk

=
1

32πGa2

0
3c

〈
4→
ij
(τ0, x) 4→

ij
(τ0, x)

〉

′ 1

12H2

0
a2

0

〈
H→

ij
(τ0, x)H→

ij
(τ0, x)

〉
,

(82)

where in the last expression I neglected terms proportional to H0 and
H2

0
. This approximation is valid for the following reason: the strain

hij ⇒ 1/k while H = 1/τ .Therefore, the second to last expression
contains terms ⇒ 1/(kτ0), which are negligible since we are only inter-
ested in modes that are deep in the Horizon by now.

Following the Fourier convention (49),

Hij (τ0, x) =
↓

d3k
(2π)3

Hij (τ0, k) eik·x (83)

the RHS of Equation (82) becomes

1

12H2

0
a2

0

〈
H→

ij
(τ0, x)H→

ij
(τ0, x)

〉

=
1

12H2

0
a2

0

↓
d3k1d

2k2

(2π)6
〈
H→

ij
(τ0, k1)H

→↑
ij
(τ0, k2)

〉
ei(k1!k2)·x

(84)

The strain derivatives H→
ij

are given by

H→
ij
(k, τ ↭ τfin) = 6H↑

↓
τfin

τ↑

dτ1
τ1

cosk(τ! τ1)5
TT

ij
(k, τ1) , (85)
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such that

〈
H→

ij
(τ0, k1)H

→↑
ij
(τ0, k2)

〉
= 36H2

↑

↓
τfin

τ↑

dτ1
τ1

↓
τfin

τ↑

dτ2
τ2

cosk1 (τ0 ! τ1)

⇐ cosk2 (τ0 ! τ2)
〈
5TT

ij
(τ1, k1)5

TT↑
ij

(τ2, k2)
〉

(86)

To this end, we treat the anisotropic stress as a stochastic field and
impose assumptions of homogeneity and isotropy. Accordingly, we de-
fine the unequal-time correlator (UETC) EΠ to characterize the spec-
trum of the anisotropic stresses through

〈
5ij (τ1, k)5↑

ij
(τ2, k2)

〉
→ (2π)6δ3 (k ! k2)

EΠ (τ1, τ2,k)
4πk2

. (87)

Inserting (87) into (86) and (86) into (84), one arrives at the com-
paratively mundane expression for the present-day GW spectrum
ΩGW (τ0,k), namely

ΩGW (τ0,k) = 3k

(
H↑
H0

)2 (
a↑
a0

)2 ↓τfin

τ↑

dτ1
τ1

↓
τfin

τ↑

dτ2
τ2

⇐ EΠ (τ1, τ2,k) cosk (τ0 ! τ1) cosk (τ0 ! τ2) ,
(88)

where I reintroduced a↑. Note that we have already encountered the
prefactor

(
H↑
H0

)2 (
a↑
a0

)2

=

(
H↑
H0

)2 (
a↑
a0

)4

=

(
3̄↑
3̄0

)2 (
a↑
a0

)4

→ TGW (89)

in Section 2.2.2 where we concluded in Equation (67) that

h2TGW = 1.65⇐ 10!5

(
100

gp↑

)1/3

, (90)

which accounts for the redshifting of the GW energy with cosmic ex-
pansion. Equation (88) constitutes an expression for the GW spectrum
as obtained from UETC of the anisotropic stresses. We have left to re-
cast this expression into a form consistent with Weinberg’s formula.

To this end, consider that

2 cosk (τ0 ! τ1) cosk (τ0 ! τ2)

= cosk (τ1 ! τ2) + cos 2kτ0 cosk (τ1 + τ2) + sin 2kτ0 sink (τ1 + τ2) .
(91)

Then, for as long as the GWs are measured over many oscillations in
τ0 ⇓ τ0 +∆τ, i.e. if k∆τ0 >> 1, the τ-average becomes

↓cosk (τ! τ1) cosk (τ! τ2))↔τ =
1

2
cosk (τ1 ! τ2) (92)
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so that an effective GW energy density can be obtained as

ΩGW (k) ′ 3

2
kTGW

↓
τfin

τ↑

dτ1
τ1

↓
τfin

τ↑

dτ2
τ2

EΠ (τ1, τ2,k) cosk (τ1 ! τ2) , (93)

which now only depends on τ0 through the redshift transfer coefficient.
At this point, let us take the opportunity to define

I(τ↑, τfin,k) =
k

2

↓
τfin

τ↑

dτ1
τ1

↓
τfin

τ↑

dτ2
τ2

EΠ (τ1, τ2,k) cosk (τ1 ! τ2) . (94)

The GW spectrum as a present-day observable can then be compactly
expressed as

ΩGW(k) = 3TGWI(k) . (95)

We must now seek an estimate of the UETC EΠ (τ1, τ2,k). Formally,

δ(3)(k ! k) =
↓

d3x
(2π)3

ei(k!k)·x → V

(2π)3
, (96)

where V denotes the divergent volume of comoving x-space. Setting
k = k→ in Equation (87) and using relation (96), the UETC can be es-
timated as an average over wavenumbers k of equal magnitude k on
the sphere

EΠ (τ1, τ2,k) =
k2

2π2V

↓

Ωk

dΩk

4π
5TT

ij
(τ1, k)5TT↑

ij
(τ2, k)

=
k2

2π2V

↓

Ωk

dΩk

4π

2ij,klTkl (τ1, k)
3̄ (τ1)

2ij,abT
↑
ab

(τ2, k)
3̄ (τ2)

=
k2

2π2V

↓

Ωk

dΩk

4π

2ij,klTij (τ1, k) T↑
kl

(τ2, k)
3̄ (τ1) 3̄ (τ2)

.

(97)

With this expression for the UETC, we can rewrite Equation (94) as

I(k) =
k3

4π2V

↓

Ωk

dΩk

4π
2ij,kl

⇐
↓
τfin

τ↑

dτ1
τ1

Tij (τ1, k)
3̄ (τ2)

↓
τfin

τ↑

dτ2
τ2

T↑
kl

(τ2, k)
3̄ (τ2)

⇐ cosk (τ1 ! τ2) ,

(98)

where I have separated the factors depending on τ1 and τ2 in the inte-
grals as far as possible. To make further progress, we must decompose
cosk (τ2 ! τ1) into factors that depend on τ1 and τ2 separately. To this
end, note that

eikτ1e!ikτ2 = cosk(τ1 ! τ2) + i sink(τ1 ! τ2) (99)
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It appears, therefore, that if we simply make the replacement
cosk (τ1 ! τ2) ⇓ eikτ1e!ikτ2 in Equation (98), the real part of the
resulting expression for the GW spectrum remain unchanged, while
we may introduce a spurious imaginary contribution. Clearly, the GW
spectrum is real, so we can simply ignore any such part, but, as we
soon shall see explicitly, the imaginary part will indeed be zero. There-
fore, making this replacement, Equation (98) becomes

I(k) =
k3

4π2V

↓

Ωk

dΩk

4π
2ij,kl

⇐
↓
τfin

τ↑

dτ1
τ1

Tij (τ1, k) eikτ1

3̄ (τ1)

↓
τfin

τ↑

dτ2
τ2

T↑
kl

(τ2, k) e!ikτ2

3̄ (τ2)

=
k3

4π2V

↓

Ωk

dΩk

4π
2ij,kl

⇐
(↓

τfin

τ↑

dτ1
τ1

Tij (τ1, k) eikτ1

3̄ (τ1)

) (↓
τfin

τ↑

dτ2
τ2

Tkl (τ2, k) eikτ2

3̄ (τ2)

)↑
.

(100)

The last two integrals are each other’s conjugates, and since Tij is real,
the product of the conjugates is real. Therefore, we have shown that
the sin contribution in (99) indeed vanishes, and we need not worry
about taking the real part of the GW spectrum as defined from (100).

That we were able to separate the τ integrals completely is a rather
remarkable result and was made possible from the bold move of as-
suming full knowledge of the energy-momentum tensor Tij rather than
statistical information about Tij as a stochastic variable. Generally, this
is not possible and one must be satisfied with a statistical description.
In our case, however, we will indeed gain the required full knowledge
of Tij from the Higgsless simulations.

Now, the integrals with respect to τ1 and τ2 are fully separated, and
the respective integrals constitute what looks like Fourier transforms
(taking the τ integration limits to ±→ and assuming that the source
abruptly starts and ends at τ↑ and τfin) but which are modified by
the multiplication of factors of the form 1/(τ3̄(τ). These factors can be
remedied by further making the approximation that Hubble expansion
is negligible during GW sourcing, i.e. during the time in the interval
[τ↑, τfin]. In this case, and since we are in radiation domination with
a↑ → 1, 1

τ
= H↑

a
∼ H↑

a↑
and 3̄(τ) ∼ 3̄↑, we can approximate

dτ
τ

1

3̄(τ)
′ dtH↑

3̄↑
, (101)
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where we also took the opportunity to migrate back to cosmological
time t. Following this approximation, Equation (100) becomes

I(k) =
k3

4π2V

H2
↑

3̄2↑

↓

Ωk

dΩk

4π
2ij,kl

⇐
(↓

tfin

t↑

dt1Tij (t1, k) eikt1
) (↓

tfin

t↑

dt2Tkl (t2, k) eikt2
)↑

=
k3

12π2Vm2

Pl3̄↑

↓

Ωk

dΩk

4π
2ij,klTij (k, k | tfin) T

↑
kl

(k, k | tfin)

(102)

where I defined

Tij (q, k | t) →
↓
t

t↑

dt Tij (t, k) eiqt , (103)

which becomes the actual Fourier transform of the source if the source
abruptly starts and ends at t↑ and t. Therefore, we have arrived at an
expression for the present-day GW spectrum

ΩGW (q) = 3TGWI(q)

= TGW
q3

4π2m2

Pl3̄↑V

⇐
↓

Ωk

dΩk

4π

[
2ij,kl(k̂)Tij (q, k | tfin) T

↑
kl

(q, k | tfin)
]

q=|k|
.

(104)

Redshifting back, i.e. dividing this expression by TGW, and taking (103)
to indeed correspond to the full Fourier transform so that the full
source duration is considered, Equation (104) reduces to an expression
identical to Weinberg’s formula (54) , for which we now understand
the detailed assumptions that underlay its applicability in a cosmolog-
ical setting. Indeed, Weinberg’s formula in cosmology is now to be
understood as giving the present-day GW spectrum redshifted back to
the time of production applicable for modes that are well within the
present horizon. It should be understood as representing an effective
GW energy density obtained after averaging over many oscillations.
It is furthermore applicable only in the case that GW production is
sufficiently short that expansion can be neglected during its course
and when the full source duration has been taken into account in the
Fourier transform.

Now we have gained perspective on Weinberg’s formula, and with
these insights, for historical reasons, I will proceed to also call the
present expression (104) (including the factor TGW) Weinberg’s formula
despite its derivation being fundamentally quite different.
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2.2.5 Sound wave production of gravitational waves

In the previous Section 2.2.4, we arrived at an expression for the
present GW spectrum in terms of the UETC in Equation (93), namely
that

ΩGW(k) = 3TGWI(k)

where I(k), defined in Equation (94), was expressed in terms of the
source Tij in Equation (102). To arrive at this expression, we departed
from a stochastic description and derived Weinberg’s formula by mak-
ing explicit use of that the UETC, in the rare occasion that complete
knowledge of the energy-tensor Tij is given, can be exactly separated
into two similar multiplicative components depending individually on
t1 and t2. This meant that I in (102) could be exactly computed. In
the present section, we will instead consider general stochastic sources
fully characterized by their UETC and quote characteristic behaviors
of the resulting spectra.

For the particular case that the energy-momentum tensor Tij is ex-
actly known, we found in Equation (97) an explicit expression for the
UETC, repeated here for ease of reference:

EΠ (t1, t2,k) =
k2

2π2V

↓

Ωk

dΩk

4π

2ij,klTij (t1, k) T↑
kl

(t2, k)
3̄ (t1) 3̄ (t2)

.

Since K(t) → ↓3kin↔ (t)/3̄(t) =
〈
w(t)γ2(t)v2(t)

〉
/3̄(t), where average

is taken over space, and the part of Tij(t, x) which contributes to
anisotropic stress is simply wγ2vivj, it is natural to extract a factor
of K(t) and express

Tij(t, x)
3̄(t)

= K(t)
w(t, x)γ2(t, x)vi(t, x)vj(t, x)

↓wγ2v2↔ (t) → K(t)Tij(t, x) (105)

in order to express it as a product of a factor that scales with the overall
kinetic energy density, which determines the overall amplitude, and
one that does not.

Sound waves as a source of GWs have been extensively studied in
the literature (see e.g. [25, 69–74]) since the realization that they last for
long durations and consequentially act as a long-lasting source of GWs
that may come to dominate the GW production. That their duration is
long follows immediately by the assumption of fully linear evolution,
predicting that no damping occurs and that the average kinetic energy
of the system is constant in time. In fact, the entire statistical descrip-
tion is stationary, implying, in particular, that the UETC is time transla-
tion invariant and thus depends only on the time difference t! → t! t→.
In a system composed of sound waves, therefore, the kinetic energy is
constant, and K(t) = K = const.. With this insight, we make the ansatz
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that the UETC is stationary so that it can be factorized as [25, 69–73,
75–79]

EΠ (t1, t2,k) = 2k2K2f (t!,k) (106)

where t! = t2 ! t1. In this ansatz, K2 captures overall amplitude,
while f (t!,k) parameterizes the strength of the correlations at differ-
ent times separated by t!, i.e. the support, which is assumed station-
ary.

Then, and again neglecting expansion,

I(t↑, tfin,k) = k3K2H2

↑

↓
tfin

t↑

dt
↓
tfin!t

t↑!t

dt! f(t!,k) coskt! . (107)

To make progress from here, the authors of [70, 72] in the context of
the sound-shell model assumed that the limits of the second integral in
t! can be extended to ±→. This is justified if one assumes that f(t!,k)
has limited support so that it quickly approaches zero for growing |t!|.
If this is not the case, they show in [73] that one must impose that the
period of the oscillations is much shorter than tsw, i.e., ktsw ∞ 1, or

equivalently, kR↑ ∞
√

↓v2
f
↔. They furthermore show that the condition

tsw/R↑ ∼ 1/
√

↓v2
f
↔ ∞ 1, which implies that the duration of the sound

waves must be long compared to the characteristic scale. Following
extending the integral limits to ± comes the privilege of being able to
separate the two integrals since now the second no longer depends on
t:

I(t↑, tfin,k) ′ k3K2H2

↑

↓
tfin

t↑

dt
↓→

!→
dt! f(t!,k) coskt!

= k3K2H2

↑ tSW

↓→

!→
dt! f(t!,k) coskt! ,

(108)

where I defined the sound wave duration tSW →
↔
tfin
t↑

dt = tfin ! t↑.
Evidently, under these assumptions, the GW spectrum grows linearly
with the sound wave duration tSW. In Chapter 5, this linear growth will
be our assumption. Later, in Chapter 6, we depart from this assump-
tion and derive the growth rate associated with a damped source.

Now, assuming a stationary UETC, we need to impose a cutoff on
the sourcing time tSW. In the fluid, nonlinearities are expected to de-
velop on timescales tnl ∼ Rc/vc [80], where Rc and vc are charac-
teristic scales and velocities in the system. The characteristic veloc-

ity is often taken to be the RMS velocity of the system, vc =
√

↓v2
f
↔.

In the present case of interest, namely fluid perturbations on the
scale of bubbles in first-order PTs, the characteristic scale Rc = R↑ =
(8π)1/3 max(vw, cs)/φ being the typical bubble separation (which we
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determine in section 3.1.3) and φ/H↑ ∼ O(100), and vw and cs being
the bubble wall velocity and fluid speed of sound, respectively. There-

fore, it is often assumed that tsw = tnl ∼ R↑/
√

↓v2
f
↔.

As for the remaining t!-integral, they demonstrate in e.g. [73] that
it is proportional to R↑/cs, so that Equation (93) can be parameterized
as [25, 52, 69–73, 81, 82]

ΩGW(k) = 3TGW Ω̃GW K2 (H↑R↑)(H↑tsw)S(kR↑) , (109)

where Ω̃GW corresponds to the GW production efficiency which must
be determined through some numerical method, and S is a spectral
shape normalized such that

↔
d lnkS(k) = 1.

The above results have been obtained under the assumption that
cosmic expansion can be neglected. However, if the sound-wave du-
ration is long compared to the Hubble time 1/H↑, the kinetic en-
ergy in the fluid would redshift, leading to a suppression of the GW
amplitude. Then, to account for cosmic expansion, one can substi-
tute the linear growth factor H↑τsw in Equation (109) by the factor
6 = H↑τsw/(1 + H↑τsw) [73, 78], so as to instead parameterize the
present-day GW spectrum as

ΩGW(k) = 3TGW Ω̃GW K2 (H↑R↑)6(H↑, tsw)S(kR↑) . (110)

This result, which will be discussed in slightly more detail in Sec-
tion 6.2.4 in Chapter 6, allows recovering the effect of expansion on
the final GW amplitude.



3
C O S M O L O G I C A L P H A S E T R A N S I T I O N S

In this Chapter, I review cosmological PTs. In Section 3.1, I cover the
basic concepts of PTs, including the effective potential, bubbles and
their nucleation rate, statistics associated with bubble nucleation and
expansion, the Bag model and equation of state, PT strength, and the
hydrodynamics of singular bubbles. In Section 3.2, I review GWs from
first-order PTs. I provide estimates of key features of the GW signal,
discuss the scalar-field contribution to GW production in various mod-
els, explore the fluid contribution to GW production in different scenar-
ios, and conclude with a few comments on the observational prospects
for GW detection. I am mostly concerned with those aspects of PTs
that will eventually be relevant in the context of Higgsless simulations.
For a brief review of the general importance cosmological PTs hold in
cosmology, I refer the reader to the introductory Section 1.1.1.

3.1 Basic concepts

As the universe undergoes cooling or changes in energy density, re-
gions with lower energy configurations begin to form bubbles of the
new phase. These bubbles then grow and expand, eventually dominat-
ing the universe’s composition as the PT progresses. The dynamics of
bubble nucleation and growth play a crucial role in determining the
properties of the resulting PT, including its duration, energy release,
and impact on the cosmological evolution. Much of the text that fol-
lows in this Section will examine these concepts in some detail.

3.1.1 The effective potential

The dynamics of a PT is dictated by some effective potential V(ε, T),
which depends on temperature T and the value of the order parameter
ε. In our case, ε will carry the interpretation of a scalar field, and by
virtue of the Electroweak PT being an important candidate, we will
often, and interchangeably, call this the Higgs field. While the effective
potential is model dependent, and generally derived by computing
finite-temperature and higher-loop corrections to the tree-level poten-
tial [83, 84], to study the dynamics of a PT in a general sense, it suffices
to consider an effective potential which demonstrates the required be-

30
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havior of developing a broken phase true minimum as we decrease T

below some threshold.
A prototypical effective potential is of the form [61, 70]

V(ε, T) =
1

2
γ

(
T2 ! T2

0

)
ε2 !

1

3
ATε3 +

1

4
λε4 , (111)

where γ,A and λ are positive constants.
As we decrease the temperature, at the temperature T = T0, the

second derivative of the potential turns negative at the origin, which
becomes an unstable local maxima. If the field configuration is such
that part of the field occupies this value, it would smoothly roll to
the true minimum of the potential. We therefore assume T > T0 and
analyze the potential in this regime where ε = 0 corresponds to either
a local or global minimum depending on the temperature.

The behavior of the potential is such that at a temperature

T1 =
T0√

1!A2/(4λγ)
(112)

a second minimum emerges at

ε = ε1 → AT1/(2λ) (113)

(evidently we must also assume A2/(4λγ) < 1). Lowering the temper-
ature further, at a critical temperature

Tc =
T0√

1! 2A2/(9λγ)
, (114)

this minimum becomes degenerate with that at ε = 0. Therefore, at
temperatures T < Tc, it is energetically favorable for the field to attain a
configuration around the broken phase minimum ↓ε↔ → εb > 0 rather
than high-temperature symmetric phase ↓ε↔ = 0. However, since
T > T0, a potential wall separates the true minima and so that the field
cannot simply roll smoothly to the broken phase. Thus, to acquire the
vacuum expectation value (VEV) of the broken phase, the field must lo-
cally tunnel through the potential barrier either quantum-mechanically
or thermally. An example effective potential of the form (111) illustrat-
ing the qualitative behavior as we lower the temperature is shown in
figure 1.

With this qualitative picture established, the cosmological PT can
proceed through, in a very general sense, the following steps: (1) The
high-temperature universe has only one vacuum as per the effective
potential and is fully stable. (2) At a temperature T1, a second non-
global minimum emerges. (3) At a critical temperature Tc, a degener-
ate vacuum emerges. (4) At temperatures below Tc, it is energetically
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Figure 1: Effective potential for first- and second-order PTs. Left plot: First-
order PT The effective potential V(ε, T) of (111) is shown for various
temperatures T : T > T1, T = T1, T = Tc, and T = T0. At T > T1, the
potential has a single minimum at ε = 0. As T decreases, a second
minimum appears at T = T1, becomes degenerate at T = Tc, and
the system transitions to a new global minimum for T < Tc. At T =
T0, the potential barrier vanishes, and any patch of the remaining
symmetric phase will roll smoothly to the broken phase. Right plot:
Second-order PT The effective potential V(ε, T) of (111) for A = 0
is plotted for T = 1.4T0, T = 1.0T0, T = 0.6T0, and T = 0.1T0. The
transition is continuous, with the minimum shifting smoothly from
ε = 0 as T decreases.

favorable to attain field VEV ↓ε↔ = εb > 0. If the barrier is sufficiently
weak, the field can tunnel through the potential barrier locally. This
leads to the nucleation of bubbles that quickly, as they grow from their
initial seeds, approach radially symmetric and expanding solutions
to the field equations of motion, interpolating between broken phase
VEV εb and symmetric phase VEV ε = 0. The nucleation of bubbles
is probabilistic and will be discussed in Section 3.1.2. (5) As these bub-
bles expand, they collide and eventually fill the entire universe with
the symmetric phase, whereby the PT completes. (6) If, however, the
PT has failed to complete before T = T0, the remaining patches of
the unbroken phase will smoothly roll to the broken phase, thus com-
pleting the PT. This general description is true in a non-expanding
universe. When cosmic expansion is prevalent, however, for the PT to
complete, it is mandated that the bubble nucleation rate Γ(T) be larger
than the Hubble rate at some point during the critical temperature
window T0 < T < Tc.

Above, we have identified two distinct behaviors: (1) when T > T0
and the PT proceeds through tunneling through the potential barrier,
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and (2) when T < T0 and the PT proceeds through smooth rolling of
the field towards the broken phase.

In case (1), the PT is said to be of first-order, and in case (2), it is
said to be of second-order. For us, only case (1) is of interest as it locally
perturbs the universe rather than globally, resulting in, as we shall see,
violent dynamics that may produce GWs. Henceforth, in this thesis,
even when referred to as just PT, it should be understood as being of
first order. A visual comparison between a first- and second-order PT
is shown in figure 1.

3.1.2 Bubbles and their nucleation rate

The bubble nucleation rate Γ → d # nucleated bubbles/dV/dt in a first-
order PT can be shown to be determined by (see e.g. [61])

Γ ↗ T4e!S3,B(T)/T (115)

to within an O(1) factor. In this expression, S3,B is the Euclidean action

S3,B = 4π

↓→

0

drr2


1

2

(
dε

dr

)2

+ V(ε, T)



φ=φB

, (116)

where V(ε, T) is the finite temperature effective potential introduced
in Section 3.1, evaluated at the bounce-solution εb, which solves the
equation of motion

d2ε

dr2
+

2

r

dε

dr
= V →(ε, T)

subject to the boundary conditions

lim
r↔→

ε(r) = 0,

to ensure a finite action, and

dε

dr

∣∣∣∣
r=0

= 0,

to ensure non-divergence at the origin.
Provided such a solution, the time t↑, or equivalently the tempera-

ture T↑, at which the PTs can be said to occur can be determined from
the requirement that the probability that one bubble has nucleated in
a Hubble volume VH = 1/H3 up until that moment is unity, i.e.,

↓
t↑

0

dt Γ VH(t) =

↓→

T↑

dT

T

(
45

4π3g↑(T)

)2 (
MPl

T

)4

e!S3(T)/T = O(1)
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(117)

where in the second equality, radiation domination is assumed. Appre-
ciating that this integral is dominated by its value at production, it can
be approximated by,

(
45

4π3g↑ (T↑)

)2 (
MPl

T↑

)4

e!S3(T↑)/T↑ = O(1) (118)

which implies for the Euclidean action evaluated at T↑ that

S3 (T↑)

T↑
↗ 4 ln

MPl

T↑
! 11.4 (119)

using that g↑ ↗ 106.75 in the standard model in the high-temperature
limit.

Equipped with the notion of a time and temperature at which the
PT takes place, we can Taylor expand the Euclidean action

S3,B(T)

T
↗

(
S3,B(T)

T

)

t=t↑

+ (t! t↑)
d

dt

(
S3,B(T)

T

)

t=t↑

(120)

and thus define

φ = !
d

dt

(
S3,B(T)

T

)

t=t↑

= H↑T↑
d

dT

(
S3,B(T)

T

)

T=T↑

′ H↑

(
4 ln

MPl

T↑
! 11.4

)
,

(121)

where in the second equality, I used that T ⇒ 1/a such that dT/T =
!Hdt and in the last approximation that one can very crudely expect
that [61]

S3 (T↑)

T↑
∼ T↑

d

dT

(
S3,B(T)

T

)

T=T↑

, (122)

in order to have some analytical estimate of what value φ may take at
hand. For then, we can parameterize the bubble nucleation rate

Γ(t) ↗ Γ↑e
φ(t!t↑) (123)

and conclude that for T↑ = 100MeV (∼ QCD scale), T↑ = 100GeV (∼ EW
scale), T↑ = 100TeV, φ/H↑ take on value 173, 145, and 118, respectively,
based on the crude but informative approximation in Equation (121).
We will often take φ/H↑ = 100 as a benchmark. While this is just an es-
timate, it gives us the hint that, since φ!1 sets the timescale associated
with the PT’s duration, it implies that we can expect the duration to be
short compared to the Hubble time tH↑ = 1/H↑, and consequently that
one can ignore Hubble expansion during the course of the PT. This fact
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simplifies the numerical implementation of our Higgsless simulations,
as we shall see in later Chapters.

The parameterization (123) implies that the bubble nucleation rate
increases exponentially with time. Thus, we expect the PT within a
given Hubble volume to commence with the nucleation of a single
isolated bubble whose nucleation time tn,1 is statistically distributed
relative to t↑. Since the nucleation probability is still small, some time
will pass until the next bubble nucleates, leading to the system being
dominated by the first bubble to nucleate. However, bubbles will begin
to nucleate at an exponentially increasing rate, quickly bringing the PT
to completion, thus converting the entire universe to the new broken
phase vacuum.

3.1.3 Bubble statistics

As a result of an exponentially increasing bubble nucleation probabil-
ity Γ , bubbles of various sizes will be present at each stage of the PT
after the second bubble has nucleated. Therefore, it makes sense to de-
rive statistical expectation values for quantities such as the number of
nucleated bubbles, their separation, typical size at collision, etc.

In the previous Section, I introduced the notion of a bubble nucle-
ation rate Γ with a simple parameterization in Equation 123. This is, in
fact, not a rate per se, but a measure of the probability of nucleation,
such that the expected number of bubbles to nucleate in an infinitesi-
mal time-volume element dtd3x is

dP = Γ(t) dtd3x. (124)

There is a subtlety hidden in this expression, for it assumes that d3x,
indeed, corresponds to a small patch of universe that is not already
in the broken phase. As the PT proceeds and bubbles of the broken
phase fill the universe, clearly, the amount of remaining volume in
the symmetric phase decreases at an exponential rate. Therefore, to
adequately determine what is the probability dP, one must include a
factor Vs(t) → Vs(t)/V where Vs(t)/V is the fraction of the volume
in the symmetric phase to the total volume, so that when adequately
accounting for the decreasing fraction of false vacuum,

dP = Vs(t)Γ(t) dtd3x . (125)

In [85], they show that Vs(t) is obtained as

Vs(t) = exp

!
4π

3
v3w

↓
t

!→
dt →(t! t →)3Γ(t →)


= exp


!8πv3w

Γ↑
φ4

eφ(t!t↑)


,

(126)
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where in the second equality I made use of the parameterization of Γ
in Equation (123), Γ(t) = Γ↑e

φ(t!t↑), to compute the integral.
The total number of nucleated bubbles Nb can now be obtained as

Nb =

↓
dP =

↓
Vs(t)Γ(t)dt3x (127)

= V

↓→

!→
dt exp


!12πv3w

Γ↑
φ4

eφ(t!t↑)


⇐ Γ↑e

φ(t!t↑) (128)

=
φ3V

8πv3w
. (129)

The average bubble separation is therefore given by

R∆ =

(
V

Nb

) 1

3

= (8π)
1

3

vw
φ

↗ 3vw
φ

. (130)

We are also interested in obtaining an expression for the average
bubble radius at collision ↓r↔. To this end, consider the situation that
a point x is traversed by a bubble wall for the first time at time t.
Bubbles responsible for such a traversal could have emerged from nu-
cleation sites a distance of vw(t! tn) away, corresponding to a sphere
of radius r = vw(t! tn) centered on x, which we can think of as the
analog of a past light-cone, and just call it cone. When promoted to
an infinitesimally thin shell, the volume is dVΩ(r) = 4πr2dr, so that
the probability for nucleation within this shell during the time interval
[t, t+ dt] is dP = 4πr2Γ(t! r/vw)drdt. We must consider, however,
the possibility that another bubble nucleates inside of this past cone.
Each such bubble would contribute to that x is crossed by a bubble
wall at an earlier instance, i.e., that x transitions to the true vacuum
earlier than at t, which violates that x was first crossed at t. We must
thus exclude these events, and the probability for this to not have hap-
pened is exactly the probability that x is still in the false vacuum Vs(t).
Therefore, the probability that a point x is traversed by a bubble wall
for the first time by a bubble of radius r is

dP = Vs(t)Γ(t! r/vw)dVΩ(r)dt (131)

= exp

!8πv3w

Γ↑
φ4

eφ(t!t↑)


⇐ 4πr2 ⇐ Γ↑e

φ(t!r/vw!t↑) drdt .

(132)

Integrating over all times, one finds that

dP(r)
dr

=
φ3

2v3w
r2e!φr/vw . (133)

Since
↔→
0

dP(r)
dr dr = 1, dP(r)

dr can be interpreted as a probability distri-
bution associated with the radius of bubbles traversing the point x.
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We can thus compute the expected bubble size R↑ as

R↑ → ↓r↔ =
↓
dr rP(r) =

3vw
φ

. (134)

We see that the expected bubble size R↑ and the average bubble R∆ are
similar.

These expressions are true for bubbles. As we shall see in the upcom-
ing Sections, these bubbles induce perturbations in the fluid, which, be-
fore colliding with other perturbations, take the shape of self-similar
profiles (see Section 3.1.6). If the wall velocity vw is larger than the
speed of sound in the fluid, which we will always assume to be con-
stant cs =

√
1/3, then the self-similar fluid sound shells have radii

rss ∼ rb, for rb the bubble radius. However, when the wall velocity
is below the speed of sound, the self-similar profile front is not de-
termined by vw but cs, since this is the speed at which perturbations
propagate. Therefore, if we want to characterize the average radius at
collision, and if we by collision instead mean when the sound-shells
collide, we must make the replacement vw ⇓ max(vw, cs), so that

R↑ =
3max(vw, cs)

φ
. (135)

Furthermore, when vw < cs, the fluid is heating in front of the bub-
ble wall where bubbles can, in principle, still nucleate. The increase
in temperature nevertheless causes a suppression in the bubble nucle-
ation rate, which can be substantial for large ω [52]. Then, also the
average bubble separation R∆ receives a similar correction so that in
the limit that no bubbles form within the fluid sound shell, [52],

R∆ =
(8π)

1

3

φ
max (vw, cs) . (136)

We see that, again, R∆ ′ R↑, and we will henceforth simply define

R↑ = R∆ = (8π)
1

3 max (vw, cs) /φ (137)

and use the concepts of average bubble separation and average size at
collision synonymously.

3.1.4 The Bag model and equation of state

So far, we have been concerned with general aspects of first-order PTs
and the dynamics of the scalar field ε. Of greatest interest to us, how-
ever, is not the scalar field in isolation, but rather the effect it has on
its surroundings and, in particular, that it induces perturbations in the
primordial radiation fluid.
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The energy-momentum tensor of the Higgs field ε is given by

Tφ

µϑ = 0µε0ϑε! gµϑ


1

2
0ϖε0

ϖε! V0(ε)


, (138)

where V0 is the renormalized vacuum potential. I am aligning the dis-
cussion in this Section to arrive at the Bag equation of state. In this model,
the scalar field is modeled to take on a constant value ε = 0 outside
bubbles and ε = εb inside bubble, corresponding to the false and the
true vacuum phases. At the boundary, the field is modeled to discon-
tinuously jump between the phases. Therefore, the time derivative and
gradient terms of the pressure contribute only at the bubble wall inter-
face, and we neglect them. We thus arrive at the conclusion that the
Higgs field contributes to the total pressure

pφ(ε) = !V0(ε) . (139)

The energy-momentum tensor for the fluid, which we assume to be
perfect, is given by

Tf

µϑ = wfuµuϑ ! gµϑpf , (140)

where wf and pf are the fluid enthalpy and pressure, respectively, and
uµ is the four-velocity field of the fluid, related to the three-velocity v
though

uµ =
(1, v)↖
1! v2

= (γ,γv). (141)

The total pressure p is determined by the free energy of the system
F = V [86]

!p = V(ε, T)
= V0(ε) + VT (T ,ε)

= V0(ε) + T

↓
d3p

(2π)3

↑

i

Ni log
[
1∈ e!Ei/T

]

= V0(ε) +
T4

2π2

↑
NiYb/f (mi(ε)/T) ,

(142)

where E2

i
= p2 +m2

i
(ε), and

Yb/f(x) =

↓→

0

dyy2 log
[
1∈ exp

(
!

√
x2 + y2

)]
. (143)

The !/+ signs correspond to bosons/fermions, and i denotes a spe-
cific particle species with Ni the internal degrees of freedom, defined
to be negative for fermions in this notation. For small masses m(ε) <
T , the function Yb/f(mi(ε)/T) is nearly constant and asymptotically
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approaches the value !π4/45 for bosons and 7π4/360 for fermions,
while for heavier particles mi(ε) >> T , Yb/f (mi/T) ∼ ± exp (!mi/T)
so that their contribution is exponentially suppressed [86]. In the fol-
lowing, therefore, we will neglect particle species that are very heavy
compared to T .

It makes sense, therefore, to decompose

VT (T ,ε) = Vm<T (T ,ε) + Vm∼T (T ,ε) . (144)

Define

a(T ,ε) =
π2

30
g↑(T ,ε) (145)

where

g↑(T ,ε) →
↑

mi(φ)<T


Nb

i
+

7

8

∣∣Nf

i

∣∣


(146)

is the number of effective relativistic degrees of freedom at tempera-
ture T and ε, where b/f correspond to bosons/fermions and i denotes
a specific particle species with Ni the internal degrees of freedom, and
the masses mi(ε) depend on ε. Then, we can explicitly write

Vm<T (T ,ε) → T4

2π2

↑

mi(φ)<T

NiYb/f (0) = !
1

3
a(T ,ε)T4 → !prad(T ,ε)

(147)

while

Vm∼T (T ,ε) → T4

2π2

↑

mi(φ)∼T

NiYb/f (mi(ε)) → !P(T ,ε) (148)

carrying contributions only from those degrees of freedom that have
masses similar to the temperature T .

We thus decompose the pressure in the fluid as pf(T ,ε) =
prad(T ,ε) +P(T ,ε), so that the total pressure

p(T ,ε) = prad(T ,ε)! V0(ε) +P(T ,ε) . (149)

The enthalpy and energy densities are generally defined as

w → T
0p

0T
, 3 → T

0p

0T
! p . (150)

The total energy and enthalpy densities are thus given by

3(T ,ε) = T
0prad(T ,ε)

0T
! prad(T ,ε) + T

0P(T ,ε)
0T

!P(T ,ε) + V0(ε)

= 3rad(T ,ε) + V0(ε) + T
0P(T ,ε)

0T
!P(T ,ε) ,
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(151)

where I defined 3rad → a(T ,ε)T4, and

w = 3(T ,ε) + p(T ,ε) = 3rad(T ,ε) + prad(T ,ε) + T
0P(T ,ε)

0T
. (152)

To summarize, we have found for the total pressure, energy, and en-
thalpy densities that

p(T ,ε) = prad(T ,ε)! V0(ε) +P(T ,ε)

3(T ,ε) = 3rad + V0(ε) + T
0P(T ,ε)

0T
!P(T ,ε)

w(T ,ε) = 3rad(T ,ε) + prad(T ,ε) + T
0P(T ,ε)

0T
.

(153)

Now, if there are no particles with masses mi(ε) ∼ T , then P(T ,ε)
vanishes. If there are particles with P(T ,ε) ∼ T , under the assumption
that those degrees of freedom are outnumbered by the light degrees of
freedom, P(T ,ε) can be neglected. Therefore, if we define V0(0) = 7

and Vb(ε) = 0, and following standard notation, denote the symmet-
ric phase (ε = 0) by subscript +, and the broken phase (ε = εb) by
subscript !, the pressure, energy, and enthalpy densities outside bub-
bles become

p+ =
1

3
a+T

4

+ ! 7, 3+ = a+T
4

+ + 7, w =
4

3
a+T

4

+ , (154)

where a+ = a(T+,εb), while inside bubbles,

p! =
1

3
a!T

4

!, 3! = a!T
4

!+, w =
4

3
a!T

4

! , (155)

where a! = a(T!,ε = 0). Equations (154) and (155) constitute the Bag
equation of state [86] in the Bag model originally introduced in [87].

Henceforth in this thesis, I will abide by the Bag model, entailing
that ε is either 0 outside of bubbles and εb inside, with a discontinu-
ity at the bubble wall, whereby the the pressure, energy, and enthalpy
densities are given by the equation of state (154) and (155) whose va-
lidity I will always assume.

The total energy-momentum tensor is the sum of the two compo-
nents

Tµϑ = Tφ

µϑ + Tf

µϑ . (156)

The equations of motion are given by the total energy-momentum con-
servation

0µTµϑ = 0µTφ

µϑ + 0µTf

µϑ = 0 . (157)
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In the Bag model, however, ε experiences a discontinuity on the
bubble wall but is otherwise static. Thus, akin to the pressure pφ,
we neglect the kinetic and gradient terms so that the total energy-
momentum tensor becomes that of a radiation-dominated fluid but
with a pressure contribution !V0 = !7 in the symmetric phase. Thus,
with w = wrad and p = prad ! 7 denoting the total enthalpy end pres-
sure, the energy-momentum tensor for the system becomes

Tµϑ = wuµuϑ ! gµϑp . (158)

and the equations of motion reduce to

0µTµϑ = 0µ(wuµuϑ ! gµϑp) , (159)

which constitute the equations that we will eventually implement on
the lattice in Chapter 5 to numerically solve for the fluid dynamics sub-
ject to expanding bubbles. To go beyond the bag model, see, e.g., [88].

3.1.5 Phase transition strength

The strength of a PT ω parameterizes the ratio of available latent heat,
i.e. vacuum energy, to the energy density of radiation.

For the Bag equation of state, the PT strength can thus be charac-
terized as the ratio of vacuum energy density 7 to that of radiation
in the symmetric phase immediately before the PT (sub/sup-script s),
namely

ωε → V0(0)! V0(εb)

3rad
=

7

3srad
=

47

3ws

. (160)

This definition has been brought forward in, e.g., [52, 86].
Alternatively, a more general approach states that the relevant quan-

tity for the determination of the PT strength ω, is the difference D8 in
trace of the energy-momentum tensor 8 = gµϑT

µϑ = 3! 3p between
the two phases evaluated at the temperature of the symmetric phase
(see e.g. [89])

ωθ =
D8

3ws

(161)

We have that D8 = 47, whereby ωθ = 4ε

3ws
= ωε. Similarity between

the two is granted by the Bag equation of state. Henceforth, whenever
the strength of the PT is referred to, we will simply denote it ω.

3.1.6 Hydrodynamics of singular bubbles

In this thesis, we are mostly concerned not with the dynamics of ε

but with the primordial fluid, which is assumed to fill the universe
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as the PT occurs. In this Section, I will review basic results from the
literature concerning the perturbations in the fluid associated with the
conversion of vacuum energy into thermal and kinetic energy. These
results will be important later in Chapter 5 as they serve as a testing
ground for the accuracy of the simulations.

In Section 3.1.4, we saw that the energy-momentum tensor is given
by that of a perfect fluid with a pressure contribution from the vacuum,
Equation (158),

Tµϑ = wuµuϑ ! gµϑp ,

with pressure p, density 3, and enthalpy w given by the Bag equation
of state Equations (155) and (154).

Since bubbles are radially expanding spherically symmetric solu-
tions to the field equations of motion, the perturbed fluid solution
must obey the same symmetry. Furthermore, since there is no intrinsic
length scale in the problem at a macroscopic level beyond the bubble
size itself, the solutions are self-similar in the radial coordinate ϑ →r/t.
Note that with this definition, at the bubble interface, ϑw = vw, so
that we may interchangeably denote the wall velocity either vw or ϑw,
depending on the context.

The relativistic hydrodynamical equations for the fluid are derived
from the conservation law 0µTµϑ = 0. In [86], the radial equation of
motion for the radial velocity field v(ϑ) is found to be

2
v

ϑ
= γ2(1! vϑ)


µ2

c2s
! 1


0ωv, (162)

where µ is the Lorentz-transformed fluid velocity

µ(ϑ, v) =
ϑ! v

1! ϑv
, (163)

and cs =
√
1/3 the speed of sound which is assumed constant. Equa-

tion (162) can be solved in full generality to obtain solutions v(ϑ). In
fact, since v(ϑ) is double-valued, the authors of [86] instead solve for
ϑ(v), to obtain the solutions in Figure 2 which I adopt here without
modification.

Thus far, Equation (162) with corresponding solutions in Figure 2 are
derived in all generality. In the physical situation of interest, it is clear
that both at some distance in front of and behind the bubble wall v(ϑ)
must go to zero. To accommodate this requirement, self-similar veloc-
ity profiles developing around expanding bubbles must evidently be
constructed by patching together part of the solutions in Figure 2 with
the trivial solution v(ϑ) = 0 or with a different part of itself. This patch-
ing will lead to discontinuities in hydrodynamical quantities, which
usually occur at the bubble wall interface modeled as a step function
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in the Bag model. To match the solution across the the bubble wall
and developed shocks, one employs matching conditions. A detailed
account on these and how the self-similar velocity profiles are con-
structed is found in [86]. In the present context, it suffices to conclude
that analytically derived profiles are well defined and obtainable once
the strength of the PT and the wall velocity vw have been specified.
Once the velocity profile v(ϑ) has been obtained, the corresponding
self-similar enthalpy profile can subsequently be computed as [86]

w(ϑ) = w0 exp

↓
v(ω)

v0

(
1+

1

c2s

)
γ2µdv



. (164)

Figure 2: Figure adopted from [86]. Fluid velocity profiles v(ϑ) in the bubble
center frame (where c2s = 1

3
). Detonation curves (dash-dotted line)

start below µ(ϑ, v) = cs and end at (ϑ, v) = (cs, 0). Deflagration
curves (dashed line) start below v = ϑ and end at µ(ϑ, v)ϑ = c2s ,
representing the shock front. Consistent solutions do not exist in
the shaded regions.

These self-similar profiles can qualitatively be divided into three dis-
tinct types. When the wall velocity is below the speed of sound, the
self-similar solution is a deflagration, with fluid velocities vanishing be-
hind the wall but with a shock wave in front of it. When the wall
velocity is larger than the speed of sound but smaller than the Jouguet
velocity ϑJ [86],

ϑJ →
√

ω (2+ 3ω) + 1↖
3 (1+ω)

(165)
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the solution is a hybrid, which consists of a shock wave in front of
the bubble and a rarefaction wave behind it. These solutions are called
hybrids due to their hybrid nature. Finally, when the wall velocity is
greater than both ϑJ and cs, the solution is a detonation, for which the
fluid in front of the bubble has no time to react to the incoming bubble
wall and remains at rest while a rarefaction wave develops behind the
wall.

In Figure 3, I plot self-similar velocity and enthalpy profiles for
strengths ω = 0.0046, ω = 0.05, and ω = 0.5 corresponding to weak,
intermediate, and strong PTs respectively, for selected wall veloci-
ties in the range [0.32, 0.8]. For these strengths, the Jouguet velocities
are ϑJ = {0.63, 0.73, 0.89} respectively. Note, therefore, that only for
ω = 0.0046 and ω = 0.05 do all three types of solutions develop, while
for ω = 0.5, only deflagrations and hybrids develop. These choices
of parameters correspond to those for which I will run simulations,
as presented in Chapter 5 (weak and intermediate) and Chapter 6
(weak, intermediate, and strong). Having at hand self-similar profiles
obtained semi-analytically thus provides an invaluable means of eval-
uating the performance of our simulations as it allows us to directly
compare simulations of isolated bubbles with the expected self-similar
behavior and thus study to what degree these analytical profiles are
reproduced.

We are ultimately interested in the fluid dynamics in first-order PTs
because of the GW production potential, which may serve us well as
a window to new physics at uncharted energy scales. GW production
is first and foremost not determined by the vacuum energy density
7, but by what fraction of this energy is transferred to the fluid in the
form of kinetic energy since only this energy component contributes to
the anisotropic stress, and consequently GW production. This energy
fraction is often denoted ϖ = 3kin/3vac, where 3kin → ↓wγ2v2↔ is the
average kinetic energy density in the system and, in our case, 3vac = 7.
The quantity ϖ is often called the vacuum energy transfer efficiency, as it
quantifies what fraction of the vacuum energy is converted into kinetic
energy of the fluid.

For isolated self-similar bubbles, integrating the kinetic energy in
the self-similar profile and dividing by the bubble volume, the corre-
sponding vacuum energy transfer efficiency is computed as [86]

ϖω → 3

7ϑ3w

↓
w(ϑ)v2(ϑ)γ2(v)ϑ2dϑ , (166)

which I illustrate in figure 4. I use subscript ω to indicate its definition
from self-similar profiles.
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Figure 3: Self-similar profiles of the fluid velocity (left panels) and enthalpy
(right panels) perturbations for a single bubble nucleated at t = 0
as a function of the self-similar coordinate ϑ → r/t. The profiles are
shown for weak (upper panels), intermediate (middle panels), and
strong (lower panels) PTs, across the range of wall velocities used in
the parameter scan of our simulations.
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Figure 4: The vacuum energy transfer efficiency ϖω for single isolated bubbles
with developed self-similar fluid profiles, for weak (ω = 0.0046),
intermediate (ω = 0.05), and strong (ω = 0.5) PTs.

Another useful quantity is the fraction of kinetic energy to the total
energy density 3tot, which relates to ϖ and the strength ω as

Kω → 3kin

3tot
, (167)

which for the self-similar profiles is defined as

Kω =
ϖωω

1+ω
(168)

where the densities are computed over the volume of the true vacuum.
We have now covered the essential concepts concerning first-order

PTs to understand the contents of forthcoming Sections and Chapters
in context. Before proceeding to deliver an account of my original re-
search, however, I will review some of the efforts that have already
been made to understand the GW production associated with such
PTs in the remaining Sections of this Chapter.

3.2 GWs from a first-order phase transitions

We begun this Chapter by discussing the dynamics of a scalar field
tunneling through the potential barrier in an effective potential leading
to a first-order PT. We saw how the PT proceeds through the nucleation
and expansion of bubbles that expand and subsequently collide. In
the simplest case, the PT occurs in vacuum, in which case the bubbles
experience no interactions with the surroundings and, consequently,
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no friction. With no resistance to the bubble growth, the bubble wall
accelerates towards the speed of light, whereby the energy released by
the PT is fully carried by the wall. Upon bubble collision, spherical
symmetry is broken, a significant quadrupole moment in the energy
distribution is generated, and GW production occurs.

In a more realistic scenario, and indeed the scenario with which this
thesis is concerned, the PT does not occur in vacuum but in a fluid dur-
ing the epoch of radiation domination. The expanding bubbles thus
experience friction with the fluid and reach a terminal expansion ve-
locity. In this case, since the energy of the bubbles scales with their
squared radius, while the released vacuum energy scales with their
radius cubed, the vacuum energy is almost exclusively transferred to
the fluid, whereby the fluid dominates subsequent GW production.

The GW spectrum produced by the dynamics of a first-order PT
is largely determined by a few key parameters with which we have
already acquainted ourselves. These are T↑, φ, ω, and vw. Let me briefly
describe their respective roles:

1. The temperature at which the first-order PT occurs, T↑: This is
defined as the temperature at which the integrated probability
that a bubble has nucleated inside a Hubble patch is 1. It sets
the scale of the PT. At this temperature, the Hubble expansion
H↑(T↑), which determines the maximum spatial correlation scale
and is thus related to the expected frequency peak of the GW
spectrum, is directly determined from 3rad(T↑) using the Freed-
man equation. We will assume that T↑ is sufficiently close to
the temperature at which GW production commences at colli-
sion time so that T↑ characterizes the energy scale at initial GW
production.

2. The inverse duration of the PT, φ: Defined and estimated in
Equation (121), φ determines the duration of the PT and allows
determining the typical bubble size or average bubble separation
R↑ as in Equation (135). This parameter is important for charac-
terizing the GW spectrum as it corresponds to the largest charac-
teristic length of features that are expected to carry a substantial.
This scale thus relates closely to the GW spectrum peak location.
R↑ furthermore parameterized the overall amplitude of the GW
spectrum, e.g., as in the case of sound waves in equation (110).

3. The strength parameter, ω = 3vac/3
↑
rad: This ratio describes the

strength of the PT, where 3vac is the vacuum energy density and
3↑

rad is the radiation energy density at T↑. Generally, the larger
ω, the larger the GW spectrum amplitude since there is more
energy available. Furthermore, ω, together with vw, determines
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the vacuum energy transfer efficiency ϖ, and, as can be seen in
Figure 4, the larger ω the larger the transfer efficiency. Thus, the
overall GW amplitude is enhanced significantly as the strength
does.

4. The wall velocity, vw: This parameter describes the speed at
which the bubble walls expand and critically determines the na-
ture of the hydrodynamic solutions. The wall velocity is thus
important in that it determines, together with the strength ω, the
energy budget of the PT characterized by ϖ. Determining the
wall velocity in PTs requires complex out-of-equilibrium calcu-
lations involving solving Boltzmann and scalar field equations
(see, e.g., [90, 91]). These calculations depend on the specifics of
the scalar sector and how particles obtain masses through their
coupling to the scalar field responsible for the PT, rendering re-
sults highly model-dependent and warranting a case-by-case ap-
proach. In this thesis, we will always treat vw as an input param-
eter and leave its determination from fundamental theory as a
task for other scientific explorations.

While the specific values of these parameters must be determined
from first principles and the particle physics model in question, the
main features of the GW signal can be described in terms of these pa-
rameters in a phenomenological, largely model-independent way. In
the Higgsless simulations, we will solve the equations of motion in
a way that both H↑, which is determined from T↑, and φ, are scaled
out. We are thus left with only parameters ω and vw, spanning a two-
dimensional parameter space. The gravity of the above statement is
thus evident, for if the main features and overall expected GW signal
are captured by the remaining parameters ω and vw, then, since the
parameter space over which to scan to characterizes all (non-vacuum)
first-order PT GW signals is only two-dimensional, it appears conceiv-
able that soon, we have reasonably accurate GW spectrum estimates at
hand for a large region of this parameter space. This, in fact, is a major
scientific objective of the present thesis.

3.2.1 Estimates of some GW signal features

In this Section, I wish to demonstrate how the GW spectrum peak
frequency and amplitude can be estimated from simple arguments.

3.2.1.1 GW spectrum peak frequency

In Section 2.2.2, we obtained expressions relating the wavenumbers
and GW spectrum at production time to their redshifted present-time
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counterparts. Normalizing k↑ to φ, a fundamental scale in the problem,
and φ to H↑, the Hubble constant at the PT, the present-day frequency
can be obtained by rewriting Equation (169) as

f0 = 2.63 · 10!6 Hz ⇐
(
k↑
φ

) (
φ

H↑

) ( g↑
100

)1/6
(

T↑
100GeV

)
. (169)

A typical wavenumber at production is k↑ = φ, so that the GW spec-
trum peak generally occurs at kpeak = few ⇐ φ. Furthermore, using
that, generally, we expect φ/H↑ ∼ 100, and g↑ ′ 100 near T↑ = 100GeV
or otherwise that we can neglect the weak dependence, the redshifted
GW spectrum peak occurs at

f
peak
0

∼ C 10!3 Hz ⇐
(

T↑
100GeV

)
. (170)

where C is expected to take values in the range [0.1, 10]. Thus, for a
PT occurring at the EW scale T↑ ∼ 100GeV, the peak should occur
at frequencies between 0.1mHz to 10mHz, which excitingly overlaps
substantially with the sensitivity band of LISA [48]. If the PT instead
occurs around the QCD scale T↑ ∼ 100MeV, the peak frequency should
occur at frequencies between 0.1µHz to 10µHz. Generally, the peak
position scales linearly with the PT temperature T↑, so that the further
back in the past the PT occurred, the higher the peak frequency.

3.2.1.2 GW spectrum amplitude

We found in Section 2.2.2 that the present day GW spectrum is given
by Equation (66)

h2Ω0

GW(k) = 1.65⇐ 10!5

(
100

g↑(T↑)

)1/3 (
1

3̄

d3GW(k)

d logk

)

↑
,

so that using h ∼ 0.7,

Ω0

GW ∼ 3 · 10!5Ω↑
GW . (171)

Now, assuming that a GW source lasts over some time ∆t and that
a fraction K = 3source/3

↑
c of total energy density contributes to GW

production, then the energy fraction in GWs at production time para-
metrically becomes

ΩGW ∼ 10!5 (K∆tH↑)
2 . (172)

In Equation (72), it is evident that the sourcing term on the RHS carries
contributions only from the anisotropic part of the energy and momen-
tum. To be more precise, we saw in Section 3.1.6 and Equation (168)
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that a fraction Kω = ϖωω/(1+ω) of the total energy eventually takes the
form of fluid kinetic energy. For ω = 0.001, a typical value ϖ ∼ 0.01 [86],
so that K2 ∼ 10!8. Only a fraction of this contributes to anisotropic
stress. Therefore, plausible values of K are substantially lower than 1.

If GW production is dominated by the collision phase of a PT and
hence ∆t ∼ 1/φ, we see that

ΩGW ∼ 10!5 (KH↑/φ)
2 ∼ 10!9K , (173)

taking φ/H↑ ∼ 100. For vacuum PTs, assuming that the scalar field is
quickly dampened after collision, this would give an adequate estimate
provided K is known.

In recent studies (e.g., [1, 3, 25, 69, 71]), including the works which I
am to present in this thesis, it has been highlighted that sound waves
propagating through the fluid can persist much longer than φ!1. In
particular, in these works, and as we shall see in this thesis, it is demon-
strated that sound waves can endure for timescales on the order of
H!1

↑ before being dissipated by nonlinear dynamics such as shocks
and turbulence, resulting in an enhancement of ΩGW by a factor of
φ/H↑, leading to an enhancement of the GW spectrum by two to three
orders of magnitude.

When the sourcing time scale is longer, as is expected for sound
waves in the fluid following a PT, say ∆t ∼ 1/H↑, then the narrow sup-
port of the UETC means that the source is expected to grow linearly
rather than quadratically with time. Thus, as compared to the short-
lasting source, an estimate for the sound-wave production of GWs in-
stead reads

ΩGW ∼ 10!5K2H↑/φ , (174)

which qualitatively explains the factor of (φ/H↑) enhacement.

3.2.1.3 GW spectrum slopes

The UETC of anisotropic stresses in Equation (87) is uncorrelated at
scales beyond causality, i.e., on super-Hubble scales at the time of GW
production. Therefore, we expect that EΠ ⇒ k2 on super-Hubble scales,
resulting in the GW spectrum scaling as k3 in the IR. As long as the
UETC remains uncorrelated, this k3 scaling may persist. However, as
we approach the system’s correlation scale φ!1, correlations will in-
evitably cause deviations.

On general grounds, the only statement that can be made about the
UV slope of the GW spectrum is that the total integrated GW energy
must be finite, which imposes a limit on the UV slope. The exact de-
pendence on the UV slope is determined by the detailed dynamics re-
sponsible for the UETC, which must be established through analytical
or numerical methods.
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3.2.2 GW spectrum contributions

So far, we have discussed short-lasting sources from the initial collision
phase and long-lasting sources from sound waves or, more generally,
compressional or acoustic modes. We mentioned the dissipation of the
sound waves due to nonlinear dynamics such as shocks and turbu-
lence. In fact, turbulence can itself be a significant source of GWs [75,
77, 92–96].

Therefore, in a first-order cosmological PT, the GW sources consti-
tute bubble collisions, sound waves or compressional modes, and tur-
bulence so that the GW spectrum can be decomposed as [97]

ΩGW = Ωcoll +Ωsw +Ωturb . (175)

In the case of long-lasting sound waves, we saw that Ωcoll is subdom-
inant. If PTs are not too strong, the dynamics are largely linear [1],
allowing to measure Ωsw relatively well modulo the uncertainty asso-
ciated with the sound-wave source duration. This is one of the main
accomplishments in [1] on which Chapter 5 is based.

In weak-to-intermediate PTs (see Chapter 5 for a definition), fully
capturing the PT into the nonlinear and turbulent regime requires run-
ning simulations for a long time, which may be practically impossible.
Therefore, capturing Ωturb is not straightforward in most cases. For
strong PTs, however, the shock formation time and the time it takes for
turbulence to develop are well within simulation reach [3], making it
plausible to model the PT from a system dominated by compressional
modes to a system possibly dominated by compressional and vorti-
cal turbulence. In Chapter 6, which is based on [3], we observe clear
signs of nonlinear dynamics and turbulence. However, we attempt not
to separate the contributions to the GW production into Ωsw, Ωturb,
but instead introduce a way to model the total GW production from
a source experiencing nonlinear energy dissipation in a general sense
without the need to disentangle the respective contributions.

3.2.2.1 The scalar-field contribution to GW production

The production of GWs from the bubbles themselves, while not the
primary focus of this thesis, has played a historically important role in
the field. Therefore, this thesis would not be complete without at least
a brief review of this topic. Accordingly, in this Section, I will review a
few approaches through which the GW spectrum arising from scalar
field bubble collisions can estimated.

envelope approximation Historically, directly attempting to
numerically solve for the scalar-field evolution in a many-bubble sys-
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tem was infeasible due to the excessive computational resources it
required. In 1992, however, Kosowsky, Turner, and Watkins success-
fully obtained through numerical means [19] the GW production from
two colliding bubbles. This feat was made possible by exploiting the
O(2, 1) symmetry possessed by the two-bubble system, which even
then proved exceedingly difficult with the computational resources of
that day. The most general case of many bubbles in three dimensions
has no symmetries and was far beyond computing capabilities at the
time. Just like we argued in the motivation for the Higgsless approach,
the problem was difficult numerically because of the presence of two
separate scales: the bubble wall thickness at nucleation is small com-
pared to the size of bubbles at collision. Additionally, highly relativis-
tic walls are made thinner due to Lorentz contraction, which further
separates the scales.

A critical observation concerns the insensitivity of the GW produc-
tion to the fine-grained details of the bubble dynamics. In particular,
they found that the GW spectrum and its production efficiency depend
only on the overall features of the PT and bubble collisions, such as the
strength of the PT and the size of bubbles at the end of their simula-
tions. Despite the scalar-field dynamics after bubble collisions being
quite intricate, the overall production of GW radiation from the small-
scale motions adds incoherently and is subdominant, they concluded.

The insensitivity to the small-scale dynamics prompted the authors
to develop the envelope approximation [21]: bubbles are approximated
as infinitely thin shells, and in the regions where bubbles overlap, the
bubble wall is completely ignored as a contribution to the anisotropic
stress. Only the envelope, i.e., the uncollided part of the bubble wall
network, is considered. This approximation successfully reproduced
previous numerical results for two-bubble systems and was thus put
to test in systems with hundreds of bubbles.

The envelope approximation provides a simplified yet efficient ap-
proach to estimate the GW signal generated from the scalar field dy-
namics during first-order PTs. The approximations that enter the enve-
lope approximation are, to summarize:

1. The energy is concentrated in the thin walls of the expanding
bubbles (thin-wall approximation).

2. Upon collision, the walls of the bubbles disappear instanta-
neously, and only the uncollided parts (i.e., the envelope) con-
tinue to source gravitational waves, while the contribution from
the collided regions ceases

The envelope approximation was additionally exploited in the nu-
merical simulations of [23], and it was realized in [98] that under the
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stipulated assumptions, the envelope contribution to GWs can be ob-
tained analytically.

Above works resulted in the prediction that (in the envelope approx-
imation), the spectrum of GWs is characterized by a peak frequency
depending on the bubble expansion velocity. The spectral shape is
characterized by a q3 growth at small frequencies and a q!1 decrease
at high frequencies. For analytical fits to the data, I refer the reader
to [98].

bulk flow model The development of the envelope approxima-
tion was a significant milestone in understanding GW production dur-
ing first-order PTs. A natural extension of the envelope approximation
is to assume that upon colliding, the infinitely thin bubble wall in-
terface does not instantaneously vanish but dampens over time. This
refined model was proposed in [99] in which the authors obtained GW
production results analytically, which were subsequently confirmed in
numerical simulations [24]. Note that while in this Section we take the
bulk-flow model to model the bubbles, it can similarly be interpreted
as a model of the fluid and sound wave provided in the limit of very
thin sound shell profiles [24, 99]. In fact, this was the main motiva-
tion for the bulk flow model in [24]. For if the thin shells are freely
propagating after the collision, they decay as ⇒ 1/r2 where r is the ex-
panding radius of the shells, a behavior which can be captured in the
bulk-flow model. Note, however, that in the bulk flow model, r ⇒ vw,
whereas after the collision, the sound shell wave propagates with the
sound speed cs. For vW ∼ cs, the bulk flow model should nevertheless
give reasonable estimates and capture the qualitative features.

Unlike the envelope approximation, the bulk flow model reveals
that the GW spectrum experiences an IR flattening. Specifically, the
spectrum shifts from the ⇒ q3 behavior seen in the envelope approx-
imation to qa, where a ↑ [1, 3], depending on the decay time of the
collided bubble regions. It is also found that in the UV, the GW spec-
trum scales as q!3. Additionally, the peak position shifts from smaller
to larger scales as the decay time of the collided regions increases, with
a change by a factor of approximately two in the long-lasting limit.

scalar field lattice simulations While the envelope ap-
proximation and bulk flow model provide accessible estimates for GW
production within certain physical scenarios, advancements in com-
putational resources have paved the way for more precise predictions.
Rather than relying on these approximations and assumptions, solv-
ing the scalar field evolution directly on the lattice with high precision
allows for capturing subtle, fine-grained dynamical features and accu-
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rately modeling the full nonlinear dynamics, leading to more reliable
and detailed GW predictions.

Such attempts were made in [100], where results from large-scale nu-
merical simulations of scalar-field dynamics and GW production are
presented. It was found that the gravitational wave power spectrum
in the IR is consistent with a q3 scaling as predicted by causality and
found in the envelope approximation. However, the dynamic range in
their simulations is insufficient to produce an independent estimate.
At large frequencies in the UV, the GW spectrum decreases as q!1.5,
as compared to q!1 in the envelope approximation and q!3 in the
bulk flow model. They also find that the peak of the power spectrum
is shifted to slightly larger scales, consistent with the bulk flow model.
Accounting for the full scalar field dynamics, they additionally observe
a linearly growing UV feature. This feature is observed to peak at wave
numbers corresponding to the bubble wall thickness, but it has a neg-
ligible contribution to the total energy in gravitational waves in most
scenarios of interest.

In Table 1, I summarize the various scaling behaviors observed in dif-
ferent models for the scalar field contribution to the GW production. It
is worth noting that a single scale, associated with the typical bubble
bubble size, or equivalently the PT duration, divides the IR and UV re-
gions, with the Higgs scale residing deeply in the UV and far beyond
the reach of any simulation. Both the envelope and the scalar lattice
models concur on the IR q3 scaling, which is supported by causal-
ity [76]. The bulk flow model captures a longer-lasting source of GWs
in the IR, resulting in a q1 scaling. In the UV, the bulk flow model dif-
fers as it exhibits fewer kinks and cusps in the bubble configurations
compared to the envelope approximation, leading to a faster decay of
the spectrum in the UV. Scalar field lattice simulations also observe a
stronger decay. Furthermore, the position of the peak varies slightly
between the envelope approximation and the lattice simulations and
bulk-flow model, whereas the latter two are in better agreement.

IR UV References

Envelope approximation 3 !1 [23, 98]

Bulk flow model [1, 3] !3 [24, 99]

Scalar field lattice simulations 3 !1.5 [100]

Table 1: Frequency scaling behaviour in the IR and UV for the GW spectrum
emerging solely from the scalar field contribution as described in
the envelope approximation, the bulk flow model, and in scalar field
lattice simulations.
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3.2.3 The fluid contribution to GW production

We have seen how some of the first simulations of gravitational waves
from scalar field dynamics were made possible through the simplifi-
cations offered in the envelope approximation. This approach was re-
fined in the bulk flow model applied to a scalar field-only setup, which
brought new insights and observations of different GW spectrum scal-
ing behaviors. Additional insights were gained in full 3D scalar field
lattice simulations at the cost of significant computational demands.
All of these approaches, however, neglected or failed to adequately
model the relativistic fluid dynamics with extended sound shells and
complex interactions. We have nevertheless seen how GW production
from long-lasting sound waves may lead to the dominant contribution.

In this regard, and since we are mostly concerned with fluid hydro-
dynamics and consequent GW production in this thesis, I wish to high-
light a few state-of-the-art approaches to modeling GW production by
the fluid and, in particular, sound waves. These approaches include
the Sound-shell model, coupled scalar field + fluid lattice simulations,
and a recent hybrid approach, which I will briefly review below.

the sound shell model The sound shell model offers a semi-
analytical method for calculating the sound-wave production of grav-
itational waves during a first-order PT. As first outlined in the orig-
inal publications of the sound-shell model introduced [70, 72], the
GW spectrum is obtained similarly to Equation (93), but instead of
assuming full knowledge of the anisotropic stress as we did to arrive
at Weinberg’s formula (104), they proceed to derive the UETC from a
stochastic source analytically. Note that they and furthermore assume
that the second integral in (93) can be extended to ±→, thus obtain-
ing the linear growth rate of Equation (108) as we did in Section 2.2.5.
The UETC is then obtained by first computing the self-similar velocity
and enthalpy profiles [86]. Then, the velocity power-spectrum is com-
puted from the velocity profiles of the associated bubbles statistically
distributed assuming either a simultaneous or exponential bubble nu-
cleation history. With knowledge of the velocity spectrum, the UETC
can be computed, which in turn allows computing the associated GW
spectra.

The predicted GW spectra are found to exhibit two distinct length
scales: the average bubble separation and the sound shell width upon
collision. The peak of the power spectrum occurs at wavenumbers de-
termined by the sound shell width. In the UV, the power spectrum
is found to decrease as k!3. In the IR, recent sound-shell model re-
sults with refined assumptions [73, 74] have found a k3 scaling (to be
contrasted with the earlier prediction of k9 scaling). An intermediate
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regime between the two scales corresponding to the typical bubble size
and sound shell thickness with a linear k1 scaling is furthermore ob-
served. With the refined assumptions, an intricate spectrum structure
emerges where, e.g. the previously found k9 UV scaling is observed
in a narrow band just to the left of the peak. The detailed form of the
spectrum depends sensitively on the wall velocity and PT strength.

The sound shell model has proven immensely important and lever-
ages the power of analytical computation, thus allowing for efficient
probing of large parameter spaces. However, its limitations lay in the
assumption of linearity among the sound waves. Indeed, the scenarios
of greatest interest are those of stronger PTs due to their boosted, and
thus more easily observable, GW signals. These PTs can be expected
to involve strong nonlinear dynamics, which is precisely what is not
captured in the sound-shell model. Therefore, while the sound-shell
model offers an excellent framework within which the parametric de-
pendence of the GW signal can be studied for the class of weak PTs
and possibly intermediate PTs, to move beyond this limitation, one
must resort to other methods that can solve adequately for the fully
nonlinear evolution of the fluid dynamics.

scalar field + fluid lattice simulations Diametrically op-
posite to the sound-shell model, coupled scalar field + fluid lattice sim-
ulations [25, 69, 71, 101] enter the stage as a robust attempt at capturing
the GW spectrum from the PT dynamics employing a fully numeri-
cal approach without many compromising assumptions. Here, quite
straightforwardly, the authors solve on the lattice for the dynamical
evolution of a scalar field and the fluid coupled through a phenomeno-
logical friction term.

Utilizing these simulations, it is found that the GW spectrum is con-
sistent with the UV k!3 scaling as predicted in the sound-shell model.
This observation is particularly clear for detonations, while for defla-
grations, it is moderately steeper. I will quote the k!3 scaling as their
main finding in this regard. Furthermore, it was found that sound shell
thickness sets the location of the peak of the GW spectrum peak. Due
to insufficient IR statistics, the IR behavior of the GW spectrum could
not be inferred.

hybrid simulations Bridging the gap between the sound-shell
model and the scalar field + fluid lattice simulations, one finds the hy-
brid scheme [67]. In this approach, bubbles are modeled as spherically
symmetric and expand at a constant wall velocity. Rather than solving
for the full 3D evolution, the fluid equations of motion are solved ra-
dially in simulations of only one dimension. The fluid profiles before
collision are the already known self-similar profiles discussed in 3.1.6
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as obtained in [86]. In the hybrid approach, the authors implement
an efficient and high-resolution solver capable of solving for the free
propagation of the initial conditions defined by the self-similar profiles
and thus solve for the radial evolution in the free propagation regime
post-collision. This way, the radial and time-dependent relaxation of
the initial profiles involving shocks is obtained nonlinearly.

The main point of the hybrid approach, however, is not the radial
1D evolution after collision but the 3D embedding of those 1D solu-
tions into a 3D grid. The starting point is a bubble nucleation history,
constructed assuming an exponentially increasing bubble nucleation
history similar to the prescription in 3.1.3. The hybrid simulations use
this nucleation history to embed the 1D fluid profiles into the 3D grid
as a superposition on non-interacting velocity and enthalpy fields. Con-
sidering the contribution from each bubble individually, radially from
the nucleation center, either the self-similar profile or the freely propa-
gating time-evolving profile is embedded depending on whether that
particular direction of the bubble has collided or not.

The superposition of such radial profiles on the 3D grid allows track-
ing the energy-momentum tensor over space and time, and thus the
computation of the GW spectrum in complete analogy with the Hig-
gsless simulations. The superposition of such shells implies that the
hybrid approach is explicitly linear in the sense that once the radial
1D profiles are embedded, those profiles do not interact; only the sin-
gle bubble evolution is solved nonlinearly.

In the hybrid approach, it is found that the IR part of the GW spec-
trum scales as ka where a ↑ [2, 4], the UV part scales as kb where
b ↑ [!4, !3], and that an intermediate linear plateau is present be-
tween the inverse scales of the average bubble size and shell thickness
at collision.

In Table 2, I summarize the scaling behaviors of the GW spectrum ob-
served across the above-mentioned approaches, including results from
the Higgsless simulations, for reference. Most approaches consistently
exhibit a k3 scaling in the IR, although the hybrid simulations reveal
some variability in the IR slope around 3. Additionally, all approaches
agree on a k!3 scaling in the UV, with the hybrid simulations indi-
cating a slightly steeper scaling, approaching k!4. An intermediate
regime linking the scales of the inverse average bubble size and shell
thickness at collision is also identified across all approaches. In most
cases, the scaling in this regime is linear, k1, except in the hybrid sim-
ulations, where a negative scaling is observed, with an exponent be-
tween [!1, 0].
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IR Intermediate UV References

Sound-shell model 3 1 !3 [70, 72]

Scalar + fluid lattice simulations - 1 !3 [25, 69, 71, 101]

Hybrid simulations [2,4] [!1,0] [!4,!3] [67]

Higgsless simulations [3] 1 [!3,!2.5] This thesis

Table 2: GW spectrum slopes obtained from various approaches targeting
fluid sound-wave-induced GW production. These models exhibit dis-
tinct features at wavenumbers k0 and k1, with three corresponding
slopes: IR, intermediate, and UV.

3.2.4 Prospects for observational Detection

Before concluding this first part of the thesis, I would like to highlight
recent advancements in GW detectors and discuss the observational
prospects for detecting GWs originating from a first-order PT.

Global Pulsar Timing Arrays (PTAs) efforts, which probe nano-Hertz
frequencies, have recently provided compelling evidence for a stochas-
tic GW signal [41–44]. While unresolved supermassive black hole merg-
ers are a strong candidate for this radiation, suggesting an astrophysi-
cal origin, it is crucial to consider that primordial cosmological sources
could also account for the observed signal [45]. Indeed, the signal is
consistent with predictions from a cosmological PT [46, 102, 103]. It
is notable that as the sensitivity of PTAs improves with increased ob-
servation time and data joint data analysis among the collaborations,
expectations are that the observed signal if indeed stemming from a
stochastic GW signal, will be clearly seen. Furthermore, the upcoming
Square Kilometre Array (SKA) [104] is expected to push the observa-
tional limits further.

For cosmologists, the Laser Interferometer Space Antenna
(LISA) [47–49], scheduled for launch in 2035, designed to probe GWs
in the milli-Hertz frequency band, presents potentially an even more
exciting prospect. Several studies have explored whether LISA can de-
tect GWs from cosmological PTs [50–52] and how well it can observe
features of GW spectra from first-order PTs [105, 106]. Although a de-
tailed discussion of these studies is beyond the scope here, the consen-
sus is that LISA should be able to detect GW signals from cosmological
PTs if they occur around the electroweak scale (∼ 100GeV), last for a
sufficiently long duration (H↑/φ > 10!3), and are sufficiently strong
(ω > 0.1) [97].

Looking beyond LISA, upcoming gravitational wave observato-
ries such as the Einstein Telescope (ET) [107], Big Bang Observer
(BBO) [108], and Deci-hertz Interferometer Gravitational-wave Obser-
vatory (DECIGO) [109] are set to play important roles in detecting GWs
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from phase transitions, as they, together with SKA and LISA, cover a
vast frequency band. These observatories will significantly enhance
our ability to probe the early Universe with GWs.

The ultimate goal of this section is to underscore the importance of
advancing accurate gravitational GW predictions in light of the sub-
stantial investments in GW experiments, which will be justified only if
the data can be effectively utilized and compared against various the-
oretical predictions. Furthermore, since cosmological PTs are indeed
expected to be observable in certain parts of parameter space, they
constitute a valid target for these GW experiments to probe. This fact
is the primary motivation and justification for the research that I am
hereby to present.



Part II

H I G G S L E S S S I M U L AT I O N S

In this part, I focus on the design, implementation, evalu-
ation, and application of our Higgsless simulations intro-
duced in [1]. It is divided into four chapters. Chapter 4 pro-
vides an overview of central difference methods. Section 4.1
introduces hyperbolic conservation laws, followed by the
Lax-Friedrichs scheme as a prototypical example of a cen-
tral difference method in Section 4.2. Section 4.3 presents
the Kurganov-Tadmore method, a vital component of the
Higgsless simulations.

In Chapter 5, based mainly on my publication [1], I intro-
duce our novel Higgsless simulations and present the first
numerical findings. Section 5.1 provides background and
context and outlines the scientific objectives. In Section 5.2,
I review the physical. Section 5.3 explores the numerical
methods and programmatic choices. In Section 5.4, I val-
idate the simulation code, followed by the presentation of
numerical results in Section 5.5. A discussion is provided in
Section 5.6, with concluding remarks in Section 5.7. I close
the chapter with a brief digression in Section 5.8, reviewing
the results of my other publication [2] on phase transitions
seeded by domain walls.

In Chapter 6, based on the work from my publication [3], I
expand upon the previous Chapter 5, significantly advanc-
ing our understanding of the simulation’s performance
and, for the first time, deriving gravitational wave predic-
tions from strong phase transitions. Section 6.1 introduces
the study and the broader context and outlines its scientific
objectives. In Section 6.2, I extend the model for gravita-
tional wave production to account for damped sources and
cosmic expansion. Section 6.3 discusses updates to the sim-
ulation code and the chosen parameters. The main numeri-
cal results, including findings from strong phase transitions
and a template for gravitational wave production, are pre-
sented in Section 6.4. Finally, Section 6.5 summarizes the
key findings and concludes the chapter.

I conclude in Chapter 7, reflecting on the thesis’ achieve-
ments and suggesting future research directions.





4
C E N T R A L D I F F E R E N C E S C H E M E S À L A K U R G A N O V
A N D TA D M O R

This Chapter serves as an overview of central difference methods, with
particular emphasis on the method used in our simulations. In Sec-
tion 4.1, I introduce hyperbolic conservation laws. In Section 4.2, I
present the Lax-Friedrichs scheme as a prototypical example of a cen-
tral difference method. Then, in Section 4.3, I introduce the Kurganov-
Tadmor central difference method, the backbone of the Higgsless sim-
ulations, in both its semi-discrete and fully-discrete formulations, in-
cluding generalizations to three dimensions, and offer some conclud-
ing remarks.

4.1 Hyperbolic conservation laws

Hyperbolic Conservation Laws describe the flow of conserved quanti-
ties such as mass, momentum, or energy in a system. Mathematically,
they can be written as

0

0t
u(x, t) +

0

0x
f(u(x, t)) = 0 (176)

for a conserved scalar quantity u in one spatial dimension, or more
generally, for a system of equations in d spatial dimensions

0u
0t

+
d↑

j=1

0

0xj
fj(u) = 0 (177)

where u is the vector of conserved quantities and f(u) is the flux vec-
tor. The form of (177) is called conservative, which stems from the fact
that it explicitly ensures the conservation of u over time. Conversely,
all ui’s are termed conserved quantities. The term f(u) represents the
rates at which the quantities u flow through space. Hyperbolic con-
servation laws describe numerous physical phenomena found in, e.g.,
fluid mechanics, astrophysics, and meteorology. An intriguing feature
of hyperbolic conservation laws is that discontinuities, such as shock
waves, can develop even from smooth initial conditions [80].
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A common example is the system of Euler equations (in one spatial
dimension) for the dynamics of a gas,

0
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
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E
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0

0x





m

3v2 + p

v(E+ p)



 = 0, (178)

where the quantities 3, v,m = 3v,p, and E are the density, velocity,
momentum, pressure, and total energy, respectively. In this case, u =

(3, m, E)T with flux function f(u) =
(
m, 3v2 + p, v(E+ p)

)T .

4.2 A prototypical example: the Lax & Friedrichs
scheme

Central schemes are universal finite-difference methods for solving
hyperbolic conservation laws. This universality means that once nu-
merically implemented, they are in principle applicable to all physical
systems governed by equations of the form (177), with degrees of suc-
cess depending on the detailed structure of the central scheme and the
complexity of the problem.

One of the most naive central schemes to solve (177) is obtained by
simple Taylor-expansion and rearrangement of the terms, whereby

un+1

j
= un

j
!

λ

2


f
(
un

j+1

)
! f

(
un

j!1

)
, (179)

where, λ := ∆t/∆x is the constant mesh ratio, and un

j
is an approximate

value of u
(
xj, tn

)
at the grid point

(
xj := j∆x, tn := n∆t

)
. Replacing

un

j
⇓ u

n

j+1
+u

n

j!1

2
, i.e. by letting

un+1

j
=

un

j+1
+ un

j!1

2
!

λ

2


f
(
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j+1

)
! f

(
un

j!1

)
, (180)

Lax and Friedrichs (LxF) improved upon the stability of this scheme
[110, 111], resulting in a widely celebrated first-order stable central
difference method.

It is enlightening to study what implications are associated with
the replacement un

j
⇓ u

n

j+1
+u

n

j!1

2
acting to stabilize the LxF scheme.

Equation (180) can be recast in a viscous form
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(
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)
! f
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)

2∆x
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(
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j

)
!

(
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j
! un

j!1

)
.

(181)
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This expression represents a discretized version of an equation of the
form

0u

0t
+

0f(u)

0x
=

(∆x)2

∆t

02u

0x2
. (182)

The LxF scheme, thus apparently, introduces to the R.H.S. a dissipative
term proportional to (∆x)2/∆t as a direct consequence of the scheme
stabilization. This dissipation is the price one must pay for the scheme
stabilization and results in large numerical viscosity acting to artifi-
cially smoothen solutions.

Even worse, taking the limit of ∆t ⇓ 0, the viscous form of the LxF
scheme implies the divergence of the R.H.S. while the L.H.S. is well-
behaved. Keeping the numerical viscosity constant thus implies that
increased temporal resolution must be balanced with increased spatial
resolution,

(∆t)0 ⇓ ∆t ⇔ ∆x ⇓ (∆x)0

√
∆t

(∆t)0
, (183)

or, otherwise, the dissipative term grows and fatally approaches →. In-
creasing the spatial resolution to reduce numerical viscosity is clearly
only possible within the bounds of computational resources, so one
must choose the smallest permissible ∆t for the specified problem.

Schemes that suffer divergences in the limit ∆t ⇓ 0 only admit a
fully-discrete formulation in which ∆t is always finite, while schemes
for which the limit ∆t ⇓ 0 is well-behaved can be expressed in a
semi-discrete formulation where the spatial part is discretized but the
temporal part is not.

The choice of ∆t, however, is governed by the Courant-Friedrichs-
Lewy (CFL) condition. To ensure stability, this condition states that
information must never propagate faster than between two neighbor-
ing grid points in one time step, and typically much slower, to ensure
stability. This then signifies that

∆t

∆x
↬ C

max |f→(u)|
, (184)

where the constant C ⇑ 1 (typically) and whose exact value depends
on the central scheme in question and the details of the physics to be
modeled, and max |f→(u)| is the maximum local speed of propagation.
This implies a trade-off between spatial resolution and time-stepping.
In practice, C must generally be determined by inspection of the solu-
tions. Clearly, ∆t is limited from above by the CFL condition, and one
can never do better with regard to the numerical viscosity than what
is allowed by this upper bound.
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It is interesting, nevertheless, to note that the LxF scheme still con-
serves u globally. Compute the Riemann sum of un+1

j
over all J grid

points,

J!1↑
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j
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(185)

Quite often, however, numerical schemes are implemented assuming
periodic boundary conditions, such that the points (!1, J! 1) and (0, J)
are mapped to one another. Therefore, the flux terms collapse, while
all un

j
’s add up in pairs, and the sum reduces to

J!1↑

j=0

un+1

j
∆x =

J!1↑

j=0

un

j
∆x . (186)

The total amount of u is thus conserved between time steps, and the
LxF scheme globally conserves u despite demonstrating significant nu-
merical viscosity.

For problems where smooth solutions are expected and relatively
large time steps are permissible, the LxF scheme may perform well. In
our case of interest, namely strong relativistic hydrodynamics driven
by bubble walls, which we will model as discontinuous time-varying
boundary conditions, one must employ significantly higher perform-
ing central difference methods to resolve shocks and nonlinear dynam-
ics [67]. The next Sections of this Chapter will discuss a capable high-
resolution scheme that constitutes the backbone of the Higgsless sim-
ulations.

4.3 The Kurganov-Tadmor central difference
method

We have seen how excessive numerical viscosity appears as an artifact
of numerical schemes that do not admit a semi-discrete formulation.
To this end, Kurganov and Tadmor (KT) [112] devised a scheme that
does, which I am hereby to review in some detail. A compact descrip-
tion of this scheme is also given in [113].
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4.3.1 Semi-discrete formulation

In the semi-discrete formulation and in one spatial dimension, their
central scheme takes the form:

d

dt
uj(t) =
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(
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(
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)
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2∆x
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(t)
]
! aj!1/2(t)

[
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(t)! u!
j!1/2

(t)
]↘

.

(187)

Here, u and f should be interpreted as a list of one or many con-
served quantities and flux functions. Definitions of the terms used in
this equation are discussed next.

The first items on the R.H.S. reads

!

(
f
(
u+
j+1/2

(t)
)
+ f

(
u!
j+1/2

(t)
))

!
(
f
(
u+
j!1/2

(t)
)
+

(
f
(
u!
j!1/2

(t)
))

2∆x
.

(188)

One immediate difference from the LxF scheme is that quantities are
evaluated at staggered grid points j±1/2. These are defined from Taylor
expansions around points j (superscript -) and j+ 1 (superscript +),

u+
j+1/2

:= uj+1(t)!
∆x

2
(ux)j+1

(t), u!
j+1/2

:= uj(t)+
∆x

2
(ux)j (t)

(189)

with approximate derivatives (ux)j. A suitable definition of these
derivatives is subtle and warrants a discussion of its own. The terms
of the form

f
(
u+
j±1/2

(t)
)
+ f

(
u!
j±1/2

(t)
)

2

thus approximate the flux at the point xj±1/2 through the mean value
of its two Taylor expansion estimates approaching from different sides.
The difference between such terms divided by ∆x thus approximates
the flux derivative.

The second term on the R.H.S.

1

2∆x

↗
aj+1/2(t)

[
u+
j+1/2

(t)! u!
j+1/2

(t)
]
! aj!1/2(t)

[
u+
j!1/2

(t)! u!
j!1/2

(t)
]↘

(190)

is more interesting and contains the key piece of information that
makes the KT scheme powerful. We have already seen from the CFL
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(184) condition the importance of the maximal fluid velocity in deter-
mining the minimal time step ∆t. It seems plausible, therefore, that if
information about the maximal local fluid velocity could be embedded
into the central scheme itself, one could improve upon its stability. In
the second term on the R.H.S., aj+1/2 is defined as

aj+1/2 := max
{
3

(
0f

0u

(
u!
j+1/2

))
, 3

(
0f

0u

(
u+
j+1/2

))⇐
(191)

where 0f/0u is the Jacobian matrix of f with respect to the conserved
quantities u and 3(0f/0u) is the spectral radius, i.e. the magnitude
of the largest eigenvalue of the Jacobian 0f/0u. The quantity aj+1/2,
therefore, carries the interpretation of the largest characteristic speed
in the system at which any disturbance or wave can propagate, esti-
mated from the left and right approximations u+

j+1/2
and u!

j+1/2
at the

staggered grid point j+ 1/2. When solutions are sufficiently smooth,
the second term on the R.H.S. of (187) contributes numerical viscosity
[112]

∼ (∆x)3 (a(u)uxxx)x /8 ⇒ O(∆x)3 , (192)

which should be contrasted with the much larger O
(
(∆x)2/∆t

)
for the

LxF scheme. Note that the numerical viscosity of the KT scheme (192)
is well-behaved in the limit of ∆t ⇓ 0 by virtue of the semi-discrete
formulation.

If we define the numerical flux term

Hj+1/2(t) :=
f
(
u+
j+1/2

(t)
)
+ f

(
u!
j+1/2

(t)
)

2

!
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2

[
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(t)! u!
j+1/2

(t)
]

,

(193)

the KT scheme (187) can be written in a simple conservative form

d

dt
uj(t) = !

Hj+1/2(t)!Hj!1/2(t)

∆x
. (194)

In the KT scheme, spatial derivatives are computed as

(ux)j := minmod
(
8
uj ! uj!1

∆x
,
uj+1 ! uj!1

2∆x
, 8

uj+1 ! uj

∆x

)
, 1 ↬ 8 ↬ 2 ,

(195)

where minmod(a,b, c) selects the smallest element by modulus if all
arguments have the same sign or else-wise return zero. This defini-
tion helps prevent the formation of spurious oscillations around dis-
continuities and local maxima that are characteristic of the Gibbs phe-
nomenon [114], as flux cannot both enter or leave the cell from both
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directions at the same time. It acts as a nonlinear flux limiter and al-
lows the regulate the steepness of gradients by means of the parameter
8. Choosing 8 = 1 is the most conservative choice, overall reducing the
gradient, while 8 = 2 is the least conservative, overall admitting larger
gradients at the cost of reduced stability. One must determine ade-
quate values of 8 through the evaluation of particular solutions so as
to maintain stability while achieving the desired resolution.

The derivative and minimum-modulus flux-limiter (195) is quoted
on discrete lattice sites; on staggered grid cells, one simply makes the
replacement j ⇓ j± 1/2.

The semi-discrete formulation of the KT scheme is now be summa-
rized as the collection definitions, the conservative form (194) with the
definition of the numerical flux (193), local fluid velocities (191), and
flux-limiting choice of spatial derivative (195).

As a final note, and as did for the LxF scheme, let us explicitly verify
that the KT scheme conserves u globally. To this end, compute the time
derivative of the Riemann sum of uj’s,

d

dt

↑

j

uj(t)∆x = !
↑

j

(
Hj+1/2(t)!Hj!1/2(t)

∆x

)
∆x

= H!1/2(t)!HJ!1/2(t) .

(196)

Again, assuming an implementation with periodic boundary condi-
tions, the points (!1/2, J! 1/2) are mapped to the same which causes
the whole sum to collapse. Therefore,

d

dt

↑

j

uj(t)∆x = 0 , (197)

showing explicitly that the quantity u is globally conserved.

4.3.2 Fully-discrete formulation

The conservative form (194) is an ordinary differential equation (ODE)
of the form

du

dt
= C[u] . (198)

A second benefit of the semi-discrete formulation is now evident; one
can choose any ODE solver, of any order of accuracy, to solve (198),
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and for this, a particularly useful choice is the third-order Runge-Kutta
(RK) method

u(1) = un +∆tnC [un]

u(1+1) = 11u
n + (1! 11)

(
u(1) +∆tnC

[
u(1)

])

u(2+1) = 12u
n + (1! 12)

(
u(2) +∆tnC

[
u(2)

])

un+1 := u(3) ,

(199)

where 11 = 3/4 and 12 = 1/3. If we define

C[u] := !


Hj+1/2(u)!Hj!1/2(u)

∆x


, (200)

then the third order RK scheme (199) brings the semi-discrete KT
scheme (194) into a fully-discrete form, which is second-order in space
and third-order in time.

4.3.3 Generalization to three dimensions

All expressions introduced thus far generalize rather trivially from one
to three spatial dimensions x, y, and z, indicated by indices j,k, l. The
equations are quite lengthy, but for the sake of at least once being
explicit, I will quote the resulting expressions that are implemented
on the lattice in the forthcoming Chapters.

The semi-discrete and conservative formulation of the KT scheme
generalizes to

d

dt
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(201)
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where Hx

j+1/2,k,l, H
y

j,k+1/2,l, and Hz
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are numerical fluxes in the

x, y, and z directions and depend on time. They are defined through
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(202)

where fx, fy, and fz, are the x, y, and z components of the flux. The
conserved quantities are evaluated on staggered grid points

u+
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∆x

2
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(203)
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and the spatial derivatives computed utilizing the minimum-modulus
flux-limiter

(ux)j,k,l := minmod
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(204)

where 1 < 8 < 2, selecting the smallest argument by modulus if they
share the same sign or else returns zero. The local maximum speeds
ax, ay, and az, in directions x, y, and z are computed as
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A fully-discrete scheme in three spatial dimensions and time can
thus be constructed through time evolution using the third-order RK
method

u(1) = un +∆tnC [un]
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I thus define the KT+RK3 scheme in (207):

Definition: the KT+RK3 scheme
The collection of equations (201), (202), (203), (204), (205), and (206)
define a numerical scheme which we denote KT+RK3.

(207)

This scheme constitutes a 3+1 dimensional fully-discrete second-order
in space and third-order in time central difference method.

4.3.4 Concluding remarks

This Chapter has aimed to give a brief overview of central difference
methods, starting with the simple LxF scheme as the prototypical ex-
ample, followed by the introduction and examination of the KT scheme
of low numerical viscosity. We thus arrived at the 3+1 dimensional rep-
resentation of the fully-discrete KT+RK3 scheme, which combines the
strengths of both the second-order KT and third-order (in time) RK
scheme. This resulted in a high-performance, high-resolution central
scheme with very small numerical viscosity that conserves u globally.

In the numerical examples given in [112], the KT scheme with its
fully discrete extensions utilizing, e.g., third- and fourth-order RK
methods, demonstrate extraordinary abilities at resolving shocks, rar-
efactions and structures with large gradients. This furthermore allows
the schemes to resolve the formation and evolution of large-gradient
phenomena, e.g., shocks, which are expected to develop spontaneously
through nonlinear dynamics. We thus expect that the KT+RK3 scheme
is particularly suitable for the demanding conditions of the highly rel-
ativistic and nonlinear dynamics of the early universe, which is a topic
that will be covered in detail in the forthcoming Chapters.

Now we understand at some technical level why the above state-
ments are true. Once the 3+1 dimensional KT+RK3 scheme (207) is
established, it can be implemented as a black-box PDE solver for any
hyperbolic conservation law. The robustness of the KT+RK3 scheme
is what is ultimately responsible for the success of the Higgsless ap-
proach. The KT scheme has been widely used in physics and engi-
neering (see e.g. [113, 115–118]) with at least one reference explor-
ing its prospects in modeling relativistic hydrodynamics and propa-
gation of relativistic jets [119]. In these references, the KT scheme has
been shown to constitute a good replacement for significantly more
computer-intensive Exact Riemann solvers and demonstrated an ex-
ceptional ability to resolve and propagate high-gradient phenomena.
The KT scheme is thus widely celebrated, but its application to rel-
ativistic hydrodynamics in cosmology is, as to my knowledge at the
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time of writing, novel, with the only exception being its inaugural im-
plementation in the Hybrid simulations [67] of first-order cosmological
PTs developed by some of my collaborators, on which the work in this
thesis draws inspiration.



5
H I G G S L E S S S I M U L AT I O N S A N D G R AV I TAT I O N A L
WAV E S

This Chapter extensively draws upon the scientific work outlined in
the publication Higgsless simulations of cosmological phase transitions and
gravitational waves [1], co-authored by myself, Ryusuke Jinno, Thomas
Konstandin, and Henrique Rubira. While firmly rooted in our pub-
lished findings, I incorporate supplementary material not present in
the original manuscript. This additional content aims to enrich the nar-
rative by providing a broader perspective, reinforcing key conclusions,
and elucidating concepts beyond the confines of the initial publication.

In Section 5.1, I provide background and context and outline the
scientific objectives. In Section 5.2, I review the physical setup govern-
ing the simulations. Section 5.3 explores the numerical methods and
programmatic choices, detailing their impact on both the physics and
measurements. In Section 5.4, I validate the simulation code, followed
by the presentation of numerical results in Section 5.5. A discussion
is provided in Section 5.6, with concluding remarks in Section 5.7. I
close the Chapter with a brief digression in Section 5.8, reviewing the
results of the publication [2], co-authored by myself, Ryusuke Jinno,
Thomas Konstandin, Henrique Rubira, and Simone Blasi, which con-
stitutes a case applying the Higgsless simulations to PTs seeded by
domain walls.

5.1 Introduction

5.1.1 Background

In Chapter 3, I delivered an introduction to cosmological first-order
PTs and their associated GW production. In particular, we concluded
that long-lasting sound waves constitute a potentially dominant source
of anisotropic stress so that the resulting GW signal may be dominated
by sound wave production.

Owing to this fact, analytical models to understand GW production
from, in particular, sound waves have been developed (see e.g. [70,
72, 73, 76, 99]). The sound waves are initially generated during the
bubble expansion phase, where detonation and rarefaction waves de-
velop around the bubble wall. As bubbles collide, so do these waves,
which may lead to complex nonlinear interactions if fluid velocities are

74
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sufficiently large. These interactions may generate additional hydrody-
namic disturbances, which in turn contribute to the gravitational wave
signal.

While analytical models such as the sound-shell model (see, e.g.,
[70] and Section 3.2.3) allow to readily predict GW spectra from fully
linear sound-waves, which may indeed be an accurate description for
weak PTs, above points should convince the reader that to present GW
signal predictions with confidence requires to take seriously the pos-
sibility that nonlinear dynamics alter the physics to the degree that
one simply cannot neglect it. To this end, numerical simulations help
in understanding these interactions and their effects on the resultant
GW signals since they allow us to accurately model the fully nonlinear
dynamics of the hydrodynamical evolution as well as account for the
non-trivial geometries associated with bubble nucleation. Thus, numer-
ical simulations are crucial for advancing the scientific understanding
of gravitational wave signals from cosmological sources and, in partic-
ular, GWs from sound waves in first-order PTs.

As of this writing, excluding the Higgsless simulation which I am
about to introduce, the state-of-the-art methods for simulating gravita-
tional wave production from cosmological first-order PTs involving a
fluid component are characterized by two distinct approaches.

coupled scalar field and fluid simulations The first ap-
proach, developed by the Helsinki-Sussex group, involves solving a
system of hydrodynamical and scalar field equations on a lattice, us-
ing a phenomenological friction term to link the two sectors. This ap-
proach is described in more detail in Section 3.2.3 and originally pre-
sented in [25, 69, 71, 101]. Accounting for the co-dependent evolution
of both the fluid and scalar fields, results from these simulations, while
model-dependent, may present us with the most robust results of GW
spectra to date. However, and despite their crucial role in advancing
our understanding of gravitational wave production from cosmologi-
cal PTs, these simulations have notable limitations.

These simulations are computationally very costly. This follows from
the requirement of resolving two separated scales on the same lattice:
the bubble wall interface, which is of the order of the inverse mass of
the scalar field, and the size of bubbles, which is of cosmological scale.
For the case of the EW PT, this amounts to a separation of the scale
of the order O(1017), which is clearly inconceivable. Thus, arguments
to bridge this gap must be made so as to reduce this separation to
within reason. Nevertheless, the shape of the wall interface must be
sufficiently steep for the adequate development of fluid profiles to de-
velop, as these would otherwise smoothen. Thus, resolutions of the or-
der N ′ 4000 (so that the total number of grid points is 40003) are used,
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which makes these simulations extremely costly to run. Then, to en-
sure sufficient resolution of individual bubbles, the simulated volume
is small so as to effectively limit the number of bubble nucleations to
typically fewer than 100. This leads to poor IR statistics, which makes
it difficult to extract the IR behavior of the GW spectrum.

To mitigate the issue of a single bubble dominating the simulation
or extending beyond the computational domain, bubbles are often nu-
cleated simultaneously, which is not what is expected with realistic
exponentially increasing bubble nucleation rates. This approach, while
practical, limits the sample statistics, leads to IR artifacts, and thwarts a
measurement of IR slope of the GW spectrum. Additionally, the high
computational cost constrains systematic studies of the dependence
on key parameters such as wall velocity and PT strength. This im-
plies that GW spectra and their features are only attainable for isolated
parameter points, which renders impossible meaningful interpolation
between the points. Finally, the results of these simulations are model-
dependent in the sense of relying on a phenomenological friction term
and effective potential.

hybrid simulations The second approach, which I also discuss
in Section 3.2.3, was introduced in [67] and presents a hybrid approach.
In this approach, a one-dimensional spherically symmetric hydrody-
namic simulation is embedded within a three-dimensional lattice. The
Higgs field is incorporated as a space- and time-dependent boundary
condition in the 1D simulation, utilizing the bag equation of state (see
[86, 88, 89] and Section 3.1.4), thus eliminating the challenge of dis-
parate scales as the dynamical evolution of the Higgs field need not
be solved for. While the isolated simulations in the radial direction are
performed fully nonlinearly, their embedding in 3D space takes into ac-
count no nonlinear interactions as the free-propagation of sound shells
is modeled by simple superposition. This renders results unreliable
whenever nonlinear dynamics is expected, e.g., in stronger PTs.

We thus note a space of opportunity: there appears to exist a need
for a method to obtain accurate GW predictions that are relatively cost-
efficient while still accurately solving for the full nonlinear evolution.
This would allow for performing extensive parameter scans and cap-
turing the relevant nonlinear dynamics, which may eventually dictate
the final shape and amplitude of the GW spectrum. The Higgsless sim-
ulations aspire to claim precisely this space of opportunity.
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5.1.2 Scientific objectives

The scientific objectives of this study are broadly categorized into two
main areas. The first objective pertains to the numerical implementa-
tion of the Higgsless simulations. Specifically, we aimed to:

• develop, from scratch, a fully nonlinear 3D relativistic hydrody-
namics simulation code utilizing the KT+RK3 scheme (207),

• employ this code to model the dynamics of first-order PTs using
a Higgsless approach based on the bag equation of state,

• and evaluate the performance of the simulations and the numer-
ical scheme.

The second objective focuses on utilizing these simulations to study
GW production. In particular, we aimed to:

• investigate and quantify sound wave-induced GW production
within the simulations,

• conduct a parameter scan over wall velocities in the range
[0.32, 0.8] for weak (ω = 0.0046) and intermediate (ω = 0.05) PTs,

• derive GW spectrum amplitudes based on the simulation out-
comes,

• characterize the general shape of the GW spectrum,

• explore how spectral features depend on the input parameters
vw and ω,

• and provide a fitted spectrum for use in phenomenological stud-
ies.

It is important to emphasize that the authors of this work, includ-
ing myself, my supervisor Thomas Konstandin, and my collaborators
Ryusuke Jinno and Henrique Rubira, each developed independent sim-
ulation implementations. Only when all simulations agreed with ex-
ceptional precision did we trust the simulation results. The results
presented in this Chapter are based on the Higgsless simulation im-
plementation by Thomas Konstandin.

Let us now proceed to discuss the physical setup of this work.

5.2 Physical setup

In this Section, I introduce the basic physical setup in the Higgsless
simulations simulations. In particular, I will review
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1. how bubble nucleation and expansion is described under the as-
sumption of an exponentially increasing nucleation probability,

2. what are the equations of motions governing the fluid dynamics,

3. how the bag equation of state can be used to track the PT evolu-
tion and encode the expansion of bubbles,

4. how to relate the conserved quantities T0µ of the conservative
form of the equations of motion to the primitive hydrodynamical
variables pressure p, energy density 3, enthalpy w, and velocity
v,

5. how do derive an expression for the spatial components of the
energy-momentum tensor T ij in terms of T0µ,

6. and how these components may be used to compute the GW
spectrum and its growth rate in our simulations.

I conclude with a summary of the physical ingredients of the Higgsless
approach.

5.2.1 Bubble nucleation and expansion

In the Higgsless approach, a fundamental assumption is made re-
garding the bubble expansion velocity vw of the Higgs bubbles: it
is assumed to approach a constant value on microscopic timescales,
whereby, given a space-time nucleation site, the wall interface expands
symmetrically so that the bubble radius and locations of the wall in-
terface are known for all times. This, importantly, means that no dy-
namical equations for the Higgs field must be solved to obtain this
information, thus greatly simplifying the problem. We will take the
wall velocity vw as an external parameter which we give as an input to
the simulations.

The assumption of a constant wall velocity allows for the construc-
tion of bubble nucleation histories, i.e., space-time sites at which bubbles
nucleate, as described in Section 5.3.5. These histories are constructed
in accordance with an exponentially increasing probability of bubble
nucleation, Γ(t) ↗ Γ↑e

φ(t!t↑) as in Equation (123). This exponentially
increasing nucleation probability is expected from realistic scenarios
as outlined in Section 3.1.2 and enables accurate modeling of the fluid
dynamics and the resulting GW spectrum across an extensive range of
scales.

Since φ appears as the fundamental time scale in PTs, we adopt it
as the fundamental unit in the numerical implementation of the simu-
lation and always measure length and time scales in units of φ!1. We
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will demarcate time and space coordinates normalized to φ with a ˜ ,
i.e., x̃ = xφ and t̃ = tφ.

5.2.2 Fluid equations of motion

In the concordance model of cosmology, the state of the early uni-
verse was that of a relativistic fluid after inflation. We are interested
in modeling the hydrodynamical behavior of such a fluid and begin
by considering some general aspects of the setup we have in mind. In
Section 3.1.4 and 5.4.1, we modeled the fluid as a perfect fluid. In the
Higgsless simulations, we will do the same.

A perfect fluid is described by an energy-momentum tensor that in
a locally co-moving reference frame of the fluid takes the simple form

T =





3 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p




. (208)

where 3 is the local energy density and p the local pressure.
In a general frame of reference, the energy-momentum tensor takes

the form

Tµϑ = wuµuϑ ! 1µϑp , (209)

in the time-positive metric signature where 1 = diag(1, !1, !1, !1),
and where the enthalpy w = p + 3 and uµ = γ(v)(1, v) is the four-
velocity. Note that for v = 0, equation (209) reduces to (208). An im-
plication of (209) is that only the first term wuµuϑ contributes to the
anisotropic stress and, thus, GW production.

The equations of motion governing the dynamical behavior of the
fluid can, as we already saw in Sections 3.1.4 and 3.1.6, be stated as a
conservation law

0µT
µϑ = 0 . (210)

To make a connection with conventional fluid mechanics, I will lead
us on a short detour to explore the non-relativistic limit of (210). To
proceed, we project (210) onto uµ as well as the orthogonal subspace,
and thus define the projector

Pσϑ = gσϑ ! uσuϑ, (211)

which upon application projects on the subspace orthogonal to uµ.
Notice, furthermore, that since uµu

µ = 1, uϑ0µu
ϑ = 1

2
0µ (uϑu

ϑ) =
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0. We will furthermore make use of that in the non-relativistic limit∣∣vi
∣∣ ⇑ 1, and assume that p ⇑ 3.
Projecting onto uµ, we find

uϑ0µT
iϑ =0t(wγ) +≃ · (wrv)! γ0tp! γv · ≃p

non!rel.
= 0t3+≃ · (3v) = 0

(212)

while projecting onto the orthogonal directions,

Pσ

ϑ0µT
µϑ = wγ

(
0t

(
γvi

))
+wγ2(v · ≃)vi + 0i3+ γ2vi0t3+ γ2vi(v · vp)

non!rel.
= 3

(
0tv

i + (v · ≃)vi
)
+ 0ip = 0

(213)

where in the last step terms of the order v0p have been neglected.
Thus, in the non-relativistic limit, the relativistic equations of motion

(210) for the fluid reduce to

0t3+≃ · (3v) = 0

3 [0tv + (v · ≃)v] = !≃p,
(214)

which are just the continuity and Euler equations in conventional fluid
mechanics for an inviscid fluid. This small detour demonstrates that
the perfect relativistic fluid description is just the relativistic equivalent
of a conventional inviscid flow.

In the Higgsless simulations, we thus adopt the relativistic perfect
fluid description and aspire to solve, on the lattice, equations of the
form (210), i.e., 0µTµϑ = 0 with the energy-momentum tensor (209),
Tµϑ = wuµuϑ ! gµϑp . Here, I say of the form, as actually, and as we
shall see in the next Section, in the equations that we solve on the
lattice, the pressure p receives a contribution from the vacuum.

These are four equations, so we can track the evolution of four in-
dependent variables. For the numerical implementation, we choose as
dynamical variables (those which we time-evolve) the conserved quan-
tities

Kµ := Tµ0 = wu0uµ ! p δ0µ , (215)

whereby the conservation law in question, eq. (210), reads

0tK
0 + 0iK

i = 0 , (216)
0tK

i + 0iT
ij[Kµ] = 0 , (217)

At first sight, Tµϑ is a symmetric 4 by 4 tensor, and thus appear to have
10 independent components. With only four equations, we must, there-
fore, to be successful in our strides, express the remaining 6 spatial
elements T ij in terms of the dynamical variables Kµ, i.e. T ij = T ij [Kµ].
To do this, however, requires the introduction of an equation of state.
This is the topic of the next Section.
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5.2.3 Bubbles and the equation-of-state

The length scale of the Higgs wall interface is microscopically de-
termined by the inverse mass m!1

φ
, which at the electro-weak scale

∼ 100GeV implies a separation between the largest (Hubble) and the
smallest scale of 1017. As far as our simulations are concerned, there-
fore, the wall interface is simply a step function. If we furthermore as-
sume that all oscillations are immediately dampened by friction with
the fluid, then the Higgs field dynamics is simply described by ε = 0

outside the bubble and ε = εb outside. With these assumptions, and
additionally assuming that the wall velocity vw is constant, we can
make great use of nucleation histories, i.e., bubble space-time nucle-
ation sites, introduced in 5.3.5. For now, these bubble nucleation his-
tories tell us exactly how the evolution of the scalar field proceeds. In
fact, it completely removes the need to dynamically solve for its evolu-
tion, which is instead prescribed based on the simple information of a
bubble-nucleation history and the expansion velocity vw.

In the bag model introduced in Section 3.1.4, based on identical as-
sumptions of the Higgs field, we arrived at the bag equation of state
(Equations 155 and 154), which reads

p+ =
1

3
a+T

4

+ ! 7, 3+ = a+T
4

+ + 7, w =
4

3
a+T

4

+ , outside bubbles,

p! =
1

3
a!T

4

!, 3! = a!T
4

!+, w =
4

3
a!T

4

! , inside bubbles,

where a(T ,ε) = π
2

30
g↑ and g↑ the number of effective relativistic de-

grees of freedom. Then, determined from a given bubble nucleation
history, we can define

7(t, x) =

⇒
0 inside bubbles ,
7 outside bubbles ,

, (218)

so that in terms of the radiation energy density and pressures

p = prad ! 7(t, x)
3 = 3rad + 7(t, x)
w = p+ 3 = prad + 3rad

(219)

where prad = 1

3
aT4 and 3rad = aT4. Henceforth, 7 should be under-

stood as a time- and space-dependent quantity.
When solving for the dynamics of the fluid in the Higgsless simula-

tions, the pressure of fluid equations of motion (210) should thus be
understood as that of Equation (219), so that the conservation law, in
fact, corresponds to total energy-momentum conservation as in (157).
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These assumptions lead to a simplified system description where
the dynamical Higgs field is effectively removed and replaced by a
time-evolving, non-dynamical equation of state. This equation of state
evolves according to a predetermined bubble nucleation history. The
advantages of this approach are substantial: the simulations only need
to resolve the length scale associated with fluid dynamics, which, as
we will demonstrate, reduces computational costs by a factor of ap-
proximately 1000 compared to the coupled-scalar field hydrodynam-
ics simulations discussed in Section 3.2.3 [25, 69, 71, 101]. The bag
equation of state is therefore central to the Higgsless approach, allow-
ing for the effective removal of the Higgs field and thus justifying the
term Higgsless. This choice is crucial for the method’s success, as it
enables efficient encoding of bubble evolution without the need for a
dynamical Higgs field.

The strength of the PT can now be characterized through the bag
constant 7 as in Equation (160), namely

ω → 7

3srad
=

47

3ws

(220)

where subscript s indicates quantities in the symmetric phase immedi-
ately before the PT.

A final note is warranted: While we benefit from the substantial re-
duction in numerical costs due to the removal of the Higgs field, this
removal, by virtue of the assumptions in the bag equation of state,
introduces discontinuities through the time-evolving boundary condi-
tions of the bubbles. This comes with two consequences. The first is
related to the fact that discontinuities are numerically challenging to
handle, often incurring spurious oscillations in the hydrodynamical so-
lutions [120]. We must, therefore, employ a carefully selected scheme
that remains stable against such discontinuities. Secondly, since the
bag equation of state was assumed in Section 3.1.6 in which self-similar
profiles were introduced, we expect that the Higgsless simulations pro-
duce exactly these solutions in the limit of infinite resolution. Conse-
quently, we are presented with the opportunity to evaluate the simula-
tion against these self-similar profiles, which is an opportunity we will
take.
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5.2.4 Inversion formulae

To begin, we note that

K0 := T00 = wγ2 ! p = γ2w!
1

4
w+ 7, (221)

Ki := T0i = wγ2vi, (222)

K :=

√↑

i

(Ki)2 = wγ2v . (223)

Define K̄0 := K0 ! 7. Expressions (221) and (223) form a system of two
equations that can be solved for w and v,

w =
4

3

(
!K̄0 +

√
4K̄02 ! 3K2

)
(224)

v =
2K̄0 !

√
4K̄02 ! 3K2

K
(225)

or

v2 =
4K̄0

(
2K̄0 !

√
4K̄02 ! 3K2

)

K2
! 3 (226)

It is convenient to define

λ =
3

4

(
K̄0

K

)2

=
12v2

(3+ v2)2
<

3

4
∋ v < 1, (227)

which, importantly, is finite in the limit v ⇓ 0 and is always smaller
than 1. In terms of λ and K̄0,

w =
4

3
K̄0(2

↖
1! λ! 1) (228)

v = !

↖
3(!1+

↖
1! λ)↖

λ
(229)

v2 =
3(2! 2

↖
1! λ! λ)

λ
=

3λ

(1+
↖
1! λ)2

, (230)

where in the last expression, v2 is recast in a well-defined and nu-
merically stable form in the limit λ ⇓ 0. The numerical stability is
important, for even though the limit is mathematically well-behaved,
numerically, floating point errors may lead to spurious behavior had
we not taken care to explicitly ensure that very small numbers are
never divided by very small numbers.
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Equations (228), (229), and (230) are the inversion formulae we need,
for, through w(Kµ), we can express the density and pressure as func-
tions of Kµ, as

3 =
3

4
w (Kµ) + ε (231)

p =
1

4
w (Kµ)! ε . (232)

To conclude, the relevant inversion formulae are

w =
4

3
K̄0(2

↖
1! λ! 1)

v2 =
3λ

(1+
↖
1! λ)2

from which the remaining quantities

3 =
3

4
w+ ε

p =
1

4
w! ε

vi =
1! v2

w
Ki

can be obtained, where

λ =
3

4

(
K̄0

K

)2

K̄0 = K0 ! 7

K =

√↑

i

(Ki)2.

(233)

5.2.5 Spatial components Tij(Kµ)

We are now ready to derive an expression for the spatial components
T ij as functions of the conserved quantities Kµ, and proceed to write

T ij =
1! v2

wγ2
KiKj + pδij → FKiKj + pδij. (234)

The form of F can thus be obtained from the inversion formulae (233),
and one finds

F =
3

2K̄0

1

1+
↖
1! λ

. (235)

Since 0 < λ < 3/4, F is always well-defined and numerically stable
and thus allows solving the conservation law (210) written in the form
(216) and (217) on the lattice.



5.2 physical setup 85

5.2.6 Gravitational wave production

Results for the GW production and corresponding GW spectra from a
generic stochastic source of stress-energy were derived in Section 2.2.4.
Using these results, the GW spectrum as a present-time observable is
computed using Weinberg’s formula (104), which is recited here for
ease of reference

ΩGW (q) = 3TGWI(q)

= TGW
q3

4π2m2

Pl3̄↑V

⇐
↓

Ωk

dΩk

4π

[
2ij,kl(k̂)Tij (q, k | tfin) T

↑
kl

(q, k | tfin)
]

q=|k
,

where 3̄↑ is the average total energy density of the Universe at produc-
tion time t↑, q and k are the GW angular frequency and wavenumber,
respectively, with k → |k|, V is, formally, the volume of space, and

Tij(q, k | tfin) =

↓
tfin

t↑

dt eiqt
↓

d3x e!ik·x Tij(t, x) , (236)

as defined in Equation (103), now explicitly writing both the temporal
and spatial transforms, where tfin is the final time of GW sourcing. The
projector 2, defined as

2ij,kl = PilPjk !
1

2
PijPkl (237)

with

Pij = δij ! kikj/k
2 , (238)

projects on the transverse-traceless part of the energy-momentum ten-
sor,

2ij,klTkl = 2ij,kl wγ2vkvl , (239)

where the pure trace proportional to the pressure p is omitted since it
does not contribute to anisotropic stress by its definition and, by con-
sequence, GW production. Since we have complete knowledge of the
source Tij(q, k) from our simulations, Weinberg’s formula allows us to
efficiently compute the GW spectrum. Note that in our case, T ij exclu-
sively derives contributions from the fluid. Also, note that Weinberg’s
formula neglects the expansion of the Universe so that one must as-
sume that the source duration is short, tfin ! t↑ ⇑ H!1

↑ . For a detailed
derivation and a discussion of all assumptions that enter the usage of
Weinberg’s formula, see Section 2.2.4.
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5.2.7 Summary of physical ingredients

We have seen how realistic exponential-in-time bubble nucleation his-
tories can be constructed, whereby the predetermined evolution of
spherically expanding bubble shells is obtained under the assumption
of constant wall velocity; a fundamental assumption of the Higgsless
approach. The wall interface of these Higgs bubbles is approximated
as a step function, allowing encoding the PT evolution using the bag
equation of state where the space-time dependence of the bag constant
is determined directly from the bubble nucleation history. Solving for
the spatial components of T ij in terms of the conserved quantities
Kµ → T0µ reveals that the fluid is coupled to the state of the vac-
uum through the time-varying bag constant 7(t, x), whose evolution,
therefore, triggers the fluid to respond to the vacuum energy injec-
tion. This, therefore, eliminates the need to solve for the evolution of
the Higgs field itself; the equation of state is all that is required. The
perturbed fluid leads to the development of bulk motion in the form
of sound waves and possibly turbulence, thus resulting in anisotropic
stress, which sources a spectrum of GWs that we will simulate and
measure in the Higgsless simulations utilizing Weinberg’s formula.

5.3 Numerical methods and programmatic consid-
erations

In this section, I review the key programmatic and numerical com-
ponents of the Higgsless simulation implementation, with a focus on
areas where non-trivial decisions were made or aspects that require
further clarification—whether due to theoretical considerations, effi-
ciency concerns, or simply for thoroughness. The simulation code is
written in C++, chosen for its superior computational efficiency.

The main purpose of this Section is to explain the connection be-
tween physics and numerical and programmatic implementation. The
emphasis will be on detailing how theoretical concepts are translated
into computational algorithms and the rationale behind the specific
choices made in the implementation. This Section aims to provide a
clear understanding of how the physics is embedded in the code and
how these decisions impact the overall performance and accuracy of
the Higgsless simulation.

5.3.1 The lattice

In our simulations, we mean by the lattice a set of points {n} arranged
on a cubical grid in one, two, or three spatial dimensions; we will al-
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ways work in three. Denoting with N the number of points in any one
direction, which in the Higgsless simulation will be the same number
in all three spatial directions. The lattice, then, has a total of N3 sites.
We label these sites

n = (n0,n1,n2) , with n0,n1,n2 ↑ {0, 1, . . . ,N! 1} . (240)

Note that we will often use the alternative and slightly shorter notation
for the indices j = n0, k = n1, l = n2. We furthermore define unit
vectors 1̂ → (1, 0, 0), 2̂ → (0, 1, 0) and 3̂ → (0, 0, 1). Any point n in the
lattice can thus be reached through a linear combination of the unit
vectors

n = nx1̂+n12̂+n23̂ . (241)

The lattice spacing is defined by

δx → L

N
, (242)

where L is the physical scale of the lattice side. Any physical coordinate
is thus obtained as

x = nδx . (243)

whereby a continuum function f(x) in space has values

fn = f
(
(n01̂+n12̂+n23̂)δx

)
(244)

on the lattice.
We likewise discretize time by a time index n0 (which we will often

call just n), such that the temporal spacing

δt =
T

N0

, (245)

where T is the total simulation time and N0 the total number of time-
steps. Any physical time coordinate is thus given by

t = n0δt . (246)

In the Higgsless simulations, for practical purposes, values of quanti-
ties on the 3D lattice are stored as 1D arrays. Using row-major ordering,
an element n = (j,k, l) is located at the index irm = l+N(k+Nj), con-
stituting a mapping from a 3D to a 1D representation. The Higgsless
simulations furthermore employ periodic boundary conditions, such
that any point ni is equivalent to ni+N where i ↑ 1, 2, 3. In particular,
this means that nN = n!1. This avoids modeling of boundary effects
and guarantees the conservation of conserved quantities as discussed
in Section 4.3.1.
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5.3.2 The discrete Fourier transform

We are interested in computing on the lattice the Fourier trans-
form (5.2.6), involving a transformation both in space and time. We
begin by considering the former.

The discretized equivalent of the spatial Fourier transform F is
the discrete Fourier transform (DFT), defined on the dual lattice {ñ}
through

F [f]ñ → fñ →
↑

n
e!i

2π

N
ñ·nfn

=
N!1↑

n0=0

N!1↑

n1=0

N!1↑

n2=0

e!i
2π

N
(ñ1n0+ñ2n1+ñ3n2)fn0n1n2

,
(247)

with ñ = (ñ1, ñ2, ñ3), and ñ1, ñ2, ñ3 ↑ {0, 1, . . . ,N ! 1} . The inverse
DFT is given by

fn → 1

N3

↑

ñ

e+i
2π

N
ñ·nfñ . (248)

Note that the DFT, just like functions on the original lattice {n}, is N-
periodic in the dual lattice {ñ}. Care must therefore be taken when
interpreting ñ as a physical wavenumber. Since

eikj(0xnj) = ei
2π

N
ñjnj , (249)

we have that

kjδx =
2π

N
ñj. (250)

The softest mode, i.e. smallest wavenumber, on the lattice is therefore
kIR = 2π

N0x
= 2π

L
, corresponding to the size of the simulation box. kIR

therefore, by construction, defines the cutoff scale below which no data
points can be obtained.

The hardest mode, i.e. the largest physical wavenumber, requires
accounting for the periodicity. In particular, we need to introduce a
mapping such that lattice points ñj and ñj +N, etc., are mapped to
the same physical wavenumber. One natural way to do this suggests
itself by making the observation that the wavenumber, for a derivative
operator ≃i and in the continuum, obeys the relation

F [≃if] (k) = !ikif(k). (251)

The equivalent construction on the lattice reads

F [≃if] (ñ) = !ikLat ,i(ñ)f(ñ) , (252)
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where kLat ,i(ñ) is the lattice momentum corresponding to the lattice
site ñ. On the lattice, two common choices for the derivative operator
are the backward and forward prescriptions


≃±

i
f

=

±f(n ± î)∈ f(n)
δx

(253)

and the central difference
[
≃(0)

i
f
]
=

f(n + î)! f(n ! î)

2δx
. (254)

For these two prescriptions, one can identify related lattice momenta,

k+Lat,i = k!Lat,i = 2
sin (πñi/N)

δx
(255)

and

k0Lat,i =
sin (2πñi/N)

δx
, (256)

which therefore constitute two natural choices of mappings of dual
lattice sites ñ to physical momenta k = k†

Lat, where † ↑ 0, +, ! or
something else depending on the lattice derivative operator.

In the first version of the Higgsless simulations, which is used for
the results of the current Chapter, we will employ these mappings (255)
and (256) for the physical wavenumber. Which one is used will depend
on the circumstances, and, in particular, on whether the sign of the
wavenumber is important. Note that the hardest mode corresponds
to the physical wavenumber kUV =

↖
3/δx, which is the UV cutoff

beyond which no results are obtained. Note also that large ñi ∼ N cor-
responds, in fact, to small physical wavenumbers and thus constitutes
soft modes.

There is a subtlety regarding the mappings (255) and (256), as it
appears evident that a large subset of modes around ñi ∼ N/2 are
mapped to either very hard or very soft modes depending on which
prescription is used, which is clearly unphysical. The mappings are
thus reliable only in the linear regime of the sin-function near ñi ∼ 0

and ñi ∼ N. Elsewhere, there is contamination from modes ñi ∼ N/2.
In practice, however, this contamination is small, since contributions
from ñi ∼ N/2 are in the far UV where no physical features can be re-
solved in the simulation, leaving only numerical artefacts contributing.
In practice, therefore, one must compare results using both prescrip-
tions, only to conclude that differences are insignificant in the resolved
wavenumber regimes. Refraining from trusting data beyond the linear
regime of the sin-function, say above 2π|ñi|/N = π/4 (noting that |ñi|

also includes negative ñi < 0 △ ñi !N from periodicity), should be
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sufficient, and one should only consider as reliable results for physical
wavenumbers k = |k| < π/(4δx) ∼ 0.45kUV.

We shall see that well within this limit, there are other artefacts stem-
ming from numerics that render the data unreliable above some scale
klim < 0.45kUV. In practice, therefore, the limit k < 0.45kUV is essen-
tially theoretical in nature with few implications for the actual data
analysis, as one must always obey stricter limits. For as long as the
linear range of the mapping from dual lattice sites ñi to physical mo-
menta is sufficiently large, the exact choice of mapping is less impor-
tant.

For the practical implementation of the DFT computation in the
Higgsless simulation code, utilizing a rigorously tested and highly
optimized library is essential. In this context, the FFTW library [121]
stands out as a premier C subroutine library designed for computing
the discrete Fourier transform (DFT) in one or more dimensions. In the
Higgsless simulations, the FFTW library is employed to compute the
three-dimensional spatial DFT.

We have extensively discussed the 3D spatial DFT. As for the DFT
in the time-direction, we take a markedly different approach. Naively,
one could simply propose to compute the temporal DFT as

F[f]ñ0
→ fñ0

→
↑

n0

e!i
2π

N
ñ0·n0fn0

. (257)

utilizing the FFTW library. In our case, however, fn0
is a function on

the lattice, such that for each time step n0, a total of ∼ N3 data points
must be stored. To give an example, we will often use N = 512 and the
total number of time steps N0 ∼ 3000. Storing data using double pre-
cision occupying 8 bytes of data per variable, the full simulation data
needed to execute the temporal DFT using the FFTW library would
require ∼ 3TB of internal memory, even for a modest 5123 simulation.
Clearly, we must resort to another method and instead approximate
the temporal Fourier transform in (5.2.6) through its Riemann sum

Tij (q, k | t) =
t↑

t→=tinit

eiqt
→
Tij

(
t→, k

)
, (258)

by stacking past time slices weighed by a complex factor from tinit

until t ↬ tend for each time step over which the GWs are sourced.
Note that I intentionally leave out the factor δt from the Riemann sum
to make it dimensionally consistent with the definition of the DFT.

5.3.3 Power spectra on the lattice

In the Higgsless simulations, we will need to compute power spectra
on the lattice. In the continuum, the power spectrum P(k) of some func-
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tion f(x) of three spatial dimensions is defined through the ensemble
average of f(x)’s Fourier transform,

〈
f(k)f↑(k→)

〉
= (2π)3P(k)δ3

(
k ! k→) . (259)

We wish to derive an equivalent discretized form on the lattice. To
accomplish this, first note that the Dirac and Kronecker delta functions
can be computed as

δ(3)
(
k ! k→) =

↓
d3x
(2π)3

ei(k!k→)·x and δ
(3)
ññ→ =

1

N3

↑

n
ei

2π

N
(ñ!ñ)·n

(260)

respectively. Discretizing the Dirac delta thus leads to the conclusion
that

δ(3)
(
k ! k→) ∼

V

(2π)3
δ
(3)
ññ→ , (261)

and consequently, that the power spectrum on the lattice, i.e. the dis-
cretized equivalent of (259), is suitably defined by

〈
f(ñ)f↑(ñ→)

〉
= Vδ

(3)
ññ→P(|ñ|) . (262)

Taking ñ = ñ→, this implies

P(k) =
1

V
↓|f(k)|↔ (263)

where we have replaced ñ ⇓ k since we are ultimately interested in the
power spectrum expressed over physical wavenumber. In the literature,
the practical implementation of the ensemble average varies (see e.g.
[122] for a review of various averaging strategies). Typically, however,
one distributes f(k) over J bins of width ∆k based on the wave vector
magnitude k = |k|. For each bin i, the power spectrum is defined as
the average over all f(k)’s in that bin, i.e.

P(ki) =
1

# of k →s in bin i
⇐

↑

ki!
∆k

2
↭|k|<ki+

∆k

2

f(k) (264)

Alternatively, one can avoid binning altogether and average only over
those combinations of dual lattice sites ñ yielding physical momenta
of equal magnitude. For example, ñ ↑ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (N!
2,N! 1,N! 1), (N! 1,N! 2,N! 1), (N! 1,N! 1,N! 2)} all give rise
to the same physical momenta and has multiplicity 6. Averaging f(k)
for these six combinations gives the power spectrum at that wavenum-
ber. This method sacrifices no data in the sense of binning the few data
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points in the IR into one or a few bins, potentially making it impossi-
ble to see any scaling behavior. However, it has the disadvantage that
the power spectrum samples an enormous amount of points in the UV.
The former averaging method involving binning, on the other hand,
sacrifices the scarce data in the IR but results in a smoother and more
compact spectrum.

For the Higgsless simulations, I have chosen to implement a hybrid
ensemble averaging approach in the following sense: for wavenum-
bers below some selected value klim, I avoid binning by averaging over
combinations of physical momenta akin to the second approach above,
and for wavenumbers above klim, I bin in narrow bins akin to the first
approach. This results in a power spectrum where all information in
the IR is preserved while avoiding storing unnecessary data in the UV.
Definition (263) thus allows to efficiently compute the power spectrum
of any quantity on the lattice provided its DFT has been obtained.

5.3.4 Numerical scheme

We discussed in Chapter 4 the KT scheme as a numerical method de-
signed to solve hyperbolic partial differential equations, with high res-
olution stemming from its ability to handle sharp gradients and dis-
continuities without introducing significant numerical diffusion. For
us, general and important key features of the KT scheme include:

1. Non-Oscillatory Nature: The KT scheme avoids spurious oscilla-
tions near discontinuities, which is critical for accurately captur-
ing shock waves and other sharp features in the fluid flow.

2. Conservative Formulation: The scheme maintains the conservation
properties of the underlying physical system, ensuring that en-
ergy and momentum are correctly conserved throughout the sim-
ulation.

3. Versatility: The KT scheme is versatile and can be applied to a
wide range of problems in fluid dynamics beyond cosmologi-
cal applications, including astrophysical phenomena and high-
energy physics.

4. Efficiency and Stability: Despite its high resolution, the KT scheme
remains computationally efficient and stable due to its semi-
discrete formulation allowing to use, e.g., a third-order Runge-
Kutta solver for the time-stepping. This allows us to run simula-
tions over more extended periods, which are necessary to capture
the evolution of cosmological PTs.
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In the context of first-order PTs and regarding the modeling of the
primordial fluid and GW production, this means that the KT scheme
is particularly suitable for the following reasons:

1. Capturing Shock Waves: Shock waves are a prominent feature in
PT dynamics. The KT scheme’s ability to handle shocks with-
out excessive numerical diffusion allows for precise modeling of
these features, which are crucial for understanding the resulting
GW signals.

2. Resolving Fine Structures: The high-resolution nature of the KT
scheme enables the resolution of fine structures in the fluid flow
and may, e.g., allow the resolve of small-scale vorticity, which
may come to play a significant role in the dynamics of the PT
and the subsequent GW production.

Owing to these facts, we adopt the KT+RK3 scheme defined in (207),
i.e., the KT scheme utilizing a third-order Runge-Kutta method, for the
purpose of solving the conservation law (210) on the lattice.

More explicitly, (210) can be expanded as in (216) and (217), and
reads

0tK
0 + 0iK

i = 0

0tK
j + 0iT

ij [Kµ] = 0

where the anisotropic stress in terms of the conserved quantities K0

and Ki is given by equation (234),

T ij = FKiKj + pδij

where
F =

3

2K0

1

1+
↖
1! λ

and λ is defined in the inversion formulae (233). We thus conclude that
the conservation law (216) and (217) constitute a system of four hyper-
bolic equations which can be solved by the KT+RK3 scheme. Using
standard notation, the conserved quantities are

u := (K0, K1 ,K2 ,K3)T (265)

and the flux function

f :=





(
K1,K2,K3

)↗

(T11 [Kµ] , T12 [Kµ] , T13 [Kµ])T

(T21 [Kµ] , T22 [Kµ] , T23 [Kµ])T

(T31 [Kµ] , T32 [Kµ] , T33 [Kµ])T




. (266)
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In our setup using the bag equation of state, the local maximal
speeds ax

j+1/2,k,l, etc., in (191) can be computed analytically. The eigen-
values of the Jacobian 0fµ/0u for the flux in direction µ ↑ {t, x,y, z} can
be obtained utilizing the inversion relations (233), whereby one finds,
e.g., in the x-direction two eigenvalues that are given by 3vx/2/(1+ ϖ)
while the other two have long closed expressions. In the limit of
small fluid velocities, however, the two largest eigenvalues become
±cs = ± 1↘

3
since the sound speed is the fastest speed at which in-

formation can propagate. Then, since in this initial study, we aspire
to study weak and intermediate PTs, and we expect from self-similar
profiles in Figure 3 derived velocity profiles [86] that maximal fluid ve-
locities are well below the speed of sound cs, we may approximate the
maximal local speeds as ax

j+1/2,k,l ′ cs, etc. This furthermore means
that a fixed step size δt in accordance with the CFL stability condition
will always be near optimal, and there is no need to change it dy-
namically. We verified that computing the maximal local speeds using
the full analytical expressions does not change our results in any no-
ticeable way. One does, however, incur a computational burden when
choosing to do so. Therefore, we always approximate the maximum
local speeds with cs rather than relying on the full analytical expres-
sions. We nevertheless point out that stronger PTs may produce fluid
velocities approaching the speed of light. These cases, therefore, may
require special attention since when the fluid velocities become large,
the maximal velocities in (191) may increase beyond cs and negatively
impact the stability of the KT+RK3 scheme. Care must then be taken
to increase the maximal local speeds are correspondingly increased.

5.3.5 Bubble nucleation histories

With the assumption of constant wall velocity vw and an exponentially
increasing probability of bubble nucleation, Γ(t) ↗ Γ↑e

φ(t!t↑) as in
Equation (123), bubble nucleation histories, i.e. lists of space-time nucle-
ation sites are readily constructed.

In practice, to generate bubble nucleation histories, we proceed as
follows. First, consider bubbles expanding at the speed of light vw = 1

and suppose that we request the nucleation of Nτ bubbles. Now, a
simple way to produce an exponential-in-time nucleation history is to
nucleate bubbles uniformly in a four-volume consisting of the three
spatial dimensions and the exponential-time τ = exp[φ(t! t0)] (rather
than in linear-time), of volume (Lφ)3∆τ, where L is the physical size
of the simulation box, τ is chosen to be within τ ↑ [0, 1] such that
∆τ = 1, and t0 can be chosen to nucleate the first bubble as desired.
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The exponential nature of the nucleation probability is apparent, as the
physical nucleation times are obtained by simply taking the logarithm.

This procedure nucleates bubbles uniformly in all of space. What is
yet to be accounted for, however, is that bubble nucleation can only
occur in the meta-stable phase, which constitute an exponentially de-
creasing fraction of volume that goes to zero at percolation. Thus, after
completing the randomized nucleation procedure, bubbles nucleated
within the forward light-cone (since vw = 1) of any previously nucle-
ated bubble are removed. Out of the initially requested Nτ bubbles,
only a smaller number Nb < Nτ remain.

It’s noteworthy that the outcome of this algorithm is independent
of the volume of τ or the number Nτ of bubbles, provided Nτ is suf-
ficiently large. Suppose we double Nτ so as to request 2Nτ bubbles.
Then, the first bubble typically nucleates around τ ∼ 1/(2Nτ). Conse-
quently, due to the doubling, the PT on average commences earlier by
δt ↗ ln(2)/φ as compared to before the doubling. Having doubled the
number of bubbles, half will nucleate before τ < 1/2 and half after,
but if Nτ/2 was already adequately large, the PT already concludes
by τ = 1/2 when percolation was already complete. Consequently, all
bubbles with τ > 1/2 lie within the forward light cone of other bub-
bles and are discarded. For as long as Nτ is chosen sufficiently large,
saturation of the number of bubbles takes place and the nucleation
procedure will always be independent of the actual choice of Nτ. In
essence, as long as Nτ ∞ Nb, increasing Nτ merely results in a slight
shift of nucleations to earlier times. Similarly, adjustments to the τ vol-
ume is inconsequential. The number of bubbles expected to pass the
light-cone test was derived in Equation (127) and reads:

Nb ↗ 1

8π

(
Lφ

vw

)3

. (267)

Now that a general procedure for the nucleation of bubbles is estab-
lished, let us admit that vw ▽= 1. A very simple generalization of the
procedure, however, is obtained if we define the physical simulation
size to scale with the wall velocity vw so that L̃ ⇒ vw. In the simula-
tions that we run, the vw normalized box-size L̃/vw takes on typical
values 20, 40, and 80. It is then evident from Equation (127) that, for
a given random seed, the number of bubbles Nb depends only on the
choice of L̃/vw and not on the wall velocity vw. Thus, once a bubble
nucleation history is constructed for vw = 1, it can be used for every
choice of vw provided the spatial coordinates in the bubble nucleation
history are rescaled by vw. This has the benefit that a single nucleation
history is used for every choice of vw, thus minimizing the variance
associated with the bubble sample statistics.
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This procedure assumes homogeneity in the spatial probability dis-
tribution of bubbles. While this is generally a good approximation,
it is nevertheless true that φ varies locally. For instance, temperature
fluctuations during the nucleation phase can significantly impact the
number of bubbles, their spatial distribution, and the resulting GW
spectra. This effect is explored in [68], where it is demonstrated that
such fluctuations can enhance the GW spectra by up to two orders of
magnitude. While it is, in principle, straightforward to generalize our
nucleation procedure to accommodate other statistical distributions,
we impose spatial homogeneity in this initial study to maintain gen-
erality. We will see in Appendix 5.8 how a bubble nucleation history
for nucleation sites exclusively on a domain wall network may be con-
structed.

In our simulations, L̃/vw takes on values of 20, 40, and 80, resulting
in the nucleation of approximately 300, 2500, and 20400 bubbles, re-
spectively. In figure 5, I plot bubble nucleation histories generated with
different random seeds for box sizes L̃/vw = 20 and L̃/vw = 40. Note
the initial exponential rise in the nucleation rate, which is followed by
a peak and a rapid decline in the rate as percolation is approached and
saturation is reached. The nucleation times of each bubble nucleation
history have been translated to nucleate the first bubble of each history
at the same time. For the smaller L̃/vw = 20, the scatter in the location
of the peak is more prominent due to the time translation and limited
statistics, while for L̃/vw = 40, the histories appear more uniform due
to much better sample statistics.

For equal numerical resolution N, simulations with L̃/vw = 40 re-
duce statistical variance by increasing the number of bubbles, thereby
enhancing the resolution of measured quantities in the IR regime. Con-
versely, simulations with L̃/vw = 20 offer a broader dynamical range in
the UV regime since a smaller box size means that individual bubbles
occupy more space, effectively increasing the resolution. A potential
issue with small box sizes is that for small wall velocities, the shock
in front of the wall of the first nucleated bubble might collide with its
mirror images (from periodic boundary conditions) before percolation
takes place.

For comparison, the number of bubbles for L̃/vw = 40 (Nb ↗ 2500)
in our work and in previous Higgsless simulations [123] generally ex-
ceeds that of most coupled scalar field - hydrodynamical simulations
[69, 71, 101], allowing for a reduction in statistical variance. For exam-
ple, in [69] the authors use Nb = 32558 for a weak PT with vw = 0.44,
while other simulations in the same study employ Nb = 988, 125, or
37, depending on the PT parameters. In [71], simulations of weak PTs
involve 5376 bubbles in certain cases, while other weak PTs, as well as
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Figure 5: Bubble nucleation histories generated with different random seeds
for L̃/vw = 20 (upper panel) and L̃/vw = 40 (lower panel). The
nucleation times of each bubble nucleation history have been trans-
lated to nucleate the first bubble at the same time. Black lines in-
dicate bubble nucleation histories used in the study, while colored
lines show different realizations using the same procedure.
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intermediate ones, use either 11 or 84 bubbles. Meanwhile, in [101],
the authors consistently employ 8 bubbles across all simulations.

In this work, we neglect cosmic expansion during the PT and thus
also in the construction of bubble-nucleation histories. In comoving
space, one can, in principle, account for expansion by letting the
comoving-wall velocity decrease with time. However, since we saw in
Section Section 3.1.2 that φ/H↑ ∼ 140 for the EW PT and that generally,
cosmological completes quickly as compared to the Hubble time with
φ/H↑ ∼ O

(
101!5

)
∞ 1 [22], neglecting expansion during the course of

the PT is expected to be a good approximation.

5.3.6 The encoding of bubbles

In Section 5.2.1 and 5.3.5, I reviewed how space-time nucleation sites
can be constructed from the assumption of a uniform-in-space and
exponential-in-time nucleation probability. We call the collection of
such sites a bubble nucleation history. In Section 5.2.3, I furthermore
explain how these sites together with an assumed constant wall veloc-
ity vw, PT strength ω, and the bag equation of state enables captur-
ing the macroscopic evolution of the PT without solving for detailed
Higgs field dynamics. In this Section, I will review some details re-
garding how the connection between bubbles and the vacuum state is
incorporated into the simulation.

Define the bubble nucleation history as the collection of bubble nu-
cleation sites B = {ti, xi} in accordance with the construction scheme
in 5.3.5. A given site x in the simulation is thus traversed by the wall
of bubble i at time

tx,i =
|x ! xi|
vw

+ ti . (268)

In particular, we know that the vacuum energy at that site changes
from 7 to 0 whenever it is traversed by a bubble wall for the first time,
namely, at the time of local symmetry breaking

tx,SB = min {tx,i, i ↑ B} . (269)

The time- and space-varying bag constant 7(t, x) is thus given by

ε(t, x) =

⇑
⇓

⇔
ε if t < tx,SB

0 otherwise
. (270)

At each time step n0 and lattice site n of the simulation, expres-
sion (270) can be evaluated. While this may seem like a natural ap-
proach, it is highly inefficient. For if at each time step and lattice
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site (270) is evaluated, one must loop over every bubble in the bubble
nucleation history N0N

3 times, which is computationally very costly
given that a typical number of bubbles extends to the thousands in our
simulations.

One may, however, trade this inefficiency for some memory: Know-
ing how to compute tx,SB for one site, we can do it once for all. In
particular, I introduce a 3D field tSB of the same size N3 as the sim-
ulation lattice, and compute for each lattice site n = {n1, n2, n3} the
time tn,SB of symmetry breaking. This time is then stored in the corre-
sponding site location of tSB, i.e.

tSB(n) → tn,SB , (271)

where tn,SB should be understood as t0xn,SB. The population of tSB
with the symmetry breaking times needs to be performed only once
for all lattice sites n, which makes this approach a factor N0 more
efficient. It comes, however, at the cost of needing to store a large field
tSB of size N3; a price which is more than justified in our case. Once
tSB has been computed, I define

ε(t, n) =

⇑
⇓

⇔
ε if t < tSB(n)

0 if t ↭ tSB(n)
. (272)

which is evaluated at each simulation time step and lattice site to de-
termine the state of the vacuum.

Having established the means by which we track bubbles on the
lattice, I would like to discuss a few subtleties regarding what impli-
cations inevitably come with this choice. The first point I want to ad-
dress concerns the discreteness of tSB(n). While the simulations track
hydrodynamical variables on discrete lattice sites at discrete time steps,
bubbles do not live on the lattice. Therefore, bubble space-time nucle-
ation times are non-discrete, and the positions of bubble walls vary
continuously over continuous time. Expression (272) evidently, how-
ever, entails no such continuum tracking of the bubble walls as bubble
wall crossing times are only stored on the lattice. This comes with some
consequences.

Consider, for the sake of concreteness, the case that N0 = 2N. Sup-
pose that at time step n0, the bubble wall has just reached grid point
(nx, 0, 0) and is moving horizontally along the x-axis. Over the course
of the next time step, the bubble wall physically moves half a space
step (since the physical size of the lattice L ⇒ vw). This means that,
physically, energy deposition has taken place, which should drive the
development of self-similar fluid profiles. However, the choice of (272)
makes this energy deposition occur only when the bubble wall tra-
verses the next grid point along the x-axis, or in this case, after 2
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Figure 6: Minimal smoothing of ε to reduce oscillations. Blue curves indicate
wall positions at adjacent time steps. Red lines indicate the step
function representing bubble boundary conditions, while dotted-
blue lines show the redefinition allowing to gradually deposit en-
ergy even at wall positions in-between lattice sites.

consecutive time steps. In a more realistic setup, one often has that
N0 ∼ 6N, such that only in roughly one out of six time steps does
energy injection occur along a certain axis. This departure from con-
tinuum modeling of the bubble wall position leads to small transients
and oscillatory features in the fluid at the bubble wall interface. At-
tempts to remedy the situation include the smoothing of the wall front
over a number of grid points. To this end, the least invasive proposition
would be a redefinition of (272) according to

ε(t, n) =

⇑
↖↖↖⇓

↖↖↖⇔

ε if t < tSB(n)! δx/vw(n)

εtSB(n)!t

0x/vw
if tSB(n)! δx/vw ↬ t < tSB(n)

0 if t ↭ tSB(n)

, (273)

akin to a linearly connecting ε(t, n) between the grid points as illus-
trated in Figure 6.

This allows for a gradual energy transfer, thus helping reduce os-
cillations while keeping the wall interface as sharp as possible. While
this method has been implemented and tested, we find that oscilations
are never large enough to cause any issues and are immediately damp-
ened upon bubble collision.

The second point which I want to address concerns the definition
of the flux functions Hj+1/2,k,l, etc, in the KT+RK3 scheme; it is de-
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fined on staggered lattice points. tSB(n), however, is not. On staggered
lattice points, we therefore choose to approximate

ε(t, j+ 1/2,k, l) ′ ε(t, j,k, l) + ε(t, j+ 1,k, l)
2

, (274)

etc, which adequately solves the problem.

5.3.7 Computing GW spectra from the 3D Lattice

Ultimately, our primary interest lies in the GW spectra generated by
the hydrodynamics of first-order PTs, which the Higgsless simulations
are designed to model. With all the necessary components at hand,
we are now equipped to compute this spectrum. Due to its critical
importance, I will provide a thorough and explicit explanation of the
process by which we obtain these spectra.

While simulations constitute invaluable means of probing physics
beyond analytical reach, they are ultimately bounded by their intrinsic
limitations. An example of such a limitation influential to the GW pro-
duction is the finite simulation time and box size: Ideally, one would
desire to run simulations for long enough that fluid motion is com-
pletely dampened upon simulation completion, for in this case, the
complete GW spectra are captured. For linear sound waves and ne-
glecting nonlinear dynamics, however, one does not expect the fluid
kinetic energy to decay for other reasons than Hubble expansion. Since
we neglect expansion, this, therefore, would mean that a very long sim-
ulation time is typically necessary, which is often impractical, if not
impossible, due to limited computational resources. Furthermore, long
simulation times mean that to avoid systematic effects due to limited
box size and periodic boundary conditions, resulting in, e.g., sound
waves propagating across the simulation volume multiple times, one
would need to extend the box size proportionally to the simulation
duration. This comes with the consequence of needing to resolve an
enormous amount of bubbles, leading to unfeasible requirements on
the resolution, or otherwise, non-convergence of self-similar profiles
and the consequent under-resolution of the detailed hydrodynamical
evolution. This thwarts the reliability of the results. Under-resolving
the physics may also lead to excessive numerical viscosity, thus ar-
tificially dissipating kinetic energy and, again, thwarting meaningful
results.

Optimizing choices of simulation parameters, thus, constitutes a
complex procedure where compromises must always be made. As for
the simulation duration, it should not be too long compared to the box
size. Rather than computing final GW spectra, it is thus more realistic
to measure the GW production power, which may be measured during
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the limited simulation time. To this end, we introduce the dimension-
less GW spectrum growth rate Q→(q), defined by

Q→(q) → q3φ

w2
sVTGW

↓
dΩk

4π


2ij,klTij(q, k | tfin)T

↑
kl
(q, k | tfin)


q=k

. (275)

where q is the frequency, ws is the enthalpy before the PT, V the simu-
lation volume, TGW the GW sourcing time, and T

(
kl
q, k | tfin) defined in

Equation (236). Knowledge of the growth rate Q→ then allows comput-
ing the GW spectrum as

ΩGW(q) = TGW
w2

stsw

4π23̄↑m2

Plφ
⇐Q→(q) = TGW

4(H↑/φ)(H↑ tsw)

3π2
⇐Q→(q) ,

(276)

where tsw is the GW sourcing duration, which can, e.g., be assumed

to be the time it takes nonlinearities to develop, tsw ∼ R↑/
√

↓v2
f
↔, as

we discussed in Section 2.2.5, with R↑ → (8π)1/3 max(vw, cs)/φ and√
↓v2

f
↔ ∼

↖
K. The definition of Q→(q) implies that the Hubble rate H↑

at production time need only be specified in post when knowledge of
GW spectra for a given ratio H↑/φ is desired.

The dimensionless form of Q→ is particularly suited to our simulation
setup where energies are normalized to ws, the enthalpy just before the
PT in the symmetric phase, and lengths and times to φ!1, roughly the
inverse duration of the PT. For with this normalization, dimensionful
factors in (275) combine to form dimensionless simulation variables.
This normalization represents how quantities are stored numerically
in the simulation, and I will indicate such variables with a ˜ . In terms
of system variables, Q→ can be directly computed as

Q→ → q̃3

ṼT̃

↓
dΩk

4π


2ij,klT̃ij(q̃, k̃ | t̃fin)T̃

↑
kl
(q̃, k̃ | t̃fin)


q̃=|k̃| . (277)

To compute the GW spectrum from the lattice, the starting point is
a dimensionless form of GW spectrum Q → T̃Q→:

Q(q̃) → q̃3

Ṽ

↓
dΩk

4π


2ij,klT̃ij(q̃, k̃)T̃↑

kl
(q̃, k̃)


q̃=k̃

. (278)

The first step consists of populating the energy-momentum tensor
at each time step. From the simulations, we obtain w̃(n) and vi(n) at
each time step. Associated with each lattice point, we thus construct
the energy-momentum tensor

T̃ ij(n) = w̃(n)γ2(n)vi(n)vj(n) (279)
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which constitute six independent three-dimensional fields. Since the
second pressure term of the RHS of (209) does not contribute
anisotropic stress, it does not source GWs and we shall neglect it.

The second step consists of computing the spatial DFT of (279). For
this job, I use the FFTW library [121] as outlined in Section 5.3.2 above.
This yields T̃ij(t̃, k̃).

The third step concerns the projection onto the transverse-traceless
part of Tij. As for the mapping of dual lattice sites ñ to physical mo-
menta k, I use the prescription (255)

ki → k0Lat,i =
sin (2πñi/N)

δx
,

since the sign of the momentum is critical to obtain the correct projec-
tion for modes at sites with any j,k, l ∼ N.

We saw in Section 2.1 that the projection onto the transverse-
traceless part can be computed as

2ij,kl(k)Tij(k)Tkl(k)↑ = T+(k)T↑
+(k) + T↓(k)T↑

↓(k) (280)

where the projection of Tij onto the + and ⇐ polarization basis is de-
fined through

T+(k) → e+
ij
(k)Tij(k), T↓(k) → e↓

ij
(k)T ij(k) . (281)

The + and ⇐ polarization tensors are defined in Equation 24,

e+
ij
(k̂) =

1↖
2
(ûiûj ! v̂iv̂j) and e↓

ij
(k̂) =

1↖
2
(ûiv̂j + v̂iûj) ,

with mutually orthogonal unit vectors û and v̂ in the plane orthogo-
nal to k. It is in this form that the projection in (275) is numerically
implemented. We therefore proceed to compute T+(k) and T↓(k).

The k = 0 mode corresponds to a stationary constant background
and does not contribute to GW production. Furthermore, with k = 0,
the orthonormal basis vectors û and v̂ are ill-defined. In this case, we
simply enforce T+(0) = T↓(0) = 0. For the non-zero modes, define the
angles ε and 8 as the azimuthal and polar angles, respectively, in a
spherical coordinate system:

tanε =
k2
k1

cos 8 =
k3
k

. (282)

Then, we can define the orthonormal basis û, v̂, and k̂, as

û =





cosε cos 8
sinε cos 8
! sin 8



 , v̂ =





! sinε

cosε
0



 , k̂ =





cosε sin 8

sinε sin 8

cos 8



 .
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(283)

With these vectors at hand, one readily computes the projection of Tij
onto the + and ⇐ polarization basis (281).

The fourth step consists of performing the temporal Fourier trans-
form. As explained in Section 5.3.2, in the time direction, we resort to
approximating the Fourier transform through its Rieman sum (258) to
save memory, i.e. we compute and update for every time step

Tij(q, k | t) =
t↑

tn=tinit

eiqtnTij (tn, k) , (284)

where tinit is the time at which we start sourcing GWs, which will
be t̃init = 16 for all simulations in the current Chapter, and t̃ ↬ t̃fin,
with t̃fin being the final time of the simulation which will typically be
t̃fin = t̃end = 32. Here, we enforce q = |k|, but since the sign of the
momentum is unimportant, we instead use the mapping (255)

ki → k
+/!
Lat,i = 2

sin (πñi/N)

δx
,

from the dual lattice to physical momentum.
The fifth and final step consists of computing the average over shells

of equal wave-number |k|. Migrating to the lattice means that the inte-
gral over solid angles should be interpreted as an average over wave
vectors of equal magnitude k = q. Furthermore, to make the defini-
tion of the spatial DFT and time integration in Equation 284 consistent
with the definition of (275) demands the introduction of factors ∆x̃6

and ∆t̃2. Thus, the resulting and final form of the dimensionless GW
spectrum Q(q̃) which is numerically encoded is

Q(q̃, t̃) =
q̃3Ṽ∆t̃2

N6

∣∣T̃+(q̃, k̃ | t̃)
∣∣2 +

∣∣T̃↓(q̃, k̃ | t̃)
∣∣2

∣∣∣∣
q̃=|k̃|

. (285)

As for the averaging over shells, I employ the hybrid strategy described
in Section 5.3.3 involving averaging only over the lattice site of equal
physical momenta in the IR while binning in the UV to avoid storing
excessive data and smoothen the spectrum.

From the discussion in Section 2.2.4, we understand that the expres-
sion (285) is proportional to the present-day GW spectrum had the
source immediately vanished at time t. Equation (285) is, therefore, bet-
ter interpreted not as the resulting GW spectrum but as an intermedi-
ate step in the computation of the growth rate Q→(q̃, t̃) = Q(q̃, t̃)/TGW,
where TGW = t̃! t̃init, i.e.,

Q(q̃, t̃) =
q̃3Ṽ∆t̃2

N6TGW

∣∣T̃+(q̃, k̃ | t)
∣∣2 +

∣∣T̃↓(q̃, k̃ | t)
∣∣2

∣∣∣∣
q̃=|k̃|

, (286)
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which carries the interpretation of the GW growth rate and which is
something that we can meaningfully measure in the Higgsless simula-
tions of limited duration.

Since, in the current work, we are interested in weak and intermedi-
ate PTs, we expect interactions to be largely linear. Then, from Equa-
tion (109, we expect to observe a linear GW spectrum growth rate
so that Q→(q̃) is approximately constant in time. In Section 2.2.5, we
mentioned that for the linear growth rate to be valid, one must im-
pose that the period of the oscillations be much shorter than tsw, i.e.

ktsw ∞ 1, or equivalently, kR↑ ∞
√

↓v2
f
↔, and that the duration of the

sound waves be long compared to the characteristic scale condition

tsw/R↑ ∼ 1/
√

↓v2
f
↔ ∞ 1. In our simulations, both of the conditions are

satisfied for most wavenumbers away from the IR tail and, in partic-
ular, for wavenumbers around the peak, which is of most significant
interest.

To render the measurement of the GW growth rate as robust as pos-
sible, we switch on GW production at some time t̃init = 16. By this
time, the PT has completed (which occurs around t̃ = 10), the system
is no longer dominated by the largest bubble, and the fluid motion is
rather uncorrelated from time to time (thus ensuring the limited sup-
port of the UETC) so that effects of the transient initial fluid sound
shell collisions do not affect the resulting long term linear growth rate
measurement significantly. This ensures the robustness.

5.3.8 Parallelization

Finally, I would like to discuss the parallelization of the Higgsless im-
plementation. To reduce the simulation runtime to manageable scales
— ideally on the order of a day — it is essential to employ paral-
lelization techniques. For this purpose, I have utilized OpenMP [124].
OpenMP provides a flexible and efficient framework for parallelizing
code over multiple cores within a single node, making it suitable for
the computational demands of our simulations.

In our setup, the majority of simulation runs have been executed on
the DESY Maxwell cluster, which supports parallelization across up
to 256 cores. By leveraging this capability, we significantly decrease
the time required for each simulation. This level of parallelization is
not just beneficial but necessary to handle the extensive computations
involved.
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5.4 Evaluating the simulation

Every simulation must be evaluated and tested against some bench-
mark problem and other evaluating metrics to be trusted. The topic
of this Section is to review the results of some of these tests for the
Higgsless simulations.

5.4.1 Single-bubble simulations

In the present case, the prototypical benchmark problem to be evalu-
ated against is the recovery of self-similar fluid profiles [86], reviewed
in Section 3.1.6. Therefore, before proceeding to run realistic simula-
tions with multiple bubbles, I first run simulations containing only
one centrally nucleated bubble and study the resulting hydrodynami-
cal solutions.

For the simulation to be deemed successful, the resulting radial fluid
profiles must converge towards the self-similar profiles on reasonable
timescales. It is important to note that achieving such performance
is not trivial and cannot be assumed a priori, given that the numeri-
cal solutions must remain well-behaved even under the discontinuities
associated with the bubble wall. This test, therefore, is critical and ex-
tremely important not only from the point of view of doing science
with the simulations but also for the potential observation that the
KT+RK3 scheme indeed presents an adequate means to resolve the
violent dynamics, including shocks, with only modest computational
resources.

In the panels of figures 7, 8, 9, 10, I show 2D simulation slices and
the time evolution of the radial velocity and enthalpy profiles for weak
(ω = 00046) and intermediate (ω = 0.05) PTs and wall velocities vw ↑
{0.32, 0.48, 0.60, 0.8}. For these simulations, the box size is L̃ = 20vw
and the resolution N = 512. The profiles are obtained from the 2D
slices of the simulations in the left column by binning quantities in 500
radial bins from the bubble center.

In these figures, the convergence to the self-similar profiles is strik-
ing. Initially, no shock front is observed; rather, there is a transient
phase where the fluid reacts to the evolving boundary conditions of
the expanding bubble 7(x, t). As time advances, shocks are generated
and sustained, thanks to the robustness of the KT+RK3 scheme (207).
For the parameters, N = 512, and L̃ = 20 and L̃ = 40 shocks are evident
by t̃ ≿ 1.6. The first nucleated bubbles, which play a crucial role in the
GW spectrum since they carry most of the energy, generally evolve for
periods longer than this before colliding. This implies that shocks have
already formed by the typical collision time, and the profiles of the
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colliding walls have become largely self-similar. In the next Chapter 6,
I will perform a more detailed and systematic analysis of what effect
insufficient convergence has on the resulting GW spectrum.

For weak PTs (ω = 0.0046) both deflagrations (e.g. vw = 0.4) and
detonations (e.g. vw = 0.8), the structures are well-reproduced. How-
ever, for hybrid solutions, the profiles are significantly thinner. This
renders the grid resolution insufficient for the thinnest walls to accu-
rately capture the fluid’s self-similar shape at the typical collision time.
Consequently, it is anticipated that for thin shells, the GW power is
somewhat underestimated and that there may be an underestimated
separation of scales between the bubble size and sound shell thickness.

For intermediate PTs (ω = 0.05), deflagrations and detonations are
resolved well, as large bubbles exhibit self-similarity at the point of
collision. In these scenarios, the hybrid case shows improved perfor-
mance compared to weak PTs due to the increased shell thickness, and
we expect that the GW power is well captured due to the milder sepa-
ration of scales between the bubble size and sound shell thickness.

I have discussed the convergence of the solutions with increased
simulation time. It turns out we can make an illuminating connection
with resolution N. To explore the impact of resolution, we run sim-
ulations with N = 64, N = 128, N = 256, and N = 512, for a few
benchmark parameter points. The right panel of figure 11 illustrates
the velocity profile at t̃ = 3.2 for these values of N. It is evident that
the transient stage preceding shock formation is longer for smaller val-
ues of N. In fact, there is a resemblance between the left and right
panels of figure 11: doubling the time has the same effect as doubling
the resolution. This conclusion is somewhat expected, as doubling the
time virtually doubles the number of grid points available for the res-
olution of the self-similar profile. Therefore, doubling the simulation
time should have a similar effect as doubling the resolution. I have
furthermore confirmed that reducing or increasing δt has no signifi-
cant impact on the time to self-similar convergence for as long as the
choice of δt ensures the stability of the solution. These observations im-
ply that the transient phase of self-similar convergence is a numerical
artifact.

Overall, the 3D Higgsless simulation implementation swiftly pro-
duces accurate single-bubble wall profiles and sustains precise shock
dynamics over time. Notably, the accurate self-similar profile reproduc-
tion seems dependent on the parameter ω only due to its influence on
the shell thickness. This implies that the framework can be extended
to model stronger PTs with minimal adjustments, primarily involving
the simulation’s time step and possibly refining the definition of the
local velocity a to preserve stability as outlined in Sec. 4.3. While the
examination of stronger PTs is reserved for the next Chapter, our cur-
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Figure 7: Convergence of self-similar profiles for weak PTs (ω = 0.0046) and
wall velocities vw ↑ {0.32, 0.48} corresponding to two deflagrations.
The box size is L̃ = 20vw and the resolution N = 512. The first
and third panels show the radial velocity |v|. The second and fourth
panels show the enthalpy w normalized to the enthalpy in the far
symmetric phase ws. The profiles are obtained from the 2D slices of
the simulations in the left column by binning quantities in 500 radial
bins from the bubble center. The middle (right) column shows fluid
profiles in the self-similar coordinate ϑ = r/t (radial coordinate r)
at various times to indicate the convergence to self-similar profiles
with time. Gray regions indicate the self-similar profiles reviewed
in Section 3.1.6.
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Figure 8: Same as figure 7, but for vw ↑ {0.60, 0.80} corresponding to a hybrid
and detonation.
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Figure 9: Same as figure 7, but for intermediate PTs (ω = 0.05).
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Figure 11: On the left side, the time evolution of the velocity profile as a func-
tion of ϑ → r/t is depicted arising from a single bubble nucle-
ated in a simulation box with dimensions L̃ = 20vw and resolu-
tion N = 512. The wall velocity is vw = 0.8, and the PT strength
ω = 0.05. On the right, the velocity profile is shown as a function
of ϑ → r/t for different values of N at t̃ = 3.2, keeping L̃/vw, vw,
and ω constant. In both panels, 100, 000 random points from the
lattice are selected and re-scaled according to the respective sim-
ulation time to present the result in the self-similar coordinate ϑ.
The self-similar solution from [86] is highlighted in orange.

rent study aligns with established literature [67, 71] by focusing on
weak (ω = 0.0046) and intermediate (ω = 0.05) PTs.

In conclusion, the robustness and precision of the 3D Higgsless sim-
ulation framework, as demonstrated in resolving self-similar profiles,
positions it as a powerful tool for studying PTs with multiple bub-
bles. Moreover, the exceptionally high resolution and efficiency of the
KT+RK3 scheme (207) is evident in its capability to evolve and sustain
shocks.

5.4.2 Energy-momentum conservation

Another critically important point to examine is energy-momentum
conservation in the simulations as demanding this ensures the fidelity
of the fluid solutions. The failure of simulations to conserve energy and
momentum implies that the solutions deviate from the actual physical
behavior. At the same time, adequate energy-momentum conservation
may indicate that simulation results are robust.

To demonstrate energy-momentum conservation, I illustrate the
time-evolution of the lattice averaged values of each component of
Kµ := Tµ0 in Figure 12 for multi-bubble simulations (see Section 5.5.1).
Given that before the PT ↓K0↔/ws = 3

4
(1+ ω), we subtract this contri-

bution and instead plot ↓K0↔/ws !
3

4
(1+ω). It is evident from the plot

that all conserved quantities are conserved to within machine preci-
sion, with deviations from zero at worst as large ∼ 10!12. This means
that energy and momentum are optimally conserved.
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Figure 12: Time evolution of ↓Kµ↔ for an intermediate PT ω = 0.05 and dif-
ferent grid sizes (N = 64, 128, 256 and 512). The wall velocity
vw = 0.8 corresponds to a detonation. The initial energy density is
K0/ws = 3

4
(1+ ω), where ws denotes the enthalpy density before

the PT.

It is noteworthy that this result was anticipated beforehand since,
as we saw in Section 4.3.1, the KT scheme implemented as a solver
for a hyperbolic conservation law exactly conserves u (the conserved
quantities) when periodic boundary conditions are used.

5.4.3 Extrapolation of the kinetic energy

In this Section, we comment on the time evolution of the kinetic en-
ergy of the fluid as well as the convergence with increasing resolution.
Even though the kinetic energy is not conserved per se, it should be
conserved on average as long as fluctuations are small enough that
the fluid can be treated as a superposition of freely propagating plane
waves and numerical viscosity is small.

In the left panel of Figure 13, two probes of the fluid kinetic energy
as a function of time for intermediate PTs with vw = 0.8: v2 (solid
line) and wv2γ2 (dashed line) are plotted. Different colors represent
various grid resolutions N. It is observed that the kinetic energy satu-
rates around t̃ = 7, marking the completion of the PT. Increasing the
resolution results in a substantial rise in kinetic energy, although the
difference between N = 256 and N = 512 is relatively small. Since the
GW spectrum is roughly proportional to v4, the kinetic energy can be
extrapolated to infinite simulation resolution to estimate the potential
underestimation of the GW spectrum.

In the right panel of Figure 13, I show the kinetic energy as a func-
tion of grid resolution for weak (lower lines) and intermediate PTs (up-
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Figure 13: Left figure: The time evolution of the kinetic energy for different box
sizes N for an intermediate PT with vw = 0.8 is plotted. Dashed
lines indicate ↓wv2γ2↔ and solid lines ↓v2↔. Right figure: The kinetic
energy value at the first peak (around t̃ ↗ 7) as a function of N for
weak (lower lines) and intermediate (upper lines). Dashed lines
indicate extrapolation to infinity simulation resolution.

per lines). The dashed lines indicate the extrapolated values for infinite
resolution. This extrapolation suggests a 10% loss in kinetic energy for
both weak and intermediate PTs, which implies an approximate 20%
underestimation of the GW spectrum. A more detailed analysis of ki-
netic energy underestimation and a refined extrapolation scheme to
improve measurements will be discussed in Chapter 6.

5.5 Numerical results

In this Section, I will present numerical results for simulation runs
based on realistic exponential-in-time bubble nucleation histories and
the resulting GW production.

5.5.1 Multi-bubble simulations

Having successfully passed the evaluations of the previous Section,
the Higgsless simulation code is ready to be used in realistic multiple-
bubble scenarios to extract information about the GW spectrum. To
this end, we run simulations of box size L̃ = 20vw and L̃ = 40vw
for which exponential-in-time bubble nucleation histories have been
constructed according to the prescription in Section 5.3.5. The reso-
lution is always N = 512 while the number of time steps is chosen
to ensure δt/δx < 1/4, which we empirically find to yield excellent
stability. We run the simulations from t̃ = 0 until t̃ = 32 and source
GWs from t̃init = 16 to respect the discussion in Section 5.3.7. With this
setup, we scan over the parameter space vw ↑ {0.32, 0.36, ... 0.8} and
ω ↑ {0.0046, 0.05}, resulting in 52 simulations.
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To begin with, I wish to present a few 2D time slices of the simula-
tion to illustrate the rich dynamics and geometry of the colliding fluid
sound shells. I show in figures 14, 15, and 16 central 2D simulation
slices of the fluid velocity |v(x̃)| and w(x̃) at four different simulation
times for weak and intermediate PTs and box size L̃ = 40vw. The first
three slices are chosen at equidistant times to show the bubble evo-
lution before percolation, while the fourth slice is at the end of the
simulation at t̃ = 32 to highlight the long-term evolution. These pa-
rameter choices correspond to deflagrations, hybrids, and detonations,
and should constitute a representative subset of simulations exhibiting
qualitatively different features.

In these figures, we note that, initially, the bubble size is the predom-
inant physical scale. At later stages, the typical sound-shell thickness
associated with the average bubble size at collision appears to be the
dominant scale. Generally, the typical bubble size or, equivalently, the
average bubble separation at collision R↑ defined in Equation 135 and
shell thickness for that R↑ are the two predominant scales, which we
expect to determine the shape of the GW spectrum.

The panels of Figures 14, 15, and 16 are outlined to facilitate com-
parison between weak and intermediate PTs. In the first three time
steps, despite the larger fluid velocities and enthalpy of the intermedi-
ate PT, the evolution for the two choices of ω appears morphologically
very similar. However, when comparing the slices at the final time step,
t̃ = 32, more pronounced differences emerge.

For weak PTs, the dynamics initially support sharp features associ-
ated with the fluid profiles, but these features become smoothed after
percolation due to free propagation. In contrast, intermediate PTs ex-
hibit sharper features even toward the end of the simulations. These
sharp features correspond to large gradient phenomena, or shocks,
which may develop spontaneously due to nonlinear dynamics.

Typical fluid velocities are 0.005 and 0.05 for weak and intermedi-
ate PTs, respectively, and typical shell widths at collision are approxi-
mately 1/φ. Generally, shocks are expected to develop on timescales of
∼ l/v, where l is a characteristic length scale and v is a characteristic ve-
locity. Thus, we estimate the shock formation times to be around 200/φ

for weak PTs and 20/φ for intermediate PTs. According to these crude
estimates, shocks should begin to appear towards the end of simula-
tions of intermediate PTs, while in simulations of weak PTs, we do not
expect to see such features. This aligns with our visual observations.

Overall, we observe the stability of the solutions which appear well-
behaved throughout the entire simulation duration. Having in our pos-
session detailed knowledge about the energy and momentum of the
system at each time step, and having concluded that the simulation
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Figure 14: Central 2D simulation slices of the fluid velocity amplitude |v(x̃)|
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Figure 15: Same as in figure 14 but with vw = 0.6 corresponding to hybrids.
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results are reliable, we proceed to make use of this information and
compute the associated GW production.

5.5.2 GW production

To set the stage for this Section, in Figure 17, I present a few illustra-
tive examples of the GW spectrum growth rate Q→ as measured in the
simulations according to (286) and which is related to the GW spec-
trum through (276). In this figure, the black dots represent individual
data points, while the colored line segments represent a fit which is
introduced and discussed in Section 5.5.2.2.

5.5.2.1 Impact of the simulation box size, time, resolution, on the
GW spectrum

Before presenting the results for the GW spectral shape and amplitude,
it is essential to first examine how the GW spectrum is affected by our
numerical choices. In this Section, I will explore the influence of box
size L̃, grid resolution N, and simulation time T̃ , to elucidate the nu-
merical factors that could impact the interpretation of the GW spectra,
as discussed later in Section 5.5.2.2.

impact of box size and resolution Figure 18, in which I il-
lustrate results for box sizes L̃ = 20vw and L̃ = 40vw with N = 512, as
well as one spectrum with L̃ = 20vw and N = 256, presents an illustra-
tive example. To distinguish the latter spectrum, it has been vertically
shifted by a factor of 0.85, as the data points would otherwise overlap.
The number of bubbles is approximately Nb ∼ 300 for the smaller box
and ∼ 2700 for the larger box.

The integration time for the Fourier transformation in 284 is chosen
to range from t̃ = 16 to t̃ = 32 for all simulations. This integration
range is selected to minimize contributions from fluid profile collision
before percolation (as discussed in Section 5.3.7), while ensuring that
the first nucleated bubble does not have sufficient time to collide with
its mirror images during this integration window (this is at least true
for the larger simulation box size L̃ = 40vw).

The softest modes are characterized by k̃IR = 2π

L̃
, which translates to

k̃IR ∼ 0.16/vw and k̃IR ∼ 0.31/vw for simulation box sizes L̃ = 40vw and
L̃ = 20vw, respectively. Consequently, the softest modes are tracked
over as little as one and two oscillations (for the most critical vw) in the
Fourier transformation with respect to time. Thus, caution is required
when interpreting the GW spectrum at the lowest frequency points.
This issue is further discussed in Section 5.5.2.1.
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Figure 17: A few example spectra for weak (ω = 0.0046, lower lines) and in-
termediate (ω = 0.05, upper lines) PTs with N = 512. The specific
parameters for these PTs are detailed in the plot subtitles. The col-
ored lines represent the shape function described in Equation (290),
with distinct colors indicating the regions of different power-law
indices 3 (red), 1 (green), and !3 (blue), as well as the regime of
exponential damping (orange), separated by q0, q1, and qe.
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Taking a closer look at the spectra from box size L̃ = 20vw in Fig-
ure 18 (orange and blue dots), it is evident that the IR part of the GW
spectrum obtained from smaller resolution N = 256 and larger reso-
lution N = 512 agree to a high degree, while the UV parts differ due
to the increased dynamical depth of N = 512. Doubling the box size
to L̃ = 40vw (green dots) implies more bubble nucleations and thus
better sample statistics as well as halving the magnitude of kIR. Dou-
bling the box size, however, also reduces the dynamical depth since
the number of grid points available to resolve the fluid profiles is ef-
fectively halved (in the radial direction). Therefore, the spectrum from
larger resolution N = 512 and box size L̃ = 40vw extend the IR part
to smaller frequencies and improve statistics while compromising the
resolution of the UV part. It is, therefore, expected that N = 512 and
L̃ = 40vw agrees with the UV part of the smaller resolution N = 256

and box size L̃ = 20vw, while some differences are expected in the IR.
Figure 18 confirms this expectation.

To conclude, a large box size promotes IR statistics, while a small
box size promotes the adequate resolution of UV physics by increasing
the dynamical range. Which box size is more optimal thus depends on
the measurement which is made. We will elaborate on this point in
forthcoming Sections.

impact of box size and duration To study the IR tail of the
spectrum in more detail, we run simulations for an even larger box
size, L̃ = 80vw, which implies ∼ 20.000 bubbles and thus excellent sam-
ple statistics. We run these simulations assuming a PT of intermediate
strength and wall velocity vw = 0.8. For the purpose of illuminating
the GW spectrum IR part’s dependence on some of the complications
addressed above, we run these simulations for different simulation du-
rations t̃fin ↑ {32, 64, 128, 256} with respective time integration win-
dows [16, 32], [32, 64], [32, 128] and [32, 256]. The corresponding GW
spectrum results are shown in figure 19.

A straightforward interpretation of the IR tail of the spectrum is
complicated by several factors. First, to accurately capture the late-time
behavior of the system, integration should begin late enough to mini-
mize the contribution from bubble collisions during percolation to the
spectrum. Second, correctly capturing the modes in the Fourier trans-
formation with respect to time requires tracking at least ∼ 10 oscilla-
tions, which argues for longer integration times. However, simulating
longer than ∼ L/(2max(vw, cs) results in the first bubble starting to
interact with its mirror images, leading to IR artifacts.

The situation is thus challenging and compromises must always be
made. Overall, however, a plausibly near-optimal compromise is to run
simulations until T ∼ L and to neglect the modes in the deep IR. This
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Figure 19: The IR tail of GW spectra obtained from simulations of box size
L̃ = 80vw and resolution N = 512 for a PT of intermediate strength,
vw = 0.8, and different simulation durations and integration time
windows (in units of 1/φ) as specified in the plot legends. The
lines are shifted by factors of 2 relative to each other to make them
better visible. For reference, lines q3 and q5 are included.

approach corresponds to the blue and orange spectra, which appear to
scale approximately as k3 in the IR. We will thus employ in the main
text this choice of IR scaling.

While we consider the IR part of the spectrum unreliable, it is worth
noting that longer integration times result in a slightly steeper decay
in the deep IR. Ultimately, shedding light on this observation and the
general IR scaling behavior requires even larger simulations and we
leave it for future work.

Having addressed how numerical choices affect the resulting GW
production and how we can best mitigate such numerical artifacts, let
us proceed to discuss the, perhaps more interesting, physical features
of the GW spectra and production.

5.5.2.2 The spectral shape and amplitude

We have briefly discussed the presence of two predominant length
scales: the sound shell thickness and typical bubble size. As we are
about to see, the GW spectra exhibit features at these scales. A spectral
shape that accommodates two such scales is a doubly broken power
law. For this power law, we identify three regimes: the IR, at frequen-
cies q < q0 (note that k = q) identified by a characteristic spectral
index n0, an intermediate regime at q0 < q < q1 characterized by
some spectral index n1, and a UV regime above some scale q > q1

with spectral index n2. In our measured spectra, we furthermore ob-
serve an exponential damping in the far UV, which must be accounted
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for. To this end, we additionally modify the broken power law prescrip-
tion by introducing an exponential damping factor in the UV beyond
some scale qe. In this description, the resulting GW spectral shape can
be parameterized as

Q →(q) = Q →
int ⇐ S(q) , (287)

where

S(q) = S0 ⇐ (q/q0)n0

1+ (q/q0)n0!n1 [1+ (q/q1)n1!n2 ]
⇐ e!(q/qe)2 . (288)

The shape function is normalized such that
↔
d lnqS(q) = 1. The inte-

grated growth rate is defined as

Q →
int =

↓
d lnqQ →(q) . (289)

The spectral shape function (288) has six free parameters. As for the
scales q0, q1, and qe, we are interested in identifying their dependence
on the PT parameters the strength ω and the wall velocity vw. To ex-
tract these parameters, we will perform a fit of the shape function to
the measured GW spectra. Since these parameters directly control the
underlying scales of the problem, we expect q0 and q1 to vary as we
scan over parameter space.

As for the spectral indices n0, n1, and n2, one could in principle al-
low them to vary freely when performing the fit. However, with 6 free
parameters, one introduces degeneracies that will inevitably produce a
better fit at the cost of possibly thwarting precise extraction and inter-
pretation of the remaining parameters. Furthermore, robustly measur-
ing the spectral indices demands substantial resolution of both the UV
and IR tails, which is arguably not the case. Since, as we shall see, we
find that our data is very well captured assuming fixed values n0 = 3,
n1 = 1, and n2 = !3, we refrain from a free spectral index approach
and always use these values in the forthcoming fit. First and foremost,
we make this decision since this particular choice of indices is in ex-
cellent agreement with our data. Furthermore, note that n0 = 3 was
justified in Section 5.5.2.1, while the choice n1 = 1 and n2 = !3 is con-
sistent with findings in [25, 67, 69–72, 101], thus placing our decision
to fix the spectral indices on solid ground.

With this choice of spectral indices, the spectral shape function be-
comes

S(q) = S0 ⇐ (q/q0)3

1+ (q/q0)2[1+ (q/q1)4]
⇐ e!(q/qe)2 . (290)

Note that in this form, q0 constitutes a knee separating the IR from the
intermediate regime while q1 constitutes the peak 1.

1 Strictly speaking, q1 is not exactly at the peak location. It is, however, always suffi-
ciently close to the spectral maximum that we will simply call it the peak.
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We fit Equation (290) to our numerically derived Q→ spectra obtained
from simulations with resolution N = 512 and box sizes L̃ = 20vw and
L̃ = 40vw encompassing a parameter scan over ω ↑ {0.0046, 0.05} and
vw ↑ {0.32, 0.36, ... , 0.8}, and thus extract spectral features from our
data. Resulting fits are shown in figure 17 for the representative pa-
rameter choices ω ↑ {0.0046, 0.05} and vw ↑ {0.4, 0.6, 0.8}. The regions
separated by q0, q1, and qe are depicted with contrasting colors: the
IR is depicted in red, the intermediate regime in green, the UV in blue,
and exponential damping in orange.

The parameters in Figure 17 have been selected to highlight various
asymptotic behaviors of the spectra. For large simulation boxes, the IR
behavior is most discernible, as seen in the bottom panel. Conversely,
for smaller box sizes and generic wall velocities, the UV tail is more
apparent, as seen in the upper panel. In the case of weak PTs and
wall velocities approaching the Jouguet velocities vCJ = 0.63 (see Equa-
tion (164)), the plateau between the bubble size and the shell thick-
ness is most prominent, as depicted in the middle panels. It is also
observed that exponential damping due to numerical viscosity is more
pronounced in weaker PTs, as indicated by the lower lines.

In the fitting procedure, we impose the constraint that q0 < q1 < qe.
For the smaller box size, the first knee q0 might be measured with
some degree of inaccuracy, generally resulting in an overestimated
value for q0. Similarly, when there is an extended plateau with q1 ∞
q0, the exponential decay in the UV region may impede the accurate
determination of the peak q1, as observed for the weak PT in the top
middle panel, for which we see that the fit prefers q1 = qe.

Motivated by these observations, we will utilize simulations with
larger box sizes (L̃ = 40vw) to measure the IR quantity q0, and sim-
ulations with smaller box sizes (L̃ = 20vw) to measure q0 and qe.
For these choices, Figure 20 presents our final results. A comparison
between inferred parameters from both small and large box sizes is
shown in Figure 21 of the next Section 5.5.2.3.

In the top left panel of Figure 20, inferred values of q0 over the
parameter scan are shown (for box size L̃ = 40vw). We note that for PTs
of intermediate strength, a clear downward trend in q0 is observable.
However, for weak PTs, a notable feature appears close to the speed
of sound. Our data thus indicate that the IR knee has quite a complex
behavior.

The top right panel of figure 20 shows inferred values of q1 and
qe over the parameter scan (for box size L̃ = 20vw) together with the
inverse shell thickness 1/ϑshell. The shell thickness is defined from self-
similar profiles (see Section 3.1.6):

ϑshell := ϑfront ! ϑrear, (291)
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Figure 20: Upper panel: The extracted fitting parameters q0, q1, and qe as func-
tions of the wall velocity. Blue (red) points correspond to weak (in-
termediate) PTs with ω = 0.0046 (ω = 0.05). In the upper left figure,
we show the IR knee position q0 for L̃ = 40vw. In the upper right
figure, we show the UV peak q1 (dots), the shell thickness (crosses)
defined in Equation (291), and the exponential damping qe (solid
lines) for L̃ = 20vw. Lower panel: The integral of the GW spec-
trum growth rate Q →

int over momenta, defined in Equation (289),
normalized by ϑshell(ϖω)

2 (left) and by the kinetic energy squared
↓v2γ2w↔2 measured in the lattice (right).
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where

ϑfront =

⇑
⇓

⇔
ϑshock (deflagration, hybrid)

ϑw (detonation)
, (292)

ϑrear =

⇑
⇓

⇔
ϑw (deflagration)

cs (detonation, hybrid)
. (293)

Note that whenever q0 approaches qe, the exponential damping hin-
ders an accurate measurement of the scale q1. This occurs when the
wall velocity is close to the speed of sound for weak PTs (ω = 0.0046).

For weak PTs, the proposal from [67] that q1 tracks 1/ϑshell appears
to hold well, while for intermediate PTs, q1 is notably smaller than
1/ϑshell. This difference could be attributed to the presence of nonlinear
effects, which are more pronounced for stronger PTs, and thus more
observable for intermediate PTs.

Additionally, it is interesting to note that qe is considerably lower for
weak PTs compared to stronger ones, despite the box size and resolu-
tion being the same. This suggests that the scale qe cannot be directly,
or at least solely, linked to the grid spacing. The variation might be at-
tributed to numerical viscosity, but the potential influence of physical
dynamics remains a possibility, especially considering that large fluid
velocities associated with stronger PTs form shocks more rapidly.

The bottom left panel of Figure 20 displays the amplitude of the GW
spectrum. Specifically, we present the integral Q→

int in (289), normal-
ized by the shell-thickness ϑshell times (ϖω)2, where the vacuum en-
ergy transfer efficiency ϖ is defined in Equation (166) and corresponds
to that of self-similar profiles. The numerical values are given in Fig-
ure 4. In other words, we plot data for Q→

int/ϑshell/(ϖω)
2 over the range

of wall velocities and weak and intermediate PTs, as proposed in [67].
Our results closely align with the findings in [67].

The amplitudes that we observe vary by approximately a factor of
10 across different PT strengths and wall velocities. It is important to
emphasize that, at this point, we can only state this as an observa-
tional fact without giving any further justification for the variance. In
Chapter 6, however, we will explore how this variance is largely due
to insufficient convergence of narrow self-similar profiles for vw ↫ vCJ.
Despite introducing the additional normalization factor ϑshell to com-
pensate, a considerable spread in values remains.

In the bottom right panel of Figure 20, we plot Q→
int normalized to

the average kinetic energy measured in the full 3D simulations. This
results in less variance and eliminates the need to introduce an ad-
ditional factor ϑshell to flatten the dependence. Furthermore, this nor-
malization exhibits remarkable independence from the wall velocity or
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the strength of the PT, varying only within a factor of approximately
2. However, obtaining the kinetic energy in the fluid is challenging
without running the full simulations and is, therefore, less practical.

5.5.2.3 Comparing results for small and large box sizes

The plot in Figure 21 displays the fit parameters for all the simulations
we conducted. In the plot, blue and red data points represent weak
and intermediate PTs respectively. Dots and solid lines correspond to
simulations with a small box size (L̃ = 20vw), while stars and dotted
lines correspond to simulations with a large box size (L̃ = 40vw).

In the top left panel of Figure 21, the scale q0 is shown, but now
including results for both box size L̃ = 20vw and L̃ = 20vw. As we
have previously stated, it is notable that simulations with a small box
size tend to overestimate q0 as compared to results from a larger box
size, which we deem more trustworthy due to the increased statistics
in the IR. As a result, we only reported q0 from the simulations with a
large box size for the main results in Figure 20 in the previous Section.

In the top right panel of Figure 21, we again show inferred values
of q1 and qe over the parameter scan, including results for both box
size L̃ = 20vw and L̃ = 40vw. We also plot the inverse shell thickness
1/ϑshell for reference. As we saw previously, q1 is bounded by qe for
weak PTs with vw ↫ vCJ. Due to the effectively reduced resolution
of L̃ = 40vw, this occurs for a larger set of velocities, making it clear
that UV results for box size L̃ = 40vw are less reliable than L̃ = 20vw
and showing clearly that, for this subset of velocities, higher resolution
is necessary to accurately capture the peak. The agreement on q1 for
intermediate PTs when comparing results from both L̃ = 20vw and
L̃ = 40vw is, however, striking. This indicates that N = 512 offers
sufficient dynamical depth to capture the peak positions accurately for
all vw for intermediate PTs.

With regards to qe, we make the interesting observation that for
weak PTs, qe does not double despite halving the box size, contrary
to the observation from intermediate PTs. Hence, again, we conclude
that qe does not only depend on the grid spacing.

The bottom panel in Figure 21 shows the integrated GW spectrum
growth rate normalized as in Figure 20. The measured values for sim-
ulations with small and large box sizes agree relatively well for most
wall velocities except the smallest where the smaller box size yields
marginally larger values, based on the lower left plot.
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Figure 21: Upper panel: The extracted fitting parameters q0, q1, and qe as
functions of the wall velocity. Blue (red) data points correspond to
weak (intermediate) PTs with ω = 0.0046 (ω = 0.05). Dots and solid
lines are from simulations with small box size (L̃ = 20vw) while
stars and dotted lines are from simulations with large box size
(L̃ = 40vw). In the upper left figure, we show the IR knee position
q0 for L̃ = 40vw. In the upper right figure, we show the UV peak
q1 (dots), the shell thickness (crosses) defined in Equation (291),
and the exponential damping qe (solid lines) for L̃ = 20vw. Lower
panel: The integral of the GW spectra Q →

int over momenta defined in
Equation (289) normalized by ϑshell(ϖω)

2 (left) and by the kinetic
energy squared ↓v2γ2w↔2 measured in the lattice (right).
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5.6 Discussion

5.6.1 Reconnecting with the literature

In this Section, I compile various findings from the literature, focusing
on how our results align with or differ from these studies. Most of
these findings have already been presented in Sections 3.2.2.1 and 3.2.3.
Here, we emphasize the key results concerning the fluid’s contribution
to GW production and compare them to our present findings.

Since the realization that the dominant source of GW production
may not be the scalar field, but rather the fluid, strides were made to
understand this theoretically through both analytical and numerical
methods. In Section 3.2.3, I thus highlighted a few state-of-the-art ap-
proaches developed to predict the corresponding GW signal, including
the sound-shell model, coupled scalar field + fluid lattice simulations,
and hybrid simulations. For further details on these approaches, I refer
the reader to Section 3.2.3 and the references I provide there.

The main results of these approaches are as follows:

the sound shell model Predictions from the sound-shell model
[70, 72] demonstrate GW spectra that exhibit two distinct length scales:
the average bubble separation and the sound shell width upon col-
lision. The peak of the power spectrum occurs at wavenumbers de-
termined by the sound shell width. In the UV, the power spectrum
is found to decrease as k!3. In the IR, recent sound-shell model re-
sults with refined assumptions [73, 74] have found a k3 scaling (to be
contrasted with the earlier prediction of k9 scaling). An intermediate
regime between the two scales corresponding to the typical bubble size
and sound shell thickness with a linear k1 scaling is furthermore ob-
served. With the refined assumptions, an intricate spectrum structure
emerges where, e.g. the previously found k9 UV scaling is observed
in a narrow band just to the left of the peak. The detailed form of the
spectrum depends sensitively on the wall velocity and PT strength.

scalar field + fluid lattice simulations Diametrically op-
posite to the sound-shell model, coupled scalar field + fluid lattice sim-
ulations [25, 69, 71, 101] enter the stage as a robust attempt at capturing
the GW spectrum from the PT dynamics employing a fully numeri-
cal approach without many compromising assumptions. Here, quite
straightforwardly, the authors solve on the lattice for the dynamical
evolution of a scalar field and the fluid coupled through a phenomeno-
logical friction term.
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In coupled scalar field + fluid lattice simulations [25, 69, 71, 101], it is
found a GW spectrum consistent with the UV k!3 scaling as predicted
in the sound-shell model. This observation is particularly clear for det-
onations, while for deflagrations it is moderately steeper. I will quote
the k!3 scaling as their main finding in this regard. It is furthermore
found that sound-shell thickness sets the location of the peak of the
GW spectrum peak. In these simulations, the IR behavior of the GW
spectrum could not be reliably determined.

hybrid simulations Bridging the gap between the sound-shell
model and the scalar field + fluid lattice simulations, one finds the
hybrid scheme [67]. In this approach, bubbles are modeled as spheri-
cally symmetric and expand at a constant wall velocity, similar to the
Higgsless simulations. In the hybrid approach, it is found that the IR
part of the GW spectrum scales as ka where a ↑ [2, 4], the UV part
scales as kb where b ↑ [!4, !3], and that an intermediate plateau is
present between the inverse scales of the average bubble size and shell
thickness at collision with a scaling kc where c ↑ [!1, 0] .

It is with the Hybrid scheme that the Higgsless simulations con-
nect most strongly. While both methods rely on the assumption of
spherically expanding bubbles and the effective removal of the Higgs
field, the Higgsless simulations allow the self-similar profiles to de-
velop spontaneously on the 3D grid rather than relying on a 3D embed-
ding of radial 1D profiles. Moreover, Higgsless simulations constitute
a fully nonlinear solver, enabling the exploration of the intricate dy-
namics associated with stronger PTs while relying on a more general
solver framework.

IR Intermediate UV References

Sound-shell model 3 1 !3 [70, 72]

Scalar + fluid lattice simulations - 1 !3 [25, 69, 71, 101]

Hybrid simulations [2,4] [!1,0] [!4,!3] [67]

Higgsless simulations 3 1 !3 This work

Table 3: GW spectrum slopes obtained from various approaches targeting
fluid sound-wave-induced GW production. These models exhibit dis-
tinct features at wavenumbers k0 and k1, with three corresponding
slopes: IR, intermediate, and UV.

In Table 3, I present a summary of the observed scaling behaviors
of the GW spectrum as obtained using the various approaches. All ap-
proaches are reasonably consistent with the observation in this paper
that the spectrum scales as k3 in the IR, apart from the hybrid simula-
tions, which find a certain spread in the IR slope around 3, depending
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on the PT parameters. Additionally, all approaches agree with the k!3

scaling observed in the UV, though the hybrid simulations observe a
slightly steeper scaling, bounded by k!4.

Furthermore, all approaches identify the presence of an intermediate
regime connecting the length scales associated with the inverse average
bubble size and shell thickness at collision. In all approaches except the
hybrid simulations, the scaling in this regime is found to be linear, k1.
Interestingly, in the hybrid approach, the observed scaling is negative,
with an exponent in the range [!1, 0].

Since the Higgsless and hybrid approaches share the assumptions
of constant wall velocity, neglect of the Higgs field, and exponential-
in-time bubble nucleation histories, while differing in that the Higgs-
less simulations are fully nonlinear, we can gain interesting insights by
comparing their respective predictions.

One intriguing result shared by both approaches is that, for weak
PTs, the scale associated with the peak q0 appears to closely follow
the shell thickness 1/ϑshell, whereas for stronger PTs, it does not. Agree-
ment on this discrepancy suggests that the difference cannot originate
from late-time nonlinear effects, as these are not accounted for in the
hybrid approach. The most plausible explanation is that this difference
arises from the nonlinear evolution of the radial 1D profile following
the instantaneous removal of the forcing Higgs boundary (which is
how bubble collisions are modeled in the Hybrid approach), rather
than from nonlinear interactions among the bubbles.

Furthermore, the characteristic features observed in the GW spec-
trum are mostly consistent between both hybrid and Higgsless simu-
lations, which serves as a reassuring validation of the methodologies
employed. However, it is important to note that the amplitudes ob-
tained from the hybrid method are systematically larger by a factor of
2! 3 compared to those from the Higgsless simulations, part of which
could be explained by simply employing different bubble nucleation
histories.

Lastly, a comparison between the current Higgsless results with the
coupled scalar-fluid lattice simulations in [25, 69, 71, 101] is warranted.
These simulations are recognized as the most precise and advanced
predictions of the GW spectrum to date. Notably, there are no signifi-
cant differences between the two methods across most of the parame-
ter space. Although the IR slope was not directly derived from the GW
spectrum in [71], the intermediate and UV slopes defining the GW
power spectrum show good consistency, and the amplitude matches
closely. Upon comparing individual results, we found that the ampli-
tude between the two methods generally differed by less than a factor
of 2. Moreover, our analysis reveals several features in the data that
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have not been systematically studied before. For instance, the knee fre-
quency, q0, exhibits a complex dependence on the wall velocity.

While our results generally demonstrate good agreement, a signif-
icant difference we identified between the Higgsless simulations and
the scalar-fluid simulations is their reported reduction in GW power
for deflagrations, as discussed in [101] and further explored in [125].
This reduction arises because if the fluid heats up in front of the bubble
wall, the pressure difference driving the expansion decreases, slowing
down the wall. In extreme cases, the bubble wall may completely stop,
leading to a period of phase coexistence. Clearly, since in our Higgs-
less approach, a constant wall velocity is assumed, observing such a
slowdown in bubble wall expansion is not possible. This feature of the
Higgsless method may be viewed as a deficiency but is better seen as a
feature of it being model-independent in the following sense: the fric-
tion term in scalar-fluid simulations is phenomenological, represented
by an additional term in the Higgs equation of the form 1uµ0µε, with
1 being a free parameter [25]. The slowdown of the wall in deflagra-
tions critically depends on this parameter. Therefore, the statement on
the reduction of the GW amplitude does, too. The Higgsless simula-
tion results are thus model-independent in the sense of neglecting the
variability of this friction.

In conclusion, by assuming a constant wall velocity, the Higgsless
simulations avoid the model dependence associated with the above
discussion.

5.6.2 Obtaining present day GW spectra

With the fitting parameters in figure 20 at our disposal, I wish to out-
line a sequence of steps through which these parameters can be used
to derive the corresponding present-day GW spectrum given a specific
model. The presumption is that for a given model, one has obtained
the PT strength ω, the duration of the PT φ/H, the wall velocity vw,
and the PT temperature T (see e.g [52] and [88, 89]). Then, one can
proceed as follows:

1. Knowledge of ω and vw implies that the shell thickness ϑshell
as in Equation (291) and the efficiency factor ϖ [86] as in Equa-
tion (166) and shown in Figure 4 can be determined. An informa-
tive plot of ϑshell as a function of vw for many choices of alpha
can be found in see [67], while [88, 89] present useful figures
and code snippets for the computation of the efficiency ϖ. With
these quantities determined, the amplitude normalization quan-
tity ϑshell/(ϖω)

2 can be computed.
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2. Knowing ω and vw, figure 20 allows to simply read off the spec-
tral features q0, q1, qe. The value of Q→

int can similarly be ob-
tained by reading of the value for Q→

int/ϑshell/(ϖω)
2 and multi-

plying with with value of ϑshell/(ϖω)
2 obtained in the previous

step.

3. The spectral shape S(q) in Equation (290) and its normaliza-
tion constant S0 can now be constructed from the condition that↔
d lnqS(q) = 1 for the given q0, q1, qe.

4. Having found S(q) and Q →
int, Q

→ can be constructed from (287),
i.e. one simply computes Q →(q) = Q →

int ⇐ S(q).

5. With Q →(q) at hand, the present-day GW spectrum is obtained as
in Equation 276, i.e.,

ΩGW(q) = TGW
4(H↑/φ)(H↑ tsw)

3π2
⇐Q→(q) ,

where the transfer coefficient TGW, defined in 67, has the value

h2TGW = 1.65⇐ 10!5

(
100

gp↑

)1/3

,

tsw is the GW sourcing duration, and H↑ is the Hubble rate
at the time of GW production. An estimate of tsw can be at-
tained assuming the time it takes nonlinearities to develop,
tsw ∼ R↑/

↖
K, as we discussed in Section 2.2.5 and with R↑ →

(8π)1/3 max(vw, cs)/φ. An estimate of K is K = Kω from self-
similar profiles in Equation (168).

6. The next and last point concerns the redshifting of wavenumbers
at production time k↑ to the present-day values k0, obtained as
k0 = (a↑/a0)k↑. According to Equation–169, the present-day fre-
quency is

f0 = 2.63 · 10!6 Hz ⇐
(
q↑
φ

) (
φ

H↑

) ( g↑
100

)1/6
(

T↑
100GeV

)

tells us how to do so. The spectral features q0, q1, and qe are
thus easily redshifted to their present-day frequencies.

These 6 steps outline how the Higgsless simulation results can be
used to readily obtain observational predictions for the GW spectrum.

5.6.3 Future work

This study should be viewed as an initial report on the implementa-
tion, evaluation, high resolution, application, and predictive power of
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Higgsless simulations. Throughout this Chapter, we have identified
several results that warrant further investigation. Below, I outline a
number of observations and additional points that I believe merit fu-
ture exploration, some of which will be addressed in the forthcoming
Chapter 6:

• In the present work, we have chosen to study PTs of weak
(ω = 0.0046) and intermediate (ω = 0.05) strength to align with
the literature and facilitate comparison. Having established the
Higgsless simulations as a powerful tool in exploring GWs from
PTs, producing results consistent with other methods, and con-
firming the stability of the scheme, future work should focus on
investigating strong PTs. This direction will be pursued in the
next Chapter 6.

• While we commented on the convergence of the results with in-
creased resolution, we deferred a systematic convergence study.
To fully understand the reliability of the Higgsless results, a more
systematic treatment is needed. Such a treatment will be per-
suaded in the next Chapter 6.

• In the present work, we saw signs of nonlinear dynamics. For
example, we saw that the GW spectrum peak q1 tracks 1/ϑshell
for weak PTs, while for intermediate PTs, q1 is notably smaller
than 1/ϑshell. We thus concluded that this difference could be
attributed to the presence of nonlinear effects, which are more
pronounced for stronger PTs. We additionally noted the presence
of sharper gradients in the simulation slices in Figures 14, 15,
and 16, indicating the development of shocks. Further analysis
is required to strengthen the nonlinear hypothesis. Attempts at
doing this will be made in the next Chapter 6.

• Our data indicates that the IR knee exhibits a complex behav-
ior. We also concluded that achieving adequate resolution of q0

and the IR spectral index n0, which was found to be consistent
with n0 = 3, may require larger simulations. This warrants fur-
ther investigation. While I will not run larger simulations, I will
comment on this behavior in the next Chapter 6.

• We also saw how the amplitude varies by approximately a factor
of 10 across different PT strengths and wall velocities. In Chap-
ter 6, we will explore how this variance is due primarily to insuf-
ficient convergence of narrow self-similar profiles for vw ↫ vCJ.

These and additional points will be addressed in Chapter 6, which
will provide significant improvements to the understanding of the sim-
ulation results.
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5.7 Summary and conclusion

In this Chapter, which is based on the publication [1], I have exten-
sively reviewed the implementation, evaluation, application, and re-
sults from the novel Higgsless simulations designed to model in a fully
nonlinear way the relativistic hydrodynamics of a primordial fluid and
associated GW production in a first-order cosmological PT, with em-
phasis on extracting the linear GW spectrum growth rate as expected
from sound-wave production of GWs.

5.7.1 Summary

A concise summary of the scientific work and results is presented be-
low.

• Physical setup: The physical ingredients relevant for the setup are
reviewed in Section 5.2, in which I demonstrated the construc-
tion of realistic exponential-in-time bubble nucleation histories,
assuming constant wall velocity, a key assumption of the Hig-
gsless approach. The wall interface of these Higgs bubbles is
approximated as a step function, enabling us to encode the PT
evolution using the bag equation of state. Here, the space-time
dependence of the bag constant is determined directly from the
bubble nucleation history. By solving for the spatial components
of T ij in terms of the conserved quantities Kµ, we explain how
the fluid is coupled to the state of the vacuum through the time-
varying bag constant 7(t, x). As 7(t, x) varies in accordance with
a bubble nucleation history, the fluid responds to the vacuum en-
ergy injection, eliminating the need to solve for the Higgs field
evolution; the equation of state suffices. The perturbed fluid in-
duces bulk motion as sound waves, or more generally compres-
sional modes, and possibly turbulence, leading to anisotropic
stress that sources a spectrum of GWs. The growth rate of these
GWs is measured in the Higgsless simulations using Weinberg’s
formula (104).

• Numerical setup: In Section 5.3, I review numerical methods and
programmatic considerations to highlight some technical choices
and their connection with the physics we are attempting to
model. The main points concern the usage of the KT+RK3 nu-
merical scheme defined in 207 to numerically solve 216 and 217,
subject to the time-varying boundary conditions 7(t, x) which
model spherically expanding bubbles. This grants us detailed in-
formation about the energy-momentum tensor, which is subse-
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quently used to derive the GW production on the lattice as in
Equation (286).

• Simulation evaluation: I evaluate the simulations in Section 5.4.1,
where it is found that the KT+RK3 scheme is remarkably suc-
cessful at recovering the analytically understood self-similar dy-
namics of single bubbles, as well as well as conserving energy to
machine precision. The 3D Higgsless simulation implementation
swiftly produces accurate single-bubble wall profiles and main-
tains precise shock dynamics over time. Notably, the accurate
reproduction of self-similar profiles is less dependent on the pa-
rameter ω and more on the shell thickness. This suggests that the
framework can be extended to model stronger PTs with minimal
adjustments, primarily involving the simulation’s time step and
refining the definition of the local velocity a to preserve stability
as outlined in Sec. 4.3. The robustness and precision of the 3D
Higgsless simulation framework in resolving self-similar profiles
make it a powerful tool for studying PTs with multiple bubbles.

• Multi-bubble simulations: Following successful simulation evalua-
tion, I use the Higgsless simulations to model realistic PT scenar-
ios with hundreds to thousands of bubbles nucleating according
to a physically motivated exponentially growing nucleation rate.
Simulations with resolution N = 512 and box sizes L̃ = 20vw and
L̃ = 40vw, encompassing a parameter scan over ω ↑ {0.0046, 0.05}
and vw ↑ {0.32, 0.36, ... , 0.8}, were thus performed.

• GW spectral shape and growth rate: The observed spectra are char-
acterized by a doubly broken power law, with IR, intermediate,
UV, and exponential damping regimes separated at scales q0, q1,
and qe. Our data is consistent with q3, q1, and q!3 scaling in
the IR, Intermediate, and UV regimes, respectively. These scales
q0, q1, and qe were extracted across different strengths of PTs
and wall velocities from fits of the spectral shape function (290)
to the data. These parameters, as well as the GW frequency inte-
grated growth rates, are presented in Figure 20. For intermediate-
strength PTs, a clear downward trend in q0 with increasing wall
velocities was observed, whereas weak PTs exhibited notable fea-
tures near the speed of sound. Our findings indicate that the IR
knee behavior is quite complex. Additionally, q1 for weak PTs
aligns well with the proposal in [67] that it tracks 1/ϑshell, while
for intermediate PTs, a departure from this trend is observed
possibly due to nonlinear effects. The variation in qe suggests in-
fluences beyond numerical grid spacing, possibly including nu-



merical viscosity effects and physical dynamics such as shock
formation in intermediate PTs.

As for the GW spectrum growth rate, specifically the integral Q→
int

normalized by ϑshell and (ϖω)2, our results are consistent with
[67], showing that the amplitude varies significantly across dif-
ferent PT strengths and wall velocities. This variance appears to
be due to insufficient convergence to narrow self-similar profiles,
particularly for vw ∼ cs. While normalization by ϑshell mitigates
part of this effect, a considerable spread remains. This observa-
tion highlights the need for more refined simulations to under-
stand the GW amplitude behavior better.

• Discussion: In Section 5.6, I put the present results in context and
compare them with the main results in the literature, overall find-
ing that our results align well. In 5.6.2, I outline how the Higgs-
less results can be used as a template to readily compute the
present-day GW spectrum.

5.7.2 Conclusion

To conclude, the Higgsless simulations present a novel and highly ef-
ficient approach for modeling the nonlinear dynamics of the primor-
dial fluid, enabling the extraction of GW spectra from cosmological
first-order PTs. Notably, this method benefits from the simplification
of neglecting Higgs field dynamics.

The KT+RK3 scheme has proven effective for solving relativistic hy-
drodynamic partial differential equations. Our simulations, conducted
with relatively modest computational resources, demonstrate the ef-
ficiency of the Higgsless approach at capturing the associated high
gradient phenomena and resolution of shocks.

The Higgsless simulations thus bridge the gap between simplistic
semi-analytical methods and costly numerical simulations, offering
valuable insights into GW production in PTs at a fraction of the com-
putational cost.
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5.8 Appendix: Gravitational waves from domain wall
catalyzed phase transitions

In this Section, which should be viewed as an appendix to the current
Chapter, I will demonstrate the application of Higgsless simulations to
a scenario where a domain wall (DW) network catalyzes the PT. This
Section draws on the work published in [2], but rather than provid-
ing a comprehensive account of all the details, I will focus on demon-
strating how the Higgsless simulations can be adapted to a different
context by simply altering the bubble nucleation history, highlighting
the flexibility of the Higgsless approach, and how the GW spectrum is
altered.

5.8.1 Introduction

The role of impurities, or defects, in PTs cannot be overstated. Con-
densation cores, to give an example, play a crucial role in cloud and
ice crystal formation. These cores, tiny particles suspended in the at-
mosphere, such as dust, pollen, or aerosols, catalyze the PT by which
the droplets or ice crystals form by lowering the energy threshold for
the PT to occur. It appears, therefore, to be a natural suggestion that
defects play a role in catalyzing PTs also in the early universe. If so,
catalyzing elements could influence the course of evolution of a PT
and thus potentially lead to modified signatures of the PT. In the fol-
lowing, we will denote non-seeded PTs homogeneous and PTs seeded
by impurities inhomogeneous.

As a matter of fact, a plethora of impurities and defects have been
considered in the literature [14, 126–153]. In this Section, we explore
the scenario where a DW network acts as a local catalyst, or seed, for
the first-order PT responsible for bubble nucleation and GW genera-
tion [154]. In certain particle physics models, the likelihood of nucle-
ation is notably higher on the surfaces of DWs compared to the bulk
of the Universe. Consequently, the bubble nucleation history deviates
from that of homogeneous PTs, as bubbles tend to nucleate preferen-
tially on the DWs [154].

The presence of a DW network introduces an additional length scale,
ϑDW, representing the average separation between DWs. When ϑDW
is much larger than the mean bubble separation, R↑, as defined in
Equation 137,

ϑDW ∞ R↑, (294)

we expect the network to leave a distinct imprint on the GW spec-
trum. Specifically, this should manifest as a shift in the peak frequency
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towards lower wave numbers, along with an increase in the peak am-
plitude, analogous to the effects observed in GW spectra from PTs in-
fluenced by macroscopic thermal fluctuations, as described in Ref. [68].
This increase in amplitude arises because the correlation scale of fluid
perturbations is governed by ϑDW, rather than R↑. Moreover, the spa-
tially inhomogeneous distribution of bubbles induced by the DW net-
work may lead to alterations in the spectral shape. Instead of conven-
tional bubble collisions, in the extreme limit of instantaneous bubble
nucleation on the DWs, the network causes the propagation of sheets
that move away from the walls, eventually colliding after an average
time of ϑDW/vw.

To examine these expectations and to derive quantitative results, we
construct modified bubble nucleation histories based on a DW network
model. After obtaining these nucleation histories, we use Higgsless
simulations to compute the resulting GW signal.

5.8.2 Modeling of the domain wall network and catalyzed
bubble nucleation

As an illustrative example, consider the potential

V =
λ

4
(ε2 ! v2)2 +

λm
4

s2ε2 +
λm
4

s4 !
1

2
µ2

S
s2 , (295)

where ε represents the Higgs field and s is a gauge singlet with a Z2

symmetry. In certain regions of the parameter space, this system under-
goes a two-step PT. Initially, the system transitions into a phase where
s acquires a vacuum expectation value (VEV), which spontaneously
breaks the Z2 symmetry and generates DWs. At lower temperatures,
the system reaches its ground state characterized by a non-zero VEV
for ε while the Z2 symmetry is restored, ↓s↔ = 0. The DWs then dis-
appear when the system fully transitions into this low-temperature
phase.

Compared to conventional PTs, the bubble nucleation history is al-
tered because bubbles preferentially nucleate on the DWs [154], with
the potential barrier arising from the gradient of the s-field. In the
extreme limit given by Equation (294), bubble nucleations can be con-
sidered effectively simultaneous across the DW network relative to the
timescale for bubbles to traverse between walls, making φ an irrelevant
parameter. In this limit, the dynamics of the DWs can be neglected, and
since φ governs the inter-bubble separation within the DW network,
which is much smaller than ϑDW, the features of the GW spectrum
become independent of φ.

Thus, it suffices to have a snapshot of a DW network with a spec-
ified correlation length ϑDW to construct a bubble nucleation history.
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Figure 22: Representative DW configurations for cells with 0 to 4 corners in
the opposite phases are shown. The corresponding surface weights
of the DW network are {0,

↖
3/8, 1/

↖
2, 1/

↖
2+

↖
11/8, 1}. The trivial

case for the empty cell with all corners in the same phase and zero
weight is not shown.

To achieve this, we model the DW network using a Monte Carlo im-
plementation of the Ising model with the Metropolis algorithm [155],
iterating until the desired correlation length is reached 2. This snap-
shot is then used to determine the phenomenological implications for
the GW spectrum. For further details, I refer the reader to [2]. It is
noteworthy that the Ising model effectively captures the appearance
of DWs as seen in genuine simulations of DW networks. An example
realization of a DW network is shown in the left column of Figure 23.

To generate bubble nucleation histories from the Ising model real-
izations of the DW network, we map the Ising data to a realistic DW
network. The procedure we employ essentially involves determining
the area of the DW network in each grid cell by means of counting
how many corners are in the respective phase. This area is propor-
tional to a cell weight wijk, so that the probability of nucleating a
bubble in cell ijk at time t is proportional to wijk exp(tφ). Bubble nu-
cleation histories are then constructed using this probability distribu-
tion, as otherwise detailed in 5.3.5. See Figure 5.8.2 for an example of
how these weights are computed. Since weights are zero outside the
DW network, bubbles nucleate only within the DWs. We have shown
that the final results are robust to variations in this procedure. With
our parameter choices, the DW correlation length is typically an order
of magnitude larger than the mean bubble size, though this can be
controlled as desired.

As previously noted, the DW network is characterized by the mean
separation between DWs, ϑDW. To estimate this, we consider the total

2 The Ising model Hamiltonian can be written as, H = !J
↙

≃ij⇐ SiSi where Si, often
called the spin, take on values ±1, ↓ij↔ implies nearest-neighbor interaction only, and
J > 0 is the strength of exchange interaction. The Metropolis algorithm consists of the
following steps: (1) Prepare an initially random configuration of Si, (2) flip the spin
of a randomly chosen lattice site i (which is really a site in a 3D lattice in our case), (3)
calculate the change in energy ∆E associated with the spin-flip and the Hamiltonian
H, (4) if ∆E < 0, accept the move, otherwise accept the move with probability e!∆E/T ,
and (5) repeat (2)-(4) until desired correlation length is achieved.

140



surface area of the DW network, SDW. The mean separation is approx-
imately given by

ϑDW ∼
V

SDW
(296)

where V = L3 represents the volume of the simulation. For the DW
network shown in Fig. 23, we find ϑDW ∼ 0.1 ⇐ L, with L being the
box size. Using the Metropolis algorithm, starting from a random ini-
tial state, we perform 4 ⇐ 108 phase updates on a 1283 grid with the
parameter J/T = 2 to achieve this correlation length (see footnote 2).
The total surface area of the DW network was determined using the
previously discussed weights.

5.8.3 Simulations and numerical results

Having established the methods for modeling the DW network, charac-
terizing them with the correlation length ϑDW, and generating the cor-
responding bubble nucleation histories, we proceed to run simulations
to solve for the hydrodynamical evolution and obtain the GW spectra.
In the presence of DWs, we use relatively large box sizes, L = 160vw/φ,
to ensure that the mean separation between the DWs is greater than
the mean bubble size in the PT without DWs. For the simulations with-
out the DW network, we instead use L = 80vw/φ to gain IR resolution
as compared to the simulation in the previous Sections of this Chap-
ter but still resolve the self-similar profiles reasonably well upon PT
completion.

In Figure 24, I present the final spectra from our simulations. Con-
sistent with expectations, the GW signal exhibits a shift towards lower
frequencies and a corresponding increase in amplitude. Additionally,
the spectrum displays a marginally steeper slope in the IR range. To
analyze these features, we use a shape function akin to (290), but with
a free IR index n1 = n. This adjustment accommodates different IR
behaviors from the typical q3 and utilizes the enhanced IR range more
effectively.

Sf(q) = S0 ⇐ (q/q0)n

1+ (q/q0)(n!1)[1+ (q/q1)4]
⇐ e!(q/qe)2 . (297)

Table 4 presents our numerical results. The parameter Ωint represents
the frequency-integrated GW power, while q0 and n are fitting param-
eters defined in (297). Values with a bar indicate results from simula-
tions without a DW network. The peak frequency of the spectrum ap-
pears closely related to the correlation length of the DW network, with
q0 ↗ 3/ϑDW. As we expected, the presence of DWs shifts the peak to
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Figure 23: Left column: A realization of a DW network as per the method in
the main text and footnote 2 is shown as dark lines. The bubble
wall interface is shown as expanding red circles at various times
in the simulation. Right column: The kinetic energy in the fluid is
as obtained in the simulation at corresponding time steps. The PT
parameters are ω = 0.05, vw = 0.8, L = 160vw/φ, and ϑDW = 0.1L.
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Figure 24: Final spectra of the gravitational waves with (left) and without
(right) a DW network. The strength of the PT is ω = 0.05, and the
velocities of the bubble walls are vw = 0.4, 0.55, and 0.8. The green
points indicate the part of the spectrum used in the fit (shown in
red).

vw q0/φ ϑDW/φ!1 q0 · ϑDW q0/q̄0 Ωint/Ω̄int n n̄

0.4 0.50 6.4 3.19 3.69 2.37 5.51 4.87

0.55 0.35 8.8 3.07 3.95 2.75 5.03 4.63

0.8 0.22 12.8 2.81 3.40 3.44 4.78 4.14

Table 4: Parameters extracted from the spectra shown in Fig. 24 are summa-
rized. Values with a bar denote quantities obtained from simulations
without DWs. q0 is derived by fitting Equation (297) to the simu-
lation data. The domain wall correlation length ϑDW is determined
from our model of the DW network using the Ising.
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lower frequencies and enhances the amplitude by a similar factor. In
the fits, the IR tail appears somewhat steeper, but this result is only
tentative as the simulation boxes are generally too small to accurately
determine the IR behavior slope n.

5.8.4 Conclusion

In this application of the Higgsless simulations, we examined the grav-
itational wave spectrum arising from a first-order PT influenced by
domain walls. When bubble nucleation occurs preferentially on do-
main walls, the relevant length scale becomes the correlation length of
the domain wall network, provided it is larger than the typical bubble
size in a homogeneous first-order PT. Once this correlation length is
sufficiently large, the inverse duration φ of the PT ceases to dictate the
scale of fluid perturbations.

Consequently, the effective correlation length of the sound waves in
the fluid increases. This results in a shift of the peak frequency to lower
wave numbers and a corresponding enhancement of the peak ampli-
tude. Additionally, while the IR tail of the spectrum in our seeded
inhomogeneous simulations shows a steeper slope than that of con-
ventional homogeneous PTs, this observation remains tentative due to
substantial statistical uncertainties affecting the IR region.
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6
G R AV I TAT I O N A L WAV E S F R O M D E C AY I N G
S O U R C E S I N S T R O N G P H A S E T R A N S I T I O N S

In this Chapter, I delve into the previously uncharted realm of GWs
originating from strong first-order PTs. The Chapter extensively draws
upon the scientific research outlined in the publication Gravitational
waves from decaying sources in strong phase transitions [3], a collaborative
effort involving myself, the coauthors of the publication [1] and devel-
opers of the Higgsless approach Ryusuke Jinno, Thomas Konstandin,
and Henrique Rubira, as well as Chiara Caprini and Albero Roper Pol.

In Section 6.1, I introduce the study and the broader context and out-
line its scientific objectives. In Section 6.2, I extend the model for grav-
itational wave production to account for damped sources and cosmic
expansion. Section 6.3 discusses updates to the simulation code and
the chosen parameters. The main numerical results, including findings
from strong PTs and a template for gravitational wave production, are
presented in Section 6.4. Finally, Section 6.5 summarizes the key find-
ings and concludes the Chapter.

6.1 Introduction

6.1.1 Background

During a first-order PT, the initial fluid motion manifests as compres-
sion waves around the bubbles. Following bubble collisions, the fluid
motion nevertheless evolves nonlinearly, allowing for the formation
of vorticity and shocks, ultimately leading to the development of tur-
bulence. This nonlinear evolution is an inevitable consequence of the
high Reynolds number of the fluid in the early Universe [156]. The
transition from the sound-wave regime to the turbulence regime is
particularly significant in strong PTs, where nonlinearities can play a
crucial role, damping the fluid motion on time scales shorter than Hub-
ble, as we shall soon see. For weak PTs, the fluid motion is effectively
characterized as a linear combination of sound waves [1, 25]. However,
in stronger PTs, the emergence of rotational modes and turbulence is
observed [101], which could significantly influence the gravitational
wave signal [22, 94]. In fact, it is evident that LISA is more sensitive
to detecting stronger PTs due to their boosted signals [71, 106], where
nonlinear effects, such as shocks and turbulence, become significant.
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While recent studies have begun to explore the aspects of nonlinear
dynamics, including gravitational wave generation from vortical turbu-
lence [20, 75–77, 93–96, 157–163], there is presently, to my knowledge,
only one study that explores the dynamics and GW production in sim-
ulations of arising in first-order PTs capturing the evolution form ini-
tial bubble seeds to developed turbulence [101]. While this study shed
some light on the GW amplitude and overall dynamics, there are no
results for the GW spectrum.

In this Chapter, we explore the previously uncharted realm of GWs
from strong first-order PTs with ω = 0.5 while also updating results
for weak and intermediate PTs. Building upon the foundation laid in
Chapter 5 and aiming to address some of the points outlined in Sec-
tion 5.6.3, I run a comprehensive series of approximately 1000 sim-
ulations. These simulations involve a detailed parameter scan over
wall velocities vw ↑ [0.32, 0.8] in increments of 0.04, covering weak
(ω = 0.0046), intermediate (ω = 0.05), and strong (ω = 0.5) PTs. Uti-
lizing the Higgsless approach, this study systematically explores the
dependence of various characteristics of the GW spectrum on the un-
derlying physical scales. As we track the long-term evolution of the
system, this work sees the emergence of nonlinearities and studies
their impact on gravitational wave production. To this end, we decom-
pose the velocity spectra into longitudinal and transverse components
to shed additional light on the dynamics at play.

6.1.2 Scientific objectives

The scientific objectives of this study are briefly summarized as follows:
In particular, we aim to

• improve the stability of numerical scheme to allow simulating
strong PTs,

• obtain, for the first time, GW spectra from strong PTs,

• provide templates for the GW spectrum aligning with the sound-
shell model GW spectrum parameterization in Equation (109),

ΩGW(k) = 3TGW Ω̃GW K2 (H↑R↑)(H↑tsw)S(kR↑) ,

• generalize the GW spectrum parameterization in Equation (110)
to accommodate decaying sources with and without expansion,

• shed light on the interpretation and determination of all parame-
ters entering the parameterization (110) and its generalizations,
including the GW production efficiency Ω̃GW, source lifetime tsw,
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correlation scale of the fluid R↑, energy budget K2, and spectral
shape S(kR↑),

• perform systematic convergence studies to understand and quan-
tify associated errors,

• further explore the presence and implications of nonlinear dy-
namics such as shock formation and turbulence,

• and quantify the variance associated with the sample statistics of
the used bubble nucleation histories.

In essence, we push the Higgsless simulations to the next level and
derive results that have high scientific value.

6.2 GW production

6.2.1 Connecting with the notation in Chapter 5

In the previous Chapter 5 we extracted the dimensionless growth rate
Q→ as in Equation (277),

Q→ → q̃3

Ṽ t̃GW

↓
dΩk

4π


2ij,klT̃ij(q̃, k̃ | t̃)T̃↑

kl
(q̃, k̃ | t̃)


q̃=|k̃| . (298)

where t̃GW = t̃! t̃init is the duration of GW souring at simulation time
t̃, and written in terms of the dimensionless simulation variables q̃ →
q/φ, k̃ → k/φ, T̃ = Tφ, and Ṽ = Vφ3. The definition and measurement
of Q→ was justified by the assumption of a linear growth rate, which,
as was discussed in Section 6.2, implies that the average kinetic energy
in the system K is constant. This is a good assumption if the dynamics
is indeed characterized by sound waves.

In the present Chapter, we have set out to explore strong PTs and
anticipate, therefore, that nonlinear damping of the sourcing kinetic
energy may become significant. Thus, we should employ a description
that honors this fact and thus depart from the Q→ prescription.

In Equation (95), we introduced the present-day GW parameteriza-
tion

ΩGW(k) =
1

3c

d3GW

d lnk
= 3TGW I(k) ,

where I(k), in Equation (94), is defined in terms of the UETC EΠ(t1, t2,k)
in Equation (87) by

I(τ↑, τfin,k) =
k

2

↓
τfin

τ↑

dτ1
τ1

↓
τfin

τ↑

dτ2
τ2

EΠ (τ1, τ2,k) cosk (τ1 ! τ2) .
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Neglecting expansion, I becomes

I(t↑, tfin,k) =
k

2
H2

↑

↓
tfin

t↑

↓
tfin

t↑

EΠ(t1, t2,k) cosk(t1! t2)dt1 dt2 . (299)

Then, following the derivation in Section 2.2.4, I(t↑, t,k) can be ex-
pressed in terms of the energy-momentum tensor T̃ij(q̃, k̃) as in Equa-
tion (102) through the formidable expression

I(t↑, tfin,q) =
q3

3 · 4π2Vm2

Pl3̄↑

↓

Ωk

dΩk

4π


2ij,klTij (q, k | tfin) T

↑
kl

(q, k | tfin)

q=k

=
q̃3

4π2Ṽ ˜̄32↑

(
H↑
φ

)2 ↓ dΩk

4π


2ij,klT̃ij(q̃, k̃| t̃fin)T̃

↑
kl
(q̃, k̃| t̃fin)


q̃=|k̃|

→
(
H↑
φ

)2

Isim(t̃↑, t̃fin, q̃) ,

(300)

where I defined

Isim(t̃↑, t̃fin, q̃) →
(

φ

H↑

)2

I(t↑, tfin,q)

=
q̃3

4π2Ṽ ˜̄32↑

↓
dΩk

4π


2ij,klT̃ij(q̃, k̃)T̃↑

kl
(q̃, k̃)


q̃=|k̃|

(301)

Then, referring to Section 5.3.7 for details, we can directly compute
Isim from the lattice as

Isim(t̃↑, t̃fin, q̃) =
4

9π2(1+ω)2
q̃3Ṽ∆t̃2

N6

∣∣T̃+(q̃, k̃ | t̃fin)
∣∣2 +

∣∣T̃↓(q̃, k̃ | t̃fin)
∣∣2

∣∣∣∣
q̃=|k̃|

(302)

where I used that ˜̄3↑ = 3

4
(1+ω) and where the volume Ṽ = L̃3 is now

interpreted as the volume of the simulation box. This implies for the
relation with Q→ that

Isim =
t̃GW

4π2 ˜̄3↑
Q→ . (303)

6.2.2 GWs from stationary sound waves

We concluded in Section 2.2.5 that if the UETC is stationary, i.e., it only
depends on the difference t! = t2 ! t1, EΠ(t1, t2,k) = 2 k2 K2 f(t!,k),
where K = ↓3kin↔/3̄ is the kinetic energy density fraction with 3kin =
↓wγ2v2↔, then Equation 299 becomes Equation (107),

I(t↑, tfin,k) = k3H2

↑ K
2

↓
tfin

t↑

dt
↓
tfin!t

t↑!t

cos(kt!) f(t!,k)dt! .
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We then discussed how in the sound-shell model [70, 72], the integral
limits in t! were extended to ±→, which allowed to separate the two
integrals as in Equation (108). The integral over t then became the GW
source duration, tsw = t! t↑, and we obtained the usually assumed
linear growth rate [52]. As we discussed in more detail in Section 2.2.5
and as is shown in [73], for this result to be valid, the period of the
oscillations must be much shorter than tsw, i.e. ktsw ∞ 1 or equiva-
lently kR↑ ∞

↖
K, and the duration of the sound waves must be long

compared to the characteristic scale R↑, i.e., tsw/R↑ ∼ 1/
↖
K ∞ 1. For

sufficiently small values of K, the linear growth rate should hold at rel-
evant wavenumber kR↑ ∞

↖
K in the simulations. We also discussed in

Section 2.2.5, that under the same assumptions, the remaining integral
over t̃! in (107) is proportional to φR↑/cs, so that the present-day GW
spectrum can be parameterized as in Equation (109), namely

ΩGW(k̃) = 3TGW Ω̃GW K2 (H↑R↑)(H↑t̃sw)S(kR↑) , (304)

or equivalently

Isim(t̃↑, t̃fin, k̃) = Ω̃GW K2 (φR↑) t̃sw S(kR↑) . (305)

6.2.3 GWs from a damped source

We have identified the linear growth rate as a characteristic of sound
waves that propagate freely without mutual interaction, thereby con-
serving kinetic energy on average over time. However, as we shall see
in Section 6.4.5, intermediate and especially strong PTs exhibit signifi-
cant damping of the system’s kinetic energy. This clearly deviates from
the assumption of constant average kinetic energy and suggests the
presence of nonlinear interactions within the fluid. Consequently, we
need to adapt our description to account for decaying sources.

Therefore, and with this insight, we make the ansatz that the UETC
is locally stationary so that it can be factorized as

EΠ (t1, t2,k) = 2k2K2 (t+) f (t!,k) (306)

where t+ = 1

2
(t1 + t2) and t! = t2 ! t1. See [77] for a discussion

on various UETCs in the context of turbulence. In this ansatz, K2 (t+)
captures the slowly varying amplitude, while f (t!,k) parameterizes
the strength of the correlations at different times separated by t!, i.e.,
the support which is assumed stationary.

Then, under the same assumptions kτsw ∞ 1 and K ⇑ 1 from which
we obtained the linear growth rate, one can similarly conclude that
K2 t̃sw in Equation (305) can be substituted by K2

int, defined by

K2

int(t̃↑, t̃fin) →
↓
t̃fin

t̃↑

K2(t̃)dt̃ . (307)
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Therefore, in this framework, the GW spectrum parameterization gen-
eralizes to the case of a decaying source as

Isim(t̃↑, t̃fin, k̃) = Ω̃GW K2

int(t̃↑, t̃fin) (φR↑)S(kR↑) . (308)

Note that K2

int trivially reduces to K2 (t̃fin ! t̃↑) = K2 t̃sw when K2 is
constant so that Equation (305) in the stationary assumption is recov-
ered.

It is not clear a priori that the assumption of a locally stationary
UETC is, in fact, a good description. Ultimately, we seek a description
that allows to describe the GW spectrum in the simplest possible way
for which relevant measurements can be made using the Higgsless
simulations. One such measurement concerns the GW efficient Ω̃GW.
We will see in Section 6.4.6 that in this description utilizing a locally-
stationary UETC, Ω̃GW(t̃) is largely time-independent, allowing to ro-
bustly measure Ω̃GW as it enters (308). We take this as an indication
of the approach’s adequateness. Thus, we conclude that generalizing
(305) to (308) allows us to measure the GW efficiency Ω̃GW even when
the kinetic energy is decaying with time.

As for the decay, I will demonstrate in Section 6.4.5 that the kinetic
energy evolution that we observe in the simulations is well described
by a power law,

K(t̃) = K0

(
t̃

t̃0

)!b

. (309)

where t0 will come to represent the time of PT completion. I will pro-
ceed to fit Equation (309) to the data for the free parameters K0 and
b.

In view of this equation, note that when neglecting expansion, the
physics is time translation invariant, and we can arbitrarily define the
origin of time, which we can freely choose to be t̃ref = 0 and which in
our case will always be very close to the beginning of the PT. Then, the
proposed fit should be understood as K(t) = K0[(t̃! t̃ref)/(t̃0 ! t̃ref)]

!b

with respect to tref. From this power law decay prescription and for
2b ▽= 1, K2

int is analytically evaluated as

K2

int = K2

0
t̃↑ (t̃0/t̃↑)

2b
(1+ t̃sw/t̃↑)1!2b ! 1

1! 2b
↗ K2

0
t̃↑

(1+ t̃sw/t̃↑)1!2b ! 1

1! 2b
,

(310)

at time t̃ = t̃↑ + t̃sw, where the approximation holds when t̃0 ↗ t̃↑.
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In the limit that the source duration t̃sw ⇑ t̃↑, evidently, Kint ⇓
K2

0
t̃sw for any value of b. In the converse limit, t̃sw ∞ t̃↑, one instead

finds the following asymptotic behaviors:

lim
t̃sw⇒t̃↑

K2

int =
K2

0
t̃0

1! 2b

(
t̃sw

t̃0

)1!2b

, when b < 1

2
,

lim
t̃sw⇒t̃↑

K2

int =
K2

0
t̃0

2b! 1

(
t̃0
t̃↑

)2b!1

, when b > 1

2
. (311)

Hence, we see that when decay is weak, i.e., when 2b ↬ 1, then K2

int
diverges proportionally to t̃1!2b

sw . Conversely, when the decay is strong,
i.e., 2b ↭ 1, then Kint converges in the limit of long source duration
t̃sw/t̃↑ ∞ 1.

Equation (308) thus presents to us the possibility to generalize the
sound-wave results to that of a decaying source, which, as we shall
see, is crucially important for the present study involving strong PTs.
Under the particular assumption of a power-law decay, (308) becomes

Isim(t̃↑, t̃sw, k̃) = Ω̃GW K2

0
(φR↑) t̃↑ (t̃0/t̃↑)

2b
(1+ t̃sw/t̃↑)1!2b ! 1

1! 2b
S(kR↑).

(312)

6.2.4 Recovering cosmic expansion

So far, and in particular all of Chapter 5, we have always neglected
expansion except when introducing Equation (110),

ΩGW(k) = 3TGW Ω̃GW K2 (H↑R↑)6(H↑, τsw)S(kR↑) .

Let us take a moment to appreciate the introduction of the factor
6 = H↑τsw/(1 +H↑τsw), where now τsw is an interval in conformal
time, accounting for Hubble damping of fluid kinetic energy in the
case of a conformally stationary UETC. We choose a↑ = 1, such that
the conformal Hubble rate is H↑ = H↑a↑ = H↑. Furthermore, assuming
that the PT is short and occurs during radiation domination, we can set
the initial and final conformal times of GW production to be H↑τ↑ = 1

and H↑τfin = 1+H↑τsw. To this end, recall that when cosmic expansion
is not neglected, then I of Equation (94) is

I(τ↑, τfin,k) =
k

2

↓
τfin

τ↑

dτ1
τ1

↓
τfin

τ↑

dτ2
τ2

EΠ (τ1, τ2,k) cosk (τ1 ! τ2) .

Following [73], we make the change of variables {τ1,2} ⇓ {τ±} where
τ+ → (τ1 + τ2) /2 and τ! → τ2!τ1, or equivalently τ1 = τ+! τ!

2
, τ2 =

τ+ + τ!
2

. Then, dτ1dτ2 = dτ+dτ!, and the integral becomes

I (τ↑, τfin ,k) = k3
↓
τfin

τ↑

dτ+

↓→

!→

dτ!

τ2+ !
τ2
!
4

K2f (τ!,k) cos (kτ!) (313)
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where I assumed a stationary UETC as in Equation (106),

EΠ (t1, t2,k) = 2k2K2f (t!,k) ,

and expanded the limits of the second integral to ±→ as we did in Sec-
tion 2.2.5. Following [78] and neglecting τ! in 1/(τ2+ ! τ2!/4), which is
fully justified when, e.g., the support of f is small, we see that in the
stationary case, when commuting the integrals, the integral over time
is, in reality, proportional to an integral of a factor 1/τ2 over conformal
time τ. If the support is not sufficiently small, then the extension of the
integral limits to ±→ is only justified when the period of the oscilla-
tions is much shorter than τsw, kτsw ∞ 1, i.e., kR↑ ∞

↖
K, and when

the duration of the sound waves is long compared to the characteristic
scale, τsw/R↑ ∼ 1/

↖
K ∞ 1, as shown in [73].

Therefore, and under these assumptions, whenever the source dura-
tion is comparable to or longer than the bubble time, one can account
for Hubble damping by multiplying with the suppression factor

φ

H↑

↓
τ̃fin

τ̃↑

dτ̃
τ̃2

=
H↑
φ

↓
τ̃sw

0

dτ̃
(1+ τ̃/τ̃↑)2

=
τ̃sw (H↑/φ)

1+ τ̃sw (H↑/φ)
→ 6 , (314)

which is just the factor 6 in Equation (110) first introduced in [78]. It
should be emphasized, nevertheless, that it is not free from assump-
tions, and to exactly capture the influence of expansion, one should, in
principle, solve the GW equations of motion explicitly in an expanding
space-time. We will simply regard 6 as a convenient way to attain a
plausibly good estimate of the suppression due to cosmic expansion.

A natural generalization suggests itself: To account for Hubble damp-
ing also when the source is decaying and its UETC is only locally sta-
tionary, one should proceed to define

K2

int,exp → (φ/H↑)
2

↓
τ̃fin

τ̃↑

K2(τ̃)dτ̃
τ̃2

=

↓
τ̃sw

0

K2(τ̃+ τ̃↑)

(1+ τ̃/τ̃↑)2
dτ̃ , (315)

so that, now accounting for cosmic expansion,

Isim(τ̃↑, τ̃fin, k̃) = Ω̃GW K2

int,exp(τ̃↑, τ̃fin) (φR↑)S(kR↑) . (316)

To provide a closed form of Equation (316) akin to Equation (359),
one must solve the integral in Equation (315) assuming the power-law
form of the decay (309). Here, the reader may rightfully object, for this
law, explicitly derived in cosmic time, neglects expansion while we are
now working in conformal time. Therefore, the reader could argue, the
Equation (309) is no longer applicable. As of a small miracle1, however,
it happens to be the case that precisely for a radiation-dominated fluid,

1 Actually not. It follows from the presence of only one scale, H.
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the conservation law (210) of Section 5.2.2 is conformally invariant in
the sense that it takes exactly the same form in comoving space, pro-
vided the hydrodynamical variables are interpreted as comoving quan-
tities [164, 165]. After the PT, the fluid obeys the radiation-equation-of-
state, rendering conformal invariance of the conservation law mani-
fest. Thus, the observed decay is, in fact, rightfully interpreted as that
of comoving space and of comoving quantities, so as to perfectly jus-
tify the use of the power-law decay, initially described in cosmological
time, also in conformal time. This, comes, however, with one caveat:
Earlier, we were free to arbitrarily set the origin of time since in non-
expanding space, all laws are time-translation invariant, and times
carry only relative significance. Now, with cosmic expansion break-
ing time-translation invariance, times are instead absolute. Therefore,
in conformal and now absolute time τ̃,

K(τ̃) → K0

(
∆τ̃

∆τ̃0

)!b

→ K0

(
τ̃! τ̃↑ +∆τ̃↑
τ̃0 ! τ̃↑ +∆τ̃↑

)!b

(317)

where ∆τ̃0 → t̃0 as in the parameter entering (309) and ∆τ̃↑ = ∆τ̃0 +
τ̃↑ ! τ̃0. Then, the integral 315 takes the form

K2

int,exp = K2

0
∆τ̃2b

0

↓
τ̃sw

0

(τ̃+∆τ̃↑)!2b


1+ τ̃ (H↑/φ)

2 dτ̃ → K2

0
6b(τ̃sw) (φ/H↑) , (318)

where I defined the generalized Hubble damping suppression factor

6b(τ̃sw) = ∆Fb (H↑/φ)(1! 2b)!1 (319)

where ∆Fb → Fb(τ̃sw)!Fb(0) and the function Fb defined by

Fb(τ̃) =
(∆τ̃↑ + τ̃

)1!2b
∆τ̃2b

0

(1!∆τ↑H↑)2
2F1


2, 1!2b, 2!2b,!

H↑∆τ↑ + τ̃H↑/φ

1!H↑∆τ↑


,

(320)

2F1 being the hypergeometric function. Note that that 6b(τ̃sw) reduces
to 6(τ̃sw) of a stationary stationary sources when b = 0.

While Equation (319) is convenient in that it provides a format that
can be directly evaluated without explicitly computing the integral,
we don’t see that the emergence of the hypergeometric function car-
ries any deep physical meaning, as Equation (320) simply arises from
introducing the power-law form (309) of the decay of K(τ) in Equa-
tion (315). Instead, the modification 6b with respect to 6 is ultimately
what is of physical interest.

Thus, the GW spectrum incorporating effects of both source decay
and expansion is given by

Isim(t̃↑, t̃fin, k̃) = Ω̃GW K2

0
6b(τ̃sw)

(
φ

H↑

)
(φR↑)S(kR↑) . (321)
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so that the present-day GW spectrum becomes

ΩGW(k) = 3TGW Ω̃GW K2

0
(H↑R↑)6b(τsw)S(kR↑) , (322)

Let me iterate that the value of ∆τ̃0 → t̃0 will be fixed to that of PT
completion in the relative times of our simulations while ∆τ̃↑ = τ̃↑ !
τ̃0 +∆τ̃0 allows to initiate sourcing of GWs any time τ̃↑. Furthermore,
it should be emphasized as we did for 6, that 6b should be regarded
as a plausibly good way to a posteriori account for expansion, but that
one should, in principle, solve the GW equations of motion explicitly
in an expanding space-time to validate this estimate.

6.2.5 Summary of intended usage

Having established the main theoretical framework and assumptions
within which we operate, let me outline how the results of this Sec-
tion 6.2 will be put in use.

First, I will define t0 as the time of PT completion and extract nu-
merical values of K0 and b for each simulation by fitting Equation (309)
to the simulation data in Section 6.4.5. As we shall see, the power-law
prescription works flawlessly for the current situation duration up to
t̃ = 32.

Then, in Section 6.4.6, we compute integrated GW amplitude Iint
sim →↔

Isim d lnk, where Isim(t̃init, t̃,k) is evaluated at t̃init = 16 and we al-
low t̃ to vary from t̃init to t̃end = 32. This allows computing the time
evolution of the GW efficiency

Ω̃GW(t̃) =
Iint

sim(t̃init, t̃)
K2

int(t̃init, t̃)(φR↑)
, (323)

where K2

int is determined from our numerical simulation data.
We subsequently establish the validity of the adequateness of Equa-

tion (308) within the duration of our simulations by observing the ap-
proximate time-independence Ω̃GW(t̃) in (338), and take Ω̃GW(t̃end) as
our measurement of the GW efficiency.

Then, having established the time independence of the GW effi-
ciency and obtained a robust measurement, we can use the power-
law decay of K(t) in Equation (309) to emulate GW production all the
way back to t̃0 under the assumption that the locally stationary UETC
description holds until that time. This allows computing the GW spec-
trum sourced by a locally stationary source of sound waves from the
completion of the PT for a duration of t̃sw, thus attempting to recover
the part of the GW productions which the simulations have neglected.

Finally, having established the conformal invariance of the fluid equa-
tions of motion, we can interpret the power-law decay in conformal
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and now absolute time in order to model the damping of the fluid ki-
netic energy due to Hubble expansion as in (315) and the consequent
suppression of the GW spectrum amplitude, thus transcending the
confines of the initial neglect of cosmic expansion.

6.3 Numerical setup

6.3.1 Updates to the simulation implementation

In this work, I update the simulation implementation in a number of
ways, leading to Version-2 of the Higgsless simulation. While the phys-
ical setup in Version-2 of the Higgsless simulation code is identical to
that of the original version in the previous Chapter 5, which we will
call Version 1, in the present study, we take the opportunity to refine
the numerical implementation of the Higgsless simulation code. While
some changes are generic and benefit all simulations regardless of PT
parameters, one was required to enhance the stability numerical stabil-
ity in simulations of stronger PTs.

In this Section, I highlight three updates that were made to the nu-
merical implementation. These updates aim at improving (1) the time
integration scheme, (2) the mapping between the discrete and the con-
tinuum momenta, and (3) the criterion for numerical stability in simu-
lations of strong PTs (ω = 0.5). Since otherwise all details of the simu-
lation implementation are identical to Version 1 of the Higgsless sim-
ulation code, as outlined in Section 5.3 of Chapter 5, I refer readers to
that Section for general details on the implementation.

6.3.1.1 Improvement of the time integration routine

Commencing with update (1), in practice, the time integral in the
Fourier transform of Equation (236) must be computed numerically
on the grid of time. In the first iteration of the Higgsless simulation
code, the time integral was approximated as in Equation (284) (here
including δt̃, previously added first in the final normalization),

Tij(q, k | t) =
t↑

tn=tinit

δt̃ eiqtnTij (tn, k) , (324)

i.e., through its Riemann sum, by stacking past time slices weighed
by a complex factor from tinit until t ↬ tend for each time step over
which the GWs are sourced. In our case, we usually take t̃init = 16 and
tend = 32, following the discussion in Section 5.3.7.

In the current Version 2 of the Higgsless simulations, I improve upon
this method by treating Tij as a piecewise linear function interpolating
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between the support points, using a similar scheme to the one pro-
posed in [157] for solving the GW equation. Following this approach,
the discrete Fourier transform-in-time is instead approximated as

eiqt

(

Tij (ti, k) +
dTij
dt

∣∣∣∣
ti

(t! ti)

)

, (325)

which can be integrated analytically on small intervals t ↑ (ti, ti + δt̃)
between the simulation time steps. The Fourier transform-in-time is
then better approximated as

Tij(q, k | t)

=

↓
t

tinit

dt→eiqt
→
Tij

(
t→, k

)

′
t↑

tn=tinit

↓
tn+0t̃

tn

dt→eiqt
→

(

Tij (tn, k) +
dTij
dt

∣∣∣∣
tn

(t! tn)

)

=
t↑

tn=tinit

1

q2

[
eiq(tn+0t̃)

(
Tij,n

→ ! iq
(
T
ij,n + δt̃Tij,n

→))! eiqtn
(
Tij,n

→ ! iqTij,n
)]

(326)

Since the integrand, which involves an oscillating exponential and the
linearized Tij, is now analytically integrated, this modified routine bet-
ter captures the UV behavior at large k. This approach alleviates the
constraints on the time-step δt̃ required to obtain accurate spectra in
this regime (see discussion in [157]). However, for the dynamical range
and choice of δt̃ used in the simulations, no significant discrepancies
have been observed in the UV range of the GW spectrum due to this
change. Overall, it should improve the UV reliability and may become
important in future simulation runs.

6.3.1.2 Updated mapping between discrete and continuum momenta

Continuing with update (2), let us revisit Version 1 of the code and
note that this initial version utilized a sin-based method to map dis-
crete grid momenta to their continuum counterparts since it is neces-
sary to ensure that Fourier modes with momenta ñj and ñj +N in the
j:th direction, etc., are mapped to the same physical wavenumber. Ad-
ditionally, momenta near ñj ↗ N are equivalent to those near ñj ↗ 0

and should be treated as soft modes. This led to the use of two dif-
ferent mappings depending on whether the sign of momentum was
important:

ki =
sin (2πñi/N)

δx̃
,
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as in Equation (256), for cases where the sign is relevant, and

ki = 2
sin (πñi/N)

δx̃

as in Equation (255), for cases where it is not.
In the current Version 2 of the simulation code, I adopt a saw pre-

scription for the mapping of momenta:

ki = saw(ñi) →

⇑
↖↖↖⇓

↖↖↖⇔

2πñi

N0x̃
for ñi <

N

2
,

0 for ñi =
N

2
,

2π(ñi!N)
N0x̃

for ñi >
N

2
.

(327)

This saw mapping eliminates the need for different treatments in dif-
ferent contexts, thus providing a consistent momentum map up to
ñi ↗ N/2, to be contrasted with the previous sin-based method which
was only accurate within the linear regime of the sin function. There-
fore, the saw prescription ensures consistency across the entire range.
Note that in Version 1, the hardest mode corresponds to the physical
wavenumber kUV =

↖
3/δx̃, which is the UV cutoff beyond which no

results are obtained. For the saw-prescription, the UV cutoff is instead
kUV =

↖
3π/δx̃

Although no significant differences have been observed between the
two methods in our current simulations, we anticipate the saw pre-
scription to enhance accuracy at smaller scales.

6.3.1.3 Improved numerical stability in strong phase transitions

The third point (3) concerns the choice of the maximal local velocity
aj+1/2,k,l, etc., (on a staggered cell in direction j), appearing in Equa-
tion (205). We have seen how this quantity locally regulates the numer-
ical viscosity of the KT scheme, which consequently helps preserve
shock structures in the lattice by reducing spurious oscillations. Larger
local velocities aj+1/2,k,l thus increase numerical viscosity and thus im-
prove upon the stability of the numerical scheme. In the limit of small
fluid velocities, i.e., for weak and intermediate PTs, aj+1/2,k,l = cs =√
1/3, etc., is a good choice. In the case of strong PTs, however, fluid

velocities often supersede
√
1/3 and approach 1. To improve the nu-

merical stability of the simulation, we therefore choose aj+1/2,k,l = 1,
etc., for strong PTs. In the weak regime, the numerical changes due
to this choice are negligible but for stronger PTs, the stability of the
numerical solver is significantly improved.
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Furthermore, in rare isolated cases and close to shocks, the simula-
tion encounters that on staggered grid points in the computation of
the pressure, the quantity

λ =
3

4

(
K̄0

K

)2

,

defined in Equation (233), locally supersedes 1. Upon taking
↖
1! λ,

as required to compute the enthalpy and the pressure, this causes
problems. This problem is solved by locally enforcing that λ < 1 on
staggered grid points and re-scale K accordingly before computing the
pressure. While this procedure is necessary to stabilize the numerical
solver and to allow running simulations of strong PTs, it appears to
have no noticeable effect on either the results or energy conservation.

In all other regards, the current Version 2 of the Higgsless implemen-
tation is identical to the first Version 1 in the previous Chapter.

6.3.2 Simulations and parameter choices

Building upon the work in Chapter 5 and [1], I extend the parame-
ter space by including strong PTs with ω = 0.5. I thus conduct ref-

reference seeds single-bubble
PT strength ω {0.0046, 0.05, 0.5} {0.0046, 0.05, 0.5} {0.0046, 0.05, 0.5}

wall velocity vw ↑ [0.32, 0.8] {0.32/0.36, 0.6, 0.8} ↑ [0.32, 0.8]
box size L̃/vw → Lφ/vw {20, 40} {20, 40} {20, 40}
sim. time t̃end → tendφ 32 32 L̃/2/max(vw, cs)

grid size N {64, 128, 256, 512} {64, 128, 256, 512} 512

δt̃/δx̃ < 1/4 < 1/4 < 1/4

count. 304 72⇐ 9 seeds = 648 76

Table 5: Summary of simulation runs with physical and numerical parame-
ter choices. Reference indicates simulations constructed from a single
reference bubble nucleation history (one for each box size), thereby
minimizing statistical differences among the sample of reference sim-
ulations. Seeds refers to simulations constructed from a set of 9 addi-
tional bubble nucleation histories, allowing to infer statistical sam-
ple variance for 3 selected wall velocities vw = 0.32 (0.36), 0.6, and
0.8, which correspond to deflagrations, hybrids, and detonations for
weak and intermediate PTs, while vw = 0.8 is a hybrid for strong PTs.
Single-bubble refers to simulations with a single isolated centrally nu-
cleated bubble, allowing us to study the convergence of self-similar
profiles. We take a range of vw ↑ [0.32, 0.8] in increments of 0.04 be-
sides for strong PTs (ω = 0.5) for which we take vw ↑ [0.36, 0.8]. A
total of 1028 simulations have been performed.
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erence simulations for ω ↑ {0.0046, 0.05, 0.5} and wall velocities vw ↑
{0.32, 0.36, . . . , 0.76, 0.8}, excluding vw = 0.32 for strong PTs due to
the absence of deflagrations for ω ≿ 1

3
(1 ! vw)!13/10 [86]. This re-

sults in a total of 3 ⇐ 13! 1 = 38 PT parameter points. To obtain our
primary results, I perform reference simulations for each box size, uti-
lizing a unique bubble nucleation history across all wall velocities, PT
strengths, and grid resolutions, thereby ensuring that the sample vari-
ance remains constant across different values of vw, ω, and N. I sum-
marize the parameters used in this study in Table 5.

The procedure for constructing bubble nucleation histories, as de-
tailed in Section 5.3.5, leads to simulations featuring approximately
Nb ↗ L̃3/(8π v3w) bubbles (Equation (127)), where L̃ → Lφ. These bub-
bles are nucleated according to a statistical distribution that is expo-
nential in time and uniform in space. In our simulations, L̃/vw takes
on values of 20 and 40, corresponding to approximately 300 and 2500
bubbles, respectively. For a fixed numerical resolution N, simulations
with L̃/vw = 40 achieve a reduction in statistical variance by increasing
the number of bubbles, thereby improving the resolution of quantities
measured in the IR regime. In contrast, simulations with L̃/vw = 20

provide a wider dynamical range in the UV. For additional details and
comments, refer to Section 5.3.5.

For each of the 76 parameter points {vw,ω, L̃/vw}, I conduct simula-
tions with varying grid resolutions N3, where N ↑ {64, 128, 256, 512},
resulting in a total of 76 ⇐ 4 = 304 reference simulations. By running
simulations at different grid sizes, we assess the convergence of our
numerical results and estimate physical quantities in the continuum
limit through a well-motivated extrapolation scheme in Section 6.4.3.

To ensure stability, we set the number of time steps Nt = t̃end/δt̃

to satisfy the Courant-Friedrichs-Lewy (CFL) condition, δt̃/δx̃ < 1/4,
where δx̃ = L̃/N. We have verified that for strong PTs, increasing Nt

beyond this threshold does not alter the numerical results, allowing us
to use the smallest permissible value without repercussions.

Additionally, for each parameter set {vw,ω, L̃/vw}, I perform sim-
ulations of single centrally nucleated bubbles to monitor the conver-
gence of self-similar fluid profiles, leading to 76 single-bubble simula-
tions. Findings associated with these simulations are detailed in Sec-
tion 6.4.4, where the single-bubble simulations are used to better un-
derstand the global state of convergence of the reference multiple-
bubble simulations and to refine the extrapolated predictions from
Section 6.4.3. We note that single-bubble simulations are run only until
t̃end = L̃vw/(2max(cs, vw)), approximately when the fluid sound shell
reaches the boundary of the simulation domain.

In addition to the reference and single-bubble simulations, I also
run multiple-bubble simulations based on 9 additional distinct bub-
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ble nucleation histories per box size for all strengths, resolutions, and
box sizes, for vw ↑ {0.32/0.36, 0.6, 0.8}, where the lower vw = 0.32 is
used for weak and intermediate PTs and vw = 0.36 for strong ones.
These velocities correspond to deflagrations, hybrids, and detonations,
respectively, except for strong PTs for which also vw = 0.8 corresponds
to a hybrid. This implies a total of 3⇐ 3⇐ 2⇐ 4⇐ 9 = 648 seed simula-
tions from which the statistical variance of the results can be estimated.
We will use these simulations to provide error bars in our measured
quantities corresponding to the standard deviation from the 10 differ-
ent bubble nucleation histories in Section 6.4.

All reference and seed simulations are conducted within the time
range 0 < t̃ → tφ < 32, with the GW spectrum extracted from the
interval t̃init = 16 to t̃end = 32. The time origin t̃ = 0 is set such that the
first bubble nucleates at t̃ = 0.5 (consistent with the time translation
invariance of our equations when the expansion of the Universe is
negligible).

Similarly to Chapter 5 and according to the discussion in Section 5.3.7,
we exclude early times up to t̃init = 16 to focus on fluid perturbations
post-bubble collisions, thereby minimizing realization-dependent ef-
fects on GW production. This approach also suppresses contributions
to the GW spectrum from the initial collisions. For t̃ > 16, we com-
pute Isim(t̃init, t̃fin, k̃) to robustly test the scaling of Eq. (308) and calcu-
late the GW efficiency Ω̃GW and the spectral shape S(kR↑). The time
t̃init = 16 occurs after PT completion when the broken phase has filled
the entire simulation volume, which for the reference nucleation his-
tory with L̃/vw = 20 happens at t̃0 ↗ 10. Additionally, we consider
times t̃ > t̃0 to fit the time evolution of the kinetic energy fraction
K(t̃) = K0 (t̃/t̃0)!b in Section 6.4.5.

In total, in this study, I have performed 1028 simulations, summa-
rized in Table 5, with an estimated computational time of approxi-
mately 106 CPU hours. Each high-resolution simulation with N = 512

requires around 103 CPU hours.

6.4 Numerical results

6.4.1 Overview

This work has produced a large and complex set of data, results, and
conclusions, which may be difficult to discern due to the sheer volume
and rather technical complexity of the presentation. Therefore, before
delving into the details of our numerical results, I would like to offer
some context. In summary, our findings can be outlined as follows:
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• Simulations of strong first-order PTs with ω = 0.5: In this work, I up-
date the results from Chapter 5, particularly focusing on strong
PTs across a wide range of wall velocities. I conduct systematic
convergence studies and, for the first time, provide the full GW
spectra for strong PTs. In Section 6.5, I present a template for
the expected GW spectrum from compressional fluid perturba-
tions, extended to decaying sources as discussed in Sections 6.2.2
and 6.2.3, incorporating insights from our simulations. This tem-
plate is the relevant result for the reader interested in using our
results in phenomenological studies. Figures 25 and 26 illustrate
central 2D slices of the fluid velocity |v(x̃)| and enthalpy w(x) at
four different simulation times for weak and intermediate PTs
with a box size of L̃ = 40vw.

• Template parameterizations: Ideally, the numerical findings should
be expressed in terms of as few physical quantities as possible,
thus facilitating their use in further studies and indicating the
correct underlying physical relations have been identified. In our
simulations, all simulation variables and quantities are dimen-
sionless, meaning that φ/H↑ does not enter the numerical setup
and results but only appears when recovering physical quan-
tities. This and the assumed linear GW spectrum growth rate
motivated the use of the dimensionless GW spectrum growth
rate Q → in Equation (286) in the previous Chapter 5 and to inter-
pret results in the system variable normalization with φ. While
this offered convenience, it may not align optimally with phys-
ical expectations. In this work, motivated by the parameteriza-
tion (109), we instead measure quantities based on R↑ and K2

int,
as in Equation (308), which allows presenting the essential re-
sults in a straightforward physically motivated manner, with an
almost time-invariant GW efficiency Ω̃GW. This approach accom-
modates deviations from the linear growth of the GW amplitude
with the source duration, as expected for stationary sources and
discussed in Section 6.2.2 and 6.2.3. Additionally, we provide a
definition for K2

int,exp to incorporate the effect of cosmic expan-
sion, which can be accommodated a posteriori in Equation (318)
following the realization that the fluid equations of motion are
conformally invariant.

• Development of nonlinearities: For strong and some intermediate
PTs, we observe several phenomena likely arising from the non-
linear dynamics of the fluid. First, we notice that the growth of
the GW amplitude with the source duration begins to deviate
from the expected linear trend, approaching saturation toward
the end of the simulations, possibly as a result of fluid damp-
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ing. This observed decay in the fluid’s kinetic energy, which is
found to be accurately modeled as a power-law within the simu-
lation duration following PT completion, could suggest that non-
linearities are causing a cascade from larger to smaller scales in
the fluid perturbations, leading to energy dissipation at smaller
scales. This effect might impact the UV portion of the GW spec-
trum, potentially leading to a shift from the expected k!3 behav-
ior found for sound waves [1, 25, 67, 69–71, 73, 74] towards a
shallower turbulent spectrum of k!8/3 [75, 77, 92–96], which, in
fact, is supported by our measured UV slopes. We demonstrate
the numerical robustness of our results throughout this Section
and discuss future studies needed to verify some of our findings.
In particular, in Section 6.4.9, I present a preliminary investiga-
tion of the development of vorticity in our simulations.

Overall, this work aimed to systematically investigate the accuracy
of the simulation results. I thus demonstrate the convergence of the
findings with respect to the grid spacing δx̃ through this Chapter, with
a particular focus on the convergence of energies measured in the sim-
ulation in Section 6.4.3. In Section 6.4.5, the time dependence of the
fluid kinetic energy ratio K is analyzed, with the decaying power-law
model presented in Section 6.2.3 fitted to the numerical results.

Section 6.4.6 examines the expected scaling of the GW spectrum
with K2

int and R↑, considering the evolution of the integrated GW am-
plitude with source duration, and computing the GW efficiency Ω̃GW
in accordance with Equation (308). Additionally, this Section provides
an estimate of the expected GW amplitude in flat Minkowski space-
time based on the numerical results from Sections 6.4.3, 6.4.4 and 6.4.6,
as well as in an expanding background using the model from Sec-
tion 6.2.4.

Finally, in Section 6.4.7, the spectral shape of the GW spectrum is
studied, with a particular focus on the UV regime, where deviations
from the expected slope in the sound-wave regime are observed.

6.4.2 Simulation slices

Again, but now, for strong PTs, I wish to present a few 2D time slices
of the simulations to illustrate the rich dynamics and geometry of the
colliding sound shells. I thus show in Figures 25, and 26 central 2D
simulation slices of the fluid velocity |v(x̃)| and the enthalpy w(x̃), at
four different simulation times and box size L̃ = 40vw, but this time
for strong PTs. For a comparison with weak and intermediate PTs, see
Figures 14, 15 and 16 in the previous Chapter 5. The first three slices
are chosen at equidistant times to show the bubble evolution before
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PT completion, while the fourth slice is at the end of the simulation at
t̃ = 32 to highlight the long-term evolution. These parameter choices
correspond to one deflagration and two hybrids. In Chapter 5, we ob-
served the tendency of intermediate PTs to exhibit sharper features at
the end of the simulation compared to weak PTs. With strong PTs, we
observe even sharper features, thus strengthening the hypothesis of
shock formation being the driver of this behavior. While not clearly
visible in the velocity and enthalpy fields, we observe the presence
of macroscopic and sizeable vorticity, which is produced mainly dur-
ing the collision phase. This can be seen in the 2D simulations slices
of Figure 41 in Section 6.4.9, where I discuss preliminary findings on
vorticity.

6.4.3 Convergence analysis of the kinetic energy and GW am-
plitude

In this Section, we focus on the convergence and extrapolation of en-
ergies in multi-bubble simulations. To study the convergence of the
simulations, I conducted simulations for each parameter point {ω, vw}

at four resolutions N ↑ {64, 128, 256, 512} and two box sizes L̃/vw ↑
{20, 40}. Given that our Higgsless simulations employ relatively sparse
grids compared to those with scalar fields [25, 69, 71, 101], the reso-
lution can pose challenges in accurately reproducing the self-similar
profiles induced by uncollided bubbles during the initial simulation
stages. This issue is particularly pronounced for parameter points with
vw ↫ vCJ, where vCJ denotes the Chapman-Jouguet speed, which sepa-
rates hybrids from detonations.

As vw approaches vCJ, the fluid profiles become increasingly thin
hybrids. For our parameters, the Chapman-Jouguet speeds are vCJ =
{0.63, 0.73, 0.89} for ω = {0.0046, 0.05, 0.5}, respectively. Consequently, as
can be seen in Figure 3, very thin profiles are observed when vw = 0.6
for weak PTs, when vw = 0.72 for intermediate PT, and when vw =
0.8 for strong PTs. In these cases, the resolution in ϑ → r/(t ! tn),
where r is the radial distance from the nucleation location, and tn
is the nucleation time, may be insufficient to resolve the self-similar
profiles accurately at the moment of a bubble collision. This is due to
the initially low resolution in ϑ for a fixed N, which improves as time
progresses.

In addition to the resolution requirements for accurately capturing
thin self-similar profiles prior to collisions, we anticipate that high nu-
merical resolutions will be necessary to fully capture the dynamics
of fluid perturbations as they transition to nonlinear behavior during
and after collisions. This increased resolution is essential to resolve the
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Figure 25: Central 2D simulation slices of the fluid velocity amplitude |v(x̃)|
and enthalpy w(x̃) for a strong PT with ω = 0.5 The resolution is
N = 512, and the box size L̃ = 40vw. The first three slices are cho-
sen at equidistant times to show the bubble evolution before PT
completion, while the fourth slice is at the end of the simulation
to display the long-term behavior. The upper (lower) panels corre-
sponds to a deflagration with vw = 0.5 (hybrid with vw = 0.6).
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Figure 26: Same as the Figure 25, but for vw = 0.8, corresponding to a hybrid.
Note that for weak and intermediate PTs, this wall velocity gives
rise to detonation solutions.

complex interactions and evolving features of the fluid as the dynam-
ics become more intricate.

To assess the convergence of energies in the simulations, we analyze
the numerical results as a function of N and aim to enhance our mea-
surements by extrapolating the results to the limit N ⇓ →, assuming
the validity of our extrapolation scheme.

On general grounds, one can define a specific number of grid points
N↑ such that for N ∞ N↑, the simulation results appear to converge
as N increases beyond this threshold. Thus, when N ∞ N↑, we can as-
sume that the measured quantities are close to their continuum values
in the limit of infinite resolution.

Empirically, we observe that with insufficient resolution, the ki-
netic energy fraction K is generally underestimated. This underestima-
tion occurs because the velocity profiles appear smeared around their
self-similar counterparts, resulting in correspondingly lower velocities.
These realizations motivated us to employ the following function to
model the convergence of the kinetic energy fraction:

K =
K→

1+ (N↑/N)a
, (328)
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where a, N↑, and K→ are found by fitting the numerical results as a
function of N. The values of K→ will be called extrapolated or continuum
values. We furthermore define the relative error

εK → |K→ !K512|

K→
= (δx̃/δx̃↑)

a +O(δx̃2a) , (329)

where δx̃↑ = L̃/N↑ and K512 is the measure value of K at highest reso-
lution N = 512. Note that the value of a in Equation (328) indicates the
degree of numerical convergence. This effect degree of convergence,
however, is a result of the geometry of the dynamics itself and is not
fundamentally related to the degree of the employed KT+RK3 scheme
defined in (207), which is second order in spatial discretization.

A few words of caution are warranted: Equation (328) is guided by
the empirical observation that kinetic energies of single bubbles are,
in almost all cases, underestimated 2. Therefore, as we increase reso-
lution, the profiles sharpen and we expect to measure kinetic energies
closer to K→. However, this also implies more prominent nonlinear
dynamics. In fact, in certain cases, as we reach a critical resolution, nu-
merical viscosity and under-resolution of self-similar profiles appear to
be dominated by the emergence of nonlinear dissipation of energy. In
these cases, we will see a decrease in the kinetic energy with increased
resolution and the breakdown of the convergence prescription (328).
Thus, when we observe that the energy for N = 512 is smaller than
for N = 256, i.e., K512 < K256, we deem (328) inappropriate and
resort to measured values for the highest resolution, so as to report
K→ = K512 with corresponding relative error 329 instead defined as
εK → |K512 !K256|/K512.

Furthermore, while Equation (328) was justified from considerations
of the kinetic energy alone, we will use it more generally. In particu-
lar, we will use the convergence prescription (328) to study the con-
vergence of the energy fraction K0 entering the power-law decay for-
mula (309) as obtained from the fitting procedure in Section 6.4.5. We
will use it for the RMS kinetic energy fraction, computed from Kint in
Equation 307 as T̃GW K2

rms → K2

int, where T̃GW → t̃end ! t̃init = 16 corre-
sponds to the time interval over which the GW spectrum is computed.
And we will use if for the GW amplitude Iint

sim →
↔
Isim d lnk, where

Isim(t̃init, t̃end, k̃) is defined in (302) for initial and final times t̃init = 16

and t̃end = 32. Thus, we will make the replacement in (328) K ⇓ K0,
Krms and Iint

sim.
In Figure 27, I show the results of fitting Equation (328) to the ref-

erence simulation energies for the various resolutions. Since smaller

2 The only exception being strong deflagrations for vw = 0.36 and vw = 0.4, for which
the kinetic energy is in fact marginally overestimated (see the top-right plot in Fig-
ure 28.)

166



box size L̃/vw = 20 yields better conference, I only show data points
and fits for these simulations. In table 6, I indicate the resulting val-
ues of the fit parameters of Equation (328) for the RMS kinetic energy
fraction Krms

→ , normalized by the single-bubble kinetic energy fractions
Kω as in Equation (168), aK, and the relative errors εK as defined in
Equation (329), for the set of PTs shown in Figure 27. I also indicate
numerical values of the extrapolated Iint

→ , the fit parameter aI, and the
relative error εI. While K0 and its extrapolated values will ultimately
not be used in the final GW template, it is a robust measurement of the
kinetic energy in the system and serves to demonstrate the usefulness
of the extrapolation scheme (328). Thus, we neglect giving numerical
values for it in the table. We will instead attempt to improve upon the
estimate of K→

0
by considering the results of single-bubble simulations

in Section 6.4.4, leading to a new estimate, K0, in Equation (334), which
eventually is the value we use in the final templates in Section 6.5.1.

α vw K
rms
→ /Kω aK 1K I

int
→ aI 1I

0.0046 0.36 1.04 1.34 6.41↓ 10
!2

9.97↓ 10
!10 1.88 2.04↓ 10

!2

0.44 1.03 1.29 1.47↓ 10
!1

2.11↓ 10
!9 1.64 8.26↓ 10

!2

0.52 1.07 1.11 4.33↓ 10
!1

5.35↓ 10
!9 1.34 3.35↓ 10

!1

0.60 0.35 1.06 5.44↓ 10
!1

5.36↓ 10
!9 1.36 3.83↓ 10

!1

0.68 0.78 1.16 3.08↓ 10
!1

2.35↓ 10
!9 1.51 1.87↓ 10

!1

0.76 0.76 1.26 1.69↓ 10
!1

1.19↓ 10
!9 1.69 8.38↓ 10

!2

0.05 0.36 0.96 1.35 4.80↓ 10
!2

8.65↓ 10
!6 2.16 6.70↓ 10

!3

0.44 0.82 1.40 6.72↓ 10
!2

1.24↓ 10
!5 2.04 1.26↓ 10

!2

0.52 0.55 1.46 7.21↓ 10
!2

1.33↓ 10
!5 2.14 1.20↓ 10

!2

0.60 0.31 1.54 6.52↓ 10
!2

1.04↓ 10
!5 2.43 2.13↓ 10

!2

0.68 0.25 1.61 5.52↓ 10
!2

8.10↓ 10
!6 – 3.49↓ 10

!2

0.76 0.48 1.44 7.37↓ 10
!2

6.98↓ 10
!6 2.21 2.28↓ 10

!2

0.5 0.36 0.35 1.25 2.06↓ 10
!2

1.82↓ 10
!3 25.03 7.14↓ 10

!4

0.44 0.32 1.27 2.05↓ 10
!2

2.18↓ 10
!3 – 9.55↓ 10

!3

0.52 0.29 1.44 1.26↓ 10
!2

2.79↓ 10
!3 – 1.74↓ 10

!2

0.60 0.25 1.85 3.97↓ 10
!3

2.56↓ 10
!3 – 3.68↓ 10

!2

0.68 0.21 – 3.97↓ 10
!3

2.26↓ 10
!3 – 8.88↓ 10

!2

0.76 0.18 – 3.91↓ 10
!2

1.80↓ 10
!3 – 1.80↓ 10

!1

Table 6: Numerical values of the fit parameters a, Krms
→ , and Iint

→ of Equa-
tion (328) for the RMS kinetic energy fraction Krms/Kω and the inte-
grated GW amplitude Iint

sim, as shown in the middle and lower panels
of Figure 27. Relative errors ε are computed by comparing the extrap-
olated values to those obtained in the largest resolution simulations
N = 512 when the fit is appropriate. When the fit is inappropriate (in-
dicated with ‘–’ in the values of a) we instead compare values among
the two largest resolutions N = 256 and N = 512.

Empirical observations show that the parameter a generally falls be-
tween one and two. This suggests that the system’s dynamics reduce
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Figure 27: Plots showing the kinetic energy fraction K and the integrated GW
spectrum Iint

sim as a function of grid spacing δx̃/vw = (L̃/vw)/N for
simulations with L̃/vw = 20. Upper panel: Fit of Equation (328) to
least-squares fitted values of the parameter K0 in Equation (309)
for simulations of resolutions N ↑ {64, 128, 256, 512}, normalized
to Kω (defined from self-similar bubbles in Equation (168)). Solid
lines indicate the fits, dots the data, and stars the extrapolated val-
ues. The left, middle, and right panels indicate weak, intermediate,
and strong PTs, respectively. Middle panel: Same as upper panel,
but for Krms → Kint/T̃

1/2

GW normalized to Kω. Note that for strong
PTs, the fit is inappropriate as per the definition in the main text
for vw = 0.68 and vw = 0.76, in which case we instead connect
the data points with dotted lines and indicate extrapolated values
with the value at N = 512. Lower panel: Same as upper panel, but
for Iint

sim normalized by a the product of Ω̃GW ∼ 10!2 [25, 69, 71]
and T̃GWK2

ω
R↑φ, based on the expected scaling of Equation (308).

Both Krms and Iint
sim are computed for t̃init = 16 and t̃end = 32, with

T̃GW = 16.
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the effective convergence rate compared to the expected second-order
accuracy of the numerical KT scheme, as discussed in Chapter 5.8.
Nevertheless, for most PTs, except those with highly confined profiles
where vw ↫ vCJ for weak, the relative errors fall below 10%, as shown
in Table 6. For confined profiles, the relative errors are significant, in-
dicating a higher degree of uncertainty in the extrapolated result K→.
In such cases, the lack of convergence propagates artifacts to the GW
spectrum, leading, e.g., to an inaccurate resolution of the peak position
due to the limited dynamical range for weak PTs. Additionally, this
lack of convergence is possibly responsible for masking the expected
UV behavior S(k) ∼ k!3 with an exponential decay. The spectral shape
is analyzed in Section 6.4.7.

As for the appropriateness of the extrapolation scheme, we note that
for a few parameter points marked by "!" in Table 6, the measured
energy of N = 512 is lower than that of N = 256, in which case we
discarded the usage of the scheme. For GW amplitude, the breakdown
of the scheme is particularly evident for strong PTs for most of the wall
velocities. However, the extrapolation scheme remains appropriate for
weak and intermediate PTs. Even when assessing relative errors based
on simulations with N = 512 and N = 256, these errors remain very
small.

6.4.4 Corrections to the kinetic energy for multiple bubbles

As is evident from Equation (308), the GW amplitude is directly gov-
erned by the squared kinetic energy in the system. In this generalized
form accounting for decaying sources, the kinetic energy is character-
ized by the time integral of the kinetic energy fraction, Kint. In Sec-
tion 6.5.1, I ultimately provide templates for the present-day GW spec-
trum, which are derived from Kint and Kint,exp in (310) and (318) assum-
ing the power-law decay (309), which consequently requires knowl-
edge of the continuum limit of K0. To enhance the accuracy of our sim-
ulation measurements, we previously explored in the previous Section
an extrapolation scheme aimed at both understanding the convergence
behavior of our simulations and deriving continuum values. This gave
as us an estimate K→

0
of the continuum value of K0 using the extrapo-

lation scheme (328). However, in the case of weak PTs, relatively large
extrapolations were required, potentially introducing significant uncer-
tainties in these estimates.

In this Section, I will outline an alternative method to obtain a po-
tentially more robust estimate K0 for the continuum limit of K0. This
method consists of comparing the convergence of multi-bubble simu-
lations to that of simulations with a single centrally nucleated bubble,
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for which we a priori know the self-similar asymptotic solutions. For
visual depictions of the self-similar velocity and enthalpy profiles, con-
sult Figure 3. We previously defined the kinetic energy fraction K such
that 3̄K(t̃) → ↓3kin(x, t̃)↔, where ↓3kin↔ represents the kinetic energy
density averaged over the simulation volume V . However, we note
that Kω for single bubbles, defined in (168), is taken as the average of
the kinetic energy density fraction induced by a single bubble over the
broken-phase volume. Then, defining the ratio of the volume in the
broken phase (bp) to the total volume,

V(t̃) =
Vbp

V
, (330)

we can define the analog of Kω for multiple bubbles as the ratio
K(t̃)/V(t̃). Before fluid sound shells collide, and in the limit of infi-
nite resolution, this ratio should be identical to Kω after a very short
transient period during which the fluid profiles develop. Deviations
from Kω before collisions thus correspond to an artifact due to numer-
ical inaccuracy. I plot the ratio K(t̃)/[V(t̃)Kω] as solid lines in Figure 28
for all four resolutions N ↑ {64, 128, 256, 512} with increasing opacity.

In the multi-bubble simulations, we can similarly define the kinetic
energy fraction for each individual bubble i before its first collision as
3̄Ki(t̃) = ↓3kin,i(x, t̃)↔. Additionally, we define the ratio Ki(t̃)/Vi(t̃) in
analogy with Kω, where Vi now represents the fractional volume of
the broken phase occupied by each bubble i.

To monitor the time-dependence of Ki, we simulate single bubbles
nucleated at the center of the simulation box (see ‘single-bubble sim-
ulations in Table 5). As the convergence of the single-bubble profiles
depends on the resolution in ϑ → r/(t! ti), where ti is the nucleation
time of the bubble i and r the radial distance to the nucleation cen-
ter, we empirically find that doubling the resolution from N to 2N is
equivalent to evaluating the profile at time 2(t̃ ! t̃i), an observation
which already noted in Chapter 5. Hence, the kinetic energy of single-
bubble simulations (with ti = 0) obeys K2N

i
(t̃)/Vi(t̃) = KN

i
(2t̃)/Vi(t̃)

to an excellent degree and it suffices to run single-bubble simulations
for the largest resolution N = 512. These simulations are run approx-
imately until the front of the fluid profile collides with its own mir-
ror image at the edge of the simulation box, which occurs around
t̃sb

end = L̃vw/2/max(cs, vw).3

3 Note that this t̃sb
end (where sb stands for “single-bubble” simulations) is always smaller

than t̃end = 32, the final time of the multiple-bubble simulations. Thus, in producing
Figure 28, we extend the fit of the observed convergence for times greater than t̃end,
enforcing that in the limit of infinite time, it converges to the value of Kω. This extrapo-
lation always represents Ki(t̃) accurately from the measured values (below 1% error).
In any case, since we never use values of Ki(t̃) at times larger than the initial colli-
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Figure 28: Time evolution of the kinetic energy fraction in the broken-phase
volume K(t̃)/V(t̃) for multiple-bubble simulations (solid lines), nor-
malized by the single-bubble Kω, for different resolutions N =
{64, 128, 256, 512} in increased opacity and box size L̃/vw = 20.
Results are shown for weak (left panels), intermediate (middle
panels), and strong (right panels) PTs, and for a range of wall ve-
locities vw = {0.36, 0.48, 0.6, 0.8}. Dashed lines correspond to the
ratio Kε(t̃)/Vε(t̃) computed from the single-bubble simulations,
such that the departures between the solid and dashed lines indi-
cate the time when fluid-shell collisions take place in the multiple-
bubble simulations. Black dots are the values of K0 obtained from
the fit K(t̃) = K0(t̃/t̃0)

!b studied in Section 6.4.5 for different N.
Red and green dots correspond to the estimated values K0 (see
Equation (333)) and K→

0
(obtained from the convergence analysis

of Section 6.4.3). Orange stars correspond to the factor S (see Equa-
tion (333)) at the collision t̃coll, used to correct K0.
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Then, in the full simulations and before fluid sound shells collide,
the state of the simulation is exactly the superposition of single bubbles
nucleated at times t̃i < t̃ in the bubble nucleation history. We thus
construct the sum

Kε(t̃) →
↑

i:{t̃i<t̃}

Ki(t̃! t̃i) , (331)

which corresponds to the expected kinetic energy fraction for multiple-
bubbles simulations in the hypothetical case that no single bubble
would collide, following the bubble nucleation history up to time
t̃. Then, before the first fluid-shell collision occurs, we have that
Kε(t̃) = K(t̃), while Kε(t̃) starts to deviate from K(t̃) after the first
collision at t̃coll.

Similarly, we can construct the fractional broken-phase volume oc-
cupied by the superposition of single bubbles as

Vε(t̃) →
↑

i:{t̃i<t̃}

Vi(t̃! t̃i) , (332)

which can become larger than one, as it ignores interactions between
bubbles. However, the ratio Kε/Vε is bounded by Kω.4 I plot the time
evolution of the ratio Kε/Vε as dotted lines in Figure 28 using the
nucleation history of the reference multiple-bubble simulations with
L̃/vw = 20.

The ratio Kε/Vε indicates the global degree of convergence of the
full multiple-bubble simulations in the hypothetical case that all bub-
bles keep evolving without interacting with other bubbles. Therefore,
the ratio K/V computed in the multiple-bubble simulations is initially
identical to Kε/Vε at times t̃ < t̃coll. However, as collisions take place,
we clearly see in Figure 28 that both fractions deviate from each other,
as a consequence of mainly four phenomena: (1) the simulation shell
profiles stop converging towards self-similarity upon colliding, and
since the kinetic energy of the un-collided bubbles is in general un-
derestimated, also the maximum value of K(t̃)/V(t̃), which is realized
quickly after the first collision, will be underestimated; (2) oscillatory
conversion between thermal and kinetic energy; (3) upon collisions, the
fluid self- and inter-shell interactions may be nonlinear and dissipate
kinetic energy, leading to the decay studied in Section 6.4.5; and (4)

sion time, it does not affect the analysis and it is only used to indicate the expected
convergence of the self-similar profiles in Figure 28.

4 This bound holds for all considered PT parameter points, except for strong PTs with
vw = 0.36 and vw = 0.4, where values of Kε/Vε ≿ Kω are observed prior to collisions,
likely due to numerical oscillations at the shock front, as can be seen in the upper-right
panel of Figure 28. However, as time progresses, the ratio asymptotically approaches
Kω.
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numerical viscosity dampen the kinetic energy. The first and last phe-
nomena are purely numerical, while the remaining two are physical
effects.

In Figure 28, we mark with orange stars the time of first collision
t̃coll, which is always very close to the time of maximum degree of con-
vergence, as collisions affect the development of the fluid-shell profiles
at later times. Thus, we can attempt to compensate for the underesti-
mation of the kinetic energy fraction due to insufficient resolution at
t̃ > t̃coll multiplying K(t̃) by the factor S = V(t̃coll)Kω/K(t̃coll), effec-
tively correcting to the expected value of Kω at the time of the first
collision when at which time we are close to peak convergence. In par-
ticular, the kinetic energy fraction K0 entering as the fitted parameter
in Equation (309) can be corrected to the value

K0 = SK0 =
V(t̃coll)Kω

K(t̃coll)
K0 . (333)

In Figure 29, I plot K0 obtained for numerical resolutions N ↑
{64, 128, 256, 512} as well as the corresponding vacuum energy trans-
fer efficiency efficiency ϖ0, defined by

K0 → ϖ0 ω

1+ω
, (334)

in analogy with that of self-similar profiles in (166). We observe a gen-
eral trend where K0/Kω ≿ 1 for vw < cs, and K0/Kω ↫ 1 for vw > cs.
Averaging K0 over the PT parameters vw and ω yields the meanmax

min
values

K0 = 0.84+0.24
!0.29 Kω , (335)

implying that the conventional use of Kω for estimating kinetic en-
ergy could overestimate the GW production by as much as a factor
of (Kω/K0)2 ∼ 0.55!2 ∼ 3. For different PT parameters (ω and vw), the
values in Figure 29 can be used to predict the corresponding correction
to the kinetic energy entering the GW amplitude.

In comparison to the extrapolated value of K0 shown in Figure 27,
we observe a more rapid convergence of K0 when comparing the re-
sults from the two highest resolutions, N = 256 and N = 512. By
accounting for the known convergence behavior of the self-similar pro-
files in the calculation of K0, we propose that it constitutes a more
robust estimate of the true value at t̃0 than K→

0
. Additionally, the result-

ing values are closer to Kω, thus offering a more conservative estimate
and minimizing potential deviations from Kω, which might otherwise
be attributed to numerical artifacts. Nevertheless, it is important to
recognize that under-resolution during the collision phase could sig-
nificantly impact the subsequent evolution of the kinetic energy, par-
ticularly when nonlinear effects dominate the dynamics.
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Figure 29: Upper panel: Values of the convergence-corrected continuum limit
estimate K0 of K0 as defined in (333) for resolution N = 512, nor-
malized to Kω for self-similar profiles defined in Equation (168), for
weak (left panel), intermediate (middle panel), and strong (right
panel) PTs, as a function of vw. Lines in increasing opacity cor-
respond to increasing numerical resolution N ↑ {64, 128, 256, 512}.
The vertical solid gray line indicates the sound speed, cs, while
the dashed lines indicate the Chapman-Jouguet velocity, vCJ. Er-
ror bars show the standard deviation from 10 different bubble
nucleation histories. Lower panel: Kinetic energy efficiency ϖ0 →
K0(1 + ω)/ω defined from K0 as defined in (333) for resolution
N = 512, for weak (blue), intermediate (red), and strong (orange)
PTs. I also plot ϖω (black) for self-similar solutions as defined in
Equation (166). The vertical line corresponds to cs, and vCJ is indi-
cated by the dotted gray line.
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6.4.5 Kinetic energy evolution

In this Section, I will demonstrate the time-evolution and decay of the
kinetic energy fraction K in the simulations. In particular, I will present
fits of the power-law decay prescription (309).

To begin this discussion, consider first the upper panel of Figure 30,
where I plot K(t) for the largest resolution simulations N = 512 as
well as the fit (328) to demonstrate the overall evolution. This figure
makes apparent what we have already discussed in the previous Sec-
tion: the kinetic energy is underestimated due to incomplete conver-
gence (which is evident since I normalize to Kω). At later times when
t̃ ≿ t̃0 ′ 10), we generally observe a decay in kinetic energy, which is
more or less pronounced depending on the PT strength and velocity
profiles.

In addition to the time decay of K, we observe fluctuations in time.
These fluctuations are associated with oscillatory conversion between
kinetic and thermal energy, originating in the superposition of com-
pressional modes. This conversion is indeed confirmed since I showed
in Section 5.4.2 that the simulations conserve T00 to machine precision.

To characterize and quantify the decay, we use the power-law decay
prescription (328), an equation which we fit to the numerical data of
K(t̃) at times t̃ > t̃0 after PT completion, i.e., we fit

K(t̃ > t̃0) = K0

(
t̃

t̃0

)!b

, (336)

where b indicates the power-law decay rate of K. This power-law decay
prescription accurately fits the numerical data, and we have checked
that it remains accurate up to t̃end = 64 for a strong PT with ω = 0.5
and vw = 0.8. Based on this power-law decay, we define the half-life of
the kinetic energy as the time when K(t̃0 + t̃1/2) =

1

2
K0, i.e.,

t̃1/2 =
(
2

1

b ! 1
)
t̃0 . (337)

In the lower panel of Figure 30 I highlight the power-law descrip-
tion by plotting in log-log both the kinetic energy K(t) as well as the
fit (336), but for the different resolutions N = {64, 128, 256, 512}. To clar-
ify the dependence of the decay on resolution, I normalize all plots to
K0, making evident how the slopes compare.

Since the kinetic energy is typically damped by numerical viscosity,5

it is generally expected that reducing the grid spacing mitigates this
decay, as evidenced for weak and most intermediate PTs. This expected
behavior is indeed observed for all weak PTs and some intermediate,

5 In the Kurganov-Tadmor scheme used in our simulations [1], the numerical viscosity
is expected to scale with (δx̃)3 [112] .
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Figure 30: Evolution of the measured kinetic energy fraction K(t̃) normal-
ized to the single-bubble values Kω (see Equation (168)) for weak
(left panels), intermediate (middle panels), and strong (right pan-
els) PTs, for N = 512 (solid lines) and L̃/vw = 20, and the same
wall velocities as those in Figure 27. Dashed lines indicate the fits
to the power-law decay of Equation (336) at times t̃ > t̃0. Values
corresponding to K0/Kω are marked with circles. In the lower pan-
els, the kinetic energy fraction is shown for different numerical
discretizations N = {64, 128, 256, 512} (solid lines with increasing
opacity), normalized to the corresponding values of the fit K0 at
each resolution N. The results for each vw are shifted by a con-
stant to distinguish between wall velocities. The presentation in
the lower panels is chosen to emphasize the dependence of the
time decay on resolution.
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evident though the clearly decreasing steepness of slopes in the lower
panel of Figure 30 and the increasing values of the lines of b in the left
column of Figure 31, as we increase the resolution.

For strong PTs and certain intermediate PTs with thin hybrid profiles
(vw ↫ vCJ), the trend of reduced decay with increased resolution re-
verses. In these scenarios, the decay of kinetic energy actually becomes
steeper as resolution increases. This enhanced decay with higher reso-
lution suggests that the fluid sound shells, which carry greater kinetic
energy at the time of collision, experience amplified nonlinearities that
may eventually dominate over decay due to numerical viscosity.

Figure 31 displays the fit of the decay index b (left column) and the
half-life t̃1/2 (right column) as functions of vw for weak, intermedi-
ate, and strong PTs.6 In the right panel of Figure 31, we also plot the
eddy turnover time t̃eddy = (φR↑)/

√
Kω, based on the kinetic energy

ratio expected for un-collided bubbles, which corresponds to the time
scale of fluctuations in the fluid and is expected to determine the de-
cay time into turbulent motion. We compare t̃1/2 to t̃eddy in Figure 31.
The eddy turnover time is t̃eddy ↗ 5 for strong PTs, t̃eddy ↗ 10–30
for intermediate PTs, and t̃eddy ∼ O(100) for weak PTs. Therefore, as
seen in Figure 31, for strong PTs, nonlinearities are expected to have
developed within the simulation duration. For some intermediate and
weak PTs, the eddy turnover time occurs towards the end of our sim-
ulations, suggesting that nonlinear evolution may have started, while
for the remaining cases, it is likely not as developed. To evaluate the
onset of vortical motion and turbulence in the simulations, I demon-
strate the development of vorticity and present quantitative results in
Section 6.4.9.

For weak PTs, the rate of kinetic energy damping is greatly reduced
as we increase the resolution, which we interpret as a reduction of
the numerical viscosity (see footnote 5). This observation, therefore,
means that for weak PTs, decay is always dominated by numerical
viscosity. Only for the hybrid solution with vw = 0.6 ↫ vCJ, when
larger velocities can be achieved (see self-similar profiles in Figure 3),
does b (and hence t̃1/2) appear to stagnate with increasing resolution,
pointing towards the onset of resolving the physics responsible for the
damping.

The results are more interesting in the case of intermediate PTs. For
both small and large vw, corresponding to subsonic deflagrations and
detonations, respectively, b decreases with increasing resolution. How-
ever, for a large range of intermediate velocities vw ↑ {0.52, 0.6, 0.68} ↫
vCJ, the trend is reversed for the highest resolutions. We interpret this

6 In this case, we do not extrapolate to infinite resolution due to the complex behavior of
the index. Instead, we use the values obtained from the highest-resolution simulations
with N = 512 and the best UV resolution, L̃/vw = 20.
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Figure 31: Decay index b (left panel) and half-life t̃1/2 (right panel) as a
function of vw for N = {256, 512} in increasing opacity for weak
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with t̃1/2 as we expect both time scales to be inversely propor-
tional to Kω. Error bars in the left panel show the standard devia-
tion from 10 different bubble nucleation histories for N = 512.

point of reversal as a transition from a decay of the kinetic energy
dominated by numerical viscosity to a decay determined by the devel-
opment of nonlinearities.

For strong PTs, we consistently observe that increasing the numeri-
cal resolution N leads to a more pronounced decay of kinetic energy,
suggesting that physical nonlinear energy dissipation is dominant over
the effects of numerical viscosity. As previously discussed, this is antic-
ipated since the eddy turnover time, t̃eddy ↗ 5, which marks the onset
of nonlinearities, falls within the timeframe of our simulations.

Finally, let me comment on the fact that a similar decay of the kinetic
energy has already been found in coupled scalar-fluid simulations of
intermediate PTs in [71, 101]. Since their resolution is substantially
larger, this points towards the physicality of the decay.
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6.4.6 Time evolution of the integrated GW spectrum and GW
efficiency

In Figure 32 (upper panels), I present the time evolution of the inte-
grated GW amplitude Iint

sim →
↔
Isim d lnk, where Isim(t̃init, t̃,k) is eval-

uated at t̃init = 16, and t̃ varies from t̃init to t̃end = 32. For weak and
intermediate PTs, the evolution with the source duration t̃ ! t̃init is
nearly linear in most cases (except when vw ↫ vCJ), aligning with
the expected stationary behavior in the sound-wave regime as we dis-
cussed in Section 6.2.2. In these scenarios, the kinetic energy K remains
relatively constant during the simulations (see Figure 30). However,
significant decay in K results in deviations from linear growth, consis-
tent with expectations from the generalized locally stationary UETC,
which I discussed in Section 6.2.3.

To verify the validity of Equation (308), derived under this assump-
tion, I plot the upper panel of Figure 32 the following ratio:

Ω̃GW(t̃) =
Iint

sim(t̃init, t̃)
K2

int(t̃init, t̃)(φR↑)
. (338)

The validity of Equation (308) under the assumption of a locally sta-
tionary UETC is then inherited from the observed time-independence
of this ratio, since then, we can meaningfully measure the GW effi-
ciency Ω̃GW also in the case of decaying K(t). It is important to note
that when K does not decay significantly over time, we recover the
expected linear growth, K2

int ⇓ K2 T̃GW.
For weak PTs with ω = 0.0046 and vw = 0.6, corresponding to a con-

fined hybrid PT (see Figure 3), K exhibits a steeper decay compared
to other wall velocities, as is evident from Figure 30. This decay, while
not very strong, nevertheless implies that the growth of the GW ampli-
tude deviates from linear and weakens over time. A similar behavior
is observed for confined hybrids in intermediate PTs with ω = 0.05
and wall velocities vw ↑ {0.6, 0.68} ↫ vCJ. For these parameters, as can
be seen in Figure 32, the GW amplitude grows slower than linearly
with the source duration. For strong PTs, the kinetic energy exhibits
significant decay across all wall velocities during the simulation time
frame, leading to a appreciable deviation from linear growth in the
GW amplitude.

However, as illustrated in Figure 32, despite the significant decay in
K, the GW amplitude grows in a manner that keeps the ratio Ω̃GW(t̃)
nearly constant. This constancy supports the generalization from lin-
ear growth to a growth proportional to K2

int(t̃), as proposed in Equa-
tion (308), and allows for a robust measurement of the GW efficiency.
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Figure 32: Upper panel: Dependence of the numerical integrated GW ampli-
tude found in the simulations with L̃/vw = 40 and N = 512 as a
function of the source duration t̃! t̃init for weak (left column), in-
termediate (middle column), and strong (right column) PTs. The
integrated GW amplitude is normalized as in the lower panels
of Figure 27 for consistency. Dashed lines exemplify the linear
growth expected under the stationary UETC assumption. Lower
panel: Time evolution of Ω̃GW computed as in Equation (338).

As long as the fit K(t̃ →) = K0 (t̃ →/t̃0)!b accurately describes the nu-
merical results for t̃ → ↑ [t̃init, t̃], which is indeed the case as is evident
from Figure 30, the GW amplitude follows:

Iint
sim(t̃init, t̃) = Ω̃GW K2

0
(φR↑) t̃init (t̃0/t̃init)

2b
[1+ (t̃! t̃init)/t̃init]1!2b ! 1

1! 2b
,

(339)

as defined in (359) but now with t̃0 = t̃init.
Given that Ω̃GW(t̃) remains approximately constant over time after

incorporating K2

int into the scaling of the GW amplitude, when quot-
ing measurements of Ω̃GW(t̃), we always indicate its value at t̃end, the
end of the simulations, unless the complete time evolution is provided.
The resulting GW efficiency, Ω̃GW, is shown in Figure 33 for various
numerical resolutions N and for both box sizes, L̃/vw = 20 and 40. The
extrapolated values of Ω̃→

GW are calculated from (338) using the extrap-
olated values Iint,→

sim and K→
int as per the description in Section 6.4.3. We
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Figure 33: Gravitational wave production efficiency Ω̃GW for weak (left), inter-
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opacity correspond to increasing resolutions N ↑ {64, 128, 256, 512},
while colored lines indicate Ω̃→

GW as computed from the extrap-
olated values of Iint,→

sim and K→
int as per the description in Sec-

tion 6.4.3. Dots and stars mark Ω̃GW as presented in Tables 2 and 3
of [72] corresponding to predictions from the sound-shell model
(SSM) for exponential nucleation of bubbles [72] and scalar field-
hydrodynamical simulations for simultaneous nucleation [71], re-
spectively. Gray dots correspond to SSM values found using the
assumption described in 6.2.2 (following Appendix B of Ref. [73]),
and computed using CosmoGW [166]. Error bars indicate the stan-
dard deviation from 10 different bubble nucleation histories for
L̃/vw = 20 (darker) and 40 (lighter).

compare these estimates of continuum-limit efficiencies with those pre-
dicted by the sound-shell model [70, 72, 73] and those obtained from
coupled scalar field-hydrodynamical simulations [69, 71]. However, it
is important to note that the latter scalar field-hydrodynamical sim-
ulations are based on bubble nucleation histories with simultaneous
bubble nucleation. Simultaneous bubble nucleation, rather than expo-
nential as in our case, generally leads to smaller values of Ω̃GW (see
Tables 2 and 3 in [72]). Note that we have modified the values of Ω̃GW
from [69, 71, 72] to account for that they consider φR↑ = (8π)1/3 vw
instead of the corrected φR↑ = (8π)1/3 max(vw, cs) that we use in Equa-
tion (308).

For weak PTs (ω = 0.0046), the extrapolated values obtained from
the Higgsless simulations accurately reproduce both the numerical val-
ues and the trend of Ω̃GW with vw observed in both the sound-shell

181



model and the coupled scalar field-hydrodynamical simulations. This
is important for two reasons: (1) the agreement between three inde-
pendent approaches lends support to the conclusion that the general
trend may be physical; (2) since weak PTs are expected to be described
by linear dynamics, the limit in which the sound-shell model applies,
we would a priori expect the Higgsless simulations to accurately repro-
duce the sound-shell model results. Astounding agreement between
the two approaches for the wider fluid profiles far from vCJ is thus a
remarkable result, validating both the assumption of linear evolution
of the sound-shell model and the accuracy of Higgsless simulations.

For wall velocities vw ↫ vCJ, however, the two methods deviate. This
may be a consequence of incorrectly extrapolating to the continuum
values since convergence is particularly bad for these thinner profiles.
It can also indicate the transition into the nonlinear regime, as these
particular solutions are associated with larger fluid velocities.

As ω becomes larger, nonlinearities become more relevant and full
3D simulations are necessary to push beyond the reach of the sound-
shell model. Only a few points of reference data for Ω̃GW exist for
intermediate PTs (ω = 0.05) and so far none7 for strong PTs (ω = 0.5).
We note that reference data points Ω̃GW in Refs. [71, 72] are computed
assuming a linear growth with the source duration as in Equation (305).
Hence, incorporating Kint as in Equation (308) can modify the value of
Ω̃GW when the source decays. The extrapolation method described in
Sec. 6.4.3 and presented in Figure 33 as solid lines seem to behave very
well, delivering agreement between the numerical results from both
simulation domains L̃/vw = 20 and 40.

For intermediate PTs, we begin to see deviations from the sound-
shell model, in particular for vw = 0.68 ↫ vCJ. We observe that the
vw-dependence seen for weak PTs has flattened and that the overall
efficiency Ω̃GW is larger. Our findings are consistent with the two avail-
able data points for scalar field-hydrodynamical simulations from [71],
indicating a departure from linearity dynamical evolution and, hence,
from the sound-shell model. We observe that discrepancies with the
numerical results from [71] might arise due to the different nucleation
histories employed - simultaneous in [71] versus exponential in our
simulations). Nevertheless, the extrapolation generally appears reli-
able, as the extrapolated values show good agreement for simulations
with both L̃/vw = 20 and 40.

For strong PTs, we observe significantly higher GW efficiencies over-
all. The deviation from the sound shell model is substantial, and the

7 Reference [101] presents results of ΩGW/ΩGW,exp = Iint
sim/Iint

exp, where Iint
exp would cor-

respond to the value found using Equation (305) with K = Kω and Ω̃GW = 10!2.
The ratio that ref. [101] presents therefore corresponds to a combined estimate of
Ω̃GWK2

rms/K
2

ω
and extraction of Ω̃GW for comparison is not straightforward.
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effects of nonlinear evolution appear to diminish the dependence of
Ω̃GW on the wall velocity.

Averaging the values of Ω̃→
GW, the estimation of the continuum limit,

over vw for each strength ω, we obtain

102 Ω̃→
GW =

⇑
↖↖↖⇓

↖↖↖⇔

1.04+0.81
!0.67 , for ω = 0.0046 ;

1.64+0.29
!0.13 , for ω = 0.05 ;

3.11+0.25
!0.19 , for ω = 0.5 ,

(340)

where the super and subscripts indicate maximum and minimum val-
ues.

Now, let us attempt to transcend the confines of the simulations.
Given the sometimes strong decay of the kinetic energy, we evidently
underestimate the GW amplitude as we source GWs only from t̃init =
16. Furthermore, the source is still active by the end of the simulation
at t̃end = 32, so the measured integrated amplitude has not yet reached
saturation within the simulation. However, if we assume that the time
invariance of Ω̃GW is sustained from the time of PT completion, t̃0 ∼ 32,
at which time we can approximate the GW sourcing begins, up until
some time t̃fin > 32, we can model the GW amplitude beyond the
measurements in the simulation by replacing in Equation (339) t̃init ⇓
t̃0 and t̃ ⇓ t̃fin, and explicitly defining the growth model in terms of
the continuum values K0 reported in Figure 29 and Ω→

GW as reported
in Figure 33, so that

Iint
→ (t̃0, tfin) → Ω̃→

GW K2

0
(φR↑) t̃0

[1+ (t̃fin ! t̃0)/t̃0]1!2b ! 1

1! 2b
, (341)

In fact, now in conformal time, we may potentially do even better by
accounting for cosmic expansion and instead use Equation (321), by
similarly defining

Iint
φ/H

(t̃0, t̃fin) = Ω̃→
GW K2

0
6b(t̃fin ! t̃0)

(
φ

H↑

)
(φR↑) . (342)

Note that the two models are equivalent in the limit of φ/H↑ ⇓ →.
I thus illustrate in Figure 34 GW amplitude growth with the source
duration τ̃sw → t̃! t̃init as modeled in Equation (341) (corresponding to
φ/H↑ = →) and Equation (342), for the two values of φ/H↑ = 1000 and
100. I furthermore indicate the numerical growth of the GW spectrum
as found in the simulations but re-scaled by a factor (K0/K0)2 and
vertically translated by Iint

→ (t̃0, tinit).
This plot constitutes one of the main results of this work, and in-

deed my PhD, as it incorporates the full machinery of the Higgsless
simulations, careful analysis of the results, incorporating systematic
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Figure 34: Plots of the GW amplitude growth with the source duration τ̃sw →
t̃! t̃init as modeled in Equation (341) corresponding to φ/H↑ = →
(solid lines) and Equation (342) (dashed lines), for the two values
of φ/H↑ = 1000 (normal opacity) and 100 (lower opacity). I fur-
thermore indicate the numerical growth of the GW spectrum as
found in the simulations but re-scaled by a factor K0/K0 and ver-
tically translated by Iint

→ (t̃0, tinit) (red line segments). Dots indicate
the eddy turnover time t̃eddy = φR↑/

√
Kω, which determines the

expected scale for nonlinearities to develop (they do not appear in
the plot for weak PTs with vw = 0.4 and 0.8).

extrapolation and understanding of uncertainties, the assumption of
a locally-stationary UETC, generalization of the GW parameterization
template to decaying sources as in (308), the realization that the fluid
equations of motion are conformally invariant, and that thus, the effect
of cosmic expansion may be estimated a posteriori as in Equation (321).

From this plot, we can make a number of interesting conclusions.
Naturally, we expect that the UETC deviates from the locally stationary
description as vortical motion and turbulence begin to dominate the
kinetic energy in the simulation [76, 77, 79, 96]. This can effectively
be modeled by an appropriate choice of the source duration τ̃sw at
which to stop the GW sourcing. A natural choice of the source duration
would therefore be τ̃sw = t̃eddy = φR↑/

√
Kω, as this captures the time-

scale of the formation of turbulence. However, marking with dots in
Figure 34 t̃eddy, it is evident that for strong PTs, t̃eddy occurs well within
the simulation. Yet, it is clear from Figure 32 that the GW efficiency is
constant in this regime under the assumption of a locally stationary
UETC. It appears, therefore, that substantial GW production modeled
by (308) still occurs at times many times larger than t̃eddy, and thus,
that naively taking τsw = t̃eddy may severely underestimate the GW
amplitude.

For strong PTs, source damping is sufficiently strong that the half-
life t̃1/2 is always around 5, as seen in Figure 31. Therefore, for a
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plausible φ/H↑ ∼ 100, the final amplitude of GWs from strong PTs
is always dominated by damping due to nonlinear dynamics rather
than Hubble damping. This is clear from Figure 34, as varying φ/H↑
has only a marginal effect on the saturated GW amplitude. In fact, we
see that already within the simulations duration is the GW amplitude
reasonably close to saturation of the GW amplitude. In these cases,
therefore, the saturated amplitude of the GW spectrum is less sensitive
to the final sourcing time τsw which we know must be larger than
t̃end ! t̃0 > few ⇐ t̃eddy.

For weak PTs, the situation is reversed, with nonlinear damping
subdominant to Hubble damping away from vw ∼ cs if φ/H↑ ∼ 100,
referring to the half-life t̃1/2 in Figure 31. If we similarly assume that
τ̃sw > few ⇐ t̃eddy, the final GW amplitude is dictated by Hubble ex-
pansion, and we are again relatively insensitive to the actual choice of
τ̃sw, and expect that, for as long as (321) reasonably well captures the
effect of expansion, the model (342) constitute a good estimate of the
final GW amplitude.

For weak PTs with vw ∼ cs and most intermediate PTs, the situation
is more subtle, and the final GW amplitude may depend more sen-
sitively on the assumptions on τ̃sw as the hierarchy between Hubble
damping and nonlinear damping is not as prominent, and few ⇐ t̃eddy
and φ/H↑ are of similar order.

I wish to point out, however, that these conclusions do require fur-
ther investigation. For example: (1) One must verify the validity of tak-
ing tinit ⇓ t0 in the models (341) and (342) and validate the constancy
of Ω̃GW in this limit. (2) The power-law decay, which has been ob-
served to remain accurate for all reference simulations and one strong
simulation up to t̃end = 64 for ω = 0.5 and vw = 0.8, may ultimately
break down, thus requiring refined modeling. (3) Even if a power-law
decay remains a good description, it is not clear when the locally sta-
tionary UETC description breaks down and what is the exact relation
with t̃eddy. At this point, we have nevertheless shown that our mod-
els work well within the simulation duration and at least up until
t̃sw ∼ few ⇐ t̃eddy for strong PTs.

Ultimately, while the above paragraphs may deliver some insight,
we avoid making a strong statement on the final value t̃sw and instead
regard it as a free parameter.

6.4.7 The shape of gravitational wave spectrum

In this Section, I analyze GW spectra to present findings on the spec-
tral shape for weak, intermediate, and strong PTs. Specifically, I pro-
vide fits to the data and extract key spectral features. Note that the
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previous results of Chapter 5 for weak and intermediate PTs were ob-
tained using Version 1 of the Higgsless simulation code. Utilizing the
enhanced Version 2, I obtain new results for weak and intermediate
PTs as well as derive new results for strong PTs, utilizing an updated
fitting function to better capture the peak positions and smoothness of
the spectral knee and peak.Example spectra, including fits, are shown
in Figure 35. The main findings including extracted spectral features
are presented in Figure 37.

6.4.7.1 Shape function

The results presented in Chapter 5 demonstrate that the GW spec-
trum ΩGW(k) is characterized by a doubly broken power law. At small
wavenumbers k, a scaling of ΩGW(k) ⇒ k3 is observed, which aligns
with expectations from causality. For large k, the spectrum was found
to decay following ΩGW(k) ⇒ k!3. At intermediate scales, a linear
scaling regime of ΩGW(k) ⇒ k was identified. Beyond a damping scale
ke, the spectrum exhibits an exponential decay, likely due to viscos-
ity effects and limited resolution. At scales approaching the Nyquist
wavenumber kNyq = φN/L̃, ΩGW(k) begins a moderate and artificial
growth, forming a far UV tail. This erratic portion is consistently ex-
cluded from analysis and in plots, but is relatively similar to the UV
tail observed in the GW spectra of the previous Chapter 5 in Figure 17.

To capture the spectral shape S(k̃) → Isim(k̃)/Iint
sim, we use doubly-

broken power law with exponential damping, consistent with the pre-
vious Chapter 5. The spectral shape can then be parameterized as

S(k, k1, k2, ke)

= S0 ⇐
(

k

k1

)n1

1+

(
k

k1

)a1
!n

1
+n

2

a
1


1+

(
k

k2

)a2
!n

2
+n

3

a
2

⇐ e!(k/ke)
2

.

(343)

This shape function is modified with respect to that introduced in [82]
to incorporate an exponential damping factor effective above a certain
damping scale k > ke. The normalization constant, S0, is defined such
that

↔
S, d lnk = 1. The parameters a1 and a2 allow for control over

the sharpness or smoothness of the knee and peak at k1 and k2.
It is noteworthy that the choice of parameters a1 = 2, a2 = 4, n1 =

!3, n2 = 1, and n3 = !3 renders Equation (343) equivalent to the
shape function

Sf(k, k1, k2, ke) = S0 ⇐ (k/k1)
3

1+ (k/k1)
2

[
1+ (k/k2)

4

] ⇐ e!(k/ke)
2

, (344)
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Figure 35: Fits of Equation (343) to the numerical results from weak, inter-
mediate, and strong PTs (in each panel, amplitudes increase with
larger ω) with N = 512 for a range of vw, and for L̃/vw = 20 in
brighter colors (white dots for the numerical data), and L̃/vw = 40
in darker colors (black dots for the numerical data). Red lines in-
dicate wave numbers below the knee k1, green indicates interme-
diate wave numbers k1 < k < k2, and blue corresponds to wave
numbers above the peak k2. The dotted orange lines indicate wave
numbers k > ke, where exponential damping dominates. The light
and dark gray lines indicate the resulting fitted double-broken
power laws excluding the exponential damping. Vertical lines indi-
cate the Nyquist wave numbers kNyqR↑ = φR↑N/L̃.
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used in the analysis of Chapter 5. Note that, to align with the notation
in [82], we have renamed the spectral features q0 ⇓ k1 and q1 ⇓ k2.
Equation (343), however, provides a more robust method for recover-
ing the peak position of the GW spectrum. This robustness is achieved
by enabling control over the sharpness or smoothness of the knees and
peaks, which allows for a more accurate representation of the spectral
features.

6.4.7.2 The fitting procedure

I fit Equation (343) to our numerically derived Isim(t̃init, t̃end, k̃) spectra,
thereby extracting spectral features from the data. The resulting fits are
illustrated in Figure 35 for different wall velocities vw. During the fit-
ting process, I enforce the constraint that k1 < k2. However, I do not
require that k2 < ke. Instead, ke is allowed to assume any value inde-
pendently, which is different from the strategy of Chapter 5. In cases
where k2 > ke, the peak of the spectrum is not accurately resolved
and is pushed to smaller wavenumbers by predominantly numerical
viscosity. Note that in these cases, k2 does not indicate the peak loca-
tion of numerical spectra.

In order to make effective use of the scarce data in the deep IR, I
refrain from binning the first 5 data points, performing average only
over identical discrete momenta. For the remaining data points, we
distribute them into ∼ 1000 equispaced bins, with corresponding wave
numbers defined at the bin center.

Furthermore, in honor of the discussion in Section 5.5.2.1 of the pre-
vious Chapter 5, we neglect the first one or two frequency bins for box
size L̃/vw = 20 and box size L̃/vw = 40 respectively, (corresponding to
the first data point(s) as seen in Figure 35). To highlight the exact fit-
ting region, the red IR tail in Figure 35 is plotted only until the lowest
frequency for which we use the numerical data.

As mentioned previously, I also discard the spurious growth seen in
the far UV tail of the spectrum (see Figure 17 in Chatper 5). In prac-
tice, this means that I discard parts of the spectra beyond which the
exponential damping description breaks down, indicated in Figure 35
as the wavenumber at which the dashed orange lines stop.

To accurately reflect the asymptotic behavior that we observed in the
previous Chapter 5, we prescribe that set n1 = 3 and n2 = 1. However,
as we are looking for indicators of nonlinear dynamics, we explore the
possibility o n3. As is clear in Figure 35, the simulations of strong PTs
demonstrate adequate dynamical range to thoroughly sample the UV
slope of the GW spectrum across more than an order of magnitude
in wavenumber. This is particularly significant because, for strong PTs,
we anticipate deviations from n3 = !3 — the value predicted by the
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linear sound-shell model [70, 72] — if turbulence and nonlinear dy-
namics induce a cascade of energy to smaller sales, thereby making the
UV slope shallower with respect to the otherwise expected n3 = !3. If
the dynamics is described by Kolmogorov turbulence, we expect that
the GW spectrum UV slope scales as n3 = !8/3 [75, 77, 92–96]. We
deem that the UV slope is sufficiently well sampled for both interme-
diate and strong PTs that we can let n3 ↭ !3 when fitting spectra for
strong and intermediate PTs. Conversely, we constrain n3 to be !3 for
weak PTs, as weak spectra generally lack the dynamical range neces-
sary to measure n3 due to thinner shells and k2 ≿ ke.

With these choices, the spectral shape function that we fit to our
numerically derived spectra takes the form

S(k, k1, k2, ke)

= S0 ⇐
(

k

k1

)3 
1+

(
k

k1

)a1
!3+1

a
1


1+

(
k

k2

)a2
!1+(!3)

a
2

⇐ e!(k/ke)
2

,

(345)

where n3 > !3.
I show in figure 35 fits of this function to the spectra for every other

vw. In figure 37, I plot the extracted spectral features k1, k2, ke, and
kpeak as functions of vw for ω ↑ {0.0046, 0.05, 0.5}, normalized to φ

(upper panel) and R↑ (lower panel). In Figure 36, I plot the fitted UV
index n3.

Determining the scale of exponential damping, ke, is essential for as-
sessing the reliability of the measurement of k2. If k2 > ke, we are in a
regime where damping already influences scales larger than the spec-
tral peak. In such cases, even though for weak PTs k2 aligns well with
1/ϑshell above ke (suggesting a trend consistent with physical expec-
tations), caution is warranted when interpreting k2 and kpeak as true
physical parameters. We will simply consider spectra where k2 > ke
as under-resolved.

Assuming that the exponential damping is purely a numerical arti-
fact, it may nonetheless be insightful to consider the spectra without
exponential damping. Therefore, in Figure 37, I also present the shape
function without exponential damping. Differences in peak positions
with and without damping are significant only for weak PTs, box size
L̃/vw = 40, and wall velocities approaching the speed of sound.

Let us proceed to discuss the findings concerning each fitting param-
eter one by one.

6.4.7.3 UV spectral index n3

Figure 36 displays the optimal values of n3 obtained through the fit-
ting procedure. I only display results for box size L̃/vw = 20 due to its
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Figure 36: Fitted UV index n3 ↭ !3. Note that for weak PTs, we fix n3 → !3
(shown for reference). The sample standard deviation, as deter-
mined from the seed simulations, is depicted as 1σ error bars at
selected representative velocities.

larger dynamical range. For weak PTs (shown in blue, for reference),
n3 is constrained to !3. For intermediate PTs, a slight increase in n3

toward approximately !2.5 is observed as the wall velocity increases.
Strong PTs display a similar trend but with the optimal n3 always
larger than !3 and generally around or above !2.75 even for low vw
values.

6.4.7.4 Smoothing vs. sharpening of the knee and the peak

Introducing the new free parameters a1 and a2 allows for more accu-
rate fits compared to those obtained with the simpler shape function
in Equation (344) from Chapter 5. However, while promoting a1 and
a2 to free parameters enhances the fit, it also introduces significant
degeneracies among the fitting parameters. This, in turn, complicates
the reliable extraction and dependence on vw and ω of the spectral
features. Therefore, we opt for a different approach.

Given the peak of the GW spectrum’s significant phenomenological
relevance, I adjust the parameters a1 and a2 to constants that con-
sistently recover the peak position across all wall velocities and PT
strengths. Empirically, we find that slightly sharpening the knee and
smoothing the peak typically enhances peak position recovery and re-
sults in a well-fitted spectrum overall. Determining a1 benefits from
simulations with more data points in the IR; therefore, we exclusively
use box size L̃/vw = 40 for this estimation, resulting in a1 = 3.6 (an
increase from a1 = 2 used in Chapter 5). Conversely, determining a2

benefits from resolving the UV, leading us to exclusively use box size
L̃/vw = 20 and find that a2 = 2.4 (a reduction from a2 = 4 used in
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Chapter 5) is suitable. We utilize these values for a1 and a2 throughout
the study.

6.4.7.5 Spectral feature k1

The spectral feature k1 marks the transition from cubic to linear scaling
of ΩGW(k). We discovered that moderately sharpening this knee with
a1 = 3.6 universally improves the fits. In the left column of Figure 37,
I display the scaling behavior of k1 with vw for ω ↑ {0.0046, 0.05, 0.5},
normalized to φ (upper panel) and R↑ as defined in Equation (135)
(lower panel). I plot values for both box size L̃/vw = 20 and box size
L̃/vw = 40, along with the colored regions in between. Note that error
bars for box size L̃/vw = 20 are significantly larger due to data scarcity
and larger sample variance associated with the fewer number of bub-
bles. Furthermore, as evident from Figure 35, box size L̃/vw = 20 has
sparse data in the IR, making it questionable whether k1 can be re-
liably extracted in the first place. Therefore, results for k1 presented
below pertain exclusively to data derived from simulations box size
L̃/vw = 40.

Grouping all reference simulations together, we find that

k1 R↑
2π

↗ 0.39± 0.11 . (346)

where the uncertainty describes the corresponding standard deviation.
Thus, in this normalization, the resulting variability in k1R↑ among the
wall velocities is only about 27%.

A comparison with results on k1 from Chapter 5 is warranted. The
intricate structure observed for weak PTs featuring a bump around ve-
locities vw ∼ 0.56 is no longer observed, probably because of the more
robust fitting function now accommodating a sharpening of the knee.
Overall, the scatter with wall velocity has reduced significantly com-
pared to the previous results where k1 varied by a factor of ∼ 6 across
the range of wall velocities. We furthermore recognize the decreasing
trend with k1/φ normalization, as seen in the upper left plot in Fig-
ure 37, as a result of normalizing to the wrong underlying scale, 1/φ,
rather than the typical scale of fluid perturbations R↑. With the more
justified R↑ normalization, the residual variability with wall velocity
is small, and the complex behavior that was observed in Chapter 5 is
eliminated. With the introduction of strong PTs, we furthermore ob-
serve that k1 is largely independent of strength.

I finally want to note that we explored an additional normalization.
As an alternative to R↑, an effective bubble size can be defined based
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Figure 37: Fitted characteristic wave numbers k1 (left column), k2 and ke
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termediate (red), and strong (orange) PTs, using simulations with
N = 512 and L̃/vw = 20 (40) in solid (dotted) lines. Gray regions
indicate the Nyquist frequency k̃Nyq = N/L̃. In the upper panel,
wave numbers are normalized as k/φ, as presented in [67] and
Chapter 5, while in the lower panel, they are normalized as kR↑.
Thick colored lines of low opacity in middle panels indicate ke for
L̃/vw = 20 (40) in solid (dotted) lines. In the upper panel (mid-
dle and right), thin black-and-color dashed lines indicate 1/ϑshell,
while in the lower panel, they indicate the fitted value 2π ↘ 0.49/∆w

(see Equation (349)). In the right column, the lower opacity regions
indicate the peak as obtained using the double broken power law
fit of Equation (343), neglecting the exponential numerical damp-
ing.
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Figure 38: Comparison between the re-scalings associated with R↑ and Reff.
The pink dashed-doted line corresponds to a fit 1.36/ (vw + 0.24)
to facilitate using Reff without knowledge of the profiles.

on the kinetic energy profile. Define the radius of the center of kinetic
energy ϑeff in self-similar coordinates ϑ = r/t,

ϑeff =

↔
ω⇑ωshell

T(ϑ)ϑ3 dϑ
↔
ω⇑ωshell

T(ϑ)ϑ2 dϑ→ (347)

where T(ϑ) = w(ϑ)γ(ϑ)2v(ϑ)2 represents the kinetic energy, and the ϑ2

factor arises from integrating over spherical symmetry. Then, we can
define the effective radius Reff

Reff = (8π)1/3
ϑeff

φ
. (348)

We hypothesize that, perhaps, this radius further flattens the trend of
k1 with wall velocity and reduces the small scatter with PT strength.
In Figure 38, I show a comparison between 1/ϑeff and 1/max(vw, cs).
Since the normalization of Reff does not become flat below cs, it com-
pensates for the small rise in k1 at small wall velocities. Furthermore,
we note that for strong PTs, the lower values of 1/ϑeff would indeed
bring up the strong line of k1 relative to those of weak and interme-
diate PTs. Overall, we conclude that normalizing to Reff rather than
R↑ mitigates the small but residual trend with of k1 with vw and re-
duces the scatter from 27% to only 19%. Nevertheless, the gain is small
for the added complexity, and we defer from pushing the agenda of
normalizing to Reff rather than R↑ in this work.
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6.4.7.6 Spectral features k2 and ke

The spectral feature k2 marks the transition from linear n2 = 1 to
n3 ∼ !3 scaling of ΩGW(k), occurring essentially at the peak (when
k2 < ke). The scale ke indicates the wavenumber at which exponential
damping becomes important. We found that a moderate smoothing of
the knee at k2 with a2 = 2.4 leads to better fits. In the middle column
of figure 37, I plot the scaling behaviour of k2 and ke with vw for
ω ↑ {0.0046, 0.05, 0.5} normalized to 1/φ in the upper panel, R↑ in the
lower panel. For reference, I plot 1/ϑshell in thin dashed black-colored
lines.

weak phase transitions For weak PTs, the plot indicates an
association of k2 with the inverse shell thickness 1/ϑshell, as was pre-
viously observed in Chapter 5. However, the presence of damping on
scales ke < k2 renders the measurements of k2 questionable for all
but the smallest vw ↑ {0.32, 0.36, 0.40} for box size L̃/vw = 40, and
vw ↑ {0.32, 0.36, 0.40, 0.44, 0.72, 0.76, 0.8} for box size L̃/vw = 20. It is
nevertheless interesting to note that the trend of scaling with 1/ϑshell is
also found when k2 > 1/ke except in the vicinity of vw ∼ cs. In conclu-
sion, damping at ke < k2 thwarts reliable extraction of k2, but findings
suggest an intimate association with 1/ϑshell. Larger resolution simula-
tions are needed to find at which scale this association breaks down
and nonlinear physical damping becomes significant.

intermediate and strong phase transitions Shifting our
attention to intermediate and strong PTs, we observe notably different
behavior. As previously discussed in Chapter 5, intermediate PTs ex-
hibit a significant deviation from the trend k2 ⇒ ϑshell. This departure
is observed to be even more pronounced for strong PTs, where k2 re-
mains approximately constant with wall velocity. Thus, it appears that
for stronger PTs, the shell thickness ϑshell may no longer be the most
relevant scale, with k2 potentially being determined directly by the
larger characteristic length scale of the fluid R↑, as in the limit of very
strong PTs. This shift could be attributed to the emergence of nonlinear-
ities. However, this hypothesis requires further investigation through
additional large-scale and higher-resolution numerical simulations to
be substantiated.

Using our numerical results from the reference simulations pertain-
ing exclusively to data from simulations with box size L̃/vw = 20 for
their improved dynamical depth and averaging over vw, we find the
following values for k2,
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k2 R↑
2π

↗

⇑
↖↖↖⇓

↖↖↖⇔

0.49± 0.024/∆w , ω = 0.0046 ,

0.93± 0.13 , ω = 0.05 ,

0.45± 0.042 , ω = 0.5 ,

(349)

where ∆w = ϑshell/max(vw, cs) is the normalized sound-shell thick-
ness and the ± range corresponds to the standard deviation in the
measurement associated with the reference simulations. Sample vari-
ance is generally quite small and of the order of scatter with wall ve-
locity.

6.4.7.7 GW spectrum peak kpeak

While our spectrum is parameterized by the scale k2, the peak
wavenumber kpeak is phenomenological important, and I thus plot
it in the right column of Figure 37. Note that when presenting the
peak, I choose to neglect the exponential damping factor of shape func-
tion (345) since this damping is ultimately expected to go away in the
limit of infinite resolution. Clearly, reporting kpeak neglecting expan-
sion constitutes a leap of faith, and reported peak positions must be
taken not too seriously whenever k2 > ke (as determined from the
middle column of the same Figure). Generally, k2 typically nearly co-
incides with kpeak. For intermediate PTs, it is interesting to note the
almost complete flattening of the dependence of kpeak on vw using
kpeakR↑ normalization.

To conclude, we observe that all three scales, k1R↑ (for weak, in-
termediate, and strong PTs), k2R↑ and kpeakR↑ (for intermediate and
strong PTs), exhibit quite small variation with vw. For weak PTs, we
find that k2 R↑ ∆w is also nearly independent of vw, consistent with
the predictions from the sound-shell model.

Time evolution of the spectral shape in the simulations

In Figure 39, I present the GW spectrum Isim(t̃init, t̃, k̃) at various times
t̃ throughout the simulation. Generally, the causal tail, which scales as
k3 at small k, is observed from the early stages. As time progresses,
we notice indications of more intricate structures emerging below the
peak, shifting the transition of the causal k3 tail to lower wave numbers,
consistent with predictions from [73, 74].

Initially, the growth rate of the GW amplitude for IR modes appears
faster than linear, closer to the quadratic growth described in [73],
where the transition from quadratic to linear growth occurs later for
smaller values of k.
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As for our final measurements of the spectral shape S(kR↑), which
will be utilized in models (308) and (321), we use the spectral shape at
the end of the simulation, t̃end = 32. At this point, the wavenumbers
around the peak grow proportionally to K2

int as described in (308). The
spectra at t̃end = 32 are displayed in Figure 35.

As discussed in Section 6.2.3, the growth rate model used for the GW
spectrum is valid only at wave numbers k ∞ 1/(t! tinit). Therefore,
when using the GW spectrum shapes measured at t̃end to inform our
GW spectrum growth models (308) and (321), we implicitly assume
that all wave numbers evolve uniformly with the source duration until
a final time t̃fin > t̃end is reached.

However, if different time evolutions occur for wave numbers that
do not significantly contribute to the integrated amplitude or after the
end of the simulation, the resulting spectral shape of the GWs could be
affected. This possibility arises within the sound-shell model, particu-
larly in the IR regime, as shown in [73], where a transition from linear
to quadratic growth is expected at small k in the stationary case. Ad-
ditionally, deviations from the sound-shell model, or its generalization
in Section 6.2.3 to decaying sources, may occur due to the potential
development of nonlinear fluid perturbations and vortical motion.

In such cases, the resulting GW spectrum is expected to exhibit a dif-
ferent time evolution compared to that of compressional motion [75,
93–96, 161], with GW modes likely reaching their saturation ampli-
tudes within this regime.

6.4.8 Sample variance of the GW spectrum

Figure 40 illustrates the mean, standard deviation, and min-max range
of GW spectra obtained from the seed simulations and the correspond-
ing reference simulation. The primary impact of varying nucleation his-
tories is a shift in the overall amplitude of the spectra, while the spec-
tral shape remains largely unchanged. The left and right panels show
simulations with box sizes L̃/vw = 20 and L̃/vw = 40, respectively. It
is noteworthy that artifacts appear in the IR region of the spectra for
the smaller box size L̃/vw = 20 at low wall velocities. These artifacts
likely arise from the shock wave ahead of the bubble colliding with its
mirrored images due to periodic boundary conditions before the PT is
complete.

6.4.9 Initial findings and discussion on vorticity

We have observed various indications of turbulence and nonlinear dy-
namics, such as shallower UV tails of the GW spectrum in strong PTs
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Figure 39: Time evolution of the GW spectrum I(t̃init, t̃, k̃), evaluated at times
t̃ ↑ [17, 32] with t̃init = 16, for weak (left column), intermediate
(middle column), and strong (right column) PTs. The wall veloc-
ities are vw = 0.32 (0.36 for strong PTs) in the upper panels, 0.6
in the middle panels, and 0.8 in the lower panels. The numerical
resolution is N = 512, and the box size is L̃/vw = 40. The GW
spectra are normalized by the reference value Ω̃GW ↗ 10!2 and
the expected scaling K2

ω
R↑φ.
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Figure 40: Various GW spectral growth rates obtained as averages over 10 dif-
ferent bubble nucleation histories. Each spectrum shows the mean,
the variance, and the min-max over the ten nucleation histories.
The left (right) plots show spectra from simulations with box size
L̃/vw = 20 (box size L̃/vw = 40).

and strong damping, which appears unrelated to numerical viscosity.
To firmly establish the presence of nonlinear dynamics, in this Section,
I will demonstrate the production of vorticity in the simulation by look-
ing at 2D snapshots of the vorticity field and the growing presence of
a transverse velocity component in velocity power spectra. I will move
beyond the scope of the publication [3] by presenting slices for a sim-
ulation of resolution N = 1024, delivering a significantly improved
resolution of the UV physics and thus dynamical depth, allowing to
unambiguously establish the production of macroscopic vorticity.

6.4.9.1 Vorticity on the lattice

The vorticity is computed as

≃ ⇐ v =

(
0vz
0y

!
0vy
0z

)
x̂+

(
0vx
0z

!
0vz
0x

)
ŷ+

(
0vy
0x

!
0vx
0y

)
ẑ . (350)
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On the lattice, we must approximate the derivative through some
difference-method, and choose for this task the central difference pre-
scription

0vi
0x̃j

(x̃) ↗
vi


x̃+ δx̃ x̂j


! vi


x̃! δx̃ x̂j



2 δx̃
, (351)

where δx̃ = δx̃jφ is the uniform grid spacing.
With this choice of derivative operator, the magnitude of the curl

|≃̃ ⇐ v| is computed at every grid point. 2D simulation slices at dif-
ferent times are shown in Figure 41. Note that the definition of the
numerical derivative operator (351) inevitably introduces potentially
large vorticity at points where the velocity field varies considerably
from lattice site to lattice site. This occurs, e.g., around the bubble
shock fronts where discontinuities are present. Ideally, the velocity gra-
dients are aligned with the radial direction, in which case no vortical
component is present. However, on the lattice, artifacts may arise from
the discretization, causing rather strong vorticity to appear at and just
around the wall. This is clearly seen in the lower left frame in Figure 41.
The numerical nature of this vorticity is nevertheless clear from the ob-
servation that the vortical structure, as we traverse around the bubble
wall, is seen to inherit the symmetry of the lattice. Furthermore, mostly
small but spurious oscillations of the fluid velocity occur at the bubble
wall interface, as discussed in Section 5.3.6 of the previous Chapter 5.
These oscillations additionally give rise to extremely local but steep ve-
locity gradients, potentially showing up as a large-amplitude spurious
vorticity component confined to the wall.

In Figure 41, and in particular when presented with the opportu-
nity to study the full time-evolution of the system frame by frame,
it is observed that production of vorticity occurs at the interface of a
sound-shell from one bubble crossing over the bubble wall of another.
The velocity field in the upper panel is included to make vorticity pro-
duction easy to correlate with the velocity field. In this sense, the re-
sulting vorticity pattern initially appears to track the sweeping of this
sound-shell-bubble-wall-crossing interface over time. However, during
this process, frame-by-frame inspections reveal that convective and tur-
bulent motions are induced in the fluid. These are observed as slowly
evolving structures compared to the sound waves. Sound waves evolve
on time scales proportional to the speed of sound, whereas convective
structures evolve on time scales proportional to the average convection
speeds, which are typically much smaller. It therefore appears that, in
addition to a pure longitudinal velocity component, a fluid velocity
field characterized by convective motions develops as a result of fluid
interactions during, and possibly after, the collision phase. This convec-
tive component is marginally evident in the top-right plot in Figure 41,
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where additional small-scale structures are hinted in the velocity field
but are absent in the enthalpy field. This additional small-scale struc-
ture appears to originate from convective motion.

6.4.9.2 Velocity power spectra

We have observed the presence of spurious vorticity components asso-
ciated with the choice of the derivative operator and the lattice struc-
ture, as well as spurious oscillations around the bubble wall interface.
These are very localized effects and do not contribute meaningfully to
large-scale vorticity correlated over macroscopic scales. Therefore, vor-
ticity components that emerge from numerically induced oscillations
and limited grid resolution will contribute mostly to the UV part of
related velocity spectra. Furthermore, the presence of convective mo-
tion implies the presence of transverse velocity components. The de-
velopment of such a component should thus be visible in spectra of
the velocity fields decomposed into longitudinal and transverse contri-
butions, and in particular, physical macroscopic contributions should
distinguish themselves from numerical contributions through a sepa-
ration of scales. I will dedicate this Section to a discussion of these
matters.

Under the assumptions of statistical spatial homogeneity and
isotropy, the two-point correlation function of the velocity field is char-
acterized in terms of the full velocity spectrum Pv(k), the longitudinal
component P⇓

v(k), and transverse component P⇔
v (k), which are defined

by

↓vi(k) v↑
i
(k →)↔ = (2π)3 δ3(k! k →)Pv(k) , (352)

↓k̂i vi(k) k̂j v↑
j
(k →)↔ = (2π)3 δ3(k! k →)P⇓

v(k) , (353)

and


k̂⇐ v(k)

i


k̂

→ ⇐ v↑(k →)

i


= (2π)3δ3(k! k →)P⇔

v (k) , (354)

respectively, such that Pv(k) = P
⇓
v(k) + P⇔

v (k).
Therefore, it suffices to compute any two of the three velocity spec-

tra, in the sense that, e.g.,

P⇔
v (k) = Pv(k)! P

⇓
v(k) . (355)

Since v and k̂ · v are more readily obtainable than k̂ ⇐ v, we proceed to
compute

Pv(k) =
1

V

〈
|v(k)|2

〉
and P

⇓
v(k) =

1

V


|k̂ · v(k)|2


(356)
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Figure 41: 2D simulation slices of the velocity amplitude |v(x̃)|, enthalpy w(x̃),
and the vorticity |≃̃ ⇐ v(x̃)| field for a strong PT with ω = 0.5 and
vw = 0.36. The resolution is N = 1024, twice that of the simulations
of the highest resolution in previous parts of this Chapter, and the
box size L̃/vw = 20. The wall velocity is chosen to be vw = 0.36
since the production of vorticity is observed to be maximal at low
wall velocity. Around the expanding bubble, spurious small-scale
vorticity is seen, which is caused in part by small fluid transients
around the shock and in part by the definition of the central numer-
ical derivative, which picks up artifacts from the lattice symmetry.
Sizeable macroscopic production is, however, observed in the inter-
actions of overlapping fluid sound shells, indicating the physical
presence and build-up of vorticity.
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on the lattice. Following Section 5.3.3 in the previous Chapter 5, we
take the volume V to mean the volume of the simulation box and
approximate the ensemble average as the average over momenta of
equal length |k| = k on the sphere. As for the mapping of momenta
on the lattice to their physical counterpart, we follow the updated saw-
prescription (327) outlined in Section 6.3.1.2, so that the unit vector k̂

in the direction of wave propagation reads

k̂ = saw(k)/|saw(k)| . (357)

The Discrete Fourier Transform v(k) is computed using the same Fast-
Fourier-Transform routine [121] as in the rest of the simulation code.
Following these specifications, we compute the longitudinal and trans-
verse velocity spectra P

⇓
v and P⇔

v , for which time series are illustrated
in Figure 42.

6.4.9.3 Interpretation of P⇓
v and P⇔

v

Sound waves involve compressions and rarefactions along the direc-
tion of wave propagation k. Under the assumption of linearity, the
system can be represented as a superposition of non-interacting plane
waves. In this context, the pressure gradients are always orthogonal to
the wavefronts and parallel to the direction of propagation, which con-
sequently ensures that fluid acceleration and the resulting velocities
always align with the direction of propagation k. Therefore, a pure
sound field is characterized by exclusively longitudinal motion, which
renders the transverse power spectrum P⇔

v identically equal to zero.
In our situation of interest, the system is characterized, at least be-

fore bubble collisions, by expanding sound shells that constitute either
rarefaction waves, compression waves, or a combination of both. Af-
ter collisions, if we assume linearity, this statement still holds true. We
can thus appreciate the importance of having at our disposal time se-
ries of the velocity spectra P

⇓
v and P⇔

v , for we understand that upon
departure from linearity, we no longer expect that P⇔

v be identically
zero. Observation of a non-zero P⇔

v is hence a powerful indication of
physics beyond linear evolution, which, after all, is from where simu-
lations and the present study gain motivation.

The transverse velocity power spectrum P⇔
v (k) captures the energy

in the rotational, i.e., vortical, components of the velocity field, which
are hallmarks of turbulent flows characterized by chaotic, vortical
structures and energy cascades across scales. Both longitudinal and
transverse components of the velocity field are important, but the trans-
verse components are particularly indicative of the vortical structures.
Therefore, the growth of the transverse power spectrum P⇔

v (k) indi-
cates the production of turbulence in the flow field. At the very least,
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Figure 42: Longitudinal and transverse velocity power spectra of the fluid for
two strong PTs with ω = 0.5 and wall velocities vw = 0.44 (left
column) and vw = 0.8 (right column). The top panel illustrates
the power in the longitudinal modes, the middle panel the power
in the vortical modes, and the bottom panel the fraction of power
in the vortical modes. Different lines correspond to different times
in the simulation. For reference, bubble nucleation begins around
t̃ ↗ 0, first collisions occur around t̃ ↗ 5, and PT completion takes
place around t̃ ↗ 10.
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since we start from a purely longitudinal velocity field, the growth of
P⇔
v (k) proves the presence of mode coupling in the fluid. In the con-

text of sound waves, this means that longitudinal sound waves (which
involve compression and rarefaction) can transfer energy to transverse
wave modes (which involve shear or rotational motion), which occur
as a purely nonlinear effect. In our scenario, mode coupling might oc-
cur near bubble wall interfaces, in line with what we observed in the
previous Section 6.4.9.1.

Having established the importance and certain interpretations of the
velocity spectra P

⇓
v and P⇔

v , let me highlight some trends seen in Fig-
ure 42. In this Figure, we present time-series of the velocity spectra P

⇓
v

and P⇔
v for two choices of wall velocities vW = 0.44 and vw = 0.8 for

strong PTs. We additionally plot the fraction P⇔
v /P

⇓
v, to highlight their

relative contributions.
In the upper panel, we can follow the growth of energy in longitudi-

nal modes. In the middle panel, we can similarly follow the growth of
energy in transverse modes. At early times, the fluid field is dominated
by a longitudinal component, with only negligible vortical contribu-
tions, as is clear from the bottom panel. Only in the UV are transverse
contributions comparable to the longitudinal. The contributions in the
UV correspond to scales much smaller than any of the two predomi-
nant scales in the system: the typical bubble size and wall thickness.
Therefore, and as we discussed in Section 6.4.9.1, we interpret this
contribution as largely stemming from numerical artifacts such as spu-
rious oscillations and the finite resolution of the lattice. However, at
around t̃ = 6, a transverse velocity component contributes to a flat
part of the transverse velocity power spectrum P⇔

v (k) with support
all the way down to the smallest wavenumber which keeps growing
with time. At late times following bubble collision, we observe that
while the absolute power in vortical modes saturates, the ratio P⇔/Pv
still grows at wavenumber just below k̃ ↫ 10, reaching values around
P⇔/Pv ↗ 0.3 and P⇔/Pv ↗ 0.1 for the deflagration, vw = 0.44, and
strong hybrid, vw = 0.8, respectively by of the simulation. In both
cases, a sizable fraction of vorticity is thus observed. The growing frac-
tion of power in vortical modes may eventually lead to the fluid system
being completely dominated by convective turbulent motion.

Additionally, velocity power spectra for weak and intermediate PTs
were obtained, revealing that P⇔/Pv < 10!3 in these cases. This
suggests that turbulence becomes increasingly significant as the PT
strength increases. For strong PTs (ω = 0.5), turbulence already exerts
an important influence on the hydrodynamical evolution following the
PT completion. These findings underscore the importance of perform-
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ing fully nonlinear 3D simulations to accurately capture the complex
dynamics involved.

All in all, the observed growth of vortical motion and flatter vortic-
ity spectra supports the hypothesis of an energy cascade towards the
UV, where the energy dissipates. This conclusion nevertheless requires
further investigation in larger-scale simulations.

6.5 Summary and conclusions

6.5.1 GW spectrum template

Ultimately, the utility value of this work lies in the delivery of specific
predictions of the GW spectrum and its dependence on the parameters
ω, vw, τsw, and φ/H↑. Before proceeding to give an executive summary
of this work, I will therefore take the opportunity to compile the main
results into a template for the GW spectrum.

To briefly recapitulate, let me reiterate that in the initial part
of this Chapter, in Section 6.2.2, we discussed the sound wave-
parameterization of the present-day GW spectrum, derived assuming
a stationary UETC, in Equation (304),

ΩGW(k̃) = 3TGW Ω̃GW K2 (H↑R↑)(H↑t̃sw)S(kR↑) ,

or equivalently as in Equation (305),

Isim(t̃↑, t̃fin, k̃) = Ω̃GW K2 (φR↑) t̃sw S(kR↑) ,

where t̃sw = t̃fin ! t̃↑, so that the present-day GW spectrum is ex-
pressed in terms of Isim defined in Equation (301)

ΩGW(k) = 3TGW

(
H↑
φ

)2

Isim(k) . (358)

Following the realization that the source kinetic energy in our sim-
ulations decays, we generalized the description to that of locally-
stationary UETC in Section 6.2.3, thus obtaining the generalized GW
spectrum parameterization in Equation (308),

Isim(t̃↑, t̃fin, k̃) = Ω̃GW K2

int(t̃↑, t̃fin) (φR↑)S(kR↑)

where K2

int is defined in Equation (307), thus replacing the conven-
tional linear scaling K2t̃sw with the integrated kinetic energy K2

int. We
demonstrated in Section 6.4.6 that this description render the GW ef-
ficiency Ω̃GW essentially time independent, allowing to robustly mea-
sure Ω̃GW within the simulations and validate the adequacy of the
locally-stationary UETC approach.
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In Section 6.4.5, we saw that with high accuracy, the time depen-
dence of kinetic energy can be modeled as power-law decay, Equa-
tion (309), so that K2

int can be estimated analytically as in Equation (310)
allowing to directly model the measured Isim as in Equation (359),

Isim(t̃↑, t̃sw, k̃) = Ω̃GW K2

0
(φR↑) t̃↑ (t̃0/t̃↑)

2b
(1+ t̃sw/t̃↑)1!2b ! 1

1! 2b
S(kR↑).

(359)

Then, in Section 6.2.4, we used that the fluid equations of motion are
conformally invariant under cosmic expansion to derive a corrected
GW amplitude in an attempt to model the effect of cosmic expansion,
as in Equation (316),

Isim(τ̃↑, τ̃fin, k̃) = Ω̃GW K2

int,exp(τ̃↑, τ̃fin) (φR↑)S(kR↑)

where K2

int,exp is defined in Equation (315). Assuming the power-law
decay prescription (309), Equation (316) can be computed explicitly,
whereby we obtain expression (321),

Isim(t̃↑, t̃fin, k̃) = Ω̃GW K2

0
6b(τ̃sw)

(
φ

H↑

)
(φR↑)S(kR↑) ,

where 6b(τ̃sw) is defined in Equation (319), and τ̃sw = τ̃fin ! τ̃↑. This
expression incorporated all the physics that we aim to model.

As for the numerical values of the parameters ω, vw, τsw, and φ/H↑,
we performed a careful analysis of the simulation results including a
systematic extrapolation study of the results in Section 6.4.5 incorpo-
rating information about the global state of convergence in 6.4.4, aimed
at estimating continuum values of the GW production efficiency Ω̃→

GW
as well as the available kinetic energy fraction K→

0
, for which we obtain

the plausible estimate K0 as defined in Equation (333).
We present our numerical finding on the GW efficiency Ω̃GW in Fig-

ure 33, which can be summarized as in Equation (340),

102 Ω̃→
GW =

⇑
↖↖↖⇓

↖↖↖⇔

1.04+0.81
!0.67 , for ω = 0.0046 ;

1.64+0.29
!0.13 , for ω = 0.05 ;

3.11+0.25
!0.19 , for ω = 0.5 .

Our findings on K0 are presented in Figure 29, which can be summa-
rized as in Equation (335),

K0 = 0.84+0.24
!0.29 Kω .

As for the source duration τ̃sw, we find in Section 6.4.6 that the UETC
description works well at least until the end of all simulation runs in
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the sense that Ω̃GW remains approximately constant, which interest-
ingly implies for strong PTs, ω = 0.5, that the source duration τ̃sw is
a factor of at least a few time larger than the otherwise natural cutoff
of the source duration t̃eddy = φR↑/

√
Kω. We nevertheless leave τ̃sw as

a free parameter. The remaining parameter φ/H↑ remains, of course,
free for the individual to decide.

With all theoretical and numerical advances outlined, we transcend
the realms of the simulations by assuming that the GW efficiency re-
mains constant back until the time of PT completion, t̃0, and initiate
GW production at that point. Then, assuming an arbitrary source du-
ration τsw, we arrived at one of the main results - a model for the
integrated GW spectrum amplitude growth based on our simulation
results - in Equation (342),

Iint
φ/H

(t̃0, t̃fin) = Ω̃→
GW K2

0
6b(τ̃sw)

(
φ

H↑

)
(φR↑) .

where now τ̃sw = τ̃fin ! τ̃0. Translating this result into a template for
the present day GW spectrum, we have that

ΩGW(k̃) = 3TGW Ω̃→
GW K2

0
6b(τ̃sw)

(
φ

H↑

)!1

(φR↑)S(kR↑) , (360)

where φR↑ = (8π)1/3 max(vw, cs) and S(kR↑) is the spectral shape.
The spectral shape was studied in detail in Section 6.4.7. In particu-

lar, it was discussed in Section 6.4.7.1 that the spectral shape function
is a doubly-broken power law with an exponential damping factor
in the UV, as described by Equation (343). This exponential damping,
however, seems to be related to numerical viscosity. Therefore, the fi-
nal spectral shape which we propose for modeling the GW spectrum
neglects the exponential damping and reads

S(k, k1, k2)

= S0 ⇐
(

k

k1

)n1

1+

(
k

k1

)a1
!n

1
+n

2

a
1


1+

(
k

k2

)a2
!n

2
+n

3

a
2

,
(361)

with n1 ↗ 3, n2 ↗ 3, a1 ↗ 3.6 and a2 ↗ 2.4. The slope of the UV
tail is n3 ↗ !3 for weak and intermediate PTs with small wall velocity
vw and somewhat larger for intermediate PTs with larger wall velocity
vw and strong PTs, as reported in Figure 36. Numerical results for the
parameters k1, k2 are given in Figure 37, which can be summarized as
in Equation (346),

k1 R↑
2π

↗ 0.39± 0.11 ,
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applicable to all PT strengths, and Equation (349),

k2 R↑
2π

↗

⇑
↖↖↖⇓

↖↖↖⇔

0.49± 0.024/∆w , ω = 0.0046 ,

0.93± 0.13 , ω = 0.05 ,

0.45± 0.042 , ω = 0.5 .

Finally, the production time wave-numbers k̃ in can be redshifted to
the present day frequency as in Equation (169),

f0 = 2.63 · 10!6 Hz ⇐ k̃

(
φ

H↑

) ( g↑
100

)1/6
(

T↑
100GeV

)

This compilation thus demonstrates how the results of this Chapter
can be used to obtain predictions for the present-day GW spectrum.
These predictions are expected to soon be implemented in CosmoGW
[166], to promote and facilitate access by the broader community.

6.5.2 Summary

In this Chapter, I have presented a scientific investigation aimed at
pushing our understanding of GW production from first-order PTs.
The main new results are predictions from strong PTs and a template of
the present-day GW spectrum, presented in the previous Section 6.5.1,
where I compile the numerical results. Overall, the achievement of this
study can be summarized as follows:

1. Improved simulation setup: The time integration scheme was im-
proved to reduce artifacts at high wavenumber as compared to
the simulation setup in Chapter 5 (Section 6.3.1.1). The mapping
of momenta on the lattice to their physical counterpart was up-
dated to a saw-prescription (Section 6.3.1.2), increasing the linear
regime as compared to the sin-prescription as well as eliminat-
ing the need to consider whether the sign of the wavenumber
is important. The numerical stability was improved to accommo-
date simulations of strong PTs (Section 6.3.1.3) by increasing the
maximal local speeds entering the numerical scheme from cs to
1 and manually reducing energies at isolated grid points to avoid
unphysical velocities.

2. Simulation runs: I conducted simulations for ω ↑
{0.0046, 0.05, 0.5} and wall velocities vw ↑ {0.32, 0.36, ..., 0.76, 0.8},
thus updating results from the previous Chapter 5, while adding
strong PTs to the scan. I additionally run simulations utilizing
9 distinct bubble nucleation histories to infer statistical sample
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variance for 3 selected vw, and simulations with only a single
centrally nucleated bubble to study the convergence of self-
similar profiles. Table 5 summarizes the physical and numerical
parameters of the simulations. A total of 1044 simulations were
performed. Notably, simulating strong PTs poses significant
challenges in terms of numerical stability and the accurate reso-
lution of nonlinearities, but our simulations have demonstrated
excellent ability to handle the violent dynamics, demonstrating
the remarkable success of the KR+RK3 scheme (207) lying at the
core of the Higgsless simulation approach. 2D simulation frames
of three examples of strong PT are shown in Figures 25 and 26.

3. GW production in strong PTs: For the first time, we present results
on the GW amplitude and spectral shape generated by fluid per-
turbations from strong PTs with ω = 0.5. Our findings provide
strong numerical evidence for the decay of the kinetic energy
fraction K over time in intermediate PTs with highly confined
profiles and in strong PTs. This decay leads to a significant devia-
tion from the linear growth of the GW amplitude with source du-
ration observed in previous numerical simulations and analytical
studies and typically assumed in GW templates in the literature.
We attribute this deviation to the decay of K and extend the sta-
tionary UETC model to a locally stationary UETC, incorporating
the numerically observed decay rate of K over time. Addition-
ally, we have shown that GW production may not cease abruptly
when nonlinearities develop; instead, it may continue to increase
for an uncertain duration. Consequently, we present our results
as a function of the GW source duration.

4. Convergence Analysis: We have performed systematic checks to
understand the numerical convergence of our results. This has
brought detailed understanding of the underestimation of ener-
gies associated with insufficient resolution and allowed to extrap-
olate simulations results closer to their continuum values, thus
helping to benefit maximally from the efficiency of our simula-
tions despite rather modest simulation sizes (Section 6.4.3).

5. Spectral Shape Analysis: We investigated the spectral shape of the
GW power spectrum (Section 6.4.7). We thus introduced the fit-
ting function (343) corresponding to a doubly broken power law.
We fitted this function to the data to extract spectral features. The
IR knee is strongly related to the maximal correlation length in
the system R↑ corresponding to the average bubble size at colli-
sion. The peak seems related to the thickness of the sound shells,
but this connection gradually breaks down as the strength is in-
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creased. The IR part of the spectrum is consistent with a k3 scal-
ing, the intermediate regime as k1, while the UV tail scales as
k!n where n = 3 for weak PTs, n ↑ [3, 2.5] for intermediate and
n ∼ 2.6 for strong. We furthermore observed exponential decay
in the far UV, likely caused in part by numerical viscosity.

6. Sample variance: We have estimated sample variance in our mea-
surements by running 10 simulations with different bubble nu-
cleation histories for three selected wall velocities for weak, in-
termediate, and strong PTs, thus allowing us to give alongside
results from reference simulations the standard deviation from
these 10 nucleation histories. The variance in the measurements
is generally quite small, indicating the insensitivity of our results
to the sample statistics associated with the construction of bubble
nucleation histories assuming an exponentially increasing nucle-
ation probability.

7. Development of turbulence and nonlinearities: We have observed var-
ious indications of turbulence and nonlinear dynamics, such as
shallower UV tails of the GW spectrum in strong PTs and strong
damping, which appears unrelated to numerical viscosity. Non-
linear dynamics is firmly established in Section 6.4.9 through the
observation of sizable vorticity (Figure 41) and the growing pres-
ence of a transverse velocity component in velocity power spectra
(Figure 42).

8. GW spectrum templates: Finally, in Section 6.5.1, I consolidate the
numerical results and provide a template for the present-day GW
spectrum. This template is intended for use in future studies and
will soon be made accessible via CosmoGW [166], thereby pro-
moting and facilitating access for the broader scientific commu-
nity.

6.5.3 Conclusion

In this Chapter, we have extended the application of the Higgsless
simulations into previously unexplored regimes of strong PTs. The
KT+RK3 scheme (207) has once again proven to be highly effective
in modeling the nonlinear dynamics, including the presence of shocks
and phenomena characterized by large gradients.

Furthermore, we have addressed all the points outlined in Sec-
tion 5.6.3 of Chapter 5. This study has significantly expanded our
understanding of the violent hydrodynamics associated with PTs, pro-
viding valuable insights that will guide future research and reinforcing
the state-of-the-art predictions concerning GW production.
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With the completion of this study, I am confident that the Higgsless
simulations are now positioned to become a pivotal tool in advancing
our understanding of GW production in PTs, laying the groundwork
for future breakthroughs in the field.
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7
P O S T L U D I U M

At the opening of this thesis, I emphasized that gravitational wave
(GW) astronomy is at the forefront of a new scientific frontier, with the
potential to revolutionize cosmology and fundamental physics with
the detection of a stochastic GW background. As detectors like LIGO,
Virgo, PTAs, and the upcoming LISA mission rapidly increase their
sensitivity to GWs, the demand for precise and accurate predictions
becomes ever more critical. For cosmological sources, this implies de-
tailed predictions of GW spectra, and in this thesis, we focus especially
on spectra from first-order phase transitions (PTs). The ability to detect
and interpret such signals hinges on the accuracy of our theoretical
models, underscoring the importance of the work presented here.

In this thesis, I have made significant contributions toward ensuring
that theoretical developments keep pace with experimental advance-
ments. The generation of GWs from first-order PTs has been a cen-
tral focus, with substantial progress achieved in understanding the hy-
drodynamical evolution associated with the expanding bubbles and
associated GW production. These contributions were made possible
through the development and implementation of the novel Higgsless
simulations, which were employed to provide the physics community
with accurate predictions of GW spectra, parameterized by just a few
fundamental quantities, allowing to scan large parameter space.

I have accounted for work that has pushed the boundaries of our un-
derstanding of first-order PTs and their role in GW production. By ex-
tending the Higgsless simulations into previously unexplored regimes
of strong PTs, new insights have been gained into the violent hydro-
dynamics characterizing these events. This is particularly significant
because strong PTs produce more intense GW signals, which are more
likely to be detected, yet their predictions are challenging due to the
strong nonlinear evolution of the fluid. It is precisely in this challeng-
ing regime that the Higgsless approach has proven indispensable. It
efficiently models the nonlinear dynamics, including shock waves and
the development of vorticity, which are crucial for producing realistic
GW predictions. This advancement has significantly enhanced the ac-
cessibility of GW predictions and established a robust instrument for
future research.

In conclusion, the Higgsless simulations developed and applied in
this thesis represent a powerful tool for advancing our understanding
of GW production in PTs. As these simulations continue to be refined
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and applied, they position us to make significant contributions to the
field. This thesis, therefore, marks not an end but a beginning, open-
ing new horizons for research that will further illuminate the complex
dynamics playing on the strings of space and time.

As we look ahead, there are several important research directions to
explore. In this thesis, although I developed the Higgsless simulations
to model fluid dynamics, once the simulations were established and
the hydrodynamical evolutions obtained, our primary focus shifted to
GW production rather than characterizing and analyzing the underly-
ing dynamics. Yet, it is the latter that ultimately governs GW genera-
tion. Therefore, it is crucial to take a step back and solidify our under-
standing of the hydrodynamical evolution. This includes investigating
the forward cascade of energy, the development of turbulence, the con-
ditions under which our locally-stationary assumption of the UETC
breaks down, and the long-term decay and lifetime of the source. Ad-
dressing these fundamental questions could significantly enhance our
understanding of the spectral shape evolution, GW amplitude satura-
tion, and the emergence of complex and characteristic features in the
GW spectrum.

Additionally, we have observed substantial kinetic energy decay in
strong PTs, implying that GW production during the initial collision
phase may become increasingly important. In such cases, it is essen-
tial to explore the GW evolution until eventual saturation, providing
a complete final spectrum that incorporates contributions from sound-
shell collisions, long-term evolution of compressional modes, and tur-
bulence.

Ongoing work to integrate the Higgsless approach into the widely-
used Pencil Code [167] will enhance its accessibility and applicability.
This integration will allow for a more thorough examination of our
results and facilitate the exploration of the aforementioned points.

While the Higgsless simulations were specifically designed with PTs
in mind, the high-resolution numerical framework employed is capa-
ble of solving for the time evolution of any relativistic hydrodynam-
ical system as it has demonstrated exceptional stability even in the
presence of shocks, with minimal numerical viscosity. Coupled with
its built-in GW solver, this simulation code can be applied to a di-
verse range of physical scenarios, potentially uncovering new sources
of GWs from the early universe.

To ultimately conclude, the space of opportunity that we identified,
namely the need for a method to produce accurate and cost-efficient
GW predictions while solving for the full nonlinear evolution, has in-
deed been claimed by the Higgsless simulations. These simulations
are now poised to provide the community with increasingly refined
predictions, ready in time for the much-anticipated detection of the
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cosmological GW background and the transformative impact it will
have on modern cosmology.
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Part III

A P P E N D I X

In Appendix A, I comment on the hydrodynamics and grav-
itational wave production in inverse phase transitions as a
response to recent advances in the field.





A
H Y D R O D Y N A M I C S A N D G R AV I TAT I O N A L WAV E S
F R O M I N V E R S E P H A S E T R A N S I T I O N S

A.1 Introduction

This appendix offers a concise response to the recent publication by
Barni et al. [168], which investigates the hydrodynamics of inverse PTs.
In their study, the authors examine the unique dynamics of inverse
PTs, where a system transitions from a deeper minimum of the zero-
temperature potential to a higher one, driven solely by thermal correc-
tions. Unlike ordinary PTs, where bubble expansion is facilitated by
the release of vacuum energy, inverse PTs involve the bubble expand-
ing against the vacuum energy. The authors identify several expansion
modes for these inverse bubbles, noting a mirror symmetry with the
modes known for ordinary PTs.

In this appendix, I will engage with their findings using the Higgs-
less simulations, providing confirmation of their results on self-similar
profiles (Section 3.1.6) and, for the first time, obtaining a prediction
for the GW production resulting from inverse PTs (Section A.3). For a
detailed account of their work, I refer the reader to [168].

A.2 Self-similar profiles of inverse phase transi-
tions

In [168], and in complete analogy to [86], the authors derive self-similar
profiles in inverse PTs under the assumptions of the Bag equation of
state. For ordinary PTs, the bag constant 7 is defined as positive in the
false vacuum, resulting in a positive strength parameter ω. However,
for inverse PTs, the situation is reversed, rendering the strength pa-
rameter effectively negative. As the Higgsless simulations take ω as an
input parameter, running simulations of inverse PTs should, in prin-
ciple, be as simple as choosing ω < 0, with no further modifications
required.

The authors of [168] find the rather curious result that the shape of
the self-similar profiles resembles those of ordinary PTs, but in reverse,
and with flipped signs on the velocity. Specifically, small wall velocities
produce self-similar profiles that resemble inverted detonations, wall
velocities larger than the speed of sound but smaller than the Jouguet
velocity result in inverted hybrids, and large wall velocities give rise
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Figure 43: Examples of self-similar velocity profiles for inverse detonations
(left), inverse hybrids (middle), and inverse deflagrations (right).
This Figure is adopted from [168], to which I refer the reader for
details.

to self-similar profiles in the form of inverted deflagrations. For three
examples, see Figure 43, which I adopt from [168].

To test the results in [168], I run a single bubble simulation for the
parameter point ω = !0.1202 and vw = 0.750. The convergence to-
wards the theoretical self-similar profile is shown in Figure 44. We see
that, indeed, the Higgsless simulations correctly reproduce their result
in the limit of convergence. However, there is a brief transitory period
before convergence is reached that displays additional features in the
solution. Overall, the simulation swiftly converges to their theoretical
results, serving as a validation while demonstrating the applicability
of the Higgsless simulations in modeling the hydrodynamics also of
inverse PTs. I thus proceed to compute the GW spectrum also from
inverse PTs.

A.3 Gravitational wave production

For the same parameter point ω = !0.1202 and vw = 0.750, I run a
simulation with multiple bubbles, as in the simulations of Chapter 6,
of box size L/φ/vw → L̃/vw = 20 to asses the GW production. In Fig-
ure 45, I show an off-center simulation slice of the velocity magnitude
and enthalpy field, and in Figure 46, I demonstrate the GW spectrum
and its fit. For the fit, and the other reported measurements, I follow
the formalism and methodology of Chapter 6, to which I refer the
reader for details. For the GW spectrum, I measure a somewhat shal-
lower UV slope of n3 = !2.67 compared to !3. For the extrapolated
GW efficiency, I measure Ω̃→

GW = 0.0217, with a relative error of 8%
compared to the highest resolution simulation N = 512, based on a se-
ries of simulations with N ↑ {64, 128, 256, 512}. Overall, there appears
to be no characteristic smoking gun feature in the GW production of
inverse PTs based on this one parameter point alone, as is, perhaps ex-
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Figure 44: Convergence towards the self-similar fluid profile for an inverse
deflagration for vw = 0.75 and ω = !0.1202. The pink dashed line
for the self-similar velocity profiles is taken from [168] for the same
parameters.

pected by virtue of its similar sound-wave nature. Future studies are
needed to verify this statement.

This final endeavor concludes the new scientific material of the the-
sis.
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Figure 45: Off-central 2D simulation slices for an inverse-deflagration of the
fluid velocity amplitude |v(x̃)| (upper panel), and enthalpy w(x̃)
(lower panel). The wall velocity is vw = 0.75 and the strength
ω = !0.1202 (x̃ → x/φ). The resolution is N = 512, and the box
size L̃/vw = 20. The first three slices are chosen at equidistant
times to show the bubble evolution before PT completion, while
the fourth slice is at the end of the simulation to display the long-
term behavior.
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