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The fundamental problem of communication is that of
reproducing at one point either exactly or approximately a

message selected at another point.

— Claude Elwood Shannon, 1948





Abstract

Information has been ubiquitous on the web in various styles, e.g. news articles, blog
posts, encyclopedic contents, etc. Wikipedia, for example, consists of articles, containing
encyclopedic information on entities, e.g. locations, organizations, persons, events,
animals, cars, �lms, etc., and has grown into a valuable resource. Yet, �nding the
relevant information is still an issue: consider the scenario one wants to know about
“What is the most critical step inMichael Jordan’s career after joining the Chicago Bulls?”.
A search engine might retrieve the documents related to “Michael Jordan (basketball
player)”, “Michael Jordan (scientist)”, and “Michael Jordan (football player)”. The key
challenge here is the lexical ambiguity of entities. Thus, resolving this ambiguity is a
crucial process and task in natural language processing to enable several applications,
e.g. retrieving the relevant information as exampli�ed here.

In this thesis, we discuss the annotation of the entities in two levels: 1) the process of
assigning labels to entity mentions, e.g. “Michael Jordan” in a textual context, with the
ultra-�ne type information, e.g. basketba�� p�ayer, scientist, footba�� p�ayer
– entity typing, and 2) the process of matching them to a knowledge graph record
e.g. providing the link (https://en.wikipedia.org/wiki/Michael_Jordan) – entity
disambiguation.

We study on these tasks in several aspects. We systemize design features of entity
disambiguation and linking systems, developed since 2015 as a result of the “deep
learning revolution” in natural language processing. This work distills a generic
architecture and discusses its prominent components as well as the vast variety of
modi�cations of this general architecture. In a similar manner, the summarization of
the ultra-�ne entity typing models, which address a lack of the annotated data issue is
presented. There are numerous types in the type vocabulary of ultra-�ne entity typing
task. This results in di�culties for human to label them and thus, it is a crucial challenge
in this task. To address this issue, we explore an unsupervised way, which requires no
labeled data for training. This study relies on the information from a graph of terms
(known as distributional thesaurus) that carries crucial information about terms and
their relations. We explore the leverage of distributionally induced word/term senses
through such a graph in an ultra-�ne entity typing task. More speci�cally, we analyze
the use of the labels information of the appropriate induced word/term sense to the
entity mention. The graph is constructed through the features of terms, in this study,
nonetheless, there could be many di�erent graphs built in various ways. For example, a
graph constructed through page links in Wikipedia information. We leverage such a
graph to transform it to graph embeddings and utilize it as a vector representation of
entities. One of the essential components of the generic architecture (presented in our
�rst study) is entity representations with the goal to capture semantic meaning of the
entities and/or semantic relatedness between entities in various aspects. We investigate
the role of entity embeddings, constructed through this graph information. We present
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a simple technique for the integration of the structured information of entities into
an entity disambiguation model with graph embeddings.

All in all, we have analyzed recently proposed neural entity disambiguation and
linking models, which generally show better performance than the classical solutions.
With the guidance of this analysis, new researchers to this �eld would understand
the task and this might help shaping future works in this �eld. We have investigated
the leverage of information from the graph structures in entity disambiguation and
ultra-�ne entity typing tasks. We observe that use of information coming from graph
structure helps on these tasks. This might lead to use such kind of information in
di�erent tasks/scenarios, for future studies.





Zusammenfassung

Informationen sind im Web allgegenwärtig und in verschiedenen Formaten verfügbar, z.
B. in Nachrichtenartikeln, Blogbeiträgen oder enzyklopädischen Inhalten. Wikipedia
besteht beispielsweise aus Artikeln, die enzyklopädische Informationen zu Entitäten
wie Orten, Organisationen, Personen, Ereignissen, Tieren, Autos, Filmen usw. enthalten,
und hat sich zu einer wertvollen Ressource entwickelt. Dennoch bleibt die Suche nach
relevanten Informationen eine Herausforderung: Stellen wir uns das Szenario vor, in dem
jemandwissenmöchte: „Was war der entscheidendste Schritt inMichael Jordans Karriere
nach seinem Wechsel zu den Chicago Bulls?“ Eine Suchmaschine könnte Dokumente zu
„Michael Jordan (Basketballspieler)“, „Michael Jordan (Wissenschaftler)“ und „Michael
Jordan (Fußballspieler)“ abrufen. Die zentrale Herausforderung hierbei ist die lexika-
lische Mehrdeutigkeit von Entitäten. Daher ist die Au�ösung dieser Mehrdeutigkeit
ein wesentlicher Prozess und eine zentrale Aufgabe in der Verarbeitung natürlicher
Sprache, um verschiedene Anwendungen zu ermöglichen, z. B. das Abrufen relevanter
Informationen, wie es hier veranschaulicht wurde.

In dieser Arbeit diskutieren wir die Annotation von Entitäten auf zwei Ebenen: 1)
den Prozess der Zuweisung von Labels zu Entitätsnennungen, z. B. „Michael Jordan“
in einem Textkontext, mit ultra-feinen Typinformationen, z. B. Basketba��spie�er,
Wissenschaft�er, Fußba��spie�er – Entitätstypisierung, und 2) den Prozess des
Abgleichs mit einem Eintrag in einem Wissensgraphen, z. B. durch Bereitstellung eines
Links (https://de.wikipedia.org/wiki/Michael_Jordan) – Entitätsdisambiguierung.

Wir untersuchen diese Aufgaben aus verschiedenen Perspektiven. Wir systematisie-
ren die Designmerkmale von Entitätsdisambiguierungs- und Verknüpfungssystemen,
die seit 2015 als Folge der „Deep-Learning-Revolution“ in der Verarbeitung natürlicher
Sprache entwickelt wurden. Diese Arbeit destilliert eine allgemeine Architektur und
diskutiert ihre wichtigsten Komponenten sowie die Vielzahl an Modi�kationen dieser
allgemeinen Struktur. In ähnlicher Weise wird eine Zusammenfassung der Modelle
zur ultra-feinen Entitätstypisierung präsentiert, die das Problem des Mangels an anno-
tierten Daten adressieren. Das Vokabular der ultra-feinen Entitätstypisierung umfasst
zahlreiche Typen. Dies führt zu Herausforderungen für Menschen bei der manuellen
Annotation und stellt somit eine zentrale Schwierigkeit in dieser Aufgabe dar. Um dieses
Problem zu lösen, untersuchen wir einen unüberwachten Ansatz, der keine annotierten
Trainingsdaten erfordert. Diese Studie basiert auf Informationen aus einem Graphen
von Begri�en (bekannt als distributionelles Thesaurus), der wichtige Informationen über
Begri�e und deren Relationen enthält.Wir analysieren, wie sich distributionell induzierte
Wort- bzw. Begri�s-Sinnesinformationen durch einen solchenGraphen für die ultra-feine
Entitätstypisierung nutzen lassen. Konkret untersuchenwir, wie die Label-Informationen
des passenden induziertenWort- bzw. Begri�ssinns auf die Entitätsnennung angewendet
werden können. Der Graph wird in dieser Studie anhand von Merkmalsinformatio-
nen von Begri�en erstellt. Dennoch gibt es verschiedene Möglichkeiten, Graphen zu
konstruieren, z. B. durch die Nutzung von Seitenverlinkungen aus Wikipedia. Wir
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xiii

verwenden einen solchen Graphen, um ihn in Graph-Embeddings zu transformieren
und als Vektorrepräsentation von Entitäten zu nutzen. Eine der zentralen Komponenten
der allgemeinen Architektur (präsentiert in unserer ersten Untersuchung) ist die Entitäts-
repräsentation, mit dem Ziel, die semantische Bedeutung von Entitäten und/oder ihre
semantische Verwandtschaft in verschiedenen Kontexten zu erfassen. Wir untersuchen
die Rolle von Entitäts-Embeddings, die durch diese Graphinformationen konstruiert
werden, und präsentieren eine einfache Technik zur Integration der strukturierten
Entitätsinformationen in ein Entitätsdisambiguierungsmodell mit Graph-Embeddings.

Zusammenfassend haben wir kürzlich vorgeschlagene neuronale Modelle zur Enti-
tätsdisambiguierung und -verknüpfung analysiert, die in der Regel eine bessere Leistung
als klassische Lösungen zeigen. Diese Analyse kann neuen Forschenden in diesem
Bereich helfen, die Aufgabe besser zu verstehen und zur Entwicklung zukünftiger
Arbeiten beitragen. Darüber hinaus haben wir den Ein�uss von Graphstrukturen auf
die Entitätsdisambiguierung und ultra-feine Entitätstypisierung untersucht. Unsere
Ergebnisse zeigen, dass die Nutzung von Informationen aus Graphstrukturen diese
Aufgaben positiv beein�usst. Dies könnte dazu führen, dass solche Informationen in
zukünftigen Studien für verschiedene Aufgaben und Szenarien genutzt werden.
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Introduction

In this chapter, our main tasks of Entity Disambiguation and Ultra-Fine
Entity Typing are introduced. We discuss their similarities, di�erences,
and interactions. We explain the motivations for our approaches to the
tasks. Finally, we detail the contributions of the research conducted for
the thesis and lay out the organization of the thesis.
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1.1 Introduction

People are incorporating technological advancements in arti�cial intelligence into their
daily lives. Consider, traveling in a foreign country without knowing its local language,
one can rely on machine translation application to communicate. Similarly, arti�cial-
intelligence-based recommendation systems can suggest movies and books based on
personal preferences. Such applications have been developed through di�erent research
�elds, such as natural language processing (NLP), a sub�eld of computer science, focusing
on an automatic human language processing. In NLP, there exist various tasks, e.g.
machine translation, spam classi�cation, sentiment analysis, and many more, relying
on arti�cial intelligence algorithms. Such algorithms require knowledge, which can
be acquired from a large amount of data available on the web through e.g. blog posts,
social media posts, encyclopedic contents, etc.

Yet, considering that high amount of available text, �nding the related information
is not always straightforward. For example, if one wants to reach the population
information about Ottawa, it should be clear that Ottawa refers to either the capital
city1 of Canada or a city2 in United States. Thus, the exact reference for Ottawa is
required to reach the right information.

For this speci�c challenge, we focus on two NLP tasks, i.e. Entity Disambiguation:
aiming to provide a knowledge base reference for the mentioned text, e.g. for Ottawa,
providing a link reference https://en.wikipedia.org/wiki/Ottawa, and Entity Typing:
assigning a list of type labels, for instance capita�, city, or sma��_town for Ottawa
that would be helpful to distinguish it. In the scope of this thesis, we study on these
tasks in several aspects.

We review recent entity disambiguation (and linking) models to systematically
analyze these techniques by providing a generic solution applicable to most of such
models, covering their components, modi�cations and features. Similarly, we present
a summary for entity typing models and discuss the challenges with the focus on
�ne/ultra-�ne grained labels, e.g. capita�, since they are more informative as in the
Ottawa example that helps to clarify the reference. One of the key challenges in this task
is a lack of annotated data. For this challenge, we automatically generate labels based on
a graph constructed from the features of terms. Similarly, for the entity disambiguation
task, we utilize graph information, this time built from page links in Wikipedia, by
transforming it into another form to e�ectively leverage structural information.

Overall, in this thesis, we focus on the annotation of entities with two NLP tasks,
which helps a clari�cation of the references for the mentioned text and thus, enables
several applications, e.g. �nding a related information from a large amount of data. In
our survey, we provide a systematization of various features for recent neural entity
disambiguation and linking techniques with categorizations. In our entity typing work,
we present an unsupervised solution with the help of graph information. Finally, we
describe a method to integrate the graph information into an entity disambiguation
model. In the next sections, we will describe the tasks and discuss our motivations
while conducting each study.

1. https://en.wikipedia.org/wiki/Ottawa
2. https://en.wikipedia.org/wiki/Ottawa,_Illinois

https://en.wikipedia.org/wiki/Ottawa
https://en.wikipedia.org/wiki/Ottawa
https://en.wikipedia.org/wiki/Ottawa,_Illinois
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In New York City , the Macy 's Thanksgiving Day Parade is held annually every Thanksgiving Day
from the Upper West Side of Manhattan to Macy 's flagship store in Herald Square , and televised

nationally by NBC .

https://en.wikipedia.org/wiki/NBC

The National Broadcasting
Company (NBC) is an American
commercial broadcast television
and radio network serving as the

flagship property of the NBC
Entertainment division of

NBCUniversal, ...

television_station

broadcaster

network

station

company
media

Entity
Disambiguation

Ultra-Fine Entity
Typing

Figure 1.1: Entity Disambiguation and Ultra-Fine Entity Typing tasks: matching the mention
NBC to the right knowledge base record, i.e. “National Broadcasting Company” rather than e.g.
“National Baseball Congress” – entity disambiguation, and assigning free-form type labels for
the mention – ultra-�ne entity typing.

1.2 Entity Disambiguation and Ultra-Fine Entity Typing

Human languages are ambiguous (Navigli, 2009) in several aspects, e.g. syntactic
ambiguity, semantic ambiguity, etc. Consider the following examples for syntactic
and semantic ambiguities. The example by Bailey et al. (2015), “eat spaghetti with
chopsticks.” has two interpretations; either chopsticks modifying the verb, eat (correct)
or chopsticks modifying the noun, spaghetti, where the interpretion of “spaghetti with
chopsticks” is as a meal (incorrect), therefore it is syntactically ambiguous. Consider
the following two sentences for semantic ambiguity by Navigli (2009) “I can hear bass
sounds.” and “They like grilled bass.”, where the meaning of the bass di�er in each
sentence. Automatically resolving such ambiguities has been a challenging issue, as
it requires an understanding of text. There exist several tasks dedicated to help these
problems, e.g. dependency parsing (Jurafsky andMartin, 2024; Chen andManning, 2014),
word sense disambiguation (Navigli, 2009), entity disambiguation/linking (Jurafsky and
Martin, 2024), etc. Similar to words, entities can be ambiguous, i.e. same entity mention
might refer di�erent entities (Balog, 2018). The focus of this thesis is on this issue and,
speci�cally, entity disambiguation and typing tasks.

Entity Linking (EL) “is the task of associating a mention in text with the representation
of some real-world entity in an ontology or knowledge base.” as described by Jurafsky
and Martin (2024). EL encompasses two tasks: mention detection, which detects a
mention in text and Entity Disambiguation (ED), which maps a mention to an entity in
a knowledge base. Throughout this thesis, we mostly focus on entity disambiguation.
Consider the example in Figure 1.1, here NBC is a mention and it is ambiguous, as it can
be abbreviation of various diverse entities, e.g. “National Baseball Congress”3, “National

3. https://en.wikipedia.org/wiki/National_Baseball_Congress

https://en.wikipedia.org/wiki/National_Baseball_Congress
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Bus Company (UK)”4, “Nürnberger Basketball Club”5, “National Bank of Cambodia”6,
“National Business Center”7, etc. (see disambiguation page8 for more references). The
goal of entity disambiguation is �nding out the right reference among all knowledge
base entries, i.e. NBC9 - National Broadcasting Company, in the running example with
the help of contextual information.

Ultra-Fine Entity Typing (UFET) “given a sentence and an entity mention e within
it, the task is to predict a set of natural-language phrases T that describe the type of
e” as described by Choi et al. (2018). For the example mention NBC, it assigns types
of media, network, company, station, broadcaster, te�evision_station
among numerous types in the type vocabulary, which contains over 10k types (Choi
et al., 2018). One can infer that NBC is for “National Broadcasting Company” rather
than e.g. “Nürnberger Basketball Club” or “National Baseball Congress” with these
annotations. It seems that the �ner the types become, the more information is delivered
about the mention. For instance, te�evision_station or broadcaster are helpful
annotations to understand what the mention refers to.

There exist similarities, di�erences and interactions between these two tasks. We
will discuss them in the following paragraphs. The details of the tasks are discussed,
individually, in Chapters 3 and 4.

Similarities

• Both tasks help solving ambiguity at entity level and increase text understanding,
as shown in the example.

• Inputs are the same for both of the tasks: context and mention. That means they
do not deal with determining mention boundaries and assume these boundaries
are given already as inputs.

Di�erences

• The output for entity disambiguation is single, i.e. one knowledge base entry
(sometimes NIL) per mention. In ultra-�ne entity typing, the output can be
multiple for each mention, with distinct type labels (Murty et al., 2018), as also
shown in Figure 1.1.

• Label set in UFET is prede�ned vocabulary of types, instead the label set or
annotation set is all knowledge base entries in entity disambiguation.

• Commonly, ED is treated as ranking problem, although UFET is mostly considered
as multi-label multi-class classi�cation. Note that these are common behaviours,
there are some models resolving the tasks, in di�erent ways.

• In UFET, labels are expected to be context-dependent, that is the ability to assign,
e.g. “philanthropist” to “Bill Gates” based on the context. Hence, the type label

4. https://en.wikipedia.org/wiki/National_Bus_Company_(UK)
5. https://en.wikipedia.org/wiki/N%C3%BCrnberger_Basketball_Club
6. https://en.wikipedia.org/wiki/National_Bank_of_Cambodia
7. https://en.wikipedia.org/wiki/National_Business_Center
8. https://en.wikipedia.org/wiki/NBC_(disambiguation)
9. https://en.wikipedia.org/wiki/NBC

https://en.wikipedia.org/wiki/National_Bus_Company_(UK)
https://en.wikipedia.org/wiki/N%C3%BCrnberger_Basketball_Club
https://en.wikipedia.org/wiki/National_Bank_of_Cambodia
https://en.wikipedia.org/wiki/National_Business_Center
https://en.wikipedia.org/wiki/NBC_(disambiguation)
https://en.wikipedia.org/wiki/NBC
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should be appropriate for the role the target entity plays in the sentence (Choi
et al., 2018). The main concentration of ED is to map this mention to a knowledge
base entry, e.g. “Bill Gates”10 rather than “Bill Gates (footballer)”11 and solve the
ambiguity.

• Mentions can be in di�erent forms in UFET, i.e. named entities, nominals, and pro-
nouns. For more discussion, see Chapters 3 and 4, for ED and UFET, respectively.

Interactions
• The tasks help each other, more speci�cally, entity types are helpful in entity link-
ing/disambiguation (e.g. Sui et al. (2022)). Likewise, entity linking/disambiguation
is also bene�cial for entity typing (e.g. Dai et al. (2019)). There are some models
trying to resolve such tasks jointly (e.g. Durrett and Klein (2014)). In the following
items, these interactions are discussed.

1. Entity Typing in Entity Linking
In the literature, entity type information is found helpful for the entity
linking/disambiguation task and leveraged in various ways to solve the
entity linking/disambiguation task, e.g. (Sui et al., 2022; Hou et al., 2020;
Onoe and Durrett, 2020; Gupta et al., 2017; Raiman and Raiman, 2018; S Chen
et al., 2020; Bhargav et al., 2022; Tianran et al., 2021), interalia.
Some of them utilize entity typing in zero-shot entity linking, and/or domain-
independent setting, e.g. (Sui et al., 2022; Bhargav et al., 2022; Onoe and
Durrett, 2020).
Some studies leverage entity type information in entity representations, e.g.
(Hou et al., 2020; Tianran et al., 2021; S Chen et al., 2020; Gupta et al., 2017),
etc.
Other than them, there are di�erent solutions to use entity type information
in EL, e.g. (Raiman and Raiman, 2018).

2. Entity Linking in Entity Typing
Similarly, there exist several works that leverage entity linking in an entity
typing model. For instance, Dai et al. (2019) utilize the type information of
the knowledge base obtained through entity linking in a �ne-grained entity
typing model.

3. Joint Entity Linking and Typing
Some authors aim to solve these two (or more) tasks jointly. Durrett and
Klein (2014) provide a joint model of coreference resolution, entity linking
and coarse semantic (entity) typing using the interactions of these tasks.
Their motivation is that these tasks are heavily interdependent, and one task
can help to solve other tasks. For example, knowing the Wikipedia reference
through entity linking can help to resolve ambiguities in the entity types
and coreference resolution.
Note that in some other studies training of entity linking and entity typing
can be done simultaneously, by taking e.g. entity linking as a primary task
and entity typing as an auxiliary task, e.g. (Bhargav et al., 2022).

10. https://en.wikipedia.org/wiki/Bill_Gates
11. https://en.wikipedia.org/wiki/Bill_Gates_(footballer)

https://en.wikipedia.org/wiki/Bill_Gates
https://en.wikipedia.org/wiki/Bill_Gates_(footballer)
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4. Integration Knowledge Graph (KG) information into Language Models
(LMs) Recent language models, including pre-trained and large ones, have
shown promising performance in many tasks (WX Zhao et al., 2024). Fur-
thermore, there are many works to incorporate knowledge information
into such models for better language understanding and to recover factual
knowledge (Z Zhang et al., 2019; Peters et al., 2019). There are various
methods to integrate knowledge information, e.g. proposed by Z Zhang
et al. (2019), Peters et al. (2019), Ruize Wang et al. (2021), Févry et al. (2020),
T Sun et al. (2020), X Wang et al. (2021), Yamada, Asai, Shindo, et al. (2020),
and J Wang et al. (2022), interalia. Indeed, these works do not directly involve
interactions between entity linking and typing, however some leverage entity
linking to integrate knowledge and most use entity typing for evaluation.
Thus, we think it is worth to mention them brie�y.
For example, KnowBERT (Peters et al., 2019) incorporates knowledge graph
information into pre-trained BERT architecture (Devlin et al., 2019) via entity
linker component. More recently, JWang et al. (2022) propose a model, which
leverage knowledge information through prompts.
The majority of such knowledge-enhanced (pre-trained) language models
have evaluations with downstream-tasks, including entity typing, however
mostly with less types.

1.3 Motivation

Natural Language Processing (NLP) is, as de�ned by Eisenstein (2018), “the set of
methods for making human language accessible to computers”. There are numerous NLP
tasks, each aiming to tackle di�erent challenges, e.g. part-of-speech tagging, sentiment
analysis, machine translation, question answering, summarization, just to name a few.
Some of these tasks are increasingly integrated into a daily life; for instance machine
translation is widely employed for language translations and recently ChatGPT12 –
a chatbot built by the OpenAI team based on Large Language Models (LLMs)– is
commonly used for various tasks.

Many diverse techniques have been proposed to solve various NLP tasks, includ-
ing hand-crafted feature based models, shallow architecture based methods, neural
architecture based techniques, etc. Recent neural-networks-based models have shown
very promising performance, achieving state-of-the-art results on many NLP problems
(Goldberg, 2016; Sevgili et al., 2022; J Li et al., 2022). In contrast to shallow models,
neural network and/or deep learning contains non-linear layers, and this non-linearity
allows models to learn complex features (J Li et al., 2022).

The analogous trend of neural models succeeding in comparison to classical models
also exists in the entity linking and disambiguation task, as shown in Figure 1.2. In this
Figure, we show entity disambiguation performances of classical and neural models
based on one of the common dataset (more discussion in Chapter 3). Based on these
results, although the classical models (orange squares) have shown good performance,
the neural ones (blue circles) have outperformed them.

12. https://openai.com/blog/chatgpt/

https://openai.com/blog/chatgpt/
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Figure 1.2: Entity disambiguation: classic and neural models. Performance of the classic entity
linking models ( orange squares) with the more recent neural models ( blue circles) on one of
the common dataset (i.e. AIDA test set) shows an improvement, highlighted by arrow. (For more
discussion, see Figure 3.7, in Chapter 3.)

Due to this success of neural networks, many researchers have turned their focus on
entity linking and disambiguation into neural model-driven solutions. We are motivated
by this to provide a comprehensive review of neural models that have emerged with
this recent wave with the following research question.

Research Question

How can neura� entity �inking and disambiguation mode�s be ana�yzed
and their features systematized?

Chapter 3 handles this question with a survey of neural based models for entity
linking and disambiguation.

In a similar vein, numerous techniques have been provided in the ultra-�ne entity
typing task. In Chapter 4, we present a brief summary of these methods. Instead of
neural-based solutions, we focus on the models providing solutions to data scarcity
issue in UFET, in this overview. There are a large number of types in the ultra-�ne
entity typing task, namely over 10k type set (Choi et al., 2018). Thus, a manual creation
of labeled data is quite di�cult for human due to that large number of types (Dai et al.,
2021). Therefore, a lack of human-annotated data is a critical challenge, in this task.
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Figure 1.3: Example part of a JoBimText graph. Nodes are some similar terms of NBC, and
MSNBC. The information is taken via JoBimText API (Ruppert et al., 2015). Note that there are
much more nodes and edges related to searched terms NBC, and MSNBC, only a few are shown for
illustrative purposes.

In the context of this particular challenge, we conduct an exploration for an unsu-
pervised solution that requires no annotated samples, yet relying on information from a
graph.

Graphs are, as in general, applied in various ways within NLP to resolve many tasks,
including word sense disambiguation, part-of-speech tagging, dependency parsing,
summarization, and many more (Nastase et al., 2015). Graphs can be constructed in
di�erent ways based on the requirements, e.g. nodes as word, sentence, document,
etc. or edges as co-occurrence, similarity, etc. (Nastase et al., 2015). For instance,
a distributional thesaurus consists of terms as nodes, as shown in Figure 1.3, where
information is from distributional thesaurus built by Biemann and Riedl (2013). In this
example, some similar terms of NBC and MSNBC are shown.

We are motivated by such graph information and their applications to investigate
usefulness of this information in UFET task with the following research question.

Research Question

Is the information from a graph constructed through the terms
(i.e. distributiona� thesaurus) beneficia� to so�ve u�tra-fine entity
typing in an unsupervised way?

In Chapter 5, we carry out research on unsupervised UFET leveraging graph infor-
mation. In this work, we utilize the word/term sense information that is distributionally
induced from the distributional thesaurus in JoBimText framework (Biemann and Riedl,
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Figure 1.4: Example part of a DBpedia graph built by page links. Nodes are some similar
entities of NBC entity, and Netf�ix entity. The information is taken from DBpedia page links 13.
Note that there are much more nodes and edges related to searched entities of NBC, and Netf�ix,
only a few are shown for illustrative purposes.

2013), and the labels (which are also provided through JoBimText) of the appropriate
induced word/term sense to the entity mention.

As discussed, nodes and/or edges can di�er based on the application scenarios. It
is also worth noting that in Chapter 3, we present a generic architecture for neural
based EL. One of its core components is entity embeddings. Some strategies have been
proposed to create entity embeddings for this task.

Motivated by the signi�cance of entity embeddings in entity disambiguation and
linking, and the �exibility of constructing graph through various ways, we conduct a
research to investigate the impact of the entity embeddings created by graph information
to deal with the following research question.

Research Question

Is structura� information in the form of graph embeddings he�pfu� for
entity disambiguation?

In Chapter 6, we construct a graph through page link information between entities,
i.e. nodes are entities, edges refer to links between them based on DBpedia (Lehmann
et al., 2015) information, as shown in Figure 1.4. In this �gure, we show some similar
entities of NBC entity and Netf�ix entity, as an example. This graph is transformed
into vector representations using a graph embedding algorithm. We explore the role
of such graph embeddings in entity disambiguation task, in this work.

13. http://downloads.dbpedia.org/2016-10/core-i18n/en/page_links_en.ttl.bz2

http://downloads.dbpedia.org/2016-10/core-i18n/en/page_links_en.ttl.bz2
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1.4 Contributions and Organization of the Thesis

In the following items, we list the contributions of this work, under their respective
chapters. We summarize contents of each chapter. This also covers an organiza-
tion of the thesis.

Chapter 2 - Background of Underlying Technologies

• Summary: In this chapter, we present a brief summary of the technologies that
are utilized in the conducted studies. For instance, neural networks including
feedforward neural networks, recurrent neural networks etc. is summarized.
In the scope of this thesis, we leverage several types of representations, thus a
summary of representation learning also presented. Furthermore, we discuss the
information sources, e.g. DBpedia (Lehmann et al., 2015), JoBimText (Biemann
and Riedl, 2013).

Chapter 3 - Survey of Entity Linking Methods

• Summary: We comprehensively describe recent neural entity linking (EL) and
disambiguation (ED) models. We discuss design features of these models. A
generic architecture that is valid for most of the models is presented. Its essential
components and modi�cations are discussed. We provide a summary of prominent
methods for each essential component.

• A survey of state-of-the-art neural entity linking and disambiguation models.

• A systematization of various features of neural techniques for EL and ED with
categorizations.

• A discussion for evaluation results of recent EL and ED methods on popular
benchmarks.

• A summary of di�erent entity embedding techniques.

Chapter 4 - Survey of Entity Typing Methods

• Summary: We discuss the challenges of ultra-�ne entity typing task, for example,
di�erent mention forms, context dependency, lack of data, etc. Promising research
lines are discussed with the references. We summarize the models especially for
addressing data scarcity issue.

• An introduction to ultra-�ne entity typing task with the discussion of di�erent
challenges.

• A summary of proposed models that deals with lack of the data issue in ultra-�ne
entity typing.
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Chapter 5 - Unsupervised Ultra-Fine Entity Typing

• Summary: We present an unsupervised way of solution to ultra-�ne entity typing
for the lack of annotated data issue. This solution is based on distributionally
induced word senses. Experimental set-up is explained and results are shown.

• An investigation of an unsupervised ultra-�ne entity typing technique.

• A use of label information from distributional thesaurus graph in ultra-�ne entity
typing task.

Chapter 6 - Supervised Entity Disambiguation with Graph Embeddings

• Summary: We describe a method that leverages graph embeddings to integrate
structured graph information from the knowledge base with unstructured infor-
mation from text-based representations. Experimental con�guration is described
and results are discussed.

• A creation of a simple technique for an integration of a structured graph informa-
tion into an ED model with graph embeddings.

• A straightforward solution to leverage a large structured graph information based
on graph embeddings.

Chapter 7 - Conclusion

• Summary: In this chapter, we discuss the possible in�uences of each study. We
explain the limitations of the work described in this thesis. Furthermore, future
directions are outlined.





2
Background of Underlying Technologies

In this chapter, we summarize background information for underlying
technologies as a backbone of the following chapters. We shortly introduce
relevant parts of neural networks that are important for other chapters. We
also present a summary of representation learning. We discuss knowledge
resources that are leveraged in the experiments.
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2.1 Introduction

The key challenge of arti�cial intelligence, as in general, is to attempt to solve tasks that
people solve intuitively (Goodfellow et al., 2016). Machine learning algorithms aim to
solve such tasks using data with the ability of learning (Goodfellow et al., 2016).

Learning algorithms can be distinguished into several categories, supervised, un-
supervised zero-shot, distant learning. Note that there exist several more learning
techniques, yet in the scope of this thesis, we focus on the mentioned ones.

Supervised Learning The algorithms aim at learning input-output pairs from data that
are in the form of input examples and their corresponding outputs (Goodfellow et al.,
2016). For such algorithms, examples should be annotated with outputs labels in advance.

Unsupervised Learning The goal of the algorithms is to learn useful properties of
the structure of data (Goodfellow et al., 2016). The data examples are not annotated,
in this type of learning.

Zero-Shot Learning The purpose of this learning is to observe classes that might not
be seen at training time (Xian et al., 2019). For some classes, no training data would
be available, yet the descriptions are available (Larochelle et al., 2008).

Distant Supervision/Learning The goal is to automatically create a training data
relying on some heuristics (Ho�mann et al., 2011; Mintz et al., 2009; Le and Titov,
2019a) and use it for supervision. Some authors use weak and distant supervision
interchangeably, e.g. (Le and Titov, 2019b).

2.2 Neural Networks

Traditional machine learning models have shown good performance on many tasks,
however they have some speci�c limitations. For example, consider a linear model,
e.g. linear regression, which are able to model linear functions, however, not every
function can be represented with linear models, such as the XOR function that outputs
1 if one of two inputs is 1, or outputs 0 otherwise (Goodfellow et al., 2016). Neural
network models are able to cope with such cases with non-linear (activation) functions
and learned parameters.

In this section, most of the information, equations, and �gures are taken and/or
adapted from Goodfellow et al. (2016), Nielsen (2015), and Goldberg (2016), lectures
(lecture slides and notes)1. We shortly summarize some relevant parts of neural network,
for better understanding of next sections, and we give a name for several design choices
(like e.g. activation, loss, optimization functions) just for a reference.

1. https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/, and
https://cs231n.github.io/neural-networks-1/

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/
https://cs231n.github.io/neural-networks-1/
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suminputs activation output

A Neuron

Figure 2.1: A single neuron that computes � by multiplying inputs with weights, summing them,
and applying an activation (non-linear) function.

input layer hidden layer(s) output layer

Feedforward Neural Network

Figure 2.2: An example feedforward neural network with two hidden layers. Figure is
from Goldberg (2016).

2.2.1 Feedforward Neural Networks
An essential component of neural networks is a neuron, which computes an output
� from the input � by multiplying with weights � , summing them, and applying a
non-linear activation function � 2, as shown in Figure 2.1.

� = � (�� + �). (2.1)

Activation Functions There are various activation functions, e.g. commonly, sigmoid:
�(�) = 1/(1 + ���(��)), tanh: ����(�) = (���(�) � ���(��))/(���(�) + ���(��)).
Another popular choice is the ReLU (recti�ed linear unit) function ����(�) = ���(� , 0)
despite its simplicity.

Feedforward Neural Network (FFNN) contains neurons in a way that there are no
feedback connections (Goodfellow et al., 2016). Neurons in the layers do not have any
connections within the layer, as shown in Figure 2.2, where the number of hidden layers
can be increased or the number of neurons in the hidden layer(s) can be changed, and

2. Notation is adapted from Goldberg (2016)
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the number of outputs can be more or less depending on the problem. Usually, the layers
are fully connected. Consider the weights between the input � and the hidden layer as
� 1, � 2 between the hidden layers, � 3 between the last hidden layer and the output �3.

� = � 2(� 1(�� 1 + �1)� 2 + �2)� 3. (2.2)

where �1, �2 are biases, and � 1, � 2 are activation functions. Note that the non-linear
activation function is important, since if it is not applied, the neural network can only
represent linear functions of the input (Goldberg, 2016).

Loss Functions The prediction � can be calculated as discussed. The requirement is to
evaluate how close it is to the actual output, which is achieved by loss functions (also
called cost or objective functions) (Nielsen, 2015). There are many di�erent types of
loss functions, e.g. mean squared error, cross-entropy, inter alia.

Stochastic Gradient Descent and Back-propagation The network has completed its
forward pass and computed the loss between its prediction � and the actual output.
The goal is to approximate the prediction to the output, which means to minimize
the loss function. For this purpose, good parameters that lead to a small loss should
be found (Nielsen, 2015). One way to do it is to update the weights and biases (and
sometimes inputs) with small changes and repeat it many times (Nielsen, 2015). Mostly,
this is achieved with the gradient descent (commonly stochastic gradient descent
(SGD) (Robbins and Monro, 1951) algorithm – extension of gradient descent), with
the following equation4.

� � � � �� , � = ��� (�). (2.3)

where, � is the learning rate, � are the parameters, and � (�) is the loss. ��� (�) is a
gradient function of the loss function with respect to the parameters, which is calculated
using the back-propagation algorithm (Goodfellow et al., 2016). The back-propagation
algorithm computes the chain rule recursively.

For instance, the gradient of � function with respect to ��, � = �(�), � = � (�) with
chain rule (example is from Goodfellow et al. (2016)):

��
���

= �
�

��
���

���
���

. (2.4)

There are some adaptive optimization algorithms, in which the learning rates
can change per parameter, such as Adam (Kingma and Ba, 2014), Adagrad (Duchi
et al., 2011), etc.

Overall, replacing the linear models with a feedforward neural network in some NLP
tasks, like e.g., syntactic parsing, sentiment classi�cation, has shown good results
(Goldberg, 2016).

3. Notation is fromGoldberg (2016)
4. Notation is from Goodfellow et al. (2016)
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RNN Architecture

Figure 2.3: RNN architecture. Inputs and outputs of RNN, where each input �(�) corresponds to
one sequence (e.g. word), �(�) is for the hidden state, and �(�) refers to the prediction. The �gure
is from Goodfellow et al. (2016).

2.2.2 Recurrent Neural Networks

Although feedforward networks can achieve good scores on some NLP tasks, there are
still some limitations for sequential data (e.g. words, sentences, etc.). FFNNs allow for a
�xed size window of inputs, and thus cannot scale for longer sequences. Furthermore,
the position/order of sequences is not considered in such networks (Goodfellow et al.,
2016; Goldberg, 2016). Recurrent Neural Networks (RNNs) are specialized to process
sequential data. The idea is to share parameters, which allows generalization to di�erent
sequence lengths and obtain position information (Goodfellow et al., 2016). RNNs have
the recurrent connections between hidden units �, as shown in Figure 2.3, where each
�(�) is one sequence (e.g. word), �(�) is hidden state, and �(�) is prediction, at any time �.

Recurrent Neural Networks have achieved high scores in numerous NLP tasks
(Goldberg, 2016). For instance, Mikolov et al. (2010) present experiments with RNN-
based language model. As in general, language modeling (LM) is a task to predict the
probabilities of future or missing words or tokens (WX Zhao et al., 2024).

Long Short-Term Memory (LSTM) RNNs face the problem of vanishing gradient.
Gradients in the later steps for long sequences fade away during the back-propagation
phases until reaching the earlier steps (Goldberg, 2016). LSTM (Hochreiter and Schmid-
huber, 1997; Gers et al., 2000) overcomes the obstacle with the “memory cells” mechanism
to preserve information, which are controlled with three gates to decide what to write
(input), forget, and output (Goldberg, 2016). With these controls, the gradients can
stay in the cells longer.

As an alternative to LSTM, the Gated Recurrent Unit (GRU) is designed to reduce
complexity a bit to allow for easy analysis with fewer gates and no memory component
(Goldberg, 2016).

Several architectures are designed by combining RNNs, e.g. bidirectional RNNs and
sequence-to-sequence models, as discussed below.
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Figure 2.4: A scaled dot-product attention part in the transformer architecture, from Vaswani
et al. (2017).

Bidirectional RNNs The recurrent models explained until now consider the informa-
tion of the left sequence. Yet, the whole sequence information should be useful for a
better prediction if we have an access to it (Goodfellow et al., 2016). Bidirectional RNNs
address it with a simple idea: combining or concatenating two RNNs, one of which is
the same as shown here, starting from beginning to end, and the other one starting the
sequence backward, from the end to beginning (Goodfellow et al., 2016).

Sequence-to-sequence models There are challenging NLP problems, requiring a
sequential output from the sequential input, where the lengths of input and output
may vary like machine translation or question answering (Goodfellow et al., 2016).
Sequence-to-sequence (seq2seq or encoder-decoder) model was introduced by Sutskever
et al. (2014), consisting of two RNNs (or LSTMs), i.e. the encoder RNN and the decoder
RNN. The encoder RNN reads the input sequence and produces a �xed-dimensional
representation for it; decoder RNN conditions on this vector to generate the target
sequence (Goodfellow et al., 2016). However, the vector produced by the encoder should
carry all the information of the source sequence, which causes a bottleneck problem
(Bahdanau et al., 2015). To solve it, the attention mechanism (Bahdanau et al., 2015)
is applied between encoder and decoder.

2.2.3 Transformer
Despite the successful applications of RNNs in NLP, sequential computation prevents
it from parallel operations5. The transformer architecture (Vaswani et al., 2017) is
designed to provide signi�cantly more parallelization without relying on recurrence
instead completely depending on an attention mechanism.

The idea of the transformer architecture is to replace recurrence with attention to
grasp global dependencies. This attention is not always from decoder to encoder, as
in seq2seq, but also inside a single sentence, i.e. self-attention. Attention is in general
a function that takes the vectors of the query, keys, values, and produces the output
vector by computing the weighted sum of the values, where, the weights are the scores
between the query and each key (Vaswani et al., 2017).

5. https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
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Figure 2.5: Amulti-head attention part in the transformer architecture, fromVaswani et al. (2017).
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In self-attention, query, keys, and values are from the same source and are the
output of the previous step so that each word can attend to each other in the previous
layer. Additionally, there are � , � ,� matrices for scaled dot-product attention, as
shown in Figure 2.4. To be able to focus more than one place in the sentence, multi-
head attention mechanism is designed, which consists of multiple � , � ,� matrices6,
as in Figure 2.5. This attention is used in the encoder, as (1), in Figure 2.6. In the
attention of the decoder shown as (2), the keys and values are from the encoder, and
the queries are from the decoder, as in the seq2seq models (Bahdanau et al., 2015).
In the third type of attention, the idea is to prevent attention from looking at future
when predicting the sequence (e.g. language modeling) in the decoder, and thus future
words are masked out, as (3) in Figure 2.6.

The input for the �rst blocks contains position embeddings to catch the position
information. After attention(s), point-wise FFNN is applied to each word separately and
identically for non-linearity in each block. Residual connections and normalizations
are applied in the blocks to train the overall model in a better and faster way. All in
all, it contains 6 identical blocks of encoder and decoder.

2.2.4 BERT

Pre-training means to train the model over some tasks, like LM, using a large amount
of data in an unsupervised way, and the trained parameters will be used as a starting
point for other tasks to �ne-tune the model7 (Dai and Le, 2015).

BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019)
is one of the popular techniques for pre-training. BERT is based on the transformer
encoder. As discussed earlier, transformer encoders use all the words in the context, i.e.
both left and right contexts, however, in language modeling, there is no access to the
future, i.e. right context. The key idea in BERT is to insert [MASK] tokens in place of
some words and try to predict them based on other words in the sentence to pre-train
the model known as a masked language modeling (MLM). Additionally, there is one
more pre-training task to capture the relationship between two sentences, called next
sentence prediction, where the goal is to predict whether the second sentence is actually
the next one after the �rst sentence. BERT input can be a single sentence or a pair of
sentences. There should be a special [CLS] token as the �rst token of a sentence and
[SEP] token between two sentences to di�erentiate them.

2.2.5 Other Common Neural Networks

In this chapter, we have discussed networks that are prevailing in the NLP domain.
Yet, there are several other networks, which have also been applied in this domain and
shown improvements, like convolutional neural networks (CNNs).

CNN is a neural network that focuses especially on processing a grid of values, like
an image (Goodfellow et al., 2016). It is composed of convolution and pooling layers.

6. https://jalammar.github.io/illustrated-transformer/
7. https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html

https://jalammar.github.io/illustrated-transformer/
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
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Figure 2.7: Word2vec architecture are from Mikolov, Chen, et al. (2013).
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Figure 2.8: Doc2vec architectures are from Le and Mikolov (2014).

2.3 Representation Learning
Representation learning or feature learning is to learn transformation of the data to
be able extract the bene�cial information more easily for other downstream tasks, e.g.
classi�cation (Bengio et al., 2013). The data might be in various form, e.g. speech, image,
text, graph, etc. In NLP, commonly applications utilize text. In the scope of this thesis,
we summarize several representation learning techniques on text and graph data types.
While creating text embeddings, the granularity of text might di�er, e.g., word, sentence,
document. We summarize some of them in the following sections.

2.3.1 Word2Vec and Doc2Vec
Word2vec (Mikolov, Chen, et al., 2013) is a neural model to learn a word representation,
which has been a robust technique and has shown successful results (Goldberg, 2016).
The word2vec architecture is quite similar to a feedforward network, however, the
non-linear hidden layer is replaced by a projection layer to either predict the middle
word from context words (known as Continuous Bag-of-Words or CBOW) or predict
context words from the middle word (called Continuous Skip-gram), as shown in Figure
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Figure 2.9: Siamese architecture, the �gure is from Reimers and Gurevych (2019). If cosine
similarity is applied to the u and v vectors, the similarity score is the output. If concatenation is
applied, the output is the softmax classi�er output.

2.7. The context corresponds to the �xed length sliding window of sequential words
(Goldberg, 2016). Several extensions to these models have been proposed, like Mikolov,
Sutskever, et al. (2013) introduce negative sampling. For example, the doc2vec (Le and
Mikolov, 2014) model is designed to learn document/paragraph vectors as well as word
vectors, where the paragraph token might be considered as another word. As word2vec,
it has two similar variations, as shown in the Figure 2.8. At the prediction time, an
inference step should be applied to generate a vector for new document/paragraph.

2.3.2 Sentence BERT (SBERT)

The common ways to create sentence embeddings for the individual sentences from
pre-trained BERT are either directly using the output of the [CLS] token or averaging
all the outputs of BERT. SBERT (Reimers and Gurevych, 2019) proposes a new method
to derive sentence embeddings, which is based on �ne-tuning BERT.

SBERT uses a Siamese network architecture to �ne-tune BERT, which in general
contains two identical networks with di�erent inputs and joined with an objective
function. The parameters are tied in the Siamese architecture. As shown in Figure 2.9,
the twin BERT networks are connected with an objective function, which can optionally
be either a classi�cation objective with softmax, or a regression objective with cosine
similarities, or a triplet objective that aims at reducing the distance between anchor and
positive than the distance between anchor and negative (the last one is not depicted in
the �gure). To obtain sentence embeddings, u, v, there is a pooling operation applied
to the output of BERT just after feeding sentences to BERT.

SBERT shows promising performance for some sentence embedding tasks as com-
pared to other sentence embeddings techniques and BERT-based ones, i.e. [CLS] token
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Figure 2.10: The input is the graph (here, network of Zachary (1977)) and the output is
representations produced by DeepWalk. Figure is from Perozzi et al. (2014).

or average of outputs, as reported in their paper. So far, they provide various pre-trained
models8 based on several pre-training models rather than only BERT.

Furthermore, the authors later propose a method to extend monolingual sentence
embeddings to multilingual language with the idea to map the translated sentence to
the same location as the original sentence (Reimers and Gurevych, 2020).

2.3.3 Graph Embeddings
Recently, (knowledge) graph embedding has become a prominent technique and facili-
tated solving various NLP and data mining tasks (Q Wang et al., 2017) from knowledge
graph completion (Nayyeri et al., 2019; Bordes et al., 2013; Z Wang et al., 2014) to
entity classi�cation (Nickel et al., 2011). Information about Knowledge Graph (KG) is
summarized in Section 2.4.1. There are many models proposing a graph embedding
algorithm, for instance, DeepWalk (Perozzi et al., 2014) and TransE (Bordes et al., 2013)
are among well-known techniques.

The goal of the DeepWalk (Perozzi et al., 2014) algorithm is to produce embeddings of
vertices that preserve their proximity in a graph (Goyal and Ferrara, 2018). The input is
the graph and the output is the representations, as shown in Figure 2.10. It �rst generates
several randomwalks for each vertex in a graph. The generatedwalks are used as training
data for the skip-gram algorithm. Like in word2vec for language modeling, given a
vertex, the algorithm maximizes the probabilities of its neighbors in the generated walks.

The goal of the TransE (Bordes et al., 2013) algorithm is to construct embeddings of
both vertices and relations in such a way that they are compatible with the facts in a KG
(QWang et al., 2017). Consider the facts in a KG are represented in the form of triples (i.e.
head entity, relation, tail entity). If a fact is contained in a KG, the TransE margin-based
ranking criterion facilitates the presence of the following correspondence between
embeddings: ���� + �������� � ����. This means that the relationship in a KG should
be a linear translation in the embedding space of entities. At the same time, if there is
no such fact in a KG, this functional relationship should not hold. The TransE-based
entity representations constructed from Wikidata (Vrandečić and Krötzsch, 2014) and
Freebase (Bollacker et al., 2008) have been used for entity representation in language

8. https://www.sbert.net/docs/pretrained_models.html

https://www.sbert.net/docs/pretrained_models.html
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modeling (Z Zhang et al., 2019) and in several works on entity linking (Banerjee et al.,
2020; Sorokin and Gurevych, 2018; Nedelchev et al., 2020).

There are many other techniques for graph embedding: (Grover and Leskovec,
2016; Z Wang et al., 2014; Nickel et al., 2011; Trouillon et al., 2016; B Yang et al., 2015;
Dettmers et al., 2018) inter alia and very recent 5*E (Nayyeri et al., 2021), which is
designed to preserve complex graph structures in the embedding space. A detailed
overview of all graph embedding algorithms is out of the scope of the current work.
We refer the reader to the surveys on this topic (Goyal and Ferrara, 2018; Cai et al.,
2018; Q Wang et al., 2017; Ru�nelli et al., 2020).

2.4 Knowledge Resources
In the scope this thesis, we take advantage from two sources of knowledge: DBpedia
and distributional thesaurus. Both are in the form of graph structure, and we leverage
DBpedia throughout graph embeddings, while the distributional thesaurus is utilized
via the JoBimText API in a di�erent scenario.

2.4.1 Knowledge Graphs and DBpedia
Knowledge Graphs Knowledge Graphs (KGs), such as Freebase (Bollacker et al., 2008),
DBpedia (Lehmann et al., 2015), and Wikidata (Vrandečić and Krötzsch, 2014), contain
rich and precise information about entities of all kinds, such as persons, locations,
organizations, movies, and scienti�c theories, just to name a few. Each entity has a set
of carefully de�ned relations and attributes, e.g. “was born in” or “play for”.

A KG contains entities, relations, and facts, where facts are denoted as triples
(i.e. head entity, relation, tail entity) as de�ned by S Ji et al. (2022). Formally, as
de�ned by Färber et al. (2018), a KG is a set of Resource Description Framework (RDF)
triples where each triple (�, �, �) is an ordered set of the following terms: a subject
�, a predicate �, and an object �.

Modern widely-used knowledge bases organize information in the form of a graph
(Lehmann et al., 2015; Bollacker et al., 2008; Vrandečić and Krötzsch, 2014). Hence,
in this thesis, the terms Knowledge Graph (KG) and Knowledge Base (KB) are used
interchangeably.

DBpedia Wikipedia articles contain unstructured free text, as well as structured data,
e.g. infoboxes, tables, categorization information, etc. Yet, one might have di�culties to
�nd the answer for some queries e.g. “all basketball players that played for NBA.”, since
the search provided by Wikipedia is limited (Lehmann et al., 2015). DBpedia extracts the
structured data and turns it to knowledge graph that can be utilized for such di�cult
queries (Lehmann et al., 2015). The overview of DBpedia extraction framework is shown
in Figure 2.11, as drawn by Lehmann et al. (2015). There are various types of extractors
in DBpedia. A few examples are as following items.

• abstract: extracting the �rst lines of the Wikipedia article.

• disambiguation: extracting disambiguation links.

• interlanguage: extracting interwiki links.
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Figure 2.11: Overview of extraction framework in DBpedia, �gure is from Lehmann et al. (2015).

• label: extracting the article title as label.

• page ID: extracting page ids of articles.

• page links: extracting all links between Wikipedia articles.

• redirects: extracting redirect links between articles in Wikipedia.

These examples are by Lehmann et al. (2015), for more extractors and more in-
formation, see (Lehmann et al., 2015).

2.4.2 Distributional Thesaurus - JoBimText
There are various types of graphs, consisting of di�erent node types. For instance,
a distributional thesaurus (DT) is a graph of terms. One such graph construction is
proposed by the JoBimText framework (Biemann and Riedl, 2013). The underlying
technology of this framework involves a holing operation as the �rst step, which
performs the split of a term (Jo) and a contextual feature (Bim) based on structural
observations of text (e.g., dependency parsing). Next, by pruning these terms and
features (based, e.g., on some signi�cance scores, like LMI (Kilgarri� et al., 2004)) and
by aggregating terms based on their overlapping contextual features, a distributional
thesaurus, a graph of terms, is constructed. An example work�ow is shown in Figure 2.12
as drawn by Biemann and Riedl (2013). Furthermore, they cluster an ego/neighboring
graph (i.e., a sub-graph containing similar terms to a particular term) of a DT entry (i.e.,
term) using the Chinese Whispers algorithm (Biemann, 2006) to get sense information
of an entry in terms of its similar entries. Each induced sense is labeled based on
the information of IS-A relationship between terms with their frequencies, collected
by applying IS-A (hypernym) patterns (Hearst, 1992) on a text collection. The API
(Ruppert et al., 2015) allows to access the information of the JoBimText framework
(for more information, see (Biemann et al., 2013; Ruppert et al., 2015; Biemann and
Riedl, 2013; Riedl and Biemann, 2013)).

So far, in this chapter, we have summarized the underlying technologies that are
discussed in the following chapters, e.g. feedforward neural networks, knowledge graphs,
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Figure 2.12: An example work�ow of data processing in JoBimText. Figure is from Biemann
and Riedl (2013).

etc. For instance, in the next chapter, we will refer knowledge graphs while describing
entity linking and/or several architectures to present di�erent choices of recent neural
entity linking and disambiguation models. As already mentioned, we will discuss recent
neural entity linking and disambiguation models, systematically, in the next chapter.
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Survey of Entity Linking Methods

In this chapter, we present a work to comprehensively describe deep
learning based neural entity linking and disambiguation systems developed
since 2015 up until and including 2021, with the goal to systemize design
features of neural EL. A generic architecture is distilled and its essential
components are discussed, prominent methods for each of them are
summarized. We group the vast variety of modi�cations of this general
architecture by several common themes. The content of this chapter was
published in (Sevgili et al., 2022), edited to �t in the thesis, e.g. some
contents are moved to some other chapter, or excluded, corrected language
issues, etc.
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3.1 Introduction
There exist unstructured and structured information available through theweb in various
formats, for instance, KGs provide information about entities, e.g. a person, location,
organization, etc., along with their relations e.g. “was born in”, as discussed in Section
2.4.1, in Chapter 2. This wealth of structured information gives rise to and facilitates
the development of semantic processing algorithms as they can directly operate on
and bene�t from such entity representations. For instance, imagine a search engine
that is able to retrieve mentions in the news during the last month of all retired NBA
players with a net income of more than 1 billion US dollars. The list of players together
with their income and retirement information may be available in a knowledge graph.
Equipped with this information, it appears to be straightforward to look up mentions of
retired basketball players in the newswire. However, the main obstacle in this setup is
the lexical ambiguity of entities. In the context of this application, one would want to
only retrieve all mentions of “Michael Jordan (basketball player)”1 and exclude mentions
of other persons with the same name such as “Michael Jordan (mathematician)”2.

This is why Entity Linking (EL) – the process of matching a mention, e.g. “Michael
Jordan”, in a textual context to a KG record (e.g. “basketball player” or “mathematician”)
�tting the context – is the key technology enabling various semantic applications. Thus,
EL is the task of identifying an entity mention in the (unstructured) text and establishing
a link to an entry in a (structured) knowledge graph.

Entity linking is an essential component of many information extraction (IE) and
natural language understanding (NLU) pipelines since it resolves the lexical ambiguity
of entity mentions and determines their meanings in context. A link between a textual
mention and an entity in a knowledge graph also allows us to take advantage of the
information encompassed in a semantic graph, which is shown to be useful in such
NLU tasks as information extraction, biomedical text processing, or semantic parsing
and question answering (see Section 5, in the article (Sevgili et al., 2022)). This wide
range of direct applications is the reason why entity linking is enjoying great interest
from both academy and industry for more than two decades.

3.1.1 Goal and Scope
Recently, a new generation of approaches for entity linking based on neural models
and deep learning emerged, pushing the state-of-the-art performance in this task to a
new level. The goal of this chapter is to provide an overview of this wave of models,
emerging from 2015 up until and including 2021.

Models based on neural networks have managed to excel in EL as in many other
natural language processing tasks due to their ability to learn useful distributed semantic
representations of linguistic data (Collobert et al., 2011; Young et al., 2018; Bengio et al.,
2003). These current state-of-the-art neural entity linking models have shown signi�cant
improvements over “classical”3 machine learning approaches (Lazic et al., 2015; Ratinov

1. https://en.wikipedia.org/wiki/Michael_Jordan
2. https://en.wikipedia.org/wiki/Michael_I._Jordan
3. On classical ML vs deep learning: https://towardsdatascience.com/deep-learning-vs-classical-mac

hine-learning-9a42c6d48aa

https://en.wikipedia.org/wiki/Michael_Jordan
https://en.wikipedia.org/wiki/Michael_I._Jordan
https://towardsdatascience.com/deep-learning-vs-classical-machine-learning-9a42c6d48aa
https://towardsdatascience.com/deep-learning-vs-classical-machine-learning-9a42c6d48aa
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et al., 2011; Chisholm and Hachey, 2015) to name a few that are based on shallow
architectures, e.g. Support Vector Machines, and/or depend mostly on hand-crafted
features. Such models often cannot capture all relevant statistical dependencies and
interactions (Ganea and Hofmann, 2017). In contrast, deep neural networks are able to
learn sophisticated representations within their deep layered architectures. This reduces
the burden of manual feature engineering and enables signi�cant improvements in
EL and other tasks.

In this study, recently proposed neural models are systemized, distilling one generic
architecture used by the majority of neural EL models (illustrated in Figures, e.g., 3.2).
We describe the models used in each component of this architecture, e.g. candidate
generation, mention-context encoding, entity ranking. Prominent variations of this
generic architecture, e.g. end-to-end EL or global models, are also discussed. To better
structure the sheer amount of available models, various types of methods are illustrated
in taxonomies (Figures 3.3 and 3.5), while notable features of each model are carefully
assembled in a tabular form (Table 3.2). We discuss the performance of the models on
commonly used entity linking/disambiguation benchmarks and an entity relatedness
dataset. Because of the sheer amount of work, it was not possible for us to try available
software and to compare approaches on further parameters, such as computational
complexity, run-time, and memory requirements. Nevertheless, we created a compre-
hensive collection of references to publicly available o�cial implementations of EL
models and systems discussed in this chapter (see Table 3.3).

3.1.2 Article Collection Methodology

In this work, there is no strict article collection algorithm for the review like e.g., the one
conducted by Oliveira et al. (2021). Our main goal is to provide and describe a conceptual
framework that can be applied to the majority of recently presented neural approaches
to EL. Nevertheless, as with all surveys, we had to draw the line somewhere. The main
criteria for including papers into this chapter was that they had been published during
or after 2015 up until and including 2021, and they primarily address the task of EL/ED,
i.e. resolving textual mentions to entries in KGs. We explicitly exclude related work
e.g., on (�ne-grained) entity typing (see (Aly et al., 2021; Choi et al., 2018)), which also
encompasses a disambiguation task, and work that employs KGs for other tasks than
EL. This study also does not try to cover all EL methods designed for speci�c domains
like biomedical texts or messages in social media. For the general-purpose EL models
evaluated on well-established benchmarks, we try to be as comprehensive as possible
with respect to recent-enough papers that �t into the conceptual framework, no matter
where they have appeared (however, with a focus on top conferences and journals in
the �elds of natural language processing and Semantic Web).

3.1.3 Previous Surveys

One of the �rst surveys on EL was prepared by Shen et al. (2015) in 2015. They cover
the main approaches to entity linking (within the modules, e.g. candidate generation,
ranking), its applications, evaluation methods, and future directions. In the same year,
Ling et al. (2015) presented a work that aims to provide (1) a standard problem de�nition
to reduce confusion that appears due to the existence of variant similar tasks related to
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EL (e.g., Wiki�cation (Milne and Witten, 2008) and named entity linking (Ho�art et al.,
2011)), and (2) a clear comparison of models and their various aspects.

There are also other surveys that address a wider scope. The work of Martínez-
Rodríguez et al. (2020), published in 2020, involves information extraction models
and semantic web technologies. Namely, they consider many tasks, like named entity
recognition, entity linking, terminology extraction, keyphrase extraction, topicmodeling,
topic labeling, relation extraction tasks. In a similar vein, the work of Al-Moslmi
et al. (2020), released in 2020, overviews the research in named entity recognition,
named entity disambiguation, and entity linking published between 2014 and 2019.

Another recent survey paper by Oliveira et al. (2021), published in 2020, analyzes and
summarizes EL approaches that exhibit some holism. This viewpoint limits the survey
to the works that exploit various peculiarities of the EL task: additional metadata stored
in speci�c input like microblogs, speci�c features that can be extracted from this input
like geographic coordinates in tweets, timestamps, interests of users posted these tweets,
and speci�c disambiguation methods that take advantage of these additional features.
In the concurrent work, Möller et al. (2022) overview models developed speci�cally
for linking English entities to the Wikidata (Vrandečić and Krötzsch, 2014) and discuss
features of this KG that can be exploited for increasing the linking performance.

Previous surveys on similar topics (a) do not cover many recent publications (Ling et
al., 2015; Shen et al., 2015), (b) broadly cover numerous topics (Martínez-Rodríguez et al.,
2020; Al-Moslmi et al., 2020), or (c) are focused on the speci�c types of methods (Oliveira
et al., 2021) or a knowledge graph (Möller et al., 2022). There is not yet, to our knowledge,
a detailed survey speci�cally devoted to recent neural entity linking models. The
previous surveys also do not address the topics of entity and context/mention encoding.

The structure of this chapter is the following. It is started with de�ning the EL
task in Section 3.2. In Section 3.3.1, the general architecture of neural entity linking
systems is presented. Modi�cations and variations of this basic pipeline are discussed in
Section 3.3.2. In Section 3.4, we summarize the performance of EL models on standard
benchmarks and present results of the entity relatedness evaluation. Finally, Section
3.5 concludes the chapter.

3.2 Task Description

3.2.1 Informal De�nition

Consider the example presented in Figure 3.1 with an entity mention Scott Young in a
soccer-game-related context. Literally, this common name can refer to at least three
di�erent people: theAmerican football player, theWelsh football player, or thewriter. The
EL task is to (1) correctly detect the entity mention in the text, (2) resolve its ambiguity
and ultimately provide a link to a corresponding entity entry in a KG, e.g. provide for
the Scott Young mention in this context a link to the Welsh footballer4 instead of the
writer5. To achieve this goal, the task is usually decomposed into two sub-tasks, as
illustrated in Figure 3.1: Mention Detection (MD) and Entity Disambiguation (ED).

4. https://en.wikipedia.org/wiki/Scott_Young_(Welsh_footballer)
5. https://en.wikipedia.org/wiki/Scott_Young_(writer)

https://en.wikipedia.org/wiki/Scott_Young_(Welsh_footballer)
https://en.wikipedia.org/wiki/Scott_Young_(writer)
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Figure 3.1: The entity linking task. An Entity Linking (EL) model takes a raw textual input
and enriches it with entity mentions linked to nodes in a Knowledge Graph (KG). The task is
commonly split into entity mention detection and entity disambiguation sub-tasks.

3.2.2 Formal De�nition

3.2.2.1 Knowledge Graph (KG)

A KG contains entities, relations, and facts, where facts are denoted as triples (i.e. head
entity, relation, tail entity) as de�ned by S Ji et al. (2022). As discussed, in Section 2.4.1,
a KG is a set of Resource Description Framework (RDF) triples (Färber et al., 2018).

This RDF representation can be considered as a multi-relational graph � = (�,A =
{�0,�1, ...,�� � (� ñ �)}), where � is a set of all entities of a KG, and A is a family of
typed edge sets of length �. For example, �0 is the “occupation” predicate adjacency
matrix, �1 is the “founded” predicate adjacency matrix, etc.

There is also an equivalent three-way tensor representation of a KG A � {0, 1}�ñ�ñ�,
where

A�,�,� =

�
1 if (�, �) � �� � � � �

0 otherwise.
(3.1)
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3.2.2.2 Mention Detection (MD)

The goal of mention detection is to identify an entity mention span, while entity
disambiguation performs linking of found mentions to entries of a KG. We can consider
this task as determining an MD function that takes as input a textual context �� � � (e.g.
a document in a document collection) and outputs a sequence of � mentions (�1,…��)
in this context �� � � , where � is a set of all possible text spans in the context:

MD � � �� ��. (3.2)

In the majority of works on EL, it is assumed that the mentions are already given
or detected, for example, using a named entity recognition (NER) system (sometimes
called named entity recognition and classi�cation (NERC) (Aly et al., 2021; Nadeau
and Sekine, 2007)). We should note that, usually, in addition to MD, NER systems also
tag/classify mentions with a prede�ned types (J Li et al., 2022; van Hulst et al., 2020;
Oliveira et al., 2021; Martins et al., 2019) that also can be leveraged for disambiguation
(Martins et al., 2019).

3.2.2.3 Entity Disambiguation (ED)

The entity disambiguation task can be considered as determining a function ED that,
given a sequence of � mentions in a document and their contexts (�1,… , ��), outputs an
entity assignment (�1,… , ��), �� � �, where � is a set of entities in a KG:

ED � (� ,�)� �� ��. (3.3)

To learn a mapping from entity mentions in a context to entity entries in a KG,
EL models use supervision signals like manually annotated mention-entity pairs. The
size of KGs varies; they can contain hundreds of thousands or even millions of entities.
Due to their large size, training data for EL would be extremely unbalanced; training
sets can lack even a single example for a particular entity or mention, e.g. as in the
popular AIDA corpus (Ho�art et al., 2011). To deal with this problem, EL models should
have wide generalization capabilities.

Despite KGs being usually large, they are incomplete. Therefore, some mentions
in a text cannot be correctly mapped to any KG entry. Determining such unlinkable
mentions, which usually is designated as linking to a NIL entry, is one of the current
EL challenges. Methods that address this problem provide a separate function for it or
extend the set of entities in the disambiguation function with this special entry:

ED � (� ,�)� �� (� � NIL)�. (3.4)

3.2.3 Terminological Aspects
More or less, the same technologies and models are sometimes called di�erently in
the literature. Namely, Wiki�cation (Cheng and Roth, 2013) and entity disambiguation
are considered as subtypes of EL (Moro et al., 2014). To be comprehensive, we assume
that the entity linking task encompasses both entity mention detection and entity
disambiguation. However, only a few studies suggest models that perform MD and ED
jointly, while the majority of papers on EL focus exclusively on ED and assume that
mention boundaries are given by an external entity recognizer (Rizzo et al., 2014) (which
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may lead to some terminological confusions). Numerous techniques that perform MD
(e.g. in the NER task) without entity disambiguation are considered in many previous
surveys (Nadeau and Sekine, 2007; Sharnagat, 2014; Goyal et al., 2018; Yadav and Bethard,
2018; J Li et al., 2022) inter alia and are out of the scope of this work.

Entity linking in the general case is not restricted to linking mentions to graph
nodes but rather to concepts in a knowledge base. However, most of the modern
widely-used knowledge bases organize information in the form of a graph (Lehmann
et al., 2015; Bollacker et al., 2008; Vrandečić and Krötzsch, 2014), even in particular
domains, like e.g. the scholarly domain (Dessì et al., 2021). A basic statement in a
data/knowledge base usually can be represented as a subject-predicate-object tuple
(�, �, �), e.g. (John_Lennon, occupation, singer) or (New_York_City, founded, 1624), and a set
of such tuples can be represented as a multi-relational graph. This formalism helps to
e�ciently organize knowledge for many applications ranging from search engines to
question answering and recommendation systems (Hogan et al., 2021; S Ji et al., 2022).
Therefore, as discussed earlier, in this thesis, the terms Knowledge Graph (KG) and
Knowledge Base (KB) are used interchangeably.

3.3 Neural Entity Linking
The discussion of neural entity linking approaches will start with the most general
architecture of EL pipelines and continue with various speci�c modi�cations like joint
entity mention detection and linking, disambiguation techniques that leverage global
context, domain-independent EL approaches including zero-shot methods, and cross-
lingual models.

3.3.1 General Architecture
Some of the attempts to EL based on neural networks treat it as amulti-class classi�cation
task in which entities correspond to classes. However, the straightforward approach
results in a large number of classes, which leads to suboptimal performance without
task-sharing (Kar et al., 2018). The streamlined approach to EL is to treat it as a ranking
problem. The generalized EL architecture is presented in Figure 3.2, which is applicable
to the majority of neural approaches. Here, the mention detection model identi�es the
mention boundaries in text. The next step is to produce a shortlist of possible entities
(candidates) for the mention, e.g. producing Sco�_Young_(writer) as a candidate rather
than a completely random entity. Then, the mention encoder produces a semantic vector
representation of a mention in a context. The entity encoder produces a set of vector
representations of candidates. Finally, the entity ranking model compares mention
and entity representations and estimates mention-entity correspondence scores. An
optional step is to determine unlinkable mentions, for which a KG does not contain
a corresponding entity. The categorization of each step in the general neural EL
architecture is summarized in Figure 3.3.

3.3.1.1 Candidate Generation

An essential part of EL is candidate generation. The goal of this step is given an
ambiguous entity mention, such as “Scott Young”, to provide a list of its possible “senses”
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Figure 3.2: General architecture for neural entity linking. Entity Linking (EL) consists of two
main steps: Mention Detection (MD), when entity mention boundaries in a text are identi�ed,
and Entity Disambiguation (ED), when a corresponding entity is predicted for the given mention.
Entity disambiguation is further carried out in two steps: Candidate Generation, when possible
candidate entities are selected for the mention, and Entity Ranking, when a correspondence
score between context/mention and each candidate is computed through the comparison of their
vector representations.

as speci�ed by entities in a KG. EL is analogous to the Word Sense Disambiguation
(WSD) task (Moro et al., 2014; Navigli, 2009) as it also resolves lexical ambiguity. Yet in
WSD, each sense of a word can be clearly de�ned by WordNet (WordNet: An Electronic
Lexical Database, 1998), while in EL, KGs do not provide such an exact mapping between
mentions and entities (Moro et al., 2014; Navigli, 2009; Chang et al., 2016). Therefore,
a mention potentially can be linked to any entity in a KG, resulting in a large search
space, e.g. “Big Blue” referring to IBM. In the candidate generation step, this issue is
addressed by performing e�ective preliminary �ltering of the entity list.

Formally, given a mention ��, a candidate generator provides a list of probable
entities, �1, �2, ..., ��, for each entity mention in a document.

CG � � �� (�1, �2, ..., ��). (3.5)
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Figure 3.3: Reference map of the general architecture of neural EL systems. The categorization
of each step in the general neural EL architecture with alternative design choices and a few
example references illustrating each of the choices.

Similar to Shen et al. (2015) and Al-Moslmi et al. (2020), we distinguish three common
candidate generation methods in neural EL: (1) based on surface formmatching, (2) based
on expansion with aliases, and (3) based on a prior matching probability computation.
In the �rst approach, a candidate list is composed of entities that match various surface
forms of mentions in the text (Zwicklbauer et al., 2016b; Moreno et al., 2017; Le and
Titov, 2019b). There are many heuristics for the generation of mention forms and
matching criteria like the Levenshtein distance, n-grams, and normalization. For the
example mention of “Big Blue”, this approach would not work well, as the referent
entity “IBM” or its long-form “International Business Machines” does not contain a
mention string. Examples of candidate entity sets are presented in Table 3.1, where
we searched a name matching of the mention “Big Blue” in the titles of all Wikipedia
articles present in DBpedia and presented random 5 matches.

In the second approach, a dictionary of additional aliases is constructed using
KG metadata like disambiguation/redirect pages of Wikipedia (Z Fang et al., 2019;
Zwicklbauer et al., 2016b) or using a dictionary of aliases and/or synonyms (e.g. “NYC”
stands for “New York City”). This helps to improve the candidate generation recall as



3. Survey of Entity Linking Methods 37

Table 3.1: Candidate generation examples. Candidate entities for the example mention “Big
Blue” obtained using several candidate generation methods. The highlighted candidates are
“correct” entities assuming that the given mention refers to the IBM corporation and not a river,
e.g. Big_Blue_River_(Kansas).

Method 5 candidate entities for
the example mention “Big Blue”

surface form matching based6
on DBpedia names

Big_Blue_Trail,
Big_Bluegrass,

Big_Blue_Spring_cave_crayfish,
Dexter_Bexley_and_the_Big_Blue_Beastie,

IBM_Big_Blue_(X-League)

expansion using aliases7
from YAGO-means

Big_Blue_River_(Indiana),
Big_Blue_River_(Kansas),

Big_Blue_(crane),
Big_Red_(drink),

IBM

probability + expansion using aliases8
from (Ganea and Hofmann, 2017):
Anchor prob. + CrossWikis + YAGO

IBM,
Big_Blue_River_(Kansas),

The_Big_Blue
Big_Blue_River_(Indiana),

Big_Blue_(crane)

the surface form matching usually cannot catch such cases. Pershina et al. (2015)
expand the given mention to the longest mention in a context found using coreference
resolution. Then, an entity is selected as a candidate if its title matches the longest
version of the mention, or it is present in disambiguation/redirect pages of this mention.
This resource is used in many EL models, e.g. Yamada et al. (2016), Cao et al. (2017),
Newman-Gri�s et al. (2018), Radhakrishnan et al. (2018), Martins et al. (2019), Onoe
and Durrett (2020), and Sil et al. (2018). Another well-known alternative is YAGO
(Suchanek et al., 2007) – an ontology automatically constructed from Wikipedia and
WordNet. Among many other relations, it provides “means” relations, and this mapping
is utilized for candidate generation like in Ho�art et al. (2011), Yamada et al. (2016),
Ganea and Hofmann (2017), Sil et al. (2018), and Shahbazi et al. (2018). In this technique,
the external information would help to disambiguate “Big Blue” as “IBM”. Table 3.1
shows examples of candidates generated with the help of the YAGO-means candidate
mapping dataset used in Ho�art et al. (2011).

The third approach to candidate generation is based on pre-calculated prior proba-
bilities of correspondence between certain mentions and entities, �(�|�). Many studies
rely on mention-entity priors computed based on Wikipedia entity hyperlinks. A
URL of a hyperlink to an entity page of Wikipedia determines a candidate entity,
and the anchor text of the hyperlink determines a mention. Another widely-used
option is CrossWikis (Spitkovsky and Chang, 2012), which is an extensive resource
that leverages the frequency of mention-entity links in web crawl data (Ganea and
Hofmann, 2017; Gupta et al., 2017).

6. Random matches from DBpedia labels dataset – http://downloads.dbpedia.org/2016-10/core-i18n/
en/labels_en.ttl.bz2

7. YAGO-means dataset of Ho�art et al. (2011) – http://resources.mpi-inf.mpg.de/yago-naga/aida/dow
nload/aida_means.tsv.bz2

8. We generated these examples using the source code of Peters et al. (2019) – https://github.com/allen
ai/kb

http://downloads.dbpedia.org/2016-10/core-i18n/en/labels_en.ttl.bz2
http://downloads.dbpedia.org/2016-10/core-i18n/en/labels_en.ttl.bz2
http://resources.mpi-inf.mpg.de/yago-naga/aida/download/aida_means.tsv.bz2
http://resources.mpi-inf.mpg.de/yago-naga/aida/download/aida_means.tsv.bz2
https://github.com/allenai/kb
https://github.com/allenai/kb
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It is common to apply multiple approaches to candidate generation at once. For
example, the resource constructed by Ganea and Hofmann (2017) and used in many other
EL methods (Kolitsas et al., 2018; Peters et al., 2019; Yamada et al., 2021; Shahbazi et al.,
2019; Le and Titov, 2019a) relies on prior probabilities obtained from entity hyperlink
count statistics of CrossWikis (Spitkovsky and Chang, 2012) and Wikipedia, as well as
on entity aliases obtained from the “means” relationship of the YAGO ontology (Ho�art
et al., 2011). The illustrative mention “Big Blue” can be linked to its referent entity “IBM”
with this method, as shown in Table 3.1. As another example, Z Fang et al. (2020) utilize
surface form matching and aliases. They share candidates between abbreviations and
their expanded versions in the local context. The aliases are obtained from Wikipedia
redirect and disambiguation pages, the Wikipedia search engine, and synonyms from
WordNet (WordNet: An Electronic Lexical Database, 1998). Additionally, they submit
mentions that are misspelled or contain multiple words to Wikipedia and Google search
engines and search for the corresponding Wikipedia articles. It is also worth noting that
some works also employ a candidate pruning step to reduce the number of candidates.

Recent zero-shot models (Logeswaran et al., 2019; Daniel Gillick et al., 2019; L Wu
et al., 2020) perform candidate generation without external resources.

3.3.1.2 Context-mention Encoding

To correctly disambiguate an entity mention, it is crucial to thoroughly capture the
information from its context. The current mainstream approach is to construct a dense
contextualized vector representation of a mention �� using an encoder neural network.

mENC � (�,�)� �� (��1
, ��2

, ..., ���
). (3.6)

There are several ways to create such vector representations, and recently mostly based
on recurrent networks (e.g., (Gupta et al., 2017; Kolitsas et al., 2018; Sil et al., 2018)) and
self-attention (e.g., (Logeswaran et al., 2019; L Wu et al., 2020; Yamada et al., 2021)). For
more information, please see the article (Sevgili et al., 2022).

3.3.1.3 Entity Encoding

To make EL systems robust, it is essential to construct distributed vector representations
of entity candidates �� in such a way that they capture semantic relatedness between
entities in various aspects.

eENC � �� �� (��1 , ��2 , ..., ���
). (3.7)

For instance, in Figure 3.4, the most similar entities for Scott Young in the Sco�_-
Young_(American_football) sense are related to American football, whereas the Sco�_-
Young_(writer) sense is in the proximity of writer-related entities.

There are three common approaches to entity encoding in EL: (1) entity representa-
tions learned using unstructured texts and algorithms like word2vec (Mikolov, Sutskever,
et al., 2013) based on co-occurrence statistics and developed originally for embedding
words; (2) entity representations constructed using relations between entities in KGs
and various graph embedding methods; (3) training a full-�edged neural encoder to
convert textual descriptions of entities and/or other information into embeddings.
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Figure 3.4: Visualization of entity embeddings. Entity embedding space for entities related
to the ambiguous entity mention “Scott Young”. Three candidate entities from Wikipedia are
illustrated. For each entity, their most similar 5 entities are shown in the same colors. Entity
embeddings are visualized with PCA, which is utilized to reduce dimensionality (in this example,
to 2D), using pre-trained embeddings provided by Yamada, Asai, Sakuma, et al. (2020)9.

In the �rst category, Ganea and Hofmann (2017) collect entity-word co-occurrences
statistics from two sources: entity description pages from Wikipedia; text surround-
ing anchors of hyperlinks to Wikipedia pages of corresponding entities. They train
entity embeddings using the max-margin objective that exploits the negative sampling
approach like in the word2vec model, so vectors of co-occurring words and entities
lie closer to each other compared to vectors of random words and entities. Some
other methods directly replace or extend mention annotations (usually anchor text
of a hyperlink) with an entity identi�er and straightforwardly train on the modi�ed
corpus a word representation model like word2vec (Zwicklbauer et al., 2016b, 2016a;
Moreno et al., 2017; Tsai and Roth, 2016; Yamada et al., 2017). In Moreno et al. (2017),
Ganea and Hofmann (2017), Tsai and Roth (2016), and Newman-Gri�s et al. (2018),
entity embeddings are trained in such a way that entities become embedded in the same
semantic space as words (or texts i.e., sentences and paragraphs (Yamada et al., 2017)).
For example, Newman-Gri�s et al. (2018) propose a distantly-supervised method that
expands the word2vec objective to jointly learn words and entity representations in the
shared space. The authors leverage distant supervision from terminologies that map
entities to their surface forms (e.g. Wikipedia page titles and redirects or terminology
from UMLS (Bodenreider, 2004)).

9. We used the English 100D embeddings from
https://wikipedia2vec.github.io/wikipedia2vec/pretrained

https://wikipedia2vec.github.io/wikipedia2vec/pretrained
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In the second category of entity encoding methods that use relations between entities
in a KG, H Huang et al. (2015) train a model that generates dense entity representations
from sparse entity features (e.g. entity relations, descriptions) based on the entity
relatedness. Several works expand their entity relatedness objective with functions that
align words (or mentions) and entities in a uni�ed vector space (W Fang et al., 2016;
Yamada et al., 2016; Yamada, Asai, Sakuma, et al., 2020; Cao et al., 2017; W Shi et al.,
2020; Radhakrishnan et al., 2018), just like the methods from the �rst category. For
example, Yamada et al. (2016) jointly optimize three objectives to learn word and entity
representations: prediction of neighbor words for the given target word, prediction of
neighbor entities for the target entity based on the relationships in a KG, and prediction
of neighbor words for the given entity.

Knowledge graph embedding has become a leading technique, facilitating many
tasks as discussed earlier in Section 2.3.3, in Chapter 2. For entity linking, two major
graph embedding algorithms are widely adopted: DeepWalk (Perozzi et al., 2014) and
TransE (Bordes et al., 2013).

Parravicini et al. (2019) and Sevgili et al. (2019) leverage DeepWalk-based graph
embeddings built from DBpedia (Lehmann et al., 2015) for entity linking. Parravicini
et al. (2019) use entity embeddings to compute cosine similarity scores of candidate
entities in global entity linking. Sevgili et al. (2019) show that combining graph and text-
based embeddings can slightly improve the performance of neural entity disambiguation
when compared to using only text-based embeddings. For more information about
this work, see Chapter 6.

Banerjee et al. (2020) and Sorokin and Gurevych (2018) utilize Wikidata-based
entity embeddings as an input component of neural models along with other types
of information about entities. The ablation study conducted by Banerjee et al. (2020)
show that the TransE entity embeddings are the most important features for their entity
linking model. They attribute this �nding to the fact that graph embeddings contain rich
information about the KG structure. Similarly, Sorokin and Gurevych (2018) �nd that
without KG structure information, their entity linker experiences a big performance
drop. Nedelchev et al. (2020) integrate knowledge graph embeddings built from Freebase
and word embeddings in a single end-to-end model that solves entity and relation
linking tasks jointly. The quantitative analysis shows that their KG-embedding-based
method helps to pick correct entity candidates. Recently, J Wu et al. (2020) also utilize
TransE embeddings with other types of entity embeddings, like Ganea and Hofmann
(2017) or dynamic representation, to compute pairwise entity relatedness scores.

In the last category, we place methods that produce entity representations using
other types of information like entity descriptions and entity types. Often, an entity
encoder is a full-�edged neural network, which is a part of an entity linking architecture.
Y Sun et al. (2015) use a neural tensor network to encode interactions between surface
forms of entities and their category information from a KG. In the same vein, Francis-
Landau et al. (2016) and Nguyen et al. (2016) construct entity representations by encoding
titles and entity description pages with convolutional neural networks. In addition to
a convolutional encoder for entity descriptions, Gupta et al. (2017) also include an
encoder for �ne-grained entity types by using the type set of FIGER (Ling and Weld,
2012). Daniel Gillick et al. (2019) construct entity representations by encoding entity
page titles, short entity descriptions, and entity category information with feedforward
networks. Le and Titov (2019b) use only entity type information from a KG and a
simple feedforward network for entity encoding. Hou et al. (2020) also leverage entity
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types. However, instead of relying on existing type sets like in (Gupta et al., 2017), they
construct custom �ne-grained semantic types using words from starting sentences of
Wikipedia pages. To represent entities, they �rst average the word vectors of entity
types and then linearly aggregate them with embeddings of Ganea and Hofmann (2017).

Recent works leverage deep language models like BERT (Devlin et al., 2019) or
ELMo (Peters et al., 2018) for encoding entities. Nie et al. (2018) use an architecture
based on a recurrent network for obtaining entity representations from Wikipedia
entity description pages. Subsequently, several models adopt BERT for the same
purpose (Logeswaran et al., 2019; L Wu et al., 2020) inter alia. Yamada et al. (2021)
propose a masked entity prediction task, where a model based on the BERT architecture
learns to predict randomly masked input entities. This task makes the model learn
also how to generate entity representations along with standard word representations.
Shahbazi et al. (2019) introduce E-ELMo that extends the ELMomodel (Peters et al., 2018)
with an additional objective. The model is trained in a multi-task fashion: to predict
next/previous words, as in a standard bidirectional language model, and to predict the
target entity when encountering its mentions. As a result, besides the model for mention
encoding, entity representations are obtained. Mulang’ et al. (2020) use bidirectional
Transformers to jointly encode context of a mention, a candidate entity name, and
multiple relationships of a candidate entity from a KG verbalized into textual triples:
“[subject] [predicate] [object]”. The input sequence of the encoder is composed simply
by appending all these types of information delimited by a special separator token.

3.3.1.4 Entity Ranking

The goal of this stage is given a list of entity candidates (�1, �2, ..., ��) from a KG and
a context � with a mention � to rank these entities assigning a score to each of
them, as in Equation 3.8, where � is a number of entity mentions in a document, �
is a number of candidate entities.

RNK � ((�1, �2, ..., ��),�,�)� �� R�ñ�. (3.8)

There are several approaches have been proposed, for more information please
see the article (Sevgili et al., 2022).

3.3.1.5 Unlinkable Mention Prediction

The referent entities of some mentions can be absent in the KGs, e.g. there is no
Wikipedia entry about Scott Young as a cricket player of the Stenhousemuir cricket
club.10 Therefore, an EL system should be able to predict the absence of a reference if a
mention appears in speci�c contexts, which is known as the NIL prediction task:

NILp � (�,�)� �� {0, 1}�. (3.9)

Several techniques exist in the literature, more details can be found in the article
(Sevgili et al., 2022).

10. Information about Scott Young as a cricket player: https://www.stenhousemuircricketclub.com/tea
ms/171906/player/scott-young-1828009

https://www.stenhousemuircricketclub.com/teams/171906/player/scott-young-1828009
https://www.stenhousemuircricketclub.com/teams/171906/player/scott-young-1828009
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Figure 3.5: Reference map of the modi�cations of the general architecture for neural EL. The
categorization of each modi�cation with various design choices and a few example references
illustrating each choice. Sections 3.3.2.3 and 3.3.2.4 are categorized based on their EL solutions,
here.

3.3.2 Modi�cations of the General Architecture
This section presents the most notable modi�cations and improvements of the general
architecture of neural entity linking models presented in Section 3.3.1 and Figures, e.g.,
3.2. The categorization of each modi�cation is summarized in Figure 3.5.

3.3.2.1 Joint Entity Mention Detection and Disambiguation

While it is common to separate the mention detection (cf. Equation 3.2) and entity
disambiguation stages (cf. Equation 3.3), as illustrated in Figure 3.1, a few systems provide
joint solutions for entity linking where entity mention detection and disambiguation
are done at the same time by the same model. Formally, the task becomes to detect
a mention �� � � and predict an entity �� � � for a given context �� � �, for all �
entity mentions in the context:

EL � � �� (� , �)�. (3.10)

Undoubtedly, solving these two problems simultaneously makes the task more chal-
lenging. However, the interaction between these steps can be bene�cial for improving
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Figure 3.6: Global entity disambiguation. The global entity linking resolves all mentions
simultaneously based on entity coherence. Bolder lines indicate expected higher degrees of
entity-entity similarity.

the quality of the overall pipeline due to their natural mutual dependency. For the
explanation of neural models solutions, please see the article (Sevgili et al., 2022).

3.3.2.2 Global Context Architectures

Two kinds of contextual information are available in entity disambiguation: local and
global. In local approaches to ED, each mention is disambiguated independently based
on the surrounding words, as in the following function:

LED � (� ,�) �� �. (3.11)

Global approaches to ED take into account semantic consistency (coherence) across
multiple entities in a context. In this case, all � entity mentions in a group are dis-
ambiguated interdependently: a disambiguation decision for one entity is a�ected by
decisions made for other entities in a context as illustrated in Figure 3.6 and Equation 3.12.

GED � ((�1,�2, ...,��),�) �� �� . (3.12)

In the example presented in Figure 3.6, the consistency score between correct entity
candidates: the national football team sense ofWales and theWelsh footballer sense of
Scott Young and John Hartson, is expected to be higher than between incorrect ones.

Besides involving consistency, the considered context of a mention in global methods
is usually larger than in local ones or even extends to the whole document. Although
modeling consistency between entities and the extra information of the global context
improves the disambiguation accuracy, the number of possible entity assignments is
combinatorial (Ganea et al., 2016), which results in high time complexity of disambigua-
tion (X Yang et al., 2019; Ganea and Hofmann, 2017). Another di�culty is an attempt
to assign an entity its consistency score since this score is not possible to compute in
advance due to the simultaneous disambiguation (Yamada et al., 2016).

The typical approach to global disambiguation is to generate a graph including
candidate entities of mentions in a context and perform some graph algorithms, like
random walk algorithms (e.g. PageRank (Page et al., 1999)) or graph neural networks,
over it to select highly consistent entities (Zwicklbauer et al., 2016a, 2016b; Pershina
et al., 2015; Guo and Barbosa, 2018). Recently, Xue et al. (2019) propose a neural recurrent



3. Survey of Entity Linking Methods 44

random walk network learning algorithm based on the transition matrix of candidate
entities containing relevance scores, which are created from hyperlinks information and
cosine similarity of entities. Cao et al. (2018) construct a subgraph from the candidates
of neighbor mentions, integrate local and global features of each candidate, and apply a
graph convolutional network over this subgraph. In this approach, the graph is static,
which would be problematic in such cases that two mentions would co-occur in di�erent
documents with di�erent topics, however, the produced graphs will be the same, and
so, could not catch the di�erent information (J Wu et al., 2020). To address it, J Wu
et al. (2020) propose a dynamic graph convolution architecture, where entity relatedness
scores are computed and updated in each layer based on the previous layer information
(initialized with some features, including context scores) and entity similarity scores.
Globerson et al. (2016) introduce a model with an attention mechanism that takes into
account only the subgraph of the target mention, rather than all interactions of all the
mentions in a document and restrict the number of mentions with an attention.

Some works approach global ED by maximizing the Conditional Random Field (CRF)
potentials, where the �rst component � represents a local entity-mention score, and
the other component � measures coherence among selected candidates (Ganea and
Hofmann, 2017; Ganea et al., 2016; Le and Titov, 2018, 2019a), as de�ned in Ganea
and Hofmann (2017):

�(�,�, �) =
�

�
�=1

�(��,��, ��) +�
�<�

�(��, ��). (3.13)

However, model training and its exact inference are NP-hard. Ganea and Hofmann
(2017) utilize truncated �tting of loopy belief propagation (Ganea et al., 2016; Globerson
et al., 2016) with di�erentiable and trainable message passing iterations using pairwise
entity scores to reduce the complexity. Le and Titov (2018) expand it in a way that
pairwise scores take into account relations of mentions (e.g. located_in, or coreference:
the mentions are coreferent if they refer to the same entity) by modeling relations
between mentions as latent variables. Shahbazi et al. (2018) develop a greedy beam
search strategy, which starts from a locally optimal initial solution and is improved by
searching for possible corrections with the focus on the least con�dent mentions.

Despite the optimizations proposed like in some aforementioned works, taking into
account coherence scores among candidates of all mentions at once can be prohibitively
slow. It also can be malicious due to erroneous coherence among wrong entities (Z Fang
et al., 2019). For example, if two mentions have coherent erroneous candidates, this noisy
information may mislead the �nal global scoring. To resolve this issue, some studies
de�ne the global ED problem as a sequential decision task, where the disambiguation of
new entities is based on the already disambiguated ones with high con�dence. Z Fang
et al. (2019) train a policy network for sequential selection of entities using reinforcement
learning. The disambiguation of mentions is ordered according to the local score, so the
mentions with high con�dent entities are resolved earlier. The policy network takes
advantage of output from the LSTM global encoder that maintains the information about
earlier disambiguation decisions. X Yang et al. (2019) also utilize reinforcement learning
for mention disambiguation. They use an attention model to leverage knowledge from
previously linked entities. The model dynamically selects the most relevant entities for
the target mention and calculates the coherence scores. Yamada et al. (2021) iteratively
predict entities for yet unresolved mentions with a BERT model, while attending on
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the previous most con�dent entity choices. Similarly, Gu et al. (2021) sort mentions
based on their ambiguity degrees produced by their BERT-based local model and update
query/context based on the linked entities so that the next prediction can leverage the
previous knowledge. They also utilize a gate mechanism to control historical cues –
representations of linked entities. Yamada et al. (2016) and Radhakrishnan et al. (2018)
measure the similarity �rst based on unambiguous mentions and then predict entities
for complex cases. Nguyen et al. (2016) use an RNN to implicitly store information about
previously seen mentions and corresponding entities. They leverage the hidden states
of the RNN to reach this information as a feature for the computation of the global score.
Tsai and Roth (2016) directly use embeddings of previously linked entities as features for
the disambiguation model. Recently, Z Fang et al. (2020) combine sequential approaches
with graph based methods, where the model dynamically changes the graph depending
on the current state. The graph is constructed with previously resolved entities, current
candidate entities, and subsequent mention’s candidates. The authors use a graph
attention network over this graph to make a global scoring. As explained before, J Wu
et al. (2020) also change the entity graph dynamically depending on the outputs from
previous layers of a GCN. Zwicklbauer et al. (2016b) include to the candidates graph
a topic node created from the set of already disambiguated entities.

Some studies, for example, Kolitsas et al. (2018) model the coherence component
as an additional feedforward neural network that uses the similarity score between
the target entity and an average embedding of the candidates with a high local score.
W Fang et al. (2016) use the similarity score between the target entity and its surrounding
entity candidates in a speci�ed window as a feature for the disambiguation model.

Another approach that can be considered as global is to make use of a document-
wide context, which usually contains more than one mention and helps to capture the
coherence implicitly instead of explicitly designing an entity coherence component
(Peters et al., 2019; Gupta et al., 2017; Moreno et al., 2017; Francis-Landau et al., 2016).

3.3.2.3 Domain-Independent Architectures

Domain independence is one of the most desired properties of EL systems. Annotated
resources are very limited and exist only for a few domains. Obtaining labeled data
in a new domain requires much labor. Earlier, this problem is tackled by few domain-
independent approaches based on unsupervised (H Wang et al., 2015; Cao et al., 2017;
Newman-Gri�s et al., 2018) and semi-supervised models (Lazic et al., 2015). Recent
studies provide solutions based on distant learning and zero-shot methods. We refer
reader to the article (Sevgili et al., 2022), for more information.

3.3.2.4 Cross-lingual Architectures

An abundance of labeled data for EL in English contrasts with the amount of data
available in other languages. The cross-lingual EL (sometimes called XEL) methods (H Ji
et al., 2015) aim at overcoming the lack of annotation for resource-poor languages by
leveraging supervision coming from their resource-rich counterparts. Many of these
methods are feasible due to the presence of a unique source of supervision for EL –
Wikipedia, which is available for a variety of languages. The inter-language links in
Wikipedia that map pages in one language to equivalent pages in another language
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also help to map corresponding entities in di�erent languages. For more information,
please see the article (Sevgili et al., 2022).

3.3.3 Methods that do not Fit the General Architecture
There are a fewworks that proposemethods not �tting the general architecture presented
in Figures, e.g. 3.2. Raiman and Raiman (2018) rely on the intermediate supplementary
task of entity typing instead of directly performing entity disambiguation. They learn
a type system in a KG and train an intermediate type classi�er of mentions that
signi�cantly re�nes the number of candidates for the �nal linking model. Onoe and
Durrett (2020) leverage distant supervision from Wikipedia pages and the Wikipedia
category system to train a �ne-grained entity typing model. At test time, they use the
soft type predictions and the information about candidate types derived fromWikipedia
to perform the �nal disambiguation. The authors claim that such an approach helps
to improve the domain independence of their EL system. Kar et al. (2018) consider a
classi�cation approach, where each entity is considered as a separate class or a task.
They show that the straightforward classi�cation is di�cult due to exceeding memory
requirements. Therefore, they experiment with multitask learning, where parameter
learning is decomposed into solving groups of tasks. Globerson et al. (2016) do not have
any encoder components; instead, they rely on contextual and pairwise feature-based
scores. They have an attention mechanism for global ED with a non-linear optimization
as described in Section 3.3.2.2.

3.3.4 Summary

Table 3.2: Features of neural EL models. Neural entity linking models compared according to
their architectural features. The description of columns is presented in the beginning of Section
3.3.4. The footnotes in the table are enumerated in the end of Section 3.3.4.

Model Encoder Type Global MD+ED NIL Pred. Ent. Encoder
Source based on

Candidate
Generation

Learning
Type for
Disam.

Cross-
lingual

Y Sun et al. (2015) CNN+
Tensor net.

ent. speci�c
info.

surface match
+aliases supervised

Francis-Landau et al. (2016) CNN 83 8
ent. speci�c

info.
surface match

+prior supervised

W Fang et al. (2016) word2vec-based 8 relational info. n/a supervised
Yamada et al. (2016) word2vec-based 8 relational info. aliases supervised

Zwicklbauer et al. (2016b) word2vec-based 8 8
unstructured text +

ent. speci�c
info.

surface match unsupervised5

Tsai and Roth (2016) word2vec-based 8 8 unstructured text prior supervised 8

Nguyen et al. (2016) CNN 8 8 ent. speci�c info. surface match
+prior supervised

Globerson et al. (2016) n/a 8 n/a prior+aliases supervised

Cao et al. (2017) word2vec-based 8 relational info. aliases supervised or
unsupervised

Eshel et al. (2017) GRU
+Atten. unstructured text1 aliases or

surface match supervised

Ganea and Hofmann (2017) Atten. 8 unstructured text prior+aliases supervised

Moreno et al. (2017) word2vec-based 83 8 unstructured text surface match
+aliases supervised

Gupta et al. (2017) LSTM 83 ent. speci�c info. prior supervised4

Nie et al. (2018) LSTM
+CNN 8 ent. speci�c info. surface match

+prior supervised

Sorokin and Gurevych (2018) CNN 8 8 relational info. surface match supervised
Shahbazi et al. (2018) Atten. 8 unstructured text prior+aliases supervised
Le and Titov (2018) Atten. 8 unstructured text prior+aliases supervised
Newman-Gri�s et al. (2018) word2vec-based unstructured text aliases unsupervised
Radhakrishnan et al. (2018) n/a 8 relational info. aliases supervised
Kolitsas et al. (2018) LSTM 8 8 unstructured text prior+aliases supervised

Sil et al. (2018) LSTM+
Tensor net. 8 ent. speci�c info. prior or

prior+aliases zero-shot 8

Upadhyay et al. (2018) CNN 83 ent. speci�c info. prior zero-shot 8
Cao et al. (2018) Atten. 8 relational info. prior+aliases supervised

Continued on next page
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Table 3.2 – continued from previous page

Model Encoder Type Global MD+ED NIL Pred. Ent. Encoder
Source based on

Candidate
Generation

Learning
Type for
Disam.

Cross-
lingual

Raiman and Raiman (2018) n/a 8 n/a prior+type classi�er supervised 8

Mueller and Durrett (2018)
GRU+
Atten.
+CNN

unstructured text1 surface match supervised

Shahbazi et al. (2019) ELMo unstructured text prior+aliases
or aliases supervised

Logeswaran et al. (2019) BERT ent. speci�c info. BM25 zero-shot

Daniel Gillick et al. (2019) FFNN ent. speci�c info. nearest
neighbors supervised4

Peters et al. (2019)2 BERT 83 8 8 unstructured text prior+aliases supervised

Le and Titov (2019b) LSTM ent. speci�c info. surface match weakly-
supervised

Le and Titov (2019a) Atten. 8 unstructured text prior+aliases weakly-
supervised

Z Fang et al. (2019) LSTM 8
unstructured text +
ent. speci�c info. aliases supervised

Martins et al. (2019) LSTM 8 8 unstructured text aliases supervised

X Yang et al. (2019) Atten.
or CNN 8

unstructured text or
ent. speci�c.

info.
prior+aliases supervised

Xue et al. (2019) CNN 8 ent. speci�c info. prior+aliases supervised

S Zhou et al. (2019) n/a 8 unstructured text prior+char.-
level model zero-shot 8

Broscheit (2019) BERT 8 8 n/a n/a supervised

Hou et al. (2020) Atten. 8
ent. speci�c info.+
unstructured text prior+aliases supervised

Onoe and Durrett (2020) ELMo+Atten.
+CNN+LSTM n/a prior or

aliases supervised4

H Chen et al. (2020) BERT 8 relational info. n/a or
aliases supervised

L Wu et al. (2020) BERT ent. speci�c info. nearest
neighbors zero-shot

Banerjee et al. (2020) fastText 8 relational info. surface match supervised

J Wu et al. (2020) ELMo 8
unstructured text+
relational info. prior+aliases supervised

Z Fang et al. (2020) BERT 8 ent. speci�c info.
surface match
+aliases+

Google Search
supervised

S Chen et al. (2020) Atten.
+BERT 8 unstructured text prior+aliases supervised

Botha et al. (2020) BERT ent. speci�c info. nearest
neighbors zero-shot 8

Yao et al. (2020) BERT ent. speci�c info. BM25 zero-shot

BZ Li et al. (2020) BERT 8 ent. speci�c info. nearest
neighbors zero-shot

Poerner et al. (2020)2 BERT 8 8 8 relational info. prior+aliases supervised

Fu et al. (2020) M-BERT ent. speci�c info. Google Search
Google Maps zero-shot 8

Mulang’ et al. (2020)
Atten.
or CNN
or BERT

8 relational info. prior+aliases supervised

Yamada et al. (2021) BERT 8 unstructured text prior+aliases
or aliases supervised

Gu et al. (2021) BERT 8 8 ent. speci�c info.
surface match

+prior
or aliases

supervised

Tang et al. (2021) BERT ent. speci�c info. BM25 zero-shot
De Cao et al. (2021) BART 8 8 n/a prior+aliases supervised

Design features are summarized for neural EL models in Table 3.2 and also links to
their publicly available implementations in Table 3.3. The mention encoders have made a
shift to self-attention architectures and started using deep pre-trained models like BERT.
The majority of studies still rely on external knowledge for the candidate generation
step. There is a surge of models that tackle the domain adaptation problem in a zero-shot
fashion. However, the task of zero-shot joint entity mention detection and linking has
not been addressed yet. It is shown in several works that the cross-encoder architecture
is superior compared to models with separate mention and entity encoders. The global
context is widely used, but there are few recent studies that focus only on local EL.

Each column in Table 3.2 corresponds to a model feature. The encoder type column
presents the architecture of the mention encoder of the neural entity linking model.
It contains the following options:

• n/a – a model does not have a neural encoder for mentions / contexts.
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• CNN – an encoder based on convolutional layers (usually with pooling), (see
Section 2.2.5).

• Tensor net. – an encoder that uses a tensor network.
• Atten. – means that a context-mention encoder leverages an attention mechanism
to highlight the part of the context using an entity candidate.

• GRU – an encoder based on a recurrent neural network and gated recurrent units
(Chung et al., 2014), (see Section 2.2.2).

• LSTM – an encoder based on a recurrent neural network and long short-term
memory cells (Hochreiter and Schmidhuber, 1997) (might be also bidirectional),
(see Section 2.2.2).

• FFNN – an encoder based on a simple feedforward neural network, (see Section
2.2.1).

• ELMo – an encoder based on a pre-trained ELMo model (Peters et al., 2018).
• BERT – an encoder based on a pre-trained BERT model (Devlin et al., 2019), (see
Section 2.2.4).

• fastText – an encoder based on a pre-trained fastText model (Bojanowski et al.,
2017).

• word2vec-based – an encoder that leverages principles of CBOW or skip-gram
algorithms (Le and Mikolov, 2014; Mikolov, Sutskever, et al., 2013; Mikolov, Chen,
et al., 2013), (see Section 2.3.1).

Note that the theoretical complexity of various types of encoders is di�erent. As
discussed by Vaswani et al. (2017), complexity per layer of self-attention is �(�2 � �), as
compared to�(� ��2) for a recurrent layer, and�(� �� ��2) for a convolutional layer, where
� is the length of an input sequence, � is the dimensionality, and � is the kernel size
of convolutions. At the same time, the self-attention allows for a better parallelization
than the recurrent networks as the number of sequentially executed operations for
self-attention requires a constant number of sequentially executed operations of �(1),
while a recurrent layer requires �(�) sequential operations. Overall, estimation of
the computational complexity of training and inference of various neural networks is
certainly beyond the scope of the goal of this thesis. The interested reader may refer
to (Vaswani et al., 2017) and specialized literature on this topic, e.g. (Orponen, 1994;
Šíma and Orponen, 2003; Livni et al., 2014).

The global column shows whether a system uses a global solution (see Section
3.3.2.2). TheMD+ED column refers to joint entity mention detection and disambiguation
models, where detection and disambiguation of entities are performed collectively
(Section 3.3.2.1). TheNIL prediction column points out models that also label unlinkable
mentions. The entity embedding column presents which resource is used to train entity
representations based on the categorization in Section 3.3.1.3, where

• n/a – a model does not have a neural encoder for entities.
• unstructured text – entity representations are constructed from unstructured text
using approaches based on co-occurrence statistics developed originally for word
embeddings like word2vec (Mikolov, Sutskever, et al., 2013).

• relational info. – a model uses relations between entities in KGs.
• ent. speci�c info. – an entity encoder uses other types of information, like entity
descriptions, types, or categories.
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In the candidate generation column, the candidate generation methods are speci�ed
(Section 3.3.1.1). It contains the following options:

• n/a – the solution that does not have an explicit candidate generation step (e.g.
the method presented by Broscheit (2019)).

• surface match – surface form matching heuristics.
• aliases – a supplementary aliases for entities in a KG.
• prior – �ltering candidates with pre-calculated mention-entity prior probabilities
or frequency counts.

• type classi�er – Raiman and Raiman (2018) �lter candidates using a classi�er for
an automatically learned type system.

• BM25 – a variant of TF-IDF to measure similarity between a mention and a
candidate entity based on description pages.

• nearest neighbors – the similarity between mention and entity representations is
calculated, and entities that are nearest neighbors of mentions are retrieved as
candidates. L Wu et al. (2020) train a supplementary model for this purpose.

• Google search – leveraging Google Search Engine to retrieve entity candidates.
• char.-level model – a neural character-level string matching model.

The learning type for disambiguation column shows whether a model is ‘supervised’,
‘unsupervised’, ‘weakly-supervised’, or ‘zero-shot’, (see Section 2.1). The cross-lingual
column refers to models that provide cross-lingual EL solutions (Section 3.3.2.4).

In addition, the following superscript notations are used to denote speci�c features
of methods shown as a note in the Table 3.2:

1. These works use only entity description pages, however, they are labeled as the
�rst category (unstructured text) since their training method is based on principals
from word2vec.

2. The authors provide EL as a subsystem of language modeling.
3. These solutions do not rely on global coherence but are marked as “global” because

they use document-wide context or multiple mentions at once for resolving entity
ambiguity.

4. These studies are domain-independent as discussed in Section 3.3.2.3.
5. Zwicklbauer et al. (2016b) may not be accepted as purely unsupervised since they

have some threshold parameters in the disambiguation algorithm tuned on a
labeled set.

3.4 Evaluation

In this section, we present evaluation results for the entity linking and entity relatedness
tasks on the commonly used datasets.
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Table 3.3: Publicly available implementations (either provided in the paper or available at
PapersWithCode.com) of the neural models presented in Table 3.2.

Model Link for Source Code
Y Sun et al. (2015) -
Francis-Landau et al. (2016) https://github.com/matthew�/nlp-entity-convnet
W Fang et al. (2016) -
Yamada et al. (2016) https://github.com/wikipedia2vec/wikipedia2vec
Zwicklbauer et al. (2016b) https://github.com/quhfus/DoSeR
Tsai and Roth (2016) -
Nguyen et al. (2016) -
Globerson et al. (2016) -
Cao et al. (2017) https://github.com/TaoMiner/bridgeGap
Eshel et al. (2017) https://github.com/yotam-happy/NEDforNoisyText
Ganea and Hofmann (2017) https://github.com/dalab/deep-ed
Moreno et al. (2017) -
Gupta et al. (2017) https://github.com/nitishgupta/neural-el
Nie et al. (2018) -
Sorokin and Gurevych (2018) https://github.com/UKPLab/starsem2018-entity-linking
Shahbazi et al. (2018) -
Le and Titov (2018) https://github.com/lephong/mulrel-nel
Newman-Gri�s et al. (2018) https://github.com/OSU-slatelab/JET
Radhakrishnan et al. (2018) https://github.com/priyaradhakrishnan0/ELDEN
Kolitsas et al. (2018) https://github.com/dalab/end2end_neural_el
Sil et al. (2018) -
Upadhyay et al. (2018) https://github.com/shyamupa/xelms
Cao et al. (2018) https://github.com/TaoMiner/NCEL
Raiman and Raiman (2018) https://github.com/openai/deeptype
Mueller and Durrett (2018) https://github.com/davidandym/wikilinks-ned
Shahbazi et al. (2019) -
Logeswaran et al. (2019) https://github.com/lajanugen/zeshel
Daniel Gillick et al. (2019) https://github.com/google-research/google-research/tree/master/dense_representations_for_entity_retrieval
Peters et al. (2019) https://github.com/allenai/kb
Le and Titov (2019b) https://github.com/lephong/dl4el
Le and Titov (2019a) https://github.com/lephong/wnel
Z Fang et al. (2019) -
Martins et al. (2019) -
X Yang et al. (2019) https://github.com/YoungXiyuan/DCA
Xue et al. (2019) https://github.com/DeepLearnXMU/RRWEL
S Zhou et al. (2019) https://github.com/shuyanzhou/burn_xel
Broscheit (2019) https://github.com/samuelbroscheit/entity_knowledge_in_bert
Hou et al. (2020) https://github.com/fhou80/EntEmb
Onoe and Durrett (2020) https://github.com/yasumasaonoe/ET4EL
H Chen et al. (2020) -
L Wu et al. (2020) https://github.com/facebookresearch/BLINK
Banerjee et al. (2020) https://github.com/debayan/pnel
J Wu et al. (2020) https://github.com/wujsAct/DGCN_EL
Z Fang et al. (2020) https://github.com/fangzheng123/SGEL
S Chen et al. (2020) -
Botha et al. (2020) http://goo.gle/mewsli-dataset
Yao et al. (2020) https://github.com/seasonyao/Zero-Shot-Entity-Linking
BZ Li et al. (2020) https://github.com/facebookresearch/BLINK/tree/master/elq
Poerner et al. (2020) https://github.com/npoe/ebert
Fu et al. (2020) http://cogcomp.org/page/publication_view/911
Mulang’ et al. (2020) https://github.com/mulangonando/Impact-of-KG-Context-on-ED
Yamada et al. (2021) https://github.com/studio-ousia/luke
Gu et al. (2021) -
Tang et al. (2021) -
De Cao et al. (2021) https://github.com/facebookresearch/GENRE

3.4.1 Entity Linking
3.4.1.1 Experimental Setup

The evaluation results are reported based on two di�erent evaluation settings. The
�rst setup is entity disambiguation (ED) where the systems have access to the mention
boundaries. The second setup is entity mention detection and disambiguation (MD+ED)
where the input for the systems that perform MD and ED jointly is only plain text.
We presented their results in separate tables since the scores for the joint models
accumulate the errors made during the mention detection phase.

https://paperswithcode.com
https://github.com/matthewfl/nlp-entity-convnet
https://github.com/wikipedia2vec/wikipedia2vec
https://github.com/quhfus/DoSeR
https://github.com/TaoMiner/bridgeGap
https://github.com/yotam-happy/NEDforNoisyText
https://github.com/dalab/deep-ed
https://github.com/nitishgupta/neural-el
https://github.com/UKPLab/starsem2018-entity-linking
https://github.com/lephong/mulrel-nel
https://github.com/OSU-slatelab/JET
https://github.com/priyaradhakrishnan0/ELDEN
https://github.com/dalab/end2end_neural_el
https://github.com/shyamupa/xelms
https://github.com/TaoMiner/NCEL
https://github.com/openai/deeptype
https://github.com/davidandym/wikilinks-ned
https://github.com/lajanugen/zeshel
https://github.com/google-research/google-research/tree/master/dense_representations_for_entity_retrieval
https://github.com/allenai/kb
https://github.com/lephong/dl4el
https://github.com/lephong/wnel
https://github.com/YoungXiyuan/DCA
https://github.com/DeepLearnXMU/RRWEL
https://github.com/shuyanzhou/burn_xel
https://github.com/samuelbroscheit/entity_knowledge_in_bert
https://github.com/fhou80/EntEmb
https://github.com/yasumasaonoe/ET4EL
https://github.com/facebookresearch/BLINK
https://github.com/debayan/pnel
https://github.com/wujsAct/DGCN_EL
https://github.com/fangzheng123/SGEL
http://goo.gle/mewsli-dataset
https://github.com/seasonyao/Zero-Shot-Entity-Linking
https://github.com/facebookresearch/BLINK/tree/master/elq
https://github.com/npoe/ebert
http://cogcomp.org/page/publication_view/911
https://github.com/mulangonando/Impact-of-KG-Context-on-ED
https://github.com/studio-ousia/luke
https://github.com/facebookresearch/GENRE
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Table 3.4: Evaluation datasets. Descriptive statistics of the evaluation datasets used in this
thesis to compare the EL models. The values for MSNBC, AQUAINT, and ACE2004 datasets are
based on the update by Guo and Barbosa (2018). The statistics for AIDA-B, MSNBC, AQUAINT,
ACE2004, CWEB, and WW is reported according to (Ganea and Hofmann, 2017) (# of mentions
takes into account only non-NIL entity references). The TAC KBP dataset statistics is reported
according to (H Ji et al., 2010; L Wu et al., 2020; Ellis et al., 2015; H Ji et al., 2015) (# of mentions
takes into account also NIL entity references).

Corpus Text Genre # of Documents # of Mentions

AIDA-B (Ho�art et al., 2011) News 231 4,485
MSNBC (Cucerzan, 2007) News 20 656
AQUAINT (Milne and Witten, 2008) News 50 727
ACE2004 (Ratinov et al., 2011) News 36 257
CWEB (Guo and Barbosa, 2018; Gabrilovich et al., 2013) Web & Wikipedia 320 11,154
WW (Guo and Barbosa, 2018) Web & Wikipedia 320 6,821
TAC KBP 2010 (H Ji et al., 2010) News & Web 2,231 2,250
TAC KBP 2015 Chinese (H Ji et al., 2015) News & Forums 166 11,066
TAC KBP 2015 Spanish (H Ji et al., 2015) News & Forums 167 5,822

Datasets We report the evaluation results of monolingual EL models on the English
datasets widely-used in recent research publications: AIDA (Ho�art et al., 2011), TAC
KBP 2010 (H Ji et al., 2010), MSNBC (Cucerzan, 2007), AQUAINT (Milne andWitten, 2008),
ACE2004 (Ratinov et al., 2011), CWEB (Guo and Barbosa, 2018; Gabrilovich et al., 2013),
and WW (Guo and Barbosa, 2018). AIDA is the most popular dataset for benchmarking
EL systems. For AIDA, we report the results calculated for the test set (AIDA-B).

The cross-lingual EL results are reported for the TAC KBP 2015 (H Ji et al., 2015)
Spanish (es) and Chinese (zh) datasets. The descriptive statistics of the datasets and
their text genres are presented in Table 3.4 according to information reported in (Ganea
and Hofmann, 2017; L Wu et al., 2020; H Ji et al., 2010; H Ji et al., 2015; Ellis et al., 2015).

EvaluationMetrics For the ED setting, we presentmicro F1 or accuracy scores reported
by model authors. We note that, since mentions are provided as an input, the number
of mentions predicted by the model is equal to the number of mentions in the ground
truth (Shen et al., 2015), so micro F1, precision, recall, and accuracy scores are equal
in this setting as explained in Shen et al. (2015):

�1 = ��� =
# ��������� ������. ��������

# ����� ��������
. (3.14)

For the MD+ED setting, where joint models are evaluated, we report micro F1 scores
based on strong annotation matching. The formulas to compute F1 scores are shown
below, as described in Shen et al. (2015) and Ganea et al. (2016):

� =
# ��������� �������� ��� ������. ��������

# ��������� �������� �� �����
, (3.15)

� =
# ��������� �������� ��� ������. ��������

# �������� �� ������ �����
, (3.16)

�1 =
2 � � � �
� + �

. (3.17)
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Figure 3.7: Entity disambiguation progress. Performance of the classic entity linking models
(green) with the more recent neural models (gray) on the AIDA test set shows an improvement
(around 10 points of accuracy).

We note that results reported in multiple considered papers are usually obtained
using GERBIL (Röder et al., 2018) – a platform for benchmarking EL models. It im-
plements various experimental setups, including entity disambiguation denoted as
D2KB and a combination of mention detection and disambiguation denoted as A2KB.
GERBIL encompasses many evaluation datasets in a standartized way along with
annotations and provides the computation of evaluation metrics, i.e. micro-macro
precision, recall, and F-measure.

Baseline Models While our goal is to perform a survey of neural EL systems, we
also report results of several indicative and prominent classic non-neural systems as
baselines to underline the advances yielded by neural models. More speci�cally, we
report results of DBpedia Spotlight (2011) (Mendes et al., 2011), AIDA (2011) (Ho�art
et al., 2011), Ratinov et al. (2011), WAT (2014) (Piccinno and Ferragina, 2014), Babelfy
(2014) (Moro et al., 2014), Lazic et al. (2015), Chisholm and Hachey (2015) (Chisholm
and Hachey, 2015), and PBOH (2016) (Ganea et al., 2016).

For considered neural EL systems, we present the best scores reported by the authors.
For the baseline systems, the results are reported according to Kolitsas et al. (2018)11
and Ganea and Hofmann (2017).

11. Some of the baseline scores are presented in the appendix of Kolitsas et al. (2018), which is available
at https://arxiv.org/pdf/1808.07699.pdf

https://arxiv.org/pdf/1808.07699.pdf
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Table 3.5: Entity disambiguation evaluation. Micro F1/Accuracy scores of neural entity
disambiguation as compared to some classic models on common evaluation datasets.

Model AIDA-B KBP’10 MSNBC AQUAINT ACE-2004 CWEB WW KBP’15 (es) KBP’15 (zh)

Accuracy Accuracy Micro F1 Micro F1 Micro F1 Micro F1 Micro F1 Accuracy Accuracy
Non-Neural Baseline Models

DBpedia Spotlight
(Mendes et al., 2011) 0.561 - 0.421 0.518 0.539 - - - -

AIDA
(Ho�art et al., 2011) 0.770 - 0.746 0.571 0.798 - - - -

Ratinov et al. (2011) - - 0.750 0.830 0.820 0.562 0.672 - -
WAT

(Piccinno and Ferragina, 2014) 0.805 - 0.788 0.754 0.796 - - - -

Babelfy
(Moro et al., 2014) 0.758 - 0.762 0.704 0.619 - - - -

Lazic et al. (2015) 0.864 - - - - - - - -
Chisholm and Hachey (2015) 0.887 - - - - - - - -

PBOH
(Ganea et al., 2016) 0.804 - 0.861 0.841 0.832 - - - -

Guo and Barbosa (2018) 0.890 - 0.920 0.870 0.880 0.770 0.845 - -
Neural Models

Y Sun et al. (2015) - 0.839 - - - - - - -
Francis-Landau et al. (2016) 0.855 - - - - - - - -
W Fang et al. (2016) - 0.889 0.755 0.852 0.808 - - - -
Yamada et al. (2016) 0.931 0.855 - - - - - - -
Zwicklbauer et al. (2016b) 0.784 - 0.911 0.842 0.907 - - - -
Tsai and Roth (2016) - - - - - - - 0.824 0.851
Nguyen et al. (2016) 0.872 - - - - - - - -
Globerson et al. (2016) 0.927 0.872 - - - - - - -
Cao et al. (2017) 0.851 - - - - - - - -
Eshel et al. (2017) 0.873 - - - - - - - -
Ganea and Hofmann (2017) 0.922 - 0.937 0.885 0.885 0.779 0.775 - -
Gupta et al. (2017) 0.829 - - - 0.907 - - - -
Nie et al. (2018) 0.898 0.891 - - - - - - -
Shahbazi et al. (2018) 0.944 0.879 - - - - - - -
Le and Titov (2018) 0.931 - 0.939 0.884 0.900 0.775 0.780 - -
Radhakrishnan et al. (2018) 0.930 0.896 - - - - - - -
Kolitsas et al. (2018) 0.831 - 0.864 0.832 0.855 - - - -
Sil et al. (2018) 0.940 0.874 - - - - - 0.823 0.844
Upadhyay et al. (2018) - - - - - - - 0.844 0.860
Cao et al. (2018) 0.800 0.910 - 0.870 0.880 - 0.860 - -
Raiman and Raiman (2018) 0.949 0.909 - - - - - - -
Shahbazi et al. (2019) 0.962 0.883 0.923 0.901 0.887 0.784 0.798 - -
Daniel Gillick et al. (2019) - 0.870 - - - - - - -
Le and Titov (2019b) 0.815 - - - - - - - -
Le and Titov (2019a) 0.897 - 0.922 0.907 0.881 0.782 0.817 - -
Z Fang et al. (2019) 0.943 - 0.928 0.875 0.912 0.785 0.828 - -
X Yang et al. (2019) 0.946 - 0.946 0.885 0.901 0.756 0.788 - -
Xue et al. (2019) 0.924 0.944 0.919 0.911 0.801 0.855 - -
S Zhou et al. (2019) - - - - - - - 0.829 0.855
Hou et al. (2020) 0.926 - 0.943 0.912 0.907 0.785 0.819 - -
Onoe and Durrett (2020) 0.859 - - - - - - - -
L Wu et al. (2020) - 0.945 - - - - - - -
J Wu et al. (2020) 0.931 - 0.927 0.894 0.906 0.814 0.792 - -
Z Fang et al. (2020) 0.830 - 0.800 0.880 0.890 - - - -
S Chen et al. (2020) 0.937 - 0.945 0.898 0.908 0.782 0.810 - -
Mulang’ et al. (2020) 0.949 - - - - - - - -
Yamada et al. (2021) 0.971 - 0.963 0.935 0.919 0.789 0.892 - -
De Cao et al. (2021) 0.933 - 0.943 0.909 0.911 0.773 0.879 - -
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Figure 3.8: Mention/context encoder type for entity disambiguation. Performance of the
entity disambiguation models on the AIDA test set with mention/context encoder displayed with
di�erent colors as de�ned in Table 3.2. The bars with multiple colors refer to the models that
use di�erent types of encoder models; the bars do not re�ect any meaning on the percentage.
Note: we assigned the “RNN” label for the models LSTM, GRU, and ELMo; the “Transformers”
label for BERT and BART models.

3.4.1.2 Discussion of Results

Entity Disambiguation Results We start our discussion of the results from the entity
disambiguation (ED) models, for which mention boundaries are provided. Figure 3.7
shows how the performance of the entity disambiguation models on the most widely-
used dataset AIDA improved during the course of the last decade and how the best
disambiguation models based on classical machine learning methods (denoted as “non-
neural”) correspond to the recent state-of-the-art models based on deep neural net-
works (denoted as “neural”). As one may observe, the models based on deep learning
substantially improve the EL performance pushing the state of the art by around 10
percentage points in terms of accuracy.

Table 3.5 presents the comparison of the ED models in detail on several datasets
presented above. The model of Yamada et al. (2021) yields the best result on AIDA
and appears to behave robustly across di�erent datasets, getting top scores or near top
scores for most of them. Here, we should also mention that none of the non-neural
baselines reach the best results on any dataset.

Among local models for disambiguation, the best results are reported by Shahbazi
et al. (2019) and L Wu et al. (2020). It is worth noting that the latter model can be used
in the zero-shot setting. Shahbazi et al. (2019) have the best score on AIDA among other
local models outperforming them by a substantial margin. However, this is due to the
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Figure 3.9: Local-Global entity disambiguation. Performance of the entity disambiguation
models on the AIDA test set with local/global models displayed with di�erent colors as de�ned
in Table 3.2. Note, some models, like Francis-Landau et al. (2016), do not rely on global coherence,
but they use document-wide context or multiple mentions at once, as explained in Table 3.2.

use of the less-ambiguous resource of Pershina et al. (2015) for candidate generation,
while many other works use the YAGO-based resource provided by Ganea and Hofmann
(2017), which typically yields lower results.

The common trend is that the global models (those trying to disambiguate several
entity occurrences at once) outperform the local ones (relying on a single mention and its
context). The best considered ED model of Yamada et al. (2021) is global. Its performance
improvements over competitors are attributed by the authors to the novel masked
entity prediction objective that helps to �ne-tune pre-trained BERT for producing
contextualized entity embeddings and to the multi-step global disambiguation algorithm.

Finally, as one could see from Table 3.5, the least number of experiments is reported
on the non-English datasets (TAC KBP datasets for Chinese and Spanish). Among the
four reported results, the approach of Upadhyay et al. (2018) provides the best scores,
yet outperforming the other three approaches only by a small margin.

Mention/Context Encoder Type Figure 3.8 provides further analysis of the perfor-
mance of entity disambiguation models presented above. The top performing model by
Yamada et al. (2021) is based on Transformers. It is followed by the model of Shahbazi
et al. (2019), which relies on RNNs: more speci�cally, it relies on the ELMo encoder that
is based on pre-trained bidirectional LSTM cells. Overall, RNN is a popular choice for
the mention-context encoder. However, recently, self-attention-based encoders, and
especially the ones based on pre-trained Transformer networks, have gained popularity.
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Table 3.6: Entity relatedness evaluation. Reported results for entity relatedness evaluation on
the test set of Ceccarelli et al. (2013) .

Model nDCG@1 nDCG@5 nDCG@10 MAP

Milne and Witten (2008) 0.540 0.520 0.550 0.480
H Huang et al. (2015) 0.810 0.730 0.740 0.680
Yamada et al. (2016) 0.590 0.560 0.590 0.520
Ganea and Hofmann (2017) 0.632 0.609 0.641 0.578
Cao et al. (2017) 0.613 0.613 0.654 0.582
El Vaigh et al. (2019) 0.690 0.640 0.580 -
W Shi et al. (2020) 0.680 0.814 0.820 -

Several approaches, such as Yamada et al. (2016), rely on simpler encoders based
on the word2vec models, yet none of them manage to outperform more complex
deep architectures.

Local-global models Figure 3.9 visualizes the usage of the local and global context
in various models for entity disambiguation. As one can observe from the plot, the
majority of models perform global entity disambiguation, including the top-performing
model by Yamada et al. (2021). Although Shahbazi et al. (2019) provide a local model,
they also show a good performance.

3.4.2 Entity Relatedness
The quality of entity representations can be measured by how they capture semantic
relatedness between entities (H Huang et al., 2015; Ganea and Hofmann, 2017; Yamada
et al., 2016; Cao et al., 2017; W Shi et al., 2020). Moreover, the semantic relatedness
is an important feature in global EL (El Vaigh et al., 2019; Ceccarelli et al., 2013). In
this section, we present results of entity relatedness evaluation, which is di�erent
from evaluation of EL pipelines.

3.4.2.1 Experimental Setup

We summarize results from several works obtained on a benchmark of Ceccarelli et
al. (2013) for entity relatedness evaluation based on the dataset of Ho�art et al. (2011).
Given a target entity and a list of candidate entities, the task is to rank candidates
semantically related to the target higher than the others (Ganea and Hofmann, 2017).
For the most of the considered works, the relatedness is measured by the cosine similarity
of entity representations. For comparison, we also add results for two other approaches:
a well-known Wikipedia hyperlink-based measure devised by Milne and Witten (2008)
known as WLM and a KG-based measure of El Vaigh et al. (2019).

The evaluation metrics are normalized discounted cumulative gain (nDCG) (Järvelin
and Kekäläinen, 2002) and a mean average precision (MAP) (Manning et al., 2008). nDCG
is a commonly used metric in information retrieval. It discounts the correct answers,
depending on their rank in predictions Manning et al. (2008):
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|�|

|�|

�
�=1

���
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�
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log2(1 + �)
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where � is the set of target entities (queries); ��� is a normalization factor, which
corresponds to ideal ranking; � is a number of candidates for each query; �(� ,�) � {0, 1}
is the gold-standard annotation of relatedness between the target entity � and a candidate
�.

MAP is another common metric in information retrieval (Manning et al., 2008):
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���������@���, (3.19)

where � is a set of target entities (queries); �� is the number of related candidate
entities for the target � , and ���������@��� is a precision at rank ���, where ��� is a rank
of each related candidate in the prediction � = 1..�� (Manning et al., 2008).

3.4.2.2 Discussion of Results

Table 3.6 summarizes the evaluation results in the entity relatedness task reported by
the authors of the models. The scores of Milne and Witten (2008) are taken from
H Huang et al. (2015).

The highest scores of nDCG@1 and MAP are reported by H Huang et al. (2015),
and the best scores of nDCG@5 and nDCG@10 are reported by W Shi et al. (2020).
The high scores of H Huang et al. (2015) can be attributed to the usage of di�erent
information sources for constructing entity representations, including entity types and
entity relations (Ganea and Hofmann, 2017). W Shi et al. (2020) also use various types of
data sources for constructing entity representations, including textual and knowledge
graph information, like the types provided by a category hierarchy of a knowledge graph.

Note that cosine similarity based measures perform better in terms of nDCG@10
than the methods based on relations in KG (shown as italic in Table 3.6).

3.5 Conclusion
In this chapter, neural entity linking models have been analyzed, which generally solve
the task with higher accuracy than classical methods. A generic neural entity linking
architecture is provided, which is applicable for most of the neural EL systems, including
the description of its components, e.g. candidate generation, entity ranking, mention
and entity encoding. Various modi�cations of the general architecture are grouped
into four common directions: (1) joint entity mention detection and linking models,
(2) global entity linking models, (3) domain-independent approaches, including zero-
shot and distant supervision methods, and (4) cross-lingual techniques. Taxonomy
�gures and feature tables are provided to explain the categorization and to show which
prominent features are used in each method.

The majority of studies still rely on external knowledge for the candidate generation
step. The mention encoders have made a shift from convolutional and recurrent models
to self-attention architectures and start using pre-trained contextual language models
like BERT. There is a current surge of methods that tackle the problem of adapting a
model trained on one domain to another domain in a zero-shot fashion. These approaches
do not need any annotated data in the target domain, but only descriptions of entities
from this domain to perform such adaptation. It is shown in several works that the
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cross-encoder architecture is superior as compared to models with separate mention
and entity encoders. The global context is widely used, but there are few recent studies
that focus only on local EL.

Among the solutions that perform mention detection and entity disambiguation
jointly, the leadership is owned by the entity-enhanced BERTmodel (E-BERT) of Poerner
et al. (2020) and the autoregressive model of De Cao et al. (2021) based on BART. Among
published local models for disambiguation, the best results are reported by Shahbazi
et al. (2019) and L Wu et al. (2020). The former solution leverages entity-aware ELMo (E-
ELMo) trained to additionally predict entities along with words as in language-modelling
task. The latter solution is based on a BERT bi-/cross-encoder and can be used in the
zero-shot setting. Yamada et al. (2021) report results that are consistently better in
comparison to all other solutions. Their high scores are attributed to the masked entity
prediction mechanism for entity embedding and the usage of the pre-trained model
based on BERT with a multi-step global scoring function.

In this chapter, we have discussed the recent entity linking models with the focus
on systems that are based on the neural architectures. In a similar vein, in the following
chapter, we will discuss recent ultra-�ne entity typing models, yet now with the focus
on the models that deal with the data scarcity challenge.





4
Survey of Entity Typing Methods

In this chapter, we introduce the ultra-�ne entity typing task, and discuss
its challenges, e.g. di�erent mention forms, context dependency, or lack
of data. Further, we explain promising research lines, give references,
and summarize the solutions especially the ones that address data scarcity
issue.
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4.1 Introduction
Resolving the lexical ambiguity of entities enables various applications by clarifying
the referred meaning. For instance, consider a sentence contains entity mention “Ant”,
which might refer to e.g. “Ant (animal)” or “Apache_Ant (software)”, depending on
contextual information, as discussed by Onoe and Durrett (2020). Entity typing aims
to predict appropriate labels with prede�ned type sets. These sets contain various
labels like person, company, food, anima�, etc. Hence, assigning a software type
for the considered entity mention “Ant” can help to clarify that the mention refers to
“Apache_Ant” rather than an anima� (Onoe and Durrett, 2020).

Entity Typing (ET) – the process of assigning semantic type labels for a mention – is
a critical task, since it contributes to understanding of a text by providing a semantical
information in an entity level. The task has been studiedwith several granularities of type
sets, i.e., coarse, �ne-grained, and ultra-�ne grained. One can assign anima�, insect
or software labels for the “Ant” entity mention with the ultra-�ne grained type set.

The task enhances various information extraction and natural language processing
tasks (Ren, He, Qu, Huang, et al., 2016; Obeidat et al., 2019; Dan Gillick et al., 2016). The
semantic type information extracted from the entity typing process has been shown
to be useful in the downstream tasks such as entity linking (Onoe and Durrett, 2020),
relation extraction (Yaghoobzadeh et al., 2017), question answering (Das et al., 2017).

4.1.1 Goal and Scope
Here, we focus on ultra-�ne grained entity typing task. Our goal is to introduce the task
and summarize similar studies to our work described in Chapter 5. Thus, we speci�cally
focus on the papers, which attempt to address a lack of annotation issue in ultra-�ne
grained entity typing, however, we give some references for other prominent types
of solutions and try to summarize a few samples. We also include works that have
evaluation on some �ne-grained entity typing benchmarks (i.e. OntoNotes (Dan Gillick
et al., 2016), and FIGER (Ling and Weld, 2012)) for more comprehensive summarization,
yet with the target of ultra-�ne grained entity typing. We refer the reader to the surveys
that focus on coarse (e.g. (J Li et al., 2022) in the scope of NER) or �ne-grained entity
typing (e.g. (Ruili Wang et al., 2023)) for the information about these tasks.

4.1.2 Article Collection Methodology
Since we restrict our survey on ultra-�ne grained entity typing, we exclude some related
works. For example, knowledge graph entity typing (e.g. (Y Zhao et al., 2020; Pan et al.,
2021)), or the works that also consider mention detection, (e.g. (Aly et al., 2021)).

The papers considered in this chapter are collected from ACL Anthology1, with
the search string “ultra-�ne entity typing”, resulting in 139 papers2. From the website,
we could reach the �rst 100 papers (sort by selected as Relevance). After �ltering the
duplicates and the links for e.g. authors, we have 77 papers. From these collection, we
exclude the papers that have no evaluation on at least one of the common benchmarks
UFET (Choi et al., 2018), FIGER (Ling and Weld, 2012), OntoNotes (Dan Gillick et al.,
2016) that are summarized in Section 4.4.1. 30 papers are remained, however note that

1. https://aclanthology.org/
2. Search was done on 05.03.2023.

https://aclanthology.org/
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Table 4.1: Some examples for entity typing with di�erent granularity levels based on the ultra
�ne entity typing dataset (Choi et al., 2018) and division of categories by Choi et al. (2018). The
mentions in the contexts are marked as red.

Context Coarse Fine Ultra Fine

For this handpicked group of
jewelry savvy Etsy artisans ,

their passion is The Hunger Games
, the �rst of 3 best selling young
adult books by -Suzanne Collins- .

person author name, writer

“ -They- are doing this at the
expense of doctors and nurses ,

which is laying the seeds
of a revolt here . ”

group,
organization government

club, committee, management,
presidency, administration,

arrangement, board

-Potatoes , tomatoes , rice tobacco ,
lettuce , sa�owers , and other plants-
have been genetically engineered to
produce insulin and certain vaccines .

object product collection, plant,
commodity, pile

we also present a short discussion about some application scenarios, in Section 1.1
in Chapter 1. Further, we include 35 more papers from the related work sections
of the collected papers3.

4.2 Task Description
There are three common levels of granularities in types, coarse-grained, �ne-grained
and ultra-�ne (Yuan et al., 2022). Some examples with contexts as classi�ed by Choi
et al. (2018) are shown in Table 4.1 and these type classes are summarized as follows:

• Coarse-grained types: the types in this level are generic with a small number of
set, like person, �ocation, organization, etc.

• Fine-grained types: the types containmore speci�c labels, like musician, doctor,
park, government, etc.

• Ultra-�ne grained types: the types involve much more speci�c labels, like pop_-
musician, skate_park, management, etc.

The goal of �ne-grained entity typing (FET) or ultra-�ne grained entity typing
(UFET) is to assign prede�ned semantic labels (e.g. person, organization, etc.) to each
entity mention in a text (Obeidat et al., 2019; Dan Gillick et al., 2016), as exempli�ed in
Figure 4.1. We can consider the task as determining an (U)FET function that assigns a
set of type labels (�1, ..., ��), �� � � for a given mention �� � � with its context �� � �:

(U)FET � (� ,�) �� � �. (4.1)

3. There are three exceptional works (L Huang et al., 2016; L Huang et al., 2017; L Liu et al., 2021) that
do not conduct evaluations on the considered datasets, however, they provide unsupervised solutions.
Thus, we include them.
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In New York City , the Macy 's
Thanksgiving Day Parade is held
annually every Thanksgiving Day

from the Upper West Side of
Manhattan to Macy 's flagship
store in Herald Square , and
televised nationally by NBC .

Ultra-Fine
 Entity TypingNBC

Input Context

Mention

Label Set

basketball_player

parent

politician

island

institution salad

businesswoman
difficulty

plant comic_book

tournamentinvestigation

...

NBC

television_station

broadcaster

network

station

company
media

Figure 4.1: Ultra-�ne entity typing task. An ultra-�ne entity typing (UFET) model takes input
context, mention, preferably label set and assigns labels to the mention.

Commonly, the task is considered as a multi-label multi-class classi�cation (Obeidat
et al., 2019; B Li et al., 2022), since the number of types are prede�ned. Yet, it might
be treated di�erently, e.g. B Li et al. (2022) re-formulate the task as natural language
inference (NLI) with learning-to-rank objective.

4.2.1 Challenges
Hierarchy In UFET (Choi et al., 2018), the types are free-form noun phrases in an
unrestricted setting. Thus, there is no explicit dependency given in the type set, e.g.
�ocation, country, is�and, park, nationa� park, skate park, etc. In OntoNotes
(Dan Gillick et al., 2016) and FIGER (Ling and Weld, 2012), the types are in an on-
tology with a hierarchy, e.g. /person, /person/engineer, /�ocation/city are
some examples in FIGER and person, person/artist, person/artist/director,
�ocation/city are some types in OntoNotes.

Mentions forms: named entity, pronoun, and nominal In UFET (Choi et al., 2018),
mentions to predict their types can be named entities, nominals, and pronouns. Pronoun
mentions is especially challenging, since such mentions do not contain much cue about
the labels (Choi et al., 2018). OntoNotes (Dan Gillick et al., 2016) include nominal and
named entity mentions (Choi et al., 2018).

Context dependence In UFET (Choi et al., 2018) and OntoNotes (Dan Gillick et al.,
2016), the predicted types are expected to be context dependent or sensitive. For instance,
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the type for “Bill Gates” might be phi�anthropist rather than inventor based on
the context (Choi et al., 2018).

Lack of human-annotated data The number of types is varying depending on the
dataset. In OntoNotes (Dan Gillick et al., 2016), there are 89 types, while FIGER (Ling
and Weld, 2012) contains 112 types. UFET (Choi et al., 2018) consists of more than
10k various types, making the task relatively quite challenging. Considering that high
number of type sets, manual creation of the dataset, i.e. manually matching the types
per mention, is remarkably di�cult for humans (Dai et al., 2021).

4.3 Ultra-Fine Entity Typing
There are several research lines by taking reference of the related work parts of previous
studies Zuo et al. (2022) and Q Liu et al. (2021). For instance;

• the studies to investigate the hierarchies or dependencies or correlations among
the types.

• methods to address �ne grained entity typing in di�erent languages other than
English.

• techniques to deal with lack of annotated data issue.

In the scope of this study, we focus on these directions, and speci�cally, the last one that
can further be discussed; data generationmodels formostly distant supervision, denosing
strategies, zero-shot and unsupervised methods. We give some citations for others. Note
that some works can try to resolve several directions in one study, e.g. Ren, He, Qu,
Huang, et al. (2016) propose a model to reduce the noise and incorporate type correlation.

4.3.1 Scarcity of Annotated Data
4.3.1.1 (Distant Supervision) Data Generation Models

A general trend to cope with the the obstacle of manually created data scarcity is to
get help from automatically generated data (Dai et al., 2021). A typical way to generate
distant supervision is through the KBs by linking the mention to the entity and leverage
the type information of the entity in the KB (Choi et al., 2018). Choi et al. (2018) utilize
the head words of mentions as an additional distant supervision source to entity linking
based one. For instance, the labels from the head word of mention “national radio
station NET” are radio, station, radio_station. X Ren et al. (2017) also relies on
entity linking to use KB information as distant supervision, however, with the goal
to resolve jointly extraction of entity typing and relation. Qian et al. (2021) propose
a method to create a distant supervision data without KB access. They use Hearst
patterns (Hearst, 1992) to derive mention-type pairs from a large unstructured data.
Some mentions in the extracted pairs can refer to more than one type, i.e. “apple” can
be fruit or company, so they cluster the mentions to resolve this ambiguity, and then
assign type name for every cluster. For example, the cluster Apple, Microsoft, Google,
Facebook, ... is assigned to company type. Their last step is to match the given mention
with this created dictionary, which involves look-up the dictionary and apply some
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heuristics. By using this created weak corpus, they apply self-training to increase the
generalization ability. Shujian Zhang et al. (2021) investigate uneven label distribution
scheme on training samples, which would contain unlabeled, single-label and multi-
label examples, and explore that having multiple labels per sample is more e�ective
than labeling many samples. They only modify the training set of UFET and simulate
di�erent label distributions without collecting new annotations.

There are some recent techniques that take advantage from pre-trained language
models (PLMs). Dai et al. (2021) leverage PLMs to extract the type information by
modifying the input context and feed it to masked language model (MLM). They insert
several tokens close to the mention for hypernym extraction, using Hearst patterns
(Hearst, 1992) with “[MASK]” token to obtain labels in a given sentence. For example,
the modi�ed input is e.g. “In late 2015, [MASK] such as Leonardo DiCaprio starred in
The Revenant.”, where “[MASK] such as” is inserted just before the mention “Leonardo
DiCaprio”. The predictions for “[MASK]” will be used as weak labels. They try to select
di�erent hypernym patterns, e.g. “and any other”, “such as”, “including”, “and some
other”, etc. for di�erent mentions. Xu et al. (2022) analyze the faithfulness and reliability
in UFET, de�ne di�erent types of typical model biases, and then, propose technique to
augment data for debiasing such biases. They �nd out six types of biases with PLMs,
e.g. named entity mention bias, where if mentions refer frequently to speci�c entities in
corpora, models tend to choose labels of these entities without considering contextual
information. They propose the counterfactual data augmentation with di�erent strate-
gies and augment instances, e.g. for named entity bias, they substitute other entities
with the same general type and without possessing comprehensive knowledge.

Ding et al. (2022) and B Li et al. (2022) propose models that do not need distant
supervision data. B Li et al. (2022) utilize indirect supervision from pre-trained natural
language inference (NLI) model, rather than requiring distant data. Each sentence is
treated as premise and mention in the sentence is used to create a description for type
candidate that is treated as hypothesis. For instance, the sentence, “In fact, Chrysler
needs to convince investors...”, for mention “Chrysler”, the hypotheses are created using
all labels, like “Chrysler is a company.”, “Chrysler is a corporation.”, “Chrysler is a sea
bird.” etc. The scores for the candidate hypotheses are computed through pre-trained
NLI model. Other than “is a”, they have several other templates. They also experiment
with zero- and few-shot examples discussed in Section 4.3.1.3. Ding et al. (2022) explore
the application of prompt-learning to entity typing and leverage PLMs to get type
predictions by building prompts, for example "In this sentence, mention is [MASK]" is
appended to the sentence after replacing with the real mention. This sample is for hard-
encoding template, there are several more samples, and also soft-encoding templates.
The MLM problem is converted to classi�cation one by mapping labels to the vocabulary
words. They only used manually labeled data. They provide solutions for full supervised
and few/zero-shot scenarios, later discussed in Section 4.3.1.3.

4.3.1.2 Strategies to Deal with Noise

Automatically generated distant data can contain noisy labels, for example by Onoe and
Durrett (2019) “Djokovic lost to Rafael Nadal on Monday, in a rain-delayed U.S. Open
�nal.”, for the mention “Rafael Nadal”, generated labels are p�ayer, tennis p�ayer,
however, types champion, achiever, winner, contestant, person, ath�ete are
also appropriate. Hence, distant data can miss the types or generate incorrect types
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(Onoe and Durrett, 2019). Even manually annotated samples can contain noise, e.g. by
Pan et al. (2022) “After �rst attempting to write the graphical routines in C, he turned
to assembly language.”, where “he” is annotated as person, and annotators failed to
assign also programmer type (Pan et al., 2022).

In the literature, many models have been proposed to deal with noisy data (Pang
et al., 2022; Ren, He, Qu, Voss, et al., 2016; J Wu et al., 2019; J Xin et al., 2018; H Zhang
et al., 2020; B Chen et al., 2019) inter alia. For instance, Onoe and Durrett (2019) propose
two functionalities, 1) �lter the samples that are not useful – a binary classi�er, 2) relabel
noisy labels for the retained samples. They are learned by synthetically adding noise to
manually annotated data and relying on mention and entity encoders. The augmented
denoised data with manually annotated one is used to train typing model. Recently, Pan
et al. (2022) work also on relabeling the noisy labels, however, the process is di�erent.
They �rst identify potentially noisy samples based on the observation that model might
not separate some labels, in the early training phase. Hence, model is ambiguous on
such labels and they select potentially noisy labels by identifying these ambiguous labels.
Then, they exclude potentially noisy labels while training typing model and relabel
candidate noisy labels with trained model with clean data.

4.3.1.3 Zero-shot and Unsupervised Methodologies

Most of the solutions in the category of zero-shot �ne grained entity typing rely on
representations of types and mentions (mostly integrated with contexts). The correct
types are selected through the scores computed based on these representations. Unseen
types are represented with the same technique as the seen ones and so can easily be
incorporated. We will discuss representation techniques of each model and the di�erent
component(s) if the model has.

The type embeddings of Ma et al. (2016) are created through the multiplication
of prototype and hierarchical embeddings. Prototype, here, is the subset of mentions,
selected via PMI based scoring per type and prototype embeddings are built by averaging
word embeddings. Hierarcial embeddings are sparse representations with 1 if the label
is parent, 0 otherwise. For zero-shot setup, the prototypes per unseen types are created
manually. For mention/context representation, they use feature vector. In the work by
Yuan and Downey (2018), mentions and types are represented as an average of the word
embeddings of words in mentions and types, while context embeddings are generated
through a bi-LSTM-based model. They also leverage additional features, e.g. syntactic.
In a similar vein, Obeidat et al. (2019) generate mention and context embeddings through
word embeddings and a bi-LSTM-based model. However, types are represented using
their Wikipedia pages with several ways, e.g. averaging the vectors of words appeared
in the description of the Wikipedia page, averaging multiple representations generated
from the bi-LSTM-based mechanism. In Y Ren et al. (2020), types are represented via
sample mentions, similar to Ma et al. (2016). Mentions and contexts are represented
as the previous approaches, i.e. an average of word embeddings and a bi-LSTM-based
model, respectively, however, additional attention layer added to the context model
to incorporate entity types. In T Zhang et al. (2020), mentions are represented by
word- and character-level information via bi-LSTM, while context embeddings are based
on BERT. Types are represented via BERT using type names by also including the
hierarcial embeddings, like in Ma et al. (2016). Di�erent from previous architectures,
the architecture contains the memory network to transfer knowledge to unseen types.
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JY Huang et al. (2022) leverage RoBERTa (Y Liu et al., 2019) to encode the context and
the types. They insert special tokens before and after the mention to highlight it in the
context. They also generalize the solution to other di�erent tasks, i.e. event and relation
typing, by discriminating the tasks through appending additional task descriptions to
contexts, “Describe the type of <mention tokens>” for the entity typing tasks.

Y Chen et al. (2021) rather focus on integration three sources of auxiliary information
and investigation of their impacts: 1) context consistency, 2) type hierarchy, and 3)
background knowledge. For the �rst one, they replace entity mention in a context with
[MASK] and obtains predictions from BERT. Hierarchical information is modeled using
Transformer’s self-attention, where a type attends only to itself and its parents, with
the loss function of matching with mention, which is represented using weighted sum
of ELMo word embeddings (Peters et al., 2018). They use prototypes (mentions for the
type) or descriptions (from WordNet) in NLI framework for the background knowledge.
B Li et al. (2022) also leverage NLI as explained earlier. They have also experiments
using their model on zero- and few-shot predictions by randomly �ltering out some
training samples. Yuan et al. (2022) propose generative entity typing using PLMs with
the curriculum learning strategy. With PLM based such model, they are capable of
conceptual reasoning and handling few- and zero-shot dilemma.

While above methods utilize training data, some studies requires no annotated
data. B Zhou et al. (2018) propose a model, which relies on Wikipedia entities and
Freebase types. Their idea is to �nd reference type-compatible entities for the mention
with the de�nition of type-compatibility: if two entities share at least one type, then
they are type-compatible. After �nding the type-compatible entities, they apply their
inference algorithm to use the types of the entities. Note that they do not need to
�nd the exact entity as in EL, rather they attempt to ground type-compatible entries,
with which they can produce types even though the entity is not in the Wikipedia. In
zero-shot scenario of Ding et al. (2022), they provide self-supervised strategy, which
inputs mention detected dataset, where the types are not labeled. Their idea is to
make the prediction distribution of the same type of mentions similar. They also rely
on the idea of same mentions in di�erent sentences have similar types to develop
sampling strategy. They perform contrastive learning while training. The studies
(L Huang et al., 2016; L Huang et al., 2017) provide unsupervised �ne-grained entity
typing. Their models rely on mention representations which are created through the
knowledge base information, e.g. DBpedia, contextual and semantic information of
mention. Semantic information is captured with the embeddings, while contextual
information is based on the relation of mention in the context. For knowledge base
information, they �rst build a graph containing entities and their properties and type
labels, then apply graph embeddings algorithm to it, and �nally leverage this information
by linking mention to the entity. The type labels are extracted after applying the
clustering algorithm using these mention representations. L Liu et al. (2021) propose an
NLP system that supports several functionalities, including an unsupervised solution
by applying Hearst patterns and clustering.

4.3.2 Relationships in Type Labels
There are correlations between type labels, consider the scenario by Xiong et al. (2019)
that a mention is assigned crimina� label, and so one can infer that person is also
appropriate label, instead of e.g. po�ice officer. Capturing such relations is more
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challenging when the type hierarchies are unavailable (Jiang et al., 2022), e.g., in UFET
dataset (Choi et al., 2018), no type hierarchy is provided, while in OntoNotes (Dan Gillick
et al., 2016) and FIGER (Ling and Weld, 2012), it is available.

There exist many models to address the challenge of dealing with type correlations
(Murty et al., 2018; López et al., 2019; Q Liu et al., 2021; Xu and Barbosa, 2018; T Chen
et al., 2020; Zuo et al., 2022; Ren, He, Qu, Huang, et al., 2016) to name some. For instance,
Jiang et al. (2022) utilize a pairwise conditional random �eld, while Xiong et al. (2019)
leverage a graph propagation layer to capture the label correlations. Onoe et al. (2021)
provide a model, where embeddings are situated in n-dimensional hyperrectangles,
rather than a usual vector space, to be able to capture the (implicit) hierarchies or
relations between types (type-type) and mentions (type-mention). Mention and its
context are �rst encoded by BERT and then projected down to the dimension of the
box space. The model learns the parameters based on a conditional probability, which
is computed as the intersection between type box and mention-context box.

4.3.3 Di�erent Languages
The majority of models on �ne-grained entity typing cope with English datasets, yet
there are some e�orts for di�erent languages, e.g. Chinese (Lee et al., 2020), and cross-
lingual solution (Han et al., 2022). In Lee et al. (2020), authors provide �ne-grained
entity typing dataset with a similar policy to UFET (Choi et al., 2018) but in Chinese.
In Han et al. (2022), a cross-lingual model is proposed for low-resource languages by
using high-resource languages data.

4.3.4 Others
There are some other models (M Chen et al., 2019; Y Chen et al., 2022; Sheng Zhang
et al., 2018; Shimaoka et al., 2016, 2017) inter alia that also attempt to handle di�erent
kinds of problems in ultra-�ne or �ne-grained entity typing.

4.4 Evaluation

4.4.1 Datasets
• FIGER (Ling and Weld, 2012): They provide a set of 112 types that are curated
from Freebase types. As explained earlier, there is a hierarchy in the type set and
there are two levels in the types. For instance, /organization/educationa�_-
institution, /art/fi�m, /event/sports_event, /�ocation/is�and, /anima�,
/bui�ding/hospita�, etc.

• OntoNotes (Dan Gillick et al., 2016): They also derive types in Freebase by addition-
ally organize them into a hierarchy. In this dataset, there are 89 types with three
levels, e.g. �ocation/structure/hospita�, /�ocation/geography/is�and,
other/event/sports event, other/�iving thing/anima�, person/ath�ete,
other/product/camera, etc.

• UFET (Choi et al., 2018): There is no hierarchy with 10331 free-form phrases as la-
bels. There are various type labels, e.g. astronaut, bass_guitar, choco�ate_-
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bar, diagnosis, extreme_sport, fashion_designer, green_tea, heart_-
rate, information_techno�ogy, jet_engine, know�edge, �iterature,
monument, natura�_science, etc.

Note that there are more datasets, e.g. BBN (Weischedel and Brunstein, 2005), HYENA
(Yosef et al., 2012), however, in the scope of this thesis, we focus on above datasets. See
the work by Ruili Wang et al. (2023) for more information.

4.4.2 Evaluation Metrics
UFET (Choi et al., 2018) report macro-averaged precision, recall, and F1, and the average
mean reciprocal rank. FIGER (Ling and Weld, 2012) utilize F1 computed through “strict”
precision and recall, “loose macro” precision and recall, “loose micro” precision and recall.

4.5 Conclusion
In this chapter, we discuss the �ne- and ultra-�ne entity typing task. We highlight
several directions of research, e.g. models to address the data scarcity issue, or deal with
the correlations between labels. We summarize the techniques, especially, for the data
scarcity issue, with a focus of data generation models and zero-shot or unsupervised
models. Finally, we brie�y discuss evaluation datasets and metrics.

All in all, we introduce the task with the survey of the models that address a lack
of data challenge, in this chapter. In the next chapter, we will present our study
on an unsupervised method for this speci�c challenge of the data scarcity in ultra-
�ne entity typing.





5
Unsupervised Ultra-Fine Entity Typing

The lack of annotated data is one of the challenging issues in an ultra-
�ne entity typing, as discussed in the previous chapter, Chapter 4. Hence,
automatic type generation is receiving increased interest, typically to
be used as distant supervision data. In this study, we investigate an
unsupervised way based on distributionally induced word senses. The
types or labels are obtained by selecting the appropriate sense cluster for
a mention. The content of this chapter’ version was published as (Sevgili
et al., 2024), edited to �t in the thesis, e.g. some contents are moved to
some other chapter, or excluded, added several tables, corrected language
issues, etc.
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5.1 Introduction
Ultra-�ne entity typing (UFET) is the task of assigning semantic types to an entity
mention in context (Choi et al., 2018). There exist numerous diverse types, e.g., consider
the sentence – “Olympic National Park came into the national park system in 1938 and
has been a favorite destination for naturalists and tourists ever since.” – the types for
“Olympic National Park” are geographica�_area, nationa�_park, space, region,
�ocation, �andmark, park, p�ace. Ultra-�ne types can be helpful for natural
language understanding tasks, for example, Sui et al. (2022) leverage ultra-�ne entity
types from entity descriptions in a zero-shot entity linking task. Yet, those large type
sets lead to di�culties in annotating mentions for humans (Dai et al., 2021).

As discussed in the previous chapter, this causes a challenge of the scarcity of
annotated data. We explore the leverage of distributionally induced word senses from a
graph of terms (i.e. distributional thesaurus), since we believe the induced word senses
can help to understand and disambiguate the given mention.

In the literature, the studies by Qian et al. (2021) and L Liu et al. (2021) are quite
similar to our work as they generate labels under the setting without access to a KB
rather based on a large amount of data, and the underlying techniques are quite similar,
yet their evaluations are on a �ne-grained entity typing (FET) task. We rather focus
on UFET task with richer type set described as free-form phrases.

In this work, to produce ultra-�ne types, we leverage the API of the JoBimText
framework (Ruppert et al., 2015; Biemann and Riedl, 2013), which provides sense clusters
with hypernym labels (i.e., IS-As) for a queried term in an unsupervised and knowledge-
free way based on a distributional thesaurus. The appropriate sense for a particular
mention is selected based on the cosine similarity between vectorial representations
of contextual information and each sense cluster information of the mention. The
hypernym labels for the selected sense are our �nal prediction. Our goal in this work is
to explore the potential of this approach in UFET task. We experiment a combination of
the neural approach predictions by Choi et al. (2018) with JoBimText based predictions
to explore their complementarity. We utilize predictions from Choi et al. (2018) here,
since they set the baselines while releasing the UFET dataset. With this combination, we
observe a slight improvement of the F1 score for ultra-�ne types for explicit mentions.

5.2 Related Work

5.2.1 Ultra-Fine Entity Typing

We refer the reader to the Chapter 4 for more discussion on the related work in the
literature. Brie�y, there are several lines of research on UFET (Choi et al., 2018) and
FET (Ling and Weld, 2012; Dan Gillick et al., 2016). FET contains smaller set of labels,
e.g., 112 types in Ling and Weld (2012), which are in an ontology, e.g., �ocation/city.
UFET is more diverse and �ner grained, containing more than 10K labels as free-form
noun phrases. Some studies investigate hierarchies/dependencies or correlations in the
types in di�erent ways (see Section 4.3.2) While most attention is on English typing,
several work on other languages (see Section 4.3.3).

For the challenge of the scarcity of annotated data, many solutions have been
provided (see Section 4.3.1). Among all, our study is more relevant to Qian et al. (2021),
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 Although Rennes lost its own unbeaten record last weekend ,
Marseille midfielder Charles Kabore says Rennes is still a threat in

the title race .
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Figure 5.1: An example prediction process: search for a mention on JoBimText (mimicked from
API) to get sense clusters containing terms and labels (IS-As), vectorize clusters by averaging
SBERT vectors of each term (and label), compute cosine similarities between context (and
mention) vector and clusters, and obtain IS-As of the most similar cluster as a �nal prediction.

in terms of applying a Hearst pattern to large data and applying the clustering without
accessing the knowledge base. In a similar vein, L Liu et al. (2021) propose an NLP system
that supports unsupervised FET by applying a Hearst pattern and clustering. However,
both evaluate on FET task, while our focus is on UFET, which contains more �ne-grained
types. In Dai et al. (2021), the labels are generated automatically from PLMs, and Ding
et al. (2022) provide also a zero-shot solution. In comparison, our study investigates
particularly the usage of the JoBimText API on this task, which is a simpler scenario
than their models. In comparison with B Zhou et al. (2018) (providing zero-shot solution
based on unlabeled data), L Huang et al. (2016) and L Huang et al. (2017) (proposing an
unsupervised solution), we do not use the knowledge base information.

5.2.2 JoBimText Applications

Several works utilize information provided by JoBimText in di�erent tasks (Jana and
Goyal, 2018; Anwar et al., 2020; Pelevina et al., 2016), inter alia. Among them, the most
similar studies might be unsupervised knowledge-free word sense disambiguation by
Panchenko, Marten, et al. (2017) and Panchenko, Ruppert, et al. (2017), in which a word
in a context is disambiguated using the induced senses of JoBimText. Inspired by them,
we conduct a similar approach to the UFET task.
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Table 5.1: Pre-processing examples: n-gram tokens and headword token are extracted from
the mention (selected in dev. set) and singularization is applied. The �rst two examples are
to show the importance of the beginning tokens, the following two examples are for the end
tokens, and last two examples are for the importance of headword. “1-gram �rst”: the �rst token
is taken, while n=1 for the n-gram. “1-gram last”: the last token is taken, while n=1 for the
n-gram. n=1,2,3 are experimented. “headword”: headword for the mention. Note that in n-gram
extraction, if the �rst token is considered with n=1 and the mention starting with a, an, the (or
upper case of them), we take the second token.

Mention 1-gram �rst 1-gram last 2-gram �rst 2-gram last 3-gram �rst 3-gram last headword

education of the medium education medium education of the medium education of the of the medium education
a club playing in the

Fourth National division club division a club National division a club playing Fourth
National division club

the third largest
LDS retail bookstore third bookstore the third retail bookstore the third largest LDS retail

bookstore bookstore

The caustic spill
– Hungary ’s worst
ecological disaster –

caustic disaster The caustic ecological disaster The caustic spill worst ecological
disaster spill

the most lightweight
suits which can �t
into any trend

most trend the most any trend the most
lightweight into any trend suit

The eastern and western
sections of the city eastern city The eastern the city The eastern and of the city section

5.3 Method

5.3.1 JoBimText Framework
In our work, we generate labels relying on the JoBimText framework (Biemann and
Riedl, 2013) as an end-user of the API1 (Ruppert et al., 2015) provided by this framework.
The underlying technology of this framework is explained in Section 2.4.2 in Chapter 2.

5.3.2 Method
In our setup, we query the JoBimText API for a mention and obtain sense clusters of
this mention. The most appropriate sense cluster is selected based on the vectorial
similarity between the context that the mention appeared in, and a sense cluster. To
compute this similarity, each sense cluster2 is vectorized by using the sense terms
(and labels) with Sentence BERT (SBERT) (Reimers and Gurevych, 2019) (see Section
2.3.2, for more information about SBERT). Context and mention, separately, are also
vectorized using SBERT. The hypernym labels of the most similar sense are the �nal
type predictions, as exempli�ed in the Figure 5.1.

We query amentionwith NN (noun) orMWE (multi-word expression) tag, depending
on whether a mention contains a single token or multiple tokens. Other tags, e.g., ADJ,
are not considered since thementions in the UFET dataset (Choi et al., 2018) are pronouns,
nominal expressions, and named entity mentions. For named entity mentions, some
other tags, like e.g. Organization, Location, would be helpful, however, the goal of entity
typing itself to produce such labels, and so, we use only NN/MWE tags. JoBimText
might not provide information for all mentions, like long phrases, e.g., “the building , a
violation of the Clean Air Act”. Thus, we try to shorten the mentions in several ways:
extraction of a head word (root word) of the mention or extraction of n-grams located

1. http://ltmaggie.informatik.uni-hamburg.de/jobimviz/#
2. Note that some clusters may not have hypernyms/terms, so we skip them.

http://ltmaggie.informatik.uni-hamburg.de/jobimviz/#
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Table 5.2: Post-processing examples: The labels of random cluster for the searched headword
are shown, in “labels” column. Each label is singularized, lowerized, and added underscore if
it contains more than one token, as displayed in the next column. Finally, the post-processed
labels not in the type vocabulary are �ltered.

Mention headword
random
cluster
id

labels
labels-postprocess:

singularized lowerized and
added underscore

labels-postprocess:
�ltered based on

type vocab.

the Senate Senate 4

member, leader, Republicans,
o�cer, o�cial, Democrats,
position, award, people,

legislator, senator, leadership,
lawmaker, �gure, group,
delegation, party, other,
politician, Congress

member, leader, republican,
o�cer, o�cial, democrat,
position, award, person,

legislator, senator, leadership,
lawmaker, �gure, group,
delegation, party, other,
politician, congress

member, leader, republican,
o�cer, o�cial, democrat,
position, award, person,

legislator, senator, leadership,
lawmaker, �gure, group,
delegation, party, other,
politician, congress

Ferrari Ferrari 0

company, brand, car,
manufacturer, automaker, vehicle,

name, makes, model, client,
competitor, carmaker, marques,

car company, car maker,
Companies, car manufacturer

company, brand, car,
manufacturer, automaker, vehicle,

name, makes, model,
client, competitor, carmaker,

marque, car_company,
car_maker, car_manufacturer

company, brand, car,
manufacturer, automaker,
vehicle, name, model,
client, competitor

close to the beginning/end of the mention due to an observation of some mentions (e.g.,
“shipments for the month”, “the social and economic development”). Note that Choi
et al. (2018) also utilize a head word of the mention, however, they directly take it as a
weak label, while our goal is to shorten the mention to search later on the JoBimText.
Additionally, singularization3 is applied for the mention as an additional con�guration
based on the observation that the singular version of some mentions is in the JoBimText,
while the plural is not, e.g., “shareholders”. Some examples of pre-processing are shown
in Table 5.1. JoBimText might still not provide any information for the short mentions,
for which we assign a person label as it is the most frequent label in the development
set. The coverage for our reported results, in Table 5.5, is 87.74.

In a similar vein, we apply some post-processing steps due to some mismatches
between predictions (i.e., IS-As) and the type vocabulary of Choi et al. (2018) (e.g.,
predictions may involve peop�e, while the vocabulary contains person, not peop�e).
We �rst follow Dai et al. (2021) for post-processing: the labels are singularized and
�ltered if they are not in the type vocabulary. In addition to them, we add underscores
for the multi-token labels, e.g., tennis_p�ayer, and lower-case them. We remove a
label thing among our predicted labels since we consider it as a noisy label due to its
high frequency. Some examples of post-processing steps are shown in Table 5.2. An
example overview containing pre-/post-process steps is shown in Figure 5.2.

5.4 Experiments

5.4.1 Dataset

The experiments are performed on an English UFET dataset provided by Choi et al. (2018).
The type vocabulary contains 10331 labels. The dataset consists of a training set,
development set, and test set, each with 1998 samples.

3. Only singularization is applied here, not lemmatization.
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input sentence mention pre-process 

JoBimText information

IS-As  (labels) post-processvectorizationprediction based on
cosine similarities

headword
 houseplant

singularization
houseplant

query: houseplant#NN
sense clusters from API

singularization

filter

 underscore + lower-case

Sense: 0

(house plant, indoor
plant, ..., plant,

vegetation, object, ...)

Sense: 1

(Persian Shield
grows best ...) Sentence

prediction

sense: 1
 

sense: 0

senses: [house plant,
indoor plant, potted

plant,...]

IS-As: [plant, thing,
vegetation, object,
material, organism,

item, specie, variety,
tree, ...]

plant, thing, vegetation, object,
material, organism,

item, specie, variety, tree, ...
Sense: 0

labels: plant, vegetation, 
object, material, organism, 

item, variety, tree, ...

Persian Shield grows best
outdoors in USDA zones 9

and 10 , although it can
survive in other zones as a

houseplant given sufficient
temperature , soil moisture

and humidity .

(a houseplant
given sufficient ...) Mention

plant, thing, vegetation, object,
material, organism,

item, specie, variety, tree, ...

plant, vegetation, object,
material, organism, item,

variety, tree, ...

JoBimText information

Figure 5.2: An example overview of the process: head word is used to shorten mention, and
post-process is shown for labels of sense: 0, and IS-A labels are included for vector representation.
The prediction is based on the cosine similarities of sentence and sense vectors, and mention
and sense vectors.

5.4.2 Baselines
• �rst cluster or random cluster There is an order of sense clusters in JoBimText,
based on the score of related terms. We either always choose the �rst cluster with
terms and labels, or choose any sense randomly. The same pre- and post-process
steps are applied as the con�guration, which will be explained in 5.4.3.

• Choi et al. (2018) generate representations through the pre-trained word embed-
dings, bi-directional LSTM, CNN, and train the model with a multitask objective.

• Dai et al. (2021) generate labels through the BERT masked language model and
leverage the generated labels in the training entity typing model.

• B Li et al. (2022) treat each sentence as a premise and generate a hypothesis
through the candidate type to formulate the task as NLI. Here, the learning
objective is learning-to-rank.

5.4.3 Implementation Details
JoBimText provides many DTs, including di�erent languages, from various corpora. In
this study, we use the DT constructed from the DepCC corpus (Panchenko et al., 2018). It
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Table 5.3: Parameters or features, their possible values, and the selection based on our simple
manual search on the development set.

Parameter/Feature Possible values Selection

1 mentions shorten options
- head word

- n-gram beginning tokens (for n=1 - 2 - 3)
- n-gram end tokens (for n=1 - 2 - 3)

head word

2 apply singularization to mention true - false true
3 cluster types 200,200 - 200,50 - 50,50 50,50
4 number of terms for representation 10 - 20 - 30 10
5 number of labels for representation false - 10 - 20 - 30 10
6 weighting average false - rank - cos. sim. false
7 include mention similarity true - false true
8 include mention true - false false
9 number of predictions 5 - 10 - 15 - 20 10

is built from the web-scale data from the Common Crawl, which provides access to large
amounts of data. The DepCC model uses a 2016 snapshot of the Common Crawl4. As a
Sentence BERT model, we utilize “all-mpnet-base-v2”, since it is the best-performing
one (on average performance) among current models.5

We consider several parameters or features and select amongst them based on a
simple manual search, in our implementation, as shown in Table 5.3. In Table 5.3, the
�rst row represents the methodology, where we shorten the mention before searching in
the JoBimText API, where n-grams are extracted using NLTK (Bird et al., 2009)6 and head
words are extracted with the stanza library/toolkit7 (Qi et al., 2020). Some mentions start
with “a, an, the” (or upper case of them), for which we take the tokens after the �rst one, if
we experiment with the beginning of mention. Punctuation symbols (like, e.g. “.”, “,”, “””,
“–”, as well as the tokens “-LRB-” and “-RRB-” that refer to round brackets) are removed.

For some mentions (three mentions in the development set and eight mentions in
the test set), there can be more than one head word, for which we use the �rst head
word by default. The second item in the table is applying singularization to mentions
before the search in API, for which we use in�ect library8, however, it might result
in some mistakes for some cases as discussed in Section 5.5. To avoid the case that
the term ends with “s” (e.g. “access”), we double-check its morphological property
using the stanza toolkit whether it is singular or plural. Here, we cross-check only
the last token of the mention and we dismiss the cases of the singularized word that
is located in di�erent place. For example, “princess of Brunswick-Wolfenbuttel” is
singularized as “princes of brunswick-wolfenbuttell”. The third row in Table 5.3 is
for cluster types available in the API to determine the number of some entries9 for
the Chinese Whispers algorithm. Cluster representations are created using the sense
terms, and the fourth item in the table is to determine how many terms to include.

4. https://commoncrawl.org
5. https://www.sbert.net/docs/pretrained_models.html
6. We also experiment with an implementation by scikit-learn (Pedregosa et al., 2011) and report the

results in the Table A.1 in Appendix A. The di�erences are minor, like the automatic punctuation removal
(e.g. re-sign vs. re sign).

7. https://github.com/stanfordnlp/stanza
8. https://pypi.org/project/inflect
9. http://ltmaggie.informatik.uni-hamburg.de/jobimtext/documentation/sense-clustering

https://commoncrawl.org
https://www.sbert.net/docs/pretrained_models.html
https://github.com/stanfordnlp/stanza
https://pypi.org/project/inflect
http://ltmaggie.informatik.uni-hamburg.de/jobimtext/documentation/sense-clustering
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Similarly, the cluster labels are optionally included while creating representations, as
shown in the 5th row with the number options.

While averaging, weighting is possible with weights either from the similarity
between a mention and a considered term/label or from the ranking from JoBimText
using 1/rank (meaning if it is ranked �rst, weight becomes 1, second: 0.5, third: 0.33,
fourth: 0.25..), as in the sixth entry in the table. While computing similarities for the �nal
decision, similarities are between a context and a sense, or also including the similarities
between the mention and a sense. Item eight is to determine that the context contains
mention or not. The last entry is for the number of predicted labels.

Parameter Search: We try to �nd the best parameters and features in the development
set with a simple manual search, discussed in Table 5.4. Among the experiments,
the con�guration with the best F1 score, which we can reach so far, consists of the
parameters and features, as shown in the last column of Table 5.3.

In Table 5.4, we show several results based on some simple di�erent parameter
con�gurations. As a mention shorthened method, headword reaches highest F1 scores
compared to its other counterparts, while �rst token (�rst-n1) is good at coverage,
the performance is not that promising. The P (precision) scores for �rst two (�rst-n2)
and three (�rst-n3) are quite high, which could be due to coverage. Meanly, since
for many samples, the system has no response and use the default prediction person,
the number of labels is one in such cases and this would increase precision scores.
Singularizing the headword before search on JoBimText shows improvements scores
on �ne-, and ultra-�ne types, as well as on coverage. Including isas (hypernym) words
while computing the sense representations increase the scores, while adding weights
during averaging the sense terms/isas results in little decrease. The reason might be that
an impact of a mention on individual sense term/isas is misleading, since a contextual
information is important for disambiguation. Applying a lowerization to the search
mention (headword) makes the coverage to the highest, however, the scores decrease,
which shows that the upper case also carries some hints. Including mention similarity
to the context similarity while disambiguating the sense cluster has a good impact on
the �nal predictions. In a similar vein, if the mention is inserted in between left and
right context words while encoding the context, the method performs better than just
encoding left and right context words as the context representation. However, if we
apply both at the same time, although there is a slight rise on the �ne types, coarse
and total scores decrease. Cluster types of Chinese Whisper algorithm available in
JoBimText would be “200,200”, “200,50”, and “50,50”, according to the results “50,50”
reaches better scores according to our set-up in terms of ultra-�ne scores F1. And
�nally, we attempt to �nd the best parameters of number of isas, number of terms,
and number of predictions, by tuning one of them while keeping others as default
over the search space – number of isas [10, 20, 30], number of terms [10, 20, 30],
number of predictions [5, 10, 15, 20, 25]. Note that due to implementation if number
of predictions higher than 10, number of isas should be also the same as it. Due to
the high number of parameters/features, we could not try every combination and keep
some parameters static/default. That’s why further improvement over here is possible
to search. According to our search space on this set-up, we reach up to 9.7 F1 score on
ultra-�ne with parameters headword-prep-includeisas-includemensim-5050.
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Total Coarse Fine Ultra-Fine Coverage
Model P R F1 P R F1 P R F1 P R F1

w/o any feature

last-n1 18.0 17.8 17.9 44.7 49.3 46.9 12.7 15.4 13.9 5.5 7.9 6.5 77.93
last-n2 20.3 16.0 17.9 41.0 46.9 43.7 14.5 12.7 13.5 5.9 6.1 6.0 59.06
last-n3 21.6 14.5 17.3 39.5 45.4 42.2 13.2 9.9 11.3 5.4 4.7 5.0 50.45

�rst-n1 15.5 15.9 15.7 42.1 46.2 44.0 9.8 13.0 11.2 4.1 6.4 5.0 82.13
�rst-n2 20.7 15.0 17.4 40.7 45.9 43.1 13.2 11.0 12.0 5.2 5.2 5.2 58.66
�rst-n3 22.0 14.1 17.2 39.0 44.9 41.7 13.1 9.0 10.7 5.4 4.6 5.0 48.05

headword 18.3 18.5 18.4 45.9 50.5 48.1 12.6 15.6 14.0 5.9 8.4 6.9 78.48

with mentioned features

headword-prep 16.6 19.6 18.0 45.6 49.4 47.4 12.5 17.2 14.5 6.2 10.3 7.7 88.24
headword-prep-inclisas 17.1 19.9 18.4 46.5 48.8 47.6 13.9 18.5 15.9 6.7 10.9 8.3 88.24

headword-prep-inclisas-wcosine 16.6 19.7 18.0 45.6 49.1 47.3 13.7 18.2 15.6 6.4 10.4 7.9 88.24
headword-prep-inclisas-wrank 16.7 19.7 18.1 46.2 48.6 47.4 13.5 18.5 15.6 6.3 10.5 7.9 88.24
headword-prep-inclisas-low 12.8 19.8 15.6 46.2 50.3 48.2 11.1 17.2 13.5 5.7 10.0 7.2 95.90

headword-prep-inclisas-inclmensim 19.0 21.9 20.4 50.2 54.5 52.3 14.5 20.4 16.9 7.8 12.1 9.5 88.24
headword-prep-inclisas-inclmen 17.9 19.9 18.8 46.6 48.4 47.5 14.4 18.0 16.0 7.5 11.3 9.0 88.24

headword-prep-inclisas-inclmensim
-inclmen 19.1 21.6 20.3 50.0 53.9 51.8 14.8 20.0 17.0 7.9 11.9 9.5 88.24

with mentioned features (on headword-prep-inclisas-inclmensim-)

-with-20050 19.8 19.0 19.4 43.5 43.3 43.4 14.9 18.7 16.6 8.6 11.0 9.6 88.09
-with-5050 19.7 18.8 19.2 43.1 42.3 42.7 15.0 19.2 16.9 8.6 11.0 9.7 88.14

-#isas 20-#terms 10-#preds 10 19.1 21.3 20.1 49.9 53.6 51.7 14.0 19.4 16.2 7.8 11.7 9.4 88.24
-#isas 30-#terms 10-#preds 10 19.1 21.3 20.1 49.9 53.6 51.7 14.0 19.4 16.2 7.8 11.7 9.4 88.24
-#isas 10-#terms 20-#preds 10 18.3 21.8 19.9 48.4 55.3 51.6 13.8 19.8 16.3 7.1 11.8 8.9 88.24
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-#isas 10-#terms 30-#preds 10 18.4 21.9 20.0 48.6 55.6 51.8 14.2 19.7 16.5 7.2 11.9 9.0 88.24
-#isas 10-#terms 10-#preds 5 22.6 17.2 19.6 55.4 47.3 51.0 21.6 16.5 18.7 10.1 8.3 9.1 88.24
-#isas 15-#terms 10-#preds 15 17.6 23.6 20.1 46.2 56.0 50.6 11.2 21.7 14.8 6.8 13.6 9.1 88.24
-#isas 20-#terms 10-#preds 20 17.4 23.8 20.1 45.3 55.7 50.0 11.1 22.3 14.8 6.7 14.2 9.1 88.24
-#isas 25-#terms 10-#preds 25 17.4 23.8 20.1 45.3 55.7 50.0 11.1 22.3 14.8 6.7 14.2 9.1 88.24

Baselines (on headword-prep-inclisas-with5050)

-�rst-cluster 16.8 18.1 17.5 33.7 43.1 37.9 11.2 16.5 13.3 6.7 10.2 8.1 88.14
-random-cluster (avg. of 5 runs) 16.0 16.2 16.1 44.0 43.8 43.9 10.8 13.2 11.9 5.5 7.9 6.5 88.14

Table 5.4: Simple manual parameter search for unsupervised ultra-�ne entity typing performance: Results are on UFET development set. “last-n*”: the last
*-gram of the mention, or “�rst-n*”: the �rst *-gram of the mention, or “headword”: headword of the mention is searched on JoBimText. “-prep”: the mention
is singularized before the search. “-inclisas”: while computing sense representation, hypernym words are included. “-wrank”: while averaging the vectors of
sense terms and isas for sense cluster vector, the weights are the rank based on their appearance in the cluster, or “-wcosine”: the weights are the cosine
similarity between mention and each term/isas (otherwise average w/o weights). “-low”: the mention is lowerized before the search. “-inclmensim”: the
mention similarity and context similarity to sense clusters are averaged (otherwise only context similarity). “-inclmen”: mention is included to the context
(otherwise left and right words only). “-20050” and “-5050”: Chinese Whisper algorithm parameters, default is “-200200” (if not shown). “-#isas n-#terms
m-#preds p”: number of isas and number of terms that are included to compute sense representation, and number of predictions is number of isas used for the
�nal prediction, default is “-#isas 10-#terms 10-#preds 10” (if not shown). Baselines are also with the best (so far) features: headword-prep-inclisas-inclmensim.
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Table 5.5: Unsupervised ultra-�ne entity typing performance on UFET test set: without
pronouns: the results are for the mentions that are not pronouns (1210 samples, in the test set),
5 preds.: the results contain the �rst �ve predictions from Choi et al. (2018) and our �rst �ve
predictions, Ours-PRP: pronoun mentions are searched with PRP tag.

Total Coarse Fine Ultra-Fine
Model P R F1 P R F1 P R F1 P R F1

�rst cluster 17.4 18.1 17.7 34.1 42.9 38.0 13.0 18.0 15.1 6.5 9.6 7.7
random cluster (avg. of 5 runs) 16.8 16.2 16.5 43.4 43.3 43.4 12.5 14.5 13.4 5.5 7.5 6.3
B Li et al. (2022) 53.3 56.4 50.6 - - - - - - - - -
Dai et al. (2021) 53.6 45.3 49.1 - - - - - - - - -
Choi et al. (2018) 47.1 24.2 32.0 60.3 63.4 61.8 41.2 38.7 39.9 42.2 9.4 15.4
Ours 20.1 19.3 19.7 42.3 41.9 42.1 16.1 20.0 17.8 8.9 11.0 9.8
Ours-PRP 25.6 22.0 23.7 58.7 53.3 55.9 23.2 20.0 21.5 9.5 12.0 10.6
Choi et al. (2018) + Ours 23.2 33.0 27.3 49.0 74.4 59.0 24.4 46.2 31.9 13.9 17.7 15.5
Choi et al. (2018) + Ours (5 preds.) 27.3 30.3 28.7 51.9 72.5 60.5 30.6 43.8 36.0 16.7 14.4 15.5
Choi et al. (2018) + Ours-PRP 25.2 33.4 28.7 54.4 74.5 62.9 29.9 46.2 36.3 14.5 18.4 16.2
Choi et al. (2018) + Ours-PRP (5 preds.) 29.4 30.4 29.9 56.7 72.8 63.8 34.3 44.0 38.5 17.4 14.7 15.9

without pronouns

Choi et al. (2018) 46.7 19.6 27.7 50.3 50.8 50.5 44.1 36.0 39.6 50.2 7.8 13.4
Ours 18.8 25.4 21.6 46.0 47.4 46.7 23.1 34.7 27.8 12.2 17.7 14.5
Choi et al. (2018) + Ours 21.1 33.4 25.9 43.0 68.6 52.8 25.2 48.7 33.2 13.8 21.1 16.7
Choi et al. (2018) + Ours (5 preds.) 26.4 29.6 27.9 46.4 65.6 54.3 31.8 44.9 37.2 17.7 16.8 17.3

We have two baselines for a comparison, which are computed over headword-prep-
5050 either selecting always the �rst cluster or random cluster and for random cluster,
we run �ve times and report average scores. None of the baseline is better than the
method, however the �rst-cluster baseline performs pretty good, which suggest that
the �rst sense is prevalent in the dataset.

5.4.4 Evaluation

In Table 5.5, we report P (precision), R (recall), and F1 by following recentworks (Dai et al.,
2021; B Li et al., 2022; Onoe et al., 2021). The scores are computed with the evaluation
script provided by Choi et al. (2018)10. We report the results of our method on the test set
by Choi et al. (2018) using the features/parameters as explained in the previous section.

We also report the results of the �rst/random cluster baseline (with the same possible
parameters applied without the ones to choose the best cluster). The improvement over
�rst and random cluster baselines suggests that our method is able to disambiguate the
induced sense at some level. Additionally, the �rst cluster baseline scores are pretty
good, so we can say that the �rst sense among the induced senses is prominent in the
dataset. We perform an alternative experiment by searching pronoun mentions with
PRP tag rather than NN/MWE and we can see some improvement there. Note that
the coverage is changed to 80.73% in this experiment.

Most of the recent works are supervised (e.g., B Li et al. (2022) and Dai et al. (2021),
in Table 5.5), and thus we cannot directly compare them with our results. For this
reason, we combine our predictions with the predictions from the Choi et al. (2018)
model and check if additional predictions from our approach improve the scores. We
directly concatenate the predictions, and then we keep unique labels (technically we

10. https://github.com/uwnlp/open_type/blob/master/scorer.py

https://github.com/uwnlp/open_type/blob/master/scorer.py
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Figure 5.3: Results on ultra-�ne granularity are shown.

make the concatenation set). They release their best model and the prediction �le from
this model11, and for this experiment, we use only this prediction �le.

Our solution cannot produce good hypernyms for pronouns. Therefore, we also
compare the predictions for explicit mentions only, excluding pronouns. We consider
pronouns: “i, me, myself, we, us, ourselves, he, him, himself, she, her, herself, it, itself,
they, them, themselves, you, yourself” (and upper case of them), with references12.
Additionally, we collect our �rst �ve predictions, for each mention, and the �rst �ve
predictions from the model by Choi et al. (2018).

Based on the combination results shown in Table 5.5, the ultra-�ne F1 scores are
improved when the predictions of explicit mentions are combined in both cases all
predictions and �ve predictions, which suggests our labels are complementary to the
predictions by Choi et al. (2018), in this set-up, as also shown in Figure 5.3. Overall, we
experiment with all granularities but only ultra-�ne worked well for the tested dataset,
which is a potential limitation of the approach.

We also take the �rst 1, 3, 5, 7 prediction(s) as the �nal prediction(s) and see the
decrease of precision and the increase of recall, when the number of predictions are
increased from 1 to 7, as shown in Figure 5.4.

5.5 Error Analysis and Limitations

5.5.1 Error Analysis
We conduct an error analysis on 100 random samples in the test set shown in Table 5.6,
from our predictions explained in Section 5.4.4. Based on this analysis, we classify
errors into �ve categories:

1. Context-dependent or pronoun mentions, where the induced senses of JoBimText
are not that useful for pronoun mentions, and mentions, where the labels are

11. http://nlp.cs.washington.edu/entity_type/model/best_model.tar.gz
12. https://github.com/HKUST-KnowComp/MLMET/blob/main/prep.py#L9, https://en.wikipedia.org

/wiki/English_pronouns#Full_list

http://nlp.cs.washington.edu/entity_type/model/best_model.tar.gz
https://github.com/HKUST-KnowComp/MLMET/blob/main/prep.py#L9
https://en.wikipedia.org/wiki/English_pronouns#Full_list
https://en.wikipedia.org/wiki/English_pronouns#Full_list
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Figure 5.4: Our results with di�erent number of predictions on test set are shown. Ours-
{1,3,5,7}: the results contain the �rst {1,3,5,7} prediction(s).

Table 5.6: A sample per category: Mentions are marked as red, the predictions, and gold labels
are exampli�ed for each category. 1: Context-dependent or pronoun mentions, 2: JoBimText
does not contain the referred sense information, 3: The labels are not the matching perfectly,
4: Some preprocessing issues, 5: The JoBimText labels are not that relevant, 6: Wrong sense
selection.

Cat. Context Search
Mention Predictions True Labels

1
“They need to allow the international humanitarian
organizations full and unobstructed access because

they are obstructing access right now , ” -Sollom- said .
Sollom no information

(assigned person) person

2
Following a full-scale tour in support of its

previous album , -Binaural- -LRB- 2000 -RRB- ,
Pearl Jam took a year-long break .

Binaural
company, format, feature,
technology, brand, variety,
mode, track, stu�, �lm

object, album

3

“ People are getting deported for -even minor
o�enses- like not having an ID or a driver ’s

license , ” said Cesar Espinosa of America for All ,
a group that helps immigrants in Houston .

o�ense

o�ense, crime, activity,
charge, incident, matter,

case, law, act,
violation

violation, di�culty,
wrongdoing, error,

consequence, problem,
trouble, event, crime

4

The devastating 21 September earthquake of 1999 left
Taiwan ’s landscape covered in scars , but researchers

discovered that -the places least damaged
by the quake- were areas of natural forest .

damaged no information
(assigned person)

city, area, location,
town, region, space

5
Jack Byrne , chairman of Fireman ’s Fund , said
this disaster will test the catastrophe reinsurance

market , causing -these rates- to soar .
rate

disease, illness, condition,
information, cancer, side_e�ect,

event, number, e�ect, rate

share, value, capital,
price, stock

6
It was formerly located at Six Flags

-New Orleans before it was relocated to Six
Flags Fiesta Texas- and rethemed to Goliath .

Orleans venue, stadium,
attraction, place

town, city, placement,
space, state, location,

place, park

expected to be generated context-dependently, e.g., for a given name as shown in
Table 5.6.

2. JoBimText does not contain the referred sense information, although it can
provide many di�erent and �ne-grained induced senses. For the sample mention
“Binaural”, most senses are related to Binaural beats or headsets. Note that there
is one sense (sense 14), which contains person names from the group Pearl Jam as
terms, however there is no IS-As, and thus we do not take into account.

3. The labels are not matching perfectly.
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4. Some pre-processing issues, which are discussed in detail, in limitations paragraph
below. For the sample data in Table 5.6, if “place” is searched, more relevant
information can be collected.

5. The labels of JoBimText are not that relevant, though the correct sense (or one of
the correct senses) is selected.

6. Wrong sense selection, for example, for “Orleans”, induced sense 0 is the right sense
in JoBimText, however, the method selects another cluster. Note that some samples
included in one group of a category can also be included in another category,
e.g., some pronouns (category-1) do not have the referred sense information from
JoBimText (category-2). Note also that some labels can be mixed for the sense.

5.5.2 Limitations

One of the goals of ultra-�ne entity typing is to generate context-dependent labels for
a mention, e.g., the label for “Leonardo DiCaprio” could be passenger depending on
its context (Dai et al., 2021). JoBimText may not produce context-dependent labels, as
discussed. In UFET, mention types can be nominals, named entities, and pronouns, and
for pronouns, JoBimText is unable to produce good labels and clusters. There are some
mistakes or limitations speci�cally due to the pre-processing steps. Since head word
extraction returns only one token, named entities cannot be taken properly, e.g., for the
mention “Los Angeles”, the head word is “Los”. Sometimes, the head word loses the
main information, e.g. for the mention “Perhaps the biggest of those factors”, the head
word is “biggest”, although “factors” might be a better token for this mention. There
are also some limitations due to the singularization step. Sometimes it can singularize
the name entities, for example for the mention “the Cleveland Browns” with “Browns”
head word, after singularization the word becomes “Brown”. If the plural word is not in
the last token, the singularization might fail for compounds. As explained earlier, we
double-check whether the token is plural using features of stanza, however, sometimes
this check causes a mistake. For instance, “works” is labeled as a verb by stanza, and
so it is not singularized. The induced senses might be too �ne-grained for some terms,
e.g., “plan” has 14 senses (with cluster 200,200).

In some cases, the labels might be mixed and produce noise information. Therefore,
the predictions are far from being usable directly in real-world and the misuse of the
predictions might result in wrong information, as also discussed in Ding et al. (2022).

5.6 Conclusion

In this study, we generate ultra-�ne entity type labels using the JoBimText framework
in an unsupervised way. We observe a slight improvement when we combine our
predictions with the predictions from Choi et al. (2018) for the mentions that are
not pronouns, and this suggests that the labels produced through JoBimText contain
helpful information. The improvement is due to the drop of the precision in favor
of recall. That means, JoBimText has good lexical coverage with numerous labels,
but they are also noisy.
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5.7 Future Work
There are several promising further directions, such as, we consider an unsupervised
solution in this work, yet the produced labels can be used as a weak label of some
supervised models as in some previous models. Our produced unsupervised labels
might help when supervised labels are not su�cient. We try to �nd good features and
parameters based on a manual search, however, further improvement over the search
space by better tuning parameters seems possible.

In this chapter, to address the data scarcity issue in ultra-�ne entity typing, we
generate type labels automatically, depending on graph-based information through
JoBimText. We are proceeding in the next chapter with a study on entity disambiguation
by leveraging the graph information, again. In this time, graph information comes
from knowledge graph rather than JoBimText.





6
Supervised Entity Disambiguation with

Graph Embeddings

Methods have mostly focused on unstructured data to learn entity
representations, however, there is structured information in the KG itself
that should be useful for the disambiguation, as discussed in Chapter 3.
We use graph embeddings for integrating structured information from
the KG with unstructured information from text-based representations.
Our experiments con�rm that graph embeddings are helpful for simple
feedforward model and recent neural model of entity disambiguation. The
content of this chapter’ version was published as (Sevgili et al., 2019),
edited to �t in the thesis, e.g. some contents are moved to some other
chapter, or excluded, added new ones, corrected language issues, etc.
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6.1 Introduction

The inherent and omnipresent ambiguity of language at the lexical level results in
ambiguity of words, named entities, and other lexical units. Word sense disambiguation
(WSD) (Navigli, 2009) deals with individual ambiguous words such as nouns, verbs, and
adjectives. As discussed in the Chapter 3, the task of entity linking (EL) is devoted to
the disambiguation of mentions of entities such as persons, locations, and organizations.
Brie�y, EL aims to resolve such ambiguity by creating an automatic reference between
an ambiguous entity mention/span in a context and an entity in a knowledge graph, with
two subtasks mention detection (or named entity recognition) to �nd entity references in
the text and entity disambiguation to assign the entities (we refer the reader to Chapter
3 for more information). This work focuses on the entity disambiguation task.

The goal of an entity disambiguation task is resolving the ambiguity of entity
mentions, such as Mars, Galaxy, and Bounty are all delicious. It is hard for an algorithm
to identify whether the entity is an astronomical structure1 or a brand of milk chocolate2.

In Chapter 3, the general architecture of typical neural EL methods is provided, in
which one of the key components is an entity representation. There are three common
ways for encoding entities, i.e. using unstructured texts and algorithms like word2vec,
using relations between entities in KGs, or training full-�edged neural encoder through
entity-speci�c information (see Section 3.3.1.3). In this study, we aim to create entity
embeddings through relational information based on structured data (i.e. links) using
graph embeddings, integrate them into the ED models, and compare their impact with
respect to text based entity embeddings.

Graph embeddings aim at representing nodes in a graph, or subgraph structure,
by �nding a mapping between a graph structure and the points in a low-dimensional
vector space (Hamilton et al., 2017) (see Section 2.3.3 for further information).

We believe that including graph structure features of the knowledge base via graph
embeddings can have a potential to make a positive impact on entity disambiguation.
For this, we implement two experiments, in this chapter. In our �rst experiment, we
have a simple neural network with the inputs of context vector, entity mention/span
vector, explanation vector of a candidate entity, and graph-based vector of candidate
entity. Graph-based entity representations are computed by graph embeddings, which
are created using the knowledge graph, DBpedia (Lehmann et al., 2015) containing links
between entities. We perform ablation tests on the types of inputs, which allow us to
judge the impact on the single inputs as well as their interplay, especially on text-based
entity representations from explanation vs. graph-based ones. In the second experiment,
we utilize a neural entity linking/disambiguation model by Kolitsas et al. (2018), in
which entity representations (Ganea and Hofmann, 2017) depend on entity description
pages and the text surrounding entity mentions. We replace their entity representations
with our graph embeddings, as well as combine them together. Both experiments
con�rm that structured information in the form of graph embeddings are an e�cient
and e�ective way of helping disambiguation.

1. http://dbpedia.org/resource/Galaxy
2. http://dbpedia.org/resource/Galaxy_(chocolate)

http://dbpedia.org/resource/Galaxy
http://dbpedia.org/resource/Galaxy_(chocolate)
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6.2 Related Work

Entity Linking/Disambiguation The works in (neural) entity linking are broadly
analyzed in the Chapter 3. This study is more related to entity encoder methods, which
are summarized in Section 3.3.1.3, and entity encoder source information per model
can be found in Table 3.2. There are many approaches that depends on the relational
information in knowledge graphs, which are also relevant here. The main contribution
in this chapter is a simple technique to integrate the structured information through
graph embeddings into neural entity disambiguation model and compare the graph
embeddings with the unstructured text based entity representations.

Our experiments are conducted with two models, a simple neural network and the
model by Kolitsas et al. (2018), which is an end-to-end system addressing bothmention de-
tection and entity disambiguation, jointly. They also allow to run disambiguation alone,
which we utilize in our experiments. Their architecture consists of many components,
e.g. entity embeddings, mention embeddings, context-aware word embeddings based
on character and word embeddings, etc. Their entity embeddings, proposed by Ganea
and Hofmann (2017), are computed through co-occurrence counts on Wikipedia pages
and �xed-size text around entity mentions in annotated text, via Wikipedia hyperlinks.

Graph Embeddings There are various methods to compute graph embeddings, and
we refer the reader to Section 2.3.3, for more information. In the scope of this study,
to keep it simple, and e�cient, we leverage DeepWalk (Perozzi et al., 2014) that uses
random walks to learn latent representations and provides a representation of each
node on the basis of the graph structure.

6.3 Learning Graph-based Entity Vectors

We construct a graph, where the nodes are entities and edges are page links between
entities through the information in DBpedia. Yet, there are di�erent number of entities
in di�erent �les, in DBpedia3. Therefore, we leverage the intersection entities of several
�les, i.e., long abstract4, labels5, and page links6.

Then, a vector representation per entity is computed through DeepWalk on the
edges of this graph. For this, we use all default hyper-parameters of DeepWalk, e.g.
number-walks is ten, walk-length is 40, and window-size is �ve. To exemplify the result,
the most similar three entities of disambiguated versions of Michae�_Jordan, in the
trained model with 400-dimensional vectors are shown in Table 6.1. The �rst entity,
Michae�_Jordan, is a well-known basketball player7, and his all most similar entities
are all basketball players of similar age. The second entity, Michae�_I._Jordan is a
scientist8, and again the most similar entities are either scientists in the same �eld or the
topics of his study �eld. The last entity, Michae�_Jordan_(footba��er), is a football

3. https://downloads.dbpedia.org/wiki-archive/downloads-2016-10.html
4. full abstracts of Wikipedia articles, which are usually the �rst section
5. titles of Wikipedia articles
6. internal links between Wikipedia articles
7. http://dbpedia.org/resource/Michael_Jordan
8. http://dbpedia.org/resource/Michael_I._Jordan

https://downloads.dbpedia.org/wiki-archive/downloads-2016-10.html
http://dbpedia.org/resource/Michael_Jordan
http://dbpedia.org/resource/Michael_I._Jordan
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Entity Most similar 3 entities

Michae�_Jordan
Char�es_Bark�ey,
Scottie_Pippen,

Larry_Bird

Michae�_I._Jordan
David_B�ei,

Machine_�earning ,
Supervised_�earning

Michae�_Jordan_(footba��er)
Dagenham_&_Redbridge_F.C.,

Stevenage_F.C.,
Yeovi�_Town_F.C.

Table 6.1: Graph entity embeddings: Top three most similar entities for the name “Michael
Jordan” based on our 400-dimensional DeepWalk embeddings. The �rst entity refers to a
basketball player, the second one is for a scientist, and the last entity is a football player as name
refers.

player9 and his most similar entities are football clubs. This suggests that our graph
entity embeddings can di�erentiate di�erent entities with the same name.

6.4 Experiment 1: Entity Disambiguation with Text and
Graph Embeddings

In our �rst experiment, we build a simple neural entity disambiguation model based on a
feedforward network and test the utility of the graph embeddings as compared to
text-based embeddings.

6.4.1 Description of the Neural Entity Disambiguation Model
The inputs of an entity disambiguation task are a context and a possibly ambiguous
entity span, and the output is a knowledge base entry. For example, Desire contains
a duet with Harris in the song Joey and Desire given as an input and the output is
Bob Dylan’s album entity10.

Our model in this experiment is a feedforward neural network. Its input is a
concatenation of document vectors of a context, a span, and an explanation of the
candidate entity, i.e. long abstract, and graph embedding of a candidate entity as in
Figure 6.1, and output is a prediction value denoting whether the candidate entity
is correct in this context. For learning representations, we employ doc2vec (Le and
Mikolov, 2014) for text (see Section 2.3.1 for more information about doc2vec) and
DeepWalk (Perozzi et al., 2014) for graphs. We will describe the input components
in more detail in the following.

Creating Negative Samples: It is not computationally e�cient to use all entities in our
graph as a candidate for every context-span as negative examples for training because

9. http://dbpedia.org/resource/Michael_Jordan_(footballer)
10. http://dbpedia.org/page/Desire_(Bob_Dylan_album)

http://dbpedia.org/resource/Michael_Jordan_(footballer)
http://dbpedia.org/page/Desire_(Bob_Dylan_album)
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Desire contains a duet
with Harris in the song

Joey

Desire

http://dbpedia.org/page/Desire
_(Bob_Dylan_album) 

Desire is the seventeenth
studio album by American

singer-songwriter Bob
Dylan,...

Context

Mention

Candidate

Long
Abstract

of Candidate

Gets word vector
from doc2vec

Gets graph vector
 from DeepWalk

Creates long abstract
vector from doc2vec

Concatenates
vectors

Feedforward Neural
Network

0 - 1 Candidate
matches

the context

Creates context vector 
from doc2vec

Figure 6.1: Architecture of our feedforward neural entity disambiguation model: using graph
embeddings from internal links of Wikipedia articles as an additional input representation of
entities.

of the high number of entities. Thus, we need to �lter some possible entities for each
context-span in order to generate negative samples. We use spans to �nd out possible
entities. If any lemma in the span is contained in an entity’s name, the entity is added
to the candidates for this mention. For example, if the span is undergraduates, the entity
Undergraduate_degree is added to the candidates.

For training, we generate negative samples by �ltering this candidate list and limited
the number of candidates per positive sample. Note for some mentions, no negative
samples are generated, in this cases, completely random samples are used. We employ
two techniques to �lter the candidate list. First, we shu�e the candidate list and
randomly select n candidates. The other is to select the closest candidates by the
following score formula: ����� = # �� ������������ñ���� ����

������ ,where # �� ������������means the
number of the common words between candidate entity and span/entity mention along
with the gold entity, ���� ���� is the page rank value (Page et al., 1999) on the entire
graph for the candidate entity to include a popularity prior, and length is the number
of tokens in the entity’s name/title, e.g. the length of the entity Undergraduate_degree
is 2. Before taking candidates with highest n scores, we have pruned the most similar
candidates to the correct entity on the basis of the cosine between their respective graph
embeddings. The reason for pruning is to assure that the entities are distinctive enough
from each other so that a classi�er can learn the distinction.

Word and Context Vectors: Document embedding techniques like doc2vec (Le and
Mikolov, 2014) assign a single vector to each document, which gets adjusted with respect
to all words in the document and all document vectors in the dataset. Additionally,
doc2vec provides the infer_vector method, which takes a word sequence and returns
its representation. We employ this function for representing contexts (including the
entity span), entity explanations (long abstracts), and multi-word spans.
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Figure 6.2: Entity disambiguation performance: di�erent input con�gurations of our neural
feedforward entity disambiguation model (cf. Figure 6.1). Reported are scores on the positive
class �ltered randomly and closest neighbors.

6.4.2 Experimental Setup
Datasets: An English Wikipedia 2017 dump has been used to train doc2vec, using the
gensim implementation (Řehůřek and Sojka, 2010). There are about 5 million entities
(nodes), and around 112 million page links (edges), in our graph.

DBpedia Spotlight (Mendes et al., 2011) (331 entities), KORE50 (Ho�art et al., 2012)
(144 entities), and Reuters-128 (Röder et al., 2014) (881 entities) datasets are used to train
and test our architecture (numbers are by Rosales-Méndez et al. (2018), see this work
for more information about the datasets). It is worth noting that not all gold reference
entities are contained in our graph, we ignore these11. We have used 80% of these data
for training, 10% for development, and the remaining for testing.

Implementation Details: We �xed context, span, and long abstract embedding dimen-
sionality to 100, the default parameter de�ned in the implementation of gensim (Řehůřek
and Sojka, 2010). The size of the graph embeddings is 400. We optimize the graph
embedding size based on the development set with the range 100-400. The overall input
size is 700 when concatenating context, span, long abstract, and graph entity embeddings.

The number of negative samples per positive sample is ten. We have three hidden
layers with equal sizes of 100. In the last layer, we have applied the tanh activation func-
tion. We have used Adam (Kingma and Ba, 2014) optimizer with a learning rate of 0.005
and 15000 epochs. All hyper-parameters are determined by preliminary experiments.

6.4.3 Evaluation
The evaluation shows the impact of graph embeddings in a rather simple learning archi-
tecture.

In this experiment, an ablation test is performed to analyze the e�ect of graph
embeddings. We have two types of training sets, where the creation of negative samples
di�ers (in one of them, we have �ltered negative samples randomly, whereas, in the

11. After keeping unique instances, we have 990 samples with context and gold references, which are in
our graph. In total, 10890 samples with 10 negative samples per positive with random �ltering including
positives, 10238 samples with closest �ltering. The latter is less as it also contains the pruning step.
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other, we �ltered them by selecting the closest ones, as explained in Section 6.4.1). In
Figure 6.2, the left �gure shows Accuracy, Precision, Recall, and F1 values on the training
set �ltered randomly while the right one on the training set �ltered by selecting closest
neighbors. The �rst bar in the charts contains the result of the input, which concatenates
context and long abstract embeddings (in this condition the input size becomes 200),
here entity information only comes from its long abstract. The second bar presents the
results of the input combination, context, word/span, and long abstract embeddings (the
size of the input is 300). In the third bar, the input is the concatenation of context, long
abstract, and graph embeddings (the input size is 600). Finally, the last bar indicates
results for the concatenation of all types of inputs, for an input size of 700. For each
con�guration, we run the model �ve times and report the mean.

Comparing the �rst and third bars (or the second and last bars) in Figure 6.2, we
can clearly see the results are increased when the input includes the graph embeddings
for both variants of negative sampling. Comparing the third and last bars (or the �rst
and second bars), we observe that including the span representation slightly decreases
most of the results for both sampling variants. We attribute this to the presence of
the context embedding, which already includes the span, thus this might increase the
number of parameters of the network without substantially adding new information.
Appending the graph embeddings improves the results about 0.09-0.17 in F1, 0.13-0.2 in
recall, 0.07-0.12 in precision and 0.01-0.02 in accuracy scores. In general, the randomly
sampled dataset is easier as it contains less related candidates.

6.5 Experiment 2: Integrating Graph Embeddings in the
end2end ED System

6.5.1 Description of the Neural ED Model

For the second experiment, we have used the end2end system for EL/ED (Kolitsas
et al., 2018) and expanded it with our graph embeddings. In this neural end-to-end
entity disambiguation system, text-based entity embeddings are used. In the experiment
described in this section, we replace or combine them (keeping the remaining archi-
tecture unchanged) with our graph embeddings build as described in Section 6.3. We
replaced end2end’s entity vector with our graph embeddings and the concatenation of
their entity vector and our graph embeddings. We use the GERBIL (Röder et al., 2018)
benchmark platform for conducting the evaluation.

6.5.2 Experimental Setup

Datasets: We train the neural end2end system in its default con�guration with the
combination of MSNBC (Cucerzan, 2007) (747 entities), ACE2004 (Ratinov et al., 2011)
(306 entities), AQUAINT (Ratinov et al., 2011) (727 entities), ClueWeb, and Wikipedia
datasets. We test the system on the GERBIL (Röder et al., 2018) platform using DBpedia
Spotlight (Mendes et al., 2011) (331 entities) and Reuters-128 (Röder et al., 2014) (881
entities) datasets (numbers are again by Rosales-Méndez et al. (2018)).
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DBpedia Spot�ight dataset

Model Macro
F1

Macro
Precision

Macro
Recall

Micro
F1

Micro
Precision

Micro
Recall

text embeddings 0.762 0.790 0.742 0.781 0.815 0.750
graph embeddings 0.796 0.860 0.758 0.783 0.847 0.730
text and graph embeddings 0.798 0.835 0.775 0.797 0.835 0.763

Reuters-128 dataset

Model Macro
F1

Macro
Precision

Macro
Recall

Micro
F1

Micro
Precision

Micro
Recall

text embeddings 0.593 0.654 0.575 0.634 0.687 0.589
graph embeddings 0.607 0.694 0.574 0.660 0.747 0.592
text and graph embeddings 0.614 0.687 0.590 0.650 0.707 0.602

Table 6.2: Entity disambiguation performance: The end2end (Kolitsas et al., 2018) system
based on the original text-based embeddings, our graph embeddings and a combination of both
evaluated using the GERBIL platform on DBpedia Spotlight and Reuters-128 datasets.

Implementation Details: We have not changed hyper-parameters for training the
end2end system12 (We used their base model + global for ED setting). We create graph
embeddings with the same technique used before, however, to keep everything the same,
we decided to also use 300 dimensions for the graph embeddings in this experiment
to match the dimensionality of end2end’s space.

We create the embeddings �le with the same format they used. They give an id
for each entity and call it “wiki id”. First, we generate a map between this wiki id and
our graph id (id of our entity). Then, we replace each entity vector corresponding to
the wiki id with our graph embeddings, which refers to the entity. Sometimes there is
no corresponding graph entity for the entity in the end2end system, in this case, we
supply a zero vector. They have a stopping condition, which applies after six consecutive
evaluations with no signi�cant improvement in the Macro F1 score. We have changed
this hyperparameter to ten, accounting for our observation that the training converges
slower when operating on graph embeddings.

6.5.3 Evaluation
Table 6.2 reports ED performance evaluated on DBpedia Spotlight and Reuters-128
datasets. There are three models, end2end trained using their text entity vectors, our
graph embeddings and the combination of them. Training datasets and implementation
details are the same for all models. We train the models for ten times and removed the
models that did not converge (one non-converging run for each single type of embedding
and two for the combination). Table 6.2 shows the mean values. The standard deviations
of the models are between 0.02-0.05 in the DBpedia Spotlight dataset and 0.01-0.03 in
the Reuters-128 dataset over all scores. Scores are produced using the GERBIL platform;
these are Micro-averaged over the set of annotations in the dataset and Macro-averaged
over the average performance per document. The results are improved by including

12. https://github.com/dalab/end2end_neural_el

https://github.com/dalab/end2end_neural_el
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graph embeddings. When we compare two models, trained by graph embeddings and
trained by entity vectors, the results are improved up to 0.03 in Macro F1 scores and
Micro Precision, and up to 0.07 in Macro Precision. However, the improvement of the
combination model is higher in Macro F1 and Recall. Micro-averaged results follow a
similar trend. When we look at the scores of Reuters-128 (Röder et al., 2014) dataset, the
combination model improves Macro F1 and Recall and Micro Recall up to 0.02, 0.015,
and 0.013 respectively. In the Micro-averaged evaluation, the combination model scores
slightly below the model using graph embeddings alone.

To summarize the evaluation, our graph embeddings alone already lead to improve-
ments over the original text-based embeddings, and their combination is even more
bene�cial. This suggests that test-based and graph-based representations in fact encode
somewhat complementary information.

6.6 Limitations

The usual neural entity disambiguation model contains the candidate generator com-
ponent, and entity ranking module to decide which candidate is best and its output
is the entity, as discussed in Chapter 3.

In our feedforward neural model, we keep the candidate generation step simple
and we have the negative samples per a positive sample. Further, our method is a
binary classi�er rather than an entity ranker. Yet, our model contains core elements
to distinguish entities, so it can be used as a sub-component to build the full entity
disambiguation model with all components. Furthermore, our goal here is to see the
impact of the graph embeddings, rather than proposing an entity disambiguation neural
architecture. We experiment with doc2vec model using infer_vector method that might
produce di�erent embeddings for the same context. Recent sentence embeddings can
be utilized here for more stable embeddings.

Neural networks contain some randomness, e.g. shu�ing for training, development,
and test samples, and so, the scores might not be the same if reproducing the approach
from scratch. Yet, we expect the closer results to what we report here.

6.7 Conclusion

We have shown how to integrate structured information via graph embeddings into
the neural entity disambiguation task using two di�erent experiments. In the �rst
experiment, we use a simple neural network to gauge the impact of di�erent text-based
and graph-based embeddings. In the second experiment, we replace respectively com-
plemented the representation of candidate entities in the recent entity disambiguation
and linking model. In both setups, we demonstrate that graph embeddings lead to
en par or better performance.

This con�rms our research hypothesis that it is possible to use structured resources
formodeling entities in entity disambiguation task and the information is complementary
to a text-based representation alone.
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6.8 Future Work
For future work, we plan to examine graph embeddings on other relationships, e.g.
taxonomic or otherwise typed relations such as works-for, married-with, and so on,
generalizing the notion to arbitrary structured resources. Additionally, to train the
models we plan to use AIDA dataset (Ho�art et al., 2011), which is one of the common
choice, as discussed in Chapter 3.

In this chapter, we present our �nal study in the scope of this thesis. Next chapter
will cover the conclusion, general limitations, and future directions.





7
Conclusion

In this section, we highlight the contributions of each study, and
discuss their in�uences, like how the natural language processing and
understanding community might leverage the outputs from each study.
The general limitations are discussed. Finally, we provide future promising
directions.

Contents

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

98



7. Conclusion 99

7.1 Conclusion

This thesis contributes natural language processing and understanding �eld(s) of arti�-
cial intelligence by (1) providing an abstract view of neural entity linking techniques,
(2) investigating a way for an automatic entity type generation without requiring a
labeled training data, (3) examining an integration way of structured information into
entity disambiguation through graph embeddings. The contributions of individual
chapters are discussed in Section 1.4. Their respective potential impact is discussed
in the following paragraphs.

Survey of Neural Entity Linking Models: We present a typical general architecture
of neural entity linking that is applicable most of the neural models. We discuss
di�erent components of this architecture. With the help of them, one might focus
on the improvement of one of the components, consider e.g. context and/or mention
encoder, or entity ranking method, through recent advancements. This has a potential
to improve overall linking results. For instance, in Chapter 6, we focus on entity encoder
component, and study to show an impact of an embedding constructed via structured
information. Furthermore, the survey work is especially helpful for the new researchers
or students, when they just start studying in this task, as they can understand e.g. what
the task is aimed to, what the main components are, how the general neural entity
linking model looks like, what the commonmodi�cations are, etc. One can easily go over
feature choices of each models with the help of Table 3.2 and look at the performance
of each model in the Tables 3.5, 3.6. One can see the results of individual models with
di�erent choices, for example, in Figure 3.8, we show the di�erent context/mention
encoder choices per model, or in Figure 3.9, model’s preferences on local or global
information use are displayed. Additionally, we provide the links for the available
source codes of the models in Table 3.3, which might be used as a starting point to check
the implementation details. All in all, these tables, �gures, and information might give
the idea of what works better to shape the future works.

Unsupervised Entity Typing with JoBimText: We generate automatically ultra-
�ne types for entity mentions without relying on any annotated training data, yet
rather depending on a graph information constructed through terms, JoBimText. In
this study, our focus is on the entity mentions in the ultra-�ne entity typing task,
however one can leverage the method to extract the type information for other lexical
units, e.g. words. Furthermore, this work suggests that the data from another form
than raw text is useful, which might help to generate new future ideas to use such
kind of data in di�erent scenarios.

Supervised EntityDisambiguation throughGraph Embeddings: We show a straight-
forward way to include a structured information into neural entity disambiguation
through graph embeddings. We compare such representations with the text-based
entity embeddings to show the impact of graph embeddings. Hence, this study shows
that a structured information can be encoded via graph embeddings techniques and
can be easily used as another input component in the neural architectures. One can
apply this idea to a di�erent graph and integrate easily this embedding information
to a neural model for a di�erent task. Additionally, entity embeddings constructed
from knowledge bases might be leveraged in other entity analysis tasks besides the
entity disambiguation and linking.
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7.2 Limitations
We mostly already discussed the limitations of individual works, in Sections either
Limitations 5.5.2, 6.6 or in Article Collection Methodology 3.1.2, 4.1.2, or in Goal and
Scope 3.1.1, 4.1.1. However, there are also several general limitations that we want to
discuss. In the following items, we list these limitations.

• The entity linking survey study, presented in Chapter 3, contains papers up until
and including 2021, as mentioned earlier in that chapter. It has evolved until
the time of writing this thesis, and there might be some changes in the general
architecture due to recent technological developments. Especially, after large
language models are emerged, new models might be developed using such recent
models. For instance, A Xin et al. (2024) leverage LLMs to augment data for entity
linking. Therefore, it might be a possible extension of our work to conduct a
research on how LLMs in�uence neural entity linking.

Similarly, our summary for entity typing in Chapter 4 depends on papers collected
from the search done in 2023. Therefore, new models should be presented since
this time. Analysis of these models would be, again, a potential extension of our
study.

• Language modeling is one of the key and old tasks in natural language processing
with the goal to predict next or missing tokens (WX Zhao et al., 2024). It has
evolved during time starting from statistical approaches to recent models, i.e. pre-
trained language models, e.g. BERT as explained in Section 2.2.4. Very recently,
such pre-trained language models are scaled and the large-sized models, called
large language models, have shown many remarkable abilities (WX Zhao et al.,
2024). After LLMs emerged, researchers have applied it in various scenarios,
leveraged and explored it in various di�erent ways. Many articles have been
published on this, recently.

In this thesis, we have not leveraged LLMs in our conducted experiments. The
reason for it is our research studies were planned earlier than LLMs became that
popular. For example, we �nished most of the work in our survey study around
the end of 2021. Yet, we leverage PLM based embeddings in our thesis, e.g. in
unsupervised ultra-�ne entity typing in Chapter 5, we utilize such embeddings to
select the best sense to distinguish the meaning of the entity mention, as explained
in detail in this chapter.

We still think LLMs can be integrated to the studies discussed in this thesis. For
instance, LLMs might be used to �lter our noisy labels for the unsupervised ultra-
�ne entity typing study, in Chapter 5. Alternatively, our labels can be used along
with LLMs predictions to check if it is possible to prevent both hallucinations and
noisy labels for the same work. Hallucination is one of the issues that LLMs face
with in especially knowledge-intensive tasks (Gao et al., 2024).

7.3 Future Directions
We discuss some promising directions of future work related to the tasks of entity
linking/disambiguation and entity typing, in the following items.
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• Joint entity linking and entity typing: There exist several works with the aim
at providing joint model for entity related tasks as discussed in Section 1.2,
e.g. Durrett and Klein (2014) provide a joint model for entity linking, typing
and coreference resolution. This model is proposed in 2014. Since then, many
techniques have been developed. Thus, in the future, we expect more approaches
on this kind of joint models with recent methodologies, as these tasks interact
with each other by helping each other. Therefore, the �nal model might be a
powerful one showing good performance in each di�erent tasks.

• Retrieval Augmented Generation (RAG) in entity linking or entity typing:
As discussed earlier, LLMs have shown signi�cant success, yet still there are
several issues of them, e.g. hallucination in especially knowledge-intensive tasks
(Gao et al., 2024) as mentioned earlier. Retrieval augmented generation is one of
the techniques to solve this issue by integrating relevant external knowledge to
LLMs. We believe that RAG can also enhance entity linking. For instance, Shlyk
et al. (2024) explore RAG entity linking in biomedical domain. We expect more
applications of RAG in entity linking and typing tasks.

• Graph embeddings in entity typing: We leverage graph embeddings technique
in our entity disambiguation study, discussed in Chapter 6. In general, graph
embeddings transform structural information into embedding space. There exist
some works that use graph embeddings in entity typing. For example, Y Zhao
et al. (2020) propose an embedding model to predict the missing entity type
information for knowledge graph entity typing task, which is a sub-task of
knowledge graph completion. This task is di�erent from �ne- and ultra-�ne
entity typing that we discussed in this thesis. Yet, we still expect some future
studies that explore graph embeddings in �ne- and ultra-�ne entity typing tasks
as well.

• Multimodal entity linking Throughout this thesis, we have discussed entity
linking with their textual properties. However, multimodal information gains
interests, recently, and multimodal entity linking models are developed to solve
cross-modal ambiguity, where the contexts contain not only textual information
but also image information (S Shi et al., 2024). Recently, S Shi et al. (2024) propose
a generative multimodal approach using LLMs. Therefore, we think in the future
there would be more techniques, in this line of the challenge.
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Total Coarse Fine Ultra-Fine Coverage
Model P R F1 P R F1 P R F1 P R F1

last-n1 18.0 17.8 17.9 44.7 49.3 46.9 12.7 15.4 13.9 5.5 7.9 6.5 77.93
last-n2 20.3 16.0 17.9 41.0 46.9 43.7 14.5 12.7 13.5 5.9 6.1 6.0 59.06
last-n3 21.6 14.5 17.3 39.5 45.4 42.2 13.2 9.9 11.3 5.4 4.7 5.0 50.45

�rst-n1 15.5 15.9 15.7 42.1 46.2 44.0 9.8 13.0 11.2 4.1 6.4 5.0 82.13
�rst-n2 20.7 15.0 17.4 40.7 45.9 43.1 13.2 11.0 12.0 5.2 5.2 5.2 58.66
�rst-n3 22.0 14.1 17.2 39.0 44.9 41.7 13.1 9.0 10.7 5.4 4.6 5.0 48.05

last-n1-sklearn 17.9 17.8 17.8 44.5 49.1 46.7 12.6 15.4 13.9 5.5 7.9 6.5 78.23
last-n2-sklearn 20.4 16.1 18.0 41.1 47.0 43.8 14.5 12.7 13.5 5.9 6.2 6.0 59.01
last-n3-sklearn 21.6 14.4 17.3 39.4 45.3 42.1 13.1 9.8 11.2 5.4 4.7 5.0 50.25

�rst-n1-sklearn 15.4 15.8 15.6 42.0 46.0 43.9 9.7 12.9 11.1 4.1 6.4 5.0 82.73
�rst-n2-sklearn 20.7 15.1 17.5 40.8 45.9 43.2 13.2 11.1 12.0 5.4 5.4 5.4 58.66
�rst-n3-sklearn 22.1 14.1 17.2 39.0 44.9 41.7 13.0 8.9 10.6 5.4 4.5 4.9 47.90

Table A.1: Unsupervised ultra-�ne entity typing performance: Results are on UFET development
set to compare sklearn vs. nltk libraries for n-gram extraction in this task. The results are
collected for the n-grams from using either sklearn or nltk library. “last-n*”: the last *-gram of
mention is searched on JoBimText using nltk. “�rst-n*”: the �rst *-gram of mention is searched
on JoBimText using nltk. “last-n*-sklearn”: the last *-gram of mention is searched on JoBimText
using sklearn. “�rst-n*-sklearn”: the �rst *-gram of mention is searched on JoBimText using
sklearn.
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