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Abstract
Quantum gases at ultracold temperatures have been proven over the last three decades

to be ideal platforms for studying fundamental aspects of quantum mechanics and many-
body systems. The success of this field is primary due to the exquisite experimental control
over relevant system parameters. By applying magnetic and electric fields, the atoms can
be confined in arbitrary external potential landscapes, and the interatomic interaction is
tunable via Fano-Feshbach resonances. The realization of several species of atoms or different
hyperfine states of the same isotope expands the number of adjustable parameters and opens
up the possibility to explore highly particle-imbalanced ultracold mixtures, which is the main
subject of this dissertation. In these systems, a majority species is coupled to a minority
one consisting of impurity atoms that can become dressed by the excitations of the majority
species. This gives rise to the notation of quasi-particles such as polarons. An intriguing
aspect is the possibility to intuitively understand the properties and microscopic mechanisms
of the dressed impurities in terms of simple few-body models, while the overall system remains
essentially many-body.

We focus on the static and dynamical properties of impurities immersed into an ultracold
bosonic gas in one dimension. The first publication investigates the counterflow dynam-
ics of two bosonic impurities confined in a double-well potential and coupled to a majority
species trapped in either a box or harmonic oscillator potential. We classify the emerging
two-body correlation patterns and extract the ensuing phase diagram, which highly depends
on the interspecies and impurity-impurity coupling parameters as well as the underlying trap-
ping potential of the medium. For repulsive or attractive interspecies coupling strengths the
medium induces a bunching behavior between the impurities such that at strong attractions
we find signatures of a bound state among the impurities signaling the formation of a bipo-
laron. The bunching behavior can be converted into an anti-bunching tendency by increasing
the repulsion between impurities, in this way, overcoming the effects of the induced attrac-
tion. To trigger the counterflow between the impurities, the central barrier of the double-well
potential is ramped down. For a box confined medium, in a region where the induced at-
traction dominates the internal impurity-impurity repulsion, the impurities collide at the trap
center where they remain localized. However, in case of a harmonically confined medium, the
impurities perform a periodic oscillation and at large impurity-medium repulsions they are
expelled from the trap center.

Inspired by the tunability of the induced impurity-impurity correlation patterns, the next
three works investigate in more detail the mediated interactions between the impurities. In
the first work of this series, we consider two distinguishable and non-interacting impurities
coupled to a harmonically confined bosonic gas. This setup features two impurity-medium
coupling parameters that can be tuned individually. Exploiting this flexibility, we find an anti-
bunching tendency emerging in the two-body correlation function if one impurity attracts the
medium and the other repels it. When both impurities couple with the same sign to the major-
ity species, the expected bunching behavior between the impurities is recovered. Importantly,
the mediation of an anti-bunching behavior in such settings is reserved to mixtures with three
or more components and, therefore, is absent in binary mixtures. By constructing an effective
two-body model, which approximates the induced interaction between the mobile impurities
in terms of a contact interaction potential, we are able, for the first time, to associate the anti-
bunching behavior with an effective repulsive interaction and the induced bunching behavior
with an effective attraction. Moreover, we study the formation of a dimer and trimer state
in the strongly attractive regime by inspecting three-body correlation functions. In a subse-
quent work, we investigate the dynamical response of the impurities by linearly ramping the
impurity-medium interaction parameters in time. In this course, we devise effective one- and
two-body models in order to gain an intuitive understanding of the induced interplay between
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the impurities. First, we focus on the effective description of the dynamics of one impurity.
We find the best agreement with the emergent many-body dynamics for a model consist-
ing of a time-dependent effective mass and trap frequency. These time-dependent effective
parameters are determined by an optimization process which enables the model to account
even for temporal effects imprinted by impurity-medium correlations. Building on the success
of the effective one-body model, we simulate the induced interplay between two impurities
with different types of effective two-body models. The best agreement with the two-body
correlation function of a many-body approach achieves the two-body model which includes a
time-dependent contact interaction potential with an optimized interaction strength. Eval-
uating the evolution of the effective interaction strength, we are able to track the crossover
from an induced attraction to an induced repulsion and vice versa. Importantly, this study
provides a stepping stone for the effective description of the many-body dynamics of impuri-
ties by relying on time-dependent parameters rather than static ones. Instead of quantifying
the induced interactions between the impurities in terms of two-body correlation functions,
in another study, we pursue a different direction and interpret the induced interactions in the
context of bipolaron and three-polaron energies. The system under investigation consists of
up to three impurity atoms confined in a tilted double-well potential and coupled to a bosonic
gas on a ring potential. The effective two- and three-body interaction parameters are deter-
mined by fitting the energies of the respective two- and three-body models to the polaron
energies obtained within a many-body approach. Remarkably, we are able to explicate the
presence of mediated two- and three-body interactions by measuring the impurities’ density
population at the energetically elevated well. The many-body results of the above mentioned
studies are obtained by the ab initio multi-layer multi-configuration time-dependent Hartree
method for atomic mixtures.

Ultracold quantum gases not only offer the possibility to study imbalanced particle mix-
tures, but also allow us to gain insights into other fascinating models such as the Anyon-
Hubbard model, to which the final work of this dissertation is dedicated. We consider particles
with anyonic exchange statistics distributed on a finite lattice with open boundary conditions.
In the absence of on-site interactions the eigenspectrum exhibits a degenerated zero-energy
subspace with chiral symmetry that is even preserved under variations of the statistical angle.
We demonstrate that the chiral symmetry is responsible for the emergence of a checkerboard
pattern in the experimentally accessible one-body density. Next, we adiabatically evolve the
zero-energy subspace while cyclically tuning the statistical parameter from a value correspond-
ing to Bose statistics to a value associated with pseudo-fermions and back to Bose statistics.
We find that this loop in control space produces nontrivial Berry phases and holonomy ma-
trices. Finally, we provide a protocol to steer any initial number state into the zero-energy
subspace only by temporally varying the statistical parameter.
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Zusammenfassung
Quantengase im ultrakalten Temperaturbereich haben sich in den letzten Jahrzehnten als

ideale Plattformen für die Untersuchung von grundlegenden Aspekten der Quantenmechanik
sowie von Vielteilchensystemen erwiesen. Der Erfolg dieses Wissenschaftszweigs kann in er-
ster Linie auf die exquisite experimentelle Kontrolle der relevanten Systemparameter zurück-
geführt werden. Durch die Anwendung von magnetischen und elektrischen Feldern können
die Atome in beliebigen externen Potentialen gefangen werden. Weiterhin sind die inter-
atomaren Wechselwirkungen mittels Fano-Feshbach-Resonanzen regulierbar. Das Einfangen
mehrerer atomarer Spezies ermöglicht es zudem Mischungen von Quantengasen zu erzeugen,
welche sich stark in ihrer Teilchenzahl unterscheiden. Letzteres stellt das Hauptthema dieser
Dissertation dar. In diesen Systemen ist eine größere Spezies an eine Spezies mit wenigen
Teilchen gekoppelt, welche aus Fremdatomen besteht. Ein einzelnes Fremdatom zusammen
mit den Anregungen der größeren Spezies kann als Quasiteilchen verstanden werden, welches
auch Polaron genannt wird. Ein faszinierender Aspekt besteht hierin aus der Möglichkeit,
die Eigenschaften und mikroskopischen Mechanismen der Quasiteilchen mit Hilfe von vere-
infachten Modellen intuitiv zu verstehen, während das gesamte System im Wesentlichen ein
Vielteilchenproblem bleibt.

In der ersten Publikation wird die Dynamik zweier bosonischer Fremdatome in einem Dop-
peltopfpotential untersucht. Die beiden Atome sind mit einer bosonischen Majoritätsspezies
gekoppelt, welches sich entweder in einem eindimensionalen Kasten- oder harmonischen Os-
zillatorpotential befindet. In Abhängigkeit von den Wechselwirkungsstärken zwischen den
Fremdatomen, sowie zwischen der Majoritätsspezies und den Fremdatomen, wird ein Phasendi-
agramm erstellt, das die Zweiteilchendichte bezüglich ihrer Korrelationsmuster klassifiziert.
Bei abstoßenden oder anziehenden Kopplungsstärken zwischen den beiden Spezies, induziert
die Majoritätsspezies eine attraktive Wechselwirkung zwischen den beiden Fremdatomen,
welches zu einer Ballung in der Zweiteilchendichte führt. Bei starken Wechselwirkungen
sorgt die induzierte Anziehung für die Formation eines gebundenen Zustands, dem Bipo-
laron. Wird die Abstoßung zwischen den Fremdatomen erhöht, kann das Korrelationsmuster
der Zweiteilchendichte in ein anti-korreliertes Muster überführt werden. Um das System in
einen dynamischen Zustand zu versetzen, wird die zentrale Barriere des Doppeltopfpotentials
heruntergefahren. In einem Bereich, in dem die induzierte Anziehung überwiegt, kollidieren
die beiden Fremdatome in der Mitte des Potentials, wo sie im weiteren Zeitverlauf lokalisiert
bleiben. Im Falle einer harmonisch eingeschlossenen Majoritätsspezies und für geringe Wech-
selwirkungsstärken führt das Verringern der Barriere zu einer periodischen Oszillation der
Fremdatome, die für großen Abstoßungen in eine Phasenseparation übergeht.

Inspiriert durch die Möglichkeit, die Korrelationsmuster der Fremdatome mittels Wech-
selwirkungsparameter zu kontrollieren, konzentrieren sich die nächsten drei Arbeiten auf die
explizite Quantifizierung der zugrunde liegenden induzierten Wechselwirkung. In der ersten
Arbeit dieser Reihe werden zwei unterscheidbare und nicht wechselwirkende Fremdatome un-
tersucht, welche an eine harmonisch eingeschlossene Majoritätsspezies gekoppelt sind. Eine
Besonderheit ist, dass die Kopplungsstärken der beiden Fremdatome individuell eingestellt
werden können. Diese Flexibilität ermöglicht es, ein Fremdatom attraktiv an die Majo-
ritätsspezies koppeln zu lassen, während das andere Fremdatom Letztere abstößt, welches
schlussendlich zu einem anti-korrelierten Muster in der Zweiteilchen-Korrelationsfunktion
führt. Sobald beide Fremdatome mit dem gleichen Vorzeichen an die Majoritätsspezies kop-
peln, zeigt das Korrelationsmuster wieder das bekannte Ballungsverhalten auf. Der Kern
dieser Arbeit besteht darin, mithilfe eines effektiven Zweiteilchenmodells die Korrelations-
muster mit einer induzierten attraktiven und abstoßenden Wechselwirkung in Verbindung
zu bringen. Darüber hinaus wird die Bildung eines Dimer- und Trimerzustandes im stark
anziehenden Bereich unter Zuhilfenahme der Dreiteilchen-Korrelationsfunktionen untersucht.



x

Aufbauend auf diesen Erkenntnissen widmet sich die nächste Arbeit dem dynamischen
Fall. Die Dynamik wird durch eine zeitlich lineare Veränderung der Wechselwirkungsparam-
eter hervorgerufen. Für ein intuitives Verständnis werden entsprechende Ein- und Zweit-
eilchenmodelle entwickelt und miteinander verglichen. Das Einteilchenmodel, welches die
beste Übereinstimmung mit den Resultaten einer Vielteilchenmethode erlangt, besteht aus
einer zeitabhängigen effektiven Masse und Fallenfrequenz. Die beiden effektiven Param-
eter entstammen einem Optimierungsprozess, das in der Lage ist, jene zeitlichen Effekte
mit zu berücksichtigen, welche von Korrelationen zwischen dem Fremdatom und der Ma-
joritätsspezies hervorgerufen werden. In einer ähnlichen Weise wird das induzierte Wechsel-
spiel zwischen den beiden Fremdatomen mit einem effektiven Zweiteilchenmodell bestimmt.
Dafür werden zwei Einteilchenmodelle mit einem zeitabhängigen Kontaktwechselwirkungspo-
tential miteinander verbunden. Die entsprechende zeitabhängige Wechselwirkungsstärke ergibt
sich aus einer Optimierung bezüglich der Zweiteilchen-Korrelationsfunktion. Angewandt auf
verschiedene dynamische Systeme, konnte mittels des effektiven Zweiteilchenmodells der Über-
gang von einer induzierten Anziehung hin zu einer induzierten Abstoßung beobachtet werden,
sowie der umgekehrte Fall. Insbesondere liefert die Vorgehensweise, in welcher die Dynamik
der Quasiteilchen im Sinne von zeitabhängigen effektiven Parametern modelliert wird, einen
neues Werkzeug für das intuitive Verständnis solcher Systeme.

Die dritte Studie erforscht eine alternative Methode zur Bestimmung der induzierten
Wechselwirkung. Anstatt Letztere auf der Grundlage von Zweiteilchen-Korrelationsfunktionen
zu quantifizieren, wie in den beiden vorherigen Studien getan, basiert in dieser Arbeit ihre
Spezifizierung auf den Polaronenergien. Das zu untersuchende System besteht aus bis zu
drei Fremdatomen, welche in einem gekippten Doppeltopfpotential eingeschlossen und an
ein bosonisches Gas in einem Ringpotential gekoppelt sind. Das effektive Verhalten der
Fremdatome wird mit entsprechenden Zwei- und Dreiteilchenmodellen erfasst, wobei die jew-
eiligen Zwei- und Dreiteilchen-Wechselwirkungsparameter so justiert werden, dass die effek-
tiven Modelle den Polaronenergien entsprechen. Letztere werden mittels eines Vielteilchen-
modells bestimmt. Des Weiteren erlaubt das gekippte Doppeltopfpotential den Einfluss der
induzierten Wechselwirkungen auf die Einteilchendichte der Fremdatome zu messen. Die
Berechnungen der Vielteilchenmodelle der oben erwähnten Studien werden mit der Multi-
Layer Multi-Configuration Time-Dependent Hartree-Methode für atomare Mischungen durch-
geführt.

Ultrakalte Quantengase bieten nicht nur die Möglichkeit, Michungen mit stark variieren-
der Teilchenzahl zu untersuchen, sondern erlauben auch Einblicke in andere faszinieren-
de Modelle, wie z.B. das Anyon-Hubbard-Modell, welches Gegenstand der letzten Arbeit
dieser Dissertation ist. Insbesondere werden Teilchen mit anyonischer Vertauschungsrela-
tion betrachtet, welche in einem Gitterpotential mit offenen Randbedingungen gefangen sind.
Für den Fall, dass die Teilchen nur über einen dichteabhängigen Kopplungsterm miteinan-
der wechselwirken, weist das Eigenspektrum einen entarteten Unterraum auf, welcher aus
Eigenzustände mit verschwindender Eigenenergie besteht. Es stellt sich heraus, dass die
Eigenzustände in diesem Unterraum eine chiralen Symmetrie beitzen, welche erhalten bleibt,
auch wenn der statistische Parameter variiert wird. Zudem führt die chirale Symmetrie zu
einem Schachbrettmuster innerhalb der Einteilchenkorrelationsfunktion. Eine weitere interes-
sante Eigenschaft des Unterraums ist die Realisierung von nicht-trivialen Berry-Phasen und
Holonomiematrizen, welche aus einer adiabatische Entwicklung des Unterraums hervorgehen.
Während dieser Entwicklung durchläuft der statistische Parameter einen Zyklus vom bosonis-
chen zum pseudo-fermionischen und wieder zurück zum bosonischen Fall. Im letzten Schritt
dieser Arbeit wird ein Protokoll vorgestellt, welches in der Lage ist, nur mithilfe von Varia-
tionen des statistischen Parameters einen simplen Anfangszustand in einen Eigenzustand mit
verschwindender Energie zu überführen.
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the main results of the work and discussed the progress in regular meetings. Prof. Dr.
Nathan L. Harshman, Dr. Martin Bonkhoff and Dr. Thore Posske devised the concept of the
work, while I contributed the numerical simulations. In this course, I devised the computer
program which solves the anyon-Hubbard model via exact diagonalization and implemented all
observables. The manuscript has been written mainly by Prof. Dr. Nathan L. Harshman and
Dr. Martin Bonkhoff. I devised all figures and wrote the parts concerning the implementation,
the adiabatic evolution, as well as, the steering protocol. Dr. Thore Posske revised and
optimized the manuscript.

In all cases Prof. Dr. Peter Schmelcher supervised the research progress, took part in the
discussions and contributed to the revision of the manuscripts.

Outline of this thesis

The present dissertation is organized as follows. Chapter 1 gives a short overview of the field
of ultracold atoms with the emphasis on impurity physics. It concludes with remarks on the
recent progress made in terms of the one-dimensional anyon-Hubbard model. In Chapter 2, the
basic experimental concepts inherent in ultracold quantum gases are introduced. In Chapter 3
the focus is set on the theoretical description of one and two impurities immersed into a
bosonic medium and a selection of the commonly used effective models is discussed. Chapter 4
introduces the numerical methods employed to treat the many-body systems considered in
this thesis. In particular, we elaborate on the exact diagonalization method and the multi-
configuration time-dependent Hartree method as well as its multi-layered variant. Since the
many-body methods outlined Chapter 4 are intended to capture all relevant correlations
present in a system, it is important to quantify and classify them. Therefore, Chapter 5
is devoted to the quantification of the interparticle as well as interspecies correlations and
introduces the methods applied in the framework of this thesis. In Chapter 6 we give a
brief overview of the one-dimensional anyon-Hubbard model. In Chapter 7 we outline the
scientific contributions which are subsequently presented in Chapter 8. Finally, we summarize
in Chapter 9 the results and provide an outlook to further research possibilities.
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Chapter 1

Introduction

Since the first realization of a Bose-Einstein condensate (BEC) in 1995 [1, 2], the field of
ultracold quantum gases has experienced a rapid growth boasting experimental and theoret-
ical advances. A major contribution to the success of this field lies in the unprecedented
experimental control of ultracold quantum gas parameters, rendering them the most suitable
testbeds to emulate a plethora of quantum many-body phenomena. Specifically, it is nowa-
days possible to tune continuously the interaction strength between the individual atoms by
manipulating their scattering length optically [3, 4] or magnetically [4–6]. For instance, tun-
ing the interatomic interaction strength toward the strongly attractive regime, two atoms
can bind and form Feshbach molecules [4, 6–8]. Apart from having access to the internal
degrees of freedom (DOFs) of ultracold gases, it is also possible to externally trap the atoms
in optical potentials and even restrict their motion to one or two spatial dimensions [9–11].
These features add extra flexibility and allow the systematic study of a variety of complex
setups such as box [12] and double-well potentials [13–16], lattice structures [17, 18] or any
other arbitrary static or dynamically varying potentials [19]. In addition, by exploiting dif-
ferent kinds of trapping techniques experimentalists have attained control over the number
of participating particles and paved the way for a detailed study of few-body systems [15,
20–24]. In this sense, using Pauli’s exclusion principle, the number of trapped fermions can
be controlled by lowering the threshold of the external potential so that only a precise number
of atoms are realized [22]. A similar technique has been applied to study the crossover from a
few- to many-body system by successively adding fermions to an impurity in order to observe
the formation of a Fermi sea [23]. Other methods to enter the few particle regime consists of
trapping individual atoms in optical tweezer arrays [15, 25, 26]. In such setups, the tunneling
behavior of two atoms in an effective double-well trap has been studied by bringing two optical
tweezers close to each other and allowing the single-particle functions to overlap [15]. In such
setups, the entanglement between the atoms can be controlled by employing a time-dependent
protocol [25]. These developments in terms of experimental control render the platforms of ul-
tracold quantum gases the most favorable and promising candidates for quantum simulation.
The implementation of disparate physical models in ultracold quantum simulators allows to
gain insights into previously elusive properties [10, 27, 28]. For example, ultracold atoms in
optical lattices can mimic condensed matter systems [29–31] such as Hubbard models [32, 33]
as well as reveal the existence of exotic phases, e.g., supersolid states [34–36] or even explore
lattice gauge theories [37, 38].

Moreover, ultracold quantum gases are intriguing platforms on their own since they can
provide for insights into fundamental aspects of quantum mechanics. Some of the earliest
experiments after the first realization of a BEC were devoted to the investigation of collective
excited states such as dipole-like and breathing-like motions [39, 40], or the generation of
dark [41–43] and bright solitons [44, 45], where the latter corresponds to spatially localized
excitations appearing either as density dips (accompanied by a phase jump) or humps [46].
Since a BEC can inherit properties of a superfluid, quantized topological vortices may emerge
in rotating gases [40, 46] which can be generated by optically modulating the external confining
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potential to induce a rotation into the BEC [47, 48] or by spatially merging three independent
BECs together [49]. The emergence of vortices has been utilized in order to demonstrate the
presence of superfluidity in a paired fermionic gas [50].

Another fruitful research direction arises when adding more complex optical confining po-
tentials to the system, e.g., an optical lattice. Here, the underlying idea is to understand
phenomena appearing in condensed matter physics from the perspective of a highly control-
lable ultracold setup [51, 52]. The simplest variant of a lattice potential consists of two sites,
forming a double-well potential [24, 53–59]. Such setups allow the realization of a Josephson
junction, i.e., the back and forth oscillation of ultracold particles from one site to the other,
or a macroscopic self-trapping behavior at one site. The transition between these regimes
can be controlled by tuning the interparticle interaction strength and the initial population
imbalance regarding the wells [13]. Additionally, a maximally entangled Bell state has been
generated by optimally ramping up the potential barrier of the double-well [60]. Experimen-
tally, extending the double-well potential to a periodic lattice is usually done by superimposing
two counter-propagating laser beams, which realizes another intriguing branch in ultracold
quantum physics [10, 52, 61]. The ground-state and dynamics of ultracold atoms in opti-
cal lattices are well described by the Bose-Hubbard model which assumes nearest-neighbor
hopping and on-site interactions [29, 62]. The ratio between the hopping amplitude and the
interaction strength determines whether the particles correspond to a superfluid (dominant
hopping term) or a Mott-insulator (dominant interaction term). The respective transition be-
tween a Mott-insulator and a superfluid has been experimentally demonstrated in three- [63],
two- [64, 65] and one-dimensional setups [66]. Other studies investigated the formation of
a Tonks-Girardeau gas [67], the pairing of fermions [68] or more exotic superfluid phases in
higher bands [69, 70]. Adding disorder to a lattice leads to fundamental changes in the trans-
port and correlation properties of the trapped atoms. For instance, in the non-interacting case
disorder leads to the localization of the wave-packet, the so-called Anderson localization [71,
72], while for interacting particles many-body localized states emerge [73]. An example de-
notes the so-called Bose glass which is a many-body localized state lying in between the usual
superfluid and Mott-insulating phases in a disordered system [74, 75].

So far, we have provided a glimpse of the intriguing physics inherent in one-component
ultracold setups. However, going beyond this, the study of multi-component ultracold quan-
tum gases promises an even richer phenomenology [11, 76, 77]. In such setups two or more
atomic species are simultaneously trapped in the same or different external potentials and
interact with each other [78–82]. Experimentally, two-component Bose-Bose [16, 83–85],
Bose-Fermi [86, 87] and Fermi-Fermi [50, 88] mixtures have been realized. In such setups, a
two-component mixture can be prepared by transferring a fraction of an ultracold gas into
a different hyperfine state via a radio-frequency pulse [16, 50, 88, 89] or by simultaneously
trapping two different atomic elements such as 41K and 87Rb atoms [80, 83, 85], 6Li and 23Na
atoms [86] or 6Li and 133Cs atoms [87]. Specifically, the addition of another atomic compo-
nent extends the experimentally available parameter space which, for instance, includes the
number of tunable interaction parameters. Depending on the inter- and intraspecies repulsion
different kinds of miscible and immiscible phases can be realized [90, 91], such as composite
fermionization [92, 93] or full fermionization [94]. In the case of attractively coupled mix-
tures, the components can form a self-bound quantum droplets [95, 96]. These objects owe
their existence to competing effects between inter-component attractive and internal repulsive
forces [97, 98]. One of the most fascinating properties of quantum droplets is the necessity
to incorporate higher-order correlation effects, such as the Lee-Huang-Yang correction [99],
in order to maintain these many-body self-bound states, making them pure quantum objects.
Experimentally, quantum droplets have been observed in Bose-Bose mixtures [100, 101] and
theoretically studied, e.g., in terms of their dynamical properties [102–104], within optical
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lattices [105, 106] or in the presence of three-body interactions [107]. Other ways of exploit-
ing the increased complexity of a two-component mixture include the generation of different
kinds of solitons such as dark-dark [108], dark-bright [109–111] or dark-antidark solitons [112,
113] as well as the spatially and temporally localized Peregrine soliton which belongs to the
rouge wave family [114, 115].

In multi-component systems, a major focus has been placed on highly particle-number
imbalanced mixtures, where a minority species of impurity atoms is embedded in a majority
component. In the extreme case, a single impurity atom is coupled to an ultracold host and
can become dressed by the excitations of the latter. The dressed impurity gives then rise
to a quasi-particle, i.e., a polaron [11, 116–119]. Experimentally, Bose [85, 120–122] and
Fermi [82, 88, 123, 124] polarons, i.e. dressed impurities interacting with either a bosonic or
a fermionic environment, respectively, have been realized in mass-balanced [88, 120] or mass-
imbalanced [82, 85] setups. These studies, for instance, provided evidences for an increased
effective mass of 41K impurities immersed into a bosonic gas of 87Rb atoms [85] or, in a
three-dimensional setup, allowed to study the attractive and repulsive polaron branch as well
as the lifetime of the respective quasi-particle [120]. Moreover, finite temperature effects
on the polaronic properties were studied in terms of 40K impurities immersed into a 23Na
BEC where the breakdown of the quasi-particle picture has been observed near the critical
temperature of the BEC [122]. In other experiments where impurities coupled are coupled
to an ultracold gas [125, 126] investigated the motion of the impurities through a strongly
interacting Bose gas [89, 127], the bath-induced decoherence effects on the impurities [86] or
the possibility to extract information about the bath from internal impurity states [128]. In
another experiment consisting of a 41K impurity confined in an optical tweezer and immersed
into a cloud of ultracold 87Rb atoms, the control over the impurity’s position as well as over
the impurity-medium interaction strength has been demonstrated [129].

On the theoretical side, the Bose polaron problem in three dimensions is adequately de-
scribed by the Fröhlich model assuming a weakly interacting impurity [119, 130, 131]. How-
ever, for strong impurity-medium interactions, i.e. in the vicinity of a Feshbach resonance, the
Fröhlich model looses its validity and more sophisticated approaches are required [132–135],
e.g., perturbative methods [136, 137] or field theoretical approaches [138]. Particular focus
has been put on the polaron spectrum, which exhibits a repulsive and an attractive branch.
In the strong coupling regime, the attractive branch is expected to evolve into a molecular
dimer state [120, 121, 138, 139]. However, a more recent work based on a variational scheme
suggests additional many-body bound states to emerge in the attractive branch [140].

In one-dimensional setups, the problem of an impurity coupled to a weakly interacting
bath has been extensively studied in term of homogeneous potentials [130, 141–150]. In this
course, various numerical approaches have been applied including analytical techniques [146],
Monte Carlo calculations [143, 144] and mean-field [141, 142, 146–150] as well as beyond
mean-field [149] approaches. These endeavors have led to the characterization of the effective
mass and residue of the dressed impurity [143, 145] as well as to a profound knowledge of the
impurity’s self-trapping behavior [85, 130, 141, 148, 149, 151]. The situation becomes more
involved when considering additional trapping geometries or when triggering the dynamics.
Especially, in the dynamical case interparticle correlations are expected to have an increased
impact [11]. For example, in a system where an impurity performs an oscillatory motion
within a harmonically trapped bosonic gas, the presence of interspecies correlations leads to
an accelerated energy transfer from the impurity to its host [152]. Other works studied the
impact of correlations on the motion of an impurity in terms of a harmonic confinement [153],
a double-well [FT7, FT8, 154, 155] or lattice potential [156–159]. In general, external confining
potentials can crucially affect the emergent dynamics, trigger dipole-like [152] or dissipative
motions [153] of the impurity and even lead to temporal orthogonality catastrophe events [160].
The latter emerge in the strongly repulsive regime and are characterized by a vanishing residue
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of the impurity.
Increasing the number of impurities interacting with a bosonic medium gives rise to in-

triguing phenomena which are not present in the single-impurity case. For example, in one-
dimensional setups the medium can induce an attractive interaction between the impurities
given that they couple with the same sign to their host, i.e., the impurities are either both
attractively or repulsively coupled to the medium [161–173]. In the strong coupling regime,
this mediated attraction leads to the formation of a bound state, the so-called bipolaron [150,
174–176]. The shape of the induced interaction potential takes, for impurity-impurity dis-
tances smaller than the healing length of the bath, the form of a Yukawa-type potential [150,
161, 162, 167, 168]. At large impurity separations, quantum fluctuations are the dominant
mediator of the induced interaction and give rise to a Casimir-type interaction [167, 177].
However, the relevance of the latter is still under debate since the impact of the Cassimere-
type interaction turns out to be comparatively small [150, 170]. In Ref. [170] it has been shown
that the mediated interaction can be adequately modeled by a contact interaction potential
with a strength derived from mean-field arguments. On the other hand, models based on a
mean-field description fail to predict the entanglement entropy between the impurities [170].
Similarly, in Ref. [178] it was shown that also beyond mean-field effects lead to an induced
interaction.

The presence of an external harmonic confinement has an additional impact on the medi-
ated interaction between the impurities and leads, e.g., in the case of strong interactions, to
the coalescence of the impurities at the edges of the bath [165, 169]. Besides the mediation
of an induced interaction, the majority species can also influence the transport and corre-
lation properties of the impurities confined in a lattice potential [156, 157, 179] or impact
the impurities’ localization behavior in the presence of a harmonic external potential [169].
In Ref. [FT1] we have continued the ongoing research of impurity physics and studied the
counterflow of two atoms in the presence of a superimposed bosonic medium. In this sense,
our work combines the idea of colliding ultracold particles [180–184] within the concept of
dressed impurities. Specifically, we study the impact of an induced attraction on the dynam-
ical behavior of the colliding impurities, which turns out to be strongly dependent on the
applied interaction parameters as well as on the particular external trapping potential. In
general, collisions of ultracold particles are an intriguing branch of ultracold physics since the
out-of-equilibrium dynamics can offer additional insights into the structure of the many-body
wave function which, in the static case, is otherwise hidden. Experimentally, such collision
processes can be induced by first spatially separating atoms in a harmonic trap according to
different hyperfine states and, subsequently, letting the separated atoms collide in the trap
center. In the corresponding experiment, this protocol led to the formation of dark-bright
soliton trains [185]. An alternative approach consists of trapping two ultracold ensembles in
two spatially separated external potentials and letting the traps collide [FT8, 182–184, 186].
A similar approach is to prepare an ultracold gas in a double-well potential and ramping
down the central barrier to initiate the counterflow dynamics [180, 181, 187] leading to the
formation of dark solitons [181].

An additional research direction beyond the field of one- and two-component ultracold
quantum gases, which has recently gained more attention, refers to three-component mixtures.
Experimentally, triple mixtures have already been realized in terms of Bose-Fermi-Fermi mix-
tures which consist of bosonic 87Rb and fermionic 6Li and 40K atoms [79] or with bosonic 41K
and fermionic 40K and 6Li atoms [82], where in these experiments the third species mainly
served as a sympathetic coolant in order to reach degeneracy. Besides the creation of ultracold
hetero-nuclear mixtures, it is also possible to create a three-component mixture by populating
different hyperfine states, e.g., as reported in Refs. [188, 189]. In these experiments, three
hyperfine levels of 87Rb have been populated in order to study dark-bright-bright and dark-
dark-bright solitons [188] or the collision of two vector solitons [189]. On the theoretical side,
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the focus has been mainly on the study of the interplay between impurities coupled to a Bose-
Bose mixtures in various setups [190–195]. For instance, the two-component host has been
subjected to a harmonic confinement [191, 193], a double-well [194] and lattice potential [196],
or has formed a two-component quantum droplet [192, 197]. In the case of particle balanced
three-component mixtures, the formation of a shell-shaped droplet has been predicted [198,
199] as well as a plethora of different phases beyond the two-component paradigm [200].

Other highly unexplored three-component mixture settings are represented by two distin-
guishable impurities interacting with a bosonic gas [201–203]. This setup is fundamentally
different from the related two-component scenario in the sense that the impurities can couple
with distinct interaction strengths to the majority species, i.e., one impurity may be attrac-
tively coupled to the bosonic medium while the other repels it. This is an important feature,
since this interaction configuration facilitates a mediated repulsive interaction between the
impurities [167, 168, 177, 202] and, therefore, goes beyond the induced attractive behavior
observed in two-component setups. Signatures of the repulsive character of the mediated in-
teraction have been found in terms of two static impurities with an infinite mass confined on
a ring potential within a flow equation approach [202]. In particular, one impurity has been
considered to repel the bath with an infinite interaction strength while the other impurity
attracts the medium. However, the implications of the induced repulsion and attraction on
the behavior of mobile impurities, as well as the role of interparticle correlations on the in-
duced interplay, have remained elusive. In Ref. [FT2] we aim at filling this gap and study the
ground state behavior of two distinguishable impurities with finite mass coupled to a bosonic
medium. By devising an effective two-body model we quantify the induced attraction and re-
pulsion between the impurities and make the connection to the induced pattern appearing in
the two-body correlation function. We base our analysis on many-body calculations obtained
by the ab initio multi-layer multi-configuration time-dependent Hartree method for atomic
mixtures (ML-MCTDHX) [204–206]. This method is capable of taking all relevant inter- and
intraspecies correlations into account and provides to access the underlying many-body wave
function of the system. In Ref. [FT3], we build on the findings made in [FT2] and study the
dynamical response of the impurities upon linearly ramping their interaction strengths to the
medium in time. In previous studies, the effective description of the impurities’ dynamical
response has been restricted to static effective parameters, which has limited the applicabil-
ity to small impurity-medium interaction strengths and short propagation times [170]. In
Ref. [FT3] we significantly improve the effective description of the induced interplay between
the impurities by devising a time-dependent effective model consisting of time-dependent
effective parameters. The application of these effective models eventually results in the ob-
servation of the dynamical crossover from an induced attraction to an induced repulsion and
vice versa. While in Refs. [FT2, FT3] we identify the mediated interactions in terms of a
bunching or anti-bunching pattern in the two-body correlation function, in Ref. [FT4] we
quantify the induced interaction by relying exclusively on polaron energies [207]. Specifically,
we consider up to three impurities confined in a tilted double-well potential [FT7, 208–210]
which are coupled to a majority species trapped in a ring potential [211, 212]. The tilt applied
to the double-well potential leads to a population imbalance of the impurities regarding the
two wells and facilitates the detection of the induced interaction by means of the one-body
density. Based on this, we construct effective two- and three-body models and extract the
impact of an induced two- and three-body interaction imprinted on the impurities’ one-body
density.

As mentioned above, the exquisite experimental control over the system parameters ren-
ders ultracold platforms ideal testbeds for quantum simulation. This feature, has been im-
pressively demonstrated in a recent experiment reported in Ref. [213]. In this experiment,
a Floquet scheme has been applied to two ultracold 87Rb atoms confined in a tilted optical
lattice potential to simulate the one-dimensional anyon-Hubbard model. The latter model is a
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generalization of the Bose-Hubbard model and describes a system consisting of lattice trapped
anyons which, similar to bosons, can interact via an onsite-interaction potential and propa-
gate through the lattice via hopping between neighboring sites. In general, abelian anyons
are particles for which the describing wave function picks up a statistical phase eiθ when two
particles are interchanged. The angle of this phase is denoted by θ and defines the particular
exchange statistics [214–219]. When the additional phase factor is 1 or −1, the underlying
particle statistics corresponds to bosons (θ = 0) or fermions (θ = π), respectively. One of the
most prominent examples associated with the appearance of anyons is the fractional quantum
Hall effect [220–223]. This effect can be observed in ultracold two-dimensional electron sys-
tems with an additional perpendicular magnetic field. Measuring the Hall resistance gives an
insight into the filling factors of the Landau levels, which can be either integer or fractional.
The emergence of a fractional filling factor is then explained with the concept of identical
quasi-particles obeying a fractional exchange statistics [220, 221].

The aforementioned one-dimensional anyon-Hubbard model is expected to exhibit a rich
physics, including the formation of exotic phases that are absent in the Bose-Hubbard model.
Recall that in the bosonic case (θ = 0), depending on the chemical potential, the system enters
a superfluid phases, when J is much larger than U , corresponding to a delocalization of the
particles over the lattice. On the other hand, if U is dominant, the particles localize with an
integer number on individual lattice sites and the system is in a Mott-insulating state [62, 63,
224, 225]. Besides the appearance of a superfluid and Mott-insulting phase [226], the anyon-
Hubbard model exhibits more exotic phases that are entered by varying the statistical angle.
For instance, in the absence of triple occupations, the emergence of a dimer, a pair-superfluid
or a partially paired phase have been predicted [227]. In Ref. [228] it has been shown that
a negative statistical parameter induces an attraction between the anyons which eventually
leads to the formation of a quantum-statistical condensate and turns out to be even more
robust than a BEC. Moreover, when tuning the statistical angle from bosons to fermions,
the fermionization of the anyons can be observed in terms of Friedel oscillations [229], a
signature occurring also in the bosonic continuum limit [230, 231]. Another property which
distinguishes the anyon-Hubbard model from the bosonic one, is the breaking of the spatial
inversion and time reversal symmetry [232], leading to an asymmetric particle transport [213,
233]. Additionally, great interest has been paid to one-dimensional hard-core anyons [234–
237], which undergo dynamical fermionization after a free time evolution [234] and reveal an
asymmetric quasi-momentum distribution [235–237]. Remarkably, such a system has been
recently realized in terms of a strongly-interacting quantum gas which relies on spin-charge
separations [238].

In Ref. [FT5] we extend the field of one-dimensional anyons and study the spectral prop-
erties of the anyon-Hubbard model. Specifically, we find a degenerate zero-energy subspace
whose dimension is independent of variations in θ. The root of this property is found in the
conservation of chiral symmetry a property, which is also responsible for the emergence of a
checkerboard pattern in the one-body density function. Moreover, by preparing the system in
the zero-energy space and adiabatically tuning the statistical angle from bosons to fermions
back to bosons, i.e. from θ = 0 to 2π, we reveal nontrivial Wilcek-Zee phases and holonomies
which could be used for state manipulation purposes.

Objectives of this thesis

In this cumulative thesis, our main goal is to study the correlated static and dynamical proper-
ties of ultracold atomic ensembles in one-dimensional setups at ultracold temperatures, where
the focus is put on strongly particle-number imbalanced mixtures. The numerically exact
results for the systems discussed in [FT1–FT4] are obtained by employing the ML-MCTDHX
method [204–206]. The primary interest is put on the induced interplay between impurities
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coupled to a majority species. We intend to characterize the induced interaction in terms of
their impact on polaron energies, one-body observables and higher-order correlation functions.
In order to quantify the respective induced interactions, the strategy is to construct two- and
three-body effective models with the ultimately goal to provide an intuitive understanding of
the underlying physics and to reveal the presence of induced attraction and repulsion.

An additional focus is put in [FT5] on the spectral properties of the anyon-Hubbard
model in one-dimension. The emphasis is on characterizing the zero-energy subspace and
relating its properties to the presence or absence of chiral symmetry. Additionally, we aim at
providing a scheme that is able to evolve an initial number state into a zero-energy eigenstate
by temporally tuning the statistical parameter. A main goal is to realize nontrivial state
transformations by exploiting the dimensional stability of the zero-energy subspace and to
adiabatically tune the statistical parameter in the control space.
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Chapter 2

General Aspects of Ultracold Atoms

Materials can have different phases depending on the external pressure and temperature. The
most prominent phases are the liquid, solid and gas phase. Beyond these classical phases there
exists numerous other exotic phases of matter which occur only either within special materials
or at extreme temperatures. In the case of extreme large temperatures, the atoms dissolve
into nuclei and electrons and form a plasma. On the other hand, at very low temperatures
quantum effects become relevant and enable, for instance, the formation of a so-called Bose-
Einstein condensate, named after S. N. Bose who theoretically predicted the phase in terms of
massless photons [239] and A. Einstein who extended his work to massive particles [240]. The
general idea of a BEC is that at very low temperatures the de Broglie wavelength of massive
particles λT becomes comparable to the interparticle distance of the atoms in the cloud and
the individual matter waves of the atoms overlap. This eventually leads to the condensation
of the atoms into a BEC. In the case of bosonic particles, the atoms occupy the same state
such that even a large atomic ensemble can be described by a single wave function making
it the ideal testbed to study fundamental quantum effects. Still, it took over 70 years from
its first prediction in 1924 until the cooling techniques had advanced enough to realize such
a BEC. Important contributions to the development of the cooling and trapping techniques
have been made by S. Chu, C. Cohen-Tannoudji and W. D. Williams who received for their
work the Nobel Prize in Physics in 1997 [241]. In 1995, the group under the direction of
E. Cornell and C. Wiemann created for the first time a BEC with 87Rb atoms [1], followed
by the realization of a BEC with 23Na atoms by the group led by W. Ketterle [2]. In 2001,
their achievements were awarded with the Nobel Prize in Physics. These early endeavors set
a milestone in the history of ultracold physics and ignited a rapid growth of the field.

In the following, we introduce the basic properties of ultracold atoms and provide in Sec-
tion 2.1 a brief overview of the different trapping techniques used to cool an atomic ensemble
into the ultracold regime. The impact of optical light on the of ultracold ensemble is shortly
discussed in Section 2.2. In Section 2.3 we introduce different control mechanisms employed
in experiments to tune the interatomic interactions.

2.1 Cooling an Atomic Ensemble into the Ultracold Regime

In order to experimentally cool down an atomic ensemble and realize a BEC, an advanced
trapping machinery is required [241–244]. Nowadays, there exist a number of ways of cooling
an atomic gas to ultracold temperatures (∼ nK), e.g, through the application of optical and
magnetic fields [244, 245] and/or the collision with a buffer gas [246]. The starting point
of a typical experimental sequence is given by a hot gas of atoms emitted from an oven.
These atoms are then decelerated via a Zeeman slower [244] in which the atoms move along
a magnetic field gradient that splits the internal level structure of the atoms, while a coun-
terpropagating laser slows down the atoms. It is crucial that the magnetic field gradient is
matched with the Doppler effect such that the atoms are always resonant with the applied
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laser. After passing through the Zeeman slower the atoms posses a temperature of around
1K.

Subsequently, the atoms can be loaded into a magneto-optical trap consisting of a quadrupo-
lar magnetic field that varies in space and vanishes at the trap center. The concept of such a
setup is as follows. Once the atoms move away from the center, their energy levels get shifted
by the magnetic field gradient according to the Zeeman effect and, importantly, become res-
onant with optical lasers installed around the trap center. The frequencies and polarization
of the laser beams are adjusted such that they are only resonant with the atoms propagat-
ing towards them and leave the other atoms unaffected. Once an atom absorbs a photon,
it receives a kick back to the trap center. Note that this effect of pushing the atoms back
to the center is an average over many absorption and emission processes, i.e., the absorption
of an incoming photon leads to the kick towards the trap center, while the emission of the
photon leads to a kick in a random direction. This mechanism denotes at the same time also
its limitation, i.e., it is not possible to cool the ensemble below the momentum kicks invoked
by the laser light, known as the Doppler limit. Eventually, a magneto-optical trap is able to
cool the atoms into the µK regime [247–249].

In order to cool the gas below the Doppler limit and convert a macroscopic fraction of
the gas into the condensed phase, other cooling techniques are required such as Sisyphus
or evaporative cooling [241, 242, 244, 245, 250]. The former procedure constitutes of two
polarized counter-propagating laser beams, where the idea is to convert kinetic energy to
potential energy which is then absorbed by a photon. Here, the atoms move along a spatially
varying potential landscape. In case an atom reaches a potential maximum, part of the kinetic
energy is converted to potential energy. Polarized laser beams then pump the internal state of
the atoms to a different hyperfine state corresponding to a different potential landscape with
inverted minima and maxima. By doing so, the optical pump lowers the overall energy of the
atom. After the Sisyphus cooling the temperature can be further reduced by employing an
evaporative cooling scheme. In this method, the atoms are loaded into an optical dipole trap,
whose depth is subsequently lowered such that highly energetic atoms can escape the trap.
The loss of a small fraction of highly energetic atoms significantly lowers the temperature and
can cool the remaining ensemble into the nK regime [251].

2.2 Optical Confinement of Atoms

Once the atoms are trapped and cooled to ultracold temperatures, they can be further manip-
ulated via optical light. This light is used to generate potential landscapes for the atoms, in
this way, opening the possibility to study quantum processes in almost arbitrary setups [10,
19, 252]. The interaction of an atom with an electric field E(r, t) is given by [40, 61],

Ĥatom−light = −d ·E(r, t), (2.1)

where d is the electric dipole operator. Here, we have assumed that the electric field with fre-
quency ωL does not vary on scales of the atomic size, also known as the dipole approximation.
The external electric field induces a dipole polarization α(ωL) on the atom, which leads to an
energy-shift, known as Stark shift. This spatially dependent energy shift acts as an effective
potential and after time-averaging obtains the form,

V atom−light(r) = −1

2
α(ωL)E(r, t)2, (2.2)

where α(ωL) ≈ |⟨e|d · ϵ|g⟩|2/(Ee − Eg − ℏωL) is the atomic polarizability and |g⟩ (|e⟩) refers
to the ground (first excited) state of the atom with energy Eg (Ee) and ϵ denotes a unit
vector pointing in the direction of E [40]. Since the electric field varies much faster than the
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atomic motion, it is sufficient to consider only the time-average of the intensity, i.e., E(r, t)2.
Depending on the sign of the polarizability α(ωL) the atom either seeks or avoids an intensity
maximum. In this sense, the optical light leads to a spatially dependent energy shift that
gives rise to a spatially dependent potential.

By exploiting the effect of optical light on neutral atoms, various potential landscapes can
be realized, e.g. box [253] and a double-well potentials [16, 17] or optical lattices [254, 255].
The latter can be generated by superimposing counter-propagating optical laser beams, where
the distance between the sites is determined by the wavelength of the laser. Furthermore,
when rapidly moving a laser beam faster than the dynamical response of the atoms, it is even
possible to generate arbitrary and time-dependent potential landscapes [19].

2.3 Interactions Between Neutral Atoms

Interactions in ultracold gases are vital for the generation of correlation and the formation of
complex phases. Therefore, it is pivotal to understand and control interparticle interactions.
The scattering of two low-energetic neutral particles is already textbook knowledge, see for
instance [4, 61, 256, 257]. Here, we focus on the most relevant aspects of ultracold collisions
which lay the ground for the following discussion.

We distinguish between two types of interactions occurring between neutral atoms, i.e.,
Coulomb and van der Waals interactions, where their relevance depends on the interatomic
distance. For instance, at short distances, meaning at the order of the spatial extension of an
atom (∼ 0.5 nm for Rb atoms), the interaction is governed by the Coulomb repulsion between
the electrons residing in the outer shell of each atom. Increasing the interatomic distances to
large values, the internal structure of the atom becomes less relevant and the atoms appear
effectively neutral. For distances above ∼ 102 nm, the instantaneous polarizability of the
moving internal charges, i.e. the electrons, gives rise to an attractive van der Waals interaction
potential which scales as −1/R6 with R being the interparticle distance [257]. In ultracold
experiments the interatomic distances are much larger than the atomic radii so that it is
sufficient to consider only van der Waals interactions.

2.3.1 Two-Body Scattering in Three Dimensions

The scattering process of two colliding neutral particles is a widely celebrated quantum me-
chanically problem which is tackled by solving the two-body Schrödinger equation constructed
from a two-body interaction potential V (r1, r2) [40, 61]. As starting point, two particles with
masses m1 and m2 are prepared in a plane wave with a relative energy of E = k2

2µ and absolute
momentum ℏk, where µ = m1m2

m1+m2
denotes the reduced mass. For an isotropic potential, i.e.,

the potential depends only on the absolute distance R between the atoms, it is convenient
to expand the solution of the Schrödinger equation in terms of spherical harmonics Ylm and
radial functions ul(R), leading to the relation [4, 40, 256],

(
− ℏ2

2µ

d2

dR2
+

ℏ2

µR

d

dR
+ V (R) +

ℏ2l(l + 1)

2µR2

)
ul(R) = Eul(R), (2.3)

where l denotes the relative angular momentum between the two atoms. The last term on the
left-hand side denotes the centrifugal barrier, which vanishes for l = 0. At large interatomic
distances, in the limit of R→ ∞, the radial wave function takes the form,

ul(R) ≈
1

kR
sin

(
kr − π

2
l + δl(E)

)
(2.4)
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where δl(E) is the scattering phase shift. As it turns out, for small momenta k all phase
shifts with l > 0 vanish such that the scattering cross section is governed by the l = 0
contribution, also referred to as s-wave scattering. The scattering length a is defined from the
relation δ0(E) = −ka in the limit k → 0 [4]. Note that the scattering length is an important
quantity in ultracold physics due to its direct relation to the scattering properties between
two particles.

Instead of using a van der Waals-type interaction potential, it is often sufficient to use
a more simplified effective interaction potential. Typically, ultracold systems are very dilute
meaning that the interatomic distance is much larger than the size of an atom so that the
short-range behavior of the interaction potential can be simplified. A prominent example is
given by Huang’s pseudopotential [258]

U(r) =
2πℏ2a
µ

δr
∂

∂r
(r ·), (2.5)

where the operator ∂
∂r (r ·) accounts for the regularization at small distances. This description

is exact in the limit of vanishing energies and facilitates a bound state for positive scattering
lengths, a > 0, with energy E = ℏ2/(2µa2) [4].

2.3.2 Tuning the Scattering Length via Feshbach Resonances

As we have seen in the previous Section 2.3.1, the scattering length a is the decisive parameter
defining the interaction between two particles. Therefore, it is crucial to gain an experimental
control over this scattering length. A possibility is given by tuning over a Feshbach resonance.

A Feshbach resonance is present when the energy of a molecular bound state, correspond-
ing to a closed channel (Ec), approaches the asymptotic energy of two separated atoms in
an open channel (Eo). In the vicinity of such a Feshbach resonance, two atoms in an open
channel can undergo a second-order transition and scatter to a state in the closed channel
and decay back to the open channel, a process which impacts the scattering length a [40]. In
particular, the impact scales with the inverse of the difference between the entrance energy
and the bound state energy of the closed channel, i.e., ∼ 1/(Eo−Ec) [40]. The impact on the
scattering length is especially large at the Feshbach resonance, where the energy difference
vanishes. Conveniently, this energy difference is tunable by applying an external magnetic
field and, thus, also the scattering length which reads as [4, 259],

a(B) = abg

(
1− ∆

B −B0

)
, (2.6)

where abg denotes the background scattering length while B0 and ∆ correspond to the position
and width of the resonance, respectively. At the position of the resonance, a diverges towards
negative or positive infinite values depending on the site from which one approaches the
resonance. The fact that the scattering length can be almost arbitrarily tuned, implies that
the interaction strength between two ultracold atoms is likewise tunable. Note that, besides
controlling the scattering length via magnetic fields, it is also possible to apply optical or
radiofrequency fields in order to mix the two collision channels and trigger a resonant coupling
between the atoms [3, 260–263].

In a BEC, a Feshbach resonance was observed for the first time at the MIT for 23Na
atoms [5] via non-destructive in situ phase-contrast images. Nowadays, this technique belongs
to the standard tool-kit in ultracold experiments, in this way, enabling the full control over the
interaction between two atoms [4]. Moreover, a Feshbach resonance facilitates the formation of
a bound state between two atoms, known as a Feshbach molecule. In this context, homonuclear
molecules such as Cs2, [7, 264], K2 [265] and Rb2-molecules [266] as well as heteronuclear ones,
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e.g. 85Rb-87Rb [267] and NaK*-molecules [268] have been realized and which were detected via
laser- or radiofrequency-induced dissociation [264, 265] or via a Stern-Gerlach separation [7].

2.3.3 Two-Body Scattering in One Dimension

One-dimensional ultracold gases are usually realized by tightly confining the atoms in two
spatial directions such that the motion of the atoms along these directions is suppressed and
only one axis remains available [10, 39, 67, 269]. The strong external confinement along the two
spatial dimensions makes it necessary to adjust the scattering length a to the one-dimensional
case, which was done by M. Olshanii in 1998 [9]. Starting from a Huang’s pseudopotential [see
Eq. (2.5)] and considering a harmonic confinement along the axial direction with a frequency
of ω⊥, the following expression for the one-dimensional scattering length a1D can be derived,

a1D = −a
2
⊥
2a

(
1− C

a

a⊥

)
, (2.7)

where C denotes a constant and a⊥ =
√
ℏ/(µω⊥) the size of the ground state of the transverse

Hamiltonian. To prevent a transverse motion, the energy of the atoms has to be smaller
than the energy required to excite a transverse vibrational state given by ℏω⊥. The above
considerations result in the expression for the two-body interaction potential in one dimension,

U1D(r) = g1Dδ(r), (2.8)

where g1D = − ℏ2
µa1D

denotes the interaction strength and δ(r) corresponds to a contact delta
potential.

The expression for the two-body interaction potential [Eq. (2.8)] reveals an important
experimental feature, namely, that the one-dimensional interaction strength can be tuned
not only by controlling the magnetic or optical field strength, but also via modulating the
transverse confinement frequency ω⊥.
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Chapter 3

Impurities Immersed in
One-Dimensional Bose Gases

In this chapter, we introduce the basic concepts required to treat systems consisting of im-
purities which are immersed in one-dimensional ultracold bosonic ensembles. We begin in
Section 3.1 with a description of the many-body Hamiltonian of a single-component species
and continue in Section 3.2 with the effective description of a dressed impurity immersed into
a bosonic bath. In Section 3.3 we elaborate on the case of two impurities interacting with a
bosonic host and put a special emphasis on the mediated interaction between the impurities.

3.1 Single-Component Ultracold Bose Gases

In the following, we consider a bosonic ensemble consisting of N atoms with mass m confined
to one spatial dimension. The respective many-body Hamiltonian describing this system
reads [51],

ĤA =
N∑

i=1

ĥi(xi) + g
∑

i<j

δ(xi − xj), (3.1)

where ĥi(t) corresponds to the one-body Hamiltonian of particle i which are pairwise inter-
acting with a two-body contact interaction potential of strength g corresponding to a s-wave
scattering process (see Section 2.3.3). The one-body Hamiltonian is composed of a kinetic
and a potential term,

ĥ(xi) = − ℏ2

2m

d2

dx2i
+ V (xi) (3.2)

where V (xi) is the spatially dependent potential [cf. Section (2.2)]. Note that in this ex-
pression we have neglected three- or higher-body interactions terms, which are suppressed in
dilute systems. Moreover, we remark that the potential and interaction strength, in principle,
could be time-dependent so that the Hamiltonian in Eq. (3.1) does not necessarily conserve
energy.

3.1.1 Homogeneous Case

A special case of the Hamiltonian ĤA presented in Eq. (3.1) denotes the homogeneous case,
where V (x) = 0, known as the Lieb-Liniger model [270]. This model is exactly solvable via a
Bethe ansatz [271, 272]. For a given particle density n the system is characterized by a single
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dimensionless parameter,

γ =
mg

ℏ2n
, (3.3)

which reflects the ratio of kinetic energy ℏ2n2/(2m) and the mean-field interaction energy ng.
If the gas is confined along a ring potential of length L, the density is given by n = N/L.
There are two limiting cases of this model, one case appears at high densities n and corre-
sponds to weak interaction strengths (γ ≪ 1), while the other regime emerges at low densities
corresponding to large interaction strengths (γ ≫ 1). In the case of weak interactions, the
energy per particle is found to be ϵ(n) = ℏ2n2

2m , which leads to the mean-field theory in the
thermodynamic limit (N,L → ∞). On the other hand, in the strongly interacting regime
the system consists of impenetrable bosons and can be mapped to the case of non-interacting
spinless fermions, known as Tonks-Girardeau gas [273, 274]. Note that this rather counter-
intuitive relation between density and interaction is unique to the one-dimensional case and
inverted in three dimensions [10, 61, 257]. This property can be used to realize strongly
correlated ensembles by reducing the atomic density [67, 269, 275].

3.1.2 Harmonic Confinement

Let us briefly elaborate on the properties of a finite bosonic gas confined in a harmonic oscil-
lator potential represented by V (x) = 1

2mω
2x2 with trap frequency ω. The eigenfunctions of

the one-body problem can be constructed from Hermite polynomials, while the eigenspectrum
consists of equidistant energy levels En = ℏω(n + 1

2). An analytical solution exists for the
case of two interacting particles, which can be obtained by solving the relative and the center-
of-mass Hamiltonian individually [276]. Experimentally, such a two-particle system has been
studied in Ref. [277]. For systems consisting of three or more interacting particles confined in
a harmonic oscillator potential, there exists a priori no exact analytical solution. However,
in the case of three atoms with equal mass, a similar procedure as in the two-body case can
be employed to decrease the numerical cost, i.e., a center of mass Hamiltonian can be decou-
pled from the relative parts using Jacobian coordinates [278–281]. The respective spectrum
has similar properties as the two-body solution featuring dimer-atom energies that diverge to
negative infinity for increasing attractions and for strong repulsive interactions the spectrum
shows signatures of fermionization. Employing an ab initio many-body variational approach,
such as the MCTDHB method (see Section 4.4), for few atoms a N -body bound state has
been conjectured to emerge in the attractive regime [282]. Additionally, using a correlated
pair wave-function, the ground state of a few particles can be reliably predicted [283].

In the following, we briefly discuss some of the most common dynamical patterns that
can emerge in a one-dimensional, harmonically trapped Bose gas. The dynamics are usually
triggered by varying a system parameter in time. For instance, in a two-atom setup quenching
the interaction strength leads to a breathing-like motion [284], while carefully driving the
interaction strength between the atoms, the system can be steered into higher excited states
of the relative motion with a high degree of controllability [285]. A similar breathing motion is
triggered by quenching the trap frequency. In the two-particle case, this quench protocol leads
to a beating behavior in the time-evolved spatial variance, where a Fourier analysis reveals
the presence of two dominant frequencies which are accompanied by multiple sidebands [286].
The two dominant frequencies merge into a single-frequency behavior when increasing the
particle number, consistent with respective experiments [39, 287]. The latter frequency was
found to correspond to the energy gap between the ground state and an excited state [288].
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3.2 Single Impurity Interacting with a Bosonic Ultracold Gas

A natural extension to the case of a single-component Bose gas is the addition of a second
atomic species offering a plethora of novel phases [11, 76, 77]. A widely celebrated branch is
given by strongly particle-number imbalanced mixtures, where in the extreme case a single
impurity interacts with a majority species. The respective many-body Hamiltonian reads as,

Ĥbath−1imp = ĤA + ĥB + gAB

NA∑

i=1

δ(xAi − xB). (3.4)

where ĤA describes the bosonic majority species with the form of Eq. (3.1) and ĥB denotes
the impurity Hamiltonian of the form of Eq. (3.2). The interaction potential between the
impurity and the medium is modeled by a contact interaction potential with strength gAB.

One relevant property of the bath-impurity Hamiltonian is the possibility to study so-
called Bose polaron. The latter denotes a quasi-particle that is composed of the impurity
and the excitation of the bath. The origin of the polaron concept has its roots in solid
state physics, where the aim was to effectively describe the motion of an electron through
a crystal [289]. While moving through the crystal, the electron distorts the positions of the
surrounding nuclei via Coulomb interaction and, in this way, excites phonons which, in turn,
impact the electron’s motion. The overall behavior of the electron is then a combination of
its bare movement and the phonon excitations. In this sense, the electron becomes dressed by
the phonons giving rise to a quasi-particle with an effective mass and energy that deviate from
the bare mass and energy of the electron [289]. This effective model has been successfully
employed in the field of solid state physics for the description of, e.g. semiconductors and
polymers [290] and over the last two decades found entrance in the field of ultracold quantum
gases [11, 119].

In the following, we give a brief introduction of the effective models in the literature used
to describe the dressed state of an impurity in an ultracold setup. We distinguish between
two cases. The first case corresponds to the homogeneous setup in the absence of any external
trapping potential and in the second case we address the implications of adding an external
harmonic confinement. Note in passing that beyond studying the Bose polaron, the bath-
impurity Hamiltonian allows also to investigate, e.g., the transport properties of an impurity
in different potential landscapes [153] such as double-well potentials [155, 194] or lattice
structures [FT7, 158, 159, 179].

3.2.1 Effective Description in the Homogeneous Case

Fröhlich Hamiltonian

The Fröhlich Hamiltonian was originally devised for treating polaron problems in solid state
physics and with the experimental advances in the field of ultracold physics it has found
applications in bath-impurity setups. Note that the model is restricted to the homogeneous
case, where the impurity and the bath atoms can move freely in space.

To arrive at the Fröhlich Hamiltonian, the bath-impurity Hamiltonian in Eq. (3.4) is first
expressed in terms of bosonic and impurity field operators, ϕ̂(x) and ψ̂(x), respectively, and in
a next step transformed into momentum space by ϕ̂k = 1√

2π

∫
dxeikxϕ̂(x). Subsequently, the

bosonic field operators in momentum space ϕ̂k are expressed in terms of Bogoliubov phonons
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âk via the usual Bogoliubov transformation1. The final expression for the bath-impurity
Hamiltonian in momentum representation reads [142, 144],

ˆ̃Hbath−1imp = ĤF + Ĥ2ph + Ĥph−ph, (3.5)

where so far no additional approximation has been made. The first term corresponds to the
effective Fröhlich Hamiltonian and is given by,

ĤF =
p̂2

2mB
+
∑

k

ℏωkâ
†
kâk + gABn0 +

∑

k

Vke
ikx̂(â†k + â−k), (3.6)

where n0 is the density of the undisturbed homogeneous Bose gas, while x̂ and p̂ denote
the spatial and momentum operators of the impurity, respectively. Moreover, ωk denotes
the dispersion relation stemming from the Bogoliubov transformation and Vk the scattering
amplitude. They are defined as

ℏωk =
ℏ2k
2mAξ

√
2 + k2ξ2 and Vk =

√
n0gAB

(
k2ξ2

2 + k2ξ2

)1/4

,

where ξ =
√
ℏ2/(2mAn0gAA) is the healing length of the bath. The second term in the sum of

Eq. (3.5) accounts for two-phonon scattering processes (Ĥ2ph), while the last term, Ĥph−ph,
describes higher-order processes beyond the Bogoliubov approximation and especially, does
not depend on any impurity operators.

The Fröhlich model is represented by the Hamiltonian ĤF and provides a mean-field
description of the bath-impurity problem. Therefore, the Fröhlich model is only valid in the
weak-coupling limit, i.e., when the impurity-bath interaction is sufficiently small (gAB/gBB ≲
1) and when the bath is appropriately described within the Bogoliubov approximation, i.e.,
for γ ≲ 2 [144].

Increasing the impurity-medium coupling strength beyond the weakly-coupling regime, the
mean-field approximation fails to describe the emergent physics and more elaborate models
are required [85]. In order to treat regimes with strong impurity-medium couplings, the Fröh-
lich model can be extended by accounting for two-phonon processes (Ĥ2ph), see Ref. [144].
This approximation has been successfully applied to describe the self-localization of the po-
laron in an experiment with a dimensionless parameter of γ ≈ 0.4, justifying the Bogoliubov
approximation [85].

Effective One-Body Model

A property of the dressed impurity is the change in mass and energy with respect to the bare
one, known as effective mass meff and self-energy ϵ [143, 144, 146]. With these quantities an
one-body Hamiltonian can be devised in order to effectively describe the quasi-particle [291],

ĥ1b,effhom. = ϵ− ℏ2

2meff
B

d2

dx2
. (3.7)

1If the bosonic annihilation (creation) operators that annihilate (create) a boson with momentum k are
given by b̂(†), then the Bogoliubov transformation corresponds to introducing a set of new operators âk =
uk b̂+ v∗−k b̂

†
−k and â†

k = u∗
k b̂

† + v−k b̂−k with the demand that |uk|2 − |v−p|2 = 1 holds [40, 61]. Both sets, b̂(†)

and â
(†)
k , fulfill the bosonic commutation relations. The transformation is restricted to the homogeneous case

and is useful to express the single-component Hamiltonian of interacting particles in terms of non-interacting
quasi-particles.
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In this case, the effective mass and the effective energy depend on the impurity’s momentum
and the coupling to the bath. Within a Bogoliubov approximation and for weak impurity-
medium couplings, an expression for the effective mass has been derived, reading as [143],

meff
B

mB
= 1 +

2g2AB

3g
3/2
AAπ

√
mB

ℏ2n0
. (3.8)

The expression for the effective mass implies that in a homogeneous setup the dressing of the
impurity always results in a mass larger than the bare impurity mass mB. In other words, the
quasi-particle is always heavier than the bare impurity provided |gAB| > 0. In fact, already for
weak repulsive coupling strength the effective mass sharply increases resulting in the so-called
self-localization of the polaron [143]. Note that this property has been derived in terms of
an one-dimensional setup. In the three-dimensional case, the effective mass of the impurity
does not increase as sharply as in the one-dimensional case so that the self-localization of the
impurity occurs at comparatively large impurity-medium interaction strength [139].

3.2.2 Effective One-Body Model in the Presence of an External Potential

Next, we elaborate on the case where an additional external trapping geometry is employed.
Specifically, we consider a harmonic oscillator potential for the majority species and the
impurity, i.e., Vσ = 1

2mσω
2
σx

2
σ with σ = A,B [292]. We remark that adding an external

trapping potential significantly alters the emergent physics and can lead to phenomena such
as breathing- or dipole-like oscillations [11, 152, 293] (see Section 3.1.2). However, in the
following we focus on the effective description of an impurity coupled to a majority species.

In the absence of impurity-medium correlations, the many-body wave function reduces
to a product state ansatz consisting of one wave function describing the impurity and one
describing the medium (see Section 4.5). The impact of the majority species on the impurity
is then represented in terms of a mean-field-type potential, gABρ

(1)
A (x). Within this approxi-

mation, the behavior of the impurity is adequately captured by an effective one-body model,
where the impurity-bath interaction is treated as an external potential [11, 153, 160, 294],

ĥ1b,effpot = ĥB(x) + gABρ
(1)
A (x). (3.9)

Note that we have neglected here the energy shift of the impurity as this contribution has
no effect on the ground-state or dynamical behavior of the impurity. Even though the ef-
fective model neglects interspecies correlations, it can be applied in the analysis of strongly
correlated many-body systems, e.g., to reveal the impact of correlations on certain one-body
observables by comparing to the respective many-body results, or to yield insights into the
microscopic structure of the many-body wave function by projecting it on the eigenstates
of the effective model [FT1, FT8]. In this sense, the effective potential has been proven a
valuable tool in yielding intuitive insights on the dynamical response of an impurity [FT1,
153, 160]. Finally, remark that this model is not necessarily restricted to systems consisting
of a harmonic oscillator potential and can be applied to arbitrary potential setups, such as
double-well potentials, see Refs. [FT7, FT8].

To go beyond the treatment in which the medium acts as a mean-field-type potential,
a possible next step is to incorporate an effective mass (meff

B ) and a renormalized trapping
frequency (ωeff

B ) to describe the quasi-particle [291]. The respective effective Hamiltonian
reads,

ĥ1b,effharm.osc. = − ℏ2

2meff
B

d2

dx2
+

1

2
meff

B ω
eff
B x2. (3.10)
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One possibility to specify the quantities meff
B and ωeff

B is to calculate the effective mass within a
local density approximation and resort to Eq. (3.8), i.e., the solution for the homogeneous case.
Another way is given by tuning the effective parameters such that the effective model matches
the observables of interest calculated by a many-body method [FT2, 291]. For instance,
the mean position of an impurity performing a dipole-like oscillation has been fitted to the
solution of a damped harmonic oscillator [FT8]. Another example denotes the case, where
the impurity performs a breathing-like oscillation in an harmonic oscillator potential while
being coupled to a majority species [FT3, 291]. Here, the temporal behavior of the spatial
variance can be captured by the effective model presented in Eq. (3.10) when considering a
time-dependent effective mass and frequency. Note that in order to determine the respective
paths for the time-dependent effective parameters, a more elaborated optimization routine is
required, cf. [FT3].

Comparing the values of the effective mass obtained within a harmonic setup to those of
the homogeneous case, a striking difference appears at repulsive impurity-medium interaction
strengths: In the trapped case, the effective mass of the impurity becomes smaller than its bare
value, while in the homogeneous case the effective mass is always larger for any finite value of
the interaction strength, as emphasized in Section 3.2.1. This effect can be attributed to the
presence of the external harmonic trap, which leads in the repulsive case to a delocalization
of the impurity, i.e, in this case the impurity probes the edges of the medium. In Ref. [FT2]
we have compared the effective one-body models presented in Eqs. (3.9) and (3.10) with each
other and find that for small impurity-medium couplings both approaches adequately describe
the one-body behavior of the impurity. For larger impurity-medium interaction strength, the
impurity is pushed out of the bath and the corresponding effective potential takes the form
of a double-well potential leading to the breakdown of the quasi-particle picture [160].

3.3 Two Impurities Coupled to a Bose Gas

The impurity-medium paradigm is naturally extended by adding another impurity to the
system. There are two possibilities to extend the impurity-medium Hamiltonian shown in
Eq. (3.4). One possibility is to add another particle to the impurity species B, i.e.,

Ĥbath−2imp = ĤA + ĤB + gAB

NA∑

i=1

NB∑

j=1

δ(xAi − xBj ). (3.11)

In this case, species B consists of NB = 2 particles interacting with gBB, described by ĤB.
Alternatively, one can add to the single-impurity setup an impurity of a different species C
giving rise to a three-component mixture,

Ĥbath−B−C = ĤA + ĥB + ĥC + gAB

NA∑

i=1

δ(xAi − xB) + gAC

NA∑

i=1

δ(xAi − xC) + gBCδ(x
B − xC),

(3.12)

where the impurity C is described by the one-body Hamiltonian ĥC and is coupled to the bath
and impurity B with a contact interaction potential with strength gAC and gBC , respectively.
These new interaction parameters introduce the flexibility to tune the impurity-medium cou-
pling strengths gAB and gAC individually, which has important consequences for the effective
interaction mediated by the bath, see Sections 3.3.1 and 3.3.2.

In these systems, one of the main interests lies in the study of the interplay between the
impurities and, especially, in the question of how the presence of the bath influences the
ground-state or dynamical properties of the impurities. In the following, we concentrate on
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an effective description of the two dressed impurities, similar to the single-impurity scenario
(Section 3.2). The effective two-body models corresponding to Ĥbath−2imp and Ĥbath−B−C

read,

Ĥ2b,eff
BB =

2∑

i=1

ĥ1b,effB (xBi ) + V̂ eff
BB(x

B
1 , x

B
2 ), (3.13)

Ĥ2b,eff
BC = ĥ1b,effB (xB) + ĥ1b,effC (xC) + V̂ eff

BC(x
B, xC). (3.14)

The effective one-body terms account for the properties of the individual quasi-particles which
are connected via the two-body interaction terms V̂ eff

BB and V̂ eff
BC , which include the bare contact

interaction potential, as well as, the effects stemming from an induced interaction´ [11].

3.3.1 Induced Interaction in the Homogeneous Case

The majority of the existing literature dealing with the induced interactions between impuri-
ties in one-dimensional setups is dedicated to the homogeneous scenario, where the impurities
couple with the same interaction strength to the bath. By using a beyond mean-field ap-
proach, it has been shown that the mediated interaction between two static impurities takes
the form a Yukawa-type of potential at small distances [168],

V eff
BB(rBB) ≈ −g

2
ABmA

ℏ2√γ exp

(
−2rBB

ξ

)
, (3.15)

where γ is the Lieb-Liniger parameter [see Eq. (3.3)], rBB = |xB1 − xB2 | denotes the rela-
tive distance between the impurities, and ξ corresponds to the healing length of the bath.
Moreover, rBB ≲ ξ has been assumed. This expression has been verified also in terms of a
Bogoliubov-approximation [162], within perturbation theory [11], and for a field-theoretical
approach [167]. The scaling of the induced interaction potential with 1/

√
γ implies that

decreasing the interaction between the bath particles and/or increasing the density of the
medium leads to a larger amplitude of V eff

BB, i.e., to a stronger induced attraction between the
impurities. The expression in Eq. (3.15) can be further approximated in terms of a contact
interaction potential,

V eff
BB(rBB) ≈ −g

2
AB

gAA
δ(xB1 − xB2 ), (3.16)

where the interaction strength is given by the net volume
∫
V eff
BB(y)dy ≃ −g2AB

gAA
. This approx-

imation for the induced interaction has been derived under the assumption of a homogeneous
medium and used for the effective description of the quench dynamics of two impurities in a
harmonic oscillator potential [170] (see Section 3.3.2).

At large impurity-impurity separations (rBB > ξ) the induced interaction potential follows
a Casimir-like interaction, which scales for weak-impurity medium couplings as 1/r3BB [167,
168, 171, 173, 177],

V eff
BB(rBB) ≈ −g

2
ABmAξ

3

32πr3BB

. (3.17)

In general, the Casimir force is an attractive force mediated between two objects immersed in
a fluctuating medium. For instance, fluctuations of the vacuum state mediate an attractive
force between two neutral atoms [295]. Since ultracold quantum gases are likewise subject
to quantum fluctuations, the concept of a Casimir force is applicable to impurities immersed
in an ultracold bosonic medium [177]. As argued in Refs. [150, 170], this type of interaction
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becomes large in comparison to the Yukawa potential only at impurity-impurity separations
of the order of rBB ≳ 6ξ [150] (rBB ≳ 5ξ [170]). At these distances, the effects are small on
an absolute scale such that the experimental relevance of the Casimir-type interactions has
not been fully resolved yet.

The above types of induced interactions feature a mediated attractive interaction between
the impurities given that both impurities couple with the same interaction strength to the
medium. However, when assuming two distinguishable impurities B and C the factor −g2AB

appearing in Eq. (3.15) can be rewritten as −gAB · gAC as suggested in Refs. [167, 177]. In
such a three-component setup, each impurity couples with an individual coupling strength
(gAB, gAC) to the bath enabling, besides an induced attraction, also an induced repulsion.
Specifically, this is the case for gAB ·gAC < 0, that is, when one impurity attracts the medium
while the other repels it. In Ref. [202], a scenario consisting of two infinitely heavy impurities
coupled to a bath on a ring potential has been studied within the Born-Oppenheimer approx-
imation. In this study, one impurity is considered to be impenetrable, i.e., it infinitely repels
the medium, while the other impurity either repels or attracts the medium with a finite in-
teraction strength. Analyzing the change of energy for varying impurity-impurity separation,
the former case revealed an induced attraction while in the latter case an induced repulsion
has been observed.

Finally, we would like to provide an intuitive picture which motivates the induced attrac-
tive and repulsive interaction mediated between the impurities based on mean-field arguments.
For this purpose, we assume a homogeneous medium with a spatially constant density. Plac-
ing a static impurity at position xB and letting it interact with the medium via the interaction
strength gAB results, for gAB > 0, in a density-dip of the medium around xB or in a hump
at the same position for gAB < 0. The size of the density distortion is of the order of the
healing length. In the next step of the gedankenexperiment, a second impurity C is added,
which interacts only with the medium with a strength of gAC , implying gBC = 0. Now we
assume that impurity B is attractively coupled to the medium and the medium exhibits a
density hump at position xB. In the case where impurity C attracts the medium, it seeks
the medium’s density hump in order to maximize the spatial overlap with the medium and
localizes around xB. In this sense, the majority species mediates an attractive interaction
between the impurities. On the other hand, for repulsive gAC , the impurity C avoids the
density hump at xB giving rise to an induced repulsion between the impurities.

3.3.2 Induced Interaction in External Trapping Potentials

In the following, we discuss the implications of an external trapping potential on the induced
interaction between two impurities coupled to a bosonic medium. In general, similar to the
homogeneous case, we expect a mediated attraction when both impurities couple with the
same sign to the medium and an induced repulsion when one impurity attracts the medium
and the other repels the former. In the harmonic case, an analytical derivation of the mediated
interaction potential in dependence to the impurities’ relative difference is not feasible. This
is due to the impossibility to decouple the effects of the external trap from the interaction
potential that is mediated by the bath [165]. Still, instead of depending on the relative
difference |xB1 − xB2 |, the induced interaction potential can be obtained as a function of both
impurity coordinates xB1 and xB2 . In Ref. [165] the respective potential has been calculated to
facilitate the understanding of the coalescence behavior of two impurities emerging for strong
impurity-medium repulsions [165]. Similarly, an effective two-body interaction potential has
been derived from an ab initio many-body method to account for the induced interaction
mediated by interspecies entanglement [178].

However, note that a detailed derivation of the induced interaction potential in the pres-
ence of a harmonic oscillator is not always necessary. In Ref. [170] the results obtained from
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the homogeneous scenario have been applied to the quench dynamics in the harmonically
trapped case revealing a qualitative good agreement for weak interactions and short times. In
particular, the dynamics of the dressed impurities have been described in terms of an effective
contact interaction potential following Eq. (3.16). In Refs. [FT2, FT3] we have studied a
similar setup, where we improved the agreement between the many-body calculations and the
effective two-body model by employing a contact-interaction potential with a time-dependent
and optimized interaction strength.

We remark that other studies revealed an induced attractive interaction between impurities
in the presence of an external lattice potential, where the clustering of the impurities [131],
as well as the formation of bound states has been observed [157, 296, 297]. Moreover, it
has been shown that within a harmonic potential the medium can induce impurity-impurity
correlations which eventually realize Bell-states [203].
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Chapter 4

Numerical Methods

This section introduces the numerical framework necessary to infer information about the
ground state and dynamics of the systems that are investigated in this cumulative dissertation.
In general, we presume that each considered setup is completely described by a many-body
Hamiltonian Ĥ(t) which includes all system parameters and, in principle, can depend on
time. The respective many-body wave function |Ψ(t)⟩, which describes the ground state or
dynamics of Ĥ(t), is found by solving the time-dependent Schrödinger equation, which reads
in Dirac notation,

iℏ
∂

∂t
|Ψ(t)⟩ = Ĥ(t)|Ψ(t)⟩. (4.1)

In the following we set ℏ = 1. In order to numerically evaluate this equation, the wave function
|Ψ(t)⟩ is expressed in terms of a finite basis. In this way, the Hamiltonian is discretized such
that the underlying Hilbert space dimension becomes finite. The equation of motion (EOMs)
are derived by inserting |Ψ(t)⟩ into the Dirac-Frenkel variational principle [298–300],

⟨δΨ(t)|Ĥ(t)− i
∂

∂t
|Ψ⟩ = 0, (4.2)

which is numerically solved to determine the time-dependent solution |Ψ(t)⟩. To solve the
stationary problem, where the ground or excited states of Ĥ are sought, the expression in
Eq. (4.1) reduces to an eigenvalue problem,

Ĥ|Ψi⟩ = Ei|Ψi⟩, (4.3)

where |Ψi⟩ is the i-th eigenstates of Ĥ with energy Ei.
The complexity of the numerical problem is set by the particular Hamiltonian describing

the system which might correspond to a large Hilbert space. Already for a few particles,
the corresponding Hilbert space dimension becomes so large that the numerical expression
of of a wave function in terms of the complete basis becomes extremely challenging or even
impossible. However, typically the ground state or dynamically evolved wave function does
not occupy the complete Hilbert space and rather populates a fraction of it. This fact allows
us to obtain numerically exact solutions even for systems with a large number of particles1.
Therefore, the crucial task is to find for the system under consideration the appropriate basis
set to reduce the numerical cost.

In this chapter we outline the methods employed in this thesis to tackle the numerical
evaluation of the many-body systems of interest. In Section 4.1 we generalize the notation of
the many-body Hamiltonian introduced in Section 3 to arbitrary species and particle numbers.
We numerically access the spatial degree of freedom by discretizing it in terms of a primitive
basis. Several types of such primitive basis sets are discussed in Section 4.2. In Section 4.3

1Within this dissertation we treat systems with a total number of particle ranging from 1 to ∼ 30.
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we introduce the standard approach to solve a system consisting of only a few particles
and provide two examples. In Section 4.4 we discuss a more elaborated approach, which
employs a time-dependent basis that moves in a variationally optimized manner through the
Hilbert space, i.e., the multi-configuration time-dependent Hartree method. In Section 4.5 we
introduce the multi-layered extension of the latter method and explicate the ansatzes of the
many-body wave function for two- and three-component ultracold mixtures. In Section 4.6 we
elaborate on the imaginary time propagation employed to relax the many-body wave function
into the ground state. Finally, in Section 4.7 we give some final remarks on the convergence
behavior of the many-body simulations.

4.1 Many-Body Hamiltonian

We consider a system of S different species of atoms, where each species consists of NS

indistinguishable neutral atoms that are restricted to one spatial dimension with no internal
degrees of freedom (DOFs) such as a spin DOF. The interaction between atoms belonging to
the same or different species is modeled with a contact interaction potential of strength gσσ
or gσσ′ , respectively (see Section 2.3.3). The respective many-body Hamiltonian reads,

Ĥ =
S∑

σ=1

Ĥσ(t) +
1

2

S∑

σ,σ′=1
σ ̸=σ′

Ŵ σσ′
(t), (4.4)

where Ĥσ(t) corresponds to the single-species Hamiltonian as presented in Eq. (3.1). Note
that each species Hamiltonian consists of Nσ particles subject to the one-body Hamiltonian
ĥσ(t). In second quantization the single-species Hamiltonian reads,

Ĥσ(t) =

∫
dxΨ̂†

σ(x)ĥ
σ(t)Ψ̂σ(x) +

∫
dx1

∫
dx2Ψ̂

†
σ(x1)Ψ̂

†
σ(x2)W

σσ(x1, x2; t)Ψ̂σ(x1)Ψ̂σ(x2)

(4.5)

where Ψ̂(†)
σ (x) denotes the bosonic field operator which annihilates (creates) a boson at position

x. The interspecies interaction term Ŵ σσ′
(t) in second quantization reads,

Ŵ σσ′
(t) =

∫
dxσ1

∫
dxσ

′
2 Ψ̂†

σ(x
σ
1 )Ψ̂

†
σ(x

σ′
2 )W σσ′

(xσ1 , x
σ′
2 ; t)Ψ̂σ(x

σ
1 )Ψ̂σ(x

σ′
2 ). (4.6)

In the case of a two-body contact interaction potential, W σσ′
(xσ1 , x

σ′
2 ; t) = gσσ′(t)δ(xσ1 − xσ

′
2 )

this expression can be further simplified to

Ŵ σσ′
(t) = gσσ′(t)

∫
dxΨ̂†

σ(x)Ψ̂
†
σ(x)Ψ̂σ(x)Ψ̂σ(x). (4.7)

4.2 Primitive Basis

In this section we introduce the primitive basis that discretizes the system and serves as a
starting point for more elaborate approaches (see the following sections). In particular, the
aim is to discretize the spatial dimension and provide the tools to represent the Hamiltonian
in such a basis. To achieve this, we employ a discrete variable representation (DVR) [301, 302]
and discuss in Sections 4.2.1 and 4.2.2 two examples corresponding to the sine and exponential
DVR, respectively.

The starting point is given by an orthonormal ngrid-dimensional basis set {ϕi(x)}ngrid

i=1

expanded over one spatial dimension. We further consider that the matrix elements of the
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position operator x̂ and the first- and second-derivative operators, d
dx and d2

dx2 , respectively,
are known analytically. In particular, they read,

Qij = ⟨ϕi|x̂|ϕj⟩, (4.8)

D
(1)
ij = ⟨ϕi|

d

dx
|ϕj⟩, (4.9)

D
(2)
ij = ⟨ϕi|

d2

dx2
|ϕj⟩. (4.10)

This has the advantage that the evaluation of, e.g. the second derivative appearing in the
kinetic term of the one-body Hamiltonian [Eq. (3.2)], can be read from the matrix (D(2))ij . To
represent the external potential V (x̂) in terms of the primitive basis, an additional integration
is required, i.e., ⟨ϕi|V (x̂)|ϕj⟩. In order to omit such a costly integration, the position operator
x̂ can be approximated in terms of a finite basis by evaluating Eq. (4.8). This results in a
(ngrid × ngrid)-dimensional matrix Q and has the consequence that the potential V depends
now on the matrix Q instead of the operator x̂. This approximation is known as finite basis-
set representation (FBR). To evaluate the potential V FBR(Q), the position matrix Q is first
diagonalized as,

Q = UXU†, (4.11)

where U is an unitary operator constructed from the eigenstates of Q. The matrix X is a
diagonal matrix with entries xα corresponding to the eigenvalues of Q. With this on hand,
the potential V (x̂) can be approximated as,

V FBR
ij =

ngrid∑

α=1

UiαV (xα)U
∗
jα. (4.12)

Even though the potential matrix VFBR is not exactly equivalent to V (x̂), this procedure
gives a good estimate and circumvents the costly evaluation of the integrals ⟨ϕi|V (x̂)|ϕj⟩.

Finally, the primitive basis states, ϕi(x), are transformed according to the unitary operator
U,

χα(x) =

ngrid∑

i=1

ϕi(x)Uiα, (4.13)

where χα(x) denotes the primitive basis in DVR. This has the important consequence that
expressing V (x̂) in terms of the DVR yields the convenient form,

V DVR
αβ = V (xα)δαβ, (4.14)

which corresponds to a diagonal matrix where the elements are direct evaluations of the
potential at positions xα. Likewise, the derivative matrices are transformed into the DVR,
while remaining exact. Another aspect of the DVR basis functions is their discrete δ-property,

χα(xβ) = w−1/2
α δαβ, (4.15)

where w
−1/2
α denotes the weight of the grid point α. This allows representing any wave

function ψ(x) as a vector with elements corresponding to the evaluations of ψ(x), i.e., ψ =

(w
1/2
1 ψ(x1), . . . w

1/2
ngridψ(xngrid

))T . This comes with the advantage that, for instance, scalar
products reduce to simple summations, ⟨ψ|φ⟩ = ∑

αwαψ
∗
αφα and the more costly numerical

integrations are circumvented.
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4.2.1 Sine DVR

A prominent example for a primitive basis set in DVR are the eigenfunctions of the one-body
Hamiltonian consisting of a box potential of length L [302, 303]. The respective eigenfunctions
are given by,

ϕj(x) =

{√
2
L sin

(
jπ x−x0

L

)
if x0 ≤ x ≤ xngrid+1

0 else.
(4.16)

The resulting grid points are evenly spaced with a constant weight. Since all eigenfunctions
of the box potential vanish at the edges due to the imposed hard-wall boundary condition,
the sine DVR implies open boundary conditions.

4.2.2 Exponential DVR

The basis functions of the exponential DVR [252, 303–305] read,

ϕj(x) =
1√
L
exp

(
2iπ

j(x− x0)

L

)
, −(ngrid − 1)/2 ≤ j ≤ (ngrid − 1)/2. (4.17)

Compared to the sine DVR, the exponential DVR imposes periodic boundary conditions,
making it suitable for studying systems such as ring potentials or periodic lattices. However,
if a large number of grid points is required to accurately discretize the spatial grid, i.e., for
ngrid > 100, switching to momentum space can significantly reduce the numerical cost. This
method is coined the fast Fourier transform and is equivalent to the exponential DVR [306,
307].

4.3 Exact Diagonalization Method

The exact diagonalization method is the standard method for finding the solution of a given
Hamiltonian Ĥ(t). The idea is to expand Ĥ(t) in terms of a finite orthonormal basis set
{|κi⟩}Ni=1 and obtain Ĥ(t) in matrix representation,

H(t) =
N∑

i,j=1

⟨κi|Ĥ(t)|κj⟩. (4.18)

The solution of H(t) is determined by either solving the stationary or time-dependent Schrödinger
equation, see Eqs. (4.3) or (4.2), respectively.

In the stationary case H(t) = H, the problem reduces to an eigenvalue problem,

Hci = Ei ci, (4.19)

|φi⟩ =
N∑

j=1

cij |κj⟩, (4.20)

where Ei denotes the i-th eigenenergy corresponding to the eigenfunction |φi⟩. The eigen-
value problem can be numerically solved by diagonalizing the Hamiltonian in matrix repre-
sentation2. The eigenfunctions {|φi⟩}Ni=1 are expressed in terms of the basis states |κj⟩ with
expansion coefficients cij(t).

2In the realm of this thesis, we use predominantly the Python routine numpy.linalg.eigh for the diagonal-
ization of a hermitian matrix. This routine employs subroutines from the widely used linear algebra package
(LAPACK) based on Fortran [308].
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The dynamical evolution of an initial state |Ψ0⟩ is calculated by integrating over the
EOMs obtained from the Dirac-Frenkel variational principle [see Eq. (4.2)]. Considering a
time-dependent Hamiltonian Ĥ(t), the EOMs are given by,

i
∂

∂t
cj(t) =

N∑

k=1

Hjk(t)ck(t), (4.21)

where Hjk(t) = ⟨κj |Ĥ(t)|κk⟩. There exist several methods designed to numerically solve such
coupled ordinary differential equations, for instance, in Refs. [FT3, FT5] the python routine
scipy.integrate.ode has been used. The latter employs Runge-Kutta- and zvode-based
integrators [309–311]. Note that for each time-instance t the Hamiltonian Ĥ(t) has to be
calculated and expressed in the basis |κi⟩. Depending on the stiffness of the problem the
employed integration routine might require a large number of intermediate integration steps
during the time-propagation such that the major numerical cost lies in constructing the right-
hand side of Eq. (4.21). In case the Hamiltonian is time-independent, i.e., Ĥ(t) = Ĥ, the
time-evolved wave function is given by,

|Ψ(t)⟩ = e−iĤt|Ψ0⟩ (4.22)

=
N∑

j=1

e−iEjt|φj⟩⟨φj |Ψ0⟩ (4.23)

which is often the numerically cheaper alternative.
Note that the success of the exact diagonalization method crucially depends on the cho-

sen basis set {|κi⟩}Ni=1, which, on the one hand, has to cover the required Hilbert space to
appropriately represent |Ψ(t)⟩ and, on the other hand, has to remain small enough to be
numerically efficient. One way to check the convergence of the exact diagonalization method
is to gradually increase the basis size and check that the expectation value of an operator of
interest does not change within a tolerance. Remark that there exist also techniques which can
reduce the numerical cost given that the Hamiltonian corresponds to a sparse matrix [312].
In Ref. [FT5] we have used the exact diagonalization method described above to numerically
evaluate the anyon-Hubbard model (see Chapter 6 and Section 7.5). Therefore, the many-
body Hamiltonian has been written in a second quantization representation and expressed in
terms of a complete basis set consisting of number states.

In Sections 4.3.1 and 4.3.2 we provide two examples which are treated with the exact
diagonalization method, namely, the one- and two-atom Hamiltonian. Moreover, we consider
that each atom is expanded in terms of a primitive DVR with ngrid grid points.

4.3.1 Example I: One Atom on a Spatial Grid

Here, we briefly comment on the case of a single atom confined in one dimension and trapped
in an external potential V̂ (x). The one-body Hamiltonian has the form as shown in Eq. (3.2)
and can be expressed with the procedure described in Section 4.2 in terms of the DVR resulting
in a matrix of size (ngrid × ngrid). Since the number of grid points, which are considered in
this dissertation, is typically of the order of ∼ 102−103, the respective one-body Hamiltonian
can be readily diagonalized. A useful application of this method is, e.g., the diagonalization
of the effective one-body models presented in Eqs. (3.9) and (3.10).
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4.3.2 Example II: Two Atoms on a Spatial Grid

Next, we discuss the case of two atoms in one spatial dimension. For convenience, we provide
the two-body Hamiltonian for two interacting particles A and B,

Ĥ2b(x1, x2; t) = ĥ1bA (x1; t) + ĥ1bB (x2; t) + Ŵ (x1, x2; t), (4.24)

which is a special case of Eq. (4.4). The term Ŵ (x1, x2; t) refers the two-body interaction
potential. While the static one-body problem is solved by diagonalizing the one-body Hamil-
tonian in grid representation, a similar procedure applied to the two-body Hamiltonian is
computationally very costly. For instance, considering for each atom a spatial grid with
ngrid = 100 grid points would correspond to a Hamiltonian in matrix representation with
(100 ·100)2 = 1×108 entries (cf. the one-body Hamiltonian in matrix form would correspond
to a square matrix with 1002 = 1 × 104 entries). In this sense, a more efficient basis repre-
sentation is required to reduce the numerical cost. One possibility is to expand the two-body
problem in terms of products constructed from the eigenfunctions {|φA

i ⟩}MA
i=1 and {|φB

i ⟩}MB
i=1

corresponding to the one-body Hamiltonian ĥ1bA and ĥ1bB , respectively. The two-body problem
is then given by,

H2b
ijkl(t) = ⟨φA

i |⟨φB
j |Ĥ2b(t)|φA

k ⟩|φB
l ⟩

= δjkδij
(
EA

i (t) + EB
j (t)

)
+Wijkl(t), (4.25)

|Ψ2b(t)⟩ =
MA∑

i=1

MB∑

j=1

cij(t)|φA
i ⟩|φB

j ⟩, (4.26)

where EA
i and EB

j are the eigenenergies of the respective one-body Hamiltonian ĥ1bA and ĥ1bB ,
respectively, and Wijkl =

∫ ∫
φA
i (x1)

∗φB
j (x2)

∗Ŵ (x1, x2)φ
A
k (x1)φ

B
l (x2)dx1dx2. By contract-

ing the indices to I = (i, j) and J = (k, l) the tensor given by (Hijkl)1≤i,k≤MA;1≤j,l≤MB
can

be expressed as a matrix (HIJ)1≤I,J≤MAMB
of size (MAMB,MAMB). Finally, the expan-

sion coefficients cij(t) of the two-body wave function |Ψ2b(t)⟩ can be determined as described
above.

Depending on the truncation parameters MA(B) this procedure is able to significantly
reduce the number of basis functions. For example, in Ref. [FT3] we have represented the
effective two-body model in terms of MA,B = 10 − 20 one-body basis functions equating
to roughly ∼ 102 two-body basis functions, i.e., ∼ 104 matrix entries. This is a significant
improvement compared to the exact diagonalization in grid representation (∼ 108 matrix
entries). Note, that for some special cases there exists also an exact solution for the two-body
model. Namely, for two mass balanced atoms confined in a harmonic oscillator [276] or in an
anisotropic trap [313, 314] (see Section 3.1.2).

4.4 The MCTDH(B) Method

In the previous Section 4.3, we have emphasized that the correct choice regarding the basis
is essential for an efficient numerical treatment of the problem. However, with increasing
complexity of the system the appropriate choice of the basis itself becomes a delicate matter.
An early idea was to design a time-dependent basis that can be variationally steered within
the Hilbert space to cover just the space that is occupied by the exact solution of the system.
This space is also referred to as active space. A method which has realized this idea is the
time-dependent Hartree method in which a single product state - the Hartree product - is
varied in a self-consistent manner [298, 315]. In this method, each DOF is represented by a
single time-dependent basis function, in this way, drastically decreasing the numerical cost.
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A clear disadvantage of this approach is that correlation effects between individual DOFs are
ignored entirely so that the Hartree method accounts only for mean-field effects.

A solution to this shortcoming is offered by the multi-configuration time-dependent Hartree
method (MCTDH), where the many-body wave function is expanded in terms of several time-
dependent Hartree products, allowing the formation of correlations between the DOFs [316,
317]. The corresponding many-body wave-function ansatz for N distinguishable DOFs is
formulated as,

|Ψ⟩ =
m1∑

i1=1

· · ·
mN∑

iN=1

Ci1...iN (t)|φ
(1)
i1

(t)⟩ · · · |φ(N)
iN

(t)⟩, (4.27)

where the products are weighted by time-dependent expansion coefficients Ci1...iN (t) and
constructed from the elements of the basis sets {|φ(n)

in
(t)⟩}mN

in=1, also referred to as single-
particle function (SPF). The n-th set of time-dependent SPFs spans the space for the n-th
DOF which are in turn expanded over a primitive (static) basis set {|χj⟩}ngrid

j=1 (see Section 4.2),

|φ(n)
in

(t)⟩ =
ngrid∑

j=1

Dj(t)|χj⟩. (4.28)

In the context of ultracold quantum gases, each individual DOF is interpreted as a neutral
atom confined in one spatial dimension with coordinate xi. However, note that for other sys-
tem setups the DOFs might correspond to, e.g., molecular coordinates defining the vibrational
and electronic motion [318–320].

The success of the MCTDH method triggered the extension to indistinguishable DOFs [321]
such as fermions [322–324] and bosons [325, 326], where the latter method is abbreviated as
MCTDHB. In order to treat bosonic or fermionic DOFs, the corresponding many-body wave
function needs to obey the respective particle statistics, i.e., the wave function has to be
symmetric or anti-symmetric under the interchange of two bosons or fermions, respectively.
This is done by expanding the wave-function ansatz for bosons in terms of symmetric num-
ber states (permanents) and for fermions in terms of anti-symmetric Slater-determinants. In
the following, we will focus on the description of bosons as these systems are predominantly
considered in this dissertation. As mentioned above, the respective many-body wave function
consists of an expansion in number states,

|Ψ(t)⟩ =
∑

n⃗|N
Cn⃗(t)|n⃗(t)⟩, (4.29)

where n⃗i = (n1, . . . , nm) specifies the occupation number of a set of time-dependent SPFs
{|φi(t)⟩}mi=1. To assure particle number conservation, the sum of occupied states is required to
equate the total number of atoms in the system,

∑
i ni = N , denoted by n⃗|N . This condition,

in combination with the size of the single-particle basis m, determines the total number of
possible number states, given by

(
N+m−1
m−1

)
. The number states in second quantization read,

|n⃗(t)⟩ = 1√
n1! · · ·nm!

(
b̂†1
)n1

. . .
(
b̂†m

)nm |vac⟩, (4.30)

where b̂†i corresponds to the creation operator acting on the vacuum state |vac⟩ which creates
a particle in the i-th SPF. Analog to the MCTDH method, the SPFs are expanded in a
primitive basis set, see Eq. (4.28). Inserting the ansatzes given in Eqs. (4.27) and (4.29)
into the Dirac-Frenkel variation principle [Eq. (4.2)], yields the EOMs for the MCTDH and
MCTDHB method, respectively. For more details consult Refs. [302, 326].
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Figure 4.1: Tree diagram for the MCTDHB-ansatz [Eq. (4.29)] of a single-component
bosonic gas consisting of NA particles. The plus sign indicates the expansion in terms of
number states |n⃗i⟩ constructed from mA SPFs (φA

i (t)). The SPFs are expanded with respect
to a primitive DOF (χj) which is in this case a spatial grid consisting of ngrid grid points.
The middle and right diagram illustrate the ML-MCTDHX ansatz for a two- and three-
component ultracold mixture, respectively, shown in Eqs. (4.31) and (4.33). Each species σ
is expanded in terms of Mσ species functions where σ = A,B,C

Note that within this approach the only truncation parameters for a given particle number
N are given by the number of grid points and the number of SPFs, which determine the number
of expansion coefficients Cn⃗(t). However, not all number states contribute in the same manner
to the many-body wave function and for some physical setups there might be even number
states with a vanishing contribution. In view of this, an idea to reduce the numerical cost is to
prune such number states as explored in Ref. [327]. Finally, we remark that in this discussion
we have considered SPFs that depend only on one (spatial) coordinate. Note that within this
method, it is also possible to treat two- or three-dimensional systems by employing SPFs that
depend on two or three spatial coordinates, respectively [328–330]. Similarly, atoms with spin
can be treated by adding an extra spin-DOF [160, 331].

4.5 The ML-MCTDHX Method

The MCTDHB method outlined in Section 4.4 has been developed for the numerically accurate
description of a single-component bosonic mixture. To be able to treat also multiple species of
atoms, the method has been extended by adding an additional layer on top of the MCTDHB
wave-function ansatz in order to connect the atomic species. This extension allows then the
treatment of bosonic mixtures [204, 205]. Subsequently, this method has been generalized to
mixtures consisting of bosonic and fermionic atomic species to which we refer to as multi-
layer multi-configuration time-dependent Hartree method for mixtures (ML-MCTDHX) [206].
In the following, we present the explicit many-body wave-function ansatzes for two- and
three-component ultracold mixtures, since these setups are the main subject of this thesis.
The respective EOMs are derived from the Dirac-Frenkel variation principle [Eq. (4.2)] and
can be found in [204–206].
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The many-body wave function of a two-component mixture composed of species A and B
reads,

|ΨAB⟩ =
MA∑

i=1

MB∑

j=1

Cij(t) |ΨA
i (t)⟩ |ΨB

j (t)⟩, (4.31)

=

min(MA,MB)∑

k=1

√
λk(t) |Ψ̃A

k (t)⟩ |Ψ̃B
k (t)⟩. (4.32)

In the first step, the wave-function is expanded in terms of single-species wave functions
{|Ψσ

i ⟩}Mσ
i=1 with σ = A,B, where each element |Ψσ

i ⟩ represents a specific state of the en-
tire species σ. In a second step, in Eq. (4.32) the wave function is written in terms of a
Schmidt decomposition consisting of Schmidt coefficients λi and natural species wave func-
tions |Ψ̃σ

i (t)⟩ [206]. The squared Schmidt coefficients correspond to the population of the
natural species functions and, furthermore, provide information about the interspecies en-
tanglement (see Section 5.1). Convergence is ensured by providing a sufficient large number
of species functions MA = MB such that adding another function to the basis set does not
significantly alter the observables of interest (see Section 4.7 for more details).

In some cases, it is desired to estimate the impact of correlations on certain observables.
This is done, for instance, by comparing the observables calculated from different ansatzes
that include or exclude correlations (see Section 5.4). In order to ignore the effects stemming
from correlations between species A and B, we write the many-body wave function as a single
product state, |ΨAB⟩ = |ΨA(t)⟩ |ΨB(t), by setting MA = MB = 1. Still, correlations within
the species are possible. The latter type of correlations can be additionally ignored by setting
MA =MB = mA = mB = 1, where mA (mB) denotes the number of single-particle functions
of species A (B). The respective two-component wave-function ansatz is then reduced to a
mean-field Gross-Pitaevskii ansatz for bosons [332–334].

Analogously, the many-body wave function of a three-component mixture consisting of
the components A, B and C is expanded in terms of three sets of species wave functions,

|ΨABC⟩ =
MA∑

i=1

MB∑

j=1

MC∑

k=1

Cijk(t) |ΨA
i (t) ⟩|ΨB

j (t)⟩ |ΨC
k (t)⟩. (4.33)

Similar to the two-component case, the coefficient tensor Cijk(t) provides information about
the interspecies entanglement. However, the particular estimation of the entanglement be-
tween the components of a three-partite system is not as straightforward as in the bipartite
case, see also Chapter 5. In Figure 4.1 we present a sketch of the many-body wave-function
ansatz of the MCTDHB method together with the ansatzes of a two- and three-component
mixture in the form of tree diagrams to illustrate the close relationship between the methods.

A nice feature of the three-component many-body wave function ansatz is the possibility
to realize different types of species mean-field ansatzes. One possibility is to suppress all
interspecies correlations by writing the tripartite wave function as a simple product state,

|ΨsMF
ABC⟩ = |ΨA(t)⟩|ΨB(t)⟩|ΨC(t)⟩, (4.34)

analogously to the two-component scenario. We refer to this ansatz as the species mean-
field (sMF) ansatz. Again, note that correlations within a single species are still permitted.
An extension beyond the sMF approach is to include correlations between two species and
treat the third species as a mean-field type of potential. For instance, if we want to allow
for correlations between species A and B and, at the same time, disregard correlations with
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species C, we can employ the wave-function ansatz,

|ΨsMFC
ABC ⟩ =

MA∑

i=1

MB∑

j=1

Cij(t)|ΨA
i (t)⟩|ΨB

j (t)⟩|ΨC(t)⟩, (4.35)

where species A and B are expanded in terms of MA(B) species functions, while species C
resides in a single species function (MC = 1). This type of wave function is referred to as
species mean-field ansatz regarding species C (sMFC). Analogously, the ansatzes sMFA and
sMFB are defined. In this sense, compared to a two-component wave function, a three-
component one offers three more types of species mean-field ansatzes. In Ref. [FT2] we have
exploited this property in order to extract the impact of mediated interspecies correlations on
the relative distance between two indistinguishable impurities, see Section 5.4 for more details
regarding the used procedure.

4.6 Imaginary Time-Evolution

The MCTDHB (ML-MCTDHX) method discussed above is designed to propagate an initial
state in real time according to the EOMs derived from the Dirac-Frenkel variational principle
[Eq. (4.2)]. However, often the ground state of a many-body system is sought, which can serve
as an initial state for a time propagation with a quenched Hamiltonian. In order to reach
the ground state of a many-body system, the commonly used strategy is to construct the
initial many-body wave function, |Ψini⟩, from the eigenfunctions of the one-body Hamiltonian
(Section 4.3.1) and propagate this state in imaginary time, τ = it [302, 335].

The general idea of propagating in imaginary time becomes apparent when substituting
τ into Eq. (4.23) leading to,

|Ψ(τ)⟩ =
N∑

j=1

e−τEj |Ψj⟩⟨Ψj |Ψini⟩, (4.36)

where |Ψj⟩ are the eigenstates of the many-body Hamiltonian with eigenenergies Ej . Propa-
gating the initial state |Ψini⟩ with respect to τ , we find that the overlaps between the initial
state and the eigenstates, ⟨Ψj |Ψini⟩, decay exponentially fast with rates proportional to Ej .
The smallest decay rate corresponds to the ground state such that after a sufficiently long
propagation time all higher eigenstates are projected out and the major contribution is given
by the ground state. In this sense, the initial state relaxes into the ground state. For a
successful application of the relaxation procedure, two conditions must be ideally met: A suf-
ficiently large energy gap between the ground and excited states is required, as well as a finite
overlap between the initial and the many-body ground state. Note that the imaginary time
propagation given in Eq. (4.36) does not conserve the norm of the many-body wave function
so that the latter has to be accordingly renormalized.

Finally, we remark that besides the relaxation into the ground state, there exists the
possibility to relax into the n-th eigenstate via the improved relaxation method [336–338].
Within this method a combination of imaginary time-evolution and exact diagonalization
techniques are employed which typically leads to a faster convergence compared to the energy
relaxation process described above. Here, the idea is to express the Hamiltonian in the basis
spanned by the species states (cf. top-layer expansion states of the many-body wave-function
ansatz in Section 4.5). After diagonalizing this matrix, the wave function can be prepared
in the n-th eigenstate. Subsequently, the SPFs are propagated in imaginary time for fixed
top-layer coefficients after which this procedure is repeated. Remark that for the improved
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relaxation a necessary condition is a finite overlap between the initial and the targeted n-th
eigenstate.

4.7 Comments on the Convergence of the Many-Body Simula-
tions

In this section, we comment on the convergence properties of the ML-MCTDHX method.
Before doing so, we first elaborate on the truncation parameters of this method. Consider a
multi-component mixture consisting of S atomic species where each species σ consists of Nσ

particles. Then the truncation parameters are given by the species expansion coefficients Mσ,
the number of SPFs mσ of each species, and the number of grid points ngrid. Considering that
each species is expanded over the same spatial grid with ngrid grid points, the total number
of coefficients of the many-body wave function is given by [205],

S∏

σ=1

Mσ +

S∑

σ=1

(MσNσ +mσngrid) , (4.37)

where Nσ =
(
Nσ+mσ−1

mσ−1

)
denotes the number of permanents of species σ. The full configuration

interaction limit is reached for mσ = ngrid and Mσ = mσ. However, this limit can be only
reached for very small system sizes so that in general the values ofMσ andmσ are for numerical
reasons far below this limit. Nevertheless, mσ and Mσ have to be large enough to ensure that
all relevant intra- and interspecies correlations are taken into account. The optimal choice for
mσ and Mσ depends highly on the particular system on hand and the respective observables
of interest. A way to determine the appropriate choice for mσ and Mσ is to gradually increase
their values and track the convergence behavior of the observables of interest.

A complementary way to judge the convergence of the ML-MCTDHX method is to in-
vestigate the natural populations of the reduced density operators η̂σ of species σ and the
one-body density operator ρ̂σ, which read [206],

ρ(1),specσ =

Mσ∑

i=1

λσi (t)|Ψ̃σ
i (t)⟩⟨Ψ̃σ

i (t)|, (4.38)

ρ̂(1)σ =

mσ∑

i=1

nσi |Φσ
i (t)⟩⟨Φσ

i (t)|. (4.39)

The eigenvalues λσi (t) and nσi (t) are the natural populations of the natural species functions
|Ψ̃σ

i (t)⟩ and natural orbitals |Φσ
i (t)⟩, respectively. The eigenvalues λσi (t) and nσi (t) are con-

sidered to be hierarchically ordered and sum up to unity. An indicator for the convergence
of the numerical calculation is found when the smallest natural population gets sufficiently
small (typically less than 1%), i.e., the respective natural species function or natural orbital
is only slightly populated and the contribution to the overall many-body wave function is
suppressed. However, note that this is not a strict criterion and one has to rely additionally
on the convergence behavior of the observables of interest.
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Chapter 5

Entanglement and Correlation
Measures

A key feature of the ML-MCTDHX method, which distinguishes itself from mean-field based
approaches, is the accountability of all relevant inter- and intraspecies correlations. A nat-
ural step to characterize a system described within the ML-MCTDHX method is to make a
statement about the degree of entanglement or correlation among the participating particles.
The literature provides us with a plethora of entanglement measures, see e.g. Refs. [339–341].
In this chapter, we discuss only a few of these entanglement and correlation quantities and
apply them to the specific case of two- or three-component ultracold mixtures treated within
the ML-MCTDHX method.

In particular, this chapter is structured as follows. In Section 5.1 we introduce the von
Neumann entropy and discuss its meaning, when this measure is applied to a binary pure or
mixed states. In Section 5.2 we provide the logarithmic negativity, an alternative measure
capable of extracting information about the entanglement of a binary mixed state. Section 5.3
is devoted to the experimentally relevant spatially resolved one-, two-, and three-body corre-
lation functions. Finally, in Section 5.4 we discuss how to exploit different species mean-field
and many-body wave-function ansatz in order to learn more about the impact of correlations
on an observable of interest.

5.1 Von Neumann Entropy

The entanglement of a pure bipartite system can be conveniently estimated by the entangle-
ment entropy, i.e., the von Neumann entropy. This quantity is a well-defined entanglement
measure suitable for estimating the entanglement between the components of a binary pure
state. This measure is directly applicable to the many-body wave-function ansatz of a two-
component ultracold-mixture written in terms of a Schmidt decomposition, see Eq. (4.32).
From the respective Schmidt coefficients λk, the von Neumann entropy is calculated as,

SvN = −
M∑

k=1

λk lnλk. (5.1)

This entanglement measure is maximal for an equal distribution of the natural species states,
i.e., all product states |Ψ̃A

k ⟩ |Ψ̃B
k ⟩ are equally populated with λk = 1/M and vanishes if only

one product state is populated, i.e., λ1 = 1 and λk = 0 for k > 1. In ultracold setups, two
components become entangled once they interact with each other and share a finite spatial
overlap [FT1].

To calculate the entanglement entropy in an arbitrary multi-component mixture, one has
to first group several components to ensure the required bipartition of the multi-component
wave function. For instance, a many-body wave function consisting of three components A,
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B and C as presented in Eq. (4.33) reads in the Schmidt-decomposed form as,

|ΨABC⟩ =
MA∑

i=1

MB ·MC∑

J=1

CiJ |ΨA
i ⟩|ΨBC

J ⟩ (5.2)

=

min(MA,MB ·MC)∑

i=1

√
λ′k|Ψ̃A

i ⟩|Ψ̃BC
i ⟩ (5.3)

where the indices i and j have been merged into a super-index J and the components B and
C are grouped together such that the tripartite many-body wave function is interpreted as a
bipartite system consisting of the subsystems A and B-C. Inserting the Schmidt coefficients
λ′k into Eq. (5.1), the resulting von Neumann entropy SvN

A−BC quantifies the entanglement
between component A and the grouped components B and C. The entanglement between B
and AC as well as between C and AB can be analogously determined [FT3].

Moreover, it is also possible to calculate the von Neumann entropy for bipartite mixed
states. To stay with the example of a three-component mixture, a bipartite mixed state is
obtained by integrating/tracing out one component. For instance, tracing out component A
leaves us with the mixed state, ρ(2)BC = TrA

(
|ΨABC⟩⟨ΨABC |

)
. In this case, the density of

species B and C (ρ(2),specBC ) is written as,

ρ
(2),spec
BC = TrA

(
|ΨABC⟩⟨|ΨABC |

)
(5.4)

=
∑

l

⟨ΨA
l |


∑

ijk

∑

rst

CijkC
∗
rst|ΨA

i ⟩|ΨB
j ⟩|ΨC

k ⟩⟨ΨA
r |⟨ΨB

s |⟨ΨC
t


 |ΨA

l ⟩ (5.5)

=
∑

ijkst

CijkC
∗
ist|ΨB

j ⟩|ΨC
k ⟩⟨ΨB

s |⟨ΨC
t |. (5.6)

(5.7)

Reshuffling the indices and substituting Djkst =
∑

iCijkC
∗
ist, the expression is further simpli-

fied to

ρ
(2),spec
BC =

∑

ijkl

Dijkl|ΨB
i ⟩|ΨC

j ⟩⟨ΨB
k |⟨ΨC

l |. (5.8)

Grouping the indices i and j to I as well as k and l to K, the bipartite mixed state is written
in terms of its eigenstates |Ψ̃BC

i ⟩ as,

ρ
(2),spec
BC =

∑

i

ηi|Ψ̃BC
i ⟩⟨Ψ̃BC

i |. (5.9)

Inserting the eigenvalues ηi into Eq. (5.1) results then in the von Neumann entropy SvN
BC .

However, note that this quantity has to be distinguished from the von Neumann entropy of
a bipartite pure state, i.e., the entanglement entropy, since SvN

BC can include besides bipartite
entanglement also classical correlations. In Ref. [203] this measure has been used to infer
information about the separability regarding the components A-B and C. An alternative way
to yield information about the entanglement between the components of a bipartite mixed
state, is given by the logarithmic negativity, see the next Section 5.2.
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5.2 Logarithmic Negativity

As discussed in the previous section, the von Neumann entropy is a valuable entanglement
measure when it comes to binary pure states (see Section 5.1). However, when applied to
binary mixed states, the von Neumann entropy does not only quantify the entanglement
between the components, but might also include classical correlations. This becomes an issue,
when one is interested in quantifying only the quantum entanglement. Here, the logarithmic
negativity offers a numerically accessible possibility to estimate the presence of entanglement
in a binary mixed state [342, 343], while being an entanglement monotone [344]. This measure
has been already applied on, e.g., the dynamics of two Brownian particles coupled to an
environment [345–348] or in ultracold three-component setups [FT2, FT3, 194, 349]. In the
following, we outline the procedure to calculate the logarithmic negativity on the example
of an ultracold three-component mixture consisting of components A, B and C as we have
done in Refs. [FT2, FT3]. The aim of this calculation is to obtain a statement about the
entanglement between two components, here between the B and C component.

First, we trace out the DOF of the A-component which results in the bipartite mixed state
ρ
(2),spec
BC , see Eq. (5.8). The idea is as follows, if the components B and C are not entangled,

the mixed state can be written as a sum of product states,

ρ
(2),spec
BC =

∑

i

piρ
B
i ⊗ ρCi , (5.10)

where pi is the probability to find the system in ρBi ⊗ρCi . Subsequently, we perform a partially
transposition regarding the component B, leading to

(ρ
(2),spec
BC )TB =

∑

i

pi(ρ
B
i )

T ⊗ ρCi . (5.11)

For a non-entangled mixed state this operation leaves the spectrum of the partially trans-
posed density matrix (ρ

(2),spec
BC )TB unchanged and the eigenvalues remain positive semi-definite,

which is referred to as positive partial transpose (PPT) criterion [339, 350]. Note that the
inverse case of this criterion holds only when the Hilbert space dimension of the combined
subsystems B and C is smaller than six.

In other words, the PPT criterion predicts the presence of entanglement between two
subsystems if there exists any negative eigenvalues in the spectrum of the partially transposed
density matrix [351, 352]. To convert this criterion into a single quantity, the general form
of the bipartite mixed state ρ(2),specBC [Eq. (5.8)] is considered and a partial transposition is
performed, leading to,

(
ρ
(2),spec
BC (t)|ijkl

)TB

= ρ
(2),spec
BC (t)|kjil. (5.12)

From this matrix, we extract the negativity N by diagonalizing it and summing up all negative
eigenvalues. Additionally, the sum is multiplied by −1. Remark that the N is independent
of the choice to which species the partial transposition is applied. Finally, we calculate the
logarithmic negativity EBC as

EBC = log2(1 + 2N ). (5.13)

In this sense, the PPT criterion has been merged into a single quantity that provides us with
information about the entanglement of a bipartite mixed state.
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5.3 Spatial Correlation Measures

In Sections 5.1 and 5.2 we have discussed binary entanglement measures which are calculated
from the coefficients of the respective many-body wave functions. In the following, we provide
with the spatial correlation measures a valuable analysis tool accessible also in experiments.
In particular, we describe the procedure for calculating the two- and three-body correlation
function on the example of a tripartite ultracold mixture consisting of the components A, B
and C, as it was done in Refs. [FT2, FT3]. Remark that the employed ML-MCTDHX method
introduced in Section 4.5 provides us access to the complete many-body wave function and,
therefore, enables the access to any N -body observable.

We begin with giving the definition of the reduced one-, two- and three-body densi-
ties [353],

ρ(1)σ (xσ) =⟨ΨABC |ψ̂†
σ(x

σ)ψ̂σ(x
σ)|ΨABC⟩, (5.14)

ρ(2)σµ(x
σ
1 , x

µ
2 ) =⟨ΨABC |ψ̂†

σ(x
σ
1 )ψ̂

†
µ(x

µ
2 )ψ̂µ(x

µ
2 )ψ̂σ(x

σ
1 )|ΨABC⟩, (5.15)

ρ(3)σµν(x
σ
1 , x

µ
2 , x

ν
3) =⟨ΨABC |ψ̂†

σ(x
σ
1 )ψ̂

†
µ(x

µ
2 )ψ̂

†
ν(x

ν
3)ψ̂ν(x

ν
3)ψ̂µ(x

µ
2 )ψ̂σ(x

σ
1 )|ΨABC⟩, (5.16)

where σ, µ, ν ∈ {A,B,C} and ψ̂(†)
σ (xσ) denotes the field operator that annihilates (creates) a

particle of species σ at position xσ. The one-body density ρ(1)σ (xσ) provides information about
the probability of finding a particle of species σ at the position xσ, while the two-body density
ρ
(2)
σµ(xσ1 , x

µ
2 ) denotes the probability of measuring at the same time one particle of species σ

at position xσ1 and another particle of species µ at position xµ2 . Analogously is the three-body
density ρ(3)σµν(xσ1 , x

µ
2 , x

ν
3) defined. The particles can stem from the same or different species.

Following the principles of the cluster expansion approach, the two- and three-body densi-
ties can be decomposed with respect to the uncorrelated density and the contribution of two-
and three-body correlations [354, 355],

ρ(2)σµ =ρ(1)σ ρ(1)µ + C(2)
σµ , (5.17)

ρ(3)σµν =ρ(1)σ ρ(1)µ ρ(1)ν +
(
C(2)
σµ ρ

(1)
ν + C(2)

σν ρ
(1)
µ + C(2)

µν ρ
(1)
σ

)
+ C(3)

σµν , (5.18)

where C(2)
σµ inherits information about the two-body correlation between one particle of species

σ and another particle of species µ, while C(3)
σµν accounts for three-body correlations. For

simplicity, we have dropped the spatial coordinates xσ1 , xµ2 and xν3 . Note that the scheme pre-
sented above can be readily extended towards the N -body correlation function. In Refs. [FT2,
FT3] we have calculated the two-body correlation function C(2)

BC to extract information about
the induced correlation between two non-interacting impurities B and C coupled to a bosonic
medium. An alternative expression for the two-body correlation function is obtained by divid-
ing the two-body density with the product of the one-body densities, g(2)σµ = ρ

(2)
σµ/(ρ

(1)
σ ρ

(1)
µ ) [353,

356, 357]. In this way, g(2)σµ provides information about the relative impact of two-body cor-
relations. This method comes with the caveat that for the numerical estimation a cutoff is
required to handle those spatial regions where the one-body densities vanish.

Experimentally, there exists a multifaceted toolbox which allows the detection of multi-
body observables [60, 329, 358–361]. For instance, by recording the absorption images after a
time-of-flight measurement, it is possible to extract the phase correlation up to the tenth order
between two coupled superfluids in a double-well potential [361]. For partially condensed 4He
atoms the correlation functions up to the sixth order has been measured by using a single-atom
detector [360]. Another technique involves the measurement of polarization phase-contrast
images to extract the spatially resolved two-body correlation function of an elongated 7Li
BEC [329]. In case of systems a small number of participating particles, as it is the case in
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full corr no corr 2-corr 3-corr

Figure 5.1: Schematic diagram to illustrate the decomposition of a three-component sys-
tem into components with different degrees of correlations. The expectation value of any
observable of interest obtained with the full many-body ansatz can be decomposed accord-
ing to Eq. (5.20) into an uncorrelated part as well as the parts corresponding to second- and
third-order correlations.

this dissertation, a larger sample of single-shot images might be necessary to reproduce the
density [356, 362]. Yet another method developed more recently consists of a protocol where
a deep optical lattice is suddenly ramped up to freeze out the spatial motion of the atoms
followed by a fluorescence measurement [363].

5.4 Determining the Impact of Interspecies Correlations on Ob-
servables

A feature of the ML-MCTDHX method outlined in Section 4.5 is the ability to calculate
the ground state or dynamics of a given system, not only taking into account all relevant
correlations, but also using wave function approaches that explicitly exclude certain types
of correlations. We can make use of this feature by calculating the expectation value of an
observable of interest using different types of wave-function ansatzes that permit or ignore
the presence of correlations. Comparing the respective expectation values with each other,
we can estimate the impact of correlations on this observable.

In the following, we elaborate further on the example of a three-component mixture con-
sisting of species A, B and C. For these kind of systems, we can suppress the interspecies
correlations in various ways with the corresponding wave-function ansatz. For instance, em-
ploying the full many-body wave-function ansatz (MB) all interspecies correlations are taken
into account, while for the species mean-field ansatz (sMF) all interspecies correlations are
suppressed. On the other hand, employing the sMFA (sMFB, sMFC) ansatz only correlations
regarding species A (B, C) are suppressed.

With these tools on hand, we are now in the position to determine the impact of correla-
tions between, e.g. species A and B, on any observable Ô. For this purpose, we calculate,

∆AB = ⟨Ô⟩sMFC − ⟨Ô⟩sMF, (5.19)

where ⟨Ô⟩X denotes the expectation value of Ô obtained with the wave-function ansatz X.
In this sense, ∆AB denotes the difference between the expectation values obtained with a
wave function that either facilitates or suppresses correlations between species A and C. In
a similar way, the impact of the correlation between A and C as well as B and C on the
observable Ô can be determined.

Following a similar line of thought as described in Section 5.3, where the three-body
density has been written as a sum of two- and three-body correlation terms, we write also the
expectation value ⟨Ô⟩MB in such a decomposition, i.e.,

⟨Ô⟩MB = ⟨Ô⟩sMF + (∆AB +∆AC +∆BC) + ∆ABC , (5.20)
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where ⟨Ô⟩MB denotes the expectation value obtained from the many-body wave function
which facilitates any interspecies correlations. This expectation value is further decomposed
into a species mean-field part ⟨Ô⟩sMF, the contribution of correlations between two species
(∆AB+∆AC+∆BC) and a third-order correlation term ∆ABC (see Fig. 5.1 for an illustration).
In Ref. [FT2, FT4] we have performed such a decomposition with respect to the relative
difference of two distinguishable impurities coupled to a bath. Since the two impurities have
been considered to be non-interacting, the third-order correlation contribution can be grasped
as a mediated effect. In terms of the relative difference, this mediated effect has be then
interpreted as an induced attraction and repulsion.
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Chapter 6

One-Dimensional Anyon-Hubbard
Model

In this chapter, we give a brief introduction to the anyon-Hubbard model studied in Ref. [FT5].
In quantum mechanics exchanging two indistinguishable particles does not alter the physical
state, but can lead to an additional phase factor eiθ. In three dimensions this phase factor
is either +1 or −1 corresponding to bosons (θ = 0) or fermions (θ = π), respectively. How-
ever, restricting the motion of the particles to one or two dimensions the phase factor is not
only limited to ±1 and the statistical angle θ can interpolate between bosons and fermions
giving rise to anyons [214, 216]. Particles with such an exchange statistic are referred to as
abelian anyons which have to be distinguished from non-abelian anyons. A key difference is
that adiabatically interchanging two particles with non-abelian statistics leads, instead of a
global phase factor, to a nontrivial unitary transformation, a property, which might even find
applications in quantum computing [364, 365].

This chapter is divided in two parts. In Section 6.1 we introduce the anyon-Hubbard
model and the mapping to the Bose-Hubbard model. In Section 6.2 follows a brief discussion
of an experimental realization.

6.1 Mapping to the Bose-Hubbard Model

In the following, we consider N anyons distributed on a lattice potential with L sites. The
respective anyon-Hubbard Hamiltonian reads [237, 366],

ĤAHM,a = −J
L−1∑

j=1

(
â†j âj+1 +H.c.

)
+
U

2

L∑

j=1

n̂j (n̂j − 1) +
L∑

j=1

µjn̂j , (6.1)

where â(†)j denotes the annihilation (creation) operator that creates (annihilates) a particle
at site j and n̂j = â†j âj denotes the number operator acting on site j. The parameter J
refers to the hopping amplitude between two neighboring sites, while U represents the on-
site interaction potential and µ specifies the site-dependent potential. The anyonic exchange
statistics can be formulated as [231],

âj âk − le−iθsgn(j−k)âkâj = 0 (6.2)

â†j â
†
k − le−iθsgn(j−k)â†kâ

†
j = 0 (6.3)

âj â
†
k − le−iθsgn(j−k)â†kâj = δj,k, (6.4)

where l = ±1 and with sgn(j − k) = ±1 for j ≷ k and sgn(0) = 0. In the case of l = +1,
for θ = 0 the bosonic exchange statistics is restored while for θ = π the particles behave
like pseudo-fermions, i.e., they obey a fermionic exchange statistics with respect to different
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sites (j ̸= k) and a bosonic one regarding same sites. The main difference between fermions
and pseudo-fermions is that pseudo-fermions can occupy the same site, which is forbidden
for spinless fermions due to the Pauli exclusion principle. The situation changes for l = −1.
In this case, θ = 0 leads to âj â

†
k + â†kâj = δj,k which implies a fermionic exchange statistics,

while θ = π corresponds to pseudo-bosons. However, in the following, we consider l = +1.
Since the atoms occurring in nature follow either a bosonic or fermionic exchange statistics,

it is convenient for an experimental realization to express the Hamiltonian in Eq. (6.1) in terms
of bosonic or fermionic creation and annihilation operators. To stay in line with Ref. [FT5],
we choose bosons as the parent particles for the anyon-Hubbard implementation. The Jordan-
Wigner transformation that transforms anyonic operators to bosonic ones reads [366],

âj = eiθ
∑

k<j n̂k b̂j (6.5)

where b̂(†)j denotes the bosonic annihilation (creation) operator. Applying this transformation
to Eq. (6.1), the anyon-Hubbard Hamiltonian becomes,

ĤAHM,b = −J
L−1∑

j=1

(
b̂†je

iθn̂j b̂j+1 +H.c.
)
+
U

2

L∑

j=1

n̂j (n̂j − 1) +

L∑

j=1

µjn̂j , (6.6)

with n̂j = â†j âj = b̂†j b̂j . In this model the anyonic exchange statistics appears as a density
dependent phase in the hopping terms, while the potential terms are independent of the
statistical angle θ. Similar to the two-dimensional case, where an additional phase is picked
up upon physically exchanging the positions of two particles, in the one-dimensional case,
the additional phase is picked up once the system evolves around a closed loop in the Fock
space [213]. Moreover, the phase acquired due to hopping processes leads to a breaking
of the spatial inversion as well as the time reversal symmetry provided that θ is neither 0
nor a multiple of π, i.e., bosonic nor pseudo-fermionic, respectively. This asymmetry can be
observed, e.g. in the expansion dynamics of initially localized anyons and controlled by tuning
θ or U [233].

In the above introduction of the anyon-Hubbard model we have implicitly considered
open boundary conditions. Alternatively, one can impose periodic boundary conditions. Two
possible ways to realize them are given by adding to the open-boundary Hamiltonians ĤAHM,a

and ĤAHM,b the respective hopping terms to the which connect the first and last lattice
site [367], i.e.,

HAHM,a
periodic = ĤAHM,a − J

(
â†Lâ1 +H.c.

)
, (6.7)

HAHM,b
periodic = ĤAHM,b − J

(
b̂†Le

iθn̂L b̂1 +H.c.
)
. (6.8)

(6.9)

Note that these two realizations are not equivalent. This becomes evident when mapping the
anyonic operators appearing in HAHM,a

periodic to bosonic ones. In this case, the additional phase
e−iθN emerges corresponding to a twist at the boundary [367],

HAHM,b
twisted = ĤAHM,b − J

(
b̂†Le

iθn̂L b̂1e
−iθN +H.c.

)
. (6.10)

The additional twist has the consequence thatHAHM,b
twisted loses the property of being translational

invariant. This symmetry can be restored by multiplying each hopping term in HAHM,b
periodic with

the phase e±iθN/L.
In Ref. [FT5] we treat the Hamiltonian in Eq. (6.6) in terms of an exact diagonalization
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Figure 6.1: Configuration space of the anyon-Hubbard model for L = 6 and N = 2. Each
dot represents a bosonic number state, where the black dots denote a double occupation,
while the remaining dots denote a single occupation. The edges represent hopping processes
with different amplitudes: −J (gray thin), −

√
2J (green thick) and −

√
2Jeiθ (red arrow).

Figure adapted from Ref. [FT5].

method, see Section 4.3, where we employ a number state basis in order to express Ĥ. The
static and dynamical properties are determined as outlined in Section 4.3, i.e., by explicitly
solving the stationary and time-depending Schrödinger equation.

6.2 Experimental Implementation

In the following, we discuss the experimental realization of the one-dimensional anyon-Hubbard
model. There exists numerous proposals to experimentally realize the anyon-Hubbard model
in one dimension, including the implementation in photonic systems [368] or in ultracold
atomic platforms, where the atoms are confined by optical lattices [227, 229, 366]. How-
ever, only recently the anyon-Hubbard model has been realized in an ultracold setup. In
Ref. [213] the anyon-Hubbard model, as expressed in Eq. (6.6), has been realized for the case
of two atoms with tunable on-site interactions U and statistical angle θ. Shortly after this,
in Ref. [238] the implementation of the hard-core anyon-Hubbard model (U → ∞) has been
reported, where the underlying platform consists of a strongly-interacting quantum gas.

Next, we elaborate in more detail on the experiment presented in Ref. [213] as this re-
alization of the anyon-Hubbard model comes closest to the model we have considered in
Ref. [FT5]. The experiment in Ref. [213] is conducted with two 87Rb atoms that are loaded
into a tilted optical lattice potential. The tilt is required in order to suppress the naturally
occurring tunneling processes between the lattice sites. The nearest neighbor tunneling is
artificially reintroduced upon applying a Floquet scheme consisting of three modulation fre-
quencies [369]. Therefore, three hopping processes need to be reintroduced. In Figure 6.1 we
sketch the possible hopping processes needed for a system consisting of N = 2 particles on
the basis of L = 6 lattice sites. In particular, we show the configuration space where each
node corresponds to a specific number state which are connected via edges that represent
the nearest-neighbor hopping. The three hopping processes are: (I) A particle hops from a
single occupied to an empty site leading to a factor of −J (gray dotted lines in Figure 6.1);
(II) a particle hops to an occupied site corresponding to a factor of −

√
2Jeiθ (red arrows in

Figure 6.1); and (III) a particle hops from a doubly-occupied to an empty site resulting in
a factor of −

√
2J (see green dotted lines in Figure 6.1). Each experimental sequence starts

with initializing two atoms in neighboring sites of an optical lattice via a postselection process.
Subsequently, a tilt is applied and the system is evolved in time using the three-tone Floquet
scheme. After the time-evolution, the system is projected on a number state by measuring the
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atoms at the lattice sites via fluorescence imaging [370]. Averaging over many such snapshots
results then in the time-dependent density-density correlation function. When tuning the
statistical parameter θ from bosons to fermions, the corresponding dynamics of the anyons
reveal the expected fermionization process. The latter appears as an anti-bunching behavior
in the density-density correlator. Moreover, considering a finite U the characteristic asym-
metric transport process of the anyons for a finite θ ̸= 0, π has been observed, in agreement
with Ref. [233].
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Chapter 7

Outline of the scientific contributions

In this chapter, we provide a summary for the scientific contributions which form the basis of
this cumulative dissertation. The respective manuscripts can be found in Chapter 8.

7.1 Counterflow Dynamics of Two Correlated Impurities Im-
mersed in a Bosonic Gas

Impurities in ultracold quantum gases have become a well-established field in ultracold physics
enabling the opportunity to study fundamental quantum processes such as the formation of
quasi-particles [119], induced interaction [173] or the dynamical response followed by a pa-
rameter quench [11]. In Ref. [FT1] we combine several of these aspects into a one-dimensional
setup, i.e., we investigate the counterflow dynamics of two impurities immersed in a bosonic
medium for different trapping geometries. Since most of the existing literature has been focus-
ing on the counterflow of two large ensembles of atoms [180, 181, 185], we focus in Ref. [FT1]
on the counterflow dynamics of two impurities coupled to a bosonic medium. Upon preparing
the impurities in a double-well potential, the dynamics is triggered by ramping down the
central barrier of the double-well [see Figures 7.1(a) and (b)]. The numerical calculations are
obtained within the ML-MCTDHX method, see Section 4.5.

The analysis begins with categorizing the ground state properties of the system with re-
spect to the two-body densities for variations of the impurity-impurity, as well as the impurity-
medium interaction strengths, gBB and gAB, respectively1. In case the medium is trapped in
a box potential, we distinguish four different regimes. These regimes range from a bunching
of the impurities for strong attractive or repulsive impurity-medium interactions [regimes (I)
and (IV) in Figure 7.1(c)] to an anti-bunching behavior for weak interspecies couplings and
strong impurity-impurity repulsions [regime (III)], and an intermediate regime [regime (II)].
The bunching of the impurities emerges as density maxima along the diagonal of the two-body
density, reflecting the enhanced probability of finding the impurities at the same position [see
insets of Figure 7.1(c)]. This behavior is also referred to as the coalescence of the impurities
and has its origin from an induced attraction which is mediated by the bath [166]. On the
other hand, for weak gAB, i.e. for weak induced attraction, and comparatively strong internal
repulsion, gBB, the impurities anti-bunch, as indicated by the exclusive population of the
off-diagonal parts of the respective two-body density. The crossover region can be defined as
the interaction region, where the induced attractive interaction strength is comparable to the
internal impurity-impurity repulsion, i.e., where gBB ≈ −g2AB

gAA
[see Eq. (3.16) and black line

in Figure 7.1(c)].
Turning to the case of a harmonically trapped bosonic medium, the impurities show a

similar bunching and anti-bunching behavior as in the previous case of a box confined medium,
but at altered interaction regions. Here, the relation gBB ≈ −g2AB

gAA
cannot be used to determine

1Note that in [FT1] we refer to the impurity-impurity and impurity-medium interaction strengths as gII
and gBI , respectively, but in this dissertation we use the expressions gBB and gAB for consistency reasons.
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Figure 7.1: Sketch of the quench protocol applied in Ref. [FT1], where two impurities are
coupled to a medium confined in (a) a box or (b) harmonic oscillator potential. (c) Ground
state phase diagram categorized with respect to the two-body densities of the impurities (see
insets) and the medium. Dynamical evolution of the one-body density of (d) the medium
and (e) the impurities for weak impurity-impurity and strong impurity-medium repulsions
(gBB = 0.2 and gAB = 1.5). Figure adapted from Ref. [FT1].

crossover regime between bunched and anti-bunched impurities in this sense, revealing the
strong impact of the underlying trapping potential of the medium on the impurities’ interplay.
Moreover, for strong attractive gAB the impurities and the bath particles localize at the same
spatial position and show a bunching behavior. This clustering is accompanied by a negative
bipolaron energy indicating the formation of a bound state, i.e., a bipolaron [166, 169, 193].

In a second step, the dynamics is induced by ramping down the potential barrier of the
impurities’ double-well potential, in this way, triggering the counterflow of the impurities.
For weak impurity-medium interaction strengths, the impurities perform a breathing like
motion, regardless of the underlying trapping potential of the medium. For larger repulsive
gAB and for a bosonic medium confined in a box potential, the impurities collide at the trap
center, where they remain localized in the course of the time-propagation. This property is
reminiscent for the presence of an induced attractive behavior [see Figures 7.1(d) and (e)].
In the case of a harmonically confined medium, the breathing-like dynamics of the impurities
observed in the temporal evolution of the one-body density turns out to be a projection of an
oscillation between a bunching and an anti-bunching tendency. This becomes apparent when
inspecting the temporal evolution of the two-body density function. A deeper insight into
the participating states is obtained by devising an effective two-body model consisting of two
one-body terms of the form of Eq. (3.9) and a contact interaction potential with strength gBB.
By projecting the respective many-body wave function on the eigenfunctions of this two-body
Hamiltonian, we identify the participating two-body states. Finally, for strong gAB, i.e., in
the immiscible regime, the impurities are not able to penetrate the medium and remain at
the edges of the latter where they perform small oscillations.

7.2 Crossover from Attractive to Repulsive Induced Interac-
tions and Bound States of Two Distinguishable Bose Po-
larons

In the case where two or more impurities couple to an ultracold gas, intriguing phenomena
emerge that are beyond the single-impurity paradigm. Analogous to the case of a single
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Figure 7.2: (a) Sketch of the three-component setup analyzed in Ref. [FT2]. We consider
two non-interacting impurities coupled to a bosonic medium confined in a one-dimensional
harmonic oscillator potential. (b) The behavior of each impurity is effectively captured by
an effective one-body model. The induced interaction between the impurities is modeled by
an effective contact interaction potential of strength geffBC .

impurity coupled to a bath, also multiple impurities can become dressed by the excitations of
the medium giving rise to quasi-particles. Depending on the coupling strength between the
host and the impurity atoms, the former can mediate a strong or weak effective interaction
between the impurities. For an one-dimensional Bose gas and two indistinguishable impurities
it has been shown that the character of the induced interaction is always attractive [165–171].
However, distinguishable impurities offer the flexibility of coupling each impurity individually
to the bath, opening up the scenario, where one impurity is attractively coupled, and the
other repulsively coupled to the bath. In this case the mediated interaction is expected
to be repulsive [167, 168, 177, 202]. In Ref. [FT2] we consider a harmonically confined
majority species A coupled to two distinguishable impurities B and C in one dimension [see
Figure 7.2(a)]. Furthermore, to facilitate the observation of a mediated interaction, we set
the interaction strength among the impurities to zero, gBC = 0, and vary only the impurity-
medium coupling parameters gAB and gAC .

In a first step, we calculate the one-body densities of the three species using the many-body
wave-function ansatz of the ML-MCTDHX method for various interaction configurations. The
behavior of the impurities’ one-body density is interpreted in terms of an effective one-body
picture in which the medium acts as a mean-field potential [see Eq. (3.9)]. Adding this mean-
field contribution to the harmonic oscillator potential leads to an effective potential which has,
i.e., for repulsive impurity-medium interaction strengths, the form of a double-well potential.
In this sense, the effective potential reflects the dephasing process between the impurities and
the medium occurring at these interactions. In the attractive case, the impurities localize at
the center and the effective potential takes the form of a dipped harmonic oscillator potential.
Solving the effective one-body model shown in Eq. (3.9), we find good agreement with the
many-body approach in terms of the one-body density.

In a second step, the two-body correlation behavior of the impurities and the medium is
analyzed. For this purpose we calculate the spatially resolved two-body correlation function
[see Eq. (5.17)]. If the impurities couple both attractively or repulsively to the bath, their
correlation function is positive along the diagonal and negative at the off-diagonal parts,
indicating an induced bunching tendency between the impurities [see Figure 7.3(a2)]. We
observe the inverse behavior when the impurities couple to the bath with opposite signs, i.e.,
one impurity attracts the bath while the other repels it. In this case, the two-body correlation
function exhibits an anti-correlated pattern indicating an anti-bunching tendency between the
impurities [see Figure 7.3(a1)]. By integrating over a certain part of the spatial correlation
function the (anti-)bunching tendency is extracted and captured by a scalar value [see dashed
lines in Figures 7.3(a1) and (a2)]. This reduced quantity is used to draw a phase diagram
shown in Figure 7.3(b) as a function of the impurity-medium interaction strengths gAB and
gAC .

Next, we conduct a more direct approach to quantify the induced interaction by devising
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Figure 7.3: Depending on the impurity-medium interaction strength the impurities’ two-
body correlation function exhibits either an induced (a1) anti-bunching or (a2) bunching
behavior. Integrating over the left side of the spatial grid [dashed lines in panels (a1) and
(a2)], the induced correlation behavior is merged into a single quantity from which a phase
diagram can be constructed, see panel (b). (c) By devising an effective two-body model
the induced bunching (anti-bunching) behavior can be associated with an induced attraction
(repulsion). Figure adapted from Ref. [FT2].

an effective two-body model. This model consists of two effective one-body models coupled
via a contact interaction potential, see for a sketch Figure 7.2(b). The respective effective
interaction strength (geffBC) is determined by varying its value such that the two-body correla-
tion function obtained from the effective two-body model matches that one obtained from the
full many-body ansatz. By doing so, we ensure that the effective interaction strength can be
directly related to the two-body correlation behavior of the impurity. Fixing one interaction
strength to, e.g., attractive values and vary the other interaction parameter from attractive to
repulsive values, we observe the crossover from an induced attraction to an induced repulsion,
following the relation geffBC ∼ −gAB · gAC . In particular, we find that in regimes where the
impurities are correlated (anti-correlated), the mediated interaction is attractive (repulsive)
[see Figure 7.3(c)]. To infer information about the effect of the interspecies correlations on
the induced interaction, the impurities’ relative difference is decomposed in terms of a species
mean-field, a two-body and a three-body correlation part, see Eq. (5.20). We find that the
contribution of the three-body correlation term, i.e., the contribution associated with the me-
diated interaction, behaves as ∼ −gAB · gAC . In particular, the mediated correlation between
the impurities causes either a reduction of the impurities’ relative difference for gAB · gAC > 0
(associated with an induced attraction) or an increase for gAB · gAC < 0 (corresponding to an
induced repulsion).

Finally, we investigate the formation of bound states which emerge for attractive impurity-
medium interaction strengths. In these regimes the mediated interaction between the impu-
rities can reach sufficiently strong values and facilitate the formation of a bound state, also
known as bipolaron [150, 174–176]. We demonstrate the formation of a bipolaron in our setup
by verifying that the respective bipolaron energy is negative for sufficiently strong impurity-
medium attractions. Moreover, we assure that the size of the dimer state, captured by the
impurities’ squared relative difference, shrinks with increasing attraction in agreement with
Ref. [175]. In addition, when both interaction parameters gAB and gAC are equally tuned
towards large attractive values, the impurities’ two-body density obtains an ellipse-like shape
indicating the bunching of the impurities. We calculate the respective eccentricity of the el-
lipse and observe its saturation at moderate attractive values. The dimer state keeps shrinking
when further increasing the impurity medium attractions. A similar analysis is performed with
respect to the three-body density calculated for one bath particle and the impurities. Varying
gAB and gAC equally towards attractive values, the three-body density evolves into the form
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of an ellipsoid exhibiting three eccentricities. Analog to the behavior of the two-body density,
also the shape of the ellipsoid does not significantly change after moderate attractive values
which is reflected in a saturation of the eccentricities. This analysis suggests that the forma-
tion of a bipolaron is additionally accompanied by the formation of a trimer state consisting
of the impurities and one bath particle.

7.3 Effective Approaches to the Dynamical Properties of Two
Distinguishable Bose Polarons

In the previous Section 7.2 we have elaborated on a three-component ultracold setup consisting
of a harmonically confined bath A coupled to two distinguishable impurities B and C [FT2].
In this course, we have revealed the presence of an effective attractive and repulsive interaction
potential mediated between the impurities due to the coupling to the majority. In particular,
we have quantified the effective interaction employing an effective two-body model. However,
this study has exclusively focused on the static properties of the induced interplay, which urges
the question how the mediated interaction between the impurities is affected when tuning
the coupling parameters in time, e.g., when the impurity-medium coupling strengths vary
between regimes corresponding to different induced effective interactions. In Ref. [FT3] we
pursue this question and study the dynamical response upon linearly ramping the interaction
parameters gAB(t) and gAC(t) in time from either attractive to repulsive values or vice versa,
while gBC = 0. Here, the aim is to understand the dynamical behavior of the impurities
coupled to a majority species in the framework of effective one- and two-body models [see
Figures 7.4(a) and (b)]. For this purpose, we apply several approaches and reveal their quality
and limitation in terms of the ability to capture the behavior of observables obtained with a
many-body approach.

We begin with exploring the dynamical response of the one-body densities for different
linear interaction ramps. Depending on the slope of the applied ramps the impurities reveal a
weak or strong breathing-like dynamics. For instance, when tuning both interaction parame-
ters gAB(t) and gAC(t) equally from attractive to repulsive values, the impurities, which are
initially localized at the trap center, expand and subsequently contract again, which is re-
peated in a periodic fashion. Ramping instead from attractive to large repulsive values, which
are larger than the internal repulsion between the bath particles gAA, we observe a temporal
phase-separation of the impurities and the majority species. In this dynamical regime, the
impurities probe the edges of the bath for finite periods of time.

To construct an effective two-body model, we first develop an effective one-body model
which is able to capture the dynamical behavior of a single impurity. In particular, we consider
only correlations between the first impurity and the medium and neglecting correlations with
the second impurity. This scenario is realized by employing a sMFB or sMFC ansatz (see
Section 4.5). In this way, the effective model is compared only to results that neglect third-
order effects on the species level, i.e., effects that stem from an induced correlation. We employ
three different one-body models constructed from time-dependent effective parameters and
judge their quality by comparing their spatial variance to the ones obtained with an sMFB
or sMFC ansatz. The first one-body model follows the idea presented in Eq. (3.9), i.e., the
effects of the bath are treated in a mean-field type of manner by adding to the undisturbed
one-body Hamiltonian a time-dependent effective potential. This mean-field potential consists
of the medium’s one-body density weighted by the respective impurity-medium interaction
strength. The second and third models follow the ansatz presented in Eq. (3.10), where
the impurity is interpreted as a quasi-particle with a time-dependent effective mass, meff

σ (t),
and effective trapping frequency, ωeff

σ (t), where σ = B,C. In the second model, the effective
mass and frequency are ramped in time according to their adiabatic solution, while the third
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Figure 7.4: We consider two distinguishable impurities coupled to a bosonic medium. (a)
Sketch of the effective two-body model devised to capture the impurity dynamics triggered
by ramping the impurity-medium interaction strength. Employing the interaction ramp
shown in panel (b), the spatial variance of impurity B obtained within the sMFC ansatz is
accurately captured by the effective one-body model that consists of an optimized effective
mass and frequency, shown in (d). (e) Time-evolution of the integrated correlation function.
The crossover from an induced anti-bunching to bunching behavior can be described by a
time-dependent effective contact interaction potential with strength geffBC(t), see panel (f).
Figure partially adapted from Ref. [FT3].

model employs effective parameters that are fitted to the one-body density and the spatial
variance obtained from the sMFB or sMFC ansatz. This fitting process leads to an optimized
effective mass, mopt

σ (t), and frequency, ωopt
σ (t). Compared to the former two methods, the

last one captures best the target behavior of the spatial variance [cf. Figures 7.4(c) and
(d)]. Importantly, the optimized effective mass and frequency give insights into the change
of the dressed impurities during the dynamics. For example, we find that as gAB(t) ramps
from weakly attractive to weakly repulsive values and for constant weakly attractive gAC ,
the effective mass of impurity B decreases from a value above the bare mass to a value
below, indicating the transition from a heavy to a light dressed impurity. This behavior can
be attributed to the presence of a harmonic oscillator potential, which is known to lead to
smaller effective masses in the repulsive regime [FT2, FT8, 291]. The procedure applied in
this work provides an alternative approach for treating the dynamical response of dressed
impurities in an effective picture. So far, the existing literature has focused on describing the
dynamical response of an impurity in terms of static effective models with constant effective
parameters. An example is given by [153], where a constant effective mass has been extracted
by fitting the time-evolved mean position of an impurity to a damped harmonic oscillator. In
contrast to these kind of approaches, we show that the application of time-dependent effective
models consisting of optimized effective parameters can be a complementary powerful tool,
when it comes to accurately describing the complex dynamics of dressed impurities.

To construct the effective two-body model, we couple two effective one-body models via a
time-dependent effective interaction potential. As one-body models we take the ones, which
capture best the one-body dynamics of the quasi-particles, namely, the ones consisting of
optimized effective parameters. For the effective interaction potential, we consider three dif-
ferent types of potentials and judge their ability to capture the induced interplay between
the impurities by comparing the impurities’ relative difference and integrated two-body cor-
relation function to the ones obtained by the full many-body approach. The first ansatz for
the effective interaction potential has the form of a Yukawa-type potential [see Eq. (3.15)]
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with a time-dependent factor proportional to −gAB(t) ·gAC(t). The other two approaches ap-
proximate the induced interactions by a contact interaction potential with a time-dependent
effective interaction strength geffBC(t). In the first case, the effective interaction strength evolves
in time according to the adiabatic solution, i.e., for each time-instance t the effective inter-
action strength is obtained from the ground-state solution corresponding to the interaction
values gAB(t) and gAC(t). In the second case, the path of the interaction strength is varied
such that the overlap between the spatially resolved two-body correlation function obtained
by the effective model and the correlation function calculated from the many-body ansatz
is minimized. As it turns out, the adiabatic model as well as the model that includes the
Yukawa-type potential are only qualitatively able to capture the impurities’ two-body corre-
lation behavior and deviate significantly from the target behavior at time scales larger than
the ramp time. The best approximation is found regarding the optimized effective interaction
strength, goptBC(t) [see Figure 7.4(e)]2. In this course, we find that, e.g., by ramping gAB(t) from
attractive to repulsive values and fixing gAC(t) to an attractive value, the mediated interac-
tion varies from an initial attraction (goptBC(t) < 0) to a mediated repulsion (goptBC(t) > 0), see
Figure 7.4(f). Importantly, the optimized interaction strength captures the correlated two-
body behavior of the impurities also for times longer than the ramp time. Finally, we use the
effective two-body model to estimate the entanglement between the impurities and compare
the results to the logarithmic negativity and to the von-Neumann entropy (see Sections 5.1
and 5.2).

7.4 Effective Two- and Three-Body Interactions between Dressed
Impurities in a Tilted Double-Well Potential

In the works [FT2, FT3] we have investigated the interplay between two distinguishable im-
purities mediated by a bosonic majority species and devised an effective two-body model that
relied on fitting to the two-body correlation function obtained by a many-body method. In
Ref. [FT4] we provide an alternative approach for determining the induced interaction medi-
ated between impurities and reveal the impact of an effective two- and three-body interaction
strength on the one-body density.

The setup significantly differs from the ones considered in Refs. [FT2, FT3]. In particular,
we consider a homogeneous bosonic gas A confined on a ring potential with periodic boundary
conditions which is coupled to up to three impurities trapped in a tilted double-well potential
[see Figures 7.5(a)-(c)]. The idea of the applied tilt is to break the spatial inversion sym-
metry of the system and bring it close to a tipping point, where slight variations can have
significant effects [87]. Specifically, the tilt leads to a population imbalance of the impurities
with respect to the two double-well sites. We quantify the population imbalance by inte-
grating over the one-body density at the energetically elevated site. We begin with assuming
two weakly-interacting bosonic impurities of species B. When increasing or decreasing the
impurity-medium coupling strength gAB away from the non-interacting case (gAB = 0), the
impurities begin to localize at the energetically lower site, which is accompanied by a de-
crease of the integrated density. We capture this behavior in terms of an effective two-body
model of the form of Eq. (3.13), where the mediated interaction potential is approximated by
a contact interaction potential. The effective interaction strength is found by matching the
energy of the effective model to the polaron and bipolaron energies obtained by many-body

2Note that this optimization routine is computationally highly demanding. We tackle this by representing
the time-dependent path of goptBC(t) in terms of interpolation points. The respective amplitudes are varied
according to an optimization algorithm. During the optimization process, each iteration corresponds to a
separate time-evolution of the effective two-body Hamiltonian with time-dependent effective parameters. The
two-body dynamics are calculated following the procedure outlined in Section 4.3.2.
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Figure 7.5: We consider up to three interacting impurities belonging to the same or different
species which are trapped in a tilted double-well potential and coupled to a bosonic medium
A that is confined on a ring potential. (a) Illustration of the one-body density of the medium
(red shaded area) and the impurities (blue shaded area) together with the tilted double-
well potential (gray line). (b) Sketch of the setup consisting of (b) three bosonic impurities
belonging species B and (c) two bosonic and one distinguishable impurity belonging to
species B and C, respectively. The impurities’ behavior is effectively captured by two- and
three-body models consisting of effective two- and three-body contact interaction potentials,
see right side of panels (b) and (c). (d) Effective two- and three-body interaction strengths
mediated among three bosonic impurities. (e) The quality of the three-body model is judged
by comparing the impurities’ density integrated over the right double-well site (I3b,effBBB ) to
the many-body results (IMB

BBB). I3b,eff,0
BBB denotes the results of the effective model, where

geffBBB = 0. (f) One-body densities at gAB = 0.5 obtained by different approaches (see
legend). Effective (g) two- and (h) three-body interaction strengths for two distinguishable
impurities as well as two indistinguishable and one distinguishable impurity, respectively,
in dependence of the impurity-medium coupling parameters gAB and gAC . Figure partially
adapted from Ref. [FT4].

calculations [166, 207, 297, 371]. We find an overall mediated attractive interaction between
the impurities that obeys the relation geffBB − gBB ∼ −g2AB, where gBB is the bare impurity-
impurity interaction strength [cf. Figure 7.5(d)]. Comparing the integrated one-body density
of the effective model with the results obtained by a many-body calculation, i.e., by the
ML-MCTDHX method (see Section 4.5), we find good agreement.

The setup is further extended to the case of three bosonic impurities. Their effective be-
havior is captured by an effective three-body model that approximates the mediated forces
in terms of an effective two-body interaction potential and, additionally, by a three-body
contact interaction potential. Similar to the two-impurity scenario, the three-body interac-
tion strength (geffBBB) is determined by fitting the ground state energy of the effective model
to the polaron, bipolaron and three-polaron energies. For small impurity-medium interac-
tion strengths, we find a cubed behavior, i.e., geffBBB ∼ g3AB, see Figure 7.5(d) and its inset.
In particular, for positive gAB the effective three-body interaction strength is repulsive and
counteracts the induced attractive two-body forces. The impact of the three-body interaction
strength on the integrated one-body density can be judged by comparing the results obtained
with and without the three-body interaction term [Figure 7.5(e)]. When increasing gAB from
0 to repulsive values, the effect of excluding the three-body interaction term manifests in a
faster localization of the impurities compared to the results obtained with a three-body term,
see also the spatially resolved one-body densities for gAB = 0.5 in Figure 7.5(f). This effect is
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more pronounced for larger values of gAB, where the mediated three-body interaction strength
geffBBB becomes larger.

We extend the analysis further by considering two distinguishable impurities B and C
that interact with a majority species A. This setup presumes a three-component ultracold
mixture and is similar to the scenarios considered in Refs. [FT2, FT3]. The three-impurity
scenario is realized by adding a second impurity to species B. We construct the respective
two- and three-body models and apply an analogous fitting procedure as done in the case
of indistinguishable impurities. In particular, we find a scaling for the effective two-body
interaction strength which behaves like geffBC − gBC ∼ −gAB · gAC , as well as a scaling for the
effective three-body interaction strength of the form of geffBBC ∼ g2AB · gAC , see Figures 7.5(g)
and (h), respectively. Additionally, we compare the many-body simulations with a pure mean-
field calculation, which shows a good agreement in terms of the energy and a qualitative
agreement regarding the one-body density. Finally, we discuss the implications for the one-
body results when including an effective mass in the effective two-body model.

7.5 Chirally-Protected State Manipulation by Tuning One-Di-
mensional Statistics

Before delving into the details of Ref. [FT5], we would like to give a brief overview of the
history of this project and how this work is related to the previous projects outlined above.
The project has been inspired by an earlier work (see Ref. [FT8]), where we have studied the
collisional aspects of an impurity injected into a Bose gas confined in a double-well potential.
Since this work has been done employing the ML-MCTDHX method, the idea was to combine
this method with the anyon-Hubbard model in the continuum limit [231] and study the
collision dynamics of two or more anyons. However, we realized that this idea could not
be easily adapted to the ML-MCTDHX implementation and continued with investigating the
collision of anyons in the framework of the anyon-Hubbard model (see Chapter 6). The project
took another turn, when we found some unexpected degeneracies in the energy spectrum of
the ground state with intriguing properties so that we have based the work [FT5] on these
observations.

The starting point is given by N atoms with an anyonic exchange statistics that are
distributed over a lattice with L sites. Furthermore, we neglect on-site interactions and allow
only hopping between nearest-neighbors. Such a system is described by the anyon-Hubbard
model presented in Eq. (6.1) with U = 0 and J = 1 so that the Hamiltonian consists only
of bosonic hopping terms multiplied by a density-dependent Peierls phase with a statistical
angle θ. The energy spectrum is calculated by employing an exact diagonalization method.
We find that certain combinations of (L,N) lead to a degeneracy of the eigenvalues with
zero energy [see Figure 7.6(a)]. Importantly, the degree of the degeneracy d0 appears to be
independent of the statistical parameter θ, for θ ̸= 0. Note that only the dimension of the
zero energy subspace H0 remains invariant under variations of θ, whereas the space spanned
by the respective eigenvectors can rotate in the Hilbert space. We found that the minimal
number of degenerate states is inherently connected to the underlying chiral symmetry of the
model. In particular, the chiral operator Ŝ subdivides the Hilbert space in terms of chiral
eigenspaces, i.e., H = H+ ⊗H− with eigenvalues χ = ±1 and dimensions dimH± = d±. The
minimal dimension of the zero-energy eigenspace is given by d0 ≥ |d+−d−|. We refer to d0 as
the minimal degeneracy, since for θ = 0, i.e., in the case of non-interacting bosons, there can
exist additional states with zero energy due to specific trigonometric relations of the analytical
solutions, e.g. for systems with L = 8 and N ≥ 3. Note that these findings are not unique
to the anyon-Hubbard model, but hold for any correlated hopping models with only nearest-
neighbor hopping and in the absence of classical on-site interactions. Another property of the
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Figure 7.6: (a) Minimal dimension of the zero-energy subspace d0 for different lattice sites L
and atom numbers N . (b) Minimum number of multiplications until the nontrivial holonomy
matrix becomes trivial within a given error. (c) Time-dependent path of the statistical angle
θ(t) which steers the number state |001100⟩ to an eigenstate with zero energy. (d) Time-
dependent overlap of the propagated and target state. Figure adapted from Ref. [FT5].

zero-energy subspace is the emergence of a checkerboard pattern in the one-body density or
in the N -body density given that L > N .

Next, we investigate the behavior of the zero-energy space H0 when the statistical angle is
adiabatically tuned along a closed loop in the parameter space. The starting point denotes the
subspace H0 at θ = 0. Subsequently, this subspace is adiabatically propagated from θ = 0 to
2π by projecting the initial subspace onto a series of zero-energy subspaces with incrementally
increasing values of θ. This procedure is known as Kato’s adiabatic theorem [372, 373],

Ĝ = lim
Nθ→∞

nθ∏

j=1

P̂j , (7.1)

where P̂j =
∑d0

i=1 |ψµ(θj)⟩⟨ψµ(θj)| is the projector of the d0-dimensional zero-energy sub-
space corresponding to θj . During the adiabatic propagation, the subspace H0 rotates in-
side the Hilbert space while keeping its dimension fixed. Finally, when θ = 2π is reached,
the propagated subspace is projected back on the initial one. The overlap matrix (G)µν =
⟨ψµ(0)|Ĝ|ψν(2π)⟩, also called the holonomy matrix, describes a unitary transformation of the
initial subspace and encapsulates the effects of the cyclic adiabatic propagation. In the case
of a trivial rotation, where the adiabatic evolution has no effect, the initial and propagated
subspace are identical and the holonomy matrix corresponds to the unitary matrix. Inter-
estingly, we find for all considered systems with L,N ≤ 8 and d0 ≥ 3 a nontrivial holonomy
matrix indicating that adiabatically evolving the zero-energy subspace along a closed loop
in parameter space corresponds to a nontrivial unitary transformation. Moreover, we esti-
mate the integer number mdiag of how many times the unitary transformation can be applied
(Ĝm

diag) until the final state returns back to the initial one. We find that this number is in
most of the considered cases larger than four within a given error, see Figure 7.6(b).

Finally, motivated by the recent experimental progress reported in Ref. [213], we develop
a protocol in order to steer an initial number state into the zero-energy subspace. The
optimization scheme relies only on the time-dependent variation of θ and is able to achieve an
overlap of the propagated state with the target state of the order of 1−10−4 [see Figures 7.6(c)
and (d)]. The success of the state preparation can experimentally observed by checking the
emergence of a checkerboard pattern in the two-site density.



57

Chapter 8

Scientific Contributions





PHYSICAL REVIEW A 105, 053314 (2022)

Counterflow dynamics of two correlated impurities immersed in a bosonic gas

Friethjof Theel ,1 Simeon I. Mistakidis ,2,3 Kevin Keiler,1 and Peter Schmelcher 1,4

1Center for Optical Quantum Technologies, Department of Physics,
University of Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany

2ITAMP, Center for Astrophysics | Harvard & Smithsonian Cambridge, Massachusetts 02138, USA
3Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

4The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany

(Received 16 December 2021; revised 26 April 2022; accepted 12 May 2022; published 31 May 2022)

The counterflow dynamics of two correlated impurities in a double well coupled to a one-dimensional
bosonic medium is explored. We determine the ground-state phase diagram of the system according to the
impurity-medium entanglement and the impurities’ two-body correlations. Specifically, bound impurity struc-
tures reminiscent of bipolarons for strong attractive couplings as well as configurations with two clustered or
separated impurities in the repulsive case are identified. The interval of existence of these phases depends
strongly on the impurity-impurity interactions and external confinement of the medium. Accordingly the
impurities’ dynamical response, triggered by suddenly ramping down the central potential barrier, is affected by
the medium’s trapping geometry. In particular, for a box-confined medium, repulsive impurity-medium couplings
lead, due to attractive induced interactions, to the localization of the impurities around the trap center. In
contrast, for a harmonically trapped medium the impurities perform a periodic collision and expansion dynamics
further interpreted in terms of a two-body effective model. Our findings elucidate the correlation aspects of the
collisional physics of impurities which should be accessible in recent cold-atom experiments.

DOI: 10.1103/PhysRevA.105.053314

I. INTRODUCTION

Ultracold quantum gases provide an exceptional play-
ground for the investigation of fundamental quantum many-
body phenomena since they feature an exquisite experimental
control [1]. For instance, it is possible to control the shape
and dimensionality of the external potential [2–4], design
species-selective potentials [5–8], and, most importantly, tune
the interparticle interactions to an almost arbitrary extent via
Feshbach resonances [1,9,10]. A particular research focus has
been set on strongly particle-imbalanced mixtures, which al-
low to emulate impurity systems interacting with a bath. The
key mechanism is that the bare impurity becomes dressed
by the excitations of the bath and, thus, can be considered
as a quasiparticle, the so-called polaron [11]. In this regard,
several works have been devoted to exemplify the funda-
mental stationary properties of both Fermi [12–18] and Bose
polarons [19–27], such as their effective mass [13,24,26],
energy [20,21], and residue [12,14].

Recently, more attention has been placed on the inter-
play between several impurities immersed in a quantum
gas [28–31]. Among others, the coalescence of two bosonic
impurities coupled to a harmonically trapped bosonic medium
has been predicted [32] as well as the existence of their
induced interactions [33–35]. In the strongly attractive in-
teraction regime, the formation of bipolarons referring to
impurity bound states was also unraveled [36,37]. Beyond
these studies the nonequilibrium dynamics of quasiparticles
following an interaction quench [38–40] has been examined,
unveiling, in particular, energy redistribution processes, tem-

poral orthogonality catastrophe phenomena, and the effective
temperature of the impurities [39], e.g., by emulating pump-
probe and Ramsey spectroscopy.

Another branch in the field of ultracold quantum gases
concerns the collisional aspects of atomic ensembles. Coun-
terflow dynamics can be triggered, e.g., by employing a
magnetic field gradient separating two atomic hyperfine
states [41] or releasing an ultracold quantum gas from a
double-well potential into a harmonic oscillator [42]. For a
single atomic species these protocols result in the oscilla-
tion of the formed dark solitons [42] or in the case of a
two-component mixture in the spontaneous generation of
dark-bright soliton trains [41]. Another technique to ini-
tiate atomic collisions constitutes two counterpropagating
harmonic oscillator potentials [43], which has been exper-
imentally realized with 40K and 87Rb clouds utilizing two
optical tweezers [44,45].

In this sense, it is intriguing to explore the counterflow
correlated dynamics of impurities in combination with a su-
perimposed superfluid background. A similar question was
addressed for fermions [46,47], e.g., showing the formation
of shock waves. Thereby, of immediate interest is the influ-
ence of the background on the collisional response and the
associated emergent induced interactions between the impu-
rities [47]. The impact of the bath on the impurity dynamics
is expected to depend on the confining potential of the bath,
and the impurities’ coupling strength as well as the interaction
between the impurities and the bath particles [48]. To tackle
these open questions, herein we consider a minimal model of
two bosonic impurities trapped in a double well and immersed

2469-9926/2022/105(5)/053314(17) 053314-1 ©2022 American Physical Society
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in a bosonic bath. The counterflow dynamics between the
impurities is induced by suddenly ramping down the potential
barrier of their double well and, subsequently, letting the sys-
tem evolve in time for different interaction configurations.

Specifically, it is shown that already the ground-state
configurations depend on the chosen impurity-medium and
impurity-impurity interaction strength and, importantly, on
the type of the underlying trapping potential of the medium.
For instance, in the case of a box-confined medium the im-
purities coalesce for intermediate repulsive impurity-medium
couplings independently of the impurity-impurity repulsion.
On the other hand, for a harmonically trapped bath the impuri-
ties separate from each other for strong impurity-impurity and
impurity-medium repulsions [32]. Moreover, we find indica-
tions of bipolaron formation [36] for strong impurity-medium
attractions.

The dynamical response of the impurities appears to be
strongly affected by the combination of the involved interac-
tion strengths as well as by the external confinement of the
bath. More precisely, in the case of a box-confined medium
and intermediate repulsive impurity-medium couplings the
impurities’ induced interactions lead to their localization at
the trap center after their first collision. However, increas-
ing the impurity-medium interaction strength, the impurities
experience a periodic collisional response characterized by a
damped amplitude: a behavior that is argued to be governed by
finite size effects determined by the size of the box potential.
Employing a harmonically trapped medium, the impurities
localize at the trap center for attractive impurity-medium
coupling strengths, while for intermediate and strong repul-
sions they phase separate with the medium [49,50] and thus
their dressing is suppressed. Considering weakly repulsive
impurity-impurity interactions, a state transfer manifests from
two separated to two coalesced impurities. Importantly, this
process is absent in the decoupled case, elucidating the role
of the coupling with the bath and thus of the interspecies
correlations (entanglement).

A microscopic analysis provides insights into the single-
particle excitation processes and the two-body states partici-
pating in the dynamics and the aforementioned state transfer.
To describe the stationary and dynamical properties of the
composite impurity-medium system we employ the multi-
layer multiconfiguration time-dependent Hartree method for
atomic mixtures (ML-MCTDHX) [51–54]. This ab initio ap-
proach allows us to efficiently track the relevant inter- and
intraspecies correlations which are anticipated to be enhanced,
especially during the dynamics. This is in part due to the few-
body impurity subsystem as well as the spatial inhomogeneity
caused by the external potential.

This work is structured as follows. In Secs. II and III we
present the impurity model under consideration and introduce
the ingredients of the variational method, respectively. We
proceed in Sec. IV with an analysis of the system’s ground
state and draw a phase diagram with respect to variations
of the impurity-impurity and impurity-medium interaction
strengths. This analysis is based on the two-body densities
quantifying the correlations of the bath particles and the im-
purities. Next, in Secs. V and VI the dynamical response of
the system following a sudden reduction of the double-well
barrier is discussed. In particular, Sec. V elaborates on the

case of a box-confined medium in which we explicate, e.g.,
the localization of the impurities at intermediate repulsive
impurity-medium coupling strengths and the emergence of
finite size effects. The case of a harmonically trapped medium
is investigated in Sec. VI, where the focus is set on the
impurities’ excitation processes and their dependence on the
impurity-medium couplings. Our results are summarized in
Sec. VII together with an outlook regarding further research
directions. Appendix A elaborates on the behavior of the
impurities’ relative distance in their ground state and in Ap-
pendix B the impact of the impurities’ mass on their collisions
is exposed. In Appendix C we discuss the persistence of the
impurities’ collisional features when a linear ramp is applied
to the barrier height of the double-well potential.

II. IMPURITY-MEDIUM SETTINGS

The system consists of two different bosonic species B and
I at ultracold temperatures. In particular, we consider NI = 2
impurities of mass mI and a bosonic bath of NB = 20 particles
with mass mB. The corresponding Hamiltonian reads

Ĥ = ĤB + ĤI + ĤBI , (1)

where Ĥσ = ∑Nσ

i=1 ( − h̄2

2mσ

∂2

(∂xσ
i )2 + Vσ (xσ

i ) + gσσ

∑
i< j

δ(xσ
i − xσ

j )) is the interaction Hamiltonian of species
σ ∈ {B, I}. Each component is subject to a different
external potential Vσ (xσ

i ), a scenario that can be achieved
via species-selective optical potentials [55,56]. It is also
restricted to one spatial dimension [57] that can be realized
experimentally, e.g., by freezing out the transverse degrees of
freedom using a strong harmonic confinement [58,59].

Since we are operating in the ultracold regime it is suffi-
cient to take into account only s-wave scattering processes and
thus the interaction between two particles of the same species
is modeled with a contact interaction potential [9] determined
by the one-dimensional effective coupling strength parameter
gσσ . Analogously, the coupling between the impurities and
the bath is described through a contact interaction poten-
tial ĤBI = gBI

∑NB
i=1

∑NI
j=1 δ(xB

i − xI
j ), where gBI denotes the

impurity-medium interaction strength. Due to the fact that
gσσ ′ with σ, σ ′ ∈ {B, I} depends, among others, on the three-
dimensional s-wave scattering length it can be experimentally
adjusted, e.g., via Feshbach resonances utilizing either mag-
netic or optical fields [1,10,60,61]. Below, we consider a
bosonic medium of 87Rb atoms and 133Cs impurities. Thus,
the mass ratio is mI/mB = 133/87 [5,55,62,63].

At t = 0 the system is prepared in its ground state with
a specific combination of interaction strengths (gσσ ′). The
impurities are initially confined in a double well V dw

I (x) =
1
2 mIω

2
I x2 + hI

wI
√

2π
exp( −x2

2w2
I
) which is the superposition of

a harmonic oscillator potential with frequency ωI and a
Gaussian of width wI and height hI [64,65]. For the ex-
ternal potential of the bosonic medium we consider two
cases: a box potential of size LB = 1 with VB(x) = 0 for
−LB/2 < x < LB/2 and VB(x) = ∞ elsewhere, and a har-
monic oscillator VB(x) = 1

2 mBω2
Bx2. In the former scenario

we consider x̃box = LB/10 and Ẽbox = h̄2

mBx̃2
box

as characteristic
length and energy scales, respectively [66]. Thus, the time
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FIG. 1. Schematic representation of the considered setup and the
quench protocol. Two bosons (red circles) are coupled to a bosonic
medium (blue shaded area) which is either confined in (a) a box
potential or (b) a harmonic oscillator. First, the two impurities are
loaded into the double well and the equilibrium state of the system
is obtained for a specific set of inter- and intraspecies interaction
parameters (gBB, gII , gBI ). Subsequently, a counterflow dynamics be-
tween the two impurities is induced by suddenly ramping down the
barrier of the double-well potential.

and interaction strength are expressed in units of t̃box = mBx̃2
box

h̄

and g̃box = h̄2

mBx̃box
, respectively. However, in the case of a

harmonically trapped medium it is more convenient to ex-
press the energy in units of the medium’s harmonic oscillator,
Ẽho = h̄ω̃ho, where ωB/ω̃ho = 1. It follows that the length,
interaction strength, and timescales are given in terms of

x̃ho =
√

h̄
mBωB

, g̃ho =
√

h̄3ωB
mB

, and t̃ho = ω−1
B , respectively. To

construct the impurities’ double well we employ ωI/ω̃box,ho =
0.6, hI/Ẽbox,hox̃−1

box,ho = 3.0, and wI/x̃box,ho = 0.7.
The ground state of the composite system is acquired for

a set of values of interaction strengths (gBB, gII , gBI ). In
the case of a box-confined medium the impurities always
exhibit a finite spatial overlap with the bath particles for the
considered interaction strengths. However, for a harmonically
trapped bath the impurity-medium overlap vanishes as long
as gBI > gBB (see also the discussion below). Subsequently,
the dynamics is triggered by suddenly reducing (at t = 0) the
barrier of the impurities’ double-well potential (see Fig. 1).
Consequently, in the course of the time evolution the impu-
rities collide and experience a harmonic oscillator potential
V ho

I (x) with frequency ωI . As we argue below, the emerging
collisional correlated dynamics depends strongly on the initial
phase of the system determined by the interaction parameters
(gBB, gII , gBI ).

III. VARIATIONAL APPROACH AND WAVE-FUNCTION
ANSATZ

To determine the time-dependent solution of the problem
described by the Hamiltonian of Eq. (1) we invoke the ML-
MCTDHX method [51–54]. This approach is an ab initio one
and optimizes a chosen basis, e.g., in terms of the Dirac-
Frenkel variational principle [67]. In particular, the basis set
which underlies the many-body wave function |�MB(t )〉 is
characterized by a time-dependent and multilayered structure
with individual truncation parameters [68]. First, the many-
body wave function is expanded into distinct sets of species
functions {|�σ

i (t )〉}Dσ

i=1 with Dσ denoting the number of the
latter for species σ ∈ {B, I}. Since here we consider a two-
component mixture, |�MB(t )〉 is first expressed in two such
basis sets and, thus, can be written in the form a truncated

Schmidt decomposition [69–71]:

|�MB(t )〉 =
D∑

i=1

√
λi(t ) |�B

i (t )〉 |�I
i (t )〉 , (2)

where D = DB = DI and |�σ
i (t )〉 are the so-called natural

species functions [53]. The time-dependent Schmidt coeffi-
cients λi(t ) determine the population of the ith natural species
function and provide information about the interspecies en-
tanglement [71,72]. For instance, in the case that only a single
Schmidt coefficient λi(t ) is nonzero, the system is described
by a direct product ansatz of species functions indicating the
absence of entanglement. On the other hand, the two species
are considered to be entangled when more than one Schmidt
coefficient is nonzero.

In the next step of the many-body wave function |�MB(t )〉
truncation, each species function is expanded into time-
dependent permanents,

|�σ
i (t )〉 =

∑
�n|Nσ

Cσ
i,�n(t )|�n(t )〉. (3)

Here, each permanent represents one of the (Nσ + dσ − 1
Nσ

)
possible configurations to distribute Nσ particles on dσ single-
particle functions |ϕσ

j (t )〉. A further imposed condition is that
the number of occupied single-particle functions for each
permanent has to be equal to Nσ (indicated by �n|Nσ ). This
expansion enables us to account for intraspecies correlations.
Finally, the time-dependent single-particle functions |ϕσ

j (t )〉
are expanded into a time-independent discrete variable repre-
sentation [73], which we choose here to consist of 300 grid
points in an interval {−5, 5} in units of x̃box,ho. Additionally,
in this work we employ D = 6 species functions and dA = 4,
dB = 6 single-particle functions for the accurate calculation
of the considered systems.

In particular, the multilayered architecture and the time-
dependent basis of the many-body wave function mainly
contribute to the high degree of flexibility of the method which
enables |�MB(t )〉 to approach the accurate solution for each
time instant with a high fidelity even for systems containing a
mesoscopic particle number. In this way, the ML-MCTDHX
method keeps the number of required wave-function coef-
ficients within a computationally feasible limit and, at the
same time, accounts for the relevant inter- and intraspecies
correlations.

IV. CHARACTERIZATION OF THE GROUND STATE

In the following we provide an overview of the ground-
state characteristics of two impurities trapped in a double
well and coupled to a bosonic bath confined either in a box
potential or a harmonic oscillator. These ground states will
subsequently serve as a starting point for examining the coun-
terflow impurity dynamics immersed in a medium which will
be discussed below in Sec. V. Unless stated otherwise, the
interaction strength between the bath particles is kept fixed to
gBB/g̃box = gBB/g̃ho = 0.5.
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FIG. 2. (a) Phase diagram of the impurities-bath ground state with respect to the impurity-medium (gBI ) and impurity-impurity (gII )
interaction strengths for constant interactions of the medium (gBB/g̃box = 0.5). The impurities are confined in a double well and the medium
is trapped in a box potential. The respective ground-state configurations are characterized in terms of the two-body densities of the bath,
ρ

(2)
BB (xB

1 , xB
2 ), and the impurities, ρ

(2)
II (xI

1, xI
2). All crossovers among the involved phases are smooth. For each inset the range of the color map is

optimally chosen and maximally extends from 0 to 2 [0.2] for ρ
(2)
II (xI

1, xI
2) [ρ (2)

BB (xB
1 , xB

2 )]. In (b1)–(d2) the ground-state two-body densities of the
bath and the impurities are presented in terms of a weakly interacting bath (gBB/g̃box = 0.1) and strongly interacting impurities (gII/g̃box = 2.0).
The interspecies interaction strengths from the top to the bottom row are gBI/g̃box = 5.0, 0.2, and −2.0, respectively.

A. Main observables of interest

Let us first introduce the quantities that will be employed
for the identification of the ground-state phases and the
quench dynamics of the two interacting impurities in the
cases of a box-confined and a harmonically trapped medium.
The distinction between the emergent ground-state config-
urations is performed with respect to the two-body density
distributions of the impurities and the bath particles at t = 0.
The reduced two-body density of two particles of the same
species is given by

ρ (2)
σσ

(
xσ

1 , xσ
2 , t

) = 〈
�MB(t )

∣∣ �̂†
σ

(
xσ

1

)
�̂†

σ

(
xσ

2

)
× �̂σ

(
xσ

1

)
�̂σ

(
xσ

2

) ∣∣�MB(t )
〉
, (4)

where �̂ (†)
σ (xσ

1 ) denotes the bosonic field operator which anni-
hilates (creates) a particle of species σ ∈ {B, I} at position xσ

1 .
In fact, ρ (2)

σσ (xσ
1 , xσ

2 ) is the probability of finding one particle
at xσ

1 and, simultaneously, another particle of the same species
at xσ

2 . In the following, we will drop the time parameter since
for the ground state t = 0.

In both considered external confinements of the medium,
an increase of the repulsive impurity-medium coupling
strength leads to the development of interspecies correlations
(entanglement) which eventually impact the ground-state
configurations [74]. A common measure for quantifying
entanglement in a bipartite system is the von Neumann en-
tropy [71,75], defined as

SvN = −
D∑

i=1

λi ln λi. (5)

Recall that D denotes the number of the employed species
functions and λi are the Schmidt coefficients [cf. Eq. (2)].
For a maximally entangled mixture the von Neumann entropy
obtains its maximum value, SvN

max = ln D and λi = 1/D. This

value corresponds to SvN
max = 1.79 in our case. In contrast, a

vanishing von Neumann entropy indicates a decoupled (i.e.,
nonentangled) mixture such that the total many-body wave
function can be written as a direct product state of the two
individual species wave functions.

Moreover, in order to judge the degree of miscibility
among the impurity and medium clouds we calculate the
interspecies spatial overlap [76,77] which is quantified
through

�BI =
[ ∫

dxρ (1)
B (x)ρ (1)

I (x)
]2

∫
dx

[
ρ

(1)
B (x)

]2 ∫
dx

[
ρ

(1)
I (x)

]2 . (6)

Here, ρ (1)
σ (x) = 〈�MB| �̂†

σ (x)�̂σ (x) |�MB〉 is the one-body
density of σ ∈ {B, I} species [78].

B. Decoupled case gBI = 0

Before addressing the ground-state properties of the cou-
pled mixture, we focus on the simpler scenario where the bath
and the impurities are decoupled from each other (gBI = 0)
and thus they can be treated individually. Accordingly, the
impurity-bath entanglement is vanishing, i.e., SvN = 0. Then,
the system reduces to two interacting bosons in a double
well [79–81] with the bath being homogeneous or harmoni-
cally trapped [cf. Figs. 2(a) and 3(a) for gBI = 0]. Here, we
distinguish between weakly and strongly coupled impurities.
In the former case, the two impurities are delocalized over
the two sites of the double well; see the dominant population
of the off-diagonal compared to the diagonal elements of
ρ

(2)
II (xI

1, xI
2) [cf. insets of Figs. 2(a) and 3(a) corresponding to

regime (II)].
On the other hand, for larger impurity-impurity repulsion

gII the density maxima along the diagonal vanish and only
density peaks at the off-diagonal remain [cf. inset of Fig. 2(a)
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FIG. 3. (a) Ground-state phase diagram of the impurities inside
a harmonically trapped medium. The crossover from region (I) to
region (III) is abrupt, marked by the dashed line, while all others are
smooth. (b) Spatial overlap �BI and (c) von Neumann entropy SvN

between the bath and the impurities for varying impurity-medium
interaction strength and different fixed impurity-impurity couplings
(in units of g̃box,ho) as well as for distinct external potentials of the
bath (see legend). The interaction strength among the bath particles
is fixed to gBB/g̃box = gBB/g̃ho = 0.5.

belonging to regime (III)]. This configuration of ρ
(2)
II (xI

1, xI
2)

is described by the conditional probability of finding one
impurity at the left and one impurity at the right site of the
double well or vice versa. In this sense, the impurities tend
to separate from each other and are anticorrelated within the
same site of the double well. Thus, they reside in a Mott-type
state. Notice that for a decoupled mixture the above-described
impurity configurations corresponding to regimes (II) and (III)
occur independently of the particular trapping geometry of the
bath [cf. gBI = 0 in Figs. 2(a) and 3(a)]. Thereby, the medium
extends almost homogeneously over the box potential as also
reflected by the shape of its two-body density [see inset of
Fig. 2(a)], while in the harmonically trapped scenario it ex-
hibits a Gaussian profile [cf. inset of Fig. 3(a)].

C. Finite interspecies interactions with the medium confined
in a box potential

Having analyzed the spatial configurations of the interact-
ing impurities for a suppressed impurity-bath coupling we
then discuss the ground-state properties of the composite
system when the bath is confined in a box potential and
the interspecies interaction strength gBI becomes finite. The
respective ground-state phase diagram is mapped out and
presented in Fig. 2(a) based on the underlying two-body con-
figurations identified in ρ

(2)
BB (xB

1 , xB
2 ) and ρ

(2)
II (xI

1, xI
2). Overall,

we find that upon varying gBI and gII , the system deforms
smoothly across the different phases, which are analyzed in
detail in the following (see also Ref. [82]).

In the case of strong repulsive gBI , the mixture enters
regime (I) [see Fig. 2(a)] [83]. Here, the impurities’ two-body
density exhibits two peaks along its diagonal meaning that
the two impurities occupy simultaneously a single site of the
double well. Such a behavior is referred to as the coalescence
of the impurities and has been observed also for the case

where the impurities and bath particles are both harmonically
confined [32]. Intuitively, we explain this behavior as follows.
One impurity lying at a specific site of the double well repels
the bath particles and, thereby, creates an effective hole which
attracts the other impurity [84,85]. On the other hand, the
impurities impact accordingly the bath. This back-action man-
ifests, for instance, in the off-diagonal parts of the medium’s
two-body density which exhibits strongly suppressed spatial
regions at the location of the impurities [see inset in regime (I)
of Fig. 2(a)]. Indeed, the probability to find two bath particles
at positions corresponding to opposite double-well sites is
vanishing. This is due to the fact that the impurities lie both
either at the left or at the right double-well site as it becomes
apparent from their reduced two-body density. However, a
configuration where two bath particles reside simultaneously
at the same double-well site is still conceivable, assuming that
the impurities are at the opposite site, thereby avoiding the
bath particles [note the nonvanishing density at the diagonal
of ρ

(2)
BB (xB

1 , xB
2 ) in the inset of Fig. 2(a)].

Increasing the impurity-medium interaction strength
within regime (I) for a fixed gII/g̃box ∈ [0, 2] we observe two
prominent features appearing in terms of ρ

(2)
BB (xB

1 , xB
2 ). First,

the two-body density holes at the off diagonal of ρ
(2)
BB (xB

1 , xB
2 )

become more pronounced for increasing gBI and, second, for
a gBI/g̃box � 2.5 two bath particles are correlated at the most
right and most left or at opposite sites of the bath cloud [see
the outermost density peaks at the diagonal and off-diagonal
elements of ρ

(2)
BB (xB

1 , xB
2 ) in the inset of Fig. 2(a)]. From this

latter behavior we can conclude that the bath particles exhibit
two-body long-distance correlations. Moreover, we note that
in the case of strong impurity-impurity repulsions, e.g., for
gII/g̃box = 2.0, the two-body state of the impurities begins
to fermionize and the diagonal peaks of ρ

(2)
II (xI

1, xI
2) broaden

and, eventually, fragment [86] [see corresponding inset of
Fig. 2(a)].

Similarly to the coalescence of the impurities in the repul-
sive case [regime (I)], also in the attractive scenario the two
impurities simultaneously occupy either the left or right site of
the double well, as it can be deduced from their diagonal and
highly localized two-body density configuration ρ

(2)
II (xI

1, xI
2)

[see the inset of Fig. 2(a)]. In both the repulsive and the
attractive cases, the bath mediates an induced attractive in-
teraction between the impurities such that the latter coalesce
and tend to occupy the same double-well site. For a more
detailed discussion regarding the presence of the attractive
induced interactions between the impurities via their relative
distance, see Appendix A. Furthermore, due to the attractive
interactions the bath particles localize in the vicinity of the
impurities such that also the two-body density of the medium
exhibits two dominant peaks along the diagonal [Fig. 2(a)].
Also, we remark that regime (II) in Fig. 2(a) includes ground
states corresponding to delocalized impurities, i.e., where the
diagonal and off-diagonal elements of ρ

(2)
II (xI

1, xI
2) are simul-

taneously populated. However, with varying gII and gBI the
particular density peaks are deformed compared to the de-
picted insets of regime (II) in Fig. 2(a). For instance, in the
case of gII/g̃box = 2.0 and gBI/g̃box = 1.0 corresponding to
regime (II) in Fig. 2(a), the two-body density of the impurities
exhibits peaks at its off-diagonal elements [similar to regime
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(III)] and fragmented density humps at its diagonal [as ob-
served in regime (I)].

Moreover, increasing (decreasing) the interspecies interac-
tion to large repulsive (attractive) values leads to a noticeable
growth of the von Neumann entropy. Namely, the impurities
become highly entangled with the bath [cf. Fig. 3(b)]. At the
same time the impurities and the bath share a finite spatial
overlap with each other for all the considered values of gBI and
gII [Fig. 3(c)]. Therefore, since these two features constitute a
basic requirement for the formation of quasiparticles, e.g., as
discussed in Refs. [24,39,50,87], in principle, the impurities
can be dressed by the excitations of the bath and, thus, form
Bose polarons.

Additionally, we investigated the ground state of the
system for a weakly interacting bath, e.g., for gBB/g̃box = 0.1.
As we will argue, the enhanced compressibility of the
bath can alter the ground-state configurations and this is
evident, among other observables, in terms of the two-body
density. In Figs. 2(b1)–2(d2) we exemplarily present the
two-body densities of the impurities and the bath particles
for gBB/g̃box = 0.1 and gII/g̃box = 2.0. Here, the impurities’
two-body densities exhibit a qualitatively similar structure
with the ones corresponding to a moderately interacting
bath [Fig. 2(a)]. For instance, a localization at the sites
of the double well is observed for strongly attractive gBI

[Fig. 2(d1)] as well as an anticorrelated behavior for weak
impurity-medium couplings [Fig. 2(c1)] and the coalescence
of the impurities for strong gBI [Fig. 2(b1)]. Similarly, the
two-body density of the weakly interacting medium resembles
the one of a moderately interacting bath in the cases of weak
attractive and repulsive as well as strong attractive gBI

[Figs. 2(c2) and 2(d2)]. However, for strong repulsive gBI the
medium’s two-body density is modified for weak gBB; i.e., the
off-diagonal parts of ρ

(2)
BB (xB

1 , xB
2 ) are depopulated and only

the diagonal ones are occupied [Fig. 2(b2)]. We attribute this
behavior to the increased compressibility of the bath which
suppresses correlations between two bath particles residing at
longer distances, e.g., the opposite edges of the cloud as ob-
served in Fig. 2(a). Additionally, this behavior is accompanied
by strong anticorrelations between the impurities and the bath
particles; i.e., the respective two-body density ρ

(2)
BI (xB

1 , xI
2)

exhibits only peaks at its off diagonal (not shown).
Furthermore, we have found that in the corresponding

ground-state phase diagram of a weakly interacting medium
(gBB/g̃box = 0.1) with NB = 20, regimes (II) and (III) shrink
as compared to the gBB/g̃box = 0.5 case shown in Fig. 2(a).
Specifically, their phase boundaries are shifted towards the
line corresponding to gBI = 0. A similar, but less pronounced,
shift of the phase boundaries is observed when increasing the
number of bath particles to NB = 30 but keeping gBB fixed.
Summarizing, both decreasing gBB or increasing NB while
considering fixed all other parameters leads to an enhance-
ment of the magnitude of the attractive induced interactions
between the impurities when gBI is switched on towards finite
attractive or repulsive values.

D. Harmonically trapped medium

We then proceed to analyze in more detail the system con-
sisting of a harmonically trapped medium. This change of the

external confinement reduces the mobility of the bath particles
which are then naturally bounded by the harmonic oscillator
around the trap center. The respective phases presented in
Fig. 3(a) feature smooth crossovers among them besides the
one between regimes (I) and (III), which is abrupt. To testify
to the “smoothness” of the underlying crossover regions, we
track, as in the box-confined scenario, the behavior of the
impurities’ two-body densities (cf. Ref. [82]).

An increasing impurity-medium repulsion such that gBI >

gBB leads to a phase separation between the impurities and
the bath particles as it is captured by the diminishing spa-
tial overlap depicted in Fig. 3(b). In this case the impurities
are no longer dressed by the excitations of the bath and,
thus, the quasiparticle notion is essentially lost [39,49,50].
Thereby, we distinguish between two cases according to the
impurity-impurity interaction strength. In the case of weak gII

and strong gBI corresponding to regime (I) in Fig. 3(a) the
impurities coalesce in a similar manner as described above
(see also Ref. [32]). However, as the impurity-impurity inter-
action strength becomes large enough or the impurity-medium
repulsion sufficiently small, regime (III) is accessed in which
the impurities spatially separate. This is identified by the
exclusive population of the off diagonals of ρ

(2)
II (xI

1, xI
2) [cf.

corresponding inset of Fig. 3(a)]. Turning to strongly attrac-
tive impurity-medium interaction strengths assigned as regime
(IV) in Fig. 3(a), a localization of the impurities in the barrier
of the double well is observed [see in particular the elongation
of ρ

(2)
II (xI

1, xI
2) along its diagonal]. This property is related to

the formation of a bipolaron, referring to a dimer bound state
consisting of two polarons [35,36,39]. We base our argument
of bipolaron formation on the following observations which
have also been used in Ref. [36] to expose the existence of
such states in three dimensions. The continuous decrease of
the so-called bipolaron energy EBP = E2 − E1 + E0 has been
verified for increasing impurity-medium attraction, where Ei

denotes the total energy of the bosonic gas containing i =
0, 1, 2 impurities. In the same manner, also the size of the

dimer state quantified in our case by 1/

√
〈r̂2

II〉 increases for
larger gBI (not shown here).

Concluding, let us mention in passing that similarly to the
case of a box-confined medium, the main requirements for the
formation of Bose polarons are also fulfilled in the presence
of a harmonic trap. The only exception consists of the region
of phase separation among the impurities and the medium
at gBI > gBB. Thus, the impurities’ response, to be presented
below, can be interpreted as the counterflow-correlated dy-
namics of two quasiparticles, here Bose polarons.

V. COLLISIONAL MANY-BODY DYNAMICS FOR A
BOX-CONFINED MEDIUM

Next, we investigate the time evolution of the composite
system upon suddenly ramping down the central barrier of the
impurities’ double-well potential such that they are henceforth
externally confined in a harmonic oscillator and, thus, their
counterflow dynamics is triggered. In a decoupled mixture
(gBI = 0) this quench results in an undamped periodic im-
purities motion where they collide and subsequently expand
repeatedly. Turning to finite impurity-medium couplings the
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FIG. 4. Time evolution of the one-body density of [(a1)–(c1)] the
harmonically trapped impurities and [(a2)–(c2)] the bath particles
confined in a box potential. Each column represents the dynamics for
a fixed impurity-medium interaction strength which is from left to
right: gBI/g̃box = −0.2, 1.5, 5.0. In all cases, the impurity-impurity
coupling is gII/g̃box = 0.2. [(a3)–(c3)] Snapshots of the impurities’
two-body density at different time instants (see legends). The insets
depict the two-body densities at the same time instants and scales, but
for two strongly interacting impurities, i.e., gII/g̃box = 2.0. At those
time instants, the one-body densities for two weakly and strongly
interacting impurities reveal similar features, thus allowing the com-
parison on the two-body density level.

response is substantially altered and depends strongly on the
trapping potential of the medium, as we will argue below.

A. Response through the time evolution of the density

We monitor the counterflow dynamics of two impuri-
ties coupled via gBI to a bosonic medium trapped in a box
potential. After ramping down the potential barrier of the
double well, the impurities are left to evolve in the resulting
harmonic trap. As a first step, we categorize the emer-
gent dynamical response regimes by inspecting the one-body
densities ρ

(1)
I (x, t ) and ρ

(1)
B (x, t ) depicted in Figs. 4(a1)–

4(c1) and 4(a2)–4(c2), respectively. The impurity-impurity
coupling is kept fixed at gII/g̃box = 0.2 and only the impurity-
medium interaction is varied. We are able to identify four
distinct dynamical response regimes taking place at strongly
attractive (gBI/g̃box < −0.8), weakly attractive and repul-
sive (−0.8 � gBI/g̃box < 0.8), intermediate repulsive (0.8 �
gBI/g̃box � 2.0), and strongly repulsive (2 < gBI/g̃box) values
of gBI . These dynamical regimes are, of course, inherently
related to the corresponding phases unraveled in the ground
state of the system [see Fig. 2(a)]. Note that the behaviors
of the one-body densities in the respective regions do not
qualitatively alter for varying gII from small to large repulsive
values at least in the range of 0 � gII/g̃box � 2.0 considered
herein. Only inspecting higher-body observables, such as the

reduced two-body density, reveals significant alterations of the
impurities’ response regarding variations of gII .

B. Dynamics for weakly attractive and repulsive
impurity-medium couplings

In the case of either weakly attractive or repulsive gBI

the impurities’ one-body densities feature a periodic motion
consisting of a collision and an expansion of their cloud [cf.
Fig. 4(a1) for gBI/g̃box = −0.2]. As a consequence, the bath
is only weakly perturbed from its initial homogeneous profile
showing small amplitude distortions at the instantaneous loca-
tion of the impurities [see Fig. 4(a2)]. This response emerges
when considering initial configurations corresponding to the
interaction regimes (II) and (III) discussed in Fig. 2(a). Inter-
estingly, the time evolution of the one-body density does not
depend strongly on variations of the impurity-impurity inter-
action strength [88]. Therefore, one has to rely on two-body
observables, such as the two-body density ρ

(2)
II (xI

1, xI
2), e.g.,

presented in Fig. 4(a3) for gBI/g̃box = −0.2 and gII/g̃box =
0.2 at t/t̃box = 10.5 and in the respective inset for two
strongly interacting impurities with gII/g̃box = 2.0. In the for-
mer case, the two weakly interacting impurities are initially
and throughout the evolution delocalized over both sites of
the double well since both the diagonal and the off-diagonal
elements of ρ

(2)
II (xI

1, xI
2) are nonvanishing.

However, for strongly interacting impurities we find that
in the course of the evolution a pronounced correlation hole
occurs [39]; i.e., solely the off diagonal of ρ

(2)
II (xI

1, xI
2) is

populated [cf. inset of Fig. 4(a3)]. In other words, due to the
strong repulsion the impurities reside at spatially opposite po-
sitions and avoid each other during the dynamical evolution.
The respective dynamics of the impurities is characterized by
the periodic expansion and contraction of their cloud around
the trap center while avoiding residing at the same location
[see the correlation hole of ρ

(2)
II (xI

1, xI
2)]. However, indepen-

dently of gII the impurities remain within the medium, thus
forming a polaron due to the finite gBI .

C. Time evolution for intermediate interspecies repulsions

Increasing the impurity-medium repulsion to intermedi-
ate values (gBI/g̃ � 2.0) and, thereby, entering regime (I) in
Fig. 2(a), a comparatively altered response is realized. Indeed,
once the two impurities collide at the trap center, they remain
localized [89] [see Fig. 4(b1) for gBI/g̃box = 1.5]. Conse-
quently, because of the repulsive character of the employed
gBI , the bath is pushed towards the edges of the box with
each density branch undergoing weak amplitude oscillations
due to its reflection from the walls of the confining box
[Fig. 4(b2)]. Simultaneously, the bosonic medium becomes
highly depleted, meaning that higher-lying natural orbitals
[being the eigenvalues of the reduced one-body density matrix
ρ

(1)
B (x, x′, t )] are macroscopically populated. Accordingly, the

bosonic gas is correlated and deviates from a perfect Bose-
Einstein condensate. This behavior is in contrast to the case of
gBI/g̃box < 0.8 where the first orbital is dominantly occupied.

However, the corresponding two-body density ρ
(2)
II (xI

1, xI
2)

when the impurities collide at the trap center at t/t̃box = 4.5
is shown in Fig. 4(b3). The elongated shape of ρ

(2)
II (xI

1, xI
2)
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along the diagonal indicates the presence of an attractive in-
teraction between the impurities induced by the coupling with
the bath [32,39,50]. Apparently the strength of this induced
attraction is larger than for gBI/g̃box = 0.2. Moreover, by com-
paring this case to the one of strongly interacting impurities
(gII/g̃box = 2.0), we find once again significant differences
only in the behavior of their two-body density. At t = 0, the
shape of ρ

(2)
II (xI

1, xI
2) corresponds to two coalesced impurities

whose density peaks lay on its diagonal and are fragmented
[cf. inset of Fig. 2(a)]. In the course of the dynamics the im-
purities collide at the center where they remain in the course
of the evolution [see inset of Fig. 4(b3)]. Thereby, the strong
repulsion between the impurities hinders a population at the
exact diagonal of the two-body density. Notice their small
spatial overlap with the bath hinting towards their suppressed
dressing [90].

D. Dynamical response for strong impurity-medium repulsions

For even stronger impurity-medium repulsions (gBI/g̃ >

2.0), once the impurities collide around x = 0 they drift
apart from each other and collide again [see Fig. 4(c1) for
gBI/g̃box = 5.0]. This behavior is repeated in the course of
time with a damped collision amplitude. Thereby, the pop-
ulation on the diagonal of ρ

(2)
II (xI

1, xI
2) becomes narrower as

compared to the case of intermediate repulsive gBI , indicating
the presence of an even stronger strength of induced interac-
tions [cf. Fig. 4(c3)]. Again two strongly repulsive impurities
fragment along the diagonal of ρ

(2)
II (xI

1, xI
2) [see the inset of

Fig. 4(c3)] with the two respective density fragments exhibit-
ing each four faint maxima which persist until an evolution
time of t/t̃box = 8. During the evolution the one-body density
of the bath allocates at the edges of the box when the impuri-
ties collide and reoccupies the trap center when the latter drift
apart (see also below for a more detailed discussion).

We attribute the impurities’ density splitting for large gBI ,
even though the induced attractive interaction is higher in this
case than for intermediate repulsive couplings, to the finite
size of the considered box potential. In order to elucidate
the underlying mechanism, we show in Fig. 5(a) the time-
dependent spatial variance of the medium, 〈X̂ 2

B 〉(t ), which
serves as a measure for the instantaneous spatial extension
of the medium’s cloud [19,91]. At t = 0 and for sufficiently
strongly repulsive gBI the impurities reside both either at the
right or at the left site of the double well while the bath
particles avoid these pairs [cf. regime (I) in Fig. 2(a)], leading
for larger gBI to an increased 〈X̂ 2

B 〉(t = 0) [see Fig. 5(a)].
Subsequently, after ramping down the barrier of the dou-

ble well, the impurities collide around x = 0, enforcing the
medium to depopulate the trap center, a process that results in
the increase of 〈X̂ 2

B 〉(t ). To facilitate further our discussion, we
provide specific profiles of the impurities’ one-body density
and their effective potential [24,39,92]. The effective poten-
tial is constructed from the superposition of the impurities’
(postquench) harmonic oscillator and the one-body density of
the bath weighted by the impurity-medium coupling strength.
It reads

V eff (xI , t ) = V dw
I (xI ) + NBgBIρ

(1)
B (xI , t ). (7)

FIG. 5. (a) Dynamics of the width of the medium cloud [captured
by the spatial variance 〈X̂ 2

B 〉(t )] and internal interaction energy of the
bath particles 〈ĤBB〉 for different impurity-medium couplings (see
legend) and fixed impurity-impurity interaction strength gII/g̃box =
0.2. [(b)–(d)] Profiles of the impurities’ one-body density ρ

(1)
I (xI , t )

are shown together with their effective potential (gray lines) for
specific time instants (see legends). In (b) gII/g̃box = 1.5 while in
(c) and (d) gII/g̃box = 5.0. The time and interaction are expressed in
units of t̃box and g̃box, respectively.

A maximum of 〈X̂ 2
B 〉(t ) is reached, i.e., the spatial extent

of the medium is largest, when the impurities allocate at the
trap center [see Figs. 5(b) and 5(c)]. Thereby, the impuri-
ties transfer energy to the medium, leading to an increased
interaction energy between the particles of the latter; i.e.,
〈ĤBB〉 = 〈gBB

∑
i< j δ(xB

i − xB
j )〉 is maximized [cf. Fig. 5(a)].

After reaching a maximum of 〈ĤBB〉 the bath reoccupies the
trap center as indicated by the reduction of 〈X̂ 2

B 〉(t ) and the
impurities’ density splits again, a behavior that is repeated in
the course of time. As argued below, this dynamical response
can be attributed to finite size effects stemming from the size
of the medium’s box potential.

E. Impact of the barrier height, atom number, and box size on
the impurity dynamics

In order to check the robustness of the observed dynamical
response regimes of the impurities against the system parame-
ters we have additionally varied the height of the double well,
hI , the size of the box potential, LB, and the number of bath
particles, NB. For small gBI and fixed gII/g̃box = 0.2, increas-
ing the height of the double well from hI/Ẽboxx̃−1

box = 2 to 7
leads to a crossover of the impurities, i.e., from a superfluid
to a Mott-insulating phase. The former phase corresponds to a
two-body density ρ

(2)
II (xI

1, xI
2) where in all quarters prominent

density peaks are present. In the latter case only the off diago-
nal of ρ

(2)
II (xI

1, xI
2) is populated [compare with the ground-state

configurations in regime (III) of Fig. 2(a)]. Further increasing
the impurity-medium coupling to intermediate repulsive val-
ues the impurities coalesce again independently of the barrier
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height of the double well. Thereby, the impurities’ ground
state corresponds to the one of regime (I) depicted in Fig. 2(a).
Regarding the dynamical response of the above-described sys-
tem, we did not find a qualitatively different behavior when hI

is varied but rather a shifting of the identified regimes towards
a larger value of gBI .

In Sec. IV C it was mentioned that the ground-state phase
diagram is altered with respect to variations of gBB and NB.
As such, also the dynamical response of the system is af-
fected upon tuning these parameters by means that the specific
dynamical features are realized for smaller values of gBI . This
is attributed to the fact that the impurities feature an enhanced
magnitude of attractive induced interactions for either a de-
creased gBB (e.g., gBB/g̃box = 0.1 and especially in the interval
|gBI | < gBB) or an increased NB (for instance at NB = 30).
Consequently, they localize around the trap center after their
first collision for a smaller gBI than for gBB/g̃box = 0.5 or
a larger NB such as NB = 30. This effect is arguably more
prominent in the former scenario and during the dynamics
manifests by the enhanced impurities localization at the trap
center.

An opposite behavior is observed for varying only the size
of the medium’s box potential LB. In this case, an increasing
LB broadens the medium such that the impurities are less
affected by the presence of bath particles which, eventually,
for intermediate repulsive gBI increases the relative distance
between the impurities for a larger LB (not shown here).
However, when the box size is of the order of the distance of
the double-well minima, the bath particles localize at the trap
center (between the two double-well sites) for intermediate re-
pulsive impurity-medium interaction strengths. Additionally,
for strongly repulsive gBI an increasing box size leads to the
localization of the impurities around x = 0 and a dynamical
response similar to the one observed in Fig. 4(c1) is absent.
This holds also when we simultaneously increase the number
of bath particles and the size of the box potential while keep-
ing the ratio NB/LB fixed [93].

VI. IMPURITY DYNAMICS FOR THE HARMONICALLY
TRAPPED BATH

Next, we examine the counterflow dynamics (induced by
the same quench protocol) of the two impurities coupled to
a harmonically confined bath. Since in this case the medium
tends to localize at the trap center a phase separation be-
tween the two species is facilitated for intermediate to strongly
repulsive impurity-medium interaction strengths which even-
tually prohibits a subsequent dynamical mixing of the species.
Indeed, we find that for values larger than gBI/g̃ho = 0.6 >

gBB/g̃ho, corresponding to a vanishing spatial overlap at t = 0
[cf. Fig. 3(b)], the initial phase separation between the im-
purities and the medium persists also in the course of the
propagation. However, for gBI/g̃ < 0.6 an intriguing response
is observed.

A. Collision features in terms of the one-body density

Figure 6 illustrates the time evolution of ρ
(1)
B (x, t )

and ρ
(1)
I (x, t ) for weak impurity-impurity couplings, i.e.,

gII/g̃ho = 0.2, and for varying impurity-medium interaction

FIG. 6. Spatiotemporal evolution of the one-body densities for
two weakly interacting impurities (gII/g̃ho = 0.2) and a weakly in-
teracting bath (gBB/g̃ho = 0.5) trapped in a harmonic oscillator. The
dynamics is induced by ramping down the barrier of the double well
in which the impurities initially reside. In each column a different
impurity-medium interaction strength is considered, which is from
left to right gBI/g̃ho = −0.2, 0.2, 0.6.

strength. As it can be exemplarily inferred from Figs. 6(a1)
and 6(b1) for weakly attractive or repulsive gBI the impuri-
ties perform a periodic motion within the harmonic trap and
induce only small deformations to the bath density associated
with sound-wave emission of the latter [Figs. 6(a2) and 6(b2)].
In the former case, a persisting breathing dynamics of the ini-
tially localized impurities takes place being somewhat similar
to the one which has been previously discussed for a medium
confined in a box potential [Fig. 4(a1)]. In the latter scenario
corresponding to Fig. 6(b2), the originally spatially separated
impurities collide around x = 0 and then split in a periodic
fashion (see also the discussion below).

Moreover, we show the respective density evolution in the
phase-separation regime, i.e., for gBI/g̃ho = 0.6 > gBB/g̃ho

[Figs. 6(c1) and 6(c2)]. It can be readily deduced that here
the impurities are already initially phase separated with the
bath and remain in this state also in the course of the evo-
lution while performing small amplitude oscillations due to
their collisions with the bath edges [94]. In particular, for
gBI/g̃ho > 0.6 the impurities remain in the coalescence regime
if the initial chosen values for gBI and gII coincide with regime
(I) [Fig. 3(a)] and are spatially separated if the values for gBI

and gII correspond to regime (III) [Fig. 3(a)]. Furthermore,
for very strong attractive gBI the impurities and the medium
localize together at the trap center where they remain through-
out the time evolution (not shown) (see also Ref. [95] for a
similar dynamics). We finally remark that, as in the case of a
box-confined medium, increasing the number of bath atoms,
e.g., to NB = 30, does not lead to significant alterations of the
observed dynamical response.

B. Two-body density evolution for weak impurity-medium
repulsions

Let us now focus on the dynamical properties of two im-
purities which are weakly repulsively coupled to the medium,
e.g., via gBI/g̃ho = 0.2 and interacting among each other with
gII/g̃ho = 0.2 [Fig. 6(b1)]. Specifically, we are interested in
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FIG. 7. Dynamical evolution of the impurities’ two-body den-
sity ρ

(2)
II (xI

1, xI
2) for gBI/g̃ho = 0.2 and gII/g̃ho = 0.2 at specific time

instants (see legends) in units of t̃ho. Following the quench the im-
purities perform a periodic motion consisting of their collision at the
trap center and a subsequent expansion. Panel (b) corresponds to a
collision event of the impurities, while the other panels refer to time
instants at which the impurities expand [cf. Fig. 6(b1)].

the dynamical evolution of the impurities’ reduced two-body
density ρ

(2)
II (xI

1, xI
2) depicted in Fig. 7. At t = 0, corresponding

to the ground state in which the two impurities are confined
in a double well, their two-body density exhibits two domi-
nant density peaks across its off-diagonal and two suppressed
peaks at its diagonal elements [see Fig. 7(a)]. Considering
the two diagonal peaks as sufficiently small, this two-body
configuration can be interpreted as the probability for the
impurities to occupy opposite double-well sites. Following the
quench, the impurities collide at the trap center and their cloud
starts to contract and expand with a frequency corresponding
to the periodic motion of the one-body density [Fig. 6(b1)]. In
the course of this periodic motion the two-body configuration
alters from a two-body superposition state where both diago-
nals and off-diagonal elements are populated [Fig. 7(c)] upon
expansion of the cloud to a diagonal structure when featuring
contraction [see Fig. 7(d)] and vice versa [Fig. 7(f)]. Notice
that this dynamical response is inherently related to a process
which is hidden on the one-body level [cf. Fig. 6(b1)].

C. Single-particle dynamical excitation processes

To obtain insights into the underlying microscopic pro-
cesses in the course of the impurity dynamics we project
the many-body wave function onto basis functions consisting
of the generalized Wannier functions φI

i (xI ) of the initially
considered (prequenched) double-well potential [96,97]. In
this way we can retrieve the probabilities for the impurities
to occupy certain localized states of this basis and distinguish
between the left and right double-well sites. The Wannier
functions are constructed as a superposition from the six ener-
getically lowest eigenfunctions of the one-body Hamiltonian
Ĥ (1),dw = − h̄2

2mI

∂2

(∂xI )2 + V dw
I (xI ) and are provided in Fig. 8(a)

together with their associated eigenenergies εi. In particular,
the Wannier state corresponding to i = 1 (i = 2) is the en-
ergetically lowest one at the left (right) site. Analogously,
i = 3, 5 (i = 4, 6) signify the first and second excited Wannier
states at the left (right) site. Note that, even though for the

FIG. 8. (a) Wannier states corresponding to the first six energet-
ically lowest eigenfunctions of the one-body Hamiltonian consisting
of the double-well potential. [(b)–(d)] Temporal evolution of the
two-body probabilities P(2)

i, j (t ) for the impurities to simultaneously
occupy the ith and jth Wannier states for different sets of interaction
strengths (gBI , gII ), which are (b) (0.2, 0.2), (c) (0.0, 0.2), and (d) (0.2,
2.0), expressed in units of g̃ho. Probabilities involving either the
fifth or the sixth Wannier states are suppressed, having at most an
amplitude of 0.05, and are shown in gray. The dynamics is induced
by ramping down the barrier of the impurities’ double-well potential.

analysis a basis of a double-well potential is utilized, the
impurities’ dynamics still takes place within a harmonic oscil-
lator. The respective two-body probabilities for the impurities
to simultaneously occupy the ith and jth Wannier state are
given by

P(2)
i, j (t ) = 〈

�MB(t )
∣∣1B ⊗ ∣∣φI

i

〉 〈
φI

i

∣∣ ⊗ ∣∣φI
j

〉 〈
φI

j

∣∣ �MB(t )
〉
. (8)

Here 1B is the unit operator defined in the subspace of the bath
and |φI

i 〉 〈φI
i | are the one-body projectors of the ith Wannier

state acting on a single impurity. The quality of the basis
is tested by summing up all probabilities P(2)

i, j (t ) for each

time instant and verifying that
∑

i, j P(2)
i, j (t ) > 0.97 holds until

t/t̃ho = 70.
The above-described two-body probabilities for gBI/g̃ho =

0.2 and gII/g̃ho = 0.2 are presented in Fig. 8(b). All probabil-
ities show an oscillatory behavior stemming from the periodic
collision and expansion of the impurities [cf. Fig. 6(b)]. Be-
yond this rapid motion, a decay and revival of P(2)

1,2 (t ) takes

place at longer time scales, where P(2)
1,2 (t ) corresponds to

the probability of finding one impurity in the energetically
lowest left-site Wannier state while the other one occupies
the right-site Wannier state. On the other hand, when the
envelope of P(2)

1,2 (t ) reaches a minimum the probability of

finding two impurities both in the left P(2)
1,1 (t ) [right P(2)

2,2 (t )]
Wannier state is maximized as demonstrated in Fig. 6(b). This
observation implies that a single-particle intraband excitation
process takes place. Moreover, also energetically higher-lying
Wannier states contribute to the ground-state configuration
of the impurities as well as to their dynamical response. For
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FIG. 9. (a) Time evolution of the fidelity between the many-
body wave function for gBI/g̃ho = 0.2 and gII/g̃ho = 0.2 and the
excited states of the effective two-body Hamiltonian Ĥ (2),eff [see also
Eq. (7)]. (b) Sum of the impurity-medium interaction energy 〈ĤBI〉
and the energy of the impurities 〈ĤI〉 in the many-body approach
for the ground state as a function of the impurity-medium coupling
(blue line) depicted together with the eigenenergies of Ĥ (2),eff (grey
horizontal dashed lines). The two-body density of the ground state
and the first three excited eigenstates are provided in (c)–(f).

instance, the second and third (first and fourth) Wannier states
contribute with P2,3(0) = P1,4(0) = 19% to the ground-state
configuration. Therefore, the initial state is a superposition of
different single-particle states. This is to be contrasted with
the discussion below (see Fig. 9) where a two-body basis is
employed, accounting in a more natural way for effects stem-
ming from impurity-impurity interactions and the coupling to
the bath.

For comparison the case of two weakly interacting im-
purities gII/g̃ho = 0.2 which are decoupled from the bath
(gBI = 0) is showcased in Fig. 8(c). It can be readily seen
that the impurities do not perform a state transfer similar to
the one depicted in Fig. 8(b) but rather retain their delocalized
configuration. In particular, at time instants corresponding to
an expansion of the impurities cloud the two-body probabil-
ities associated with the energetically lowest Wannier states
lying at opposite and the same sites significantly contribute
to the impurities’ many-body wave function, thus confirm-
ing the former statement. Otherwise, the impurities’ response
is characterized by excitations to energetically higher-lying
states. Next, we inspect the case of strongly interacting im-
purities (gII/g̃ho = 2.0) which are weakly coupled to the bath
(gBI/g̃ = 0.2) [Fig. 8(d)]. The dynamics begins with initially
separated impurities, viz., P(2)

1,2 (t ) obtains a maximum at t = 0,
and continues with the collision of the impurities at the trap
center where they both dominantly populate the same energet-
ically lowest left or right Wannier state [cf. P(2)

1,1 (t ) = P(2)
2,2 (t )].

Subsequently, the strong impurity-impurity repulsion enforces

the impurities to occupy again opposite double-well sites. This
scheme repeats itself during the evolution and, in particular,
lasts until T/t̃ho = 200. Again a state transfer process occurs
as it can be seen from the competition of P(2)

1,2 (t ) and P(2)
1,1 (t ).

However, in this case the transfer is less transparent and not
as dominant as for gII/g̃ho = 0.2, implying that an increasing
gII/g̃ho results in the suppression of this process.

Therefore, the intraband excitation process observed for
gBI/g̃ho = 0.2 and gII/g̃ho = 0.2 proves to be sensitive to
the impurity-impurity interaction strength and, most impor-
tantly, requires a finite impurity-medium coupling. In this
manner, we can conclude that this state transfer of the impu-
rities is induced by the presence of the bath. Moreover, we
have verified the absence of this mechanism for a species
mean-field ansatz [D = 1 in Eq. (2)], i.e., when the entan-
glement is not taken into account. Thus, we can deduce that
many-body effects and, in particular, the impurity-medium
entanglement play a crucial role for the realization of such
processes.

D. Effective two-body impurity mechanisms

To further understand the participating excitation processes
we consider a projection of the many-body wave function
onto a two-body basis set. In particular, we choose for this
investigation the ground state and the first four energetically
lowest excited states of an effective Hamiltonian. This ef-
fective Hamiltonian Ĥ (2),eff describes two weakly interacting
impurities (gII/g̃ho = 0.2) trapped in the effective potential
defined in Eq. (7) with gBI/g̃ho = 0.2. In this manner, we
take the back-action induced by the medium into account. In
Figs. 9(c)–9(f) we present the impurities’ two-body density
for the ground state as well as the first three excited states |�I

i 〉
of Ĥ (2),eff . As such, we associate the ground state (i = 0) with
the two-body state (|LR〉 + |RL〉)/

√
2 where |L〉 (|R〉) repre-

sents a single-particle state corresponding to the left (right)
site of the double well. Analogously, we refer to the first
(i = 1) and second (i = 2) excited states as the configurations
(|LL〉 − |RR〉)/

√
2 and (|LL〉 + |RR〉)/

√
2, respectively. The

corresponding eigenenergies are shown in Fig. 9(b). Note that
the first (i = 1) and second (i = 2) excited eigenstates are
approximately degenerate. In order to support the validity of
this two-body approach for two impurities coupled to a larger
medium, we additionally provide the sum of the impurity
energy and the interaction energy (〈ĤI〉 + 〈ĤBI〉) at t = 0 as
predicted within the many-body approach, namely, when the
impurities are still trapped in a double-well potential. Since
this energy matches at gBI/g̃ho = 0.2 the ground-state energy
of the effective approach [cf. intersection of 〈ĤI〉 + 〈ĤBI〉
with i = 0 in Fig. 9(b)] we conclude that the effective poten-
tial adequately accounts for the presence of the medium at
t = 0.

As a next step, we calculate the fidelity of the two-body
eigenstates |�I

i 〉 with the time-dependent species functions of
the impurities being coupled to the medium. In this way, the
probabilities of the contributing two-body configurations are
revealed. Therefore, we estimate the absolute square of the
projection of

∑D
j=1 |�B

j (t )〉 ⊗ |�I
i 〉 on the many-body wave
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function |�MB(t )〉 defined in Eq. (2), which reads as

F ex
i (t ) =

∣∣∣∣∣
D∑

j=1

√
λ j (t )

〈
�I

i

∣∣�I
j (t )

〉∣∣∣∣∣
2

. (9)

The dynamics of the fidelity with respect to the ground
state and the first four excited eigenstates of Ĥ (2),eff is pro-
vided in Fig. 9(a). Analogously with the analysis regarding
the Wannier states, we observe besides a fast periodic mo-
tion a slower decay and revival of the ground state |�I

0〉
associated with two separated impurities. This behavior is
accompanied by a complementary increase of the second
excited state |�I

2〉 = (|LL〉 + |RR〉)/
√

2 associated with the
coalescence of the impurities. Since the first excited state,
corresponding to the antisymmetric configuration (|LL〉 −
|RR〉)/

√
2, is strongly suppressed we conclude that the im-

purities undergo the two-body state transfer from (|LR〉 +
|RL〉)/

√
2 to (|LL〉 + |RR〉)/

√
2. Moreover, we note that dur-

ing the impurities’ collision an appreciable amount of higher
excited states need to be taken into account as indicated, for
instance, by the non-negligible occupation of the third exited
state |�I

3〉.
Concluding, we have explicated the microscopic mech-

anisms on both the one- and the two-body level taking
place during the collision dynamics of interacting impuri-
ties coupled to a harmonically confined bath. For instance,
the single-particle intraband excitation process appears to be
sensitive with respect to the impurity-impurity interaction
strength and requires a finite coupling to the bath. Moreover,
an analysis with respect to a two-body basis deciphered the
transitions among particular two-body configurations.

VII. CONCLUSIONS AND OUTLOOK

We have investigated the ground state and correlated dy-
namics of two interacting bosonic impurities confined in a
double well and immersed in a bosonic medium. The latter
either experiences a box potential or it is confined in a har-
monic trap. We establish the phase diagram of the ground state
for varying impurity-impurity and impurity-medium coupling
strengths. Thereby, the emergent ground states have been
characterized with the aid of the two-body densities and
impurity-medium entanglement. An analysis of the impact
of different trapping geometries on the formation of these
phases has been performed. For instance, we explicate that the
coalescence of the impurities at strong (repulsive or attractive)
impurity-medium interaction strengths is preserved for differ-
ent impurity-impurity repulsions when the bath is in a box.
However, in the case of a harmonically trapped bath the im-
purities separate from each other for strong impurity-impurity
repulsion residing in a Mott-type configuration. Moreover,
in the latter scenario, we observe at strong impurity-medium
attractions indications for the formation of a bipolaron.

Focusing on a specific interaction-dependent ground-state
configuration we trigger the dynamics by suddenly ramping
down the potential barrier of the impurities’ double well. First,
the dynamical response regimes of the impurities coupled to
a box-confined medium are unraveled with respect to their
associated one- and two-body densities. In particular, for in-
termediate impurity-medium repulsions a localization of the

impurities at the trap center after the original collision is
realized. The impurities’ two-body density features an elon-
gated shape along the diagonal for weak impurity-impurity
repulsion which suggests the presence of attractive induced
interactions mediated by the bath. This induced localization
of the impurities persists also when the coupling strength
between the impurities is further increased. This observation
together with the existence of a spatial overlap for finite
impurity-medium interaction strengths support the formation
of quasiparticles, i.e., two interacting polarons. We have at-
tested the robustness of the above phenomena with respect
to variations of the number of bath particles and the size of
the box potential. However, for strong repulsions finite size
effects of the medium’s box potential come into play and
govern the dynamical response of the system. Essentially,
after the impurities’ collision at the trap center they drift apart
and then the medium reoccupies the center.

By considering a harmonically confined bath the impu-
rities’ response is qualitatively altered. Due to the spatial
localization of the bath at the trap center the impurities and
the medium undergo a phase separation already for inter-
mediate impurity-medium repulsions as it was also observed
on the ground-state level. The response becomes especially
intriguing for weak impurity-medium couplings where the
impurities are able to perform a breathing motion within the
bath. Specifically, for weak impurity-medium repulsions we
observe a state transfer of the impurities starting with two
spatially separated ones located at different double-well sites
and evolving into a coalesced configuration, i.e., the impuri-
ties cluster. Interestingly, this state transfer process does not
emerge for strongly interacting impurities and, most impor-
tantly, requires a finite impurity-medium interaction strength;
viz., it is induced by the coupling to the bath. Moreover, it is
shown that this mechanism can be well understood in terms of
a single-particle Wannier basis of the double well. Addition-
ally, we reveal the participating two-body states in this process
using an analysis in terms of a two-body basis which consists
of the low-lying excited states of a corresponding effective
two-body Hamiltonian.

There are several possible extensions of our results. An
immediate one will be to investigate the collision features of
the impurities immersed in a spatially extended bosonic gas
with the aim to unveil their possible damping mechanisms and
appreciate the corresponding drag force. In another context, it
would be worth including a spin degree of freedom for the
impurities. Here, the dynamics of the emergent spin-spin cor-
relations is of interest especially when the impurities localize
around the trap center. Moreover, it would be intriguing to
consider two impurities with different masses, e.g., a light and
heavy one, coupled to a background. This way it would be fea-
sible to investigate the influence of the mass on the emergent
collisional aspects of the impurities and their induced interac-
tions as well as trigger specific population transfer channels
by considering a Rabi coupling term.
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APPENDIX A: BATH CONFINED IN A BOX POTENTIAL:
RELATIVE DISTANCE BETWEEN THE IMPURITIES

In the following, we examine the impurities’ relative dis-
tance 〈rII〉 which can serve as an indicator for the existence
of their induced interactions mediated by the bath [38,39,98].
This quantity, which is accessible through in situ spin-resolved
single-shot measurements on the impurities state [99], reads

〈rII〉(t ) = 1

NI (NI − 1)

∫
dxI

1dxI
2

∣∣xI
1 − xI

2

∣∣ρ (2)
II

(
xI

1, xI
2

)
. (A1)

The impurities’ relative distance is presented in Fig. 10 for
the ground state of the system (t = 0) for varying impurity-
medium interaction strength and different impurity-impurity
couplings. In the case of two weakly interacting impurities
as well as for two strongly interacting ones we observe that
with an increasing absolute value of gBI the relative dis-
tance between the impurities reduces. This behavior implies
an induced attraction mediated by the coupling to the bath.
Furthermore, it is evident that for larger impurity-impurity
interactions 〈rII〉 is enhanced when compared to the one of
weakly interacting impurities. This behavior is caused by the
increased intraspecies impurities’ direct repulsion compensat-
ing their induced attraction.

To further justify the presence of induced interactions, we
compare the resulting impurities’ relative distance as obtained
using the many-body approach (〈rII〉) with the one (〈reff

II 〉) pre-
dicted within the effective two-body Hamiltonian H̄ (2),eff . The
latter was introduced in Sec. VI for a harmonically confined
medium. Notice that here this effective Hamiltonian describes
the interplay between two interacting particles confined in an

effective potential constructed by the one-body density of a
box-trapped medium [see Eq. (7)]. As such, the entanglement
between the impurities and the medium is neglected while
effects stemming from the back-action to the bath are taken
into account. By comparing 〈rII〉 between these two methods
we can determine whether the decrease of 〈rII〉 for increasing
|gBI | (see Fig. 10) originates from an entanglement-assisted
induced interaction or if it is due to an alteration of the effec-
tive potential.

Inspecting �〈rII〉 = (〈reff
II 〉 − 〈rII〉)/〈reff

II 〉 depicted in
Fig. 10, a large deviation among 〈rII〉 and 〈reff

II 〉 becomes
evident for increasing |gBI |. This confirms the presence of
attractive induced interactions between the impurities. The
fact that �〈rII〉 is finite can be traced back to the shape of
the impurities’ two-body densities as obtained within the
aforementioned approaches for large gBI [corresponding to
regime (I) in Fig. 2(a)]. While in the many-body scenario the
impurities coalesce [namely, only the diagonal of ρ

(2)
II (xI

1, xI
2)

is occupied], in the effective potential case both the diagonal
and the off-diagonal elements of ρ

(2)
II (xI

1, xI
2) are equally

populated. This naturally leads to a larger relative distance.
Concluding, the comparison with the effective model
underlies the importance of considering correlations in
the system and reveals the presence of attractive induced
interactions between the impurities (see more details in
Refs. [39,100]).

APPENDIX B: COLLISIONAL PROPERTIES OF TWO
HEAVY IMPURITIES

Throughout this work we have considered a system
consisting of 87Rb bath particles and 133Cs impurities cor-
responding to a mass ratio of mI = 133/87mB. Below, we
employ a mixture characterized by a mass ratio m′

I = 5mB in
order to elaborate on the dynamical response of two heavy
impurities [38] immersed in a bath confined in a box poten-
tial [101]. The time evolution of the corresponding one- and
two-body densities of the impurities and the bath particles is
depicted in Figs. 11(a1)–11(c1) and 11(a2)–11(c2) for interac-
tion parameters as the ones employed in the main text (Fig. 4).
In particular, we assume two weakly interacting impurities
(gII/g̃box = 0.2) and vary the impurity-medium interaction
strength gBI . Regarding the one-body density evolution we
do observe a qualitatively similar behavior as compared to
the case of lighter impurities. Only in the case of weak
attractive gBI [Fig. 11(a1)] do the heavy impurities perform
a more pronounced breathing oscillation with a larger oscil-
lation period. Inspecting a two-body density snapshot reveals
that the impurities are spatially separated from each other and
oscillate along the off diagonal of ρ

(2)
II (xI

1, xI
2) [cf. Fig. 11(a3)].

Therefore, they are not delocalized as their lighter counter-
parts [Fig. 4(a3)], and this behavior persists for two strongly
interacting impurities [cf. inset of Fig. 11(a3)].

Additionally, for intermediate impurity-medium repul-
sions, i.e., gBI/g̃box = 1.5, the one-body densities of the
impurities and the medium [Figs. 11(b1) and 11(b2)] as well
as the impurities’ two-body density [Fig. 11(b3) and its inset]
do not reveal a qualitatively different response with respect to
the case of lighter impurities [cf. Figs. 4(b1)–4(b3)]. Indeed
the impurities remain very close throughout the time evolu-
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FIG. 11. Time evolution of the one-body density of [(a1)–
(c1)] two heavy impurities and [(a2)–(c2)] a box-confined bosonic
bath. Each column represents the dynamics for a fixed impurity-
medium interaction strength which is from left to right gBI/g̃box =
−0.2, 1.5, 5.0. The impurity-impurity coupling remains constant, be-
ing gII/g̃box = 0.2. [(a3)–(c3)] Snapshots of the impurities’ two-body
density. The insets show the two-body densities at the same time in-
stants, but for two strongly interacting impurities, i.e., gII/g̃box = 2.0.

tion, exhibiting a more pronounced localization trend around
the trap center as compared to lighter ones. The same holds
also for the case of strong impurity-medium interactions [see
Figs. 11(c1)–11(c3) for gBI/g̃box = 5.0] where the impurities
feature multiple collisions with a dissipative amplitude. Only,
the fragmentation in terms of the diagonal of the two-body
density for gII/g̃box = 2.0 is more prominent in the case of
heavy impurities than for lighter ones [cf. inset of Fig. 11(c3)]
and becomes visible even on the one-body density level (not
shown here).

APPENDIX C: IMPURITY DYNAMICS AFTER A LINEAR
RAMP OF THEIR DOUBLE-WELL POTENTIAL

In the following we address the robustness of the impu-
rities’ dynamical response when ramping down their barrier
height hI in a time-dependent manner and not suddenly as
in the main text. Specifically, we apply the following linear
protocol: h̃I (t ) = hI − hIt/τ if 0 � t � τ while h̃I (t ) = 0 as
long as τ < t . The ramp time τ is defined as the one at
which the barrier height vanishes, i.e., when h̃I (τ ) = 0. For
our purposes, we restrict our study to finite values of τ which
deviate from the instantaneous quench but also do not refer to
an adiabatic linear ramping.

To visualize the impact of the time-dependent protocol on
the impurities’ collision process we present in Fig. 12 the
time evolution of the von Neumann entanglement entropy
[Eq. (5)] and the impurities’ one-body density. We follow a
linear ramp of the impurities’ barrier height characterized by a
finite ramp time τ/t̃box = 30. Notice that the latter appreciably
deviates from the quench scenario (τ/t̃box = 0). Moreover,

FIG. 12. (a) Time evolution of the von Neumann entropy upon
linearly ramping down the barrier height hI of the double well for
different ramp times τ (see legend). The impurities are weakly inter-
acting with gII/g̃box = 0.2 and are coupled to a box-confined medium
with an interspecies coupling gBI/g̃box = 1.5. An increasing ramp
time maintains an almost constant magnitude of entanglement until
the impurities’ collision. (b) The corresponding one-body density
evolution of the impurities for τ/t̃box = 30. As it can be seen the lin-
ear ramp delays the impurities’ first collision event when compared
to Fig. 4(b1), referring to the corresponding quench dynamics.

we exemplarily invoke the system where the medium is con-
fined in a box potential while the relevant interactions are
gBB/g̃box = 0.5, gII/g̃box = 0.2, and gBI/g̃box = 1.5. Recall
that in the main text it has been shown that in this regime
the impurities localize at the trap center after their first col-
lision event [see also Fig. 4(b1)]. As it can be readily seen
[Fig. 12(b)], the impurities’ dynamical response in terms of
ρ

(1)
I (x, t ) remains qualitatively unchanged as compared to the

quench [Fig. 4(b1)]. The most prominent difference regards
the timescale at which the impurities collide and subsequently
localize at the trap center. As expected the initial collision
can be delayed for an increasing ramp time. Turning to
the evolution of the respective von Neumann entropies for
varying ramp times we observe an interesting behavior. At
short timescales the impurities and the medium are highly
entangled [Fig. 12(a)]. The magnitude of the entanglement
is maintained in the course of the evolution until the impu-
rities collide and then localize at the trap center, where it
suddenly decreases. This drop of the entanglement depends
strongly on the ramp time and in particular it takes place
faster for smaller τ since in this case the collision event is
accelerated.
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Concluding, we remark that the linear protocol affects the
remaining response regimes, occurring for other interspecies
interaction strengths, in a similar vein. Namely, the main
features as described in Sec. V are not substantially altered
but rather the underlying timescales change. For instance,
considering weak attractive or repulsive gBI referring to the
impurities’ breathing motion [Fig. 4(a1)], we find a decreasing

tendency of the breathing amplitude and frequency for larger
τ (not shown). This is attributed to the fact that for increasing
τ the collision of the impurities is less violent, thus producing
a less pronounced breathing. Analogous effects are observed
for a harmonically trapped medium where, for instance, also
in this case the amplitude and frequency of the underlying
breathing motion depend strongly on the ramp time τ .
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Abstract

We study the impact of induced correlations and quasiparticle properties by immers-
ing two distinguishable impurities in a harmonically trapped bosonic medium. It is
found that when the impurities couple both either repulsively or attractively to their
host, the latter mediates a two-body correlated behavior between them. In the reverse
case, namely the impurities interact oppositely with the host, they feature anti-bunching.
Monitoring the impurities relative distance and constructing an effective two-body model
to be compared with the full many-body calculations, we are able to associate the induced
(anti-) correlated behavior of the impurities with the presence of attractive (repulsive)
induced interactions. Furthermore, we capture the formation of a bipolaron and a trimer
state in the strongly attractive regime. The trimer refers to the correlated behavior of
two impurities and a representative atom of the bosonic medium and it is characterized
by an ellipsoidal shape of the three-body correlation function. Our results open the way
for controlling polaron induced correlations and creating relevant bound states.
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1 Introduction

Impurities embedded in a many-body medium, e.g. a Bose-Einstein condensate (BEC), are
dressed by its excitations and generate quasiparticles [1, 2]. In the case of a structureless
host these refer to polarons [3], while for instance, utilizing a magnetic environment or in
the presence of a cavity, magnetic polarons [4–6] and polaritons [7, 8] are formed respec-
tively. Polarons, which we will investigate herein, have been widely studied in cold-atom
settings owing to the enormous flexibility, e.g., in terms of controlling the spatial dimen-
sion [9–11], the interparticle interactions [12–14], as well as the trapping geometry and the
number of species [15–19] and atoms [20,21]. Depending on the statistics of the medium both
Bose [11,22–26] and Fermi [1,27,28] polarons have been experimentally realized. Theoreti-
cally fundamental properties of these type of quasiparticles including effective mass [29–31],
residue [1,2], and bound state formation [1,2,32] emerging in two-component systems have
been discussed. Interestingly, by immersing at least two impurities into a quantum gas the
latter mediates interactions between the former [33–36], a phenomenon that has been in-
terpreted in terms of a Casimir-type interaction describing the induced interaction between
two objects in a fluctuating medium [37–39]. In particular, induced interactions between
two impurities are solely attractive as long as they couple in the same way (i.e. in terms of
sign and strength) to the fluctuating medium [38–46]. The magnitude of this induced attrac-
tion, in general, increases for larger impurity-medium coupling strength and specifically for
sufficiently strong attractive ones the impurities assemble in a bound state that can be a bipo-
laron [32, 43, 45, 47–49] or a trimeron [50]. Notice that besides the above-discussed studies
in a homogeneous BEC environment, the attractive nature of induced interactions has been
unveiled also for a harmonically confined [42,51,52] or a lattice trapped [53]medium. More-
over, in the context of open quantum systems where, e.g., two non-interacting particles are
coupled to a heat bath, a mediated induced entanglement between the particles has been pre-
dicted and its interplay with the inherent decoherence effects has been analyzed for instance
in terms of the interatomic distance and temperature [54–62].
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Interestingly, it was predicted [37, 39] that there is also the possibility of mediating re-
pulsive impurity-impurity interactions when two impurities are coupled with different signs
to a bosonic bath. In this sense, the underlying experimentally relevant three-component sys-
tem [16, 18] allows to unravel additional polaronic properties as it has been also argued by
immersing impurities into a two-component pseudospinor mixture [4–6, 63–66] in order to
create, for instance, spin-wave excitations and magnetic polarons [4, 5], impurities diffusive
response [64] or to facilitate the detection of the dressing cloud via interferometry [4]. How-
ever, quasiparticle formation in three-component systems is largely unexplored, besides the
few above-mentioned recent studies. An interesting direction is to exploit the tunability of
such mixtures, e.g. in terms of different intercomponent couplings, for devising the ground
state quasiparticle properties such as the impurities effective mass and induced interactions.
Here, it is important to understand the interplay of the latter properties and the underlying
impurities’ correlations. Also, the formation of relevant bound states either solely among the
impurities (bipolarons) or between the impurities and the host atoms (trimers) remains elu-
sive. To address these questions, we consider two distinguishable and non-interacting impu-
rities that are embedded into an one-dimensional bosonic gas. The impurities’ couplings with
the host are individually tuned spanning the regime from attractive to repulsive interactions.
Here, the effective interactions between the impurities can be only mediated in the presence
of impurity-medium entanglement and bound states require the involvement of strong corre-
lations. As such, to account for the relevant inter and intra-component correlations we employ
the variational multilayer multiconfiguration time-dependent Hartree method for atomic mix-
tures (ML-MCTDHX) approach [67–69] which is well established for investigating impurity
physics [36].

Inspecting the spatial two-body correlations between the two impurities we reveal that,
in general, they are correlated (anti-correlated) when the two impurity-medium coupling
strengths posses the same (opposite) sign. To shed more light on the impact of induced impu-
rities’ correlations we carefully monitor their relative distance [70], excluding all mean-field
type contributions, for varying coupling strengths. A central result of our work is that the
impurities’ correlated (anti-correlated) behavior is related to a decrease (increase) of their
relative distance, thus, indicating the presence of an induced attraction (repulsion) between
them. This observation is additionally confirmed by constructing an effective two-body model
in the weak impurity-medium coupling regime inspired from the case of indistinguishable im-
purities [36, 52]. It specifically allows to assign the impurities’ induced interaction strength
and sign but also other quasiparticle related properties such as their effective mass and trap
frequency.

For strong impurity-medium attractions, we identify the formation of a bipolaron state
involving the two distinguishable impurities. This bound quasi-particle state is characterized
by the so-called bipolaron energy [32], and the size of the impurities’ dimer state featuring an
exponential decrease for larger attractions. Proceeding a step further, we find that for such
strong attractive impurity-medium interactions the three-body correlation function features an
ellipsoidal shape indicating bunching and revealing the creation of a trimer state among the
two impurities and a corresponding bath atom. To further testify the existence of this trimer
state we employ the Jacobi relative distances of the three distinguishable atoms [71] showing
an exponentially decreasing trend for increasing impurity-medium attractions.

This work is organized as follows. In section 2, the three-component setup under consid-
eration is introduced and in Section 3 we explain the variational method used to obtain the
ground state properties of the many-body system. Section 4 elaborates on the possible ground
state density configurations upon varying the impurity-medium couplings. The emergence of
induced impurity-impurity correlation patterns is explicated in Section 5. The interrelation of
the aforementioned induced correlations with the induced attractive and repulsive impurity in-
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teractions is provided in Section 6 through monitoring their relative distance and constructing
an effective two-body model. Delving into the strongly attractive impurity-medium interac-
tion regime, we demonstrate the formation of a bipolaron state among the two distinguishable
impurities in Section 7 and the generation of a trimer state among the impurities and a bath
atom in Section 8. We summarize our findings and discuss future perspectives in Section 9.
The behavior of the logarithmic negativity in order to quantify the bipartite intercomponent
entanglement is discussed in Appendix A. Appendices B and C provide supplemental informa-
tion regarding the polaron characteristics and induced effective interactions. In Appendix D
we comment on the impact of the impurity mass and the number of bath particles on the
ground state properties of the system. Finally, in Appendix E we elaborate on the microscopic
excitation processes of the system via a number state analysis.

2 Two distinguishable impurities in a bosonic gas

We consider a one-dimensional harmonically trapped three component mixture. It contains a
bosonic medium A with NA = 15 atoms of mass mA and two distinguishable impurities B and
C , i.e., NB = NC = 1, having masses mB and mC , respectively. The many-body Hamiltonian of
this system reads

Ĥ =
∑
σ

Ĥσ +
∑
σ ̸=σ′

Ĥσσ′ , (1)

where Ĥσ denotes the Hamiltonian of each component σ and Ĥσσ′ represents the intercom-
ponent interaction contribution with σ,σ′ ∈ {A, B, C}. Specifically,

Ĥσ =
Nσ∑
i=1

�
− ħh

2

2mσ

∂ 2

(∂ xσi )
2
+

1
2

mσω
2
σ(x

σ
i )

2 + gσσ
∑
i< j

δ(xσi − xσj )
�

, (2)

Ĥσσ′ = gσσ′
Nσ∑
i=1

Nσ′∑
j=1

δ(xσi − xσ
′

j ) . (3)

Assuming that the system is at ultracold temperatures it dominantly experiences s-wave scat-
tering processes that can be described by two-body contact interactions between particles of
the same as well as of different species characterized by the generic strength gσσ′ [14]. The
latter depends on the respective three-dimensional scattering lengths a3D

σσ′ and the transversal
confinement frequency ω⊥ that are experimentally tunable via Feshbach resonances [13, 14]
and confinement induced resonances respectively [12]. The latter would allow the tuning of
interactions even in the absence of a Feshbach resonance.

For simplicity, we focus on the mass-balanced case mσ ≡ m (unless stated otherwise) and
thus ωσ ≡ ω. Moreover, we rescale our Hamiltonian in harmonic oscillator units ħhω which
means that the length and interaction scales are given in

p
ħh/mω and
Æ
ħh3ω/m, respectively.

Such a three-component system could be experimentally realized [16, 18] e.g., by trapping
three different hyperfine states of 87Rb which can feature various Feshbach resonances. An al-
ternative candidate may be two isotopes of Rubidium atoms with 85Rb emulating the medium
and two-hyperfine states of 87Rb [72, 73] representing the impurities. Since our main find-
ings persist also for mass-imbalanced mixtures, see the discussion in Section D, corresponding
heteronuclear mixtures of different isotopes could also be used. We also note that the experi-
mental realization of three-component mixtures was reported in Refs. [16,18] and a proposal
for a corresponding impurity system was recently made in Ref. [74]. Since our aim is to un-
derstand the role of induced interactions between the impurities mediated by the medium, in
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the ground state of the system, it is natural to consider two non-interacting impurities setting
gBC = 0, which could be realized, for instance, via magnetic Feshbach resonances [75].

3 Variational wave function approach

The ground state of the three-component mixture, described by the Hamiltonian of Eq. (1),
is determined within the ML-MCTDHX method [67–69, 76]. A central aspect of this ab-initio
approach is based on the expansion of the many-body wave function on different layers using a
variationally optimized time-dependent many-body basis. This leads to an efficient truncation
of the underlying Hilbert space tailored to capture the relevant inter- and intracomponent
correlations. Specifically, the many-body wave function is first expressed in terms of three
different sets of Dσ species functions as follows

|ΨMB(t)〉=
DA∑

i=1

DB∑
j=1

DC∑
k=1

Ci jk(t) |ΨA
i (t)〉 |ΨB

j (t)〉 |ΨC
k (t)〉 . (4)

The time-dependent coefficients Ci jk(t) bare information about the entanglement between the
involved components. For instance, the bipartite entanglement between two components can
be analyzed by tracing out the degrees of freedom of the third one and then apply the posi-
tive partial transpose criterion on the resulting mixed state [77] (see also Appendix A). Next,
the intracomponent correlations are included into the wave function ansatz by expanding
each species function as a superposition of permanents |n⃗(t)〉 weighted by time-dependent
expansion coefficients Cσi,n⃗(t). In this notation, n⃗ = (nσ1 , . . . , nσdσ) represents the occupation
distribution of Nσ particles on dσ time-dependent single-particle functions. Additionally, the
single-particle functions are expanded into a time-independent discrete variable representa-
tion [78] consisting in our case of Mr = 300 evenly spaced grid points.

The number of utilized species functions Dσ dictates the degree of intercomponent entan-
glement. For instance, by providing only one species function for each component, i.e., by
setting DA = DB = DC = 1, the many-body wave function reduces on its top layer to a prod-
uct state, thereby, prohibiting any interspecies entanglement. Such a treatment is commonly
referred to as a species mean-field ansatz (sMF) [67]. For two-component mixtures the sMF
ansatz is unique, however, in three-component systems there are various sMF that could be
constructed. As an example, setting Dσ = 1 and Dσ′ , Dσ′′ > 1, we allow for entanglement gen-
eration only between the species σ′ and σ′′, whilst intercomponent correlations with species
σ are suppressed. To clearly distinguish among the different possible sMF ansatzes, in the
following, we abbreviate as sMFσ where σ ∈ {A, B, C} the ansatz that ignores intercomponent
correlations between species σ and the remaining ones. In this sense, the sMFC is written as

|ΨsMFC(t)〉=
DA∑

i=1

DB∑
j=1

Ci j1(t) |ΨA
i (t)〉 |ΨB

j (t)〉 |ΨC
1 (t)〉 , (5)

where only species A and B can become entangled while species C remains uncorrelated with
the other species.

The ground state of the three component mixture is obtained through the imaginary time
propagation method. The time-dependent coefficients of each layer, namely the species and
single-particle layers, are optimally adapted to the system, e.g. by following the Dirac-Frenkel
variational principle [79] in order to determine the underlying ML-MCTDHX equations of mo-
tion. The latter correspond to DADB DC linear differential equations of motion for the Ci jk(t)
coefficients coupled to

∑
σ=A,B,C Dσ
�Nσ+dσ−1

dσ−1

�
nonlinear integrodifferential equations for the
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species functions and dA+dB+dC nonlinear integrodifferential equations for the single-particle
functions. This co-moving basis concept minimizes the number of required states for achiev-
ing numerical convergence. In this sense, it reduces the computational cost as compared to
methods relying on time-independent basis sets, while simultaneously allows to account for
all relevant correlations. The truncation of the Hilbert space is determined by the number
of employed species- and single-particle functions defining the numerical configuration space
(DA, DB, DC ; dA, dB, dC). Utilizing this method, it is in principle possible to describe mix-
tures with mesoscopic particle numbers and strong interactions. However, as the number of
particles increases and correlations become enhanced a larger number of orbitals should be
taken into account in order to reach numerical convergence. The latter is carefully checked by
systematically increasing the numerical configuration space and ensuring that the observables
of interest remain unchanged within a desired level of accuracy. As expected, this process is
accompanied by a significant computational cost and in particular it is the interplay of intra-
and intercomponent correlations with the components atom number that limits the applica-
bility of the method due to numerical feasibility. Elaborated discussions on the ingredients,
applicability and benchmarks of this variational method to different multicomponent settings
can be found in the recent reviews [36,80].

For our system, the degree of correlations in the bosonic bath, e.g. as captured by its
depletion [81] 1−nA

0 with nA
0 representing the largest eigenvalue of the bath’s one-body reduced

density matrix is negligible within the considered interaction strength intervals. This allows
us to use only a few orbitals for the medium in order to ensure convergence. On the other
hand, the impurities depletion is in general larger, especially for strongly repulsive interactions,
and thus we need to use more orbitals. Herewith, we have checked that employing an orbital
configuration (6, 6, 6; 4, 6, 6) results in the convergence of the observables of interest, such as
the species densities and intercomponent two-body correlation functions, while the amount of
equations of motion are tractable. For completeness, let us note that stronger intercomponent
interactions than the ones to be reported below e.g. |gAC | < 10 require a larger number
of species functions and impurities orbitals which is still numerically feasible. Similarly, in
order to tackle systems with stronger intracomponent bath interactions the number of the
respective dA orbitals should be increased. This naturally entails more difficult convergence
issues than increasing the impurities orbitals (and thus considering stronger impurity-medium
interactions) since the number of the underlying equations of motion becomes larger in the
former case.

4 One-body density configurations of the three-component mix-
ture

To investigate the emergent spatial configurations of the three-component impurity setting
arising due to different combinations of the involved interactions, we initially employ the σ-
component one-body density being normalized to unity. Namely, ρ(1)σ (x) = 〈ΨMB| Ψ̂†

σ(x)Ψ̂σ(x)
|ΨMB〉 where Ψ̂(†)σ denotes the bosonic field operator which annihilates (creates) a σ-species
atom at position x . In an experiment, the density is routinely detected through in-situ ab-
sorption imaging [82–84]. Our understanding on the mixture spatial distributions at differ-
ent interactions is also corroborated by an effective potential picture, which has been proven
thus far successful in order to qualitative explicate various aspects of impurity physics in two-
component settings [70,85,86]. According to this, each σ component is subjected to an effec-
tive potential stemming from the superposition of its external harmonic trap and the density of
the complementary components σ′ weighted by the respective intercomponent interactions,
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Figure 1: One-body σ-species density, ρ(1)σ (x), shown together with the effective po-
tentials [Eq. (6)] of the impurities (see legend). Two distinguishable non-interacting
impurities (B, C) are considered which are individually coupled to a bosonic medium
A with gAA = 0.2. The impurity-medium coupling strengths from left to right panels
refer to (gAB, gAC) = (−1.0,−0.2), (1.0,−0.2) and (1.0, 1.5). For attractive interac-
tions the medium atoms accumulate in the vicinity of the impurities and their effec-
tive potential is attractive. Turning to repulsive couplings a tendency for impurity-
medium phase-separation occurs for gAσ > gAA with σ = B, C .

i.e.,

V eff
σ (x) = Vσ(x) +

∑
σ′ ̸=σ

Nσ′ gσσ′ρ
(1)
σ′ (x) . (6)

Naturally, this is a sMF framework since it ignores intercomponent correlations. Moreover, it
is more meaningful for the impurity subsystem since the impact of the impurity densities is
suppressed for the medium. Density profiles of all three components and the impurity effective
potentials are provided in Fig. 1 for characteristic impurity-medium interaction configurations,
namely (gAB, gAC) = (−1.0,−0.2), (1.0,−0.2) and (1.0,1.5). The impurities are considered to
be non-interacting among each other, i.e., gBC = 0, and the medium bosons feature throughout
gAA = 0.2.

As it can be seen, for an overall attractive impurity-medium coupling the bosons of the
medium are placed in the vicinity of the impurities which are naturally localized at the trap
center [cf. Figure 1(a)]. This distribution of the medium atoms can also be understood in
terms of the respective attractive impurity-medium interaction energy Eint

Aσ = 〈ΨMB|HAσ|ΨMB〉
for gAσ < 0 with σ = B, C . Also, for both gAB < 0 and gAC < 0 the effective potential of
each impurity corresponds to a dipped harmonic trap enforcing its localization whose degree
is, of course, enhanced for stronger attractions [cf. Figure 1(a)]. The value of the attractive
interaction determines the degree of spatial localization, i.e., the B impurity with gAB = −1.0
is more localized than the C impurity experiencing gAC = −0.2. For sufficiently large attractive
impurity-medium couplings (|gAσ| ≫ gAA) the impurities form a bipolaron, see for details the
discussion in Section 7.

On the other hand, tuning at least one of the impurity-medium couplings towards the
repulsive regime such that gAσ > gAA is satisfied leads to the phase-separation among these
components since Eint

Aσ > 0. In this case, the impurity forms a shell around the edges of the
bath residing around the trap center [65]. Such configurations can be readily observed, for
instance, in Figure 1(b) where solely the B impurity is strongly repulsively coupled with the
bath (gAB > gAA) and also in Figure 1(c) where both impurities phase separate with the bath
due to gAB > gAA and gAC > gAA. Notice that for strong repulsive impurity-medium couplings
the underlying effective potential of the impurity has the form of a double-well potential which
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Figure 2: Two-body correlation function (in units of mω/ħh) between (a1)-(c1) one
bath particle and the B impurity as well as (a2)-(c2) among the two non-interacting
impurities [see Eq. (7)]. Each column corresponds to the same interaction con-
figuration which is from left to right (gAB, gAC) = (−1.0,−0.2), (1.0,−0.2) and
(1.0, 1.5). We consider two distinguishable non-interacting impurities and an in-
teracting medium with gAA = 0.2. Impurity B is correlated (anti-correlated) with a
bath particle at the same location in the case of attractive (repulsive) gAB, see panel
(a1) [(b1), (c1)]. The impurities experience induced correlations when they both
couple either repulsively or attractively to the bath [panels (a2), (c2)], while they
are anti-correlated when each impurity couples with an opposite sign to the majority
species [panel (b2)].

favors the phase-separation among the bath and the corresponding impurity [cf. Figures 1(b)
and (c)].

Another interesting phenomenon reflecting the richness of three-component systems arises
upon considering distinct interactions between each impurity and the bath. Indeed, varying
the impurity-medium coupling for a specific impurity affects the shape of the bath accordingly
and, in turn, impacts the distribution of the other impurity. This is visualized in Figures 1(a)
and (b) where gAC is the same while gAB is modified from attractive to repulsive values ul-
timately altering the spatial localization of impurity C , see in particular the peak of ρ(1)C (x).
Therefore, it is possible to implicitly manipulate the distribution of one impurity by adjust-
ing the coupling of the other impurity with the bath and importantly in the absence of direct
impurity-impurity interaction. This property, as it will be discussed below, can be proved cru-
cial for controlling impurity-impurity induced interactions.

5 Intercomponent (induced) correlations and entanglement

Next, we shed light on the associated intercomponent correlation patterns with a particular
emphasis on the existence of induced correlations between the impurities mediated by the
bosonic gas. The intercomponent two-body spatial correlations, or two-body coherence, can
be quantified through [84],

G(2)
σσ′(x

σ
1 , xσ

′
2 ) = ρ

(2)
σσ′(x

σ
1 , xσ

′
2 )−ρ(1)σ (xσ1 )ρ(1)σ′ (xσ

′
2 ) . (7)

Here, we subtract the probability of independently detecting a σ and a σ′ atom at positions
xσ1 and xσ

′
2 from the probability to simultaneously measure one at xσ1 and the other at xσ

′
2 .
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The latter is provided by the reduced two-body density

ρ
(2)
σσ′(x

σ
1 , xσ

′
2 ) = 〈ΨMB| Ψ̂†

σ(x
σ
1 )Ψ̂

†
σ′(x

σ′
2 )Ψ̂σ′(x

σ′
2 )Ψ̂σ(x

σ
1 ) |ΨMB〉 , (8)

which is normalized to unity. In this sense, the two particles are correlated or bunched (anti-
correlated or antibunched) if G(2)

σσ′(x
σ
1 , xσ

′
2 ) is positive (negative); otherwise, they are referred

to as two-body un-correlated [84, 87]. Experimentally the two-body correlation function is
accessible through analyzing the respective single-shot images, see e.g. Refs. [88–92].

5.1 Characteristic correlation patterns

First, we study the emergent two-body correlation patterns between the B impurity and the
medium for different intercomponent interactions [Figures 2(a1)-(c1)]. For attractive gAB < 0
and gAC < 0 the B impurity is correlated with a bath atom at the same position, see the
diagonal of G(2)AB (x

A
1 , xB

2 )> 0, while these two particles are anti-correlated when symmetrically

placed with respect to the trap center as it is shown from the anti-diagonal of G(2)AB (x
A
1 , xB

2 )< 0
[Figure 2(a1)]. In this sense, the B impurity prefers to occupy the same spatial region with
the bath. Turning to repulsive gAB > 0 and independently of gAC ≶ 0, the above-discussed
two-body correlation distributions are inverted and the B impurity features an anti-bunched
(bunched) behavior at the same (different) location with a bath particle as can be deduced by
the diagonal (anti-diagonal) of G(2)AB (x

A
1 , xB

2 ) [cf. Figures 2(b1) and (c1)]. This trend reflects
the impurity-medium phase-separation identified on the density level [Figures 1(b) and (c)].

Let us now discuss the induced correlations among the non-interacting impurities. When
both impurities are attractively coupled to the bath they exhibit a bunching tendency which
is, of course, mediated by the bosonic gas, see the diagonal of G(2)BC (x

B
1 , xC

2 ) depicted in Fig-
ure 2(a2). Otherwise, the impurities are anti-bunched when residing at different locations
with respect to x = 0. This two-body configuration of the impurities manifests the presence of
their attractive induced interactions regulated by the impurity-medium attractive interactions
as we will discuss in Section 6. Note also that a further increase of the impurity-bath attraction
can result in the formation of a bipolaron state which we analyze in detail within Section 7. A
similar two-body impurities correlation pattern occurs when they both repulsively couple with
their bath [Figure 2(c2)]. However, in this case the impurities cluster either at the left or the
right side of the bath, while the probability to reside at opposite sides is suppressed [cf. Fig-
ure 2(c2)]. This trend which is inherently related to the impurity-medium phase-separation
has also been observed for two indistinguishable impurities and it is known as their coales-
cence [42]. In sharp contrast, if one impurity couples repulsively and the other attractively
to the bath the reverse to the above-described correlation behavior is observed. Namely, the
impurities anti-bunch (bunch) at the same (different) location in terms of the trap center,
see Figure 2(b2). This scenario manifests the flexibility offered by three component mixtures
and it is connected to the emergence of repulsive impurity-impurity induced interactions, a
phenomenon that can not occur in two-component systems and we analyze in Section 6.

5.2 Emergent correlation regimes

To provide an overview of the two-body correlation behavior stemming from the interplay of
the distinct impurity-medium couplings, we inspect the spatially integrated over [−∞, 0 ]
(due to symmetry) correlation function

Cσσ′ =
∫ 0

−∞
d xσ1

∫ 0

−∞
d xσ

′
2 G(2)

σσ′(x
σ
1 , xσ

′
2 ) . (9)
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Figure 3: (a)-(b) Phase diagram of the intercomponent (see legends) spatially inte-
grated correlation functions Cσσ′ [Eq. (9)] in the parametric plane of the impurity-
medium interaction strengths (gAB, gAC). A value of Cσσ′ < 0 (Cσσ′ > 0) indicates an
anti-correlated (correlated) behavior between the atoms of species σ and σ′, while
Cσσ′ = 0 denotes the absence of two-body correlations (see also main text). The gray
circles correspond to the interaction combinations (gAB, gAC) depicted in Figures 1
and 2. The regions enclosed by the dashed lines in panel (b) indicate the interaction
regions where the impurities do not overlap but are still two-body anti-correlated.
The harmonically trapped three component system consists of two non-interacting
but distinguishable impurities immersed in a bosonic gas of NA = 15 atoms with
gAA = 0.2.

It quantifies the amount of intercomponent correlations or anti-correlations by means that it
is positive (negative) when the particles prefer (avoid) to occupy the same region with respect
to the trap center.1 The phase diagrams of the impurity-medium CAB and impurity-impurity
CBC integrated correlations as a function of gAB and gAC are depicted in Figure 3(a) and (b)
respectively. Recall that since gBC = 0 all emerging impurity correlations are induced by their
coupling to the bath.

An anti-correlated (correlated) behavior between the B impurity and the bath occurs for
gAB > 0 (gAB < 0) and varying gAC , see also Figures 2(a1)-(c1). Notice also the un-correlated
tendency for strongly attractive gAC and repulsive gAB [Figures 3(a), (b)]. Indeed, due to the
large gAC < 0 both the bath A and the C impurity localize at the trap center minimizing their
spatial overlap with the B impurity since gAB > 0 and thus CAB is suppressed. Naturally, a
less attractive gAC enhances the overlap between impurity B and the bath leading to an anti-
correlated behavior. The largest degree of anti-correlation as captured by CAB is reached when
gAB > gAA and gAC > gAA where both impurities form a shell around the bath and coalesce [cf.
corresponding region in Figure 3(a)].

Turning to the impurities’ correlations, we observe that as long as they both couple either
repulsively or attractively to the bath it holds that CBC > 0, implying that they are correlated
[see also Figures 2(a1) and (c1)]. However, when the couplings gAB and gAC have opposite
signs, with one lying in the weak and the other in the strong interaction regime, then mostly
CBC < 0, i.e., the impurities are anti-correlated [cf. Figure 2(b1)]. A notable exception takes
place if one of the impurities couples strongly repulsively to the bath (e.g. gAB > gAA) and the
other strongly attractively (e.g. |gAC |> gAA). This leads to a suppressed spatial overlap among

1Due to parity symmetry the maximum (minimum) value of Cσσ′ is 0.25 (-0.25) denoting strong bunching
(anti-bunching).
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the bath and the repulsively interacting impurity2 and thus the bath is only correlated with the
attractively coupled impurity, see also the discussion above. Together with the fact that the
impurities are spatially separated in this interaction region, if mediated impurity correlations
occur they have to be nonlocal. This is indeed the case since the impurities are found to be
anti-correlated, CBC < 0, see the two parameter regimes in Figure 3(b) enclosed by the dashed
lines.

6 Quantification of impurities induced interactions

Below, we examine how the mediated correlations among the distinguishable impurities al-
ter their relative distance and, subsequently, relate the induced impurity-impurity correlation
patterns with an effective induced interaction strength. The latter as it will be argued can be
either attractive or repulsive due to the genuine three-component nature of the system and it
is further quantified via an effective two-body model.

6.1 Effect of the induced impurity-impurity correlations on their relative dis-
tance

A reliable measure for this purpose, that has also been utilized in two-component settings [70,
87] and can be experimentally monitored via in-situ spin-resolved single-shot measurements
[93], is the relative distance between the impurities

〈rBC〉=
1

NBNC

∫
dxB

1 dxC
2

��xB
1 − xC

2

��ρ(2)BC(x
B
1 , xC

2 ) . (10)

Specifically, in order to extract the contribution stemming from genuine impurity-medium cor-
relations we estimate the modified relative distance at different correlation levels as dictated
by the respective truncation of the many-body (MB) wave function (see also Section 3), namely

∆〈rBC〉= 〈rMB
BC 〉 −
�〈rsMF

BC 〉+
�〈rsMFB

BC 〉 − 〈rsMF
BC 〉
�
+
�〈rsMFC

BC 〉 − 〈rsMF
BC 〉
��

. (11)

Here, sMF stands for the general species mean-field case where all intercomponent correlations
are neglected, while sMFB (sMFC) refers to the case at which only intercomponent correlations
between the B (C) impurity and the medium are ignored [36,65]. Excluding the sMF contri-
bution as well as the ones corresponding to the entanglement between the bath and impurity
C or B [cf. last four terms of Eq. (11)] from the relative distance where all correlations are
included, i.e., 〈rMB

BC 〉, we are able to distill the effects originating from the mutual correlation
among the impurities and the bosonic gas by tracking ∆〈rBC〉. As such, ∆〈rBC〉 captures the
genuine effects of the induced correlations as described by CBC [Figure 3(b)]. We interpret a
value of ∆〈rBC〉 which is positive (negative) as the signal of emergent repulsive (attractive)
impurities’ induced interactions.

The modified relative distance, ∆〈rBC〉, is presented in Figure 4(a) with respect to the
gAC coupling and for characteristic fixed gAB values. In general, we find an induced attrac-
tion between the impurities when they both couple either attractively or repulsively to the
medium, while they feature a mediated repulsion if one of them couples attractively and the
other repulsively to the bosonic gas. Since∆〈rBC〉 is closely related to CBC , an induced correla-
tion (anti-correlation) between the impurities can be associated to their attractive (repulsive)

2Notice here that since the impurity B is neither entangled with the bath nor with the impurity C , it is sufficient
to consider the sMFB ansatz. We have checked that |〈ΨsMFB|ΨMB〉|2 ≈ 1 holds, see also Appendix E for a detailed
number state analysis of the many-body wave function.
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Figure 4: (a) and its inset: Modified relative distance [Eq. (11)] reflecting the ef-
fects on 〈rMB

BC 〉 which are exclusively caused by the induced impurities correlation
as a function of gAC and for different fixed gAB. (b) Induced interaction strength
between the two Bose polarons estimated by maximizing the overlap between the
two-body correlation functions G(2),eff

BC obtained from the effective two-body model

and G(2)BC predicted within the many-body approach (see main text). (c) Fidelity FBC
of the impurities wave function as found in the many-body method and the effective
two-body model with respect to the impurity-medium couplings gAB and gAC . We
consider two non-interacting but distinguishable impurities immersed in a bosonic
gas of NA = 15 atoms with gAA = 0.2.

induced interaction and vice versa [cf. Figures 3(b) and 4(a)]. For instance, considering re-
pulsive gAB and tuning gAC to weak attractions, ∆〈rBC〉 becomes positive denoting an induced
repulsion between the impurities. However, for stronger repulsive gAC ∆〈rBC〉 is negative and
thus attractive induced interactions occur maximizing in the coalescence regime where gAB
and gAC are both strongly repulsive, see also the inset of Figure 3(a). Furthermore, in the case
of suppressed mediated correlations between the impurities (CBC ≈ 0), i.e., in the trivial case
where gAB = 0 or for strong attractive gAC and repulsive gAB [cf. Figure 3(b)], also ∆〈rBC〉
vanishes (see Figure 4(a) for strong attractive gAC and gAB = 0.2,1.0). In the last scenario, the
gradually increasing gAC attraction leads to a reduction (enhancement) of the correlation be-
tween the bath and the B (C) impurity whose interplay impedes the development of mediated
impurity correlations and therefore induced interactions.

In the case of an attractively coupled impurity B, e.g. gAB = −1.0,−0.2, ∆〈rBC〉 decreases
when gAB is tuned to strong attractive values, a phenomenon also occurring for CBC [Fig-
ure 3(b)]. Here, increasing the attraction between impurity C and the bath enhances their
correlation, while at sufficiently strong attractive gAC the correlation between the bath and
the impurity B begins to slightly decrease for constant attractive gAB (cf. Figure 3). This com-
petition between the different impurity-medium correlations suggests an interesting interplay
between the individual intercomponent correlations and could in principle hinder the bath to
mediate correlations between the impurities leading eventually to the observed reduction of
the induced impurity-impurity correlation/interaction. Such an interplay of intercomponent
correlations is indicative of a more intricate and generic correlation transfer process among
the species [36], that is an exciting future perspective but lies beyond the focus of our study.
However, note that for decreasing gAB = gAC results in a saturation of the impurity-impurity
correlation, a fact that will also become important later in the discussion regarding the bipo-
laron formation in Section 7.
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Finally, notice that a similar qualitative behavior of the intercomponent correlations and
thus also of ∆〈rBC〉 takes place for either increasing the number of atoms of the bosonic
medium or the bare mass of one of the impurities, see Appendix D. In fact, both scenarios
lead for repulsive gAB and gAC to an amplified impurities entanglement and to a stronger at-
tractive induced interaction.

6.2 Effective two-body model

To determine the strength of induced impurity-impurity interactions, we reduce the three-
component many-body system to an effective two-body model consisting of two interacting
quasi-particles. This is a common approach to identify polaron properties from many-body
simulations and has been successfully applied to two indistinguishable impurities [52] but not
to distinguishable ones. Here, the effective two-body model employs the effective potential
V eff
σ (x

σ) [defined in Eq. (6)] for each impurity and thus neglects impurity-medium correla-
tions. Also, the underlying impurities induced interactions are represented by a contact po-
tential of strength geff

BC (a treatment with finite range interactions leads to similar results as it is
demonstrated in Appendix C). Specifically, the corresponding effective two-body Hamiltonian
reads

H(2),eff =
∑
σ=B,C

�
− ħh

2

2mσ

∂ 2

(∂ xσ)2
+ V eff

σ (x
σ)

�
+ geff

BCδ(x
B − xC) . (12)

The effective potential accounts for the effective mass and frequency of each impurity [94].
These effective parameters originate from the polaron picture where the impurity becomes
dressed by the excitations of the bath, see Appendix B for a more detailed discussion.

In order to deduce the effective interaction strength geff
BC , we minimize ∆G(2)BC =

∫
dxBdxC���G(2)BC − G(2),eff

BC

���
2
, where G(2)BC and G(2),eff

BC are the impurities’ two-body correlation functions cal-

culated from the many-body three-component mixture and the effective two-body model, re-
spectively.3 By estimating the value of geff

BC which minimizes ∆G(2)BC , we are able to associate
the emergent induced correlation pattern between the impurities described in Fig. 3(b) with
a corresponding induced interaction strength geff

BC . The resultant behavior of geff
BC provided in

Figure 4(b) for fixed gAB and varying gAC agrees qualitatively with the observations made for
∆〈rBC〉. The impurities experience an induced attraction when they both couple either at-
tractively or repulsively to the bath, corresponding to an induced correlation, otherwise they
feature an induced repulsion related to their anti-correlated tendency.4 To testify the validity
range of the effective two-body model [Eq. (12)] for describing the impurities, we calculate
the fidelity FBC of their ground state wave function as obtained from H(2),eff (|ΦBC

eff 〉) and the
full three-component mixture (|Ψ̃BC

i 〉).5 The fidelity is provided in Figure 4(c) as a function
of gAC and for different fixed values of gAB. It becomes apparent that H(2),eff is not valid
for gAA < gAσ where the respective impurity phase separates with the bath. We further note
that especially in the regime where the impurities are anti-correlated and share no significant
spatial overlap, an effective treatment considering a contact interaction potential fails to de-
scribe the full many-body calculations. Instead, in this interaction regime, due to the presence
of non-local correlations, a more appropriate choice to model effective impurity-impurity in-
teractions would be a long-range interaction potential, such as the one used in Appendix C.

3We find ∆G(2)BC ≲ 10−5 for all considered interaction strengths gAB and gAC .
4Note that geff

BC = 0 if one of the impurities does not interact with the bath which further confirms the validity
of the effective model predictions since in this case no correlations are mediated.

5For this reason we use the Schmidt decomposition |ΨMB〉 =∑i
p
λi |Ψ̃A

i 〉 ⊗ |Ψ̃BC
i 〉 where the λi correspond to

the Schmidt coefficients [95,96]. As such the fidelity is expressed as FBC =
∑

i λi

��〈Ψ̃BC
i |ΦBC

eff 〉
��2.
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Still, within this effective two-body model different observables for the impurities such as their
residue and correlation functions can be extracted and shown to exhibit a qualitative correct
behavior. Deviations from the full many-body results are mostly traced back to the absence of
intracomponent correlations of the bath and impurity-medium ones.

7 Bipolaron formation

Strong attractive induced interactions between two dressed impurities, commonly occurring
for strong attractive impurity-medium direct interactions, eventually lead to the formation of
a bound dimer quasi-particle state, the so-called bipolaron [32, 45]. In order to probe the
presence of such a dimer impurity bound state in our setup, we study the bipolaron energy,

Ebip(gAB, gAC) = E(gAB, gAC)− E1(gAB)− E1(gAC) + E0 . (13)

Here, E(gAB, gAC) denotes the total energy of the system including the two distinguishable im-
purities, E0 is the energy of the bosonic gas in the absence of impurities and E1(gAB), E1(gAC)
is the energy of one impurity coupled to the bath. The bipolaron energy is presented in Fig-
ure 5(a) covering a wide range of attractive and repulsive impurity-medium interactions, gAB
and gAC . It features a rapid decrease when both impurities couple attractively to the medium,
thereby, evincing the formation of a bound state.6

A complementary observable used for the identification of the bipolaron is the spatial size of
this dimer state. This is naturally captured by σ ∼

q
〈r2

BC〉, where 〈r2
BC〉 is the squared relative

distance [cf. Eq. (10)] between the impurities B and C [32]. Specifically, in the following, we
track
p
σ/σ0 with σ0 being the distance in the uncoupled scenario, i.e., at gAB = gAC = 0,

such that we explicitly estimate the impact of the impurity-medium interactions on the dimer
size. This is depicted in Figure 5(a) as contour dashed lines along which

p
σ/σ0 is constant

in the gAB-gAC plane on top of the bipolaron energy. It can be readily seen that for increasing
magnitude of the attractive impurity-medium couplings, i.e., gAB and gAC , the size of the dimer
state shrinks further, see in particular the dashed lines in Figure 5 which from bottom left to
top right correspond to

p
σ/σ0 ≈ 0.18, 0.29,0.65.

The bipolaron dimer state refers to the bunching behavior of the impurities at the same
spatial region which manifests in the elongated shape of their two-body density ρ(2)BC(x

B
1 , xC

2 )
along the diagonal. In the non-interacting case, i.e., gAB = gAC = 0, ρ(2)BC(x

B
1 , xC

2 ) is circu-
larly symmetric in the xB

1 − xC
2 plane and becomes gradually elongated for larger attractions

due to the mediated attraction between the impurities, see e.g. Figures 5(b) and (c) for the
cases (gAB, gAC) = (−0.5,−0.5) and (−1.5,−1.5), respectively, also marked as gray dots in Fig-
ure 5(a). To quantify the degree of the aforementioned elongation, we fit the half maximum
of the impurities’ two-body density,7 i.e. ρ(2)BC(0,0)/2 to a rotated ellipse [see white dotted
lines in Figures 5(b) and (c)] and determine the corresponding eccentricity e =

p
1− b2/a2

where a (b) denotes the semi-major (semi-minor) axis marked by the black lines of the el-
lipse.8 Apparently for e = 0, ρ(2)BC(x

B
1 , xC

2 ) is circularly symmetric while in the case of e < 1 it
is elongated having the shape of an ellipse.

The eccentricity of the impurities’ two-body density is depicted in Figure 5(d) for gAB= gAC .
By tuning the impurity-medium coupling from the non-interacting limit towards strong attrac-

6The bipolaron energy decreases exponentially if both impurity-medium couplings (gAB , gAC ) are equally varied
from the non-interacting limit to the strongly attractive regime, i.e., along the diagonal in Figure 5(a).

7We remark that choosing ρ(2)BC (0,0)/2 for the fitting is employed for convenience. Indeed, also other density
values were used, e.g. ρ(2)BC (0,0)/4, verifying the same behavior of the eccentricity.

8For the fitting we use the general ellipse equation αx2
1 +β x1 x2+γx2

2 +δx1+εx2+φ = 0, which in the frame
of the ellipse reduces to x̃1

2/a2 + x̃2
2/b2 = 1.
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Figure 5: (a) Bipolaron energy, Ebip, as a function of the intercomponent coupling
strengths gAB and gAC . The dashed lines represent contours along which the size
of the dimer state σ remains fixed and in particular from bottom left to top right
correspond to
p
σ/σ0 ≈ 0.18, 0.29,0.65. (b), (c) Reduced two-body impurities’

density ρ(2)BC(x
B
1 , xC

2 ) for (gAB, gAC) = (−0.5,−0.5) and (−1.5,−1.5), respectively, in
units of mω/ħh [see also corresponding gray dots in panel (a)]. The region where
ρ
(2)
BC(x

B
1 , xC

2 ) = ρ
(2)
σσ′(0, 0)/2 is fitted to an ellipse (white dotted line) and shown

together with the semi-minor and semi-major axis (black lines). The correspond-
ing eccentricity is depicted in panel (d) assuming gAB = gAC . The transition to a
bipolaron state where the eccentricity saturates for increasing impurity-medium at-
tractions and the size of the dimer state is

p
σ/σ0 ≈ 0.29 occurs at gAC = −1.5

(gray dashed line). We consider two non-interacting but distinguishable impurities
immersed in a bosonic gas of NA = 15 atoms with gAA = 0.2.

tions, e increases from e ≈ 0 at gAB = gAC = 0 to finite positive values until it saturates at
around gAB ≈ −1.5. A larger attraction leads only to an additional shrinking of the dimer
size, see in particular the exponential decrease of

p
σ/σ0 in Figure 5(d), leaving the shape of

ρ
(2)
BC(x

B
1 , xC

2 ) almost unchanged. In this sense, we deduce that the bipolaron state is formed at
gAB = gAC ≈ −1.5 corresponding to

p
σ/σ0 ≈ 0.29 [vertical gray dashed line in Figure 5(d)].

This observation allows us to generalize our conclusions for the bipolaron formation also in
the case of gAB ̸= gAC from the critical size of the dimer state being

p
σ/σ0 ≲ 0.29, which

corresponds to the central contour dashed line in Figure 5(a).
We remark that the above-described behavior of both Ebip(gAB, gAC) and σ/σ0 is in ac-

cordance with previously studied two-component systems containing two indistinguishable
bosonic impurities that form a bipolaron9 in the strongly attractive coupling regime [32].
However, our results generalize these findings demonstrating the existence of a bipolaron
in the case of two distinguishable impurities and suggesting that this bound state is robust
to individual variations of gAB or gAC as indicated by the contour lines in Figure 5. Another
aspect that we have addressed is that increasing the mass of one impurity, e.g. considering
mB = 2, leads to a faster reduction of the dimer state size as well as the bipolaron energy for
decreasing gAB = gAC while the eccentricity saturates at smaller impurity-medium attractions
as compared to the mass-balanced case. This suggests, as expected, that a heavier impurity
facilitates bipolaron formation.

9We have also verified that upon considering two indistinguishable bosonic impurities our results regarding the
bipolaron energy, dimer size and eccentricity coincide with those of the three-component setup with gAB = gAC .
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Figure 6: (a)-(c) Reduced three-body correlation function G(3)ABC(x
A
1 , xB

2 , xC
3 ) for

(gAB, gAC) = (1.0,−0.2), (1.0, 0.2) and (−1.5,−1.5), respectively and (d) reduced
three-body density ρ(3)ABC(x

A
1 , xB

2 , xC
3 ) for (gAB, gAC) = (−1.5,−1.5). In each panel,

the contours of either (a)-(c) the two-body correlation functions, i.e., G(2)AB , G(2)AC ,

G(2)BC , or (d) the two-body density functions, i.e., ρ(2)AB , ρ(2)AC , ρ(2)BC , are provided in
the xA

1 − xB
2 -, xA

1 − xC
3 -, xB

2 − xC
3 -planes. The spatial coordinates xσ are expressed

in units of
p
ħh/mω, whereas ρ(3)ABC and G(3)ABC are presented in units of (mω/ħh)3/2.

For visualization purposes we only show the data whose correlation or density value
is larger than 0.2 of the respective maximum value. The region corresponding to
ρ
(3)
ABC(x

A
1 , xB

2 , xC
3 ) = ρ

(3)
ABC(0, 0,0)/2 is fitted to an ellipsoid rotated in space (part of

the fitted ellipsoid is marked by the white dashed lines). The three semi-axis are
denoted by the green lines in panel (d). (e) Eccentricities calculated from the semi-
axis (see main text) for attractive gAB = gAC . (f) Jacobi relative distances 〈r(3)AB−C〉
and 〈r(3)BC−A〉 [Eq. (17)] as well as the hyperspherical radius 〈r(3)A−B−C〉 [Eq. (16)] for
gAB = gAC . We mark the transition to a trimer state at gAC = −1.5 [gray dashed line
in panels (e) and (f)]. For the three-component setup two non-interacting but dis-
tinguishable impurities immersed in a bosonic gas of NA = 15 atoms with gAA = 0.2
are considered.

8 Three-body correlations and trimer state

In the following, we aim to shed light on the existence of three-body correlations appearing
in the ground state of the two distinguishable impurities embedded into the bosonic gas. For
this purpose, we construct as a first step the normalized reduced three-body density

ρ
(3)
ABC(x

A
1 , xB

2 , xC
3 ) = 〈ΨMB| Ψ̂†

A(x
A
1)Ψ̂

†
B(x

B
2 )Ψ̂

†
C(x

C
3 )Ψ̂C(x

C
3 )Ψ̂B(x

B
2 )Ψ̂A(x

A
1) |ΨMB〉 , (14)

which represents the spatially resolved probability of finding at the same time a representative
atom of the medium at position xA

1 and the impurities B and C at positions xB
2 and xC

3 [97,
98]. Experimentally, the three-body density could be obtained by detecting simultaneously
the positions of the three particles of interest, here, the two impurities and one bath atom,
and then average over a sample of experimental absorption images [99]. Having defined the
three-body density, we construct the spatially resolved three-body correlation function as a
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straightforward extension of the two-body one defined in Eq. (7), i.e.,

G(3)ABC(x
A
1 , xB

2 , xC
3 ) = ρ

(3)
ABC(x

A
1 , xB

2 , xC
3 )−ρ(1)A (x

A
1)ρ

(1)
B (x

B
2 )ρ

(1)
C (x

C
3 ) . (15)

According to this measure, the three participating particles are correlated (anti-correlated) if
G(3)ABC(x

A
1 , xB

2 , xC
3 ) > 0 (G(3)ABC(x

A
1 , xB

2 , xC
3 ) < 0), whilst a vanishing G(3)ABC(x

A
1 , xB

2 , xC
3 ) = 0 implies

that they are uncorrelated. Note, that this measure still contains two-body correlation effects
since only the product of one-body densities has been subtracted from the three-body density.

The three-body correlation function is depicted in Figures 6(a) and (b) for the case of
strong repulsions between impurity B and the bath (gAB = 1) and either weak attractive or
repulsive couplings between the bath and the C impurity, namely gAC = −0.2 and 0.2, respec-
tively. Moreover, for visualization and completeness issues, we additionally showcase within
the xA

1-xB
2 , xA

1-xC
3 and xB

2 -xC
3 planes the underlying two-body correlation functions G(2)AB (x

A
1 , xB

2 ),
G(2)AC (x

A
1 , xC

3 ) and G(2)BC (x
B
2 , xC

3 ), respectively.10 Focusing on gAC = −0.2, it becomes evident that

G(3)ABC(x
A
1 , xB

2 , xC
3 ) fragments into two correlated and two anti-correlated parts. The correlated

segments indicate that it is likely for one bath atom and the C impurity to reside at the same
side with respect to the trap center while the repulsively coupled impurity B favors to be on the
opposite side. On the other hand, the anti-correlated fragments suggest that a configuration
where the impurities and a bath atom are at the same location is not favorable. The spatial
arrangement of these fragments is altered in the three-dimensional space if the sign of gAC
is inverted, in a sense that the correlated and anti-correlated regions are rotated by roughly
90◦ around the xB

2 direction. In such a configuration the impurities are located at the same
side in terms of the trap center and a bath atom lies on the opposite side. The correspond-
ing two-body correlation functions G(2)AC (x

A
1 , xC

3 ) and G(2)BC (x
B
2 , xC

3 ) become inverted, whereas

G(2)AB (x
A
1 , xB

2 ) preserves its pattern, see the contours in Figures 6(a) and (b).
Subsequently, we turn to strongly attractive impurity-medium interactions with gAB = gAC .

Here, the three-body density ρ(3)ABC(x
A
1 , xB

2 , xC
3 ) becomes elongated exhibiting an ellipsoidal

shape, see e.g. Figure 6(d) for (gAB, gAC) = (−1.5,−1.5). Thereby, the three-body density is
stretched along the (xA

1 , xB
2 , xC

3 )-direction, i.e., the diagonal of the coordinate system, demon-
strating a bunching behavior of the two impurities and a representative atom of the bath
species. In particular, the corresponding three-body correlation function, presented in Fig-
ure 6(c), features a correlated pattern along the diagonal around which a shell-like structure
consisting of anti-correlated fragments is formed.

To quantify the deformation of the three-body density, we fit its half maximum, i.e., ρ(3)ABC(0,
0,0)/2, to a rotated ellipsoid (see white dashed lines in Figure 6(d) corresponding to a profile
of the ellipsoid). Specifically, we fit the ellipsoid equation x̃2

1/a
2 + x̃2

2/b2 + x̃2
3/c

2 = 1, where
x̃ i refers to the coordinate system of the ellipsoid spanned by its semi-axis with lengths a,
b and c [green lines in Figure 6(d)]. From the semi-axis we determine three eccentricities,
namely eab =
p

1− b2/a2, eac =
p

1− c2/a2 and ebc =
p

1− c2/b2 with a ≥ b ≥ c. These
eccentricities are depicted in Figure 6(e) together with the relative deviation, er r, from the
ellipsoid function for varying gAB and assuming gAB = gAC . In the non-interacting case, i.e.,
gAB = gAC = 0, the eccentricities are already finite indicating a deviation from a spherical
shape, which is in contrast to the bipolaron [cf. Figure 5(d)]. This is attributed to the pres-
ence of finite intraspecies interactions among the bath particles causing the observed spatial
deformation. Importantly, the eccentricities show an increasing tendency for stronger attrac-
tive values of gAB = gAC , meaning that the elongation of the ellipsoid is enhanced until it
saturates at around gAB = gAC ≈ −1.5.

10As an example, notice that the contours in the xA
1 -xB

2 and xB
2 -xC

3 planes of Figure 6(c) correspond to the
G(2)AB (x

A
1 , xB

2 ) and G(2)AB (x
B
1 , xC

2 ) illustrated in Figures 2(b1) and (b2), respectively.
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A further characterization of the size of the three-body cluster at strong attractions is
achieved by inspecting the hyperspherical radius 〈r(3)

σ−σ′−σ′′〉 and the Jacobi relative distance

〈r(3)
σ′σ′′−σ〉. The latter denotes the distance between the atom σ and the center-of-mass of the

particles σ′ and σ′′ [71,100,101]. These observables are defined as

〈r(3)A−B−C〉=
1

NANBNC

∫
dxA

1dxB
2 dxC

3

q
(xA

1)2 + (x
B
2 )2 + (x

C
3 )2ρ

(3)
ABC(x

A
1 , xB

2 , xC
3 ) , (16)

〈r(3)
σ′σ′′−σ〉=

1
NANBNC

∫
dxA

1dxB
2 dxC

3

����xσ −
1
2

�
xσ
′
+ xσ

′′�����ρ(3)ABC(x
A
1 , xB

2 , xC
3 ) , (17)

with σ,σ′,σ′′ ∈ {A, B, C} and σ ̸= σ′, σ ̸= σ′′, σ′ ̸= σ′′. Note that in the present case
〈r(3)AB−C〉= 〈r(3)AC−B〉, since impurity B and C have identical mass and are coupled with the same
strength to the bath. Figure 6(f) reveals that for stronger impurity-medium attractions the
hyperspherical radius decreases exponentially implying an exponential shrinking of the size of
the three-body cluster. The same exponential decrease is also captured by the expectation val-
ues of the Jacobi relative distances where we find 〈r(3)BC−A〉< 〈r(3)AB−C〉 reflecting the fact that the
bath atoms extend over a larger spatial region than the impurities due to the repulsive gAA. The
above properties imply the formation of a bound trimer state for couplings gAB = gAC ≤ −1.5
corresponding to values where the ellipsoidal structure of the three-body density saturates. In
this sense, the formation of a bipolaron is accompanied by the development of a bound trimer
state.

9 Conclusions and perspectives

We have studied the correlation properties in the ground state of two non-interacting dis-
tinguishable impurities immersed in a bosonic bath with the entire three-component system
being harmonically trapped. The impurities become dressed by the excitations of the bosonic
gas generating quasiparticle states, herein Bose polarons, having characteristic properties such
as effective mass and featuring induced correlations. In order to appreciate the impact of inter-
and intracomponent correlations we rely on the variational ML-MCTDHX method whose flex-
ible wave function truncation ansatz allows to operate at different correlation orders. An
emphasis is placed on the high tunability of the three-component setting unveiling rich den-
sity and correlation patterns, the manipulation of both the sign and the strength of impurities
induced interactions as well as the formation of bound impurity states.

Specifically, we demonstrate that upon varying the involved impurity-medium couplings,
both impurities can either localize at the trap center (attractive intercomponent interactions),
form a shell around the bosonic gas (repulsive interactions), i.e., phase-separate, or one of
them localize and the other phase-separate (alternating signs of impurity-medium couplings).
These density configurations can be understood at least qualitatively in terms of an effective
potential picture for the impurities which refers to a dipped harmonic oscillator (double-well)
for attractive (repulsive) intercomponent interactions.

A detailed characterization of the induced correlations is provided in a wide range of
impurity-medium interactions aiming to expose their intricate role. Inspecting the two-body
intercomponent correlation functions we find that the bosonic gas mediates anti-correlations
among the impurities if one of them couples repulsively and the other attractively to it. In
contrast, induced two-body correlations occur as long as both impurities couple either attrac-
tively or repulsively to their medium. The origin of the aforementioned correlation patterns
is traced back to the spatial configurations of each component. This means that if the im-
purities have a finite spatial overlap with the bath the latter mediates two-body correlations
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between them. Interestingly, there is also the possibility that the impurities are not overlap-
ping but can be still correlated implying that non-local correlations are in play. To quantify
the strength and sign of the induced interactions we employ the relative two-body distance
among the impurities extracting all contributions stemming from mean-field effects. In this
sense, it is demonstrated that induced two-body correlations (anti-correlations) are related to
mediated attractive (repulsive) impurity interactions. These findings are further supported by
an effective two-body model containing the impurities effective trapping potential and their
induced interactions. Importantly, this approach allows to determine the strength and sign of
the effective interactions mediated between the impurities through a comparison with the full
many-body results. Moreover, by constructing an effective one-body Hamiltonian enables us to
estimate the effective mass and trapping frequency of each distinguishable impurity (polaron),
see Appendix B.

Evidences regarding bipolaron formation are provided, when both impurities are strongly
attractively coupled to the bosonic gas, by means that the bipolaron energy and the size of the
underlying dimer state rapidly decrease for stronger attractions. Interestingly, we determine
the intercomponent three-body correlation function according to which overall weak three-
body correlations exist and become enhanced for strongly attractive impurity-medium inter-
actions signaling the formation of trimers among the impurities and an atom of the medium.

In this investigation we have restricted ourselves to the ground state of the three-
component mixture. Further understanding on the character of the impurities induced in-
teractions and in particular their nonlocal character and their dependence on the statistics of
the medium are interesting perspectives. In this context, a systematic finite size scaling analy-
sis with respect to the number of bath particles in order to infer the persistence of our findings
e.g. in terms of the crossover of the impurities induced interactions (see also Appendix D) and
in general the build-up of intercomponent correlations would be desirable as well. Also, the
emulation of spectroscopic schemes that will allow the identification of the ensuing polaron
states and excitations [24, 102] constitutes an intriguing direction. Furthermore, studying
the behavior of impurities induced interactions and bound states in different external trap-
ping potentials is also an interesting direction. Here, a setup of immediate interest would be
to load the bath atoms in a ring potential and investigate the formation of impurities bound
states in both the attractive and the repulsive impurities-medium interaction regimes. An-
other straightforward extension would be to explore the nonequilibrium impurities dynamics
in order to understand the build-up of induced correlations. An additional fruitful research
direction is to understand the Bose polaron formation when indistinguishable impurities are
immersed in an attractive two-component gas forming a droplet. Certainly, studying corre-
lation effects in particle-balanced three component settings with an emphasis on the few- to
many-body crossover and in particular close to the pair immiscibility threshold is worth to be
pursued.
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Figure 7: (a)-(b) Diagram of the intercomponent (see legends) logarithmic negativity
Eσσ′ [Eq. (A.1)] as a function of the impurity-medium couplings (gAB, gAC). The
harmonically trapped three component system consists of two non-interacting but
distinguishable impurities immersed in a bosonic gas of N = 15 atoms with gAA = 0.2.

A Behavior of the bipartite entanglement

A standard measure to estimate the bipartite entanglement of mixed states that exist in a
multi-component system11 is encapsulated in the logarithmic negativity [56–59,62,104,105].
It is based on the partial transpose of the two-body species reduced density matrix,12 which,
e.g. referring to species σ and σ′, is obtained by integrating out the degrees of freedom of
species σ′′ leading to ρ(2),spec

σσ′ = Trσ′′
�|ΨMB〉〈ΨMB|� = ∑i jlm

∑
k Ci jkC∗lmk|Ψσi 〉|Ψσ

′
j 〉〈Ψσl |〈Ψσ

′
m |

[54,55,77].
Its partial transpose Tσ with respect to species σ is calculated by exchanging the indices

i and l associated with species σ, i.e.,
�
ρ
(2),spec
σσ′ |i jlm

�Tσ
= ρ(2),spec

σσ′ |l jim. Calculating the eigen-

values of
�
ρ
(2),spec
σσ′
�Tσ

and in particular summing up its negative eigenvalues µi yields the

so-called negativity, Nσσ′ =
∑

i |µi|. Subsequently, the logarithmic negativity reads

Eσσ′ = log2 (1+ 2Nσσ′) . (A.1)

This measure exploits the fact that for a separable mixture, e.g. ρ(2),spec
σσ′ =
∑

i piρ̃
(1),spec
σ,i ⊗ρ̃(1),spec

σ′,i ,

the partial transpose does not alter the spectrum of ρ(2),spec
σσ′ and, hence, all eigenvalues remain

positive. In this sense, the presence of negative eigenvalues guarantees the existence of entan-
glement. However, this statement can not be inverted, i.e., even if the logarithmic negativity
is zero the species σ and σ′ can still be entangled [103].

The logarithmic negativity between the bath and the B impurity, EAB, as well as among the
impurities, EBC , is illustrated in Figures 7(a) and (b) respectively within the gAB-gAC plane. As
expected it overall captures the main features of the integrated correlation functions shown
in Figures 3(a) and (b). For instance, EAB vanishes for strongly attractive gAC and strongly
repulsive gAB [Figure 7(a)], while the parameter region referring to the impurities coalescence
is in a similar way pronounced in EBC as it has been observed for CBC , compare Figures 3(a) and
(b) for repulsive gAB and gAC . Recall that while Eσσ′ provides only a quantitative diagnostic for
the bipartite entanglement and does not describe the correlated or anti-correlated behavior as
Cσσ′ it still gives insight into the entanglement content of the many-body system. As such, for
large gAB < 0 the logarithmic negativity uncovers that the bath and the B impurity are strongly

11Notice that, for instance, the von-Neumann entropy as an entanglement measure is well-defined in a two
species but it is not applicable in multi-component ones [103].

12This is completely different from the two-body density matrix of two particles given by Eq. (8).
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Figure 8: One-body density of the B impurity obtained within different approaches
(see legend) for the interaction configurations (a) (gAB, gAC) = (−0.2, 0.1) and (b)
(0.2, 0.1). Specifically, ρ(1)MB denotes the one-body distribution of the full three-

component many-body system, whereas ρ(1),eff
B and ρ(1),ho−eff

B are calculated using
the effective one-body Hamiltonians composed of either an effective harmonic oscil-
lator with an effective mass and frequency [cf. Eq. (B.1)] or the effective potential
defined in Eq. (6), respectively. Effective mass and trapping frequency of the dressed
(b) B and (c) C impurity, respectively, as deduced from the effective polaron model
defined of Eq. (B.1).

entangled especially so in the repulsive gAC > 0 region, while varying gAB towards the weakly
attractive regime and for |gAC | > 1 entanglement is reduced [Figure 7(a)]. This is attributed
to the simultaneous increase of EAC ,13 unveiling a competition between the intercomponent
entanglement of individual impurities with the medium. Finally, in line with the predictions
of CBC , EBC demonstrates that entanglement is finite when both impurities are either weakly
attractive or strongly repulsively coupled to the medium, see Figure 3(d).

B Effective mass and trap frequency of a single impurity

In the following, we approach the three-component impurity setting as a polaron problem
since each individual impurity via its coupling to the bosonic gas is dressed by the excitations

13Since the impurities are in this case physically identical, i.e., mA = mB ≡ m and ωA = ωB ≡ ω, the phase
diagram of EAC corresponds to the one of EAB but reflected along the diagonal gAB = gAC .
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of the latter. In this sense, we aim to capture the effective behavior of the B and C impurity
with the effective one-body model [94],

Ĥ(1),ho−eff
σ = − ħh

2

2meff
σ

∂ 2

(∂ xσ)2
+

1
2

meff
σ (ω

eff
σ )

2 x2 , (B.1)

where meff
σ andωeff

σ denote the polaron effective mass and trapping frequency withσ∈{B, C}.14

To identify the values of the effective mass and frequency, we minimize the cost function

Lσ =∆ρ(1)σ +∆Eσ . (B.2)

In this expression, the first term refers to ∆ρ(1)σ =
∫

dxσ
��ρ(1),MB
σ (xσ)−ρ(1),ho−eff

σ (xσ)
��2 with

ρ(1),MB
σ and ρ(1),ho−eff

σ being the one-body density as predicted from the full three-component
system and the effective one-body model, respectively. The second contribution of the right-
hand side in Eq. (B.2) designates the energy difference ∆Eσ =

��EMB
σ − Eho−eff

σ

��2, where EMB
σ =

〈ΨMB|Ĥσ|ΨMB〉 is the σ impurity energy and Eho−eff
σ = 〈φ|Ĥ(1),ho−eff

σ |φ〉 = 1
2ω

eff
σ is the energy

of the effective one-body model and |φ〉 the corresponding ground state. Note that in order
to uniquely estimate meff

σ and ωeff
σ one needs to adequately describe both the density and the

energy of the impurity.
Figures 8(a) and (b) showcase the one-body densities ρ(1),MB

B and ρ(1)ho−eff
B for the

characteristic interaction configurations (gAB, gAC) = (−0.2, 0.1) and (0.2, 0.1), respec-
tively. For comparison we additionally provide the one-body density ρ(1),eff

B obtained from

Ĥ(1),eff
B = − ħh2

2mB

∂ 2

(∂ xB)2 +V eff
B . As it can be readily seen, the one-body densities predicted by

the two effective one-body models are in excellent agreement with the one corresponding to
the full three-component many-body system. Deviations start to become evident for strong
repulsive impurity-medium couplings (not shown) where the impurity and the medium phase
separate [36, 94]. Recall that the effective model is by definition valid for weak intercompo-
nent repulsions where the impurity does not probe the edges of the bosonic cloud.

The effective masses and frequencies of the B and C impurities after minimization of the
cost function given by Eq. (B.2) are represented in Figures 8(c) and (d) with respect to the
impurity-medium couplings. It is important to point out that both the effective mass and
frequency of a specific impurity, e.g. the B one, primarily depend on its coupling with the bath
gAB. The interaction strength of the other impurity (C) with the bath, e.g. gAC , has almost no
impact on the effective parameters of impurity B. For instance, this conclusion can be drawn
from the nearly constant behavior of meff

B andωeff
B for varying gAC shown in Figure 8(c), or the

fact that meff
C and ωeff

C remain almost intact for fixed gAC and different gAB, see Figure 8(d).
For an attractively coupled impurity with the bosonic gas, the effective mass and frequency

become larger than their bare values [gray dashed lines in Figures 8(c) and (d)], see in par-
ticular meff

B , ωeff
B when gAB = −0.2 in Figure 8(c) and meff

C , ωeff
C for gAC < 0 in Figure 8(d). As

such, the emergent Bose polaron experiences a narrower trapping potential, thereby, reflecting
the localization of the impurity at the trap center [cf. ρ(1),ho−eff

B and V ho−eff
B in Figure 8(a)].

On the other hand, in the case of a repulsively coupled impurity the effective trapping fre-
quency is still tighter than the original value, but the effective mass becomes smaller than its
bare value [cf. meff

B , ωeff
B for gAB = 0.2 in Figure 8(c) as well as meff

C , ωeff
C for gAC > 0 in

Figure 8(d)]. In particular, the effective mass is small enough to compensate the increased
effective frequency meaning that the underlying harmonic trap is eventually broadened [cf.
V ho−eff

B in Figure 8(b)]. Additionally, the comparatively smaller effective mass is related to

14Recall that within the effective two-body model described by Eq. (12) we implicitly account for the effective
mass and frequency via the effective potential V eff

B,C Eq. (6). Indeed, beyond mean-field corrections imprinted on

ρ
(1)
A and, thus appearing in V eff

B,C , affect the effective mass and frequency [94].
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Figure 9: (a) Relative deviation between the fidelities Fexp
BC and F contact

BC , which corre-
spond to the overlap of the impurities two-body wave function obtained from the full
many-body approach and the effective model of Eq. (12) containing either an expo-
nential or a contact-type interaction potential, respectively. (b) Difference between
∆G(2),exp

BC and∆G(2),contact
BC , referring to the variance of the two-body correlation func-

tion calculated within the effective two-body model using either the contact or the
exponential interaction potential with respect to the full three-component system.
For both quantities the relative deviations are minor, testifying the validity of both
effective interaction potentials.

a spatial delocalization of the impurity cloud.15 In this way, the effective one-body model
captures the effects imprinted on the impurity in the three-component system.

C Modelling the effective impurity interactions with an exponen-
tial potential

To verify the validity of the contact interaction potential for describing the induced interac-
tions between the impurities [Eq. (12)], we next exemplify that our results do not change if
one instead uses an exponential potential. The latter has been derived in Refs. [38, 39] and
holds in the homogeneous case and for immobile impurities residing at distances satisfying

l = |xB − xC | ≪ ξA, with ξA ≈ 1/
Ç

2mAgAANAρ
(1)
A (0) ≈ 0.6 being the healing length of the

bath. In particular, we replace the interaction term in Eq. (12) with

U(l) = − gAB gAC mAp
γ

e−2l/ξA , (C.1)

where γ = mAgAA

NAρ
(1)
A (0)

.16 As discussed in Section 6.2, we judge the quality of the effective two-

body model by estimating the fidelity, FBC , between the impurities two-body wave function as
extracted from the full many-body system and the effective two-body model containing either
a contact or an exponential interaction potential. Subsequently, we determine the difference
Fexp

BC −F contact
BC which as shown in Figure 9(a) testifies deviations at most of the order 10−4.

Proceeding one step further, we determine the overlap between the respective two-body
correlation functions of the impurities determined within the full three-component system

15Indeed, the kinetic energy of, e.g., the impurity C increases for increasing gAC while the potential energy
remains nearly constant.

16We model the exponential potential with the so-called POTFIT method [106,107].
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and the effective two-body model. Namely, we track ∆G(2),exp
BC =
∫

dxBdxC

���G(2)BC − G(2),exp
BC

���
2
,

where G(2),exp
BC denotes the two-body correlation function obtained within the effective two-

body model (see also Section 6.2) with an exponential interaction. To infer the deviations
among the exponential and contact effective interactions at the two-body correlation level,
we calculate the difference ∆G(2),exp

BC − ∆G(2),contact
BC , see Figure 9(b). Also here, only small

deviations of the order 10−5 are identified.
Therefore, the contact and exponential effective interaction potentials lead essentially to

the same description regarding the impurities properties. This outcome was not a-priori ex-
pected since the exponential potential is originally derived in the homogeneous case.

D Impact of mass-imbalanced impurities and the atom number of
the bosonic gas

Let us demonstrate the generalization of our results in the main text when the impurities
are mass-imbalanced or the bosonic medium contains a larger number of particles. For this
purpose, we focus on the behavior of the intercomponent correlations which can be quantified
through the integrated correlation function [Eq. (9)] presented in Figure 10 for different
system parameters.

In general, increasing the mass of an impurity disturbs the cloud of the bosonic gas to a
larger degree which should eventually lead to an enhanced impurity-medium correlation. This
is indeed evident in Figure 10(a) where the integrated correlation function, CAB, is increased
as compared to the mass-balanced case, thus testifying an overall larger degree of entangle-
ment. Furthermore, since the correlation between the C impurity and the bath is not affected
by the change of mB [Figure 10(b)], the larger CAB leads to a stronger mediated correlation
between the impurities, see e.g. CBC in Figure 10(c). The latter naturally leads to an ampli-
fied impurities’ induced interaction for increasing mB. In particular, for gAB = 0.2 and strong
repulsive gAC , where CBC features the largest increase.

Next, we concentrate on the mass-balanced system but consider a larger number of bath
particles and in particular NA = 30, while maintaining the same mean-field interaction, i.e.,
NAgAA = const. As it can be seen, the impurity-medium correlations, as captured by CAB and
CAC , are reduced compared to the reference case NA = 15, gAA = 0.2 [Figure 10(a), (b)]. This
is attributed to the smaller intra-species coupling strength gAA = 0.1 resulting in a decrease
of the respective intra-species correlations among the bath particles. However, the mediated
correlations among the impurities B and C are clearly enhanced when gAB and gAC are both
repulsive, see Figure 10(c). In this sense, a larger number of bath particles featuring a decreas-
ing intraspecies interaction is associated to a reduction of intraspecies correlations of the bath
and impurity-medium ones but enhances to a certain degree the mediated correlation between
the impurities. This behavior hints towards a complicated correlation transfer mechanism to
the impurity-impurity subsystem which deserves further future investigations. Nevertheless,
a systematic finite size scaling analysis in terms of the atom number in the bath is required
in order to deduce the robustness of our findings. However, we expect that the main features
of the impurities dressing, e.g. the crossover from a correlated to an anti-correlated behavior
(associated to attractive and repulsive induced interactions as discussed in Sections 5 and 6),
and the existence of the impurities bound states for attractive interactions are retained for
larger number of bath atoms.
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Figure 10: Integrated two-body correlation function [Eq. (9)] among (a) the B im-
purity and the medium, (b) the C impurity and the medium and (c) between the
impurities as a function of the intercomponent interaction strength gAC . In all pan-
els, we consider fixed gAB = −0.2, 0.2 as well different masses of the B impurity
(simultaneously settingωB =

p
mA/mB) and atom numbers of the medium (see leg-

end), while keeping constant the mean-field interaction NAgAA. The gray dashed line
in panel (c) marks ∆ 〈rBC〉= 0.

E Estimating the importance of correlations on the many-body
wave function

To expose the impact of intercomponent correlations at different interaction regimes on the
level of the many-body wave function we analyze the fidelity

��〈ΨsMF|ΨMB〉
��2, see Figure 11(a).

Here, |ΨMB〉 denotes the full many-body wave function where all emergent inter- and intracom-
ponent correlations are taken into account, while |ΨsMF〉 refers to the species mean-field wave
function which ignores all intercomponent correlations. Naturally, the fidelity is unity when
the species are non-interacting, i.e., gAB = gAC = 0, since in this scenario intercomponent cor-
relations are a-priori prohibited. However, the fidelity decays for increasing impurity-medium
coupling strengths as intercomponent correlations are triggered in this case. The largest devi-
ation between the many-body and species mean-field wave functions occurs in the parameter
region corresponding to the coalescence of the impurities, i.e., for strongly repulsive gAB and
gAC .

Further understanding of the respective correlation mechanisms can be delivered by iden-
tifying the participating microscopic configurations. For this reason we construct the species
function eigenbasis |ψA

i 〉|ψB
j 〉|ψC

k 〉 obtained by calculating the eigenfunctions of an effective
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Figure 11: (a) Fidelity between the many-body wave function, |ΨMB〉 (including all
emerging intra- and intercomponent correlations) and the species mean-field wave
function |ΨsMF〉 where intercomponent correlations are neglected. The reduction of
the overlap from unity for finite interactions evinces the participation of intercom-
ponent correlations. (b) Probability amplitude Pi jk denoting the overlap of a three-
component time-independent basis |ψA

i 〉|ψB
j 〉|ψC

k 〉, constructed from the eigenstates
of an effective species Hamiltonian (see main text), with the many-body wave func-
tion |ΨMB〉. Apparently, energetically higher-lying excited states possess substantial
contribution. Probability amplitudes which remain below 0.02 within the interaction
range −2.0 ≤ gAC ≤ 2.0 are shown as gray lines. The harmonically trapped three
component system consists of two non-interacting but distinguishable impurities im-
mersed in a bosonic gas of NA = 15 atoms with gAA = 0.2.

species Hamiltonian [cf. Eq. (2)] characterized by the effective potential defined in Eq. (6).17

As basis for the bath we take the ground and the energetically two lowest excited states of the
effective potential into account, while for the two impurities we consider the corresponding
energetically lowest six eigenstates leading to a total number of 108 three-component basis
states |ψA

i 〉|ψB
j 〉|ψC

k 〉.
The respective probability amplitudes Pi jk =

���
�
〈ψA

i |〈ψB
j |〈ψC

k |
�
ΨMB〉
���
2
, with |ΨMB〉 being

the full many-body wave function, are presented in Figure 11(b) for gAB = 1.0 and varying
gAC . Notice that the state |ψA

0〉|ψB
0 〉|ψC

0 〉, denoting the case in which each species occupies
the ground state of the effective species Hamiltonian, represents the three-body ground state
obtained with a sMF ansatz. Consequently, P000 =

��〈ΨsMF|ΨMB〉
��2 (cf. Figures 11(a) and (b) for

gAB = 1.0). In general, it is observed that finite interactions yield a non-negligible population
of energetically higher-lying excited states. Importantly, this behavior becomes enhanced in
the coalescence regime, i.e., for strong repulsive gAB and gAC . This means that there are several
macroscopically occupied basis states reflecting the significant intercompoment entanglement
(cf. Figures 2 and 7).

17The impurities eigenstates are found by solving the corresponding one-body Hamiltonian, while the eigenstates
of the effective bath Hamiltonian, consisting of NA particles, are determined via improved relaxation [108].
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We explore effective approaches for describing the dynamics of induced interactions among two noninter-
acting distinguishable impurities (Bose polarons) when their couplings to the host species are switched on.
First, we evaluate the time-dependent characteristics of each polaron through reduced single-particle models.
Their validity is ultimately judged by comparing them to observables obtained within a many-body variational
approach. We argue that utilizing a time-dependent optimization process with the effective mass and frequency
being fitting parameters leads to an accurate matching on the level of one-body observables with the prediction
of the many-body method. Next, we construct two-body effective models, which, in addition to the effective
parameters of the single polaron, include a contact interaction potential modeling the induced interactions.
It is shown that the instantaneous coupling strength obtained with a time-dependent optimization process
allows for an accurate description of the impurities two-body correlation dynamics when compared to the
many-body calculations. In this sense, it is possible to describe the dynamical crossover from correlated to
anticorrelated impurity patterns related to the transition from attractive to repulsive induced interactions. Our
results should facilitate the description of strongly particle-imbalanced mixtures via reduced models and hence
their experimental understanding.

DOI: 10.1103/PhysRevA.111.013306

I. INTRODUCTION

Multicomponent ultracold quantum gases are versatile
platforms to explore complex many-body states of matter
[1–3] since they exhibit an exquisite tunability in terms of
system parameters such as species selective external poten-
tials [4–6], interactions [7–9], and atom number [10–12]. In
the case of strongly particle imbalanced two-component mix-
tures the minority species, called an impurity, is coupled to a
majority gas and becomes dressed by its excitations forming
a quasiparticle [13–15] dubbed the Bose [16–21] or Fermi
[22,23] polaron depending on the statistics of the host. Po-
laron properties are usually spectroscopically probed in the
experiment [24,25].

The large population imbalance naturally motivates re-
ductions of the original many-body problem. These involve
effective single-particle models [15,26–29] aiming to capture
quasiparticle characteristics such as their effective mass and
residue [14,29–31], or effective two-body approaches [32–35]
to describe induced impurity-impurity interactions mediated
by the host. Specifically, the presence of attractive induced
interaction has been identified when the impurities couple
either both attractively or repulsively to their medium [21,34–
43]. This eventually leads for strong impurity-medium attrac-
tions to the generation of bound states, named bipolarons
[44–47]. However, another intriguing possibility is to consider
a three-component setting where distinguishable impurities
can couple with opposite signs to their bosonic host suggest-
ing the existence of a mediated repulsive interaction potential
[40,48–50]. In Ref. [50] the existence of mediated attractive

and repulsive interactions was unveiled being accompanied
by a two-body correlated and anticorrelated behavior of the
impurities, respectively. A similar behavior has also been pre-
dicted for a fermionic host where the induced interaction can
be approximated by a contact interaction potential [51].

Apparently, to reveal such processes three-component mix-
tures are required. Relevant experimental realizations consist
of isotopes including 41K, 40K, and 6Li [8] or 87Rb, 40K,
and 6Li [52] as well as the three hyperfine states of spin-1
87Rb condensates [53,54]. Notable investigations with three-
component mixtures revolve from soliton creation and their
interactions [53,54], the formation of droplet-like configura-
tions [55–57] to enriched lattice phases beyond the common
superfluid to Mott-insulator transition [58,59]. Other relevant
studies investigated the impact of impurities on a binary mix-
ture [60–65], thereby, focusing on either polaronic properties
in a harmonic trap [62,63], or transport mechanisms within a
double-well potential [64] as well as the interplay between a
disordered external potential and the interspecies interactions
in the emergent dynamical response [65].

The aim of the present work is to utilize the richness
of three-component cold atom platforms to study the
validity of effective approaches to capture dynamical
properties of ensuing quasiparticles. Quasiparticles in our
case are generated through embedding two noninteracting
distinguishable impurities to a bosonic environment. Notice
here also that the dynamical response of three-component
systems is largely unexplored especially so for strongly
imbalanced settings. Initially, we identify the ground-state
impurity-impurity induced correlation patterns with respect
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to the distinct impurity-medium interactions. As in Ref. [50],
we showcase the existence of a crossover from attractive
to repulsive induced interactions when the product of the
different impurity-medium couplings changes sign.

Next, linear ramps of the impurity-medium interactions
are performed across the distinct induced interaction regimes
or remaining within the same. This process leads to a time-
dependent effective mass and frequency of the polarons as
well as induced correlations [35,66]. To estimate these ef-
fective parameters we first construct different single-particle
reduced models describing the composite system when solely
one of the impurities interacts with the medium. To testify
the applicability of these reduced approaches their predictions
are directly compared with the ones of the correlated many-
body simulations at the level of one-body observables. We
find that the best agreement occurs for the model based on
a time-dependent optimization using the effective mass and
frequency as time-dependent fitting parameters for matching
one-body observables within the many-body method. Other
reductions, e.g., assuming adiabatic ramping of the interaction
or that the host acts as an effective time-independent potential
for the impurity, appear to be less accurate, e.g., due to ne-
glecting the backaction of the impurities to the host.

Subsequently, we develop two-body reduced models for
quantifying the presence of induced correlations in the course
of the evolution. These approaches inherit the information
of the appropriate optimized one-body models and addition-
ally contain an effective two-body interaction potential for
the impurities. Their validity is confirmed by minimizing
the deviation of the impurities two-body correlation function
between the effective picture and the many-body simula-
tions [35]. Once again, we showcase that a time-dependent
optimization procedure on the impurities effective coupling
provides the most accurate description as compared to the
many-body results. Interestingly, adequate (but less) agree-
ment is observed by deploying an exponentially decaying
interaction potential. Finally, we quantify the presence of
impurities-medium and impurity-impurity entanglement in
the dynamics of the von Neumann entropy and the logarithmic
negativity, respectively.

The present work is structured as follows. In Sec. II
we introduce the many-body Hamiltonian of the three-
component mixture and describe the applied linear ramp of the
impurity-medium coupling. The main facets of the employed
many-body variational method are explicated in Sec. III. The
ground-state impurity-impurity induced correlation patterns
are classified in Sec. IV. The impurity dynamics triggered
via linear ramps of the impurity-medium interactions is an-
alyzed in detail in Sec. V along with the respective single-
and two-particle reduced models used to quantify the time-
dependent effective mass and frequency of the polaron. We
monitor the impurities-medium and impurities entanglement
in Sec. VI. We summarize our results and discuss possible
future extensions in Sec. VII. In Appendix A we showcase the
impact of the quench ramp rate. Appendix B elaborates on the
reduced methods used to determine the ground-state effective
parameters, while in Appendix C the convergence behavior
of the optimization technique is explicated. The applicability
of the effective two-body model for various ramp protocols
is demonstrated in Appendix D. We estimate the dominant

expansion coefficients of the impurities’ correlation function
in Appendix E.

II. THREE-COMPONENT BOSONIC MIXTURE

We deploy an ultracold three-component atomic mixture
in the presence of an external one-dimensional (1D) harmonic
oscillator potential with ωA = ωB = ωC ≡ ω = 1. Species A
consists of NA = 10 bosons and represents the host for the
impurity species B and C, where NB = NC = 1. For simplic-
ity, a mass-balanced system, i.e., mA = mB = mC ≡ m = 1,
is assumed. Due to ultralow temperatures it is adequate to
use a contact s-wave interaction potential of strength gσ,σ ′ ,
where σ, σ ′ ∈ {A, B,C}, for two atoms of the same or differ-
ent species [67]. It is known that the effective 1D interaction
strengths gσσ ′ depend on the respective three-dimensional
scattering lengths a3D

σσ ′ and the transverse confinement fre-
quency ω⊥. The first can be tuned via Feshbach resonances
[67,68] and the second leads to confinement-induced reso-
nances [69]. The 1D nature of the emergent dynamics is
ensured by utilizing an adequately large trap aspect ratio,
e.g., ωx/ω⊥ = 0.01 customary in 1D experiments [53,70] to
prevent involvement of transversal excitations. Additionally,
in view of the scope of the present work, namely, to reveal the
potential presence of induced impurity-impurity interactions,
we set gBC = 0. The many-body dimensionless Hamiltonian
of this three-component setting is given by

Ĥ =
NA∑
i=1

ĥA
(
xA

i

) + gAA

∑
i< j

δ
(
xA

i − xA
j

)

+ ĥB(xB) + gAB

NA∑
i=1

δ
(
xA

i − xB
)

+ ĥC (xC ) + gAC

NA∑
i=1

δ
(
xA

i − xC
)
. (1)

Here, ĥσ (x) = −(1/2)[(d2/dx2) − x2] denote the σ -
component single-particle Hamiltonian terms. In the above
Hamiltonian we employ harmonic oscillator units in which
the energy scales as h̄ω and the length and interactions are
expressed in units of

√
h̄/mω and

√
h̄3ω/m, respectively.

Experimentally, three-component mixtures have already
been realized [8,52,54,71] and thus our system should be
within reach, at least, in terms of the considered population
imbalance among the components. For instance, a promising
experimental setup to utilize would consist of two Rubidium
isotopes where, e.g., 85Rb represents the bath and two 87Rb
atoms in different hyperfine states emulate the impurities
[72,73]. Similarly, employing a radiofrequency protocol as
in Ref. [54] three different hyperfine states of 87Rb could
be populated with the required imbalance in order to realize
our system.

In the following, the three-component system will be pre-
pared in different correlated ground-state configurations with
respect to the impurity-medium interaction strengths as out-
lined in Sec. IV. Consecutively, a time-dependent linear ramp
from an initial to a final value characterized by a ramping rate
τ triggers the nonequilibrium dynamics, see Sec. V, aiming
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to quantify emergent impurity-impurity mediated interactions.
Specifically, the employed interaction ramp protocol reads

gAσ (t ) =
{

g0
Aσ + gτ

Aσ −g0
Aσ

τ
t, t < τ,

gτ
Aσ , t � τ,

(2)

where gAσ (t = 0) ≡ g0
Aσ and gAσ (τ � t ) ≡ gτ

Aσ with σ =
{B,C}. Within the main text we shall mainly focus on ramp
rates τω = 1, 5. These ensure that the interaction ramp is
slower compared to the sudden quench and, thereby, leads to
fewer high-energy excitations, but it is still far from being
adiabatic (see also Appendix A). Experimentally, ramping
between two interaction strengths at different rates can be
realized by adjusting the magnetic field strength near a cor-
responding Feshbach resonance. Hence, it is possible to tune
the respective intra or intercomponent scattering lengths with
a finite ramp rate, e.g., as in the experiments of Refs. [74,75].

III. MANY-BODY COMPUTATIONAL METHOD

To simulate the ground-state and the nonequilibrium
quantum dynamics of the aforementioned three-component
system we resort to the ab initio multilayer multiconfigu-
ration time-dependent Hartree method for atomic mixtures
(ML-MCTDHX) [76–78]. In this context, the ansatz of the
many-body wave function inherits a multilayer structure with
time-dependent and variationally optimized basis functions
such that all relevant intra and intercomponent correlations
are taken into account. In particular, the first truncation of
the many-body wave function |�(t )〉 is performed on the
so-called species layer. Namely, |�(t )〉 is expanded in terms
of Dσ time-dependent species functions, {|�σ

i (t )〉}Dσ

i=1 with
σ = A, B,C, and time-dependent Ci jk (t ) coefficients, i.e.,

|�(t )〉 =
∑
i jk

Ci jk (t )
∣∣�A

i (t )
〉 ⊗ ∣∣�B

j (t )
〉 ⊗ ∣∣�C

k (t )
〉
. (3)

Each |�σ
i (t )〉 describes the state of the entire σ species, which

is achieved by the second truncation on the so-called parti-
cle layer. This means that |�σ

i (t )〉 is expressed with respect
to bosonic number states |	n(t )〉 with time-dependent expan-
sion coefficients Cσ

i,	n(t ). The number states themselves are
constructed from dσ time-dependent single-particle functions
(SPFs), where the elements of 	n = (n1, . . . , ndσ

) quantify the
particle occupation in each SPF satisfying

∑
i ni = Nσ . Even-

tually, each SPF is expanded into a time-independent discrete
variable representation referring to a spatial grid [79], that
contains in our case Mr = 300 grid points.

Importantly, from the tensor coefficients Ci jk (t ) appearing
in Eq. (3) the eigenvalues of the species reduced density
matrices can be derived [78]. They signify the contribution of
each species function to the complete many-body wave func-
tion. Hence, they provide information about the entanglement
among the three different species [80], see also Sec. VI for
details about measuring bipartite entanglement between two
subsystems.

Additionally, our ansatz is amenable to further reductions
such that entanglement is ignored among all or specific
components. As an extreme case example, if we deem to
prohibit correlations among all species, then our ansatz in
Eq. (3) contains DA = DB = DC = 1, leading to a single

product state, i.e., |�(t )〉 = |�A(t )〉 ⊗ |�B(t )〉 ⊗ |�C (t )〉
[78,81]. This process is dubbed species mean-field sMF,
where each component acts as a mean-field-type effective
potential to the others but intracomponent correlations are
present since dσ > 1. This treatment is well established for
binary mixtures and has been used to uncover the effects
stemming solely from interspecies correlations [82,83].

One feature that unveils the richness of the three-
component mixture and renders it even more intriguing than
the binary case is that it naturally allows for different types of
entanglement which can be, for instance, explicated through
distinct species mean-field ansatzes. For instance, let us con-
sider a physical situation where entanglement between A and
C subsystems is suppressed, but it still exists among A and
B. In this case, our ansatz should include just one species
function for the C impurity (DC = 1), while for species A
and B it holds that DA = DB > 1. Below, this ansatz will be
referred to as species mean field for the C component (sMFC)
since the latter cannot become entangled with the others. Here,
from the perspective of the AB subsystem, impurity C acts as a
mean-field-type potential. Along the same lines, it is possible
to define the respective sMFA and sMFB ansatzes.

Finally, we remark that for our analysis additional cal-
culations in terms of time-dependent effective one- and
two-body models are performed. Indeed, for the single-
particle model, described by Ĥ (1)(x, t ) (Sec. V B), the
dynamics is obtained by numerical integration of the time-
dependent one-body Schrödinger equation, i.e., ih̄∂t�(x, t ) =
Ĥ (1)(x, t )�(x, t ). However, the time-dependent two-body
problem is solved by expanding the two-body Hamiltonian
Ĥ (2)(x1, x2, t ) (Sec. V C) in terms of product states of one-
body solutions.

IV. GROUND-STATE CORRELATION REGIMES

Before delving into the dynamical behavior of the two
impurities, we first provide a brief overview of the different
ground-state correlation regimes which emerge upon varying
the impurity-medium interaction strengths gAB and gAC . More
elaborate discussions and analysis on these phases can be
found in Ref. [50]. In practice, two types of induced impurity-
impurity correlations can be discerned. Namely, impurities
[Fig. 1(a)] bunching for gABgAC > 0 and [Fig. 1(b)] antibunch-
ing occurring for gABgAC < 0. If gABgAC = 0, the B and C
impurities remain uncorrelated. Recall that since gBC = 0, any
signature of correlation among the impurities is induced from
their interaction with the medium.

A suitable observable to visualize this behavior is the spa-
tially resolved two-body correlation function [50,84] of the
impurities

GBC (xB, xC ) = ρ
(2)
BC (xB, xC ) − ρ

(1)
B (xB)ρ (1)

C (xC ). (4)

Here, the unconditional probability ρ
(1)
B (xB)ρ (1)

C (xC ) con-
structed from the respective impurities one-body densities
is subtracted from the conditional probability of finding the
impurities at positions xB and xC , i.e., the two-body reduced
density matrix ρ

(2)
BC (xB

1 , xC
2 ) [34,78]. This way, we are able to

definitively identify the impurities two-body configurations.
Specifically, the impurities located at xB and xC are two-
body correlated (anticorrelated) as long as GBC (xB, xC ) > 0
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FIG. 1. (a) and (b) Ground-state two-body correlation profiles,
GBC (xB, xC ), of the impurities quantifying their induced correlations
since gBC = 0. GBC (xB, xC ) shows the impurities are bunched (an-
tibunched) at the same (different) position(s) as long as gABgAC > 0
(gABgAC < 0), see panel (a) for (gAB, gAC ) = (−0.2, −0.2), and panel
(b) for (gAB, gAC ) = (−0.2, 0.2). (c) Integrating GBC (xB, xC ) over the
region marked by the gray dashed lines in panels (a) and (b) provides
information about the impurities two-body correlation content as
quantified by CBC for specific gAB (see legend) and varying gAC .
The gray arrows designated by I and II illustrate the two quench
protocols performed later on to induce the dynamics. In all cases,
the impurities are coupled to a bosonic medium containing NA = 10
atoms and interacting with gAA = 0.2.

[GBC (xB, xC ) < 0] and are uncorrelated for GBC (xB, xC ) = 0.
Experimentally, the two-body correlation function can be ob-
served in the following ways: (i) detect single atoms after a
time-of-flight expansion [85]; (ii) analyze single-shot images
as described in Ref. [86]; or (iii) through fluorescence mea-
surements after freezing out the spatial degree’s of freedom
by ramping up a tight lattice confinement [87].

In Figs. 1(a) and 1(b) two characteristic correlation pat-
terns of the impurities are presented for the interaction
configurations (gAB, gAC ) = (−0.2,−0.2) and (−0.2, 0.2),
respectively. It can be readily seen that in the case of gABgAC >

0 [Fig. 1(a)] the impurities are bunched, namely, they prefer to
reside at the same location [see the diagonal of GBC (xB, xC )]
and antibunched, i.e., they avoid each other, at different spa-
tial regions [antidiagonal of GBC (xB, xC )]. In contrast, for
gABgAC < 0 the impurity-impurity correlation pattern is re-
versed showing antibunching along the diagonal and bunching
in the antidiagonal, see Fig. 1(b). Hence, the impurities tend to
avoid each other at the same spatial regions but rather prefer
to stay symmetrically placed with respect to the trap center.
Such a crossover from induced correlation to anticorrelation
has been independently analyzed in terms of an effective two-
body model and found to be associated with either attractive
or repulsive effective contact interactions in Ref. [50].

To gain an overview of the impurities two-body correlation
tendency upon different parametric variations, we subse-
quently measure the spatially integrated [see gray dashed lines
in Figs. 1(a) and 1(b)] correlation function1

CBC =
∫ 0

−∞

∫ 0

−∞
dxBdxCGBC (xB, xC ). (5)

Thereby, a negative (positive) value of CBC is associated
with induced impurity-impurity anticorrelations (correla-
tions), while CBC = 0 indicates their absence. This observable
is depicted in Fig. 1(c) for the ground state of the system as a
function of gAC and for fixed values of gAB. A crossover from
impurities antibunching to bunching is captured once the sign
of gABgAC is reversed as it was originally reported in Ref. [50].

V. DYNAMICS OF THE DISTINGUISHABLE
IMPURITIES AFTER A LINEAR QUENCH

Having exemplified the interaction combinations (gAB, gAC)
for which the impurities are predominantly correlated or
anticorrelated in their ground state, we aim to analyze the
impurity dynamics after a time-dependent linear ramp of their
intercomponent interactions. These interactions are linearly
modified at a specific rate τ from their initial attractive values
(g0

AB, g0
AC) to final ones (gτ

AB, gτ
AC). Here, the overarching ob-

jective is to investigate the response of the impurity-impurity
correlations when the related couplings are ramped from a
correlated to an anticorrelated ground-state configuration as
well as compare to scenarios at which the ramp is done be-
tween configurations with the same correlation behavior. For
visualization purposes, these quench scenarios are illustrated
in Fig. 1(c) with the gray arrows labeled with I and II.

A. Density response

The time evolution of the one-body density of component
σ , ρ (1)

σ (x, t ), after a linear interaction quench is presented
in Fig. 2. Specifically, three paradigmatic linear interaction
ramp protocols are utilized where either one or both impurity-
medium interactions are ramped from attractive to repulsive
values as depicted in Figs. 2(a1), 2(b1), and 2(c1) with a
rate τ = 5. The last value is adequately small to be close
to the sudden quench and not large enough to approach the
adiabatic limit where excitation processes are suppressed (cf.
Appendix A).

An overall breathing motion of the cloud of each com-
ponent is initiated by the intercomponent interaction ramp,
as it can be seen from Fig. 2 even though in some cases
[e.g., Figs. 2(a2), 2(a4), and 2(b2)] the breathing amplitude
is relatively weak and thus the underlying collective mo-
tion becomes hardly visible.2 The breathing motion manifests

1While in the ground state the integration area is always either
positive or negative, during the evolution it may contain both positive
and negative values due to more complicated correlation patterns.
However, we find that even in this case CBC remains a useful tool as
long as these effects are not dominant.

2For a proper visualization of the breathing motion one can inspect,
for instance, the variance of the one-body density (for brevity not
shown here).
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FIG. 2. Time evolution of the σ ∈ {A, B,C} component one-body densities ρ (1)
σ (x, t ) after linearly ramping up the impurity-medium

interactions from (g0
AB, g0

AC ) to (gτ
AB, gτ

AC ) within τω = 5 as shown in panels (a1), (b1), and (c1). In particular, the interactions range
(a1)-(a4) from g0

AB = −0.2 to gτ
AB = 0.2 while g0

AC = gτ
AC = −0.2, (b1)–(b4) from g0

AB = g0
AC = −0.2 to gτ

AB = gτ
AC = 0.2 and (c1)–(c4) from

g0
AB = g0

AC = −0.5 to gτ
AB = gτ

AC = 0.5. The system is prepared in the ground state of two noninteracting B and C impurities immersed in a
weakly coupled (gAA = 0.2) bosonic medium A of NA = 10 atoms. The depicted one-body densities are given in units of

√
mω/h̄.

by the collective, weak amplitude, expansion, and contrac-
tion dynamics of the individual clouds. Specifically, for final
impurity-medium interactions that do not exceed the intra-
component medium coupling as in Figs. 2(a1)–2(a4) and
Figs. 2(b1)–2(b4) the components are miscible in the course
of the evolution. Namely, they spatially overlap [7,88,89] with
the impurities remaining within the host, see, in particular,
the spatial scales of the densities which are the same in all
cases during the evolution. This observation is important for
the quasiparticle notion since, in addition to the formation
of correlations, the finite overlap facilitates the impurity’s
dressing by the host excitations [28,82,90]. Notice also that
in the special case where gAC retains its original value (i.e.,
not quenched) the impurity C is only slightly perturbed which
is hardly visible in Fig. 2(a4). This is attributed to the indirect
action of the impurity B which through the finite change in
gAB slightly modifies the distribution of the medium. The
dynamics of the latter for finite gAC eventually also perturbs
impurity C.

Turning to larger repulsive final impurity-medium in-
teractions that overcome gAA, following the quench, we
observe a somewhat altered impurity response as shown in
Figs. 2(c2)–2(c4). Here, dynamical miscibility is partially
violated because the amplitude of the impurities ensuing
breathing motion is arguably more pronounced due to stronger
intercomponent repulsion. In this sense, at the time in-
stants of maximum expansion of the impurities breathing
motion a partial immiscibility between the impurities and
the host clouds arise. As such, temporal phase-separation
events among the impurities and the medium arise while
the impurities remain miscible throughout the evolution.
Note in passing, that for even larger repulsive intercompo-
nent interactions phase-separation becomes prominent and
the impurities escape their host leading to a temporal or-
thogonality catastrophe of the quasiparticle picture [91].
Still, in such repulsive interaction regimes the impurities,
in the ground state of the system, can assemble outside

of the bath in a Bell-type distribution as it was recently
shown in Ref. [92].

To deepen our understanding on the above-described im-
purity response especially regarding the quasiparticles, i.e.,
Bose polarons, properties we subsequently construct ef-
fective descriptions to capture the dynamics of the two
dressed impurities. To this end, we restrict ourselves to fi-
nal intercomponent interactions being comparable with the
intracomponent bath coupling gAA = 0.2, see, in particular,
Figs. 2(a1)–2(a4) and 2(b1)–2(b4), such that the impurities
reside within the medium.

B. Effective one-body models

As a first step, we develop the one-body building blocks
which are proven to be essential for the effective two-body
model to be discussed in Sec. V C. The main idea is to
compare the results obtained from the effective model for
impurity B (C) to the ones predicted by the appropriate sMF
ansatz |�sMFC (t )〉 (|�sMFB(t )〉). By doing so, the uncorre-
lated second impurity is seen by the other components only
as a mean-field-type potential. Recall that within the sMFB
(sMFC) ansatz only correlations between the medium and
the impurity B (C) are prohibited which is achieved by re-
quiring DA, DC > 1 and DB = 1 (DA, DB > 1 and DC = 1) in
the many-body wave-function ansatz of Eq. (3). We choose
such sMF ansatzes for calculating the reference many-body
wave function to which we will compare the effective model
predictions. This choice is already justified by inspecting the
corresponding densities evolution within the fully correlated
system [Figs. 2(a3) and 2(a4)] which are found to be qual-
itatively similar with the sMFB (sMFC) results (not shown
for brevity). Thereby, we intentionally prohibit at this stage of
the analysis the formation of induced correlations between the
impurities since these effects are to be captured in a second
step within the framework of an effective two-body model
(Sec. V C).
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FIG. 3. Dynamics of the position variance for impurity (a) B and (b) C following a linear ramp of gAB(t ) from −0.2 to 0.2 within τω = 5
while gAC = −0.2 remains constant. The impurity dynamics within the sMFσ ′, where σ ′ = C, B, is compared to three different effective one-
body models (see legend) described in the main text. For tω � 15, the impurity’s position variance obtained within the effective potential model
(effpot) starts to visibly deviate from the sMFσ ′ prediction (not shown). However, the variance following the optimization procedure (opt)
shows adequate agreement with the sMFσ ′ outcome. For better visualization the inset of panel (a) depicts the relative differences between the
variance of sMFσ ′ and effpot (green line) and opt (blue line), namely |〈x(2)

B 〉sMFσ ′ − 〈x(2)
B 〉effpot|/〈x(2)

B 〉sMFσ ′ and |〈x(2)
B 〉sMFσ ′ − 〈x(2)

B 〉opt|/〈x(2)
B 〉sMFσ ′ ,

respectively. Both impurities are initially coupled to a weakly interacting, gAA = 0.2, bosonic medium containing NA = 10 atoms. Time-
dependent effective masses and frequencies of impurity (c) B and (d1), (d2) C used in the adiabatic and optimized models (see legend).

In the following, we introduce three different one-body
models whose purpose is to effectively describe the dynamics
of one impurity interacting with the remaining system. This
is done exemplarily for the scenario where both impurities
are initially attractively coupled to the bath with g0

AB = g0
AC =

−0.2 and then gAB is ramped to gτ
AB = 0.2 within τω = 5,

while gAC (t ) is held fixed in this case.

1. Effective mass and frequency with an adiabatic ramp

Our first approach to effectively capture the impurity dy-
namics is to estimate for each time-dependent interaction
configuration of the general form [gAB(t ), gAC (t )], a corre-
sponding effective mass (meff ) and frequency (ωeff ) from the
respective ground states of the three-component setting, see
Appendix B 1 for details and also Ref. [50]. In this way,
it is possible to extract the interaction-dependent effective
mass and frequency which will be referred to in the fol-
lowing as madiab(gAB, gAC ), ωadiab(gAB, gAC ). This means that
these effective parameters practically describe the adiabatic
polaron dynamics, namely, the case where the interaction
ramp is performed within long timescales (τ � 1) com-
pared to the characteristic ones of the system. As such, the
time-dependent effective one-body model characterized by
madiab

σ [gAB(t ), gAC (t )] ≡ madiab
σ (t ) and ωadiab

σ [gAB(t ), gAC (t )] ≡
ωadiab

σ (t ), takes the form

Ĥ (1),adiab
σ (t ) = − ∂2

x

2madiab
σ (t )

+ 1

2
madiab

σ (t )
(
ωadiab

σ (t )
)2

x2. (6)

To testify the validity of Ĥ (1),adiab
σ (t ), where σ = B,C, we

invoke the impurities position variance 〈x2
σ 〉(t ) during the

evolution. Specifically, the predictions of Ĥ (1),adiab
σ (t ) and the

corresponding sMFσ ′ ansatz with σ ′ = C, B are demonstrated
in Figs. 3(a) and 3(b). For completeness, the behavior of
madiab

σ (t ) and ωadiab
σ (t ) is also provided in Figs. 3(c), 3(d1), and

3(d2).
As it can be seen, a rough agreement between the two ap-

proaches (adiabatic and species mean field) occurs on the level
of the C impurity variance [cf. Fig. 3(b), note here the rela-
tively small scales]. This is expected since only gAB is ramped
resulting in a weak dynamical response of the C component.
However, the adiabatic effective model fails to qualitatively
estimate the dynamics of the B impurity for tω > 5. This
deviation originates from the fact that the chosen ramping
time is far from the adiabatic limit, see also the discussion
in Appendix A about the impact of τ on the impurities dy-
namics. Interestingly, however, Ĥ (1),adiab

σ (t ) is able to describe
the overall trend of 〈x2

B〉(t ) throughout the evolution.

2. Time-dependent effective one-body potential

In the second effective model, we set meff
σ (t ) = ωeff

σ (t ) = 1
and consider the mean-field-type contribution of the bosonic
medium to the bare one-body Hamiltonian ĥσ appearing in
Eq. (1). Here, the medium has the role of an external effective
potential [28,34] and the resulting reduced model reads

Ĥ (1),effpot
σ (t ) = ĥσ + gAσ (t )NAρ

(1),sMFσ ′
A (x, t ), (7)

where σ = B,C and σ ′ = C, B. In particular, within this ap-
proach the one-body density of the medium is treated as
a time-dependent mean-field potential which includes spa-
tial deformations imprinted by the second impurity and it is
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weighted by the impurity-medium interaction strength gAσ (t ).
In the absence of interspecies correlations, i.e., for a full sMF
ansatz, Ĥ (1),effpot

σ (t ) models exactly the one-body dynamics of
the impurities.

The temporal evolution of 〈x2
σ 〉(t ) obtained from

Ĥ (1),effpot
σ (t ) is presented in Figs. 3(a) and 3(b) for the

impurity B and C, respectively. We find that this model
captures very well the dynamics of the impurities even though
impurity-medium correlation effects are only indirectly taken
into account by ρ

(1),sMFσ ′
A (x, t ) but are otherwise neglected

[93]. This observation suggests that at these timescales and
gAB interactions the impact of AB entanglement on the spatial
variance is suppressed. However, for longer timescales,
i.e., for tω ∼ 30, we observe that the effective potential
model cannot adequately capture the characteristics of the
oscillatory behavior of 〈x2

B〉(t ) obtained via the sMFC method
[see the inset in Fig. 3(a)]. This discrepancy underlines the
importance of the impurity-medium correlation effects for
the accurate description of the dynamics at least for longer
timescales and for the present interaction quench. In contrast,
the agreement on 〈x2

C〉(t ) is to a good degree anticipated
since gAC retains its initial value. We have also confirmed that
upon considering smaller ramping times, i.e., approaching the
sudden quench scenario, the deviations among the predicted
position variances take place at smaller timescales which is
traced back to the larger amount of excitations induced by the
quench.

3. Time-dependent optimization of the effective
mass and frequency

The structure of the third effective model corresponds to
the one given by Eq. (6). However, instead of the effective
mass and frequency measured from the (adiabatically fol-
lowed) ground state (or equivalently the adiabatic ramp), here
they are acquired by following a time-dependent optimization
method. Hence, madiab

σ (t ) and ωadiab
σ (t ) are replaced by mopt

σ (t )
and ω

opt
σ (t ) in Eq. (6). We refer to the respective optimized

one-body Hamiltonian as Ĥ (1),opt
σ (t ).

The optimization process is initiated by solving the
time-dependent one-body Schrödinger equation for Ĥ (1),opt

σ (t )
where the paths of mopt

σ (t ) and ω
opt
σ (t ) are dictated by a set

of initial interpolation points. Meanwhile, a cost function
c1body

opt (see below) is evaluated determining the quality of the
effective wave function. Then, a gradient-based optimization
algorithm [94,95] determines a new set of interpolation points
for the paths mopt

σ (t ) and ω
opt
σ (t ) leading to a new value of

the cost function. This procedure is repeated until further
varying the interpolation points does not improve the overlap
of the effective and many-body wave functions (see also
Appendix C). For our purposes, we choose the cost function
c1body

opt = 1
Nt

∑Nt
i=1[|〈x2

σ 〉sMFσ ′ (ti ) − 〈x2〉eff (ti )|/〈x2
σ 〉sMFσ ′ (ti ) +∫

dx|ρ (1),sMFσ ′
σ (x, ti ) − ρ

(1)
eff (x, ti )|2], where ti+1 − ti = 0.1

denotes the time step and Nt is the total number of timesteps.
An optimization routine varies then the interpolation points
such that the cost function becomes minimal.

By applying this procedure, we enforce the time-dependent
wave function of the effective model to match the one of
the many-body Hamiltonian (here extracted within the sMFC

method). By design, this process leads to a quantitatively
excellent agreement among the two approaches as exemplar-
ily shown for the respective impurities position variances in
Figs. 3(a) and 3(b). The extracted time-dependent behav-
ior of mopt

σ (t ) and ω
opt
σ (t ) using Ninterp = 28 is illustrated in

Figs. 3(c), 3(d1), and 3(d2). It becomes apparent that both
mopt

σ (t ) and ω
opt
σ (t ) resemble to a certain degree madiab

σ (t ) and
ωadiab

σ (t ) but they also exhibit additional time-dependent fea-
tures caused by the quench and not captured by the adiabatic
dynamics. In particular, the optimized parameters mopt

σ (t ) and
ω

opt
σ (t ) depicted in Fig. 3(c) fluctuate at times t � τ around

the constant values of madiab
σ (t ) and ωadiab

σ (t ). These additional
dynamical features of the optimized parameters unveil the
nonadiabatic time evolution of the system after the interac-
tion ramp. They are intuitively expected since the interaction
ramp imposes a breathing-type motion on the different species
(cf. Fig. 2 where the complete many-body wave function is
employed) and thus time-dependent effective parameters are
required for an accurate description. Moreover, in the case
of the B impurity, and in both the adiabatic and optimized
approaches, the effective mass decreases with time while the
frequency slightly increases. This behavior is attributed to
the presence of the harmonic trap and it is in accordance
with Refs. [28,91]. Here, the postquench repulsive impurity-
medium coupling leads to a gradual delocalization of the
impurity towards the trap edges in the course of the evolution.
This can also be inferred from the apparent increase of the
impurity’s position variance. In this sense, the effective mass
decreases [50] since the impurity’s dressing is reduced.

However, a time-dependent quench from repulsive to at-
tractive impurity-medium interactions leads to the inverse
behavior, i.e., to the gradual increase of the effective mass
during the evolution (not shown). Note, in passing, that in
homogeneous setups an increase of effective mass should be
expected as described in Refs. [96,97]. We also remark that
this optimization method is able to effectively capture arising
correlation effects emerging at longer timescales imprinted,
for instance, as modulations in the time-dependent effective
mass and frequency.

C. Effective two-body models

The success of the one-body effective description (espe-
cially with the optimization process) to estimate the effective
mass and frequency of the generated polaron during the
evolution motivates the consecutive investigation of the
two noninteracting impurities dynamics. This process is, of
course, more involved due to the occurrence of induced corre-
lations and for this reason their effective interaction potential
needs to be carefully chosen. As such, the effective two-body
model has the form

Ĥ (2),eff (t ) = Ĥ (1),opt
B (t ) + Ĥ (1),opt

C (t ) + V̂ int
BC (t ). (8)

In this expression, the time evolution of each polaron sep-
arately is described by Ĥ (1),opt

σ (t ) incorporating mopt
σ (t ) and

ω
opt
σ (t ), see also Sec. V B 3, while induced impurity-impurity

interactions are captured via the interaction potential V̂ int
BC (t ).

Below, we elaborate on the applicability of three different
forms of this time-dependent two-body effective potential by
comparing with the many-body results obtained within the
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FIG. 4. Comparison of three effective two-body models (see main text) to the many-body dynamics (labeled as MB) of two distinguishable
and noninteracting impurities B and C coupled to a weakly interacting bosonic medium with NA = 10 atoms and gAA = 0.2. The impurities
couple initially attractively to the bath with (g0

AB, g0
AC ) = (−0.2, −0.2) and are then linearly ramped within τω = 5 either towards (gτ

AB, gτ
AC ) =

(0.2,−0.2) (top row) or to (gτ
AB, gτ

AC = (0.2, 0.2) (bottom row) [cf. arrows in Fig. 1(c)]. The prediction of the different methods are compared
with respect to the impurities (a1), (b1) relative distance and (a2), (b2) integrated correlation function. The correlation function features a
transition from a correlated to an anticorrelated behavior following the first quench and it remains correlated for the second quench. The
time-dependent effective interaction strength used in the adiabatic and the optimized models are shown in panels (a3), (b3). The gray circles
denote the interpolation points of the optimization method and the gray dashed lines mark the noninteracting case, i.e., when geff

BC = 0.

full many-body ML-MCTDHX method where all correlations
(including induced two-body ones) are considered. To vali-
date the choice of V̂ int

BC (t ) we employ, as case examples, two
quench protocols. Namely, the first facilitates the crossover
from initially correlated impurities to anticorrelated ones [cf.
arrow I in Fig. 1(c)], while in the second case we ramp the
impurity-medium interactions between two correlated states
[cf. arrow II in Fig. 1(c)].

To justify the necessity of the inclusion of the
two-body interaction potential we compare the many-body
ML-MCTDHX results to the solutions of Ĥ (2),eff (t ) with
V̂ int

BC (t ) = 0. For this purpose, we use two representative
two-body observables. The first is the impurities relative
distance [34,98] defined by

〈rBC〉(t ) = 1

NBNC

∫
dxBdxC |xB − xC |ρ (2)

BC (xB, xC, t ), (9)

where the corresponding dynamics for both of the above-
described quench protocols and approaches is presented in
Figs. 4(a1) and 4(b1). It can be readily seen that the uncoupled
model adequately captures the dynamics of 〈rBC〉(t ) implying
that the impact of two-body effects is comparatively small
at this level. However, this picture changes drastically when
one inspects the integrated impurity-impurity correlation
function, C int

BC (t ), see Figs. 4(a2) and 4(b2). Indeed, since
interparticle correlations are vanishing within the uncoupled
model it holds that C int

BC (t ) = 0, which is in contrast to the
predictions of the fully correlated approach. In this later case,
the evolution of C int

BC (t ) reflects the characteristics of the pre
and postquench ground states. In fact, C int

BC (t ) transits from a
correlated to an anticorrelated behavior for the first quench
[Fig. 4(a2)], while it remains positive in the second quench
scenario [Fig. 4(b2)] evincing a robust correlated trend. In

this sense, these observations set the stage for searching a
suitable two-body interaction potential.

1. Two-body potential with effective interactions
from the adiabatic ramp

Here, V̂ int
BC (t ) contains an effective impurity-impurity cou-

pling that is estimated (as in Sec. V B 1) from each
ground-state configuration encountered along the correspond-
ing adiabatic path of the linear ramp protocol. To determine
these effective couplings gadiab

BC (gAB, gAC ), we demand the
matching of the two-body correlation functions among
the static effective model and the ground state (or equiva-
lently the adiabatic solution) of the many-body method, see
details in Appendix B 2. In this sense, we refer to the effec-
tive two-body model based on the adiabatic approximation as
Ĥ (2),adiab(t ) and set V̂ int

BC (t ) = gadiab
BC (t )δ(xB − xC ).

The quench-induced dynamics of either 〈rBC〉(t )
[Figs. 4(a1) and 4(b1)] or C int

BC (t ) [Figs. 4(a2) and 4(b2)]
shows an adequate agreement between the effective approach
and the many-body method for t � τ . However, deviations
exist at later evolution times especially so in the case
that both impurity-medium interactions are ramped up.
These aberrations partly stem from the fact that the applied
interaction ramp cannot be considered to be adiabatic.
Therefore, also the rather complex dynamics of the induced
correlations after the quench is unlikely to be well captured
by gadiab

BC (t ), which for these times is constant [Figs. 4(a3)
and 4(b3)]. It is also interesting to note here that the
effective interaction exhibits a complementary behavior
to the correlation function. For instance, as expected
from the ground state, attractive effective interactions
go in sync with the correlated two-body behavior and
vice versa.
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2. Exponential interaction potential

As a second attempt for modeling the impurities effective
two-body interaction potential we consider an exponen-
tial Yukawa-type potential. Such an interaction potential
has been used to describe the induced interaction in the
ground state of polarons with a homogeneous background in
Refs. [21,36,40,41,46], but has also been recently applied to
the case of a harmonically trapped medium [50]. It reads

V̂ int
BC (rBC, t ) = −gAB(t )gAC (t )mA√

γ
e−2rBC/ξA , (10)

where rBC = |xB − xC | denotes the impurities’ distance and
γ = mAgAA/[NAρ

(1)
A (0)]. Here, the time dependence is inher-

ited by the linearly ramped coupling parameters gAB(t ) and
gAC (t ). Furthermore, it is required that rBC � ξA meaning that
the impurities’ distance should be comparable to the healing

length of the medium ξA ≈ 1/

√
2mAgAANAρ

(1)
A (0) ≈ 0.7.

Substituting V̂ int
BC (rBC, t ) in Eq. (8) we construct the ef-

fective two-body Hamiltonian dubbed Ĥ (2),exp(t ). This is
numerically solved to extract 〈rBC〉(t ) and C int

BC (t ), which
are subsequently compared to the predictions of the ML-
MCTDHX method, see Figs. 4(a1) and 4(b1). It can be
deduced that Ĥ (2),exp(t ) is indeed able to qualitatively describe
the evolution of the impurities’ relative distance for both
quenches much better than Ĥ (2),adiab(t ). Regarding C int

BC (t ), the
Ĥ (2),exp(t ) approach shows a similar behavior as Ĥ (2),adiab(t ).
This means a qualitative good agreement with the many-body
evolution for t � τ and a growing deviation at longer times.
Still, it appears that the nonlocal character of the applied
interaction potential plays a crucial role and captures the oscil-
lation frequency of the relative distance during the evolution
much better when compared to the adiabatic approach. Devi-
ations observed for longer times are partially traced back to
the fact that after the quench this potential is static and hence
cannot account for dynamical deformations that exist.

3. Time-dependent optimization of the contact
interaction potential

The third approach to estimate the effective strength of the
impurities induced interactions is to follow an optimization
procedure similar to the one used in Sec. V B 3 for identifying
the polaron effective mass and frequency. This will allow
to determine the optimal time-dependent induced coupling
gopt

BC (t ) by minimizing the cost function of the two-body im-
purity correlations. Here, the effective Hamiltonian Ĥ (2),opt (t )
[Eq. (8)] encapsulates the interaction potential V̂ int

BC (t ) =
gopt

BC (t )δ(xB − xC ), where gopt
BC (t ) is represented by a finite set

of interpolation points Ninterp.3 Specifically, considering an
initial set of equidistant interpolation points we evaluate the
cost function c2body

opt = 1
Nt

∑Nt
i=1

∫∫
dxBdxC |GBC (xB, xC, ti ) −

Geff,opt
BC (xB, xC, ti )| with GBC (xB, xC, ti ) obtained from the full

many-body approach. Note that the timesteps ti+1 − ti = 0.1
and Nt is the total number of timesteps. Based on the outcome

3Ninterp determines the accuracy of gopt
BC (t ) as briefly discussed in

Appendix C.

of the value of the cost function a gradient-based optimization
routine varies the amplitudes of the time-wise fixed number
of interpolation points such that c2body

opt is minimized. Namely,
upon further varying the interpolation points does not lead to
a smaller cost value.

The optimized gopt
BC (t ) is shown in Figs. 4(a3) and 4(b3)

together with Ninterp = 28 (gray dots). It is evident that the op-
timized path of gopt

BC (t ) agrees well with gadiab
BC (t ) for t � τ . This

reflects the equally good description of 〈rBC〉(t ) and C int
BC (t )

within this time interval [see Figs. 4(a1), 4(b1) and 4(a2),
4(b2), respectively]. Turning to t > τ , where C int

BC (t ) features a
more complex behavior only the optimized effective descrip-
tion is able to correctly describe the impurities correlation
dynamics since the other effective models (as argued above)
neglect certain correlation channels. At this point, it would be
instructive to remark that we have also checked the perfor-
mance of the optimization with respect to a time-dependent
exponential interaction potential of the form of Eq. (10). In
this case, both the factor and the exponent of the Yukawa-type
interaction potential are optimized. Thereby, we find that the
respective two-body model yields a similar agreement with
the complete many-body ansatz predictions as compared to
the effective model characterized by an optimized contact in-
teraction potential. This observation indicates that accounting
for the exponential tails of the interaction potential is not
decisive for a quantitatively accurate description in the har-
monically trapped case. Instead, one has to deploy interaction
potentials which depend on both impurity coordinates and not
solely on their relative difference [38,99].

Summarizing, it is found that the optimization scheme is
able to adequately describe the induced correlation dynam-
ics of the impurities throughout the evolution. An intriguing
feature of the time-dependent effective coupling strength is
that it exhibits a crossover from attractive to repulsive induced
interactions (already known on the ground-state level [50]).
This can explain the observed transition of the impurities’
two-body correlation from a correlated to an anticorrelated be-
havior. Another imprint of this interesting induced correlation
aspect is the dynamical evolution of the bipartite entangle-
ment, see Sec. VI about similarities of the von Neumann
entropy involving the medium and the impurities entangle-
ment. Furthermore, it is interesting to note that a shorter ramp
rate may trigger a repeated crossing from induced attraction
to repulsion and vice versa. Such a case is investigated in
more detail in Appendix E, elaborating also on the expansion
coefficients of the impurities’ correlation function.

VI. DYNAMICS OF BIPARTITE
ENTANGLEMENT MEASURES

The existence of bipartite entanglement among the impu-
rities subsystem with the medium is essential for the buildup
of impurities induced correlations mediated by their host. A
frequently used measure for estimating the degree of bipartite
entanglement of pure states is the von Neumann entropy [80].
To calculate the von Neumann entropy between the medium
and the two distinguishable impurities, we express the many-
body wave function given by Eq. (3) as a truncated Schmidt
decomposition [100,101] of rank Ds= min{DA, DB·DC}.
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FIG. 5. Dynamical response of the von Neumann entropy quan-
tifying entanglement among the medium and the two impurities
subsystems, SvN

A (t ), the impurities’ logarithmic negativity, EBC (t ),
and the von Neumann entropy obtained from the effective two-body
wave function SvN,opt

BC (t ) (see also Sec. VI for further details on the
extraction of these observables). Independently of the measure, the
impurity-impurity entanglement is finite justifying the presence of
induced interactions. To induce the dynamics the impurity-medium
interaction strengths are linearly ramped (a) from (g0

AB, g0
AC ) =

(−0.2,−0.2) to (gτ
AB, gτ

AC ) = (0.2, −0.2) with rate τ = 5, (b) from
(g0

AB, g0
AC ) = (−0.2,−0.2) to (gτ

AB, gτ
AC ) = (0.2, 0.2) with τ = 5,

(c) from (g0
AB, g0

AC ) = (−0.2, 0.2) to (gτ
AB, gτ

AC ) = (0.2, −0.2) us-
ing τ = 1, and (d) from (g0

AB, g0
AC ) = (−0.2, −0.2) to (gτ

AB, gτ
AC ) =

(−0.2, 0.2) with τ = 1.

Namely,

|�(t )〉 =
Ds∑
i=1

√
λi(t )

∣∣�̃A
i

〉 ⊗ ∣∣�̃BC
i

〉
, (11)

where λi are the so-called Schmidt coefficients. These coeffi-
cients are the crucial ingredients of the von Neumann entropy
which reads

SvN
A (t ) = −

Ds∑
i=1

λi(t ) ln λi(t ). (12)

Apparently, SvN
A (t ) (or equivalently entanglement) becomes

maximal within our Hilbert space truncation if all Schmidt
coefficients are equally populated, i.e., λi = 1/Ds. Otherwise,
SvN

A (t ) vanishes if only one Schmidt coefficient is nonzero
implying that the two subsystems are described by a product
state. It turns out that due to the hierarchical ordering of
the time-dependent Schmidt coefficients for the considered
dynamical cases in our setup (not shown for brevity) the max-
imally allowed entropy (due to truncation) is never reached.
In fact, its upper bound lies well above the observed values of
the von Neumann entropy shown in Fig. 5.

The time evolution of SvN
A (t ) is presented in Fig. 5 where

the upper panels show the entanglement following the time-
dependent quench protocols discussed in Sec. V C 3 and the
lower panels refer to the protocols illustrated in Figs. 8(a1)
and 8(b1) discussed in Appendix D. It can be seen that
the impurities-medium entanglement [as captured through
SvN

A (t )] is finite in all cases even at t = 0, thus justifying the
presence of impurity-impurity induced correlations already
from the ground state of the system but also evincing their
systematic build-up during the dynamics. Notice also here,
for completeness, that the response of SvN

A (t ) partially follows
the time evolution of the medium’s variance 〈x2

A〉(t ) and the
mean relative distance between the impurities and the medium
[〈rAB〉(t ) + 〈rAC〉(t )]/2 (not shown).

However, instead of exploiting the impurities integrated
correlation function (to infer the nature of their induced corre-
lations) another possibility to quantify the impurities’ entan-
glement is represented by the so-called logarithmic negativity
[102] denoting an entanglement monotone [103]. It measures
the bipartite entanglement of a mixed state and has been
already successfully applied, e.g., in Refs. [50,64,104–108].
To compute this observable, we first trace out the medium’s
(subsystem A) degrees of freedom from |�(t )〉〈�(t )|. This
process leads to a two-component density matrix describing
the impurities’ subsystem

ρ
(2),spec
BC (t ) = TrA(|�(t )〉〈�(t )|) (13a)

=
∑
jkmn

∑
i

Ci jk (t )C∗
imn(t )

× ∣∣�B
j (t )

〉〈
�B

m(t )
∣∣ ⊗ ∣∣�C

k (t )
〉〈
�C

n (t )
∣∣, (13b)

where |�B
j 〉 and |�C

k 〉 denote the species functions of impurity
B and C, respectively, while Ci jk (t ) are the time-dependent
expansion coefficients. If the impurity B is not entangled
with C then the two-component mixture is separable and the
eigenvalues of the partially transposed two-component den-

sity matrix, (ρ (2),spec
BC (t )| jkmn)

TB = ρ
(2),spec
BC (t )|mk jn, are always

positive. This is known as the positive partial transpose (PPT)
criterion [80,109]. As such, one pathway to reveal the pres-
ence of entanglement is to search for negative eigenvalues4

in the spectrum of (ρ (2),spec
BC (t )| jkmn)

TB
[110,111]. Accordingly,

the presence of bipartite entanglement is testified by the loga-
rithmic negativity

EBC (t ) = log2[1 + 2N (t )], (14)

where N refers to the sum of the negative eigenvalues of

(ρ (2),spec
BC (t )| jkmn)

TB
multiplied by (−1).

An alternative way to estimate impurities bipartite entan-
glement is via the von Neumann entropy that is calculated
from the two-body wave function obtained by solving the
effective two-body model within the optimization procedure
as described in Sec. V C 3. The resulting time-dependent wave

4Note that the reverse case, i.e., the presence of entanglement
leads to negative eigenvalues of ρ

(2),spec
BC (t ), is only true for small

dimensions, namely (2 × 2) or (2 × 3), of ρ
(2),spec
BC (t ) which does not

apply here [109].
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function is a pure state from which the von Neumann entropy
denoted by SvN,opt

BC (t ) can be extracted via Eq. (12). The two
measures describing the impurities induced entanglement, i.e.,
EBC (t ) and SvN,opt

BC (t ) are shown in Fig. 5. We observe that both
measures exhibit a qualitative similar oscillatory dynamics
and are, therefore, both capable of providing adequate in-
formation about the induced bipartite entanglement between
the impurities. Another interesting observation can be made
by comparing the dynamics of SvN

A (t ), i.e., the entanglement
between the medium and the impurities, with the behavior
of the impurity-impurity entanglement captured by SvN,opt

BC (t )
and EBC (t ) for the interaction ramps presented in Figs. 5(a)–
5(c). It is evident that an increase (decrease) of the induced
entanglement among the impurities is accompanied by a sim-
ilar increasing (decreasing) trend of the impurity-medium
correlations. This hints to an indirect relation between the
respective types of entanglement. However, in Fig. 5(d) we
find opposite trends between the impurities-medium and the
impurity-impurity entanglements. This can be attributed, in
part, to the fact that, in this case, the impurity-medium inter-
action remains intact.

We also remark that a similar qualitative behavior between
SvN

A (t ) and the impurity-medium relative distance [〈rAB〉(t ) +
〈rAC〉(t )]/2 as well as among SvN,opt

BC (t ) and the impurities’ rel-
ative distance 〈rBC〉(t ) is observed for times t > τ (not shown
for brevity). However, to develop a better understanding on the
link between the dynamical response of SvN

A (t ) and SvN,opt
BC (t )

with the aforementioned relative distances more systematic
studies (both numerically covering the available parametric
space and analytically whenever possible) on the relevant
measures are certainly required. Along the same lines, another
interesting future research direction would be the systematic
study of the interplay between the impurity-medium entangle-
ment and the induced impurity-impurity entanglement.

VII. CONCLUSION AND PERSPECTIVES

We studied the validity of various one- and two-body
effective models for describing the dynamical response of
two noninteracting distinguishable impurities immersed in a
bosonic medium. This is achieved by a direct comparison to
the predictions of a full many-body numerical approach at
parameter regions where analytical solutions are absent. The
composite three-component system is confined in an external
harmonic trap and it is restricted in one dimension. Due to
the noninteracting nature of the impurities correlations among
them are solely induced by their medium, while their dressing
by the excitations of the bosonic host leads to the formation
of Bose polarons.

As a first step, we categorize the emergent induced cor-
relation regimes between the impurities, appearing in the
system’s ground state, for varying the individual impurity-
medium couplings. In this sense, it is possible to asso-
ciate that an induced correlated (anticorrelated) behavior
as captured by the impurities integrated correlation func-
tion occurs for positive (negative) values of the product
of the impurities-medium interactions. The knowledge of
the above-correlated patterns serves as a guide for trig-
gering the dynamics by using linear impurity-medium

interaction ramps between distinct or within the same correla-
tion regimes.

Specifically, to identify the effective mass and frequency
of the Bose polaron we consider the case where one of the
impurities interacts only in a mean-field manner with the
medium while the other one can become correlated with its
host. Here, three different one-body models were constructed.
The first is based on the assumption of adiabatically ramping
up the interaction such that the system instantaneously follows
its ground-state configuration. Within the second model the
host plays the role of an external time-dependent mean-field
potential to the impurity. Finally, for the third reduced ap-
proach a time-dependent optimization routine is employed.
According to the optimization routine, the time-dependent
effective mass and frequency are fitting parameters ensur-
ing that characteristic one-body observables predicted in the
effective model match the ones obtained in the many-body
method. This time-dependent optimized model leads to the
most accurate description of the polaron characteristics.

The estimation of each polaron effective mass and fre-
quency is crucial for understanding the impurities induced
correlations. This is accomplished by an effective two-body
model, which for each impurity combines the appropriate
optimized effective one-body model and additionally in-
cludes a two-body interaction potential. This potential is
modeled either through a time-dependent exponentially de-
caying interaction term or a contact interaction potential
whose coupling is obtained either via an adiabatic inter-
action ramp or by following an optimization scheme. We
find that, similarly to the one-body case, the optimized ef-
fective two-body model provides the best agreement with
the impurities time-evolved correlation function predicted
within the many-body approach. Moreover, we showcase
the presence of finite impurity-medium and impurity-
impurity entanglement by calculating the corresponding
von Neumann entropy and logarithmic negativity using a
decomposition of the effective two-body impurities wave
function.

Our results pave the way for future studies aiming to re-
duce the dynamics of a complex highly particle-imbalanced
many-body system into effective one- or two-body models
and ultimately engineer the polaron characteristics and in-
duced correlations. This knowledge might be also proven
useful for relevant extensions to higher dimensions. Possible
future directions include, for instance, the treatment of mass-
imbalanced three-component settings where either two heavy
impurities are coupled to a lighter bosonic medium or the
distinguishable impurities have different masses. Especially
in the later case, understanding the interplay of the effective
mass with the induced interactions would be worth pursuing.
Another interesting extension is to consider species selec-
tive trapping geometries such as a homogeneous or lattice
trapped bath.
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FIG. 6. (a) Dependence on the ramp rate of the linear impurity-
medium interaction quench protocol from g0

AB = g0
AC = −0.2 to

gτ
AB = gτ

AC = 0.2. (b) Time evolution of the impurities induced cor-
relations described by their integrated correlation function CBC (t )
[Eq. (5)]. Inset of panel (b) depicts the corresponding adiabatic evo-
lution of CBC (t ) following the above protocol when τ → ∞, which
also appears as a gray dashed line in the main panel. An excellent
agreement with the linear quench characterized by a rate τω = 15 is
observed. The system consists of two distinguishable noninteracting
B and C impurities immersed in a bosonic medium with NA = 10 and
gAA = 0.2.

APPENDIX A: IMPACT OF THE RAMP RATE

In the following, we explicate the effect of the ramp
rate τ of the linear interaction quench [Eq. (2)] on the re-
sulting induced correlation dynamics as captured by CBC (t )
[see Eq. (5)]. For this investigation, we invoke a paradig-
matic quench protocol, namely, ramping the impurity-medium
couplings from g0

AB = g0
AC = −0.2 to gτ

AB = gτ
AC = 0.2 for

various τ as illustrated in Fig. 6(a). Notice that a similar
phenomenology occurs also for other postquench interactions
not shown for brevity.

The emergent time evolution of the impurities integrated
correlation function, CBC (t ), is demonstrated in Fig. 6(b). As
expected, we observe that relatively small ramp rates, i.e.,
τω = 0.1, 1, lead to the most pronounced dynamical response
of CBC (t ) manifested by its enhanced amplitude oscillatory
behavior. However, induced correlations appear to be weaker
when using longer ramp rates. A such, it is possible to infer
that for an increasing quench rate, e.g., τω = 15 in Fig. 6(b),
the correlation dynamics approaches its ideal adiabatic be-
havior which practically refers to τ → ∞. Indeed, during its
adiabatic evolution the system remains always in its ground
state and hence the respective CBC is equivalent to the cor-
responding static solution characterized by specific gAB, gAC

(or for the employed quench protocol only by gAB). The CBC

of the ground-state system configurations passing through
the respective adiabatic evolution can be seen in the inset
of Fig. 6(b) and also in the main panel of Fig. 6(b) as a
dashed gray line. It becomes apparent that it nearly coincides
with CBC (t ) for τω = 15 further verifying the approach to the
adiabatic limit. Therefore, the rates of τω = 1 and 5 which are

employed in the main text induce a more prominent dynamical
response that is closer to the sudden quench scenario.

APPENDIX B: DETERMINATION OF THE
GROUND-STATE EFFECTIVE PARAMETERS

1. Effective mass and frequency of the one-body model

The effective mass and frequency of the ground-state Bose
polaron [50] are calculated as follows. The system of two
distinguishable and noninteracting impurities coupled to a
bosonic medium is numerically solved within a species mean-
field ansatz (Sec. III). This accounts only for the correlations
of one impurity with the bath, while the other impurity acts as
a mean-field potential. Afterwards, we determine the effective
mass and frequency of the impurity σ = B (C) for a specific
(gAB, gAC ) combination. This is done by fitting the energy and
position variance predicted by the effective one-body model

Ĥ (1)
(
meff

σ , ωeff
σ

) = − ∂2
x

2meff
σ

+ 1

2
meff

σ

(
ωeff

σ

)2
x2, (B1)

to the ones evaluated by the suitable species mean-field ansatz.
Thereby, the effective mass and frequency (meff

σ , ωeff
σ ) are

chosen such that the cost function c1body
gs = �Eσ + �x2

σ be-
comes vanishingly small of the order of 10−9. Here, �Eσ =
|E sMFσ ′

σ − E eff
σ |2 is the difference between the energy of the

effective one-body model E eff
σ and the energy of the impurity-

bath system described by the appropriate species mean-field
ansatz. Namely, E sMFσ ′

σ = 〈�sMFσ ′ |ĥσ |�sMFσ ′ 〉, where σ ′ = C
(B) and ĥσ is the one-body Hamiltonian appearing in Eq. (1).
Likewise, we define �x2

σ = |〈x2
σ 〉sMFσ ′ − 〈x2

σ 〉eff |2.

2. Effective two-body interaction
strength of the two-body model

Having at hand the effective mass and frequency of the
polaron it is possible to also find the impurities’ effective inter-
action strength for each interaction configuration (gAB, gAC ).
Here, one should rely on the time-independent version of
the effective two-body model of Eq. (8). Then, the only free
parameter is the effective contact interaction strength geff

BC ,
appearing in V̂ int

BC (t ) = geff
BCδ(xB, xC ) [Eq. (8)]. The value of

geff
BC is the one which minimizes the cost function �GBC =∫∫

dxBdxC |GBC (xB, xC ) − Geff,gs
BC (xB, xC )|2. In this expression,

Geff,gs
BC (xB, xC ) [GBC (xB, xC )] is the impurity-impurity corre-

lation function [Eq. (4)] obtained with the effective (full
many-body) approach. To calculate the static two-body so-
lution in the effective model we expand the two-body wave
function in terms of one-body states and diagonalize the
respective two-body Hamiltonian (known as the exact diag-
onalization method).

APPENDIX C: CONVERGENCE BEHAVIOR
OF THE APPLIED OPTIMIZATION ROUTINE

The convergence behavior of the optimization routine used
to determine the time-dependent effective mass and frequency
of the polaron as well as the effective coupling of two distin-
guishable polarons (Secs. V B 3 and V C 3) depends on the
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FIG. 7. Convergence study of different observables extracted
from (a1)–(a4) the optimized one-body model as well as (b1)–(b4)
the optimized two-body model. (a1)–(a3) Dynamical evolution of the
variance, effective mass, and frequency, respectively, for a varying
number of interpolation points used in the optimization procedure
(see Sec. V B 3). (b1)–(b3) Time evolution of the impurities’ rela-
tive difference, integrated correlation function, and effective induced
interaction, respectively, obtained within the optimization routine de-
scribed in Sec. V C 3. (a4), (b4) Cost value of the optimized one- and
two-body effective model, respectively, in dependence of the number
of interpolation points. We consider two noninteracting impurities
coupled to a bosonic medium with NA = 10 atoms interacting among
each other with gAA = 0.1. The dynamics is induced by ramping the
impurity-medium interaction strengths at the same time from g0

AB =
g0

AC = −0.2 to gτ
AB = gτ

AC = 0.2 within a ramp time of τω = 1.

number of interpolation points Ninterp. This effect is demon-
strated in Fig. 7 for linear interactions ramps from g0

AB =
g0

AC = −0.2 to gτ
AB = gτ

AC = 0.2 within τω = 1. In both opti-
mization routines the aim is to approach the time-dependent
path for which the observables of interest do not change,
at least to a certain accuracy, by successively increasing
Ninterp. Simultaneously, the cost functions c1body

opt and c2body
opt

(Secs. V B 3 and V C 3) should exhibit a decreasing trend for
larger Ninterp.

Inspecting the convergence behavior of the optimized ef-
fective mass and frequency, shown in Figs. 7(a2) and 7(a3),
we can infer numerical convergence of the individual ob-
servables with the optimization method for Ninterp > 19. It
is worth mentioning here that the cost function c1body

opt satu-
rates already for Ninterp > 12 [Fig. 7(a4)], and the same holds
for the respective variance 〈x2

B,C〉(t ) in Fig. 7(a1). Thus, in
such studies it is important to ensure convergence not only
of the cost function but also of the effective parameters and
the observables of interest. The same behavior can be also
observed when inspecting the results obtained by optimizing
the effective interaction strength, shown in Figs. 7(b1)–7(b4).
However, here c2body

opt saturates at a finite value even upon

considering a larger number of interpolation points as shown
here. This implies that we reached the limitation of the opti-
mization procedure for higher-order observables.

APPENDIX D: VALIDITY OF THE OPTIMIZATION
METHOD INDEPENDENTLY

OF THE QUENCH PROTOCOL

Let us demonstrate the applicability of the employed
optimization routines (outlined in Secs. V B 3 and V C 3)
irrespective of the used interaction ramp. Exemplary time-
dependent interaction ramps of gAB(t ) and gAC (t ) are illus-
trated in Figs. 8(a1)–8(e1). The respective temporal evolution
of the integrated correlation function obtained from the full
many-body method CMB

BC (t ), and the one calculated from the
two-body optimization routine with the aid of the reduced
two-body model described in Sec. V C 3, Copt

BC (t ), is presented
in Figs. 8(a2)–8(e2). Of course, preceding this two-body opti-
mization routine, we estimated the underlying time-dependent
effective mass and frequencies as discussed in Sec. V B 3 (not
shown). To ease the visualization of the above observables
we invert the sign of gopt

BC (t ) such that a positive (negative)
value of Copt

BC , associated with correlated (anticorrelated) impu-
rities is accompanied by negative (positive) values of −gopt

BC (t ).
The quality of the optimization routines is judged by com-
paring Copt

BC (t ) and CMB
BC (t ). Overall, we find a very good

agreement which validates the outcomes of the effective one-
and two-body models. We finally remark that in the course
of the dynamics quench-induced excitation patterns may be
imprinted in the correlation function whose integration could
oversimplify such a complex pattern. Still, in the considered
cases we find that the integrated correlation function provides
a reliable estimate about the impurities induced correlation
behavior.

APPENDIX E: DECOMPOSING
THE TWO-BODY DYNAMICS

To gain a deeper understanding on the participating mi-
croscopic processes responsible for the observed induced
impurity-impurity correlation dynamics we shall next care-
fully inspect the ingredient of the correlation function. As
a characteristic case example we focus on interaction ramps
from g0

AB = g0
AC = −0.2 to gτ

AB = gτ
AC = 0.2 with rate τω =

1. As it will be showcased below, reducing the ramp rate
to τω = 1 triggers a more complex response where induced
correlations switch from a correlated to an anticorrelated be-
havior and vice versa even for τ � t . As such, this allows
to provide a more general argumentation for the behavior
of correlations. Snapshots of GBC (xB, xC ; t ) within the full
many-body method at short evolution times are depicted in
Figs. 9(a)–9(c). Also, the respective time evolution of the
integrated correlation, CMB

BC (t ), is illustrated in Fig. 9(e). The
oscillatory trend of CMB

BC (t ) taking positive and negative values
indicates the periodic appearance of correlated and anticorre-
lated patterns which are also evident in the spatially resolved
correlation provided in Figs. 9(a)–9(c). We remark that such
an oscillatory correlation behavior cannot be observed for
larger ramp rates, see Fig. 4(b2) and Appendix A further
justifying our choice for the rate.
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FIG. 8. (a1)–(e1) Schematic representation of different linear impurity-medium interaction ramps characterized by rates (a1), (b1) τω = 1,
(c1)–(e1) τω = 5. The initial (g0

AB, g0
AC ) = (±0.2, ±0.2) and final (gτ

AB, gτ
AC ) = (±0.2,±0.2) interaction combinations are shown in the panels

(a1)–(d1), while in panel (e1) they correspond to (g0
AB, g0

AC ) = (−0.5,−0.5) and (gτ
AB, gτ

AC ) = (−0.5, 0.5). (a2)–(e2) Time evolution of the
impurities integrated two-body correlation function within different approaches following the interaction ramps illustrated in panels (a1)–(e1).
For comparison, we provide the integrated correlation functions Copt

BC (t ) and CMB
BC (t ), obtained with the effective optimized two-body model

and the full many-body approach (see legend). It becomes evident that the correlation function deduced from the optimization process of
the two-body model leads to a very good agreement with the one from the many-body method. In all cases, we consider two noninteracting
distinguishable impurities B and C coupled to a bosonic medium of NA = 10 interacting atoms with gAA = 0.2.
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FIG. 9. (a)–(c) Snapshots of the impurity-impurity correlation
function GBC (xB, xC ), at times tω = 3.5, 5.5, 12. (d) Time evolution
of the effective impurity-impurity induced interaction gopt

BC , retrieved
by fitting a two-body model to the many-body dynamics (Sec. V C 3).
(e) Integrated correlation function obtained within the many-body
dynamics CMB

BC and the effective two-body model Copt
BC compared to

the reduced optimized integrated correlation function Copt,red
BC . (f) Real

part of the product of expansion coefficients c11c∗
22 signifying the

decisive role of the correlation expansion coefficients in the inter-
pretation of the two-body correlation behavior. In all cases, the two
noninteracting impurities B and C are coupled to the bosonic medium
with NA = 10 and gAA = 0.2. The dynamics is induced by a linear
ramp of the impurity-medium coupling from g0

AB = g0
AC = −0.2 to

gτ
AB = gτ

AC = 0.2 with rate τω = 1.

To track the induced impurities interactions we deploy their
effective two-body optimized description (Sec. V C 3) where
the underlying interaction potential contains a time-dependent
interaction strength as shown in Fig. 9(d). It can be seen that
the resulting integrated correlation function Copt

BC (t ) [Fig. 9(e)]
agrees qualitatively well with CMB

BC (t ). Hence, this effective
two-body model captures the aforementioned alternating in-
duced correlation behavior traced back to the alternating sign
of the induced interaction strength gopt

BC (t ), see Fig. 9(d).
The effective two-body wave function can be expressed

in terms of the time-dependent single-particle basis of har-
monic oscillator eigenstates |φB

i (t )〉 and |φC
j (t )〉. These are

determined through the optimization scheme yielding the
time-dependent polaron effective masses and frequencies, i.e.,
mopt

σ (t ) and ω
opt
σ (t ). As such∣∣�opt
BC (t )

〉 =
∑

i j

ci j (t )
∣∣φB

i (t )
〉 ⊗ ∣∣φC

j (t )
〉
. (E1)

Utilizing this wave-function expansion the impurities’ two-
body optimized correlation function can be approximated as

Gopt
BC (t ) ≈

∑
i jkl

ci j (t )c∗
kl (t )Gopt

i jkl , (E2)

with

Gopt
i jkl =ρ

(2),opt
i jkl (t ) −

∫
ρ

(2),opt
i jkl (t )dxC

∫
ρ

(2),opt
i jkl (t )dxB. (E3)

Here, the matrix elements of the two-body reduced den-
sity matrix are given by ρ

(2),opt
i jkl (t ) = φB

i (t )φC
j (t )φB,†

k (t )φC,†
l (t )

and, for simplicity, we dropped the spatial coordinates xB and
xC . Also, the last term in Eq. (E3) is extracted to eliminate
the unconditional probability [see also Eq. (4)]. Notice that
by doing this individually in each expansion term ρ

(2),opt
i jkl (t )

of the actual two-body density is already an approximation
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for Gopt
BC (t ) since we obtain the unconditional probability indi-

vidually for each expansion term instead of retrieving it from
the complete two-body density. It turns out that within this
simplification

Gopt
i jkl (t ) =

{
0, i = k and j = l,

ρ
(2),opt
i jkl (t ), else,

(E4)

which is a direct consequence of the orthonormality relation
of the one-body basis functions. Further integrating Gopt

i jkl (t )

according to Eq. (5) yields Copt
i jkl (t ). Here, we numerically

identify certain i jkl combinations for which the elements of
Copt

i jkl (t ) are suppressed, e.g., for i jkl = 1113 where the posi-

tive and negative portions of the orbitals building up ρ
(2),opt
i jkl

cancel each other when integrating. Taking all these findings
into account, we find that a good approximation for Copt

BC (t ) is

represented by

Copt,red
BC (t ) = 2Re[c11(t)c∗

22(t)]C1122. (E5)

To validate these approximations, the reduced integrated two-
body correlation function Copt,red

BC (t ) is shown together with
the one obtained from the optimization process in Fig. 9(e).
A direct comparison reveals a good qualitative agreement
between the two, thus verifying our arguments.

Importantly, within this approximative picture it is possible
to trace the origin of the alternating sign of the impurities
induced interaction and correlations. This is explained by
the time evolution of the c11(t )c∗

22(t ) coefficients which is
presented in Fig. 9(f). In particular, notice the gray shaded
areas in Figs. 9(d)–9(f) marking the time intervals where
Re[c11(t)c∗

22(t)] < 0 which correspond to an anticorrelated
impurities behavior and repulsive induced interactions.
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We explore the impact and scaling of effective interactions between two and three impurity atoms,
induced by a bosonic medium, on their density distributions. To facilitate the detection of mediated
interactions, we propose a setup where impurities are trapped in a tilted double-well potential, while
the medium is confined to a ring. The tilt of the potential breaks the spatial inversion symmetry
allowing us to exploit the population of the energetically elevated well as a probe of induced in-
teractions. For two impurities, the interaction with the medium reduces the impurity population
at the energetically elevated well, which we interpret as evidence of induced impurity-impurity at-
traction. Furthermore, the impact of an induced three-body interaction is unveiled by comparing
the predictions of an effective three-body model with many-body simulations. We extend our study
for induced interactions to a three-component mixture containing distinguishable impurities. Our
results suggest pathways to detect and tune induced two- and three-body interactions.

I. INTRODUCTION

An impurity in a quantum medium is a crucial
model for understanding polarized many-body sys-
tems, with the polaron quasiparticle offering a theo-
retical framework for its description [1, 2]. The state-
of-the-art approach for testing this framework and go-
ing beyond it, is based on quantum simulators that
can be realized in cold-atom laboratories [3–7]. They
permit elaborated investigations of both static [8–10]
and dynamical [11–13] properties of an impurity in
three-dimensional systems. Furthermore, they allow
to assess more exotic one-dimensional geometries [14]
and the associated impurity physics [15, 16].

Systems involving more than a single impurity pro-
vide insights into the phenomenon of medium-induced
correlations between dressed particles [17]. This is an-
ticipated to be especially important in one spatial di-
mension (1D) where the role of interactions is often
considered enhanced in comparison to higher dimen-
sions [18]. Theoretical modeling clearly shows that in-
duced attraction [19–23] lowers the energy and leads
to clustering of two impurities in 1D in free space [24–
26], in a lattice potential [27–30], and in a harmonic
trap [31–35]. These effects, however, are relatively
weak posing a challenge for modern experiments.

One strategy for observing the effect of weak medi-
ated interactions is by bringing the system close to a
transition point where even slight perturbations can
lead to dramatic effects [36]. Ideally, the measure-
ment should rely on the density of the impurity cloud,
which is a routinely available observable experimen-
tally. The transition point implies a certain energy
landscape that can be simulated in cold-atom exper-
iments by tailoring, for instance, an external poten-
tial [37–39].

In this work, we propose an arguably simple design

of a 1D Bose gas with a few impurities in such an
energy landscape: The impurities being trapped in a
tilted double-well potential are coupled to a Bose gas,
which is confined to a ring potential. The tilt of the
potential is an experimentally available knob [40, 41]
that can introduce a small energy scale into the prob-
lem – the energy gap between the two minima of the
potential. To investigate this model, we focus on a
few-body system. These systems are of particular
interest [42–44] because they allow for accurate nu-
merical solutions and for studying the emergence of
many-body concepts, such as the medium-induced in-
teractions, from the underlying microscopic physics.

The numerical investigation of the ground-state
properties is performed using the ab-initio Multi-
Layer Multi-Configuration Time Dependent Hartree
method for atomic mixtures (ML-MCTDHX) [45–47].
This grants access to mixtures consisting of two to
three distinguishable and indistinguishable impuri-
ties immersed in a Bose gas. It is found that the
density population of impurities at the energetically
higher double-well site is sensitive to variations of the
impurity-medium interaction strength. To interpret
this observation, we devise two- and three-body effec-
tive models characterized by suitable two- and three-
body induced contact interaction contributions. Al-
though, the parameters of these models are deter-
mined by fitting to the energies of the many-body
system, it is demonstrated that they also describe
other observables such as densities. Our analysis con-
firms the importance of two-body effective interac-
tions. The lesser-known three-body induced interac-
tions play a less significant role in the regime of weak
interactions, where the concept of induced interac-
tions is most useful. This aligns with our expecta-
tions. In all cases, the scaling of the induced two- and
three-body interactions is numerically extracted and
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corroborated by perturbation theoretic arguments.

This work unfolds as follows. In Section II we
introduce our multicomponent setup and the con-
cept of induced interactions. Section III discusses
the key ingredients of the employed many-body vari-
ational method. Impurity-impurity induced interac-
tions along with the effective two- and three-body
models are analyzed in Sec. IV for two indistinguish-
able bosonic impurities and in Sec. V for three im-
purities. Generalizations of our results to a three-
component system are provided in Sec. VI. We con-
clude and discuss future extensions of our findings in
Sec. VII.

Additional technical details are presented in five
appendices. Appendix A explicates the exact diag-
onalization method used for the effective models. Ap-
pendix B discusses the localization behavior of a single
impurity. Appendix C reveals the role of the quasi-
particle effective mass in single-particle observables.
Appendix D focuses on the impact of correlations on
different observables. Finally, Appendix E elaborates
on the inherent logarithmic divergent behavior of the
three-body interaction term and how it is circum-
vented.

II. MULTICOMPONENT SETUP AND
INDUCED INTERACTIONS

A. Impurity-in-a-medium setting

To study the induced two- and three-body inter-
actions, we consider a bosonic medium consisting
of NA atoms on a ring. The mass of a boson is
mA; the boson-boson interaction is parametrized by
the standard contact interaction potential of strength
gAA [48]. In the other component, we have up to
three bosonic impurities with mass mB confined in
a tilted 1D double-well potential [49–51]. A free-
space impurity-impurity contact interaction potential
of strength gBB is assumed. The coupling strength
is experimentally adjustable via either Fano-Feshbach
tuning that changes the three-dimensional s-wave
scattering length [52] or by modifying the transverse
confinement [48]. The later is assumed to be so tight
that the transverse excitations are frozen out as in
typical quasi-1D experiments, see, e.g., Refs. [53–55].

The corresponding many-body Hamiltonian has the
form,

Ĥ = ĤA + ĤB + ĤAB , (1)

where Ĥσ denotes the Hamiltonian of component σ =
{A,B} and ĤAB represents the intercomponent inter-

action of effective strength gAB . Specifically,

ĤA = −
NA∑

i=1

h̄2

2mA
∂2x + gAA

∑

i<j

δ(xAi − xAj ), (2a)

ĤB =

NB∑

i=1

ĥ
(1)
B (xBi ) + gBB

∑

i<j

δ(xBi − xBj ), (2b)

ĤAB = gAB

NA∑

i=1

NB∑

j=1

δ(xAi − xBj ). (2c)

The Hamiltonian ĥ
(1)
B (xBi ) = − h̄2

2mB
∂2x + VB(x

B
i ) de-

scribes a single impurity in a tilted double-well exter-
nal trap. The latter is modeled by a superposition
of a harmonic oscillator with frequency ω, a Gaussian
potential of width w and height h, and a linear tilting
potential of strength α,

VB(x) =
1

2
mBωx

2 +
h

w
√
2π

exp

(
− x2

2w2

)
+ αx. (3)

It is illustrated in Fig. 1(a) along with characteristic
density distributions of the medium A and the three
impurities for repulsive impurity-medium couplings.
The presence of a small α breaks the inversion sym-
metry of the problem and leads to an energy offset
between the two double-well sites. The tilted double-
well can be readily implemented in experiments by
imposing a bias potential [40], while the ring trap is
realized using time-averaged potentials [56, 57].

For simplicity, we study a mass-balanced mixture,
namely it holds that mA = mB ≡ m = 1, and em-
ploy harmonic oscillator units. Accordingly, the en-
ergy scales are expressed in units of h̄ω, while the
length and interaction scales are in terms of

√
h̄/mω

and
√
h̄3ω/m, respectively. Typically, our bath com-

ponent consists of NA = 12 bosonic particles featur-
ing “weak” intracomponent repulsion, gAA = gBB =
0.1. By varying the parameter gAB , we explore
the strength of induced impurity-impurity interac-
tions. In our numerical simulations all atoms of the
medium reside on a ring of length L = 12

√
h̄/mω

(the pre-factor here is given by NA) ensuring that
L≫

√
h̄/(mω). This requirement reduces the role of

finite-size effects in our study. Finally, throughout this
work we employ a double-well characterized by ω = 1,
w = 0.3

√
h̄/mω and h = 3

√
h̄mω, while the energy

offset parameter is considered to be α = 0.06
√
h̄mω.

Our multicomponent systems can be experimentally
implemented, for instance, with different hyperfine
states of a 87Rb gas. As an example the impurities
may be realized using the state |F = 1,mF = 1⟩ while
the bosons are in the |F = 2,mF = 1⟩ state [58]. For
the three-component mass-balanced system discussed
in Section VI A, it is possible to utilize an additional
hyperfine state, e.g., |F = 1,mF = −1⟩ of 87Rb [53].

Within this work we devise two- and three-body
models which employ effective two- and three-body
interaction parameters to effectively describe the be-
havior of the impurities interacting with the majority
species, see Figs. 1(b) and (c) for a sketch.
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(a)

gAB

gBB

gAA

Direction

(b)
geff
BB

geff
BBB

(c)

impurities scaling

B-B

B-C

B-B-B

B-B-C

geff
BB ∼ −g2

AB

geff
BC ∼ −gAB · gAC

geff
BBB ∼ g3

AB

geff
BBC ∼ g2

AB · gAC

(d)

Figure 1. Sketch of our impurity-medium setup. (a) One-body densities of the medium A (red) and the three bosonic
impurities (blue) for repulsive impurity-medium interactions. The medium, which consists of NA = 12 weakly interacting
bosonic particles, is confined to a ring with periodic boundary conditions. The impurities are trapped by a tilted double-
well potential (gray line). (b) The medium particles (red circles) interact via a contact interaction of strength gAA. The
impurities (blue circles) repel each other with strength gBB . The boson-impurity interaction is denoted by gAB . (c) The
induced interactions between the three impurities are parameterized by the effective two-body (geffBB) as well as three-
body (geffBBB) effective couplings. (d) Overview of the identified scaling behavior of the mediated two- and three-body
interaction strengths between two or three impurities belonging to species B and C.

B. Induced interactions

As the focus of this paper is induced interactions,
we briefly introduce this concept here, first for a sys-
tem with two impurities. Our results are applicable
to any external trapping of the impurities as long as
the bosonic medium is confined to a ring potential of
length L. We utilize perturbation theory to calculate
the correction to the non-interacting energy due to
interactions [59]

δE =Mgg +
∑

e

|Meg|2
Eg − Ee

+ ... , (4)

where Mij = ⟨i|ĤAB |j⟩ is the non-interacting matrix
element between the states i and j; the index g (e) de-
notes the ground (excited) state of the non-interacting
system characterized by the energy Eg (Ee). Using
indistinguishability of particles, we write the matrix
element in the coordinate space representation as

Meg = gABNANB

∫
dxA1 dx

B
1 Ψgδ(x

A
1 − xB1 )Ψe. (5)

Induced interactions is an intuitive method to in-
terpret the energy difference δE2 = δE(NB =
2) − 2δE(NB = 1), which is in general non-
zero. To demonstrate this, note that for NB =
1 [NB = 2] the non-interacting ground state can
be written as: Ψg = ϕg(x

B
1 )

∏
i ψg(x

A
i ) [Ψg =

ϕg(x
B
1 )ϕg(x

B
2 )

∏
i ψg(x

A
i )], where we assume that all

bosons occupy the same orbital, ψg; ϕg is the ground
state of ĥ(1)B . For bosons on a ring, it holds that
ψg(x

B
i ) = 1/

√
L. Furthermore, we consider only ex-

citations of the medium, as these are essential for in-
duced interactions. The corresponding excited states
read: Ψe = ϕg(x

B
1 )

∑
i ψe(x

A
i )/

√
NALNA−1 [Ψe =

ϕg(x
B
1 )ϕg(x

B
2 )

∑
i ψe(x

A
i )/

√
NALNA−1]. Using these

expressions in Eq. (5) the energy difference becomes

δE2 ≃ 2g2AB

NA

L

∫
dxB1 dx

B
2 |ϕg(xB1 )|2|ϕg(xB2 )|2VII ,

(6)

with the function VII defined as follows

VII(x
B
1 , x

B
2 ) =

∑

e

ψ∗
e(x

B
2 )ψe(x

B
1 )

Eg − Ee
. (7)

Note that the expression in Eq. (6) is equivalent to
the first-order perturbative correction to the energy
of two non-interacting impurities assuming that VII
is a perturbation. The fact that VII does not depend
on the state of the impurity enforces the interpretation
of VII in terms of an effective two-body interaction.
Note that the leading-order contribution to the energy
from the two-body induced interaction is proportional
to g2AB , see also Fig. 1(d). It is always attractive as it
stems from second-order perturbation theory.

We remark that Eq. (7) is also the correction to
the non-interacting Bose gas perturbed by two static
impurity potentials located at xB1 and xB2 . This al-
lows one to calculate VII using the theoretical meth-
ods presented in Refs. [19, 22, 23, 25, 33] (see also
Refs. [60–63] for relevant works in higher dimensions).
In particular, one can approximate1 VII ≃ −δ(xB1 −
xB2 )L/(2gAANA) for weak interactions in the thermo-
dynamic limit (NA → ∞, NA/L→ const) [44].

For three impurities, one introduces a three-body
effective interaction to interpret the energy difference
δE3 = δE(NB = 3)− 3δE2(NB = 2)− 3δE(NB = 1).
Here, the factor 3 in front of δE2(NB = 2) accounts
for the number of interacting pairs. Alternatively, one
can think that this factor is chosen so that δE3 van-
ishes at the level of second order perturbation theory.
Therefore, it is necessary to consider the energy cor-
rection within third-order perturbation theory

δ3 =
∑

e ̸=e′

MgeMee′Me′g

(Eg − Ee) (Eg − E′
e)
−
∑

e

Mgg|Meg|2
(Eg − Ee)

2 . (8)

We shall only analyze overall features of
this expression. To this end, we con-
sider the following excited states Ψe =

1 Note that here we disregard the long-range part of the poten-
tial [21, 64], which is irrelevant for small trapped systems [33].
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ϕg(x
B
1 )ϕg(x

B
2 )ϕg(x

B
3 )

∑
i ψe(x

A
i )/

√
NALNA−1, which

are motivated by our discussion of VII . Using these
states, we write the contribution to the energy
due to the first term in Eq. (8) that can be inter-
preted as a result of three-body induced interactions:
6g3

ABNA

L

∫
dxB1 dx

B
2 dx

B
3 |ϕg(xB1 )|2|ϕg(xB2 )|2|ϕg(xB3 )|2VIII ,

where

VIII(x
B
1 , x

B
2 , x

B
3 ) =

∑

e,e′

ψe(x
B
1 )ψ

∗
e(x

B
2 )ψ

∗
e′(x

B
3 )ψe′(x

B
2 )

(Eg − Ee) (Eg − E′
e)

.

(9)
Note that VIII is a product of two-body interactions,
i.e., VIII(xB1 , xB2 , xB3 ) = VII(x

B
1 , x

B
2 )VII(x

B
2 , x

B
3 ). For

weak interactions in the thermodynamic limit, we can
therefore write VIII(xB1 , xB2 , xB3 ) = δ(xB1 −xB2 )δ(x

B
2 −

xB3 )L
2/(4g2AAN

2
A). As the three-body induced inter-

actions is proportional to g3AB in the leading order,
we expect it to be repulsive for gAB > 0 and attrac-
tive for gAB < 0, see also Fig 1(d). Note that the
last term in Eq. (8) gives rise to an effective two-body
interaction in g3AB-order that depends on the number
of impurities. Having introduced the general features
of induced interactions, we explicate them further in
Sections IV and V for the cases with NB = 2 and
NB = 3, respectively.

III. MANY-BODY APPROACH

To study the ground state properties of our quan-
tum many-body system, we employ the ab-initio ML-
MCTDHX method [45–47]. A main facet of this ap-
proach is that the full many-body wave function is ex-
pressed in a multi-layer structure with time-dependent
and variationally optimized basis functions. This pro-
cess is tailored to account for the relevant intra- and
intercomponent correlations of multicomponent cold
atom settings. Detailed discussions on the ingredients,
successful applicability and reductions of this method
for a plethora of cold atom systems can be found in
the recent reviews [44, 65].

Below, we mainly elaborate on the structure of
the many-body wave function for the most general
three-component setting used in our analysis. Com-
ments on the reduction of this scheme to the two-
component setup are provided whenever appropri-
ate, see also [66, 67] for more detailed discussions.
For a three-component system the wave function is
firstly expanded in the truncated basis comprising of
Dσ, with σ = A,B,C, orthonormal time-dependent
species functions, |Ψσ

i (t)⟩, as follows

|ΨMB(t)⟩ =
DA∑

i

DB∑

j

DC∑

k

Aijk(t)|ΨA
i (t)⟩|ΨB

j (t)⟩|ΨC
k (t)⟩.

(10)

Here, Aijk(t) represent the time-dependent expansion
coefficients. This expansion grants access to intercom-
ponent correlations. Specifically, the expansion coef-
ficients referring to the contribution of each species
function provide information about the intercompo-
nent entanglement, see also Refs. [68], since they allow

the evaluation of the eigenvalues of the species reduced
density matrices [67, 69, 70]. In the case of a binary
mixture, the above expansion reduces to a truncated
Schmidt decomposition [71, 72], see for instance the
works [73–75] and references therein.

Next, in order to incorporate intracomponent cor-
relations into our ansatz, each of the species func-
tions, |Ψσ

i (t)⟩, is expanded in terms of the bosonic
number states |n⃗σt ⟩. The latter are weighted by the
time-dependent coefficients Cσ

i,n⃗σ (t). This yields

|Ψσ
i (t)⟩ =

∑

n⃗|Nσ

Cσ
i,n⃗σ (t)|n⃗σ(t)⟩, (11)

where Nσ bosons are allowed to occupy dσ single-
particle functions (SPFs) |ϕσj (t)⟩. The vector n⃗σ =
(nσ1 , . . . , n

σ
dσ
) indicates the occupation number of

each SPF. Finally, the SPFs are expanded with re-
spect to a time-independent basis consisting of Mpr

grid points2. The ML-MCTDHX equations of mo-
tion for the above-described coefficients are derived,
e.g., by using the Dirac-Frenkel variational principle
⟨δΨ|(ih̄∂t − Ĥ)|Ψ⟩ = 0. A limiting case is to set
DA = DB = DC = 1, which leads to a single product
state in Eq. (10) neglecting intercomponent correla-
tions, but still including intracomponent ones. In ad-
dition, using dA = dB = dC = 1, the method reduces
to the standard mean-field approach where all corre-
lations are absent. We will exploit in Appendix D
different reduction ansatzes in order to unravel the
impact of two- and three-component correlations on
one- and two-body observables.

IV. TWO BOSONIC IMPURITIES

We start our investigation on induced interac-
tions with a system containing two bosonic impu-
rities, i.e., NB = 2. In what follows, the many-
body ML-MCTDHX computations of the correspond-
ing impurity-medium setting are analyzed and subse-
quently compared with an effective two-body model
and the standard mean-field approximation.

A. One-body density configurations

By choosing to work with a tilted double-well po-
tential, we intentionally break the system’s inversion
symmetry. This creates an energy offset between the
two wells of the double-well potential. Consequently,
the impurities prefer to occupy the energetically lower
well. In Figs. 2(a) and (b) we present the one-
body densities ρ(1)σ (xσ) of species σ = A,B, respec-
tively, as a function of the impurity-medium interac-
tion strength gAB , for fixed gAA = gBB = 0.1. Our

2 For a given Mpr, ML-MCTDHX is numerically exact when
dσ = Mpr and Dσ equals the number of bosonic configura-
tions, i.e.

(Nσ+dσ−1
dσ−1

)
.
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Figure 2. Ground-state one-body densities of (a) the
medium and (b) the two bosonic impurities as a function
of the interspecies interaction strength gAB . (c) Popula-
tion of impurities at the energetically elevated double-well
site (located at xB > 0), IMB

BB , see Eq. (12) for the defini-
tion, with respect to gAB . The simulations are performed
within the many-body approach ML-MCTDHX. The two
repulsively interacting (gBB = 0.1) impurities experience
a tilted double-well potential and are coupled to a bosonic
medium with NA = 12 and gAA = 0.1.

choice of gBB is somewhat arbitrary; we select it to
match the value of gAA. Note that for the induced
interactions to exist in the thermodynamic limit, gAA

should be finite, see Sec. II B.
As it can be readily seen from Fig. 2(b), the pop-

ulation imbalance of the impurities is evident already
in the non-interacting case, gAB = 0. This behavior
becomes gradually more prominent with increasing in-
tercomponent interaction |gAB | eventually leading in
the strongly interacting case (gAA, gBB ≪ gAB) to a
complete depopulation of the energetically higher site
from the impurities. As expected, depending on the
sign of gAB the density of the medium features a de-
pletion (hump) for gAB > 0 (gAB < 0), as shown in
Fig. 2(a), at the location of the impurities. Indeed, as
long as gAB > 0 the medium atoms prefer to avoid the
impurities, while if gAB < 0 the bosons accumulate in
the vicinity of the impurities.

To quantify the depopulation process of the impuri-
ties we integrate ρ(1)B (xB) over the energetically higher
double-well site (located at xB > 0):

IBB =

∫ L/2

0

ρ
(1)
B (xB)dxB , (12)

where the upper integration limit is set by the length
L of the ring potential. A typical profile of this quan-
tity is presented in Fig. 2(c) with respect to gAB and
labeled as IMB

BB to indicate that this observable has
been obtained within the full many-body approach
(cf. Section III). Here, the largest population at the
energetically higher site occurs at gAB = 0 and then

reduces for finite values of gAB , thus implying that
the impurities move to the energetically lower site at
xB < 0.

In the following our goal is to construct an effective
model that captures the above-discussed depopulation
mechanism. Thereby, we construct an effective two-
body model whose parameters are determined on the
basis of the polaron and bipolaron energies. [In this
paper, we use the terms ‘polaron’ and ‘bipolaron’ to
refer to a Bose gas with a single and two impurities, re-
spectively. This terminology became standard, even
when working with a few-body system [30, 32, 35].]
To validate this effective model, we compare its pre-
dictions regarding the integrated density with those of
the many-body approach, IMB

BB , and of the mean-field
approximation, IMF

BB .

B. Effective two-body model

In the previous section we have seen that finite
impurity-medium coupling strengths gAB lead to a
depletion of the impurities’ density at the energeti-
cally higher double-well site. There are two plausible
mechanisms for this behavior. First, it may be at-
tributed to the increase of the effective mass of the
impurity, which leads to spatial localization, see also
Appendix B. Second, this behavior can be interpreted
as an additional mediated interaction between the
impurities induced by their coupling (gAB) with the
medium.

To construct an effective two-body model, we first
define the energy cost of adding the impurity to the
system, Epol

B [6, 7],

EB = E
(0)
A + Epol

B . (13)

Here, EB is the total energy of the impurity-bath sys-
tem, and E(0)

A denotes (throughout this work) the en-
ergy of the bath without any impurities. Note that EB

and therefore Epol
B = EB −E

(0)
A depend on gAB . The

total energy is used, together with the undisturbed
impurity Hamiltonian ĥ(1)B [Eq. (2b)], to formulate the
effective model

Ĥeff
B (x) =ϵpolB + ĥ

(1)
B (x), (14)

where ϵpolB = Epol
B − E(1body) is chosen such that the

ground state energy of Ĥeff
B matches the energy Epol

B .
E(1body) is the ground-state energy of the one-body
Hamiltonian ĥ(1)B (x). In this effective one-body model
we explicitly consider the bare impurity mass mB as
it turns out that the effective two-body model pre-
dictions are improved in the absence of the effective
mass for gAB > 0. More details about this fact can
be found in Appendix B where the effective mass is
determined, and in Appendix C at which the behav-
ior of the induced two-body interaction accounting for
the effective mass is reported.

Let us now consider two impurities. Each impurity
contributes with Epol

B to the energy of the undisturbed
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Figure 3. (a) The energy Epol
BB (in units of h̄ω) and the corresponding effective interaction strength geffBB (in units of√

h̄3ω/m) in terms of gAB . The energies are obtained either using the many-body approach, Epol
BB , or the mean-field

approximation, Epol,MF
BB (see legend). Notice that the predictions of the two approaches agree well. (b) Integrated

one-body density [Eq. (12)] determined via the many-body approach IMB
BB , the effective two-body model [Eq. (16)],

IeffBB , and the mean-field approximation, IMF
BB . The blue shaded areas in panels (a) and (b) mark the interaction region

where the relative deviation between IMB
BB and IMF

BB is smaller than 0.1. (c) One-body density of the impurities within
the many-body approach (MB), the effective two-body model (2b,eff) and the mean-field approximation (MF), see also
legend. The double-well potential is also shown and the inset illustrates the impurities’ density within the right well as
predicted for the different methods. Here, gAB = 0.5, see the vertical dotted lines in panels (a) and (b). Other system
parameters are NA = 12 and gAA = gBB = 0.1.

bath, E(0)
A . The total energy, EBB , of a system con-

sisting of a bath coupled to two impurities can then
be decomposed [28, 30, 76] (note the resemblance to
the perturbative analysis presented in Sec. II B), as

EBB = E
(0)
A + 2Epol

B + Epol
BB . (15)

In this expression, Epol
BB appears due to the direct and

effective interactions between the impurity atoms. In
Fig. 3(a), we present the many-body results of Epol

BB
for gBB = 0.1. For weak impurity-medium couplings,
the positive value of gBB implies that Epol

BB > 0. How-
ever, for gAB

>∼ gAA, induced attractive interactions
dominate [44]. In this regime Epol

BB < 0, which sug-
gests clustering of impurities3. To capture this effect,
we design an effective two-body model that incorpo-
rates an effective interaction of strength geffBB induced
by the medium

Ĥeff
BB =

2∑

i=1

Ĥeff
B (xi) + geffBBδ(x1 − x2). (16)

For simplicity we consider here a contact effective
interaction, which is motivated by the discussion in
Sec. II B. We anticipate that a ‘simple’ delta-function
potential form cannot capture the physics of strong in-
teractions in full detail [31, 33]. Still, as we shall argue
below it provides an adequate starting approximation
even in this case.

3 In the homogeneous case the induced interaction between two

impurities is approximately given by geffBB − gBB ≃ − g2AB
gAA

[44], see also Section II B. The induced attraction is roughly
equal to the internal impurity-impurity repulsion (gBB =
geffBB) when gAB ≃ gAA. We have checked that the mediated
interaction geffBB determined via the fitting procedure indeed
approaches this prediction if (i) gAB ≪ gAA and (ii) the
healing length of the Bose gas is much smaller than L.

To calculate geffBB , the condition that the ground
state energy, Eeff

BB , of Ĥeff
BB matches our many-body

results is imposed, namely

Eeff
BB

!
= 2Epol

B + Epol
BB . (17)

In practice, the free parameter geffBB is varied until
Eq. (17) is satisfied. To solve the two-body model, and
later on the three-body one, we expand the respective
wave function in terms of number states which are
composed of a set of static single-particle functions,
see Appendix A for more details.

In Fig. 3(a), geffBB is illustrated for gBB = 0.1 as
a function of gAB . Apparently, for gAB = 0, induced
impurity-impurity interactions are absent and it holds
that geffBB = gBB

4. Although, the effective model was
established using purely energy considerations, it also
turns out to be useful for calculating other observ-
ables. This fact is shown in Fig. 3(b), (c) where
we compare the impurities integrated one-body densi-
ties and a characteristic spatial profile obtained with
the effective two-body model, I2b,effBB , and the many-
body approach, IMB

BB . A good agreement between
the two methods is observed for the aforementioned
population of the energetically higher double-well site
and the density configuration itself. However, non-
negligible deviations occur for increasing impurity-
medium attractions.

To study the impact of correlations on the employed
one-body observables, we perform a comparison of our
results to the outcome of the standard mean-field ap-
proximation. Inspecting Figs. 3(a) and (b) it turns
out that the mean-field results are accurate for weak
intercomponent interactions. However, for larger val-

4 In fact, the effective model at gAB = 0 yields a geffBB which
matches up to the third digit gBB = 0.1. This deviation
marks the accuracy of the employed exact diagonalization
method when fitting to the ML-MCTDHX data.
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ues of |gAB | the mean-field predictions for the one-
body density start to deviate from the many-body re-
sults indicating an increasing role of correlations in the
system, see in particular Figs. 3(b), (c). This devia-
tion implies that it is possible to study the strength of
induced impurity-impurity interactions by observing
the one-body density. For convenience, the interac-
tion region (−0.18 < gAB < 0.2) where the mean-field
treatment yields accurate results (within 10% accu-
racy) for the integrated density is marked by a blue
shaded area in Figs. 3(a) and (b). The origin of the
deviation between the many-body and the mean-field
results is linked to interspecies correlations, see Ap-
pendix D for more details.

V. THREE BOSONIC IMPURITIES

Next, we investigate three bosonic impurities cou-
pled to a bosonic medium. Besides an effective two-
body interaction discussed in the previous section, the
system can experience an effective three-body force
(cf. Ref. [26]). To quantify its effect, it is necessary
to extend the effective model given by Eq. (16).

Similar to the two-impurity case, the extended effec-
tive model is developed using energy considerations.
Namely, the total energy is re-arranged as follows

EBBB = E
(0)
A + 3Epol

B + 3Epol
BB + Epol

BBB . (18)

This expression includes the unperturbed bath energy
E

(0)
A and three times Epol

B . The higher-order contri-
butions enter via the two-body polaron energy Epol

BB ,
and the three-polaron one, Epol

BBB . The coefficient
3 in front of Epol

BB reflects the number of interacting
impurity-impurity pairs. It also follows from the anal-
ysis based upon perturbation theory, see Section II B.

We incorporate induced three-body interactions in
an effective three-body Hamiltonian as follows5

Ĥeff
BBB =

3∑

i=1

Heff
B (xi) + geffBB

3∑

i,j=1
i ̸=j

(xi − xj)

+geffBBBδ(x1 − x2)δ(x2 − x3), (19)

where the shape of the last term is motivated by the
discussion in Sec. II B. The parameter geffBB is deter-
mined within the effective two-body model introduced
in Sec. IV B. To compute the strength of the effec-
tive three-body interaction, we enforce the condition
that the ground-state energy of Ĥeff

BBB , namely Eeff
BBB ,

matches the energy of the three dressed impurities,

Eeff
BBB

!
= 3Epol

B + 3Epol
BB + Epol

BBB . (20)

5 Note that our three-body interaction term leads to diver-
gences similar to the two-dimensional contact interaction, see
Ref. [77] and Appendix E. We renormalize this interaction
potential by fitting in a finite Hilbert space.

As in Eq. (18), the one-body term here refers to the
single-polaron energy Epol

B . The two-body interaction
term accounts for the impurity-impurity correlations
and Epol

BBB implies the presence of the three-impurity
induced interactions.

The analysis of a three-impurity system is shown
in Fig. 4 for varying gAB and constant gBB = 0.1.
For weak interactions (i.e. gAB → 0), Epol

BBB and
geffBBB appear to scale as g3AB , see Fig. 4 (a), in agree-
ment with the perturbative predictions discussed in
Sec. II B. Also, despite the fact that the effective
model of Eq. (19) is constructed through energy con-
siderations, it turns out to be useful for other observ-
ables (see below).

Figure 4(b) depicts the integrated one-body density
using IMB

BBB , obtained from the many-body treatment,
as a reference. First, we determine the integrated one-
body density from the effective model in the absence
of three-body effects, i.e., setting geffBBB = 0 in Eq.
(19) which we refer to as I3b,eff,0

BBB . It is found that
I3b,eff,0
BBB agrees well with IMB

BBB only for small impurity-
medium coupling strengths, and that geffBBB ̸= 0 leads
in general to more accurate results. Indeed, for larger
values of gAB , the integrated density of the impuri-
ties in either of the effective models deviates from the
many-body result as can be readily seen in Fig. 4(b).
This implies that the assumed effective interactions
capture only approximately induced correlations be-
tween particles. This conclusion is further supported
by investigating the one-body density for gAB = 0.5,
see Fig. 4(c) and its inset.

We conclude that while three-body effects are
clearly present, their analysis appears to be more in-
volved than those for two impurities. To interpret this
observation, note that according to Section II B, the
interaction strength geffBB should be modified to ac-
count for the presence of the third impurity. Finally,
it is worth noticing that the mean-field approxima-
tion leads to accurate results for the one-body densi-
ties and the energy, comparable to those of the effec-
tive model but not the many-body approach, see Fig.
4(a)-(c). The lack of agreement between the mean-
field approach with the many-body one indicates that
inter-particle correlations have a significant impact on
the one-body observables.

VI. INDUCED INTERACTIONS IN
THREE-COMPONENT MIXTURES WITH

IMPURITIES

In the following, we examine the impact of medi-
ated interactions on the behavior of two distinguish-
able impurities and two bosonic impurities plus one
distinguishable impurity. Such a scenario presumes
a three-component ultra-cold mixture. In our case,
this consists of a medium A confined to a ring and
two distinct impurity species B and C trapped in a
double-well potential. The many-body Hamiltonian
of Eq. (1) is readily extended to the three-component
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Figure 4. (a) The energy Epol
BBB and the effective three-impurity interaction strength geffBBB calculated by fitting the

effective model to Epol
BBB (see main text). Epol

BBB is compared to Epol,MF
BBB , which is computed within the mean-field

approach. (b) Integrated one-body density of the impurities, IBBB , computed within the many-body (MB) method, the
mean-field (MF) approximation and the three-body effective model with and without a three-body interaction potential,
labeled as (3b,eff) and (3b,eff,0), respectively. (c) Ground-state density distribution of the impurities within four different
approaches (see legend) for fixed gAB = 0.5 indicated also by vertical gray dotted lines in panels (a) and (b). The inset
provides a magnification of the densities for the right well of the double well (see also the right axis of panel (c))
emphasizing the degree of agreement among the different approaches. Other system parameters are NA = 12, NB = 3,
gAA = 0.1 and gBB = 0.1.

case:

Ĥ = ĤA + ĤB + ĤC + ĤAB + ĤAC . (21)

For simplicity, we consider a mass-balanced system,
mA = mB = mC = 1, whilst the impurities interact
with gBB = gBC = 0.1.

Analogously to the setup containing indistinguish-
able bosonic impurities discussed in Sections IV
and V, our aim is to examine the impact of the medi-
ated interactions between the impurities in a double-
well potential. This will be again achieved by analyz-
ing the effect of interactions on the one-body densi-
ties within the many-body method and the suitable
effective model. A key difference from the previously
studied scenarios is the possibility to independently
tune the impurity-medium interaction strengths. This
gives rise to a substantial change in the character of
the induced interactions. In particular, coupling one
impurity attractively to the bath, while the other re-
pels it, induces repulsive interactions between the im-
purities as was also argued in Refs. [21, 22, 67, 78].

A. Two distinguishable impurities

In the following, we consider two distinguishable
impurities, NB = 1 and NC = 1. We start by ex-
amining the integrated one-body density of the B-
impurity, IMB,B

BC , determined within the many-body
approach, see Fig. 5(a). Comparing the region where
gAB = gAC = 0 with the upper left (lower right) cor-
ner of Fig. 5(a), we find an increase of the B impurity
population in the energetically higher double-well site,
while the regions corresponding to the upper right
(lower left) corner show a reduction of IMB,B

BC . This
signals the presence of a mediated repulsive (attrac-
tive) interaction between the impurities characterized
by gABgAC < 0 (gABgAC > 0) in agreement with
Refs. [21, 22, 67, 78], see also the discussion below.

Following Section IVB, we quantify this induced

interaction using an effective two-body model

Ĥeff
BC = Ĥeff

B (xB) + Ĥeff
C (xC) + geffBCδ(x

B − xC),
(22)

where the effective one-body Hamiltonian, Ĥeff
σ (with

σ = B,C), is constructed similarly to the one de-
scribed in Eq. (14). The effective two-body interac-
tion strength geffBC is tuned such that the ground-state
energy of this effective model, Eeff

BC , coincides with
the expansion that contains one-body energies, i.e.,
Eeff

BC
!
= Epol

B + Epol
C + Epol

BC . Here, Epol
BC parametrizes

correlations between two impurities. Figure 5(b)
presents the effective two-body interaction strength
geffBC along the parametric gAB − gBC plane. As it
can be seen, the prediction made from the behavior
of IMB,B

BC shown in Fig. 5(a), i.e., that geffBC − gBC ∼
−gABgAC , is readily confirmed.

To judge the quality of the applied effective model,
in Figs. 5(c) and (d) we analyze the integrated den-
sities of impurities B and C, respectively, for fixed
gAB = 0.2 and variable gAC . We find reasonable
agreement in the weakly- to intermediate-interacting
regions marked by the blue shaded areas in panels (c)
and (d). The many-body and effective model predic-
tions deviate from the corresponding mean-field calcu-
lations, in some cases even qualitatively. This obser-
vation is consistent with the case of two B impurities,
see Fig. 3.

To quantify the deviations of the effective two-body
model from the many-body results, we sum over the
relative differences of the integrated densities

E2b,eff
BC =

δI2b,eff,B
BC + δI2b,eff,C

BC

2
, (23)

with δI2b,eff,σ
BC = |IMB,σ

BC − I2b,eff,σ
BC |/IMB,σ

BC . We es-
timate the deviations between the many-body and
mean-field results in an analogous way, i.e., with EMF

BC

involving δIMF,σ
BC . In Fig. 5 (b) depicting geffBC , we

encircle the parametric regions where E2b,eff
BC < 0.03
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Figure 5. (a) Integrated one-body density of the impurity
B (in the energetically higher well) as a function of the
impurity-medium coupling strengths gAB and gAC . (b)
Effective two-body interaction strength (subtracting gBC)
obtained from an effective two-body model [cf. Eq. (16)].
Integrated density of the (c) B and (d) C impurities for
varying gAC and fixed gAB = 0.2 [see the vertical blue
solid lines in panels (a) and (b)] obtained within the many-
body (MB), mean-field (MF) and effective two-body model
(2b,eff). The encircled parametric regions in panel (b)
where EMF

BC < 0.03 (orange-white dotted line) and where
E2b,eff
BC < 0.03 (gray-white dotted line) signify an extended

range of validity of the effective two-body model compared
to the mean-field results. The blue shaded areas in panels
(c), (d) denote E2b,eff

BC > 0.03. In all panels, the system
consists of a weakly-interacting bosonic ultracold gas in a
ring potential coupled to two impurities B and C interact-
ing with gBC = 0.1.

with a gray-white dotted line, while the ones char-
acterized by EMF

BC < 0.03 lie within the orange-white
dotted line. It becomes apparent that the region of
validity of the effective model is larger than that of
the mean-field approximation. For the three-impurity
system studied in the next section, we consider the
parametric region where E2b,eff

BC < 0.03 as the area
where the two-body model provides a reliable start-
ing point for investigation.

B. Two bosonic impurities and one
distinguishable one

Finally, we consider a three-component mixture
consisting of a bath A coupled to two bosonic B and
one C impurities. Similarly to the case of three in-
distinguishable impurities (Section V), our goal here
is to identify qualitative features of effective three-
body interactions among the impurities, mediated by
the bath. However, the important advantage of the
present setting is that it encompasses two adjustable
interaction parameters and not just one. This means
that, besides gAB , it is possible to also tune the in-

teraction strength gAC . Below, we analyze weakly-
interacting impurities with gBB = gBC = 0.1.

As a first step, we examine the integrated one-body
densities of the B and C impurities, see Figs. 6(a)
and (b). A prominent difference between IMB,B

BBC and
IMB,C
BBC is that the latter is larger in amplitude for
gABgAC < 0. This behavior does not necessarily
allude to a three-body effect, since in these param-
eter regions we expect an induced two-body repul-
sion [22, 67, 78] among the B and C impurities. Re-
pulsion implies that the two B impurities push the sin-
gle C-impurity into the energetically higher site and
hence IMB,C

BBC becomes larger. Therefore, in order to
grasp the effects of a mediated three-body interaction
on the one-body density, we need an effective three-
body model.

We construct such a model by decomposing the en-
ergy of the system with three impurities E

(3)
BBC in

analogy to Eq. (18):

E
(3)
BBC = E

(0)
A + 2Epol

B + Epol
C + Epol

BB + 2Epol
BC + Epol

BBC .
(24)

In this expression, Epol
B , Epol

C are the energies of a
single dressed impurity; Epol

BB and Epol
BC describe the

impurity-impurity and Epol
BBC the three-impurity en-

ergies. These energies are computed using the recipe
of Section V. In particular, the single impurity ener-
gies are fitted to the effective one-body Hamiltonians
Ĥeff

B and Ĥeff
C . The energies Epol

BB and Epol
BC as well

as the parameters geffBB , geffBC are obtained from the
corresponding two-body models.

The three-impurity effective Hamiltonian reads

Ĥeff
BBC =

2∑

i=1

Ĥeff
B (xBi ) + Ĥeff

C (xC)

+ geffBBδ(x
B
1 − xB2 ) + geffBC

2∑

i=1

δ(xBi − xC)

+ geffBBCδ(x
B
1 − xB2 )δ(x

B
2 − xC). (25)

The last term describes the induced three-impurity
correlations. The respective three-body interaction
strength is tuned so that the ground-state energy of
the effective model, Eeff

BBC , matches the right-hand
side of Eq. (24).

In Figures 6(c) and (d) we present the three-
polaron energy and the effective three-body interac-
tion strength respectively, as a function of gAB and
gAC . It can be discerned that the sign of the three-
body interaction strength qualitatively obeys the re-
lation geffBBC ∼ g2ABgAC . This property can be under-
stood as a generalization of the case with three indis-
tinguishable bosonic impurities where the sign of the
three-body interaction strength follows geffBBB ∼ g3AB .
Note that the sign of the energy in Fig. 6(c) does not
follow the simple prescription g2ABgAC . Although the
exact origin of this behavior is not clear, our inter-
pretation is the following. In general, an accurate
description of the system with three impurities (coun-
terintuitively) requires a modification of the two-body
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Figure 6. Integrated one-body density (across the energet-
ically higher well) of the impurities (a) B and (b) C as a
function of the impurity-medium coupling strengths gAB

and gAC . (c) Three-polaron energy calculated from Eq.
(24). (d) Effective three-body interaction strength in the
parametric plane gAB − gAC , computed within the effec-
tive three-body model described by Eq. (25). Integrated
density of impurities (e) B and (f) C for varying gAC and
fixed gAB = 0.2 (see also blue lines in panels (a)-(d)) ob-
tained within the many-body (MB), the mean-field (MF)
and the effective three-body model with (3b,eff) and with-
out (3b,eff,0) the three-body interaction term. In panel
(d), we encircle the regions where EMF

BBC < 0.03 (orange-
white dotted line) and E3b,eff

BBC < 0.03 (red-white dotted
line). The region encircled by the gray dashed line de-
notes the range of applicability of the effective two-body
model, where E2b,eff

BBC < 0.03 holds. The blue shaded areas
in (e) and (f) mark E2b,eff

BBC > 0.03. The three-component
system comprises of a weakly-interacting bosonic ultracold
gas on a ring potential coupled to two B-impurities and
one C-impurity with gBB = gBC = 0.1.

interaction, see the last term in Eq. (8). This inter-
pretation is in agreement with our results in Fig. 4
where the three-impurity model does not describe the
data accurately.

To explicate the impact of geffBBC on the accuracy of
the effective three-body model, in Figs. 6 (e) and (f),
we compare its predictions in the presence (I3b,eff,σ

BBC )
and absence (I3b,eff,0,σ

BBC ) of the three-body term for the
integrated one-body density to the many-body predic-
tion (IMB,σ

BBC ), where σ = B,C. The results are shown
for varying gAB and fixed gAB = 0.2. In view of the
integrated densities of species B and C, it can be seen
that including the three-body term always improves
the model’s prediction for the integrated one-body
density, provided that the effective two-body model is

accurate. The parameter region where the two-body
model is judged to be adequate corresponds to the
region defined by E2b,eff

BBC = (δI2b,eff,B
BC + δI2b,eff,C

BC +

δI2b,eff,B
BB )/3 < 0.03, see gray-white dotted line in

Fig. 6(d). The regions where the two-body model
looses its accuracy are marked by blue shaded ar-
eas in Figs. 6(e) and (f), where E2b,eff

BBC > 0.03 holds.
The region where the effective three-body model pro-
duces qualitatively good predictions for the integrated
one-body densities corresponds to the region where
E3b,eff
BBC = (δI3b,eff,B

BBC +δI3b,eff,C
BBC )/2 < 0.03, being encir-

cled with a red-white dotted line in Fig. 6(d).
Finally, in order to further reveal the role of cor-

relations we compare the many-body with the mean-
field results and estimate the region where EMF

BBC =

(δIMF,B
BBC + δIMF,C

BBC )/2 < 0.03, see the parametric re-
gion surrounded by the orange-white dotted line in
Fig. 6(d). Similar to the two-impurity case (Section
VI A), the region where the mean-field predictions are
in good agreement with the many-body results for
three impurities is limited to weak impurity-medium
interactions gAB and gAC .

VII. CONCLUSIONS AND PERSPECTIVES

We have studied the emergence of two- and three-
body mediated interactions for a few impurity atoms.
These atoms are trapped by a tilted double-well po-
tential and immersed in a bosonic host, which is con-
fined to a one-dimensional ring trap. This simple
setup is suggested to be a prototype for detecting ef-
fects of induced interactions. To achieve a compre-
hensive description of the underlying induced inter-
actions, two- and three-component mixture settings
have been considered. Particular attention has been
given to how the impurity-medium coupling strength
influences the imbalance in impurity population at dif-
ferent sites of the double-well potential. To elucidate
the strength of induced interactions and their scaling
behavior, effective two- and three-body models have
been devised according to which the mediated inter-
action between the impurities is approximated by ef-
fective two- and three-body contact potentials.

The associated effective interaction strengths, de-
termined by fitting to the respective polaron ener-
gies of the many-body system, are found to be either
attractive or repulsive depending on the impurity-
medium coupling. It is showcased that the two-body
model predictions are in good agreement with the re-
sults obtained from an ab initio many-body approach.
At the same time, the three-body effective models
replicate many-body calculations only qualitatively,
which we interpret as a general feature of the sim-
plest three-polaron models. Additionally, we have
compared the many-body results with relevant mean-
field calculations, highlighting deviations in energies
and densities. These discrepancies naturally originate
from the absence of interspecies correlations that are
neglected within the mean-field framework. For in-
stance, it is known that the mean-field approach re-
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sults in a faster localization of the impurity [79–81],
in our case, at the energetically lower double-well site.

There are a number of possible follow-up studies
that we find worth-pursuing. First, it is important to
investigate the effect of temperature on our results. In
general, one can expect that tight trapping of the im-
purities can help to circumvent one of the main prob-
lems in observing induced interactions, namely, the
temperature of the bath. Indeed, trapping minimizes
the excitation energy of the impurity, enhancing the
effect of weak interactions. Second, it appears inter-
esting to study mixtures with larger atom numbers
to testify the robustness of the effective interactions.
As we have shown the simplest effective models fail
to provide quantitatively accurate results already for
three impurities. In a similar vein, another perspec-
tive is to construct methods that are able to operate
within the interaction regime of stronger intercompo-
nent attractions where the strength of the effective
interactions may be enhanced.

The generalization of the effective models to higher
spatial dimensions as well as to Fermi/Bose systems
containing fermionic or bosonic impurities can be a
non-trivial extension [82, 83]. Similarly, it might be in-
teresting to understand the role of three-body induced
interactions for charged impurities [84]. Finally, we
note that the double-well potential without a tilt may
contain information about induced impurity-impurity
interactions in a two-body correlation function, see,
e.g., Ref. [85]. It appears interesting to study the im-
pact of the induced three-body interaction in such a
setting assuming a fine-tuned regime where the effect
of the two-body induced potential is balanced by two-
body free-space interactions. It seems natural to de-
sign a suitable radiofrequency spectroscopy scheme,
which would allow to reveal properties of the dressed
states such as lifetime, residue, effective mass and im-
portantly identify effects of induced two- and three-
body interactions.
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Appendix A: Exact diagonalization method

In the following, we describe our approach to nu-
merically solve the effective two and three-body mod-
els, given by Eqs. (16), (19), (22) and (25). We
employ an exact diagonalization method in which
the two- and three-body Hamiltonian matrix is con-
structed using corresponding two- and three-body ba-

sis states. These basis states are used to build a wave
function (see below) which is inserted in the time-
independent Schrödinger equation leading to a set of
coupled linear equations,

Ĥ(NB),effCn = EnCn. (A1)

Here, Cn represents the coefficient vector to the n-th
eigenenergy. After diagonalization it is possible to as-
sess the ground state energy and wave function. Exact
diagonalization is a versatile method which has been
employed, for instance, to systems consisting of few-
body Bose mixtures [35, 86] or impurities coupled to
a bosonic bath in a lattice [30]. Below, we outline the
construction of the aforementioned basis-states for ei-
ther three indistinguishable bosonic impurities or two
bosonic and one distinguishable impurities.

1. Many-body basis for indistinguishable
bosonic impurities

Let us assume NB = 2, 3 bosonic impurities. The
statistical properties of the impurities are treated by
expanding their wave function, Ψeff

BB(B), in terms of
bosonic number states,

|Ψeff
BB(B)⟩ =

DB∑

i=1

Ci|n⃗Bi ⟩, (A2)

where n⃗Bi = (n1, . . . , ndB
). The latter denotes the

occupation distribution of NB impurities over dB
SPFs, while simultaneously satisfying the constraint∑

i ni = NB . This leads to a total number of DB =
(dB +NB − 1)!/[NB !(dB − 1)!] number states. We en-
sure convergence of the applied method by providing
a sufficient number of SPFs from which the number-
state basis is formed. As SPFs we choose the first
dB = 8 energetically lowest eigenstates {φB

i (x)}dB
i=1

of the single-particle Hamiltonian ĥ
(1)
B describing one

atom in a 1D tilted double-well potential [Eq. (2b)].

2. Distinguishable bosonic impurities

Next, we turn to a setting containing NB = 1, 2
bosonic impurities and another distinguishable impu-
rity of species C, i.e., NC = 1. The corresponding
wave function ansatz, Ψeff

B(B)C , has the form,

|Ψeff
B(B)C⟩ =

DB∑

i=1

dC∑

j=1

Cij |n⃗Bi ⟩ ⊗ |φC
j ⟩, (A3)

where the impurity C is described in terms of
the eigenfunctions {φC

i (x)}dC
i=1 of the single-particle

Hamiltonian ĥ
(1)
C . Analogously to Eq. (A2), the B-

impurities are expanded in terms of number states,
which reduce, in the case of NB = 1, to a one-body
basis. Finally, to solve this two- or three-body sys-
tem, we evaluate the respective linear equation sys-
tem given by the Schrödinger equation [cf. Eq. (A1)].
Throughout this work we consider dB = dC = 8 SPFs,
which ensure the convergence of our simulations.
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Figure 7. (a) Integrated one-body densities IMB
B and

IMF
B computed within the many-body and mean-field ap-

proaches, respectively [see also Eq. (12)]. Here, a single
impurity is trapped in a tilted double-well potential. The
impurity is coupled via a contact interaction potential of
strength gAB to a weakly interacting bath (gAA = 0.1) re-
siding on a ring potential and containing NA = 12 atoms.
(b) Effective mass of the impurity extracted by fitting the
integrated one-body density of an effective one-body model
[Eq. (B1)] to IMB

B .

Appendix B: A single impurity coupled to the
bosonic host

For completeness, we investigate the scenario of a
majority species A confined in a ring potential and
being coupled to a single impurity B trapped in a
tilted double-well potential. This system allows for
explicit comparisons with the two (or three) impurity
settings ultimately hinting towards the necessity to
account for induced interactions.

The respective integrated one-body densities IMB
B

(over the energetically higher site) obtained from the
many-body approach as a function of gAB are pre-
sented in Fig. 7(a). As it can be seen, the den-
sity portion in the energetically elevated double-well
site decreases as |gAB | increases indicating a localiza-
tion of the impurity at the energetically lower site.
Recall that a similar trend of the integrated density
takes place for two or three bosonic impurities, see
e.g. Fig. 3(b) and Fig. 4(b). Comparing the be-
haviors of the one- and two-impurity cases, IMB

B and
IMB
BB , respectively, we find that the localization trend is

stronger in the case of two non-interacting impurities
(not shown) than the one of a single impurity. This
suggests the presence of an induced attractive interac-
tion. Moreover, this behavior is compared to IMF

B , i.e.,
the integrated density obtained within a mean-field
approximation. It is found that in general IMF

B < IMB
B

implying that correlations impede (but not eventually
prevent) the impurity’s localization Ref. [80, 81]).

Another important aspect of the dressed impurity
that has not been estimated thus far is its effective
mass. This may support the localization tendency of

the impurities for varying interactions but also im-
prove the agreement of the effective models with the
many-body computations (see also Appendix C). For
this reason, we construct an effective one-body de-
scription which in fact has been intensively used be-
fore and argued to provide an adequate approximation
both for the static but also the dynamical properties
of a single impurity [33, 87]. It reads

Ĥeff′
B = ϵpol

′

B − h̄2

2meff
B

∂2x + VB(x), (B1)

where VB(x) denotes the tilted double-well potential
[Eq. (3)]. The energy difference ϵpol

′

B is chosen such
that the ground-state energy of the effective model
Ĥeff′

B matches the polaron energy Epol
B [Eq. (13)].

The crucial difference with the model described
by Eq. (14) is the presence of the effective mass,
meff

B . The latter is determined by varying meff
B such

that the integrated one-body density of the effective
model (I1b,effB ) coincides with the many-body result
(IMB

B ). This is achieved by minimizing the cost func-
tion |IMB

B − I1b,effB |2. An overall accuracy of ∼ 10−10

is ensured within our simulations. In Fig. 7(b) we
present the results for the effective mass as a func-
tion of gAB . As shown, increasing |gAB | leads to a
larger effective mass which is in accordance with the
observed localization behavior of the impurities in the
main text. Recall that within the main we argued
that considering the bare impurity mass in the effec-
tive models improves the agreement with the many-
body results. Below, in Appendix C, we exemplify
the impact of the effective mass on the outcome of
the effective two-body model.

Appendix C: Impact of the effective mass on the
two-impurity behavior

Having at hand meff
B (see Appendix B) it is instruc-

tive to study its impact on the accuracy of the ap-
plied effective two-body model described in Section
IV B. Indeed, the effective mass may be utilized to
construct a corresponding effective two-body model,

Ĥeff′
BB =

2∑

i=1

Ĥeff′
B (xi) + geff

′
BBδ(x1 − x2), (C1)

where Ĥeff′
B refers to the one-body Hamiltonian of Eq.

(B1). Similarly to the prescription followed in Section
IV B, the effective two-body interaction strength geff

′
BB

is estimated by demanding a matching of the ground-
state energy of Ĥeff′

BB with the energy 2Epol
B + Epol

BB .
In Fig. 8(a) we directly compare the effective two-
body interaction strengths, geffBB and geff

′
BB , correspond-

ing to the two-body models without [Eq. (16)] and
with [Eq. (C1)] an effective mass, respectively. It is
evident that for small impurity-medium interaction
strengths, gAB , of either sign the effective coupling
parameters extracted for the aforementioned different
models agree well with each other while deviating for
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Figure 8. (a) Effective two-body interaction strengths geffBB

and geff
′

BB extracted from the two-body models given by Eq.
(16) and Eq. (C1), respectively. (b) Integrated one-body
density obtained within the many-body approach (IMB

BB )
and with an effective two-body model which considers the
bare impurity mass [I2b,effBB , Eq. (16)] and an effective mass
[I2b,eff

′
BB , Eq. (C1)]. The effect of the induced interaction

is highlighted by a comparison to Ieff
′,0

BB corresponding to
an effective two-body model which includes the effective
mass but neglects the induced interaction, i.e., in Eq. (C1)
we set geff

′
BB ≡ gBB = 0.1. We consider two interacting

(gBB = 0.1) bosonic impurities, which are coupled to a
bath consisting of NA = 12 bosons featuring gAA = 0.1.

larger repulsive gAB . In particular, it appears that
geff

′
BB takes smaller absolute values than geffBB .
To judge the quality of the applied methods, we

additionally compare the respective integrated one-
body densities, see Fig. 8(b). For repulsive gAB , we
find that the best agreement compared to the many-
body results, IMB

BB , occur for the integrated one-body
density (I2b,effBB ) calculated with the model described
in Section IVB where the effective mass has been ne-
glected. On the other hand, the integrated density
corresponding to the model in Eq. (C1), I2b,eff

′

BB , un-
derestimates the many-body results for repulsive gAB .
However, for attractive gAB , including the effective
mass results in a better agreement between Ieff

′
BB and

IMB
BB , while IeffBB overestimates the target results. This

result is not straightforward, since a-priori one would
expect an improvement of the model predictions when
including the effective mass. Such an effect may em-
anate from different sources such as the rather com-
plex potential landscape employed, or the fact that
we operate far from the thermodynamic limit. To re-
solve this issue a careful analysis is required going even
beyond the currently employed methods to exemplify
the origin of this discrepancy which is left for future
endeavors.

To reveal the effect of the induced interaction geff
′

BB
on the integrated density, we additionally calculate
the observable I2b,eff

′,0
BB , obtained from an effective

two-body model which includes the effective mass but
does not consider the effects of the mediated interac-
tions, i.e., in Eq. (C1) we set geff

′
BB ≡ gBB = 0.1. It

can be readily seen from Fig. 8(b), that Ieff
′,0

BB clearly
deviates from IMB

BB for gAB ̸= 0 and in fact yields (at
least within the considered parameter range) always
larger values than IMB

BB . This indicates that, indeed,
an attractive induced interaction strength is required
to correctly capture the many-body results.

Appendix D: Correlation impact on one-body
and two-body observables

In the following, we employ different ansatzes for
the many-body wave function in order to unravel the
role of correlations on one- and two-body observables.
The many-body wave function of a general three-
component mixture (see also Section III) is firstly ex-
panded in terms of different DA, DB and DC species
functions. Setting DA = DB = DC = 1, all intercom-
ponent correlations are neglected rendering the total
wave function [Eq. (10)] a single product state where
each species is represented by a single species wave
function. Note that each species wave function is ex-
panded in terms of different SPFs accounting for in-
tracomponent correlations. This approach is referred
to as species mean-field (sMF) [67]. A step beyond
this sMF ansatz is to allow entanglement formation
solely between two of the species, while correlations
with the third species are suppressed. This is accom-
plished, e.g. through DB = 1 and DA, DC > 1, mean-
ing that species A and C are correlated, experiencing a
mean-field type potential from species B. We will dub
this approach species mean-field of species B (sMFB).
Analogously, one can define sMFA and sMFC.

As such it is possible to extract the impact of corre-
lations between two different species on an arbitrary
observable Ô. For instance, to reveal the impact of
correlations between species A and B, we calculate,

∆AB = ⟨Ô⟩sMFC − ⟨Ô⟩sMF, (D1)

where ⟨Ô⟩X denotes the expectation value of Ô using
the method X = MB, sMF, sMFA, . . . . In a next step,
we can decompose the expectation value calculated
within the full many-body method, i.e. ⟨Ô⟩MB, in
terms of contributions of different correlation orders
as follows,

⟨Ô⟩MB = ⟨Ô⟩sMF +∆2spec +∆3spec. (D2)

Here, the expectation value ⟨Ô⟩MB, which includes all
relevant interspecies correlations, splits into a species
mean-field part, ⟨Ô⟩sMF, as well as a second- and
third-order correlation term, ∆2spec = ∆AB +∆AC +
∆BC and ∆3spec. Specifically, we calculate ∆3spec

by subtracting the species mean-field and the second-
order contribution from the many-body result ⟨Ô⟩MB.
More detailed discussions about such a decomposition
can be found in Ref. [67].

Below, we focus on the setup of Section VI A, i.e.,
two distinguishable impurities B and C coupled to a
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Figure 9. (a) Integrated one-body density of impurity B,
IBBC [Eq. (12)], obtained within the full many-body (MB),
mean-field (MF) and species mean-field (sMF) ansatz. (b)
Contributions of the second- and third-order correlations
on IBBC , see Eq. (D2). Impurities’ relative distance, ⟨r̂BC⟩,
by (c) using different numerical approaches (see legend)
and (d) distinguishing second- and third-order correlation
effects. We consider two distinguishable impurities B and
C trapped in a tilted double-well potential coupled to a
weakly interacting majority species A on a ring potential
with gBC = 0 and gAB = gAC .

bosonic majority species A where gBC = 0. The inte-
grated one-body density of species B, IBBC obtained
within the many-body (MB), mean-field (MF) and
sMF methods is presented in Fig. 9(a) as a function
of gAB = gAC . As it can be seen, the MF and sMF
predictions show a very good agreement indicating
that the presence of correlations among the particles
of species A do not play a decisive role for the be-
havior of the integrated density IBBC . Interestingly, a
close comparison among the results obtained with the
sMF and the MB approaches, unveils that the absence
of interspecies correlations leads to a faster decrease
of the density at the energetically higher double-well
site. This clearly showcases that interspecies corre-
lations hinder the impurities localization. In Figure
9(b) we resolve the discrepancy between the MB and
sMF calculations in terms of two- and three-body ef-
fects. It turns out, that both contributions lead to an
increase of the integrated density with the two-body
ones naturally exhibiting the larger participation.

Next, we aim to generalize our observations by
comparing correlation effects imprinted on two-body
observables such as the impurities’ relative distance
⟨r̂BC⟩ [32, 34]. Also inspection of this observable
explicates that the presence of all correlations leads
to an increase of the impurities relative distance, see
Fig. 9(c). However, when resolving the impact of cor-
relations in terms of second- and third order terms, we
find that only two-component correlations are associ-
ated with an increase of ⟨r̂BC⟩, while the third order
contribution is negative, see Fig. 9(d). This third-
order mechanism is attributed to an induced effect,

where the majority species A mediates correlations
between the non-interacting impurities B and C. In
particular, the shrinking of ⟨r̂BC⟩ can be interpreted
as a correlation-induced attraction, which is in accor-
dance with the effects reported in Refs. [67, 88].

Appendix E: Diverging three-body interaction

Here, we will show that the three-body interaction
used in the main text, see Eq. (19), diverges logarith-
mically – similar to the contact interaction in 2D (see,
e.g., Refs. [89, 90] and references therein). Therefore,
we start with the following Hamiltonian of three par-
ticles in 1D with periodic boundary conditions:

H = −1

2

3∑

i=1

∂2

∂x2i
+ gδ(x1 − x2)δ(x2 − x3). (E1)

Since all interactions are translationally invariant, the
total momentum of the system, P , is conserved. We
can use this to eliminate one of the three coordinates
by writing [87, 91, 92]

Ψ(x2, x, y) = Ψ̃(x, y)eiPx2 , (E2)

where x = x1−x2+θ(x2−x1), y = x3−x2+θ(x2−x3)
with θ(x) the Heaviside step function. This approach
leads to the following Hamiltonian

H = −
(
∂2

∂x2
+

∂2

∂y2
+

∂

∂y

∂

∂x

)
− gδ(x)δ(y). (E3)

Note that this Hamiltonian is reminiscent of the
Hamiltonian of a particle with mass m = 2 and a
contact potential together with the additional mixed
derivative term ∂

∂x
∂
∂y .

Next, we solve the Schrödinger equation in momen-
tum space to show that this Hamiltonian diverges log-
arithmically,

k2Φ(k⃗) + kxkyΦ(k⃗) + gΨ(0) = EΦ(k⃗). (E4)

Rewriting this expression, inserting Ψ(0) =∫
d2k′

(2π)2Φ(k⃗
′) and integrating over both sides in

k⃗ we can write:
∫

d2k

(2π)2
Φ(k⃗) =

∫
d2k

(2π)2
g

−k2 − kxky + E

∫
d2k′

(2π)2
Φ(k⃗′)

1 =

∫
d2k

(2π)2
g

−k2 − kxky + E
.

(E5)

With this expression, we can easily see that the in-
tegral is diverging logarithmically. We only run into
problems for large values of |k|:
∫

d2k

(2π)2
g

−k2 − kxky + E
≈

∫
d2k

(2π)2
g

−k2 − kxky
.

(E6)
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Next, we introduce polar coordinates to write
∫

d2k

(2π)2
g

−k2 − kxky
=

∫ ∞

0

dkk

(2π)2

×
∫ 2π

0

dϕ
g

−k2 − k2 sinϕ cosϕ
= − g√

3π

∫ ∞

0

dk/k.

(E7)

It becomes apparent that this integral indeed diverges
logarithmically.

As mentioned briefly in the main text, this is how-
ever not problematic for our approach. Since we solve

the Schrödinger equation numerically with a fixed
cutoff, the latter regularizes the above integral. We
renormalize it by matching the three-body interac-
tion strength gBBB to the energy of the three quasi-
particles. This approach is similar to common renor-
malization methods for Configuration-Interaction cal-
culations in two-dimensional cold atom systems with
contact interaction. In this context, the strength of
the two-body interaction is determined by matching
the bare value of the contact interaction strength to
reproduce the same two-body ground state energy for
each cutoff, see e.g. Ref. [89, 93].
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Chiral symmetry is broken by typical interactions in lattice models, but the statistical interactions
embodied in the anyon-Hubbard model are an exception. It is an example of a correlated hopping
model in which chiral symmetry protects a degenerate zero-energy subspace. Complementary to
the traditional approach of anyon braiding in real space, we adiabatically evolve the statistical
parameter in the anyon-Hubbard model and we find non-trivial Berry phases and holonomies in
this chiral subspace. The corresponding states possess stationary checkerboard pattern in their N -
particle densities which are preserved under adiabatic manipulation. We give an explicit protocol for
how these chirally-protected zero energy states can be prepared, observed, validated, and controlled.

In two dimensions, Abelian braid anyons with frac-
tional exchange statistics arise from the topological anal-
ysis of two-body interactions [1–6], and non-Abelian
anyons of various forms have been proposed as the work-
ing material for robust topological quantum computing
protocols [7, 8]. However, non-standard exchange statis-
tics are not an exclusively two-dimensional phenomenon.
Their key features have been proposed and investigated
in one-dimensional systems since the beginning of the
field [1, 9–19], leading to experimental proposals [20–25]
and recent realizations in Raman-coupled Bose-Einstein
condensates [26, 27]. This, for the first time, opens the
possibility to tune the statistical angle of anyons in an
experimentally accessible platform.

The anyon-Hubbard model provides the platform for
this exploration [15, 28–30]. It realizes exchange statis-
tics with a statistical angle θ that interpolates between
bosons θ = 0 and fermions θ = π are implemented
on a one-dimensional lattice using Floquet-manipulated
Rb atoms in quantum gas microscopes [31] by density-
dependent Peierls phases [32–34]. Such phases lead to
intriguing effects, including statistically induced phase
transitions [15, 28, 35], quasi-condensation at finite mo-
menta [15, 28], emerging Friedel oscillations [29, 30, 36],
as well as asymmetrical transport and expansion dynam-
ics. [37, 38].

Although the anyons realized by the anyon-Hubbard
model are Abelian, their non-standard exchange statis-
tics reveals topological structures in configuration space
which we propose to be exploited for non-Abelian state
manipulation. To motivate this, consider that the
density-dependent Peierls phases which implement the
statistical interaction can induce synthetic magnetic
fluxes through plaquettes in configuration space [19, 31].
In the anyon-Hubbard model, these fluxes provide a
phase exp(±iθ) depending on the order in which the par-
ticles exchange; see Fig. 1(a). Many models in which
underlying canonical particles experience correlated hop-

ping processes share this feature, including [32, 33, 38–
42]. Such correlated hopping processes can be engi-
neered to break parity and time-reversal symmetry [43].
However, correlated hopping models with only nearest-
neighbor hopping processes, such as the anyon-Hubbard
model, preserve the chiral symmetry associated with bi-
partite lattices, a symmetry that is broken when non-
statistical interactions are included [44, 45]. As a re-
sult, theorems about bipartite spatial lattices [46–49] can
be generalized from real space to configuration space in
models with chirally symmetric interactions and particle
number conservation.

In this article, we show that one-dimensional lattice
anyons with only statistical interactions host a degen-
erate zero energy subspace protected by chiral symme-
try. Adiabatically tuning the statistical angle θ from
0 to 2π varies all energy levels in the spectrum ex-
cept for the zero-energy modes, as shown in Fig. 1(b1-
b2). In this space, the variation generates nontriv-
ial holonomies [50, 51], i.e., unitary transformations
similar to braiding non-Abelian two-dimensional anyons
around each other [8]. This scheme can be used for
chiral-protected non-Abelian state preparation. Build-
ing on theorems of Lieb and Sutherland [46, 47], we find
that these results hold for the experimentally accessible
anyon-Hubbard model and extend to chirally symmet-
ric correlated hopping models of bosons with particle
number conservation. In these models, chiral symmetry
equips the configuration space with a stationary checker-
board pattern that can be experimentally revealed by
the N -body density correlations and the spatially off-
diagonal correlation functions of zero energy states and
the quasi-momentum distribution. We furthermore show
how these zero energy states can be prepared from typical
initial states and manipulated by steering the statistical
angle.

Chiral symmetry and correlated hopping.— For a
particle-number conserving bosonic system, a chiral sym-
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FIG. 1. Configuration space representation of the anyon-Hubbard model and its chirally-protected zero energy subspace H0.
(a) Bosonic configuration space for N = 2 particles on L = 6 sites. Each dot represents a bosonic number state with doubly-
occupied sites (black) and singly-occupied (not black) and with positive chirality (black, red hashed) or negative chirality
(plain blue). The edges represent hopping processes with amplitude −J (thin), −

√
2J (thick, dotted), and −

√
2Jeiθ (arrow).

Boundary plaquettes have a flux with a density-dependent Peierls phase θ through them. (b1) Energy spectrum as a function
of the statistical angle θ. The zero energy subspace has dimension d0 = 3 for N = 2 and L = 6 (red line) without avoided
crossings (inset (b2)). (b3) Schematic rotation of H0 by cyclic manipulation of θ. (c) The minimal degeneracy d0 of H0.

metry corresponds to a unitary operator Ŝ that anticom-
mutes with the Hamiltonian [Ŝ, Ĥ]+ = −Ĥ [52–54]. Such
an operator is an involution Ŝ2 = 1 that partitions the
finite-dimensional Hilbert space into chiral eigenspaces
H = H+ ⊕H− with eigenvalues χ = ±1 and dimensions
dimH± = d±. Ĥ is anti-block diagonal in the chiral ba-
sis and has a symmetric spectrum. Therefore, the zero
energy eigenspace H0 has dimension d0 ≥ |d+ − d−| [46–
49, 55]. This minimal degeneracy of the zero energy sub-
space d0 does not depend on the details of the Hamil-
tonian and is protected against perturbations that pre-
serves chiral symmetry.
For N spinless bosons on a one-dimensional lattice

with L sites, the operator Ŝ that realizes chiral sym-
metry for nearest-neighbor correlated-hopping models
is [44, 45, 53]:

Ŝ = exp

(
iπ

L∑

k=1

kn̂k

)
, (1)

where n̂k = b̂†k b̂k is the number operator on site k.

The operator Ŝ transforms bosonic operators as Ŝb̂kŜ =
(−1)k b̂k and acts like a local gauge transformation in
configuration space that assigns opposite chirality to ad-
jacent number states, i.e., number states that differ by
a single hop have opposite chirality. See Fig. 1(a) for
a depiction of L = 6 and N = 2, where the chiral
operator partitions the 21-site configuration space lat-
tice into a checkerboard of sublattices with d+=12 and
d− = 9 chiral number states, respectively. Chiral sym-
metry together with particle-number conservation guar-
antees that this system has at least d0 = |d+ − d−| = 3
zero-energy states with positive chirality, although the
specific subspace H0 ⊂ H+ spanned by these three states
depends on the Hamiltonian. Note that additional pair-

wise zero energy subspace degeneracies can only appear
due to other non-Abelian symmetries or special acciden-
tal degeneracies. In particular, the non-interacting Bose-
Hubbard model with L = 8 and N ≥ 3 has additional de-
generacies at E = 0 because of the trigonometric relation
cos(π/9) + cos(5π/9) + cos(7π/9) = 0. These accidental,
cyclotomic degeneracies are akin to the Pythagorean de-
generacies of the infinite square well. They occur in pairs
that split upon variation from θ = 0 and are therefore not
chirally-protected.
On the zero energy subspace, the chiral operator Ŝ is

promoted to an actual symmetry, because H0 is a sub-
space of the majority chirality eigenspace H± [46, 47,
49, 55]. This implies that all correlation functions vanish
which are not invariant with respect to Ŝ. For example,
the operator b̂†j b̂j+1 has odd chirality and therefore has
a vanishing expectation value for every state in H0. Re-
markably, we find for N < L an analogous pattern in
the N -particle densities. States in the zero energy sub-
space have support exclusively on the majority sublattice
[46, 47, 56], forming an higher-dimensional generalization
of a checkerboard pattern. The scenario of spontaneous
symmetry breaking in the thermodynamic limit is ruled
out by Elitzur’s theorem [57–59].
For general N and L, the dimension of the chirally-

protected zero energy subspace can be derived using com-
binatorics [49, 60, 61] and is depicted in Fig. 1(c):

d0 =

{
0 for N odd and L even
(⌈L/2⌉+⌊N/2⌋−1)!
(⌈L/2⌉−1)!⌊N/2⌋! else,

(2)

where ⌊A⌋ and ⌈A⌉ are the floor and ceiling function of
A, respectively. The majority chiral subspace is H+ for
N even and H− for N odd and L odd.
Model.— The statistical interactions of the anyon-

Hubbard model are chirally symmetric, in contrast
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to ordinary Hubbard-type interactions. They embody
momentum-dependent interactions that are periodic in
the statistical angle θ. The model is defined in terms of
anyonic operators âj with deformed commutation rela-
tions that obey fractional exchange statistics

âj â
†
k − e−iθsgn(j−k)â†kâj = δjk

âj âk − eiθsgn(j−k)âkâj = 0. (3)

The Hamiltonian with L sites takes the form

H(θ) = −J
L−1∑

j=1

(
â†j+1âj + h.c.

)
. (4)

The model is mapped to canonical bosons by a fractional
Jordan-Wigner transformation âj = b̂je

iθ
∑

l<j n̂l [15]:

Ĥ(θ) = −J
L−1∑

j=1

(
b̂†j+1e

−iθn̂j b̂j + h.c
)
. (5)

This results in a correlated hopping process mediated by
a density-dependent Peierls phase.
Properties of the zero energy subspace.— We investi-

gate the properties of the zero energy subspace by exact
diagonalization and find the dimension of the zero energy
subspace d0 typically assumes its minimal value accord-
ing to Eq. (2) as expected when the only symmetries are
Abelian. Additional accidental degeneracies appear for
special N and L at θ = 0 that are not chirally-protected
and unsuitable for adiabatic manipulation.
We first construct a convenient basis for the zero en-

ergy subspace at θ = 0 (non-interacting bosons) and use
this as a experimentally-verifiable starting point for state
manipulation. The single-particle operators

ĉν =

√
2

L+ 1

L∑

k=1

sin (qνk) b̂k, qν =
πν

L+ 1
(6)

diagonalize the Hamiltonian Ĥ =
∑L

ν=1 ϵν ĉ
†
ν ĉν with

ϵν = −2J cos (qν). These operators satisfy the chirality
relation Ŝ†ĉν Ŝ = ĉL−ν+1 with ϵν = −ϵL−ν+1.
From these L single-particle states, we can construct a

d0-dimensional basis of N -particle non-interacting states
with zero energy and definite chirality. First, note that
for L odd the single-particle state |s⟩ ≡ c†(L+1)/2|0⟩ has

zero energy and chirality χs = −1. Second, two-particle
states of the form

|p(µ)⟩ ≡ Ŝ†ĉ†µŜĉ
†
µ|0⟩ for µ ∈ ⌊L/2⌋ (7)

have zero energy and chirality χp = +1. There are pre-
cisely d0 ways to distribute N indistinguishable bosons
among these chiral pair states |p(µ)⟩ and chiral single-
particle states |s⟩, and from these a standard basis for
the zero energy subspace can be built.

1 2 3

k

1

2

3

l

0.84

0.01

0.14

0.01

0.83

0.15

0.14

0.15

0.7

(a) |G|2

1 2 3 4 5 6 7 8

L

1
2
3
4
5
6
7
8

N

13

2

3

4

5

3

4

8

3

12

5

13

7

4

3

12

10

2

39

7

15

4

30

9

(b) mdiag ≥

i

j
2 4 6

2

4

6 (c)

ρij(θ=0)

i
2 4 6

(d)

ρij(0)− ρij(2π)

0.0

0.2

0.4

−0.05

0.00

0.05

FIG. 2. Holonomies for adiabatic evolutions from θ = 0 to
2π. (a) The holonomy matrix G in pair basis |p(µ)⟩ (Eq. (7))
reveals non-trivial adiabatic holonomies ( here N = 2, L = 6,
and Nθ = 104 in Eq. (8), error ∼ 10−3, see [62]). (b) The
smallest integermdiag such thatGmdiag is diagonal (within the

error bounds) quantifies how nontrivial Ĝ is. mdiag increases
strongly with system size. The two-body density of an initial
zero energy state (c), here |p(1)⟩, alters significantly during
the adiabatic evolution (d).

Adiabatic manipulation of the zero energy subspace.—
The periodic dependency in the statistical angle θ invites
the question how the zero energy subspace is affected
under cyclic adiabatic variation of θ. As the statistical
angle is tuned, the zero energy subspace H0 moves and
rotates within the larger subspace H± with majority chi-
rality χ = ±1. Similar to the Aharonov-Bohm effect on
a ring, the zero energy subspace accumulates topological
Berry phases and nontrivial holonomies. These act as
unitary transformations on the above-given standard ba-
sis vectors when tuning θ from 0 to 2π, as schematically
depicted in Fig. 1(b3).
We propagate the zero energy subspace from θ = 0 to

θ = 2π using Kato’s adiabatic evolution [50, 63]

Ĝ = lim
Nθ→∞

Nθ∏

j=1

P̂j , (8)

where P̂j =
∑d0

µ=1 |ψµ(2πj/Nθ)⟩⟨ψµ(2πj/Nθ)| is the pro-
jector onto the zero energy subspace at the statistical
angle 2πj/Nθ and |ψµ⟩ is an orthonormal basis for the
chiral zero energy subspace; see [62] for numerical details.
The unitary matrix Gµµ′ = ⟨ψµ′ |Ĝ|ψµ⟩ then embodies
the adiabatic holonomy for a complete loop.
For L = 2 the zero energy subspace is non-degenerate
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and we calculate the (Abelian) Berry phase G = ±1
exactly and find the nontrivial value of −1 for consec-

utive odd-integer coefficients in the Gauss sum
∑N/2

k=1 k,
see [62]. We investigate the non-Abelian holonomies of
larger systems by exact diagonalization [62, 64, 65]. As
an example, in Fig. 2(a), we present the holonomy matrix
G in the chiral pair basis |p(µ)⟩ at θ = 0 for a system with
N = 2 and L = 6 and d0 = 3. The adiabatic evolution
causes a significant non-trivial rotation of the zero energy
subspace during the adiabatic evolution, which we indi-
cate by ρνij (θ) = ⟨ν(θ)|b̂†i b̂†j b̂j b̂i|ν(θ)⟩, an observable ac-
cessible in the corresponding experiments [31]. For exam-
ple, we can take the initial two-body density ρνij(θ = 0)
of the basis state |p(1)⟩ [Fig. 2(c)] and compare with
ρνij(θ = 2π), i.e., the two-body density corresponding to

the adiabatically propagated state Ĝ|p(1)⟩. This yields
a significant difference in the densities, see Fig. 2(d). In-
terestingly, for variations of parameters other than θ that
preserve chiral symmetry, such as local variations in hop-
ping strength J , we find that the connection is flat, mean-
ing that Ĝ is not altered. Therefore, the results for the
holonomy matrixG are robust against fluctuations in the
adiabatic manipulation.

Tuning the statistical angle therefore implements a
topologically protected operation on the zero energy sub-
space, a concept which has been extensively explored in
the context of Majorana modes and other non-Abelian
anyons [8]. To quantify the nontriviality of G, we de-
termine the smallest integer mdiag such that Gmdiag is
diagonal, i.e., trivial in the context of state manipula-
tion. Also, at least mdiag states in the computational
space can be prepared from an initial state by repeated
application of this operation. For instance, the braiding
of Majorana modes becomes diagonal for mMaj. = 2 and
trivial with G4

Maj. = 1 [8]. Within our error bounds, we
find mdiag > 4 for various particle numbers and system
sizes, particularly for large ones, see Fig. 2(b) and [62].

This idea can be elevated to non-Abelian holonomies
if we implement the site-dependent statistical parameter
θj . This leads to a generalized anyonic exchange algebra

a†jak = âiâ
†
j − eiθi,j â†j âi = δi,j with θi,j = θj for i > j,

θi,j = −θi for i < j, and θi,i = 0. For different exchange
phases θL in the left and θR in the right part of the
system [62, 66], we generally find [GL,GR] ̸= 0, meaning
the fluctuation-protected state manipulation depends on
which statistical angle is altered first [62].

Steering to the zero energy subspace.— The basis states
for θ = 0 can be prepared by temporal variation of
θ = θ(t) [31]. As a simple, accessible initial state, we
consider two bosonic particles at the central sites of a
lattice with L = 6 sites, i.e., |Ψ(t = 0)⟩ = |001100⟩. In
order to find a path for θ(t) which maximizes the overlap
of the propagated wave function at time tf with a chiral
pair target state, O(tf ) = |⟨p(µ)|Ψ(tf )⟩|2, we represent
θ(t) with M interpolation points (for details see [62]).
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〈Ŝ
〉(t
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O(
t)

(b)

−1

0

1

θ(
t)
/π

(a)

FIG. 3. Steering to the zero energy subspace, starting with
N = 2 bosons at the center of L = 6 sites. (a) The statistical
phase θ(t) is dynamically varied along 60 optimized interpo-
lation points (gray) such that (b) the overlap O(tf ) of the
time-evolved state with the zero energy state |p(1)⟩ (Eq. (7))
is maximal, reaching a final overlap of 1−10−4. The time evo-
lution of (c) the chirality and (d) the static structure factor
Cπ(t), which approaches its maximal value N2/L2 (dashed
line) indicating the emergence of a checkerboard pattern, the
signature of the zero energy subspace.

These M points serve as an input for a gradient based
optimization algorithm which updates the path θ(t) until
O(tf ) becomes maximal [67–69].
In Fig. 3, we present details of the optimization routine

forM=40 and tf =40. The chosen path for θ(t) shown in
Fig. 3(a) reaches a fidelity O(tf ) = 1−10−4 in Fig. 3(b),
which can be further increased for larger M and tf . As
a measure whether the final state converges to the zero
energy subspace, we monitor the expectation value of the
chiral operator Ŝ in Fig. 3(c) and investigate the steering
of the structure factor [70] in Fig. 3(d)

Cq(t) =
1

L2

∑

jk

eiq(j−k)⟨Ψ(t)|n̂j n̂k|Ψ(t)⟩. (9)

We find a dominant signal at q = 0, π that signals the
presence of the checkerboard pattern in the N -particle
density correlation for L > N , which is conveniently
experimentally accessible in few-particle systems, see
Fig. 2(c) [71, 72]. For large particle numbers, we instead

propose to probe the one-body density matrix ⟨ψ|b̂†i b̂j |ψ⟩
directly by the Fourier transform of the quasi-momentum
distribution ⟨b̃†k b̃k⟩.
Conclusions.— We have shown that chiral-symmetric

number-preserving correlated hopping models with
bosons accommodate at least d0 degenerate zero energy
states. The dimension of this space of states is robust
against any parameter variations that preserve chiral
symmetry, although the space itself sweeps through the
chiral majority subspace. For the free anyon-Hubbard
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model, states in the zero energy chiral subspace can
be prepared from experimentally-accessible initial states
and detected by the characteristic checkerboard pattern
in configuration space with current quantum gas mi-
croscopy techniques [31]. As the statistical angle is adia-
batically tuned, the zero energy space picks up a non-
Abelian holonomy for each cycle. This paradigm of
non-Abelian state preparation could find further appli-
cations within the space of chiral symmetric correlated
hopping models by tuning more than one cyclic param-
eter. As an example, we propose implementing this
non-Abelian state preparation scheme within a spatially-
inhomogeneous anyon-Hubbard model. More generally,
we believe that Floquet-driven density-dependent Peierls
phases offer a rich perspective for future exploration.
Such models contain synthetic magnetic fluxes in few-
body configuration space, and they provide an alternate
path to understanding topological interactions in low di-
mensional systems. We propose a generalized anyon-
Hubbard model with inhomogeneous statistical angles
as one example of wider class of bosonic Hamiltonians
with density-dependent Peierls phases, possibly without
anyonic interpretation, but relevant to experiments and
topological control via adiabatic holonomies.

The authors thank André Eckardt and Peter Græns
Larsen for discussions on correlated hopping models and
Joyce Kwan and Bryce Bakkani-Hassani for discussions
of their anyon-Hubbard model experiment. T.P. thanks
Ingo Runkel for comments on the local varying statisti-
cal angles. M.B. and T.P. acknowledge funding by the
European Union (ERC, QUANTWIST, project number
101039098). The views and opinions expressed are how-
ever those of authors only and do not necessarily reflect
those of the European Union or the European Research
Council, Executive Agency. T.P. and P.S. acknowl-
edge support by the Cluster of Excellence “CUI: Ad-
vanced Imaging of Matter” of the Deutsche Forschungs-
gemeinschaft (DFG) – EXC 2056 – project ID 390715994
and T.P. acknowledges funding of the DFG project No.
420120155. Additionally, N.H. was supported by the
Deutscher Akademischer Austauschdienst, the Centre for
Ultrafast Imaging: Advanced Imaging of Matter of the
University of Hamburg.

[1] J. M. Leinaas and J. Myrheim, Il Nuovo Cimento B
(1971-1996) 37, 1 (1977).

[2] G. A. Goldin, R. Menikoff, and D. H. Sharp, Journal of
Mathematical Physics 21, 650 (1980).

[3] F. Wilczek, Physical Review Letters 49, 957 (1982).
[4] Y.-S. Wu, Physical Review Letters 52, 2103 (1984).
[5] L. Biedenharn, E. Lieb, B. Simon, and F. Wilczek,

Physics Today 43, 90 (1990).
[6] A. Khare, Fractional Statistics and Quantum Theory, 2nd

ed. (World Scientific, Hackensack, N.J, 2005).

[7] A. Kitaev, Annals of Physics 321, 2 (2006).
[8] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and

S. Das Sarma, Reviews of Modern Physics 80, 1083
(2008).

[9] F. D. M. Haldane, Physical Review Letters 67, 937
(1991).

[10] T. Hansson, J. Leinaas, and J. Myrheim, Nuclear Physics
B 384, 559 (1992).

[11] U. Aglietti, L. Griguolo, R. Jackiw, S.-Y. Pi, and D. Sem-
inara, Physical Review Letters 77, 4406 (1996).

[12] A. Kundu, Physical Review Letters 83, 1275 (1999).
[13] K.-V. Pham, M. Gabay, and P. Lederer, Le Journal de

Physique IV 10, Pr3 (2000).
[14] M. T. Batchelor, X.-W. Guan, and J.-S. He, Journal

of Statistical Mechanics: Theory and Experiment 2007,
P03007 (2007).

[15] T. Keilmann, S. Lanzmich, I. McCulloch, and
M. Roncaglia, Nature Communications 2, 361 (2011).

[16] T. Posske, B. Trauzettel, and M. Thorwart, Physical Re-
view B 96, 195422 (2017).

[17] M. Greiter, Inference: International Review of Science 7,
10.37282/991819.22.27 (2022).

[18] N. L. Harshman and A. C. Knapp, Physical Review A
105, 052214 (2022).

[19] S. Nagies, B. Wang, A. C. Knapp, A. Eckardt, and N. L.
Harshman, SciPost Physics 16, 086 (2024).

[20] S. Longhi and G. D. Valle, Optics Letters 37, 2160
(2012).

[21] C. Yannouleas and U. Landman, Physical Review A 100,
013605 (2019).

[22] C. Schweizer, F. Grusdt, M. Berngruber, L. Barbiero,
E. Demler, N. Goldman, I. Bloch, and M. Aidelsburger,
Nature Physics 15, 1168 (2019).

[23] F. Görg, K. Sandholzer, J. Minguzzi, R. Desbuquois,
M. Messer, and T. Esslinger, Nature Physics 15, 1161
(2019).

[24] W. Zhang, L. Qian, H. Sun, and X. Zhang, Communica-
tions Physics 6, 1 (2023).
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In this Supplemental Material, we introduce the basic computational tools and discuss details
of the key results discussed in the main text. In Sec. A, we discuss the numerical details of the
diagonalization procedure. In Sections B and C, we comment on the convergence behavior of the
adiabatic evolution and the error treatment relevant for potentiating the holonomy matrices. In
Sec. D, we calculate the quantized geometric phase of the exactly solvable two-side model and
extend the adiabatic manipulation to locally varying statistical angles in Sec. E. In Sec. F, we
provide more details on the protocol used to steer an initial state into the zero-energy space.

Appendix A: Implementation of the Anyon-Hubbard
model

Here, we provide details about the numerical imple-
mentation of the Anyon-Hubbard model. The objective
is to solve the Hamiltonian Ĥ in Eq. (5) exactly via

exact diagonalization [1]. Therefore, we express Ĥ in

terms of the number state basis |ni⟩Ni=1, which results

in the matrix Hij = ⟨ni|Ĥ|nj⟩. The number states,
n = (n1, . . . , nL), specify the occupation of N parti-
cles distributed on L lattice sites with

∑
k nk = N .

Assuming indistinguishable particles, there are N =
(N + L− 1)!/[N !(L− 1)!] basis states which also defines
the dimension of Hilbert space. The largest system size
we consider in this work has a Hilbert space dimension
of N = 6435 which corresponds to the case where L = 8
and N = 8 and, thus, is well in the range of what is
computationally feasible.
Apart from calculating the ground state properties, we

also calculate the time evolution of an initial state for a
time-dependent Hamiltonian as done within the steer-
ing process or for the adiabatic propagation. The time
evolution is conducted by integrating the time-dependent
Schrödinger equation, i.e., a set of coupled ordinary dif-
ferential equations. We use an eighth-order Runge-Kutta
method within the module scipy.integrate.ode with
the scipy [2] version 1.10.1 and the input parameters
nsteps = 108, atol = 10−10 and rtol = 10−10.

Appendix B: Convergence of the adiabatic evolution

In the following, we determine the accuracy of the
method used for obtaining the holonomy matrix G out-
lined in the main text for a system with L = 6 lattice
sites and N = 2 particles corresponding to a three-fold
degenerate zero-energy space. Within this method, the
zero-energy states of H(θ = 0) are adiabatically propa-
gated by projecting the initial states consecutively onto
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FIG. S1. Convergence of the adiabatic holonomy when alter-
ing the statistical angle θ from 0 to 2π (L = 6 and N = 2).

(a) Distance of the holonomy matrix G̃ to an unitary matrix.

(b) Relative difference ∆Eerr
ij between the entries of G̃ ob-

tained with Nθ projections and the unitary holonomy matrix,
G, obtained with Nθ = 104, see text for procedure.

zero-energy spaces lying on the path from θ = 0 to 2π
[3]. In the adiabatic limit, Nθ → ∞, the overlap between
the initial and adiabatically propagated states defines the
holonomy matrix G (see main text). This matrix is uni-
tary, i.e., GG† = 1 where 1 is the identity matrix. This
property can be probed for holonomy matrices G̃ with
a finite number of projection steps Nθ by measuring the
distance ||G̃G̃† − 1||2. In Fig. S1(a), we show the con-
vergence of this distance in dependence on the steps Nθ

leading to a deviation from the unitary matrix around
∼ 10−4 for Nθ = 104. As post process, we obtain the
holonomy matrix G used for the analysis, by calculating
the closest unitary matrix that is closest to the holon-
omy matrix G̃ obtained with Nθ = 104 projections. For
this, we first perform a singular value decomposition on
G̃ such that we yield G̃ = UΣV†, where U and V are
two unitary rotation matrices and Σ is a diagonal ma-
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FIG. S2. (a) Error of the holonomy matrix, ϵprojerr , in depen-
dence on the lattice sites L and the particle number N . The
error is defined as the largest deviation of the holonomy ma-
trix obtained with Nθ = 104 projections to the closest uni-
tary matrix (see Sec. B). (b) Calculating the distance of the
potentiated holonomy matrix Gm to the diagonal matrix il-
lustrated by g(Gm) [see Eq. (C1)]. We define mdiag as the
smallest value of m where g(Gm)−sg(Gm) < 0, i.e., for which
the potentiated matrix cannot be distinguished from a diag-
onal matrix for a given error sg(Gm

proj−uni)
(red dashed line)

(see Sec. C).

trix. Then we define the unitary holonomy matrix as
G = UV†, which has the property ||GG† − 1||2 = 0.
On the basis of the unitary holonomy matrix, we an-

alyze the convergence behavior of the single elements
of G̃ for different numbers of projections Nθ. In par-
ticular, we show in Fig. S1(b) the relative difference

Eerr
ij (Nθ) = |G̃Nθ

ij −Gij |/|Gij |, which reveals the expected
convergence behavior for increasing Nθ. Based on this
we quantify the error of the holonomy matrix as,

ϵerr = max
ij

(
Eerr
ij

)
, (B1)

i.e., as the largest deviation of the holonomy matrix ob-
tained with Nθ = 104 projections, G̃, from its closest
unitary matrix, G. In Fig. S2(a) we show the order of
the error in dependence of L and N (see also Sec. C).
Finally, we have compared the holonomy matrices ob-

tained by applying projections as described to a method
when the zero energy states are propagated in time. More
precisely, each zero energy state in chiral pair basis rep-
resentation is propagated in time while θ(t) is ramped
linearly from θ(0) = 0 to 2π within a total propagation
time of tf . The accuracy of this method increases with
the final propagation time tf and is exact in the adia-
batic limit tf → ∞. We have verified that the holonomy
matrices obtained with both methods are in agreement.

Appendix C: Potentiated holonomy matrices

In Fig. 2(b) of the main text, we present the minimal
exponents mdiag of the holonomy matrix G in depen-
dence of L and N for which the potentiated holonomy
matrix, Gm, cannot be distinguished from a unitary ma-
trix. We judge the distance of the potentiated holonomy

matrix to the diagonal matrix by calculating

g(Gm) =
∑

ij

∣∣|Gm
ij |2 − δij

∣∣2 . (C1)

The value of mdiag is the smallest exponent m for which
g(Gm)− sm < 0, where sm denotes the numerical error.
We estimate sm for a specific L-N combination stochasti-
cally. To this end, we first calculate the relative absolute
difference between the holonomy matrix and its closest
unitary matrix, Eerr

ij (see Sec. B). Then we collect the
values of g for a set of purposely modified holonomy ma-
trices, (Gk)ij = Guni

ij + P k
ij∆Gij , where P

k
ij = {−1, 1}.

Thereby, g is calculated for maximally 1000 combina-
tions of how to add/subtract the deviations Eerr

ij to/from
Gij . From the sample set g(Gm

k ), we take the value with
the largest absolute difference from g(Gm) as numerical
error, i.e., sm = max

k
(|g(Gm

k ) − g(Gm)|). Evidently, the

error increases with increasing particle numbers, which
is explains why the values for mdiag in these regimes are
comparatively small, cf. Fig. 2(b). In Fig. S2(b), we rep-
resentatively show the evolution of g(Gm) for L = 6 and
N = 2 and mark mdiag by a red dashed line.

Appendix D: Exact Null State and Non-Degenerate
Geometric Phase for L = 2 and N = 2m

In this section, we derive exact results for a system
with two sites, L = 2, and an even number of particles,
N = 2m with m ∈ N, to gain intuition and to compare
to the general, numeric results in the main text. In this
case, the zero-energy space in Eq. (2) is one-dimensional.
In Ref. [4] it was shown that the anyon-Hubbard dimer
and the integrable Bose-Hubbard dimer are dual to each
other, so in the following, we use this duality relation
to calculate the geometrical phase for this special case
analytically. For U = 0 the zero energy state of the
Bose-Hubbard dimer in Fourier space reads

Ĥ = −2J(n̂0 − n̂1) (D1)

|Ψ⟩ = 1

(N/2)!
(b̂†0)

N/2(b̂†1)
N/2|0, 0⟩ (D2)

with

b̂n =
1√
2

2∑

j=1

eijπ b̂j , n = 0, 1. (D3)

Subsequently, we get the corresponding state of the
anyon-Hubbard dimer in real space, with chirality χ = 1

|Ψ⟩ = 1

2N/2((N/2)!)2

N/2∑

l=0

(−1)N/2−l
√
(N − 2l)!(2l!)

(
N/2

l

)

eiθn̂1(1+n̂2)eiθ(N+1))(n̂1−n̂2)/4|N − 2l, 2l⟩, (D4)

by inversion of the Fourier modes and the usage of the
duality transformation from Ref. [4]. Thereby, the modes
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FIG. S3. Absolute squares of the holonomy matrices |Gθj |2
obtained after adiabatically steering a single or multiple θj
from 0 to 2π while the other statistical angles remain 0 (L = 6
sites and N = 2). (a), (b) Tuning one statistical angle. (c),
(d) Tuning the left side θL = θ1 = θ2 = θ3 and the right
side θR = θ4 = θ5 independently. The error of the shown
holonomy matrices is everywhere of the order of 10−4.

in Eq. (D3) have an equal occupation of N/2 = m, mean-
ing that such states can exist only for even particle num-
bers in agreement with Eq. (2) of the main text. As
the zero-energy state is non-degenerate, the non-abelian
holonomy reduces to a single phase, i.e.,

ϕ =
1

iπ

∫ 2π

0

dθ⟨Ψ|∂θ|Ψ⟩ (D5)

=
N/2 (N/2 + 1)

2
,

that is indeed quantized as expected for chiral symmetric
models [5, 6]. Interestingly, the value in Eq. (D5) is ex-
actly the proportionality factor of the Casimir operator
of SU(2), which is the dynamical symmetry group of the
two-site problem.

Appendix E: Locally varying θ

We next discuss a generalization of the adiabatic ma-
nipulation of statistical angles to multiple species of
anyons and other chiral perturbations. To this end,
we consider, the following Jordan-Wigner transformation
with spatially varying θj [7], i.e.,

âj = b̂je
i
∑

l<j θln̂l , (E1)

such that the following relation holds

H̃ = −J
∑

j

â†j âj+1 + h.c.

= −J
∑

j

b̂†j b̂j+1e
iθj n̂j + h.c.. (E2)

Subsequently, we obtain ”generalized” deformed commu-
tation relations for the âi particles, i.e.,

âiâ
†
j − eiθi,j â†j âi = δi,j ,

âiâj − e−iθi,j âj âi = 0, (E3)

â†i â
†
j − e−iθi,j â†j â

†
i = 0,

with the statistical angle

θi,j =





−θi, i < j,

θj , i > j,

0, else

(E4)

which generalize the deformed commutation relation for
the particles in Eq. (4) in the main text.
For illustration, we calculate the holonomy matrices

Gθj for a system with L = 6 and N = 2 when one or
several statistical angles θj are varied from 0 to 2π. In
Fig. S3(a) and (b), we present the absolute squares of
the holonomy matrix when either θ2 or θ3 is adiabati-
cally tuned, respectively, while in (c) and (d) more than
one θj is varied simultaneously, θ1 = θ2 = θ3 ≡ θL and
θ4 = θ5 ≡ θR, respectively. As shown, the holonomy ma-
trices in Fig. S3 denote different rotations of the nullspace
and are also to be distinguished from the case where all θj
are tuned simultaneously, as shown in the main text in
Fig. 2(a). Moreover, we have checked that the shown
holonomy matrices Gθj are pair-wise non-commuting,
GθjGθk −GθkGθj ̸= 0 for j ̸= k.
The adiabatic evolution has been done by applying a

series of Nθ = 104 projections as discussed in Sec. B. We
find for each shown holonomy matrix in Fig. S3 an error
of ϵerr ≈ 10−4, following the procedure of Sec. B.

Appendix F: Steering process

In the following, we provide nuemrical details for
the optimization routine employed for steering the
system from a pure number state to an zero energy
eigenstate by optimally varying the statistical param-
eter θ(t) in time. As mentioned in the main text,
we represent θ(t) by a fixed number of Minterp + 2
time-wise equidistant interpolation points θ(ti), where
the first and last point remain fixed at θ = 0, i.e.,
θ(t1) = θ(tMinterp+2) = 0. The interpolation employs
a third degree spline function that passes through
all interpolation points and is done with the module
scipy.interpolate.InterpolatedUnivariateSpline
from scipy [2] version 1.10.1. In the next step, we
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choose an initial state |Ψ(t = 0)⟩ which serves as
starting point for each time-propagation and an initial
guess for the path θ(t). For the latter we set all
interpolation points, apart from the first and last, to
θ(ti) = 0.01, where 1 < i < Minterp + 2, and calculate
the respective interpolation. The interpolation points
are input to an optimization routine, where within each
optimization step the corresponding time-propagation
for θ(t) is calculated. After each propagation the overlap
O(tf ) at the last time step between the propagated
wave function with the target state is evaluated. The
optimization routine varies the amplitudes of θ(ti) after
each propagation until the cost value 1−O(tf ) becomes
minimal. As optimization routine, we use the module
scipy.optimize.minimize from scipy version 1.10.1
and the L-BFGS-B method [8–10].
Note that altering the initial interpolation points can

lead to different outcomes of the optimization routine re-
garding the final path of θ(t). Moreover, we have checked
that this optimization routine can be also applied to
smaller system sizes than L = 6, N = 2. Additionally, we
considered different optimization routines such as a linear
interpolation of θ (instead of a third degree spline) and

a greedy optimization routine where the wave function
is step-wise propagated according to the next optimal
value for θ (instead of cyclically updating the optimal
route for θ(t) after propagating the wave function from
t = 0 to tf ). However, both attempts were not success-
ful since they both heave led to significant smaller over-
laps with the target state than the procedure described
above. Another route we explored was to introduce on-

site interactions U(t)
2

∑L
i=1 n̂i(n̂i − 1) to the Hamiltonian

in Eq. (5) in the main text and apply the optimization
routine only to U(t) and fix θ = 0. However, also this
method for the input parameters: tf = 40, Minterp = 40
and an initial U(ti) = 0.1 results in O(tf ) ≈ 0.3 for L = 5
and N = 2, while the procedure regarding an optimiza-
tion with respect to θ(t) with the same input parameters
leads to O(tf ) ≈ 1 − 10−8. Note that varying only the
hopping parameter J(t) while U = θ = 0 has no effect on
the overlap which remains at O = 0. We conclude that
within our numerical studies varying θ dynamically re-
mains the most promising method for zero-energy space
state preparation.
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Chapter 9

Conclusions and Outlook

In this cumulative thesis we have investigated the static and dynamical properties of impuri-
ties coupled to a bosonic medium confined in one dimension in the ultracold regime. In this
sense, we have revealed unseen static and dynamical properties, with special emphasis on the
study of the effective interactions and induced correlations mediated by the bosonic gas. In
a separate direction, we have studied the static properties of the anyon-Hubbard model and
revealed the presence of a chirally protected zero-energy space. This subspace exhibits a non-
trivial holonomy matrix when adiabatically propagating the system in time while tuning the
statistical angle in a closed loop in parameter space. In each section we begin by summarizing
the main findings of the individual works followed by an outlook on possible further research
directions.

9.1 Counterflow Dynamics of Impurities Coupled to a Bosonic
Medium

In Ref. [FT1] we have analyzed a system consisting of two impurities trapped in a double-well
potential and coupled to a bosonic majority species which is subjected to different trapping
geometries. This work provides significant new insights into the field of strongly particle-
imbalanced ultracold mixtures by exploring the correlated stationary and dynamical behavior
of two impurities in various external trapping potentials [11, 153, 156, 158, 179, 186, 374,
375]. We have categorized the emerging patterns in terms of the spatially resolved two-body
density, which allowed us to extract the corresponding phase diagrams for different trapping
potentials of the medium. As it turned out, the external confinement of the medium has a
crucial impact on the phase diagram, while the impurities behave qualitatively similar within
the regimes. Among others, we have revealed a clustering and an anti-bunching behavior of the
impurities. The clustering arises due to an induced attraction that can be controlled by tuning
the impurity-medium interaction strength and counteracts the anti-bunching behavior caused
by direct impurity-impurity repulsions [170]. Moreover, we studied the dynamical response
upon lowering the central barrier of the impurities’ double-well potential. The resulting
dynamics showed a strong dependence on the impurity-medium coupling strength as well as
the external confinement of the medium. Remarkably, for a harmonically trapped medium the
impurities performed in the weak coupling regime a state transfer between an anti-bunching
and a bunching behavior. We analyzed this behavior in terms of one- and two-body effective
models, which enabled us to associate this state transfer with the population of higher excited
two-body states.

A natural extension of this model would be to consider other types of trapping potentials
for the bath, e.g., a ring or a periodic lattice potential. For instance, in Ref. [FT1] the finite size
of the box potential has led to a reflection of the excitations of the bath at the boundaries and
for sufficiently strong coupling strengths significantly impacted the dynamics of the impurities.
This back-action could be omitted by considering a large ring potential for the medium.
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Additionally, it would be intriguing to study the propagation of the excitations of the medium
and investigate the possibility to even excite soliton trains in the medium [294, 376]. Besides
the already studied potentials, confining the medium in a lattice potential is expected to
induce spatial modulations of the latter, which will affect the correlation patterns of the
impurities and eventually modify the ensuing phase diagram. In order to unravel the induced
interaction, an effective two-body model could be devised on the basis of the procedures
discussed in Refs. [FT2, FT3, 170]. Especially, for complex trapping geometries, such as
lattice potentials, the usually employed contact interaction potential used to approximate the
induced interaction could become insufficient and a more involved interaction potential might
be required.

Another route consists of considering a three-component mixture with two distinguishable
impurities coupled to a medium. This would open up the possibility to study the dynamical
response of the impurities in terms of different masses or with different impurity-medium cou-
pling strengths. In particular, if one impurity is coupled attractively and the other repulsively
to the bath, the mediated interaction between the impurities is expected to be repulsive [FT2,
167, 177, 202] such that an anti-bunched scenario could be realized even in the case of non-
interacting impurities. Another advantage of distinguishable impurities is that they can be
trapped individually. In this sense, the impurities could be initially prepared in spatially
separated harmonic oscillator potentials and, subsequently, the counterflow could be induced
by quenching the respective trap centers to the same spatial position. For weak couplings and
small displacements the resulting dynamics can be expected to resemble a dipole-like oscilla-
tion [153, FT8] which could be further analyzed by fitting the mean position to the motion
of a damped oscillator in order to extract an effective mass or damping amplitude [FT8].
Alternatively, one can devise a time-dependent effective model similar to procedure employed
in Ref. [FT3].

9.2 Induced Interactions between Impurities

In Refs. [FT2–FT4] we have focused on the induced interactions between impurities coupled
to a one-dimensional Bose gas. The crucial difference to the majority of existing works is the
consideration of two mobile distinguishable impurities which couple with individual interaction
strengths to the majority species, in this way, giving rise to a three-component mixture.

9.2.1 Static Case

In Ref. [FT2] we have studied the ground state behavior for two non-interacting distinguishable
impurities upon varying their individual interaction strength to the medium in the presence of
an external harmonic confinement. By leaving the interaction strength between one impurity
and the medium fixed at a repulsive value and tuning the coupling strength between the other
impurity and the bath from attractive to repulsive values, we have observed a crossover from
an induced anti-bunching to a bunching behavior diagnosed with the two-body correlation
functions. By devising an effective two-body model, we were able to associate the bunching
and anti-bunching behavior of the impurities with an effective attractive and repulsive inter-
action strength, respectively. Moreover, we found evidence for the formation of a bipolaron
as well as a trimer state composed of one bath particle and the impurities [150, 175]. In this
sense, this work generalizes the understanding of the induced interplay between two mobile
impurities in terms of a three-component mixture and opens up a new avenue to study the
well-known attractive induced interaction appearing in two-component setups [165, 167, 170,
171, 173], as well as the effects of an induced repulsive interaction.
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In the publication [FT4] we have provided an alternative approach to the procedure em-
ployed in Refs. [FT2, FT3]. In the latter works, the effective interaction between two non-
interacting impurities has been determined by fitting an effective model to the two-body
correlation function. In contrast to these approaches, in Ref. [FT4] we have specified the
induced interaction strengths by fitting the energies of corresponding effective models to the
polaron and bipolaron energies obtained from many-body calculations. The impact of the me-
diated interaction on the impurities is subsequently studied in terms of the one-body density.
In order to enhance the impact of mediated interaction on the one-body density, we consider
for the impurities a tilted double-well potential and couple them to a majority species which
is confined on a ring potential. In particular, the tilt has been applied to trigger a population
imbalance between the two double-well sites. The quality of the effective models has been
judged by comparing the calculated population imbalance with the results obtained from
the ML-MCTDHX many-body method. We find for two distinguishable or indistinguishable
impurities that the model is capable of adequately describing the population imbalance for
varying impurity-medium coupling strengths. Extending to the case of three impurities, we
have approximated the mediated three-body force by an effective contact interaction potential
and analyzed its impact on the impurities’ population imbalance. Moreover, we have studied
the effect of correlations on the one-body density by comparing the many-body results to
different types of mean-field approximations.

An intriguing extension would be to study the impact of the mass ratio between the
three atomic species on the induced interplay between the impurities. For instance, from
Ref. [202] it is known that there exists a repulsive induced interaction mediated between
an infinitely heavy and impenetrable impurity and a static impurity with finite impurity-
medium attractions. However, the dependence of the effective interaction strength on the
impurity mass is by no means fully resolved yet. A step towards answering this question was
made in Ref. [FT2], where we have found that the induced correlation between the impurities
is enhanced when increasing the mass of one impurity. Due to the close relation between
the correlation behavior and the effective interaction between the impurities, we expect that
increasing the mass of the impurities will lead to an increase in the mediated interaction
strength. Another intriguing path worth pursuing is to investigate the dependence of the
induced interplay between the impurities on the size of the medium. Here, the leading thought
is that the majority of the existing literature considers a bosonic medium with a large number
of particles, namely much larger than the number of impurities. In this sense, it is of great
interest to understand how the induced interactions and correlations are affected when the
number of host particles is gradually increased from a few to a mesoscopic number. Another
point would be to explore possibilities to improve the accuracy of the effective model. So far,
we have considered that the effective interaction potential depends only on one parameter,
namely, the relative difference between the impurities. However, this assumption is generally
speaking only valid in a homogeneous scenario or for weak impurity-medium couplings [165,
170]. In this sense, it would intriguing to develop a simplified effective interaction potential
that depends on two or three impurity coordinates in the hope to further improve the accuracy
of the effective models.

9.2.2 Dynamical Regime

In Ref. [FT3] we have extended the stationary case discussed in Ref. [FT2] into the dy-
namical regime. Specifically, we have considered two indistinguishable impurities coupled
to a harmonically trapped bosonic gas. The dynamics have been triggered by ramping the
impurity-medium interaction strength individually from attractive to repulsive values or vice
versa. The main scope was to explore the dynamical response of the induced correlation effects
between the impurities and pursue the question whether these dynamics can be captured by
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an effective model. Depending on the applied quench protocol, a breathing-like dynamics has
been induced which has been visualized by monitoring the spatial variance [377]. We devised
several one-body models to effectively describe the dynamical response of one impurity. The
best agreement with the many-body results has been achieved for a model that employs a
time-dependent effective mass and frequency stemming from an optimization process. The
time-dependent behavior of the effective parameters gave us then further insights into the dy-
namics of the dressed impurity. By monitoring the integrated two-body correlation function,
we have observed a time-dependent crossover from an induced bunching to an anti-bunching
behavior or vice versa depending on the applied ramp protocol. We found that this behavior
can be appropriately captured by an effective two-body model consisting of a contact in-
teraction potential with a time-dependent effective interaction strength. We found that the
effective interaction strength qualitatively follows the dynamics of the two-body correlation
function. Another important aspect of the optimized time-dependent effective one- and two-
body model is their ability to capture the many-body dynamics even at long time scales, i.e.,
longer than the ramp time. This feature distinguishes these models from other ones that are
based on static effective parameters [153, FT8].

The main emphasis of Ref. [FT3] has been put on understanding the dynamical evolution
of the induced interactions between two impurities in terms of effective one- and two-body
models. However, there are other techniques which can be applied to infer information about
the polaronic properties of the dressed impurities, e.g., spectroscopic schemes allow the iden-
tification of excited polaronic states or deliver information about the presence of induced
interactions [120, 331, 378]. Furthermore, in Ref. [FT1] we have demonstrated that the ex-
ternal trapping potential of the medium significantly impacts the dynamical response of the
impurities. In this sense, it would be interesting to calculate the time-dependent effective pa-
rameters for systems, where the majority species is trapped in other external geometries, e.g.
in a ring or lattice potential. In the former case, we would expect that the dressed impurities
acquire always an effective mass heavier than their bare one [FT4, 143, 148]. However, apart
from altering the external confinement of the medium, an interesting aspect would be to con-
sider a two-component medium which might even form a quantum droplet [102–104]. Here,
it would be intriguing to probe the stability of the droplet and the impact on the induced be-
havior between the impurities by applying different quench protocols [193]. Moreover, it has
been shown that for strong impurity-bath coupling strengths and varying impurity-impurity
interactions a strongly correlated state close to Bell-states can be formed [203]. In this setup
a time-dependent quench protocol could be applied to dynamically control the formation of
these strongly correlated states, which could serve as fundamental building blocks for more
advanced state manipulation devices [194].

9.3 Zero-Energy Subspace of the One-Dimensional Anyon-Hubbard
Model

In Ref. [FT5] we have investigated the spectral properties of the one-dimensional anyon-
Hubbard model in terms of variations of the statistical parameter θ and found a degenerate
subspace, build from the eigenvectors associated with zero energy. The dimension of the zero-
energy subspace turned out to be a consequence of the underlying chiral symmetry of the
system, which is conserved for vanishing on-site interactions and, importantly, for variations
of the statistical parameter θ ̸= 0. Further analysis showed that this property is not unique
to the anyon-Hubbard model, but holds for any particle-number conserving model with chiral
symmetry. A key feature of the zero-energy states is the emergence of a checkerboard pattern
in any correlation function that is not invariant with respect to the chiral symmetry as well
as in the N -body density - a feature which is experimental accessible and absent for other
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eigenstates. We exploited the stability of the null-space dimension and tuned the zero-energy
states adiabatically from θ = 0 to 2π, i.e., from bosons to fermions and back to bosons. We
found that this loop in parameter space leads to nontrivial Wilcek-Zee phases [379, 380] and
holonomies that describe a nontrivial unitary transformation of the initial subspace. In fact,
we argued that the cyclic adiabatic evolution describes a topological protected operation. For
various system sizes we showed that this operation can be applied numerous times before
becoming trivial in the context of state manipulation within a given error. Finally, we pro-
vided an experimentally accessible steering protocol, where we demonstrated the possibility
to transfer an initial number state into an eigenstate with vanishing eigenenergy by varying
the statistical parameter θ(t) optimally in time [213].

There exist several intriguing research directions worth to be pursued in the future. For
instance, we have calculated in Ref. [FT5] the holonomy matrices, besides a globally varying
θ, also for a locally varying θ, which again resulted in non-trivial and non-commuting holon-
omy matrices. Applying a combination of such state manipulation processes could efficiently
convert the initial state into, e.g., a highly entangled target state. In general, more work is
required to fully understand how the cyclic evolution of θ leads to a non-trivial holonomy ma-
trix, where a first step could be made by analytically understanding the adiabatic evolution
for the case corresponding to N = 2 particles distributed on L = 3 lattice sites [380]. Other
directions involve the study of a system with periodic or twisted boundary conditions, where
for specific system sizes degenerate zero-energy subspaces exist. Yet another path is given by
exploring the adiabatic evolution in terms of two anyonic species [381] that are trapped in a
lattice. Such a model would given then rise to a two-component anyon-Hubbard model [369].
Here, the relevant question would be whether degenerate subspaces can exist, and whether
the dimension of the subspace is stable with respect to variations in θ. Besides the analysis of
static or adiabatic properties, it would be interesting to monitor the expansion dynamics of
two or more initially localized anyons over the lattice, when the statistical parameter is varied
in time. For example, the asymmetric transport properties could be inverted by tuning θ
from negative to positive values and vice versa [213, 233] or even more altered by periodically
driving θ.
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