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ABSTRACT

The dissertation investigates the role of domain walls in several extensions of the Standard
Model (SM) Higgs sector, such as the Two-Higgs-Doublet-Models (2HDM) and the Next-
to-Two-Higgs-Doublet-Models (N2HDM). Domain walls are formed after a phase transition
in the early universe if a discrete symmetry is spontaneously broken. We discuss in this
thesis several aspects of these domain walls in the Higgs sector, which differ significantly
from the standard domain wall solution usually discussed in the literature. This includes
the discussion of the several types of domain wall solutions in the 2HDM, where CP and
electric charge-violating scalar field domain wall configurations can be constructed. We
also discuss some aspects of the scattering of SM fermions, such as top and bottom quarks,
off these different types of domain walls.

In the case of the N2HDM, we show that domain walls can be embedded in the context
of electroweak baryogenesis. This is done by discussing how domain walls can lead to the
electroweak symmetry restoration in a region inside and around the wall, providing a way
to separate regions with unsuppressed sphaleron rates from regions where the sphaleron
rate is exponentially suppressed and thus avoiding the need for first order electroweak
phase transitions required in conventional models of electroweak baryogenesis. We also
show that one can induce a pure gauge hypermagnetic field centered inside the domain
wall that could source the needed chiral asymmetry. We provide a simplified calculation
intended to demonstrate the possibility of generating a sizable and suitable amount of
baryon asymmetry via this mechanism.

We finally discuss how domain walls can be used to constrain the parameter space of the
N2HDM beyond the conventional cosmological domain wall problem. We demonstrate
that domain walls can induce electroweak (EW) vacuum decay by showing that the large
potential barrier separating long-lived EW minima from the global minimum of the potential
can disappear inside the wall leading to the nucleation of the true minimum inside the
wall and its subsequent expansion everywhere in the universe, leading to the decay of
the electroweak vacuum to the global minimum. Since the global minimum gives different
masses to the SM particles, such parameter points are ruled out.

These mechanisms show the importance of domain wall field configurations in the early
universe, since they provide several new ways to alleviate some shortcomings of the SM,
such as the matter-antimatter asymmetry. They also provide some new constraints on
extended Higgs sectors, including EW vacuum decay induced by domain walls and the
possibility to modify the early universe cosmology via new interactions, such as the electric
charge breaking field configurations.



ZUSAMMENFASSUNG

Die Dissertation untersucht die Rolle von Domänenwänden in verschiedenen Erweiterungen
des Higgs-Sektors des Standardmodells (SM), wie beispielsweise den Zwei-Higgs-Doublet-
Modellen (2HDM) und den Nächst-zu-Zwei-Higgs-Doublet-Modellen (N2HDM). Domä-
nenwände entstehen nach einem Phasenübergang im frühen Universum, falls eine diskrete
Symmetrie spontan gebrochen wird. Wir diskutieren in dieser Arbeit verschiedene Aspekte
dieser Domänenwände im Higgs-Sektor, die sich deutlich von der in der Literatur diskutier-
ten Standardlösung für Domänenwände unterscheiden. Dies umfasst die Diskussion der
verschiedenen Arten von Domänenwandlösungen im 2HDM, mit denen CP- und elektrisch
ladungsverletzende Skalarfeld-Domänenwandkonfigurationen konstruiert werden können.
Wir diskutieren außerdem einige Aspekte der Streuung von SM-Fermionen, wie z. B. Top-
und Bottom-Quarks, an diesen verschiedenen Arten von Domänenwänden.

Im Fall des N2HDMs zeigen wir, dass Domänenwände im Kontext der elektroschwachen
Baryogenese eingebettet sein können. Das geschieht durch die Art und weise, wie Domänen-
wände zur Wiederherstellung der elektroschwachen Symmetrie in einem Bereich innerhalb
und um die Wand herum führen können. Dadurch können Bereiche mit nicht unterdrück-
ten Sphaleronraten von Bereichen mit exponentiell unterdrückter Sphaleronrate getrennt
werden. Dadurch werden elektroschwache Phasenübergänge erster Ordnung, wie sie in
konventionellen Modellen der elektroschwachen Baryogenese erforderlich sind, vermieden.
Wir zeigen außerdem, dass ein reines hypermagnetisches Eichfeld mit Zentrum innerhalb
der Domänenwand induziert werden kann, das die benötigte chirale Asymmetrie erzeugen
könnte. Wir präsentieren eine vereinfachte Berechnung, die die Möglichkeit demonstrieren
soll, über diesen Mechanismus eine beträchtliche und angemessene Baryonenasymmetrie
zu erzeugen.

Abschließend diskutieren wir, wie Domänenwände genutzt werden können, um den Para-
meterraum des N2HDMs über das konventionelle kosmologische Domänenwandproblem
hinaus einzuschränken. Wir zeigen, dass Domänenwände den Zerfall des elektroschwachen
(EW) Vakuums induzieren können. Dazu zeigen wir, dass die große Potentialbarriere,
die langlebige EW-Minima vom globalen Potentialminimum trennt, innerhalb der Wand
verschwinden kann. Dies kann dazu führen, dass sich das wahre Minimum innerhalb der
Wand bildet und sich dann anschließend im gesamten Universum ausdehnt, was zum Zerfall
des elektroschwachen Vakuums auf das globale Minimum führt. Da jedoch das globale
Minimum den SM-Partikeln unterschiedliche Massen zuweist, sind solche Parameterpunkte
ausgeschlossen.

Diese Mechanismen verdeutlichen die Bedeutung von Domänenwand-Konfigurationen im
frühen Universum, da sie neue Möglichkeiten zur Behebung einiger Schwächen des SMs,
wie beispielsweise der Materie-Antimaterie-Asymmetrie, bieten. Sie liefern außerdem neue
Parameter Einschränkungen für erweiterte Higgs-Sektoren, wie beispielsweise den durch
Domänenwände induzierten EW-Vakuumzerfall und die Möglichkeit, die Kosmologie des
frühen Universums durch neue Wechselwirkungen zu verändern, wie beispielsweise wegen
der Konfigurationen elektrischer Ladungsverletzungen.
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1 I N TRODUCT ION

For millennia, the quest to uncover the basic principles governing our universe took the
effort and imagination of many scholars. The Standard Model of particle physics (SM) is
our most successful theory describing the smallest subatomic structure of matter, while the
theory of ΛCDM also known as the Standard Model of cosmology provides a successful
description of the universe at large scales, based on the existence of a cold dark matter and
dark energy content in the universe. Evidence from the Cosmic Microwave Background
suggests that the universe at its early times was much smaller, dense, and very hot. Since,
at high temperatures and densities the known matter in the universe would be in form
of a primordial plasma of leptons, quarks, photons, gluons and other bosons, describing
the early universe relies on a precise understanding of the SM in the framework of an
expanding and cooling universe with the evolution of its space-time metric based on the
laws of general relativity.

One central and important piece for our understanding of the early universe is the mechanism
with which electroweak (EW) symmetry breaking occurred in the first nanosecond after
the Big Bang, leading to the known fundamental particles acquiring their mass via the
Higgs mechanism [5]. In the SM, this phase transition is a crossover, meaning that the
Higgs field permeating the whole universe slowly acquired a non-zero vacuum expectation
value. However, it is well-known that the SM cannot be the final description of nature at
its smallest scales. Indeed, the SM suffers from several shortcomings (such as the existence
of Dark Matter (DM), Neutrino masses, the matter-antimatter asymmetry of the universe,
the hierarchy problem, etc). This makes it necessary to extend it with new fields that might
change the nature of the EW phase transition in the early universe. Some of these so-called
Beyond the Standard Model (BSM) theories rely on extending the SM with new scalar
singlet/doublet fields to cure some of the problems with the SM. As an example, one can
obtain a first-order phase transition when extending the SM with singlet or doublet scalar
fields. This is done in order to satisfy the out-of-thermal-equilibrium condition needed to
explain the matter-antimatter asymmetry of the universe.

However, these extensions of the scalar sector of the SM can also be very interesting from
the point of view of allowing extra new symmetries related to an extended Higgs sector,
such as discrete and continuous symmetries [6, 7]. Upon the spontaneous breaking of these
new symmetries, topological defects could form in the early universe [8, 9], which are field
configurations that act as a snapshot of the universe in its symmetric phase before the
phase transition. They come in different types depending on the spontaneously broken
symmetry, such as domain walls (DW), cosmic strings, and magnetic monopoles [9]. These
topological defects can leave an imprint after their formation or annihilation in the form of
gravitational waves and particle production [10, 11, 9]. They can also act as primordial
seeds for large structures that are observed today [9]. The formation of DW in the early
universe after the spontaneous symmetry breaking of a discrete symmetry would lead to a
cosmological disaster since they would dominate the energy density of the universe at some
point after their formation [12, 8]. Therefore, particle physics models that lead to their
formation are largely disfavored [12, 8]. However, it was understood that this cosmological
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2 introduction

disaster can be very easily circumvented when taking into account several mechanisms such
as inflation, symmetry restoration, or the introduction of a discrete symmetry-breaking
term in the Lagrangian [13, 11]. Models with approximate discrete symmetries received
a renewed interest in the last few years since one can use an annihilating domain wall
network as a source for gravitational waves [11, 14, 15, 16, 17] which could fit well, for
instance, the data from Pulsar Timing Array observations [18, 19].

Several extended Higgs sectors relying on two-step phase transitions to get a first-order
electroweak phase transition can also lead to the formation of domain walls during the
first step phase transition [20, 21, 22]. It was shown recently that these domain walls
can catalyze the EW phase transition and rescue parameter points from vacuum trapping
[23, 21, 24, 22], where the universe gets stuck in the symmetric unbroken phase due to a
barrier separating it from the minimum of the broken phase. Such a DW-induced phase
transition can also alter the gravitational waves signal of usual first-order EW phase
transitions [20].

In this manuscript, we look at domain walls forming after the spontaneous symmetry
breaking of several extended Higgs sectors such as the Two-Higgs-Doublet-Models (2HDM)
[25] and the Next-To-Two-Higgs-Doublet-Models (N2HDM) [26, 27, 28]. In contrast with the
usual discussion of DW found in recent literature, which focused on the gravitational wave
consequences of domain walls, we look in this manuscript at further interesting and exotic
properties of domain walls, such as CP and electric charge violating field configurations in
the vicinity of the walls [1], their interaction with SM fermions, the possibility of domain
walls inducing EW symmetry restoration and sourcing a matter-antimatter asymmetry [2],
as well as domain walls inducing EW vacuum decay [3].

Our manuscript is structured as follows: The remainder of chapter 1 is dedicated to a
detailed introduction to the SM, its shortcomings, and a discussion of topological defects
with an emphasis on domain walls. In chapter 2 we introduce the extended Higgs sector
models studied in this manuscript, focusing on the used notation and the experimental and
theoretical constraints that must be fulfilled for these models to be viable. We later describe
in chapter 3 the different classes of domain wall solutions found in the 2HDM, which can
have CP or electric charge violating field configurations localized inside and in the vicinity
of the domain wall. In chapter 4, we describe how SM fermions such as top and bottom
quarks scatter off these different types of domain walls and demonstrate the possibility of
this scattering generating a chiral asymmetry in front of the wall as well as the possibility
of transforming top quarks into bottom quarks upon an interaction with the domain wall.
In chapter 5, we describe domain wall solutions in the N2HDM and demonstrate the
possibility of inducing the electroweak symmetry restoration (EWSR) inside and in the
vicinity of the domain wall. Such an EWSR can be useful for the mechanism of electroweak
baryogenesis via domain walls, whose ingredients will be discussed in that chapter. We also
provide a simplified calculation for the generated matter-antimatter asymmetry sourced by
these domain walls. We later move on in chapter 6 to the discussion of EW vacuum decay
induced by domain walls in the N2HDM, demonstrating a strong new source of constraints
on the viable parameter region of the N2HDM. We summarize in chapter 7 and discuss
some possible future directions for the topics discussed in this manuscript.



1.1 the standard model of particle physics 3

Figure 1.1: The different fundamental particles of the Standard Model of particle physics alongside
their masses, gauge quantum numbers, spin, and generations. The figure was taken from
[30].

1.1 the standard model of particle physics

The SM of particle physics provides a very successful description of the fundamental laws
and constituents of matter at microscopic scales. Based on the theoretical framework of
quantum field theory and robust, precise experimental observations [29], the SM explains
the fundamental interactions of the weak, electromagnetic, and strong forces between
all the observed elementary particles of nature. Using the powerful tool of symmetries,
particles of the SM are classified in multiplets according to their quantum numbers, such
as spin and mass for spacetime symmetries as well as charge quantum numbers for gauge
symmetries. The latter play a major role in the SM since they describe the fundamental
laws that govern the interactions between these fundamental particles.

We can classify the known fundamental particles in the SM according to their spin. Fermions,
which constitute the visible matter observed in the universe, have spin one-half, gauge
bosons, which describe the interactions between these fermions, have spin one, and a scalar
particle known as the Higgs boson with spin zero, responsible for the mass of all fundamental
particles of the SM. Concerning fermions, they come in two different types: six quarks with
each two constituting one generation, and six leptons also made of three families as shown
in Figure 1.1. Another important property of all fundamental fermions is their chirality.
Quarks and Leptons can be either left-handed or right-handed, except Neutrinos, which
come only with their left-handed version (and right-handed antiparticle). Each fundamental
force is represented by a gauge boson: the photon γ as the fundamental particle mediating
the electromagnetic force, the Z and W± bosons mediating the weak force, and the
gluons g mediating the strong force between the quarks. The last experimentally observed
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fundamental particle, known as the Higgs boson h is a scalar boson that is responsible for
giving all massive fundamental particles their mass [31, 32].

We mentioned that gauge symmetries play a fundamental role in explaining the particle
content of the SM. These symmetries classify leptons and quarks into multiplets according
to how they transform under the fundamental gauge symmetry of the SM, namely:

SU(2)L × U(1)Y × SU(3)c.

The electromagnetic force, described by a U(1)em symmetry is a remnant symmetry of the
electroweak symmetry SU(2)L × U(1)Y after its spontaneous symmetry breaking in the
early universe.

The strong force based on Quantum chromodynamics (QCD) and mediated by the gluons
and symmetric under SU(3)c (where c denotes the color quantum number) only acts on
quarks, which are classified in triplet representation of SU(3)c.

The weak interaction described by SU(2)L acts only on left-handed fermions and classifies
them into doublets, leaving right-handed fermions as singlets. As for the hypercharge
symmetry U(1)Y , it acts on all the fundamental fermions of the SM and classifies them
according to their hypercharge quantum number.

Since this manuscript is mostly concerned with the electroweak and scalar sectors of the
SM, we describe in more detail its Lagrangian in the SM. We first start with its bosonic
components encompassing the gauge fields W a

µ with a ∈ {1, 2, 3} corresponding to the
three gauge fields of the weak interaction SU(2)L, Bµ the hypermagnetic field of U(1)Y ,
and the Higgs boson Φ:

Lb
EW = |DµΦ|2 + VSM (Φ)− 1

4
W a

µνW
µν
a − 1

4
BµνB

µν , (1.1)

where W a
µν and Bµν denote the field strength tensors:

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gfabcW b

µW
c
ν , (1.2)

Bµν = ∂µBν − ∂νBµ, (1.3)

where g is the coupling constant of the weak force and fabc the Levi-Civita symbol.
The covariant derivative necessary to make the Lagrangian invariant under local gauge
transformations is defined as:

DµΦ = ∂µΦ+ igW a
µσ

aΦ+ ig′BµΦ, (1.4)

where g′ denotes the hypermagnetic field coupling constant and σa the Pauli matrices.

In the SM, the Higgs field Φ =

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
is a doublet of SU(2)L and therefore, the

renormalizable SM Higgs potential invariant under SU(2)L × U(1)Y is given by:

VSM (Φ) = −µ2Φ†Φ+ λ(Φ†Φ)2. (1.5)

Note that without the coupling of the Higgs boson to the gauge bosons, the SM would
suffer from unitarity problems in the scattering of longitudinally polarized W bosons
W+

L W
−
L → W+

L W
−
L [33]. The scattering amplitude for such scattering (including all

Feynman diagram contributions from the Z boson and photon) diverges for high values of
center of mass energies s. Including a coupling of the gauge bosons with the Higgs, such
as in (1.1), induces new terms in the scattering amplitude which eventually cancel the



1.1 the standard model of particle physics 5

Ll er ul ur dl dr Φ

-1 -2 1/3 4/3 1/3 -2/3 1

Table 1.1: Weak hypercharge for the SM particles. All other particles have 0 weak hypercharge.

dangerous divergent terms. This problem was one very important hint for the inevitable
existence of some mechanism at the EW scale, which solves this unitarity problem, also
known as the No-Lose theorem, acting as an "insurance" for the Large Hadron Collider
finding something at that scale.

For the fermionic sector, the left-handed fermions are organized into doublets according to:

Ll =

(
νe,l

el

)
for leptons, and Ql =

(
ul

dl

)
for quarks, (1.6)

where e denotes the lepton family, ν the neutrino, l denoting left-handed fermions, u
up-type quarks, and d down type quarks. Right-handed fermions are singlets of SU(2)L.
The weak hypercharge of the particles is shown in Table 1.1. Since right-handed neutrinos
are not part of the SM, they have vanishing weak hypercharge and they are singlets under
SU(2)L in beyond SM models. One can now write down the Lagrangian invariant under
SU(2)L × U(1)Y describing the interactions between the fermions, gauge bosons, and the
Higgs :

Lf
EW =iL̄lγ

µDµLl + iērγ
µD̃µer + iQ̄lγ

µDµQl + iūrγ
µD̃µur + id̄rγ

µD̃µdr

yeL̄lΦer + ydQ̄lΦdr + yuL̄lϵΦ
∗ur + h.c, (1.7)

where γµ corresponds to the Gamma matrices, ye,d,u to the Yukawa couplings to the
respective fermion and:

Dµ = ∂µ + igW a
µσ

a + ig′YwBµ, (1.8)

D̃µ = ∂µ + ig′YwBµ, (1.9)
ϵ = iσ2, (1.10)

where Yw corresponds to the respective weak hypercharge of each particle.

Without the interaction terms between the Higgs field and the fermions, known as the
Yukawa sector, the fermions would be massless. Since mass terms of the form mf f̄f =
mf (f̄lfr + h.c) in the Lagrangian would explicitly break the SU(2)L × U(1)Y symmetry
since fl and fr transform differently under SU(2)L and have different weak hypercharges,
one needs to generate the masses of these fundamental particles while remaining invariant
under these symmetries. A similar argument can be made for the gauge bosons, where
gauge symmetries also prohibit mass terms for the Z and W± gauge bosons. This shows
the paramount importance of the Higgs field in the framework of the SM: the Higgs field
dynamically generates a mass term for the massive fundamental particles following the
well-known Higgs Mechanism, which we discuss in the next subsection.

1.1.1 The Higgs Mechanism

As mentioned earlier, gauge symmetries in the SM forbid mass terms for fermions and
gauge bosons. This made it crucial to find a way to generate a mass term for particles
while circumventing the need for preserving local gauge symmetry, which is mandatory to
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describe interactions between particles in the SM. Several methods were proposed in the
second half of the last century to perform this task, with the most prominent one being the
Higgs Mechanism [5] based on a weakly coupled scalar field. Other alternative approaches
include technicolor (experimentally ruled out after the observation of the Higgs boson) [34]
and composite Higgs models [35].

Before electroweak symmetry breaking, the Higgs scalar field is in the symmetric phase

and its vacuum expectation value is ⟨Φ⟩ =

(
0

0

)
. In this symmetric phase the particles of

the SM are massless and we have 4 massless gauge bosons W 1
µ , W 2

µ , W 3
µ , and Bµ related

to the symmetry SU(2)L × U(1)Y as well as four massless scalar fields corresponding to
the complex Higgs doublet Φ. After the electroweak phase transition, the Higgs potential
develops a new global minimum at a non-vanishing value and the Higgs field obtains a
non-zero vacuum expectation value1

Φ =
1√
2

(
0

vsm

)
, (1.11)

and the SU(2)L × U(1)Y symmetry is spontaneously broken to U(1)em, describing the
symmetry of the electromagnetic force. Three of the four generators of SU(2)L × U(1)Y
are broken, leading to the generation of three Goldstone bosons that are "eaten" by the W
and Z bosons, which become massive. The fourth generator, which remains unbroken, is
defined as:

Q =
1

2
σ3 +

1

2
YΦ =

(
1 0

0 0

)
, (1.12)

and corresponds to the electric charge. These massive states W± and Z are a superposition
of the previous massless gauge bosons. Using the symmetry broken phase expression of Φ
in (1.1), one obtains mass terms for the following massive gauge boson degrees of freedom:

W±
µ =

1

2
(W 1

µ ∓ iW 2
µ), (1.13)

Zµ = cos(θw)W
3
µ − sin(θw)Bµ, (1.14)

Aµ = sin(θ)W 3
µ + cos(θW )Bµ, (1.15)

where tan(θw) =
g′

g .

The third gauge field Aµ remains massless and corresponds to the photon field, the gauge
boson of U(1)em. The vacuum expectation value in the SM is always "neutral", meaning that
the scalar potential cannot develop a minimum where all 4 generators of SU(2)L × U(1)Y
are broken, which would then lead to the spontaneous breaking of U(1)em giving the photon
a mass2. The chosen minimum for the Higgs also provides a mass for the Higgs boson. The
masses for the W and Z bosons as well as the Higgs Φ are given by:

mW =
gvsm
2

, (1.16)

mZ =
vsm
2

√
g2 + g′2, (1.17)

1 For an arbitrary vacuum expectation value ΦT =
(
a b

)
, one can always perform an SU(2)L × U(1)Y

transformation to obtain ΦT =
(
0 c

)
.

2 In BSM models with several Higgs multiplets, it is possible to construct minima in the potential which
also break the generator Q in (1.12) and therefore break electromagnetism.
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mΦ =
√
λvsm. (1.18)

For the fermions, recall that they couple to the Higgs boson via the Yukawa sector described
in (1.7). The non-zero vacuum expectation value induces a mass term of the form:

Lf
EW ⊃ yf

1√
2
vsm(f̄lfr + f̄rfl), (1.19)

where yf denotes the Yukawa coupling of the respective fermion f to the Higgs field. In
the SM, the mass of the fermion is proportional to its coupling to the Higgs boson. This
property was experimentally confirmed within the current experimental uncertainties at
the LHC for the top quark, gauge bosons, and the bottom quark [29].

1.1.2 Shortcomings of the Standard Model

The Standard Model successfully describes most of the observed phenomena related to
the interaction of fermions and bosons in the electroweak, strong, and scalar sectors.
Despite this overwhelming success, the SM still cannot account for several theoretical and
experimental shortcomings. This strongly motivates the existence of Beyond Standard
Model physics, which can solve some of the theoretical problems as well as incorporate
some of the experimentally observed deviations.

1.1.2.1 Theoretical issues in the SM

From a theoretical point of view, the SM based on quantum field theory does not in-
corporate a renormalizable theory of quantized gravity [36]. The SM, therefore, fails at
describing the physics involving gravitational effects on particles at very high energy scales.
This is also intertwined with the well-known Hierarchy Problem [37, 38, 39, 40]: why the
Higgs mass is found to be at the Electroweak scale rather than at the Planck scale. In
contrast to other particles found in the SM, which have their mass terms protected by
gauge symmetries in the case of gauge bosons and chiral symmetries in the case of the
fermions, the mass term of scalar particles is not protected from large radiative corrections
by symmetry arguments and, assuming the existence of new physical phenomena at some
energy scale ∆, the Higgs mass m2

h will receive quantum corrections proportional to ∆2.
In order to obtain the experimentally observed value for the Higgs mass, one needs to
choose the counterterms to be of the order of ∆2 in order to cancel such a huge mass
correction. This fine-tuned choice of the counterterm is usually called "unnatural" and
needs an underlying mechanism that explains it.

Another important theoretical issue is the Strong CP-problem [41, 42]. The SU(3)C
symmetry of the SM allows for a non-zero term of the form:

L ⊃ θg2s
32π2

GµνG̃
µν , (1.20)

where gs is the QCD coupling constant, Gµν the gluon gauge field strength tensor, and

G̃ =
1

2
ϵµνρσGρσ the so-called dual tensor of Gµν . This term in the Lagrangian induces

a non-zero neutron electric dipole moment dn ∼ (10−16 e.cm)θ [42]. However, precise
experimental measurements put a large constraint on the electric dipole moment of the
neutron, leading to θexp < 10−10 [29]. This term acts as a measure for the amount of T
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and P violation in QCD [42]. It is therefore important to understand why this parameter
is very small. The most promising solution for the strong CP-problem is the existence of
an axion particle that dynamically leads to θ → 0 [42].

As a final example of theoretical issues within the standard model, we mention the
cosmological constant problem [43, 44]. When interpreting the present acceleration rate
of the universe in terms of a cosmological constant corresponding to a vacuum energy
density, the value for the cosmological constant is extremely small, i.e. of the order of
Λ ≈ 10−120M4

planck. However, quantum corrections to this quantity, originating from SM
fields, will lead to a larger contribution, and therefore we would expect, based on naturalness
arguments, that these contributions should cancel each other in a fine-tuned way, leading
to the very small value of the cosmological constant [43, 44].

1.1.2.2 Experimental problems with the SM

• Neutrino masses: Several experimental observations point to the existence of new
physics beyond the SM. For instance, the observation of flavor neutrino oscillations
in solar [45] and atmospheric neutrinos [46] makes it evident that neutrinos have
a non-zero mass, in contrast to neutrinos being massless fermions in the SM. In
order to explain this non-zero mass, several mechanisms are proposed, such as the
Seesaw-mechanism [47, 48, 49]; where the SM is extended by heavier neutrinos, as
well as radiative neutrino mass models [50]; where the neutrinos are massless at
tree-level but acquire a mass through quantum corrections at loop level.

• Dark Matter: The observation, in the last century, of an anomalous rotation velocity
for galaxies [51] and galaxy clusters [52] were the first hints for the existence of dark
matter, which interacts with the usual observed matter in the universe mostly (if
not exclusively) via gravitational effects. Modern evidence for the existence of dark
matter includes the collisions between galaxy clusters, such as the bullet cluster [53],
the role of dark matter in explaining the fluctuation in the CMB [54, 55], as well as
baryon acoustic oscillations [56]. Dark matter is also a very important component
in models explaining structure formation and how density fluctuations in the early
universe eventually grow to produce galaxies and structures as observed today3. Since
neutrinos interact feebly with other SM particles, it is natural to expect them to
be a viable DM candidate. However, neutrinos have too light masses to explain the
observed DM on their own since the Pauli exclusion principle will forbid fermions with
masses smaller than a few keV from clumping together and inducing the gravitational
force that leads to the observed rotation curves of galaxies. This constraint is also
known as the Tremaine-Gunn bound on the mass of fermionic DM [59]. DM can
also have a wave-like behavior when it is bosonic with a mass smaller than about 30
eV [60]. Since DM should be bound to a structure such as galaxies, the de Broglie
wavelength of wave DM should be smaller than the size of dwarf galaxies. This gives
a lower bound on the lightest possible candidate for DM, which should have a mass
higher than ∼ 10−21eV [60]. For a long time, a "Weakly Interacting Massive Particle"
(WIMP) with masses of the order of hundreds of GeV was the leading candidate for
particle DM [61, 62]. Solving the hierarchy problem using supersymmetry would also

3 The recent observations [57] by the James Webb Telescope of large galaxies at high redshift which are too
large for their age is in contradiction to ΛCDM which typically predicts smaller galaxies at that redshift.
In such a scenario, dark matter alone cannot explain how those galaxies became very massive at those early
times. However, some authors [58] suggested that some of those galaxies are not as massive as initially
thought and that they appear brighter and more massive due to black holes inside them heating the gas in
the galaxy.
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predict the existence of weakly interacting particles with a mass spectrum in that
regime. This was then termed "the WIMP miracle" [61, 62] since such a particle
would be a by-product of a well-motivated solution for the hierarchy problem as well
as being accessible for direct searches for DM in underground DM detectors, being
producible at colliders such as at the LHC and account for the correct relic abundance
of Dark Matter observed in the universe. However, since WIMP DM wasn’t found up
to this point in any (in)direct search nor at the LHC, a paradigm shift to expand the
quest for DM candidates to other lower and higher masses was followed in the last
few years. This includes axion-like particles [42], primordial blackholes [63], WIMPS
with very high masses, strongly interacting massive particles (SIMPS) [64], feebly
interacting massive particles (FIMPS) [65], the misalignment mechanism related to
axions [66], ect...

• Matter-Antimatter Asymmetry: Another important observational hint for the exis-
tence of physics beyond the SM is the imbalance between matter and antimatter
[67, 68, 69]. Since nearby planets, solar systems, and galaxies consist of matter, one
might suggest that the universe is separated into different regions where different
patches might be either dominated by matter or antimatter. However, such a picture
would lead to clear observational signatures in the form of large signals of gamma-
rays emanating from the boundaries separating matter from antimatter. Since the
observed gamma-ray background is diffuse, one can conclude that the observable
universe is mostly made of matter. Other observations suggest a baryon asymmetry
in the universe including the CMB background when trying to fit the multipoles in its
fluctuations [54], as well as Big Bang Nucleosynthesis [70], where a matter-antimatter
asymmetry is a crucial initial condition parameter for the calculation of the relic
abundance of Helium, Deuterium and Lithium nuclei. From these observations, one
can extract a measure for this asymmetry normalized by nγ , the number density of
photons in the universe [29]:

ηb =
nb − nb̄
nγ

= (6.115± 0.038)× 10−10. (1.21)

In order to obtain a matter-antimatter asymmetry in the universe, several conditions
for mechanisms generating this asymmetry need to be met [71]:

– Baryon number violation,

– C, and CP violation,

– Departure from thermal equilibrium.

These conditions, also known as the Sakharov conditions [71], are in principle met in
the SM. For instance, sphaleron processes, which are non-trivial field configurations
interpolating between distinct degenerate vacua of the theory, are known to break
B+L quantum number [67, 68, 69], where B is the baryon number and L the lepton
number. It is also known that several interactions in the SM are CP-violating due
e.g. to a complex CKM matrix. One could also depart from thermal equilibrium in
the early universe due to particle decoupling from the thermal plasma. However,
since CP violation in the SM (which can lead to a matter-antimatter asymmetry)
is too small to explain this asymmetry [69], it is very important to understand the
processes that lead to this asymmetry. If one suggests that this asymmetry is one
initial condition after the Big Bang, then inflation and baryon number-violating
processes such as sphalerons would dilute such an asymmetry. Therefore, this puzzle
constitutes one important research topic in the interface of particle physics and early
universe cosmology.
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In this thesis, we extend the Higgs sector of the SM with new Higgs doublets/singlets,
leading to models that can alleviate some of the theoretical and experimental shortcomings
of the SM. This includes, for example, proposing a mechanism to generate a matter-
antimatter asymmetry using domain walls, which are a type of topological defect that can
form in the early universe after the spontaneous breaking of a discrete symmetry. Before
delving more into the details of the studied models, we start by introducing topological
defects and, in particular, domain walls, since this thesis is centered around their properties.

1.2 topological defects

In particle physics, symmetries play a very important role. Spacetime symmetries related
to the Poincaré group lead to the classification of particles into multiplets of mass and spin
as the relevant quantum number. Internal symmetries, such as gauge symmetries, describe
the interactions between different particles and classify the fundamental particles of the
SM according to their quantum numbers (such as hypercharge, electric charge, colour,
etc.). Since the SM cannot be the final description for the particle content of the whole
universe, the possibility of having new particles and symmetries is worthy of a considerable
investigation. Several BSM models lead to the existence of new symmetries, which might
be spontaneously broken in the early universe.

In conventional scenarios describing the early universe cosmology, one assumes that in the
aftermath of the electroweak spontaneous symmetry breaking, the Higgs field configuration
is spatially homogeneous and that its value corresponds to one of the minima of the scalar
field potential. However, in case that the vacuum manifold of the model is non-trivial and
is made of several degenerate minima of the potential, one would expect that causally
disconnected regions of the universe might be populated with different degenerate minima,
since they cannot influence the choice of minimum in other regions of the universe. The
Higgs field configuration in such a case could be inhomogeneous, and depending on the
topology of the vacuum manifold, such scalar field configurations that interpolate between
these minima can be stable [9, 8, 13].

In the following, we briefly describe the different types of these field configurations called
topological defects, their formation mechanisms, as well as their potential impact on
cosmology.

1.2.1 Types of Topological Defects

Topological defects are stable field configurations describing a region of space with higher
energy compared with its surrounding regions. They represent a solution to the equation of
motion of the scalar and gauge fields and can occur after spontaneous symmetry breaking
in the early universe.

Topological defects are intrinsically related to the nature of the vacuum manifold M of
the theory [9, 13]. The vacuum manifold is made up of the set of all degenerate minima of
the scalar potential. For instance, consider a theory invariant under a symmetry group G.
After spontaneous symmetry breaking, the ground state of the theory is invariant under a
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φ1

φ2

V (φ1,φ2)

Figure 1.2: "Mexican-hat" potential showing two different but degenerate vacua |0⟩ in orange, and
|0′⟩ = g |0⟩ in blue. This figure was generated using [72].

subgroup H, with H ⊂ G. For a vacuum state |0⟩ of the potential, a group element h ∈ H
acts on |0⟩ as follows:

h |0⟩ = |0⟩ , (1.22)

keeping the vacuum state invariant, while a group element g ∈ G acts on |0⟩ as:

g |0⟩ = |0⟩′ , (1.23)

where |0⟩′ is a degenerate vacuum state of the potential and can be different than |0⟩ as
shown in Figure 1.2. One can therefore start with a vacuum state |0⟩ and generate the set
of degenerate vacua, i.e, the vacuum manifold M by acting on |0⟩ using elements g ∈ G
which do not keep |0⟩ invariant. The vacuum manifold can then be identified with the
coset space G/H [9, 13].

Depending on the topology of M, one can obtain different types of topological defects.
This topology can be identified according to the different homotopy groups πn(M) of M.
The n-th homotopy group of a manifold M is the group whose elements are maps from
points in the n-sphere to M. Such maps that can be continuously deformed4 into each
other are considered to be equivalent, and as such, the different maps that are equivalent to
each other can be classified into equivalent classes. These equivalent classes are considered
to be the elements of the group πn(M) since for every two equivalent classes of maps f1
and f2, all the group identities are fulfilled [73]. For the zeroth homotopy group π0(M),
the elements of the group are maps from the S0 sphere (two points x = ±∞) to the
elements of M. Since such maps can be deformed into each other in the case when the
vacuum manifold M is connected, π0(M) is non-trivial only when M is disconnected. The
first homotopy group π1(M) is the group whose elements connect the 1-Sphere (a circle)
to M, while the second homotopy group π2(M) is the group whose elements are maps
from the 2-sphere (the usual sphere in 3-dimensions) to M. To illustrate the connection
between these homotopy groups and the formation of topological defects, consider a scalar
field configuration Φ(x), where we take the boundary condition of Φ(x) to lie on points

4 Two maps f1 and f2 can be continuously deformed into each other, if there exist a map h(α) where
α ∈ [0, 1] such that h(0) = f1 and h(1) = f2.
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Figure 1.3: Scalar field potential of the abelian Higgs model showing a vacuum manifold S1 on the
left and the corresponding cosmic string spatial field configuration on the right. The
Figure was taken from [74].

of the vacuum manifold M, this means that for x ∈ S∞
n (corresponding to an n-sphere

with infinite radius) Φ(x ∈ S∞
n ) ∈ M. Therefore, the function Φ∞ := Φ(x ∈ S∞

n ) is an
element of πn(M). If πn(M) ̸= I is non-trivial (with I denoting the identity) one says
that Φ∞ is topologically non-trivial and there must be some points in x (inside the interval
bounded by S∞

n ) where the field configuration Φ(x) lies outside the vacuum manifold. To
understand this argument, consider what happens to Φ∞ as the radius R of the n-sphere
is shrunk from infinity. Since Φ(x = R) will lie on the vacuum manifold and this mapping
is also non-trivial, then as R→ 0 the field Φ will have several different values at a single
point, which is unphysical. Therefore, there must be some points in the space enclosed
by the boundary n-sphere, where the field configuration Φ(x) lies outside the vacuum
manifold. Different topological defects can be characterized according to whether the
πn(M) homotopy group is trivial or not:

• Zeroth homotopy group π0(M) ̸= I: the vacuum manifold is made of disconnected
points, as in the case of a Z2 symmetry, or disconnected components. In this case,
one can map the space points in S0 such as x = −∞ and x = ∞ to two disconnected
components of M. Due to the continuity of the field configuration, the scalar field
Φ(x) interpolates between both vacua and will therefore lie outside of the vacuum
manifold M in some region of space (see Figure 1.4). This region is called a kink. In
3-dimensional space, this object is a 2-dimensional sheet called a domain wall.

• Fundamental homotopy group π1(M) ̸= I: the vacuum manifold in this case is not
simply connected, i.e., the manifold has non-contractible loops. The simplest model
with such a vacuum manifold is the abelian Higgs model (see Figure 1.3), which is
invariant under a U(1) symmetry that breaks spontaneously to the identity. In such a
case, the vacuum manifold M ≃ U(1)/1 ≃ S1 is a circle S1 that describes the phase
θ of the field ⟨Φ⟩ = veiθ. Maps from S1 in physical space to the vacuum manifold
M = S1 cannot be continuously contracted to one point on M and as we move
around a closed circular path of S1 in physical space (starting from a particular point
and then back to it), one can wrap around the vacuum manifold an integer number
of times ±1, ±2, ±3, ect... If we assume that for a given closed path in physical
space, the vacuum manifold is wrapped one time (∆θ = 2π), then by continuously
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shrinking this path in physical space to a point, we cannot continuously change ∆θ
from 2π to 0 and therefore, there must be a point inside the circular path where the
angle θ is undefined. Due to continuity in the field, the scalar field Φ(x) needs to
vanish at that point. Obviously, at and in the vicinity of this point, the value of the
scalar field is not an element of the vacuum manifold. In 3-dimensional space, this
object becomes a 1-dimensional line with Φ = 0 and is called a cosmic string.

• Second homotopy group π2(M) ̸= I: in this case, the vacuum manifold has a two-
dimensional hole, and the produced topological defect is one-dimensional and is called
a magnetic monopole.

In the SM, the symmetry group G (considering only the electroweak sector) is G =
SU(2)L ⊗ U(1)Y , while the unbroken subgroup is H = U(1)em. The vacuum manifold in
this case is topologically equivalent to G/H ≃ SU(2) ≃ S3, which is a 3-sphere. Since
such an object is neither disconnected nor has holes, its zeroth as well as higher homotopy
groups will be trivial, and no topological defects occur in the Standard Model [9].

1.2.2 Domain Walls

Since the focus of this thesis is on domain walls and their consequences, we shall now give
a more detailed analysis of a simple model where domain walls form. As mentioned earlier,
domain walls form whenever the vacuum manifold is made of disconnected components.
The simplest model where this can occur is the real singlet scalar model, where a scalar
field ϕ has the potential:

V0(ϕ) = −m
2
0

2
ϕ2 +

1

4
λϕ4. (1.24)

This potential is invariant under a Z2 symmetry that acts on ϕ as:

ϕ
Z2−→ −ϕ. (1.25)

When the scalar field acquires a non-zero vacuum expectation value (when µ < 0), the

possible minima are either v+ =

√
m2

0

λ
or v− = −

√
m2

0

λ
. The vacuum manifold is then

disconnected. Since both of these minima are degenerate, they have equal probability of
occurring in a given region of the universe. In this case, causally disconnected regions in
space can have either positive or negative vacuum expectation value, and the universe is
separated into regions with different signs for the vacuum of ϕ. The different scalar field
configurations need to obey the Klein-Gordon equation of motion:

∂2ϕ

∂t2
− ∂2ϕ

∂x2
+
∂V0(ϕ)

∂ϕ
= 0. (1.26)

The homogeneous field configuration ϕ(x) = v± is the lowest energy field configuration that
satisfies this equation of motion. Another possibility is when two regions of the universe
end with different minima v±. Since the field configuration interpolating between two
regions with minima having opposite signs needs to be continuous, the field will go out of
the vacuum manifold inside the wall separating both regions. The profile of the field in
that transition region needs to obey the Klein-Gordon equation (1.26). We show in Figure
1.4a the profile of ϕ(x):

ϕ(x) = v+ tanh

(√
λ

2
v+x

)
, (1.27)
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Figure 1.4: (a) Potential V (ϕ) of the real singlet scalar ϕ after spontaneous symmetry breaking
with the minima v− and v+ denoted b an orange and red dot respectively. (b) Domain
wall field profile with the field interpolating between the minima v± and crossing ϕ = 0
at x = 0 (denoted by a black dot in the potential).

which solves (1.26) with boundary conditions having minima with opposite signs. Inside the
wall, the scalar field is zero and sits on top of the potential (see Figure 1.4b). Clearly, such a
field configuration has a higher energy than the ground state field configuration, where the
VEV of the scalar field is homogeneous everywhere. One would then naturally be interested
in the stability of such a field configuration. However, in order to transition from this
domain wall configuration to the true ground state of the vacuum (i.e. the homogeneous
one), one needs to lift the scalar field in an infinite amount of space from its minimum (e.g.
v−) at one domain to the minimum v+. Such transformation can only be done by making
the field cross the potential barrier in an infinite amount of space, which is a process that
costs an infinite amount of energy and thus is not physically possible. Therefore, the domain
wall field configuration (1.27) is deemed stable. Right after spontaneous symmetry breaking
and assuming a non-zero temperature, the domains of space with different minima can be
small enough for temperature fluctuations to lift the field to the other minimum. However,
as the universe cools down below a temperature known as the Ginzburg temperature Tg
[9], this process becomes suppressed, and regions of the universe are "frozen" in their
respective minima.

Even though the field configuration of domain walls in this real singlet scalar Z2 model
seem very simple since the vacuum manifold in this case is made of two disconnected
points, the case of realistic BSM models that also include the spontaneous breaking of
a continuous symmetry (such as the electroweak symmetry [75, 76, 1] or Grand Unified
Symmetries [77, 78]) alongside the discrete symmetry makes the picture considerably more
challenging and phenomenologically much richer. In those more complicated models, the
vacuum manifold would be made of disconnected submanifolds Mi with i ∈ 1, ..., n. These
submanifolds have a continuous structure, which gives us more freedom in choosing the vacua
at both boundaries +∞ and −∞. These types of domain walls were already investigated
in Grand Unified Theories [79, 77, 78] and Two-Higgs-Doublet-Models [76, 75, 6, 1]. One
focus of this thesis is the study of these types of domain walls in extended Higgs sectors
and the discussion of the different exotic phenomena that come with field configurations in
such models, such as CP-violation and electric charge violation.

Having introduced topological defects and domain walls from a conceptual point of view,
we delve, in the next subsection, into a more detailed description of the different formation
mechanisms for domain walls after a phase transition in the early universe.
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1.2.3 Phase Transitions in the Early Universe

Up to now, we have discussed how to construct the simplest field configuration that
interpolates between two disconnected minima of the vacuum manifold after the spontaneous
symmetry breaking of a discrete symmetry. In order to study the formation mechanisms
for these defects, we first discuss how spontaneous symmetry breaking occurs in the early
universe in the framework of phase transitions from a symmetry-restored phase of the
scalar potential to a broken phase.

Since the universe after the Big Bang was very hot and dense, one needs to take into account
the effective interaction of the scalar field with the thermal plasma. These interactions can
induce large corrections to the scalar potential at high temperatures and induce a positive
mass contribution in the quadratic terms, making the minimum of the potential at the
origin of field space. As the temperature falls down, these positive contributions become
smaller and the effective quadratic terms eventually turn negative, inducing non-zero
minima in the scalar potential and leading to a spontaneous symmetry breaking.

We first start our discussion with a brief description of the effective thermal potential for
the simple real singlet scalar model and demonstrate the evolution of this potential leading
to a phase transition that seeds the formation of domain walls.

The full effective thermal potential of a scalar field in the thermal plasma is given by:

Vtot(ϕ, T ) = V0(ϕ) + VCW (ϕ) + VCT (ϕ) + VT (ϕ, T ), (1.28)

where V0(ϕ) is the tree-level potential introduced in (1.24), VCW (ϕ) denotes the Coleman-
Weinberg effective potential loop corrections at zero-temperature [80], VCT (ϕ) denotes the
counterterms needed to renormalize the potential as well as keep the minima at T = 0 the
same as the ones given by the tree-level potential. Finally, VT (ϕ, T ) denotes the thermal
corrections at some temperature T.

Since we are only interested in applying the effective potential to obtain the evolution of
the scalar potential in the early universe, leading to the phase transition, we only briefly
discuss the different components of each contribution. We start with the Coleman-Weinberg
potential describing the one-loop correction to the tree-level scalar potential V0(ϕ). This is
given in the MS renormalization scheme by [80]:

VCW (ϕ) =
∑
j

nj
64π2

(−1)2sjm4
j (ϕ)

(
ln

(
|mj(ϕ)|2

µ2

)
− cj

)
, (1.29)

where we sum over all particles j coupled to the scalar field ϕ, nj the number of degrees
of freedom for each particle species, mj(ϕ) the mass for the particle species described as
a function of the scalar field, µ the renormalization scale and cj constants related to the
nature of the particle and given by cj = 3/2 for scalars and fermions, and cj = 5/6 for
gauge bosons. For our simple model of a real singlet scalar with the potential V0(ϕ) (1.24),

this mass term is given by m2
ϕ =

∂2V0
∂ϕ2

= −m2
0 + 3λϕ2. The Coleman-Weinberg potential

for the real singlet scalar is then given by:

VCW (ϕ) =
1

64π2
(−m2

0 + 3λϕ2)2
(
ln

(∣∣−m2
0 + 3λϕ2

∣∣
µ2

)
− 3/2

)
. (1.30)

The terms in the counterterm potential are chosen in such a way that the minima of the
potential V0(ϕ) + VCW (ϕ) are the same as the tree-level potential minima:

VCT (ϕ) =
δm2

0

2
ϕ2 +

δλ

4
ϕ4. (1.31)



16 introduction

This condition is implemented using:

∂VCW

∂ϕ
|ϕ=v± =

∂V0
∂ϕ

|ϕ=v± , (1.32)

∂2VCW

∂ϕ2
|ϕ=v± =

∂2V0
∂ϕ2

|ϕ=v± . (1.33)

The thermal potential VT (ϕ, T ) is computed using quantum field theory methods at finite
temperature. It takes into account the thermal plasma of fermions and bosons in the early
universe as a thermal bath interacting with the scalar field. This contribution can be
written as [81]:

VT (ϕ, T ) =
∑
j

njT
4

2π2
J±

(
m2

j (ϕ)

T 2

)
, (1.34)

where J± denote the thermal integrals defined by [81]:

J+

(
m2

j (ϕ)

T 2

)
= −

∫ ∞

0
dx x2 ln

[
1 + exp

[
−(x2 +m2

j (ϕ)/T
2)−1/2

]]
, for fermions.

(1.35)

J−

(
m2

j (ϕ)

T 2

)
=

∫ ∞

0
dx x2 ln

[
1− exp

[
−(x2 +m2

j (ϕ)/T
2)−1/2

]]
, for bosons. (1.36)

In the high-temperature limit m2(ϕ)/T 2 << 1, we can simplify these thermal integrals as
follows [81]:

J+(x) = −7π4

360
+
π2

24
x+

1

32
x2 ln

(
|x|
af

)
+O(x3), (1.37)

J−(x) = −π
4

45
+
π2

12
x− π

6
x3/2 − 1

32
x2 ln

(
|x|
ab

)
+O(x3), (1.38)

where ab = π2 exp(3/2− 2γE) and af = 16π2 exp(3/2− 2γE). For the case of the simple
real singlet scalar field, the leading order in the thermal potential is given by:

VT (ϕ, T ) =
λ

8
T 2ϕ2 + T 4π

2

90
. (1.39)

The full one-loop effective thermal potential Vtot(ϕ, T ) is then:

Vtot(ϕ, T ) =

(
−m

2
0

2
+
λ

8
T 2

)
ϕ2 +

1

4
λϕ4 +

δm2
0

2
ϕ2 +

δλ

4
ϕ4

+
1

64π2
(−m2

0 + 3λϕ2)2
(
ln

(∣∣−m2
0 + 3λϕ2

∣∣
µ2

)
− 3/2

)
. (1.40)

We can now study the evolution of the real singlet scalar field potential as a function of
temperature T . For sufficiently high temperatures, the effective quadratic term in (1.40)
turns positive and the potential is in the symmetric phase with its minimum at ϕ = 0
as shown in Figure 1.5, therefore, the Z2 symmetry is restored. As the temperature falls,

the effective quadratic term vanishes at a temperature Tc =
2m0√
λ

. As the universe cools

further down below this temperature, the effective quadratic term turns negative and the
potential develops non-zero global minima. The extremum at the origin of field space is
now metastable. If during this evolution a potential barrier between the extremum at ϕ = 0
and the new minimum develops, the transition from the symmetric phase to the broken
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Figure 1.5: (a) Temperature evolution for a second-order phase transition. (b) Scalar potential
for a first-order phase transition. At temperature T = Tc, the minimum at ϕ = 0 and
ϕ ≈ 1.5 GeV are degenerate and separated by a potential barrier.

phase requires either an external perturbation for the field to jump over the barrier (such
as thermal excitations) or a quantum tunneling to the new minimum. In this case, the
phase transition from the symmetric phase to the broken phase is said to be first order,
since the order parameter of the phase transition (in this case, the vacuum expectation
value of the scalar) as a function of temperature is discontinuous. In the absence of large
perturbations and if the tunneling rate is very small, the universe can remain trapped in
the symmetric phase, a phenomenon called vacuum trapping [23, 21, 24].

When no potential barrier develops during the thermal evolution, the scalar field rolls over
to the new minimum in a classical way, and the phase transition is said to be second order
since the evolution of the order parameter is continuous as a function of the temperature.
In the case when the change in the order parameter occurs very smoothly as a function of
temperature, the phase transition is said to be a crossover.

Now that we can describe the evolution of the scalar potential in the early universe, we
discuss in the next subsection the mechanisms for the formation of domain walls upon
the phase transition that leads to the spontaneous symmetry breaking of the discrete
symmetry.

1.2.4 Formation of Domain Walls in the Early Universe

Figure 1.6: Bubbles of broken phase ⟨ϕ⟩ ̸= 0 nucleating and expanding in the region of unbroken
phase ⟨ϕ⟩ = 0. The figure was taken from [68].
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As the universe cools down below the temperature Tc, the transition to the new minimum
can be either first order, second order, or a crossover. In the case of a first-order phase
transition, several bubbles of the new minimum nucleate (see Figure 1.6), with the bubble
wall separating both the regions with broken and unbroken phases. These bubbles have
a spatial scalar field profile ϕ(r) that interpolates between the new minimum at r = 0
and the symmetric phase minimum ϕ = 0 at large r. Such a scalar field configuration has
a non-zero energy, and the bubbles have a tension σ that tends to shrink it. When the
bubbles are big enough to make the vacuum energy (the difference in the potential between
V (0) and V (v±)) large enough to overcome the bubble tension, the bubbles grow in the
space of the false symmetric vacuum and after some time the universe is eventually filled
with the new minimum with a non-zero VEV. Bubbles with opposite signs for the VEV
will collide, and the size of domains with different VEVs will be largely determined by the
dynamics of the bubbles [8, 13].

For a second-order phase transition, the VEV of the scalar field changes continuously from
0 to either v±(T ). This evolution can, however, occur differently in different regions of
the universe due to local thermal and quantum fluctuations. In this case, the picture for
determining the size of causally disconnected regions with opposite signs for the VEV is
more complicated [8, 13].

• We first start with describing the formation of domain walls in a first-order phase
transition, which is also known as the Kibble mechanism [8]. After nucleation, the
bubbles grow and expand in the region of the false vacuum. Bubbles with VEVs
having different signs collide. For a phase transition with bubble nucleation rate per
unit volume equal to Γ and bubble velocity v, the typical size of domains ξ when
they collide is proportional to a length scale ξ [73]:

ξ =

(
v

Γ

)1/4

. (1.41)

Domains with different VEVs adjacent to each other will then have domain walls
between them, while those with the same VEV will grow bigger, merging together.
The subsequent evolution of the walls in this case is related to minimizing the tension
of the walls, which we discuss later.

• In a second-order phase transition, the order parameter of the phase transition
(vacuum expectation value of the scalar field) changes continuously at each point
in space. This makes calculating the typical size of domains considerably more
complicated. The idea which Kibble used in [8] was to find an upper bound for
distances that can be in causal contact at some cosmic time τ . Since information
cannot travel faster than light, two regions of the universe that are separated by a
distance larger than the cosmic horizon l > cτ with c being the speed of light, cannot
be in causal contact. For two regions that are separated by a distance larger than l,
the choice of the vacuum cannot be correlated.

Another limit is to determine the correlation length beyond which thermal fluctuations
after the phase transition cannot change the chosen vacuum, also known as the
Ginzburg length lG [13]. Consider, for instance, a domain with VEV v+ and a size l+.
If the Ginzburg length lG is smaller than l+, then the domain is frozen in the minimum
v+. If lG > l+, then thermal fluctuations caused by the thermal plasma can make
the domain jump to the vacuum v−. At some temperature T , the energy necessary
to change a volume of space d3 from v+ to v− is given by ∆E(T ) = d3∆Vtot(T ),
while the thermal energy available from thermal fluctuation is proportional to T [73].
Therefore, in order for a domain to not be affected by thermal fluctuations, its size
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needs to be bigger than dmin(T ) ≈ (∆Vtot(T )/T )
1
3 . In our simplified toy model, this

length scale is:

dmin(T ) ≈ (∆Vtot(T )/T )
1
3 ≈

(
(2m2

0 − 1
2λT

2)2

16λT

) 1
3

. (1.42)

Domains with a smaller scale can fluctuate from one vacuum to another. An important
requirement for this transition to occur is that all points of the domain fluctuate
to the other vacuum at the same time. Therefore, it is needed to find the size of
the correlation length for the scalar field at a given temperature T . This can be
approximated by [8, 73]:

ξ̄(T ) =
1

mϕ(T )
=

1√
2m2

0 − 1
2λT

2
. (1.43)

In case ξ̄(T ) > dmin(T ), domains with size smaller than dmin(T ) will have enough
energy to change the sign of their vacuum. For ξ̄(T ) < dmin(T ), a domain with length
larger than ξ̄(T ) will remain frozen even though there is enough thermal energy to
flip its sign. Therefore the Ginzburg temperature TG corresponds to the temperature
when ξ̄(TG) = dmin(TG) [73] and the Ginzburg length is lG = ξ̄(TG). The number
density of walls in a unit volume is then proportional to (1/lG)

3.

After the formation of domain walls, several domains merge together and expand. At some
point, the walls percolate and we obtain domains which are infinite in size, leading to
infinite walls in physical space as well as regions of space with finite walls.

The subsequent evolution of the domain walls after percolation is largely dependent on the
domain wall tension σ =

∫ +∞
−∞ dx 1

2(
∂ϕ
∂x )

2 + V (ϕ) as well as the friction forces acting on the
domain walls due to its interaction with the thermal plasma.

The tension pressure pt is proportional to σ
Rwall

[73, 11], where Rwall denotes the curvature
radius of the domain. This pressure tends to stretch the wall so that the inhomogeneities
and field gradients in the y and z axes are relaxed, so that the surface area of the walls
gets minimized. The friction pressure pf caused by the interaction of the wall with the
thermal plasma is proportional to the momentum transfer of the particles reflecting off the
wall times their number density n. To illustrate these effects, we add the interaction of the
ϕ scalar field with another boson ξ and fermion Ψ via the terms in the Lagrangian:

Lint ⊃ −1

2
λ̃ϕ2ξ2 + yϕΨ̄Ψ, (1.44)

which leads to particles masses: mξ =
√
λ̃v+ and mΨ = yv+. For a particle with momentum

kz in the z-direction, the reflection probability in the thin wall limit can be approximated
by [9]:

R(kz) =
µ2

4k2z + µ2
for bosons and R(kz) =

m2
Ψ

k2z +m2
Ψ

for fermions, (1.45)

where µ = 2
√

2
λ λ̃v+. We start by considering the friction pbf caused by bosons. We

distinguish two different regimes: high temperatures T >> µ and low temperatures
T << µ. In the limit of higher temperatures T >> µ, particles have large momenta and
are typically transmitted through the wall. Therefore, only particles with momenta kz < µ
exercise a friction pressure on the wall. The momentum transfer can be approximated by
∆p ≈ µv, where v is the particle’s velocity. The friction pressure is then given by [9]:

pbf ∝ ∆p n3b ∼ vµ2T 2 (1.46)
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For small temperatures T << µ, particles have small momenta compared with µ and are
therefore mostly reflected off the domain wall. The momentum transfer in this case is given
by ∆p ≈ vT leading to a friction pressure [9]:

pbf ∝ ∆p n3b ∼ vT 4, (1.47)

where we used nb ∝ T 3 for the number density of relativistic particles in the plasma. Note
that for non-relativistic particles, mξ >> T and the particles decouple from the thermal
plasma and their number density in physical space as well as their interaction with the
wall, is suppressed.

For fermions, after following the same analysis, we obtain:

pff ∝ ∆p n3f ∼ vm4
Ψ, for the limit T >> mΨ, (1.48)

pff ∝ ∆p n3f ∼ vT 4, for the limit T < mΨ, (1.49)

where we used the number density nf ∝ m3
Ψ for low energy fermions at high temperatures.

For this simple toy model, we find that the friction pressure goes down with temperature.
However, in more complicated models such as the ones studied in this manuscript, there
will be non-trivial interactions between the wall and the thermal plasma, such as CP
and electric charge-violating scatterings. These types of interactions could lead to a more
complicated analysis of the domain wall evolution after their formation.

Assuming the simplified picture in the toy model, we find that domain walls tend to stretch
under the force of their surface tension. The friction term is initially high and damps this
evolution. As the universe cools down, the friction force gets smaller and the evolution of
the domain walls is largely determined by the tension force [11], which grows the domain
radius Rwall up to the horizon size. At this stage, the domain walls are known to be in
the scaling regime and the energy density of domain walls scales with ρwall ∝ σt−ν , where
ν ≈ 1 according to numerical simulations [9].

Having described the mechanisms by which domain walls form and evolve after a sponta-
neous symmetry breaking of a discrete symmetry, we discuss in the next subsection some
of the consequences of domain wall formation on the early universe cosmology.

1.2.5 Consequences of Domain Walls on the Early Universe

Topological defects in the early universe present non-trivial field configurations that "trap"
in their core the symmetric phase of the universe prior to the spontaneous symmetry
breaking. Since the energy density of these field configurations is concentrated in a very
thin one-dimensional object (in the case of cosmic strings), and thin two-dimensional layers
(in the case of domain walls), one might inquire about the consequences of these objects
on the early universe cosmology.

We discussed in the previous subsection that, after their formation, domains percolate and
merge, creating large domain walls that subsequently stretch due to their surface tension to
the horizon size when the damping pressure from the friction of the walls with the thermal
plasma becomes negligible. At this point of their evolution, the domains have a volume
∝ R3

wall, therefore, assuming that the domain wall surface is of the order R2
wall, the energy

density of domain walls scales as [11, 9]:

ρwall ∝
σ

R3
wall

×R2
wall =

σ

Rwall
. (1.50)
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Therefore, during this scaling regime, the energy density of the domain wall scales with
R−1

wall ∝ t−1, where t is the physical time5. We assume in the following that the scaling
regime, based on this simple dimensional analysis, is a good approximation [83]. One can
then approximate the evolution of the energy density of domain walls as a function of t
[11]:

ρwall = Aσ
t
, (1.51)

where A ≈ 0.8± 0.1 is a numerical factor [11]. During the radiation domination era, the
scale factor is proportional to a ∝ t1/2 while Rwall ∝ t−1. Radiation energy density scales
as a−4(t) ∝ t−2, and therefore the energy density of domain walls dilutes much slower
than radiation. A similar argument is also found for the scaling of domain walls during
the matter domination era. Therefore, the domain walls will come to dominate the energy
density of the universe at some point in time, in contradiction with present observations.
This domination time tdom can be approximated by [11, 9]:

ρc(tdom) = ρwall(tdom) =
3H2(t)M2

pl

8π
, (1.52)

where Mpl is the Planck mass scale. This then translates into [11]:

tdom =
3M2

pl

8πAσ
≈ 1, 46× 1013s× GeV3

σ
. (1.53)

For the simple real singlet toy model [73]: σ =
2
√
2

3

m3
0

λ
=

2
√
2

3

√
λv3+. Therefore, for

λ ≈ 1 and v+ ≈ 100 GeV, the domain walls dominate the energy density of the universe
prior to the decoupling of CMB photons, which would considerably alter the homogeneity
in the CMB spectrum. Since any inhomogeneities in the CMB fluctuations should be
δρ/ρ < 10−5 to be consistent with PLANCK measurements [54], this translates into a limit
on σ < O(MeV)3 known as the Zel’dovich-Kobzarev-Okun bound [12].

Figure 1.7: Example for a two-step phase transition in a model with two scalar fields ϕ1 and ϕ2.

From this bound, as well as the bound from domain walls energy density domination, also
known as the "domain wall problem", it is clear that particle physics models with discrete

5 This rate, however, is in slight disagreement with the results obtained from particular numerical simulations
for the energy density of domain walls [82], which show a scaling ρwall ∝ t−ν with ν slightly different from
one.
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symmetries that get spontaneously broken before the MeV scale can be ruled out. However,
there are several ways to circumvent this domain wall problem. This can be achieved
by either proposing a mechanism to annihilate the domain walls in the early universe
before they dominate the energy density of the universe (and therefore be consistent with
the cosmological observations) or by dynamically lowering the energy density of domain
walls in such a way as to make σ(t) < O(MeV)3. This can be done in four possible ways
[9, 11, 84, 13, 85, 75]:

• Discrete symmetry restoration and non-restoration in the early universe: We showed
earlier that a phase transition in the early universe occurs from a symmetric phase
to a broken phase. It can occur, however, that some parameter points do not lead
to symmetry restoration at very high temperatures. In such a case, the universe
would already be in the broken phase at very high temperatures, and as such, no
domain walls form according to the Kibble mechanism. It is also possible that the
discrete symmetry is restored again at lower temperatures. This typically can happen
in several extensions of the SM, such as the real-singlet extension or the N2HDM
[23]. In this phenomenon, also known as a two-step phase transition (see Figure 1.7),
one scalar field develops a VEV, leading to the breaking of a discrete symmetry, and
later the global minimum is at a value where the first scalar field has a zero VEV,
while the other scalar field develops a non-zero VEV. In such a case, the domain wall
network will be spontaneously annihilated since the global minimum for the scalar
field responsible for the domain wall field configuration is at ϕ = 0.

• Bias in the distribution of the degenerate minima: In this case, the population of
initial domains with v+ and those with v− is not equal, leading to the the creation
of smaller regions with one minimum inside a larger region with the other minimum.
The regions having the minimum with the least population will decay quickly, and
we eventually end with a single homogeneous vacuum within the Horizon radius. It
is possible to obtain this behaviour if the scalar field before the symmetry breaking
was initially misaligned from ϕ = 0.

• Bias in the potential: if the discrete symmetry is explicitly broken by terms in the
Lagrangian, such as:

L ⊃ V (ϕ) + a1ϕ+ a2ϕ
3, (1.54)

then the negative and positive minima in the potential (in the case of a Z2 symmetry)
are not degenerate anymore. One minimum is higher than the other, and for large
symmetry-breaking terms, only one minimum survives. If the bias term is small
enough to lead to the formation of domain walls, the global minimum e.g. v+ will
expand in the region of the local minimum v−. Due to the pressure coming from
the difference in the potential energy, the universe will, after some time, be mostly
populated by the global minimum v+, leading to the decay of the domain wall
network, and the domain wall energy density gets smaller. One can then approximate
the evolution of the energy density of the domain walls as an exponential suppression
[11, 85, 75]:

ρwall = Aσ
t
e−at, (1.55)

where the coefficient a is a function of the bias terms a1 and a2 in the potential
(1.54).

• Inflation: assuming that the spontaneous symmetry breaking of the discrete symmetry
occurs before inflation, the domains will grow in size exponentially during inflation,
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leading to one single domain populating the horizon. Therefore, the energy density
of the domain wall network cannot dominate the energy density of the horizon.

Since it is relatively easy to circumvent the domain wall problem, particle physics models
with (approximate) discrete symmetries are still viable and can lead to several new
phenomena, as we will see in the next few chapters. This includes the possibility of electric
charge-violating or CP-violating scalar field configurations as well as electroweak symmetry
restoration in the early universe, leading also to the exciting prospect of using domain
walls in order to generate a matter-antimatter asymmetry. One can also use domain walls
in order to facilitate phase transitions which can be catalyzed inside the core of the walls,
offering the possibility of rescuing parameter points from the phenomenon of vacuum
trapping as well as constraining model parameter points where the global minimum of the
potential is not the experimentally observed electroweak minimum.

In the next chapter, we introduce several well-motivated extensions of the Higgs sector,
which incorporate discrete symmetries that can lead to the formation of different types of
domain wall scalar field configurations.
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In this chapter, we introduce several well-motivated extensions to the scalar sector of the SM,
such as the Two-Higgs-Doublet Model (2HDM) and the Next-to-Two-Higgs-Doublet Model
(N2HDM). We briefly discuss their particle content, current theoretical and experimental
constraints on the allowed parameter space of these models, and their vacuum structure
and symmetries that lead to the formation of domain walls in these models.

2.1 the need for an extended higgs sector

The SM Higgs doublet is the minimal realization of the Higgs mechanism that provides the
correct values of the masses for the gauge bosons and fermions in nature and is compatible
with the observed phenomenology at the LHC [29]. However, the lepton and quark sectors
come in several generations and flavors. This raises the question of whether the Higgs sector
realized in nature is the minimal SM one or whether several additional Higgs multiplets
are also waiting for discovery. Furthermore, as we discussed in the previous chapter, the
SM has several shortcomings. In this section, we summarize how an extended Higgs sector
can alleviate some of them.

Supersymmetry provides an elegant solution to the hierarchy problem since particles
entering the loop diagrams contributing to the mass corrections will be canceled by loop
diagrams from their corresponding supersymmetric partners. However, a Higgs sector
containing at least two Higgs doublets is required in supersymmetric models [86]. This is
the case because the superpartner of the Higgs, i.e. the Higgsinos, are fermions which enter
into the triangle diagrams contributing to anomalies in the Gauge sector [86, 87]. Since
this contribution from this extra fermion introduced by the supersymmetric version of the
SM needs to be canceled in order for the theory to be anomaly-free and consistent, it is
necessary to add a new Higgs scalar doublet whose fermionic superpartner would cancel
the anomalous contribution from the first Higgsino. Another reason for the necessity of an
extra Higgs doublet in supersymmetric versions of the SM is to make the superpotential
holomorphic [86], a constraint that forbids the complex conjugate of the Higgs doublet
from appearing in the Lagrangian. Since this complex conjugate Higgs doublet is necessary
in the SM to make sure that both quarks of the SU(2)L doublet acquire a mass, one needs
another Higgs doublet to give a mass to the other type of quarks.

Other dynamical solutions to the hierarchy problem, such as the relaxion model [88], also
incorporate a non-minimal scalar sector [88]. In those models, the new scalar ϕ acts as a
new contribution to the effective mass term of the Higgs Lagrangian, which, upon turning
negative, gives a non-zero VEV to the Higgs and makes the subsequent rollover of ϕ
suppressed. This then leads to the selection of a mass term for the Higgs at the electroweak
scale.

25
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Concerning the matter-antimatter asymmetry, electroweak baryogenesis [68, 89, 90] consti-
tutes one of the most studied solutions for dynamically generating the observed asymmetry.
It relies on using bubbles nucleated during a first-order electroweak phase transition in the
early universe when sphaleron processes are still active. Since the SM electroweak phase
transition is a crossover [68, 69], it is mandatory to extend the Higgs sector to induce
a first-order phase transition. This can be done, for instance, in models where the SM
Higgs doublet is extended by a real singlet scalar [91] to induce a barrier between the
symmetric and the broken phase at tree level in the early universe, or by also extending it
with another doublet under SU(2)L as the 2HDM, where it is possible to get a first order
phase transition at the one-loop level [92]. An extra Higgs singlet/doublet extension to the
SM can also be applied in order to obtain the necessary amount of CP-violation needed for
electroweak baryogenesis [93, 94, 95, 96, 97, 25].

Extra Higgs multiplets can also provide dark matter candidates [28, 25, 98, 99, 100, 101,
102, 103, 104, 105], such as the real singlet extension to the SM [98] with a Z2 symmetry
that forbids the decay of this extra scalar to SM particles. In the case of the Inert-Doublet-
Model [99], the model is also invariant under a Z2 symmetry that only acts on the second
Higgs doublet. This doublet does not acquire a vacuum expectation value after EWPT,
and the Z2 symmetry is therefore not spontaneously broken. One can then choose either
the CP-even or CP-odd Higgs boson as the lightest inert particle that will constitute the
dark matter. The 2HDM extended with a pseudoscalar a (2HDM+a) [105] also constitutes
a benchmark model for DM searches at the LHC.

For the purposes of this manuscript, extending the minimal SM Higgs sector is motivated
from the point of view of the extra symmetries that can be imposed on these models. An
extended Higgs sector allows several possibilities for new discrete or continuous symmetries
related to the Higgs multiplets. When these discrete symmetries are spontaneously broken,
either alone or alongside the EW symmetry, domain walls form in the early universe, which
can lead to several interesting and novel effects, such as scalar field configurations that
break CP and electric charge [75, 76, 1]. This can lead to exotic phenomena like photons
becoming massive in the core of the domain wall or top quark being reflected/transmitted
off the wall as bottom quarks [1]. Domain walls coupled to the Higgs scalar can also induce
other interesting effects: the possibility of restoring the EW symmetry inside and in the
vicinity of the wall [2], induce EW vacuum decay when the EW minimum is metastable [3],
source the EW phase transition in the early universe [21], and generate a matter-antimatter
asymmetry in the early universe [106, 107, 108, 109].

One important constraint to take into account when extending the Higgs sector with n
multiplets is to keep the ρ parameter, defined by [25]:

ρ =
m2

W

m2
Zsin(θw)

=

∑n
i=1[Ii(Ii + 1)− 1

4Y
2
i ]vi∑n

i=1
1
2Y

2
i vi

, (2.1)

near one, where Yi represents the hypercharge and Ii the weak isospin of the scalar. Such
a requirement puts a very strict constraint on the possible extensions of the scalar sector.
In the case of extra doublets or singlets, this requirement is fulfilled naturally [25] since for
singlets Is = Ys = 0, and for doublets Id(Id + 1) = 3

4Y
2
d and Y 2

d = 1.

In the following, we discuss the two extended Higgs sectors that are studied in this
manuscript, namely the 2HDM and the N2HDM, and also state some of the theoretical
and experimental constraints that are imposed on them.
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2.2 the two-higgs-doublet model

In this section, we briefly introduce the general 2HDM and the notation used in this work.
In the 2HDM, the Standard Model Higgs sector is extended by an extra doublet charged
under SU(2)L × U(1)Y . The general renormalizable scalar potential invariant under the
SM symmetries is given by:

V2HDM = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 +m2

12(Φ
†
1Φ2 + h.c)

+
λ1
2

(
Φ†
1Φ1

)2
+
λ2
2

(
Φ†
2Φ2

)2
+ λ3

(
Φ†
1Φ1

)(
Φ†
2Φ2

)
+ λ4

(
Φ†
1Φ2

)(
Φ†
2Φ1

)
+

[
λ5
2

(
Φ†
1Φ2

)2
+ λ6

(
Φ†
1Φ1

)(
Φ†
1Φ2

)
+ λ7

(
Φ†
2Φ2

)(
Φ†
1Φ2

)
+h.c

]
. (2.2)

Depending on the choice of the parameters, the potential can also be invariant under
various discrete or continuous symmetries relating the Higgs doublets Φ1 and Φ2 [6]. The
general Yukawa sector of the theory is then given by [25]:

LY ukawa = y1ijψ̄iψjΦ1 + y2ijψ̄iψjΦ2, (2.3)

where ψi and ψj denote the different fermion generations. It is generally not possible to
diagonalize the Yukawa couplings of fermions when having them couple to both Higgs
doublets, which will then lead to the Yukawa coupling matrices y1ij and y2ij which are not
simultaneously diagonalizable. Therefore, couplings between quarks of different flavor are
then possible and this will lead to flavor-changing neutral currents (FCNCs) at tree level
[25]. Such phenomena are, however, strongly constrained experimentally, which makes it
necessary to forbid them in the 2HDM. To avoid this problem, one can impose that fermions
with the same quantum numbers couple to the same Higgs doublet, while other fermions
couple to the second one. This can be achieved by imposing a Z2 discrete symmetry on
the Yukawa sector according to which the scalar doublets transform in this way:

Φ1
Z2−→ Φ1, Φ2

Z2−→ −Φ2. (2.4)

There are therefore 4 types of 2HDMs depending on the choice of scalar doublets that
fermions couple to [26, 25]:

u-type d-type leptons Q uR dR L lR

Type 1 Φ2 Φ2 Φ2 + - - + -
Type 2 Φ2 Φ1 Φ1 + - + + +

Type 3 (lepton specific) Φ2 Φ2 Φ1 + - - + +
Type 4 (Flipped) Φ2 Φ1 Φ2 + - + + -

Table 2.1: Types of Yukawa couplings between the fermions and the scalars in the 2HDM and the
charges of the fermions under the Z2 symmetry [25]. Q and L denote left-handed quark
and lepton SU(2)L doublets while uR, dR and lR denote SU(2)L right-handed singlets.

The scalar potential which respects SU(2)L × U(1)Y × Z2, is then given by:

V2HDM = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 +

λ1
2

(
Φ†
1Φ1

)2
+
λ2
2

(
Φ†
2Φ2

)2
+ λ3

(
Φ†
1Φ1

)(
Φ†
2Φ2

)
+ λ4

(
Φ†
1Φ2

)(
Φ†
2Φ1

)
+

[
λ5
2

(
Φ†
1Φ2

)2
+ h.c

]
. (2.5)
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After electroweak symmetry breaking, the Higgs doublets acquire a vacuum expectation
value. The 2HDM includes 8 scalar degrees of freedom. In our work we adopt the non-linear
representation [76, 110] to parameterize the vacua:

Φ1 = UΦ̃1 = U
1√
2

(
0

v1

)
, (2.6)

Φ2 = UΦ̃2 = U
1√
2

(
v+

v2e
iξ

)
, (2.7)

where U is an element of the SU(2)L × U(1)Y group that is given by:

U(x) = eiθ(x)exp
(
i
g̃i(x)σi
2vsm

)
, (2.8)

where θ, g̃1,2,3 are the hypercharge angle and Goldstone modes of SU(2)L respectively, σi
denote the Pauli matrices, the generators of SU(2), and vsm is the vacuum expectation
value of the SM Higgs doublet. Using this representation, we can separate the Goldstone
modes of the SU(2)L and hypercharge symmetries from the physical vacuum parameters
v1, v2, v+, and ξ.
There are 3 possible types of vacua in the 2HDM: charge-breaking, CP-breaking and neutral
[25]:

• The most general one occurs when v+ is non-zero and the vacuum is therefore
charge-breaking:

Φ̃1 =
1√
2

(
0

v1

)
, Φ̃2 =

1√
2

(
v+

v2e
iξ

)
. (2.9)

Such a vacuum is obviously non-physical as it will induce a mass to the photon and
allow charge-breaking interactions such as the decay of electrons into neutrinos or
the decay of top quarks into bottom quarks via new decay channels [111].

• The CP-breaking vacuum occurs when the phase ξ between the two doublets is non
zero:

Φ̃1 =
1√
2

(
0

v1

)
, Φ̃2 =

1√
2

(
0

v2e
iξ

)
. (2.10)

This type of vacua leads to CP-breaking Yukawa couplings and can be useful in the
context of baryogenesis to generate the needed CP-violation.

• Neutral vacuum where ξ = 0 and v+ = 0 :

Φ̃1 =
1√
2

(
0

v1

)
, Φ̃2 =

1√
2

(
0

v2

)
. (2.11)

Such a vacuum can accommodate the SM vacuum expectation value (VEV) when√
v21 + v22 = vsm = 246 GeV.

In [112, 113], it was shown that if a parameter point leads to a neutral minimum, then
such a minimum of the potential will always lie above any possible charge or CP-breaking
minima. Throughout this work, we will only consider that all regions of the universe ended
up with a neutral vacuum after electroweak spontaneous symmetry breaking. Figure 2.1
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Figure 2.1: (a) Potential of the 2HDM in dimensionless units using PP I (3.31), with v̂i = vi/vsm.
(b) Symmetry relations between the minima in the potential.

shows the dimensionless potential V̂2HDM = V2HDM/(m
2
hv

2
sm) with rescaled parameters

v̂i = vi/vsm, where mh = 125.09 GeV corresponds to the SM-like Higgs boson. One
distinguishes degenerate vacua that can be related by a Z2 transformation, as for example,
(v̂1,−v̂2) and (v̂1, v̂2), as well as degenerate minima that are related by a hypercharge
transformation UY (1) such as (−v̂1,−v̂2) and (v̂1, v̂2). We also have a multitude of other
degenerate vacua that can be obtained from the latter ones, by using a gauge transformation
of SU(2)× UY (1).

Taking into account a neutral minimum, the minimization conditions for the 2HDM deduced
from setting the first derivative of V2HDM to zero at the vacuum are given by:

m2
11 +

1

2
(v21λ1 + v22λ345)−m2

12

v2
v1

= 0, (2.12)

m2
22 +

1

2
(v21λ2 + v21λ345)−m2

12

v1
v2

= 0, (2.13)

where λ345 = λ3 + λ4 + λ5.

The particle content of the CP-conserving 2HDM includes 5 physical Higgs scalars: two
CP-even with masses mh and mH , one CP-odd with a mass mA and two charged Higgs
bosons with a degenerate mass mC . In order to compute the mass eigenvalues present in
the Higgs doublets, we parametrize the fluctuations around the EW minimum as follows:

Φ1 =
1√
2

(
ϕ+1

v1 + ρ1 + ia1

)
, Φ2 =

1√
2

(
ϕ+2

v2 + ρ2 + ia2

)
, (2.14)

where ϕ+1 , ϕ+2 , ρ1, ρ2, a1, and a2 represent the Higgs degrees of freedom in the interaction
basis. By plugging these expression for Φ1 and Φ2 in (2.5), we obtain the mass matrices:

M2
ρ =

[
∂2V2HDM

∂ρi∂ρj

]
=

(
m2

12
v2
v1

+ λ1v
2
1 −m2

12 + λ345v1v2

−m2
12 + λ345v1v2 m2

12
v2
v1

+ λ2v
2
2

)
, (2.15)

M2
a =

[
∂2V2HDM

∂ai∂aj

]
=

(
−λ5v22m2

12
v2
v1

λ5v1v2 −m2
12

λ5v1v2 −m2
12 −λ5v21 +m2

12
v1
v2

)
, (2.16)

M2
C =

[
∂2V2HDM

∂ϕ+i ∂ϕ
−
j

]
=

(
− (λ4+λ5)

2 v22 +m2
12

v2
v1

(λ4+λ5)
2 v1v2 −m2

12
(λ4+λ5)

2 v1v2 −m2
12 − (λ4+λ5)

2 v21 +m2
12

v1
v2

)
. (2.17)
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To obtain the physical degrees of freedom, we diagonalize these mass matrices by using the
mass eigenstates h, H for the CP-even Higgs fields, A for the CP-odd Higgs field, and C
for the charged Higgs field. These mass eigenstates are related to the interaction states via
the transformations:(

h

H

)
= R

(
ρ1

ρ2

)
=

(
cos(α) sin(α)

− sin(α) cos(α)

)(
ρ1

ρ2

)
, (2.18)

where α represents the mixing angle between the CP-even Higgs bosons and R diagonalizes
the mass matrix M2

ρ. For the CP-odd and charged part, we diagonalize the mass matrices
using the angle β defined by tan(β) = v2

v1
such that the mass eigenstates are related to the

interaction eigenstates by:(
G0

A

)
= Rβ

(
a1

a2

)
=

(
cos(β) sin(β)

− sin(β) cos(β)

)(
a1

a2

)
, (2.19)(

G±

C

)
= Rβ

(
ϕ±1
ϕ±2

)
=

(
cos(β) sin(β)

− sin(β) cos(β)

)(
ϕ±1
ϕ±2

)
, (2.20)

where G0 and G± correspond to the massless Goldstone bosons that will be eaten by the
gauge bosons W and Z. The mass eigenvalues for the CP-odd and charged Higgs particles
are given by:

m2
A =

m2
12

sin(β) cos(β)
− λ5v

2
sm, (2.21)

m2
C =

m2
12

sin(β) cos(β)
− (λ4 + λ5)

2
v2sm, (2.22)

Using the mass parametrization, one can trade the parameters in the scalar potential with
physical parameters such as the masses of the physical scalars, the ratio between the 2
vevs of the doublets tan(β) = v2

v1
, the standard model vev vsm = 246 GeV and the mixing

angle α. The potential parameters are therefore given by:

λ1 =
1

v21

(
−m2

12tan(β) +m2
hcos2(α) +m2

Hsin2(α)

)
, (2.23)

λ2 =
1

v22

(
−m2

12tan(β) +m2
hsin

2(α) +m2
Hcos2(α)

)
, (2.24)

λ3 =
1

v1v2

(
m2

12 + sin(α)cos(α)m2
h − sin(α)cos(α)m2

H

)
− λ4 − λ5, (2.25)

λ4 =
m2

12

v1v2
− 2

m2
C

v2sm
+
m2

A

v2sm
, (2.26)

λ5 =
m2

12

v1v2
−
m2

A

v2sm
, (2.27)

m2
11 = m2

12tan(β)− λ1
2
v21 −

λ3 + λ4 + λ5
2

v22, (2.28)

m2
22 = m2

12tan(β)− λ2
2
v21 −

λ3 + λ4 + λ5
2

v21. (2.29)

The term m2
12 softly breaks the Z2 symmetry, leading the formed domain walls to be

unstable and therefore to annihilate some time after their formation. When dealing with
domain walls in the 2HDM, we set m2

12 = 0 and leave the effects of a small non-vanishing
value for future studies.
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In the 2HDM, both the CP-even Higgs scalars can couple to the gauge bosons W± and Z.
One defines the coupling of a CP-even Higgs scalar to the gauge bosons ghiV V normalized
by the coupling ghSMV V in the SM by:

ChV V =
ghV V

ghSMV V
= cos(β − α), CHV V =

gHV V

ghSMV V
= sin(β − α). (2.30)

Note that in the limit β − α ≈ 0, the coupling of h to the gauge bosons is the same as in
the SM. The other CP-even Higgs does not interact with the SM gauge boons in that case,
which is known as the Alignment limit [25].

2.3 the next-to-two-higgs-doublet-model

This section briefly introduces the Next-to-Two-Higgs-Doublet model and the needed
notation used in our work. For a comprehensive review of this model, the reader is referred
to [26, 114, 115], which includes the phenomenology of this model, and to [23] for a detailed
discussion on its thermal history.

In the N2HDM, the standard model Higgs sector is extended with an extra SU(2)L×U(1)Y
doublet Φ2 and an additional real singlet Φs. The Higgs sector potential is given by:

VN2HDM = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12(Φ
†
1Φ2 + h.c.) +

λ1
2

(
Φ†
1Φ1

)2
+
λ2
2

(
Φ†
2Φ2

)2
+ λ3

(
Φ†
1Φ1

)(
Φ†
2Φ2

)
+ λ4

(
Φ†
1Φ2

)(
Φ†
2Φ1

)
+

[
λ5
2

(
Φ†
1Φ2

)2
+ h.c

]
+
m2

S

2
Φ2
s +

λ6
8
Φ4
s +

λ7
2
Φ2
s(Φ

†
1Φ1) +

λ8
2
Φ2
s(Φ

†
2Φ2)

+

[
a1Φs + a3Φ

3
s + b1(Φ

†
1Φ1)Φs + b2(Φ

†
2Φ2)Φs + c1(Φ

†
1Φ2Φs + h.c.)

]
.

(2.31)

Similar to the 2HDM and in order to avoid flavor-changing neutral currents [25], one
imposes a Z2 symmetry that acts on the scalar fields in the following way:

Φ1 → Φ1, Φ2 → −Φ2, Φs → Φs. (2.32)

This symmetry is softly broken by the terms m2
12(Φ

†
1Φ2 + h.c) and c1(Φ

†
1Φ2Φs + h.c.). The

Yukawa sector transforms under this symmetry in the same way as the 2HDM (see Table
2.1). When the parameters a1, a3, b1, b2, and c1 are zero, the potential also allows for a
discrete symmetry Z ′

2, which only acts on the singlet:

Φs → −Φs. (2.33)

In this work, we aim to study the influence of DW field configurations on the restoration of
the EW symmetry inside the wall [2], as well as the EW vacuum decay into deeper minima
of the potential in the case of the N2HDM with an exact Z ′

2 symmetry [3]. We therefore
assume that the Z ′

2 breaking terms are enough to avoid the cosmological domain wall
problem, but are still sufficiently small and therefore can be negligible in the discussion
of the vacuum structure and model phenomenology. This can occur, for example, if the
relevant scale of Z ′

2 breaking is the Planck scale since quantum gravity effects are known to
break any discrete symmetries [15]. In such a case, one can avoid the cosmological domain
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wall problem while still having a similar phenomenology to the Z ′
2 symmetric N2HDM

potential (where a1, a3, b1, b2, and c1 are zero)1.

After electroweak and Z ′
2 spontaneous symmetry breaking, the scalar doublets and singlet

acquire a vacuum expectation value. The most general vacuum can be written as:

⟨Φ1⟩ = U⟨Φ̃1⟩ = U
1√
2

(
0

v1

)
, ⟨Φ2⟩ = U⟨Φ̃2⟩ = U

1√
2

(
v+

v2e
iξ

)
, ⟨Φs⟩ = vs, (2.34)

where U is an element of the SU(2)L × U(1)Y group that is given by:

U = eiθexp
(
i
g̃iσi
2vsm

)
, (2.35)

with θ and g̃i denoting the Goldstone modes of the scalar doublets, σi the Pauli matrices
and vsm ≈ 246 GeV the standard model vacuum expectation value.

Just like in the 2HDM, the scalar doublets admit three possible types of vacua, which we
discussed extensively in the previous chapter. The most general one, where v+ ̸= 0, breaks
the electromagnetism symmetry U(1)em and gives a mass to the photon. Consequently,
such vacua are physically not allowed at present time. The second type occurs when the
phase between the two scalar doublets ξ does not vanish. Such a vacuum is CP-violating as
it generates an imaginary mass to the fermions via the Yukawa sector. Due to constraints
from electron dipole moment experiments [116], such CP-violating vacua should have very
small values for ξ to be realized in nature. The third type is the neutral vacuum, occurring
when v+ = 0 and ξ = 0. In this work, we consider the case when the singlet scalar acquires
a vacuum expectation value vs ̸= 0, which breaks Z ′

2 spontaneously and leads to the
formation of domain walls in the early universe.

Taking into account a neutral minimum, the minimization conditions for the N2HDM
deduced from the setting the first derivative of VN2HDM to zero at the vacuum are given
by:

m2
11 +

1

2

(
v21λ1 + v22λ345 + v2sλ7

)
−m2

12

v2
v1

= 0, (2.36)

m2
22 +

1

2

(
v21λ2 + v21λ345 + v2sλ8

)
−m2

12

v1
v2

= 0, (2.37)

m2
S +

1

2

(
v21λ7 + v22λ8 + v2sλ6

)
= 0, (2.38)

(2.39)

The particle spectrum of the N2HDM includes 3 CP-even Higgs particles with masses
denoted as mh1 , mh2 and mh3 , one CP-odd particle with mass mA and two charged Higgs
bosons mH± . It is more advantageous to express the potential parameters in terms of
physical quantities such as the masses of the physical particles and tan(β) = v2/v1. This is
achieved by diagonalizing the mass matrix M2

ρ (see (2.40)) given in the interaction basis
(ρ1, ρ2, ρ3), where ρ1,2,3 correspond to field expansions around the neutral vacua v1,2,s in
(2.34):

M2
ρ =

 v2λ1 cos(β)
2 +m2

12 tan(β) v2λ345 cos(β) sin(β)−m2
12 v vsλ7 cos(β)

v2λ345 cos(β) sin(β)−m2
12 v2λ2 sin(β)2 +m2

12/tan(β) v vsλ8 sin(β)

v vsλ7 cos(β) v vsλ8 sin(β) v2s λ6

 ,

1 Note that these symmetry breaking terms lead to a bias between the two minima ±vs, which leads to the
decay of the DW network at some time tann. This annihilation time is dependent on a1, a3, b1, b2, and
c1. In case the annihilation occurs at the MeV scale, the generated gravitational waves signal from DW
annihilation is in the nanohertz regime, potentially explaining the PTA signals [18, 19].
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(2.40)

where v2 = v21+v
2
2 . This mass matrix is diagonalized using a rotation matrix R which fulfills

the requirement RM2
ρR

T = diag(m2
h1
,m2

h2
,m2

h3
), where the masses mh1,2,3 correspond to

the masses of the CP-even Higgs bosons in the physical mass basis (h1, h2, h3). The
diagonalizing matrix R is parametrized using the mixing angles α1, α2 and α3 as:

R =

 c(α1)c(α2) s(α1)c(α2) s(α2)

−
(
c(α1)s(α2)s(α3) + s(α1)c(α3)

)
c(α1)c(α3)− s(α1)s(α2)s(α3) c(α2)s(α3)

−c(α1)s(α2)c(α3) + s(α1)s(α3) −
(
c(α1)s(α3) + s(α1)s(α2)c(α3)

)
c(α2)c(α3)

 ,

(2.41)

where c(αi) denotes cos(αi) and s(αi) denotes sin(αi). The values of the mixing angles
are constrained between −π/2 and π/2. We adopt the conventional mass hierarchy mh1 <
mh2 < mh3 . Note that the interaction basis (ρ1, ρ2, ρ3) is related to the physical mass basis
(h1, h2, h3) by:h1h2

h3

 = R

ρ1ρ2
ρ3

 . (2.42)

One can then relate the potential parameters and the masses of the scalars in the N2HDM
using the following formulas:

λ1 =
1

v21

(
−m2

12 tan(β) +
∑
i

m2
hi
R2

i1

)
, (2.43)

λ2 =
1

v22

(
− m2

12

tan(β)
+
∑
i

m2
hi
R2

i2

)
, (2.44)

λ3 =
1

v1v2

(
m2

12 +
∑
i

Ri2Ri1m
2
hi

)
− λ4 − λ5, (2.45)

λ4 =
m2

12

v1v2
− 2

m2
H±

v2
+
m2

A

v2
, (2.46)

λ5 =
m2

12

v1v2
−
m2

A

v2
, (2.47)

λ6 =
1

v2s

(
R2

i3m
2
Hi

)
, (2.48)

λ7 =
1

v1vs

(
Ri3Ri1m

2
hi

)
, (2.49)

λ8 =
1

v2vs

(
Ri3Ri2m

2
hi

)
, (2.50)

m2
11 = m2

12 tan(β)−
λ1
2
v21 −

(
λ3 + λ4 + λ5

2

)
v22 −

λ7
2
v2s , (2.51)

m2
22 =

m2
12

tan(β)
− λ2

2
v22 −

(
λ3 + λ4 + λ5

2

)
v21 −

λ8
2
v2s , (2.52)

m2
s = −λ6

2
v2s −

λ7
2
v21 −

λ8
2
v22. (2.53)

Note that the masses of the CP-odd and charged Higgs bosons are similar to the ones in
the 2HDM.
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up-type down-type leptons

Type I Ri2/sβ Ri2/sβ Ri2/sβ

Type II Ri2/sβ Ri1/cβ Ri1/cβ

Type III (lepton-specific) Ri2/sβ Ri2/sβ Ri1/cβ

Type IV (flipped) Ri2/sβ Ri1/cβ Ri2/sβ

Table 2.2: N2HDM couplings Chiff of the CP-even Higgs mass eigenstates h1,2,3 to the different
types of fermions in (2.55) for different N2HDM model types [23]. sβ denotes sin(β),
while cβ denotes cos(β)).

Since ρ3 corresponds to the singlet state, it does not interact directly with the SM fermions
and gauge bosons. However, due to the mixing between ρ1,2,3 leading to the CP-even Higgs
mass eigenstates h1,2,3, the presence of a singlet admixture in the three CP-even Higgs
scalars induces a different coupling compared to the 2HDM. The coupling of h1,2,3 to the
gauge bosons V is given by [117, 23]:

ChiV V = cos(β)Ri1 + sin(β)Ri2. (2.54)

As for the interactions between the CP-even Higgs scalars with the SM fermions, we have
[117, 23]:

LY ukawa ⊃
√
2mf

vsm

(
Ch1ffh1 + Ch2ffh2 + Ch3ffh3

)
ff̄ , (2.55)

where Chiff corresponds to the modification in coupling for the CP-even Higgs boson hi
to the SM fermion, compared with the SM Higgs boson. The precise formulas for these
coupling modifiers are shown in Table (2.2). In the alignment limit, the SM-like Higgs
boson hsm has Chsmff ≈ Chsmff ≈ 1, while the other CP-even Higgs states have zero or
negligible couplings to fermions.

Throughout our work, we use the masses of the Higgs fields in the mass eigenbasis as well
as their coupling modifiers to the SM gauge bosons and fermions as input parameter to
generate the parameters m2

11, m2
22, m2

S , and λi. We then use the fields in the interaction
basis for our domain wall simulations. The input parameters for the package ScannerS

[117], which we used to generate parameter points satisfying experimental and theoretical
constraints, also rely on these values for the masses and coupling modifiers.

2.4 theoretical and experimental constraints

We now briefly discuss some of the theoretical and experimental conditions used to constrain
the parameter space of these two models. Some imposed constraints, such as requiring
symmetry restoration of the discrete symmetries, which is necessary for the formation of
domain walls in the early universe, will be discussed later in the context of EW symmetry
restoration in the N2HDM (5).



2.4 theoretical and experimental constraints 35

W+
L

W−
L

W+
L

W−
L

(a)

W+
L

W−
L

W+
L

W−
L

γ/Z

(b)

W+
L

W−
L

W+
L

W−
L

γ/Z

(c)

W+
L

W−
L

W+
L

W−
L

H

(d)

W+
L

W−
L

W+
L

W−
L

H

(e)

Figure 2.2: (a), (b), and (c) Feynman diagram gauge boson contributions to W+
L W

−
L →W+

L W
−
L .

(d) and (e) contributions from the Higgs boson.

2.4.1 Theoretical Constraints

We include constraints based on the consistency of the theory, such as unitarity, a well-
behaved potential bounded from below, and the need for an EW minimum that is either
stable or metastable with a lifetime larger than the age of the universe.

2.4.1.1 Perturbative unitarity

In quantum field theory, the scattering matrix S has to be unitary: S†S = I, in order
to keep probability conserved [87]. However, before the Higgs boson was discovered, the
electroweak theory suffered from an important issue related to the scattering of longitudinal
W bosons (see Figure 2.2). The amplitude of this scattering process in the absence of the
Higgs boson H diverges at high center-of-mass energies s. In the limit of s >> m2

H , m2
W,Z ,

including the Higgs boson leads to the scattering amplitude [33]:

M(W+
L W

−
L →W+

L W
−
L ) = −

√
2 GF m2

H

(
s

s−m2
H

+
t

t−m2
H

)
. (2.56)

Therefore, the presence of the Higgs field makes this scattering finite at high center-of-mass
energies, and unitarity is satisfied.

Due to the equivalence theorem [33], unitarity in the 2 → 2 scattering of longitudinal W
bosons at high energies can also be investigated using the scattering amplitudes related to
Goldstone scalar bosons (see Figure 2.3) up to small corrections of order O(m2

H/s
2):

M(W+
L W

−
L →W+

L W
−
L ) = M(ϕ+ϕ− → ϕ+ϕ−) +O(m2

H/s
2), (2.57)

where ϕ± denote the Goldstone bosons that will be eventually eaten by the longitudinal
W bosons. Even though this scattering amplitude is finite, there is an upper bound on the
Higgs mass that makes the scattering amplitude unitary [33]. Above that limit, unitarity is
violated [33]. Such a constraint put an upper bound on the mass of the Higgs boson before
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Figure 2.3: Feynman diagram of Goldstone bosons scattering ϕ+ϕ− → ϕ+ϕ−.

its discovery [33]. To see this, one expresses the scattering amplitude M as an expansion
in partial waves according to:

M(θ) = 16π

∞∑
l=0

al(2l + 1)Pl(cos(θ)) = 16πa0 + 48πa1 cos(θ) + ..., (2.58)

where Pl are the well-known Legendre polynomials with degree l, θ the scattering angle,
and al the expansion coefficients. Perturbative unitarity requires that for each partial wave,
the condition:

|Re(al)| <
1

2
, (2.59)

is met [33]. In the limit of s >> m2
H one can extract a0 from M in (2.56) as :

a0 = −
GFm

2
H

4π
√
2

=
m2

H

8πv2sm
. (2.60)

Therefore, perturbative unitarity puts an upper limit on the mass of the Higgs boson
mH < 870 GeV [33]. Since the measured SM Higgs mass is mH = 125.09 GeV, perturbative
unitarity is satisfied in the SM.

When extending the Higgs sector with extra multiplets, it is crucial to make sure that the
scalar contributions cancel the divergent parts in the scattering amplitude. For n extra
Higgs doublets/singlets, this translates into the condition [33]:

n∑
i

g2hiV V = g2HsmV V , (2.61)

where g2hiV V denotes the coupling of the extra Higgs bosons to the weak gauge bosons, and
gHsmV V denotes the coupling of the SM-like Higgs to the gauge bosons. One also needs
to make sure that the remaining finite contributions in the scattering of the longitudinal
W bosons fulfill the condition of perturbative unitarity. The same procedure can be done
using the Goldstone boson scattering according to the equivalence theorem. In models with
several scalar doublets, one can construct a matrix (a0)ij corresponding to the different
scattering amplitudes of the Goldstone bosons (M2→2)ij [25]. The bound on perturbative
unitarity can be expressed as a bound on the eigenvalues of this matrix:∣∣Mi

2→2

∣∣ < 8π. (2.62)

These eigenvalues are expressed in terms of the quartic couplings of the scalar potential.

For the 2HDM, allowed parameter points need to satisfy the following conditions [25]:

|λ3 ± λ4| < 8π, (2.63)



2.4 theoretical and experimental constraints 37

|λ3 ± λ5| < 8π, (2.64)
|λ3 + 2λ4 ± 3λ5| < 8π, (2.65)∣∣∣∣12
(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ24

)∣∣∣∣ < 8π, (2.66)∣∣∣∣12
(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ25

)∣∣∣∣ < 8π, (2.67)∣∣∣∣12 (3λ1 + 3λ2 ±
√
9(λ1 − λ2)2 + 4(2λ3 + λ4)2

)∣∣∣∣ < 8π. (2.68)

For the N2HDM, one adds the following constraints [26]:

|λ7| < 8π, (2.69)
|λ8| < 8π, (2.70)
1

2
|a1,2,3| < 8π, (2.71)

where a1,2,3 are the roots of the polynomial:

4(−27λ1λ2λ6 + 12λ23λ6 + 12λ3λ4λ6 + 3λ24λ6 + 6λ2λ
2
7 − 8λ3λ7λ8 − 4λ4λ7λ8

+ 6λ1λ
2
8) + x(36λ1λ2 − 16λ23 − 16λ3λ4 − 4λ24 + 18λ1λ6 − 4λ27 − 4λ28)

− 3x2(λ6 − 2(λ1 + λ2)) + x3. (2.72)

2.4.1.2 Boundedness from below

In the SM, the condition to obtain a non-zero and finite minimum for the potential of the
Higgs in (1.5) is to ensure that the quadratic term µ2 > 0 and λ > 0. This ensures that
there are no directions in the field where the potential falls to −∞, making it unbounded
and causing an instability in the potential.

In extended Higgs sectors, several new terms are added to the scalar potential, making the
potential much more complex, and therefore, it is important to make sure that no direction
in the multidimensional space of the scalar fields can lead to the potential falling to −∞.

In the case of the 2HDM this translates into the following conditions on the quartic terms
[25]:

λ1,2 ≥ 0, (2.73)

λ3 +
√
λ1λ2 ≥ 0, (2.74)

λ3 + λ4 − |λ3|+
√
λ1λ2 ≥ 0. (2.75)

For the N2HDM, these conditions are more complicated, and the region of parameter space
that is allowed is the union of the sets Ω1 ∪ Ω2 where [26]:

Ω1 =

{
λ1,2,6 > 0;

√
λ1λ6 + λ7 > 0;

√
λ2λ6 + λ8;

√
λ1λ2 + λ3 +D > 0;

λ7 +
√
λ1/λ2λ8 ≥ 0

}
, (2.76)

Ω2 =

{
λ1,2,6 > 0;

√
λ1λ6 ≥ λ8 > −

√
λ2λ6;

√
λ1λ6 > −λ7 ≥

√
λ1/λ8;√

(λ27 − λ1λ6)(λ28 − λ2λ6) > λ7λ8 − (D + λ3)λ6

}
, (2.77)

where D = min(λ4 − |λ5|, 0).
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2.4.1.3 Vacuum stability

It is known that the electroweak minimum in the framework of the SM is metastable
[118]. Even though at tree-level the SM potential is stable, at very high energy scales, loop
corrections cause the quartic coupling λ to turn negative and the SM potential develops
another minimum which lies lower in the potential than the electroweak one. Since the
potential barrier between our electroweak vacuum and such a global minimum is very large,
the tunneling probability into it is very small, and the electroweak minimum is deemed to
be a long-lived metastable vacuum of the theory [118].

This simple picture is completely different in beyond the SM Higgs sectors, already at
tree-level. New scalar degrees of freedom can not only lead to the appearance of several
new minima in the potential, both lower and higher than the electroweak, but they can
also lead to the coexistence of neutral minima with ones that are CP-violating or electric
charge violating [27, 113, 119, 112, 120]. This situation is illustrated in Figure 2.4, where
the electroweak minimum is only a local minimum and the global minimum has VEVs that
would not give us the correct values for the gauge bosons and fermion masses. Since this

Figure 2.4: A generic illustration of the scalar potential in models with several scalar fields. The
picture was created by Kateryna Radchenko [121].

constraint will be discussed later in more detail, we only give a summary of the results
found in several previous studies of vacuum stability in extended Higgs sectors.

Concerning the 2HDM, several studies concentrated on studying the stability of the neutral
EW vacuum with respect to CP and electric charge violating minima. It was found in
[112, 120] that if a neutral EW minimum is found, then any CP or electric charge violating
vacua have to be saddle points of the potential and lie higher in the potential. In case a
CP or electric charge violating minimum exists, then any neutral vacuum will be a saddle
point that lies higher in the potential. Therefore, by constructing a parameter point with a
neutral electroweak minimum, it is certain that (at least at the tree-level), the potential is
stable against tunneling to CP and electric charge violating minima.

However, it was found in [122] that in the 2HDM, the EW vacuum can coexist with other
neutral minima in the potential dubbed as "panic vacua", and that the EW minimum can
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even be a local one. This situation can be problematic since the EW vacuum can quantum
tunnel to the global minimum with different vacuum expectation values and therefore
catastrophically alter all masses of the fundamental particles in the SM, in a scenario
dubbed as death by vacuum [122]. In case these other neutral minima coexist with the
EW minimum, one can determine whether our EW vacuum is the global one in case the
determinant D =

(
m2

11 −
√

λ1
λ2
m2

22

)(
tan(β)− 4

√
λ1
λ2

)
is positive [122]. If D < 0, then one

needs to calculate the tunneling rate of our EW vacuum to the global vacuum to determine
the fate of our universe.

In case of the N2HDM, vacuum stability was studied in detail in [27]. One distinguishes
two cases: if the EW minimum has vs = 0, then CP and electric charge vacua can also
exist, but they lie necessarily higher in the potential, making our neutral EW vacuum
stable with respect to vacuum decay to CP and electric charge violating. While in case
the electroweak minimum has vs ̸= 0, then it is possible to find other neutral, CP, and
electric charge violating vacua that lie deeper in the potential, and therefore make the EW
minimum a local minimum.

If the EW minimum is local, then one needs to calculate the transition rate to the global
one. This rate per unit volume is given by [27, 123]:

Γ

V
= Ke−B, (2.78)

where K is a dimensionful constant related to the electroweak scale and B is the bounce
action describing a scalar field configuration between the electroweak to the global vac-
uum. It was found in [27] that for B < 390, the EW vacuum is unstable and therefore
those parameter points will be ruled out. In case B > 440, the electroweak vacuum is
metastable with a lifetime larger than the age of the universe, making the EW vacuum
phenomenologically viable.

2.4.2 Experimental Constraints

2.4.2.1 Collider Constraints

The Higgs boson was the last fundamental particle to be discovered in 2012 at the LHC.
Until now, the experimental searches in colliders can only put exclusion limits on the viable
parameter regions of BSM Higgs models.

There are several tools used in order to test the viability of parameter points in extended
Higgs sectors with the exclusion limits provided by experiments at the LHC, such as
HiggsBounds [124]. This tool extracts the experimental upper bounds from several BSM
Higgs searches at the LHC, LEP, and the Tevatron and compares the prediction for the
cross section times the branching ratio of a given parameter point with the observed upper
limit at the experiment. If this ratio is larger than one, then the parameter point can be
excluded since it would then lead to a larger number of events than the maximum number
allowed by experiments. If the ratio is smaller than one, then the parameter point is still
allowed since it leads to a prediction that is still in agreement with the experimental limits.

Another important experimental constraint is the fact that, so far, the properties of the
observed Higgs boson at the LHC mostly agree with SM predictions within the experimental
uncertainties. Therefore, any BSM Higgs model needs to predict a SM-like Higgs boson in
its particle spectrum with properties (such as decay, production, and couplings) similar
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to those of the SM. Since the LHC measurements of the 125 GeV scalar particle still
allow some deviations from the SM prediction, one can compare the properties of the
SM-like Higgs boson in the BSM model with the experimental measurements, including
their uncertainties. One tool dedicated to this analysis is HiggsSignals. [125]

2.4.2.2 Flavor Constraints

Other than collider searches, one can also use flavor physics in order to constrain the
BSM Higgs sector. We mentioned earlier that the Z2 symmetry introduced in the 2HDM
is necessary in order to forbid FCNC at tree level. However, loop corrections involving
BSM particles can also induce FCNC. In the 2HDM and N2HDM, these contributions
are mainly produced by the charged Higgs bosons H± and can be relevant in low-energy
B-meson decays [126]. For instance, one can place stringent limits on the allowed mass for
the charged Higgs in the type two 2HDM, which requires mH± > 600 GeV and tan(β) > 1.

2.4.2.3 Electroweak Precision Observables

We discussed earlier that the parameter ρ for any Higgs sector has to be equal to one at
tree level [33]. The experimentally measured value is ρ = (1.00031 ± 0.00019) [29]. The
small deviations from 1 are due to loop contributions to the gauge bosons’ self-energies. If
BSM Higgs models contribute to these self-energies, then one needs to make sure that the
contributions do not exceed the experimentally measured value. In BSM Higgs models, these
contributions can be conveniently incorporated in the framework of oblique parameters S,
T , and U defined by [127]:

α(mZ)T =
ΠWW (0)

m2
W

− ΠZZ(0)

m2
Z

, (2.79)

α(mZ)

4 sin2(θW ) cos2(θW )
S =

ΠZZ(m
2
Z)−ΠZZ(0)

m2
Z

− cos2(θW )− sin2(θW )

sin(θW ) cos(θW )

ΠZγ(m
2
Z)

m2
Z

−
Πγγ(m

2
Z)

m2
Z

, (2.80)

α(mZ)

4 sin2(θW )
(S + U) =

ΠWW (m2
W )−ΠWW (0)

m2
W

− cos(θW )

sin(θW )

ΠZγ(m
2
Z)

m2
Z

−
Πγγ(m

2
Z)

m2
Z

,

(2.81)

where Πij denotes the one-loop self energies of the gauge bosons, and α(mZ) denotes the
weak coupling constant at the Z scale. The experimental limits for these parameters are
given by [29]:

S = −0.04± 0.1, T = 0.01± 0.1, U = −0.01± 0.09. (2.82)

All these theoretical and experimental limits were imposed in our scans (unless claimed
otherwise) using the public code ScannerS [117], which generates random parameter points
in a given range of parameter variables that fulfill all the imposed constraints. For some
particular scans, we also imposed the constraint of electroweak and discrete symmetry
restoration at high temperatures, which is crucial for the formation of domain walls. This
particular constraint will be discussed in more detail in the chapter 5 when we study
electroweak symmetry restoration induced by domain walls in the N2HDM.
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Having introduced the BSM Higgs models studied in this manuscript, as well as the
constraints imposed on them, we discuss in the next chapter the possible domain wall
solutions that can be obtained in the 2HDM.





3 DOMA IN WAL LS IN THE 2HDM

This chapter is based on the following publication:

[1] M. Y. Sassi and G. Moortgat-Pick, Domain walls in the Two-Higgs-Doublet Model
and their charge and CP-violating interactions with Standard Model fermions,
JHEP 04 (2024) 101, [2309.12398]

3.1 motivation and general idea

In this chapter, based on the published work in [1], we investigate the domain wall solutions
in the 2HDM. Such an extension allows several discrete symmetries in the model [6],
whose spontaneous breaking after the electroweak symmetry breaking (EWSB) at the early
universe can lead to the formation of domain walls. Recently, it was found in [110, 76] that
the domain walls in the 2HDM can have non-trivial structures inside them. In particular,
it was demonstrated that one-dimensional domain wall solutions (usually denoted as kink
solutions in the literature) exhibit CP and electric charge-violating vacua inside the defect.

The spontaneous breaking of SUL(2)× U(1)Y alongside the discrete symmetry Z2 causes
the vacuum manifold of the model to consist of two disconnected 3-spheres. This leads to
a degeneracy in the choice of the boundary conditions that one can impose on the vacua of
different domains, in contrast to the much simpler case, where only the Z2 symmetry is
spontaneously broken and where the vacuum manifold is made of just two disconnected
points. This will then lead to several classes of kink solutions with different internal
structures [13]. Such effects were already investigated for domain wall solutions arising
in Grand Unified Theories such as SU(5) × Z2 [77, 128, 13]. In contrast to the simple
case of Z2 domain wall solutions, the spontaneous breaking of abelian and non-abelian
symmetries G alongside the discrete symmetry to a subgroup H leads to a disconnected
vacuum manifold with non-trivial disconnected sectors. In such models, the symmetry
group inside the wall can, in general, be smaller than the symmetry group outside the
wall. This phenomenon, known as "clash-of-symmetries" [129, 130, 78], occurs when the
unbroken symmetry subgroups H and H ′ on the two regions outside the wall are embedded
differently in the spontaneously broken symmetry group G. The symmetry group inside
the wall will be the intersection H ∩H ′, which can be smaller than the group H or H ′.
Such a mechanism was used in [129] in order to provide a way to break symmetries using
domain walls in the scenario where our 3+1-dimensional universe exists as a domain wall
brane in a 4+1-dimensional spacetime with an action invariant under E6 symmetry. In
that work, the spontaneous breaking of E6 symmetry to differently embedded unbroken
SO(10)×U(1) subgroups H and H ′ outside the brane leads the unbroken symmetry group
inside the domain wall H ∩H ′ to be a smaller group containing SU(5). In our model, we
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will show that, due to this mechanism, the symmetry group of electromagnetism can be
broken inside the domain wall.

We expand the analysis done in [76] to also include the variation of all SU(2)L Goldstone
and U(1)Y hypercharge modes of the SU(2)L × U(1)Y symmetry, as well as to study
the evolution and stability of these different classes of 1D kink solution when using von
Neumann boundary conditions. We then discuss the dependence of the kink solutions on
the physical parameters of the 2HDM, such as the masses of the extra Higgs bosons and
the parameter tan(β).

3.2 the vacuum manifold of the 2hdm

After electroweak symmetry breaking, the Higgs doublets acquire a neutral VEV (2.11).
This vacuum breaks SU(2)L × U(1)Y × Z2 into U(1)em. In this case, the vacuum manifold
of the theory is homeomorphic to the coset space:

M = (SU(2)L × U(1)Y × Z2)/ U(1)em ≃ Z2 × S3, (3.1)

which is topologically equivalent to two disconnected 3-spheres [6] as depicted in Figure
3.1a. The vacuum manifold has then two disconnected sectors related by a Z2 symmetry.
These sectors are non-trivial (in contrast to the case when only Z2 is broken) and consist of
vacua which are related by SU(2)L × U(1)Y transformations. This leads to the formation
of different classes of domain walls due to the multiple choices that can be taken for the
electroweak matrix U inside the two regions (see Figure 3.1a), in contrast to standard Z2

domain wall solutions where the choice of the vacua inside the two domains is fixed to
be vacua that are only related by a discrete symmetry [131]. Figure 3.1b shows different

M+M-
Z2

(a) Vacuum manifold M of the model. (b) A patch of the universe after EWSB.

Figure 3.1: (a) Vacuum manifold M of the model. In this case M consists of two disconnected
sectors M− and M+ related by the Z2 symmetry and all the vacua in both sectors are
degenerate. The elements of each sector are related by SU(2)L ×U(1)Y transformations.
Φ′

+ and Φ′′
+ are related to Φ+ by different gauge transformations of SU(2)L × U(1)Y .

(b) After EWSB, causally disconnected regions of the universe can end up in different
vacua of the vacuum manifold. No topologically protected domain walls form between
regions with vacua on the same spheres of M. Regions that end up with vacua in separate
sectors of M can have different classes of domain walls depending on the SU(2)L and
Hypercharge Goldstone modes they acquire.

possibilities for the boundary conditions after EWSB. In order to get a kink solution to
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the scalar field configuration, the boundary conditions at ±∞ need to lie on disconnected
sectors of the vacuum manifold. Starting at x→ −∞ with a vacuum Φ− on the vacuum
manifold sector M− corresponding to one 3-sphere:

Φ− =

{
1√
2

(
0

v∗1

)
,
1√
2

(
0

−v∗2

)}
, (3.2)

we end up at x→ +∞ with a vacuum Φ+ on the vacuum manifold M+. Fixing our choice
for Φ−, we have multiple choices for the vacuum Φ+:

Φ+ =

{
1√
2
U

(
0

v∗1

)
,
1√
2
U

(
0

v∗2

)}
, (3.3)

where U is an element of the broken electroweak symmetry group SU(2)L × U(1)Y and√
(v∗1)

2 + (v∗2)
2 = 246 GeV. In order to compute the kink solution of the field configuration

interpolating between those two vacua, we need to minimize the energy of such a field
configuration, which is equivalent to solving the time-independent Klein-Gordon equation
of motion of a scalar field with the chosen boundary conditions.

In the 2HDM, a spatial field configuration has the following energy functional for the Higgs
and gauge sector:

E(x) = |DµΦ1|2 + |DµΦ2|2 +
1

4
BµνBµν +

1

4
W iµνW i

µν + V2HDM(Φ1,Φ2), (3.4)

where,

W i
µν = ∂µW

i
ν − ∂νW

i
µ − gf ijkW j

µW
k
ν , (3.5)

Bµν = ∂µBν − ∂νBµ, (3.6)

denote the field strength tensors of the non-abelian gauge bosons of SU(2)L and the abelian
gauge boson of U(1)Y respectively, with µ and ν denoting Lorentz indices. Recall that the
covariant derivative Dµ is defined by:

Dµ = ∂µ +
ig

2
W i

µσ
i +

ig′

2
Bµ, (3.7)

where σi denotes the Pauli matrices.

The first four terms in (3.4) describe the kinetic energy of the vacuum configuration, and
the fifth term denotes the potential of the scalar sector. In this work, we take W i

µ(x) = 0
and Bµ(x) = 0, which is a solution that satisfies the equations of motion for the gauge
fields and gives the lowest energy contribution to (3.4). We discuss in detail the validity of
this solution in Appendix A.

Setting the gauge fields to zero, the energy functional (3.4) reduces to:

E(x) = dΦ†
1

dx

dΦ1

dx
+
dΦ†

2

dx

dΦ2

dx
+ V2HDM(Φ1,Φ2), (3.8)

where we take the fields to be one-dimensional functions of x. There is an interplay between
the kinetic energy that arises due to a changing profile of the field configuration as a
function of x and the potential energy of this field configuration.

Using the non-linear representation for the Higgs doublets (defined in (2.6), (2.7), and
(2.35)) in the expression of the energy functional (3.8) we end up with:

E(x) = dΦ̃†
1

dx

dΦ̃1

dx
+
dΦ̃†

2

dx

dΦ̃2

dx
+

(
dΦ̃†

1,2

dx
U †(x)

dU

dx
Φ̃1,2(x) + h.c

)
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+ Φ̃†
1,2(x)

dU †

dx

dU

dx
Φ̃1,2(x) + V2HDM (Φ1,Φ2), (3.9)

where, in terms of the vacuum manifold parameters:

V2HDM (v1, v2, v+, ξ) =
m2

11

2
v21(x) +

m2
22

2

(
v22(x) + v2+(x)

)
+
λ1
8
v41(x) +

λ3
4
v21(x)v

2
+(x)

+
λ2
8

(
v22(x) + v2+(x)

)2
+
λ3 + λ4

4
v21(x)v

2
2(x) +

λ5
4
v21(x)v

2
2(x) cos(2ξ(x)). (3.10)

Writing down U(x) in terms of the Pauli matrices, we get:

U(x) = eiθ(x)
[
cos(G(x))I2+i

g1(x)

2

sin(G(x))

G(x)
σ1+i

g2(x)

2

sin(G(x))

G(x)
σ2+i

g3(x)

2

sin(G(x))

G(x)
σ3

]
,

(3.11)

where:

G(x) =

√(g1(x)
2

)2
+
(g1(x)

2

)2
+
(g1(x)

2

)2
, gi(x) = g̃i(x)/vsm. (3.12)

In [76], the choice of the matrix U(x) was simplified to the case where only a single
Goldstone mode of SU(2)L or the hypercharge Goldstone mode θ was allowed to be
non-zero and have asymmetric boundary conditions at ±∞. We will expand the results to
the general case, where all modes in U(x) can change. This will lead to more effects inside
the domain walls compared to [76].

Since the calculation of all terms in (3.9) is straightforward but lengthy, we give the final
expression of the energy functional in terms of the vacuum parametrization:

E(x) = 1

2

(dv1
dx

)2
+

1

2

(dv2
dx

)2
+

1

2

(dv+
dx

)2
+

1

2
v22(x)

(dξ
dx

)2
+
1

2
v21(x)

[(dθ
dx

)2
+ I0(x)

+ 2
dθ

dx
I3(x)

]
+

1

2
v22(x)

[(dθ
dx

)2
+ I0(x) + 2

(dθ
dx

+
dξ

dx

)
I3(x) + 2

dθ

dx

dξ

dx

]
+

1

2
v2+(x)

[(dθ
dx

)2
+ I0(x)− 2

dθ

dx
I3(x)

]
+ v2(x)

[
sin(ξ)

dv+
dx

I1(x)− cos(ξ)
dv+
dx

I2(x)

]
+ v+(x)

[
− sin(ξ)

dv2
dx

I1(x) + cos(ξ)
dv2
dx

I2(x)

]
+
v+(x)v2(x)

2

[
4 sin(ξ)I2(x)

dθ

dx

− 4 cos(ξ)I1(x)
dθ

dx
− 2 cos(ξ)

dξ

dx
I1(x)− 2 sin(ξ)

dξ

dx
I2(x)

]
+ V2HDM , (3.13)

where,

I0(x) = G′2(x) cos2(G(x)) +
[(
g′21 (x) + g′22 (x) + g′23 (x)

)
G2(x)− 2

(
g1g

′
1 + g2g

′
2 + g3g

′
3

)2
+
(
G2(x) +G4(x)

)
G′2(x)

]
sin2(G(x))

G4(x)
, (3.14)

I1(x) = B′(x)C(x)−B(x)C ′(x)−A′(x) cos(G(x))−A(x)G′(x) sin(G(x)), (3.15)
I2(x) = C ′(x)A(x)−A′(x)C(x)−B′(x) cos(G(x))−B(x)G′(x) sin(G(x)), (3.16)
I3(x) = A′(x)B(x)−A(x)B′(x)− C ′(x) cos(G(x))− C(x)G′(x) sin(G(x)), (3.17)

A(x) = g1(x)
sin(G(x))
G(x)

, (3.18)

B(x) = g2(x)
sin(G(x))
G(x)

, (3.19)
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C(x) = g3(x)
sin(G(x))
G(x)

, (3.20)

and the prime symbol denotes derivatives with respect to x. In order to get non-trivial
vacuum configurations corresponding to different vacua at ±∞, we need to minimize the
space integral of this energy functional with respect to small deviations in the fields:

δE = δ

(∫
dx E(x)

)
= 0. (3.21)

For static solutions, this leads to a system of differential equations analogous to the
time-independent Klein-Gordon equations of motion:

d

dx

(
dE

d(dϕi)

)
− dE
dϕi

= 0, (3.22)

where ϕi denotes the 8 fields in the two doublets.

Since the energy functional and the equations of motion in the general case are very
complicated, it is simpler to explain the behavior of the different fields inside the domain
wall by choosing some special cases that make the energy functional and equations of
motion considerably simpler. In the following subsections, we will consider a few special
cases for the choice of U(x) at the boundaries. These simplified cases capture the interesting
effects that influence the fields inside the domain wall. We will first start by considering the
case of standard domain walls where the matrix U(x) = I2, constant everywhere in space,
which means that we only consider vacua related by the Z2 symmetry. The cases where
only one mode of U(x) is different in the two domains while taking all the other modes to
be zero were already considered in [76]. Here we expand those results by first considering
the case where more than one mode of U(x) changes across the domains, and later the
general case where the hypercharge and the Goldstone modes are chosen arbitrarily. We
also discuss the behavior of the fields that interact with the kink solution for v2(x) inside
the wall.

To solve the 8 differential equations describing the vacuum configuration as a function of x.
To do this, we use the same numerical algorithm used in [110, 76, 6], namely the gradient
flow method.

The gradient flow method introduces a fictitious time parameter to the field profiles ϕi(x, t).
We then modify the minimization condition (3.21) to:

∂ϕi
∂t

= − δE

δϕi
(3.23)

Using this method, we find the solution of the system of differential equations by iteratively
minimizing the energy functional at each iteration for the given boundary conditions until
the vacuum configuration ϕi(x, t) leads to a minimum in the energy. As we approach such
a minimal energy configuration, the derivative of ϕi(x, t) with respect to the fictitious
time approaches zero, and we therefore obtain the solutions to the static equations of
motion in (3.21). The solution is declared as found if, after several iterations, the vacuum
configuration stays the same up to small numerical fluctuations. We also adopt the same
rescaling of the dimensionful parameters that was used in [110, 76, 6]:

m̂i =
mi

mh
, v̂i =

vi
vsm

, x̂ = x ·mh, Ê =
E

m2
hv

2
sm

, (3.24)

where mh = 125GeV denotes the mass of the SM Higgs particle. Such a rescaling is useful
to get dimensionless space variable x̂ and numerical values of the order 1.
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3.3 standard domain wall solution

We start with the standard kink solution, where the two domains have the same and
constant angles θ and gi while the vacuum expectation value of v2 changes sign. The kink
solution interpolates between the following two vacua:

Φ− =

{
1√
2

(
0

v∗1

)
,
1√
2

(
0

−v∗2

)}
, Φ+ =

{
1√
2

(
0

v∗1

)
,
1√
2

(
0

v∗2

)}
. (3.25)

We use (3.13) and set the derivatives for θ and gi to zero. We obtain the following energy
functional that has to be minimized:

E(x) = 1

2
(
dv1
dx

)2 +
1

2
(
dv2
dx

)2 +
1

2
(
dv+
dx

)2 +
1

2
v22(x)(

dξ

dx
)2 +

1

2
m2

11v
2
1(x)

+
1

2
m2

22(v
2
2(x) + v2+(x)) +

1

8
λ1v

4
1(x) +

1

8
λ2(v

2
2(x) + v2+(x))

2 +
1

4
λ3v

2
1(x)v

2
+(x)

+
1

4

[
λ3 + λ4 + λ5cos(2ξ(x))

]
v21(x)v

2
2(x), (3.26)

leading to the following equations of motion for the field profiles:

d

dx
(
dE

d(dv1)
)− dE

dv1
=
d2v1
dx2

− 1

2
λ1v

3
1(x) + λ3v

2
+(x)− v1(x)m

2
11

− 1

2
v1(x)

(
λ3 + λ4 + λ5cos(ξ(x))

)
v22(x) = 0, (3.27)

d

dx
(
dE

d(dv2)
)− dE

dv2
=
d2v2
dx2

− 1

2
λ2v

3
2(x)−

1

2
v2(x)

[
2(m2

22 + (
dξ

dx
)2) + λ2v

2
+(x)

+

(
λ3 + λ4 + λ5cos(ξ(x))

)
v21(x)

]
= 0, (3.28)

d

dx
(

dE
d(dv+)

)− dE
dv+

= −1

2

[
2m2

22 + λ3v
2
1(x) + λ2v

2
2(x)

]
v+(x)−

1

2
λ2v

3
+ +

d2v+
dx2

= 0,

(3.29)
d

dx
(
dE
d(dξ)

)− dE
dξ

= v2(x)

[
λ5cos(ξ)sin(ξ)v21(x)v2(x) + 2

dv2
dx

dξ

dx
+ v2(x)

d2ξ

dx2

]
= 0.

(3.30)

As E(x) is independent of θ and gi, they therefore remain constant. The system of differential
equations is solved in an interval −10 < x̂ < 10. In Figure 3.2 we plot the profile of the
fields for parameter point (PP) I:

mH = 800 GeV, mA = 500 GeV, mC = 400 GeV, tan(β) = 0.85, (3.31)

and parameter point II:

mH = 200 GeV, mA = 200 GeV, mC = 200 GeV, tan(β) = 0.85. (3.32)

This choice of parameter points is done for pedagogical reasons to show different properties
in the kink solutions. The results show that the field configuration v2(x) interpolates from
a negative value in the region on the left to a positive value in the region on the right while
crossing the value 0. This is the usual behavior of a kink solution. Note that also the value
of v1(x) is also affected as both v1 and v2 are coupled via the differential equations. To
understand this change in v1(x) inside the domain wall of v2 (see Figures 3.2a and 3.2b),
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(a) Domain wall solution for PP I.
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(b) Solutions for PP II.

Figure 3.2: Standard domain wall solution for different parameter points I (a) and II (b). We use
the rescaled dimensionless vacuum parameters v̂i = vi/vsm (cf. 3.24).

we derive the standard energy functional Estandard(x) in 3.26 taking the derivatives of all
fields other than v1 and v2 to be 0 as they all vanish at all x:

Estandard(x) =
1

2
(
dv1
dx

)2 +
1

2
(
dv2
dx

)2 +
m2

11

2
v21(x) +

m2
22

2
v22(x) +

λ1
8
v41(x) (3.33)

+
λ2
8
v42(x) +

λ3 + λ4
4

v21(x)v
2
2(x) +

λ5
4
v21(x)v

2
2(x).

The effective mass term for v1 is then given by:

M1(x) =
m2

11

2
+

(λ3 + λ4 + λ5)

4
v22(x). (3.34)

Inside the core of the wall (x = 0), v2 = 0 and M1(0) = m2
11/2. When plotting the effective

mass M1 as function of x, we can see that the value becomes less negative inside the
domain wall for both parameter points (see Figures 3.3a and 3.3b). Consequently the scalar
potential V2HDM (x = 0) = V0(v1, v+) inside the domain wall will have its minima for v1 at
a smaller value and the potential barrier between the minima will be lower. Note that for
other parameter points, (λ3 + λ4 + λ5) can be positive and therefore the effective mass
M1(0) inside the domain wall will be more negative than at the asymptotic values. This
then corresponds to a bigger value for the minimum v1(0) of V0(v1) and therefore v1 inside
the domain wall would be bigger than its asymptotic values at ±∞. However, a changing
profile for v1(x) inside the wall will always lead to a positive contribution to the kinetic
part of E(x). Therefore, one needs to make sure that this solution for v1(x) is stable. This
is done by considering small fluctuations ṽ1(x, t) around the background kink solution
v1(x). The equation of motion describing such fluctuations is given by:

∂2t ṽ1(x, t)− ∂2xṽ1(x, t) +
dV2HDM

dṽ1
= 0. (3.35)

Taking small fluctuations up to first order, this reduces to:

−∂2xṽ1(x) + 2M1(x)ṽ1(x) = w2ṽ1(x), (3.36)

for a fluctuation of the form ṽ1(x, t) = eiwtṽ1(x). If a solution with w2 < 0 exists, then
the fluctuation v1(x, t) ∝ ew̃t ,where w = iw̃, grows with time leading to the instability
of the solution for v1(x). For w2 > 0 the fluctuation keeps oscillating around the found
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(a) M̂1 for PP I.
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(b) M̂1 for PP II.
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(c) Potential inside the DW for PP I.
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(d) Potential inside the DW for PP II.

Figure 3.3: (a) and (b): Rescaled effective mass term M̂1 of v1 as a function of x. Notice that the
effective mass becomes less negative inside the domain wall. This explains why the
vacuum v1 inside the wall gets smaller.(c) and (d): Rescaled potential V̂0(v̂1, v̂+) =
V̂2HDM (x = 0) inside the domain wall

(
v2(0) = 0

)
.

solution for v1(x). The behavior of ṽ1(x, t) for PP I is shown in Figure 3.4a, showing
an oscillating fluctuation around 0, which means that the solution is stable. Note that a
vacuum configuration, where v1(x) = v1 is constant, will be unstable and the field v1(x)
evolves to the lowest energy solution that we obtain from the numerical calculations (see
Figures 3.4b and 3.2a).
For the fields v+(x) and ξ(x), we observe that they stay equal to zero everywhere. A
non-zero phase ξ provides a positive contribution to the energy functional (3.26) leading
to a higher energy solution. In other words, ξ(x) = 0 presents the lowest energy solution.
Concerning v+(x), the situation is more complicated: in order to study its behavior inside
the wall, we consider the terms in E that depend on v+(x), (cf. 3.26):

E+(v+) =
1

2
(
dv+
dx

)2 +
1

2
m2

22v
2
+(x) +

1

8
λ2v

4
+(x) +

1

4
λ2v

2
+(x)v

2
2(x) +

1

4
λ3v

2
1(x)v

2
+(x).

(3.37)

The effective mass term for v+ in the background of the DW is given by:

M+(x) =
1

2
m2

22 +
1

4
(λ2v

2
2(x) + λ3v

2
1(x)). (3.38)
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Figure 3.4: (a) The solution found in Figure 3.2a is stable as the fluctuation ṽ1 oscillates around 0.
(b) The fluctuation ṽ1(x, t) grows with time for the case when v1(x) = v1 indicating
the instability of that solution. After some time the fluctuation oscillates around the
lowest minimum corresponding to the obtained results for PP I.

Outside the domain wall, the effective mass is obviously positive and the potential minimum
for v+ is 0. Inside the wall, one gets

M+(0) =
1

2
m2

22 +
1

4
λ3v

2
1(0),

which, depending on the parameter point can also be negative (see Figures 3.5a and 3.5b).
The field v+ can develop a condensate inside the wall, i.e. when M+(0) < 0. In that case
the potential V0(v1(0), v+) will have two non zero minima for v+ (see Figure 3.5c). If such
parameter points exist, it is energetically more favorable for v+ to get a condensate inside
the wall. However, the kinetic energy part is minimized for v+(x) = 0. Therefore, one
should make sure that the kinetic contribution due to the spatial derivative of v+ is not too
large so that the solution for the non-zero condensate is stable inside the wall. In order to
investigate the stability of the v+(x) = 0 solution inside the wall, we consider the linearized
time-dependent equation of motion for a small fluctuation ṽ+(x, t) around v+(x) in the
background of the domain wall:

∂2t ṽ+(x, t)− ∂2xṽ+(x, t) +
dV2HDM

dṽ+
= 0. (3.39)

For a small fluctuation of the form

ṽ+(x, t) = eiwtṽ+(x), (3.40)

the evolution of the fluctuation follows the differential equation:

−∂2xṽ+(x) + 2M+(x)ṽ+(x) = w2ṽ+. (3.41)

The small fluctuation around v+(x) = 0 is unstable if w2 < 0, making v+(x, t) ∝ ew̃t,
where w = iw̃, growing with time and leading to the instability of the solution v+(x) = 0.
In case w2 > 0, the fluctuation ṽ+(x, t) oscillates around the stable solution. Figure 3.5a
shows one parameter point where M+(0) is negative inside the wall. However, the lowest
energy solution has v+(x) = 0, meaning that the kinetic energy contribution from a
v+(x) condensate inside the wall leads to a higher total energy than the solution with a
vanishing v+(x) overall. We also verify numerically (see Figure 3.6) that the frequency w of
a fluctuation ṽ+(x, t) to the v+(x) = 0 solution is real as the fluctuation oscillates around
v+(x) = 0.
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(a) Negative M̂+(0) (PP I).
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(b) Positive M̂+(0) (PP II).
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(c) Potential for v+ inside the DW (PP I).
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(d) Potential for v+ inside the DW (PP II).

Figure 3.5: Effective mass term of v+ as a function of x and the corresponding scalar potential
V̂0(v̂1(0), v̂+) inside the wall as a function of v+ for different PP: (a) M̂+ for PP I, notice
that the effective mass can become negative inside the wall, leading to the possibility of
forming a condensate of v+ localized on the wall; (b) shows M̂+ for PP II. Here the
effective mass is positive everywhere and no charge violating vacua are expected inside
the wall; (c) shows the potential inside the DW as a function of v+ for PP I. In this
case, the minimum is non-zero; (d) the same potential for PP II. In this case the global
minimum of v+ is zero.

3.4 variation of a single angle across the wall

We now consider the effects of the Goldstone and hypercharge modes on the domain wall
solution. We start by following the same approach in [76] and simplify U(x) (2.35) by
allowing the variation across the wall of either the hypercharge angle θ(x) or a single
Goldstone mode gi(x) at a time. In this case, the vacua at ±∞ will be rotated relative to
each other, by either a UY (1) transformation or a transformation related to one Goldstone
mode of SU(2)L. For each case, we will discuss the solution of the equations of motion
using either Dirichlet or von Neumann boundary conditions, where the former keeps the
vacua at the boundaries fixed while the latter allows the dynamical variation of the vacua
at the boundaries but keeps the spatial derivative of the vacua to be zero on the boundaries.
For the following numerical solutions, we work in the alignment limit and fix the parameter
point:

mH = 800 GeV, mA = 500 GeV, mC = 400 GeV, tan(β) = 0.85 and α−β = 0. (3.42)
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Figure 3.6: Stability of the solution v+(x) = 0 under a small fluctuation ṽ+(x, t), oscillating around
v+ = 0 with a real frequency w.

3.4.1 Variation of hypercharge θ

We first discuss the variation of the hypercharge angle θ(x) across the wall. In this case,
the matrix U(x) (2.35) is given by:

U(x) = eiθ(x)I2,

which leads to the energy functional E(x):

E(x) = 1

2

(
dv1
dx

)2

+
1

2

(
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dx
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+
1

2

(
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+
1

2
v22(x)

(
dξ
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+
1

2
v21(x)

(
dθ

dx
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+
1

2
v22(x)

[(
dθ

dx

)2

+ 2
dθ

dx

dξ

dx

]
+

1

2
v2+(x)

(
dθ

dx

)2

+ V2HDM . (3.43)

One can immediately see from (5.41), that a change in the hypercharge across the wall cannot
lead to a charge breaking solution v+(0) ̸= 0 inside the wall. The term 1

2v
2
+(x)(dθ/dx)

2 in
(5.41) always leads to a positive contribution to the energy and therefore it only minimizes
the energy of the vacuum configuration when v+(0) = 0. Using the equation of motion for
the hypercharge θ(x), one can derive a relation between the change in the hypercharge
θ(x) and the derivative of the CP-violating phase ξ(x) [76]:

dθ

dx
=

−v22
v21 + v22 + v2+

dξ

dx
. (3.44)

Such an equation is only valid for finite energy solutions where the spatial derivatives of
the vacua at the boundaries vanish. From (3.44) one would expect that, as the hypercharge
angle starts to change from the value it has in one domain to the value in the other domain,
the value of the phase ξ(x) will become non-zero.

Figure 3.7a shows the numerical solution of the equations of motion using Dirichlet boundary
conditions with θ(−∞) = 0 and θ(+∞) = π/2. The initial guess for the profile of θ(x)
was taken to be a hyperbolic tangent function interpolating between 0 and π/2. The
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(a) Dirichlet boundary conditions.
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Figure 3.7: Numerical solutions of the DW equations of motion for vacua on the boundaries having
different hypercharge angle θ. (a) Using Dirichlet boundary conditions. (b) Using von
Neumann boundary conditions. v̂i are the rescaled vacuum parameters, cf. (3.24). We
observe a non zero phase ξ(x) inside the wall when using Dirichlet boundary condition.
This means that the vacua inside the wall are CP-violating (see (2.10)).

numerical results point to a non-vanishing phase ξ(x) localized inside the wall, where the
hypercharge changes significantly. However, this vacuum configuration has a higher energy
than the vacuum configuration of the standard domain walls with ξ(x) = 0 (see Figure
3.8b). Therefore, for these parameter points, such domain walls are unstable and should
decay into the standard domain wall configuration. One can also notice that the derivative
in θ(x) outside the wall are non zero due to the choice of Dirichlet boundary conditions.
This shows that minimizing the energy of the wall tends to change the hypercharge angle
at the boundaries. For this reason, it is more advantageous to use von Neumann boundary
conditions when solving the differential equations, so that the hypercharge angle in each
domain can change dynamically to minimize the energy of the wall. This can be seen in
Figure 3.7b, where the hypercharge in both regions evolve to be equal to each other. This
will then lead to dθ/dx = 0 and therefore to a vanishing ξ(x) for all x.

In Figure 3.8a we plot the profile of the solution at an intermediate time step using
von Neumann boundary conditions. This shows how the hypercharge angle θ(x) at the
boundaries change dynamically to minimize the energy and we see that the value of the
CP-violating phase ξ(x) inside the wall gets smaller. Even though the CP-violating domain
wall solution is unstable, it is expected that after EWSB, the hypercharge angles on causally
disconnected regions of the universe can be different. Therefore the early stages of the
formation of the domain wall network would exhibit such CP-violating vacua inside the
wall until the profile of the hypercharge angle θ(x) relaxes to a solution where it is constant
for all x. We will also see later that in the realistic scenario, where we consider U(x) to be
a general SU(2)× UY (1) matrix, the stable domain wall solution will exhibit a non zero
(albeit small) CP-violating vacua because the hypercharge angle will be different on both
domains.

From the clash-of-symmetries point of view, the asymptotic vacuum Φ− at −∞ is invariant
under the electromagnetism group H = U(1)em. At +∞ the asymptotic vacuum is
Φ′

+ = gΦ+ and the group keeping Φ′
+ invariant is therefore H ′ = gHg† with g ∈ U(1)Y .

As g commutes with all elements of H, both H ′ and H are embedded in SU(2)L × U(1)Y
in the same way and therefore the continuous symmetry group inside the wall will be
H ∩H ′ = U(1)em.
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Figure 3.8: (a) Evolution of the hypercharge angle θ at an intermediate stage of the calculations.
Note that the CP-violating phase ξ gets smaller as the difference in hypercharge in both
domains gets smaller. (b) Evolution of the rescaled energy Ê (cf. 3.24) of the vacuum
configuration using Dirichlet and von Neumann boundary conditions.

3.4.2 Variation of g1

We now discuss the case when only the Goldstone mode g1 is non-zero and different on
both domains. The matrix U(x) (2.35) in such a case is given by:

U(x) = cos
(
g1(x)/2

)
I2+ i sin

(
g1(x)/2

)
σ1 =

(
cos
(
g1(x)/2

)
i sin

(
g1(x)/2

)
i sin

(
g1(x)/2

)
cos
(
g1(x)/2

) ) . (3.45)

The corresponding energy functional E (3.13) is simplified to:

E(x) = 1

2

(
dv1
dx

)2

+
1

2

(
dv2
dx

)2

+
1

2

(
dv+
dx

)2

+
1

2
v22(x)

(
dξ

dx

)2

+
1

8
v2+

(
dg1
dx

)2

− 1

2
v2 sin(ξ)

dv+
dx

dg1
dx

+
1

2
v+
dg1
dx

(
sin(ξ)

dv2
dx

+ v2 cos(ξ)
dξ

dx

)
+ V2HDM . (3.46)

In [76], by using the equation of motion for g1(x), an expression relating how the change
in g1 will affect v+ and ξ was derived, namely:

dg1
dx

=
2

v21 + v22 + v2+

(
v2 sin(ξ)

dv+
dx

− v+ sin(ξ)
dv2
dx

− v2v+ cos(ξ)
dξ

dx

)
. (3.47)

This would then imply that a change in g1 across the wall will lead to a non-zero v+(x)
and ξ(x) inside the wall.

The unbroken symmetry for the asymptotic vacuum at +∞ is H ′ = gHg† with g ∈ SU(2)L
corresponding to the first generator T 1. As g does not commute with elements of H, this
leads to both broken subgroups being embedded differently in SU(2)L × U(1)Y and one
can expect that the domain wall solution will break U(1)em, in case the energy of such
a solution is the lowest one. In order to solve the equations of motion for the vacuum
configuration, we choose g1(−∞) = 0 and g1(+∞) = π/2 with g1(x) having the initial
profile of a hyperbolic tangent interpolating between the two asymptotic values. The
numerical solution of the equations of motion using Dirichlet boundary conditions, however,
points to a vanishing v+(x) and ξ(x) (see Figure 3.9a), such a behavior was also found
in [76]. This can be attributed to the fact that using Dirichlet boundary conditions for
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(a) Dirichlet boundary conditions.
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(b) von Neumann boundary conditions.

Figure 3.9: Numerical solutions of the DW equations of motion for vacua having a different Goldstone
mode g1 using: (a) Dirichlet boundary conditions and (b) von Neumann boundary
conditions. The solutions do not exhibit charge or CP-violating vacua inside the wall.
Only the solutions using von Neumann boundary conditions satisfy the relation (3.47).
The Goldstone mode g1(x) changes dynamically from an initial asymmetric configuration
to a configuration where g1(x) is the same everywhere.

this system of differential equations is not the correct approach. The equation (3.47) is
valid for a static field configuration that satisfies the equations of motion, has a vanishing
derivative for the Goldstone mode at the boundaries and minimizes the energy functional∫
dx E(x). However it is clear that the condition of vanishing derivative at the boundaries is

not satisfied for our solution using Dirichlet boundary conditions, even though the solution
is static (dg1/dt = 0).

In Figure 3.10, we compare the energies of domain wall solutions using different boundary
conditions. We observe that the energy of the solution using the Dirichlet boundary
conditions is only a local minimum and has a higher energy than the standard domain wall
solution. When using von Neumann boundary conditions (see Figure 3.9b), the Goldstone
modes g1 in both domains change dynamically to become the same value, which eventually
leads to dg1/dx = 0. Such a field configuration is the correct solution: it explains the
vanishing values of v+(x) and ξ(x) inside the wall, satisfies the relation (3.47) and minimizes
the energy.

3.4.3 Variation of g2

We now discuss the case when only g2 changes across the wall. The matrix U(x) (2.35) is
given by:

U(x) = cos
(
g2(x)/2

)
I2+ i sin

(
g2(x)/2

)
σ2 =

(
cos
(
g2(x)/2

)
sin
(
g2(x)/2

)
− sin

(
g2(x)/2

)
cos
(
g2(x)/2

)) . (3.48)

The unbroken symmetry for the asymptotic vacuum at +∞ is H ′ = gHg† with g ∈ SU(2)L
corresponding to the second generator T 2. In this case g does not commute with elements
of H, this leads to both broken subgroups H and H ′ being embedded differently in
SU(2)L × U(1)Y and one can expect that the domain wall solution will break U(1)em as
expected by the clash-of-symmetries formalism in case the energy of such a solution is the
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Figure 3.10: Evolution of the energy of the vacuum configuration with iteration time for Dirichlet
and von Neumann boundary conditions. For g1 having asymmetric boundaries, the
energy is higher than the energy of the standard DW vacuum configuration. Therefore,
the field configuration dynamically decays to the standard domain wall solution and
g1(x) becomes the same value everywhere.

lowest one.
The energy functional E(x) (3.13) simplifies to:

E(x) = 1
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(
dv1
dx
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+
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(
dv2
dx

)2

+
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(
dv+
dx

)2

+
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2
v22(x)

(
dξ

dx
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+
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8
(v2+ + v21 + v22)

(
dg2
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+
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dg2
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(
−v+cos(ξ)

dv2
dx

+ v2cos(ξ)
dv+
dx

+ v2v+sin(ξ)
dξ

dx

)
+ V2HDM . (3.49)

One major difference in comparison with the analysis of the standard domain wall solution
in section 3.3 is that dg2/dx ̸= 0 induces a linear term for v+(x) in the potential (3.49):

−1

2

dg2
dx

v+(x)cos(ξ)
dv2
dx

,

which can give a negative contribution to the energy of the vacuum configuration depending
on the sign of dg2/dx and dv2/dx. Using the equation of motion for g2(x), one derives an
expression relating the change in g2(x) to the derivative of v+ inside the wall [76]:

dg2
dx

=
−2v22 cos

2(ξ)

v21 + v22 + v2+

d

dx

(
v+

v2 cos(ξ)

)
. (3.50)

This implies that a variation in the Goldstone mode g2(x) will lead to a non-vanishing
v+(x). In this case, even if ξ(x) = 0, it is possible to get a negative contribution to the
energy of the wall by having a non vanishing v+(0), in contrast to the previous case where
the dependence was on sin(ξ). A non-zero derivative for g2(x) leads to the creation of
a stable v+(x) condensate inside the wall, if the energy E of such a solution is smaller
than the energy of the standard domain wall solution. Figure 3.11 shows the numerical
solutions to the equations of motion using Dirichlet (Fig.3.11a) and von Neumann boundary
conditions (Fig.3.11b). Like in the previous cases, we take the boundaries of the Goldstone
mode to be: g2(−∞) = 0 and g2(+∞) = π/2. For the initial guess, we use a hyperbolic
tangent interpolating between both values. We observe a non-vanishing value for v+(x)
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(a) Dirichlet boundary conditions.
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(b) von Neumann boundary conditions.

Figure 3.11: Numerical solutions of the DW equations of motion in the case of variation of g2. (a)
Using Dirichlet boundary conditions and (b) using von Neumann boundary conditions.
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Figure 3.12: Verification of the relation (3.50) for Dirichlet and von Neumann boundary condi-
tions. "RHS" denotes the right hand side of the equation (3.50), namely the quantity
(−2v22 cos

2(ξ))/(v21 + v22 + v2+)
d
dx

( v+
v2 cos(ξ)

)
. Using Dirichlet boundary conditions, the

relation is not fulfilled because the used boundaries at ±∞ give an unstable solution.
Using von Neumann boundary condition, we get a perfect agreement.

inside the wall. The U(1)em is therefore broken inside the wall leading to exotic phenomena
such as charge breaking processes and the photon getting a mass [75, 132].

When using Dirichlet boundary conditions we observe again that the spatial derivative of
g2(x) outside the domain wall is not vanishing. We can see in Figure 3.12a that the relation
(3.50) is not exactly fulfilled using these boundary conditions, reflecting the instability of
the solution with Dirichlet boundary conditions. Using von Neumann boundary conditions,
we can verify that the non-vanishing v+(x) inside the wall is stable and that the change in
g2(x) between the two regions gets enhanced, leading to a slightly higher value for v+(0)
inside the wall compared with the solution using Dirichlet boundary conditions.

We also verified that the relation (3.50) is satisfied for this choice of boundary condition
(see Figure 3.12b). Even though the choice of von Neumann boundary condition is the
correct choice to get stable solutions for our system of differential equations, we can still
use Dirichlet boundary condition in order to get an approximate solution for a fixed choice
of g2 between the two regions, as this type of boundary condition fixes those values.
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(a) Stable charge violating kink (PP I).
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(b) Unstable charge violating kink (PP II).

Figure 3.13: Rescaled energies of kink solutions with standard and asymmetric boundary conditions.
(a) The charged condensate v+(x) is stable because the energy of the charge violating
kink solution is lower than the energy of the kink with vanishing v+(x). (b) The charge
violating kink solution is unstable because the energy is higher than the solution with
v+(x) = 0. In this case the kink solution will decay into the standard solution. Such
a solution was found for the parameter point II (cf. 3.32). This can be understood
by noting that the effective mass term of M+ for that particular parameter point is
positive everywhere (see Figure 3.5b).

In the case of von Neumann boundary conditions, when choosing different initial values
for g2 on the boundaries, we always end up with a solution for g2(x) where the difference
∆(g2)stable = g2(+∞) − g2(−∞) is fixed. This means that when starting with random
∆(g2)initial between [0, 2π], ∆(g2) always relaxes to a fixed value ∆(g2)stable that only
depends on the mass parameters and tan(β). For the used parameter point (3.42), the
v+(x) condensate is stable and the vacuum configuration has a lower energy than the
standard domain wall solution (see Figure 3.13a). There are also other parameter points
where the contributions from the derivative dg2/dx and a non-vanishing condensate v+(x)
leads to a higher energy than the standard domain wall solution with v+(x) = 0. In such a
case, the Goldstone mode g2 dynamically changes its values until it becomes equal in both
domains leading to the charge breaking domain wall to decay into the standard domain
wall solution as the latter has a lower energy (see Figure 3.13b).

For the case when g2(x) decreases when going from the region v2 < 0 to the region v2 > 0,
for example, when taking g2(−∞) = π/2 and g2(+∞) = 0 (see Figure 3.14), we obtain a
negative value for the condensate v+(x). This behavior can be explained by the relation
3.50 where the sign of d

dx(v+/v2) is positive which can only be obtained for a negatively
signed v+(x) condensate inside the wall as v2(x) goes from −v2 at −∞ to v2 at +∞.
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Figure 3.14: Numerical solution of the DW equations of motion in the case of variation of g2. In
contrast to the previous case, the derivative dg2/dx is negative, leading to a negative
condensate v+(x) inside the wall.

3.4.4 Variation of g3

We now discuss the case when we allow g3 to have different values on the boundaries. The
matrix U(x) (2.35) is given by:

U(x) = cos
(
g3(x)/2

)
I2 + i sin

(
g3(x)/2

)
σ3 =

(
e(ig3(x)/2) 0

0 e(−ig3(x)/2)

)
. (3.51)

The energy functional E (3.13) simplifies to:
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1

2

(
dv1
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+ V2HDM . (3.52)

The change in g3(x) will lead to a change in the phase ξ(x) as was derived in [76] using
the equation of motion for g3(x):

dg3
dx

=
2v22

v21 + v22 + v2+

dξ

dx
. (3.53)

Figure 3.15a shows the solution for asymmetric boundary conditions in g3 using Dirichlet
boundary conditions. We observe that the phase ξ(x) is non zero inside the wall, which
means that the vacuum inside the domain wall is CP-violating. Using Dirichlet boundary
conditions, we see again that the derivative of the Goldstone mode g3(x) is non zero at the
boundaries: such a CP-breaking solution has a higher energy than the standard domain
wall solution (see Figure 3.16) and is therefore unstable for this parameter point. The
gradient flow method gives us a solution where the Goldstone field tries to change its
value at the boundaries, reflecting the instability of the solution. However, if we use von
Neumann boundary conditions, the Goldstone mode g3 dynamically changes its value at
the boundaries in such a way that, after some time, both regions end up having the same
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(a) Dirichlet boundary conditions.
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(b) von Neumann boundary conditions.

Figure 3.15: Solutions of the equations of motion for the case when g3 is different on both domains.
(a) Using Dirichlet boundary conditions. (b) Using von Neumann boundary conditions.
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Figure 3.16: Evolution of the rescaled energy of the vacuum configuration using different boundary
conditions. Notice that the energy using Dirichlet boundary conditions is higher than
the energy using von Neumann boundary conditions. The class of domain walls that
are CP-violating due to a variation in g3 decays after some time to the class of standard
domain walls.

g3 (see Figure 3.15b). The CP-breaking solution at the wall will then decay and we end up
with a standard domain wall. Nevertheless, the Dirichlet boundary condition provides a
good approximation for determining the amount of CP-violation inside the wall just after
the formation of the defect.

3.5 variation of the hypercharge angle θ and the
goldstone modes

We now turn to the case where we allow the hypercharge angle θ of U(1)Y to vary on both
domains alongside the Goldstone modes of SU(2)L. In this case, we expect the formation
of domain walls which are both CP and charge violating at the same time. We first discuss
the case when the hypercharge angle θ and one single Goldstone mode gi are different on
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both domains. We then discuss the case of pure SU(2)L and finish with considering the
general case when U(x) is a general electroweak symmetry matrix of SU(2)L ×U(1)Y . We
provide the numerical solutions for the equations of motion using both Dirichlet and von
Neumann boundary conditions.

3.5.1 Variation of θ and g1

We start by considering the case when the vacua of the two domains have different
hypercharge angle θ and Goldstone mode g1. The matrix U(x) (2.35) simplifies to:

U(x) = eiθ(x)

(
cos
(
g1(x)/2

)
i sin

(
g1(x)/2

)
i sin

(
g1(x)/2

)
cos
(
g1(x)/2

) ) . (3.54)

Such a case is relevant to see whether a solution ξ(x) ̸= 0 inside the wall will lead to a
non-vanishing v+(x) condensate on the wall. The energy functional (3.13) is given by:
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]
+ V2HDM . (3.55)

Figure 3.17a shows the numerical results for the vacuum configuration using Dirichlet
boundary conditions. We take the values of the hypercharge angle θ and Goldstone mode
g1 to be: θ(−∞) = 0, g1(−∞) = 0 for the vacuum Φ− on the left and θ(+∞) = π/2,
g1(+∞) = π/2 for the vacuum Φ+ on the right. In this case we find a very small non-
vanishing condensate v+(x) inside the wall. We also observe that the CP-violating phase
ξ(x) is slightly enhanced inside the wall compared to the case where only the hypercharge
varies across the wall (cf. Figure 3.7a). However, this CP and charge breaking solution is
unstable as it has a higher energy than the standard domain wall solution which leads the
CP-violating phase ξ(x) and the electric charge violating vacuum v+(x) to decay. When
using von Neumann boundary conditions (see Figure 3.18), both the hypercharge angle θ
and the Goldstone mode g1 evolve to become equal on both domains and the solution does
not exhibit CP or electric charge violating vacua.
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(a) Dirichlet boundary conditions.
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Figure 3.17: (a) Solutions of the equations of motion when varying both the hypercharge angle θ and
Goldstone mode g1 using Dirichlet boundary conditions. We observe a non-vanishing
CP-violating phase ξ(x) inside the domain wall. The derivatives of θ and g1 at ±∞ are
non-zero, reflecting the instability of the solution. (b) Zoom on the solution for v+(x).
The solution is electric charge violating as v+ varies inside the domain wall.
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Figure 3.18: Solutions for the equations of motion using von Neumann Boundary conditions. Notice
that the hypercharge angle and the Goldstone mode g1 are the same on both domains
and the domain wall solution does not exhibit CP or electric charge violation.

3.5.2 Variation of θ and g2

We now vary both θ and g2. The matrix U(x) (2.35) simplifies to:

U(x) = eiθ(x)

(
cos
(
g2(x)/2

)
sin
(
g2(x)/2

)
− sin

(
g2(x)/2

)
cos
(
g2(x)/2

)) . (3.56)

In this case one would expect that we get both effects of charge and CP-violation inside
the wall. The energy functional (3.13) is:
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Figure 3.19 shows the solution for both Dirichlet (in Figure 3.19a) and von Neumann
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(a) Dirichlet boundary conditions.
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(b) von Neumann boundary conditions.

Figure 3.19: Solutions of the equations of motion in the case of different values of the hypercharge
angle θ and Goldstone mode g2 in the two regions. (a) Using Dirichlet boundary
conditions. (b) Using von Neumann boundary conditions. Note that when using the
von Neumann boundary condition, the CP-violating effect vanishes after some time as
the hypercharge angle θ(x) becomes constant for all x, while the condensate v+(x) ̸= 0
stays stable.

(Figure 3.19b) boundary conditions. The initial boundary conditions for θ and g2 (θ(−∞) =
g2(−∞) = 0, θ(+∞) = g2(+∞) = π/2) lead to a charge and CP-breaking vacuum inside
the wall when using Dirichlet boundary conditions. However, such a solution is energetically
unstable since a non-zero ξ(x) gives a positive contribution to the energy of the domain wall.
We also observe a non-zero derivative for θ(x) and g2(x) at the boundaries. This behavior
reflects the instability of this solution, since the values of θ and g2 on both domains try to
change in order to further minimize the energy of the vacuum configuration.
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(a) Evolution of ξ(x).
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Figure 3.20: (a) Evolution of ξ(x) at different iteration times with T = 3 × 105, notice that the
CP-violating phase ξ(x) decreases with time. (b) Evolution of θ(x) at different iteration
times with T = 3× 105, notice that θ(x) tend to dynamically change to become the
same value on both domains.
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Using von Neumann boundary conditions (Figure 3.19b), where the boundaries can change
dynamically to minimize the energy of the vacuum configuration, the derivatives of θ(x)
and g2(x) at the boundaries vanish. One notices that for the solution which minimizes
the energy the most, the charge breaking vacuum inside the wall gets enhanced while the
CP-breaking phase ξ(x) inside the wall will start decreasing and eventually vanishes once
the values for θ on both domains become equal to each other (as is shown in Figures 3.20b
and 3.20a). This vacuum configuration is stable, since its dimensionless energy Ê = 0.476
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Figure 3.21: Evolution of the v+(x) condensate inside the wall. (a) Starting from a standard domain
wall solution. (b) After some time the standard domain wall solution decays into a
stable charge-breaking solution without CP-violation.
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(a) Dirichlet boundary conditions.
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(b) von Neumann boundary conditions.

Figure 3.22: (a) Solutions of the equations of motion for PP II (3.32) using Dirichlet boundary
conditions, this field configuration is unstable. (b) Solutions using von Neumann
boundary conditions. The CP and charge-breaking vacua inside the wall vanish and
we end with a standard domain wall solution.

is lower than the standard domain wall’s energy Êstandard = 0.507. This means that the
standard domain wall solution will decay into the charge-breaking domain wall solution as
can be seen in Figure 3.21. The Goldstone mode g2 changes dynamically from a vacuum
configuration where it is equal on both domains to a lower energy configuration with
different values for g2 on both domains. The hypercharge angle θ, however, stays zero on
both domains and a CP-violating phase ξ(x) does not develop inside the wall, as such a
solution would otherwise give a positive contribution to the energy of the defect.



66 domain walls in the 2hdm

For other parameter points, such as PP II (3.32), we observe the opposite behavior: the
energy of the vacuum configuration for the CP and charge-breaking wall is higher than the
energy of the standard wall. Such a scenario is shown in Figure 3.22 using Dirichlet (Figure
3.22a) and von Neumann (Figure 3.22b) boundary conditions. The Dirichlet solution
exhibits a CP and charge-breaking vacuum which is energetically unstable. Using von
Neumann boundary conditions, the values of v+(0) and ξ(x) decrease until they vanish
(both regions end up with the same value for g2 and θ) and we recover the standard domain
wall solution.

3.5.3 Variation of θ and g3

We now discuss the variation of θ alongside g3. In this case one expects only a CP-violating
solution and no charge violation inside the wall. The matrix U(x) (2.35) simplifies to:

U(x) = eiθ(x)

(
eig3(x)/2 0

0 e−ig3(x)/2

)
. (3.58)

The energy functional (3.13) is given by:

E =
1

2

(
dv1
dx
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+
1

2

(
dv2
dx

)2

+
1

2

(
dv+
dx
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+
1

2
v22(x)

(
dξ

dx

)2

+ v22(x)
dθ

dx

dξ

dx

+
1

2

[
v21(x) + v22(x) + v2+(x)

](
dθ

dx

)2

+
1

8

(
dg3
dx

)2[
v21(x) + v22(x) + v2+(x)

]
− 1

2

dg3
dx

[
dθ

dx

(
v21(x) + v22(x)− v2+(x)

)
+ v22(x)

dξ

dx

]
+ V2HDM . (3.59)

Using the equations of motion for θ(x) and g3(x), we can derive an equation that describes
how the change in θ(x) and g3(x) causes a change in ξ(x):

dθ

dx
− 1

2

dg3
dx

= − v22
v21 + v22

dξ

dx
. (3.60)

From such a relation, one expects the possibility of having an interference in the contribu-
tions of θ and g3.
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(a) Dirichlet boundary conditions.
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(b) von Neumann boundary conditions.

Figure 3.23: Solutions of the equations of motion in the case when θ and g3 are different on both
domains. (a) Using Dirichlet boundary conditions. (b) Using von Neumann boundary
conditions. The CP-violating phase ξ(x) is zero even though the Goldstone mode g3
and hypercharge angle θ are different on both domains. This behavior is explained by
the relation (3.60).
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Figure 3.23 shows the numerical solution to the equations of motion. The initial condition
were taken to be θ(−∞) = g3(−∞) = 0, θ(+∞) = g3(+∞) = π/2. In this case, we again
see that the Dirichlet boundary condition leads to a localized CP-violating phase ξ(x)
inside the wall and that the derivatives of the Goldstone modes do not vanish at the
boundaries. This vacuum field configuration is energetically unstable and decays to the
standard vacuum configuration with ξ(x) = 0 for all x. In contrast to the results from the
variation of θ and g3 individually, the minimum vacuum configuration gets two different
values for θ and g3 in the two domains (see Figure 3.23b).
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Figure 3.24: Values of the derivative of θ(x) and g3(x) using von Neumann boundary condition.
The numerical solution satisfies (3.60) leading to the vanishing of the phase ξ(x) inside
the wall even though the Goldstone modes are different on both sides of the wall.

Using (3.60), one sees that if the derivative of θ(x) is equal to half the derivative of g3(x),
one obtains dξ/dx = 0. This clarifies why the values of ξ(x) are vanishingly small despite
the different Goldstone modes on both domains (see Figure 3.23b). This condition can be
verified in Figure 3.24, where we see that both expressions agree numerically.

3.5.4 Variation of SU(2)L Goldstone modes g1, g2 and g3

In this special case the vacua in both regions are related by an SU(2)L gauge transformation
and we ignore the effects coming from the change in the hypercharge angle θ. The matrix
U(x) (2.35) simplifies to:

U(x) =

(
cos
(
G(x)

)
+ ig3(x) sin

(
G(x)

)
/G(x)

(
g2(x) + ig1(x)

)
sin
(
G(x)

)
/G(x)

−
(
g2(x)− ig1(x)

)
sin
(
G(x)

)
/G(x) cos

(
G(x)

)
− ig3(x) sin

(
G(x)

)
/G(x)

)
.

(3.61)

The energy functional (3.13) is given by:
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+ sin(ξ)
dξ

dx
I2(x)

]
+

1

2
v2+(x)I0(x) + V2HDM , (3.62)

where the functions I0,1,2,3(x) are defined in equations (3.14)-(3.17). The numerical results

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x mh

0.4

0.2

0.0

0.2

0.4

v1
v2

v +

(a) Physical vacuum parameters.
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(b) CP-Violating phase ξ(x).

Figure 3.25: Vacuum field configuration for domains with different SU(2)L modes g1, g2 and g3
using von Neumann boundary conditions. (a) The solution for the vacuum parameters
vi(x) and ξ(x), we find that the DW is charge breaking (v+(0) ̸= 0). (b) Zoom on the
CP-violating phase ξ(x), we see that for this particular case ξ(x) is asymmetric.
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Figure 3.26: Goldstone modes g1(x), g2(x) and g3(x). Notice that the profiles of the Goldstone
modes are asymmetric inside the wall. This suggests an interference between the
different Goldstone modes.

using von Neumann boundary conditions are shown in Figure 3.25. The initial profile of
the Goldstone modes were chosen to be gi(−∞) = 0 and gi(+∞) = π/2, (where i denotes
1,2,3) with a tangent hyperbolic function interpolating both boundaries. The solution has
a stable charge-violating vacuum v+(x) inside the domain wall, as well as a small and
stable CP-violating phase ξ(x). In contrast to the previous results, ξ(x) in this particular
case is asymmetric. This behavior could be attributed to the fact that the profiles of the
Goldstone modes gi(x) are not symmetrical (see Figure 3.26). There is also an interference
between the Goldstone modes as some have negative derivatives while the others have
a positive derivative inside the wall. Note that, in this case, the Goldstone modes keep
having a different value on both domains.
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3.6 general domain wall solution

We finish the discussion of domain wall solutions in the 2HDM by considering the case
with a general matrix U(x) (2.35):

U(x) = eiθ(x)exp
(
i
gi(x)

2
σi

)
, (3.63)

We recall the general formula for the energy functional 3.13:
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+ V2HDM , (3.64)

Here, the Goldstone modes gi and hypercharge angle θ are chosen randomly and can be
different on both domains.

Field v1 v2 v+ ξ θ g1 g2 g3

Boundary at +∞ positive positive 0 0 π/2 0 π/6 0
Boundary at −∞ positive negative 0 0 0 0 π/6 0

Table 3.1: Asymptotic values of the fields at the boundaries. The initial profile for θ(x) is taken to
be a tangent hyperbolic function interpolating between 0 at −∞ and π/2 at +∞. We
use von Neumann boundary condition to get the lowest energy solution.

Table 3.1 shows an example of the initial asymptotic values for the fields at ±∞ that we
use for the numerical calculations with θ having a tangent hyperbolic profile interpolating
the values on the two boundaries. We use von Neumann boundary conditions to get the
numerical solution of the 8 equations of motions describing the profiles of the fields.

Figure 3.27 shows the numerical solution of the vacuum configuration for this choice of
hypercharge angle θ and Goldstone modes. The solution features a stable charge-violation
as well as a small but stable CP-violating phase ξ(x) inside the wall. In contrast to all
previous cases, the behavior of the hypercharge angle θ(x) and the Goldstone modes g1(x)
and g3(x) is non-trivial inside the wall. We also note that, even though we started with
the Goldstone modes gi being the same on both domains, the lowest energy solution has
different values for gi(±∞).
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(a) Higgs vacuum parameters.
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(b) CP-violating phase ξ.
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(d) Goldstone mode g1.
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(e) Goldstone mode g2.
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(f) Goldstone mode g3.

Figure 3.27: Domain wall solution for the vacuum parameters in the case when the hypercharge
angle θ and the Goldstone modes gi can change on both regions. (a) and (b) Vacuum
parameters of the DW solution. The solution using von Neumann boundary conditions,
exhibits a stable charge breaking condensate v+ and also a small but stable CP-violating
phase ξ(x). (c), (d), (e) and (f) represent the DW solution for the hypercharge angle
θ and Goldstone modes gi, respectively. One notices the non-trivial behavior of the
hypercharge angle and Goldstone modes g1(x) and g3(x).
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3.7 dependence of the kink solution on the parame-
ter points of the 2hdm

In this subsection, we briefly describe the dependence of the kink solution on the masses
of the Higgs bosons of the 2HDM as well as tan(β). For all the discussed parameters,
we use the alignment limit: α = β. In this work we do not take into account experimen-
tal constraints on the 2HDM. Our choice of the parameter points discussed is done in
order to give an overview of the different properties that arise for domain walls in the 2HDM.

We start by analyzing the effects of the parameter points on the standard domain wall
solution. We therefore take the matrix U(x) to be the identity. First, we consider varying
the mass of the CP-even Higgs mH with values between 80 GeV and 580 GeV, while the
other parameters are fixed to:

mA = 200 GeV, mC = 200 GeV, tan(β) = 0.85. (3.65)

The profiles of the vacuum expectation values v1(x) and v2(x) for different mH are shown
in Figures 3.28a and 3.28b. We find that for higher mH , the value of v1 inside the domain
wall (v1(x = 0)) becomes smaller. This is explained by the behavior of the effective mass
M1(x) inside the domain wall (see 3.34) as shown in Figure 3.29a.
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(a) Dependence of v1 on mH .
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Figure 3.28: Dependence of the vacuum expectation values v1(x) and v2(x) and effective masses
M1(x) and M+(x) on the variation of the CP-even Higgs mass mH . The masses of
the other Higgs scalars are fixed to be 200 GeV and tan(β) = 0.85. (a) Profile of v1(x)
inside the wall, notice that for small mH , v1(x) becomes bigger inside the wall. (b)
Profile of v2(x), we observe that a higher mH leads to a bigger width for the wall.

In order to understand the behavior of v1(x) inside the wall and its dependence on the
mass parameter mH , we consider a potential of the form:

V (v1(x), v2(x)) =
m22

2
v22(x) +

λ2
8
v42(x) +M1(x)v

2
1(x) +

λ1
8
v41(x). (3.66)
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Figure 3.29: (a) Effective mass M1(x) for v1(x), notice that for higher masses, this value becomes
less negative inside the wall leading to a smaller v1(0). (b) Effective mass M+(x)
for v+(x). We observe that outside the wall, this quantity does not depend on mH .
However higher mH lead to a smaller and even negative values M+(0) inside the DW.

Outside the wall and for parameter points with masses mH > 80 GeV, the effective mass
term M1 is smaller (more negative) than inside the domain wall. Therefore, the minimum
vDW
1 = v1(x = 0) of the potential V0(v1, v2 = 0) inside the wall (depicted in blue) is

smaller than v∗1, the minimum of the potential V (v1, v2 = v∗2) outside the wall (depicted
in orange) as is shown in Figure 3.30a. Note that for mH = 80 GeV, the opposite effect
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Figure 3.30: Comparison of the potential for v1 inside (blue) and outside (orange) the domain wall.
(a) For mH = 250 GeV and (b) For mH = 80 GeV. The other mass parameters are
fixed to mA = mC = 200 GeV. The potential V̂0(v̂1, 0) is shifted to have the same
height as V̂ (v̂1, v̂2).

occurs and v1(x = 0) inside the wall is bigger than outside of it (see Figure 3.30b). This
is due to the fact that for mH = 80 GeV, M1(x) becomes more negative inside the wall
than outside of it (see Figure 3.29a). This leads the minimum vDW

1 = v1(x = 0) of the
potential V0(v1, v2 = 0) inside the wall to be bigger than v∗1 , the minimum of the potential
V (v1, v2 = v∗2) outside the wall as is shown in Figure 3.30b. Notice also that the effective
mass term M1(x = 0) is the same for all mass parameters. This is because the parameter
m11 does not depend on mH . As for the dependence of the kink solution for v2(x) on mH ,
we observe that increasing the mass leads to a thinner profile for the kink as can be seen
in Figure 3.28b. Figure 3.29b shows M+(x) for different mH . A negative effective mass
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M+(0) inside the wall and therefore the possibility of having a charged condensate v+(x)
localized on the wall is possible for higher masses of H.
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(b) Dependence of v2 on mC .
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Figure 3.31: Dependence of the vacuum expectation values v1(x) (a) and v2(x) (b) and effective
masses M+(x) (c) and M1(x) (d) on the change of the charged Higgs mass. These
results are obtained by fixing mH,A = 200 GeV and tan(β) = 0.85. The profiles of the
vacua v1(x) and v2(x) are independent on mC (see (a) and (b)). The variation of mC

has an impact on the effective mass for v+(x) and lower values of mC can lead to
negative M+(0) inside the wall.

We now vary the mass of the charged Higgs mC while keeping all other masses fixed to
200 GeV and tan(β) = 0.85. We do not observe any change in the profiles of the vacua
v1(x) and v2(x) (see Figure 3.31a and 3.31b). However, we observe a change in the effective
mass M+(x) for different masses mC and it becomes smaller inside the wall as shown
in Figure 3.31c. However, the value M̂+(x = 0) is only negative for small masses of the
charged Higgs. Therefore, if the mass mH of the CP-even Higgs is small, it is possible to
have a stable charged condensate in the wall only if the charged Higgs masses mC is very
low.
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Figure 3.32: Dependence of the effective masses M1(x) and M+(x) on the variation of the CP-odd
Higgs mass. We find that the properties of the domain wall solution are independent of
mA. Dependence of ξ(x) on mA and mH . We use the Dirichlet boundary condition in
order to get an estimate for the CP-violating phase ξ(x) at the formation stage of the
DW. (a) We fix the masses mH = 800 GeV, mC = 400 GeV and tan(β) = 0.85. We
observe that ξ(x) gets smaller with higher mA. (b) We fix the masses mA = 500 GeV,
mC = 400 GeV and tan(β) = 0.85. We observe that ξ(x) gets bigger with higher mH .

To investigate the dependence of the domain wall properties on the mass mA of the CP-odd
Higgs we vary mA from 80 GeV to 580 GeV. We keep the masses of the other scalars to
be 200 GeV and tan(β) = 0.85. The results for M1(x) and M+(x) are shown in Figures
3.32b and 3.32a. We do not observe a variation in the properties of the domain walls
for the vacuum parameters v1(x), v2(x) and v+(x). We also study the effect of mA and
mH on the CP-violating phase ξ(x). In this case we study the scenario when the two
domains have different hypercharge angle θ and use the Dirichlet boundary condition with
θ(−∞) = 0 and θ(+∞) = π/2. We first fix the masses mH = 800 GeV, mC = 400 GeV
and tan(β) = 0.85 and vary mA. The results are shown in Figure 3.32c and we observe
that increasing mA leads to a smaller phase ξ(x) inside the DW. However, when fixing
mA = 500 GeV and varying mH , we observe the opposite behavior: increasing mH leads
to a higher CP-violating phase ξ(x) (see Figure 3.32d).
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Figure 3.33: Dependence of M̂+(0) inside the domain wall on the masses mC and mH for different
values of tan(β). Negative values lead to the possibility of generating a charged vacuum
inside the wall.

Finally, we plot in Figure 3.33 the dependence of M̂+(0) on both mH and mC for several
values of tan(β). M̂+(0) does not depend on the mass of the CP-odd Higgs (as seen in
Figure 3.32a), therefore we fixed mA = 300 GeV. For low tan(β) = 0.85, a large number of
parameter points have positive M̂+(0) (see Figure 3.33a). This leads the scalar potential
inside the wall V0(v1, v+) to have its minimum at v+(0) = 0 (see Figure 3.5d). This means
that any charge violating solution for those domain walls is unstable. In order to get a
stable v+(x) condensate inside the wall for this low value of tan(β), we need to choose high
values for mH . As we increase tan(β), the fraction of parameter points with a negative
M̂+(0) increases (as is shown in Figure 3.33b) and a charged condensate inside the domain
wall can be stable (in case of different g2 Goldstone mode on both domains). For high
values of tan(β), most parameter points have a negative M̂+(0) as can be seen in Figures
3.33d and 3.33c.

In the case that v+ develops a stable condensate inside the wall, the masses mH and mC

can have a sizable effect on the maximum value v+(x = 0) of such a condensate. In order
to study this, we solved the equations of motion for the case when the vacua have different
values of g2 using von Neumann boundary conditions. This was done for two scenarios:

• To study the effect of mH , we fix mC = 400 GeV, tan(β) = 0.85 and vary mH

between 80 GeV and 1100 GeV. The results are shown in Figure 3.34a. We observe
that the v+ condensate is unstable for mH < 580 GeV. The value of v+(0) inside the
wall increases with the mass mH .
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• To study the effect of of mC , we fix mH = 800 GeV, tan(β) = 0.85 and vary mC

between 80 GeV and 1100 GeV. The results are shown in Figure 3.34b. In this case,
v+(0) gets smaller with heavier mC . For mC > 680GeV the condensate becomes
unstable.

200 400 600 800 1000
mH

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175 v + (0)

(a) Dependence on mH .
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Figure 3.34: Dependence of the charged condensate v̂+(0) on the mass parameters of the model. (a)
We vary mH and fix mC = 400 GeV. Notice that there is no stable v+ condensate for
mH < 580 GeV. This is due to the effective mass term M+(0) > 0 up to mH ≈ 500 GeV
as can be seen in Figure 3.33a. (b) We vary mC and fix mH = 800 GeV. We find that
for mC > 680GeV, the condensate v+ vanishes. This can be explained by the fact that
M+(0) turns positive for masses mC around 600 GeV (see Figure 3.33a).

3.8 non-topological kink solutions in the 2hdm

We discussed in the previous sections the possibility of having topological kink solutions
that interpolate between vacua belonging to disconnected sectors of the vacuum manifold.
We now briefly discuss the scenario when both vacua at x → ±∞ belong to the same
sector (in the case of the 2HDM, the same 3-sphere M+ or M−) as shown in Figure 3.35.
We consider the following two degenerate vacua:

Φ− =

{
1√
2

(
0

−v∗1

)
,
1√
2

(
0

−v∗2

)}
, Φ+ =

{
1√
2

(
0

v∗1

)
,
1√
2

(
0

v∗2

)}
. (3.67)

One can obtain Φ− by performing a U(1)Y transformation on Φ+, such as for example,
θ− = π and θ+ = 0 . Therefore, both these vacua belong to the same sector M+. A kink
solution for such a vacuum configuration is not topologically protected against a variation in
the fields and therefore any such solution should, in principle, be unstable [133]. We obtain
a kink solution (see Figure 3.36a) for this configuration using von Neumann boundary
conditions. However, as can be seen in Figure 3.36b, the solution is metastable and decays
after some time to the lower energy solution of a homogeneous vacuum configuration. This
field configuration is not topologically protected and therefore will be unstable against
small field variations. This behavior is better illustrated using the linear parametrization
of the Higgs doublets:

Φ1 =
1√
2

(
0

ϕ1 + iϕ2

)
, Φ2 =

1√
2

(
0

ϕ3 + iϕ4

)
. (3.68)
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Figure 3.35: Non-topological domain wall vacuum configuration. The vacua on both regions in
space lie on the same sector of the vacuum manifold.
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Figure 3.36: (a) Non-topological kink solution for the vacuum configuration at iteration time t0.
(b) Energy evolution of the non-topological kink solution.

The variables of the non-linear parametrization are then obtained using:

v1 =
√
ϕ21 + ϕ22, v2 =

√
ϕ23 + ϕ24, θ = arg(ϕ1 + iϕ2), ξ = arg(ϕ3 + iϕ4)− θ.

(3.69)

At t0, the non-topological domain wall solution interpolates between the vacuum given by
(ϕ1, ϕ2, ϕ3, ϕ4) = (−v1, 0,−v2, 0) at x = −∞ and the vacuum (ϕ1, ϕ2, ϕ3, ϕ4) = (v1, 0, v2, 0)
at x = +∞. At this point, the vacua of the doublets have a vanishingly small imaginary
component ϕ2 and ϕ4. With time, the imaginary components ϕ2 and ϕ4 acquire a sizable
vacuum expectation value inside the wall (see Figure 3.37d), which shifts the field configu-
ration at x = 0 from v1 = 0 = v2 to a non-vanishing value causing an instability to the
non-topological DW solution as can be seen in Figure 3.37a. This instability grows further,
and the new vacuum configuration generated inside the wall propagates into both domains
until the homogeneous, trivial vacuum configuration is fulfilled. During the decay of the
non-topological domain wall to the trivial vacuum configuration, the profile of θ(x) varies
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Figure 3.37: Evolution of the non-topological DW solution at different iteration times t0 = 2 · 105,
t1 = 2.9 · 105, t2 = 3 · 105 and tf = 7 · 105 as shown in Figure 3.36b.

from a step-function profile to a profile interpolating smoothly between θ− and θ+ and in
the end, we get the same value for θ on both domains.

3.9 discussion

We investigated in this chapter the different classes of domain walls arising in the 2HDM
after EWSB. We extended the work done in [76] and included the variation of all the
Goldstone modes of the SU(2)L × U(1)Y symmetry. In contrast to the standard domain
wall solution, where only a discrete symmetry such as the Z2 gets spontaneously broken,
we saw that the breaking of abelian and non-abelian symmetries alongside the discrete
symmetry leads to the formation of kink solutions with non-trivial effects in the core of
the defect, such as CP and charge-violating field configurations. We have found that these
different classes of kink solutions can be unstable and decay to the standard kink solution
if their energy is higher than the energy of the standard kink solution (where no CP and
electric-charge effects occur inside the wall). We demonstrated this behavior using von
Neumann boundary conditions, where the Goldstone modes θ and gi can change their
boundary values dynamically in order to minimize the energy of the field configuration.
The choice of von Neumann boundary conditions in these types of differential equations
is necessary, since it allows higher energy domain wall scalar field configurations to relax
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to lower energy domain wall configurations. When discussing the simplified cases (where
only the hypercharge or/and a single SU(2)L Goldstone mode gi were allowed to change
on both domains), we found that for the CP-breaking kink solution, the CP-violating
phase ξ(x) inside the defect decays after some time and we recover again the standard
kink solutions. Nevertheless, such CP-violating effects can be quite sizable at the time of
the domain walls formation, as demonstrated when using Dirichlet boundary conditions
instead of von Neumann conditions. In the case of electric charge-breaking kink solutions,
we showed that the stability of the field configuration depends on the sign of the effective
mass M+ of v+ inside the wall.

These electric charge-violating domain wall solutions demonstrate the possibility that the
symmetry group inside the defect can be smaller than the one outside the wall, since
U(1)em is broken inside the wall. This behavior can be explained in the framework of clash-
of-symmetries mechanism. Since group elements of SU(2)L corresponding to the generator
T 2 do not commute with elements of U(1)em, both symmetry groups at the asymptotic
domains have symmetry groups H and H ′ that are differently embedded in SU(2)L×U(1)Y
leading to the symmetry group inside the wall being the identity H ∩H ′ = I.

When investigating the general case, where all the equations of motion of the Goldstone
modes are taken into account, we saw in particular that these modes had a non-trivial
profile inside the wall, in contrast to a kink-like profile that was found in all other simplified
cases. We also found that the CP-violating phase ξ(x) in that case is stable even though it
had a small value.

In the next chapter, we discuss the interaction of SM fermions with these different types
of domain walls and demonstrate the exotic effects of CP and/or electric charge breaking
scattering off the walls.





4 SM FERM IONS SCAT T ER ING OF F DOMA IN WAL LS
IN THE 2HDM

This chapter is based on the following publication:

[1] M. Y. Sassi and G. Moortgat-Pick, Domain walls in the Two-Higgs-Doublet Model
and their charge and CP-violating interactions with Standard Model fermions,
JHEP 04 (2024) 101, [2309.12398]

The existence of different types of domain walls in the 2HDM can have profound implications
for the physics of the early universe. For instance, it was shown in [132] that photons
with small frequencies, such as in the CMB, will scatter off superconducting domain walls
with a large reflection coefficient. In [131], it was shown that domain walls in Grand
Unified Theories arising after the spontaneous breaking of SU(5)× Z2, interact with the
Higgs scalar field. This interaction induces exotic scattering phenomena of fermions off the
domain wall via the Yukawa sector, such as neutrinos being reflected as down-type quarks,
with the electric and color charges being absorbed by gauge fields living on the wall [131].
In this chapter, we study the interactions of SM fermions with the 2HDM domain wall
solutions found in the previous chapter. This interaction occurs via the Yukawa sector
and we consider the scattering solution for the Dirac equation of SM fermions within a
domain wall background, which can be CP or electric charge violating. We leave the case of
fermion zero modes and bound states solutions [13] on the walls, which might be relevant
for baryogenesis and other interesting scenarios such as gravitational waves signals [134] in
the framework of current-carrying walls, for future work.

The solution for the scattering of fermions off standard domain walls generated by the
spontaneous breaking of a discrete symmetry can be found in [131, 135]. One finds that
for thin walls, the rate of reflection and transmission of fermions off the walls is:

R(p) =
m2

m2 + p2
, T (p) =

p2

m2 + p2
(4.1)

In this chapter, we want to get analytical solutions for the Dirac equations within the
background of different types of domain walls arising in the 2HDM. As the functions
describing the spatial dependence of these vacuum configurations are non-trivial, it is
appropriate to use a thin-wall approximation to simplify the form of the different vacuum
configurations inside the wall. The thin-wall approximation is valid for the scattering of
fermions that have wavelengths larger than the width of the wall, which is typical for
particles with low momenta, such as the ones that populate the universe after EWSB. As
another simplification, we do not consider the back-reaction effects of fermions on the
vacuum configurations in our study, which could change the spatial kink profile of the
vacuum configuration [136]. This chapter is based on the published work in [1].
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4.1 thin-wall approximation

In this section, we briefly discuss the validity of this approximation for domain walls in the
2HDM as well as describe the field configuration in this approximation.

From the results of the last chapter, we can infer a typical width of the domain walls to
be approximately Lw ≈ 4/mh. The typical wavelength λf of a particle in the thermal
plasma in the early universe is proportional to 2π/T , where T is the temperature of the
thermal plasma. The thin wall approximation is valid when Lw < λf corresponding to
particle momenta smaller than 200 GeV, which is sufficient to describe the momenta of
most particles existing in the thermal plasma after EWSB.

Taking a thin-wall profile for the domain walls, we can approximate the kink solution of
v2(x) to be a step-function:

v2(x) = −ṽ2Θ(x) + ṽ2Θ(−x). (4.2)

As for the field configurations v1(x), v+(x), and Im(v2(x)e
iξ(x)), it is possible to approximate

them with a delta distribution:

v1(x) = v1 + ṽ1δ(x), (4.3)
v+(x) = ṽ+δ(x), (4.4)

ṽ2(x) = Im(v2(x)e
iξ(x)) = ṽ2δ(x− a) + ṽ2δ(x+ a), (4.5)

where ṽ1,2,+ are dimensionless parameters defined as ṽ1,2,+ =
v1,2,+
GeV

. The parameter ṽ2(x)
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Figure 4.1: Profile of ṽ2(x) using Dirichlet boundary conditions. When using von Neumann boundary
conditions, ṽ2 gets smaller with time as the CP-violating phase ξ(x) inside the wall
vanishes.

describes the profile of the imaginary part of the CP-violating mass term that appears
in the Dirac equations (see Figure 4.1). We saw in the last chapter that the phase ξ(x)
vanishes (in the simplified cases) when using von Neumann boundary conditions (see e.g
sections [3.4.1] and [3.4.4]). However, the vanishing of ξ(x) inside the wall only occurs
after the dynamical evolution of the Goldstone modes or hypercharge angle θ inside the
different domains, making them equal to each other. Therefore, the CP-violating phase
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should still be substantial at the moment of the formation of the domain wall network and
the study of CP-violating scattering of fermions off the wall is relevant for that period,
when considering the simplified cases. However, as shown in sections [3.5.4] and [3.6], for
domains rotated by a relative SU(2)L or an electroweak symmetry SU(2)L × UY (1) the
CP-violating phase ξ(x) of the kink solution is small but stable. For simplicity, we consider
the simplified cases in this work and leave the scattering of fermions off general domain
walls in the 2HDM for future investigations.

4.2 cp-violating interactions of fermions with the
domain walls

We start with the case of fermions scattering off CP-violating domain walls induced by a
difference in the hypercharge angle θ. Recall that in this case, the Higgs doublets are given
by:

Φ1(x) =
U(x)√

2

(
0

v1(x)

)
, Φ2(x) =

U(x)√
2

(
0

v2(x)e
iξ(x)

)
, (4.6)

where the matrix U(x) is given by:

U(x) = eiθ(x)I2. (4.7)

We can remove this matrix U(x) from the Yukawa sector by performing a gauge transfor-
mation, leading to a pure gauge term for the hypercharge gauge field Bµ:

Φ1(x)
UY (1)−−−−→ U−1(x)Φ1(x) = Φ̃1(x), (4.8)

Φ2(x)
UY (1)−−−−→ U−1(x)Φ2(x) = Φ̃2(x), (4.9)

Bµ
UY (1)−−−−→ i

g
U(x)∂µ(U

−1(x)) =
1

g
∂µθ(x). (4.10)

The Yukawa Lagrangian for the up-type quarks in the type-2 2HDM is then given by:

LFermion = iūL
(
/∂ + iYu,L/∂θ(x)

)
uL + iūR

(
/∂ + iYu,R /∂θ(x)

)
uR − yuv2(x)e

iξ(x)ūLuR

− yuv2(x)e
−iξ(x)ūRuL, (4.11)

where Yu,L and Yu,R are the hypercharges of the left and right-handed up-type quarks
respectively, yu is the Yukawa coupling of the Higgs doublet to the up-type quark and uL,
uR are the left-handed and right-handed components of the up-type quark respectively.
One can then derive the Dirac equation for up-type quarks:(

i/∂ − /∂θ(x)(Yu,LPL + Yu,RPR)−mR(x)− imI(x)γ5

)
u(x) = 0, (4.12)

where PL and PR are the left and right-handed projector operators and mR(x), mI(x) are
the real and imaginary parts of the fermion mass, respectively:

mu(x) = yuv2(x)e
iξ(x), (4.13)

mR(x) = yuv2(x) cos(ξ(x)) ≈ yuv2(x), (4.14)
mI(x) = yuv2(x) sin(ξ(x)) ≈ yuv2(x)ξ(x) = yuṽ2(x), (4.15)
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where we apply a small angle approximation for the CP-violating angle ξ(x), which is
motivated by the simulations of the domain walls in the previous chapter. After multiplying
the left hand side of (4.12) with iγ1, we can rearrange this equation and get:

∂xu(x, t) := Ĝ(x, t)u(x, t)

=

[
γ1γ0∂t − i∂xθ(x)(YLPL + YRPR) + iγ1mR(x)− γ1γ5mI(x)

]
u(x, t).

(4.16)

The solution to this equation can be calculated in an analogous way to the case of fermion
scattering off a CP-violating bubble wall [137]:

u(x, t) = P̂ exp
(∫ x

x0

dx′Ĝ(x′)

)
u(x0, t), (4.17)

where P̂ is an ordering operator. We consider the case of a plane wave solution of a
quark scattering off the domain wall from the left (x < 0), that can either be reflected or
transmitted to the other region (x > 0):

u(t, x) = e−iEt+ipuxuinc + e−iEt−ipuxuref for x < 0, (4.18)

u(t, x) = e−iEt+ipuxutra for x > 0, (4.19)

where E denotes the energy of the incoming quark and uinc, uref and utra are 4-component
spinors describing respectively the incident, reflected and transmitted fermion.

uinc =


u1i

u2i

u3i

u4i

 , uref =


u1m

u2m

u3m

u4m

 , utra =


u1p

u2p

u3p

u4p

 . (4.20)

By plugging this ansatz into the Dirac equation (4.12) for the regions far away from the
wall (where the field configurations v1(x) and v2(x) take on their asymptotic values and
ξ(x) = θ(x) = 0), we can derive relations between the different components of the spinors:

u4m =
−pu

E +mu
u1m, u3m =

−pu
E +mu

u2m, u4p =
pu

E −mu
u1p, u3p =

pu
E −mu

u2p.

(4.21)

The matching condition of the solution u(x) at x = 0 is calculated using (4.17):

u(+ϵ, t) = P̂ exp
(∫ +ϵ

−ϵ
dx′Ĝ(x′)

)
u(−ϵ, t), (4.22)

where ϵ is a small number taken to ϵ→ 0. The final result is given by:

u(+ϵ) = exp
(
−i∆θ

2
(YL + YR)

)[
cosh(a) I4 −

sinh(a)
a

Â

]
u(−ϵ), (4.23)

where:

Â =


0 2ṽ2 i∆θ(YR−YL)

2 0

2ṽ2 0 0 i∆θ(YR−YL)
2 ,

i∆θ(YR−YL)
2 0 0 −2ṽ2

0 i∆θ(YR−YL)
2 −2ṽ2 0

 , (4.24)
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a =

√
4ṽ22 −

∆θ2(YR − YL)2

4
. (4.25)

Note that the spinor u(x) is not continuous at x = 0. This is due to the delta-functions in
ṽ2(x) (see (4.5) and Figure 4.1). It is a known issue that the presence of delta distributions in
the Dirac equation leads to a discontinuity of the spinor’s wave function [138, 139, 140, 141]
(in contrast to the discontinuity in the derivative of the wave function when dealing with
delta-distribution potentials in the Schrödinger equation). In the limit of a standard domain
wall, a→ 0 and Â is a zero matrix, therefore, we recover the continuity condition of the
quark’s spinor at x = 0 given by u(−ϵ) = u(+ϵ).
The Dirac spinor of an incident particle moving in the positive x-direction is given by:

uinc(x, t) = e(−iEt+ipx)


√
E +mu

0

0
p√

E +mu

 . (4.26)

Using (4.26) alongside the equations (4.21) and (4.23), we can find the solution for the
spinor components:

u1p = e−ib1

(
1√

E +mu

)
4a2p2E cosh(a)

4a2E2 cosh2(a)− (2a1mu + ib2p)2 sinh2(a)
, (4.27)

u2p = e−ib1

(
1

4a
√
E +mu

)
−8a2p2(2a1mu + ib2p) sinh(a)

4a2E2 cosh2(a)− (2a1mu + ib2p)2 sinh2(a)
, (4.28)

u1m =

(
2E
√
E +mu

)
−2a2mu cosh2(a) + a1(2a1mu + ib2p) sinh2(a)

4a2E2 cosh2(a)− (2a1mu + ib2p)2 sinh2(a)
, (4.29)

u2m =
−ap

√
E +mu(2a1p− ib2mu) sinh(2a)

4a2E2 cosh2(a)− (2a1mu + ib2p)2 sinh2(a)
, (4.30)

with:

a1 = 2ṽ2, b1 = (YL + YR)
∆θ

2
, b2 = (YR − YL)∆θ. (4.31)

In order to get the transmission and reflection coefficients of particles scattering off the
wall, we need to calculate the fermion currents on both regions:

Jinc = u†incγ0γ1uinc, (4.32)

Jtra = u†traγ0γ1utra, (4.33)

Jref = u†refγ0γ1uref . (4.34)

Using the expression (4.26) for the incident spinor, we can derive the transmission and
reflection coefficients for the up-type quark scattering off the wall:

R̂(p) = −
Jref

Jinc
=

1

E +mu

(
|u1m|2 + |u2m|2

)
, (4.35)

T̂(p) =
Jtra

Jinc
=

1

E −mu

(
|u1p|2 + |u2p|2

)
. (4.36)
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Figure 4.2: General results for the reflection R̂ and transmission T̂ coefficients of a top quark
scattering off the CP-violating wall (solid lines). We also plot the reflection R and
transmission coefficient T for the standard case (no CP-violation, dashed lines). (a)
Reflection and transmission with a1 = 2.1 and b2 = 1. (b) Reflection and transmission
with a1 = 2.1 and b2 = 3.

In Figure 4.2, we show a comparison between the reflection R̂ and transmission T̂ coefficients
of quarks scattering off the CP-violating DW and the coefficients R and T for quarks
scattering off standard CP-conserving DW for two different cases. The first case depicted
in Figure 4.2a shows the results for a1 = 2.1 and b2 = 1, while for the second case (shown
in Figure 4.2b) the parameters are: a1 = 2.1 and b2 = 3. We see that in both cases,
the reflection and transmission coefficients differ a lot from the standard reflection and
transmission coefficients. In particular, we see that the reflection coefficient for incident
particles with higher momenta grows and stays the dominant process. Since the analytical
results for the general case are quite complicated, we consider some special cases in order
to understand the physical interpretation of the solution. We first consider the case where
b2 is small compared to a1. In such a scenario, the reflection and transmission coefficients
simplify to:

R̂(p) =
4m2

uE
2 + p4( cosh2(2a1)− 1)

[(E2 +m2
u) + p2 cosh(2a1)]2

(4.37)

T̂(p) =
2p2(p2 + (E2 +m2) cosh(2a1))
[(E2 +m2

u) + p2 cosh(2a1)]2
(4.38)

As shown in Figure 4.3a, in this case and for high values of a1, the reflection coefficient
increases with momentum. This seems counterintuitive as particles reacting with a potential
barrier should have a higher probability of crossing when they have higher energies. One
can also deduce from (4.37) that for big values of CP-violation (a1 is big), the reflection
coefficient approaches 1 for all momenta, as the terms proportional to cosh2(2a1) will be
dominant.
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Figure 4.3: Results for the reflection (a) and transmission (b) coefficients for the case when the
numerical value of the Yukawa contribution a1 is much higher than the numerical value
from the gauge field contribution b2. Notice that for higher values of CP-violation a1,
the reflection coefficient increases with momentum while T̂ decreases.

For the opposite case b2 >> 2ṽ2, the transmission and reflection coefficients are:

R̂(p) =
2m2

ucos2( b22 )
m2

u + 2p2 +m2
ucos(b2)

, (4.39)

T̂(p) =
2p2

m2
u + 2p2 +m2

ucos(b2)
. (4.40)

0 50 100 150 200
Momentum (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
fle

ct
io

n

b2 =
b2 = 95

100

b2 = 3
4

b2 = 2
b2 = 4
Standard

(a) R̂ as a function of b2 and momenta

0 50 100 150 200
Momentum (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
an

sm
iss

io
n

b2 =
b2 = 95

100

b2 = 3
4

b2 = 2

b2 = 4
Standard

(b) T̂ as a function of b2 and momenta

Figure 4.4: Results for the reflection (a) and transmission (b) coefficients for the case when the
numerical value of the gauge contribution b2 is much higher than the numerical value of
a1. These rates will oscillate depending on b2. The standard reflection and transmission
rates (black lines) refer to the scattering off standard domain walls (4.1).

For this case, the reflection and transmission coefficients will oscillate with a b2 dependence
(see Figure 4.4). Notice that for b2 = π all particles will be transmitted, irrespective of
their incoming momentum.
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Figure 4.5: Variation of the reflection and transmission coefficient for a top quark as a function
of b2 for different fixed momenta: (a) p = 10 GeV and (b) p = 60 GeV . The standard
reflection and transmission rates refer to the scattering off standard domain walls (4.1).

In Figure 4.5, we show the oscillatory behavior of the reflection and transmission coefficients
for this special case as a function of b2 for different momenta of the incident particle. We
see that for small momenta (see Figure 4.5a), the deviations of the scattering rates from
those of the standard DW are only relevant for b2 in the vicinity of b2 = π. In contrast
with particles with higher momenta (see Figure 4.5b).

We now calculate the rate of reflection and transmission of the left handed (LH) and
right handed (RH) components, derived from the currents of left and right-handed parti-
cles:

J L
tra = ūtraγ1PLutra, (4.41)

J R
tra = ūtraγ1PRutra, (4.42)

J L
ref = ūrefγ1PLuref , (4.43)

J R
ref = ūrefγ1PRuref . (4.44)

leading to the transmission and reflection coefficients:

TL =
J L
tra

Jinc
=

1

4p

[
2d

(
|u1p|2 + |u2p|2

)
− (1 + d2)

(
u∗1pu2p + u1pu

∗
2p

)]
, (4.45)

TR =
J R
tra

Jinc
=

1

4p

[
2d

(
|u1p|2 + |u2p|2

)
+ (1 + d2)

(
u∗1pu2p + u1pu

∗
2p

)]
, (4.46)

RL = −
J L
ref

Jinc
=

1

4p

[
2g

(
|u1m|2 + |u2m|2

)
− (1 + g2)

(
u∗1mu2m + u1mu

∗
2m

)]
, (4.47)

RR = −
J R
ref

Jinc
=

1

4p

[
2g

(
|u1m|2 + |u2m|2

)
+ (1 + g2)

(
u∗1mu2m + u1mu

∗
2m

)]
, (4.48)

where:

d =
p

E −mu
, g =

p

E +mu
. (4.49)

From equations (4.27)-(4.30) it is clear that for a1 = 0 (as in the case of the standard
domain wall), (u∗1pu2p) and (u∗1mu2m) are purely imaginary expressions leading to the
vanishing of the second terms in the equations for TL,R and RL,R. In such a case the
reflection and transmission coefficient do not depend on the chirality of the particle.
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Because analytical expressions for the general case are lengthy and complicated, we give
for simplicity the analytical expressions in the limit when b2 → 0 :

TL =
p(p3 + p(2m2 + p2) cosh(2a) + 2m(m2 + p2) sinh(2a))

(2m2 + p2 + p2 cosh(2a))2
, (4.50)

TR =
p(p3 + p(2m2 + p2) cosh(2a)− 2m(m2 + p2) sinh(2a))

(2m2 + p2 + p2 cosh(2a))2
, (4.51)

RR =
4m2E2 − 8mpE2 cosh(a) sinh(a) + p4 sinh2(2a)

2(2m2 + p2 + p2 cosh(2a))2)
, (4.52)

RL =
4m2E2 + 8mpE2 cosh(a) sinh(a) + p4 sinh2(2a)

2(2m2 + p2 + p2 cosh(2a))2
. (4.53)
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Figure 4.6: (a) Left and right-handed reflection and transmission currents normalized to the incident
current. We take a1 = 0.5. (b) The difference ∆LR between the reflection of left and
right-handed particles as a function of the CP-violating rate a1.

Note that for small momenta, these rates can become negative (see Figure 4.6a for a1 = 0.5).
This is not an issue as these rates are not describing probability amplitudes for the particles
and only R̂ and T̂ should be, in principle, positive numbers between 0 and 1. This behavior
might also be related to the phenomenon of Klein-Paradox [142] where negative transmission
coefficients for electrons scattering off an electric potential were obtained. In that case, these
negative transmission coefficients were interpreted as the formation of an electron-positron
pair at the wall.

In case a1 → 0, we do not observe CP-violation in the scattering rates of the particle. In
order to get a rate for the CP-violation, we calculate the difference ∆LR = RL − RR . The
results are shown in Figure 4.6b. We find from (4.50)-(4.53), that when the momentum
of the incoming particles gets larger, the left and right-handed rates should converge to
the same value. This explains the behavior of ∆LR becoming smaller at higher momenta.
Since we get different rates for RL and RR, the motion of the wall will generate an axial
asymmetry in front of it.
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4.3 charge violating interactions of fermions with
the domain walls

We now discuss the case when the domain wall exhibits a non-negligible value for v+ inside
its core. In this case, the vacuum inside the domain wall is charge-breaking and the Yukawa
sector inside the wall now includes couplings between fermions with different charges.

In the following, we consider the case of a Yukawa sector in the type-2 2HDM. The relevant
terms are:

LY ukawa = −yuQ̄LΦ
c
2uR − ydQ̄LΦ1dR − ylL̄LΦ1eR + h.c, (4.54)

where Φc
2 = iσ2Φ2. yu, yd, and yl denote the Yukawa couplings for the up-type quarks,

down-type quarks, and leptons, respectively. QL and LL denote the left-handed quark and
lepton doublets charged under SUL(2), and finally uR, dR, and eR denote the right-handed
up-type, down-type quark and leptons, which are singlets under SUL(2). We take the
simplification that only one of the Goldstone modes changes between the two domains. In
this case, it is the second generator of SU(2) which leads to charge-violating effects inside
the domain wall and the CP-violating phase ξ(x) vanishes (see 3.11b). The Higgs doublets
are:

Φ1(x) =
U(x)√

2

(
0

v1(x)

)
, Φ2(x) =

U(x)√
2

(
v+(x)

v2(x)

)
. (4.55)

The matrix U(x) in this case is given by:

U(x) =

 cos
(
g2(x)
2

)
sin
(
g2(x)
2

)
− sin

(
g2(x)
2

)
cos
(
g2(x)
2

) . (4.56)

We can remove this matrix from the Yukawa sector by performing a gauge transformation,
leading to a pure gauge term for the gauge field Wµ

2 confined inside the wall:

Φ1(x)
SU(2)−−−−→ U−1(x)Φ1(x) = Φ̃1(x), (4.57)

Φ2(x)
SU(2)−−−−→ U−1(x)Φ2(x) = Φ̃2(x), (4.58)

Wµ
2

σ2
2

SU(2)−−−−→ i

g
U(x)∂µ(U−1(x)), (4.59)

Writing the Lagrangian in terms of the individual quark fields, we get:

LF = iū/∂u+ id̄/∂d+
1

2

[
−iūL

(
/∂xg2(x)

)
dL + id̄L

(
/∂xg2(x)

)
uL

]
− yuv2(x)ūu− ydv1(x)d̄d+ yuv+(x)(d̄LuR + ūRdL). (4.60)

We then derive the Dirac equation for the up and down-type quarks:

i/∂d+
i

2

(
/∂xg2(x)

)
PLu− ydv1(x)d+ yuv+(x)PRu = 0, (4.61)

i/∂u− i

2

(
/∂xg2(x)

)
PLd− yuv2(x)u+ yuv+(x)PLd = 0. (4.62)

To solve this system of equations, we first rewrite it in the matrix form introduced in the
previous chapter, cf.(4.16):(

i/∂ − yuv2(x) −Ĝ2(x)

−Ĝ1(x) i/∂ − ydv1(x)

)(
u

d

)
= 0, (4.63)
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where:

Ĝ1(x) = − i

2

(
/∂xg2(x)

)
PL − yuv+(x)PR, (4.64)

Ĝ2(x) =
i

2

(
/∂xg2(x)

)
PL − yuv+(x)PL. (4.65)

Notice that all terms that mix the up and down-type quark only include the left-handed
component of the down-type quark. This will induce a chiral asymmetry as we will discuss
later. We consider the scattering of an incident up-type quark off the domain wall. In
the standard case, when v+ = 0, the particle can be either reflected or transmitted as an
up-type quark. However, due to the mixing between the up and down-type quarks in the
Dirac equations (4.61) and (4.62), there is now the possibility that the incoming up-type
quark gets also reflected or transmitted as a down-type quark after its interaction with the
domain wall, inducing a charge violating interaction and the difference in charge between
the up and down-type quark will be absorbed by the gauge bosons living inside the wall
[13, 131]. Using a plane wave solution for the spinor fields,

u(t, x) = e−iEtuinc(x) + e−iEturef (x) for x < 0, (4.66)

u(t, x) = e−iEtutra(x) for x > 0, (4.67)

d(t, x) = e−iEtdref (x) for x < 0, (4.68)

d(t, x) = e−iEtdtra(x) for x > 0, (4.69)

and inserting these expressions in (4.63), we get:

∂x

(
u(x)

d(x)

)
= Ĝ(x)

(
u(x)

d(x)

)
=

(
iEγ1γ0 + iγ1mu(x) iγ1Ĝ2(x)

iγ1Ĝ1(x) iEγ1γ0 + iγ1md(x)

)(
u(x)

d(x)

)
,

(4.70)

which can be solved by taking:(
u(x)

d(x)

)
= P̂ exp

(∫ x

x0

dx′ Ĝ(x′)

)(
u(x0)

d(x0)

)
, (4.71)

where P̂ is, as in the previous chapter, taken to be an ordering operator.
We now derive the expressions for the spinors in the different regions x < 0 and x > 0.
Far from the wall, the Dirac equations are:

i/∂d− ydv1d = 0, (4.72)
i/∂u− yuv2u = 0. (4.73)

In the region x < 0, we parameterize (4.72) and (4.73) by:

iγ0(−iE)


d1m

d2m

d3m

d4m

+ iγ1(−ipd)


d1m

d2m

d3m

d4m

− ydv1


d1m

d2m

d3m

d4m

 = 0, (4.74)

iγ0(−iE)


u1m

u2m

u3m

u4m

+ iγ1(−ipu)


u1m

u2m

u3m

u4m

− yuv2


u1m

u2m

u3m

u4m

 = 0, (4.75)
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leading to the following relations between the components of the spinors:

u4m =
−pu

E +mu
u1m, u3m =

−pu
E +mu

u2m, (4.76)

d4m =
−pd

E +md
d1m, d3m =

−pu
E +mu

u2m, (4.77)

where pu denotes the momentum of the incident up-type quark and pd denotes the
momentum of the produced down-type quark.
For the region x > 0, we get:

i/∂d− ydv1d = 0, (4.78)
i/∂u+ yuv2u = 0, (4.79)

leading to:

u4p =
pu

E −mu
u1p, u3p =

pu
E −mu

u2p, (4.80)

d4p =
pd

E +md
d1p, d3p =

pd
E +md

d2p. (4.81)

We obtain for the complete spinor:

u(−ϵ) =


u1i + u1m

u2i + u2m

u3i − pu
E+mu

u2m

u4i − pu
E+mu

u1m

 , d(−ϵ) =


d1m

d2m

− pd
E+md

d2m

− pd
E+md

d1m

 , (4.82)

u(+ϵ) =


u1p

u2p
pu

E−mu
u2p

pu
E−mu

u1p

 , d(+ϵ) =


d1p

d2p
pd

E+md
d2p

pd
E+md

d1p

 . (4.83)

The results have to be matched at the boundary x = 0, using (4.71) where x = +ϵ and
x0 = −ϵ:(

u(+ϵ)

d(+ϵ)

)
= P̂ exp

(∫ +ϵ

−ϵ
dx Ĝ(x)

)(
u(−ϵ)
d(−ϵ)

)
. (4.84)

In order to get the matching conditions at x = 0 for the Dirac spinors, we need to calculate
the exponential matrix of the integral of Ĝ(x). For simplicity, we took v1(x) = v1 as we
want to isolate the effects of a non-zero v+. We obtain the final result:(

u(+ϵ)

d(+ϵ)

)
=

(
M1 M2

M3 M4

)(
u(−ϵ)
d(−ϵ)

)
, (4.85)

where:

M1 = cosh2

(
1

2

√
k2 −m2

)
I2 +

(
k2 +m2

k2 −m2

)
sinh2

(
1

2

√
k2 −m2

)
(4.86)

+ i
km

k2 −m2

[
−1 + cosh

(√
k2 −m2

)]
γ5γ1,
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M2 =
m√

k2 −m2
sinh

(√
k2 −m2

)
PL − ik√

k2 −m2
sinh

(√
k2 −m2

)
γ1PL, (4.87)

M3 =− m√
k2 −m2

sinh
(√

k2 −m2

)
PL − ik√

k2 −m2
sinh

(√
k2 −m2

)
γ1PR,

(4.88)

M4 = cosh2

(
1

2

√
k2 −m2

)
I2 − sinh2

(
1

2

√
k2 −m2

)
γ5, (4.89)

with:

m =
∆g2
2
, k = yuṽ+. (4.90)

We therefore have 16 variables (4 for each spinor at x > 0 and x < 0) and 16 equations (8
from (4.85) and 8 from (4.76), (4.77), (4.80) and (4.81)). The solution of such a system
of equation gives very lengthy analytical results. After finding the solution for the spinor
components, we calculate the transmission and reflection coefficients of the up and down-
type quarks corresponding to the scattering of an initial up-type quark scattering off the
domain wall:

Ru(pu) = −J ref
u

Jinc
= −

u†refγ0γ1uref

2pu
, Rd(pu) = −

J ref
d

Jinc
= −

d†refγ0γ1dref

2pu
, (4.91)

Tu(pu) = −J tra
u

Jinc
=
u†traγ0γ1utra

2pu
, Td(pu) =

J tra
d

Jinc
=
d†traγ0γ1dtra

2pu
, (4.92)

where we used a plane wave solution for the incident up-type quark moving in the positive
x-direction:

uinc(x, t) = e(−iEt+ipx)


√
E +mu

0

0
pu√

E +mu

 , (4.93)

Since the analytical formulas in the general case are very complicated and lengthy, we
present the results in Figure 4.7a for the numerical values of m = 0.5, k = 10 and a mass
mu = 172.76 GeV for the top quark and md = 4.2 GeV for the bottom quark. We observe
that the reflection and transmission probabilities as a bottom quark are non-zero. In Figure
4.7b, we can see that as we increase the momentum of the incoming particle, the rate of
top quarks being transformed into bottom quarks after the interaction with the domain
wall becomes higher, while the probability of the quark staying a top quark decreases.

We also verify that all the reflected or transmitted bottom quarks are left-handed, as it can
be already deduced from equations (4.61) and (4.62), where the coupling to the bottom
quark includes only the left handed projector on the spinor. As can be seen in Figure 4.8
the rate of reflection and transmission coefficient as right-handed bottom quarks is zero.
Concerning the chirality of the top quark after the interaction with the wall, we observe a
difference in the transmission rate between the left-handed and right-handed components
of the top quark, while the reflected top quarks do not show a chiral asymmetry (see
Figures 4.8c and 4.8d). Therefore the scattering of top quarks on the charge breaking wall
will generate a chiral asymmetry in front as well as behind the wall.
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Figure 4.7: (a) Reflection and transmission coefficients for top and bottom quarks after the inter-
action of an initial top quark with the charge-breaking domain wall. Note that the
sum of the reflection and transmission coefficients for both particles adds up to 1. The
parameters used are k = 10 and m = 0.5 (b) Rate of top quarks being transformed into
bottom quarks or kept as top quarks. Notice that, for high momenta, the process of
reflection a bottom quark has the highest probability. The amount of produced bottom
quarks gets higher with increasing k.
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Figure 4.8: Chiralities of the reflected and transmitted particles: (a) Reflection coefficients for LH
and RH bottom quarks. (b) Transmission coefficients for LH and RH bottom quarks.
Notice that all the produced bottom quarks are left handed. (c) Reflection coefficients
for LH and RH top quarks. (d) Transmission coefficients for LH and RH top quarks.
We observe that the reflection rate as a top quark does not depend on the chirality of
the particle, while the transmission for the top quark is chirality-dependent.



4.3 charge violating interactions of fermions with the domain walls 95

For the case k >> m and m → 0 corresponding to having the numerical value of v+(0)
inside the wall much bigger than the change in g2 between the two domains, the formulas
become considerably simpler. Using (4.26) for the spinor components of the incident top
quark we get:

Ru(pu) =
(d2u − 1)2g2d(u1i)

2

pudu
[
gd(1 + d2u) + du(1 + g2d) tanh

2(k2 )
]2 , (4.94)

Rd(pu) =
gd
[
1 + 4dugd + g2d + d2u(1 + g2d)

]
u21i sinh

2(k)

pu
[
(du − gd)(−1 + dugd) + (du + gd)(1 + dugd) cosh(k)

]2 , (4.95)

Tu(pu) =
2du
[
−4(g2d − 1)2cosh(k) + (1 + 6g2d + g2d)(3 + cosh(2k))

]
(u1i)

2

pu
[
4du(1 + g2d) sinh

2(k2 ) + 4gd(1 + d2u) cosh
2(k2 )

]2 , (4.96)

Td(pu) =
4gd
[
1− 4dugd + g2d + d2u(1 + g2d)

]
(u1i)

2 sinh2(k)

pu
[
4du(1 + g2d) sinh

2(k2 ) + 4gd(1 + d2u) cosh
2(k2 )

]2 , (4.97)

where:

gu =
pu

E +mu
, gd =

pd
E +md

, du =
pu

E −mu
, dd =

pd
E −md

, u21i = E +mu.

The results for the transmission Tt,b and reflection Rt,b coefficients as top or bottom quarks
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Figure 4.9: (a) Transmission rate as bottom quarks for different values of k and m = 0. (b) Reflection
rate as a bottom quark for different values of k and m = 0. Notice that the reflection
rate as a bottom quark is in this case higher than the transmission rate even for high
momenta of the incoming incident top quark. We also observe that the rates are almost
the same for k > 5.

are shown in Figures 4.9a and 4.9b. An interesting feature is that the rate of reflection
as a bottom quark is higher than the rate of transmission as a bottom quark, even for
higher momenta. Recall that we observed the same behavior in the previous section [4.2]
when the numerical value of the imaginary mass ṽ2 is dominant and the reflection rate for
particles becomes higher than the transmission rate.

We now look at the case when the charge-breaking term k = yuv+ is small compared with
the change in the Goldstone modes between the two domains (m > k), cf.(4.90). The
boundary condition at x = 0 is given by:

M1 =cos2
(
1

2

√
m2 − k2

)
I2 +

(
k2 +m2

m2 − k2

)
sin2

(
1

2

√
m2 − k2

)
(4.98)

+ i
2km

m2 − k2
sinh2

(√
k2 −m2

)
γ5γ1,
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γ1PL, (4.99)
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γ1PR, (4.100)

M4 =cos2
(
1

2

√
m2 − k2

)
I2 + sin2(

1

2

√
m2 − k2)γ5. (4.101)

Figure 4.10a gives the results for numerical values m = 1.5, k = 0.1, mu = 172.76 GeV and
md = 4.2 GeV.
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Figure 4.10: (a) Reflection and transmission coefficients for top and bottom quarks in the case of
m > k. (b) The rate of top quarks being transformed into bottom quarks or kept as
top quarks. (c) and (d) Transmission and reflection coefficients for different values of
m.

One can see that, in this case, the transmission coefficient as a bottom quark gets higher
as we increase the momentum of the incoming particle. The difference between this case
and the one where the Yukawa term is dominant (k >> m) is that there is no chirality
flipping of the particle in the coupling between the gauge fields living inside the wall and
the fermions (see (4.60)).
For m >> k, one can get rather simple analytical expressions:

Ru(pu) =
g2d(1− g2u)

2u21i
pugu[gd(du + gu) + (1 + g2d) tan

2(m2 )]
2
, (4.102)

Rd(pu) =
gd[1− 4gdgu + g2u + g2d(1 + g2u)]u

2
1i tan

2(m2 )

pu[gd(du + gu) + (1 + g2d) tan
2(m2 )]

2
, (4.103)
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Tu(pu) =
−4 cos(m)(−1 + g2d)

2 + (1 + 6g2d + g4d)(3 + cos(2m))

8 cos4(m2 )[gd(du + gu) + (1 + g2d) tan
2(m2 )]

2
, (4.104)

Td(pu) =
gdu

2
1i[1 + 4gdgu + g2u + g2d(1 + g2u)] tan

2(m2 )

pu[gd(du + gu) + (1 + g2d) tan
2(m2 )]

2
. (4.105)

In this case the rate of reflection and transmission coefficients will oscillate with increasing
m. Such a behavior is shown in Figures 4.10c and 4.10d. In order to study this oscillating
behavior in more detail, we fix the momentum of the incoming top quark and vary m
between [0, 2π]. The results are shown in Figure 4.11. We observe that the rate of conversion
of top quarks into bottom quarks also vanishes for m = π.
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Figure 4.11: Reflection and transmission coefficients as a bottom quark for an incident top quark
with momentum p = 40 GeV as a function of m, cf.(4.90).

We now consider the scattering of the second-generation quarks off the wall. We take, as an
example, the scattering of charm quarks off the domain wall. In this case, the electric charge
breaking parameter k gets smaller due to the small Yukawa coupling of the charm quark to
the Higgs doublet. Figure 4.12 shows the results for k > m. In this case, we observe that
the electric charge breaking effect is very small and most charm quarks scatter off the wall
as charm quarks, even for high values of v+ = 65 GeV corresponding to k = 0.43. However,
when we consider the case m > k, the charge breaking effect can be quite high depending
on the value of m, as is shown in Figure 4.13. This demonstrates the importance of the
gauge field configurations localized on the wall in these scattering processes.

Finally, we also mention that anti up-type quarks scattering off the domain walls will lead
to exactly the same rate of transformation into anti down-type quarks as the rate of the
up-type quarks transformed into down-type quarks. Therefore, the interaction of fermions
with these types of domain walls might only lead to local electric charge violation and does
not lead to a net generation of electric charge in the early universe, which is a strongly
constrained phenomenon [143]. However, as we saw in the previous chapter, the domain
walls solution in the 2HDM can exhibit simultaneously both an electric charge and a CP
violation inside the wall. This will lead to the generation of a non-zero CP-violating phase
ξ inside the domain wall. This phase, along with a non-zero v+ inside the wall, might lead
to the generation of a net electric charge in the early universe, as particles and antiparticles
will interact with the wall at different rates. In such a case, the domain wall network has
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Figure 4.12: (a) Reflection and transmission coefficients for second generation quarks. We take
k = 0.28, m = 0.1, mc = 1.27 GeV and ms = 0.095 GeV corresponding to charm
(denoted c) and strange quarks (denoted s). Note that the conversion rate to strange
quarks is very small even for v+ = 65 GeV corresponding to k = 0.43. (b) Ratio of
charm and strange quarks after the scattering for different values of k.
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Figure 4.13: (a) Reflection and transmission coefficients for second generation quarks. We take
k = 0.43, m = 1.5, mc = 1.27 GeV and ms = 0.095 GeV corresponding to charm
(denoted c) and strange quarks (denoted s). (b) Fraction of particles after scattering
with the wall for different values of m.

to annihilate very quickly in order to avoid generating an electric charge asymmetry higher
than the observed cosmological constraints.

Another possible problem with these types of domain walls is that they could efficiently
deplete the number of up-type quarks into down-type quarks. For example, bottom and
anti-bottom quarks could be generated from the interaction of top and anti-top quarks
with the wall. Due to the large difference in the masses between these two flavors, the
inverse reaction would be suppressed, and we would end up with a surplus of bottom and
anti-bottom quarks well before the usual annihilation time of top quarks in the thermal
plasma. This phenomenon might then have consequences on Big Bang Nucleosynthesis
(BBN).
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4.4 discussion

We investigated in this chapter some of the possible interactions of SM fermions with
the different domain wall solutions in the 2HDM. We focused on the case of the top and
bottom quarks, since the interaction of the fermions with the wall via the Yukawa coupling
would be negligible for the other scenarios, with the exception when the pure gauge fields
localized on the wall are sizable.

We showed, in particular, that the scattering of top quarks off the CP-violating domain
wall leads to a chiral asymmetry since the reflection and transmission coefficients for
left and right-handed particles are different. Such a chiral asymmetry could be useful for
mechanisms generating a matter-antimatter asymmetry [106, 107, 108], since it circumvents
the stringent constraints on conventional sources for CP-violation put by electron dipole
moment experiments [116]. One particular issue that was found is related to negative
reflection coefficients for some values of the momentum, which might be associated with a
Klein Paradox related to the chiral fermions. This issue warrants an in-depth investigation,
possibly in the framework of quantum field theory, since it might be related to particle
production and annihilation on the wall.

We also demonstrated the peculiar effect of electric charge breaking scattering, where
top quarks can be transformed into bottom quarks. This effect has the same rate for
antifermions, and we therefore do not expect that it leads to a net electric charge produced
in the early universe1. One interesting scenario is the inclusion of right-handed sterile
neutrinos in the theory with masses in the keV scale. Since inside the electric charge-
breaking wall, a non-zero coupling between these sterile neutrinos and the other SM leptons
arises (which vanishes outside the wall for v+ = 0), the scattering of these SM leptons off
the wall could be a new mechanism for the production of sterile neutrinos in the early
universe. This scenario is left for future investigations.

Another interesting possible future direction is to investigate how the domain walls could
affect the number density of particles in the early universe, which might lead to a different
early universe cosmology, including consequences on baryogenesis and BBN.

Having discussed the different domain wall solutions in the 2HDM and some aspects of SM
particle scatterings off these walls, we study in the next chapters the domain wall solutions
in the N2HDM and showcase possible new mechanisms for baryogenesis and vacuum decays
induced by these domain walls.

1 When taking the assumption that the number of fermions and antifermions is equal, otherwise this effect
could turn a matter-antimatter asymmetry into an electric charge asymmetry.





5 E L ECTROWEAK SYMMETRY RESTORAT ION V I A
DOMA IN WAL LS

This chapter is based on the following work, accepted for publication in
JHEP:

[2] M. Y. Sassi and G. Moortgat-Pick, Electroweak Symmetry Restoration in the
N2HDM via Domain Walls, [2407.14468]

5.1 motivation and general idea

As we saw in the previous chapter, domain wall field configurations in the 2HDM can be
CP-violating, which leads to a chiral asymmetry when fermions scatter off the wall. For
domain wall solutions in the 2HDM, v2(x = 0) = 0 inside the wall. However, v1(x) also
changes its value considerably inside and in the vicinity of the wall. This was explained by
the fact that the effective mass term M1(x) = m2

11/2+(λ3+λ4+λ5)v
2
2(x)/4 inside the wall

reduces to M1(0) = m2
11/2, which can be considerably less negative than its value outside

the wall and therefore, makes v1(0) smaller. Several mechanisms that generate a matter-
antimatter asymmetry in the early universe rely on sphaleron processes, which break B+L
(the sum of baryon and lepton numbers). After electroweak symmetry breaking, the Higgs
doublet(s) acquire a vacuum expectation values which leads to the exponential suppression
of the sphaleron rate Γs ∝ e−Esph/T , where Esph ∝ v(T ) the vacuum expectation value of
the Higgs doublets. By having a region of the universe where v vanishes or becomes small,
such as inside or in the vicinity of the domain wall, one can have an efficient source for
baryon number-violating processes necessary for a successful baryogenesis.

Motivated by these results, we consider in this chapter another interesting phenomenon
induced by the domain wall of the real singlet scalar in the N2HDM, namely the possibility
of electroweak symmetry restoration (EWSR) inside and in the vicinity of the domain wall.
In such a case, the sphaleron rate is much less suppressed inside and in the vicinity of the
wall than in the regions outside of it. Therefore, this effect combined with a source for
CP-violation, can lead, a priori, to the generation of a matter-antimatter asymmetry in the
early universe induced by domain walls. Such a mechanism was examined in previous works
[144, 145, 106, 146, 107, 66, 147, 148] in the framework of general topological defects such as
cosmic strings and domain walls. One significant advantage of such a mechanism compared
to conventional electroweak baryogenesis is that the need for a first-order phase transition
can be avoided, given that the topological defect will provide the separation in the regions
with drastically different sphaleron rates, ensuring the out-of-thermal-equilibrium condition.
For the case of cosmic strings, it was shown in [66] that any matter-antimatter asymmetry
produced by this mechanism is orders of magnitude smaller than the observed asymmetry.
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This is mainly due to cosmic strings being one-dimensional defects, which renders the
volume in space where the mechanism is active very small [66]. Such volume suppression
is, however, not present in the case of moving domain walls as they are two-dimensional
objects and therefore this mechanism can be effective in a large volume spanned by the
moving walls [146, 107].

The outline of this chapter is as follows: we first discuss the phenomenology of domain wall
solutions in the N2HDM, which are related to the breaking of the Z ′

2 discrete symmetry.
We later discuss the possibility of inducing electroweak symmetry restoration inside and
in the vicinity of the wall, which is one requirement for electroweak baryogenesis induced
by domain walls. We also study some phenomenological scenarios to pinpoint parameter
regions where one achieves electroweak symmetry restoration in a large area around the
wall. Finally, we discuss possibilities for generating an axial asymmetry inside the wall, such
as inducing a pure gauge hypermagnetic field centered on the wall, and show, in a simplified
calculation, that one can indeed obtain a significant amount of baryon asymmetry using
this mechanism.

5.2 domain walls in the n2hdm

In our model, different types of domain wall solutions can be found depending on which
discrete symmetry gets broken in the early universe. Recall that the scalar potential of the
N2HDM:

VN2HDM = m2
11Φ

†
1Φ1 +m2
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†
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†
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†
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]
, (5.1)

is invariant under the discrete symmetry Z2:

Φ1 → Φ1, Φ2 → −Φ2, Φs → Φs, (5.2)

when m2
12 = 0, and invariant under a Z ′

2 discrete symmetry:

Φs → −Φs, (5.3)

When the parameters a1, a3, b1, b2 and c1 are zero.

Domain wall solutions are constructed by imposing vacua related by a discrete symmetry
at the boundaries ±∞. In the case of a spontaneously broken Z ′

2 symmetry, DW solutions
interpolate between regions with vacua ⟨Φs⟩ = −vs and ⟨Φs⟩ = vs and therefore, necessarily
cross ⟨Φs⟩ = 0 inside the core of the wall.

In the case when the Z2-discrete symmetry gets spontaneously broken (alongside the
electroweak symmetry), possible domain wall solutions interpolate between the vacua
located on two disconnected 3-spheres of the vacuum manifold:

⟨Φ1⟩ =
1√
2

(
0

v1

)
, ⟨Φ2⟩ =

−1√
2

(
0

v2

)
, ⟨Φs⟩ = vs, U = U1 at −∞, (5.4)
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⟨Φ1⟩ =
1√
2

(
0

v1

)
, ⟨Φ2⟩ =

1√
2

(
0

v2

)
, ⟨Φs⟩ = vs, U = U2 at +∞, (5.5)

with U1 and U2 corresponding to different Goldstone modes θ and gi of SU(2)L × U(1)Y ,
leading to the creation of different classes of DW solutions as was recently found in [1, 76].

In the following sections, we focus on the domain wall solutions obtained in the N2HDM
after the spontaneous symmetry breaking of Z ′

2 leading to a non-zero vs as well as describing
the effects of the domain wall solution for Φs(x) on the field configurations of Φ1(x) and
Φ2(x), demonstrating the possibility of restoring the EW symmetry inside the wall.

5.2.1 Symmetry restoration in the early universe

Before we start discussing the domain wall solutions in the N2HDM, we first briefly consider
the thermal evolution of the N2HDM scalar potential in the early universe. One crucial
condition for the validity of our analysis is the restoration of the Z ′

2 symmetry in the
early universe at high temperatures. This requirement is important because in the case of
non-restoration of the Z ′

2 symmetry, domain walls wouldn’t have formed in the first place,
and the singlet would be in the broken phase already at very high temperatures.

To check whether a parameter point features electroweak and/or Z ′
2 symmetry restoration

in the early universe, one needs to follow the evolution of the effective thermal potential of
the N2HDM at high temperatures given by [23]:

VN2HDM (T,Φ1,Φ2,Φs) = V tree
N2HDM + VCW + V T

N2HDM + VCT , (5.6)

where V tree
N2HDM denotes the tree-level potential defined in (5.1). The second and third terms

correspond to one-loop corrections known as the Coleman-Weinberg potential one-loop
correction at zero temperature VCW , and a finite temperature correction V T

N2HDM . The
last term VCT is a counterterm used to renormalize the one-loop corrections and cure
the UV divergences. VCW and V T

N2HDM are obtained from the effective one-loop scalar
potential V 1

eff [81, 149, 69]:

V 1
eff (ϕi) =

∑
j

njT

2

+∞∑
−∞

∫
d3p

(2π)3
log
(
wn + |p⃗|2 +m2

j (ϕi)
)

=
∑
j

nj
2

[∫
d3p

(2π)3

√
|p⃗|2 +m2

j (ϕi)∓
T 4

π4

∫ +∞

0
dxx2 log

(
1± e

−

√
x2+

m2
j
(ϕi)

T2

)]
= VCW (ϕi) + V T

N2HDM (ϕi), (5.7)

with Matsubara frequencies wn = 2nπT for bosons, and wn = (2n + 1)πT for fermions.
The first term is temperature independent and corresponds to the Coleman-Weinberg
[81, 149, 69]:

VCW (ϕi) =
∑
j

nj
64π2

(−1)2sim4
j (ϕi)

[
ln

(
|m2

j (ϕi)|
µ2

)
− cj

]
, (5.8)

where nj denotes the multiplicities of the thermal bath particles given by index j, mj(ϕi)
the mass formulas of the particle as a function of the scalar field ϕi and cj the MS
renormalization constants with cj = 3/2 for fermions and scalars and cj = 5/6 for gauge
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bosons [23]. This Coleman-Weinberg potential is renormalized using the counterterms
potential VCT by keeping the zero-temperature VEVs at one-loop level the same as the
VEVs at the tree level [23, 150, 151]. This is done using the conditions (1.32) and (1.33).

The second term V T
N2HDM in (5.7) corresponds to the one-loop thermal correction to the

scalar potential generated by the interaction of the scalar sector with the thermal bath in
the early universe and can be re-written as [152, 81, 149, 69]:

V T
N2HDM =

∑
j

njT
4

(2π)2
J±(

m2
j (ϕi)

T 2
), (5.9)

J±(
m2

j (ϕi)

T 2
) = ∓

∫ +∞

0
dxx2 log

[
1± exp

(
−

√
x2 +

m2
j (ϕi)

T 2

)]
, (5.10)

where nj denotes, again, the multiplicities of the thermal bath particles given by index j,
mj(ϕi) the mass formulas of the particle as a function of the scalar field ϕi and J± the
thermal functions for fermions (+) and bosons (-).
In the high temperature limit (m2/T 2 small), the thermal functions reduce to [152]:

J−(y) ≈ −π
4

45
+
π2

12
y − π

6
y

3
2 − 1

32
y2 log

( |y|
ab

)
+O(y3), (5.11)

J+(y) ≈ −7π4

360
+
π2

24
y +

1

32
y2 log

( |y|
af

)
+O(y3), (5.12)

where ab = π2exp(3/2− 2γE) and af = 16π2exp(3/2− 2γE).

One final contribution that needs to be taken into account is the daisy contribution to the
thermal potential [81, 153, 154, 155]. This is done due to the breakdown of perturbation
theory caused by zero Matsubara frequencies for bosons [69, 81], which behave as massless
particles at the high temperature limit and causing infrared divergencies in the propagator
poles of the effective potential (see (5.7)) [69, 81]. To cure these divergencies, one needs to
perform a resummation of the multi-loop diagrams causing the divergencies also known as
the Daisy diagrams [81, 69, 149].

We do not discuss the details of these resummation procedures and only follow the treatment
used in [23] where the authors used the Arnold-Espinosa resummation scheme [153] where
one cures these IR divergencies by giving a thermal mass Π2

j (ϕj , T ) to the bosons for the
part with zero Matsubara frequency:

m2
j (ϕ) → m2

j (ϕ) + Π2
j (ϕj , T ). (5.13)

After plugging these new mass terms in (5.7) for the contribution with zero Matsubara
frequency (n=0), this translates into an additional term V T

daisy in the thermal potential
which can be written as [23]:

V T
daisy(ϕj , T ) = −

∑
j

T

12π
Tr
[(
m2

j (ϕj) + Π2
j (ϕj , T )

)3/2

−
(
m2

j (ϕj)

)3/2]
. (5.14)

As a summary, the thermal effective potential has the effect of rendering the effective mass
terms to be temperature-dependent:

VN2HDM (T,Φ1,Φ2,Φs) = m2
11(T )|Φ1|2 +m2

22(T )|Φ2|2 +m2
S(T )Φ

2
s +m2

12Φ1Φ2 + ....
(5.15)
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It is therefore possible that for a non-zero temperature T, the effective mass terms
turn positive, leading the minimum of the potential to be at the origin of field space
(Φ1,Φ2,Φs)T = (0, 0, 0) and therefore to the restoration of the symmetry. To investigate
this, one can use an analytical or numerical approach. The analytical approach discussed in
[23] calculates the Hessian matrix of the potential at its origin (0,0,0) at high temperatures
T, which gives us information about the curvature of the potential around the origin. This
involves calculating the principal minors of the Hessian matrix H0

i,j = ∂2V/∂ϕi∂ϕj |(0,0,0).
One can then define the quantities1 cii ≡ lim

T→∞
H0

ii/T
2 [23]:

c11 ≃ −0.025 + c1 −
1

2π

(
3

2
λ1

√
c1 + λ3

√
c2 +

1

2
λ4

√
c2 +

1

4
λ7

√
c3

)
, (5.16)

c22 ≃ −0.025 + c2 −
1

2π

(
3

2
λ2

√
c2 + λ3

√
c1 +

1

2
λ4

√
c1 +

1

4
λ8

√
c3

)
, (5.17)

c33 = c3 −
1

2π

(
λ7

√
c1 + λ8

√
c2 +

3

4
λ6

√
c3

)
, (5.18)

where the coefficients ci are defined as [23]:

c1 =
1

16
(g′

2
+ 3g2) +

λ1
4

+
λ3
6

+
λ4
12

+
λ7
24
, (5.19)

c2 =
1

16
(g′

2
+ 3g2) +

λ2
4

+
λ3
6

+
λ4
12

+
λ8
24

+
1

4
y2t , (5.20)

c3 =
1

6
(λ7 + λ8) +

1

8
λ6 , (5.21)

with g and g′ denoting the weak gauge couplings and yt the Yukawa coupling to the top
quark. For positive c11 and c22, the electroweak symmetry is restored at high T and in
case c33 > 0, the Z ′

2 symmetry is restored. In this work, we focus on the restoration of
the Z ′

2 symmetry at higher temperatures to ensure the formation of the singlet domain
walls. In case when c11,22 < 0, the doublets have a temperature-dependent VEV, and
the required Hessian matrix has to be evaluated at (v1(T ), v2(T ), 0) to reliably determine
whether the Z ′

2 symmetry is restored. Such a calculation is more complicated and can only
be done numerically for the N2HDM. However, we observed that for several parameter
points satisfying only the condition c33 > 0, it is possible to restore the Z ′

2. Considering
the leading order in T 2 for the thermal potential, the effective mass term for the singlet
field at a given temperature T can be approximated by

MS(T ) ≈ m2
s + c33T

2 +
λ7
4
v21(T ) +

λ8
4
v22(T ).

In case MS(T ) is positive, vs(T ) = 0 minimizes the thermal potential. Such a scenario can
be obtained for λ7,8 > 0 or small negative λ7,8. It is also possible to obtain a thermal history
where the EW and/or the Z ′

2 symmetry are restored for an intermediate temperature
interval as was found in [23]. Such a scenario can only be examined by a full numerical
approach and therefore we limit ourselves to the more conservative scenario where c11, c22
and c33 are positive (unless otherwise specified for some parameter scans) ensuring that all
symmetries get restored at some high temperature T. This constraint was included in our
implementation of ScannerS [156, 157, 26, 158, 117] in order to only generate parameter
points for our scans where the EW and Z ′

2 symmetries get restored at some stage in the

1 These coefficients also incorporate terms from the daisy resummation of infrared-divergent contributions in
the thermal potential. The authors of [23] use the Arnold-Espinosa method [153] for the derivation of the
coefficients cii.
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early universe. Note that the expressions for c11, c22 and c33 derived in [23] use the Arnold-
Espinosa resummation scheme [153]. It is known that different resummation schemes can
lead to different outcomes for the thermal evolution of the scalar fields in the early universe
(see e.g. page 23 in [23]). A detailed discussion of these aspects is beyond the scope of
this work and therefore, we use these formulas in the framework of the Arnold-Espinosa
method only as an attempt to verify the restoration of the Z ′

2 and EW symmetries in the
early universe.

5.2.2 Z ′
2 Domain Walls

We discuss the singlet domain wall solution in the N2HDM and its effects on the VEVs
of the doublets v1 and v2. Here, we only consider the zero-temperature potential for the
calculation of the field configuration. We therefore assume that the change in the scalar
potential at small temperatures after EWSB is negligible. This choice was made in order
to simplify obtaining results for large sets of parameter scans, as otherwise, one would
need to calculate the exact VEVs at a particular temperature T < Tew for every parameter
point, with Tew the temperature at which the EW symmetry gets spontaneously broken,
making the computation lengthy and more complicated.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x mh

3

2

1

0

1

2

3

vs

×101

Figure 5.1: Domain wall solution for the singlet scalar field ϕs. The result is shown in terms of the
rescaled VEV v̂s = vs/vsm.

In order to get domain wall solutions, we require the singlet vacua vs to have a different
sign at both spatial boundaries ±∞ depicting two regions of the universe with different
signs for vs. Outside the wall, the electroweak symmetry is broken and the doublets Φ1

and Φ2 acquire VEVs (v1(±∞), v2(±∞)) ̸= (0, 0). In this work, we only consider neutral
CP-conserving vacua, therefore: v+(±∞) = 0 and ξ(±∞) = 0.
The spatially varying field configuration is then obtained by solving the equations of motion
for the scalar fields using the latter boundary conditions:

∂2vi
∂t2

− ∂2vi
∂x2

+
∂VN2HDM

∂vi
= 0, (5.22)
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where i denotes the different scalar fields. Due to the complicated nature of these non-linear
differential equations, we find the solutions numerically using the gradient flow method [76]
which minimizes the total energy per unit area of the static field configuration given by:

σdw =

∫ +∞

−∞
dx

dΦi

dx

dΦ†
i

dx
+ VN2HDM (x), (5.23)

where the first term denotes the kinetic energy contribution from each scalar field and the
second term gives the potential energy of the field configuration.

The spatial profile for the rescaled VEV v̂s(x) = vs(x)/vsm is shown in Figure 5.1. In the
simpler case of a model with only a real singlet scalar field, the width of the wall can be

well approximated by δs = (

√
λ6
4
vs)

−1 [11]. This expression is, however, only applicable to

our domain wall solution when the coupling terms between the doublets and the singlet
are very small or zero (λ7,8 ≈ 0). For non-vanishing values of λ7,8 the back-reaction of the
doublet fields will lead to a deviation of the wall’s width from δs.

In the background of the domain wall of the singlet vs(x), the potential for (v1, v2) is
x-dependent. We rewrite the potential VN2HDM (5.1) as:

VN2HDM (x) =

(
m2

11

2
+
λ7
4
v2s(x)

)
v21(x) +

(
m2

22

2
+
λ8
4
v2s(x)

)
v22(x) +M+(x)v

2
+(x)

+
m2

s

2
v2s(x) +

(
λ3 + λ4 + λ5 cos (2ξ(x))

4

)
v21(x)v

2
2(x) +

λ1
8
v41(x)

+
λ2
8
v42(x) +

λ2
8
v4+(x) +

λ6
8
v4s(x)−m2

12v1(x)v2(x) cos ξ(x), (5.24)

where,

M+(x) =
m2

22

2
+
λ2
4
v22(x) +

λ3
4
v21(x) +

λ8
4
v2s(x). (5.25)

Due to the coupling terms between the doublet scalar fields Φ1 and Φ2 with the singlet
scalar field Φs, the profile of the field configuration for the doublets in the background of
the singlet domain wall will not be homogeneous in space. In the vicinity of the domain
wall’s core, v1(x) and v2(x) can depart considerably from their asymptotic values. The
behavior of v1(x) and v2(x) inside the wall is largely influenced by the effective mass of
the doublets, which we define as:

M1(x) =
m2

11

2
+
λ345
4
v22(x) +

λ7
4
v2s(x), (5.26)

M2(x) =
m2

22

2
+
λ345
4
v21(x) +

λ8
4
v2s(x), (5.27)

where λ345 = λ3 + λ4 + λ5. In the case when m2
12 is small or vanishing, the effective masses

M1,2 far from the wall are negative (see Figure 5.2a ). This is required for the potential
to develop non-vanishing vacuum expectation values. For λ7,8 < 0, it is possible to get
M1,2(±∞) < 0 even if m2

11 and m2
22 are positive. The effective mass terms inside the wall

are reduced to:

M1,2(0) =
m2

11,22

2
+
λ345
4
v22,1(0). (5.28)

It is therefore possible to turn the effective mass terms inside the wall positive, which
leads the potential VN2HDM (Φ1,Φ2, 0), effectively describing a 2HDM model, to be in the
symmetric phase where the minima of the scalar doublets are zero.
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Figure 5.2: Rescaled spatial profile of the effective mass term M̂1 = M1(x)/m
2
h (with mh =

125.09 GeV) for different parameter points P1 and P2. (a) Spatial profile of M̂1 for P1.
Far from the wall, M̂1 is negative and the potential of the doublet is in the broken phase.
Inside the wall, M̂1 turns positive due to the term λ7v

2
s vanishing, and the potential of

the doublet has a minimum at the origin. (b) Spatial profile of M̂1 for P2. Inside of the
wall, M̂1 is even more negative and we remain in the broken phase.

mh1 mh2 mh3 tan(β) vs α1 α2 α3 m2
12

P1 95.81 125.09 420.18 1 7599.26 0.88 1.01 0.47 0
P2 125.09 248.80 828.88 1 1755.75 0.70 -0.07 -0.001 0
P3 125.09 242.27 1698.10 1 1041.23 0.797 -0.049 -0.176 0
P4 125.09 392.9 1141.1 1 1009.4 0.77 0.11 -0.14 0
P5 125.09 391.31 693.66 1 2868.37 0.73 0.33 1.39 198916
P6 125.09 242.59 622.04 1 798.66 0.877 -0.55 -1.48 179776

Table 5.1: Benchmark parameter points demonstrating different behavior for the doublet VEVs
inside the singlet domain wall. The mass parameters mh1

, mh2
, mh3

as well as vs are
given in GeV while m2

12 is given in GeV2.

We show the behavior of the doublets inside the domain wall of the singlets for 2 different
parameter points P1 and P2 (see Table 6.2). In case M1,2(0) are positive inside the wall (e.g.
for λ7,8 < 0), the doublet scalar fields can have a vanishingly small vacuum expectation
values v1,2(0) = 0 (see Figure 5.3a).

Even when the doublets scalar potential for vs = 0 has its global minimum at v1 = 0 and
v2 = 0 (as is the case when the effective mass terms are positive and m12 = 0), one does
not always achieve v1,2(0) = 0 inside the wall whenever the effective masses are positive.
This is due to the interplay between the kinetic and potential energy contributions of the
domain wall’s field configuration. When the energy barrier between the asymptotic vacua
(v1, v2,±vs) and the extremum at (v1 = 0, v2 = 0, vs = 0) is large, the contribution of
the potential energy to the total energy of the solution will be large. According to the
Bogomolnyi method for static kink solutions [13], the minimal energy solution of the kink
field configuration requires the contribution to the total energy of the domain wall from
the potential part and the kinetic part to be equal. This leads the field configuration to
have a high contribution from the kinetic energy and therefore the fields inside the wall
will have a rapidly changing profile without having to pass through v1,2 = 0.
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Figure 5.3: Rescaled VEV profiles for the doublet fields v̂1,2(x) = v1,2/vsm for different parameter
points. (a) For parameter point P1, v̂1,2(x) inside the wall are much smaller than outside
the wall. (b) For parameter point P2, v̂1,2(x) inside the wall gets higher than outside
the wall, due to the effective mass term being more negative in the DW.

In the case of a small potential barrier, the potential energy and therefore also the kinetic
energy will be both small leading to a thicker wall, and therefore the VEVs of the doublets
can have enough space to converge to the actual minimum of the potential at x = 0.

The opposite effect can happen when λ7,8 > 0 (e.g. parameter point P2). In this case the
effective mass terms in (5.26) and (5.27) receive a negative contribution inside the wall
(see Figure 5.2b) and v1,2 grow bigger (see Figure 5.3b).

In order to explain these two distinct behaviors, we show in Figure 5.4 the potential of the
Higgs doublets Φ1 and Φ2 inside and outside the singlet domain wall. For P2, due to the
quadratic effective masses being smaller inside the wall, the potential gets "stretched" and
the minima of the potential have a higher value than those outside of the wall (depicted as
a white cross sign in Figure 5.4d). For P1, the effective mass terms are higher and positive
inside the wall. This leads to the 2HDM potential being in the symmetric phase just like
the potential before EWSB. We observe in Figure 5.4b that the minimum of the potential
in this case is zero for both fields Φ1 and Φ2. Therefore, the vacuum expectation values for
v1 and v2 inside the domain wall become very small in order to minimize the energy of the
scalar fields configuration.

In the following, we perform scans of random N2HDM parameter points to determine the
different behaviors that can occur for the doublet fields inside the wall. The samples of
parameter points were obtained using ScannerS [156, 157, 26, 158, 117]. We impose the
theoretical constraints of boundedness from below, perturbative unitarity and vacuum
stability, as well as experimental constraints from flavor physics and precision observables
S, T and U. The boundedness from below condition is used to make sure that the potential
does not tend to minus infinity at some direction. Perturbative unitarity ensures that the
eigenvalues of the tree level S-matrix for 2 → 2 scattering processes are smaller than 8π
[26]. We also impose the constraint of Z ′

2 symmetry restoration at higher temperatures
to ensure that all used parameter points lead to the formation of domain walls after the
spontaneous breaking of that discrete symmetry at some point in the early universe.

We solve the differential equations describing the scalar field configuration for each generated
parameter point satisfying the constraints. The results are quantified using the quantities:

r1 =
v1(0)

v1(±∞)
, r2 =

v2(0)

v2(±∞)
, v̂ew(0) =

√
v21(0) + v22(0)

vsm
, (5.29)
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Figure 5.4: The potential of the N2HDM: (b) inside (ϕs = 0) and (a) outside (ϕs = vs) the domain
wall for 2 parameter points P1 (a,b) and P2 (c,d).

which gives a measure for the restoration of the electroweak symmetry inside the wall. We
analyze the correlations between the results of the parameter scans and the difference in
the effective mass inside and outside the wall ∆1,2:

∆1,2 =M1,2(0)−M1,2(±∞) =
1

4
λ345(v

2
2,1(0)− v22,1(±∞))− 1

4
λ7,8v

2
s . (5.30)

Using the quantities ∆1,2 is motivated by the observation in the results of P1 and P2 that
when the effective masses become less negative inside the wall (∆1,2 > 0) we obtain r1,2 < 1
and when the effective masses inside the wall become more negative than outside of it
(∆1,2 < 0) we obtain r1,2 > 1.

5.2.2.1 General parameter scan withm2
12 = 0

mha mhb mhc mA mH± tanβ

125.09 [125.09, 700] [125.09, 1400] [400, 700] [650, 700] 1

C2
hatt̄

C2
haV V Rb3 m2

12 vS type

[0.6, 1] [0.8, 1.2] [−1, 1] 0 [200, 1500] 2

Table 5.2: Set of input parameters for our ScannerS scan. We focus first on parameter points
with m2

12 = 0. Chatt̄ and ChaV V are defined respectively as the coupling factors of the
CP-even Higgs boson ha to the SM gauge bosons and the top quark and are defined as
ChaV V = cos (β)Ra1 + sin (β)Ra2 and Chatt̄ = Ra2/ sin (β) (see 2.2 and [117]).
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Figure 5.5: Result of the scan in terms of the ratios r1 and r2. (a) Results for r1 and r2 as a function
of the electroweak symmetry VEV vew(0) inside the wall. (b) shows the correlations as a
function of vs. (c) shows the correlations as a function of α2. (d) shows the correlations
as a function of α3.

We start with a general parameter scan of the N2HDM using a sample of 20000 parameter
points (see Table 5.2). For this particular scan, we take m2

12 = 0 and we only require Z ′
2

symmetry restoration as we found that generating parameter points with ScannerS that
also satisfy the constraint of EW symmetry restoration was much easier using non-zero
values for m12. Electroweak symmetry non-restoration at higher temperatures can constrain
conventional models of electroweak baryogenesis since the non-restoration of the symmetry
leads to the suppression of sphaleron transitions up to very high temperatures. However,
the mechanism of electroweak baryogenesis using domain walls relies on the symmetry
restoration (or on the partial symmetry restoration for intermediate values of r1,2) only
in the vicinity of the wall, where the sphaleron rate will be less suppressed than in the
regions far from the wall and therefore EW symmetry non-restoration would not disfavour
such a mechanism for baryogenesis.

The results of the scan are shown in Figure 5.5. The ratios r1,2 inside the wall can achieve
low values up to r1,2 ≈ 0.001 but also very high values corresponding to a much higher VEV
inside the wall. Notice that the requirement that the effective mass terms turn positive
inside the wall is not enough to induce a total electroweak symmetry restoration inside the
wall (even if the minimum of the potential is symmetric in that region). This is the case
because the region in space with positive effective masses is not large enough for v1,2 to
converge to zero.

Due to the complexity of the model parameters, it is hard to obtain correlations between
the physical variables of the model and the ratios r1 and r2. For this particular scan of the
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parameter points, we obtain some dependence between the values of the mixing angles α2,
α3 and the ratios r1 and r2. As can be seen in Figure 5.5c, one can achieve both ratios
being small only for positive α2, while for α2 < 0, the ratios are bigger than one. This
happens because we obtain both negative λ7 and λ8 only when α2 > 0. Concerning the
dependence on the singlet VEV vs we find (see Figure 5.5b) that the smallest ratios r1,2
are obtained for larger vs.

(a) (b)

Figure 5.6: Correlations between the ratios r1,2 and the difference in the effective mass inside and
outside the wall ∆1,2.

In Figure 5.6, we verify the validity of our assumption concerning the correlations between
the sign of ∆1,2 and the ratios r1,2. The anticipated behavior that r1,2 > 1 for negative
∆1,2 and r1,2 < 1 for positive ∆1,2 holds for most of the parameter points. However, one
can see that some parameter points can have ratios r1,2 > 1 even when ∆1,2 > 0.
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Figure 5.7: Anomalous behavior where a positive ∆1 leads to r1 > 1. (a) Electroweak field config-
uration for the parameter point P3 (see Table 6.2). (b) Effective mass M̂1(x) for the
parameter point P3.

As an example for this anomalous behavior, consider the benchmark point P3 (see Table
6.2). The domain wall solution for this parameter point is shown in Figure 5.7a. The
profile of v1(x) initially grows as we approach the wall then gets a sharp drop near x = 0
with v1(0) still bigger than its value outside the wall leading to r1 > 1. This behavior is
explained by the profile of the effective mass (shown in Figure 5.7b). The effective mass
M1 is initially smaller (more negative) in the vicinity of the wall due to the term λ345v

2
2(x)

in (5.26) being negative and sizable. This leads v1(x) to grow in that region. However, as
we approach the core of the wall at x = 0, the large positive contribution from λ7v

2
s leads
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the effective mass term to be bigger than its value outside the wall (∆1 > 0). This sharp
positive contribution is, however, only localized in a very small region around x = 0. It is
therefore energetically more favorable for v1(x) to not decrease substantially in that small
region and we end with v1(0) > v1(±∞). The same behavior can also happen for r2 > 1
and ∆2 > 0. This scenario can occur for parameter points where λ7 is negative, while λ8 is
positive and large, leading to v2(0) being large inside the wall which in turn leads to the
contribution λ345v22(x) inside the effective mass term M1 to be sizable.
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Figure 5.8: Anomalous behavior where a negative ∆1 leads to r1 < 1. (a) Electroweak vacuum
configuration for the parameter point P4 (see Table 6.2). (b) Effective mass M̂1(x) for
the parameter point P4.

We also find a few parameter points where r1 is slightly smaller than 1 even for ∆1 < 0.
As an example for this scenario, we take the benchmark point P4 (see Table 6.2). The
profile of the doublets is shown in Figure 5.8a, where we observe the opposite behavior
of the previous anomalous scenario, namely that v1(x) initially decreases as we approach
the wall and grows inside the core of the wall. This behavior is explained by the profile of
the effective mass M1 (see Figure 5.8b) which initially grows in the vicinity of the wall
leading to smaller v1. However, due to λ7 being positive, the effective mass obtains a sharp
large negative contribution at x = 0 which makes v1(x) grow again inside the wall. This
negative contribution is, however, only limited to a very small region in space which is
not enough to make v1(0) grow higher than its asymptotic value. This scenario happens
especially for parameter points where λ7 > 0 while λ8 < 0 and sizable, leading to v2 being
very small inside the wall and as a consequence, the term λ345v

2
2 in (5.26) gives a large

positive boost to M1 (for λ345 < 0) in the vicinity of the wall.

5.2.2.2 Parameter scan withm2
12 ̸= 0

To see the effects of a non-zero m2
12 term, we perform a parameter scan for 20000 points

taking the same constraints used as in the previous scan (see Table 5.2) but with 0 <
m2

12 < 105 GeV2. Notice that, in contrast to the previous case, even for positive values of
the effective masses M1,2 outside the wall, the potential can get a VEV due to the non-zero
−m2

12Φ1Φ2-term that can lead to a dominant negative contribution to VN2HDM . For this
parameter scan, we impose the condition of symmetry restoration for both the Z ′

2 and the
EW symmetry at high temperatures.

In contrast to the case with m2
12 = 0, we do not observe the possibility of having one

ratio ri being very small while the other ratio rj is big (see Figure 5.9a). Note that such
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(a) (b)

Figure 5.9: Results of the parameter scan for non-zero m2
12. It is possible to achieve smaller values

for r1,2 inside the wall compared to the previous parameter scan.

behavior in the previous case was obtained for parameter points that lead to one doublet
field Φi having Mi(0) > 0 while Mj(0) < 0. Therefore, the potential inside the wall had its
minimum at (vi = 0, vj ̸= 0). For the case m2

12 ≠ 0, and for parameter points where the two
doublets have a different sign for their effective masses inside the wall, the term −m2

12Φ1Φ2

shifts the minimum inside the wall to (vi ̸= 0, vj ̸= 0) which reduces the difference between
ri and rj .

(a) (b)

Figure 5.10: Correlations between the ratios r1,2 and the difference in the effective mass inside and
outside the wall ∆1,2 for the case when m12 ̸= 0.

Another key difference is that we observe an anomaly for some parameter points satisfying
∆1,2 < 0, but result in r1,2 < 1 (shown in bubbles with red edges in Figure 5.10). This
happens for parameter points that have positive effective masses M1,2(x) everywhere in
space and ∆1,2 being negative2. For these parameter points, we found that the potential
inside the domain wall can still have its minimum at (v1, v2) = (0, 0) even if the effective
mass terms get smaller (but are still positive). Therefore, the ratios r1,2 will be small
because the profile of v1,2(x) will converge to zero inside the wall. As an example for this
scenario, we choose the benchmark point P5 (see Table 6.2). The results for the profile
of v1,2(x) and M1(x) are shown in Figure 5.11. For this parameter point, λ8 is negative
and M2 grows substantially inside the wall. This leads the potential of the 2HDM in the
direction v2 to have its minimum at a small value near 0, making contributions from

2 Recall that for the case m2
12 = 0, such a scenario is not possible because the effective masses outside the

wall are always negative.
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Figure 5.11: (a) Profiles of the doublet VEVs v1,2 for parameter point P5. (b) Profile of the effective
mass term M1 for parameter point P5.

−m12v1(0)v2(0) vanishing or being small. For this parameter point, λ7 is small and positive.
Therefore M1(0) is smaller than outside the wall but stays positive. The minimum for v1
inside the wall will then be 0, as the term −m2

12v1v2 is negligible compared to the effective
mass term M1.
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Figure 5.12: (a) Profiles of the doublet VEVs v1,2(x) for parameter point P6. (b) Profile of the
effective mass term M1(x) for parameter point P6.

Even though we obtain mostly similar correlations between the ratios r1,2 and the difference
in the effective masses ∆1,2 for the case of m12 ̸= 0, more parameter points can have
r1,2 > 1 for ∆1,2 > 0 (see Figure 5.10). This happens due to the minimum of the potential
VN2HDM (v1, v2, 0) not being at the origin (v1, v2) = (0, 0) but at a finite value for the
VEVs and even for positive effective masses. This happens when contributions from the
term −m2

12Φ1Φ2 are substantial compared to the effective mass terms.

As an example of this behavior we take the benchmark parameter point P6 (see Table 6.2).
The profiles of v1,2(x) as well as M1(x) are shown in Figure 5.12. We find that v1(x) grows
inside the wall even though the effective mass term M1(x) gets larger. For this parameter
point, we obtain a large positive value for λ8 = 0.22 compared to a negative λ7 = −0.04.
This has the effect that M2(x) sharply decreases inside the wall. This in turn "stretches"
the 2HDM part of the potential in the v2 direction, leading to a growing v2 inside the
wall. Because of the term −m2

12Φ1Φ2, the minimum of the potential inside the wall in the
direction of v1 can be different than zero, even when the effective mass M1(0) is positive.
Indeed, because v2(0) does not vanish inside the wall for this parameter point, a larger



116 electroweak symmetry restoration via domain walls

non-zero v1(0) will minimize the potential since the overall contribution −m2
12v1(0)v2(0) is

negative.

5.2.2.3 Impact of the wall’s width on the region of EWSR

One important consequence of electroweak symmetry restoration inside the wall is the
enhancement of the sphaleron transitions compared to their rate in the region far from
the wall. This can lead to the possibility of baryon number violating processes inside
the wall that would be protected from being washed out once the wall moves away due
to the sphaleron rate being highly suppressed in the broken phase. However, for such a
mechanism to be efficient, the EW symmetry restoration region inside the wall should be
large enough to fit a sphaleron. At high temperatures T , the radius of a sphaleron of the
weak interactions is proportional to [66]:

Rsph ∝ g2T−1,

where g denotes the coupling constant of SU(2)L, while the sphaleron radius at T = 0
is on the order of the inverse of the W boson mass [159]. In this subsection, we discuss
the dependence of the wall’s width δs on the parameters of the model as well as how δs
influences the size of the region where electroweak symmetry restoration of the Higgs
doublets occurs.

In the case of a pure scalar singlet model with no interaction with other scalar fields (e.g.
λ7,8 = 0), the width of the domain wall solution reduces to [13]:

δ̂s = (

√
λ6
4
vs)

−1. (5.31)

Naively, one would expect that, for small values of λ7 and λ8, the width of the singlet wall
can be well approximated by (5.31), as the mixing between the singlet and the doublet
would then be negligible. However, this is not correct in general, as the profiles of v1(x)
and v2(x) can change considerably inside the wall for high values of vs, which can lead to
λ7,8 ∼ O(10−4). Looking at the equation of motion governing the profile of vs(x):

∂2vs
∂x2

=
1

2

(
2m2

S + λ7v
2
1(x) + λ8v

2
2(x)

)
vs(x) +

λ6
4
v3s(x), (5.32)

one then expects that a sizable change in the doublets contribution to the singlet effective
mass λ7v21(x) + λ8v

2
2(x), which we define as:

Σ(x) = λ7(v
2
1(x)− v21(∞)) + λ8(v

2
2(x)− v22(∞)), (5.33)

would lead to a considerable change in the width of the wall3. We verify this hypothesis
using the parameter scan from the previous section (see Table 5.2). Figure 5.13a shows
the numerical values of the wall’s width δnums compared with the width δ̂s obtained via
(5.31) for each parameter point. The numerical value of the wall’s width is obtained by
calculating the full width at half the maximum of the field’s profile.

Qualitatively, we find that parameter points with small vew(0) and Σ(0) lead to smaller
ratios rδ = δnums /δ̂s. In particular, we find that δnums is well approximated by δ̂s for

3 A change in this quantity corresponds to the variation of the effective mass of the singlet field inside the
wall. This will then lead to a change in the potential of the singlet inside the wall and therefore modify the
path in field space that minimizes the energy of the field configuration.
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(a) (b)

Figure 5.13: Correlations between the analytical formula for the domain wall width and the actual
value calculated numerically for the parameter scan in Table 5.2 as a function of
the normalized doublet vacuum expectation values inside the wall (v̂ew(0)) and the
normalized quantity Σ̂(0). Note that a change in Σ̂(0) for fixed v̂ew(0) corresponds to
the variation of the couplings λ7 and λ8. The blue line in (a) represents δ̂s = δnums .

parameter points with very small Σ(0). This is expected as the equation of motion for vs(x)
(5.32) reduces to the pure singlet scalar equation of motion in the limit of vanishing Σ(x).
Some parameter points show a slightly smaller width than the analytical formula. This,
however, is due to numerical precision and the result should be interpreted as 1 or slightly
higher than 1. For high values of vew(0) and Σ(0), the calculated numerical width is much
higher than δs. These general correlations can be intuitively understood by considering the
change in the second derivative of vs(x) in (5.32). As the profiles of v1,2(x) change across

the wall, the quantity Σ(x) grows, decreasing
∂2vs
∂x2

on the left side of the wall (where vs(x)
is taken to have a negative sign). Therefore the kinetic energy of the solution gets smaller
and the wall becomes thicker. Another intuitive way to look at this is interpreting the
change in Σ(x) as the change in the effective mass of the singlet. For all parameter points,
Σ(x) always grows in the vicinity of the wall. Therefore the effective mass of the singlet is
higher, decreasing the barrier of the potential in the direction of the singlet field between
the minima −vs and vs. Consequently, the potential energy contribution to the domain
wall solution gets smaller. According to the Bogomolnyi method for finding static kink

solutions, the kinetic energy (
∂Φs

∂x
)2 of the solution gets smaller and the wall gets thicker.

We now focus on the width of the region where the doublet scalar fields change their values,
as this is a relevant quantity for electroweak baryogenesis mediated by domain walls. The
change in the profile of v1,2(x) is related to the change in vs(x). Therefore, we expect that
the width of the singlet domain wall influences the width of the region where v1,2(x) varies
(which we define as δew) and as such the width of electroweak symmetry restoration region
for small values of r1,2. Figure 5.14 shows the correlation between δew, vew(0) and δnums .
For parameter points where the EW VEV gets smaller inside the wall (v̂ew(0) < 1) we find
that the width δew can be much bigger than the width of the domain wall. We also find
that the width δew increases with decreasing vew(0) and can be very sizable even for small
δnums .

For parameter points that have a higher EW VEV inside the wall (v̂ew(0) > 1), we also
find that the width of the doublets increases with δ̂nums as expected. Even though for this
parameter scan one obtains higher values for δnums when increasing vew(0) (see Figure
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Figure 5.14: Correlations between δew, the values of the electroweak vacuum inside the wall vew(0)
and the width of the singlet wall δnums . We observe that δew increases with smaller vew
and larger δnums .

5.13b), we observe that for a fixed value of δnums and large vew(0), the width δew does not
reach the high values observed for small values of vew(0).

5.3 scenarios with ewsr in a large region around the
wall

As we discussed in the last sections, the VEV ratios inside the wall are dependent on
the change in the effective mass terms inside the wall. As we are mainly interested in
electroweak symmetry restoration inside the domain wall, we shall focus in this section
on some possible scenarios where v1(x) and v2(x) become small for a large region in the
vicinity of the wall. We saw in the previous random parameter scans that the electroweak
symmetry is not completely restored inside the wall. Instead, the electroweak VEV vew(0)
gets rather small values when the effective mass terms of the doublets grow higher (and
positive) inside the wall, forcing the 2HDM part of the potential (the first two lines of (5.1))
to go into the symmetric phase. In order to make the profile of v1 and v2 vanish inside
the wall, leading to complete electroweak symmetry restoration, we need the change in
the effective masses M1,2 to occur in a large region so that the doublet fields have enough
space to converge to zero.

As was shown in the last section, parameter points leading to smaller vew(0) typically
have singlet wall widths δnums that can be well approximated by (5.31) (see Figure 5.13b).
As can be seen in Figure 5.14, for a fixed value of vew(0) the width δew increases with
δnums . Therefore, a larger region where the effective masses change is correlated with the
quantity δ̂s = 2(

√
λ6vs)

−1. Neglecting the contributions from λ345, the change in the
effective masses M1,2 (see (5.30)) is proportional to −λ7,8v2s . One can then define the ratios
B1,2 = λ7,8/λ6 ∝ (∆1,2 × (δ̂s)

2) as dimensionless measures that provide a good correlation
with parameter points leading to EWSR in a large region around the wall. This is the case
namely when these ratios are big and negative. Therefore, one has to look for parameter
points that lead to large values of B1,2 with negative λ7,8 (so that ∆1,2 are positive, leading
to higher effective masses inside the wall).
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Using the expressions (2.49) and (2.50) for λ7 and λ8 in the physical mass basis of the
N2HDM, we can write B1,2 as:

B1 =

(
vs
v1

)(
R13R11m

2
h1

+R23R21m
2
h2

+R33R31m
2
h3

m2
h1
R2

13 +m2
h2
R2

23 +m2
h3
R2

33

)
, (5.34)

B2 =

(
vs
v2

)(
R13R12m

2
h1

+R23R22m
2
h2

+R33R32m
2
h3

m2
h1
R2

13 +m2
h2
R2

23 +m2
h3
R2

33

)
. (5.35)

Therefore, finding parameter points with large negative values for B1,2 involves a rather
complex interplay between the masses of the CP-even Higgs scalars and the components of
the diagonalization matrix Rij , which are functions of the mixing angles α1,2,3.

In the following subsections, we discuss different scenarios for obtaining EWSR inside
the wall. We generate parameter points using ScannerS satisfying all experimental and
theoretical constraints discussed in the previous chapter. We also require that all parameter
points restore the Z ′

2 symmetry in the early universe to ensure the formation of the domain
walls. Furthermore, for these sets of scenarios, we also require that the parameter points
satisfy collider constraints (unless mentioned otherwise). This is done by using HiggsBounds

[160, 161, 162, 163, 164, 124] and HiggsSignals [165, 125] implemented in ScannerS.

5.3.1 Scenario 1: Small CP-even Higgs masses

mha mhb mhc mA mH± tanβ

125.09 [94, 98] [200, 300] [630, 750] [650, 750] [0.6, 10]

C2
hatt̄

C2
haV V Rb3 m2

12 vS type

[0.6, 1.2] [0.6, 1] [−1, 1] [2× 104, 1.8× 105] [100, 10000] 1− 4

Table 5.3: Set of input parameters for ScannerS scan of scenario 1. The masses and vacuum
expectation values are given in GeV , while m2

12 is given in GeV 2. Chatt̄ and ChaV V are
defined respectively as the coupling factors of the CP-even Higgs boson ha to the SM
gauge bosons and the top quark and are defined as ChaV V = cos (β)Ra1 + sin (β)Ra2

and Chatt̄ = Ra2/ sin (β) (see Table 2.2, and for more details [117]). For these parameter
points the Z ′

2 is unbroken at very high temperatures.

The simplest way to get large values for the ratios B1,2 is to use parameter points with
large vs. The second factor in (5.34) and (5.35) are complicated functions of the masses
and mixing angles (that enter into Rij) between the CP-even Higgs scalars and, as such,
we expect some interplay between the values of the masses and mixing angles that lead
to large B1,2. For this first scenario, we focus on parameter points with small masses
for the CP-even Higgs particles with one scalar fixed to be the SM-like Higgs with mass
mh2 = 125.09 GeV. The lightest CP-even scalar is taken to be one with a mass in the
vicinity of 95 GeV depicting a particle in the same mass range of some recent excesses
observed in ATLAS [166] and CMS [167]. We vary the singlet VEV vs between 100 GeV
and 10 TeV as well as the mixing angles between the 3 CP-even Higgs states (see Table 5.3).
The generated parameter points4 satisfying the theoretical and experimental constraints

4 Note that collider searches heavily constrain this particular scenario and therefore we start our discussion
using a set of parameter points where these constraints were neglected. We later show the results for a
parameter scan of 5000 points, where the collider constraints were considered.
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(a) (b)

Figure 5.15: Results of the parameter scan for scenario 1. (a) The amount of EWSR inside the domain
wall v̂ew(0) as a function of the singlet VEV vs and the width δew of the symmetry
restoration region vew(x) around the wall. (b) The amount of EWSR inside the wall as
a function of the couplings λ7 and λ8 for parameter points with vs > 6000 GeV.

discussed in earlier chapters as well as the requirement of Z ′
2 symmetry restoration is in

the range shown in Table 5.3.

We start with a parameter scan where we do not require collider constraints in the parameter
points search done by ScannerS. We later show the effects of these constraints by using a
parameter scan where these constraints are imposed. This is done for pedagogical reasons
in order to discuss how collider constraints affect the results.

The results of the scan in terms of the effective EW VEV inside the wall vew(0) as a
function of vs and the width δew are shown in Figure 5.15a. We find that for the lower
range of vs < 2000 GeV, the EW symmetry restoration measure v̂ew(0) is at least above
0.01. We also find that for several parameter points with large vs > 6 TeV, the doublet
VEVs inside the wall are not suppressed. These parameter points correspond to the red
and orange points in Figure 5.15b where one of the couplings between the singlet and
doublet scalar fields λ7 or λ8 is small compared to the other one. This leads to one of the
doublets having its VEV highly suppressed inside the wall, while the other doublet is only
slightly affected by the domain wall, leading to an overall effect where v̂ew(0) is slightly
smaller than 1.

Concerning the width δew, the observed indirect dependence on vs is due to the change in
v̂ew(0) which decreases with higher vs and leads to higher values for δew. For the chosen
interval in the masses of the CP-even Higgses (see Table 5.3), we verified that the width of
the singlet wall δnums is independent of vs.

We now discuss the effects of the mixing angles αi on the results. In order to do this, we
look at the singlet admixture Σi of the CP-even Higgs states hi defined as:

Σ1 = R2
13, Σ2 = R2

23, Σ3 = R2
33, (5.36)

where Rij corresponds to the entries of the diagonalizing matrix R defined in (2.41) and
are functions of the mixing angles αi. The correlations between Σi and the parameters
vew(0) and δew are shown in Figure 5.16. We find that the smallest values for vew(0) are
obtained when the singlet admixture in the SM Higgs scalar h2 is the highest. Such a
correlation puts constraints on this parameter region, as a large singlet admixture in the
SM Higgs scalar is not allowed experimentally.
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(a) (b)

(c)

Figure 5.16: Singlet admixture Σi of the CP-even Higgs states hi in the physical mass basis. For this
particular parameter scan, Σ2 corresponds to the singlet admixture in the SM Higgs
state h2 with mass mh2 = 125.09 GeV, while Σ1 corresponds to the singlet admixture
of the CP-even Higgs boson with mass around 95 GeV.

(a) (b)

Figure 5.17: EW VEV inside the wall vew(0) and the EW width δew for the parameter scan where
the singlet admixture of the lightest Higgs boson in scenario 1 is close to 1, while
the singlet admixture of the SM Higgs boson is small, (a) dependent on vs and (b)
dependent on Σ1.

We also perform a parameter scan for 5000 points where the singlet admixture is dominant
in the lightest Higgs scalar (94 GeV < mh1 < 98 GeV) while it is negligible in the SM
Higgs. We choose vs to vary between 8 TeV and 10 TeV in order to get larger negative
values for B1,2 and therefore obtain parameter points that are more favorable to lead
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to EWSR inside the wall. The results are shown in Figure 5.17. We find that, for this
parameter scan, vew(0) is lower than the values it can reach when the singlet admixture in
the SM-like Higgs boson Σ2 is higher. We therefore conclude that a larger effect of EWSR
inside the wall correlates with parameter points that have higher singlet admixture Σ2

in the SM-like Higgs boson. Such a scenario is, however, strongly constrained by collider
results as we discuss next.

(a) (b)

(c) (d)

Figure 5.18: Results of the parameter scan satisfying all theoretical and experimental constraints
including collider searches: (a) v̂ew(0) as a function of vs and the electroweak width;
(b), (c) and (d) v̂ew(0) as a function of the singlet admixtures in the CP-even Higgs
bosons Σ1, Σ2 and Σ3 respectively. We find that collider constraints impose that the
singlet admixture in the SM Higgs boson should be rather small, which leads to higher
values for v̂ew(0) than in the previous scan.

To demonstrate how collider constraints affect the results, we use ScannerS to generate
a set of parameter points in the same range as the one shown in Table 5.3, but where
also collider constraints are imposed. The results are shown in Figure 5.18. We find that
imposing collider constraints reduces the maximum singlet admixture Σ2 in the SM-like
Higgs boson to values lower than 20%, which in turn increases the minimal values obtained
for vew(0) by approximately one order of magnitude. For most parameter points of this
scan, we find that the heaviest CP-even Higgs boson is allowed to have the highest singlet
admixture Σ3 (see Figure 5.18d). For parameter points where the singlet admixture in the
lightest CP-even Higgs boson with a mass around 95 GeV is close to one Σ1 ≈ 1 (see Figure
5.18b), we find that vew(0) is large and therefore such a case will not yield electroweak
symmetry restoration5.

5 Note that the values for vs for the parameter points where Σ1 ≈ 1 varied between 100 GeV and 10 TeV.
Therefore, the obtained high values for vew(0) cannot be explained by a small vs.
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5.3.2 Scenario 2: Intermediate CP-even masses

mha mhb mhc mA mH± tanβ

125.09 [300, 700] [400, 700] [500, 900] [650, 900] [0.5, 8]

C2
hatt̄

C2
haV V Rb3 m2

12 vS type

[0.6, 1.2] [0.6, 1] [−1, 1] [2× 104, 2.2× 105] [100, 10000] 1− 4

Table 5.4: Set of input parameters for ScannerS scan for scenario 2. The masses and vacuum
expectation values are given in GeV , while m2

12 is given in GeV 2. Chatt̄ and ChaV V are
defined respectively as the coupling factors of the CP-even Higgs boson ha to the SM
gauge bosons and the top quark and are defined as ChaV V = cos (β)Ra1 + sin (β)Ra2

and Chatt̄ = Ra2/ sin (β) (see Table 2.2, and for more details [117]).

In this case, we consider the scenario where the masses of the extra CP-even Higgs Bosons
mh2 and mh3 are in the range 300 GeV < mh2 < 700 GeV and 400 GeV < mh3 < 700 GeV,
while mh1 corresponds to the SM-like Higgs boson. For the singlet VEV vs, the 15000
generated parameter points are again chosen in the range 100 GeV < vs < 10 TeV. All
parameter points in this scan also satisfy collider constraints.

(a) (b)

Figure 5.19: Results of the parameter scan for scenario 2. (a) The amount of EWSR inside the
domain wall v̂ew(0) as a function of the singlet VEV vs and the width δew of the
symmetry restoration region vew(x) around the wall. (b) The amount of EWSR inside
the wall as a function of the couplings ratios (λ7/λ6) and (λ8/λ6).

The results of this parameter scan are shown in Figure 5.19a. We find that fewer parameter
points are leading to large values of v̂ew(0) for large vs compared to scenario 1 (see Figure
5.18a). We also find that δew is overall smaller in this scenario. This is due to δnums being
smaller for higher masses mh2,3 .

We show in Figure 5.19b the dependence of the EWSR measure v̂ew(0) on the ratios λ7,8/λ6.
In this case, we observe that the electroweak VEV inside the wall v̂ew(0) decreases as the
absolute value of these ratios increases. Again, this is interpreted as a larger change in the
effective mass term alongside the wall occurring in a larger region in space. Therefore, the
profiles of the doublet Higgs fields have enough space to reach their minimal values inside
the wall. The correlations between the singlet admixtures Σi in Eq. (5.36) and the measures
vew(0) and δew are similar to the previous scenario. We find that EWSR is preferred for a
larger singlet admixture in the SM Higgs boson as can be seen in Figure 5.20. Note that
the collider constraints are fulfilled in the whole range of parameter points.
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Figure 5.20: Electroweak symmetry restoration measure v̂ew(0) as a function of the singlet admixture
in the CP-even Higgs bosons for scenario 2. In this case, the SM Higgs boson is the
lightest particle. We find, similar to the previous case, that the smallest v̂ew(0) correlates
with higher singlet admixture in the SM Higgs boson state.

5.3.3 Scenario 3: Heavy CP-even Higgs masses

In this scenario, we investigate the case where the extra CP-even Higgs bosons can be

mha mhb mhc mA mH± tanβ

125.09 [700, 1200] [700, 3000] [500, 1000] [650, 1200] [0.5, 10]]

C2
hatt̄

C2
haV V Rb3 m2

12 vS type

[0.6, 1.2] [0.6, 1] [−1, 1] [5× 104, 5× 105] [100, 10000] 1− 4

Table 5.5: Set of input parameters for ScannerS scan of scenario 3. The masses and vacuum
expectation values are given in GeV , while m2

12 is given in GeV 2. Chatt̄ and ChaV V are
defined respectively as the coupling factors of the CP-even Higgs boson ha to the SM
gauge bosons and the top quark and are defined as ChaV V = cos (β)Ra1 + sin (β)Ra2

and Chatt̄ = Ra2/ sin (β) (see Table 2.2, and for more details [117]).

very heavy. We fix the SM Higgs to be mh1 = 125.09 GeV and vary the heavier masses
700 GeV < mh2 < 3000 GeV and 700 GeV < mh3 < 3000 GeV. The value for the singlet
VEV vs varies again between 100 GeV and 10 TeV. The other parameter ranges are shown
in Table 5.5.

The results for the electroweak VEV inside the wall (see Figure 5.21a) are overall similar to
the previous case, i.e. smaller vew(0) inside the wall correlate with a higher singlet VEV vs.
The major difference can be seen in the decrease in the value of the width δew due to the
increase in the masses of the CP-even Higgses leading to smaller δnums and therefore, to an
overall smaller δew. We do not find a correlation between the values of the masses and the
electroweak symmetry restoration measure v̂ew(0) (see Figure 5.22a). The correlations are,
however, dependent on the mixing angles and therefore the singlet admixtures Σi. These
correlations are shown in Figure 5.22b, where the smallest values for v̂ew(0) are obtained,
again, for a higher singlet admixture Σ1 in the SM-like Higgs boson state.
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(a) (b)

Figure 5.21: Results of the parameter scan for scenario 3. (a) The amount of EWSR inside the
domain wall v̂ew(0) as a function of the singlet VEV vs and the width δew of the
symmetry restoration region vew(x) around the wall. We find that this scenario leads
to smaller minimal values for vew(0) than the previous scenario. (b) The amount of
EWSR inside the wall as a function of the ratios (λ7/λ6) and (λ8/λ6). We find that
the lowest values for vew(0) are obtained when both ratios are large and negative.

(a) (b)

Figure 5.22: Results of parameter scan for scenario 3. (a) The amount of EWSR inside the domain
wall v̂ew(0) as a function of the masses mh2

and mh3
(b) The amount of EWSR inside

the wall as a function of the singlet admixtures Σ1 related to the SM-like Higgs boson
h1 and Σ2 related to h2.

Concerning the width δew, we plot the results that we get for different ranges of vs as
shown in Figure 5.23. We find that δew is mostly independent of the range of vs. The width
is, however, largely dependent on the mass mh3 and we obtain the largest values of δew for
smaller mh3 .

As a summary of these three scenarios, we found that the singlet vev vs is the most
important parameter in determining the lowest values for the electroweak symmetry
restoration measure v̂ew(0) and that higher vs leads to smaller v̂ew(0). We found that the
masses of the CP-even Higgs bosons influence the width δew and that smaller masses lead,
overall, to a higher δew. The singlet admixture in the CP-even Higgs states also plays
a major role: a higher singlet admixture in the SM Higgs boson leads to smaller values
for v̂ew(0). This correlation obviously puts rather strong experimental constraints on the
feasibility of inducing electroweak symmetry restoration inside the singlet domain wall in
the N2HDM.
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(a) 100 GeV < vs < 2 TeV (b) 2 TeV < vs < 5 TeV

(c) 5 TeV < vs < 8 TeV (d) 8 TeV < vs < 10 TeV

Figure 5.23: Width δew of the Higgs doublet variation inside the wall for different ranges of vs. We
find that the behavior of δew is independent of the range of vs and is mostly determined
by the mass of mh3 .

5.3.4 Scans with fixed vs

vS(GeV) mha(GeV) mhb(GeV) mhc(GeV) tanβ m2
12(GeV²)

800 125.09 200− 1500 200− 2000 0.5− 10 0− 106

2500 125.09 200− 1500 200− 2000 0.5− 8 0− 106

6000 125.09 200− 1500 200− 2000 0.5− 7 0− 106

Table 5.6: Range of the parameter points generated by ScannerS for the different scenarios. For
the variables C2

hatt̄
, C2

haV V and Rb3 relevant for determining the mixing angles, we use
the same range as in the previous scans in Tables 5.3, 5.4 and 5.5.

In contrast to the previous scenarios where the singlet VEV vs was the primary variable
determining the amount of EWSR inside the wall for different mass hierarchies, we focus
here on the effects of varying the CP-even Higgs masses h2 and h3 as well as their mixing
angles while fixing vs and the mass of h1 to be the SM-like Higgs boson mh1 = 125.09 GeV
(see Table 5.6).
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(a) v̂ew(0) for vs = 800 GeV (b) δew for vs = 800 GeV

(c) v̂ew(0) for vs = 2500 GeV (d) δew for vs = 2500 GeV

(e) v̂ew(0) for vs = 6000 GeV (f) δew for vs = 6000 GeV

Figure 5.24: v̂ew(0) and δew for different fixed values for vs (800, 2500 and 6000 GeV) as a function
of the masses mh2

and mh3
and varying mixing angles. For all these scenarios, the SM-

like Higgs boson h1 has the mass mh1 = 125.09 GeV. The generated parameter points
satisfy all theoretical and experimental constraints, including collider constraints.

We show the results of the scans for different values of vs (800, 2500 and 6000 GeV) in
Figure 5.24. In terms of v̂ew(0) and for the three different values of vs, we observe that
smaller v̂ew(0) are obtained for mostly big and intermediate values of the masses mh2

and mh3 . However, those ranges of masses do not guarantee the possibility of having
EWSR inside the wall, as they can also lead to high values for v̂ew(0). We observe a large
dependence of the minimal obtained values for v̂ew on vs. As for the width δew, we find a
strong correlation between the masses and δew. We observe that smaller masses lead, in
general, to larger values as can be seen in Figures 5.24b, 5.24d, 5.24f. These results are in
good agreement with the general behavior found in the previous scans of scenarios 1, 2,
and 3.
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For the case when vs = 800 GeV, we obtain larger values for v̂ew(0) compared to the
scenarios with higher vs. This is because the generated parameter points for low vs
(satisfying all theoretical and experimental constraints) lead mostly to small values for
λ7,8/λ6. In order to further study this scenario of low vs, we look for parameter points
where the chosen masses and mixing angles lead to large negative λ7,8/λ6. We generated
parameter points where we impose a limit on λ7,8/λ6 < −8 to obtain rather small vew(0).
We found that most parameter points of this scan have a large singlet admixture Σ1 in
the SM Higgs boson state mh1 = 125.09 GeV. However, this set of parameter points is
experimentally ruled out and is even incompatible with the constraint of perturbative
unitarity. We therefore can conclude that, at zero or low temperatures, achieving electroweak
symmetry restoration using domain walls with rather low vs is ruled out.

5.4 different goldstone modes and cp-violation in
the vicinity of the wall

Until now we focused on the trivial case when the vacua for the Higgs doublets have
the same Goldstone modes in both domains. In a realistic electroweak phase transition,
however, one expects causally disconnected domains of the universe to end up in vacua
with different values for the Goldstone modes (2.34) given that they lead to degenerate
minima of the potential. Recall that the VEVs of the Higgs doublets can be written in the
general form (2.34):

⟨Φ1⟩ = U⟨Φ̃1⟩ = U
1√
2

(
0

v1

)
, ⟨Φ2⟩ = U⟨Φ̃2⟩ = U

1√
2

(
v+

v2e
iξ

)
, U = eiθexp

(
i
g̃iσi
2vsm

)
,

(5.37)

where U is an element of the SU(2)L × U(1)Y symmetry group. The possibility of hav-
ing different Goldstone modes (θ, g̃i) on different domains was found to have profound
consequences on the solutions related to the Z2-symmetry domain walls in the 2HDM
[76, 75, 1]. In general, one obtains several classes of domain wall solutions with different
properties such as CP-violating or electric charge-breaking condensates localized inside or
in the vicinity of the wall.

We now study these effects in the N2HDM. We consider two different cases of electroweak
symmetry breaking. The first case is the breaking of the electroweak symmetry at the same
time as the breaking of Z ′

2. This is a one-step phase transition according to:

(0, 0, 0) → (v1, v2,±vs).

In such a case the two domains related by the Z ′
2 symmetry will also have different

Goldstone modes. The second case is when the electroweak and the Z ′
2 symmetries are

broken at different times:

(0, 0, 0) → (0, 0,±v′s) → (v1, v2,±vs),

where vs and v′s can be equal or have different values. For this case, we assume that the Z ′
2

symmetry is spontaneously broken before the electroweak symmetry in order to form the
domain walls that will modify the doublet VEVs. Therefore, a domain with a given sign of
vs can include several smaller domains where the doublet VEVs have different Goldstone
modes.
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We start with the first case. This scenario requires that both the singlet and the doublets
acquire their vacuum expectation values at the same time in the early universe. Checking
whether such a one-step phase transition is the correct evolution in the early universe
would require a substantial finite-temperature numerical analysis for every considered
parameter point and is beyond the scope of the current analysis. Therefore, we assume
for simplicity and pedagogical reasons that this requirement is fulfilled and restrict our-
selves to the discussion of the extra domain walls properties that can occur in such a
case. We postpone a complete discussion of this requirement for a future comprehensive
work discussing the electroweak baryogenesis generated by the domain walls in the N2HDM.

We discuss the domain wall solution in the case when the Goldstone mode θ related to the
U(1)Y symmetry is different in both domains. We show the results using two parametrization
for the scalar fields: the non-linear parametrization where the field configuration is described
in terms of v1, v2, θ and ξ as defined in (5.37) as well as the linear parametrization where
the fields configuration for the scalar doublets is described using 8 degrees of freedom ϕi
with i ∈ {1, ..., 8}6:

Φ1 =

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
, Φ2 =

(
ϕ5 + iϕ6

ϕ7 + iϕ8

)
. (5.38)

One then re-constructs the fields v1(x), v2(x), θ(x) and ξ(x) using:

v1(x) =
1√
2

√
ϕ23(x) + ϕ24(x), v2(x) =

1√
2

√
ϕ27(x) + ϕ28(x), (5.39)

θ(x) = arg(ϕ3 + iϕ4), ξ(x) = arg(ϕ7 + iϕ8)− arg(ϕ3 + iϕ4). (5.40)

In order to get the domain wall solution of this scenario, we need to find the solution that
minimizes the energy functional Eθ(x) described, in the non-linear parametrization by:

Eθ(x) =
1

2

(
dv1
dx

)2

+
1

2

(
dv2
dx

)2

+
1

2

(
dv+
dx

)2

+
1

2
v22(x)

(
dξ

dx

)2

+
1

2
v21(x)

(
dθ

dx

)2

+
1

2
v22(x)

[(
dθ

dx

)2

+ 2
dθ

dx

dξ

dx

]
+

1

2
v2+(x)

(
dθ

dx

)2

+ VN2HDM (x), (5.41)

and, in the linear parametrization:

Eθ(x) =
(
dϕ3
dx

)2

+

(
dϕ4
dx

)2

+

(
dϕ7
dx

)2

+

(
dϕ8
dx

)2

+ VN2HDM (x). (5.42)

The gradient flow equations of motion of the domain wall solution are given by:

dv1
dt

=
d2v1
dx2

− dEθ
dv1

, (5.43)

dv2
dt

=
d2v2
dx2

− dEθ
dv2

, (5.44)

dvs
dt

=
d2vs
dx2

− dEθ
dvs

, (5.45)

dξ

dt
= v22(x)

(
d2ξ

dx2
+

d2θ

dx2

)
+ 2v2(x)

dξ

dx

dv2
dx

− dEθ
dξ

, (5.46)

6 Note that for the case where only the Goldstone mode θ varies, we only have to take into account 4 degrees
of freedom ϕ3, ϕ4, ϕ7 and ϕ8 in the linear parametrization.



130 electroweak symmetry restoration via domain walls

mh1 (GeV) mh2 (GeV) mh3 (GeV) vs (GeV) tan(β)

125.09 483.50 567.65 1340 3.14

m2
12 (GeV)2 α1 α2 α3 type

65316 1.29 0.51 0.33 1

Table 5.7: Parameter point used to calculate the CP-violating solution in Figure 5.25.

dθ

dt
= 2

dθ

dx

(
2v1(x)

dv1
dx

+ 2v2(x)
dv2
dx

)
+ 2v2(x)

dv2
dx

dξ

dx
+

(
v22(x) + v21(x)

)
d2θ

dx2

+ v22(x)
d2ξ

dx2
. (5.47)

In the linear parametrization, these are:

dϕ3
dt

=
d2ϕ3
dx2

− dEθ
dϕ3

, (5.48)

dϕ4
dt

=
d2ϕ4
dx2

− dEθ
dϕ4

, (5.49)

dϕ7
dt

=
d2ϕ7
dx2

− dEθ
dϕ7

, (5.50)

dϕ8
dt

=
d2ϕ8
dx2

− dEθ
dϕ8

. (5.51)

The advantage of using the non-linear parametrization is that one obtains the profiles of
v1,2(x) and ξ(x) directly. However, using the linear parametrization to solve the real-time
evolution of the field configuration numerically is much simpler since the time dependant
Klein Gordon equations in the case of the non-linear parametrization contain terms of
the form v22(x, t)

d2ξ
dt2

which can lead to numerical instabilities when v2(x) is very small.
We numerically solve this system of differential equations using a gradient flow algorithm
[76, 75] and take the boundary conditions for the Goldstone mode θ to be 0 at −∞ and
π/2 at +∞ using von Neumann boundary conditions. The chosen parameter point is given
in table 5.7 and the results for the non-linear parametrization are shown in Figure 5.25a.
We find that, in the vicinity of the wall, ξ(x) is non-zero leading to a non-zero imaginary
mass in the Yukawa sector and therefore to CP-violating phenomena [1]. This condensate
vanishes in the core of the wall given that v2(0) = 0 for this parameter point. We also
obtain a kink-like profile for θ(x) interpolating between 0 and π/2. The profile of ξ(x)
can be explained using the equation of motion for the Goldstone mode θ. It was found in
[76] that a change in θ across the wall will also induce a change in ξ(x) according to the
formula:

dθ

dx
=

−v22(x)
v21(x) + v22(x) + v2+(x)

dξ

dx
. (5.52)

To determine whether this solution is stable or not, we compute its energy σθ =
∫
dx Eθ(x)

and compare it to the energy of the standard solution (where both domains have the same
Goldstone modes and therefore ξ(x) = 0) as shown in Figure 5.25b. Numerically, we find
that the CP-violating solution has a slightly higher energy causing such a solution to be
unstable and to decay to the standard domain wall solution with ξ(x) = 0 everywhere.
This decay process occurs due to θ(x) varying with time in such a way as to make both
domains have the same Goldstone mode values (θ(−∞) = θ(+∞)).

In the case of electroweak symmetry restoration in a large region around the wall, we
found that the decay of this CP-violating domain wall solution takes a longer iteration
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(a) Non-linear parametrization
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(b) Non-linear parametrization
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(d) Linear parametrization

Figure 5.25: (a) Rescaled profile of the fields v̂i = vi/vsm for a domain wall solution with different
Goldstone modes θ in both domains. (b) The domain wall energy of the standard
solution (blue) and the CP-violating solution (dashed orange). The used parameter
point corresponds to the variables in Table 5.7. (c) and (d) same as (a) and (b)
respectively using the linear parametrization.

time. Looking at Eθ(x) (5.41), we see that all terms with a θ and ξ contributions are
dependent on v1(x) and v2(x). In the case of a total electroweak symmetry restoration
inside the wall, these terms vanish and therefore a CP-violating solution has almost the same
energy as the stable standard domain wall field configuration, leading the CP-violating
vacua around the wall to be long-lived. However, the imaginary mass proportional to
Im(v2(x)e

iξ(x)) = sin(ξ(x))v2(x) providing the CP-violation effects for fermions will, in
such a case, be small.

The results for the linear parametrization are shown in Figure 5.25c (where we converted the
profiles of ϕi(x) into their corresponding non-linear field profiles). The kink profile for θ(x)
is sharply changing around x = 0, in contrast with the results obtained using the non-linear
parametrization. The field configuration converges faster to its lowest energy solution and
has an energy that is nearly equal to the standard solution. The slight discrepancy in the
results is explained by the fact that the non-linear parameterization needs more time to
converge to the profiles for θ(x) and ξ(x) found using the linear parametrization. This can
be seen in the gradient flow equations of ξ(x) (5.46) and θ(x) (5.47), where the right-hand
side of both equations is very small as soon as the values for v1(x) and v2(x) tend to zero
inside the wall, leading to both dξ

dt and dθ
dt being small and therefore the relaxation of ξ(x)

and θ(x) to their stable profile will take significantly more iterations compared to the linear
parametrization (where both the norm and phases of the fields change at the same time).
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mh1 (GeV) mh2 (GeV) mh3 (GeV) vs (GeV) tan(β)

125.09 589.5 697.5 9635 1.28

m2
12 (GeV)2 α1 α2 α3 type

208249 0.94 0.25 -1.37 4

Table 5.8: Parameter point used to calculate the CP-violating solution in Figure 5.26.

We checked that both parameterizations quickly converge to the same results in the case
when v1(x) and v2(x) are not small inside the wall.

We now look at the second scenario where the electroweak symmetry gets broken after
the formation of the walls. In this case, one expects that a single domain of vs can have
multiple different values of Goldstone modes.

We model this scenario as follows. After EWSB, vacua with the same sign of v1,2 start
expanding in the region of the false vacuum v1,2 = 0. We then consider the case when a
kink in the Goldstone modes is produced in the vicinity of the moving Z ′

2 domain wall
due to the collision of regions with different Goldstone modes (see the initial vacuum field
configuration in Figure 5.26a).
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(a) Initial profile
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(b) Non-linear paramtrization
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(c) Linear parametrization
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Figure 5.26: Scenario where the EWSB occurs after the formation of the walls. The domain wall
solution for vs is centered at x = 0. (a) Initial field configuration, where the value π/2
for θ is obtained for the domain x > 0 corresponding to vs > 0 and part of the region
x < 0 corresponding to vs < 0, while the value θ = 0 is obtained for the rest of the
x < 0 domain. (b) Intermediate solution showing CP-violating vacua in the vicinity of
the wall. The parameter point used for this scenario is shown in Table 5.8. (c) and (d)
show the results obtained using the linear parametrization.
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We solve the system of equations (5.43)-(5.47) as well as (5.48)-(5.51) using the initial
boundary conditions and the initial guess solution shown in Figure 5.26a. Using the non-
linear parametrization, we find that the kink-like solution for θ(x) evolves and moves to
the vicinity of the wall, then slowly moves to the inner regions of the wall after some
iteration time. This behavior is, however, only possible in the case of electroweak symmetry
restoration in a large region around the wall: this is due to the extra contributions from a
non-zero θ(x) and ξ(x) to the energy Eθ(x) (5.41) being vanishingly small for v1,2(x) → 0 as
discussed earlier. Notice that in such a case, we obtain a CP-violating vacuum configuration
only in the vicinity of the region where the Goldstone mode changes. This behavior was,
however, not obtained when using the linear parametrization. In contrast to the non-linear
parametrization, the kink profile for θ(x) is centered inside the wall at x = 0. This leads
to a small non-zero ξ(x) inside the wall. In the case of the non-linear parametrization at
large iteration number in t, the kink profile in θ slowly moves to the center of the wall.
Therefore, both results are equivalent in the long-time limit.

In order to study the real-time evolution of this field configuration in the context of a
moving domain wall, we solve the time-dependent Klein-Gordon equations of motions for
the scalar fields7 in the linear parametrization:

d2ϕi
dt2

=
d2ϕi
dx2

− d
dϕi
dt

− dVN2HDM

dϕi
, (5.53)

where d represents a friction term. The results for different times are shown in Figure 5.27.
We find that as the domain wall moves to the left, the θ(x) (and consequently ξ(x)) field
profiles get dragged by the wall instead of the domain wall simply moving through and
leaving the kink profile of θ(x) behind.

For electroweak baryogenesis via domain walls to be effective, the CP-violating profile ξ(x)
should be non-zero on the outer edge of the wall to generate a non-zero imaginary mass
that creates an axial asymmetry in the EWSR region inside the wall. This is not the case
in our results, where a non-zero ξ(x) is localized inside the wall, and leads to a rather
negligible imaginary mass. However, one could also use the kink profile in θ(x) to produce
an axial asymmetry inside the wall. In fact, the kink profile in θ(x) will lead to a pure
gauge hypermagnetic field at the center of the wall:

Bµ(x) =
1

g
∂µθ(x), (5.54)

where g is the hypermagnetic field gauge coupling. This hypermagnetic field interacts
differently with left and right-handed fermions in the plasma and could eventually generate
the needed axial asymmetry inside the region where the sphaleron rate is unsuppressed,
leading to a successful creation of a matter-antimatter asymmetry. Investigating the role of
hypermagnetic fields in generating the axial asymmetry needed for EWBG was already
done in [168, 169, 170] in the context of standard bubble electroweak baryogenesis.

In the next section, we briefly discuss a simple calculation for the amount of baryogenesis
created by these domain walls.

7 We take into account a friction term ϕ̇i that dissipates the energy of the fields configuration and leads to
the relaxation of oscillations in the fields. This does not affect the observed phenomena and is only relevant
to suppress the oscillations in the fields.
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Figure 5.27: Time evolution of the scalar field configuration for a domain wall moving to the left
with velocity vDW . We show snapshots at different times mht1 = 150 (solid lines),
mht2 = 285 (dashed lines) and mht3 = 420 (dotted lines). The kink profile in θ(x) and
the CP-violating phase ξ(x) are both dragged with the domain wall as it moves to
another region of space instead of being left behind.

5.5 electroweak baryogenesis via domain walls

Since the nineties, several mechanisms using topological defects such as cosmic strings
and domain walls to source a matter-antimatter asymmetry were proposed [144, 145, 106,
146, 66, 47, 108, 171]. Their advantage compared with other well-known mechanisms such
as the standard electroweak baryogenesis is that they don’t rely on a first order phase
transition, since topological defects can also form after second order phase transitions [9].
In the case of cosmic strings or magnetic monopoles, it is clear that any generated baryon
asymmetry will be suppressed by the small volume that these defects occupy, which limits
the amount of baryogenesis of any mechanism relying on them [66]. However, domain walls
are two-dimensional and therefore will span a large volume of space during their evolution,
which avoids this large volume suppression.

We discuss in this section the interesting idea that domain wall generate the matter-
antimatter of the universe, which takes advantage of the results of the previous sections
where we showed that domain walls in the N2HDM can lead to EWSR in a large region
around the wall. We show that a hypercharge field centered around the wall can generate
a chiral asymmetry, which is subsequently transformed into a baryon asymmetry by the
sphalerons active inside the wall.

We start by briefly summarizing the standard electroweak baryogenesis mechanism, then
provide a simplified calculation for the amount of baryogenesis induced by the domain wall
electroweak baryogenesis mechanism.
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5.5.1 Standard Electroweak Baryogenesis

Electroweak baryogenesis [89, 90, 172, 173, 174, 175, 68, 176, 177, 69] is an elegant mecha-
nism to generate the matter-antimatter asymmetry of the universe. It relies on a first-order
electroweak phase transition in order to satisfy the Sakharov condition of out-of-thermal
equilibrium [71]. This is achieved by having bubbles of the true vacuum expanding in
the surrounding region of unbroken EW symmetry, where the vacuum expectation value
is zero. Since the sphaleron rate in the broken phase is exponentially suppressed, the
bubble wall separates the regions where the sphalerons are active (outside the bubble)
from the regions where they are inactive (inside the bubble). Note that a EW baryogenesis
using a second-order EW phase transition is very inefficient [178] due to both the lack
of departure from thermal equilibrium as well as the generated baryon asymmetry being
washed out due to the expansion of the universe [178]. In fact, since the order parameter
(the vacuum expectation value of the Higgs field) during a second order phase transition
changes continuously and uniformly in space, there is no hard separation between regions
where the sphaleron rate is unsuppressed from the regions where they are suppressed
leading to the wash-out of any generated baryon asymmetry.

Figure 5.28: Mechanism for the standard electroweak baryogenesis. The bubble wall acts as a barrier
between regions where baryon number violating processes are active and regions where
they are suppressed. A CP-violating source on the wall leads to a chiral asymmetry
which biases Sphalerons active outside the bubble into producing more matter than
antimatter. The figure was taken from [68].

The standard realization of the electroweak baryogenesis mechanism, in which the baryon
asymmetry is generated in the symmetric region near the wall (see Figure 5.28), relies on
the following steps:

• Fermions in the thermal plasma scatter off the wall in a CP-violating way. This leads
to a different reflection rate of left-handed particles compared to the reflection rate
of right-handed antiparticles. We therefore obtain a chiral asymmetry in front of the
wall.

• This chiral asymmetry diffuses in the symmetric region and is converted to a baryon
asymmetry via sphaleron transitions with a rate Γsph ∼ κα4

wT
4.



136 electroweak symmetry restoration via domain walls

• As the bubble of the broken phase expands further, the generated baryon asymmetry
is eventually caught inside the bubble. However, since the sphaleron rate inside the
wall is exponentially suppressed Γsph ∼ e−Esph/T with Esph ∝ v(T ), this generated
baryon asymmetry is frozen inside the bubble and is not washed-out.

Unfortunately, this elegant mechanism suffers from serious experimental constraints [179].
Besides the need for a first-order phase transition, the requirement of a source for CP-
violation at the bubble wall is heavily constrained by electron dipole moment experiments
[116]. The formation of domain walls does not require a first order phase transition.
Since we showed in the previous section, that it is possible to obtain both a region of
EW symmetry restoration and a CP-violating source localized inside the wall (and thus
naturally circumventing any EDM constraints), using domain walls in the context of
electroweak baryogenesis provides a new direction for mechanisms at the weak scales which
can source a matter-antimatter asymmetry.

5.5.2 Domain Wall Electroweak Baryogenesis
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Figure 5.29: Mechanism for electroweak baryogenesis via domain walls.

We now briefly describe the general idea for electroweak baryogenesis via domain walls. In
this case, the Sakharov conditions are fulfilled as follows:

• Baryon number violating processes: We keep using the sphaleron processes as a source
for baryon number violation. The EW symmetry is restored (or at least the VEVs
are very small) inside the wall. This leads to unsuppressed sphalerons inside the wall.

• CP-violating source: We rely in our case on the hypercharge gauge field localized
inside the wall to source a chiral asymmetry inside the wall that biases sphalerons
into producing more baryons than anti-baryons.

• Out-of-thermal-equilibrium condition: Since the EW symmetry restoration occurs
only inside and in the vicinity of the wall, we naturally obtain a separation of regions
where the sphaleron rate is active (inside the wall) from regions where the sphaleron
rate is unsuppressed (outside the wall). A bias term in the potential will lead to the
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annihilation of the domain wall network, making this mechanism only active for some
time. This can be used in order not to wash out the created baryon asymmetry.

Having shown that the different Sakharov conditions are, in principle, fulfilled in our model,
we now describe the dynamics of this mechanism. The idea is that as the domain walls
move through the universe (due to their surface tension or pressure due to a bias term),
the fermions in the thermal plasma enter the wall and scatter off the hypermagnetic field

Bµ(x) =
1

g
∂µθ(x) centered around the wall as shown in Figure 5.27. Due to interference

from both edges of the wall, the wave functions of the left-handed fermions and right-
handed antifermions will have different scattering rates. This generates a chiral asymmetry
inside the wall, which subsequently gets transformed into a baryon asymmetry via the
unsuppressed sphaleron rate in the symmetry-restored region. We show a simple sketch of
the mechanism in Figure 5.29.

In the following, we find the net injected flux that participates in the baryogenesis mecha-
nism. This is obtained by calculating the flux of left-handed particles minus the flux of
their CP counterpart i.e. right-handed antiparticles. We find that this flux is equivalent to
calculating the chiral asymmetry inside the wall, which we define as ∆LR:

∆LR = J inside
L − J inside

R , (5.55)

where the currents J inside
L,R denote the left and right-handed currents inside the wall. We

solve the Dirac equation for a fermion incident from the left and moving towards the wall:

∂xu(x, t) =

[
−iγ1γ0∂t − i∂xθ(x)(YLPL + YRPR) + iγ1mR(x)− γ1γ5mI(x)

]
u(x, t),

(5.56)

where we used Bµ(x) =
1

g
∂µθ(x) in the Lagrangian. We perform our calculations in the

thin wall limit. In our case, the CP-violating phase ξ in the vicinity of the wall is negligible.
Therefore, we have mI(x) = 0. The profiles of the other fields and masses are given by:

mR(x) = m0 H(−x) +m0 H(x− ldw), (5.57)

∂xθ(x) = ∆θ δ(x− ldw
2

), (5.58)

where ldw denotes the size of the symmetry restored region and H denotes the Heaviside
step-function.

We write down the plane wave solution in the different regions as:

u(t, x < 0) = e−iEt+ip1x uinc + e−iEt−ip1x uref , (5.59)

u(t, 0 < x < ldw/2) = e−iEt+ip2x ut2 + e−iEt−ip2x ur2 , (5.60)

u(t, ldw/2 < x < ldw) = e−iEt+ip2x ut3 + e−iEt−ip2x ur3 , (5.61)

u(t, ldw < x) = e−iEt+ip1x utra, (5.62)

where E is the energy of the incident particle, p1 its incident momentum in the broken
phase, and p2 its momentum in the symmetry restored region where the particle is massless.
We solve the Dirac equation analogously to chapter 4 by using the continuity condition on
the edges of the wall and the integration procedure at x = ldw/2.

Before we deal with the relevant currents inside the wall that will lead to baryogenesis, we
first discuss the reflection and transmission rates outside the wall, which show an interesting
behavior compared with the usual scattering encountered in chapter 4.
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The reflection and transmission coefficients are again given by:

T =
Jtra

Jinc
=
ūtraγ1PLutra

2p1
, R = −

Jref

Jinc
=
ūrefγ1PLuref

2p1
. (5.63)

We first start with the case when no hypermagnetic field is present inside the wall. The
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Figure 5.30: Scattering rates for a top quark incident on a symmetry restored region ldw = 5 ·m−1
h .

(a) In the case when ∆θ = 0 and (b) when ∆θ = 0.15π.

results for reflection and transmission coefficients of a top quark scattering off a symmetry
restored region of length ldw = 5 ·m−1

h as a function of the incident top quark momentum
is shown in Figure 5.30a, which correspond to a transmission and reflection coefficient
given by:

T =
2p21

m2
f + 2p21 −m2

f cos(2ldwE)
, R = 1− 2p21

m2
f + 2p21 −m2

f cos(2ldwE)
. (5.64)

We observe an oscillation in the reflection and transmission coefficients with particular
values prt for the momentum where the particle is always transmitted with T (prt) = 1

when 2ldwE = 2πn with n an integer number. These are given by prt = (π
2n2

4l2dw
−m2

f )
1/2.

This behavior is known as the Ramsauer-Townsend effect. This effect was discovered
in 1921 in the scattering of very low energy electrons on Xenon gas. These low-energy
electrons showed a very small scattering rate and thus a high rate of transmission at
particular energies. This effect was later explained in the framework of quantum mechanics
by considering the scattering of the electron on the Xenon atom taken to represent an
electrostatic potential well [180, 181, 182]. When ∆θ ̸= 0, we still obtain oscillations in
the scattering rates. However, the potential barrier in the form of the hypermagnetic field
damps the transmission coefficient as shown in Figure 5.30b.

The relevant currents for electroweak baryogenesis via domain walls are the ones inside the
wall:

J L
inside,1 = ūt2γ1PLut2 + ūr2γ1PLur2 , (5.65)

J R
inside,1 = ūt2γ1PRut2 + ūr2γ1PRur2 , (5.66)

J L
inside,2 = ūt3γ1PLut3 + ūr3γ1PLur3 , (5.67)

J R
inside,2 = ūt3γ1PRut3 + ūr3γ1PRur3 . (5.68)

We find that the currents J L,R
1 and J L,R

2 are the same on both regions separated by
the hypermagnetic field. We plot in Figure 5.31 the difference ∆LR (5.31) in the current
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between the left-handed and right-handed particles. This difference in current can also give
us the net left-handed particle current inside the wall since it is equivalent to calculating
JL − JL̄, the difference between the left-handed and its CP-conjugate current. We see
that, for this particular value of ∆θ = 0.15π, ∆LR first grows for low momenta, then
subsequently oscillates around 0. Therefore, only relatively low momenta will significantly
contribute to the generation of a baryon asymmetry.
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Figure 5.31: Difference between the left-handed and right-handed currents inside the wall.

Having obtained this chiral asymmetry inside the symmetry-restored region, we now need
to calculate the generated baryon asymmetry. A detailed calculation would require taking
into account several effects. These include, for example, diffusion effects inside the wall
(when the symmetry restoration region is large), the consequences of any chiral asymmetry
outside the wall, as well as the detailed evolution of the domain wall network, such as the
velocity of the walls and their spatial distribution and annihilation time. We therefore only
give a simplified "back-of-the-envelope" calculation to illustrate that this mechanism can
indeed generate a significant amount of baryon asymmetry at the same order of magnitude
as the experimentally observed values.

It is known that the production rate of baryons at a temperature T can be written as [107]:

dnb
dt

= −
6NFΓsph

T 3
(3nq,L + nl,L), (5.69)

where NF denotes the number of particle families, nq,L the net number density of left
handed quarks and nl,L the net number density of left-handed leptons. The net left-handed
number density is calculated by:

nq,L =

∫
d3p

(2π)3
∆LRf(px, p⊥, T ), (5.70)

where:

f(px, p⊥) =
|px|
E

1

1 + exp
(
γ/T (E − vd

√
p2x −m2

f )
) , (5.71)

denotes the flux of particles moving with a velocity vd at a temperature T with momentum
px, p⊥ denoting the momentum in the direction perpendicular to the wall, and γ =
(1− v2d)

−1/2.
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Using dnb
dt = −vd dnb

dx , and for a domain wall which passes a volume fraction Vdw, the final
amount of created baryogenesis normalized by the entropy is then given by:

nb
s

≈ 45

2π2g∗T 3

6NF

T 3

Γsym
sph

vd
nq,LldwVdw, (5.72)

where Γsym
sph = κα4

wT
4 denotes the sphaleron rate per unit volume in the symmetric phase,

and we used s = 2π2

45 g
∗T 3. Using this simplified formula for top quarks mt = 172 GeV,

T = 50 GeV, number of degrees of freedom g∗ = 100, ldw = 5 ·m−1
h , ∆θ = 0.15π, vd = 0.3,

and Vdw = 0.2 we obtain a baryon asymmetry:
nb
s

≈ 1.41× 10−11,

which is not far from the experimentally measured value nb
s ≈ 9× 10−11 [54, 183].

Therefore, this mechanism for baryogenesis via domain walls can be an effective way to
explain the observed matter-antimatter asymmetry of the universe. However, as pointed
out, this is a simplified calculation and several effects should be taken into account when
calculating the actual baryon asymmetry, like the diffusion of the fermions inside the wall
in case of large regions of symmetry restoration. One also needs to effectively calculate the
time when domain walls form and annihilate, as well as the time when the electroweak
symmetry gets broken, in order to determine the time interval during which this mechanism
is active. We showed here that the chiral asymmetry is obtained by a value ∆θ = 0.15π.
However, other values such as −0.15π will lead to an opposite antibaryon asymmetry,
contributing to a wash-out effect in case when the same volume fraction is also spanned
with that value of ∆θ = −0.15π.

These effects should be evaluated in the framework of a realistic simulation for an electroweak
phase transition in the early universe, which is beyond the scope of this work. In case of
washout, one can also look at other conventional ways to obtain the CP-violation, such
as complex Yukawa couplings or a CP-violating phase in the early universe, such as the
implementations in [107] and [108].

Note that this mechanism might also present a way to enhance or wash out a baryon
asymmetry already generated by conventional electroweak baryogenesis during a first-order
electroweak phase transition. This happens if the model includes the formation of domain
walls that lead to symmetry restoration inside them, since sphaleron processes will be
reactivated inside that region.

5.6 discussion

In this chapter, we investigated domain walls that are related to the singlet scalar field
of the N2HDM, and arising after spontaneous symmetry breaking of the Z ′

2 symmetry in
the early universe. We numerically calculated the equations of motion of the scalar fields
present in the N2HDM in order to determine the profiles of the doublet scalar fields in
the background of the singlet domain wall. We found that the profile of the doublet fields
can change considerably in the vicinity and inside the wall, making either the VEVs v1,2
smaller or larger inside the wall. We focused, in particular, on the scenario where v1,2(x)
becomes very small inside the wall, leading to electroweak symmetry restoration.

The presence of the domain wall solution effectively renders the 2HDM part of the scalar
potential x-dependent. This has the effect that the 2HDM potential in the vicinity and
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inside the wall can be in the symmetric phase where the minima of the potential are
v1,2 = 0. We showed that this case is mostly related to the sign of the effective mass
terms of the doublets M1,2, which can turn positive inside the wall where the contribution
λ7,8v

2
s(x) vanishes. We discussed in detail the different behaviors of the doublet fields inside

the wall and showed that most parameter points where the effective mass terms become
larger inside the wall lead to smaller values for the doublet VEVs inside and in the vicinity
of the wall, while smaller (more negative) values for the effective mass term lead to higher
values of v1,2(0). We also discussed the different possible anomalous behaviors for some
particular parameter points.

We showed, in particular, that positive effective mass terms inside the wall are not sufficient
to force the doublet VEVs to become zero, even though the potential of the Higgs doublets
is in the symmetric phase inside the wall. To achieve EWSR, it was crucial to have a large
change in the effective mass terms occurring in a large region of space in order for the
doublet VEVs to converge to zero inside the wall. We found that parameter points that
can satisfy this requirement have large and negative ratios (λ7,8/λ6), and we found that
they lead to very small v1,2 in a large region around the wall.

To find parameter points with large (λ7,8/λ6), we looked at different scenarios that satisfy
all theoretical and experimental constraints including collider searches and showed that
the vacuum expectation value of the singlet scalar as well as the masses of the CP-even
Higgs bosons are the most important model parameters. In particular, we find that larger
vs mostly lead to smaller doublet VEVs inside the wall, while lower masses of the CP-even
Higgs bosons mostly lead to a larger width for the EWSR region. Effects from the mixing
angles between the different CP-even Higgs bosons also play an important role, since we
observed that parameter points with higher singlet admixture in the SM-like Higgs boson
state tend to have a higher electroweak symmetry restoration effect inside the wall. This,
however, already puts constraints on the amount of EWSR that can be achieved inside the
wall, given that collider constraints restrict the amount of singlet admixture in the SM-like
Higgs boson state.

We also showed that it is possible to induce small CP-violating field configurations inside
the wall in the case when different regions of the universe acquire different values for the
Goldstone modes after EWSB. In contrast to the analogous case in the 2HDM [76, 1], we
found that the energy difference between CP-violating solutions and standard domain wall
solutions is very small, especially for parameter points that lead to EWSR in a large region
around the wall. One would expect that the CP-violating domain wall in such scenarios
would be long-lived. Determining the lifetime of these CP-violating solutions is crucial for
the calculation of the matter-antimatter asymmetry generated by the motion of the domain
walls in the N2HDM. Even though the obtained CP-violation is rather small, we find
that the kink profile in θ(x) is long-lived and leads to the generation of a hypermagnetic
field focused sharply inside the center of the wall. Since this hypermagnetic field interacts
differently with left and right-handed fermions in the plasma, we anticipated that it could
lead to the generation of the needed axial asymmetry inside the region of electroweak
symmetry restoration.

We performed a simplified calculation for this baryon asymmetry generated by the domain
walls. Even though we showed that this mechanism can generate an asymmetry which lies
in the same order of magnitude as the one observed in nature, problematic washout effects
can be relevant, and a precise calculation is necessary.

We performed in this study the first steps toward studying the viability of electroweak
baryogenesis via domain walls in the N2HDM. This mechanism relies on the weak sphaleron
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rate inside the wall being less suppressed than outside of it. The sphaleron rate in the broken
electroweak phase and at a temperature T has an exponential suppression due to a non-zero
doublets vacuum expectation value vew and is proportional to Γsphaleron ∝ e(−4π(vew/gT ))

[68], where g is the weak coupling. Therefore, for small or vanishing values of vew, the
sphaleron rate is not suppressed, and the rate of baryon-violating processes inside the
wall will be significantly higher than that outside of it. Another important requirement
is that the region of symmetry restoration needs to be large enough to fit a sphaleron. A
significant amount of baryon asymmetry was shown to be generated using this mechanism
in a simplified scenario. However, a complete and detailed calculation of the amount of
baryogenesis generated via this mechanism in the case of an annihilating singlet domain
wall network in the N2HDM is the subject of future work, where we incorporate thermal
as well as diffusion effects for the fermions that scatter off the domain walls and most
importantly, taking into account washout effects and the dynamics of the walls until their
annihilation.

Another issue, which was also encountered in our analysis, is the possibility of negative
transmission or reflection rates for the chiral states (left-handed or right-handed). Such an
issue could be caused by a Klein Paradox in the CP-violating scattering of this mechanism.
In this case, a treatment of the scattering process in the framework of quantum field theory
might be required.



6 E L ECTROWEAK VACUUM DECAY INDUCED BY
DOMA IN WAL LS

This chapter is based on the following work, prepared for publication:

[3] M. Y. Sassi and G. Moortgat-Pick, “Electroweak Vacuum Decay in the N2HDM
Induced by Domain Walls.” In preparation, to be published, 2025

6.1 motivation and general idea

Figure 6.1: A generic illustration of the scalar potential in models with several Higgs bosons. The
picture was created by Kateryna Radchenko [121].

In the Standard Model (SM) of particle physics, quarks, leptons, and gauge and scalar
bosons acquire a mass via the Higgs mechanism, relying on the scalar field of the Higgs
boson. After electroweak symmetry breaking in the early universe, the Higgs field acquires
a vacuum expectation value corresponding to a minimum of the scalar potential. In the SM,
this minimum corresponds to a VEV vsm ≈ 246 GeV. At tree-level, the SM electroweak
(EW) minimum is stable. However, when higher-order corrections are included in the
parameters of the SM Higgs potential, the potential can develop another deeper minimum
at high scales, rendering the SM EW minimum to be a local minimum and thus metastable
[118, 184]. Current experimental results for the top quark mass, strong coupling constant,
and the W boson mass favor this scenario [185], and the electroweak (EW) vacuum in the
SM could, therefore, be metastable but long-lived.

143
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When considering an extended scalar sector, the addition of extra degrees of freedom can
lead, already at tree-level, to the existence of several extra minima other than the EW
minimum [27, 186, 112, 122, 187, 113, 188, 119]. The EW minimum is then stable if it is
the global minimum of the potential, metastable when the tunneling rate between the EW
minimum and the global minimum leads to an EW minimum with a lifetime larger than
the age of the universe, and unstable when the lifetime of the EW minimum is smaller than
the age of the universe. Obviously, an unstable EW minimum is ruled out, and the vacuum
(meta)stability of the EW vacuum can be used as a strong constraint for the viability of
models with an extended scalar sector [27, 186, 112, 122, 187, 113, 188, 119].

The vacuum stability of the Z ′
2 symmetric N2HDM was extensively investigated [27], and

a comparison with the 2HDM + S where S denotes a complex singlet scalar was done in
[186]. It was found that large regions of parameter points in the N2HDM can be metastable,
with the EW vacuum being very long-lived. In such a case, the potential barrier between
the EW minimum and the global minimum can be very large, leading to an extremely
small tunneling rate between the EW vacuum and the global one. However, these studies
didn’t take into account the possible presence of domain walls in the N2HDM. As was
shown in the previous chapter, due to the coupling between the singlet and doublet scalar
fields, the potential for the doublets in the background of the singlet domain wall will be
dependent on the position with respect to the core of the domain wall. Inside the core of
the defect, the VEV of the singlet field vanishes, and the effective quadratic terms for the
doublet fields will be different. Because of this, the potential barrier to the global minimum
of the potential can be different or even vanish, leading to the possible nucleation of the
global minimum inside the wall. Due to the difference in the potential energy, the global
minimum will then expand outside of the wall, and the universe is eventually populated
with the global minimum instead of the EW minimum.

This chapter is organized as follows: we start with a brief discussion of the vacuum stability
of the N2HDM. We later discuss how domain walls can lead to the decay of very long-lived
EW minima via a classical rollover triggered in the core of the wall. Finally, we describe
some phenomenological scenarios to demonstrate the possibility of using the mechanism of
vacuum decay via domain walls in order to rule out large regions of the otherwise viable
parameter points in the N2HDM.

6.2 vacuum instabilities in the n2hdm

In this section, we briefly discuss the concept of vacuum instability and summarize the
results obtained in [27], using the potential of the Z ′

2 symmetric N2HDM in (5.1).

In our work we consider parameter points where the physical vacuum has an EW vacuum
for the Higgs doublets vew =

√
v21 + v22 ≈ 246 GeV leading to the observed masses of the

weak gauge fields as well as a non-zero VEV for the singlet scalar vs ̸= 0. We follow the
notation in [27] and denote this minimum as N s :

⟨Φ1⟩N s =
1√
2

(
0

v1

)
, ⟨Φ2⟩N s =

1√
2

(
0

v2

)
, ⟨Φs⟩N s = vs. (6.1)

It was found in [27] that for several parameter points of the model, the vacuum N s is not
the global minimum, and different types of vacua can be deeper. This includes:
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• Electric-charge breaking vacua CB:

⟨Φ1⟩CB =
1√
2

(
0

c1

)
, ⟨Φ2⟩CB =

1√
2

(
c+

c2

)
, ⟨Φs⟩CB = 0. (6.2)

• CP breaking vacua CP:

⟨Φ1⟩CP =
1√
2

(
0

v̄1

)
, ⟨Φ2⟩CP =

1√
2

(
0

v̄2e
iξ

)
, ⟨Φs⟩CP = 0. (6.3)

• Deeper neutral EW breaking vacua leading to different gauge boson masses v′ew =√
v′21 + v′22 ̸= 246 GeV and a different vs (denoted as N ′s) or a vanishing vs = 0 (denoted

as N ′):

⟨Φ1⟩N ′ =
1√
2

(
0

v′1

)
, ⟨Φ2⟩N ′ =

1√
2

(
0

v′2

)
, ⟨Φs⟩N ′ = 0. (6.4)

Electric charge and CP-breaking vacua with a non-zero VEV for vs cannot be deeper than
the N s (see [27] for a detailed discussion), and we therefore don’t consider them in this
work.

The existence of minima deeper than our EW minimum requires a careful study of the
metastability of the vacuum. This requires the calculations of the tunneling rate from the
EW vacuum to the deeper vacuum. This rate per unit volume is related to the bounce
action B by [189]:

Γ = Ke−B, (6.5)

where K is a dimensionful parameter that has subdominant effects on the value of the
tunneling rate. The bounce action B for a scalar field configuration ϕ is obtained by finding
the stationary point of the Euclidean action [189]:

B = 2π2
∫ ∞

0
ρ3

d

dρ

[
1

2

(
d

dρ
ϕB(ρ)

)2

+ V (ϕB(ρ))

]
, (6.6)

where ρ =
√
t2 − x2 − y2 − z2 denotes the spacetime variable, V is the scalar field potential,

and ϕB(ρ) is the field bounce solution of the Euclidean equation of motion:

d2ϕ

dρ2
+

3

ρ

dϕ

dρ
=
∂V

∂ϕ
, (6.7)

which is solved using the boundary conditions:

ϕ(∞) = ϕv and

(
dϕ

dρ

)
ρ=0

= 0, (6.8)

with ϕv denoting the metastable vacuum. Calculating this bounce action and determining
the tunneling rate is usually done using numerical tools such as e.g. EVADE [189], which we use
throughout our work. Since the tunneling rate (6.5) to the global minimum is exponentially
suppressed with the value of B, the bounce action B predominantly determines the fate of
the EW vacuum. By comparing the age of the universe to the value of Γ, one determines
the intervals where the EW vacuum is unstable or metastable [189]. For parameter points
with B > 440, the transition from the EW vacuum to the deeper vacuum takes longer than
the age of the universe [189]. Therefore, our EW vacuum is then deemed metastable and
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mHy ,mHz ,mA mH± tanβ m2
12 vS

min 30 GeV 150 GeV 0.8 0 GeV2 1 GeV
max 1.5 TeV 1.5 TeV 20 5× 105 GeV2 3 TeV

Table 6.1: Input parameters used for the scan with ScannerS. The mixing angles α1,2,3 were not
constrained. The mass mHx

= 125.09 GeV.

long-lived, and the parameter point is not ruled out. In case 390 < B < 440, the fate of the
EW vacuum is uncertain, and for B < 390, the EW vacuum is short-lived and unstable,
rendering such parameter points unphysical [189].

This analysis of vacuum stability is valid for the regions of the universe that are far from
the domain wall of the singlet scalar. As we saw in chapter 5, the vanishing of vs inside
the domain wall changes the effective quadratic terms in the potential of the doublet fields,
making it necessary to check the tunneling rate to the deeper vacua inside the core of the
domain walls.

Before discussing the role of domain walls in inducing the decay of long-lived EW vacua to
deeper vacua, we briefly summarize some phenomenological aspects of the vacuum stability
and instability and their influence on the allowed parameter space of the N2HDM. This is
done following the numerical approach used in [27], and we refer the reader to that work for
a comprehensive discussion. We perform a parameter scan of 105 parameter points of the
N2HDM of type 1, which fulfill both theoretical constraints of perturbative unitarity and
boundedness from below as well as the experimental constraints from precision electroweak
variables, collider constraints from Higgs searches and Higgs measurements, as well as flavor
constraints (see section 2). We also impose the condition of electroweak and Z ′

2 symmetry
restoration at high temperatures (see section 5.2.1) in order to ensure the formation of
the singlet domain walls in the early universe. All these constraints were implemented in
ScannerS [117], which generates random parameter points satisfying all these conditions.
We follow the analysis in [27] and take the same range of model variables for the generated
parameter points (see Table 6.1). For each parameter point, the stability of the EW vacuum
is verified against the existence of deeper vacua using EVADE. We find that for this random
parameter scan, 33% of the viable parameters exhibit a deeper vacuum than the EW one.
These vacua can be of the N , CB and CP types. Almost 25% of the viable parameter points
have a long-lived EW vacuum that has a lifetime larger than the age of the universe, and
8% of the parameter points exhibit a short-lived EW vacuum that decays to the deeper
vacuum and therefore is a dangerous minimum. The deeper vacua that were found in
this scan had a vanishing vs and therefore the rate of decay of the EW minimum will be
enhanced in the vicinity and inside the singlet wall (where vs(0) = 0), as will be shown
later.

The presence of deeper minima than the EW one in this scan is random and does not
exhibit strong correlations with the variables of the model. This was also found in [27]
where it was shown that it is possible to obtain some constraints on the signal strength
µγγ for the decay of the h125 mass eigenstate to a pair of photons normalized to the rate
of the SM Higgs decay to two photons, as a function of the charged Higgs mass mH± . The
results are shown in Figure 6.2 where we differentiate between parameter points having a
stable EW vacuum (blue), parameter points having a long-lived EW vacuum (orange), and
parameter points having a short-lived unstable EW vacuum (black). The points with an
unstable EW vacuum are plotted first, then stable points, and finally metastable ones on
top.
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(a) (b)

Figure 6.2: EW vacuum (in)stability for the random parameter scan. (a) The stability of the EW
vacuum as a function of the signal ratio µγγ and the charged Higgs mass m±

H . (b) The
stability of the vacuum as a function of the potential variables λ7 and λ8.

We find that the regions of vacuum stability and instability mostly overlap. For small
masses mH± between 300 GeV and 600 GeV and µγγ > 1, we find that the EW vacuum is
short-lived and therefore one can exclude that region of the parameter space on vacuum
stability arguments. We also observe (see Figure 6.2b) that the EW vacuum for negative λ7
and λ8 is always stable and the EW minimum is the global minimum in that scenario. The
absence of a N -type vacuum in this case can be explained by the fact that for λ7,8 < 0,
the effective mass terms of the Higgs doublets receive a large positive contribution in the
direction where ϕs → 0, due to λ7|Φ1|2ϕ2s + λ8|Φ2|2ϕ2s vanishing. In this case, the potential
of the Higgs doublets approaches the local extremum (v1, v2) = (0, 0), which always lies
higher in the potential than the EW minimum.

Even though there is no strong correlation between short-lived EW vacua and model
parameters, vacuum instability can be used to exclude a large number of parameter points
of the model, which would otherwise be viable from a theoretical and experimental point
of view. We also find that a large set of the parameter points of the random scan shows
the presence of long-lived EW vacua. In principle, these metastable vacua are physically
allowed since their lifetime is (much) larger than the age of the universe. However, we
found that the deeper vacua of these parameter points have a vanishing vs = 0. In the
case of a homogeneous vacuum everywhere in the universe where every point in space falls
into the EW vacuum N s, the metastability of the EW vacuum is ensured. However, the
presence of domain walls makes the singlet VEV vs(x) space-dependent, with regions of
the universe inside the domain wall having vs(0) = 0. It is therefore important to check
whether the presence of the walls will induce the decay into the deeper vacuum, making the
long-lived EW vacuum unstable. In the next chapter, we solve the domain wall solutions
in the N2HDM and check the fate of long-lived EW vacua inside and in the vicinity of the
domain wall.

6.3 domain walls in the n2hdm inducing ew vacuum
decay

As discussed in chapter 5, the spontaneous breaking of the Z ′
2 symmetry leads to the

formation of cosmic domain walls in the early universe [8]. Due to the Z ′
2 symmetry, the
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two vacua vs and −vs are degenerate1 and therefore, have the same probability of occurring
in the early universe. Different patches of the universe would then acquire different signs for
vs, and these domains will be separated by domain walls where vs = 0. In order to obtain
the field profile of the domain walls, one solves the equation of motion of the scalar fields
ϕi with i = 1, 2,+, s which will minimize the energy density of the vacuum configuration:

∂2ϕi
∂t2

− ∂2ϕi
∂x2

+ d
∂ϕi
∂t

+
∂VN2HDM

∂ϕi
= 0, (6.9)

where d is a friction term needed in order to relax the initial energy of the field configuration
into the lowest energy solution. This friction term is related to both the expansion rate in
the early universe as well as the friction induced by the interaction of the domain wall with
the primordial thermal plasma. In our work, we do not explicitly estimate the value of d,
and we use it in order to relax the field configuration into its lowest energy configuration.
For d = 0, we obtain large gradients in the field configuration which disturb the numerical
solution of this system of equations2. The boundary conditions are taken to be ϕs = −vs at
−∞ and ϕs = vs at +∞ for the singlet field and ϕ1,2 = v1,2 at ±∞ where v1,2 denote the
EW vacuum. The initial field profiles are taken to be a tanh(x) function for the singlet field
and a constant v1,2 for the doublets. We obtain the static field configuration by solving this
differential equation numerically using the Euler method with spatial derivatives calculated
using the three-point central difference formula.

We solve the coupled system of differential equations for the potential at T = 0. This is
done for two reasons. First, in this work, we only consider the possibility of EW vacuum
decay induced by the presence of domain walls in order to constrain the parameter points
of the N2HDM, and therefore, we don’t need to know exactly at which temperature after
EW symmetry breaking, the decay to the deeper vacuum occurs. Since this decay will
necessarily rule out the parameter point, determining the precise thermal evolution of such
parameter points is not phenomenologically relevant. Second, performing large parameter
scans and determining a precise thermal evolution of the finite-temperature potential of the
N2HDM using available dedicated tools such as BSMPT [150] is a rather time-consuming
and computationally challenging task. For simplicity and speed of the calculation, we use
the potential at T = 0. This approach is valid as long as the domain wall network does not
annihilate before EW symmetry breaking or at a temperature Tann slightly lower than Tew.
Since we assume that bias terms in the potential are very small, this assumption is valid,
and the singlet domain wall network would only annihilate at a much later stage after EW
symmetry breaking. Since the thermal potential at temperatures of order O(GeV) would
already approach the zero-temperature limit, this assumption gives reliable results for the
calculated profiles of the scalar fields.

In the case when the bias terms are not negligible, one needs first to verify the formation
of domain walls at some temperature T after the real singlet scalar field acquires a VEV.
Then, we need to verify the existence of deeper vacua (since the presence of bias terms can
significantly alter the potential) and also perform a precise study of the thermal evolution
of the parameter points to determine whether the domain walls network annihilates before
EW symmetry breaking making the domain walls harmless from the point of view of
inducing the decay to deeper vacua. These aspects complicate the analysis significantly
and are, therefore, not considered in this work.

1 As mentioned before, we consider the Z′
2 soft breaking terms in the Lagrangian to be very small, making

both vacua effectively degenerate.
2 The value of d can be relevant in the case when the 2HDM potential inside the wall (ϕs = 0) has multiple

minima, as we will discuss later.
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Figure 6.3: Evolution of the scalar fields inside the domain wall. We start with the doublet scalar
fields in the EW vacuum and show the evolution to the deeper vacuum. The scalar
fields roll over to the deeper vacuum, and the wall of true vacuum expands outside,
leading to the decay of the EW vacuum everywhere. The region with vs = 0 expands in
space, leading to the eventual decay of the domain wall. The time steps are given by:
t1 = 22.5m−1

h , t2 = 56.25m−1
h , t3 = 90m−1

h , and t4 = 191.25m−1
h .

We show the results for a parameter point P1 (see Table 6.2) in Figure 6.3. This parameter
point has a global minimum of type N that is deeper than the EW vacuum. EVADE gives
a bounce action of B = 95368 for the tunneling rate from the EW vacuum to the true
vacuum of the potential. Therefore, the EW vacuum outside the wall is very long-lived and
can be considered nearly stable since its decay rate is negligibly small. However, we see
in Figure 6.3 that the Higgs doublets profiles inside the core of the domain wall rapidly
change their values to correspond to the values of the deeper vacuum. This evolution occurs
via a classical rollover from (v1, v2, 0) to the true vacuum (v′1, v

′
2, 0). Once this rollover is

complete, the new vacuum nucleated inside the wall propagates outside of the wall since
this expansion is energetically favorable and the gain in energy via the expansion is much
larger than the domain wall’s tension that would otherwise stabilize the profile of the fields
inside the wall3. To explain this behavior, we consider the effective potential of the Higgs
doublets in the background of the singlet domain wall solution:

V2HDM (Φ1,Φ2,Φs(x)) =

(
m2

11 +
λ7
2
Φ2
s(x)

)
Φ†
1Φ1 +

(
m2

22 +
λ8
2
Φ2
s(x)

)
Φ†
2Φ2

−m2
12(Φ

†
1Φ2 + h.c.) +

λ1
2

(
Φ†
1Φ1

)2
+
λ2
2

(
Φ†
2Φ2

)2
+ λ3

(
Φ†
1Φ1

)(
Φ†
2Φ2

)
+ λ4

(
Φ†
1Φ2

)(
Φ†
2Φ1

)
+

[
λ5
2

(
Φ†
1Φ2

)2
+ h.c

]
+
m2

S

2
Φ2
s(x) +

λ6
8
Φ4
s(x).

3 When considering thermal corrections, the transition and expansion of the deeper vacuum inside the region
of the EW vacuum would only start when the gain in potential energy becomes larger than the domain
wall’s tension, this would then provide us with the temperature at which the decay occurs.
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mh1 mh2 mh3 mA mH± tan(β) vs α1 α2 α3 m12

P1 95 125 616 743 609 2.54 1786 -0.37 -1.49 0 359
P2 125 410 733 481 368 2.11 4252 1.08 -0.19 -0.14 242
P3 125 400 1200 400 470 1.88 1483 1.13 -0.32 -0.07 270
P4 125 400 1200 279 429 2.93 2609 1.13 -0.16 -0.12 198

Table 6.2: Benchmark parameter points with metastable long-lived EW vacua. The mass parameters
mh1

, mh2
, mh3

, mA, mH± as well as vs are given in GeV while m12 is given in GeV.

(a) 2HDM potential outside the wall
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(b) 2HDM potential inside the wall

Figure 6.4: 2HDM potential in the background of the singlet domain wall vs(x). (a) 2HDM potential
outside the wall, the EW vacuum is represented with a white cross and is protected
from decaying to deeper vacua due to the presence of the potential barrier. (b) 2HDM
potential inside the wall (vs = 0). The EW vacuum is represented by a white cross.
Inside the wall, the barrier between the EW vacuum and the deeper vacuum vanishes,
and the scalar fields roll over from the EW vacuum to the deeper vacuum.

For P1 we show in Figure 6.4 the potential of the Higgs doublets in the background of the
domain wall, both outside (left) and inside the wall (right). The EW vacuum is represented
by a white cross, and while it is protected by the potential barrier from tunneling to deeper
vacua, the barrier disappears inside the wall, and the EW vacuum can roll over to the
deeper vacuum. Notice that, inside the wall, (v1, v2, 0) is not a stationary point of the
potential and therefore the field will be unstable at that point.

The deeper vacuum can also be of electric charge breaking type CB or type CP (see P2

and P4 in Table 6.2). We verified that the rollover transition of the EW to such deeper
vacua also occurs. In this case, small values of v+(0) start growing inside the wall, reach
the values of a deeper vacuum, and then expand outside the wall.

Here again, the barrier between the EW vacuum and the global minimum disappears inside
the domain wall, and the decay occurs via a classical rollover to the CB vacuum as shown
in Figure 6.5.

A similar behavior (see Figure 6.6) occurs for the decay of the EW metastable vacuum
into a CP-violating global vacuum. The CP-violating phase ξ(0) grows inside the wall, and
once the global minimum is nucleated, it quickly expands outside.
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Figure 6.5: Evolution of the scalar fields inside the domain wall For the case when the deeper
minimum is of CB type. We start with the doublet scalar fields in the EW vacuum and
show the evolution to the deeper vacuum. In this case, v+(0) acquires a VEV inside
the wall, which then expands everywhere. The time steps are given by: t1 = 10.25m−1

h ,
t2 = 28.12m−1

h , t3 = 56.25m−1
h , and t4 = 90m−1

h .

6.3.1 Several extrema inside the wall

We observed that the decay of the EW vacuum inside the DW happens via a classical rollover
into the true global vacuum of the potential. This happens due to the disappearance of the
potential barrier between the initial field configuration (v1, v2, 0) and the true minimum
(vtrue1 , vtrue2 , 0). Inside the wall, the 2HDM part of the EW vacuum (v1, v2, 0) is not an
extremum of the 2HDM potential at x = 0 (recall that inside the wall vs = 0) since it does
not, in general, satisfy the minimization conditions (2.12) and (2.13) of the potential in
the ϕ1 and ϕ2 directions. We therefore have two possible scenarios:

• The 2HDM potential at x = 0 has only a single minimum that corresponds to the true
global minimum. In this case, since (v1, v2, 0) is not a stationary point of the potential, the
EW vacuum experiences a rollover to the true vacuum, and we obtain a classical vacuum
decay.

• The 2HDM potential at x = 0 has at least another intermediate minimum (vint1 , vint1 , 0)
between (v1, v2, 0) and the true global minimum of the potential. In this case, the EW
vacuum will either roll over to the intermediate vacuum and be trapped there, or roll over
to the true global minimum, or roll over to the intermediate vacuum and later tunnel to the
true vacuum. In case the intermediate minimum is lower than the EW minimum (v1, v2, vs),
we will also experience a classical rollover vacuum decay via domain walls even if we don’t
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Figure 6.6: Evolution of the scalar fields inside the domain wall For the case when the deeper
minimum is of CP type. We start with the doublet scalar fields in the EW vacuum and
show the evolution to the deeper vacuum. In this case, ξ(x = 0) acquires a non-vanishing
value inside the wall, which then expands everywhere. The time steps are given by:
t1 = 10m−1

h , t2 = 20m−1
h , t3 = 50m−1

h , and t4 = 100m−1
h .

reach the true global minimum of the potential. The possibility of tunneling inside the
DW from the intermediate vacuum into the true global vacuum requires a detailed study
of the temperature evolution of the effective potential as well as the annihilation time of
the domain wall network, and is beyond the scope of our work. We therefore reserve its
investigation for a future study4.

The existence of several distinct minima for the 2HDM potential inside the wall can
complicate the analysis of the fate of the EW metastable minimum. When intermediate
minima exist (see e.g. the potential in Figure 6.7a), one needs to verify if the EW vacuum
decays or not by following the time evolution of the scalar fields inside and outside the
wall. This also depends heavily on the magnitude of the friction term d in (6.9) since the
field configuration would oscillate around the intermediate minimum and can eventually
move over the potential barrier to the global minimum. If, however, the true global vacuum
is the only minimum of the 2HDM potential inside the DW, then the EW vacuum will
necessarily decay to the true vacuum via a classical rollover, and no DW simulation is
needed.

It is possible in the 2HDM to determine analytically if the potential has several coexisting
stationary points [187, 122]. In those publications, the authors discuss the necessary

4 In all the parameter scans that will be discussed later, we didn’t find a parameter point where the fields
are trapped in an intermediate minimum when taking the friction term to be small.
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15 10 5 0 5 10 15
x mh

0.5

1.0

1.5

2.0

2.5

v1
v2

(b) DW solution for P3

Figure 6.7: 2HDM potential inside the domain wall and DW solutions of parameter points P3 with
d̂ = d

mh
= 1.

conditions5 needed so that the 2HDM potential can have two coexisting neutral minima:
the EW one and another one dubbed the panic vacuum, which could lie lower in the
potential and lead to different masses of the gauge bosons and SM fermions. The two
conditions for the possibility of the presence of two neutral minima in the potential are:

m2
22 + k2m2

22 < 0, (6.10)
3
√
x2 + 3

√
y2 ≤ 1, (6.11)

where:

x =
4km2

12

m2
11 + k2m2

22

√
λ1λ2

λ345 −
√
λ1λ2

, (6.12)

y =
m2

11 − k2m2
22

m2
11 + k2m2

22

λ345 +
√
λ1λ2√

λ1λ2 − λ345
, (6.13)

k = 4

√
λ1
λ2
. (6.14)

If these conditions are not met, the 2HDM potential only admits a single minimum, and
we conclude that the DW will necessarily induce the rollover transition of the EW vacuum.
However, if these conditions are met, we verify the existence of intermediate minima in the
2HDM potential at x = 0 using EVADE. For parameter points where the extra stationary
points are either maxima or saddle points, the EW vacuum decays via a classical rollover
to the deeper vacuum. However, if the extra stationary points are local minima, in that
case, one should numerically verify the real-time evolution of the scalar field configurations
inside the DW in order to determine the fate of the EW metastable vacuum. We consider
P3 (see Table 6.2) as an example for a parameter point where the 2HDM potential inside
the wall has at least another minimum alongside the deepest global minimum. The local
minimum at (v1,i, v2,i) = (172 GeV, 991 GeV) lies higher in the potential than the EW
vacuum (outside the wall). Notice that there is no barrier between the starting field values
(corresponding to the EW vacuum) and the two minima, while there is a potential barrier
between both minima.

In this case, the fate of the electroweak vacuum is dependent on the value of the friction
term d in (6.9). For d̂ = d

mh
= 1, where d̂ is the dimensionless friction term6, the EW

5 These are necessary and sufficient conditions for the existence of 4 stationary points, but are not sufficient
conditions to ensure that 2 of these stationary points are indeed minima.

6 Recall that we make all quantities in the equation of motion (6.9) dimensionless when solving it numerically.
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vacuum rolls over to the intermediate minimum of the 2HDM potential inside the wall,
briefly oscillates around that minimum, and gets trapped there since the kinetic energy
in the scalar field is not enough to cross the barrier to the global minimum. This leads
the EW vacuum to remain metastable (since the EW vacuum outside the wall lies lower
in the N2HDM potential than this intermediate minimum). However, since the potential
barrier between the intermediate minimum inside the wall and the global minimum can be
smaller than the potential barrier between the metastable EW minimum and the global
minimum, one should consider the possibility of quantum tunneling inside the wall. These
scenarios were studied in detail in the case of the real singlet scalar extension of the SM,
see e.g. [24, 21], where the authors use the domain walls as impurities to seed the EW
phase transition inside the wall and rescue parameter points from vacuum trapping. We
reserve the discussion of the quantum tunneling stimulated by domain walls leading to the
EW vacuum decay to future work.

For the case when the friction term is smaller e.g. d̂ = 0.05, we observe the classical rollover
to the intermediate minimum, the field oscillates around that minimum, and then crosses
the barrier to the global minimum. Once the global minimum is nucleated inside the wall,
we obtain the same behavior observed for the usual EW vacuum decay via domain walls.

Since we are working in the zero temperature limit at the radiation domination era, the
Hubble parameter H ∝ T 2/Mpl [190], which would act as a component in the friction term
d, is very suppressed. Another, a priori, more sizable contribution might come from the
interaction of the scalar fields with the thermal plasma, leading to the damping of the
kinetic energy that the doublet fields start with. The evaluation of this contribution depends
heavily on the thermal evolution and the coupling between the scalars and fermions.

Another very important issue is determining whether this intermediate minimum is also
present just after EW phase transition, or if this minimum only develops after some time.
In the case when the global minimum is the only minimum present in the doublet potential
inside the wall at high temperatures after EW phase transition, the classical rollover will
occur to the global minimum leading to the decay of the EW vacuum.

However, in case the intermediate minimum is also present in the potential at high
temperatures just after EW phase transition, it is then possible that, after the EW phase
transition, the intermediate vacuum is trapped inside the wall. This happens because the
doublet fields lose their kinetic energy during their roll over. As the universe cools down,
the friction term gets smaller, and as the singlet domain wall moves to other regions of
the universe, the doublet fields experience less friction and those regions might undergo a
domain walls induced EW vacuum decay.

We saw that there is no barrier between the initial doublet field configuration inside the wall
(v1, v2, 0), and the two minima (the global minimum and the intermediate minimum) inside
the wall. Thermal or quantum fluctuations can also play an important role in determining
into which direction the doublet fields start rolling over.

All these aspects require a careful study of the thermal history of particular parameter
points and we leave their discussion for a future study.
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mH± mA vs C2
h2V V C2

h2tt̄
R23 m2

12

1 [200, 1500] [200, 1500] [1, 104] [0.6, 1] [0.6, 1] [-1, 1] [0, 5·104]
mH± mA vs C2

h1V V C2
h1tt̄

R13 m2
12

2 [200, 1500] [200, 1500] [1, 104] [0.6, 1] [0.6, 1] [-1, 1] [0, 5·104]

Table 6.3: Set of input parameters for our ScannerS scans with all parameters in GeV unit. For
Scenario 1, the masses of the CP-even Higgs particles are: mh1 ∈ [94, 96] GeV, mh2 =
125.09 GeV and mh3

∈ [200, 1500] GeV. For Scenario 2, the masses of the CP-even Higgs
particles are: mh1

= 125.09 GeV, mh2
= 400 GeV and mh3

∈ {600, 800, 1200} GeV. For
both scans, the range of vs is between 1 and 104 GeV, while tan(β) ∈ [0.5, 3]. The scans
were conducted over all types 1-4.

6.4 phenomenological scenarios for metastability

In this section, we discuss some phenomenological scenarios leading to the separation of
parameter regions with metastable and stable EW vacua. We saw in the previous section
that a free parameter scan did not provide a correlation between parameter variables and
the nature of the EW vacuum. We now study some specific scenarios where we fix some
parameter variables of the model.

For the parameter scans generated using ScannerS, we impose the theoretical constraints of
boundedness from below and perturbative unitarity. We also make sure that the generated
parameter points cannot be unstable i.e. all generated parameter points are either stable
or have a bounce action B > 390. We don’t directly impose the requirement of Z ′

2 and
electroweak symmetry restoration in the early universe based on the analytical conditions
derived in [23] and summarized in 5.2.1. We later check if those conditions are fulfilled by
the generated set of parameter points. These conditions are based on the Arnold-Espinosa
Daisy resummation method. It was argued in [155] that other resummation methods do
not show symmetry non-restoration in the 2HDM. Since this might also be the case in the
N2HDM, we also include, in our analysis, parameter points that feature the possibility of
symmetry non-restoration. This is done in order not to overlook other possible metastable
parameter points that would be ruled out by vacuum decay via domain walls and, more
importantly, not to overlook parameter points that have a stable EW vacuum but feature
symmetry non-restoration. If, however, symmetry non-restoration actually occurs (up to
ultra-high energies in the early universe) and is not an artifact of the resummation method,
then showing these parameter points is important to keep in mind that these parameter
points could still be rescued from vacuum decay via domain walls. In any case, a careful
determination of the thermal evolution at high temperatures using different resummation
schemes would be crucial.

In case when parameter points with symmetry-restored metastable EW vacua overlap with
symmetry non-restored metastable parameter points in the whole scan range, we plot both
types in orange. Metastable parameter points with symmetry non-restoration are only
shown explicitly if they can be separated from regions with only symmetry restoration.
Therefore, unless otherwise specified, parameter regions in orange include both types of
metastable vacua.

We start our discussion with scans where the experimental constraints of electroweak
precision observables, as well as flavor and Higgs searches are not imposed. This is done
in order to avoid those constraints "incidentally" ruling out some regions that contain
stable EW minima, and therefore leading to the generation of regions with only metastable



156 electroweak vacuum decay induced by domain walls

(a) (b)

(c)

Figure 6.8: Results of Scan 1 showing the possibility to separate the metastable-only region from
the regions of parameter space which include both stable and metastable vacua.

minima. Since we want to emphasize the possibility of our mechanism in inducing the EW
vacuum decay via domain walls as a new important constraint on its own, it is important
to make sure that experimental constraints don’t filter parameter points with stable EW
vacua from regions that also have metastable vacua. We later discuss a scan where all
experimental constraints were also imposed and show that the mechanism of EW vacuum
decay via domain walls can rule out parameter regions that are otherwise still viable.

6.4.1 Scenario 1: a 95 GeV CP-even Higgs particle

We first start with a general parameter scan of 850× 103 points where we take the lightest
CP-even Higgs boson to have a mass between 94 GeV and 96 GeV, which is motivated by
the excesses observed by the CMS [167] and ATLAS collaborations [191]. We fix the mass
of the CP-even Higgs particle h2 to mh2 = 125.09 GeV, corresponding to the SM Higgs
boson and allow the mass of h3 to vary between 200 GeV and 1500 GeV. We vary the
masses of the charged and CP-odd Higgs bosons as well as the parameters m2

12, tanβ, vs,
and the mixing angles (see Table 6.3). This first scan is done in order to obtain the most
general correlations in the parameters that lead to the separation of stable and metastable
regions of the parameter space.

The parameter points with a stable electroweak minimum are shown in blue, while the
parameter points with a metastable EW minimum and a global minimum with vs = 0 are
shown in orange.
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(a) (b)

(c) (d)

Figure 6.9: Results of Scan 1 showing the possibility to separate the metastable-only region from
the regions of parameter space which include both stable and metastable vacua.

The results are shown in Figure 6.8. We observe a clear separation between stable and
metastable regions only in the mh3 −m2

12 as well as the mA −m2
12, and the mH± −m2

12

planes as shown in Figure 6.8. This metastable-only region is obtained for mh3 > 900 GeV
and m2

12 > 30000 GeV. The obtained results do not show any dependence on vs. The
dependence on the mixing angles is modeled in our case by the singlet admixture Σi = R2

i3

as well as the coupling of the SM-like Higgs boson to gauge bosons (c22V V ) and top quarks
(c22t̄t). Both stable and metastable minima overlap over the scanned parameter regions for
the mixing angles. Note that the symmetry non-restoration metastable points overlap with
the ones where we obtain symmetry restoration. Therefore, one can exclude those regions
based on DW induced vacuum decay only if symmetry non-restoration is an artifact of the
Arnold-Espinosa daisy resummation scheme.

Motivated by these results, we perform several specific parameter scans:

1. Scan of the region 1000 GeV < mh3 < 1500 GeV and (2.5 ·104 < m2
12 < 5 ·104) GeV2.

2. Scan with fixed m2
12 = 2 · 104 GeV2 and variable mh3 , tan(β), mA, and mH± .

3. Scan with fixed mh3 = 600 GeV and variable mH± , mA, tan(β), and m2
12.

4. Scan with fixed mh3 = 1000 GeV and variable mH± , mA, tan(β), and m2
12.

5. Scan with fixed mh3 = 1000 GeV and variable mH± , mA, and m2
12 but in the

alignment limit.
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The results for scan 1 are shown in Figure 6.9. We find that the region of metastability
depends heavily on m2

12, and, to a lesser extent, on tan(β). The region of vacuum stability
is concentrated at m2

12 < 3 ·104 GeV2 for tan(β) < 1. For higher values of tan(β) the region
of vacuum stability falls to m2

12 < 104 GeV2. For this scan, we find that all parameter points
between (3 · 104 < m2

12 < 2 · 105) GeV2 are metastable. Note that for much higher values
of 2.5 · 105 GeV2 < m2

12, we also find a region where vacuum stability and metastability
coexist.

(a) (b)

Figure 6.10: Results of Scan 2 showing the possibility to separate the metastable-only region from
the regions of parameter space which include both stable and metastable vacua. We
find that parameter points with stable EW vacua are concentrated at low tan(β).

For the second scan, we find that the parameter points with stable minima are concentrated
around small tan(β) < 0.9 values (see Figure 6.10). Note that when we performed a scan
for parameter points with mh3 > 1000 GeV and fixed m2

12 = 3 · 104 GeV2, the region of
parameter points with stable vacua reduces to tan(β) < 0.7. This is in agreement with
the observation that, as we increase m2

12, the region with stable vacua disappears for all
tan(β).

(a) (b)

Figure 6.11: Results of Scan 3 showing the possibility to separate the metastable-only region from
the regions of parameter space which include both stable and metastable vacua.

For the third scan, we fix mh3 = 600 GeV and vary the other parameters. As shown in
Figure 6.11, we find that parameter region with only metastable vacua is concentrated
in the region of low mH± and mA and (2.5 · 104 < m2

12 < 9 · 104) GeV2. This region also
corresponds to values 2 < tan(β) < 3.
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(a) (b)

Figure 6.12: Results of Scan 4 showing the possibility to separate the metastable-only region from
the regions of parameter space which include both stable and metastable vacua.

As for the fourth scan, we find that the results depend on m12 and tanβ. In this scan,
parameter points with (3 × 104 < m2

12 < 2 · 105) GeV2 and low tanβ < 1 were always
metastable, while parameter points with higher tanβ < 3 showed metastable region already
at smaller (104 < m2

12 < 105) GeV2 (See Figure 6.12a). When extending the scan to higher
values of m2

12, we also find a region where stable and metastable vacua coexist which is
characterized by masses mA and mH± of the order O(1 TeV).

For the final scan with the same range but at the alignment limit where c22V V = c22t̄t ≈ 1.
We find, for this scan, that regions of stability and metastability overlap with each other
for all variables and therefore, we cannot use this mechanism to rule out parameter point
regions and the DW decay mechanism can only be used to rule out individual parameter
points.

To summarize our results, we find that for this particular scenario, the variable m2
12 and to

a lesser extent tan(β) play a crucial role in determining regions of parameter space that are
only metastable. However, we found that for these regions, symmetry restored parameter
points as well as parameter points with possible symmetry non-restoration (according to
the Arnold-Espinosa resummation scheme) overlap. In order to be able to conclusively rule
out those parameter regions using DW induced vacuum decay, this possibility of symmetry
non-restoration needs to be addressed in detail, which is beyond the scope of this work.

6.4.2 Scan including experimental constraints

We now generate parameter points with ScannerS, taking also into account experimen-
tal constraints such as collider searches, flavor constraints, and electroweak precision
measurements. We focus on a parameter scan with mh3 = 600 GeV.

We find that the region where only metastable vacua are obtained is independent on
vs. Again, one can use the variable m2

12 to differentiate between stable and metastable
regions. We find that lower values lead to regions with mostly metastable EW minima,
while parameter points with higher values of m2

12 lead to both stable and metastable EW
minima. However, for very small m2

12 < 15 · 103 GeV2, we can also obtain parameter points
with stable EW vacua, and we show these parameter points as black circles. Therefore,
one can use the mechanism of vacuum decay via domain walls to exclude lower values of
m2

12 in this scenario up to m2
12 = 15 · 103 GeV2.
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(a) (b)

Figure 6.13: Parameter scan for mh3
= 600 GeV after applying all experimental constraints. The

parameter points shown in black circles have a stable EW vacuum but with very low
values of m2

12 < 15 · 103 GeV2.

We also find a correlation between the masses of H± and A and the regions featuring
mostly metastable EW minima as shown in Figure 6.13b. This is the case for mostly lower
values for H±, and A and m2

12 > 15 · 103 GeV2.

Finally, one can use the singlet admixture Σi = R2
i3 in order to differentiate between regions

of EW minimum metastability and stability. We find that parameter points where the
singlet admixture in h3 is higher lead to regions with metastable EW vacua only.

(a) (b) (c)

Figure 6.14: Scenario 1: Stability of the EW minimum for different parameter scans as a function of
Σi, the singlet admixture in the CP-even Higgs bosons. The parameter points shown in
black circles have a stable EW vacuum but with very low values of m2

12 < 15 ·103 GeV2.

6.4.3 Scenario 2: SM Higgs as the lightest CP-even Higgs boson

We now consider the case when the SM Higgs is the lightest CP-even Higgs boson. We fix
the second CP-even Higgs mass to mh2 = 400 GeV, and allow the mass of h3 to take the
values mh3 ∈ {600, 800, 1200} GeV. We keep the same scan range for all the other model
parameters as shown in Table 6.3.

The results of the scan are shown in Figures 6.15 and 6.16. For this scan, the distinction
between parameter point regions with solely metastable minima and regions with both
stable and metastable minima is not possible, and one cannot use the decay of the EW
vacuum induced by the domain walls in order to systematically rule out specific parameter
regions like in scenario 1.



6.4 phenomenological scenarios for metastability 161

(a) (b)

(c) (d)

(e) (f)

Figure 6.15: Scenario 2: Stability of the EW minimum for different parameter scans as a function
of the singlet VEV vs and Z2 breaking term m12. (a) and (b) correspond to a mass
mh3

= 600 GeV, (c) and (d) correspond to a mass mh3
= 800 GeV, and (e) and (f)

correspond to a mass mh3
= 1200 GeV.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.16: Scenario 2: Stability of the EW minimum for different parameter scans as a function
of Σi the singlet admixture in the CP-even Higgs bosons. Upper row corresponds to
the scan with mh3 = 600 GeV, middle row corresponds to mh3 = 800 GeV, and lower
row to mh3

= 1200 GeV.

We obtain several parameter points featuring at least two minima for the potential at
vs = 0 GeV. In all three scans, these points were concentrated around (5 · 104 < m2

12 <
105) GeV2, tan(β) > 1.5, as well as around the same range of the masses for mH±,A and
the singlet admixture, which shows that this effect is more pronounced for parameter points
with a large singlet admixture in the heavier CP-even Higgs. Note here that the singlet
admixture in the SM-like Higgs boson h1 is quite low in these scans since larger values are
already ruled out by Higgs measurement and searches at the LHC [124, 125, 164].

This leads to the possibility that the global minimum is not nucleated inside the domain wall
and instead, the scalar fields converge to the intermediate minimum. For those parameter
points (shown in black). We explicitly calculate the real-time evolution (6.9) of the DW
solution to determine the fate of the metastable EW minimum using d̂ ≈ 0. We find
that all these parameter points roll over to the global minimum, leading to the decay
of the long-lived EW vacuum. One cannot, however, conclude that any parameter point
with multiple minima will necessarily experience vacuum decay via domain wall, and the
possibility that the field configuration gets trapped inside the intermediate vacuum for some
other parameter points is still possible. In such a case, one would then need to calculate
the tunneling rate between the trapped field configuration and a field configuration where
the global vacuum is nucleated inside the wall. We leave the investigation of this possibility
to a future work.
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6.5 discussion

In this chapter, we investigated the decay of the long-lived metastable EW vacuum induced
by the domain walls in the N2HDM. This mechanism of vacuum decay can be used in order
to rule out a large number of (otherwise viable) parameter points in several scenarios. In
the standard N2HDM, where the model is invariant under the Z ′

2 symmetry, the formation
of domain walls related to the scalar singlet leads to the possibility that the scalar doublet
potential inside the wall can be very different in comparison to the potential outside the
wall. For parameter points where the global minimum has a vanishing singlet VEV, the
field configuration inside the domain wall can roll over to the global minimum. Since the
potential of the global minimum is lower than the EW metastable minimum outside the
wall, the global vacuum gets nucleated inside the wall and then quickly expands outside,
leading to the total decay of the EW vacuum. Those parameter points are thus not allowed
since the masses of all particles will have very different values.

We checked that the mechanism of vacuum decay occurs for all types of vacua in the
N2HDM: neutral, electrically charged as well as CP-violating vacua. We also showed that
one can use this mechanism in certain scenarios to rule out some regions of parameter
points. In particular, we found that in case of a possible 95-GeV Higgs boson, the region of
metastability depends heavily on the values of mh3 , m2

12, and tan(β).

One important aspect that we found in our work was the possibility that, inside the wall,
several minima in the doublets potential can coexist alongside the global minimum. This
observation makes it not possible to directly rule out a parameter point of the model based
only on the metastability of the EW vacuum. In such cases, one needs to explicitly compute
the real-time evolution of the scalar field configuration inside the domain wall to determine
whether the global vacuum will be nucleated inside the wall. Even though several parameter
points featured this case of multiple minima, we didn’t find a parameter point in our large
scans where the field configuration inside the wall is trapped in the intermediate vacuum.
If a parameter point leads to such behavior, one then needs to calculate the tunneling
rate between the trapped field configuration and the field configuration where the global
vacuum is nucleated inside the wall. These calculations are non-trivial and numerically
time-consuming. We therefore leave the discussion of quantum tunneling induced by the
domain wall field configuration to a future work.

We showed that many parameter points of the Z ′
2 symmetric N2HDM would be ruled out

due to domain wall EW vacuum decay. This mechanism provides strong constraints for this
model by ruling out parameter points that lead to long-lived metastable EW vacua. There
are, however, possible ways to circumvent this constraint. First, one could break the Z ′

2

symmetry by introducing large symmetry-breaking terms in order to avoid the formation
of domain walls altogether. This, however, can considerably alter the phenomenology of
the N2HDM. Another way is to only choose parameter points where the Z ′

2 symmetry is
not spontaneously broken and vs = 0. One could also use parameter points that feature Z ′

2

symmetry non-restoration, which avoids the formation of the domain walls in the early
universe. This final solution requires, however, a detailed and careful use of the daisy
resummation methods in order to obtain reliable results.





7 SUMMARY AND OUTLOOK

In this manuscript, we studied domain wall solutions in several extended Higgs sectors.
Traditionally, domain walls in the early universe are particularly discussed in the context
of their gravitational wave signal emitted during their annihilation, a topic that gained
a lot of renewed interest in the wake of the recent PTA results [18, 19, 14, 15]. However,
we showed that domain walls can also be relevant for many other applications in the
early universe, such as generating chiral asymmetries, providing electric charge violating
field configurations, leading to EW symmetry restoration, creating a matter-antimatter
asymmetry, and leading to the decay of long-lived metastable EW minima.

In particular, we showed in chapter 3 that domain wall solutions in the 2HDM can be
classified into several classes with each having different properties. This is due to the
simultaneous spontaneous breaking of the discrete symmetry alongside the EW symmetry,
leading to a vacuum manifold made of two disconnected 3-spheres. Since, in this case,
there are several choices for the boundary conditions at spatial infinity compared with the
standard Z2 case, scalar field configurations with new features localized on the wall can
occur, such as CP and electric charge violating field configurations.

In the case of the electric charge violating field configurations, the U(1)em symmetry
of electromagnetism was broken inside the wall, making photons massive and leading
to electric charge violating interactions with SM particles. This behavior was related to
having different Goldstone modes at the boundaries, and we showed that such domain wall
solutions can even have smaller energy than the standard domain wall solutions where the
Goldstone modes are the same on the boundaries. We also showed in this case that standard
domain wall solutions eventually evolve to the electric charge-breaking field configuration.
From a theoretical point of view the breaking of U(1)em can be understood in terms of
the "clash-of-symmetries" mechanism which states that, due to having different Goldstone
modes on the boundaries, we obtain different embeddings of U(1)em in SU(2)L × U(1)Y
on both domains, reducing the symmetry group inside the wall to the trivial identity I.

One possible future extension could be investigating this behavior in other extended Higgs
models, such as the 3HDM or Grand Unified Theories. Another possibility is to study
the stability of these scalar field configurations by determining in a detailed way their
relaxation to the lowest energy domain wall solutions. One could also check the stability of
domain wall solutions in the 2HDM where the gauge fields are non-zero, due e.g. for the
presence of primordial magnetic or electric fields in the early universe.

Having obtained these scalar field configurations, we later looked, in chapter 4, at their
interactions with SM particles such as top and bottom quarks (which have the largest
Yukawa couplings to the Higgs sector). We solved the Dirac equation for scattering states
in the background of the different types of scalar field configurations. We showed in the
case of CP-violating scalar field configurations that left and right-handed particles scatter
off the wall at different rates, leading to a chiral asymmetry in front and behind the wall.
In the case of the electric charge violating field configurations, we showed that, e.g., top
quarks can be reflected or transmitted through the wall as bottom quarks and that the rate
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of this transformation is higher for particles with higher incoming momenta. One important
issue that needs further investigation is the appearance of negative transmission coefficients
for the chiral states (left or right-handed components). This behavior is similar to the
case of a Klein-Paradox in QED [142], where electrons with high enough momenta can
lead to particle-antiparticle pair creation when hitting a step-like potential of an electric
field. Looking at this issue in more detail, including a quantum field theory treatment,
is a possible future direction of this work. Another idea is to look at a new production
mechanism for keV scale sterile neutrinos in the presence of electric charge breaking scalar
field configurations in the early universe. These field configurations generate a non-zero
mixing for the sterile neutrinos with SM leptons, leading to the possible transformation of
SM leptons into sterile neutrinos upon hitting the walls.

Motivated by the observation of this chiral asymmetry caused by the interaction of SM
fermions with the DW in the 2HDM, we wanted to investigate, in chapter 5, the possibility
of using domain walls in order to generate the observed matter-antimatter asymmetry
of the universe. This idea of having electroweak baryogenesis using topological defects
was already introduced in the 90s [144, 145, 106, 146, 192] and it was shown that it can’t
produce a large enough asymmetry in the case of one-dimensional defects like cosmic
strings. The case of domain walls, a two-dimensional defect, is certainly more appealing.

In contrast with conventional electroweak baryogenesis, where a first-order phase transition
is mandatory to produce bubbles that separate the region where sphalerons are active
from the regions where they are suppressed, domain walls electroweak baryogenesis can be
achieved irrespective of the type of the phase transition that caused the formation of the
walls. Its main idea is relying on a domain wall scalar field configuration that couples with
the electroweak Higgs doublet(s), since such a singlet scalar field will vanish inside the core
of the DW, the effective mass term of the Higgs doublet(s) can turn positive inside and in
the vicinity of the wall leading to EW symmetry restoration in some region around the
wall. In our work, we achieved this for the case of the real singlet scalar domain walls in
the N2HDM and demonstrated the possibility of restoring the EW symmetry in a region
large enough to contain a sphaleron.

The second ingredient for electroweak baryogenesis is a CP-violating source that causes
a chiral asymmetry in the EW symmetry restored region. Since electron dipole moment
experiments put a huge constraint on the possibility of having CP-violation at the elec-
troweak scale [116], a novel way to generate the needed chiral asymmetry is needed, which
evades these stringent constraints. For these reasons, we looked at the possibility of having
a CP-violating scalar field configuration in the case when the DW moves into regions with
different Goldstone modes, a scenario that naturally occurs after EW symmetry breaking.
Since the CP violation would only occur in the vicinity of the wall, EDM constraints
will be naturally circumvented. Our simulations for 1D field configurations showed that
this CP-violating phase ξ in the field configuration is concentrated on the wall and is
negligibly small. However, we found that the change in the Goldstone mode, related to e.g.
the hypercharge symmetry, is also concentrated in the center of the wall, which induces
a hypermagnetic field centered in the core of the wall. Such a pure gauge hypermagnetic
field can lead to a chiral asymmetry.

We proposed in that chapter the needed ingredients for a successful electroweak baryogenesis
via domain walls. We later performed a simplified calculation in a simplified scenario to
obtain an order of magnitude value for the amount of baryon asymmetry that can be
possible to generate via this mechanism. We showed that the pure-gauge hypercharge field
leads to a chiral asymmetry inside the wall, which, alongside the unsuppressed sphaleron
rate inside the wall, successfully generated a matter-antimatter asymmetry comparable to
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the amount given by experimental observations. The detailed calculation of the precise
amount of baryon asymmetry generated by this mechanism requires a detailed analysis of
the domain wall dynamics including a careful treatment of the issue of negative transmission
coefficients that could be caused by a Klein-Paradox and a discussion of the annihilation
time of the domain wall network that can be achieved e.g. by introducing a bias term
in the potential, which breaks the Z ′

2 symmetry. Another important details include the
possibility of having wash-out effects that depletes any generated baryon asymmetry.

In our final project, discussed in chapter 6, we looked at the intriguing possibility of domain
walls inducing the decay of metastable EW vacua in the N2HDM. The conventional vacuum
stability analysis of extended Higgs sectors only looked at the decay of metastable EW
vacua in a homogeneous field configuration, calculating the tunneling rate from the EW
minimum to the global minimum and comparing it to the age of the universe. However, in
the presence of domain walls that couple to the doublet scalar fields, the effective potential
of the 2HDM will be different from the potential far away from the wall, where a large
potential barrier protects the EW minimum from decaying to the global minimum. In case
the global minimum of the potential has a vanishing singlet vacuum expectation value,
we showed that the field configuration classically rolls over inside the wall to the global
minimum, once the global minimum is nucleated inside the wall, it rapidly expands outside
and the new vacuum of the universe is then at the global minimum. This has catastrophic
consequences, since the global minimum would give different masses to the SM particles
than the ones we observe. We showed that this mechanism puts a very strong constraint
on the viable parameter space of the N2HDM. In the case when the global minimum
is the only minimum with a vanishing vs, a classical rollover to the global minimum is
guaranteed. However, when multiple minima with vs = 0 exist, one then needs to check
the time-dependent evolution of the scalar fields to determine the fate of the metastable
EW minimum, as well as perform a careful study of the thermal evolution of the scalar
field sector.

This mechanism illustrates the need for a careful study of domain walls when dealing
with the standard N2HDM, where the Z ′

2 symmetry is either exact or softly broken by
very small bias terms. One usually invokes the argument that a domain wall network will
quickly annihilate in the case of a very small bias term for the Z ′

2 symmetry in order to
use the simpler phenomenology of the standard N2HDM. However, we showed that even if
the presence of small bias terms would solve the domain wall energy domination problem,
we still need to make sure that domain walls do not lead to the EW vacuum decay. One
can therefore conclude that the use of such a model is safe when the EW minimum is the
global minimum, making it stable, or when the Z ′

2 symmetry is never restored in the early
universe in order to avoid the formation of domain walls.

In some BSM Higgs models, such as the real singlet extension [21] or the N2HDM [23],
the electroweak phase transition is not guaranteed even if the potential develops the EW
minimum as a global minimum. In such a case, we have vacuum trapping and the universe
stays in the symmetric phase even at zero temperature [21, 23, 22]. This happens because
there is a large enough barrier between a minimum in the potential at the origin of the field
space and the EW minimum, making the tunneling rate to the broken phase extremely
low. One possible future direction for this work is to look at the possibility of domain walls
rescuing these parameter points from vacuum trapping by inducing the vacuum decay
of the symmetric minimum to the EW minimum. Such a cure for vacuum trapping was
already effective in the real singlet extension [21, 22], and extending it to more complicated
models such as the N2HDM is subject to future work.





A E F F ECTS OF GAUGE F I E LDS ON THE DW
SOLUT ION

We discuss the interaction of the electroweak gauge field degrees of freedom with the Higgs
scalar degrees of freedom and show that any contribution from the gauge fields is pure
gauge or will lead to the DW solution having a higher energy, and therefore, the ground
state solution is the one where the gauge fields vanish.
The energy functional for the scalar and gauge sector is given by:

E(x) = |DµΦ1|2 + |DµΦ2|2 +
1

4
BµνBµν +

1

4
W aµνW a

µν + V2HDM(Φ1,Φ2), (A.1)

with:

Dµ = ∂µ + igW a
µσ

a +
igy
2
Bµ. (A.2)

The third and fourth terms denote the kinetic energy of the Bµ(x) and W a
µ gauge fields

and are positive definite. In order to investigate the possibility that the first two terms
could decrease the energy of the field configuration when having a non-vanishing gauge
field solution, we expand these terms using A.2:
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where i denotes the sum over the two Higgs doublets. Using Aµ =
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The last term could lead to a negative contribution to the energy functional. However,
inside the wall, v2 → 0 which makes this term small for our domain wall solutions.

We now focus on the second and third terms in A.3. In the special case of one-dimensional
static field configurations (as is the case for a domain wall in the scaling regime), ∂µΦi = 0
for µ ̸= 1, therefore, these terms vanish for µ = 0, 2, 3 corresponding to time and the y and
z directions. Only along the x-axis we get non-vanishing contributions.
One can find expressions for

[(
∂µΦi

)†
σaΦi − Φ†

iσa
(
∂µΦi

)]
and

[(
∂µΦi

)†
Φi − Φ†

i

(
∂µΦi

)]
by using the equations of motion for the scalar and gauge fields:

DµD
µΦi = − ∂V

∂Φ†
i

, (A.5)

Jν,a(x) = ∂µW
a,µν + gϵabcW b

µW
c,µν =

ig

2

[
Φ†
iσ

aDνΦi − (DνΦi)
†σaΦi

]
, (A.6)
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Jν
B(x) = ∂µB

µν =
ig′

2

[
Φ†
iD

νΦi − (DνΦi)
†Φi

]
, (A.7)

where jν,a and jνB denote the gauge field currents. As we want to obtain static one-
dimensional spatial solutions on the x-axis, we use the temporal gauge B0(x) = 0 and
W 0

a (x) = 0. The equations of motion for B1(x) and W 1
a (x) reduce to:

B1(x) =
1

2ig′|Φi|2

[
Φ†
i (∂xΦi)− (∂xΦ

†
i )Φi − 2igW 1

aΦ
†
iσaΦi

]
, (A.8)

W 1
a (x) =

1

2ig|Φi|2

[
Φ†
iσa(∂xΦi)− (∂xΦ

†
i )σaΦi − 2ig′B1(x)Φ†

iσaΦi

]
. (A.9)

Using these two equations, one can rewrite the second and third terms of A.3 as:

igWµ
a

[(
∂µΦi

)†
σaΦi − Φ†

iσa
(
∂µΦi

)]
+ i

g′

2
Bµ
[(
∂µΦi

)†
Φi − Φ†

i

(
∂µΦi

)]
=
g′

2
|Φi|2B1(x)B1(x) + 2g′gW 1

a (x)B1(x)Φ
†
iσaΦi + 2g2|Φi|2W 1

a (x)Wa,1(x), (A.10)

which, as shown earlier (in A.4), leads to a positive contribution to the energy density of
the field configuration. As for the µ = 2 and µ = 3 components of the gauge fields, we see
from (A.4) that their contributions to the energy density is always positive. Therefore, the
least energy solution is the one with Bj(x) = 0 and W j

a (x) = 0. Note, however, that a
non-zero gauge field will lead to a positive contribution to the effective mass term of the
Higgs doublets.

In the case of non-vanishing gauge fields on the wall (e.g due to primordial gauge fields),
we would then expect that the backreaction between the Higgs and gauge fields leads to
a bigger region where the Higgs VEVs become smaller or zero. This is due to the term
g′2|B|2|Φi|2 + g2|W |2|Φi|2 giving a positive contribution to the effective mass of the Higgs
doublets. In such a case, a perturbation analysis of such a field configuration has be made
in order to study the stability of such a solution.
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