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ABSTRACT

This thesis explores the production of gravitational waves (GWs) dur-
ing first-order cosmological phase transitions (PTs) and presents the
core findings from my doctoral research. Central to my work is the de-
velopment of a novel simulation framework that leverages a Higgsless
approach specifically designed to model the relativistic hydrodynam-
ics and GW production associated with such transitions.

The Higgsless simulations introduce a highly efficient method de-
signed to capture the nonlinear dynamics of the primordial fluid, offer-
ing precise extraction of GW spectra from first-order PTs. By excluding
the Higgs field dynamics, the simulations achieve significant computa-
tional cost reduction without sacrificing accuracy, making it a valuable
tool for further progress within the field and the broader community.

Our Higgsless approach has proven exceptionally effective at solv-
ing the relativistic hydrodynamic equations with great precision, re-
solving high-gradient phenomena such as shocks and nonlinear evolu-
tion - critical for accurate GW predictions - while maintaining compu-
tational efficiency. The Higgsless approach, therefore, effectively bridges
the gap between the traditional semianalytic models and computation-
ally expensive numerical simulations.

This thesis is divided into two main sections. Part I offers a concise
theoretical foundation on GWs and PTs in cosmology, setting the stage
for the subsequent scientific investigations. Part II delves into key theo-
retical concepts for numerical simulations, including central difference
methods, before detailing the implementation, validation, and appli-
cation of the Higgsless simulations. These simulations serve as the
foundation for the thesis’s primary results and scientific contributions.

Major achievements of my research include the development of a 3D,
fully nonlinear hydrodynamical simulation code for modeling PT dy-
namics using the Higgsless approach. This innovation enabled novel
predictions of GW production driven by fluid dynamics in PTs, mark-
ing the first-ever derivation of GW spectra from strong PTs. Addition-
ally, it provided detailed insights into the parametric dependence of
the GW spectrum on fundamental PT quantities across a broad range
of the PT parameters space.
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ZUSAMMENFASSUNG

Diese Dissertation untersucht die Erzeugung von Gravitationswellen
(GWs) wihrend kosmologischer Phaseniibergidnge (PTs) erster Ord-
nung und prasentiert die wesentlichen Ergebnisse meiner Doktorar-
beit. Im Zentrum meiner Arbeit steht die Entwicklung eines neuarti-
gen das Simulationskonzepts, der einen Higgs-losen Ansatz nutzt, der
speziell zur Modellierung der relativistischen Hydrodynamik und der
GW-Erzeugung in solchen Ubergingen entwickelt wurde.

Die Higgs-losen Simulationen bieten eine hocheffiziente Methode
zur Erfassung der nichtlinearen Dynamik des primordialen Fluids und
ermoglichen die prazise Extraktion von GW-Spektren aus Phasentiber-
gangen erster Ordnung. Durch den Verzicht auf die Dynamik des
Higgs-Feldes wird eine erhebliche Reduzierung der Rechenkosten er-
reicht, ohne dass die Genauigkeit beeintrachtigt wird. Dies macht die
Methode zu einem wertvollen Werkzeug fiir die weitere Entwicklung
des Forschungsgebiets und fiir die wissenschaftliche Gemeinschaft ins-
gesamt.

Unser Higgs-loser Ansatz hat sich als duflerst effektiv bei der Lo-
sung der relativistischen hydrodynamischen Gleichungen mit hoher
Préazision erwiesen und ermoglicht die Auflosung von Hochgradien-
tenphdnomenen wie Schocks und nichtlinearer Evolution — entschei-
dend fiir genaue GW-Vorhersagen — bei gleichzeitiger Erhaltung der
Recheneffizienz. Der Higgs-lose Ansatz schliefst somit effektiv die Liicke
zwischen den traditionellen semianalytischen Modellen und rechenin-
tensiven numerischen Simulationen.

Diese Dissertation ist in zwei Hauptteile gegliedert. Teil I bietet eine
pragnante theoretische Einfithrung zu GWs und PTs in der Kosmolo-
gie und bildet die Grundlage fiir die nachfolgenden wissenschaftlichen
Untersuchungen. Teil II behandelt die wichtigsten theoretischen Kon-
zepte fiir numerische Simulationen, einschliefSlich zentraler Differenz-
methoden, bevor die Implementierung, Validierung und Anwendung
der Higgs-losen Simulationen im Detail erldutert werden. Diese Simu-
lationen bilden die Grundlage fiir die wesentlichen Ergebnisse und
wissenschaftlichen Beitrdge dieser Dissertation.

Zu den wichtigsten Errungenschaften meiner Forschung gehort die
Entwicklung eines 3D, vollstandig nichtlinearen hydrodynamischen Si-
mulationscodes zur Modellierung der PT-Dynamik mithilfe des Higgs-
losen Ansatzes. Diese Innovation ermdglichte neuartige Vorhersagen
zur GW-Erzeugung durch die Fluiddynamik bei PTs und markiert die
erste Ableitung von GW-Spektren aus starken PTs. Dartiber hinaus lie-



ferte sie detaillierte Einblicke in die parametrische Abhédngigkeit des
GW-Spektrums von den fundamentalen Grofsen der PTs iiber einen
weiten Bereich des PT-Parameterraums.
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THESIS OUTLINE

This thesis, titled Higgsless Simulations of Relativistic Hydrodynamics and
Gravitational Wave Production in Cosmological Phase Transitions is based
on the published works [1], [2], [3]. It is divided into Part I, Theory
of gravitational waves and cosmological phase transitions, Part II, Higgsless
Simulations, and Part III, Appendix. Part I is outlined to establish the
theoretical foundation and context necessary for understanding the
scientific work presented in Part II.

Part I is divided into Chapter 2, beginning with Section 2.1, where
I introduce GWs in flat, non-expanding space as small perturbations
of the metric. I describe the GW equations of motion, express the en-
ergy and momentum of GWs, and derive Weinberg’s formula for the
GW production from a generic source of energy and momentum. Then,
in Section 2.2, I review GWs in cosmology, justify the stochasticity of
GW backgrounds, derive the redshifted GW amplitude and wavenum-
ber, formally describe GWs in an expanding space-time, shed light
on Weinberg’s formula, and finally, review the production of GWs by
sound waves.

This is followed by Chapter 3, which reviews cosmological phase
transitions. In Section 3.1, I cover the basic concepts of phase transi-
tions, including the effective potential, bubbles and their nucleation
rate, statistics associated with bubble nucleation and expansion, the
Bag model and equation of state, phase transition strength, and the
hydrodynamics of singular bubbles. In Section 3.2, I review GWs from
tirst-order phase transitions. I provide estimates of key features of the
GW signal, discuss the scalar-field contribution to GW production in
various models, explore the plasma contribution to GW production in
different scenarios, and conclude with a few comments on the obser-
vational prospects for GW detection.

Part II, focusing on the design, implementation, evaluation, and ap-
plication of our novel Higgsless simulations introduced in [1], is di-
vided into four chapters. Chapter 4 serves as an overview of central
difference methods, with particular emphasis on the method used in
our simulations. In Section 4.1, I introduce hyperbolic conservation
laws. In Section 4.2, I present the Lax-Friedrichs scheme as a proto-
typical example of a central difference method. Then, in Section 4.3, I
introduce the Kurganov-Tadmore central difference method, the back-
bone of the Higgsless simulations, in both its semi-discrete and fully-
discrete formulations, including generalizations to three dimensions,
and offer some concluding remarks.



In Chapter 5, based mainly on the scientific work presented in my
publication [1], I introduce our novel Higgsless simulations and present
the first numerical findings. Section 5.1 provides background and con-
text and outlines the scientific objectives. In Section 5.2, I review the
physical setup governing the simulations. Section 5.3 explores the nu-
merical methods and programmatic choices, detailing their impact on
both the physics and measurements. In Section 5.4, I validate the sim-
ulation code, followed by the presentation of numerical results in Sec-
tion 5.5. A discussion is provided in Section 5.6, with concluding re-
marks in Section 5.7. I close the chapter with a brief digression in
Section 5.8, reviewing the results of my other publication [2], which
constitutes a case applying the Higgsless simulations to PTs seeded by
domain walls.

In Chapter 6, based on the work from my publication [3], I expand
upon the previous Chapter 5, significantly advancing our understand-
ing of the simulation’s performance and, for the first time, deriving
gravitational wave predictions from strong phase transitions. I further
generalize the theoretical framework for gravitational waves generated
by sound waves to incorporate a damped source. Section 6.1 intro-
duces the study and the broader context and outlines its scientific
objectives. In Section 6.2, I extend the model for gravitational wave
production to account for damped sources and cosmic expansion. Sec-
tion 6.3 discusses updates to the simulation code and the chosen pa-
rameters. The main numerical results, including findings from strong
phase transitions and a template for gravitational wave production,
are presented in Section 6.4. Finally, Section 6.5 summarizes the key
tindings and concludes the chapter.

I conclude the thesis in Chapter 7, where I reflect on the overarch-
ing scientific goals and achievements and propose avenues for future
research.

Part III contains Appendix A, where I comment on the hydrodynam-
ics and gravitational wave production in inverse phase transitions as a
response to recent advances in the field.
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Isak Stomberg. “Higgsless simulations of cosmological phase
transitions and gravitational waves.” JCAP, vol. 02, 011, 2023.
DOI: 10.1088/1475-7516/2023/02/011. arXiv: 2209.04369.

ABSTRACT:  “First-order cosmological phase transitions in the early
Universe source sound waves and, subsequently, a background of stochas-
tic gravitational waves. Currently, predictions of these gravitational
waves rely heavily on simulations of a Higgs field coupled to the plasma
of the early Universe, the former providing the latent heat of the phase
transition. Numerically, this is a rather demanding task since several
length scales enter the dynamics. From smallest to largest, these are
the thickness of the Higgs interface separating the different phases, the
shell thickness of the sound waves, and the average bubble size. In this
work, we present an approach to perform Higgsless simulations in three
dimensions, producing fully nonlinear results, while at the same time
removing the hierarchically smallest scale from the lattice. This signifi-
cantly reduces the complexity of the problem and contributes to making
our approach highly efficient. We provide spectra for the produced grav-
itational waves for various choices of wall velocity and strength of the
phase transition, as well as introduce a fitting function for the spectral
shape.”

MY CONTRIBUTION: My contribution to this work lies primar-
ily in the independent development and implementation of the
Higgsless simulation code, which I used to run simulations for
cross-checking data from the other authors” independent simu-
lation implementations, ensuring full agreement among the nu-
merical results. Specifically, I cross-checked the data used in the
analysis, which was derived from Dr. Thomas Konstandin’s im-
plementation. Additionally, I assisted in the data analysis, pro-
duced several plots, and contributed to the writing of the publi-
cation.

* [2] Simone Blasi, Ryusuke Jinno, Thomas Konstandin, Hen-
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ABSTRACT: “We discuss the gravitational wave spectrum produced
by first-order phase transitions seeded by domain wall networks. This
setup is important for many two-step phase transitions as seen for ex-
ample in the singlet extension of the standard model. Whenever the
correlation length of the domain wall network is larger than the typi-
cal bubble size, this setup leads to a gravitational wave signal that is
shifted to lower frequencies and with an enhanced amplitude compared
to homogeneous phase transitions without domain walls. We discuss
our results in light of the recent PTA hints for gravitational waves.”

MY CONTRIBUTION: In this work, I contributed to the concep-
tion of the project, the theoretical work and implementation of
the Metropolis algorithm, and the writing of the publication. The
numerical data was derived from the Higgsless implementation
by Dr. Thomas Konstandin.

[3] Chiara Caprini, Ryusuke Jinno, Alberto Roper Pol, Thomas
Konstandin, Henrique Rubira, and Isak Stomberg, "Gravita-
tional waves from decaying sources in strong phase transitions,"
arXiv: 2409.03651.

ABSTRACT:  “We study the generation of gravitational waves (GWs)
during a first-order cosmological phase transition (PT) using the re-
cently introduced Higgsless approach to numerically evaluate the fluid
motion induced by the PT. We present for the first time spectra from
strong first-order PTs (x = 0.5), alongside weak (x = 0.0046) and
intermediate (x = 0.05) transitions previously considered in the lit-
erature. We test the regime of applicability of the stationary source
assumption, characteristic of the sound-shell model, and show that it
agrees with our numerical results when the kinetic energy, sourcing
GWs, does not decay with time. However, we find in general that for in-
termediate and strong PTs, the kinetic energy in our simulations decays
following a power law in time, and provide a theoretical framework that
extends the stationary assumption to one that allows to include the time
evolution of the source. This decay of the kinetic energy, potentially de-
termined by non-linear dynamics and hence, related to the production
of vorticity, modifies the usually assumed linear growth with the source
duration to an integral over time of the kinetic energy fraction, effec-
tively reducing the growth rate. We validate the novel theoretical model
with the results of our simulations covering a broad range of wall ve-
locities. We provide templates for the GW amplitude and spectral shape
for a broad range of PT parameters.”


https://arxiv.org/abs/2409.03651

MY CONTRIBUTION: In this work, I was responsible for run-
ning the full set of simulations using my own independent Higgs-
less simulation implementation. I contributed to the conception
of the project and the theoretical developments, performed the
data analysis of the numerical simulation results, produced the
vast majority of the plots, and contributed significantly to the
writing of the manuscript.

This thesis will primarily focus on the first and third of these publi-
cations, which form the foundation of Chapters 5 and 6, respectively.
The second publication, being more application-oriented and slightly
diverging from the main theme of the thesis, will be discussed in Sec-
tion 5.8 of Chapter 5, where a more concise overview is provided.

In addition to these publication, during my PhD studies, I was ac-
tively involved in a number of collaborations both within and outside
of DESY and University of Hamburg. These gave rise to the following
publications,

¢ Hyungjin Kim, Alessandro Lenoci, Isak Stomberg, and Xiao
Xue. “Adiabatically compressed wave dark matter halo and intermediate-
mass-ratio inspirals.” Phys. Rev. D, vol. 107, no. 8, 2023, pp. 083005.
arXiv:2212.07528. DOLI: 10.1103/PhysRevD.107.083005,

* Mesut Caliskan, Yifan Chen, Liang Dai, Neha Anil Kumar, Isak
Stomberg, and Xiao Xue. “Dissecting the stochastic gravitational
wave background with astrometry.” JCAP, vol. 05, 2024, pp. 030.
arXiv:2312.03069. DOI: 10.1088/1475-7516/2024/05/030,

of which I am a co-author. Since these works are topically distinct
and have relatively little relevance to my primary research focus on
simulations of cosmological phase transitions, I have chosen not to
include them in this thesis.
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ure: The kinetic energy value at the first peak
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lines indicate extrapolation to infinity simula-
tion resolution. 114
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while the fourth slice is at the end of the simula-
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with wall velocity v,, = 0.32 corresponding to
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A few example spectra for weak (x = 0.0046,
lower lines) and intermediate (« = 0.05, upper
lines) PTs with N = 512. The specific parame-
ters for these PTs are detailed in the plot subti-
tles. The colored lines represent the shape func-
tion described in Equation (290), with distinct
colors indicating the regions of different power-
law indices 3 (red), 1 (green), and —3 (blue), as
well as the regime of exponential damping (or-
ange), separated by qo, q1,and qe. 120
Example of the impact of the box size L and
grid size N on the resulting GW spectrum. In
this example we use v,, = 0.8 and intermedi-
ate strength (x = 0.05). Note that in order to
distinguish orange dots from green and blue,
the orange dots have been manually shifted to
lower values by a factor of 0.85 as dots would
otherwise overlap. 120

The IR tail of GW spectra obtained from simu-
lations of box size L = 80v,, and resolution N =
512 for a PT of intermediate strength, v,, = 0.8,
and different simulation durations and integra-
tion time windows (in units of 1/f3) as specified
in the plot legends. The lines are shifted by fac-
tors of 2 relative to each other to make them
better visible. For reference, lines q* and q° are
included. 122

Upper panel: The extracted fitting parameters
do, g1, and (. as functions of the wall veloc-
ity. Blue (red) points correspond to weak (in-
termediate) PTs with o« = 0.0046 (x = 0.05). In
the upper left figure, we show the IR knee posi-
tion qo for L = 40v,,. In the upper right figure,
we show the UV peak q7 (dots), the shell thick-
ness (crosses) defined in Equation (291), and the
exponential damping q. (solid lines) for [ =
20v,,,. Lower panel: The integral of the GW spec-
trum growth rate Q/ , over momenta, defined in
Equation (289), normalized by Eanen (kx)? (left)
and by the kinetic energy squared (v2y?w)? mea-
sured in the lattice (right). 125
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Upper panel: The extracted fitting parameters
do, q1, and (. as functions of the wall veloc-
ity. Blue (red) data points correspond to weak
(intermediate) PTs with o« = 0.0046 (x = 0.05).
Dots and solid lines are from simulations with
small box size (L = 20v,,) while stars and dot-
ted lines are from simulations with large box
size (L = 40v,y). In the upper left figure, we
show the IR knee position qo for L = 40v,,. In
the upper right figure, we show the UV peak
g1 (dots), the shell thickness (crosses) defined
in Equation (291), and the exponential damp-
ing g (solid lines) for L = 20v,,. Lower panel:
The integral of the GW spectra Q/, over mo-
menta defined in Equation (289) normalized by
Enen (k)% (left) and by the kinetic energy squared
(v?y?w)? measured in the lattice (right). 128
Left column: A realization of a DW network as
per the method in the main text and footnote 2
is shown as dark lines. The bubble wall inter-
face is shown as expanding red circles at vari-
ous times in the simulation. Right column: The
kinetic energy in the fluid is as obtained in the
simulation at corresponding time steps. The
PT parameters are « = 0.05, v,, = 08, L =
160v,,, /B, and Epw = 0.1L. 142

Final spectra of the gravitational waves with (left)
and without (right) a DW network. The strength
of the PT is o = 0.05, and the velocities of the
bubble walls are v,, = 0.4, 0.55, and 0.8. The
green points indicate the part of the spectrum
used in the fit (shown in red). 143

Central 2D simulation slices of the fluid velocity
amplitude |v(X)| and enthalpy w(X) for a strong
PT with o« = 0.5 The resolution is N = 512, and
the box size L = 40v,,. The first three slices are
chosen at equidistant times to show the bub-
ble evolution before PT completion, while the
fourth slice is at the end of the simulation to dis-
play the long-term behavior. The upper (lower)
panels corresponds to a deflagration with v,, =
0.5 (hybrid with v,,, = 0.6). 164
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Same as the Figure 25, but for v,, = 0.8, corre-
sponding to a hybrid. Note that for weak and
intermediate PTs, this wall velocity gives rise to
detonation solutions. 165

Plots showing the kinetic energy fraction K and
the integrated GW spectrum I as a function
of grid spacing §%/vyw = (L/vw)/N for simu-
lations with [/v,, = 20. Upper panel: Fit of
Equation (328) to least-squares fitted values of
the parameter Ky in Equation (309) for simula-
tions of resolutions N € {64, 128, 256, 512}, nor-
malized to K; (defined from self-similar bub-
bles in Equation (168)). Solid lines indicate the
fits, dots the data, and stars the extrapolated
values. The left, middle, and right panels indi-
cate weak, intermediate, and strong PTs, respec-
tively. Middle panel: Same as upper panel, but
for Kips = Kint/Té‘{vz normalized to Kz. Note
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per the definition in the main text for v,, = 0.68
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Figure 28 Time evolution of the kinetic energy fraction in
the broken-phase volume K(t)/V(t) for multiple-
bubble simulations (solid lines), normalized by
the single-bubble Kg, for different resolutions
N = {64,128,256,512} in increased opacity and
box size [/v,, = 20. Results are shown for weak
(left panels), intermediate (middle panels), and
strong (right panels) PTs, and for a range of wall
velocities v, = {0.36,0.48,0.6,0.8}. Dashed lines
correspond to the ratio Kx(t)/Vs(t) computed
from the single-bubble simulations, such that
the departures between the solid and dashed
lines indicate the time when fluid-shell colli-
sions take place in the multiple-bubble simu-
lations. Black dots are the values of Ky ob-
tained from the fit K(f) = Ko(t/Ty)~? studied
in Section 6.4.5 for different N. Red and green
dots correspond to the estimated values Ky (see
Equation (333)) and Kg° (obtained from the con-
vergence analysis of Section 6.4.3). Orange stars
correspond to the factor 8§ (see Equation (333))
at the collision t.., used to correct Ko. 171

Figure 29 Upper panel: Values of the convergence-corrected
continuum limit estimate Xy of Ky as defined
in (333) for resolution N = 512, normalized to
K¢ for self-similar profiles defined in Equation (168),
for weak (left panel), intermediate (middle panel),
and strong (right panel) PTs, as a function of v,,,.
Lines in increasing opacity correspond to in-
creasing numerical resolution N € {64, 128,256, 512}.
The vertical solid gray line indicates the sound
speed, cs, while the dashed lines indicate the
Chapman-Jouguet velocity, vcy. Error bars show
the standard deviation from 10 different bubble
nucleation histories. Lower panel: Kinetic energy
efficiency ko = Ko(1 + «)/o¢ defined from XKy
as defined in (333) for resolution N = 512, for
weak (blue), intermediate (red), and strong (or-
ange) PTs. I also plot k¢ (black) for self-similar
solutions as defined in Equation (166). The ver-
tical line corresponds to cs, and vcy is indicated
by the dotted gray line. 174



Figure 30

Figure 31

Figure 32

List of Figures

Evolution of the measured kinetic energy frac-
tion K(t) normalized to the single-bubble val-
ues K; (see Equation (168)) for weak (left pan-
els), intermediate (middle panels), and strong
(right panels) PTs, for N = 512 (solid lines) and
L/vw = 20, and the same wall velocities as those
in Figure 277. Dashed lines indicate the fits to the
power-law decay of Equation (336) at times t >
to. Values corresponding to Ko /K are marked
with circles. In the lower panels, the kinetic
energy fraction is shown for different numer-
ical discretizations N = {64,128,256,512} (solid
lines with increasing opacity), normalized to the
corresponding values of the fit Ky at each reso-
lution N. The results for each v,, are shifted
by a constant to distinguish between wall ve-
locities. The presentation in the lower panels
is chosen to emphasize the dependence of the
time decay on resolution. 176

Decay index b (left panel) and half-life t; /, (right
panel) as a function of vy, for N = {256,512} in
increasing opacity for weak (blue lines), inter-
mediate (red lines), and strong (orange lines)
PTs. Dashed black lines with colored stars in
the right panel correspond to the eddy turnover
time feddy = (BRy)/ \/K>5 that we compare with
ty /2 as we expect both time scales to be inversely
proportional to K. Error bars in the left panel
show the standard deviation from 10 different
bubble nucleation histories for N = 512. 178
Upper panel: Dependence of the numerical inte-
grated GW amplitude found in the simulations
with T /v,, =40 and N = 512 as a function of the
source duration t — tj,;; for weak (left column),
intermediate (middle column), and strong (right
column) PTs. The integrated GW amplitude is
normalized as in the lower panels of Figure 27
for consistency. Dashed lines exemplify the lin-
ear growth expected under the stationary UETC
assumption. Lower panel: Time evolution of Qgw
computed as in Equation (338). 180
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Figure 33 Gravitational wave production efficiency Qgw
for weak (left), intermediate (middle), and strong
(right) first-order PTs. Solid (dotted) lines cor-
respond to /vy, = 20 (40). Black lines with
increasing opacity correspond to increasing res-
olutions N € {64,128,256,512}, while colored
lines indicate O, as computed from the ex-
trapolated values of Tsrl‘;oo and K{*, as per the de-
scription in Section 6.4.3. Dots and stars mark
Qcw as presented in Tables 2 and 3 of [72] cor-
responding to predictions from the sound-shell
model (SSM) for exponential nucleation of bub-
bles [72] and scalar field-hydrodynamical sim-
ulations for simultaneous nucleation [71], re-
spectively. Gray dots correspond to SSM values
found using the assumption described in 6.2.2
(following Appendix B of Ref. [73]), and com-
puted using CosMmoGW [166]. Error bars in-
dicate the standard deviation from 10 different
bubble nucleation histories for [ /v,, = 20 (darker)
and 40 (lighter). 181

Figure 34 Plots of the GW amplitude growth with the source
duration 5w = T — tint as modeled in Equa-
tion (341) corresponding to 3/H. = oo (solid
lines) and Equation (342) (dashed lines), for the
two values of 3/H, = 1000 (normal opacity)
and 100 (lower opacity). I furthermore indicate
the numerical growth of the GW spectrum as
found in the simulations but re-scaled by a fac-
tor Ko /Ko and vertically translated by % (o, tinit)
(red line segments). Dots indicate the eddy turnover
time teqqy = BR«/ /K, which determines the
expected scale for nonlinearities to develop (they
do not appear in the plot for weak PTs with
vy = 0.4 and 0.8). 184
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Figure 35 Fits of Equation (343) to the numerical results
from weak, intermediate, and strong PTs (in each
panel, amplitudes increase with larger «) with
N = 512 for a range of vy, and for L/vy, =20
in brighter colors (white dots for the numerical
data), and L/v,, = 40 in darker colors (black
dots for the numerical data). Red lines indicate
wave numbers below the knee ki, green indi-
cates intermediate wave numbers ki < k < kp,
and blue corresponds to wave numbers above
the peak k;. The dotted orange lines indicate
wave numbers k > ke, where exponential damp-
ing dominates. The light and dark gray lines in-
dicate the resulting fitted double-broken power
laws excluding the exponential damping. Ver-
tical lines indicate the Nyquist wave numbers
knyqRs = BR.N/L. 187

Figure 36 Fitted UV index n3 > —3. Note that for weak
PTs, we fix n3 = —3 (shown for reference). The
sample standard deviation, as determined from
the seed simulations, is depicted as 10 error bars
at selected representative velocities. 190

Figure 37 Fitted characteristic wave numbers k; (left col-
umn), k2 and ke (middle column), and kpeax
(right column) for weak (blue), intermediate (red),
and strong (orange) PTs, using simulations with
N = 512 and [/v,, = 20 (40) in solid (dotted)
lines. Gray regions indicate the Nyquist fre-
quency knyq = N/L. In the upper panel, wave
numbers are normalized as k/f3, as presented
in [67] and Chapter 5, while in the lower panel,
they are normalized as k R,.. Thick colored lines
of low opacity in middle panels indicate k. for
L/vyy = 20 (40) in solid (dotted) lines. In the
upper panel (middle and right), thin black-and-
color dashed lines indicate 1/&4,q, while in the
lower panel, they indicate the fitted value 27t
0.49/A., (see Equation (349)). In the right col-
umn, the lower opacity regions indicate the peak
as obtained using the double broken power law
fit of Equation (343), neglecting the exponential
numerical damping. 192
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Figure 38 Comparison between the re-scalings associated
with R, and Reg. The pink dashed-doted line
corresponds to a fit 1.36/ (v,, +0.24) to facili-
tate using Ry without knowledge of the pro-
files. 193

Figure 39 Time evolution of the GW spectrum IJ(E;n;t, T, k),
evaluated at times t € [17,32] with tn; = 16, for
weak (left column), intermediate (middle col-
umn), and strong (right column) PTs. The wall
velocities are v,, = 0.32 (0.36 for strong PTs) in
the upper panels, 0.6 in the middle panels, and
0.8 in the lower panels. The numerical resolu-
tion is N = 512, and the box size is L/v,, = 40.
The GW spectra are normalized by the refer-
ence value Qgw ~ 1072 and the expected scal-
ing Ké R.p. 197

Figure 40 Various GW spectral growth rates obtained as
averages over 10 different bubble nucleation his-
tories. Each spectrum shows the mean, the vari-
ance, and the min-max over the ten nucleation
histories. The left (right) plots show spectra
from simulations with box size L/v,, = 20 (box
size [ /vy, =40). 198

Figure 41 2D simulation slices of the velocity amplitude
Iv(%)], enthalpy w(X), and the vorticity |V x v(X)|
field for a strong PT with « = 0.5 and v,, =
0.36. The resolution is N = 1024, twice that
of the simulations of the highest resolution in
previous parts of this Chapter, and the box size
L/vw = 20. The wall velocity is chosen to be
vw = 0.36 since the production of vorticity is
observed to be maximal at low wall velocity.
Around the expanding bubble, spurious small-
scale vorticity is seen, which is caused in part
by small fluid transients around the shock and
in part by the definition of the central numeri-
cal derivative, which picks up artifacts from the
lattice symmetry. Sizeable macroscopic produc-
tion is, however, observed in the interactions of
overlapping fluid sound shells, indicating the
physical presence and build-up of vorticity. 201
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Longitudinal and transverse velocity power spec-
tra of the fluid for two strong PTs with « = 0.5
and wall velocities v,, = 0.44 (left column) and
v = 0.8 (right column). The top panel illus-
trates the power in the longitudinal modes, the
middle panel the power in the vortical modes,
and the bottom panel the fraction of power in
the vortical modes. Different lines correspond
to different times in the simulation. For refer-
ence, bubble nucleation begins around t ~ 0,
first collisions occur around t ~ 5, and PT com-
pletion takes place around t ~ 10. 203
Examples of self-similar velocity profiles for in-
verse detonations (left), inverse hybrids (mid-
dle), and inverse deflagrations (right). This Fig-
ure is adopted from [168], to which I refer the
reader for details. 218

Convergence towards the self-similar fluid pro-
file for an inverse deflagration for v,, = 0.75
and o« = —0.1202. The pink dashed line for the
self-similar velocity profiles is taken from [168]
for the same parameters. 219

Off-central 2D simulation slices for an inverse-
deflagration of the fluid velocity amplitude |v(X)|
(upper panel), and enthalpy w(X) (lower panel).
The wall velocity is v,, = 0.75 and the strength
o = —0.1202 (x = x/B). The resolution is N =
512, and the box size [/v,, = 20. The first
three slices are chosen at equidistant times to
show the bubble evolution before PT comple-
tion, while the fourth slice is at the end of the
simulation to display the long-term behavior.
220
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Figure 46 Fit of equation (345) to GW spectrum data for
the inverse deflagration with v,, = 0.75 and
strength « = —0.1202. The color transition be-
tween red-blue marks the peak k,, which in this
example is equal to ki, i.e., k1 = kp, as the
sound shell thickness is rather thick and with,
correspondingly, no separation of scales leading
to an intermediate regime of linear scaling. The
start location of dashed orange lines marks the
scale ke where exponential damping begins to
dominate. Colored regions demarcate the range
of wavenumber used for the fit, whereas trans-
parent gray indicates the fitted function exclud-
ing exponential damping. 221
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PRELIMINARIES

1.1 Background

1.1.1 Cosmological phase transitions: the source

On our sphere of life, the Earth, phase transitions, i.e. processes through
which nature proceeds to change its local state as a result of changes
in conditions, such as the temperature, pressure, or energy density,
crossing a critical threshold, occur in abundance and diversity. They
include the most well-acquainted melting of ice, vaporization of water,
and the transition of a magnet from ferromagnetic to paramagnetic
when heated. Perhaps less-known examples include the transition of
a fluid from a superfluid to a normal fluid, the transition of a regular
conductor into a superconductor, and the transition of a Bose-Einstein
Condensate to an ordinary gas.

The list of examples of observed phase transitions can be made very
long, yet none of them pertain to a cosmological context. In fact, while
many cosmological phase transitions have been suggested, not one of
them has been observed. However, the universal abundance of phase
transitions in diverse physical systems warrants taking seriously the
possibility that phase transitions have occurred, perhaps in abundance,
also throughout cosmological history. Their hypothesized existences
could, if confirmed true, imply a vast set of consequences for our uni-
verse as we know it and even explain conundrums that are difficult to
explain in their absence.

Some such consequences of cosmological phase transition include
primordial magnetic field generation [4, 5], generation of matter-
antimatter asymmetry [6—10], production of topological defects, pri-
mordial black holes—[11-13], and GW production [14, 15]. Clearly, their
phenomenology is vastly rich, and their cosmological consequences
are far-reaching.

In the context of a first-order cosmological phase transition (PT), the
order parameter initially remains in the symmetric phase while a bro-
ken true vacuum minimum develops. Vacuum or thermal fluctuations
can then trigger a transition to the broken phase through the potential
barrier, leading to the formation of small bubbles [16-18]. The vacuum
energy released drives the expansion of these bubbles, which eventu-
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ally collide with one another, causing anisotropic stresses in the energy
distribution which source GWs [14, 15].

While bubble collisions themselves are a significant source of
GWs [19—24], it has been demonstrated in [25] that the motion of the
fluid driven by scalar field walls often dominates the GW spectrum in
PTs where the bubble wall reach an asymptotic value rather than ac-
celerate towards the speed of light c. In this case, most of the vacuum
energy is deposited in the primordial fluid, inducing acoustic modes
that continue to propagate through space even after PT completion,
thus sourcing GWs for a possibly long period of time.

Throughout cosmological history, at least two possibly first-order
PTs are likely to have occurred. At a temperature T ~ 100GeV, the
Higgs field underwent spontaneous symmetry breaking in the elec-
troweak PT (EWPT) responsible for giving particles mass through
the Higgs mechanism. Studies of the electroweak model have found
the EWPT is of second order in the standard model (SM) of parti-
cle physics [26—29]. This would imply that little to no GWs are pro-
duced, making it impossible to observe the EWPT through the chan-
nel of GWs. In extensions of the SM the EWPT may be first-order (see,
e.g., [10, 30, 31]), thus producing a possibly observable amount of GWs
if the PT is strong enough.

As the universe cooled further, at a temperature around T ~ 100MeV,
free quarks were confined to form protons and neutrons in what is
known as the QCD phase transition. Again, studies based on lattice
QCD have demonstrated that also the QCD phase transition was of
second order [32]. However, as is shown in, e.g., [33, 34], under certain
conditions, e.g., in the presence of a sufficiently strong magnetic field,
the QCD phase transition may be of first order.

The EWPT and the QCD phase transitions are prototypical examples,
but a PT could have occurred in a hidden sector [35], and at any energy
scale within a broad range spanning QCD scale ~ O (10%) MeV up to
the inflationary scale < 10'°GeV [36]. Probing scales far beyond the
reach of all current and conceivable future experimental means that
observational signatures of PTs may open a plausible and lucrative
window to new physics.

In general, the message I want to deliver is that a first-order PT may
come with rich phenomenological consequences, among which one is
the production of a stochastic background of GWs, and that observa-
tion of such consequences carries the potential of unraveling physics
far beyond the reach of any earthly experimental effort. This may thus
bring us new information on the underlying high energy theory of the
primordial universe, which should serve as a strong justification for
their study.
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1.1.2 Gravitational waves: the signal

The door to a new era with the promise of groundbreaking discov-
ery was opened with the inaugural direct detections by the LIGO-
Virgo collaboration of GWs emanating from mergers of black holes
and neutron stars [37-39]. The forthcoming observing runs by the
LIGO-Virgo-KAGRA (LVK) collaboration are expected to accumulate
more events [40]. Collaborative efforts among Pulsar Timing Arrays
(PTAs) have furthermore unveiled convincing evidence of a stochastic
GW background (SGWB) at nano-Hertz frequencies [41—44]. While a
compelling candidate for the source of this radiation from unresolved
supermassive black hole mergers, i.e., of astrophysical origin, it is im-
portant to point out that primordial sources of cosmological origin
can also explain the observed signal [45, 46]. These breakthroughs in
GW detection gave us ears to astrophysical events and cosmological
history inaccessible through all other means of observation, and we
are poised to gather data that will revolutionize our understanding of
astrophysics and cosmology. Looking ahead to the 2030s, the launch
of the Laser Interferometer Space Antenna (LISA) mission [47—49], de-
signed to probe GWs in the unexplored milli-Hertz frequency band, is
poised to potentially revolutionize modern cosmology [49]. One par-
ticularly intriguing possibility is LISA’s ability to observe GWs from
tirst-order PTs [14] around the EW scale, as the expected peak of the
GW spectrum would coincide with LISA’s sensitivity band [50-52].

These groundbreaking GW observations have profoundly impacted
astrophysics, offering new insights into the formation and evolution
of black holes and neutron stars [37, 39], including intermediate-
mass black holes, and proving the existence of binary systems with
unexpectedly large massive black holes [53]. A notable example is
GW190521, where the merging black holes had masses of approxi-
mately 85 and 66 solar masses, resulting in a final black hole of around
142 solar masses. This event challenges our understanding of stellar
evolution, as black holes of such large masses are not expected to form
from the collapse of a single star [54].

This surprising discovery underscores the exceptional discovery po-
tential of listening for GWs. Beyond astrophysical insights, current GW
detections serve as powerful probes of fundamental physics and cos-
mology. For instance, the first detection of the coalescence of two
neutron stars, accompanied by the coincident detection of the same
event across various electromagnetic bands [39], has placed strong
constraints on the GW propagation speed, —3 x 1071° < ¢r —1 <
7 x 107 '®, in units of ¢ = 1 [55], and has also been used to estimate the
present Hubble rate [56]. In cosmology, the detection of a stochastic
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GW background by PTAs opens new avenues for studying the uni-
verse’s large-scale structure and early cosmological events [41—43].

To shed some light on the importance of an SGWB in cosmology,
let us first consider the Cosmic Microwave Background (CMB) and its
discovery, which triggered a revolution and laid the foundation for
modern precision cosmology. The CMB represents the era of photon
decoupling, after which photons could propagate essentially undis-
turbed along geodesics until, eventually, some were detected by our
telescopes. This unimpeded free propagation has led to the undeni-
able fact that much of what we know about the universe is due to our
ability to see it. This remains true up to the time of the CMB, beyond
which no inference of the universe may be attained through direct vi-
sual inspection.

The time of photon decoupling can be estimated by comparing the
rate at which photons interact with the medium, I' = n.o.c, where
N, is the electron number density, o, is the electron cross-section, and
c is the speed of light, to the Hubble expansion rate H o a=3/2
matter-domination, where a is the scale factor. As the universe cooled,
electrons and protons combined to form neutral hydrogen, leading to
a sharp decrease in the free electron density, n.. Decoupling occurred
rapidly when the photon scattering rate, I' ~ H, so that the mean free
path, A, of the photons was comparable to the Hubble horizon HT,
which can be shown to occur at a time of around 380,000 years after
the Big Bang or at a redshift of around z = 1100 [57]. Following this
decoupling, photons mostly followed geodesics without interactions
along their path, which conveniently rendered the universe transpar-
ent to light or, more generally, electromagnetic radiation. This opened
the venue for us to visually appreciate and learn about the universe
through the observational channel of light up until the CMB, but no
further.

For a SGWB, we may ask the same question: when did GWs decou-
ple from the primordial medium of the universe? Knowing this answer,
we would know the earliest time from which GWs can carry informa-
tion to us. The question is answered by a similar comparison, namely,
at what time did the GW interaction rate I' equal the Hubble rate H?

Thus, one computes [58]
ro(Ty
H Mpy

where Mp; denotes the Planck mass and T the temperature. From this
estimate, it is clear that the universe is transparent to GWs up until the
Planck scale at a temperature T ~ Mpy ~ 10'?GeV, roughly correspond-
ing to a time of just 10743 seconds after the big bang. In other words,
GWs propagate freely in the early universe immediately after they are

in
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generated. This means that contrary to light, GWs carry information
about the processes that produced them throughout most of conceiv-
able cosmic history and can communicate the state of the universe at
epochs and energy scales that are far unreachable by any other means.

We thus understand that the holy grail of early universe cosmology
lay in the detection of a stochastic GW background of confirmed cos-
mological origin, with far-reaching consequences poised to revolution-
ize our understanding. Such a detection, nevertheless, is far from triv-
ial and demands that the source of GWs is sufficiently strong. Phase
transitions, however, potentially constitute such a source.

1.2 Motivation

This brief review highlights that GW astronomy is at the forefront of
a new scientific frontier, poised to revolutionize our understanding of
astrophysics, the universe’s earliest epochs, and fundamental physics.
I have particularly emphasized the generation of GWs from first-order
PTs and the potential of future GW detectors, such as joint PTA efforts
and LISA. The path from detecting new physics to interpreting SGWB
is paved with the need for precise GW predictions. As experimental
advancements bring the detection of new physics within reach, theo-
retical developments must keep pace to enable meaningful inference
from the data.

In this thesis, significant strides are made to deepen our understand-
ing of the violent hydrodynamics associated with vacuum energy re-
lease in first-order PTs and the resulting GW production. The goal is
to provide the physics community with accurate predictions of GW
spectra, parameterized by a few quantities that can be employed in
data analysis and inference studies. This can be achieved through both
analytical and numerical methods. In this work, I introduce a novel
simulation setup, termed Higgsless simulations, to derive such predic-
tions.

As we await the launch of LISA and the commissioning of future de-
tection concepts, joint advancements in data analysis techniques and
theoretical frameworks are essential to fully leverage the missions” po-
tential. It is within this context that the present thesis finds its motiva-
tion.
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THEORY OF GRAVITATIONAL WAVES AND
COSMOLOGICAL PHASE TRANSITIONS

In this part, I establish the theoretical foundation. It is di-
vided into Chapter 2, beginning with Section 2.1, where I
introduce GWs in flat, non-expanding space as small per-
turbations of the metric. I describe the GW equations of
motion, express the energy and momentum of GWs, and
derive Weinberg’s formula for the GW production from
a generic source of energy and momentum. Then, in Sec-
tion 2.2, I review GWs in cosmology, justify the stochasticity
of GW backgrounds, derive the redshifted GW amplitude
and wavenumber, formally describe GWs in an expanding
space-time, shed light on Weinberg’s formula, and finally,
review the production of GWs by sound waves.

This is followed by Chapter 3, which reviews cosmological
phase transitions. In Section 3.1, I cover the basic concepts
of phase transitions, including the effective potential, bub-
bles and their nucleation rate, statistics associated with bub-
ble nucleation and expansion, the Bag model and equation
of state, phase transition strength, and the hydrodynamics
of singular bubbles. In Section 3.2, I review GWs from first-
order phase transitions. I provide estimates of key features
of the GW signal, discuss the scalar-field contribution to
GW production in various models, explore the plasma con-
tribution to GW production in different scenarios, and con-
clude with a few comments on the observational prospects
for GW detection.
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In this Chapter, I will introduce relevant concepts and theoretical re-
sults from general relativity and cosmology to ensure a somewhat self-
contained treatment. There are countless resources that cover these
subjects in great detail, and I refer the reader seeking a comprehensive
treatment to those. The present Chapter is merely a brief overview,
largely based on the references [58-62].

In Section 2.1, I introduce GWs in flat, non-expanding space as small
perturbations of the metric. I describe the GW equations of motion, ex-
press the energy and momentum of GWs, and derive Weinberg’s for-
mula for the GW production from a generic source of energy and mo-
mentum. Then, in Section 2.2, I review GWs in cosmology, justify the
stochasticity of GW backgrounds, derive the redshifted GW amplitude
and wavenumber, formally describe GWs in an expanding space-time,
shed light on Weinberg’s formula, and finally, review the production
of GWs by sound waves.

2.1 Gravitational waves in flat non-expanding
space

In this Section, I will give a brief introduction to the notion of GWs
as small perturbations to the metric of flat non-expanding space. I will
review basic results and, in particular, derive a formula for the GW
spectrum produced by a generic source of energy and momentum.

2.1.1  GWs as metric perturbations

Since at the fundament of the gravitational waves lay the general the-
ory of relativity (GR), the formula from which we spring is the Einstein
equation

1
Ruv — ngR = 8nG T,y (1)
where the Riemann tensor is defined by
RHVPG = apr\ttd_aﬁr\&p+F&Lprgc_r§crgp/ (2)

the Ricci tensor by
Ruv = Rocpow; (3)
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the Ricci scalar by

R= QHVRLWI (4)

and the energy-momentum tensor T,., receiving contributions from
whatever fields are present, is the source of curvature. The Christoffel
symbols are computed from the metric as

1

rSv = Egpc(auQGV‘f’avgdu_acguv)- (5)

In this thesis, we will exclusively regard GWs as small perturbations

h,v around a flat expanding or non-expanding background. For the

non-expanding case, the background metric is Minkowski, whereby
the metric is perturbed as

Juv =TMpv + huv; |huv| <17, (6)

working with a negative-time metric signature such that n,, =
diag(—1,1,1,1). Keeping terms at most of order O(h) in the equations
of GR results in what is called linearized theory.

2.1.2 Equations of motion

For future convenience, define

h= Tluvhuvz (7)
_ 1
huyv = hyy — En uwvh, and (8)
_ 1 _
hPLV = huv — ET] u-vh.. (9)

With these definitions, one can show that to linear order in h,., the
Einstein equation (1) takes the form (see e.g. [60])

One of our main reaming tasks in this Section is to exploit gauge
symmetries of linearized GR to bring this equation into a form that, to
the largest possible extent, reflects the physical degrees of freedom as-
sociated with GW propagation. We begin by simplifying the linearized
Einstein equation itself.

It is apparent that if, in the last equation, one could choose h,,,, such
that

Vhyy =0 (11)
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the equation would greatly simplify. Under coordinate transformations
of the form

xH = XM = XM EM(x), (12)

for as long as [0,,&v| ~ [hyy| or smaller, the metric perturbation h,
transforms as

My (%) = R (X)) =y (x) — (06 + 04 &), (13)

which in turn, using that h —h = 20%¢&,, implies the transformation
property of h~

ﬁuv — HLV = ﬁpv - (au‘(—.v + a'\/((-vll _nuvatxao‘) = ﬁuv - ‘(—.uv- (14)

This means that subject to coordinate transformations of the form (12)
and the condition that [9,,&+| ~ [hy~| or smaller, the metric perturba-
tion expressed in the new coordinates remain of the same order, thus
ensuring the validity of the linearized Einstein equation (1).

Upon requirement of condition (11) on the transformed metric per-
turbation (14), it is immediately clear the functions &, (x) must satisfy

avauv = DE,;,L =0. (15)

Since this equation always admits solutions, this proves that condi-
tion (11) may always be satisfied under an appropriate choice of &, (x).

Condition (11) constitutes a choice of gauge often denoted Lorentz
gauge, and reduces the number of degrees of freedom from 10 in-
dependent components of h,., to 6 through the imposition of 4 con-
straints. In Lorentz gauge, the linearized Einstein equation takes the
simple form

ORyy = —16nG T,y . (16)

We should note here that applying the Lorenz gauge condition (11)
to (16) means that, since partial derivatives commute, the energy-
momentum tensor is conserved, i.e. 0*T,, = 0, serving as a good
sanity check.

We want to exploit the residual gauge freedom to isolate those de-
grees of freedom in h,,, that are physical and hence consider another
transformation hy — ﬁ/m, of the form (12). To this end, we therefore
consider the possibility to require also that the trace n*Vh{,, = h’ =0,
for in this case hj,, = hj,,, and the metric perturbations have the
formidable property of conserving the volume element. The condition
of tracelessness translates into the requirement on &, that

1 _
0% = —En‘”huv- (17)
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But 0J&,, = 0 must simultaneously be satisfied by the Lorentz gauge
condition. Using that partial derivatives commute, the application of
O on (17) implies Oh,, = 0, which are the GW equations of motion
in vacuum, and thus guaranteed to be satisfied for as long as we as
Tuv(x) = 0. The imposition of gracelessness, therefore, means we must
be in a vacuum.

We will furthermore impose that ho; = 0, which requires of &, that

hoi = 00&i + 0:&o, (18)
while the Lorentz gauge condition implies
3°h)y =0 = hfy = const. =0, (19)

where in the last equality, we set the constant to 0 since, with GWs,
we really mean the time-varying part evolving over a constant back-
ground. Now, since h = Tp,, = 0, the Lorentz gauge condition simply
reads aihﬁ = 0, so that the polarization of hj; is transverse the direc-
tion k or propagation.

Summarizing the current gauge constraints, we therefore have that

ho* =0, h%i =0, hy=0. (20)

The gauge defined by conditions (20) is called transverse-traceless (TT)
gauge, and we will decorate quantities obeying (20) with sub- or su-
perscript TT. Occasionally, and when exclusively Roman subscripts are
used, TT gauge should be impliclty assumed. Thus, in this gauge, the
GW EoMs reduce to

OhlT =0, (21)
ij

which is a wave-equation admitting solutions of the form
hf]T o eij(lA()eik“"H (22)

for transverse-traceless polarization tensors eij, thus, satisfying
kieij(k) = 0. The two residual degrees of freedom in TT gauge can
be attributed to two polarization states, + (plus) and x (cross), such
that the most general solution takes the form

3 . .
byt = 3 [ Sl tle el (&) (23)
T=4,X

where the polarization tensors are defined by

A A A A A A

A N ] R
e;ri (k) = (636 —¥195), eé(k) = \ﬁ(uivj + Vi),

F)
<>
l_
\7\">
o
l_

<

11
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(24)
with normalization
efj(k)e™ V() =8, 1,1 € {4 x); (25)

Provided a generic symmetric tensor H,, which already satisfies the
Lorentz condition (11), such as h, or T,, (which satisfies (11) from
energy-momentum conservation), one can project that tensor onto its
transverse-traceless part following

HE = Ay aHia. (26)

The projector, the Lambda tensor, Ayj k1 is constructed as follows: Define
the projector,

Py (k) = 835 —kik;, (27)
then,

1

EPij Pkl' (28)
The action of Pi; upon a vector a is thus to project a onto the planar
subspace whose normal is k. /\ij,kl(f() is the tensor generalization of
this projection. The following properties of the Lambda tensor are use-
ful:

Ak (k) = PPy —

Aij k1 Ak, mn = Aij,mn, (29)
it is traceless w.r.t. the first and last two indices,

Aiixt = Aij ke =0, (30)
it is symmetric under (ij) < (kl), (ij) <> (ji), and (kl) <> (1k)

Aijkt = Axvij = Akt = Adj ik, (31)
and it is transverse on all indices,

kA1 =0, aefijkl. (32)

The polarization tensors satisfy the completeness relations

“ 1
Z ef; (K)ef,, (k) =3 (PitPjm + PimPjL — PijPim) - (33)

An alternative definition of Pi; in terms of @t and ¥ in the plane
orthogonal to k reads

Pij = @il + 9195 . (34)
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Therefore, the action of A onto a symmetric tensor Hi; may be ex-
pressed in terms of the + and x polarization tensors as

HIET = Ay My = [ (R)ef () + e (e, (k)| Hig. (5)
If we define the projection of Hji; onto the + and x polarization basis

Ho (k) = e (IHi5(k),  Hyx (k) = e (I)HY (), (36)
we can rewrite

Ayt (K Hi (K Hy (K)* = Hy (K)HT (k) + Hy (K)HT (k). (37)

This result will be used in Chapter 5.

2.1.3 Energy and momentum of GWs

The notion of an energy-momentum tensor for GWs can be defined
through (see e.g. [60])

1
TEw = 55—
GW ™ 321G
where the average is typically taken either over many oscillations in
time or over many wavelengths in space. The energy density associated
with the GWs is given by the 00-component as

(0"hapd hoP) (38)

00 — L pITRITy
W 3mG VY T

(39)

To arrive at an expression for the energy flux, i.e., the energy carried
GWs passing through a unit surface per unit time at a large distance
r from the source an expression, consider the flux through a volume
V enclosed by a sphere of radius r whose surface element is given by
dA = 12dQ. On this sphere sufficiently far away from the source, the
metric perturbations take the general form

1
hiTjT(t/T) = ;fij(t_r)- (40)
Energy-momentum conservation,
J dPx (Do TS + 9 T&) =0, (41)
Y%

then implies that

dB r2 <
dtdQ 32nG

across the spherical surface.

R (4, 1R (1) (42)

13
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2.1.4 Weinberg’s formula

In this Section, I will derive a central expression, Weinberg’s formula
(54) for the GW production by a generic (non-stochastic) source of en-
ergy and momentum Tj;, an expression which I will use extensively
to compute the GW spectrum in the Higgsless simulations. Due to its
historical significance, and name conventions used in the literature, I
will outline in this Section the original method through which this re-
sult was obtained. Later in Section 2.2.4 and in a cosmological setting,
I will present an alternative, more rigorous derivation of the same ex-
pression from a stochastic source.

The spectrum of GWs produced by a generic source T;; of energy-
momentum was originally derived by Weinberg in his book [62]. A
somewhat more detailed and digestable derivation was delivered by
Maggiore in his text book [60]. For the completeness of this thesis, and
to form a basis for discussion, I will review this derivation in some
detail.

We will assume that GW production occurs in a flat non-expanding
universe. In this case, the equations of motion for the metric perturba-
tions hy~ subject to non-vanishing energy-momentum and in Lorentz
gauge are given in equation (16). Since (16) is linear in hy, the prob-
lem can be reduced to a simpler problem,

OxG (x—x) =8* (x— %), (43)

which upon finding the solution G (x —x’) allow for the construction
of hyv through convolution:

huv(x) = —167TGJ d*x'G (x—x") Ty (X') (44)
Vs

where the integral is taken over the source volume Vs. What this
amounts to is studying the response of the system due to a minimal
impulse 5% (x —x’) at x/. Linearity then allows to construct the full re-
sponse from the linear superposition of impulse responses as obtained
from the convolution.

The solution G (x —x’) that solves (43) is called the (retarded)
Green’s function and is given by [62]

1

G (=) =g —x1

S(t—[x—x|—t). (45)

Insertion of this expression into (44) and integrating over time, thus
absorbing the delta function, leads to

Tuv (t—[x =X

huv(t,x) =4G J d3x’ ,X) . (46)

Ix —x/|
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Assuming that the source is sufficiently far away, we can make the
approximation 1/(|x — x’|) = r, where r is the distance to the (center of
the) source. For the retarded time, we make the approximation that it
is equal on planes intersecting the source orthogonal to the direction
A = X pointing towards the observer, namely

t—x—x|~t—r+x-A (47)

Since we are outside of the source, we can furthermore project on the
transverse-traceless part, i.e. thT = /\ij,klﬁkl , and thus obtain

4G . A
W r) = 1 J XA (A) T (t= 74X -4, X)) (48)

Using the Fourier convention,

d'k —iqt+ikex
Ta(t,x) = J WTkl(q/k)e q ) »
Tij(q,k) = J dt d3x Ty (t, x)etat—ikx
one finds that
iy (1) = ?Aij’kl(ﬁ) Jio %Tkl(qr qh)e A=) (50)

At a large distance from the source, the total radiated energy per unit
solid angle dQ through a spherical surface of radius r is described by
Equation (42). Inserting the strain amplitudes (50) into this expression
and integrating over time, one finds that

dE 2 (™ , .
6= G | AT AT )
iR (51)

= ﬁ/\ij,kl(ﬁ) Jo dq q°Ty;(q, gA) T (g, gh)
where in the first line the ensemble average is removed since we are
anyway integrating over time, while in the second line, the identity
(29) for the A tensor as well as T(—q, —k) = T*(q, k) were used. Thus,
we can express the total amount of released energy per logarithmic
frequency bin as

dE 2Gq3 [dQ . - .
_ qj Ass ()T (q, gA)TEL (0, qR) (52)

ding  m J 4m
The interpretation of the expression concerns the total energy re-

leased from a generic source Tij, which is sufficiently far away that
we are in the wave zone where GWs appear as plane waves. Consider
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instead the situation that an unlimited and statistically homogeneous
distribution of similar sources is distributed in space to occupy an av-
erage volume V per source. Provided we are sufficiently far from the
sources, we can apply Equation (52), and conclude that the energy
density in GWs is Equation (52) divided by V, i.e.

d 2G 3 dQ A A * A
PGw q J /\ij,kl(n)Tij (q, qn)Tkl(q, qn) . (53)

ding  nvV ) 4n

It appears, therefore, that Weinberg’s formula can be used to compute
the energy density in GWs from an unlimited number of sources dis-
tributed uniformly in space. However, even with just one source in one
spatial volume V, we can estimate the full spectrum. Given a generic
source Ti;(t,x), we can thus use Equation (53) to determine the result-
ing GW spectrum at production time (superscript p)

docw(q)  ¢3 JdQ

1 N
P _ — et . . *
Ol =5 g = dmtmZsv ) 4 Ay g ()T (0, K0T (0, K

(54)

where I used mp; = 1/v8nG and p is the average energy density. To
honor the original derivation, to align with the literature, and owing
to its central role in my work, I will call Equation 54 Weinberg's formula.

2.2 Gravitational waves in Cosmology

In this Section, I will generalize the treatment of GWs in Section 2.1 to
a cosmological setting involving an expanding space-time and relax-
ing the assumption of being in a vacuum. I will review basic results
and, in particular, re-derive Weinberg’s formula (54) in this more real-
istic context, thus shedding light on its applicability in the context of
this thesis and interpretation. Before considering more formal aspects,
I will discuss some general results, giving order-of-magnitude estima-
tions and justifying the description of cosmological sources of GWs as
stochastic backgrounds.

2.2.1 The stochasticity of GW backgrounds

Any cosmological gravitational background that we earnestly want to
measure is expected to be of a stochastic nature. In this Section, I will
briefly review the arguments behind this statement.

In an expanding universe, the largest scale of correlation is set by the
Hubble distance/time H~'. Therefore, at the time of GW production,
the largest spatial and temporal scale over which a GW signal can

kl=q
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be correlated is (Axp, Atp)/ H; T < 1. We wish to compare this to the
current Hubble scale, and proceed to compute the redshifted value of
the largest correlation scale Axg,

I T B (55)
Ho' Ho'ap " Hy'ap Vb

where we assumed a radiation-dominated equation of state at produc-
tion and defined Qfad = pp/pg and pg = 3H(2)/(87[G) is the average
density at production time.

As the universe expands adiabatically to a good approxima-
tion, the entropy per comoving volume is conserved [63], so that
gs(T)T3a3(t) = const.. This allows relating the amount of expansion
that has taken place since production, ap/ap, to the current photon
temperature Ty ~ 2.35 x 107'3GeV [64] and the temperature Ty at pro-
duction through

pN\1/3 P 1/3
@ _ (9s ) o ) 13 ( 9s Tp
(%(g%) <T6>‘J‘5X1O 100 GeV (56)

where we additionally assumed the value gg = 3.91 [65]. Using that

Prad = %Q*(T)T4 during radiation domination, we can furthermore
compute

0 \4/3
* T) ao 4
Q,q(T QO 9s 9 ( do ‘
(1) = r“(Qdﬂ) ( g9 <a) (57)
The redshifted correlation scale can therefore be estimated as
1/3
Axg ap/ap, 1 ( g8 ) / 9 T
Hy' p 0 gv T,
0 \/ QF \/ Q; P (58)

o ()" (%)
gt Tp

where in the last step, we used that g} ~ g% and g% = 2 for the two
polarization states of photons. It is immediately apparent that for the
prototypical electroweak PT, T, ~ 100 GeV, and in fact, any other first-
order PT occurring in the early universe, the maximal scale of the cor-
relation will constitute only an extremely small fraction of the current
Hubble scale 1/ H51 . In fact, for the electroweak PT, the celestial sphere
consists of the order of ~ 102* uncorrelated patches, rendering the res-
olution of individual causally connected regions unachievable.

Thus, we have seen how GW sources are correlated on scales much
smaller than today’s horizon. The cosmological principle nevertheless
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demands that wherever we look at the celestial sphere, the observation
is a realization of a specific process whose probability distribution is
isotropic. The conclusion is that a cosmological GW background will
be stochastic in nature, justifying call it a stochastic GW background
(SGWB).

2.2.2 Redshifting

The energy in GWs can be characterized by the dimensionless quantity

1 dpgw(f)
Q = 2" -
cw(f) oe dlogf ’ (59)
thus indicating how much energy is stored in GWs per logarithmic
frequency interval normalized to the critical density

_ 3H?
- 8nG’

The frequency relates to the wavenumber k and angular frequency g
through k = q = 2ntf. We are interested in understanding the evolution
of (59) with cosmic expansion and how wavenumbers at production
time redshift.

Wavenumbers simply grow with the inverse scale factor a~ !, while
the GW energy dilutes as radiation, i.e. Qgw(k) < a=*. Therefore, the
present-day physical frequency is expressed in terms of the wavenum-
ber k,, at production time as

Pc (60)

_ (&
fo N (Clo> 27 (61)
while the present-day GW spectrum
2 Y1 d
ol k:pc(ap> < pGW> . 62
Gw (k) p? \ ao pc dlogk /., (62)

Equation (56) tells us that the ratio of scale factors obeys

P 1/3
ao 13 [ Yss Ty
— ~ 1.2 10 =2 — .
a, =P (100) (Gev>

We can thus relate the present-day frequency to the wavenumber at
production through

(o 1 o (100\'7 (Gev
7 2m1.25.1013 7P \ P T,

(63)
=1.27-107" x H <kp> <]°°>]/3 <Gev>
' P Hp g¥ T )’
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now replacing g.s — g. since at relevant temperatures g, ~ g.s. As-
suming radiation domination at GW production, and with the reduced
Planck mass mp| = 2.435 x 10'8GeV, the Hubble rate at production can
be expressed as

n?g,T! 7 /98 [ Tp —1
H, = =2.067 -1 ——
P =\ gomz, ~ %7 1000 \Gev ) 8 (64)
so that the present-day frequency is given by
_ K. @\ T
=263-10°° : ).
fo=2.63-10 " Hz x (Hp> <1oo> 100GeV (65)

To obtain the redshifted GW spectrum, one makes use of that the
current critical density pg — h28.18 x 1047 GeV* [66] and again g} ~
gk, so that

1 dpgw(k)
0 —
Qeyw(k) = Tow (pc dlogk >p , (66)

where I defined the redshift transfer coefficient

100)”3

g?

h2Tow = 1.65 x 107° < (67)
Thus, redshifted frequencies and the redshifted GW spectrum can be
computed using Equations (63) and (66).

2.2.3 GWs in an expanding space-time

Section 2.1 served well as an introduction to GWs in general. While, as
we shall later see, this description is largely adequate for the computa-
tional tasks in this thesis, the proper stage on which our physics takes
place is Cosmology. This Section aims, therefore, to extend the results
of the previous Section 2.1 to the more realistic setup of a spatially flat
expanding space-time.

The Friedmann-Lemaitre-Robertson-Walker metric (FLRW) metric
which governs a spatially flat and expanding universe reads

ds? = —dt? + a?(t)8;;dx' dx/
2 2 i3 (68)
= a”(1) [—dt” 4 8ydx" dX] ,
where a is the scale factor, x comoving coordinates, and t and T the
cosmological and conformal time respectively.
In cosmological perturbation theory, the only physical radiative de-
grees of freedom are the tensor perturbations hi; obeying hi, =
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0, ajhij = 0, i.e., they are transverse-traceless (TT). Including only
tenor perturbations, these degrees of freedom perturb the FLRW met-
ric (68) as guv = gFLRW + 0gu~v, where the only non-zero components
of dg,v are dgij = hij, such that the line element in the perturbed

metric reads
ds? = a?(7) [—dt? + §i5dx" dx ] + hyydx' d @)
= az('r) [—dTZ + (51]' +€i]~) dxt de] , 9

where I defined the re-scaled tensor perturbation {i; = hy; /a?. The
energy density in GWs is then given by
1 . .
Qgw (to) = m (i (to,x) &ij (to,x))
327{Ga2 <£” to,x ” (to,x )> (70)

1

1252
where dot denotes derivative with respect to cosmological time t and
prime to conformal time T, and I additionally defined Hi; = afy; for
later convenience.

In conformal time, the transverse-traceless metric perturbations {;;
obey the equations of motion

05 (%, T) + 29005 (x, T) — V2 (x, ) = T6nGa?pIT] (x, 1) (71)

(HY; (to,%) HY; (T0,x)),

where the Laplacian V2 = 0;0; is associated with the comoving coordi-
nates x!, H = a’/a = H/a is the conformal Hubble rate where H = a/a
is the Hubble expansion rate, and T[iTjT is the transverse-traceless part
of the anisotropic stress normalized to the average and critical density
p = 3H2/ (87TG az), where I use an over-bar to distinguish it from the
critical density at the present time. I will use this notation throughout
the thesis.

In Fourier space with comoving momenta k, and with Hj;(k, 1) =
alyj(k, ), Equation (71) takes the form

1

HY (k, T) + <k2 — ‘L) Hyij(k, 7) = 16nGa’pIT! (k, 1) = 6H2alT;' (k,7),

(72)
using that G = (3H?2)(8ma?p). In Fourier space, the transverse-traceless
part of anisotropic stress is obtained by projecting onto the plane or-

thogonal to the comoving momentum k by means of the lambda tensor
(28),

1
ﬂg[(k) = BAij,lekl(k)~ (73)

Note that Ay 1 obeys a number of identities (29), (30), (31), and (32),
which will be useful shortly.
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2.2.4 Perspectives on Weinberg'’s formula

Weinberg’s formula (54), as derived in Section 2.1.4, is, to my knowl-
edge, the simplest way the GW production from a generic source of
energy and momentum can be derived. Presented in this way, it was
originally introduced in Section 3.1 of Weinberg’s textbook [62], and
has been employed as the basis for computing the GW production in
a number of publications (e.g. [23, 24, 67, 68]).

It is not completely transparent, however, that Weinberg’s result is
applicable to a realistic cosmological setting. In this section, I will there-
fore demonstrate a more rigorous and nuanced derivation of Wein-
berg’s formula drawing inspiration from [36]. We will ultimately ar-
rive at an identical result, but along the way, assumptions and approx-
imations are made explicit so as to reveal the meaning of the final
expression in cosmology.

We are interested in solving Equation (72) and eventually arriving
at analytic expressions for the metric perturbations {;;. To this end,
we make the assumption that GW production occurs during radiation
domination. In this case, we can define the scale factor at the begin-
ning of sourcing a(t,) = 1, such that a(t) = JH.T. Subject to this
assumption, we can replace in the RHS of Equation (72) a — .t
and H?2 — 1/72, which then becomes 63{*ﬂiTjT(k, T) /7, while the LHS
simplifies from a” = 0. The equation that should hereby be solved is

reduced to

63,
— T (k1) (74)

Introducing the variable x = kT, this equation further simplifies to
d* Hy 63, 115" (k, )
dx? k x
The inhomogeneous solution is obtained using the Greens function

HY (k, 7) + K*Hyj(k, T) =

(k,x) + Hyj(k, x) = (75)

S(x,x1) =sin(x —x1) (76)
such that
Hij (k%o < x < xgin) = 6% J: ‘:‘1‘ sin(x —x )M (lox1)  (77)
while the homogeneous solution is given by
Hyj (k, x 2> Xfin) = Ayj(k) cosx + Byj (k) sinx. (78)

The coefficients are obtained by matching at the end of sourcing, and
one finds

6, [*in dxy |
Al = 5 | S sinx e w)
o (79)
6H, [*in dx
Bij(k) = kJ T;COS(X] )ﬂiTjT(k,vq ).
Xk
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Note that a simpler way of writing the solution post-sourcing
emerges as

6F . [*fin dxq
HET (kx> xgn) = J

k) ?sm(x xﬂﬂiTjT(k,x]). (80)
Migrating back to conformal time, we have found the solutions to
Equation (72) in radiation domination during and after GW produc-
tion

6, d
Hyy (7. < 7 < ) = 51 | sinkfe— eI (),
T
: (81)
69—(:* fmd
iy (7 2 1) = 5 [ S sink(r— ) (1),
T

Evaluated at the present time, the total energy fraction in GWs Qgw
and the GW spectrum Qg (7o, k) are defined by

QGW = J QGW (k) dink
e 7 4
327'cGaOpC < (7o, (7o, )> (82)

1
~ W <H:Lj (To, x) H,ij (TOIX)> ’

where in the last expression I neglected terms proportional to J{y and
H3. This approximation is valid for the following reason: the strain
hi; o< 1/k while H = 1/t .Therefore, the second to last expression
contains terms o 1/(kto), which are negligible since we are only inter-
ested in modes that are deep in the Horizon by now.

Following the Fourier convention (49),

d3k

WHU‘ (To, k) el (83)

Hyij (to,x) :J

the RHS of Equation (82) becomes

1
m <H:Lj (o, x) H,ij (TO/X)>

(84)

1 Jdg’k]d k>

= HY; (o, k1) HE (1o, ko)) etk k)
123‘(%(1% (27_[ < TO 1 ) ij (TO 2)> €

The strain derivatives Hj; are given by

Tfin d
Hiy e > ) =690, | cosklr-m T k), (85)

T, T
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such that

. Tfin dT Tfin dT
(Hi; (to, 1) HE (o, k2)) = 3632 J =t J —2 coskq (To—T1)
Ty T T, T2
x cosk (To —12) (T (11, 1) T (12, k2))

(86)
To this end, we treat the anisotropic stress as a stochastic field and
impose assumptions of homogeneity and isotropy. Accordingly, we de-

fine the unequal-time correlator (UETC) Ey to characterize the spec-
trum of the anisotropic stresses through

<ﬂ1j (T1,k) ”t] (TZ/ k2)> = (27-[)663 (k - kZ) W (87)

Inserting (87) into (86) and (86) into (84), one arrives at the com-
paratively mundane expression for the present-day GW spectrum

Qgw (10, k), namely
g—C* 2 Ay 2 Tfin dT] Tfin de
Qgw (10, k) =3k - habd } 22
oW ( ° ) <g{O > <C10 > J’T* T J’l‘* T2 (88)

x Em (t1,7T2,k) cosk (to —T7) cosk (tg —T2) ,

where I reintroduced a.. Note that we have already encountered the
prefactor

j{*za*z H*Za*4 ﬁ*20*4_
<:Ho> (> :(Ho> () :<@o) () =Taw (89)

in Section 2.2.2 where we concluded in Equation (67) that

100\ '/3
) , (90)

h?Tew = 1.65 x 107° ( .
g*
which accounts for the redshifting of the GW energy with cosmic ex-
pansion. Equation (88) constitutes an expression for the GW spectrum
as obtained from UETC of the anisotropic stresses. We have left to re-
cast this expression into a form consistent with Weinberg’s formula.
To this end, consider that

2cosk (tog—Tq1)cosk (to—T2)

=cosk (t71 —T2) + cos 2ktg cos k (T7 + T2) + sin 2kTg sink (T1 +132) .

(91)

Then, for as long as the GWs are measured over many oscillations in
To — To + AT, i.e. if KAty >> 1, the T-average becomes

(cosk(T—m11)cosk(T—12)))r = %cosk(’m —13) (92)
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so that an effective GW energy density can be obtained as

3 Tfin dT Tfin dT
Ogw (k) = zk‘TGWJ 1J —2En (11,72, k) cosk (11 —T2) , (93)
. T Jr, T2
which now only depends on 1 through the redshift transfer coefficient.
At this point, let us take the opportunity to define
k Tfin d/-[' Tfin dT
I, Thin, k) = ZJ 1J —2En (11,72, k) cosk (11 —T2) . (94)
. T1 Jr, T2
The GW spectrum as a present-day observable can then be compactly
expressed as

Qcw(k) = 3TewI(k). (95)

We must now seek an estimate of the UETC Eyy (17, T2, k). Formally,

X 10 x \4

(2m)3° (2m)3”

5%k k) = | (96)
where V denotes the divergent volume of comoving x-space. Setting
k = k’ in Equation (87) and using relation (96), the UETC can be es-
timated as an average over wavenumbers k of equal magnitude k on
the sphere

k? dQy
22V |, 4m
K2 [ dQx AT (11, k) A an T (T2,K)

Er(T1,72,k) =

T (11, K) T (12, k)

VLAY Ja, 4m p (1) p(T2) ©7)
_ K2 [ dQy ATy (t1,K) T (12, k)
22V g, 4n p(t1)p(T2) '

With this expression for the UETC, we can rewrite Equation (94) as

K3 dQy
I(k) = Ay
()= 2av Jgk 4r UK
y J'Tﬁn dty Ty (11, k) J‘Tﬁn dt, Tlil (t2,k) (98)
., T plt2) Jr, T2 p(T2)

x cosk (Tt —7T2),

where I have separated the factors depending on t7 and T, in the inte-
grals as far as possible. To make further progress, we must decompose
cosk (12 — 1) into factors that depend on T and T, separately. To this
end, note that

et e T2 — cosk(T) — T2) + isink(T] —T2) (99)
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It appears, therefore, that if we simply make the replacement
cosk (Tt —T2) — etkTie~ikT2 jp Equation (98), the real part of the
resulting expression for the GW spectrum remain unchanged, while
we may introduce a spurious imaginary contribution. Clearly, the GW
spectrum is real, so we can simply ignore any such part, but, as we
soon shall see explicitly, the imaginary part will indeed be zero. There-
fore, making this replacement, Equation (98) becomes

k3 dQ
) = Gy JQ 4nk At
k
« J'Tﬁ“ dq Tij (T1 ,k) etkm JTﬁ“ dt, T]jl (Tz, k) e kT2
. T p(t1) , T2 p(12)
3 40, (100)
— A s
42V Jﬂk 4r O
x ( J T dry Ty (11, k) et > < J drp Tia (12, k) et > '
. T p(T1) c, T2 p(T2) '

The last two integrals are each other’s conjugates, and since Tj; is real,
the product of the conjugates is real. Therefore, we have shown that
the sin contribution in (99) indeed vanishes, and we need not worry
about taking the real part of the GW spectrum as defined from (100).

That we were able to separate the T integrals completely is a rather
remarkable result and was made possible from the bold move of as-
suming full knowledge of the energy-momentum tensor T;; rather than
statistical information about Ti; as a stochastic variable. Generally, this
is not possible and one must be satisfied with a statistical description.
In our case, however, we will indeed gain the required full knowledge
of Ti; from the Higgsless simulations.

Now, the integrals with respect to 11 and 1, are fully separated, and
the respective integrals constitute what looks like Fourier transforms
(taking the T integration limits to +co and assuming that the source
abruptly starts and ends at T, and Tg,) but which are modified by
the multiplication of factors of the form 1/(tp(t). These factors can be
remedied by further making the approximation that Hubble expansion
is negligible during GW sourcing, i.e. during the time in the interval
[T+, Tin). In this case, and since we are in radiation domination with

a, =1, % = % ~ g(f—: and p(T) ~ p«, we can approximate

1k,

dr
o e ..
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where we also took the opportunity to migrate back to cosmological
time t. Following this approximation, Equation (100) becomes

K3 2 dQ
JQ k Aij
k

)= 4v 32 47t

thin ) tein . *
X <J dty Ti)' (t1,k) elkt‘> <J dts Ty (t2, k) elkt2> (102)

ty ty
B k3 J dQy
C 12m2Vmip. Jo, 4

Aij Ty (kK tan) Ty (k, k| thn)
where I defined

Tij (g, k|t) = Lt dt Ty (t, k) e*at, (103)
which becomes the actual Fourier transform of the source if the source

abruptly starts and ends at t, and t. Therefore, we have arrived at an
expression for the present-day GW spectrum

Qcw (q) = 3TawI(q)
e
e T 5 9 _ ~,
GW47t2m1%1(3*V
dQy r *
X le e [/\ij,kl(k)Tij (q, k| tsn) Ticy (g, K tin) a=Ik|
(104)

Redshifting back, i.e. dividing this expression by Tgw, and taking (103)
to indeed correspond to the full Fourier transform so that the full
source duration is considered, Equation (104) reduces to an expression
identical to Weinberg’s formula (54) , for which we now understand
the detailed assumptions that underlay its applicability in a cosmolog-
ical setting. Indeed, Weinberg’s formula in cosmology is now to be
understood as giving the present-day GW spectrum redshifted back to
the time of production applicable for modes that are well within the
present horizon. It should be understood as representing an effective
GW energy density obtained after averaging over many oscillations.
It is furthermore applicable only in the case that GW production is
sufficiently short that expansion can be neglected during its course
and when the full source duration has been taken into account in the
Fourier transform.

Now we have gained perspective on Weinberg’s formula, and with
these insights, for historical reasons, I will proceed to also call the
present expression (104) (including the factor Tgw) Weinberg’s formula
despite its derivation being fundamentally quite different.
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2.2.5 Sound wave production of gravitational waves

In the previous Section 2.2.4, we arrived at an expression for the
present GW spectrum in terms of the UETC in Equation (93), namely
that

Qcw(k) = 3TewI(k)

where J(k), defined in Equation (94), was expressed in terms of the
source Ti; in Equation (102). To arrive at this expression, we departed
from a stochastic description and derived Weinberg’s formula by mak-
ing explicit use of that the UETC, in the rare occasion that complete
knowledge of the energy-tensor Tjj is given, can be exactly separated
into two similar multiplicative components depending individually on
t; and t,. This meant that J in (102) could be exactly computed. In
the present section, we will instead consider general stochastic sources
fully characterized by their UETC and quote characteristic behaviors
of the resulting spectra.

For the particular case that the energy-momentum tensor Tj; is ex-
actly known, we found in Equation (97) an explicit expression for the
UETC, repeated here for ease of reference:

k? J dOx Agjia Ty (11, k) T (2, k)

Er(ty,t2,k) =
m(t1,t2, k) 22V a, 4m p(t1)p(t2)

Since K(t) = (pkin) (t)/p(t) = (W(t)y*(t)v2(t)) /p(t), where average
is taken over space, and the part of Ti;(t,x) which contributes to
anisotropic stress is simply wy?Zvivj, it is natural to extract a factor
of K(t) and express

w(t, x)y2(t, x)vi(t, x)vj (t,x)
(wy2v?) (t)

in order to express it as a product of a factor that scales with the overall
kinetic energy density, which determines the overall amplitude, and
one that does not.

Sound waves as a source of GWs have been extensively studied in
the literature (see e.g. [25, 69—74]) since the realization that they last for
long durations and consequentially act as a long-lasting source of GWs
that may come to dominate the GW production. That their duration is
long follows immediately by the assumption of fully linear evolution,
predicting that no damping occurs and that the average kinetic energy
of the system is constant in time. In fact, the entire statistical descrip-
tion is stationary, implying, in particular, that the UETC is time transla-
tion invariant and thus depends only on the time difference t_ =t —t'.
In a system composed of sound waves, therefore, the kinetic energy is
constant, and K(t) = K = const.. With this insight, we make the ansatz

|
~
2
o)
Il

K(t)Ty(t,x)  (105)
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that the UETC is stationary so that it can be factorized as [25, 69—73,
75-79]

En (t1,t2, k) = 2k2K2f (t_, k) (106)

where t_ = t, — t;. In this ansatz, K? captures overall amplitude,
while f (t_, k) parameterizes the strength of the correlations at differ-
ent times separated by t_, i.e. the support, which is assumed station-
ary.

Then, and again neglecting expansion,

tein thn—t
I(ty, thin, k) = kK3K2 H2 J f dtJ ST f(t_, k) coskt_. (107)
ts ti—t
To make progress from here, the authors of [70, 72] in the context of
the sound-shell model assumed that the limits of the second integral in
t_ can be extended to +co. This is justified if one assumes that f(t_, k)
has limited support so that it quickly approaches zero for growing [t_|.
If this is not the case, they show in [73] that one must impose that the
period of the oscillations is much shorter than tg, i.e., ktsw > 1, or

equivalently, kR, > /(v#). They furthermore show that the condition

tew/Re ~ 1/ <v%> > 1, which implies that the duration of the sound
waves must be long compared to the characteristic scale. Following
extending the integral limits to + comes the privilege of being able to
separate the two integrals since now the second no longer depends on
t:

thin oo
I(ts, thin, k) ~ k3K? H2 J dtJ dt_ f(t_, k) coskt_
e T (108)
= k3K? H? thJ dt_ f(t_,k)coskt_,

where I defined the sound wave duration tgy = ﬁi‘“ dt = tgn — ts.
Evidently, under these assumptions, the GW spectrum grows linearly
with the sound wave duration tsw. In Chapter 5, this linear growth will
be our assumption. Later, in Chapter 6, we depart from this assump-
tion and derive the growth rate associated with a damped source.
Now, assuming a stationary UETC, we need to impose a cutoff on
the sourcing time tsy. In the fluid, nonlinearities are expected to de-
velop on timescales t, ~ R¢/vc [80], where R. and v. are charac-

teristic scales and velocities in the system. The characteristic veloc-
ity is often taken to be the RMS velocity of the system, v. = /(v3).
In the present case of interest, namely fluid perturbations on the

scale of bubbles in first-order PTs, the characteristic scale R, = R, =
(8m)1/3 max (v, cs)/B being the typical bubble separation (which we
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determine in section 3.1.3) and 3/H, ~ O(100), and v, and cs being
the bubble wall velocity and fluid speed of sound, respectively. There-

fore, it is often assumed that tgy =t ~ Rs/4/ <v%>

As for the remaining t_-integral, they demonstrate in e.g. [73] that
it is proportional to R./cs, so that Equation (93) can be parameterized
as [25, 52, 69-73, 81, 82]

Qaew(k) = 3Tow Qow K? (HiR.) (Hatsw) S(KR,), (109)

where Qgw corresponds to the GW production efficiency which must
be determined through some numerical method, and S is a spectral
shape normalized such that [ dInk S(k) = 1.

The above results have been obtained under the assumption that
cosmic expansion can be neglected. However, if the sound-wave du-
ration is long compared to the Hubble time 1/H., the kinetic en-
ergy in the fluid would redshift, leading to a suppression of the GW
amplitude. Then, to account for cosmic expansion, one can substi-
tute the linear growth factor H.tsy in Equation (109) by the factor
Y = HiTsw/(1 + Hatsw) [73, 78], so as to instead parameterize the
present-day GW spectrum as

Qcow(k) =3 Tow Qow K? (HLR.) T (H,, tew) S(kR.) . (110)

This result, which will be discussed in slightly more detail in Sec-
tion 6.2.4 in Chapter 6, allows recovering the effect of expansion on
the final GW amplitude.
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In this Chapter, I review cosmological PTs. In Section 3.1, I cover the
basic concepts of PTs, including the effective potential, bubbles and
their nucleation rate, statistics associated with bubble nucleation and
expansion, the Bag model and equation of state, PT strength, and the
hydrodynamics of singular bubbles. In Section 3.2, I review GWs from
tirst-order PTs. I provide estimates of key features of the GW signal,
discuss the scalar-field contribution to GW production in various mod-
els, explore the fluid contribution to GW production in different scenar-
ios, and conclude with a few comments on the observational prospects
for GW detection. I am mostly concerned with those aspects of PTs
that will eventually be relevant in the context of Higgsless simulations.
For a brief review of the general importance cosmological PTs hold in
cosmology, I refer the reader to the introductory Section 1.1.1.

3.1 Basic concepts

As the universe undergoes cooling or changes in energy density, re-
gions with lower energy configurations begin to form bubbles of the
new phase. These bubbles then grow and expand, eventually dominat-
ing the universe’s composition as the PT progresses. The dynamics of
bubble nucleation and growth play a crucial role in determining the
properties of the resulting PT, including its duration, energy release,
and impact on the cosmological evolution. Much of the text that fol-
lows in this Section will examine these concepts in some detail.

3.1.1 The effective potential

The dynamics of a PT is dictated by some effective potential V(¢, T),
which depends on temperature T and the value of the order parameter
¢. In our case, ¢ will carry the interpretation of a scalar field, and by
virtue of the Electroweak PT being an important candidate, we will
often, and interchangeably, call this the Higgs field. While the effective
potential is model dependent, and generally derived by computing
finite-temperature and higher-loop corrections to the tree-level poten-
tial [83, 84], to study the dynamics of a PT in a general sense, it suffices
to consider an effective potential which demonstrates the required be-
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havior of developing a broken phase true minimum as we decrease T
below some threshold.
A prototypical effective potential is of the form [61, 70]

V(p,T) = %y (T2=T15) &% — %ATdﬁ + %7\4)4, (111)
where v, A and A are positive constants.

As we decrease the temperature, at the temperature T = Ty, the
second derivative of the potential turns negative at the origin, which
becomes an unstable local maxima. If the field configuration is such
that part of the field occupies this value, it would smoothly roll to
the true minimum of the potential. We therefore assume T > Ty and
analyze the potential in this regime where ¢ = 0 corresponds to either
a local or global minimum depending on the temperature.

The behavior of the potential is such that at a temperature

T = To (112)
V1 —AZ/(4Xy)
a second minimum emerges at
¢ =1 =AT/(2A) (113)

(evidently we must also assume AZ/(4Ny) < ). Lowering the temper-
ature further, at a critical temperature

T. = 1o (114)
© T 1=2AZ/ 0y 4

this minimum becomes degenerate with that at ¢ = 0. Therefore, at
temperatures T < T, it is energetically favorable for the field to attain a
configuration around the broken phase minimum ($) = ¢p > O rather
than high-temperature symmetric phase (¢p) = 0. However, since
T > Tp, a potential wall separates the true minima and so that the field
cannot simply roll smoothly to the broken phase. Thus, to acquire the
vacuum expectation value (VEV) of the broken phase, the field must lo-
cally tunnel through the potential barrier either quantum-mechanically
or thermally. An example effective potential of the form (111) illustrat-
ing the qualitative behavior as we lower the temperature is shown in
tigure 1.

With this qualitative picture established, the cosmological PT can
proceed through, in a very general sense, the following steps: (1) The
high-temperature universe has only one vacuum as per the effective
potential and is fully stable. (2) At a temperature T;, a second non-
global minimum emerges. (3) At a critical temperature T., a degener-
ate vacuum emerges. (4) At temperatures below T, it is energetically

31



32

COSMOLOGICAL PHASE TRANSITIONS
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Figure 1: Effective potential for first- and second-order PTs. Left plot: First-
order PT The effective potential V(¢, T) of (111) is shown for various
temperatures T: T> Ty, T=T;, T=T,,and T = Tp. At T > Ty, the
potential has a single minimum at ¢ = 0. As T decreases, a second
minimum appears at T = Ty, becomes degenerate at T = T, and
the system transitions to a new global minimum for T < T¢. At T =
To, the potential barrier vanishes, and any patch of the remaining
symmetric phase will roll smoothly to the broken phase. Right plot:
Second-order PT The effective potential V(¢, T) of (111) for A = 0
is plotted for T = 14Ty, T = 1.0Tp, T = 0.6Ty, and T = 0.1Ty. The
transition is continuous, with the minimum shifting smoothly from
¢ = 0 as T decreases.

favorable to attain field VEV ($) = ¢y, > 0. If the barrier is sufficiently
weak, the field can tunnel through the potential barrier locally. This
leads to the nucleation of bubbles that quickly, as they grow from their
initial seeds, approach radially symmetric and expanding solutions
to the field equations of motion, interpolating between broken phase
VEV ¢y and symmetric phase VEV ¢ = 0. The nucleation of bubbles
is probabilistic and will be discussed in Section 3.1.2. (5) As these bub-
bles expand, they collide and eventually fill the entire universe with
the symmetric phase, whereby the PT completes. (6) If, however, the
PT has failed to complete before T = Ty, the remaining patches of
the unbroken phase will smoothly roll to the broken phase, thus com-
pleting the PT. This general description is true in a non-expanding
universe. When cosmic expansion is prevalent, however, for the PT to
complete, it is mandated that the bubble nucleation rate I'(T) be larger
than the Hubble rate at some point during the critical temperature
window To < T < T¢.

Above, we have identified two distinct behaviors: (1) when T > T
and the PT proceeds through tunneling through the potential barrier,
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and (2) when T < Ty and the PT proceeds through smooth rolling of
the field towards the broken phase.

In case (1), the PT is said to be of first-order, and in case (2), it is
said to be of second-order. For us, only case (1) is of interest as it locally
perturbs the universe rather than globally, resulting in, as we shall see,
violent dynamics that may produce GWs. Henceforth, in this thesis,
even when referred to as just PT, it should be understood as being of
first order. A visual comparison between a first- and second-order PT
is shown in figure 1.

3.1.2 Bubbles and their nucleation rate

The bubble nucleation rate I' = d #nucleated bubbles/ dV/ dt in a first-
order PT can be shown to be determined by (see e.g. [61])

I~ T4eS3s(T)/T (115)

to within an O(1) factor. In this expression, S3 g is the Euclidean action

00 2
S3B = 47[J drr? [; <(2'1(f> —I—V(d),T)] , (116)
© b=

where V(¢,T) is the finite temperature effective potential introduced
in Section 3.1, evaluated at the bounce-solution ¢, which solves the
equation of motion

subject to the boundary conditions

Iim ¢(r) =0,

T—00

to ensure a finite action, and

4

— O,
dr|,._o

to ensure non-divergence at the origin.

Provided such a solution, the time t., or equivalently the tempera-
ture T, at which the PTs can be said to occur can be determined from
the requirement that the probability that one bubble has nucleated in
a Hubble volume V4 = 1/H3 up until that moment is unity, i.e.,

te % 4T 45 Mo\t s it
[ars=[4 () ()'eor-on

*
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(117)

where in the second equality, radiation domination is assumed. Appre-
ciating that this integral is dominated by its value at production, it can
be approximated by,

(47{39* (T*)> ( T. ) ¢ =00) (118)
which implies for the Euclidean action evaluated at T, that
S 3 (T*) Mp]
o~ 4 — R
T~ In T 114 (119)

using that g, ~ 106.75 in the standard model in the high-temperature
limit.

Equipped with the notion of a time and temperature at which the
PT takes place, we can Taylor expand the Euclidean action

S38(T) (53,B(T)> F(t—t )i <S3fB(T)> (120)

T T dt T

and thus define

d (S3(T) d (S3(T)
- T4 - — H*T*i -
B dt ( T t=t, dT T T-T,

Mp;
~H,.(4 —114],
< In T 11 )

*

(121)

where in the second equality, I used that T o 1/a such that dT/T =
—Hdt and in the last approximation that one can very crudely expect
that [61]

S3(T)  d <53,B(T)>
T Jrt’

T, “dT (122)

in order to have some analytical estimate of what value 3 may take at
hand. For then, we can parameterize the bubble nucleation rate

M(t) ~ MePt—t) (123)

and conclude that for T, = 100 MeV (~ QCD scale), T, = 100 GeV (~ EW
scale), T, = 100 TeV, 3/H. take on value 173, 145, and 118, respectively,
based on the crude but informative approximation in Equation (121).
We will often take 3/H. = 100 as a benchmark. While this is just an es-
timate, it gives us the hint that, since BT sets the timescale associated
with the PT’s duration, it implies that we can expect the duration to be
short compared to the Hubble time ty, = 1/H,, and consequently that
one can ignore Hubble expansion during the course of the PT. This fact
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simplifies the numerical implementation of our Higgsless simulations,
as we shall see in later Chapters.

The parameterization (123) implies that the bubble nucleation rate
increases exponentially with time. Thus, we expect the PT within a
given Hubble volume to commence with the nucleation of a single
isolated bubble whose nucleation time t, 7 is statistically distributed
relative to t.. Since the nucleation probability is still small, some time
will pass until the next bubble nucleates, leading to the system being
dominated by the first bubble to nucleate. However, bubbles will begin
to nucleate at an exponentially increasing rate, quickly bringing the PT
to completion, thus converting the entire universe to the new broken
phase vacuum.

3.1.3 Bubble statistics

As a result of an exponentially increasing bubble nucleation probabil-
ity T', bubbles of various sizes will be present at each stage of the PT
after the second bubble has nucleated. Therefore, it makes sense to de-
rive statistical expectation values for quantities such as the number of
nucleated bubbles, their separation, typical size at collision, etc.

In the previous Section, I introduced the notion of a bubble nucle-
ation rate I' with a simple parameterization in Equation 123. This is, in
fact, not a rate per se, but a measure of the probability of nucleation,
such that the expected number of bubbles to nucleate in an infinitesi-
mal time-volume element dtd>x is

dP =TI(t) dtd3x. (124)

There is a subtlety hidden in this expression, for it assumes that d>x,
indeed, corresponds to a small patch of universe that is not already
in the broken phase. As the PT proceeds and bubbles of the broken
phase fill the universe, clearly, the amount of remaining volume in
the symmetric phase decreases at an exponential rate. Therefore, to
adequately determine what is the probability dP, one must include a
factor Vs(t) = Vs(t)/V where V4 (t)/V is the fraction of the volume
in the symmetric phase to the total volume, so that when adequately
accounting for the decreasing fraction of false vacuum,

dP = V,(t)I(t) dtd>x. (125)
In [85], they show that V(t) is obtained as

4 t r,
Vs(t) =exp [;vi’\, J dt’(t— t’)3r(t')} = exp [&T\,E\)Neﬁ(t—t*)

(126)

7
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where in the second equality I made use of the parameterization of I’
in Equation (123), T'(t) = I'.eP(*=*) to compute the integral.
The total number of nucleated bubbles Ny, can now be obtained as

Np = JdP = J Vs (O (t)dt3x (127)

= VJ_OO dt exp [—12717\1%[[;6‘3("“*) x T,eP(t—t) (128)
B3V

=——. (129)
8mv3,

The average bubble separation is therefore given by

1
3

Rp = (I\\J/b) - (sﬂ)%% ~ 3‘[’; (130)
We are also interested in obtaining an expression for the average
bubble radius at collision (r). To this end, consider the situation that
a point x is traversed by a bubble wall for the first time at time t.
Bubbles responsible for such a traversal could have emerged from nu-
cleation sites a distance of v,, (t —t) away, corresponding to a sphere
of radius r = v, (t — t,) centered on x, which we can think of as the
analog of a past light-cone, and just call it cone. When promoted to
an infinitesimally thin shell, the volume is dV (1) = Antr2dr, so that
the probability for nucleation within this shell during the time interval
[t, t+ dt] is dP = 47mr?l'(t — r/vy,) dr dt. We must consider, however,
the possibility that another bubble nucleates inside of this past cone.
Each such bubble would contribute to that x is crossed by a bubble
wall at an earlier instance, i.e., that x transitions to the true vacuum
earlier than at t, which violates that x was first crossed at t. We must
thus exclude these events, and the probability for this to not have hap-
pened is exactly the probability that x is still in the false vacuum V;(t).
Therefore, the probability that a point x is traversed by a bubble wall

for the first time by a bubble of radius r is

dP =Vs(t)I'(t—1/v) dVa(r) dt (131)
I _ v
= exp —87‘[\13\,@66“ L) % 4mr? x TePt—m/Vvw—t) qrdt.
(132)
Integrating over all times, one finds that
dpP 3
A (133)

dr — 2v3,

Since [ 9P dr =1, U7 can be interpreted as a probability distri-
bution associated with the radius of bubbles traversing the point x.
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We can thus compute the expected bubble size R, as

R, =(r) = Jdr TP(r) = 3Vﬁw (134)
We see that the expected bubble size R, and the average bubble R are
similar.

These expressions are true for bubbles. As we shall see in the upcom-
ing Sections, these bubbles induce perturbations in the fluid, which, be-
fore colliding with other perturbations, take the shape of self-similar
profiles (see Section 3.1.6). If the wall velocity v,, is larger than the
speed of sound in the fluid, which we will always assume to be con-
stant ¢ = \/m, then the self-similar fluid sound shells have radii
Tss ~ Tp, for 1y the bubble radius. However, when the wall velocity
is below the speed of sound, the self-similar profile front is not de-
termined by v,, but cs, since this is the speed at which perturbations
propagate. Therefore, if we want to characterize the average radius at
collision, and if we by collision instead mean when the sound-shells
collide, we must make the replacement v,, — max(v,, cs), so that

R, — 3max(gw, cs). (135)

Furthermore, when v,, < cg, the fluid is heating in front of the bub-
ble wall where bubbles can, in principle, still nucleate. The increase
in temperature nevertheless causes a suppression in the bubble nucle-
ation rate, which can be substantial for large « [52]. Then, also the
average bubble separation Ra receives a similar correction so that in
the limit that no bubbles form within the fluid sound shell, [52],

RaA = (87) max (v, Cs) . (136)

§

We see that, again, Ra ~ R,, and we will henceforth simply define

R. = Ra = (87)% max (vw, cs) /B (137)

and use the concepts of average bubble separation and average size at
collision synonymously.

3.1.4 The Bag model and equation of state

So far, we have been concerned with general aspects of first-order PTs
and the dynamics of the scalar field ¢. Of greatest interest to us, how-
ever, is not the scalar field in isolation, but rather the effect it has on
its surroundings and, in particular, that it induces perturbations in the
primordial radiation fluid.
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The energy-momentum tensor of the Higgs field ¢ is given by

1
T = 0uddvd — guv | 500907 — Vo(d) | , (138)

where Vj is the renormalized vacuum potential. I am aligning the dis-
cussion in this Section to arrive at the Bag equation of state. In this model,
the scalar field is modeled to take on a constant value ¢ = 0 outside
bubbles and ¢ = ¢y, inside bubble, corresponding to the false and the
true vacuum phases. At the boundary, the field is modeled to discon-
tinuously jump between the phases. Therefore, the time derivative and
gradient terms of the pressure contribute only at the bubble wall inter-
face, and we neglect them. We thus arrive at the conclusion that the
Higgs field contributes to the total pressure

Po(¢) =—Vold). (139)

The energy-momentum tensor for the fluid, which we assume to be
perfect, is given by

T&v = Wrluly — guvPf, (140)

where w¢ and p;¢ are the fluid enthalpy and pressure, respectively, and
u,, is the four-velocity field of the fluid, related to the three-velocity v
though

(1,v)

1—v

uy = = = (v, vv). (141)

The total pressure p is determined by the free energy of the system
T =V [86]

=Vo(d) +Vr(T, d)

3
= Vo(¢) + TJ éﬂ; > Nilog [1 F e_Ei/T} (142)

4
= Vol®) + 57 3 NeYo (mil()/T),

where Ei2 =p? + miz(d)), and

Yo /¢(x) = J:o dyy? log {1 F exp <—\/ x2 —&—yz)} . (143)

The —/+ signs correspond to bosons/fermions, and i denotes a spe-
cific particle species with N; the internal degrees of freedom, defined
to be negative for fermions in this notation. For small masses m(¢$) <
T, the function Yy, /¢(mi(¢)/T) is nearly constant and asymptotically
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approaches the value —nt* /45 for bosons and 77*/360 for fermions,
while for heavier particles mi($) >> T, Yy, /¢ (my/T) ~ £exp (—my/T)
so that their contribution is exponentially suppressed [86]. In the fol-
lowing, therefore, we will neglect particle species that are very heavy
compared to T.

It makes sense, therefore, to decompose

Vi(T,d) = Vine1(T, ¢) + Vi1 (T, ) . (144)
Define
2
a(T, &) = 359:(T, d) (145)
where
7
9:(T,d)= ) [N? +3 \N{@ (146)
mi(b)<T

is the number of effective relativistic degrees of freedom at tempera-
ture T and ¢, where b/f correspond to bosons/fermions and i denotes
a specific particle species with N; the internal degrees of freedom, and
the masses mi(¢) depend on ¢. Then, we can explicitly write

T 1
Vmet(Td) =55 ) NiYp/r(0) = —3a(T, )T = —praa(T, ¢)
(¢)

my <T
(147)
while
T4
V(T d) =55 ) NiVose(mi(d) =—P(T,¢)  (148)
mi($)~T

carrying contributions only from those degrees of freedom that have
masses similar to the temperature T.

We thus decompose the pressure in the fluid as p¢(T,$) =
Prad(T, ¢) + P(T, ), so that the total pressure

P(T, ¢) = Praa(T, &) = Vo(d) + P(T, ). (149)

The enthalpy and energy densities are generally defined as

_1%
w:TaT, p:TaT P. (150)
The total energy and enthalpy densities are thus given by
0 T, oP(T,
olT,¢) = TPl 8] 1)+ 70, 4) 1 vo ()
oP(T,
= 0raa(T, ) + Vo(0) + TAL®) 7, g,

oT
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(151)
where I defined p,,q = a(T, $)T#, and

W= 0T, 0) + (T, 6) = prsa(T, &) + PraalT, ) + T (150)

To summarize, we have found for the total pressure, energy, and en-
thalpy densities that

p(T/ d)) = prad(T/ Cb) _VO((I)) + CP(T/ d))

0P(T,
0T, ) = prsa +Vol) + T 7, ) (153
0P(T
W(T, ) = prad(T, &) + Praa(T, &) +T%.

Now, if there are no particles with masses mi(¢) ~ T, then P(T, ¢)
vanishes. If there are particles with P(T, $) ~ T, under the assumption
that those degrees of freedom are outnumbered by the light degrees of
freedom, P(T, $) can be neglected. Therefore, if we define V(0) = €
and Vi, ($) = 0, and following standard notation, denote the symmet-
ric phase (¢ = 0) by subscript +, and the broken phase (¢ = ¢p) by
subscript —, the pressure, energy, and enthalpy densities outside bub-
bles become

1

4
P+ = §a+Tj_ — €, P+ = a+T—L|1— + €, w = §a+T4 s (154)

where a, = a(T,, ¢y ), while inside bubbles,

1 4
- = ga_Ti, po=a T+, w= ga—Ti ’ (155)

where a_ = a(T—, ¢ = 0). Equations (154) and (155) constitute the Bag
equation of state [86] in the Bag model originally introduced in [87].

Henceforth in this thesis, I will abide by the Bag model, entailing
that ¢ is either 0 outside of bubbles and ¢y, inside, with a discontinu-
ity at the bubble wall, whereby the the pressure, energy, and enthalpy
densities are given by the equation of state (154) and (155) whose va-
lidity I will always assume.

The total energy-momentum tensor is the sum of the two compo-
nents

Tov =TS, + T/, (156)

The equations of motion are given by the total energy-momentum con-
servation

Ty = MTL, +OMTS, =0. (157)
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In the Bag model, however, ¢ experiences a discontinuity on the
bubble wall but is otherwise static. Thus, akin to the pressure pyg,,
we neglect the kinetic and gradient terms so that the total energy-
momentum tensor becomes that of a radiation-dominated fluid but
with a pressure contribution —Vy = —e in the symmetric phase. Thus,
with W = wy,q and p = praq — € denoting the total enthalpy end pres-
sure, the energy-momentum tensor for the system becomes

TLW =wuply — guvp- (158)
and the equations of motion reduce to
auTuv = au(wuuu\/ - guvp) ’ (159)

which constitute the equations that we will eventually implement on
the lattice in Chapter 5 to numerically solve for the fluid dynamics sub-
ject to expanding bubbles. To go beyond the bag model, see, e.g., [88].

3.1.5 Phase transition strength

The strength of a PT « parameterizes the ratio of available latent heat,
i.e. vacuum energy, to the energy density of radiation.

For the Bag equation of state, the PT strength can thus be charac-
terized as the ratio of vacuum energy density e to that of radiation
in the symmetric phase immediately before the PT (sub/sup-script s),
namely

Vo(0) —Vo(dp) _ € 4e

Xe = = = . (160)
¢ Prad pﬁad 3ws

This definition has been brought forward in, e.g., [52, 86].
Alternatively, a more general approach states that the relevant quan-
tity for the determination of the PT strength «, is the difference DO in
trace of the energy-momentum tensor 0 = g, T"Y = p — 3p between
the two phases evaluated at the temperature of the symmetric phase
(see e.g. [89])
Do
3wy

oe (161)

We have that DO = 4e, whereby ag = 3153 = 0. Similarity between
the two is granted by the Bag equation of state. Henceforth, whenever

the strength of the PT is referred to, we will simply denote it «.

3.1.6 Hydrodynamics of singular bubbles

In this thesis, we are mostly concerned not with the dynamics of ¢
but with the primordial fluid, which is assumed to fill the universe
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as the PT occurs. In this Section, I will review basic results from the
literature concerning the perturbations in the fluid associated with the
conversion of vacuum energy into thermal and kinetic energy. These
results will be important later in Chapter 5 as they serve as a testing
ground for the accuracy of the simulations.

In Section 3.1.4, we saw that the energy-momentum tensor is given
by that of a perfect fluid with a pressure contribution from the vacuum,
Equation (158),

Ty =wupuy — guvp,

with pressure p, density p, and enthalpy w given by the Bag equation
of state Equations (155) and (154).

Since bubbles are radially expanding spherically symmetric solu-
tions to the field equations of motion, the perturbed fluid solution
must obey the same symmetry. Furthermore, since there is no intrinsic
length scale in the problem at a macroscopic level beyond the bubble
size itself, the solutions are self-similar in the radial coordinate & =r/t.
Note that with this definition, at the bubble interface, &,, = v, so
that we may interchangeably denote the wall velocity either v,, or &,
depending on the context.

The relativistic hydrodynamical equations for the fluid are derived
from the conservation law 94T, = 0. In [86], the radial equation of
motion for the radial velocity field v(¢) is found to be

2Y = y2(1 —vE) [“2 1} dev, (162)

S —
& cs

where p is the Lorentz-transformed fluid velocity

_&—v
1 —&’

(& V) (163)
and cs = +/1/3 the speed of sound which is assumed constant. Equa-
tion (162) can be solved in full generality to obtain solutions v(§). In
fact, since v(&) is double-valued, the authors of [86] instead solve for
&(v), to obtain the solutions in Figure 2 which I adopt here without
modification.

Thus far, Equation (162) with corresponding solutions in Figure 2 are
derived in all generality. In the physical situation of interest, it is clear
that both at some distance in front of and behind the bubble wall v(&)
must go to zero. To accommodate this requirement, self-similar veloc-
ity profiles developing around expanding bubbles must evidently be
constructed by patching together part of the solutions in Figure 2 with
the trivial solution v(&) = 0 or with a different part of itself. This patch-
ing will lead to discontinuities in hydrodynamical quantities, which
usually occur at the bubble wall interface modeled as a step function
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in the Bag model. To match the solution across the the bubble wall
and developed shocks, one employs matching conditions. A detailed
account on these and how the self-similar velocity profiles are con-
structed is found in [86]. In the present context, it suffices to conclude
that analytically derived profiles are well defined and obtainable once
the strength of the PT and the wall velocity v,, have been specified.
Once the velocity profile v(&) has been obtained, the corresponding
self-similar enthalpy profile can subsequently be computed as [86]

V(&) 1
2
w(&) = wp exp U (1 + 2) voudv| . (164)
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Figure 2: Figure adopted from [86]. Fluid velocity profiles v(£) in the bubble

center frame (where ¢ = %). Detonation curves (dash-dotted line)

start below p(&,v) = ¢s and end at (&,v) = (cs,0). Deflagration

curves (dashed line) start below v = & and end at p(é,v)¢ = cg,

representing the shock front. Consistent solutions do not exist in
the shaded regions.

These self-similar profiles can qualitatively be divided into three dis-
tinct types. When the wall velocity is below the speed of sound, the
self-similar solution is a deflagration, with fluid velocities vanishing be-
hind the wall but with a shock wave in front of it. When the wall
velocity is larger than the speed of sound but smaller than the Jouguet
velocity &; [86],

£ = Va(243ax)+1
= V3 (1 +«)

(165)
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the solution is a hybrid, which consists of a shock wave in front of
the bubble and a rarefaction wave behind it. These solutions are called
hybrids due to their hybrid nature. Finally, when the wall velocity is
greater than both &; and c, the solution is a detonation, for which the
fluid in front of the bubble has no time to react to the incoming bubble
wall and remains at rest while a rarefaction wave develops behind the
wall.

In Figure 3, I plot self-similar velocity and enthalpy profiles for
strengths o« = 0.0046, « = 0.05, and « = 0.5 corresponding to weak,
intermediate, and strong PTs respectively, for selected wall veloci-
ties in the range [0.32,0.8]. For these strengths, the Jouguet velocities
are & = {0.63,0.73,0.89} respectively. Note, therefore, that only for
o = 0.0046 and o = 0.05 do all three types of solutions develop, while
for « = 0.5, only deflagrations and hybrids develop. These choices
of parameters correspond to those for which I will run simulations,
as presented in Chapter 5 (weak and intermediate) and Chapter 6
(weak, intermediate, and strong). Having at hand self-similar profiles
obtained semi-analytically thus provides an invaluable means of eval-
uating the performance of our simulations as it allows us to directly
compare simulations of isolated bubbles with the expected self-similar
behavior and thus study to what degree these analytical profiles are
reproduced.

We are ultimately interested in the fluid dynamics in first-order PTs
because of the GW production potential, which may serve us well as
a window to new physics at uncharted energy scales. GW production
is first and foremost not determined by the vacuum energy density
€, but by what fraction of this energy is transferred to the fluid in the
form of kinetic energy since only this energy component contributes to
the anisotropic stress, and consequently GW production. This energy
fraction is often denoted k = pPiin/Pvac, Where pyin = (Wy?v?) is the
average kinetic energy density in the system and, in our case, pyac = €.
The quantity « is often called the vacuum energy transfer efficiency, as it
quantifies what fraction of the vacuum energy is converted into kinetic
energy of the fluid.

For isolated self-similar bubbles, integrating the kinetic energy in
the self-similar profile and dividing by the bubble volume, the corre-
sponding vacuum energy transfer efficiency is computed as [86]

(= o
E_ea‘%\)

Jw(a)vz(a)vz(v)azda, (166)

which I'illustrate in figure 4. I use subscript ¢ to indicate its definition
from self-similar profiles.
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Figure 3: Self-similar profiles of the fluid velocity (left panels) and enthalpy
(right panels) perturbations for a single bubble nucleated at t = 0
as a function of the self-similar coordinate & = r/t. The profiles are
shown for weak (upper panels), intermediate (middle panels), and
strong (lower panels) PTs, across the range of wall velocities used in
the parameter scan of our simulations.
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Figure 4: The vacuum energy transfer efficiency k; for single isolated bubbles
with developed self-similar fluid profiles, for weak (x = 0.0046),
intermediate (x = 0.05), and strong (x = 0.5) PTs.

Another useful quantity is the fraction of kinetic energy to the total
energy density pior, which relates to k and the strength « as

Pkin
K & = , (167)
Ptot

which for the self-similar profiles is defined as

. Ke X

14« (168)

Ke
where the densities are computed over the volume of the true vacuum.
We have now covered the essential concepts concerning first-order
PTs to understand the contents of forthcoming Sections and Chapters
in context. Before proceeding to deliver an account of my original re-
search, however, I will review some of the efforts that have already
been made to understand the GW production associated with such
PTs in the remaining Sections of this Chapter.

3.2 GWs from a first-order phase transitions

We begun this Chapter by discussing the dynamics of a scalar field
tunneling through the potential barrier in an effective potential leading
to a first-order PT. We saw how the PT proceeds through the nucleation
and expansion of bubbles that expand and subsequently collide. In
the simplest case, the PT occurs in vacuum, in which case the bubbles
experience no interactions with the surroundings and, consequently,
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no friction. With no resistance to the bubble growth, the bubble wall
accelerates towards the speed of light, whereby the energy released by
the PT is fully carried by the wall. Upon bubble collision, spherical
symmetry is broken, a significant quadrupole moment in the energy
distribution is generated, and GW production occurs.

In a more realistic scenario, and indeed the scenario with which this
thesis is concerned, the PT does not occur in vacuum but in a fluid dur-
ing the epoch of radiation domination. The expanding bubbles thus
experience friction with the fluid and reach a terminal expansion ve-
locity. In this case, since the energy of the bubbles scales with their
squared radius, while the released vacuum energy scales with their
radius cubed, the vacuum energy is almost exclusively transferred to
the fluid, whereby the fluid dominates subsequent GW production.

The GW spectrum produced by the dynamics of a first-order PT
is largely determined by a few key parameters with which we have
already acquainted ourselves. These are T, 3, &, and v,, . Let me briefly
describe their respective roles:

1. The temperature at which the first-order PT occurs, T.: This is
defined as the temperature at which the integrated probability
that a bubble has nucleated inside a Hubble patch is 1. It sets
the scale of the PT. At this temperature, the Hubble expansion
H..(T,), which determines the maximum spatial correlation scale
and is thus related to the expected frequency peak of the GW
spectrum, is directly determined from p.,q(Ts) using the Freed-
man equation. We will assume that T, is sufficiently close to
the temperature at which GW production commences at colli-
sion time so that T, characterizes the energy scale at initial GW
production.

2. The inverse duration of the PT, (3: Defined and estimated in
Equation (121), 3 determines the duration of the PT and allows
determining the typical bubble size or average bubble separation
R, as in Equation (135). This parameter is important for charac-
terizing the GW spectrum as it corresponds to the largest charac-
teristic length of features that are expected to carry a substantial.
This scale thus relates closely to the GW spectrum peak location.
R, furthermore parameterized the overall amplitude of the GW
spectrum, e.g., as in the case of sound waves in equation (110).

3. The strength parameter, & = pyac/p;,4: This ratio describes the
strength of the PT, where py,c is the vacuum energy density and
Pr.q 18 the radiation energy density at T.. Generally, the larger

«, the larger the GW spectrum amplitude since there is more

energy available. Furthermore, «, together with v,,, determines
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the vacuum energy transfer efficiency «k, and, as can be seen in
Figure 4, the larger « the larger the transfer efficiency. Thus, the
overall GW amplitude is enhanced significantly as the strength
does.

4. The wall velocity, v,,: This parameter describes the speed at
which the bubble walls expand and critically determines the na-
ture of the hydrodynamic solutions. The wall velocity is thus
important in that it determines, together with the strength «, the
energy budget of the PT characterized by k. Determining the
wall velocity in PTs requires complex out-of-equilibrium calcu-
lations involving solving Boltzmann and scalar field equations
(see, e.g., [90, 91]). These calculations depend on the specifics of
the scalar sector and how particles obtain masses through their
coupling to the scalar field responsible for the PT, rendering re-
sults highly model-dependent and warranting a case-by-case ap-
proach. In this thesis, we will always treat v,, as an input param-
eter and leave its determination from fundamental theory as a
task for other scientific explorations.

While the specific values of these parameters must be determined
from first principles and the particle physics model in question, the
main features of the GW signal can be described in terms of these pa-
rameters in a phenomenological, largely model-independent way. In
the Higgsless simulations, we will solve the equations of motion in
a way that both H,, which is determined from T, and (3, are scaled
out. We are thus left with only parameters « and v,,, spanning a two-
dimensional parameter space. The gravity of the above statement is
thus evident, for if the main features and overall expected GW signal
are captured by the remaining parameters « and v,,, then, since the
parameter space over which to scan to characterizes all (non-vacuum)
tirst-order PT GW signals is only two-dimensional, it appears conceiv-
able that soon, we have reasonably accurate GW spectrum estimates at
hand for a large region of this parameter space. This, in fact, is a major
scientific objective of the present thesis.

3.2.1 Estimates of some GW signal features

In this Section, I wish to demonstrate how the GW spectrum peak
frequency and amplitude can be estimated from simple arguments.

3.2.1.1  GW spectrum peak frequency

In Section 2.2.2, we obtained expressions relating the wavenumbers
and GW spectrum at production time to their redshifted present-time
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counterparts. Normalizing k. to 3, a fundamental scale in the problem,
and {3 to H,, the Hubble constant at the PT, the present-day frequency
can be obtained by rewriting Equation (169) as

_ e (R (BN (g6 T
fo = 2.63-10 Hzx(ﬁ)(H*><1oo> <100Gev)' (169)

A typical wavenumber at production is k. = 3, so that the GW spec-
trum peak generally occurs at kpeqx = few x 3. Furthermore, using
that, generally, we expect 3/H. ~ 100, and g, ~ 100 near T, = 100 GeV
or otherwise that we can neglect the weak dependence, the redshifted
GW spectrum peak occurs at

fgeak ~C103Hz x (10(:&6\]) . (170)
where C is expected to take values in the range [0.1, 10]. Thus, for a
PT occurring at the EW scale T, ~ 100GeV, the peak should occur
at frequencies between 0.1 mHz to 10 mHz, which excitingly overlaps
substantially with the sensitivity band of LISA [48]. If the PT instead
occurs around the QCD scale T, ~ 100 MeV, the peak frequency should
occur at frequencies between 0.1 pHz to 10 uHz. Generally, the peak
position scales linearly with the PT temperature T,, so that the further
back in the past the PT occurred, the higher the peak frequency.

3.2.1.2 GW spectrum amplitude

We found in Section 2.2.2 that the present day GW spectrum is given
by Equation (66)

100 \'/3 /1 dpgw (k)
2~0 -1 1 -5 1 APGwW

so that using h ~ 0.7,

Q2 ~3-107°Q%y . (171)

Now, assuming that a GW source lasts over some time At and that
a fraction K = psource/ps Of total energy density contributes to GW
production, then the energy fraction in GWs at production time para-
metrically becomes

Qaw ~ 1072 (XAtH,)?. (172)

In Equation (72), it is evident that the sourcing term on the RHS carries
contributions only from the anisotropic part of the energy and momen-
tum. To be more precise, we saw in Section 3.1.6 and Equation (168)
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that a fraction Kz = kg /(14 o) of the total energy eventually takes the
form of fluid kinetic energy. For o« = 0.001, a typical value k ~ 0.07 [86],
so that K2 ~ 107%. Only a fraction of this contributes to anisotropic
stress. Therefore, plausible values of K are substantially lower than 1.

If GW production is dominated by the collision phase of a PT and
hence At ~ 1/, we see that

Qcw ~ 107 (KH./B)? ~1077%, (173)

taking 3/H, ~ 100. For vacuum PTs, assuming that the scalar field is
quickly dampened after collision, this would give an adequate estimate
provided X is known.

In recent studies (e.g., [1, 3, 25, 69, 71]), including the works which I
am to present in this thesis, it has been highlighted that sound waves
propagating through the fluid can persist much longer than ~'. In
particular, in these works, and as we shall see in this thesis, it is demon-
strated that sound waves can endure for timescales on the order of
H, ! before being dissipated by nonlinear dynamics such as shocks
and turbulence, resulting in an enhancement of Qgw by a factor of
B/H., leading to an enhancement of the GW spectrum by two to three
orders of magnitude.

When the sourcing time scale is longer, as is expected for sound
waves in the fluid following a PT, say At ~ 1/H,, then the narrow sup-
port of the UETC means that the source is expected to grow linearly
rather than quadratically with time. Thus, as compared to the short-
lasting source, an estimate for the sound-wave production of GWs in-
stead reads

Qcw ~ 10K H,./B, (174)

which qualitatively explains the factor of (3/H.) enhacement.

3.2.1.3 GW spectrum slopes

The UETC of anisotropic stresses in Equation (87) is uncorrelated at
scales beyond causality, i.e., on super-Hubble scales at the time of GW
production. Therefore, we expect that Er oc k? on super-Hubble scales,
resulting in the GW spectrum scaling as k® in the IR. As long as the
UETC remains uncorrelated, this k3 scaling may persist. However, as
we approach the system’s correlation scale ', correlations will in-
evitably cause deviations.

On general grounds, the only statement that can be made about the
UV slope of the GW spectrum is that the total integrated GW energy
must be finite, which imposes a limit on the UV slope. The exact de-
pendence on the UV slope is determined by the detailed dynamics re-
sponsible for the UETC, which must be established through analytical
or numerical methods.
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3.2.2 GW spectrum contributions

So far, we have discussed short-lasting sources from the initial collision
phase and long-lasting sources from sound waves or, more generally,
compressional or acoustic modes. We mentioned the dissipation of the
sound waves due to nonlinear dynamics such as shocks and turbu-
lence. In fact, turbulence can itself be a significant source of GWs [75,
77, 92-96].

Therefore, in a first-order cosmological PT, the GW sources consti-
tute bubble collisions, sound waves or compressional modes, and tur-
bulence so that the GW spectrum can be decomposed as [97]

QGW = Qcoll + st + Qturb . (175)

In the case of long-lasting sound waves, we saw that Q. is subdom-
inant. If PTs are not too strong, the dynamics are largely linear [1],
allowing to measure Q) relatively well modulo the uncertainty asso-
ciated with the sound-wave source duration. This is one of the main
accomplishments in [1] on which Chapter 5 is based.

In weak-to-intermediate PTs (see Chapter 5 for a definition), fully
capturing the PT into the nonlinear and turbulent regime requires run-
ning simulations for a long time, which may be practically impossible.
Therefore, capturing Qy,p is not straightforward in most cases. For
strong PTs, however, the shock formation time and the time it takes for
turbulence to develop are well within simulation reach [3], making it
plausible to model the PT from a system dominated by compressional
modes to a system possibly dominated by compressional and vorti-
cal turbulence. In Chapter 6, which is based on [3], we observe clear
signs of nonlinear dynamics and turbulence. However, we attempt not
to separate the contributions to the GW production into Qgy, Qb
but instead introduce a way to model the total GW production from
a source experiencing nonlinear energy dissipation in a general sense
without the need to disentangle the respective contributions.

3.2.2.1 The scalar-field contribution to GW production

The production of GWs from the bubbles themselves, while not the
primary focus of this thesis, has played a historically important role in
the field. Therefore, this thesis would not be complete without at least
a brief review of this topic. Accordingly, in this Section, I will review a
few approaches through which the GW spectrum arising from scalar
tield bubble collisions can estimated.

ENVELOPE APPROXIMATION Historically, directly attempting to
numerically solve for the scalar-field evolution in a many-bubble sys-
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tem was infeasible due to the excessive computational resources it
required. In 1992, however, Kosowsky, Turner, and Watkins success-
fully obtained through numerical means [19] the GW production from
two colliding bubbles. This feat was made possible by exploiting the
O(2,1) symmetry possessed by the two-bubble system, which even
then proved exceedingly difficult with the computational resources of
that day. The most general case of many bubbles in three dimensions
has no symmetries and was far beyond computing capabilities at the
time. Just like we argued in the motivation for the Higgsless approach,
the problem was difficult numerically because of the presence of two
separate scales: the bubble wall thickness at nucleation is small com-
pared to the size of bubbles at collision. Additionally, highly relativis-
tic walls are made thinner due to Lorentz contraction, which further
separates the scales.

A critical observation concerns the insensitivity of the GW produc-
tion to the fine-grained details of the bubble dynamics. In particular,
they found that the GW spectrum and its production efficiency depend
only on the overall features of the PT and bubble collisions, such as the
strength of the PT and the size of bubbles at the end of their simula-
tions. Despite the scalar-field dynamics after bubble collisions being
quite intricate, the overall production of GW radiation from the small-
scale motions adds incoherently and is subdominant, they concluded.

The insensitivity to the small-scale dynamics prompted the authors
to develop the envelope approximation [21]: bubbles are approximated
as infinitely thin shells, and in the regions where bubbles overlap, the
bubble wall is completely ignored as a contribution to the anisotropic
stress. Only the envelope, i.e., the uncollided part of the bubble wall
network, is considered. This approximation successfully reproduced
previous numerical results for two-bubble systems and was thus put
to test in systems with hundreds of bubbles.

The envelope approximation provides a simplified yet efficient ap-
proach to estimate the GW signal generated from the scalar field dy-
namics during first-order PTs. The approximations that enter the enve-
lope approximation are, to summarize:

1. The energy is concentrated in the thin walls of the expanding
bubbles (thin-wall approximation).

2. Upon collision, the walls of the bubbles disappear instanta-
neously, and only the uncollided parts (i.e., the envelope) con-
tinue to source gravitational waves, while the contribution from
the collided regions ceases

The envelope approximation was additionally exploited in the nu-
merical simulations of [23], and it was realized in [98] that under the
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stipulated assumptions, the envelope contribution to GWs can be ob-
tained analytically.

Above works resulted in the prediction that (in the envelope approx-
imation), the spectrum of GWs is characterized by a peak frequency
depending on the bubble expansion velocity. The spectral shape is
characterized by a q> growth at small frequencies and a q~' decrease
at high frequencies. For analytical fits to the data, I refer the reader
to [98].

BULK FLOW MODEL The development of the envelope approxima-
tion was a significant milestone in understanding GW production dur-
ing first-order PTs. A natural extension of the envelope approximation
is to assume that upon colliding, the infinitely thin bubble wall in-
terface does not instantaneously vanish but dampens over time. This
refined model was proposed in [99] in which the authors obtained GW
production results analytically, which were subsequently confirmed in
numerical simulations [24]. Note that while in this Section we take the
bulk-flow model to model the bubbles, it can similarly be interpreted
as a model of the fluid and sound wave provided in the limit of very
thin sound shell profiles [24, 99]. In fact, this was the main motiva-
tion for the bulk flow model in [24]. For if the thin shells are freely
propagating after the collision, they decay as o« 1/r2 where 1 is the ex-
panding radius of the shells, a behavior which can be captured in the
bulk-flow model. Note, however, that in the bulk flow model, r < v,,,
whereas after the collision, the sound shell wave propagates with the
sound speed cs. For vy ~ ¢, the bulk flow model should nevertheless
give reasonable estimates and capture the qualitative features.

Unlike the envelope approximation, the bulk flow model reveals
that the GW spectrum experiences an IR flattening. Specifically, the
spectrum shifts from the  q> behavior seen in the envelope approx-
imation to q¢, where a € [1, 3], depending on the decay time of the
collided bubble regions. It is also found that in the UV, the GW spec-
trum scales as q 3. Additionally, the peak position shifts from smaller
to larger scales as the decay time of the collided regions increases, with
a change by a factor of approximately two in the long-lasting limit.

SCALAR FIELD LATTICE SIMULATIONS While the envelope ap-
proximation and bulk flow model provide accessible estimates for GW
production within certain physical scenarios, advancements in com-
putational resources have paved the way for more precise predictions.
Rather than relying on these approximations and assumptions, solv-
ing the scalar field evolution directly on the lattice with high precision
allows for capturing subtle, fine-grained dynamical features and accu-
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rately modeling the full nonlinear dynamics, leading to more reliable
and detailed GW predictions.

Such attempts were made in [100], where results from large-scale nu-
merical simulations of scalar-field dynamics and GW production are
presented. It was found that the gravitational wave power spectrum
in the IR is consistent with a > scaling as predicted by causality and
found in the envelope approximation. However, the dynamic range in
their simulations is insufficient to produce an independent estimate.
At large frequencies in the UV, the GW spectrum decreases as q~ ',
as compared to q~! in the envelope approximation and q—3 in the
bulk flow model. They also find that the peak of the power spectrum
is shifted to slightly larger scales, consistent with the bulk flow model.
Accounting for the full scalar field dynamics, they additionally observe
a linearly growing UV feature. This feature is observed to peak at wave
numbers corresponding to the bubble wall thickness, but it has a neg-
ligible contribution to the total energy in gravitational waves in most
scenarios of interest.

In Table 1, I summarize the various scaling behaviors observed in dif-
ferent models for the scalar field contribution to the GW production. It
is worth noting that a single scale, associated with the typical bubble
bubble size, or equivalently the PT duration, divides the IR and UV re-
gions, with the Higgs scale residing deeply in the UV and far beyond
the reach of any simulation. Both the envelope and the scalar lattice
models concur on the IR q3 scaling, which is supported by causal-
ity [76]. The bulk flow model captures a longer-lasting source of GWs
in the IR, resulting in a q' scaling. In the UV, the bulk flow model dif-
fers as it exhibits fewer kinks and cusps in the bubble configurations
compared to the envelope approximation, leading to a faster decay of
the spectrum in the UV. Scalar field lattice simulations also observe a
stronger decay. Furthermore, the position of the peak varies slightly
between the envelope approximation and the lattice simulations and
bulk-flow model, whereas the latter two are in better agreement.

| R | UV | References |

Envelope approximation 3 —1 [23, 98]
Bulk flow model 1,3 | =3 [24, 99]
Scalar field lattice simulations 3 —15 [100]

Table 1: Frequency scaling behaviour in the IR and UV for the GW spectrum
emerging solely from the scalar field contribution as described in
the envelope approximation, the bulk flow model, and in scalar field
lattice simulations.



3.2 GWS FROM A FIRST-ORDER PHASE TRANSITIONS

3.2.3 The fluid contribution to GW production

We have seen how some of the first simulations of gravitational waves
from scalar field dynamics were made possible through the simplifi-
cations offered in the envelope approximation. This approach was re-
fined in the bulk flow model applied to a scalar field-only setup, which
brought new insights and observations of different GW spectrum scal-
ing behaviors. Additional insights were gained in full 3D scalar field
lattice simulations at the cost of significant computational demands.
All of these approaches, however, neglected or failed to adequately
model the relativistic fluid dynamics with extended sound shells and
complex interactions. We have nevertheless seen how GW production
from long-lasting sound waves may lead to the dominant contribution.

In this regard, and since we are mostly concerned with fluid hydro-
dynamics and consequent GW production in this thesis, I wish to high-
light a few state-of-the-art approaches to modeling GW production by
the fluid and, in particular, sound waves. These approaches include
the Sound-shell model, coupled scalar field + fluid lattice simulations,
and a recent hybrid approach, which I will briefly review below.

THE SOUND SHELL MODEL The sound shell model offers a semi-
analytical method for calculating the sound-wave production of grav-
itational waves during a first-order PT. As first outlined in the orig-
inal publications of the sound-shell model introduced [70, 72], the
GW spectrum is obtained similarly to Equation (93), but instead of
assuming full knowledge of the anisotropic stress as we did to arrive
at Weinberg’s formula (104), they proceed to derive the UETC from a
stochastic source analytically. Note that they and furthermore assume
that the second integral in (93) can be extended to +oo, thus obtain-
ing the linear growth rate of Equation (108) as we did in Section 2.2.5.
The UETC is then obtained by first computing the self-similar velocity
and enthalpy profiles [86]. Then, the velocity power-spectrum is com-
puted from the velocity profiles of the associated bubbles statistically
distributed assuming either a simultaneous or exponential bubble nu-
cleation history. With knowledge of the velocity spectrum, the UETC
can be computed, which in turn allows computing the associated GW
spectra.

The predicted GW spectra are found to exhibit two distinct length
scales: the average bubble separation and the sound shell width upon
collision. The peak of the power spectrum occurs at wavenumbers de-
termined by the sound shell width. In the UV, the power spectrum
is found to decrease as k3. In the IR, recent sound-shell model re-
sults with refined assumptions [73, 74] have found a k3 scaling (to be
contrasted with the earlier prediction of k? scaling). An intermediate

55



56

COSMOLOGICAL PHASE TRANSITIONS

regime between the two scales corresponding to the typical bubble size
and sound shell thickness with a linear k! scaling is furthermore ob-
served. With the refined assumptions, an intricate spectrum structure
emerges where, e.g. the previously found k” UV scaling is observed
in a narrow band just to the left of the peak. The detailed form of the
spectrum depends sensitively on the wall velocity and PT strength.

The sound shell model has proven immensely important and lever-
ages the power of analytical computation, thus allowing for efficient
probing of large parameter spaces. However, its limitations lay in the
assumption of linearity among the sound waves. Indeed, the scenarios
of greatest interest are those of stronger PTs due to their boosted, and
thus more easily observable, GW signals. These PTs can be expected
to involve strong nonlinear dynamics, which is precisely what is not
captured in the sound-shell model. Therefore, while the sound-shell
model offers an excellent framework within which the parametric de-
pendence of the GW signal can be studied for the class of weak PTs
and possibly intermediate PTs, to move beyond this limitation, one
must resort to other methods that can solve adequately for the fully
nonlinear evolution of the fluid dynamics.

SCALAR FIELD + FLUID LATTICE SIMULATIONS Diametrically op-
posite to the sound-shell model, coupled scalar field + fluid lattice sim-
ulations [25, 69, 71, 101] enter the stage as a robust attempt at capturing
the GW spectrum from the PT dynamics employing a fully numeri-
cal approach without many compromising assumptions. Here, quite
straightforwardly, the authors solve on the lattice for the dynamical
evolution of a scalar field and the fluid coupled through a phenomeno-
logical friction term.

Utilizing these simulations, it is found that the GW spectrum is con-
sistent with the UV k3 scaling as predicted in the sound-shell model.
This observation is particularly clear for detonations, while for defla-
grations, it is moderately steeper. I will quote the k™3 scaling as their
main finding in this regard. Furthermore, it was found that sound shell
thickness sets the location of the peak of the GW spectrum peak. Due
to insufficient IR statistics, the IR behavior of the GW spectrum could
not be inferred.

HYBRID SIMULATIONS Bridging the gap between the sound-shell
model and the scalar field + fluid lattice simulations, one finds the hy-
brid scheme [67]. In this approach, bubbles are modeled as spherically
symmetric and expand at a constant wall velocity. Rather than solving
for the full 3D evolution, the fluid equations of motion are solved ra-
dially in simulations of only one dimension. The fluid profiles before
collision are the already known self-similar profiles discussed in 3.1.6
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as obtained in [86]. In the hybrid approach, the authors implement
an efficient and high-resolution solver capable of solving for the free
propagation of the initial conditions defined by the self-similar profiles
and thus solve for the radial evolution in the free propagation regime
post-collision. This way, the radial and time-dependent relaxation of
the initial profiles involving shocks is obtained nonlinearly.

The main point of the hybrid approach, however, is not the radial
1D evolution after collision but the 3D embedding of those 1D solu-
tions into a 3D grid. The starting point is a bubble nucleation history,
constructed assuming an exponentially increasing bubble nucleation
history similar to the prescription in 3.1.3. The hybrid simulations use
this nucleation history to embed the 1D fluid profiles into the 3D grid
as a superposition on non-interacting velocity and enthalpy fields. Con-
sidering the contribution from each bubble individually, radially from
the nucleation center, either the self-similar profile or the freely propa-
gating time-evolving profile is embedded depending on whether that
particular direction of the bubble has collided or not.

The superposition of such radial profiles on the 3D grid allows track-
ing the energy-momentum tensor over space and time, and thus the
computation of the GW spectrum in complete analogy with the Hig-
gsless simulations. The superposition of such shells implies that the
hybrid approach is explicitly linear in the sense that once the radial
1D profiles are embedded, those profiles do not interact; only the sin-
gle bubble evolution is solved nonlinearly.

In the hybrid approach, it is found that the IR part of the GW spec-
trum scales as k® where a € [2, 4], the UV part scales as k® where
b € [—4, —3], and that an intermediate linear plateau is present be-
tween the inverse scales of the average bubble size and shell thickness
at collision.

In Table 2, I summarize the scaling behaviors of the GW spectrum ob-
served across the above-mentioned approaches, including results from
the Higgsless simulations, for reference. Most approaches consistently
exhibit a k3 scaling in the IR, although the hybrid simulations reveal
some variability in the IR slope around 3. Additionally, all approaches
agree on a k™3 scaling in the UV, with the hybrid simulations indi-
cating a slightly steeper scaling, approaching k=*. An intermediate
regime linking the scales of the inverse average bubble size and shell
thickness at collision is also identified across all approaches. In most
cases, the scaling in this regime is linear, k', except in the hybrid sim-
ulations, where a negative scaling is observed, with an exponent be-
tween [—1, 0].
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H IR ‘ Intermediate uv References
Sound-shell model 3 1 -3 [70, 72]
Scalar + fluid lattice simulations - 1 -3 [25, 69, 71, 101]
Hybrid simulations [2,4] [—1,0] [—4,-3] [67]
Higgsless simulations [3] 1 [—3,—2.5] This thesis

Table 2: GW spectrum slopes obtained from various approaches targeting
fluid sound-wave-induced GW production. These models exhibit dis-
tinct features at wavenumbers ko and ki, with three corresponding
slopes: IR, intermediate, and UV.

3.2.4 Prospects for observational Detection

Before concluding this first part of the thesis, I would like to highlight
recent advancements in GW detectors and discuss the observational
prospects for detecting GWs originating from a first-order PT.

Global Pulsar Timing Arrays (PTAs) efforts, which probe nano-Hertz
frequencies, have recently provided compelling evidence for a stochas-
tic GW signal [41—44]. While unresolved supermassive black hole merg-
ers are a strong candidate for this radiation, suggesting an astrophysi-
cal origin, it is crucial to consider that primordial cosmological sources
could also account for the observed signal [45]. Indeed, the signal is
consistent with predictions from a cosmological PT [46, 102, 103]. It
is notable that as the sensitivity of PTAs improves with increased ob-
servation time and data joint data analysis among the collaborations,
expectations are that the observed signal if indeed stemming from a
stochastic GW signal, will be clearly seen. Furthermore, the upcoming
Square Kilometre Array (SKA) [104] is expected to push the observa-
tional limits further.

For cosmologists, the Laser Interferometer Space Antenna
(LISA) [47—49], scheduled for launch in 2035, designed to probe GWs
in the milli-Hertz frequency band, presents potentially an even more
exciting prospect. Several studies have explored whether LISA can de-
tect GWs from cosmological PTs [50-52] and how well it can observe
features of GW spectra from first-order PTs [105, 106]. Although a de-
tailed discussion of these studies is beyond the scope here, the consen-
sus is that LISA should be able to detect GW signals from cosmological
PTs if they occur around the electroweak scale (~ 100 GeV), last for a
sufficiently long duration (H./p > 1073), and are sufficiently strong
(x> 0.1) [971].

Looking beyond LISA, upcoming gravitational wave observato-
ries such as the Einstein Telescope (ET) [107], Big Bang Observer
(BBO) [108], and Deci-hertz Interferometer Gravitational-wave Obser-
vatory (DECIGO) [109] are set to play important roles in detecting GWs
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from phase transitions, as they, together with SKA and LISA, cover a
vast frequency band. These observatories will significantly enhance
our ability to probe the early Universe with GWs.

The ultimate goal of this section is to underscore the importance of
advancing accurate gravitational GW predictions in light of the sub-
stantial investments in GW experiments, which will be justified only if
the data can be effectively utilized and compared against various the-
oretical predictions. Furthermore, since cosmological PTs are indeed
expected to be observable in certain parts of parameter space, they
constitute a valid target for these GW experiments to probe. This fact
is the primary motivation and justification for the research that I am
hereby to present.
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Part II

HIGGSLESS SIMULATIONS

In this part, I focus on the design, implementation, evalu-
ation, and application of our Higgsless simulations intro-
duced in [1]. It is divided into four chapters. Chapter 4 pro-
vides an overview of central difference methods. Section 4.1
introduces hyperbolic conservation laws, followed by the
Lax-Friedrichs scheme as a prototypical example of a cen-
tral difference method in Section 4.2. Section 4.3 presents
the Kurganov-Tadmore method, a vital component of the
Higgsless simulations.

In Chapter 5, based mainly on my publication [1], I intro-
duce our novel Higgsless simulations and present the first
numerical findings. Section 5.1 provides background and
context and outlines the scientific objectives. In Section 5.2,
I review the physical. Section 5.3 explores the numerical
methods and programmatic choices. In Section 5.4, I val-
idate the simulation code, followed by the presentation of
numerical results in Section 5.5. A discussion is provided in
Section 5.6, with concluding remarks in Section 5.7. I close
the chapter with a brief digression in Section 5.8, reviewing
the results of my other publication [2] on phase transitions
seeded by domain walls.

In Chapter 6, based on the work from my publication [3], I
expand upon the previous Chapter 5, significantly advanc-
ing our understanding of the simulation’s performance
and, for the first time, deriving gravitational wave predic-
tions from strong phase transitions. Section 6.1 introduces
the study and the broader context and outlines its scientific
objectives. In Section 6.2, I extend the model for gravita-
tional wave production to account for damped sources and
cosmic expansion. Section 6.3 discusses updates to the sim-
ulation code and the chosen parameters. The main numeri-
cal results, including findings from strong phase transitions
and a template for gravitational wave production, are pre-
sented in Section 6.4. Finally, Section 6.5 summarizes the
key findings and concludes the chapter.

I conclude in Chapter 7, reflecting on the thesis” achieve-
ments and suggesting future research directions.






CENTRAL DIFFERENCE SCHEMES A LA KURGANOV
AND TADMOR

This Chapter serves as an overview of central difference methods, with
particular emphasis on the method used in our simulations. In Sec-
tion 4.1, I introduce hyperbolic conservation laws. In Section 4.2, I
present the Lax-Friedrichs scheme as a prototypical example of a cen-
tral difference method. Then, in Section 4.3, I introduce the Kurganov-
Tadmor central difference method, the backbone of the Higgsless sim-
ulations, in both its semi-discrete and fully-discrete formulations, in-
cluding generalizations to three dimensions, and offer some conclud-
ing remarks.

4.1 Hyperbolic conservation laws

Hyperbolic Conservation Laws describe the flow of conserved quanti-
ties such as mass, momentum, or energy in a system. Mathematically,
they can be written as

e 1)+ >t 1) =0 (176)
—u(x, —flu(x,t)) =
ot ox 7
for a conserved scalar quantity u in one spatial dimension, or more
generally, for a system of equations in d spatial dimensions

mw <2
| =
at+§ 3% (u) =0 (177)

j=1

where u is the vector of conserved quantities and f(u) is the flux vec-
tor. The form of (177) is called conservative, which stems from the fact
that it explicitly ensures the conservation of u over time. Conversely,
all u’s are termed conserved quantities. The term f(u) represents the
rates at which the quantities u flow through space. Hyperbolic con-
servation laws describe numerous physical phenomena found in, e.g.,
fluid mechanics, astrophysics, and meteorology. An intriguing feature
of hyperbolic conservation laws is that discontinuities, such as shock
waves, can develop even from smooth initial conditions [80].
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4.2 A PROTOTYPICAL EXAMPLE: THE LAX & FRIEDRICHS SCHEME

A common example is the system of Euler equations (in one spatial
dimension) for the dynamics of a gas,

o | P | o m
3l ™|t pv2+p | =0, (178)
E v(E+p)

where the quantities p,v, m = pv,p, and E are the density, velocity,
momentum, pressure, and total energy, respectively. In this case, u =
)T

(p, m, E)T with flux function f(u) = (m, pv? +p, v(E —i—p))T.

4.2 A prototypical example: the Lax & Friedrichs
scheme

Central schemes are universal finite-difference methods for solving
hyperbolic conservation laws. This universality means that once nu-
merically implemented, they are in principle applicable to all physical
systems governed by equations of the form (177), with degrees of suc-
cess depending on the detailed structure of the central scheme and the
complexity of the problem.

One of the most naive central schemes to solve (177) is obtained by
simple Taylor-expansion and rearrangement of the terms, whereby

A
u]T‘“ = - 3 [ (uhq) = (ulty)], (179)

where, A := At/Ax is the constant mesh ratio, and u]T‘ is an approximate
value of u (xj,t™) at the grid point (x; :=jAx,t™ := nAt). Replacing

ut — M, i.e. by letting
wh, +ult A
1 +1 1
u]THr _ 5 i—1 _ 3 f (uJT‘H) —f(u}‘q)] , (180)

Lax and Friedrichs (LxF) improved upon the stability of this scheme
[110, 111], resulting in a widely celebrated first-order stable central
difference method.

It is enlightening to study what implications are associated with
the replacement w* — % acting to stabilize the LxF scheme.
Equation (180) can be recast in a viscous form

W o () ()
At 2Ax = oa¢ LWy

j
(181)

P =) — (4 )]

63



64

CENTRAL DIFFERENCE SCHEMES A LA KURGANOV AND TADMOR

This expression represents a discretized version of an equation of the
form
ou  of(u)  (Ax)? d0%u

a—i_ x At ox2’ (182)

The LxF scheme, thus apparently, introduces to the R.H.S. a dissipative
term proportional to (Ax)% /At as a direct consequence of the scheme
stabilization. This dissipation is the price one must pay for the scheme
stabilization and results in large numerical viscosity acting to artifi-
cially smoothen solutions.

Even worse, taking the limit of At — 0, the viscous form of the LxF
scheme implies the divergence of the R.H.S. while the L.H.S. is well-
behaved. Keeping the numerical viscosity constant thus implies that
increased temporal resolution must be balanced with increased spatial
resolution,

(At)g — At = Ax — (Ax)o (183)

(At)o’

or, otherwise, the dissipative term grows and fatally approaches co. In-
creasing the spatial resolution to reduce numerical viscosity is clearly
only possible within the bounds of computational resources, so one
must choose the smallest permissible At for the specified problem.

Schemes that suffer divergences in the limit At — 0 only admit a
fully-discrete formulation in which At is always finite, while schemes
for which the limit At — 0 is well-behaved can be expressed in a
semi-discrete formulation where the spatial part is discretized but the
temporal part is not.

The choice of At, however, is governed by the Courant-Friedrichs-
Lewy (CFL) condition. To ensure stability, this condition states that
information must never propagate faster than between two neighbor-
ing grid points in one time step, and typically much slower, to ensure
stability. This then signifies that

At C
<

— < —, 8
Ax ~ max|f’(u)] (184)

where the constant C < 1 (typically) and whose exact value depends
on the central scheme in question and the details of the physics to be
modeled, and max [f'(u)| is the maximum local speed of propagation.
This implies a trade-off between spatial resolution and time-stepping.
In practice, C must generally be determined by inspection of the solu-
tions. Clearly, At is limited from above by the CFL condition, and one
can never do better with regard to the numerical viscosity than what
is allowed by this upper bound.
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It is interesting, nevertheless, to note that the LxF scheme still con-
serves u globally. Compute the Riemann sum of u“+1 over all | grid
points,

_
L
—

I\/I

J—1
A
u?+1Ax = [2 (Ul g +uf ) — 2 (F (ur) =1 (uft)) | Ax

j=0 j=0
%( ]+UO+ZU]+ +2'LL] 2+UJ1+U)AX
A
—i—z(f(u 1)+f (ug) — f(u}‘_ﬂ—f(u}‘))Ax.

(185)

Quite often, however, numerical schemes are implemented assuming
periodic boundary conditions, such that the points (—1,] —1) and (0, ])
are mapped to one another. Therefore, the flux terms collapse, while
all uj*’s add up in pairs, and the sum reduces to

J-1 J—1

Z u}‘“ Ax = Z u}TLAx. (186)

j=0 j=0

The total amount of u is thus conserved between time steps, and the
LxF scheme globally conserves u despite demonstrating significant nu-
merical viscosity.

For problems where smooth solutions are expected and relatively
large time steps are permissible, the LxF scheme may perform well. In
our case of interest, namely strong relativistic hydrodynamics driven
by bubble walls, which we will model as discontinuous time-varying
boundary conditions, one must employ significantly higher perform-
ing central difference methods to resolve shocks and nonlinear dynam-
ics [67]. The next Sections of this Chapter will discuss a capable high-
resolution scheme that constitutes the backbone of the Higgsless sim-
ulations.

4.3 The Kurganov-Tadmor central difference
method

We have seen how excessive numerical viscosity appears as an artifact
of numerical schemes that do not admit a semi-discrete formulation.
To this end, Kurganov and Tadmor (KT) [112] devised a scheme that
does, which I am hereby to review in some detail. A compact descrip-
tion of this scheme is also given in [113].
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4.3.1 Semi-discrete formulation

In the semi-discrete formulation and in one spatial dimension, their
central scheme takes the form:

d
auj(t) =
) ( (w2 0) + £ (w020 ) = (7 (557 2 00) + (F (w7 ,(0))
2Ax
b aa {200 [y o0 i o(0] — a2 i 00— 5]}

(187)

Here, u and f should be interpreted as a list of one or many con-
served quantities and flux functions. Definitions of the terms used in
this equation are discussed next.

The first items on the R.H.S. reads

) (F(w1,20) 7 (w520,00) ) = (7 (w71,,0) + (£ (w5 (1)
2Ax :

(188)

One immediate difference from the LxF scheme is that quantities are
evaluated at staggered grid points j == 1/2. These are defined from Taylor
expansions around points j (superscript -) and j + 1 (superscript +),

Ax _ Ax
u;_]/z = U4 (t) - 7 (ux)j+1 (t)/ uj_,_]/z = uj(t) + 7 (ux)]‘ (t)

(189)

with approximate derivatives (uy) je A suitable definition of these
derivatives is subtle and warrants a discussion of its own. The terms
of the form
f (u)?ll/z(t)> +f (uj_i]/z(t))
2
thus approximate the flux at the point %/, through the mean value
of its two Taylor expansion estimates approaching from different sides.
The difference between such terms divided by Ax thus approximates
the flux derivative.
The second term on the R.H.S.

1
E{aj“/zm W20 = up o (0] = a1200 [u (0 —up (0]}

(190)

is more interesting and contains the key piece of information that
makes the KT scheme powerful. We have already seen from the CFL
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(184) condition the importance of the maximal fluid velocity in deter-
mining the minimal time step At. It seems plausible, therefore, that if
information about the maximal local fluid velocity could be embedded
into the central scheme itself, one could improve upon its stability. In
the second term on the RH.S., aj 1, is defined as

of / _ of
@j1,/2 = Max {p <au (uj+1/2)> P (au (u]?:q/z))} (191)

where 0f/0u is the Jacobian matrix of f with respect to the conserved
quantities u and p(0f/0u) is the spectral radius, i.e. the magnitude
of the largest eigenvalue of the Jacobian 9f/du. The quantity a; 4,
therefore, carries the interpretation of the largest characteristic speed
in the system at which any disturbance or wave can propagate, esti-
mated from the left and right approximations u].i] spandug, , atthe
staggered grid point j + 1/2. When solutions are sufficiently smooth,
the second term on the R.H.S. of (187) contributes numerical viscosity
[112]

~ (&%) (a(uw)uxxx)y /8 ox O(Ax)?, (192)

which should be contrasted with the much larger O ((Ax)2 /At) for the
LxF scheme. Note that the numerical viscosity of the KT scheme (192)
is well-behaved in the limit of At — 0 by virtue of the semi-discrete
formulation.

If we define the numerical flux term

it m TL20) . (45120)

" (193)
@
- % {uj++1/2(t) _uj_+1/2(t)} ,

the KT scheme (187) can be written in a simple conservative form

d Hjiq/2(t) —Hj_q,2(t)

() = - - . (194)

In the KT scheme, spatial derivatives are computed as

ot T Wi—1 Wit1 — W1 U1 — U
4 7

Ax 2Ax Ax

(ux)j := minmod <

>, 1<0<2,
(195)

where minmod(a, b, c) selects the smallest element by modulus if all
arguments have the same sign or else-wise return zero. This defini-
tion helps prevent the formation of spurious oscillations around dis-
continuities and local maxima that are characteristic of the Gibbs phe-
nomenon [114], as flux cannot both enter or leave the cell from both
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directions at the same time. It acts as a nonlinear flux limiter and al-
lows the regulate the steepness of gradients by means of the parameter
0. Choosing 0 = 1 is the most conservative choice, overall reducing the
gradient, while 6 = 2 is the least conservative, overall admitting larger
gradients at the cost of reduced stability. One must determine ade-
quate values of 0 through the evaluation of particular solutions so as
to maintain stability while achieving the desired resolution.

The derivative and minimum-modulus flux-limiter (195) is quoted
on discrete lattice sites; on staggered grid cells, one simply makes the
replacement j — j +1/2.

The semi-discrete formulation of the KT scheme is now be summa-
rized as the collection definitions, the conservative form (194) with the
definition of the numerical flux (193), local fluid velocities (191), and
flux-limiting choice of spatial derivative (195).

As a final note, and as did for the LxF scheme, let us explicitly verify
that the KT scheme conserves u globally. To this end, compute the time
derivative of the Riemann sum of w’s,

d H; (t) —H;_q,2(t)
dtZu,-(t)Ax:—Z( i+1/2 A i—1/2 )Ax
j j (196)

=H_4,2(t) —Hy_q1,2(t).

Again, assuming an implementation with periodic boundary condi-
tions, the points (—1/2,] —1/2) are mapped to the same which causes
the whole sum to collapse. Therefore,

d

m > uj(t)ax =0, (197)

j

showing explicitly that the quantity u is globally conserved.

4.3.2 Fully-discrete formulation

The conservative form (194) is an ordinary differential equation (ODE)
of the form

% = Cu]. (198)
A second benefit of the semi-discrete formulation is now evident; one
can choose any ODE solver, of any order of accuracy, to solve (198),
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and for this, a particularly useful choice is the third-order Runge-Kutta
(RK) method

uM =y + At C W™
u Y =™ 4 (1 —17) (u(”+At“C [u(”D

(199)
w2 =nou™ + (1—m) (u(z) +At"C [u(Z)D
uttl =y 3))
where 111 = 3/4 and 1, = 1/3. If we define
H; u)—H;_ u
Ciul ::[ j41/2(0) —H;j_q1/2( )} ’ (200)
Ax

then the third order RK scheme (199) brings the semi-discrete KT
scheme (194) into a fully-discrete form, which is second-order in space
and third-order in time.

4.3.3 Generalization to three dimensions

All expressions introduced thus far generalize rather trivially from one
to three spatial dimensions x, y, and z, indicated by indices j, k, l. The
equations are quite lengthy, but for the sake of at least once being
explicit, I will quote the resulting expressions that are implemented
on the lattice in the forthcoming Chapters.

The semi-discrete and conservative formulation of the KT scheme
generalizes to

) =— 200~ M1 /200
dt ),k,l AX
HY —HY
. 1,k+1/2,lA jk—1/2,1 (201)
Y
HZ# — Hz
k4172 ik 1—=1/2
Az !
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where H]?‘ 12K H;J,k IRYPRY and H].Z,k,l 41,2 are numerical fluxes in the
x, Y, and z directions and depend on time. They are defined through

+