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Zusammenfassung

Der Bereich der Teilchenphysik stützt sich bei seinen Analysen in hohem Maße auf
simulierte Daten. Die zunehmende Menge an Messdaten führt dazu, dass mehr Simu-
lationen benötigt werden, um unser aktuelles Wissen über die Natur mit den tatsächli-
chen Messungen zu vergleichen. Ein Grund für den drastischen Anstieg der gemessenen
Daten in der Zukunft ist das High Luminosity Upgrade am LHC, bei dem Kollisionen
mit einer viel höheren Rate stattfinden werden, wodurch die Anzahl der gemessenen
Kollisionen drastisch ansteigt.

Von besonderem Interesse für den Umfang dieser Arbeit ist das CMS High Granular
Calorimeter (HGCal), das die derzeitigen Endkappen-Kalorimeter von CMS ersetzen
wird. Dieser Detektor umfasst ca. 3 Millionen hexagonale Auslesezellen pro Endkappe,
was ihn zu einem Gerät macht, das in der Lage ist, feinkörnige Schauer zu erzeugen.
Außerdem wird ein System implementiert, das den Zeitpunkt einer Messung in einer
Detectorzelle mit einer Auflösung von etwa 30 ps aufzeichnen kann, was bei der Unter-
drückung von pile-up und der Rekonstruktion von Trajektorien individueller Teilchen
hilfreich sein wird. Generatives maschinelles Lernen hat in letzter Zeit an Bedeutung
gewonnen, da sie das Potenzial hat, die Standardsimulationstechniken zu ergänzen..

Diese Arbeit konzentriert sich auf mehrere generative Modelle, die uns dem Ziel
einer schnelleren und genaueren Simulation näher bringen. Die erste Studie wurde mit
Graph Neural Networks durchgeführt, da Graphen eine sehr natürliche Art und Weise
sind, elektromagnetische Schauer zu beschreiben, aber in Bezug auf die Skalierbarkeit
Mängel aufweisen. Wir fanden heraus, dass es sinnvoll ist, bereits vorhandene Informa-
tionen wie die Geometrie des Kalorimeters zu nutzen, um ein solches Netzwerkarchi-
tektur Netz zu trainieren, aber die hohe Kardinalität führte uns in die Richtung von
Graphen, die mit diesen Informationen wachsen können, aber nur bis zur benötigten
Schauergröße, anstatt die gesamte Anzahl der jederzeit verfügbaren Zellen zu nutzen.
Da sich dieser erste Versuch als zu schwierig erwies und sich die Technologie weiter-
entwickelte, haben wir das EPiC-GAN-Modell verwendet, das eine gute Genauigkeit
und eine hohe Generierungsgeschwindigkeit bei Schauern mit geringerer Komplexität
zeigte, aber nicht auf die Kardinalität des HGCal skalieren konnte. Schließlich haben
wir CaloClouds II implementiert, ein Modell, das eine Kombination aus einem Dif-
fusion Modell mit kontinuierlicher Zeit und einem Normalizing Flow ist, um nicht nur
das HGCal erfolgreich simulieren zu können, sondern auch die Time-of-Hits-Funktion
einzubeziehen, die eine entscheidende Integration in dieses Detektor-Upgrade sein wird.





Abstract

The field of Particle Physics heavily relies on simulated data in order to perform
analyses. The increase in the amount of measured data translates in the need for more
simulations used to compare out current knowledge of Nature to actual measurements.
One reason for a drastic increase of measured data in the future is the High Luminosity
upgrade at the LHC, which will feature collisions at a much higher rate thus drastically
increasing the number of measured collisions.

Of particular interest for the scope of this work is the CMS High Granular calorime-
ter (HGCal), which will replace CMS’s current endcap calorimeters. This detector
comprises circa 3 million readout hexagonal cells per endcap, making it a machine
capable of producing fine-grained showers. It will also implement a system capable of
recording the time of a hit measurement with a resolution of circa 30 ps, which will
help with pile-up rejection and track reconstruction. Generative Machine Learning
has risen recently as it has the potential to augment standard simulation techniques.

This thesis focuses on multiple generative models that bring us closer to the goal of
faster and more accurate simulation. The first study was performed on Graph Neural
Networks, as graphs are a very natural way to describe electromagnetic showers, but
this model architecture lacks in terms of scalability. We found that there is value
in utilizing already given information like the geometry of the calorimeter to train
such a network, but the high cardinality led us toward the direction of graphs that
could grow using that information but only until the needed shower size instead of
using the whole number of cells available at all times. As this first attempt proved
to be too challenging and the technology evolved, we then moved on with the EPiC
GAN model, which showed good fidelity and high generation speed on showers with
reduced complexity but failed to scale up to the cardinality of the HGCal. Finally, we
implemented CaloClouds II, a model that is a combination of a continuous-time
diffusion model and normalizing flow, to not only be able to successfully simulate the
HGCal calorimeter but to do so by also including the time-of-hits feature which will
be a crucial integration in this detector upgrade.
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1 Introduction

The high-energy physics (HEP) field is driven by a fundamental quest to understand
the nature of the universe at its most elementary level. Particle physics experiments,
particularly those conducted at large collider facilities such as the Large Hadron Col-
lider (LHC) at CERN, have provided profound insights into the fundamental con-
stituents of matter and the forces governing their interactions. These experiments
rely on highly sophisticated detector systems designed to capture and analyze the vast
amounts of data generated by high-energy particle collisions. One of the critical com-
ponents of these detectors is the calorimeter, an instrument used to measure the energy
of particles through their interactions with matter. Calorimetry plays an essential role
in reconstructing the properties of fundamental particles and identifying signatures of
new physics beyond the Standard Model.

In recent years, the increasing complexity and scale of high-energy physics experi-
ments have led to a growing reliance on advanced computational techniques, including
machine learning (ML), to enhance data analysis and simulation processes needed re-
produce our state-of-the-art knowledge to the Physics theory and compare it to our
measurements of Nature. Traditional simulation methods based on Monte Carlo tech-
niques, while highly accurate, are computationally expensive and require significant
resources to achieve the necessary levels of precision. The advent of machine learn-
ing methods has introduced a paradigm shift in the way calorimeter simulations are
performed, offering potential solutions to the challenges of computational efficiency
while maintaining high fidelity. The imminent improvement of the LHC with the
High-Luminosity upgrade will cause the luminosity to increase and correspondingly
the amount of simulated data will need to scale up, posing a very tough challenge [1].
Figure 1.1 illustrates the fraction of CPU resources that will be allocated to the vari-
ous necessary tasks if no R&D comes into play, while Figure 1.2 shows the increment
of CPU time needed in comparison to the estimated increment of available CPU with
and without R&D. This dissertation explores the application of machine learning tech-
niques to the simulation of high-granular calorimeters, particularly within the context
of the Compact Muon Solenoid (CMS) experiment at the LHC. In particular, the
endcap calorimeters of CMS will be substituted with the new CMS High-Granularity
Calorimeter (HGCal) [2]. The CMS HGCal represents a significant advancement in
detector technology. It features a high level of segmentation in both lateral and lon-
gitudinal directions, enabling precise spatial and temporal measurements of particle
showers. This increased granularity allows for improved pile-up mitigation, better en-
ergy resolution, and enhanced particle identification capabilities. However, the compu-
tational cost associated with simulating such a complex calorimeter is substantial. The
traditional approach, based on Monte Carlo methods such as those implemented in
the Geant4 simulation toolkit, requires extensive computing resources to accurately
model the interactions of particles within the detector. As experimental datasets grow
in size and complexity, the demand for faster and more efficient simulation methods

1



has become increasingly pressing.

Figure 1.1: Breakdown of CPU usage without any R&D improvement [3].

Machine learning techniques offer promising solutions to the challenges of calorime-
ter simulation. Deep learning models, including GANs, normalizing flows, and diffu-
sion models, have demonstrated remarkable success in generating realistic calorimeter
showers with significantly reduced computational requirements compared to tradi-
tional methods. These models learn to approximate the complex distributions of
particle interactions within the calorimeter by training on large datasets of simulated
events. Once trained, they can generate new samples with high fidelity at a frac-
tion of the computational cost, making them an attractive alternative for large-scale
simulations in high-energy physics.

This dissertation investigates several machine learning approaches to calorimeter
simulation, with a particular focus on generative models. GANs have emerged as pow-
erful tools for generating synthetic data that closely resemble real detector responses.
A GAN consists of two neural networks—a generator and a discriminator—which are
trained in a competitive framework. The generator learns to produce realistic sam-
ples, while the discriminator attempts to distinguish between real and generated data.
Through this adversarial process, the generator improves its ability to generate high-
quality calorimeter showers that mimic those produced by Monte Carlo simulations.

Another class of generative models explored in this work is normalizing flow models.
These models learn a bijective mapping between a simple prior distribution and the
complex target distribution of calorimeter showers. By leveraging invertible transfor-
mations, normalizing flows enable efficient sampling and density estimation, making
them well-suited for applications in high-energy physics. Diffusion models, inspired
by non-equilibrium thermodynamics, have also gained traction as a robust genera-
tive modeling approach. These models simulate the gradual transformation of noise
into structured calorimeter showers through a series of stochastic steps, offering high-
quality sample generation with strong theoretical guarantees.
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Figure 1.2: Projections of needed CPU. On the plot, the gray band represents the
Baseline and Weighted Probable (dashed line). The effect of GPUs is not
represented in this plot. In the legend, the Baseline scenario is described
as “No R&D improvement” and the Weighted Probable scenario as “R&D
most probable outcome”. Taken from Ref. [3].

Beyond generative models, this dissertation also examines the application of graph
neural networks (GNNs) to calorimeter data analysis. Given the highly granular na-
ture of modern calorimeters, representing particle showers as graph structures allows
for more flexible and efficient data processing. GNNs leverage the relational structure
of calorimeter hits to learn spatial correlations and improve event reconstruction. Dy-
namic graph convolutional networks and point cloud neural networks are explored as
potential architectures for extracting meaningful features from calorimeter data.

A key contribution of this work is the development of the EPiC GAN, a novel gen-
erative model designed for four-dimensional calorimeter data. This model integrates
energy, spatial, and timing information to produce high-fidelity calorimeter simula-
tions. The effectiveness of the EPiC GAN is evaluated through a series of benchmark
tests comparing its performance against traditional Monte Carlo methods and other
generative models. Results demonstrate that the EPiC GAN achieves state-of-the-art
performance in generating realistic calorimeter showers while significantly reducing
computational costs.

Additionally, this dissertation presents the CaloClouds II model, a generative ap-
proach that projects simulated calorimeter showers onto the detector geometry. This
method enhances the interpretability of generated showers and facilitates direct com-
parisons with experimental data. By incorporating geometric constraints and physical
priors into the generative process, CaloClouds improves the consistency and accuracy
of machine learning-based calorimeter simulations.

The structure of this dissertation is as follows: Chapter 2 provides a theoretical
overview of high-energy physics, including the Standard Model, beyond Standard
Model physics, and collider experiments. Chapter 3 introduces the fundamentals of
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calorimetry, describing particle interactions with matter and the design of modern
calorimeters. Chapter 4 presents an overview of machine learning techniques relevant
to calorimeter simulation, while Chapter 5 delves into generative machine learning
models, including GANs, normalizing flows, and diffusion models. Chapter 6 shows
the contribution of shared data and architectures for physics. Chapter 7 explores the
application of graph neural networks to calorimeter data, and Chapter 8 introduces
the EPiC GAN model. Chapter 9 discusses the CaloClouds II applied to the CMS
High Granular Calorimeter, and Chapter 10 concludes with a summary of the explored
work.
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2 High Energy Physics Theoretical
Framework

The Standard Model (SM) of particle physics is the most successful theories to describe
nature at the fundamental level. It is a quantum field theory that describes the
electromagnetic, weak, and strong interactions. While the SM has been tested in a
wide range of experiments and has been able to predict the outcome of many of them,
it doesn’t describe Nature in its entirety, as it does not include an explanation for
gravity, dark matter, and dark energy, among the others. In this chapter, several
aspects of the SM that are relevant to this thesis will be described. That includes the
Higgs mechanism, which is responsible for the generation of mass of the elementary
particles. This chapter is meant as a theoretical background for the work and results
presented in this thesis.

2.1 The Standard Model

The Standard Model [4–7] is a quantum field theory that describes the electromag-
netic, weak and strong interactions. The SM is based on the gauge symmetry group
𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 [8], where 𝑆𝑈(3)𝐶 is the symmetry group of the strong
interaction mediated by gluons, while the 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 is the symmetry group of
the electroweak interaction which is mediated by the photon, the W and Z bosons.

The fermionic content of the SM is depicted in the leftmost three columns of Fig-
ure 2.1. These fermions can be categorized into leptons which consist of charged
leptons (ℓ−) and lepton neutrinos (𝜈ℓ) that have spin 1/2, while quarks can be classi-
fied as up-type quarks (𝑞𝑢) and down-type quarks (𝑞𝑑). Charged leptons and quarks
carry an electromagnetic charge: leptons have a charge of −1, up-type quarks have a
charge of 2

3 , and down-type quarks have a charge of −1
3 . Additionally, quarks possess

a color charge, associated with the strong interaction.
Leptons and quarks are organized into three generations, which differ in mass and

flavor but share identical charge and spin. For charged leptons, the three genera-
tions are electrons (𝑒), muons (𝜇), and taus (𝜏), while for neutral leptons they are
electron-neutrinos (𝜈𝑒), muon-neutrinos (𝜈𝜇), and tau-neutrinos (𝜈𝜏). The up-type
quarks consist of the up (𝑢), charm (𝑐), and top (𝑡) quarks, whereas the down-type
quarks include the down (𝑑), strange (𝑠), and bottom (𝑏) quarks. Each fermion has a
corresponding antiparticle with opposite charge and flavor.

Fermions in each generation can be decomposed into left- and right-handed chirality
components as follows:

𝜈ℓ, 𝑞𝑢, ℓ−, 𝑞𝑑 = (𝜈ℓ
ℓ−)

𝐿
, (𝑞𝑢

𝑞𝑑
)

𝐿
, ℓ−

𝑅, 𝑞𝑢𝑅
, 𝑞𝑑𝑅

, (2.1)
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Figure 2.1: The particles of the Standard Model, from Ref. [9]
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where left-handed (L) fermions transform as 𝑆𝑈(2)𝐿 doublets, and right-handed (R)
fermions transform as 𝑆𝑈(2)𝐿 singlets. In the Standard Model, the neutrino is consid-
ered massless, so there is no right-handed neutrino component (𝜈ℓ𝑅

) nor left-handed
anti-neutrinos.

All left-handed particles possess weak isospin, the charge corresponding to the weak
interaction.

Fundamental Forces

Each fundamental force in the SM is mediated by the exchange of bosons with in-
teger spin. For electromagnetic interactions, described by quantum electrodynamics
(QED), the mediator is the massless, chargeless photon (𝛾). Photons couple to the
electromagnetic charge and therefore interact only with charged leptons, quarks, and
charged bosons.

The weak interaction is mediated by three particles: the neutral 𝑍 boson and the
charged 𝑊 + and 𝑊 − bosons. These bosons interact exclusively with left-handed
fermions, as right-handed fermions lack the required isospin. Notably, the weak inter-
action does not generally conserve flavor, allowing processes such as the decay of a 𝑡
quark into a 𝑏 quark and a 𝑊 + boson.

The mediators of the strong force, described by quantum chromodynamics (QCD),
are massless, electromagnetically neutral gluons. Gluons couple to the color charge
and carry color charge themselves, enabling interactions both with quarks and other
gluons. This gluon-gluon self-interaction leads to the phenomenon of color confine-
ment [10], where free particles with a net color charge cannot exist. Consequently,
color-carrying particles are always confined in composite states that are color-neutral.
Common examples of such states are baryons, composed of three quarks (e.g. protons
and neutrons), and mesons, which are quark-antiquark pairs (e.g. pions and kaons).
Rare states such as tetraquarks [11] and pentaquarks [12] have also been observed.
Another consequence of confinement is that quarks cannot propagate freely; instead,
they produce a spray of color-neutral hadrons, leading to the phenomenon of particle
jets.

Interactions between particles are governed by the Standard Model Lagrangian,
which includes terms coupling the fields of the interacting particles that are represented
by quantum fields. For instance, the interaction between a fermion-antifermion pair,

̄𝜓𝜓, and the photon gauge field 𝐴𝜇 is expressed as:

𝑖𝑞 ̄𝜓𝛾𝜇𝐴𝜇𝜓, (2.2)

where 𝑞 is the electromagnetic charge of 𝜓 and determines the interaction strength.
The probability of a scattering event between two particles is characterized by its

cross-section, 𝜎. For a two-particle-to-two-particle interaction, the cross-section is
given by:

𝜎 = 1
64𝜋2𝑠

𝑝𝑓

𝑝𝑖
∫|𝑀𝑓𝑖|2 𝑑Ω, (2.3)

as described in Reference [10]. Here, 𝑝𝑓 and 𝑝𝑖 denote the momenta of the final and
initial states in the center-of-mass frame, respectively, 𝑠 is the squared center-of-mass
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energy, and 𝑀𝑓𝑖 is the matrix element for the transition between the initial and final
states. The matrix element depends on the coupling constants of the involved inter-
actions and may have an angular dependence, requiring integration over all possible
angles Ω in spherical coordinates.

The angle-dependent differential cross-section can be expressed as:

𝑑𝜎
𝑑Ω

= 1
64𝜋2𝑠

𝑝𝑓

𝑝𝑖
|𝑀𝑓𝑖|2. (2.4)

The Higgs Mechanism

The masses of gauge bosons cannot be directly included in the Standard Model La-
grangian, as doing so would violate gauge invariance, a fundamental principle of the
theory [10]. Gauge invariance requires that the Lagrangian remains invariant under
local transformations of the gauge group. Introducing explicit mass terms for gauge
bosons would break this invariance, undermining the structure of the Standard Model.

Similarly, fermion masses cannot be introduced naively. The fermion mass term
takes the form:

𝑚 ̄𝜓𝜓 = 𝑚(𝜓𝑅
̄𝜓𝐿 +𝜓𝐿

̄𝜓𝑅), (2.5)

where 𝜓 represents the fermion field, 𝜓𝑅 is the right-handed component, and 𝜓𝐿 is
the left-handed component. Right-handed fields transform as singlets under 𝑆𝑈(2)𝐿,
meaning they are unaffected by 𝑆𝑈(2)𝐿 transformations, while left-handed fields trans-
form as doublets. The mass term links these two components, thereby explicitly break-
ing the 𝑆𝑈(2)𝐿 symmetry.

The Higgs mechanism [13–15] elegantly resolves these issues by introducing a com-
plex scalar field, 𝜙. This field is endowed with a potential of the form:

𝑉 = 𝜇2𝜙†𝜙 +𝜆(𝜙†𝜙)2, (2.6)

where 𝜇2 and 𝜆 are parameters of the potential which respects gauge invariance. How-
ever, when 𝜇2 is negative, the potential attains its minimum at a nonzero value of 𝜙,
i.e. 𝜙 ≠ 0. As a result, the scalar field develops a nonzero vacuum expectation value
(vev), denoted by 𝑣. This spontaneous symmetry breaking leads to the generation of
masses for the gauge bosons while preserving the gauge invariance of the underlying
Lagrangian.

The masses of the gauge bosons arise through their interactions with the scalar field.
The 𝑊 bosons acquire a mass:

𝑚𝑊 = 𝑔𝑣
2

, (2.7)

and the 𝑍 boson acquires a mass:

𝑚𝑍 =
√𝑔2 +𝑔′2 𝑣

2
, (2.8)

where 𝑔 and 𝑔′ are the electroweak coupling constants. Importantly, the photon re-
mains massless, as required by the unbroken 𝑈(1)em gauge symmetry.
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In the unitary gauge, for fluctuations around the minimum, the scalar field 𝜙 can
be expressed as:

𝜙 = 1√
2

( 0
𝑣 +ℎ), (2.9)

where ℎ represents fluctuations around the vacuum expectation value and corresponds
to the physical Higgs boson. This formulation reveals that the scalar field not only
generates masses for the gauge bosons but also introduces a new particle with spin 0,
the Higgs boson, as a fundamental feature of the Standard Model.

In addition to generating gauge boson masses, the Higgs mechanism provides a
framework for giving masses to fermions. Fermion masses are introduced through the
Yukawa interaction, which takes the form:

𝑔𝑓(𝜓𝑅𝜙 ̄𝜓𝐿 +𝜓𝐿𝜙† ̄𝜓𝑅), (2.10)

where 𝑔𝑓 is the Yukawa coupling constant specific to each fermion. Expanding this
interaction yields:

𝑔𝑓𝑣(𝜓𝑅
̄𝜓𝐿 +𝜓𝐿

̄𝜓𝑅)+𝑔𝑓ℎ(𝜓𝑅
̄𝜓𝐿 +𝜓𝐿

̄𝜓𝑅). (2.11)

The first term generates the fermion masses, with the relationship 𝑔𝑓 = 𝑚𝑓
𝑣 , where 𝑚𝑓

is the fermion mass. The second term describes the interaction between the fermions
and the Higgs boson, with an interaction strength proportional to the fermion mass.
This proportionality explains why heavier fermions have stronger couplings to the
Higgs boson.

The Higgs mechanism, proposed in 1964, predicted the existence of the Higgs bo-
son as a cornerstone of the Standard Model. In 2012, experiments at the ATLAS
and CMS detectors at CERN confirmed this prediction with the discovery of a scalar
particle consistent with the Higgs boson [16, 17]. Measurements of this particle’s prop-
erties, including its decay channels and interaction strengths, align with theoretical
predictions, providing robust evidence for the validity of the Higgs mechanism. This
discovery marked a pivotal achievement in particle physics, completing the Standard
Model’s framework.

2.2 Physics Beyond the Standard Model Physics

Despite its success in describing fundamental particles and their interactions, the Stan-
dard Model (SM) has several significant limitations and unanswered questions, moti-
vating the search for physics beyond the Standard Model (BSM). Below, we outline
some key issues:

• Gravity: While the effects of gravity are well described on macroscopic scales
by the theory of general relativity [18], its unification with the SM remains
one of the unsolved problems in physics as this fundamental force is currently
completely absent from the SM. The Planck scale, where quantum gravitational
effects become significant, is approximately at 1018GeV, far beyond the reach
of current experiments. The search for a quantum theory of gravity is a central
goal of theoretical physics. String theory [19] and loop quantum gravity [20] are
two prominent candidates for a quantum theory of gravity.
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• Dark Matter and Dark Energy: Observations of gravitational effects, such
as the rotation curves of galaxies and galaxy clusters, indicate that ordinary
baryonic matter accounts for only about 5% of the universe’s total mass-energy.
Approximately 25% is attributed to dark matter, which interacts gravitationally
but does not emit or absorb light. The remaining 70% is associated with dark
energy, which appears as a constant energy density in the equations of general
relativity. So, overall, the SM does not account for more than 90% of the energy
in the universe. In some theories, dark matter is explained as new particles
that interact weakly with the SM. One example is Weakly Interacting Massive
Particles (WIMPs), which could potentially be discovered in high-energy collider
experiments.

• Neutrino Masses: The SM does not provide a mechanism for neutrinos to
have mass. However, the phenomenon of neutrino oscillations, where neutrinos
change flavor as they propagate, has been experimentally observed and requires
neutrinos to possess mass. This discovery was confirmed by experiments such as
Super-Kamiokande [21] and the Sudbury Neutrino Observatory [22], for which
the 2015 Nobel Prize in Physics was awarded. Recently, the KATRIN experiment
established an upper limit on the mass of the electron antineutrino of 𝑚 < 0.45eV
at 90% confidence level [23].

• Matter-Antimatter Asymmetry: The Big Bang theory suggests that equal
amounts of matter and antimatter were created in the early universe. How-
ever, the observable universe is dominated by matter, with very little antimatter
present. The SM does not explain this baryon asymmetry. The imbalance be-
tween matter and antimatter is one of the most important questions that remain
unanswered in modern physics. The problem arises from the natural assumption
that the universe is neutral to begin with. The observed asymmetry of matter
and antimatter in the universe is not accounted for in the SM. If that were
the case, an equal amount of left-handed baryons and right-handed antibaryons
would be produced. The SM contains a charge parity (CP)-violating process,
as theoretized [24, 25] and first observed in Ref. [26], due to the complex phase
present in the Cabibbo-Kobayashi-Maskawa (CKM) flavor mixing matrix. The
CKM matrix describes the mixing between the mass eigenstates of quarks un-
der the weak interaction. This complex phase explains the CP-violating effects
observed in experiments involving neutral kaons and B mesons. However, the
amount of CP violation predicted by the SM is not enough to account for the
observed baryon asymmetry in the universe.

• The Hierarchy Problem: Without fine-tuned quantum corrections, the Higgs
boson mass would naturally rise to the Planck scale (∼ 1018GeV) due to higher
order contributions. Such a high mass would also affect the masses of other SM
particles, including quarks, leptons, and the 𝑊 ± and 𝑍0 bosons. The observed
Higgs mass, however, is at the electroweak scale (∼ 100GeV). This discrepancy,
known as the hierarchy problem, challenges the principle of naturalness [27].
Supersymmetry [28] offers a potential solution by introducing new bosonic and
fermionic partners to the SM particles whose quantum corrections cancel out.
However, no experimental evidence for supersymmetric particles has been found
to date.

• Force Unification: The unification of electromagnetism and the weak interac-
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tion into the electroweak theory suggests the possibility of further unifying the
electroweak and strong interactions. Such a framework is referred to as a Grand
Unified Theory (GUT). GUTs often propose unification of quarks and leptons
in representations such as 𝑆𝑈(5) [29], but experimental evidence is still lacking.

• Ad-Hoc Parameters: The SM requires 19 free parameters, including particle
masses, CKMmixing angles, and gauge coupling constants, which are not derived
from first principles and must instead be experimentally measured. Additionally,
the SM does not explain why there are exactly three generations of leptons and
quarks.

The search for BSM physics is a central focus of the high-energy physics commu-
nity. Experiments at the Large Hadron Collider (LHC) at CERN, as well as future
colliders such as the High-Luminosity LHC (HL-LHC) and the International Linear
Collider (ILC), aim to explore energy scales beyond the reach of current experiments.
The discovery of new particles or interactions would provide crucial insights into the
fundamental nature of the universe and guide the development of new theoretical
frameworks.

2.3 Collider Experiments

The SM of particle physics has been tested extensively in collider experiments, which
provide a controlled environment for studying the interactions of fundamental parti-
cles. Colliders accelerate particles to high energies and collide them at specific inter-
action points, allowing researchers to probe the properties of matter at the smallest
scales. In this section, we describe the key features of collider experiments and the
detectors used to study the resulting collisions.

The Large Hadron Collider (LHC)

The Large Hadron Collider (LHC), located at CERN, is currently the most pow-
erful particle collider in the world [30]. This circular accelerator is capable of colliding
protons, lead nuclei (Pb-Pb), or lead nuclei with protons (Pb-proton) at a maximum
center-of-mass energy of 14 TeV. Since its commissioning, the LHC has been very
impactful in advancing particle physics, with its most notable achievement being the
discovery of the Higgs boson in 2012.

Modern particle colliders operate based on two essential components: magnets and
radio-frequency (RF) cavities. The RF cavities are used to accelerate charged
particles by imparting energy to them, while the magnets — comprising dipoles,
quadrupoles, and higher-order multipole magnets—are responsible for steering and
focusing the particle beams.

In a circular collider or synchrotron, such as the LHC, these components are
arranged to create a closed, circular path. The circular configuration allows the particle
beams to repeatedly pass through the RF cavities, gaining energy with each cycle.
However, charged particles traveling along a curved path lose energy through the
emission of radiation. This phenomenon, known as Bremsstrahlung, is referred to
as synchrotron radiation when it occurs in circular accelerators. The energy loss

11



due to synchrotron radiation depends on three factors: the particle’s velocity, the
radius of the circular path, and the particle’s mass.

Challenges and Solutions for Synchrotron Radiation

The energy loss due to synchrotron radiation imposes a practical limit on the energy
that circular colliders can achieve. As particles approach higher velocities, the radiative
losses increase, eventually balancing the energy gained from the accelerator. Two
strategies help mitigate this limitation:

• Increasing the bending radius: A larger circular path reduces the curvature,
leading to lower synchrotron radiation losses. Consequently, larger colliders can
achieve higher beam energies.

• Using heavier particles: For particles of equal energy, heavier particles have
lower velocities and a smaller Bremsstrahlung cross-section. Therefore, syn-
chrotron radiation losses are significantly reduced for heavier particles.

This reasoning explains why the LHC accelerates protons and lead ions rather than
electrons. Its predecessor, the Large Electron-Positron Collider (LEP), operated in
the same tunnel with the same radius but was limited to lower energies due to the
much greater synchrotron radiation losses for electrons.

Key Features of the LHC

The LHC consists of two beam pipes, each carrying a beam of particles circulating in
opposite directions. The beams are divided into a maximum of 2808 bunches, with
each bunch containing approximately 1011 particles. These beams are pre-accelerated
through a series of smaller accelerators before being injected into the LHC at an initial
energy of 450 GeV. The beams are then further accelerated to their final energy inside
the LHC.

At four specific locations around the collider ring, the beams are crossed and brought
into collision. These interaction points correspond to the sites of the four major LHC
experiments:

• ATLAS [31] and CMS [32], which are general-purpose detectors designed to
explore a wide range of particle physics phenomena.

• LHCb [33], which focuses on the physics of b-quarks and precision measure-
ments of CP violation.

• ALICE [34], which specializes in studying heavy-ion collisions to investigate the
quark-gluon plasma.

Luminosity: A Measure of Collider Performance

The performance of a collider is characterized not only by its energy but also by its
luminosity, which measures the capability of the setup to bring the particles into the
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relevant region for data taking. The instantaneous luminosity 𝐿 is given by:

𝐿 = 𝑁2
𝑏 𝑘𝑏𝑓
𝐴

𝐻𝐷, (2.12)

where:
• 𝑁𝑏 is the number of particles per bunch,
• 𝑘𝑏 is the total number of bunches in the collider,
• 𝑓 is the bunch crossing frequency,
• 𝐴 is the effective area where the beams overlap, and
• 𝐻𝐷 is a correction factor accounting for beam dynamics, such as bunch widening

due to the electromagnetic fields of the particles.
The design luminosity of the LHC was initially set at 𝐿 = 1034 cm−2 s−1. The ongo-

ing High-Luminosity LHC upgrade (see next paragraph for more details) aims to
increase this value by a factor of approximately five by focusing on reducing the beam
overlap area, thus allowing for more frequent particle collisions.

In addition to instantaneous luminosity, the integrated luminosity 𝐿int is a key
parameter as it is used as a measure of the dataset size. It represents the total number
of possible collisions over a given period and is defined as:

𝐿int = ∫𝐿(𝑡)𝑑𝑡. (2.13)

The integrated luminosity is essential for calculating the expected number of occur-
rences 𝑁proc of a particular particle physics process in a given timeframe with cross-
section 𝜎proc:

𝑁proc = 𝐿int𝜎proc. (2.14)

The High Luminosity Upgrade at the LHC

The High Luminosity LHC (HL-LHC) project aims to significantly enhance the per-
formance of the Large Hadron Collider (LHC) at CERN, boosting its potential for
groundbreaking discoveries in particle physics. The primary objectives of the HL-LHC
are to achieve a peak luminosity of 5×1034 𝑐𝑚−2𝑠−1 with leveling and to accumulate
an integrated luminosity of 250 fb−1 per year. The ultimate goal is to gather 3000 fb−1

in approximately 12 years of operation after the upgrade. This substantial increase
in luminosity, a tenfold increase compared to the LHC’s initial 12 years, will provide
scientists with a much larger dataset for analysis. The HL-LHC project also focuses on
ensuring high operational efficiency until 2035, maximizing the scientific output over
its lifespan. The increased luminosity will enable more precise measurements of fun-
damental particles, such as the Higgs boson, and will allow scientists to probe deeper
into the mysteries of dark matter and dark energy. Furthermore, the HL-LHC will
facilitate the search for new particles and phenomena beyond the Standard Model of
particle physics, potentially revolutionizing our understanding of the universe.
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Superconducting Magnets: Pushing the Limits of Focus

The HL-LHC will feature cutting-edge superconducting magnets with peak magnetic
fields reaching a staggering 11-12 Tesla. These magnets are crucial for focusing the
proton beams to an incredibly small size at the interaction points, thereby increasing
the likelihood of collisions. The real breakthrough lies in the use of a novel supercon-
ducting material, Niobium-tin (Nb3Sn), which can sustain magnetic fields far beyond
the capabilities of the Niobium-titanium (NbTi) used in the current LHC magnets.
This advancement in magnet technology is a cornerstone of the HL-LHC’s luminosity
enhancement.

Beam Rotation: The Art of the Crab Cavity

The HL-LHC will employ compact superconducting crab cavities to ensure that the
proton bunches collide head-on, maximizing the overlap and, hence, the number of
collisions. These cavities generate transverse electric fields that give each bunch a
slight longitudinal“kick” effectively rotating them for a perfect head-on collision. This
ingenious technique not only boosts the peak luminosity but also allows for dynamic
control of the luminous region size during the fill, optimizing the collision density
throughout the process.  

Beam Collimation: Precision Cleaning for Intensity

With the HL-LHC’s increased beam intensity comes the critical challenge of managing
beam losses. Stray particles can cause detrimental effects, from quenching the super-
conducting magnets to damaging sensitive detector components. To mitigate this,
the HL-LHC will utilize advanced beam collimation systems. These systems act as
highly precise “beam cleaners”, intercepting and safely absorbing any particles that
deviate from the designated path. This meticulous control of beam losses is essential
for maintaining the integrity and efficiency of the accelerator.  

Superconducting Links: Powering the Future with Efficiency

The HL-LHC’s superconducting magnets require a tremendous amount of power. To
deliver this power with minimal loss, the upgrade will utilize long, high-power su-
perconducting links. These links are crafted from high-temperature superconductors,
capable of carrying significantly more current than their conventional counterparts.
By minimizing energy dissipation during power transmission, these superconducting
links contribute to the overall efficiency and sustainability of the HL-LHC.

2.4 The CMS Experiment

The Compact Muon Solenoid detector (CMS) [35, 36] is one of the two general-purpose
detectors at the Large Hadron Collider (LHC) at CERN. The CMS detector is designed
to study a wide range of physics phenomena, including the Higgs boson and the top
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Figure 2.2: A 3D sketch of the CMS detector at the Large Hadron Collider. [37]

quark, and search for new particles beyond the Standard Model. The CMS detec-
tor is a cylindrical apparatus with a length of 21.6 m, a diameter of 15 m, and a
weight of 14,000 tons. It is located 100 m underground at Point 5 on the LHC ring.
Closest to the interaction point is the silicon tracker, which measures the trajectories
of charged particles with high precision. The tracker is surrounded by electromag-
netic and hadronic calorimeters, which measure the energy of electrons, photons, and
hadrons. The calorimeters are followed by the superconducting solenoid magnet, which
generates a magnetic field of 3.8 T. The magnet bends the trajectories of charged par-
ticles, allowing their momenta to be measured. The outermost layer of the CMS
detector is the muon system, which identifies muons and measures their momenta.
The CMS detector is designed to be hermetic, meaning that it covers the entire solid
angle around the interaction point, and to do so most of its systems are split into a
barrel section covering a 360° angle around the beam pipe and two endcaps that cover
the front and back of the detector. This feature allows the detector to measure the
total energy and momentum of particles produced in the collisions. A 3D sketch of
the CMS detector is shown in Figure 2.2.

Trigger System

The CMS trigger system is a crucial component of the Compact Muon Solenoid (CMS)
experiment at the Large Hadron Collider (LHC), responsible for efficiently selecting
events of potential physics interest from the enormous number of proton-proton col-
lisions. The system employs two levels of selection: the Level-1 (L1) trigger, im-
plemented in custom hardware, and the High-Level Trigger (HLT), a software-based
system running on a farm of commercial processors. [38] The L1 trigger rapidly ana-
lyzes coarse detector information to reduce the event rate from 40 MHz to about 100
kHz, while the HLT performs more sophisticated event reconstruction and selection,
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further reducing the rate to approximately 2 kHz.
The L1 trigger identifies candidate objects, such as muons, electrons, photons, jets,

and missing transverse energy, based on energy deposits and hit patterns in the
calorimeter and muon detectors [38]. The HLT refines the identification and selec-
tion of these objects using algorithms similar to those used in offline analysis but with
greater speed. The trigger system also includes a dedicated mechanism for identifying
heavy stable charged particles (HSCP) relying on the timing characteristics of signals
in the RPC muon detectors.

The performance of the trigger system is continuously monitored and optimized to
adapt to changing LHC conditions and physics goals. The trigger menus, consisting
of sets of selection criteria and algorithms, are adjusted to maintain high efficiency for
signals of interest while keeping the trigger rates within the bandwidth limits of the
readout electronics and data acquisition system. The CMS trigger system has been
instrumental in the successful collection of data for a wide range of physics analyses,
enabling the CMS experiment to achieve significant results, such as the observation of
the Higgs boson and the measurement of the B0s → 𝜇+𝜇− branching fraction.

Tracking System

The CMS tracking system measures the trajectories of charged particles generated
in the proton-proton collisions. The magnetic field inside the detector causes the
particles to bend their trajectories due to the Lorentz force, allowing the identification
of the particle charge and momentum. The tracking system consists of multiple layers
of silicon sensors. When a charged particle traverses such a silicon sensor, it will
ionize the semi-conducting material, leading to the creation of electron-hole pairs,
which results in a measurement current. The layers close to the center of the tracker
form the pixel tracker, providing points in the three-dimensional space, thus enabling
reconstruction of the primary vertices, i.e. the point of origin of the proton-proton
collision, at high precision. It is composed of four layers in the barrel region and three
discs of silicon sensors on each endcap. There are 124 million readout channels with a
readout rate of 400 MB/s.

The pixel tracker employs a two-phase CO2 cooling system to maintain optimal
operational temperatures. Its design includes barrel layers positioned at radii of 29
mm, 68 mm, 109 mm, and 160 mm, along with three disks at each end located at
distances of 291 mm, 396 mm, and 516 mm from the detector’s center. The core
structural unit is a silicon sensor module, which features 160 × 416 pixels, each mea-
suring 100 × 150𝜇m2, with a pitch (the distance between the centers of two adjacent
pixels) of 100 𝜇m [39]. In total, the pixel tracker comprises 1856 such modules.

A crucial performance metric for tracking detectors, the spatial resolution, is influ-
enced by factors such as the angle between the drift direction of electrons or holes in
the tracking material, i.e. the Lorentz angle, and whether a particle interacts with
multiple sensors in a single layer, which spreads the measured charge across adjacent
cells. Under ideal conditions, where only one sensor per layer is impacted, the proba-
bility of a particle hitting a specific point within a sensor is uniformly distributed as
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𝑝(𝑥) = 1
𝑑 , where 𝑑 represents the pitch. The expected value is calculated as:

⟨𝑥⟩ = ∫
𝑑/2

−𝑑/2
𝑥 ⋅𝑝(𝑥)𝑑𝑥 = 1

𝑑
∫

𝑑/2

−𝑑/2
𝑥𝑑𝑥 = 0 (2.15)

The resolution, therefore, is derived as:

𝜎2 = ⟨(𝑥−⟨𝑥⟩)2⟩ = ⟨𝑥2⟩ = ∫
𝑑/2

−𝑑/2
𝑥2 ⋅ 𝑝(𝑥)𝑑𝑥 = 𝑑2

12
(2.16)

𝜎 = 𝑑√
12

(2.17)

In this configuration, the resolution of the pixel tracker is approximately 𝜎 ≈ 28.9𝜇m.
The silicon strip tracker (SST), forming the outer portion of the tracking system,

comprises 9.3 million silicon strips distributed across 15,148 modules. The SST spans
a length of 5 m and has a diameter of 2.5 m. In the barrel region, there are ten layers
of strip modules, while the endcaps contain up to seven rings. The thickness of the
silicon sensors varies, being 320 𝜇m for the inner layers and 500 𝜇m for the outer layers.
The distance between the strips (pitch) ranges from 80 𝜇m to 205 𝜇m, resulting in
spatial resolutions between 23.1 𝜇m and 59.2 𝜇m. The ratio of the pitch to the strip
width is maintained at a constant value of 0.25 [40]. The barrel layer modules measure
the 𝑟 and 𝜙 coordinates, whereas the endcap layers measure 𝜙 and the longitudinal 𝑧
coordinate.

The transverse momentum resolution of the tracking system for high-momentum
tracks around 100 GeV is between 1% and 2% for a pseudorapidity of |𝜂| ≈ 1.6. The
pseudorapidity is a spatial coordinate used to describe the angle of a particle relative
to the beam axis and it is defined as:

𝜂 = − ln[tan 𝜃
2

]. (2.18)

Additionally, the transverse impact parameter resolution for high 𝑝T tracks is 10
𝜇m.

The CMS Calorimeters

A brief overview of the CMS Calorimeters now follows, but a more in-depth explana-
tion of calorimeters and the technical aspects of calorimetry is given in Chapter 3. The
CMS detector consists of two calorimeters: the electromagnetic calorimeter (ECAL),
designed to measure the energy of photons and electrons, and the hadronic calorimeter
(HCAL), which quantifies the energy of both charged and neutral hadrons. The ECAL
is classified as a homogeneous calorimeter, where energy deposition and detection oc-
cur within the same active material [41]. This differs from a sampling calorimeter,
which alternates between layers of high atomic mass material (to induce electromag-
netic showers) and active media such as scintillators (to measure the resulting particle
energy). Due to energy losses via ionization in the absorber layers, sampling calorime-
ters generally have lower energy resolution compared to homogeneous ones. The need
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for precise energy measurements in the ECAL, particularly for studying Higgs bosons
decaying into two photons, necessitated the choice of a homogeneous calorimeter over
a sampling design.

In the CMS ECAL, the active medium consists of 61,200 lead tungstate (PbWO4)
crystals in the barrel region, with an additional 7,324 crystals in each of the endcaps.
Avalanche photodiodes (APDs) are employed as photodetectors in the barrel, while
vacuum phototriodes (VPTs) are used in the endcaps. Lead tungstate is particularly
advantageous due to its high density of 8.28 g/cm3 and short radiation length (𝑋0 =
0.89 cm), defined as the mean distance over which an electron’s energy is reduced by a
factor of 1/𝑒 ≈ 36.8%. These properties enable the construction of a compact, highly
granular calorimeter. The length of the crystals is 230 mm, corresponding to 25.8 𝑋0.
The cross-section area at the front face is 22x22 mm2 and 26x26 mm2 at the rear face.
The front faces are at a distance of 1.29m from the detector center.
The energy resolution can be parametrized as ( 𝜎

𝐸)2 = ( 𝑆√
𝐸)

2
⊕ (𝑁

𝐸 )2 ⊕ (𝐶)2, where
𝑆 = 2.8%, 𝑁 = 12%, and 𝐶 = 0.3% are the stochastic, noise, and constant terms,
respectively. The energy resolution is approximately 1% in the central region of the
barrel for electrons with 𝐸 = 45 GeV.

The CMS hadron calorimeter (HCAL) [42] serves to measure the energies of charged
and neutral hadrons, as well as neutrinos and other exotic particles, ultimately con-
tributing to the measurement of missing transverse energy, 𝐸miss

T . Consequently, the
HCAL plays a pivotal role in jet identification and energy measurement.

The innermost portion of the HCAL barrel is situated at a distance of 1.77 m
from the detector center, extending outwards to 2.95 m. To ensure high-probability
absorption of incident hadrons, an additional hadron calorimeter is positioned outside
the solenoid to measure hadrons that have traversed the inner HCAL.

Unlike the CMS ECAL, the HCAL is a sampling calorimeter, employing alternating
layers of brass absorber plates and plastic scintillators. The brass absorbers, composed
of 70% Cu and 30% Zn, possess a density of 8.53 g/cm3. This translates to a radiation
length of 1.49 cm and a nuclear interaction length of 16.42 cm. The latter parameter
signifies the mean distance traversed by a hadronic particle before undergoing an
inelastic nuclear interaction. The HCAL energy resolution was measured in test beam
studies for single pions and is found as [43]:

𝜎
𝐸

= 52.9%√
𝐸

+(5.7%)2. (2.19)

The CMS Muon System

The CMS muon system is outside of the solenoid, built into the iron return yoke and is
designed to identify and provide information to the trigger system on muons produced
during collisions while also measuring their momentum. The strong magnetic field
generated by the solenoid magnet enables precise momentum resolution. The system
employs four different types of gaseous detectors for muon identification [44].

In the barrel region, drift tube (DT) chambers serve as detectors, arranged in four
concentric cylindrical stations. The three innermost stations each house 60 chambers,
while the outermost station contains 70 chambers. These chambers collectively include
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approximately 172,000 wires, each about 2.4 m in length. A gas mixture of 85% argon
and 15% carbon dioxide is used. To enhance detection efficiency, the drift cells within
each chamber are arranged in an overlapping pattern, with each cell shifted by half
its width relative to its neighbor. Each chamber comprises two or three “superlayers”
(SLs), with each SL containing four layers of rectangular drift cells. In the outer two
SLs, the wires are aligned parallel to the 𝑧 direction, enabling measurements in the
𝑟 − 𝜙 plane, whereas in the inner SLs, the wires are orthogonal to the beamline to
measure the 𝑧 coordinate.

In the endcaps, which detect muons with a pseudorapidity range of 0.9 < |𝜂| < 2.4,
cathode strip chambers (CSCs) are employed. Each endcap contains four stations with
a total of 468 CSCs. These chambers are arranged perpendicularly to the beamline to
measure the 𝑟 − 𝜙 plane. Based on multiwire proportional chamber technology, each
CSC features six anode wire planes and seven cathode panels. The CSCs provide both
muon measurement and triggering capabilities.

Resistive plate chambers (RPCs) complement the DTs and CSCs by improving back-
ground rejection and enabling precise beam crossing time measurements. Operating
in avalanche mode, RPCs are gaseous parallel-plate detectors with excellent time res-
olution but coarser positional accuracy compared to DTs and CSCs. Notably, RPCs
can tag ionizing events in significantly less time than the 25 ns between consecutive
bunch crossings. In the barrel, six RPC layers are included—two in each of the first
two stations and one in each of the last two. In the endcaps, one RPC layer is present
in each of the first three stations.

To further enhance muon momentum resolution, a dedicated alignment system mon-
itors the positions of the muon detectors relative to each other and the inner tracker.
This design achieves a reconstruction efficiency of 95–99% across a broad angular range
of 10∘ < 𝜃 < 170∘. The momentum resolution for high-energy muons ranges from 1%
to 8.25% in the barrel region and from 2% to 13.1% in the endcaps for transverse
momenta (𝑝T) up to 2000 GeV, based on combined information from the tracker and
muon systems. This resolution also depends on the alignment between the tracker and
muon systems [45].

Thanks to its high efficiency and performance, the CMS muon system is an essential
component of the detector. It facilitates the identification of processes involving muon
decays, such as the 𝐻 → 𝑍𝑍∗ → 4𝜇 decay channel of the Higgs boson, which was
pivotal in its discovery.
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3 Calorimetry

Calorimeters are fundamental tools in modern particle physics. They are designed to
measure the energy of a particle that passes through them by ideally fully absorbing
their energy, therby destroying them. The general idea is that calorimeters are made
of high-density materials, thus increasing the probability of particle interaction. While
the particles lose their energy in the detector, they deposit charge or emit light pro-
portionally to the amount of released energy. This proportion can be established via
calibration.
Depending on the type of particles that are being detected, calorimeters can be of
different types, but there are two major classes of them: electromagnetic calorimeters
and hadronic calorimeters. Electromagnetic calorimeters are designed to measure the
energy of electrons and photons, while hadronic calorimeters are designed to measure
the energy of hadrons. In this chapter, the fundamentals of calorimetry will be intro-
duced starting from how electromagnetic particles interact with matter, describing the
general idea of electromagnetic and hadronic calorimeters, and some of the algorithms
and simulation methods that are most commonly used in the field of high energy
physics. Finally, there will be an introduction to the CMS HGCal calorimeter that is
being constructed for the High Luminosity LHC upgrade and is of great relevance to
this thesis project.

3.1 Particles Interactions with Matter

Charged Particles

When a charged particle passes through matter, it can interact with the medium in
different ways. In general, the interaction can be either a deflection of a particle in
the form of an elastic scattering or a loss of energy by the particle. These processes
happen many times as the particle goes through the medium and it’s the cumulative
effect of such processes that can be measured. In addition, energy loss can also occur
via other means, like Cherenkov radiation, nuclear reactions, or bremsstrahlung. The
correct quantum-mechanical description of energy loss of a charged particle traveling
through matter was first given by Bethe, Bloch, and other authors [46] in terms of
momentum transferred, i.e. −𝑑𝐸/𝑑𝑥 with the formula [47]:

−𝑑𝐸
𝑑𝑥

= 2𝜋𝑁a𝑟2
e 𝑚e𝑐2𝜌𝑍

𝐴
𝑧2

𝛽2 [ln(2𝑚e𝛾2𝑣2𝑊max
𝐼2 )−2𝛽2 −𝛿 −2𝐶

𝑍
], (3.1)

where 𝑁a is Avogadro’s number, 𝑟e is the classical electron radius, 𝑚e is the electron
mass, 𝑐 is the speed of light, 𝜌, 𝑍 and 𝐴 are the density, atomic number and atomic
mass of the absorbing material. 𝑧 is the charge of the incident particle, 𝛽 is the velocity
of the incident particle in units of the speed of light, 𝛾 is the Lorentz factor, and 𝑣 is
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the velocity of the particle. 𝑊max is the maximum energy transfer that is produced in
a single head-on collision. For an incident particle of mass M, the maximum energy
transfer is given by [47]:

𝑊max = 2𝑚e𝑐2𝜂2

1+2𝑠√1+𝜂2 +𝑠2
,

with 𝑠 = 𝑚e/𝑀 and 𝜂 = 𝛾𝛽. 𝐼 is the mean excitation potential that is in practice very
difficult to calculate quantitatively and is usually taken from experimental data [47].
Finally, 𝛿 is the density effect correction, and 𝐶 is the shell correction. The first one
arises from the fact that the electric field of a charged particle tends to polarize the
atoms in its path effectively reducing the contribution to the energy loss of electrons
lying further away. 𝐶 accounts for the effects that arise when the speed of the incident
particle is comparable or smaller than the one of the electron bound to the atom. At
these velocities, the bound electron can’t be considered stationary with respect to the
incident particle and the formula needs to be corrected.

The Bethe-Bloch formula is only valid for particles with 𝛽𝛾 ≫ 1. For particles with
𝛽𝛾 ≪ 1 the formula breaks down because a number of complicated effects come into
play, such as the binding of the electrons in the atom, which are not accounted for in
the Bethe-Bloch formula. Figure 3.1 shows how the energy loss behaves for different
combinations of particles and absorbing material as a function of their velocity. At
non-relativistic energies, the energy loss is dominated by the 1/𝛽2 term and decreases
until a speed of 𝑣 ≃ 0.96𝑐 where a minimum is reached. Particles in this region are
called minimum ionizing particles (MIPs). At higher energies, the energy loss increases
logarithmically with the velocity of the particle. For velocities below the MIP region,
the −𝑑𝐸/𝑑𝑥 curves are distinct and dependent on the particle type, a characteristic
that is used in particle identification.

An important observable that can be derived from the Bethe-Bloch formula is the
range of a particle in a material. The range is defined as the average distance a particle
travels before it comes to rest and it is necessary to determine the sizes of detectors
used in experiments or, to determine the thickness of the protective shielding around
the experiments. The range of a particle can be calculated by integrating the energy
loss over the path length of the particle:

𝑅 = ∫
𝑇

0
(𝑑𝐸

𝑑𝑥
)

−1
𝑑𝐸. (3.2)

However, it turns out that this derivation is not exactly accurate as it doesn’t account
for the zigzag path that arises from the scattering of the particle as it passes through
the material. The range of a particle can be calculated more accurately by using an
empirical formula [47]:

𝑅(𝑇0) = 𝑅0 (𝑇min)+∫
𝑇0

𝑇min

(𝑑𝐸
𝑑𝑥

)
−1

𝑑𝐸, (3.3)

where 𝑇min is the minimum kinetic energy for which Equation 3.1 holds and 𝑅0(𝑇min)
is an empirically determined constant that takes into account the low energy range
behavior. If one knows the 𝑑𝐸/𝑑𝑥 of a particle in a material, it is possible to calculate
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Figure 3.1: Energy loss of different particles as a function of their velocity in liquid
hydrogen, gaseous helium, carbon, aluminum, iron, tin and lead. Taken
from Ref. [48].
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Figure 3.2: Fractional energy loss per radiation length in lead as a function of electron
or positron energy. Electron (positron) scattering is considered as ioniza-
tion when the energy loss per collision is below 0.255 MeV, and as Møller
(Bhabha) scattering when it is above.. Taken from Ref. [48].

the energy loss of another particle in the same material by using the scaling law:

−𝑑𝐸2
𝑑𝑥

(𝑇2) = −𝑧2
2

𝑧2
1

𝑑𝐸1
𝑑𝑥

(𝑇2
𝑀1
𝑀2

), (3.4)

where 𝑇2 is the kinetic energy of the second particle, 𝑧2 and 𝑧1 are the charges of
the second and first particle, 𝑀1 and 𝑀2 are their masses. The range for different
particles in the same medium can then be extrapolated with the scaling law:

𝑅2 (𝑇2) = 𝑀2
𝑀1

𝑧2
1

𝑧2
2

𝑅1 (𝑇2
𝑀1
𝑀2

). (3.5)

Electron/Positron interactions with matter

Electrons and positrons interact with matter in a number of ways. The most relevant
ones are ionization, arising from the collision with atomic electrons and -as shown in
Figure 3.2- more relevant at lower energies, and bremsstrahlung. Bremsstrahlung hap-
pens due to the scattering of the electron/position in the electric field of a nucleus. It
can be interpreted as radiation arising from the acceleration of a charged particle when
deflected by the electric field of the atomic nucleus. At lower energies, this process
is a small factor in the energy loss, but it gains relevance with higher momentum, as
Figure 3.2 points out. Since ionization is more relevant at lower energy regimes and
bremsstrahlung at higher ones, it is possible to identify an energy value where the
two contributions are equal. The critical energy (𝐸𝑐) is defined as the energy of the
electron for which is true that:

(𝑑𝐸
𝑑𝑥

)
𝑖𝑜𝑛

= ( 𝑑𝐸
𝑑𝑋

)
𝑏𝑟𝑒𝑚𝑠𝑠

,
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and an approximate estimation for 𝐸𝑐 in different materials is given by the empirical
formula [49]:

𝐸𝑐 = 800 𝑀𝑒𝑉
𝑍 +1.2

.

There are other contributions to the energy loss like Møller and Bhabha scattering for
the electron and the positron respectively. These refer to the scattering of the atomic
electrons with energy loss below 0.255 MeV. Finally, electron-position annihilation
e+e− → 𝛾𝛾 can occur when matter and anti-matter particles are transformed in two
photons.

Photon interactions with matter

Photons interact with matter in three main ways: photoelectric effect, the Compton
scattering, and pair production. The photoelectric effect is the process where a photon
is absorbed by an atom and an electron is ejected from the atom. Compton scattering
is the process where a photon scatters off an electron and loses energy while pair
production arises when a photon creates an electron-positron pair. The probability of
each of these happening depends on the energy of the photon and the material that
the photon is passing through. The cross-section as a function of the energy for each
of these processes is shown in Figure 3.3.

Figure 3.3: Cross sections for the photoelectric effect, Compton scattering, and pair
production as a function of the energy of the photon in a gold target.
Taken from Ref. [50].

25



3.2 Particle Showers

Electromagnetic showers

As just described, electrons and photons lose energy while passing through matter.
The combined processes of bremsstrahlung for electron/positrons and pair production
for radiation result into a cascade of particles that we call an electromagnetic shower
and that is schematically represented in Figure 3.4. Such an electromagnetic shower
is a complex process that is characterized by the production of a large number of
particles in a short amount of time. The shower is initiated by the primary electron
or photon and is composed of secondary electrons, positrons, and photons created
through repeated bremsstrahlung and pair production. The entire process is stochastic
and the number of particles produced in the shower is not deterministic. There are
some parameters through which a shower can be characterized. For example, the
radiation length is the average distance at which a high-energy electron loses all but
1/𝑒 of its energy by bremsstrahlung. The radiation length is a material-dependent
quantity and can be calculated using the formula:

𝑋0 = 716.4𝐴
𝑍(𝑍 +1) ln(287/

√
𝑍)

g/cm−2, (3.6)

where 𝑍 is the atomic number of the material and 𝐴 is the atomic mass. The radiation
length is a useful quantity as it is used to determine the thickness of the calorimeter
that is needed to contain the shower using an empirical measure to characterize the
transverse shower development, which is the Molière radius 𝜌𝑀, i.e., the radius of a
cylinder that contains 9̃0% of the energy of the shower. The Molière radius is described
as:

𝜌𝑀 = 21 MeV
𝐸𝑐

𝑋0, (3.7)

where 𝐸𝑐 is the critical energy and X0 is the radiation length. Typically, these radiuses
are of a few centimeters for different materials, for instance, 1.6 cm in lead, 4.3 cm in
lead glass, and 9.1 cm in scintillator [49].

It is also possible to determine the energy resolution of the calorimeter which can
be derived with the formula:

𝜎
𝐸

= 𝑎√
𝐸

⊕ 𝑏
𝐸

⊕𝑐, (3.8)

where 𝑎 is the stochastic term due to the fluctuations in the shower development, 𝑏 is
the noise term that takes into consideration the electronic noise of the detector, and 𝑐
is the constant term making up for the non-uniformity of the detector. With 𝑋0 and
taking into consideration the asymptotic cross-section for photon interactions defined
as:

𝜎(𝐸 → ∞) = 7
9

𝐴
𝑁A𝑋0

, (3.9)

it is possible to derive another useful quantity, the mean free path 𝜆𝛾 which is the
average distance that a photon travels before interacting with the material. The mean
free path is given by the formula:

𝜆𝛾 = 9
7

𝑋0. (3.10)
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Figure 3.4: Schematic representation of an electromagnetic shower in a sampling
calorimeter, which is described in Section 3.3. The shower is initiated
by a high-energy electron or photon and is composed of secondary elec-
trons, positrons, and photons.

Hadronic showers

Interactions involving hadrons can be categorized into hadronic and electromagnetic
interactions. For charged hadrons, electromagnetic interactions resemble those of other
heavy charged particles, as previously described. Neutral hadrons initially do not par-
ticipate in electromagnetic processes. However, their hadronic interactions often gen-
erate charged hadrons, which are then able to interact electromagnetically. Hadronic
interactions occur between energetic hadrons and the nuclei of a material, taking var-
ious forms. One such form is spallation, where a hadron undergoes inelastic scattering
with protons and neutrons in the nucleus. Depending on the energy transferred, parts
of the nucleus may also be ejected. This interaction leaves the nucleus in an excited
state, which may lead to fission -where the nucleus splits, releasing additional energy—
or to nuclear evaporation, where the nucleus releases excess energy in the form of 𝛼,
𝛽 or 𝛾 radiation. The pions and ejected fragments generated through spallation can
themselves carry enough energy to trigger further hadronic interactions, producing
additional particles. This process repeats until the energy of the resulting particles
is too low to form new pions, creating what is known as a hadronic shower. At this
stage, any remaining particle energy that cannot contribute to pion production is dissi-
pated through radiation or by capture into a nucleus. Unlike the relatively predictable
outcomes of Bremsstrahlung or pair production, nuclear interactions produce a wide
variety of particles, resulting in more complex hadronic shower patterns compared to
electromagnetic showers. Additionally, the smaller number of interactions that lead to
secondary particles in electromagnetic showers causes statistical fluctuations to have
a more pronounced effect. On top of that, a hadronic shower can have an electromag-
netic component as well, as the pions produced in the hadronic interactions can decay
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Figure 3.5: Schematic representation of a hadronic shower that carries both hadronic
and electromagnetic components. Taken from Ref. [51].

into photons and electrons, as illustrated in Figure 3.5. This is why hadronic showers
are more complex to reconstruct than electromagnetic showers. The length scale of
a hadronic shower is given by the nuclear interaction length 𝜆i which is the average
distance that a hadron travels before undergoing an inelastic collision and is generally
defined as [49]:

𝜆i = 1
𝑛𝜎ℎ𝑎𝑑

, (3.11)

where 𝜎had is the cross-section for the hadronic interaction and n is the number of
atoms per unit volume in the target material. The nuclear interaction length can be
much larger than the radiation length, leading to larger showers that require bigger
detectors to be contained.

3.3 Calorimeters

As introduced, calorimeters are physicists’ instruments to measure particle energies.
They do so by completely absorbing the particle, taking advantage of the well-known
interactions with matter described in Section 3.1. The energy deposited into the
calorimeter either as charge or as emitted photons can then be measured to perform
a reconstruction of the particle energy. We saw that calorimeters can be divided into
two main categories based on the particles that need to be measured.

In electromagnetic calorimeters, photon, and electron energies are primarily deter-
mined through electromagnetic showering, followed by ionization within the scintillat-
ing material. A high-energy photon interacts with the high-𝑍 nuclei in the medium,
producing an electron-positron pair. These particles are deflected by the nuclei’s elec-
tric fields, emitting high-energy photons via bremsstrahlung. This process repeats,
generating further electron-positron pairs, until the particles’ energy drops below the
threshold for pair production. At this stage, they deposit their remaining energy
through ionization. In scintillating materials, ionization excites electrons to higher en-
ergy states, and their subsequent de-excitation emits photons, typically in the visible
spectrum. Photodetectors capture this light, enabling an indirect measurement of the
particle’s energy.

On the other hand, hadronic showers exhibit significantly greater complexity than
electromagnetic showers due to the presence of additional nuclear interactions. Key in-
teraction processes include hadronization, nuclear spallation, and nuclear de-excitation,
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which lead to the evaporation of soft nucleons. A considerable ”invisible fraction” of
energy arises from interactions, where energy is absorbed as nuclear binding energy or
through recoil within the material. Furthermore, the production of neutral pions (𝜋0),
which decay exclusively into photons and subsequently initiate electromagnetic show-
ers, contributes to the energy deposition. These pions effectively deposit their entire
energy via electromagnetic processes. Determining the fraction of electromagnetically
deposited energy, 𝑓EM, and disentangling the contributions from various nuclear in-
teractions presents a significant challenge, requiring intricate Monte Carlo simulations
for accurate calibration.

However, calorimeters can also be divided into two design categories: sampling and
homogeneous calorimeters. In homogeneous calorimeters, the entire volume of the
detector is built with a single material that is used to both absorb the particle and
to measure the energy. This has the advantage that all the absorbed energy can be
measured, but has several disadvantages such as the size of the calorimeter which then
translates to a more difficult design and a higher cost. On the other hand, sampling
calorimeters are built with alternating layers of absorber and active material. The
absorber is usually a high-density material that is used to absorb the particle and it
is alternated with an active material. This allows to reduce the size and cost of the
calorimeter, at the disadvantage that only a fraction of the energy is absorbed and
measured. Because most of the energy is dissipated in the absorber material, it is
necessary to infer the energy of the particle using the fraction deposited in the active
material. The fraction between the energy of the incident particle 𝐸full and the energy
deposited in the active material 𝐸active is called the sampling fraction 𝑓sampling and is
defined as:

𝑓sampling = 𝐸active
𝐸full

. (3.12)

A low sampling fraction means uncertainty in the energy measurement which, as men-
tioned, is the main downside of such calorimeter designs. However, in most cases, it
is necessary to find a balance between this and the cost-size factor of the detector.
Another advantage of sampling calorimeters is that the division into layers allows the
independent readouts of the layers which can be used to perform a longitudinal shower
profile reconstruction, something that is not possible with homogeneous ones.

Another concept in calorimeters is granularity. Each layer is divided into cells
that are used as independent readout channels, to produce a better “picture” of the
shower. The size of the cells is called granularity and it determines the resolution of
the calorimeter. A high granularity allows us to better reconstruct the shower radial
profile. This is another parameter to tune in the design of a calorimeter: a bigger cell
size means less detailed showers, but a lower cost and vice versa.

Since measuring the energy of a particle is the main goal of a calorimeter, one of
the most important parameters is the energy resolution defined in Equation 3.2 and
that gives a measure of the uncertainty in the energy measurement.

3.4 The CMS High Granularity Calorimeter

The CMS High Granularity Calorimeter (HGCal) [2] is a sampling calorimeter that is
being designed for the High Luminosity LHC upgrade [1] to replace the existing endcap
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calorimeters of the CMS detector. The HGCal, shown in Figure 3.6, is composed of two
sub-detectors: the electromagnetic calorimeter (CEE) and the hadronic calorimeter
(CEH) and it is designed to cover a pseudorapidity range from 1.5 to 3. It is designed
to have a high granularity in both the longitudinal direction and in the layer planes.
On top of that, the HGCal system will be able to discriminate the time of hits with a
time resolution of about 25 ps for an energy deposit equivalent to a charge of 50 fC,
as compared to a spread of time from collisions in a single bunch crossing of a couple
of hundred ps [2].

Detector design and mechanics

All the HGCal layers have been designed with multiple 60° wedges called cassettes
that are assembled together to form a full layer. In the CEE, the cassettes are made
of silicon sensor modules placed on each side of a 6 mm thick copper cooling plate
with onboard electronics (see Figure 3.7). The active material comprises hexagonal
silicon sensors sandwiched into 1.4 mm thick WCu (75%,25%) plates that are used as
absorbers. The silicon sensors have different sensitive thicknesses of 300, 200, and 120
𝜇m in regions of increasing radiation levels. On top of that, silicon sensor cells have
different sizes of ∼0.5, ∼1.2 cm2, with the coarser region being further apart from the
beam pipe. The CEE total thickness is ∼34 cm, i.e 26 𝑋0 and 1.3𝜆I, and it is divided
into 28 sampling layers. The CEH has 22 sampling layers divided into two parts: the
front hadronic section with silicon as the active medium in the high radiation region
and the back hadronic section with plastic scintillator as the active medium in the low
radiation region. The active layers are sandwiched between layers of steel absorbers
35 mm thick in the front part and 68 mm thick in the back part. The CEH is ∼1.5 m
long corresponding to a total depth of 8.7 𝜆I. In Figure 3.8 we can see the different
layouts of the CEE and CEH layers.

Precision Timing

Timing measurement for the Time-of-Arrival (ToA) is a great tool added for event
reconstruction during the HL-LHC. The HGCal will be able to measure the time
with a resolution of about 25 ps the time of electromagnetic and hadronic showers.
Enforcing the compatibility between the ToA will help reject pile-up and identify
primary vertices. Results from beam tests have shown that the time resolution is
not subject to strong variability for different cell thicknesses when the resolution is
measured as a function of the signal-to-noise ratio (𝑆/𝑁) nor does it vary as a result
of irradiation up to fluences expected after 3000 fb−1 [2]. So the resolution can be
expressed as:

𝜎𝑡 = 𝜎𝑗𝑖𝑡𝑡𝑒𝑟 ⊕𝜎𝑓𝑙𝑜𝑜𝑟, (3.13)

where 𝜎𝑗𝑖𝑡𝑡𝑒𝑟 = 𝐴
(𝑆/𝑁)

. (3.14)

𝜎𝑓𝑙𝑜𝑜𝑟 is a constant term (a precision floor), and the symbol ⊕ denotes the quadratic
summation. The constant 𝐴 is fixed by the response time and noise characteristics of
the sensor and a preamplifier.
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1.4. Longitudinal structure of the HGCAL 19
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Figure 3.6: Schematic view of the HGCal from Ref. [2]. The green layers represent the
silicon that acts as the sensitive part of the calorimeter. In the CEH, the
scintillator (in blue) starts from the 9th layer and takes increasingly bigger
portions of the hadronic calorimeter layer moving deeper into it.
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Figure 3.7: Schematic view of the HGCal cassettes from Ref. [52].

Figure 3.8: The 9𝑡ℎ CEE layer (on the left) is made solely out of silicon sensors and
the 12𝑡ℎ CEH layer (on the right) is made out of scintillator and silicon
sensors. Also different shades of yellow and green indicate the different
thicknesses of the sensors. Taken from Ref. [52].
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The topology and kinematics of the showers in the HGCal are the main factors that
determine the effective timing performance. Electromagnetic showers have small con-
tainment radii and fast development and usually result in many cells with significant
energy deposits. On the other hand, hadronic showers have a relatively wide core
and tracks that develop laterally with respect to the shower axis. To make a time
measurement it is required that at least three cells within a selection radius, 𝜌, of the
shower axis, each with an energy deposit of >12 fC fire the ToA [2]. Since the ToA
measurement is only possible with cells with deposited charge above 12 fC, it is subject
to large event-to-event fluctuations. The time distribution of the energy deposited has
long tails of later time measurements.

Pileup mitigation using timing information

In the Technical Design Report [2], it is shown how the inclusion of timing information
can help with pileup mitigation. Figure 3.9 displays an example of hits of a simulated
VBF event (qHH; H →𝛾𝛾) with and without a timing requirement of |Δ𝑡| > 90 ps.
The timing information clears up the projected hits allowing to clearly distinguish the
jets, helping the development of jet reconstruction, and making the energy estimation
less affected by pileup.

3.5 Calorimeter simulation

Simulating particle interactions within calorimeters is the most computationally de-
manding aspect of detector simulations. Traditional simulation tools use physics-based
Monte Carlo (MC) methods to track each particle within the calorimeter medium and
model all possible interactions. However, given the extensive simulation requirements
of future collider experiments, relying solely on such detailed simulations will become
unsustainable. To address this, various fast simulation methods have been developed
to optimize or bypass parts of the simulation process. The generative machine learning
models introduced in this thesis exemplify these fast simulation techniques, though sev-
eral non-machine-learning approaches also exist. The following sections explore both
full MC-based simulations and their faster alternatives.

Full Monte Carlo simulation

Geant4 (GEometry ANd Tracking) [53–55], is the primary toolkit used in high energy
physics to produce full Monte Carlo simulations of detector response. The simulation
starts with a description of the geometry of the detector in use. This is done by
adding a series of volumes and the material that they are made of. The geometry is
then used to simulate the passage of particles through the detector. The simulation
is done in steps during which the particle is propagated through the detector, and
the interactions with the material are simulated. At each of these steps the software
picks one of the possible interactions based on their probability. The probability of an
interaction happening is characterized by the mean free path as follows:

𝑝(𝑙) = 𝑒∫𝑙
0

1
𝜆(𝑙) 𝑑𝑙, (3.15)
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Figure 3.9: VBF(H → 𝛾𝛾) event with one 𝛾 and VBF jet in the same quadrant (shown
as red spots). The comparison of the two plots shows the effect of the
timing information on the pileup mitigation. The upper plot shows the
hits projected on the front face of the calorimeter with a charge larger
than the 12 fC threshold and without any timing requirements, while in
the lower plot, a timing requirement of |Δ𝑡| > 90 ps has been imposed.
Taken from Ref. [2].
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where 𝜆(𝑙) is the mean free path of the particle in the material and l is the distance
traveled. The parameter 𝜆(𝑙) is described for most of the interactions by:

1
𝜆

= 𝜌∑
𝑖

𝑥𝑖𝜎𝑖
𝑚𝑖

(3.16)

where 𝜌 is the density of the material, 𝑥𝑖 is the fraction of the material that is made
of the 𝑖𝑡ℎ element, 𝜎𝑖 is the cross-section of the interaction and 𝑚𝑖 is the atomic mass
of the 𝑖𝑡ℎ element. To perform a random sample of the path length of the process, it
is possible to rewrite Equation 3.5 as:

𝑝(𝑙) = 𝑒−𝑛𝜆 , with

𝑛𝜆 = ∫
𝑥1

𝑥0

1
𝜆(𝑥)

𝑑𝑥, (3.17)

allowing for sampling from the exponential distribution via the sampling of 𝜂 from a
uniform distribution between 0 and 1 and setting:

𝑛𝜆 = − ln𝜂. (3.18)

from which the total step size can be calculated as:

𝑠(𝑥) = 𝑛𝜆 ⋅ 𝜆(𝑥). (3.19)

the total step size 𝑠 is then calculated for all possible processes and the shortest step
is selected as the next step of the particle. The process is repeated until the particle
reaches the end of the detector or until the particle is absorbed. Geant4 is very
accurate as it tracks each particle individually, but this makes it very computationally
expensive. The processes that are simulated come from a physics list which defines
processes and cross-sections for every specific particle.

Fast Simulation

Fast Simulation (FastSim) approaches are used to tackle the challenge of the simula-
tion speed. Some of these approaches are described here. Delphes [56] is a software
framework designed for the rapid simulation of entire detectors. Instead of model-
ing individual particle showers, Delphes assigns the energy of particles reaching the
calorimeter to a single ECAL and a single HCAL cell at the particle’s impact position.
The distribution of energy between the ECAL and the HCAL depends on the particle
type. For instance, electrons and photons deposit all their energy in the ECAL, while
stable hadrons deposit theirs entirely in the HCAL. To emulate the imperfect resolu-
tion of real calorimeters, the deposited energy is smeared using a factor derived from
the calorimeter’s resolution. This approach enables extremely fast simulations. How-
ever, Delphes requires prior knowledge of the calorimeter’s energy resolution, making
it unsuitable for first-principles simulations. Furthermore, it only models the total en-
ergy, without accounting for shower shapes, which limits its compatibility with particle
flow techniques.

GFLASH [57, 58] is a parameterized shower simulation method built on Geant4.
It relies on longitudinal and transverse energy profiles obtained from fully simulated
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showers in Geant4. Using Monte Carlo techniques, GFLASH places energy deposi-
tions in the simulated calorimeter to accurately reproduce these profiles and preserve
their internal correlations. This method is considerably faster than performing a full
simulation for every particle, but they are less accurate.

Frozen Showers [59] involves pre-simulating a library of showers generated by low-
energy particles using a full simulation. During the main simulation, highly energetic
particles are handled using either a full simulation or a parameterized method. Once
a particle’s energy falls below a predefined threshold, its simulation is terminated,
and a pre-generated shower with matching energy, angle, and position is placed at
its location. This method bypasses the need to simulate the numerous low-energy
particles that constitute most of a shower, significantly reducing computational effort.
A similar concept was earlier implemented by the H1 collaboration [60], which utilized
a library of pre-simulated showers for fast simulation of entire showers instead of sub-
showers.

Finally, machine learning techniques are been under constant development in recent
years as they might prove to be a faster, cheaper, and more accurate solution to the
problem of fast simulation. The next section will introduce some of the most common
techniques used in the field of machine learning in general and applied to high-energy
physics.
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4 Machine Learning

With the term Machine Learning (ML) we refer to a set of algorithms that can learn
from data as opposed to being explicitly programmed to perform a task. ML has
been studied for many years now, but its need for high computational power and large
datasets has only been met in recent years, with the advent of graphics processing
units (GPUs) and big data.
ML algorithms can be divided into three main categories: supervised, unsupervised,
and reinforcement learning. In supervised learning, the algorithm is trained on a
labeled dataset, where each example is associated with a label. An example could be
a set of images of animals and their corresponding labels (e.g., cat, dog, horse). In
this case, the algorithm, after being trained on this labeled dataset, predicts the label
of an image that has never been seen before. The most common supervised learning
tasks are classification (as in the example above), and regression where the model tries
to predict a value given an input.
In unsupervised learning, the algorithm is trained on an unlabeled dataset to learn
the underlying structure of the data. Common examples are anomaly detection and
generative models, where the algorithm tries to generate new data that is similar to
the training data. This will also be the focus of this thesis.
Finally, reinforcement learning is a type of ML where an agent learns to interact with
an environment by performing actions and receiving rewards. A common example is
a model that learns how to play a video game by maximizing the score.
In this chapter, we will introduce the basic concepts of ML, underlying methodology,
and evaluation metrics.

4.1 Gradient Descent

The concept of ML is based on the idea of defining a model 𝑓(𝑥), with 𝑓 ∶ ℝ𝑛 → ℝ𝑚,
that is iteratively updated to describe the set of data points 𝑋 = {𝑥1,𝑥2,…,𝑥𝑁} ∈ ℝ𝑛.
The model is just a non-linear function that maps the 𝑛-dimensional input space to the
𝑚-dimensional output space. The function is defined by multiple parameters 𝜔, that
are optimized from the data to improve the model and help it perform the required
task. This optimization is done by minimizing a loss function 𝐿(𝜔), which measures
the difference between the predicted output of the model and the task-specific target
of the model. More details on this will follow in the next sections. For now we can
think about the loss as a function of the parameters 𝜔 and the data. So we can write
the loss function as 𝐿(𝜔,𝑋), and to minimize it we would need to take the gradient
of such a function with respect to the parameters 𝜔. It would look like this:

∇𝜔,𝑖𝐿(𝜔,𝑋) = 𝜕𝐿(𝜔,𝑋)
𝜕𝜔𝑖

(4.1)
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where ∇ is the nabla operator that returns the gradient of 𝐿, and 𝜕𝐿(𝜔,𝑋)
𝜕𝜔𝑖

is the partial
derivative of the loss function with respect to the 𝑖-th parameter 𝜔𝑖.

Note that the gradient of the loss function is a vector that points in the direction of
the steepest ascent of the function. The most common optimization algorithm used in
ML is based on gradient descent, which is built on the idea of iteratively updating the
parameters in the opposite direction of the gradient. The update rule is defined as:

𝜔𝑡+1 = 𝜔𝑡 −𝛼∇𝐿(𝜔𝑡,𝑋) (4.2)

where 𝜔𝑡 is the value of the parameters at iteration 𝑡, and 𝛼 is the learning rate, which
is a hyperparameter that controls the size of the step taken in the direction opposite
of the gradient. The learning rate is a crucial hyperparameter that needs to be tuned
carefully, as a too-small value can lead to slow convergence, while a too-large value
can lead to divergence. The gradient descent algorithm is simple and effective, but it
has some limitations, such as the fact that it can get stuck in local minima, and it can
be slow to converge when the loss function is non-convex.

Stocastic Gradient Descent

To compute one step of the gradient descent algorithm, we need to compute the
gradient of the loss function with respect to all the parameters which might prove to be
computationally expensive. Stochastic Gradient Descent (SGD) [61] is an optimization
algorithm that addresses this issue by computing the gradient of the loss function
with respect to a set of disjoint subset of the data points 𝑋𝑗 = {𝑥𝑘}𝑏𝑗

𝑘=𝑏𝑗−1
, called

mini-batches. This allows for more complex models and larger datasets to be trained
in a reasonable amount of time. On top of that, the mini-batches can be shuffled
introducing some randomness in the optimization process, which can help to escape
local minima.

4.2 Optimizers

To overcome the limitations of the simple gradient descent algorithm, several opti-
mization algorithms have been proposed in the literature. These algorithms are based
on the idea of adapting the learning rate during training or using more sophisticated
update rules to speed up convergence.

Momentum

Both SGD and Gradient Descent can be slow to converge when the loss function has a
complex landscape, with many local minima and saddle points. To tackle this problem,
one of the most popular optimization algorithms is momentum, which is based on the
idea of adding a momentum term to the update rule. The momentum term is a moving
average of the gradients, and it helps speed up convergence and avoid local minima.
The update rule for the momentum algorithm is defined as:

𝑣𝑡+1 = 𝛽𝑣𝑡 +(1−𝛽)∇𝐿(𝜔𝑡,𝑋) (4.3)
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𝜔𝑡+1 = 𝜔𝑡 −𝛼𝑣𝑡+1 (4.4)
where 𝑣𝑡 is the momentum term at iteration 𝑡, and 𝛽 is the momentum parameter that
controls the weight of the moving average. The momentum algorithm is more robust
than the simple gradient descent, and it can converge faster and more reliably to the
global minimum.

Adam

Adam [62] is another popular optimization algorithm that combines the ideas of mo-
mentum and adaptive learning rates. Adam expands on the momentum algorithm
by adding an adaptive learning rate for each parameter, which is based on the first
and second moments of the gradients denoted by 𝑚𝑡 and 𝑣𝑡 respectively [61]. These
moments are computed as:

𝑚𝑡 = 𝛽1𝑚𝑡−1 +(1−𝛽1)∇𝐿(𝜔𝑡,𝑋) (4.5)

𝑣𝑡 = 𝛽2𝑣𝑡−1 +(1−𝛽2)[∇𝐿(𝜔𝑡,𝑋)]2 (4.6)
where 𝛽1 and 𝛽2 are the exponential decay rates for the first and second moments,
respectively. The suggested default values for these parameters are 𝛽1 = 0.9 and
𝛽2 = 0.999. The initialization of the moments is done by setting 𝑚0 = 0 and 𝑣0 = 0.
Depending on the implementation, the moments can be bias-corrected by dividing
them by 1−𝛽𝑡

1 and 1−𝛽𝑡
2 respectively:

�̂�𝑡 = 𝑚𝑡
1−𝛽𝑡

1
(4.7)

̂𝑣𝑡 = 𝑣𝑡
1−𝛽𝑡

2
(4.8)

Finally, the update rule for the Adam algorithm is defined as:

𝜔𝑡+1 = 𝜔𝑡 −𝛼 �̂�𝑡

√ ̂𝑣𝑡 +𝜖
(4.9)

where 𝜖 is a small constant that is added to the denominator to avoid division by
zero. This means that the update direction is given by the running average of the
previous updates. On top of that, the learning rate is scaled by the square root of
the second moment, which helps to adapt the learning rate to the curvature of the
loss function. This allows Adam to converge faster and more robustly than other
optimization algorithms. Additionally, the adaptive scaling of the learning rate makes
Adam less sensitive to the choice of the learning rate hyperparameter, enabling a more
stable training process.

4.3 Loss Functions

The loss function is a crucial component of the ML model, as it measures the difference
between the predicted output of the model and the task-specific target. The choice of
the loss function depends on the task at hand, and it can have a significant impact on
the performance of the model. In this section, we will introduce some common loss
functions used in ML.
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Mean Squared Error

The Mean Squared Error (MSE) is one of the most common loss functions used in
regression or classification tasks. It measures the average squared difference between
the predicted output of the model and the true output of the data. The MSE is defined
as:

𝐿(𝜔,𝑋) = 1
𝑛

𝑛
∑
𝑖=1

(𝑓(𝑥𝑖)−𝑦𝑖)2 (4.10)

where 𝑓(𝑥𝑖) is the predicted output of the model for the 𝑖-th data point, 𝑦𝑖 is the
true output of the data, and 𝑛 is the number of data points in the dataset. The
MSE is a convex function, which means that it has a single global minimum, and it is
differentiable, which makes it suitable for optimization with gradient-based algorithms.

Binary Cross-Entropy

The Binary Cross-Entropy (BCE) is a loss function employed in binary classification
tasks. It evaluates the performance of a classification model by assessing the discrep-
ancy between the predicted probabilities and the actual class labels, which are either
0 or 1. The BCE is defined as:

𝐿(𝜔,𝑋) = − 1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖 log(𝑓(𝑥𝑖))+(1−𝑦𝑖) log(1−𝑓(𝑥𝑖)) (4.11)

where 𝑓(𝑥𝑖) is the predicted probability of the model for the 𝑖-th data point class, 𝑦𝑖
is the true label of the data, and 𝑛 is the number of data points in the dataset.

4.4 Evaluation Metrics

The evaluation of ML models is a crucial step in the development process, as it allows
us to measure the performance of the model and compare it with other models. In
this section, we will introduce some common evaluation metrics used in ML.

Accuracy

Accuracy is one of the most common evaluation metrics used in classification tasks.
It measures the proportion of correctly classified data points in the dataset. The
accuracy is defined as:

Accuracy = Number of correctly classified data points
Total number of data points

(4.12)

The accuracy is a simple and intuitive metric, but it can be misleading in imbalanced
datasets, where one class is much more frequent than the other. In this case, the
accuracy can be high even if the model is not performing well in the minority class.
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Precision and Recall

Precision and recall are two evaluation metrics used in binary classification tasks. The
precision measures the proportion of correctly classified positive data points among all
data points classified as positive. The precision is defined as:

Precision = True Positives
True Positives+False Positives

(4.13)

The recall measures the proportion of correctly classified positive data points among
all positive data points in the dataset. The recall is defined as:

Recall = True Positives
True Positives+False Negatives

(4.14)

Precision and recall are complementary metrics, and they are often used together to
evaluate the performance of a model. The precision measures the ability of the model
to avoid false positives, while the recall measures the ability of the model to avoid
false negatives.

Wasserstein Distance

The Wasserstein distance [63], also known as the Earth Mover’s Distance, is a metric
used to measure the distance between two probability distributions. It’s commonly
used in generative models to measure the similarity between the generated samples
and the true data distribution. The Wasserstein distance is defined as:

𝑊(𝑝,𝑞) = inf
𝛾∈Π(𝑝,𝑞)

∫
ℝ𝑛×ℝ𝑛

‖𝑥−𝑦‖𝑑𝛾(𝑥,𝑦) (4.15)

where 𝑝 and 𝑞 are the two probability distributions, Π(𝑝,𝑞) is the set of all joint
distributions with marginals 𝑝 and 𝑞, and 𝛾 is the joint distribution. The Wasserstein
distance measures the minimum amount of work required to transform one distribution
into the other.

Kullback-Leibler Divergence

Another metric commonly used in generative tasks is the Kullback-Leibler (KL) di-
vergence. The KL divergence is a measure of how one probability distribution differs
from a second, reference probability distribution and it is defined as:

𝐷KL(𝑝||𝑞) = ∫𝑝(𝑥) log(𝑝(𝑥)
𝑞(𝑥)

)𝑑𝑥 (4.16)

where 𝑝 and 𝑞 are the two probability distributions. The KL divergence measures the
information lost when the distribution 𝑞 is used to approximate the distribution 𝑝. It
is not symmetric, meaning that 𝐷KL(𝑝||𝑞) ≠ 𝐷KL(𝑞||𝑝).
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4.5 Machine Learning Challenges

We have seen some of the techniques for Machine Learning that have been successfully
applied to a wide range of tasks, from image recognition to natural language processing.
However, several challenges need to be addressed to make ML more effective and
reliable. In this section, we will introduce some of the main challenges of ML.

Overfitting

Overfitting is a common problem in ML, where the model learns the noise in the
training data instead of the underlying pattern. This leads to poor generalization
performance, as the model performs well on the training data but poorly on unseen
data. Overfitting can be caused by a model that is too complex for the data, or by
a lack of regularization. There are several ways to prevent overfitting, such as using
simpler models, adding regularization terms to the loss function, or using dropout.

Underfitting

Underfitting is the opposite of overfitting, where the model can not capture the un-
derlying pattern in the data. This leads to poor performance on both the training
and test data. This can be caused by a model that is too simple for the data, or by
a lack of training data. There are several ways to prevent underfitting, such as using
more complex models, increasing the size of the training data, or using more powerful
optimization algorithms.

Vanishing and Exploding Gradients

Vanishing and exploding gradients are common problems in deep learning, where the
gradients of the loss function with respect to the parameters become very small or very
large. This can lead to slow convergence or divergence of the optimization algorithm.
Vanishing gradients are caused by the use of activation functions with small gradients,
such as the sigmoid or tanh functions. Exploding gradients are caused by the use of
activation functions with large gradients, such as the ReLU [64] function. There are
several ways to prevent vanishing and exploding gradients, such as using activation
functions with bounded gradients, batch normalization [65], or gradient clipping.

4.6 Neural Networks

Neural Networks (NN) are a class of ML models inspired by the structure of the
human brain. They are composed of layers of interconnected neurons, where each
neuron computes a weighted sum of its inputs and applies an activation function to
the result. The output of the neuron is then passed to the next layer of neurons until
the final output is produced. In this section, we will introduce some common types of
Neural Networks layers and architectures.
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Dense Layer

The Dense layer is the most common type of layer used in Neural Networks. It is
composed of a set of neurons, where each neuron computes a weighted sum of its
inputs and applies an activation function to the result:

𝑓(𝑥) = 𝜎(𝑊𝑥+𝑏) (4.17)

where 𝑓(𝑥) is the output of the neuron, 𝜎 is the activation function, 𝑊 is the weight
matrix, 𝑥 is the input vector, and 𝑏 is the bias vector. The output of the neuron is
then passed to the next layer of neurons until the final output is produced.

Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a class of Neural Networks that are designed
to process structured data, such as images or videos. They are composed of layers of
neurons that apply convolutional filters to the input data, followed by pooling layers
that reduce the spatial dimensions of the data. Some key concepts of CNN include
convolution which is a process involving applying a filter on small regions of the input
data. This filter slides through the input creating a map of the features highlighting
specific patterns or characteristics of them. Applying the filter to multiple locations
of the input means that the model’s weight is shared leading to another key feature
of the CNNs, which is translation invariance, i.e. the model is insensitive to shifts
or translation of patterns within the input. Another important concept is pooling,
which is a process that reduces the spatial dimensions of the data by aggregating the
values of neighboring pixels. This helps to reduce the computational complexity while
maintaining important information. An example of this process can be seen in the
figure 4.1. In this section, we will introduce some common types of layers used in
CNNs.

Convolutional Layer

The Convolutional layer is the core building block of Convolutional Neural Networks.
It applies a set of convolutional filters to the input data, which allows the model to
learn spatial patterns in the data. The output of the Convolutional layer is a set of
feature maps, where each feature map corresponds to a different filter. The layer can
be defined as:

𝑓(𝑥) = 𝜎(
𝑁

∑
𝑖=0

(𝑊 ∗𝑥𝑖)+𝑏) (4.18)

where 𝑓(𝑥) is the output of the Convolutional layer, 𝜎 is the activation function, 𝑊 is
the convolutional filter, 𝑥𝑖 is the 𝑖-th subset of the input data, N is the total number
of subsets, and 𝑏 is the bias vector.

Pooling Layer

The Pooling layer is a type of layer used in Convolutional Neural Networks to reduce
the spatial dimensions of the data. It applies a pooling operation to the input data,
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Figure 4.1: Example of a filter applied to a two-dimensional input to create a feature
map. The filter slides through the input data, creating a map of the
features. The image is taken from [66]
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Figure 4.2: Example of an adjacency matrix of a graph. The matrix is symmetric,
with 1s indicating the presence of an edge between two nodes. The image
is taken from [67]

which aggregates the values of neighboring pixels. The most common pooling oper-
ation is the max pooling, which takes the maximum value of a set of pixels. Other
examples are the sum pool or the mean pool that, as suggested by their name, takes
respectively the sum and the average of the scanned pixels.

Graph and Point Cloud Neural Networks

Graph Neural Networks (GNN) are models that operate on structured data called
graphs. A graph is defined as 𝐺 = (𝑉 ,𝐸) where 𝑉 are the nodes and 𝐸 are the
edges connecting the nodes and giving a description of the relationship between them.
𝐴 ∈ ℝ𝑁𝑥𝑁, with 𝑁 = |𝑉 | is the adjacency matrix of the graph, where 𝐴𝑖𝑗 = 1 if there
is an edge between nodes 𝑖 and 𝑗, and 𝐴𝑖𝑗 = 0 otherwise. Fig. 4.2 shows an example
of an adjacency matrix.

There are different kinds of graphs depending on their structure [68]:
• Directed/Undirected Graphs: if the edges have a direction, i.e. they go from

one node to another providing more information about the relationship between
the nodes. The undirected scenario can be seen as a directed graph where the
edges are bidirectional.

• Homogeneous/Heterogeneous Graphs: if the nodes are of the same type,
the graph is homogeneous, otherwise it is heterogeneous.

• Static/Dynamic Graphs: Graphs can evolve over time, making the latter an
important feature to keep track of in dynamic graphs.

These scenarios can be combined, meaning that a graph can be directed, static, and
heterogeneous at the same time.

Design of the Loss Function

For GNN the target of the loss function can vary with the problem at hand. For graph
classification, there are usually three types of tasks:

• Node Classification: the task focuses on nodes, categorizing them into classes,
and performing regression or clustering.
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• Graph Classification: the task focuses on the overall structure of the graphs.
• Link Prediction: in this case the focus is on the edges, classifying them or

predicting whether there is an edge between two nodes.

Message Passing Layer

The Message Passing Layer is the core idea behind GNNs and all the variety of layers
developed for this kind of network. The idea is to have a permutational-equivariant
layer, meaning its output varies according to the variation of the input, that maps the
features in an updated version of the graph, based on the information of the neighbors
indicated by 𝐴. Let 𝐽𝑢 be the neighbors of node 𝑢 ∈ 𝑉, 𝑥𝑢 the features of the node,
and 𝑒𝑢𝑣 the features of edge (𝑢,𝑣). The message-passing layer can be defined as:

h𝑢 = 𝜙(x𝑢, ⨁
𝑣∈𝐽𝑢

𝜓(x𝑢,x𝑣,e𝑢𝑣)), (4.19)

where 𝜙 and 𝜓 are differentiable functions that can be identified as the neural networks,
and ⨁ is a permutation-invariant function that aggregates the information from the
neighbors, e.g. the sum, mean, or max of the elements.
Point Cloud networks are closely related to graph neural networks, as they operate
on unstructured data, such as 3D shapes of objects, that are invariant over rotations
and translations. The main idea behind Point Cloud networks is to treat the points
as nodes of a graph, but no edges are defined and no adjacency matrix is used. The
points are treated as unordered sets, and the network is trained to learn the underlying
structure of the data.

4.7 Conclusion

In this chapter, we have introduced the basic concepts of Machine Learning, underlying
methodology, and evaluation metrics. We have also discussed some common optimiza-
tion algorithms used in ML, such as Gradient Descent, Momentum, and Adam. We
have introduced some common loss functions used in ML, such as Mean Squared Error
and Binary Cross-Entropy. We have also introduced some common evaluation metrics
used in ML, such as Accuracy, Precision, and Recall. We have discussed some com-
mon challenges of ML, such as Overfitting, Underfitting, and Vanishing and Exploding
Gradients. We have introduced some common types of Neural Networks layers and
architectures, such as Dense Layers and Convolutional Neural Networks. Finally, we
have introduced the basic concepts of Generative Adversarial Networks, Graph Neural
Networks, and PointCloud Neural Networks. In the next chapter, Generative machine
learning and some key concepts related to it will be introduced.
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5 Generative Machine Learning

In recent years, generative machine learning has become an increasingly popular area
of research in machine learning and artificial intelligence. Generative models are used
to generate new data points that follow the same training data distribution and have
a wide range of applications, including image generation, text generation, and data
augmentation. Some popular examples of such models known to the public are Ope-
nAI’s DALL-E and GPT, NVIDIA’s StyleGAN, and Stability AI’s Stable Diffusion.
These same concepts can be applied to high-energy physics to speed up the classical
simulation processes based on Monte Carlo methods.

This chapter introduces the concept of generative machine learning (GML) and
some of its applications, followed by some of the most popular generative models,
including generative adversarial networks (GANs), variational autoencoders (VAEs),
and diffusion and flow models.

5.1 Generative Adversarial Networks

Generative Adversarial Networks (GAN)[69] are a class of Neural Networks designed
to generate new data samples that follow the training data distribution. They are
composed of two networks: a generator network that generates new data samples, and
a discriminator network that discriminates between real and generated data samples.
The generator network is trained to generate data samples indistinguishable from the
training data. In contrast, the discriminator network tries to discern between real and
generated data samples. GANs are powerful models that can learn complex patterns
in the data, and they have been successfully applied to a wide range of tasks, from
image generation to text generation. In this section, the basic concepts of GANs will
be introduced.

Generator and Discriminator Networks

The Generator (G) network is a Neural Network that takes a random noise vector
as input and generates new data samples and can be defined as 𝐺(𝑧,𝜃𝐺), where 𝑧 is
the random noise vector and 𝜃𝐺 are the parameters of the Generator network. The
Discriminator (D) network takes a sample as input and discriminates between real and
generated samples and can be seen as 𝐷(𝑥,𝜃𝐷), where 𝑥 is the data sample and 𝜃𝐷
are the parameters of the D. The training process of a GAN is based on a minimax
game between G and D networks and it is schematized in Figure 5.1. The minimax
game is a concept derived from game theory where in a game between two players,
one player tries to minimize the value (the loss in our case) that the other player can
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Figure 5.1: Generative Adversarial Network schematization. The Generator is trained
to produce samples that mimic the data starting from noise. Then its
output is fed alongside the real dataset to the discriminator which is trained
in a supervised fashion to distinguish between the two. The decision made
by the discriminator is then used as feedback to improve the Generator’s
capabilities.

force them to receive. In the case of the loss of the GAN is then formalized as:

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = 𝔼𝑥∼𝑝data(𝑥)[log𝐷(𝑥,𝜃𝐷)]+𝔼𝑧∼𝑝𝑧(𝑧)[log(1−𝐷(𝐺(𝑧,𝜃𝐺),𝜃𝐷))] (5.1)

where 𝑉 (𝐷,𝐺) is the value function of the GAN, 𝑝data(𝑥) is the distribution of the
training data, 𝑝𝑧(𝑧) is the distribution of the random noise vector, 𝐷(𝑥) is the output
of the D, 𝐺(𝑧) is the output of the G network. We can think of this as an iterative
process where the D discovers imperfections in the G and the Generator uses the
feedback from the D to improve its performance. The training process is based on
the idea of ideally finding a Nash equilibrium between G and Ds, another concept
from game theory where each of the players cannot do better by unilaterally changing
strategy. The end result is a situation where G generates data samples that are
indistinguishable from the training data for D.

Mode Collapse

One of the main challenges of training GANs is mode collapse, where the generator
learns to generate only a few modes of data distribution, instead of capturing the
entire distribution. This can happen if the discriminator is too weak or has hit a local
minimum and the generator finds a subset of the distribution that constantly fools
D, leading G to generate the same samples. There are several techniques to prevent
mode collapse, including minibatch discrimination, feature matching, and spectral
normalization.
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5.2 GAN variants

Since the introduction of GANs, there have been many variants and extensions pro-
posed to improve the training stability and performance of GANs. Some of the
most popular GAN variants include conditional GANs, Wasserstein GANs, and Least
Squares GANs.

Conditional GANs

Conditional GANs [70] are a variant of GANs where both G and D are conditioned
on some extra information y. That could be any kind of complementary information,
from a label to a convoluted distribution. The objective function of a Conditional
GAN is defined as:

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = 𝔼(𝑥,𝑦)∼𝑝data
[log𝐷(𝑥,𝑦,𝜃𝐷)]+

+𝔼𝑧∼𝑝𝑧(𝑧),𝑦∼𝑝data(𝑦)[log(1−𝐷(𝐺(𝑧,𝑦,𝜃𝐺),𝑦,𝜃𝐷))] (5.2)

This allows the generator to produce samples based on some condition, such as a label,
a class, or some physical property.

Wasserstein GANs

Wasserstein GANs [71, 72] (WGAN) are a variant of GANs that use the Wasserstein
distance described in Section 4.4 as the loss function. The WGAN value function is
defined using the Kantorovich-Rubinstein duality:

𝑉 (𝐷,𝐺) = 𝔼𝑥∼𝑝data(𝑥)[𝐷(𝑥)]−𝔼𝑧∼𝑝𝑧(𝑧)[𝐷(𝐺(𝑧))] (5.3)

where 𝐷(𝑥) is the output of the discriminator for real data, and 𝐷(𝐺(𝑧)) is the out-
put of the discriminator (or even better the critic as it’s not trained to classify) for
generated data. The WGAN results in a critic whose gradient is better behaved than
the discriminator in the original GAN, leading to more stable training and better
performance and making the generator optimization an easier task.

Least Squares GANs

Least Squares GANs [73] (LSGAN) have been designed to tackle the problem of van-
ishing gradient in the “vanilla” GAN caused by the sigmoid cross entropy loss function
to make the gradient vanish. The objective of the LSGAN is defined as:

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = 1
2

𝔼𝑥∼𝑝data(𝑥)[(𝐷(𝑥)−1)2]+ 1
2

𝔼𝑧∼𝑝𝑧(𝑧)[(𝐷(𝐺(𝑧)))2] (5.4)

where 𝐷(𝑥) is the output of the discriminator for real data, and 𝐷(𝐺(𝑧)) is the output
of the discriminator for generated data. The benefit of this loss can be seen in two
aspects. Unlike vanilla GAN, which causes almost no loss for samples that lie on
the correct side of the decision boundary, but are still far from the original data,
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LSGAN still punishes such samples even though they are correctly classified. As a
result, the generator will produce samples that come closer to the decision boundary.
Secondly, penalizing these samples relieves the problem of vanishing gradients as the
loss function is only flat at one point, unlike the sigmoid function, thus reducing the
vanishing gradients’ criticality and providing a more stable training performance.

5.3 Flow Models

Flow models are a class of generative models that are based on the idea of transforming
a simple distribution into a complex one with a series of invertible transformations that
change the input data space into a latent space during training, and then transform
them back into the input space during sampling. By applying repeatedly the change of
variables rule, the data space distribution “flows” through the series of operations to
the latent space distribution. Finally, one can obtain the prior distribution and for this
reason, this type of algorithm is called “normalizing flow”. Flow models are trained by
maximizing the log-likelihood of the data under the flow process. In this section, the
basic concepts of flow models will be introduced along with some of the most popular
flow models, including normalizing flows and continuous normalizing flows.

Normalizing Flows

The most basic flow model is the normalizing flow schematized in Figure 5.2, which is
a sequence of invertible transformations that map a simple distribution to a complex
distribution. One can describe this process with the following equation:

𝑧 = {𝑓𝐾 ∘ 𝑓𝐾−1 ∘…∘𝑓1}(𝑥) (5.5)

where 𝑥 is the input data, 𝑧 is the latent representation, and 𝑓𝑖 are the invertible trans-
formations. The log-likelihood of the data under the flow process can be computed
using the change of variables formula:

log𝑝(𝑥) = log𝑝(𝑧)+ log ∣det 𝜕𝑓
𝜕𝑥

∣ (5.6)

where 𝑝(𝑧) is the prior distribution in the latent space, and det 𝜕𝑓
𝜕𝑥 is the determinant

of the Jacobian matrix of the transformation 𝑓. The log-likelihood can be maximized
using gradient-based optimization methods, such as stochastic gradient descent.

Affine Coupling Layers

One of the most popular types of invertible transformations used in flow models is
the affine coupling layer. This layer is a bijective transformation that splits the input
data into two parts and applies an affine transformation to one part while leaving the
other part unchanged. Let 𝑥 ∈ ℝ𝑑 be the input data, and 𝑥1 ∈ ℝ𝑑2 and 𝑥2 ∈ ℝ𝑑2 be
the split components of the input data. The affine coupling layer transforms 𝑥2 using
𝑥1 as follows:

𝑦1 = 𝑥1, 𝑦2 = 𝑥2 ⊙ exp(𝑠(𝑥1))+𝑡(𝑥1) (5.7)
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Figure 5.2: Normalizing Flow schematization. The input data is transformed into a
latent space using a series of invertible transformations. During sampling,
the latent space distribution is then transformed back into the input space.
Image from [74]

where 𝑠(𝑥1) ∈ ℝ𝑑2 and 𝑡(𝑥1) ∈ ℝ𝑑2 are the scaling and translation functions of 𝑥1
parametrized by neural networks, and ⊙ is the element-wise multiplication. The op-
eration is easily invertible:

𝑥1 = 𝑦1, 𝑥2 = (𝑦2 −𝑡(𝑦1))⊙ exp(−𝑠(𝑦1)) (5.8)

and the Jacobian matrix is not hard to get and is given by the lower triangular matrix:

𝐽 = [
𝐼 0

𝜕𝑦2
𝜕𝑥1

diag(exp(𝑠(𝑥1))) ] (5.9)

for which the determinant is computed as the product of its diagonal elements:

det 𝜕𝑓
𝜕𝑥

= exp(∑
𝑖

𝑠𝑖(𝑥1)) (5.10)

To ensure that all inputs undergo some alteration, the ordering of the dimensions
is shuffled at each layer. This is done to avoid the problem of the model ignoring the
dimensions of the input data.

Continuous Normalizing Flows

Instead of a discrete sequence of transformations, it is possible to expand the idea of
normalizing flows by considering a continuous sequence of transformations where the
latent space can be defined as a time-dependent function. Its evolution can then be
described by an ordinary differential equation:

𝑑𝑧(𝑡)
𝑑𝑡

= 𝑣𝑡(𝑧(𝑡), 𝑡;𝜃) (5.11)

where 𝑣𝑡 is a time-dependent vector field that defines the flow of the data through
the latent space. This is parametrized by theta and modeled with a neural network.
Equation (5.11) is known as the neural ordinary differential equation [75]. The vector
field defines a probability density path 𝑝𝑡 of the latent space, describing how 𝑧(𝑡)
evolves over time. At time 𝑡 = 0, 𝑝0(𝑧0) is the prior distribution, and at time 𝑡 = 1,
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Figure 5.3: Comparison of normalizing flow (left) to continuous normalizing flow
(right). Normalizing flow defines a discrete set of transformations, while
the ODE defines a vector field that continuously changes the state. Taken
from [75]

𝑝1(𝑧1) is the distribution of the data. The log-likelihood of the data under the flow
process can be computed using the change of variables formula:

log𝑝(𝑥) = log𝑝(𝑧)+∫
1

0
∇⋅𝑣𝑡(𝑧(𝑡))𝑑𝑡. (5.12)

Once the model is trained, it is possible to sample from the base distribution 𝑝0(𝑧0),
typically a standard normal distribution, and solve the ODE to obtain the data distri-
bution. Figure 5.3 shows the schematization of a continuous normalizing flow vector
field compared to a discrete normalizing flow.

Flow Matching

Flow matching [76] introduces a shift in the training paradigm of continuous normal-
izing flows.
Let 𝑧 be a random variable with an unknown distribution 𝑞data(𝑧). It is possible to
define a time-dependent distribution 𝑝𝑡(𝑧) such that at time 𝑡 = 0 𝑝0 matches a simple
distribution, e.g. a standard normal distribution, and at time 𝑡 = 1, 𝑝1 is a distribution
that closely approximates 𝑞data(𝑧). We can then deterministically obtain the vector
field 𝑢𝑡 that generates 𝑝𝑡. Given now this vector field 𝑢𝑡, we can define the Flow
Matching loss function as:

𝐿(𝜃) = 𝔼𝑡∼𝕌,𝑝𝑡(𝑧)
[‖𝑣𝑡(𝑧)−𝑢𝑡(𝑧)‖2] (5.13)

where 𝜃 are the parameters of the neural network that defines the vector field 𝑣𝑡,
and 𝑧 ∼ 𝑝𝑡(𝑧). The meaning of the loss is that we regress the vector field 𝑢𝑡 with the
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neural network 𝑣𝑡 and once the loss is minimized, the vector field 𝑣𝑡 will generate the
distribution 𝑝𝑡 that approximates the data distribution 𝑞data(𝑧). Ref. [76] shows that
it is possible to construct 𝑝𝑡 and 𝑢𝑡 from conditional probability paths and vector fields.

5.4 Diffusion Models

Diffusion models have grown popular in recent years in the field of generative machine
learning for tasks such as image generation and data augmentation. The core idea is
to train a network by gradually perturbing the input data until they follow a normal
distribution and then learn the transformation to reverse the perturbation. In this
section, we will introduce the basic concepts of diffusion models and some of the
most popular diffusion models, including denoising diffusion probabilistic models, and
k-diffusion.

Denoising Diffusion Probabilistic Models

The first concept of a diffusion model was proposed by Sohl-Dickstein et al. [77] in
2015 and is based on the idea of building a Markov chain that gradually converts one
distribution to another. In more technical terms, we can consider a random variable
𝑧0 ∼ 𝑞(𝑧0) and latent variables 𝑧1,…,𝑧𝑇, where the index 𝑡 represents the time step
and 𝑇, is the total number of steps.

The joint distribution 𝑞𝜃 is refered to as reverse process or, in other words, the
process of removing the noise from the input data. This is defined as a Markov chain
of learned Gaussian transition and is described as:

𝑞(𝑧0∶𝑇) = 𝑞(𝑧𝑇)
𝑇

∏
𝑡=1

𝑞𝜃(𝑧𝑡−1|𝑧𝑡) (5.14)

where:
𝑞𝜃(𝑧𝑡−1|𝑧𝑡) = 𝒩(𝑧𝑡−1;𝜇𝜃(𝑧𝑡, 𝑡),Σ𝜃(𝑥𝑡, 𝑡)) (5.15)

describes every link in the chain that starts at 𝑞(𝑧𝑡) = 𝒩(𝑧𝑡;0,ℐ). 𝜇𝜃 and Σ𝜃 are
the mean and covariance of the Gaussian transition that is parametrized by a neural
network with parameters 𝜃 that take as input the data 𝑧𝑡 and the time step 𝑡 with
1 ≤ 𝑡 ≤ 𝑇. On the other hand, in the diffusion models forward process the posterior
𝑞(𝑋1∶𝑇 |𝑥0

) is bounded to a Markov chain that adds Gaussian noise at each step with
a well-defined variance schedule 𝛽1,…,𝛽𝑇:

𝑞(𝑥1∶𝑇|𝑥0) =
𝑇

∏
𝑡=1

𝑞(𝑥𝑡|𝑥𝑡−1) (5.16)

where:
𝑞(𝑥𝑡|𝑥𝑡−1) = 𝒩(𝑥𝑡;√1−𝛽𝑡𝑥𝑡−1,𝛽𝑡𝕀) (5.17)

The training of the model is done by optimizing the variational bound on negative
log-likelihood, also known as ELBO:
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Figure 5.4: Shown is a schematic view of the diffusion process during training (arrow
pointing to the right) and sampling (arrow to the left). During training
the picture is gradually perturbed to obtained a progressively more noisy
image and at eache step the model is trained to learn how to recognise the
added noise and reverse the process. During sampling, the trained models
starts with noise and step by step removes the noise to produce a sample
from the target distribution. Taken from [78]

.

𝔼[− log𝑝𝜃 (x0)] ≤ 𝔼𝑞 [− log 𝑝𝜃 (x0∶𝑇)
𝑞(x1∶𝑇 ∣ x0)

] =

= 𝔼𝑞 [− log𝑝(x𝑇)−∑
𝑡≥1

log 𝑝𝜃 (x𝑡−1 ∣ x𝑡)
𝑞(x𝑡 ∣ x𝑡−1)

] =∶ 𝐿 (5.18)

Sampling at any time step 𝑡 is allowed in closed form in the forward process. Using
the notation 𝛼𝑡 ∶= √1−𝛽𝑡 and ̄𝛼𝑡 ∶= ∏𝑡

𝑠=1 𝛼𝑠 we obtain:

𝑞(𝑥𝑡|𝑥0) = 𝒩(𝑥𝑡;
√𝛼𝑡𝑥0, (1− ̄𝛼𝑡)𝕀) (5.19)

A schematic view of the training and sampling processes is shown in Figure 5.4

Score Matching

The DDPM model just introduced is based on the idea of denoising the input with
a fixed number of steps. One can also consider the idea of denoising the input with
an infinite number of steps, which leads us to the idea behind the score-matching
method also known as k-diffusion. Score matching [79] is a method for estimating the
score function of a probability distribution. The denoising process can be described
by stochastic differential equations (SDE). The score function is the gradient of the
log-likelihood of a probability distribution for the data x:

𝑠(𝑥) = ∇𝑥 log𝑝(𝑥). (5.20)

With this knowledge, it is possible to model the original data density and hence pro-
duce new samples by approximating 𝑠 with a neural network. This has the quality
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to change the goal of the training to a simpler task in which we can regress the score
function of the data distribution to the score function of the model distribution using
the standard MSE loss:

𝐿SM(𝜃) = 1
2

𝔼x∼𝑝data (x) [‖s(x)−∇x log𝑝data (x)‖2] . (5.21)

Unfortunately, the score for the data is not known a priori, but one can obviate
this by using a predetermined noise distribution 𝑞𝜎( ̂x|x) to perturb the data so that
score matching can be used to estimate the score of the polluted data distribution
𝑞𝜎( ̂x) = ∫𝑞𝜎( ̂x ∣ x)𝑝data (x)𝑑x. The denoising score matching function can then be
written as:

𝐿SM(𝜃) = 1
2

𝔼x∼𝑝data (x), ̂x∼𝑞𝜎(x̂∣x) [‖s(x̂)−∇ ̂x log𝑞𝜎(x̂ ∣ x)‖2] . (5.22)

The most common choice for the noise distribution is the Gaussian distribution
𝑞𝜎( ̂x ∣ x) = 𝒩(x̂;x,𝜎2𝕀) that allows for the score function to be computed in closed
form assuming 𝜖 = x̂−x can be sampled from the standard normal distribution:

∇ ̂x log𝑞𝜎(x̂ ∣ x) = − 𝜖
𝜎2 . (5.23)

The score matching loss can then be computed as:

𝐿SM(𝜃) = 1
2

𝔼x∼𝑝data (x),𝜖∼𝒩(0,𝕀) [∥s(x+𝜎𝜖)+ 𝜖
𝜎2 ∥

2
], (5.24)

which means that we are computing the MSE between the output score of the model
and the noise vector 𝜖.
Training has proved to be very stable and has shown to be able to generate high-
quality samples as we will see in Section 9 where we will introduce the application of
such model to the very challenging setup provided by the CMS HGCal.
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6 Shared Data and Algorithms for
Physics Data

High-quality training data are a critical resource for progress in machine learning, with
curated benchmark datasets facilitating reliable comparisons and sustained advance-
ments. Renowned benchmarks like MNIST [80], CIFAR [81], and ImageNet [82] have
significantly contributed to the success of deep learning in image processing. Similarly,
fundamental physics relies on datasets and challenges [83–86], which drive continuous
progress.

Physics data poses unique challenges due to diverse representations stemming from
varying experimental designs and theoretical frameworks. Representations include
high-level observables [83], images [87], sequences [88], point clouds [89], graphs [90],
and hybrid formats [91]. While domain-specific approaches are feasible, they lead to
inefficiencies and redundant efforts. Instead, flexible architectures compatible with
multiple data sources can enhance the accessibility and utility of deep learning in
scientific applications.

This chapter will describe the pd4ml Python package introduced in 2021, which
unifies datasets across experimental and theoretical domains, to which the writer of
this thesis was a main contributor by both setting up the provided datasets, writing a
big part of the codebase, and performing training and evaluations to verify the claimed
gain of the work. This work lead to a publication [92] upon which this chapter is based.

Unlike existing domain-specific collections, pd4ml simplifies access through a con-
sistent, ready-to-use interface, minimizing preprocessing requirements. It focuses on
supervised learning tasks, providing clear performance metrics such as accuracy and
AUC for classification and resolution for regression tasks. All datasets are accompa-
nied by reference implementations of state-of-the-art algorithms.

Included datasets span diverse physics domains:
• Top tagging in LHC simulations [85];
• Event selection in Belle II simulations [93];
• Phase transition detection in nuclear collisions [94];
• Phase transition classification with domain adaptation [95];
• Shower maximum reconstruction in cosmic-ray observatories.
These datasets cover particle physics, flavor physics, hadronic and nuclear physics,

and astroparticle physics. Contributions of new supervised learning tasks are encour-
aged and supported via a streamlined submission protocol 1.

Given the diversity of physics data, the choice of representation and network ar-

1Details available at https://github.com/erum-data-idt/pd4ml
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Table 6.1: Overview of the provided datasets.
Task Examples Structure Dimension

(train/test/validation)
Top Tagging Landscape Class. 1.2M/400k/400k Four vectors 200 particles, 4 features/particle
Smart Backgrounds Class. 157k/39k/84k Decay Graph 100 particles, 9 features/particle
Spinodal or Not Class. 16.3k/4k/8.7k 2D Histogram 20x20 histogram of pion spectra
EoS Class. 121k/25k/54k 2D Histogram 24x24 histogram of pion spectra
Air Showers Regr. 56k/30k/14k 81 1D Traces 81 stations, 80 signal bins + timing

chitecture is pivotal. Fully-connected networks (FCNs) are broadly applicable but
lack efficiency and risk overfitting, while problem-specific architectures require fine-
tuning. A middle ground, such as graph-based representation, was chosen as it was
an emerging technology that could balance generalizability and performance. Graphs,
composed of nodes and edges, enable message-passing mechanisms for processing data,
as elaborated in Section 6.3. Each dataset includes a strategy for graph representation.

The chapter is structured as follows: datasets and tasks are briefly introduced in
Sec. 6.1, the Python interface is detailed in Sec. 6.2, and model comparisons between
fully-connected and graph-based architectures are discussed in Sec. 6.3. A summary
and outlook are presented in Sec. 6.4, with reference architectures provided for all
tasks. As this work has already been published, the following sections are based on
the original publication [92], and some of the images can be the same as in the original
publication.

6.1 Datasets

An overview of the included datasets is given in Table 6.1 and in the following, addi-
tional information on the physics challenge, data generation process, and other details
are given for all datasets.

Top Tagging Landscape

Tagging particles based on their decay products is a key task at the LHC, especially
for identifying hadronically decaying top quarks with high Lorentz boosts, which are
crucial in exploring physics beyond the Standard Model.

The top tagging dataset [96], designed for benchmarking classification algorithms [85],
allows direct comparisons between general and state-of-the-art methods. It includes
jets generated with Pythia [97], simulated using Delphes [56], and reconstructed
with the Anti-k𝑇 algorithm [98] in FastJet [99]. The dataset provides the 200 con-
stituent four-vectors of the highest transverse momentum jet per event, with zero-
padding for smaller jets, comprising 1.2M training and 400k testing and validation
examples. Further details are in Ref. [85].
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Smart Backgrounds

Simulation poses significant computational challenges for experiments like Belle II,
which require large-scale simulated datasets alongside measured data. The simulation
process includes fast event generation, simulating decay chains, and resource-intensive
detector simulation and reconstruction. Background generation must account for all
possible decay chains, but stringent selection criteria typically retain only a tiny frac-
tion of simulated background events—often as low as 10−7. This results in considerable
wasted computing resources.

Efficiency can be improved by filtering events after generation, a step that uses
only about 0.1% of the total simulation time. Predicting which events will pass fi-
nal selection without full simulation is a classification problem initially tackled using
CNNs [100] and later enhanced with graph neural networks [93].

The Smart Backgrounds dataset includes simulated 𝑒+𝑒− → Υ(4𝑆) → 𝐵0�̄�0 decays
generated with EvtGen [101]. Features include particle four-momentum, production
vertex positions and time, particle types (mapped via PDG identifiers [102]), and
mother-particle indices, enabling graph representation of decay trees. Events contain
up to 100 particles, with zero padding and default values for shorter decay chains.

Labels indicate whether an event passes filtering criteria based on the Full Event In-
terpretation (FEI) algorithm [103], which reconstructs hadronic 𝐵 decays post-detector
simulation. The FEI’s broad applicability results in a relatively high retention rate of
5%, meaning one in 20 simulated background events is labeled as passed.

Spinodal or Not

The spinodal dataset [104] is a simulated dataset designed to study the effects of non-
equilibrium deconfinement phase transitions in relativistic nuclear collisions, providing
insight into the strong interaction in high baryon density regimes. These investigations
are crucial for understanding QCD phenomena like deconfinement and mass genera-
tion. The Compressed Baryonic Matter (CBM) experiment at FAIR (GSI Darmstadt)
aims to explore these properties by colliding heavy nuclei (e.g., lead or uranium) at
several GeV per nucleon, creating short-lived equilibrated systems with high-density
and temperature.

The dataset is based on fluid dynamical simulations of heavy-ion collisions under
two scenarios: one with spinodal decomposition (characterized by phase separation and
exponential density fluctuation growth) and one without. The aim is to identify events
with spinodal decomposition and understand their distinguishing features compared
to non-spinodal events. High classification accuracy is critical for determining whether
all simulated spinodal events exhibit the expected characteristics.

The dataset contains 27,000 central lead-on-lead collision events at a beam energy
of 𝐸lab = 3.5𝐴 GeV for each scenario. Each event is represented as a 20×20 pixel his-
togram of the net baryon density distribution in the transverse 𝑋-𝑌 plane, normalized
per event to mitigate artifacts. These histograms are flattened into 400-column arrays
for classification tasks. Further details on the physics motivation and methodology
are available in Ref. [94, 105].
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EoS

The EoS dataset is based on relativistic hydrodynamic simulations, including hadronic
cascade afterburners, to study high-energy heavy-ion collisions and investigate the
QCD phase structure. Specifically, these collisions aim to locate the critical end-
point (CEP) in the QCD phase diagram, which separates crossover transitions from
first-order phase transitions between hadronic matter and quark-gluon matter. Ex-
periments at RHIC, LHC, FAIR, and NICA provide abundant data, but traditional
methods of identifying critical fluctuations face challenges due to weak signals and
complex physical factors.

This dataset reframes the problem as a deep learning classification task to explore
the nature of the QCD transition encoded in the equation of state (EoS) used in the hy-
drodynamic simulations. Simulations were performed with the iEBE-VISHNU hybrid
model using event-by-event hydrodynamics combined with MC-Glauber and MC-KLN
initial condition generators. Two EoS types are considered: a crossover EoS from lat-
tice QCD and a first-order EoS with Maxwell construction. The simulations include
stochastic particleization, resonance decays, and hydronic cascades via UrQMD, with
varying physical parameters to ensure robustness and reduce biases.

Each event in the dataset is labeled as either EOSL (crossover EoS) or EOSQ (first-
order EoS) and represented as a 2D histogram of pion spectra with 24 transverse
momentum bins and 24 azimuthal angle bins. This format serves as the input for deep
learning models. Previous studies demonstrated the ability of CNNs to classify the
EoS with high accuracy and robustness against other physical variations [106–108].
This dataset facilitates further exploration of QCD phase transitions through machine
learning.

Cosmic-ray induced Air Showers

When ultra-high-energy cosmic rays (UHECRs) enter Earth’s atmosphere, they pro-
duce extensive air showers, which can be detected by ground-based observatories using
water-Cherenkov detectors or scintillators. Each detector records time-dependent par-
ticle densities as signal traces, which encode information about the shower’s develop-
ment. Of particular interest is 𝑋max, the depth of the shower maximum, which provides
insights into the cosmic-ray mass. While 𝑋max is typically reconstructed using fluo-
rescence telescopes, these instruments have limited duty cycles, making it challenging
to gather sufficient data. Ground-based particle detectors, with their higher uptime,
could greatly improve the statistics for 𝑋max measurements.

The air-shower dataset [109] enables 𝑋max reconstruction using simulations of a
ground-based observatory. The simulated setup is inspired by the Pierre Auger Obser-
vatory and Telescope Array Project, featuring a Cartesian array of detectors spaced
1500 m apart at an altitude of 1400 m. Events are modeled using a fast-simulation
approach [110], with parameterized and simplified shower developments.

To optimize memory usage, the air-shower footprint is reduced to a 9 × 9 detector
array centered on the station with the largest signal. Each station’s data includes
time-dependent signal traces over 80 time steps (25 ns per step) starting from the
first detected signal. Additionally, the arrival time of the first particles is recorded for
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each station. This data structure forms a 2D spatial arrangement with a temporal
dimension, resembling a 3D input for machine learning.

The task is to perform regression to predict 𝑋max from the detector readouts with
high resolution, defined as the standard deviation of the differences between predicted
and true 𝑋max values.

6.2 Python Interface

As it is one of the most commonly used code languages in the machine learning com-
munity, we chose Python as the primary language for the interface of the pd4ml
package.

With minimal coding effort, users can load any of the five datasets, apply dataset-
specific preprocessing, and generate adjacency matrices tailored for graph neural net-
work algorithms. The package is designed to be highly extensible, allowing additional
datasets to be integrated seamlessly through custom wrappers.

The core function, load, facilitates the loading of training and testing datasets.
The dataset features (X) and labels (y) are returned as NumPy arrays [111], ensuring
compatibility with most Python-based machine learning frameworks. Below is an
example demonstrating how to load the training and testing sets for the Spinodal
dataset:

from pd4ml import Spinodal
X_train, y_train = Spinodal.load('train')
X_test, y_test = Spinodal.load('test')

If the specified dataset path is not found, the data is automatically downloaded. A
forced download option is also available, and an MD5 checksum is implemented to
ensure data integrity.

Additionally, the package provides a load_data method, which applies preprocess-
ing routines specified by the dataset providers. Users can load the data in graph
form by setting the graph argument to True. The resulting adjacency matrices are
constructed as detailed in Sec. 6.3. An example is shown below:

X, y = Spinodal.load_data('train',
path='.',
graph=True)

The package also includes functionality to display a dataset’s description by execut-
ing the following command:

Spinodal.print_description()

The output contains both technical details about the dataset (e.g., the number of
events) and references to the relevant scientific literature, providing context on the
underlying physics and reference models.
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Figure 6.1: Schematic representation of the FCN. Additional details are provided in
the text. For classification tasks Sigmoid is used as loss in the final layer,
for regression a linear activation is used instead.

Furthermore, the repository 2 includes a TensorFlow 2.3 [112] implementation
of the reference models described in Sec. 6.3 and the standard models introduced in
Sec. 6.3.

6.3 Example Application

To showcase the utility of a standardized interface for tasks such as transfer learn-
ing, two widely used architectures are considered: Fully Connected Networks (FCNs)
(Sec. 6.3) and Graph Neural Networks (GraphNets) (Sec. 6.3). Both architectures are
trained on all datasets, with the primary difference being adjustments to the number
of input layers specific to each dataset.

Each dataset is also accompanied by a reference model, designed to provide a base-
line for performance comparisons. These models are outlined in Sec. 6.3. For es-
tablished datasets, like the Top Tagging Landscape task, state-of-the-art models are
utilized as benchmarks. For newer datasets, reference implementations are developed
and provided by their creators.

Fully-Connected Network

We employ a foundational Fully Convolutional Network (FCN) architecture for our
experiments across all datasets (Sec. 6.1). This choice eliminates the need for prior
assumptions about data structure, enhancing model versatility.
Our FCN comprises 12 hidden layers, each with 256 nodes and ReLU activation.
While an exhaustive hyperparameter search was not conducted, variations in layer

2https://github.com/erum-data-idt/pd4ml
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(a) Constituent blocks of the Graph-
Net

(b) GraphNet

Figure 6.2: Schematic representation of the GraphNet model. Additional details are
provided in the text.

count, batch size, and learning rate demonstrated minimal impact on results.
The network’s output layer and loss function are task-specific:

• Classification: Sigmoid output and Binary Cross Entropy loss.
• Regression: Linear output and Mean Squared Error loss.

Training involves 256 example batches over 300 epochs. To mitigate overfitting,
early stopping halts training after 15 consecutive epochs without validation loss im-
provement.

The Adam optimizer [113] with an initial learning rate of 0.001 drives the training
process. The learning rate is dynamically adjusted, decreasing by a factor of 10 after
8 epochs without validation loss improvement.

Graph-based Network

Data can often be naturally represented as graphs or transformed into graph struc-
tures without information loss. This approach is particularly applicable in fundamen-
tal physics, where measurement signals can be represented as graph nodes and their
interrelations or the relations between measurement devices as edges. Unlike fully con-
nected networks (FCNs), this representation leverages additional information about
distances and connectivity, which FCNs cannot inherently process.
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For instance, particle jet events involve multiple particles whose order is permuta-
tion invariant but are associated with spatial locations and additional features like
energy, time, and particle type. While jet data is often pre-processed into a 2D image
representation, directly using a graph-based neural network can improve classification
performance [85].

In this work, we consider undirected graphs with 𝑁 nodes, where an edge between
nodes 𝑖 and 𝑗 is equivalent to an edge between 𝑗 and 𝑖. Each node is assigned a feature
vector 𝑛𝑖 ∈ ℝ𝑀, where 𝑀 is the dimension of the feature space. For simplicity, we
focus on unweighted graphs, although edge features could also be incorporated. Each
graph is described by two matrices: the feature matrix 𝑋 ∈ ℝ𝑀×𝑁 and the adjacency
matrix 𝐴 ∈ {0,1}𝑁×𝑁. An entry of 1 in 𝐴 indicates a connection between nodes 𝑖 and
𝑗, while 0 indicates no connection. A dataset is composed of multiple such graphs,
with each data point represented by a feature matrix and an adjacency matrix. Nodes
and edges are stored separately, with node features corresponding to standard data
features and edge connections encoded in the adjacency matrix.

Many data types can be transformed into graphs without losing information. For
instance, image data can be represented as a graph by constructing an adjacency
matrix based on pixel neighbors as shown later in this Section. If absolute pixel
positions are relevant, they can be included as per-node features.

Our GraphNet implementation follows a structure similar to the Smart Backgrounds
reference model described later in thisSsection. Input data are processed in batches
of 32, with training conducted over 400 epochs and regulated by early stopping with
patience of 50 epochs. The Adam optimizer is used, starting with a learning rate of
0.001, which decreases by a factor of 10 if the validation loss does not improve within
8 epochs.

The key distinction between our GraphNet and an FCN is the inclusion of an adja-
cency matrix, which serves as input to graph convolutional layers [114]. The architec-
ture includes three fully connected layers per node with shared weights across nodes,
followed by three graph convolutional layers, a 1D global average pooling operation,
three additional fully connected layers, and an output layer. Batch normalization and
dropout [115] (0.2 for most layers and 0.1 for the last layer) are applied after each
graph convolutional layer. All layers use 256 trainable nodes and PReLU activations
[116], except the output layer, which employs a sigmoid or linear activation depending
on the task (classification or regression). A schematic of the architecture is shown
in Fig. 6.2. Preprocessing follows the same steps as for the FCN, with an additional
dataset-specific step to construct adjacency matrices, as detailed in the next section.

Pre-Processing and Adjacency Matrix

For each dataset, basic preprocessing is applied, closely following the corresponding
reference model methods.

• Top Tagging Landscape Dataset: Data is transformed from four vectors
to four hadronic coordinates: the logarithm of the transverse energy (log(p)T),
the logarithm of the energy (log(E)), the relative pseudorapidity (Δ𝜂), and the
relative azimuthal angle (Δ𝜙).
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Table 6.2: Summary how different structures can be represented as graphs
Dataset Structure Graph building
Top Tagging Landscape Four vectors 𝑘-nearest neighbor clustering
Smart Backgrounds Decay Graph (not needed)
Spinodal or Not 2D Histogram adjacent pixels
EoS 2D Histogram adjacent pixels
Air Showers 81 1D Traces geometric relation of detector stations

• SmartBKG Dataset: Particle ID information is one-hot encoded, while other
features remain unchanged.

• EoS Dataset: Data is standardized.
• Air-Shower Dataset: Preprocessing involves taking the logarithm of the filled

signal bins and normalizing timing values.
• Spinodal or Not Dataset: No preprocessing is performed.
The construction of adjacency matrices is tailored to the characteristics of each

dataset:
• Top Tagging Landscape Dataset (Sec. 6.1): A 𝑘-nearest neighbor clustering (𝑘 =

7) is performed using information from the jet constituents.
• Smart Background (BKG) Dataset: Generator-level particles and their mother-

daughter relationships are used to construct the adjacency matrix.
• EoS and Spinodal Datasets: Both datasets are represented as 2D histograms.

The adjacency matrix is built by counting the eight neighboring bins for each
“pixel” (three at corners and five at edges).

• Air-Shower Dataset: Detectors are arranged in a 9×9 rectangular grid, allowing
adjacency matrix construction based on the same eight-adjacent-bins technique.

A summary of these graph-building methods is presented in Table 6.2.

Reference Models

To assess the performance of our dataset-independent algorithms, we compare them
against reference models. These models, tailored to each dataset, represent the best
achievable performance for the specific problem.

Top Tagging Landscape

The ParticleNet algorithm [117] serves as the reference model for the Top Tagging
Landscape dataset. This architecture was among the top-performing models in a
prior comparison study on this dataset [85].

ParticleNet employs a graph convolutional network (GCN) by treating the input
data as point clouds, where each jet is represented as an unordered set of particles.
To construct these point clouds, particles within each jet are sorted by transverse
momentum and zero-padded to a maximum of 100 particles per jet. Seven input
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features are derived from the particles’ four-momenta:
1. The logarithm of the transverse energy (log(𝑝T)),
2. The logarithm of the energy (log(𝐸)),
3. The relative pseudorapidity (Δ𝜂),
4. The relative azimuthal angle (Δ𝜙),
5. The logarithm of the particle’s transverse momentum relative to the jet’s trans-

verse momentum (log(𝑝T/𝑝jet
T )),

6. The logarithm of the particle’s energy relative to the jet’s energy (log(𝐸/𝐸jet)),
and

7. The angular separation between the particle and the jet axis defined as Δ𝑅 =
√(Δ𝜂)2 +(Δ𝜙)2.

Relative angles are calculated with respect to the jet axis. Using these inputs, a
graph is constructed for each jet by performing a standard 𝑘-nearest neighbor search
(𝑘 = 7) to determine the closest particles.

The ParticleNet architecture consists of three EdgeConv layers [118], followed by
a global pooling operation across all particles to ensure permutation invariance, and
concludes with two fully connected layers.

Smart Backgrounds

The event decay tree’s graph structure is particularly well-suited for graph neural
networks (GNNs), with graph convolutional layers [114] enabling high classification
performance.

In this approach, particle PDG identifiers are passed through an embedding layer
to generate an 8-dimensional embedding, which is concatenated with an additional
8-dimensional feature vector. The resulting 16-dimensional particle features are input
into three fully connected layers with shared weights across all particles, followed by
ReLU activations.

Subsequently, three graph convolutional layers process the data, utilizing an adja-
cency matrix constructed from the indices of mother particles. This matrix is sym-
metrized to account for both mother-daughter and daughter-mother relationships. The
output is reduced to event-level quantities by averaging the resulting vectors across
the particle dimension.

These event-level features are further processed through three additional fully con-
nected layers with ReLU activations and a final fully connected layer with a sigmoid
activation function to produce the classification score. All hidden layers, including the
graph convolutional layers, comprise 128 units.

Spinodal or Not

Given the 20x20 histogram format of the simulated output data, we utilize a convolu-
tional neural network (CNN) architecture. This network comprises three convolutional
layers interspersed with pooling layers, followed by a fully connected hidden layer and
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the output layer. The complete structure of the network is shown in Ref.[94].

EoS

Motivated by the success of CNNs in image recognition, we designed a VGG-like CNN
architecture [119] with three convolutional layers followed by fully connected layers
for EoS binary classification. The input to the CNN is an “image” derived from the
pion histogram at minimum rapidity. To mitigate overfitting, we incorporated batch
normalization, dropout, and PReLU activation. For detailed network architecture and
training procedures, please refer to Ref. [107]. Further technical explanations can be
found in Ref. [106].

Cosmic-ray induced Air Showers

To process the time- and space-dependent air-shower footprints, the model employs a
two-part architecture inspired by Refs. [110, 120].
The first component is a recurrent network designed to analyze the signal traces
recorded at each detector station. This component consists of a two-layer subnet-
work of Long Short-Term Memory (LSTM) networks [121], shared across all 9 × 9
detector stations. Each signal trace is processed to extract ten features per station.

The resulting output has an image-like structure (9 × 9 × 10) and is concatenated
with a map of arrival times (9×9×1) to capture spatial correlations. These combined
feature maps are analyzed using convolutional operations in two blocks, separated by
a pooling operation. Each block contains five residual units [122] with convolutional
layers and batch normalization [123]. Following the residual blocks, global max pooling
and dropout are applied.

To accelerate model convergence, a re-normalization layer adjusts the outputs, ini-
tially scaled between 0 and 1, to match the scale of the 𝑋max distribution.

For the reference architecture, preprocessing involved logarithmic rescaling of signal
traces to address variations in signal size and normalizing arrival times relative to the
time measured at the central station (the station with the largest signal). Further
details can be found in Ref. [110].

Performance Evaluation

Model performance was assessed by training each model five times with identical data
but different random initializations. The mean and standard deviation of the resulting
metrics were then computed. For classification tasks, performance was evaluated using
accuracy (the proportion of correctly classified samples) and the area under the curve
(AUC). For regression tasks, the resolution, as described in Sec. 6.1, served as the
primary metric.
Tables 6.3 and 6.4 provide an overview of the accuracy and AUC results, respectively,
while Fig. 6.3 illustrates relative accuracy compared to the reference model.
The GraphNet delivered performance on par with or close to the reference model
for classification tasks. The largest disparity occurred with the Spinodal dataset,
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Table 6.3: Accuracy scores of the different models. Provided are the mean value and
its standard deviation of five independent pieces of training on the same
data.

Reference GraphNet FCN
TopTag 0.940 ± 0.001 0.935 ± 0.001 0.908 ± 0.001
SmartBkg 0.823 ± 0.001 0.824 ± 0.001 0.737 ± 0.002
Spinodal 0.873 ± 0.004 0.854 ± 0.004 0.824 ± 0.001
EoS 0.691 ± 0.005 0.687 ± 0.005 0.605 ± 0.019

Table 6.4: AUC scores of the different models. Provided are the mean value and its
standard deviation of five independent pieces of training on the same data.

Reference GraphNet FCN
TopTag 0.986 ± 0.001 0.983 ± 0.001 0.966 ± 0.002
SmartBkg 0.906 ± 0.009 0.903 ± 0.001 0.811 ± 0.001
Spinodal 0.925 ± 0.005 0.916 ± 0.005 0.883 ± 0.001
EoS 0.788 ± 0.005 0.766 ± 0.005 0.739 ± 0.008

where the GraphNet trailed the reference model by 2% in AUC and 1% in accuracy.
Compared to the fully connected network (FCN), however, GraphNet demonstrated
considerably better results, with a notable 12% advantage on the EoS dataset.
Regression outcomes for the air-shower dataset (Tab. 6.5) revealed more significant
gaps. The GraphNet showed a 10% decline in resolution compared to the reference
model, while the FCN performed worse by 30%.

6.4 Outlook and Conclusions

The results show that a unified graph-based architecture could achieve near state-of-
the-art performance across diverse tasks using shared hyperparameters. This suggested
the proposed architecture3 could serve as a reliable baseline — or even a default choice
— for machine learning in fundamental physics. The outlined graph construction
methods also provide a flexible framework for adapting various data structures.

3Implementation available at https://github.com/erum-data-idt/pd4ml

Table 6.5: MSE and resolution values measured on the air-shower dataset. Provided
are the mean value and its standard deviation of five independent pieces of
training on the same data.

Air Shower MSE Resolution
Ref. Model 1000 ± 52 31.32 ± 0.75
GraphNet 1185 ± 26 34.12 ± 0.47
FCN 1661 ± 19 40.63 ± 0.40
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Figure 6.3: Performance of the GraphNets and the FCNs relative to the reference
models for the different datasets.

However, the performance gap observed for cosmic-ray air-shower data underscores
the need for further improvements, especially for complex datasets. At the time this
thesis is being written, there are probably more advanced architectures available that
tackle the question of transfer learning. However, this work was one of the earliest to
address the question of transfer learning in the context of fundamental physics to the
knowledge of the writer.
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7 Dynamic Graph Neural Networks
for High-Granular Calorimeters

Particle showers, as previously described, are complex phenomena that are captured
and measured inside calorimeters. In this and some of the next chapters, there will be
a description of the process that finally led us to the development of an ML algorithm
that allowed a significant step forward in the simulation of showers in very complex
and high granular calorimeters. At the beginning of this thesis project, one of the
most popular and discussed technologies was the emerging Graph Neural Networks
already introduced in Sec. 4.6. However, GNNs suffer the curse of dimensionality, as
the number of edges in a graph grows quadratically with the number of nodes. This
is a problem in the context of the HGCal (cfr. Sec. 3.4), where the number of cells is
approximately 3 million. This would cause an enormous number of edges and a very
inefficient adjacency matrix at least memory-wise, making the training of a GNN on
the full graph unfeasible.

7.1 Dataset

The data for this work has been simulated using the CMS Offline Software [124]
(CMSSW) based on Geant4 [125]. The simulation has been restricted to the electro-
magnetic part of the calorimeter (CEE). The chosen geometry is the v14, a prototype
of the HGCal [2] with 28 layers divided into hexagonal modules, each composed of two
layers of lead absorber and two copper-tungsten layers that act as sensors. The tracker
has been removed from the simulated geometry to avoid the effect of interaction with
the material before the calorimeter. In addition, the noise in the simulation has been
disabled.
As described in Section 3.4, the CEE comprises hexagonal cells of two different sizes.
The outer region of the calorimeter is the low-density one where the plates are filled
with cells sized ∼1.1cm2. The inner region plates instead, have cells sized ∼0.5cm2

thus having a higher density.
The simulated showers are from photons ranging from 10 to 100 GeV originating from
the interaction point. An arbitrary combination of 𝜂 = 2 and 𝜙 = 1.51 has been fixed
and all the photons impact the calorimeter at the same location. This means that
the showers also come with an angle as shown on the overlay plot in Fig.7.1. During
the Geant4 simulation, up to 4000 points are stored depending on the energy of the
incoming photon, so to reduce cardinality, the energy depositions lying in the same
cell are summed up.
For training, 200000 showers have been simulated, uniformly distributed in the 10 to
100 GeV incident energy range.
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Figure 7.1: Overlay of 20000 Geant4 generated photon showers. In the y-z plane,
the incidence angle is visible.

Figure 7.2: Schematization of the HGCal geometry and graph. Form CMMSW we
are provided with cell properties like the cell position, material, and the
neighbor cells within the same sub-detector (silicon in blue and scintillator
in orange) To build edges across different sub-detectors, we applied a rule of
maximum distance between cells of 0.5cm. This provides a fully connected
graph across the whole calorimeter. Image by Moritz Scham, DESY.

7.2 Dynamic Graph Convolutional Networks

To overcome the issue of the cardinality, we embarked on the development of a novel
GNN architecture, called Dynamic Graph Convolutional Network (DGCN), that could
be able to handle the high granularity of the HGCal. A straightforward way of doing
a GNN model based on showers would be to build graphs out of the particle showers
constructing the adjacency matrix using some kind of clustering algorithm, e.g. a
kNN. However, this approach would be disregarding one crucial piece of information
that is already available, i.e. the geometry of the detector. The latter can be used to
build an adjacency matrix that is more meaningful. As mentioned before, the HGCal
cells have a hexagonal shape, where each silicon cell is connected to its six nearest
neighbors, while the scintillator cells can be connected to their 8 closest neighboring
cells. A schematization of the neighbors’ connection is displayed in Figure 7.2. The
full-geometry graph built on this idea is going to represent the adjacency matrix to be
used as a look-up table to dynamically build the subgraphs of the showers.
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Once the full-geometry graph has been built, smaller graphs can now be constructed
using the hits in the showers as nodes and defining the connection based on the look-up
table.

Motivation for a Geometry-based Adjacency Matrix

To justify the use of an adjacency matrix based on the geometry of the detector,
we performed a test using graphs built on the same photon showers, but using three
different algorithms to construct the edges: kNN clustering, radial clustering, and
the geometry-based adjacency matrix. We then trained three identical GNNs with
an energy-regression task and compared the performance of the models. The results
are shown in Figure 7.3. The geometry-based adjacency matrix clearly outperforms
the kNN clustering algorithm and it shows better stability compared to the radial
clustering algorithm. This is an indication that the geometry-based adjacency matrix
was a meaningful choice for the HGCal.

Figure 7.3: Comparison of the performance of GNNs trained on graphs built using
three different algorithms. The geometry-based adjacency matrix shows
either better performance or more stable one when compared to the other
two.

Generation Algorithm

To generate the showers using our model, we decided to approach it in a way that could
be as efficient as possible and that would mimic the actual development of a shower.
We initially decided to start with a single node that is the seed of the shower and it’s
initialized with an energy value based on the entire energy that the shower should have
taking into consideration the sampling fraction of the calorimeter at hand. Then, we
iteratively add nodes to the graph, based on our look-up table (the full graph), and
have the generator redistribute said energy to the new nodes. This would grow the
graph systematically and we would have a pruning process in place that cuts nodes
that don’t meet the threshold energy set by the detector resolution. This process is
repeated until the energy is fully distributed and the shower is fully developed.
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However, this came with a number of setbacks:
• The redistribution of the energy was not effective, as the algorithm was not

working on randomly initialized nodes, and it was not taking place in practice.
• Pruning could also end up shattering the continuity of graph as per fluctuations

during the redistribution, crucial nodes could be cut off as they were momentarily
below the threshold.

• The pruning process was very likely to destroy the energy profile as, taking
into consideration the sparse nature of the showers, the number of neighbors
to which the energy would be redistributed to would be much higher than the
actual number that comprise the final shower causing in fact some energy loss
in the process when nodes below the threshold are cut.

• The selected model, a GAN, was not able to learn the distribution of the showers,
as during training we would be comparing fully developed shower graphs to the
partially developed ones. Masking would have not been an option as developing
graphs with few nodes would have a higher energy than the real graph. All
this compined together would make the learning process very difficult for the
generator and way too easy for the discriminator.

• Finally, there was not a clear way to iteratively generate the showers with a
GAN, which is notoriously a one-shot generation model and would need to be
completely rethought to accommodate the iterative nature of the idea.

To tackle some of these problems, we updated the idea: instead of having a single
GAN generating the whole shower, we would train multiple GANs. Each of the GANs
would have as a training set a pooled version of the Geant4 showers starting with
a few nodes up to the full shower, and the generated graph would be initialized with
random noise instead of value set a priori. A schematic view of the algorithm is shown
in Figure 7.4. This would have simplified the generation procedure and would have
introduced a fairer training process. However, the technical complexity of the idea
was too high, and with time new technologies emerged, and we decided to switch to a
more state-of-the-art approach with point clouds as we will see in the next chapter.
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Figure 7.4: Schematic view of the DGCN generation algorithm. The generator is
trained on a pooled version of the Geant4 showers and the generated
graph is initialized with random noise.
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8 EPiC GAN for 4-Dimensional
Calorimeter Data

This chapter will introduce the next step taken in trying to produce an accurate
simulation of the CMS HGCal calorimeter. To do so we did an intermediate study
on a less complicated dataset that still retains some characteristics of the problem we
want to tackle, but loses most of the irregularities that come with the HGCal setup.
The idea was to have a proof of concept on this simpler dataset before moving on to
the more complex one.

Several approaches have been pursued to approach calorimeter simulation using dif-
ferent models like autoencoders [126–131], GANs [132–143], Flow-based models [144–
152], and diffusion models [153–163].

In the past years, GANs have emerged as powerful tools in artificial intelligence,
offering a promising avenue for addressing the computational challenges associated
with simulating electromagnetic showers. GANs, known for their ability to learn and
replicate complex data distributions, provide a unique opportunity to generate real-
istic point cloud representations of electromagnetic showers with improved efficiency
compared to traditional simulation methods.

Here the GAN approach based on EPiC layers is introduced and the techniques
employed and the limitations of this approach will be discussed.

8.1 Data Samples

The ILD [164] detector represents one of the two proposed detector concepts for the
ILC [165]. It has been designed to cater to Particle Flow [166]. ILD integrates precise
tracking and vertexing capabilities with excellent hermiticity and highly granular elec-
tromagnetic and hadronic calorimeters. In this study, we focus on showers simulated
in the Si-W ECal. This consists of 30 active silicon layers in a tungsten absorber stack.
The silicon sensors have a size of 5x5 mm2. In the original dataset, the showers were
projected into a regular grid of 30x30x30 cells in which there was a 1-on-1 correspon-
dence between the geometry and artificial grid cells. To reduce the complexity of the
dataset for proof-of-concept, we clustered the geometrical cells into a 10x10x10 grid
thus reducing the granularity. In Fig. 8.1 one can see the difference for the same stack
of showers in the original granularity vs. the reduced granularity.

The data is then converted to a point cloud format. As the positions of the hits
always correspond to the center of the cell in the grid format, we choose to dequantize
them by adding noise to randomly shift the hit positions within the cells. Since the
cells have a volume of 1x1x1, to ensure the shifted point lays inside its original cell,
this is done by simply adding uniform noise 𝒰(−0.5,0.5) to the coordinates. Finally,
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Figure 8.1: View of the x-y plane of a stack of 15k showers in the 10x10x10 vs the
30x30x30 regular grid.

we preprocess the input features to shift them into the [-1; 1] range with the sole
exception of the energy that is left untouched.

For the sake of completness, we also performed studies on showers with higher
granularities but we couldn’t achieve performances on par with what is shown in
Sec. 8.3.

8.2 EPiC GAN Architecture

In this section, we introduce the model architecture of our GAN. The models are
implemented using PyTorch [167] and the original code for the EPiC GAN can be
found on GitHub1.

The EPiC Layer

The EPiC layer is a layer that has been introduced in Ref. [168]. Let 𝐶 = (𝐠,𝑃 ) be a
2-tuple point cloud that can be considered an edgeless graph. 𝐠 represent the global
attributes of 𝐶 and 𝑃 is the set of points in the cloud. The EPiC layer acts on both
𝐠 and 𝑃 using the following operations:

𝐠′ = 𝜙𝑔 (𝐠,𝜌𝑝→𝑔(𝑃 )) ,
𝐩′

𝑖 = 𝜙𝑝 (𝐠′,𝐩𝑖)

where 𝜌𝑝→𝑔 is a pooling operation that aggregates the points in the cloud into a global
feature vector, and 𝜙𝑔 and 𝜙𝑝 are two neural networks that act on the global and point
features, respectively.

The EPiC layer can be seen as an edgeless graph, allowing for linear complexity in
the number of points in the cloud. The global transformation is performed before the
local one, ensuring that the global features are available to the local transformation
independently of the number of EPiC layers stacked. The aggregation function includes

1https://github.com/uhh-pd-ml/EPiC-GAN
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both sum and mean pooling, which empirically showed superior performance with
variable-sized clouds.

GAN Architecture

The EPiC GAN is composed of a generator and a discriminator. In the generator,
the global noise is first transformed by a two-layer multi-layer perceptron (MLP) into
a higher-dimensional global attribute vector, while the point-wise noise transforms a
one-layer MLP to create initial point representations. These transformed features are
then passed through multiple EPiC layers, which introduce inter-point communication
while maintaining permutation equivariance. Each EPiC layer in the generator follows
a structured transformation process. First, the global attribute vector is updated based
on the aggregated information from the current point features. Then, each point
feature is modified based on the updated global attribute vector. The aggregation
function, which consists of sum and mean pooling, ensures that relevant information
is captured at the global level without explicit pairwise interactions between points.
To the original network, we performed some small modifications, i.e. we found that
we could achieve high-fidelity generation after five EPiC layer iterations. On top of
that, while performing the sum pooling operation we applied a scale factor of 10−3

to the result: this is done to account for the high cardinality of the input that led to
overly high values in the layers after the sum pooling that where affecting the quality
of the training. Finally, we added the energy of the incident photons and the number
of shower hits as a conditioning variable to the discriminator and the generator EPiC
layers.
The discriminator is composed of an initial multi-layer perceptron to perform feature
expansion, followed by three EPiC layers. Sum pooling and mean pooling are also
applied here, and the same scale factor is applied to account for the cardinality of the
input. In the end, a final MLP is used to perform the binary classification.
During the training, the dataset was divided into batches of a maximum of 128 showers.
Contrary to the original version of the EPiC GAN, we don’t batch together showers of
the same size, but the data is zero-padded and shuffled. The padding is then reduced
to the maximum number of hits in the batch during training. Finally, a mask is
applied to exclude the remaining zero padding from the loss computation. At the
generation step, we apply the same mask as the input data to generate showers of
equal cardinality. This ensures that the discriminator compares clouds of the same
size.

Multiple GAN training regimes have been tested, e.g. WGAN, LSGAN, etc. Still,
the one that yielded the best results is the vanilla GAN training objective in which the
discriminator 𝐷 and the generator 𝐺 play a minimax game as described in Section 5.1.

Finally, the best epoch is selected by comparing the mean Wasserstein-1 distance
of the normalized coordinates, visible energy, and center of gravity distributions. We
compare the distribution by generating 2000 showers at fixed energy points, namely
20, 50, 70, and 90 GeV.
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Figure 8.2: Illustration of the EPiC G4N architecture. The discriminator has an extra
pooling step to compute the global features of the input showers.

8.3 Results

Physics Performance and Evaluation Scores

Here are now presented the results of the model by giving an overview of its perfor-
mance measuring the KL divergence [169] on the observables. Although theWasserstein-
1 distance was used to select the best epoch for its better interpretability during train-
ing, we prefer the KL divergence for the final score evaluation score since we find
it better suited for well-overlapping distributions as the Wasserstein distance would
average out under- and overshooting of the distributions, while the KL divergence
evaluates them on a bin-by-bin basis. To compute each of the scores we generated
50000 showers in the uniform energy range [10; 100] GeV divided into 5 batches and
we computed the distances to the Geant4 showers for each batch. Finally, we compute
the mean and standard deviation of such measurements to get the results shown in
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Tab 8.1.
The KLD𝐸𝑣𝑖𝑠

measures the distance between the real and the generated visible
energy distribution in the whole 10 to 100 GeV energy range, and the KLDz is the
distance between the hits distributions in the longitudinal direction, the KLD𝑐𝑜𝑔z

is the
distance of the center of gravity in said direction, and finally KLD𝐸𝑟𝑎𝑑

is the distance
between the two radial energy distributions.
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Figure 8.3: Comparison for 10000 Geant4 photon showers from the test set and 10000
EPiC GAN generated showers for the point-wise observables. The point
cloud has been projected to the 10x10x10 grid after being generated. On
top of that, a cut on the energy at 0.1 MeV has been applied.

KLD𝐸𝑣𝑖𝑠
(×10−4) KLD𝑧(×10−4) KLD𝐸𝑟𝑎𝑑

(×10−4) KLD𝑐𝑜𝑔𝑧
(×10−4)

7.68±0.67 14.94±2.94 4.21±0.68 49.29±1.33

Table 8.1: KLD distances comparison

As can also be seen in Fig.8.3 and ??, the model generates showers with good fidelity.

Results on Single Energy Shower

We now show the results on showers produced by photons with fixed energy. We
selected photons with an energy of 20, 50, 70, and 90 GeV. What can be seen from
the single energy plot distribution shown in Fig. 8.5 is that the EPiC-GAN performs
better as the energy of the incoming photon increases. This can be solved with targeted
training on the more problematic energy ranges.
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Figure 8.4: The shower observables are compared for the same 10000 photon showers.
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Figure 8.5: Distribution plots of the single energy photon showers. At low energy, one
can see that the model has a harder time reproducing the distributions.
This can be addressed with targeted training in the problematic energy
range, instead of training on the the full range of the energy spectrum.
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E𝑖(GeV) CPU t(ms)/shower GPU t(ms)/2k showers Avg. N-hits
10-100 6.02 ± 0.36 2.95±0.04 236 ±64
20 4.67±0.04 2.95±0.05 140±13
50 6.10±0.10 2.97±0.07 196±21
70 8.60± 0.06 3.00±0.07 276±25
90 9.82± 0.04 3.14±0.09 308±29

Table 8.2: Time comparison for different energy slices on an AMD EPYC 7543 CPU
and an NVIDIA® A100 GPU with 80GB of memory. In all cases, 2000
showers were generated with the shown energies. The presented values are
means and standard deviations over 10 runs.

Timing results

Finally, in Tab. 8.2 we provide an overview of the generation times. We produced 10
times a set of 2000 showers with both a uniform energy distribution ranging from 10
to 100 GeV and fixed energy values on a single CPU and an NVIDIA® A100 GPU. The
mean and standard deviation of the measurements are presented. The timing results
are well aligned with the general idea of GAN architectures being extremely high speed
generators. As the tipical Geant4 generation speed lays in the realm of seconds-per-
event, we see the GAN performing a factor 1000 better than that. However, fair
comparison cannot be performed as we have no data on a lower granularity Geant4
setup matching the one showed in this study.

8.4 Conclusions

The EPiC-GAN showed interesting results. It was able to tackle a dataset with more
than double the cardinality of the previous study on jets that comprises data points
with up to 150 constituents. A higher complexity is also introduced by the extra
feature of the dataset, with not only spatial coordinates but also the energy of the
showers. This is shown to be modeled in good fashion in the results, both statistically,
as per the visible energy, and in its distribution as per the center of energy distribu-
tions. The model also shows good performance in the single energy distribution, with
the only exception of the lowest energy range. This can be addressed with targeted
training on the problematic energy range. In terms of timing, GANs are known to
be very fast models and with a generation time of 2.95 ms per 2000 showers on an
NVIDIA® A100 GPU this is confirmed in this study.
Even with all these great improvements, unfortunately, the EPiC-GAN showed insta-
bility when trained on even higher cardinality datasets. After trying several different
variations of the model, we couldn’t achieve a good level of performance on more com-
plex and granular datasets. This limitation of the model brought us to the conclusion
that the EPiC-GAN is not the best model to tackle the HGCal simulation problem
and we moved on to a different model concept, diffusion models, that will be presented
in the next chapter.
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9 CaloClouds for the CMS HGCal

Since the proposal by [133], has investigated more and more the use of generative
surrogate models to speed particle physics simulation. These surrogates mimic the
so-called simulation chain usually employed in particle physics, with specific models
targeting the hard process [170–176], parton shower and hadronization [177–189], and
the interaction of particles with complex detectors [190].

In this domain of calorimeter simulation, a key frontier is the development of models
that can handle data with the complexity and spatial resolution expected of calorime-
ters like the CMS High Granularity Calorimeter (CMS HGCal) [2] or calorimeters
proposed for future colliders [164]. Two important breakthroughs in this regard were
i) adopting point-cloud-based models [159, 160, 185, 191, 192] that only simulate ac-
tual hits in the detector (instead of explicitly modeling also the empty cells) and ii) the
switch to powerful generative models based on flows and diffusion [144–151, 153–159,
161–163]. One such model that achieved state-of-the-art performance in the simula-
tion of the electromagnetic calorimeter for the planned International Large Detector
(ILD) at the International Linear Collider (ILC) is CaloClouds II [160]. In this
work, we show how CaloClouds II can be adapted to model showers in the CMS
HGCal.

The CMS HGCal is being developed for the future High-Luminosity upgrade at the
LHC [1] and will replace the current end-cap calorimeters. It is designed to have a
high granularity to accurately reconstruct the particle’s energy. It includes both an
electromagnetic and a hadronic part and utilizes a hybrid approach that includes both
silicon sensors and scintillator materials, to optimize over the range of energies.

The calorimeter has a quite complex structure (cfr. Section 3.4), where the layers
feature a hexagonal tiling pattern. This allows for the efficient packing of detector
modules, enhancing spatial resolution and minimizing dead areas between the detec-
tors. In particular, the cells have variable sizes depending on their location: cells closer
to the beam pipe are smaller for better resolution, while those in the peripheral area,
are larger to balance the need for coverage. In total, one end-cap of the calorimeter
will consist of over 3 million cells. These features combined, make this detector a hard
challenge for fast generation.

Finally, the CMS HGCal also provides timing information per hit, which is crucial
in reconstructing and separating piled-up events. The HGCal calorimeter aims to
reach a time resolution of ∼30 picoseconds. Beyond investigating the performance
of CaloClouds II in the task of simulating HGCal data, we will also consider the
inclusion of time (in addition to energy) as a generative target. The rest of this chapter
is organized as follows: in Sec. 9.1 a description of the dataset and how it was produced
can be found. In Sec. 9.2 we will introduce the generative model used for this piece of
work, while Sec. 9.3 will describe the selected geometry and our projection algorithm.
Finally, in Sec. 9.4 we show the achieved results, followed by our conclusions in Sec. 9.5.
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9.1 Data: format and processing

The simulation chain for a calorimeter comprehends different steps:
• SimHits step: the interaction of the particles is simulated by the Monte Carlo and

saved as if the detector had infinite time and energy resolution. The interaction
information is stored in the center of the cells of the geometry, allowing for
multiple hits to be in the same spot with different energy;

• Digis step: includes the pile-up and the response from the front-end electronics;
• RecHits: pre-processed digits are used to reconstruct the hits in the cells with

energy and time information;
The data used to train the model is the output of the SimHits step as it is the most raw
and unprocessed data available and it is in a format that suits very well the model’s
input. This implies a higher cardinality (up to ∼4000) of lower energy hits. However,
the CaloClouds II models [159, 160] can better reproduce physical distributions by
generating points at a higher granularity that can then be clustered into voxels rather
than trying to place the final clustered hit exactly in the correct cell.
The chosen format for the sets is that of point clouds as it is the preferred one for
CaloClouds II [160] as it is more efficient since it does not require the full geometry
of the detector to be stored wasting memory on empty cells. The simulated features
are the x, y in the layers’ plane (in centimeters), the layers z in the depth direction
(from 1 to 28), the energy of the SimHit (in MeV), and the time-of-hit of the particle
(in nanoseconds). This makes up for a total of a 5-dimensional vector that is used as
an input to the model.
On top of the input features, the number of particles of the shower and the incident
energy of the photon are also used in the model’s training as conditional features.
The data undergoes some preprocessing steps before being fed to the network. The
coordinates of the hits as well as the time and the conditioning features are normalized
into the [-1, 1] range. On top of that, the dataset is all zero-padded and ordered by
the number of points. This last step is done so that during training the padding can
be cut to the maximum number of SimHits in the current batch to ensure that there
is a minimal amount of padding in the training.

For training, we generated 180000 showers, and for testing and performing a clas-
sifier test, we have 200000 showers split into 20000 fir metrics evaluation and the
rest for the classifier test. Both datasets are uniformly distributed in the 10 to 100
GeV incident energy range. On top of that, two sets of 20000 showers each have been
simulated for fixed energy points of 20 and 70 GeV to study the model’s performance.

9.2 Generative Model

The model used in this work is the CaloClouds II described in [160]. As the model
is based on Ref. [160], a brief explanation of its components follows. First, we have the
Shower Flow, a normalizing flow [193] model trained to generate conditioning features
and used to calibrate the output of the diffusion model [194]. More specifically, the
Shower Flow generates the number of points and the energy of the incoming photon
as conditioning features for the sampling step. On top of that, to calibrate the output
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Figure 9.1: Illustration of the training and sampling procedure of the CaloClouds II
model.
(a) The model is trained at a random continuous time step 𝑡 with a con-
dition on the showers’ energy 𝐸 and its number of points 𝑁. The 𝐿MSE is
approximated by a mean squared error (MSE) between the noised data and
the denoised output. The scaling functions 𝑐in, 𝑐out, and 𝑐skip are defined
following [195].
(b) During sampling the Shower Flow conditioned on 𝐸 generates the
number of SimHits for the showers as well as their observables for calibra-
tion. Then the PointWise Net iteratively denoises the noise to produce
the showers. Finally, the center of energy in the x direction is calibrated
as well as the energy and the number of points per layer.

distributions, it generates the total visible energy, the energy and number of points
per layer, and the center of energy (CoE) in X. As for the diffusion model, we use a
continuous-step diffusion paradigm, usually referred to as k-diffusion based on [195].
The actual diffusion model is a PointWise Net composed of six ConcatSquash Linear
layers [196] to which the five input features are fed plus the conditioning features as
per Ref. [160]. We can see a diagram of the training-sampling procedure in Figure 9.1.

Training and Sampling

The model in CaloClouds II was trained for 3M iterations with a batch size of 128
using the Adam optimizer [62] with a fixed learning rate of 10−4. As the final model,
we use an exponential moving average (EMA) of the model weights. The final number
of function evaluations (NFE), i.e. the number of ODE solver steps to be performed,
has been chosen after comparing different values and has been chosen to be 50, as it
is the one that gives the best quality/speed ratio.

9.3 Projection to Geometry

To compare the output distribution of CaloClouds II to the synthetic data, we
must first project the point cloud to the actual geometry, as in the chosen step of the
Geant4 simulation, the SimHits are centered in the cell they belong to. To do so, we
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Figure 9.2: In this figure we see the 28th layer of the Electromagnetic part of the
HGCal after the selected geometry cut. The outer area is the lower-density
region (sparser dots) while closer to the beam-pipe we have the higher-
density region with smaller hexagonal cells.

first have to define which cut of the geometry we want to consider and then develop
an algorithm that allows such a procedure.

Geometry Selection

First, we extract the geometry from a ROOT [197] file that contains the coordinates
of every cell in the CEE. This allows us to see the structure of the calorimeter and
exclude regions that are scarsely or not populated as the showers will not reach them
or the geometry presents structural gaps, such as the beam pipe. In Figure 9.2 one
can see which section of the calorimeter has been selected. After the cut, we are left
with circa 800000 cells out of 3M, divided into ∼27000 cells per layer.

Projection Algorithm

Projecting the point cloud to the geometry can become very complicated, given the
architecture of the calorimeter, made of different-sized hexagons, that are not always
perfectly aligned neither vertically, horizontally, or longitudinally, and are sometimes
reshaped to match the borders of the plate they reside in. We decided to tackle this
by using a simple approach: for each hit, we compute its distance to every cell center
in the same layer and then assign the closest center coordinates to the current SimHit.
In return, this approach is quite slow, but optimizing such projection is outside the
scope of this research work. The pseudo-code for this algorithm reads as follows:

9.4 Results

We show the model’s results by comparing some low-level and high-level distributions
to the Geant4 ground truth. We then provide a score for such observables using the
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for every_shower do
for layer in CEE do

𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑐𝑒𝑙𝑙 ← 𝑚𝑖𝑛(𝑝𝑜𝑖𝑛𝑡𝑠−𝑐𝑒𝑛𝑡𝑒𝑟𝑠);
𝑝𝑜𝑖𝑛𝑡𝑠 ← 𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑐𝑒𝑙𝑙;

end
end

Algorithm 1: Algorithm to find the closest cell centers to each point in the
generated showers. After finding them, it updates the coordinates of the points to
the centers’ coordinates.

Wasserstein distance [63] and a classifier test. Finally, we benchmark the generation
time of the model against Geant4.

Physics Distributions

In this Section, we confront several observables to the Geant4 test set. We compare
showers generated in the uniformly distributed energy range from 10 to 100 GeV and
two test sets of fixed energy, at 20 GeV and 70 GeV. All the presented distributions
have been projected with the introduced Algorithm 1.
In Figure 9.3, we show four relevant quantities and the ratio of the generated show-
ers to the Geant4 test set dataset. The presented distributions are of the energy
of the SimHits, the radial energy distribution, the per-shower energy sum, and the
longitudinal distribution across the layers. These plots show the quality of the Calo-
Clouds II model with the ratio to Geant4 being consistently close to 1. To add
more shower level information, we present in Figure 9.4 the CoE for the three direc-
tions. Here again, the ratio plots demonstrate the performance of the generator. The
2-dimensional energy-weighted overlay can be seen in Figure 9.5 where it is visible how
the model is capable of correctly reproducing the showers’ angle and features.
We plot the time coordinate generated with CaloClouds II. We show two represen-
tations, one of the overall time-of-hit (TOH) of the SimHit, which again measures up
to the standards of the previously shown plots, and the TOH distribution per layer.
Finally, we show the energy sum plot and number of hits for the two single energy
points in Figure 9.7.

Evaluation Scores

To assess the quality of the distributions with some solid numbers and not only by
comparing histograms, we picked some high-level features of the showers. The features
produced consist of the number of hits (N ) in the showers, the sampling fraction de-
fined as the ratio between the incident photon energy and the total visible energy in the
calorimeter (𝐸𝑠𝑎𝑚𝑝), the center of energy in the three spatial coordinates (𝐶𝑜𝐸[𝑥,𝑦,𝑧]),
the radial energy distribution (𝐸𝑟𝑎𝑑), the energy per layer defined as the energy sum
per layer (𝐸𝑙), and the mean TOH per layer (𝜇𝑡).
To get comparable values of these distributions, we computed the 1-Wasserstein dis-
tance (𝑊1) between Geant4 and CaloClouds II distribution pairs. Following com-
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Figure 9.3: From top left to bottom right, we present the SimHit energy distribution,
the radial energy distribution, the energy sum, and the mean energy-per-
layer distribution. From the ratio plot, one can see the high fidelity of the
CaloClouds II generated showers.
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Figure 9.4: Center-of-energy distributions computed along the three axes. In the x
direction, the model produces a slightly too narrow distribution and is then
calibrated using the Shower Flow while preserving the SimHits distribution
quality.
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Figure 9.5: Overlay of 20000 showers. The first row represents the Geant4 dataset,
while the bottom row is the CaloClouds II simulated showers.
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plots show high fidelity to the Geant4 showers. What these plots cannot
capture is the time correlation from layer to layer which is still not perfect
as some particles may result as faster than light.
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Figure 9.7: On the left side we can see the energy sum distributions for the two fixed
incident energy points: 20 GeV and 70 GeV. We find the number-of-hits
distributions for the same two fixed energy points on the right side. Again
we observe a good match between the Geant4 baseline and the Calo-
Clouds II generated distributions.

mon practices with 𝑊1 distances evaluations, we compare 20000 Geant4 showers to
20000 CaloClouds II showers and repeat this operation 10 times with uniformly
distributed independent showers. We then report the mean and standard deviation
of such measurements. To better understand the scores’ goodness, we also report the
values obtained for the 𝑊1 for Geant4 vs. Geant4 distributions.

𝑊 𝑁
1 𝑊 𝐸𝑠𝑎𝑚𝑝

1 𝑊 𝜇𝑡
1 𝑊 𝐸𝑙

1 𝑊 𝐸𝑟𝑎𝑑
1 𝑊 𝐶𝑜𝐸𝑥

1 𝑊 𝐶𝑜𝐸𝑦
1 𝑊 𝐶𝑜𝐸𝑧

1

Truth 2.2 ± 0.6 2.0 ± 0.5 1.2 ± 2.9 1.6 ± 3.1 6.2 ± 7.1 1.9 ± 0.3 1.3 ± 0.2 1.3 ± 0.4
CC2 17.5 ± 0.8 3.1 ± 0.4 9.6 ± 4.6 11.4 ± 4.3 11.3 ± 7.8 11.2 ± 0.6 6.4 ± 0.7 5.8 ± 0.3

Table 9.1: Wasserstein scores for several quantities. The values are calculated on 10
independent sets of 20000 uniformly distributed showers each. We also do
the same calculation using the two Geant4 sets, to have the truth values
for such scores.

Classifier Scores

To give a more comprehensive score to the showers instead of their marginal distri-
butions, we performed two Classifier tests: one including high-level features based on
all 5 low-level features and one excluding the time coordinate. Such classifier tests
are becoming more widely used as an evaluation method for generative models and
similar tests can be found in Refs [130, 145, 146, 148, 151, 184, 198]. The tests were
made using high-level features of the showers, namely the number of SimHits overall
and per layer, the energy per layer, the center of energy in all three directions, the
sampling fraction, and the mean and standard deviation per layer of the TOH. The
dataset comprises 200000 points per feature for both Geant4 and CaloClouds II
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showers and an 80-10-10% split is applied.
The classifier is a fully connected neural network with three layers (containing 32, 16,
and 8 nodes) with LeakyReLU [64] activation functions and one output node with Sig-
moid activation. Using a binary cross-entropy loss, the trainining is performed with
the Adam optimizer [62] for 10 epochs for each dataset. The final model epoch is
chosen based on the lowest validation loss.
The test has been repeated 10 times and we report the mean AUC and its standard
deviation in Table 9.2.

AUC w/o time features AUC all features

0.7738 ± 0.0016 0.9884 ± 0.0008

Table 9.2: From the table we can see the performance of the CaloClouds II model
without and with the time coordinate. Without the time features, the
AUC score results in an improvement of 2̃3% over Ref. [160], although the
different setups make it an unfair comparison. Unsurprisingly, adding time
to the features causes the AUC to increase as the model can more easily
distinguish the generated shower.

The results show a better performance when exluding the time-related features, as
the model is not designed to capture correlations between points and some particles
may result faster than light. A further study of this phenomenon and an attempted
improvement of the performance is been conducted in a related work of a bachelor
student supervised also by me [199]

Timing

We now benchmark the average time needed to generate the showers using the Calo-
Clouds II model on a GPU and CPU. The timing results are presented in Tab. 9.3.

Hardware Simulator NFE Batch Size Time / Shower [ms] Speed-up (w/o proj)

CPU Geant4 3153.63± 1490.68 ×1
CaloClouds II 50 1 714.33 ± 288.22 ×4

GPU CaloClouds II 50 64 31.04 ±0.67 ×102

Table 9.3: The simulation speed performance of CaloClouds II compared to the
baseline Geant4 simulator on a single core of an AMD® EPYC 7543 32-
Core (CPU) and on an NVIDIA® A100 with ∼40 GB of memory (GPU). We
generated 2000 showers with incident energy distributed uniformly between
10 and 100 GeV. The values presented are the mean and standard deviations
for 10 runs. The NFE column refers to the number of function evaluations
(model passes) performed to diffuse the showers.

From the table, one can see that the speed-up offered by CaloClouds II is not
excessively big. This is not a surprise as k-diffusion models are intrinsically slow, even
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if they can be optimized by tuning the NFEs. That being said, we already demon-
strated in Ref. [160] how such a model can be distilled into a faster generator, thus
drastically increasing the simulation speed without compromising the fidelity.

9.5 Conclusions

The idea of developing a generative model to tackle the challenge of simulating complex
and fine-grained detectors like the HGCal led to the design of CaloClouds II. The
proposed model could simulate point-cloud-based events in a cell geometry-independent
fashion. Following up on that piece of work, we now show not only how this model
is suited for geometries with such a high number of geometry cells, but also how we
can push its capabilities further by teaching it to generate the time-of-hit coordinate,
a feature in which correlation is important to model correctly. A first for as far as we
know to the day.
In conclusion, the CaloClouds II model is capable of electromagnetic shower simula-
tion with high cardinality maintaining high fidelity. We compared several observables
to the Geant4 simulation, the baseline for such tasks and the results show high per-
formance. The time coordinate, which is a key feature to reproduce in light of the
future upgrade of the LHC, is statistically very well modeled but can be improved in
the context of correlation. The two classifier tests confirmed that the time coordinate
was still not perfect, but the overall fidelity of the shower was converging to a good
grade.
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10 Conclusion

The field of high-energy physics (HEP) is driven by a fundamental quest to understand
the nature of the universe at its most elementary level. Particle physics experiments,
particularly those conducted at large collider facilities such as the Large Hadron Col-
lider (LHC) at CERN, have provided profound insights into the fundamental con-
stituents of matter and the forces governing their interactions. These experiments
rely on highly sophisticated detector systems designed to capture and analyze the vast
amounts of data generated by high-energy particle collisions. One of the critical com-
ponents of these detectors is the calorimeter, an instrument used to measure the energy
of particles through their interactions with matter. Calorimetry plays an essential role
in reconstructing the properties of fundamental particles and identifying signatures of
new physics beyond the Standard Model.

This dissertation has explored the landscape of machine learning techniques applied
to high-granular calorimeter simulation in high-energy physics research. The work
has been driven by the need to address the computational challenges associated with
traditional Monte Carlo simulation methods, which become increasingly demanding
for complex detector systems like the CMS HGCal. The investigation has ventured
into various machine learning approaches, including generative adversarial networks
(GANs), normalizing flows, and diffusion models, to generate realistic calorimeter
showers with significantly reduced computational costs compared to traditional meth-
ods. These models have demonstrated remarkable success in approximating the com-
plex distributions of particle interactions within calorimeters, enabling efficient and
high-fidelity simulations.

Chapter 6 showed a unified a graph-based architecture that could achive high-level
perfromance on diverse datasets using shared hyperparameters. Chapter 7 of the dis-
sertation introduces the idea of Dynamic Graph Neural Networks (DGCNs) for simu-
lating high-granular calorimeters. DGCNs address the computational challenges posed
by the high granularity of the CMS HGCal by dynamically constructing subgraphs of
particle showers based on the detector geometry. This approach could have allowed
for efficient processing of calorimeter data while preserving the relational structure
of particle interactions. The motivation behind using GNNs stems from the highly
granular nature of modern calorimeters, where particle showers can be represented as
graph structures for more flexible and efficient data processing. GNNs leverage the
relational structure of calorimeter hits to learn spatial correlations and improve event
reconstruction. DGCNs concept would have been an architecture that dynamically
builds subgraphs of particle showers based on the detector geometry. This approach
makes use of the actual geometrical information to build more meaningful connec-
tions between the nodes of the shower which has been shown to yield and advantage
compared to classical clustering algorithms. The model starts with a seed node and
iteratively adds new nodes based on the detector geometry and the energy distribu-
tion of the shower. A pruning process is employed to remove nodes that do not meet
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the energy threshold, ensuring efficiency and maintaining the shower’s energy profile.
This approach had the potential to improve the accuracy and scalability of calorime-
ter simulations, but the technical challenges and the fast-paced advancements in the
generative machine learning field led us to switch to more advanced, scalable, faster,
and efficient paradigms.

Chapter 8 presents the EPiC GAN, a generative model designed for calorimeter
data, focusing on accurately capturing the spatial distribution and energy deposition of
showers. The EPiC GAN was evaluated on a simpler dataset that shares characteristics
with the CMS HGCal but lacks its irregularities and granularity. Results demonstrate
the model’s ability to generate realistic calorimeter showers with good performance
and efficiency.

The EPiC GAN builds upon the success of GANs in generating synthetic data that
closely resemble real detector responses. GANs consist of two neural networks - a
generator and a discriminator - trained in a competitive framework. The generator
learns to produce realistic samples, while the discriminator attempts to distinguish
between real and generated data. Through this adversarial process, the generator
improves its ability to generate high-quality calorimeter showers that mimic those
produced by Monte Carlo simulations.

The EPiC GAN incorporates an architecture that leverages spatial and energy in-
formation to generate calorimeter data. The model employs EPiC layers, which are
edgeless graph layers that allow for linear complexity in the number of points in the
cloud. This architecture enables efficient processing of high-dimensional calorimeter
data while preserving good scalability with increasing cardinality. The EPiC GAN was
trained on a dataset of photon showers with varying energy levels, and its performance
was evaluated using metrics such as the Wasserstein distance and KL divergence to
compare the generated showers to the ground truth data. The results show that the
EPiC GAN can accurately reproduce the spatial distribution and energy deposition of
showers, demonstrating its potential for simulating complex calorimeter systems with
improved accuracy and scalability compared to traditional methods. For as good as
the results were, this model still lacked in performance when the showers were ap-
proaching higher granularities, making it a non-optimal choice for a calorimeter like
the HGCal.

Because of that, Chapter 9 focuses on the CaloClouds II model. It leverages the
concept of diffusion models, which simulate the gradual transformation of noise into
structured calorimeter showers through a series of stochastic steps. This approach
offers high-quality sample generation with strong theoretical guarantees, making it
well-suited for applications in high-energy physics.

The CaloClouds II model employs a combination of normalizing flows and the
continuous time diffusion model and the data employed are not reconstructed showers
but raw Geant4 SimHit showers. This implies a higher cardinality as Geant4 hits
are not clustered into the geometrical cell of the calorimeter. This puts fewer con-
straints on the model, allowing small imperfections in the point cloud output to be
mitigated. The generated showers are then projected to the physical geometry in a
postprocessing step. This approach ensures that the generated showers are consistent
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with the physical constraints of the detector, and allows for a fair comparison to the
Geant4 data. A key feature of this study is the incorporation of the timing informa-
tion. As previously mentioned, this is an important addition to the CMS HGCal and
as such it requires high fidelity when reproduced with our model. In Chapter9.4, we
saw an accurate statistical generation of this feature that can still be improved with a
higher focus on the point-wise correlations.

The adaptation of CaloClouds II to the CMS HGCal has demonstrated its ability
to handle complex geometries and high-granularity data. The model’s ability to gen-
erate realistic calorimeter showers while incorporating timing information represents a
significant advancement in calorimeter simulation techniques. The CaloClouds II
model was trained on a dataset of photon showers in the CMS HGCal, and its perfor-
mance was evaluated by comparing the generated showers to the ground truth data
using various metrics, including the Wasserstein distance and a classifier test.

In conclusion, this dissertation has explored the application of machine learning
techniques to high-granular calorimeter simulation in high-energy physics research.
The study has investigated various machine learning approaches, including GNNs,
GANs, normalizing flows, and diffusion models, to generate realistic calorimeter show-
ers with significantly reduced computational costs compared to traditional methods.
The development and application of specific models, such as DGCNs, EPiC GAN, and
CaloClouds II, have demonstrated the potential of machine learning to transform
calorimeter simulation and data analysis, paving the way for more accurate, efficient,
and scalable simulation frameworks in future high-energy physics experiments.
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