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Abstract  

The prediction of seismic wave fields between stations using machine learning offers great 

potential for geophysical monitoring, particularly in remote areas or in regions with sparse sensor 

coverage. This thesis introduces a novel encoder-decoder deep learning architecture that 

successfully learns the transfer function between seismic stations. By learning the complex signal 

transformations, this method enables accurate predictions of how seismic signals alter as they 

travel from one station to another. Notably, high quality predictions are achieved using only two 

days of data consisting solely of ambient seismic noise. The method’s robustness in a range of 

scenarios is demonstrated via validation at a seismic exploration site with a variety of noise 

sources. The network shows particular strength in capturing phase-related features, which is 

crucial to its performance in seismic wave prediction. A systematic parameter study reveals 

important insight about the variables affecting model performance and points out areas for 

future development.  

Virtual Seismic Arrays are introduced as a powerful proof of concept, extending the approach 

from individual station pairs to entire seismic arrays. By training the algorithm on all station pairs 

within an array, a set of predictive models is obtained that collectively form the Virtual Seismic 

Array. This enables the reconstruction of full-array recordings from a single reference station, 

even after physical sensors are no longer present. In the secondary microseism frequency band, 

beamforming analysis validates the effectiveness of Virtual Seismic Arrays by showing a high 

degree of agreement between the original and predicted waveforms.  

This novel application of encoder-decoder networks for modelling transfer functions has the 

potential to enhance seismic monitoring, while reducing the need for continuous sensor 

coverage. By reconstructing signals at multiple stations from a single reference station, the 

approach enables ongoing array functionality in remote regions while reducing costs and 

maintaining array capabilities. These improvements are beneficial in industries like advanced 

seismic instrumentation and ultra-precision manufacturing where even small vibrations have 

significant impact on results. This is particularly beneficial in projects like the Einstein telescope, 

where the sensitivity of gravitational wave detections depends on reducing seismic disturbances.    
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Zusammenfassung  

Die Vorhersage seismischer Wellenfelder zwischen seismischen Stationen mithilfe Künstlicher 

Intelligenz eröffnet neue Möglichkeiten für geophysikalische Messungen, insbesondere in 

abgelegenen oder sensorarmen Regionen. Diese Arbeit stellt eine neuartige Encoder-Decoder-

Architektur vor, die erfolgreich die Übertragungsfunktion zwischen seismischen Stationen 

erlernt. Durch das Erlernen von Signaltransformationen ermöglicht die Methode präzise 

Vorhersagen, wie sich komplexe seismische Signale zwischen zwei Stationen verändern. 

Besonders hervorzuheben ist, dass Vorhersagen von hoher Qualität bereits mit nur zwei Tagen 

an Daten gelingen, die ausschließlich aus natürlichem Umgebungsrauschen bestehen. Die 

Robustheit der Methode wird an einem seismischen Explorationsstandort mit verschiedenen 

Quellen validiert. Das Netzwerk zeigt besondere Stärken bei der Erfassung phasenbezogener 

Merkmale – ein entscheidender Faktor für die Genauigkeit der Wellenvorhersage. Eine 

systematische Parameterstudie liefert zudem wichtige Erkenntnisse über Faktoren, die die 

Leistung des Ansatzes beeinflussen und zeigt Punkte für zukünftige Weiterentwicklungen auf. 

Die Implementierung Virtueller seismischer Arrays erweitert die Methode von einzelnen 

Stationspaaren auf vollständige seismische Arrays. Durch das Training des Algorithmus auf allen 

Stationspaaren innerhalb eines physischen Arrays entstehen eine Reihe von Vorhersagemodellen, 

die zusammen das Virtuelle Seismische Array bilden. Damit lassen sich vollständige Array-

Messungen allein auf Basis einer einzigen Referenzstation rekonstruieren - selbst wenn keine 

physischen Sensoren mehr vorhanden sind. Im Frequenzbereich der sekundären Mikroseismik 

zeigt eine Beamforming-Analyse eine hohe Übereinstimmung zwischen den vorhergesagten und 

originalen Wellenformen und validiert damit die Funktionalität Virtueller Seismischer Arrays. 

Der Einsatz von Encoder-Decoder Netzwerken zum Erlernen von Übertragungsfunktionen kann 

seismischen Messungen erheblich verbessern und gleichzeitig den Bedarf an flächendeckender 

Sensorabdeckung verringern.  Der Ansatz ermöglicht es, Signale an mehreren Stationen mithilfe 

einer einzigen Referenzstation zu rekonstruieren. Dadurch kann die Funktionalität des Arrays 

auch in abgelegenen Regionen kosteneffizient aufrechterhalten werden. Diese Verbesserungen 

sind besonders wertvoll in Bereichen wie der hochpräzisen seismischen Instrumentierung und 
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der Ultrapräzisionsfertigung, wo selbst kleinste Vibrationen signifikante Auswirkungen auf die 

Ergebnisse haben können. Ein besonderes Beispiel ist das Einstein-Teleskop, dessen 

Empfindlichkeit bei der Detektion von Gravitationswellen stark von der Reduktion seismischer 

Störungen abhängt.
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1. Introduction 

Seismic signals offer an important perspective on the Earth’s dynamic processes and give insights 

into different kinds of ground movements resulting from both natural and human activities 

(Chapman, 2004). The most widely recognized events are earthquakes and volcanic eruptions, 

but there is a far wider variety of seismic sources. Beside anthropogenic activities like traffic or 

energy production (Liu, 2017; Dias et al., 2020) and mass movements such as landslides and 

rockfalls (Jongmans and Garambois, 2007; Zimmer and Sitar, 2015), natural phenomena like 

winds or ocean waves (Walker and Hedlin, 2009; Hillers et al., 2012) also contribute to the overall 

seismic activity that is observed. 

Each of these sources emits signals in various frequency bands that travel through the Earth as 

seismic waves (Sato et al., 2012). Seismic stations, which are equipped with seismometers, detect 

and measure these waves and allow seismologists to analyse specific wave attributes such as 

arrival times, polarization, amplitude, and frequency content that provide insights into their 

propagation mechanisms and characteristics (Bormann et al., 2012; Cheng et al., 2014). While 

individual stations already provide important data, seismic arrays further improve signal 

detection by incorporating a set of closely spaced seismometers. Seismic arrays can range from a 

handful of sensors to hundreds or thousands, which allows collecting seismic data over a broader 

area (Barker et al., 1996; Schweitzer et al., 2012). This increased coverage improves detection 

accuracy and spatial resolution and allows for a more precise analysis of seismic wave 

characteristics. Array processing techniques, such as beamforming, improve data interpretation 

by combining data from multiple sensors and help to determine the direction of arrival or 

apparent velocity of incoming waves (Rost and Thomas, 2002; Chen et al., 2002). The transfer 

function further describes how waves propagate through different media and interact with 

various geological features. It quantifies the relationship between signals at different locations 

and across seismic stations.  

Another key aspect of seismic data analysis is the distinction between seismic signals and seismic 

noise (Bormann and Wielandt, 2013). Typically, seismic signals are discrete events, like 

earthquakes and explosions that often show distinct waveforms and clear patterns. In contrast, 
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background vibrations, also referred to as seismic noise, originate from a variety of natural and 

human-made sources like traffic or ocean waves (known as microseism). Although seismic noise 

can complicate data interpretation, especially when trying to analyse seismic events or detect 

weak signals (Schimmel and Paulssen, 1997; Gaci, 2014), it is not always detrimental  to seismic 

analysis. In fact, noise signals are widely employed in many different applications as well, 

including source localization (Shapiro et al., 2006; Chiariotti et al., 2019), imaging (Shapiro et al., 

2005; Yang and Ritzwoller, 2008; Ritzwoller et al., 2011) and monitoring of subsurface structure 

changes (Snieder et al., 2002; Wegler and Sens‐Schönfelder, 2007; Campillo et al., 2008). 

Seismic observations are essential for advancing our understanding of the dynamic processes of 

the Earth. While individual seismic stations and seismic arrays offer powerful configurations for 

the efficient collection of high-quality data, their full potential is affected by various challenges. 

When seismic stations go offline or malfunction, it becomes problematic to sustain continuous 

measurements. This results in data gaps and affects the integrity of data analysis. This problem 

is especially notable in regions, where the deployment of stations is difficult, and where repairs 

or maintenance poses challenges. This can lead to long-lasting failures or shutdowns of stations, 

which affects the completeness of data and the interpretation of seismic activity in these regions. 

The spatial coverage of seismometers is further restricted by their uneven distributions, 

particularly in remote areas where it is difficult to set up stations. This leads to localized 

observation gaps that impact our understanding of seismic activity in those areas. Each factor 

adds to the difficulties of guaranteeing comprehensive data quality independently. In addition 

to challenges posed by the stations and their coverage, resource management has an impact on 

the efficiency of seismic networks. The limited availability of equipment, for example when 

stations are already in use in other regions, makes it difficult to allocate resources for new 

deployments. Additionally, both the equipment itself and the logistical difficulties, come with 

significant costs. Resolving these challenges would therefore greatly increase seismic data 

acquisition and lead to more reliable and accurate data.  

These challenges can be addressed by gaining an understanding of wave propagation between 

seismic stations. Transfer functions mathematically describe the translation of seismic waves 

from one station to another (McCowan and Lacoss, 1978; Yan et al., 2003). Once estimated, 
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transfer functions are capable of reconstructing the transformations that a seismic signal 

undergoes before it reaches another station, even if that station is malfunctioning or offline. 

While they are mathematically complex, they are not always explicitly studied. Instead, they have 

been implicitly analysed in a number of array processing studies through investigations of signal 

coherence and wave propagation across arrays (Rost and Thomas, 2009; Boué et al., 2016). The 

following subsection offers a comprehensive review of existing literature on seismic arrays, 

transfer functions, and their applications in wave propagation analysis. 

1.1. Previous studies 

Built to detect and identify nuclear explosions and discriminate them from earthquakes (Rost 

and Thomas, 2002), seismic arrays are since powerful tools for the detection, localization, and 

analysis of seismic events and seismic noise. While they were originally tested in various 

geometries like cross- or L-shape (Schweitzer et al., 2012, e.g. Keenan and Dyer, 1984; Koper et al., 

2009), studies showed that the aperture of seismic arrays ideally relies on the properties of the 

waves under investigation (Rost and Thomas, 2002; Karamzadeh et al., 2018; Schweitzer, 2021). 

Independent of their individual geometry, seismic arrays are installed in locations all over the 

world and are used for a variety of applications. These include earthquake monitoring (Spudich 

and Oppenheimer, 1986; Meng et al., 2014; Meng and Ben-Zion, 2017) and nuclear test 

observations (Gibbons and Ringdal, 2006; Selby, 2010) to analysing volcanic activity (Saccorotti 

et al., 2001) and induced seismicity (Majer et al., 2007; McClellan et al., 2018).  

Array processing 

A number of signal-processing techniques have been developed to take advantage of the 

potential of seismic arrays in these applications. For instance, by transforming the measured data 

from the time into the frequency domain, frequency-wavenumber (f-k) analysis helps to 

determine the direction and speed of incoming waves (Capon, 1969; Capon, 1973).  Beamforming 

is another fundamental technique that is based on comparable ideas of spatial filtering. With the 

delay-and-sum approach, which is a widely applied beamforming method (Rost and Thomas, 

2002; Schweitzer et al., 2012; Perrot et al., 2021), array waveforms from a target direction are 
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aligned and summed (Figure 1.1a), while waveforms from other directions overlap less effectively 

and cancel out (Rost and Thomas, 2002; Schweitzer et al., 2012). Like this, one can locate seismic 

sources by estimating the direction (backazimuth) and the apparent velocity (slowness) of the 

incoming wave (Figure 1.1b). Furthermore, beamforming improves the signal-to-noise ratio (SNR), 

aiding in the identification of weaker signals in the data (Rost and Thomas, 2002, Schweitzer et 

al., 2012). Another technique for improving signals in array processing is Wiener filtering. It 

effectively suppresses noise while preserving the signal of interest by minimizing the difference 

between the estimated and desired signal (Green et al., 1966; Wang et al., 2011). Along with others, 

these array-processing techniques enable the extraction of greater amounts of information from 

seismic data, thus improving the ability to detect, locate, and characterize seismic events. 

 

Figure 1.1 Illustration of beamforming (a) “Delay and sum” beamforming method for 

records of the Gräfenberg array (GRF). Left: Traces recorded by array stations. Right: 

Beamforming results. From Rost and Thomas (2002). (b) Horizontal angle of incidence 

(backazimuth 𝜽) for wavefront from southwest (after Schweitzer et al., 2012). 

Seismic arrays for event analysis 

Several studies demonstrate the power of seismic arrays and corresponding processing 

techniques in their works. For instance, Meng and Ben-Zion (2017) use data from a dense seismic 

array and develop a multi-step approach that combines waveform stacking, envelope 

multiplication, and beamforming to detect more small earthquakes compared to standard 

catalogues. Similarly, Gibbons and Ringdal (2006) can detect smaller earthquakes than 

traditional methods by showing that array-based waveform correlation techniques are able to 
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identify repeating patterns also for weak signals. In order to identify various seismic signals, 

Lythgoe et al. (2021) use a dense nodal array in the noisy urban environment of Singapore and 

apply an image processing approach. They can detect signals such as previously unreported 

earthquake, man-made events, and ground motion caused by thunder. Kiser and Ishii (2012) 

increase the lateral resolution of their analysis by combining arrays. This allows the authors to 

study the source properties of five major earthquakes and create detailed rupture images using 

a backprojection method. The power of seismic arrays to study rupture also extends to real-time 

applications in Earthquake Early Warning (EEW) systems. Meng et al. (2014) track the extent and 

directivity of ruptures during large earthquakes, which provides important information for the 

speed and accuracy of EEW. In addition to earthquake studies, seismic processing techniques can 

be used to study other complex environments. For example, Nanni et al. (2022) use high-

resolution imaging techniques with dense seismic arrays to detect different features of an Alpine 

glacier, including diffracting materials and active crevasses. Expanding these applications from 

glacial environments to volcanic settings further highlights the applicability of seismic arrays in 

diverse geological systems. Low frequency signals associated with eruptions and gas-jet activity 

were captured by an array of nine broadband seismometers at Stromboli volcano, giving new 

perspectives on the internal dynamics of the volcano (Neuberg et al., 1994).  

Seismic arrays for noise analysis 

Beyond these event-based studies, seismic arrays are also widely used to analyse ambient seismic 

noise. Given that the ambient seismic wave field consists of signals from various origins, recent 

studies have focused on isolating individual sources to understand better their spatial 

distribution and spectral characteristics. Caused by ocean wave interactions with the solid Earth, 

one dominant component of ambient noise at periods between 5 and 20 seconds are primary and 

secondary microseisms (Webb, 1992; Hillers et al., 2012). A study of Friedrich et al. (1998) 

employed a frequency-wavenumber analysis on data of the Gräfenberg array (GRF) in southern 

Germany and identified multiple generating areas of microseisms in the Atlantic Ocean, Arctic 

Sea, and Mediterranean Sea. Figure 1.2 shows their findings for primary (Figure 1.2a) and 

secondary (Figure 1.2b) microseisms for a period of four-months in winter. 
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Beside ocean-generated microseisms, wind and human activities are further significant sources 

of seismic noise. A study by Hu et al. (2019) in eastern Portugal showed that seismic noise 

contains identifiable signatures from wind turbines (WT) and wind gusts. With these signatures, 

it is accurately possible to determine the WTs operational status, whereas wind gusts remain 

detectable even after removing WT effects from the data. Stammler and Ceranna (2016) also 

investigate WT influence on background noise using the GRF array, previously mentioned in 

microseism studies. They found significant disturbances at stations within 5 km of WTs and 

detectable signals up to 15 km away, which emphasize the impact of WT noise on seismic stations. 

Similarly, Riahi and Gerstoft (2015) study urban seismic noise produced by traffic with an array of 

5200 geophones located in Long Beach, California. The array’s density allowed a high-resolution 

analysis of noise sources, revealing signatures from metro trains, aircrafts taking off and landing, 

and night-time traffic along a highway. Machinery like oil pump jacks are beyond identified as 

significant sources of seismic noise by Schippkus et al. (2020) using data from an industrial-scale 

deployment of over 10.000 seismic stations. The pump jacks generate strong and characteristic 

signals, particularly in the 2-20 Hz range, which most likely have to do with the machinery and 

the pump jacks up-and-down motion. 

 

Figure 1.2 Backazimuth vs. slowness plots from GRF array for four months in 

winter 1995/96: a) primary microseisms: two dominant source areas at 

backazimuths of about 10° and 260°. b) secondary microseisms: broad azimuthal 

distribution from -70° to 10° (from Friedrich et al., 1998)
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For seismic imaging,  Ritzwoller et al. (2011) have tracked surface wavefronts from ambient noise 

recordings across more than 1000 stations from the EarthScope USArray to create detailed 

velocity maps of the crust and uppermost mantle. Similarly, Saygin and Kennett (2010) used 

ambient seismic noise tomography to map continental structures of the Australian crust. By 

cross-correlating data from over 2000 stations, they were able to estimate group velocity maps, 

revealing sedimentary basins and cratonic regions. While these studies use noise recordings from 

thousands of stations, Schippkus et al. (2018) create a high-resolution 3D shear-velocity model of 

the upper crust in the Vienna Basin region by using noise recordings from 63 array stations. 

Transfer functions 

Seismic noise, once regarded as a disturbing background sound, has evolved into an important 

data source for seismological studies. This advancement has significantly aided by seismic arrays, 

which have enhanced the understanding of ambient seismic wave fields across multiple stations. 

Seismic data, for instance from earthquakes and ambient noise, can be used to estimate transfer 

functions that represent how seismic waves travel between stations. Figure 1.3 shows a 

conceptual illustration of a transfer function between two seismic stations.  

 

Figure 1.3 Conceptual illustration of a transfer function between two seismic 

stations (grey triangles). The dashed line represents the path along which 

seismic waves propagate. 

For instance, Lim and Ahn (2023) estimate transfer functions from ambient noise data by 

computing surface recordings from borehole seismometer data. This method proves particularly 

beneficial in regions where it is not feasible to install seismometers at the surface. Working with
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earthquakes, Rajabi and Rajabi (2015) determine the transfer function for seismic waves traveling 

between a location near the earthquake and another area where vibration is anticipated. This 

approach is used in the context of Earthquake Early-Warning systems to perform real-time 

prediction of earthquakes at distant locations. With a known transfer function, it is further 

possible to calculate both amplitude and phase responses at any frequency, where the amplitude 

response describes changes in the strength of different frequency components, and the phase 

response gives information on their timing (McCowan and Lacoss, 1978). Transfer functions are 

correlated with, yet distinct from, other fundamental concepts in seismology. The instrument 

response, for example, describes the connection between ground motion and the recorded 

seismogram (Walden and White, 1998; Havskov and Alguacil, 2016). In contrast, the Green’s 

function defines how a delta source at a given location affects the response at another location 

(Snieder, 2004; Sabra et al., 2005; Denolle et al., 2013).  

1.2. Machine learning  

Machine learning (ML), a subfield of artificial intelligence, uses algorithms and statistical models 

to let computers learn from data, which enhances our ability to handle complex tasks and 

effectively process big datasets. The field of machine learning has evolved significantly since its 

beginnings, with rapid growth in the 21st century through increased computing capabilities, the 

availability of big data, and algorithmic advancements. Machine learning is widely applied in a 

number of industries, such as healthcare (Ahmad et al., 2018; Shailaja et al., 2018), finance (Dixon 

et al., 2020; Ahmed et al., 2022), environmental science (Zhong et al., 2021), and manufacturing 

(Wuest and Thoben, 2016; Morariu et al., 2020). It offers a wide range of applications, including 

predictive analytics and image recognition (such as in self-driving cars and facial recognition: 

Fujiyoshi et al., 2019; Guo et al., 2024), natural language processing (used in virtual assistants: 

Imrie and Bednar, 2013; Duguleană et al., 2020), and automated decision-making (as seen in fraud 

detection: Wihlborg et al., 2016; Araujo et al., 2020). These applications employ various ML 

methods, including decision trees and neural networks, to process data, and facilitate informed 

decision-making. ML has become an essential resource in scientific areas such as seismology due 

to its ability to draw conclusions from large datasets and address complicated problems.
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Machine learning in seismology 

Machine learning opens up new opportunities and provides powerful approaches for seismic 

data analysis that can improve existing methods in seismology. Conventional array processing 

techniques rely on established physical approaches, whereas ML algorithms can learn 

relationships directly from the data. This allows the identification of patterns that may be 

challenging to recognize and understand using traditional approaches. A detailed overview of 

progress and challenges regarding the use of ML in earthquake seismology is provided by 

Mousavi and Beroza (2023), together with recommendations for further investigation. Mousavi 

and Beroza (2023) emphasize that developments in concepts, algorithms, and computation have 

greatly improved earthquake monitoring, forecasting techniques, and the compilation of more 

comprehensive catalogs. Kong et al. (2018) and Kubo et al. (2024) offer further reviews of ML in 

seismology. 

Neural networks are a type of machine learning models that mimic the function of the human 

brain. Consisting of layers of connected units known as “neurons”, each layer processes 

information and passes it to the next, gradually building upon the previous layer (Gurney, 2018). 

Deep learning, a subfield of ML, uses these neural networks with multiple layers to analyse 

complex data (Mousavi and Beroza, 2022). The training of these networks is based on large 

datasets that include information relevant to the particular problem the network is designed to 

solve. Thereby, this data is effectively processed by the network’s architecture through specific 

parameter choices or its depth, allowing it to learn complex patterns and extract information 

from the data. Like this, neural networks are able to handle diverse seismological problems, from 

signal detection and phase picking (Zhu and Beroza, 2019; Zhu et al., 2019; Pardo et al., 2019) to 

tasks like waveform prediction and subsurface characterization (An et al., 2001; W. Zhu et al., 

2019; Jozinović et al., 2020). 

Encoder-decoder networks 

The encoder-decoder network is one type of neural network architecture. These networks work 

by extracting features from input data and turning them into relevant outputs, which makes 
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them particularly helpful for tasks where the lengths of the input and output sequences can vary. 

Encoder-decoder networks consist of two main elements: an encoder that processes the input 

data to extract essential information and compress them into a meaningful representation, and 

a decoder, which takes this condensed representation and converts it into the intended output 

sequence. A schematic illustration of this encoder-decoder architecture and its components is 

shown in Figure 1.4. In addition to their widespread use in natural language processing (Badola 

and Gupta, 2021; Ao et al., 2022), computer vision (Badrinarayanan et al., 2017; Chen et al., 2018), 

and speech recognition (Chiu et al., 2018; Toshniwal et al., 2018), encoder-decoder networks have 

also proven to be powerful tools in seismology. 

 

Figure 1.4 Schematic illustration of an encoder-decoder architecture: the input passes 

through the encoder, consisting of multiple layers that extract and compress features into 

a latent representation. The decoder reconstructs the output from the latent representation. 

To separate earthquake signals from ambient seismic noise, Yin et al. (2022) train a multitask 

encoder-decoder network. The network takes noisy 3-component seismograms as input and 

learns to separate earthquake signals from ambient noise in the data. This allows to improve 

signal-to-noise ratios and to better use ambient noise signals for monitoring Earth’s structure. 

Likewise, Zhang et al. (2020) use encoder-decoder networks for signal separation and develop a 

fully convolutional encoder-decoder network for separating microseismic signals from various 

types of noise. Their method learns features in the time-frequency domain to denoise 

microseismic signals, which improves the signal-to-noise ratio as well. Building on denoising,
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Saad and Chen (2020) use a deep-denoising autoencoder to attenuate random noise in seismic 

data. Their algorithm encodes noisy seismic data through several levels of abstraction to extract 

significant features, before decoding these features to reconstruct “the seismic signal without 

noise”. From using neural networks to isolate specific signals within seismic data, studies have 

also explored their potential for forecasting future seismic events. Moustra et al. (2011) try to 

predict earthquakes in Greece using time series magnitude data. Their model uses historical 

earthquake magnitude data as input to predict the magnitude of seismic events for the following 

day as output. However, with a success rate of only 58.02%, the model’s accuracy drastically 

declines for major seismic events. This example highlights the challenges and potential of using 

neural networks for time series forecasting, which can be applied to many different prediction 

tasks. 
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1.3. Research objectives 

This work aims to address the limitations of traditional seismic arrays and improve seismic data 

collection and analysis through an advanced machine learning approach. The primary objectives 

are to improve the continuity and reliability of seismic measurements, mitigate the impact of 

array failures and offline periods, and increase spatial coverage of seismic observations by 

addressing gaps in data collection. Furthermore, this research aims to optimize resource 

management in seismic monitoring by exploring a cost-effective alternative to traditional array 

deployments. To achieve this, this work investigates the application of encoder-decoder 

networks to learn transfer functions between seismic stations. Approximating the transfer 

functions and thus how seismic waves translate between seismic station pairs, this approach has 

the potential to virtually replace physical stations by data prediction. Beyond reducing the need 

for physical station deployments, this also expands the potential uses of encoder-decoder 

networks in seismology. Building on this potential, this work addresses three main questions: 

  Q1 Can machine learning techniques be adapted to learn the transfer function between 

 seismic stations for predicting seismic wave fields? 

  Q2  Can we use a single seismic station to predict the data of an entire seismic array? 

  Q3  What impact do different parameters have on the performance of machine learning 

 techniques for predicting seismic wave fields? 
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1.4. Approach and outline 

This dissertation presents three integrated studies that investigate the application of machine 

learning techniques, specifically encoder-decoder networks, to address challenges in seismic data 

collection and analysis. The first two studies introduce a novel machine learning approach and 

demonstrate its practical application, building upon each other. The third chapter complements 

the findings by providing a detailed analysis of parameter influences on the machine learning 

models, enabling further optimization of the approach.    

Study I introduces a novel adaption of encoder-decoder networks for seismological applications, 

approximating the transfer function between seismic stations using 1-D time-series 

measurements. This approach uses data from one seismic station as input to predict data at 

another seismic station as the target, thereby incorporating both phase and amplitude 

information. While using differing input and output data in encoder-decoder networks is 

common, especially in sequence-to-sequence tasks, this application is new in the context of 

seismology. 

Study II builds directly on the findings of Study I, applying the developed approach and test it to 

create Virtual Seismic Arrays. This novel idea utilizes data from one reference station within an 

array to predict recordings that would be measured by the entire array. Unlike traditional seismic 

arrays, which consist of multiple physical sensors, this would enable the acquisition of seismic 

data from previously instrumented areas even after the physical sensors have been removed. The 

performance of these Virtual Seismic Arrays is evaluated through beamforming. 

Chapter III presents a parameter study on the encoder-decoder network. This examines how 

various parameters affect the performance of the machine learning approach in predicting 

seismic wave fields. Through the analysis of how specific parameters affect the results, this study 

provides an outlook for optimizing the encoder-decoder networks performance in future studies.
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2. Study I: Encoder-decoder networks for seismic transfer 
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S U M M A R Y 

Wouldn’t it be beneficial if we could predict the time-series at a seismic station even if the 
station no longer exists? In geophysical data analysis, this capability would enhance our ability 

to study and monitor seismic events and seismic noise, particularly in regions with incomplete 
station coverage or where stations are temporarily offline. This study introduces a novel 
adaption of encoder–decoder networks from the subfield of deep learning, modified to predict 
the development of seismic wave fields between two seismic stations. Using 1-D time-series 
measurements, our algorithm aims to learn and predict signal transformations between the two 

stations by approximating the transfer function. Initially, we evaluate this proof of concept in a 
simplified controlled setting using synthetic data, before we incorporate field data gathered at a 
seismic exploration site in an area containing several roads, wind turbines, oil pump jacks and 

rail wa y traffic. Across diverse scenarios, the model demonstrates proficiency in learning the 
transfer function among various seismic station configurations. Particularly, it achieves high 

accuracy in predicting a majority of seismic wave phases across different data sets. Diverging 

significantly from encoder–decoder networks that estimate time-series forecasts by analysing 

historical trends, our approach places greater emphasis on the wave propagation between 

nearb y locations. Thereb y, the anal ysis incorporates both phase and amplitude information 

and provides a new approach to approximate the transfer function relying on machine learning 

techniques. The gained knowledge enables to reconstruct data from missing, offline or defunct 
stations in the context of temporary seismic arrays or exclude non-rele v ant data for denoising. 

Key words: Machine learning; Time-series analysis; Seismic interferometry; Seismic noise; 
Wave propagation. 

1

S  

a  

C  

w  

u  

t  

w  

a  

p  

m  

s

∗P

 

t  

q  

p  

W  

t  

k  

i  

a  

c  

e  

s  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/240/3/1611/7943687 by guest on 19 M

arch 2025
 I N T RO D U C T I O N  

ignal recording and processing hold significant importance across
 range of scientific disciplines, including the field of geophysics.
apturing and analysing various types of signals, such as seismic
 aves, electromagnetic w aves and gravity anomalies, enables the
nderstanding of the Earth’s subsurface and its geological charac-
eristics. As waves propagate through the Earth, their interaction
ith geological structures, such as sediment layers or fault lines,

ffects the recorded signals and leads to changes in the wave’s
ropagation characteristics. Deploying seismic stations enables the
easurement of signals and the deri v ation of insights regarding the
ubsurface characteristics and nature of the area. 
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In seismic analysis, understanding these measurements involves
he identification of different wave types, along with analysing fre-
uency spectra, amplitude variations, phase shifts and other wave
roperties (M. Bath 1973 ; Rost & Thomas 2002 ; Barnes 2007 ).
hile many of these signal components deliver valuable informa-

ion and are essential for seismic investigations, there are also parts
nown as seismic noise that introduce more complexity to the data
nterpretation process. Natural sources such as wind or ocean waves,
tmospheric disturbances or geological activities, as well as artifi-
ial sources including human activities and industrial operations,
mit noise signals in various frequency bands and contribute to
eismic measurements. In order to interpret measurements and mit-
gate the influence of undesired signals on the results, it is important
o understand how seismic waves interact with geological structures
Kawakami & Oyunchimeg 2003 ). The transfer function captures
his relationship by describing how initial seismic signals change
s they travel through the medium, leading to the signals measured
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by seismic sensors. For instance, the relation between the ground 
motion and the recorded seismogram is named instrument response 
(Walden & White 1998 ; Havskov & Alguacil 2016 ; Lindsey et al. 
2020 ), while the Green’s function describes the response at a given 
location to a delta source applied at another location (Snieder 2004 ; 
Sabra et al. 2005 ; Sergeant et al. 2020 ). Ho wever , estimating the 
transfer function in seismology can be complex due to the inter- 
action of varying subsurface structures, variability in seismic wave 
propagation, noise, instrumentation limitations and source field de- 
pendence. Together, these factors contribute to intricate coupled 
systems of differential equations. In this context, the Green’s func- 
tion represents the theoretical impulse response when the system’s 
differential operator is known. If the operator is not a vailable, w e 
can estimate the transfer function under the assumptions of linearity 
and time invariance. 

Machine learning has emerged as a widespread methodology 
in geophysical data analysis, providing an advanced alternative 
to conventional seismic analysis methods for uncovering relation- 
ships within seismic data. Multiple fields including seismic explo- 
ration (Helmy et al. 2010 ; Li et al. 2019 ; Tariq et al. 2021 ) and 
seismology (Li et al. 2018 ; Xie et al. 2020 ; Mousavi & Beroza 
2023 ) employ machine learning methods to characterize seismic 
data and detect and classify rele v ant characteristics and patterns 
within the data . One fundamental architecture in the subfield of 
deep learning (LeCun et al. 2015 ) are encoder–decoder networks, 
which provide the opportunity to learn and extract dependencies 
between data across input and output domains. In seismic and 
seismological applications, encoder–decoder networks play a cru- 
cial role for tasks like denoising (M. Saad & Chen 2020 ; Knispel 
et al. 2022 ; Yin et al. 2022 ) or interpretation (Wu et al. 2019 ; 
Zhang et al. 2021 ). 

In this paper, we introduce an adaptation of encoder–decoder net- 
works to learn the relationship between seismic wave fields recorded 
at two different locations. By using 1-D time-series from a fixed seis- 
mic station as input and the measurements from a nearby seismic 
station as target, we aim for the network to learn the alterations that 
the signal undergoes between the tw o stations. This in volves tw o 
key concepts; first, the station-to-station transfer function, which 
describes how arbitrary seismic signals transform between the two 
stations due to geological and environmental factors, and secondly, 
the frequency-dependent Green’s function, which is the medium’s 
response to a delta source. We aim to demonstrate that a modifica- 
tion of the encoder–decoder architecture is capable of learning data 
characteristics that closely resemble the principle of the station-to- 
station transfer function within the setup of two seismic stations. 
While the foundation of the concept originates from the estab- 
lished practice of detecting and learning patterns and structures of 
and within time-series data (Malhotra et al. 2016 ; Badrinarayanan 
et al. 2017 ; Du et al. 2020 ; Beveren et al. 2023 ), our approach 
focuses more on the parts that influence the propagation of waves 
between nearb y locations. Thereb y, our anal ysis incorporates both 
phase and amplitude information, while also extending beyond the 
Green’s function to capture additional aspects such as the source 
time function and radiation pattern. This provides a new approach to 
approximate the principles outlined by Curtis et al. ( 2012 ) without 
requiring a time-reversal mirror, instead using a single sensor and 
deep learning techniques. 

We will guide through this study by introducing the encoder–
decoder network setup and the most important metrics for this 
specific use case (Section 2 ) first. Following this, Section 3 out- 
lines the characteristics of the measurement region and provides 

an overview of the selected seismic stations and data. Section 
4 will involve e v aluating the findings across different scenarios 
and data sets before discussing (Section 5 ) and drawing conclu- 
sions on the potentials and limitations of the presented method 
(Section 6 ). 

2  N E U R A L  N E T W O R K  S E T U P  

The methodology employed in this study follows the overall aim of 
testing the feasibility of a network that is able to learn the trans- 
fer properties between two seismic stations. We make use of an 
encoder–decoder architecture in a supervised fashion and train it 
by using input data from a fixed reference station A and target data 
from a second station B (Fig. 1 , top). The form of the network traces 
the traditional U-Net shape (Ronneberger et al. 2015 ; Zhu & Beroza 
2019 ; Li et al. 2022 ; Zhong et al. 2022 ) while an equal amount of 
con volutional and decon volutional blocks defines its structure. Each 
block consists of a con volutional layer , a batch normalization layer 
and an acti v ation layer. Fur ther more, we use a dropout layer after 
each block to prevent overfitting by randomly setting a fraction of 
input units to zero during training. To make sure that every input 
connects to every output, we extend the architecture by a dense 
layer in the latent space bottleneck. To enable the direct transfer of 
information from the encoder to the decoder, we introduce skip con- 
nections between the respective convolutional and deconvolutional 
blocks. The depth of the network is five, while we use hyperbolic 
tangens as final acti v ation layer in each of the individual use cases 
introduced in Section 3 . As an outcome of the learning process 
from the input to the target data, the network delivers a prediction 
that ideally resembles the shape of the target data. Fig. 1 illustrates 
the schematic network architecture subdivided into the use of input 
and target data, the encoder part, the latent space and the decoder 
part. 

To assess the model performance, we select different metrics 
to e v aluate the similarity between the predicted ( ̂ y ) and the ob- 
served value ( y ). This includes the mean squared error (MSE), 
which measures the average squared difference between predicted 
and observed values, and the mean absolute error (MAE), which 
quantifies the average absolute difference. In order to optimize the 
model during the training process of the algorithm, the error be- 
tween the model prediction and the actual target data is estimated 
using the Huber loss function implemented b y K eras (Chollet & oth- 
ers 2015 ). The Huber loss l (eq. 1 ) combines MSE and MAE with 
parameter ∂ defining the threshold for the transition from quadratic 
to linear components of the loss. This helps the Huber loss function 
to be robust to outliers in the data. 

l ( y, ̂  y ) = 

{
1 
2 
( y − ˆ y ) 2 for | y − ˆ y | ≤ ∂ 

∂ 
(| y − ˆ y | − 1 

2 ∂ 
)

for | y − ˆ y | > ∂ 
. (1) 

To re vie w the model’s training pro gress after completion, we 
analyse the shape of the Huber loss curve. In addition, we visually 
inspect the MSE and MAE loss curves as supplementary Keras 
metrics (Chollet & others 2015 ), noting that they are not integrated 
into the optimization during training. To assess the performance of 
the model and the goodness of its prediction after training, we select 
two metrics to independently assess both amplitude and phase fit, 
and subsequently consider them in equal measure for an overall 
indication of the model quality. 

In order to assess the degree of similarity between the target 
and prediction time-series, we use the normalized cross-correlation 
function as an e v aluation metric. When calculated without applying 
a time-shift, this is equi v alent to the Pearson correlation coefficient. 
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Figure 1. Simplified visualization of the network architecture consisting of an encoder and decoder part. Data from seismic station A serve as input, while data 
from another seismic station B provide the target data. Skip connections (dashed lines) link corresponding convolutional and deconvolutional blocks. Within 
the encoder, each block consists of a Convolutional layer (Conv), Batch Normalization (BN) and an Acti v ation layer. A dropout layer follows almost every 
block. Within the decoder, each block with dropout layer complements by an Upsampling layer. 
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he similarity between the two time-series is assessed by calculating
he correlation from their displacements, followed by normalizing
he results using the overall standard deviation of the signals. While
hase shift in seismology denotes the time displacement of a wave-
orm, we employ this metric to emphasize the temporal alignment
etween the two signals. Assuming a good model and thus an ac-
urate prediction, we expect both signals to be identical and align
ell without any offset. Under this assumption, we compute the
ross-correlation without shifting samples at zero time and deter-
ine the cross-correlation coefficient at that point. By doing so,
 value of 1 indicates a strong positive similarity, −1 indicates an
nticorrelation and 0 reflects no relationship between the two time-
eries. Assessing the cross-correlation on the entire time-series as
ell as in smaller segments of about 10.24 s helps in determining

he quality of the results in detail. 
Classifying the amplitude differences between the predicted and

he actual target values, the root mean squared error (RMSE) quan-
ifies the accuracy of a model while being sensitive to the magnitude
f errors. Thereby, the RMSE indicates how far the predicted value
eviates from the target value, providing an indication of predic-
ion accuracy. By employing RMSE as the second e v aluation metric
ids in comparing the amplitudes of the actual target data with those
redicted by the model. RMSE defines as shown in eq. ( 2 ), where
 represents the total number of data points and i refers to the i -th
bservation. With increasing errors, the RMSE score tends to rise
inearly, indicating that a smaller value corresponds to a closer align-
ent between the model’s predictions and the actual data. Thereby,
MSE shares units with the actual target values. 

MSE = 

√ √ √ √ 

1 

n 

n ∑ 

i= 1 
( ˆ y i − y i ) 

2 
. (2) 
While the Huber loss is estimated as part of the model train-
ng process to enhance the models understanding of the data it-
rati vel y, cross-correlation coef ficients and RMSEs are calculated
ost-training. Estimating both provides a comprehensive approach
o quantify the model’s predictive capability of how well it captures
he phases and amplitudes of the target data. Thereby, we do not
ombine the metrics numerically, but rather use them to comprehend
he quality of the results. 

 DATA  A N D  P RO C E S S I N G  

n order to demonstrate the viability of the proposed method in
apturing the relationship between two seismic stations, we will
mploy 1-D time-series measurements, starting with the exploration
f synthetic data. With this, we aim to validate the viability of
he general approach in a controlled setting, before we proceed to
nalyse field data gathered during a seismic exploration campaign. 

.1. Synthetic data 

o generate synthetic data, we simulate two seismic stations with
 constant interstation distance of 200 m located on top of a ho-
ogeneous, acoustic half-space with a medium velocity of 1500 m 

s .
his implies that, with a sampling rate of 100 Hz, the correspond-

ng wavelength is approximately 150 m, placing the second station
ell within one w avelength. Initiall y, we create an ideal scenario
ith a single source, consistentl y arri ving from the same direction,

ocated near the stations but changing its position for each exam-
le (Fig. 2 (c), S1). The resulting time-series resembles a cross-
orrelation function with a peak value of one at giv en trav eltime
nd zero elsewhere, incorporating time-shifts corresponding to the
ra veltime betw een the stations. By generating morlet wa velets with

art/ggaf004_f1.eps
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Figure 2. Geometry of the experiment and synthetic setups. (a) Map of the study area northeast of Vienna, where seismic stations are positioned with an 
interstation distance of approximately 200 m. The chosen pairs of analysed stations are indicated by coloured boxes. (b) Detailed view of the three chosen 
station pairs F1, F2 and F3 from the array deployment. The plot’s border colour corresponds to its location on the map. (c) Configuration of synthetically 
generated station pairs S1 and S2 with surrounding sources. 
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a fundamental frequency of approximately 9.9 Hz (with parameters 
w 0 = 5 , s = 1 , M = 101 samples ) and convolving them with the 
pre viousl y described time-series, we are able to generate surface 
waves that are not undergoing any reflections, refractions or con- 
versions. As a result of acti v ating the source only once, we receive 
a simplified time-series that contains a single wavelet at a specific 
traveltime. In order to resemble real-world setups with multiple am- 
bient noise sources more accurately, we increase the complexity of 
the setting by incorporating 20 randomly distributed sources into 
the scenario and dispersing them with varying spacing around the 
station pair (Fig. 2 (c), S2). While keeping the position of the sources 
stationary, we introduce some sources acti v ating multiple times with 
v arying of fsets for each of the active sources. This results in a time- 
series of overlapping signals from various distances and directions. 
To stabilize the procedure, we further add random noise to the data 
of both scenarios. Fur ther more, we establish identical initial condi- 
tions for the model training through the generation of an equi v alent 
amount of synthetic data compared to that present in the field data 
measurements. 

3.2. Field data 

To e v aluate the applicability of the proposed method across var- 
ious data scenarios, we employ not only synthetic data but also 
incorporate field data gathered at a seismic exploration campaign 
conducted by the OMV E&P GmbH in the Vienna basin, Aus- 
tria. The array setup consisted of in total 4907 seismic stations, 
each tooled with either 12 or 24 geophones (vertical components), 
and spaced with an interstation distance of approximately 200 m 

(Fig. 2 (a)). The measurement period comprises a total duration of 
about four weeks during March and April 2019 using a sampling 
rate of 100 Hz. Major and minor roads surround and intersect the 
region, and a rail wa y line runs along its southern boundary. In addi- 
tion to these sources of seismic signals, wind turbines and oil pump 
jacks appear throughout the region (Fig. 2 (a)). The wind parks 
Prottes-Ollersdorf and Grossengersdorf are situated northeast and 
southwest within the array, while the wind park Deutsch-Wagram 

is located on its southwestern boundary. Oil pump jacks position in 
various setups, ranging from individual placements to small clus- 
ters and larger groupings within the array. Ocean noise reaches 
the stations predominantly from the northwest direction. Schipp- 
kus et al. ( 2022 ) provide another detailed description of the array 
used in this study. The authors explore the impact of an isolated 
noise source within the framework of seismic interferometry using 
the same data set. Fur ther more, a detailed description of the study 
area offering background information on the present industry and 
additional potential sources of noise is given by Schippkus et al. 
( 2020 ). While using a different array than the one in this study, 
the authors provide detailed insights into the source characteris- 
tics of the region by examining spectrograms and power spectral 
densities. 

For the model training, we select three station pairs within the 
southwester n quar ter of the array. The choice of station pairs thereby 
depends on the respective area conditions in terms of wind turbine 
and oil pump jack distribution and the distances of these sources 
to the stations. We successi vel y enhance complexity between the 

art/ggaf004_f2.eps
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cenarios by increasing the number of surrounding noise sources
nd consider their spatial proximity to the stations. We e v aluate the
lose vicinity of a wind park in absence of other sources, as well
s configurations with and without a wind turbine positioned di-
ectly between the stations. Fig. 2 (b) shows the three scenarios and
heir surrounding noise sources. The first station pair F1 situates at
he western edge of the array in an area surrounded by fields. The
ind park Grossengersdorf is located in the southwestern vicinity
f the stations, having its closest wind turbine east of the stations
n about ∼110 m to the target station and ∼250 m to the reference
tation. Situated more towards the centre of the array, the second
tation pair F2 encircles by wind turbines and oil pump jacks, ap-
earing either indi viduall y or in smaller groups. With a distance
f ∼55 m to the reference station and about ∼125 m to the target
tation, a single wind turbine locates between the stations. For the
hird station pair F3, the number of surrounding sources further in-
reases, particularly witnessing a greater number of oil pump jacks
n close proximity to the stations. In contrast to the other station
ombinations, there is no wind turbine directly next to the stations
n this case. The closest wind turbine is located at a distance of
bout ∼440 m, while the nearest oil pump jack is ∼950 m away. To
nsure an appropriate and consistent amount of training and testing
ata, we limit the measurement of each station to a period of two
ays. 

.3. Data processing and model training 

rior to starting the training of models for each of the data sets, it is
ssential to perform pre-processing on the data, as it directly impacts
he network’s ability to learn accurately. In addition to filtering
he data below 10 Hz using a Butterw orth lo w-pass filter , data
reparation for both synthetic and field data includes the alignment
f all amplitudes to the same range through data scaling. For the
ynthetic data, we implement normalization to consistently scale
he data within the range of [ −1, 1]. Given the data generation
rocess, we expect only minimal variations within the data, thus
liminating the need for independent centring and scaling using
tandard scaling methods. With regard to the variety of sources
nfluencing the characteristics of the field data, we anticipate greater
ariations in range and distribution within this data set. Therefore,
e combine both standard scaling and normalization to account for

hese v ariations. Initiall y, standard scaling is applied to centre the
ata around zero and standardize its deviation to one, followed by
ormalization to adjust the data to fit within the range of [ −1, 1].
efore scaling, we allocate 80 percent of the data to the training

et and 20 percent to the testing set. Additionally, 20 percent of the
raining data is automatically determined as the validation set during
odel training. To ensure successful model training, it is important

o provide a sufficient amount of training and testing examples. To
o so, we divide the overall time-series of two days into chunks of
0.24 s each, while each chunk corresponds to 1024 samples based
n a sampling rate of 100 Hz. Like this, we receive 13.500 chunks
or training and 3.375 chunks for testing. In the following, we will
efer to these chunks as traces. 

We train our encoder–decoder model using pre-processed input
races from reference station A and provide the traces from station B
s the target we aim to predict. This wa y, w e obtain a unique model
or each station pair that outputs predictions based on the individ-
al data set provided. Subsequently, we compute rele v ant metrics
etween the target and prediction to assess the model performance.
ollowing architectural investigations, we empirically determine
he optimal network depth by analysing accurac y, conv ergence and
odel performance on a sample of the data before starting model

rainings. In order to capture the complexity of the data and avoid
verfitting, we use a network depth of five lay ers. F ig. 1 shows the
chematic layout of the network having five convolutional and de-
onv olutional b locks. We train our models with a learning rate of
0 −4 for 1500 epochs each, as further training beyond this point
oes not significantly improve performance. 

 R E S U LT S  

ollowing the training phase, we e v aluate the models by calcu-
ating the RMSE and cross-correlation coefficient (CC) between
he target data and the corresponding model prediction. We as-
ess both metrics on the overall target time-series of two days, and
n smaller segments of it. To facilitate the analysis of results and
mprove the visual representation, we analyse our results within
utput segments that are half the size (512 samples) of the training
nd testing traces. When the model captures all rele v ant transfer
eatures from the data, its predictions will accurately correspond
ith the unseen target data. To scrutinize the results in terms of
ositive and negative amplitude deviations, we visualize each sam-
le of the entire target time-series against the model prediction by
ensity plots (Fig. 3 (d)). In order to comprehend the correlation
ynamics across the whole data set, we further estimate correla-
ion coefficients for each window of 512 samples without any shift
nd visualize their distribution through a histogram (Fig. 3 (e)). Go-
ng into further detail, we will analyse a representative example
race (Fig. 3 (b)) for each scenario along with its corresponding pre-
iction, correlation coefficient and input data (Fig. 3 (a)) from the
odel training. To understand how the cross-correlation coefficient

volves throughout the data, we link each section of the trace to
ts corresponding correlation coefficient, as shown in Fig. 3 (c). For
his, we compute these correlation coefficients using moving inter-
als of 20-sample windows with a 10-sample offset and visualize the
esults. 

.1 Synthetic data 

ig. 3 illustrates the results for the two scenarios of synthetic data.
or the single source case S1 (Fig. 3 (a)–(e)), the model prediction
losely aligns with the actual target data (Fig. 3 (b)), showing the
lgorithm’s general capability to predict the transfer properties in a
ery simplified setup. Metrics support this observ ation, v alidating
he accuracy of predictions and the presence of minimal errors by
 small RMSE value of 0.04. While the majority of value pairs
luster around the ideal case of correct amplitude predictions as in-
icated by the dotted purple line in Fig. 3 (d), some segments show
ignificant deviations, highlighting instances where the prediction
oes not align with the target values. The overall cross-correlation
oefficient of 0.90, as shown in Fig. 3 (e), reflects the predominance
f good fits, though it moderates by the occurrence of some less
ccurate predictions. The histogram shows, that a majority of traces
isplay a correlation coefficient close to one, while another distinct
luster is observed around zero. We attribute the latter cluster, ob-
erved around zero, to the random noise introduced in the data,
hich adds variability but does not necessarily indicate a system-

tic relationship. Consequently, the predictions do not align with the
arget, leading to CCs near zero. This observation is confirmed by
he analysis of CCs in smaller windows (Fig. 3 (c)), which indicate
trong correlations when predicting the wavelet at given traveltime,
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Figure 3. Results of the model analysis for two synthetic data scenarios (S1, top—dashed bo x; S2, bottom—solid bo x) using RMSE and cross-correlation 
coefficient (CC) across the entire target time-series and within traces. Panels (a) and (f) represent the input data, panels (b) and (g) denote the target data 
and network prediction, respecti vel y. The density plots (d) and (i) show the network prediction of the target against the actual target data, while the dotted 
line visualizes the ideal best-fitting line for the regression. Single points ((c), (h)) depict cross-correlation coefficients for 20-sample sections beneath the 
corresponding example trace. Histograms ((e), (j)) show correlation coefficients for windows of 512 samples each. The black marker highlights the overall 
correlation coefficient of the entire time-series given in the text box. 
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whereas the correlations of random noise components are signifi- 
cantly lower. 

The presence of 19 sources surrounding the stations (scenario 
S2, Fig. 3 (f)–(j)) introduces increased variability to the data, evi- 
dent in the time-series as overlapping signals with varying ampli- 
tudes (Fig. 3 (g)). While certain segments of the target trace align 
with the model predictions (Fig. 3 (g)), other parts reveal dispari- 
ties in either amplitude or the general shape of the wavelet. The 
overall correlation coefficient of 0.34 (Fig. 3 (j)), along with the 
RMSE of 0.13 (Fig. 3 (i)) highlights larger differences in the sim- 
ilarity of the time-series compared to the single source case S1. 
Ho wever , the given overall correlation coefficient of 0.34 indicates 
a predominantl y positi ve correlation, impl ying that the model is 
able to approach a modest similarity between its predictions and 
the target data. The analysis of the correlation coefficients for in- 
dividual traces (Fig. 3 (j)) reveals characteristics of Gaussian-like 
distribution, with the majority of values concentrated between 0.1 
and 0.4, and some traces reaching an upper limit near 0.8 and a 
lower limit around −0.4. Analysing the kind of differences be- 
tween the target and predictions (Fig. 3 (i)) demonstrates a slightly 
tilted elliptical shape of amplitude mismatch around the centre in- 
dicating that amplitudes are more commonly underestimated than 
overestimated. 

The outcomes from both scenarios reveal promising indications 
of the feasibility of this model architecture. While they exhibit 
significant differences in performance, both models generate pre- 
dictions that indicate patterns, for example, predicting phases accu- 
rately rather than appearing random. Especially scenario S1 thereby 
demonstrates the potential of the overall algorithm to learn the trans- 
fer between two nearby stations, despite not accurately representing 
real-world conditions. Even in the second scenario, the prediction 
maintains a reasonable level of accuracy. This establishes a solid 
foundation for the transition to field data, mirroring a compara- 
ble scenario where two seismic stations are encircled by seismic 
sources. 
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.2 Field data 

ig. 4 depicts the outcomes for the three field data scenarios. Begin-
ing with the first station pair located at the array’s edge near a wind
ark (F1, Fig. 4 (a)–(e)), the model prediction closely aligns with
he actual target data in various segments (Fig. 4 (b)). While we ob-
erv e positiv e and ne gativ e deviations in amplitudes between target
nd prediction in several parts of the trace, the prediction of phases
xhibits accurate matches with the target time-series. Fig. 4 (c) con-
r ms this obser v ation, as the correlation coef ficients for the majority
f trace subparts cluster near one, highlighting the model’s accu-
acy in predicting phase information. With an overall correlation
oefficient of 0.75, the concentration of individual correlation co-
fficients (Fig. 4 (e)) is mostly within the positive range of 0 to 1,
aving its peak strength at a high correlation value of around 0.8.
 cluster of values around 0.75 characterizes the central tendency
f the data set and emphasizes further the models ability to make
redictions of similarity to the target data. Besides, there is another
otable peak around −0.58 and −0.78, likely attributable to data
aps present in this data set leading to inaccurate predictions in the
e gativ e range. Evident from the elliptical shape, the density plot
Fig. 4 (d)) reveals positive and negative mismatches of amplitudes
long the dotted purple best-fitting line. Thus, both positive and
e gativ e amplitude predictions display tendencies of overfitting and
nderfitting, reflecting some variability in the model’s capacity to
ccurately estimate amplitude values. The RMSE reflects this with
n average deviation of around 0.13 units of amplitude between
redicted and actual values. In comparison to previous examples,
his scenario indicates a relati vel y broader distribution of ampli-
ude values stretching to the lower and upper limits of the data
ange. 

While wind turbines are already in close proximity to the sta-
ions in the first case F1, the distance further halves for the second
cenario F2 (Fig. 4 (f)–(j)), where a wind turbine is located directly
etween both stations. Although the overall correlation coefficient
f 0.77 (Fig. 4 (j)) is nearly identical to one of the previous exam-
le, there are visual differences regarding the data itself and the
odel outcomes leading to variations in the results. Examining the

xample trace (Fig. 4 (g)), the predicted phases largely correspond
ith those of the target data again. The predominance of correlation

oefficients close to one supports this observation (Fig. 4 (h)), al-
hough minor or ne gativ e coefficients occur occasionally. Ho wever ,
he amplitude predictions again exhibit greater variances compared
o the targets. While the RMSE for the selected trace is 0.06, the
lobal RMSE measures at 0.08 (Fig. 4 (i)), indicating more accurate
mplitude predictions for this station pair compared to case F1. This
s also evident when looking at the distribution of values around the
urple dotted best-fitting line of the plot. Similar to the initial ex-
mple, the anal ysis re v eals a tendenc y to both ov erfit and underfit,
ffecting the accuracy of predictions for both positive and negative
mplitude v alues. Howe ver, the data set predominantly consists of
maller values, leading to reduced variability and a narrower range
f data dispersion. Following this, the individual correlation coeffi-
ients of traces (Fig. 4 (j)) not only approximate a nearly Gaussian
istribution again but also display increased steepness, indicating a
ighter clustering of values around the mean. 

The third station pair, F3, unique among the combinations as it
acks a wind turbine in direct proximity to the stations, leads to
n overall correlation coefficient of 0.58, as shown in Fig. 4 (o).
lthough the overall correlation coefficient represents a decrease
elative to those found in earlier field data examples, the amplitude
e viations, characterized b y an RMSE of 0.10, lie within an interme-
iate range compared to the observations from the prior two cases.
n this instance, as shown in Fig. 4 (n), the comparison of target and
redicted amplitudes reveals an elliptical shape again. Ho wever , the
llipse appears more circular in comparison to previous cases, sug-
esting that it represents an intermediate scenario in terms of the
pread and steepness. Additionally, there is the same tendency of
ver- and underestimation as in previous scenarios. The analysis of
he model’s performance on the example trace (Fig. 4 (l)) shows dis-
arities between the target and predicted values in certain intervals,
hereas other sections align well. Correlation coef ficients, deri ved

rom 20-sample segments of the example trace (Fig. 4 (m)), confirm
his impression: values near one mirror precise phase predictions or
oderate amplitude fits, while values at or below zero point to neg-

ti ve predictions. The anal ysis of correlation coef ficients for trace
indows (Fig. 4 (o)) reveals that most bins lie within the positive

ange of 0.2 to 0.8, while we identify one large peak above 0.9. This
ndicates the presence of a generall y positi ve linear relationship
etween input features and the models output predictions, affirm-
ng the model’s ef fecti veness in detecting data patterns to a certain
egree. 

All three field data examples exhibit moderate to strong linear
orrelation, providing predictions that resemble the actual target to a
igh degree. In this regard, both the visual assessment and the e v alu-
tion metrics surpass the performance of the second synthetic exam-
le S2, which mirrors comparable environmental conditions of hav-
ng sources distributed around the stations. Ho wever , the field data
xamples do not achieve the level of accuracy seen in the perfect syn-
hetic case S1, suggesting that the performance of field data models
anges somewhere between these two extremes. Physically, we also
xpect the source regime to be a hybrid between single source and
 venl y distributed sources, with a tendency towards a few significant
ources. 

 D I S C U S S I O N  

he model architecture described in this study shows the capability
o predict the transfer properties, in our case the 1-D time-series,
etween two seismic stations in different source-station-setups. Em-
loying diverse scenarios of both synthetic data (Fig. 3 ) as a con-
rolled environment, and field data (Fig. 4 ), representing real-world
onditions, deli vers a comprehensi ve proof of concept across dif-
erent data sets. Overall, the models demonstrate strong predictive
erfor mance, par ticularly in predicting the phase of the wavefield
ore reliably than its amplitude, as demonstrated by both synthetic

Fig. 3 ) and field data examples (Fig. 4 ). While the models man-
ge the novel scenario of differing input and target data ef fecti vel y,
urther optimization by fine-tuning various factors, such as hyper-
arameters, could affect the algorithms performance even further
Weerts et al. 2020 ; Yang & Shami 2020 ; Bakhashwain & Sagheer
021 ). 

Particularl y e vident in the scenario S1 (Fig. 3 (a)–(e)), the model
raining benefits significantly by considering only a single source
rom one direction and random noise, representing an idealized sce-
ario. This simplification yields fav ourab le results, underscoring the
etwork’s general ability to learn a given relationship in a controlled
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Figure 4. Results on the comparative analysis (cf. Fig. 3 ) for three field data scenarios (F1 top, F2 middle, F3 bottom). Plots provide insights into the 
examination of correlation dynamics, magnitude deviations and distribution patterns using RMSE and cross-correlation coefficient (CC) for e v aluation. The 
results for this data set follow the same e v aluation criteria and presentation as in Fig. 3 . The frame colour of the box indicates the corresponding scenario. 
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setting. Moving to scenario S2, the approach handles a higher level 
of complexity introduced by simultaneous inputs from multiple di- 
rections. Despite these challenges, the algorithm maintains a decent 
level of performance, as evident by the mean correlation coefficient 
(CC) of 0.34. When comparing the performance of this second syn- 
thetic example S2 (Fig. 3 (f)–(j)) with that of the field data models, 
all results from the field data exceed the performance observed in 
S2 with CCs of 0.58, 0.75 and 0.77. Although scenario S2 may seem 

initially fav ourab le due to the uniform energy propagation from the 
synthetic sources, the obser ved perfor mance improvement in the 
field data is likely driven by the unique characteristics of different 
sources around the array, such as wind turbines, oil pumps or roads. 
Despite similarities in source distributions between the two setups, 
our field data do not exhibit the extreme conditions of S2, demon- 
strating the robustness and practical applicability of our approach 
in more natural and realistic scenarios. 

While the CC threshold values we obtain might be considered 
relati vel y low or almost comparable in the context of some ML stud- 
ies (Wu et al. 2021 ; Verma et al. 2024 ), in seismolo gy, Schaf f et al. 
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 2002 ) used a normalized CC of 0.7 as a criterion for reliable relative
rri v al time measurements. Wegler & Sens-Sch önfelder ( 2007 ) con-
idered only cross-correlation coefficients above 0.5 for their d v / v
nalysis, and Castellanos et al. ( 2020 ) only use traveltime measure-
ents with CCs larger than 0.5 as reliable. Although the research

ettings of their studies differ from ours, the range of values of CC
hresholds in ‘real data’ studies underscores its broad applicability
s a measure of data reliability. This alignment emphasizes that our
se of noise field data is yielding results that are comparably robust
nd reliable. 

In addition to the equal distribution of energy for each source in
he synthetic data scenarios, the inconsistent and repeated acti v ation
f these sources may fail to generate learnable characteristics in the
ata set. The absence of pattern-like attributes introduces challenges
or the algorithms learning process, as they represent essential rela-
ionships within the data that models are trained to learn and utilize.

hile this could potentially create challenges with our synthetic
ata, the situation shifts with the nature of sources present in the
eld data, which exhibit consistent and repetitive signals. Given

he distribution of surrounding sources in the field data examples
Fig. 2 b), we account for the presence of wind turbines at various
istances in each scenario. Neuffer et al. ( 2019 ) demonstrate that
ind turbines show directional characteristics with wind-dependent

pecific patterns. Anticipating these sources to introduce distinct
atterns by the propagation of similar signals, we expect them to
rovide valuable input to the model training and enhance its predic-
iv e accurac y. Giv en that our results improve when wind turbines
re in close proximity to the stations, the presence of such noise
ources appears to resemble the characteristics of a single source
nd thus positi vel y influences the model’s performance. 

While it is evident that consistently emitting sources such as wind
urbines positi vel y impact our results, it is not immediatel y clear
hy we observe stronger accuracy across various data sets in the
rediction of phases, while our models preferentially underestimate
mplitudes (Figs. 3 and 4 ). Given that neither the area of investi-
ation nor the characteristics of the sources and stations indicate
ny physical phenomena that could account for these deviations, it
ppears that there are no evident physical processes to explain this
eha viour. Consequently, w e will focus our investigation on the data
s well as the architecture and parameters of the models as potential
ause. The fundamental nature of encoder–decoder networks, par-
icularly autoencoders and the ones used for sequence-to-sequence
earning, aims to capture and reconstruct patterns in the data.
dentifying both the sequence of events over time and underlying
atterns within the data allows these networks to e xtract ke y features
nd reduce dimensionality to focus on key relationships. Ho wever ,
ncoder–decoder networks learn to prioritize certain data character-
stics based on their architecture, which determines how layers and
onnections handle specific features in the data. Weights and biases,
or example, adjust during the training process and influence which
ata attributes are prioritized. Fur ther more, input data properties
uch as dimensionality or level of noise, can affect the process
f prioritization and learning of various patterns. Upon visually
nspecting our data, it becomes apparent that the spacing between
hases of our time-series appears to be relati vel y consistent. This can
e attributed to two key factors: the application of filtering and the
ominance of a relati vel y narrow frequency band in the remaining
requencies. While this is true for the phases, amplitudes vary be-
ween high and low values and span from positive to ne gativ e, which
oses a greater challenge for the model to learn properties of these
ore complex patter ns. Fur ther more, neural networks can exhibit a

ow-frequency bias, meaning they learn low-frequency components
ore easily than high-frequency details (Rahaman et al. 2019 ).
ince an exact fit of amplitudes requires learning both high and

ow-frequency patterns, this bias can lead to difficulties in capturing
he full amplitude spectra (Song et al. 2021 ; Rasht-Behesht et al.
022 ; Ren et al. 2022 ) and may result in the underestimation of
mplitude variations. Besides the architecture of encoder–decoder
etworks and the quality of training data, the choice of parameters
ike learning rate, batch size, acti v ation or loss function can affect
he model performance. As an example, while we initially used
he tanh acti v ation function, we also e v aluated the sigmoid and
inear acti v ation functions. Both yielded comparable results but
id not improve the underestimation of amplitudes observed. This
ighlights the need for additional research for a comprehensive
nderstanding. 

Although it is not obvious to us why amplitudes are preferen-
iall y underestimated, man y seismolo gical applications rel y entirel y
n the phases of seismograms. Our models reliably predict the
hase of seismic noise. For instance, phases from seismic waves
re essential for determining arri v al times of dif ferent w aves, which
elp to locate earthquake epicentres and understand Earth’s internal
roperties. In addition, phase-based investigations, such as ambient
oise tomography and seismic interferometry, predominantly rely
n phase information to extract subsurface details. As highlighted
y Bensen et al. ( 2007 ), ambient noise data processing involves
teps like cross-correlation and temporal stacking, which are inher-
ntly phase-dependent, and the accurate measurement of dispersion
urves, which utilize phase and group speeds. Seismic interferom-
try, for example, involves the cross-correlation of seismic record-
ngs at different stations, allowing researchers to reconstruct the
reen’s function between two points using phase information. This
ighlights that while our amplitude predictions may be less precise,
he critical phase information remains robust and useful for various
eismolo gical anal yses. 

In general, choosing an encoder–decoder architecture suits the
equirements of the given problem, as it is able to capture complex
elationships and generalizes well to unseen data. Traditionally, this
pproach is used to predict future values of time-series based on
istorical trends, using past data as input to forecast subsequent
alues within the same series. Using it with input data from one
eismic station and target data from another seismic station thereby
iverges from this conventional application as well as from classical
utoencoders. While autoencoders aim to learn a compressed rep-
esentation of the input data, the proposed architecture extends this
pproach to learn and predict the relationship between data from
istinct stations. In other words, our model learns the propagation
f comple x wav e fields between the stations. This allows to model
patial and temporal dependencies between seismic data relying
n the phase and amplitude information of the signals. While our
rchitecture encounters challenges in explicitly modelling spatial
orrelations, its ability to predict the translation of seismic sig-
als from one station to another shows that the temporal factors
rovide sufficient information for high-quality predictions. This
ighlights the U-Net’s robustness, even without explicitly incorpo-
ating spatial correlations into the modelling. This also raises new
ossibilities by assuming the integration of only minimal spatial
ependencies. 

One might draw parallels between this approach and Wiener pre-
iction filters (Chen et al. 2006 ; Chandra et al. 2014 ), which also
im to capture dependencies within signal data. Ho wever , it is im-
ortant to note that Wiener prediction filters primarily deal with
he autocorrelation of signals, focusing on their power spectrum
ithout considering phase information. Wiener filtering assumes
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non-deterministic signals, which contradicts seismic signals known 
for their deterministic nature, such as reflections from layered struc- 
tures. In contrast, our method comprehensi vel y accounts for the dy- 
namic, nonlinear interactions and phase information essential for 
accurately modelling wave propagation in seismology. 

To advance our approach from the proof-of-concept stage de- 
scribed herein to concrete applications, several aspects will likely 
need to be addressed. These could encompass technical and struc- 
tural enhancements that include the improvement of data quality, 
fine-tuning of hyperparameters or the accuracy of amplitude predic- 
tions. Additionally, we might consider adjustments to the synthetic 
data generation process to better resemble conditions encountered 
in field environments with multiple ambient noise sources. Future 
studies might also delve into how the geographical and spatial con- 
figuration of sources and receivers impacts the results. Given the 
differences in model performance in predicting phases and am- 
plitudes, experimenting with different model architectures and pa- 
rameters could further be advantageous. By implementing these 
modifications to the model setup and understanding influences on 
the results in detail, we can further refine the overall performance 
and robustness of our approach. 

6  C O N C LU S I O N  

In this study, we have successfully presented and tested an adap- 
tion of encoder–decoder networks to predict the transfer function of 
seismic wa vefields, betw een two seismic stations. By introducing 
1-D time-series data from a fixed seismic station as the input to the 
network and data from a nearby station as the target, our approach 
ef fecti vel y learns the transfer function between the locations. Ini- 
tially tested with synthetic data, the approach was validated further 
with field data from a seismic exploration campaign. Employing 
a range of scenarios with varying surrounding conditions—from a 
controlled environment with synthetic data to field data including 
several sources of ambient noise—we demonstrate a broad proof of 
concept. 

Our findings confirm that our approach ef fecti vel y predicts the 
wavefield recorded as time-series at a seismic station using input 
from a neighbouring seismic station, resulting in machine learn- 
ing models with varying degrees of accuracy . Notably , our models 
not only achieve high precision in predicting the phases of seis- 
mic waves but also perform adequately in estimating amplitudes, 
demonstrating significant potential for the field of geophysical re- 
search. This makes our approach particularly valuable for applica- 
tions requiring precise seismic isolation or compensation, such as 
active vibration isolation in photolithography, semiconductor man- 
uf acturing and 3-D microf abrication (Kerber et al. 2007 ; Kim et al. 
2009 ). It is also highly relevant for projects like the Einstein Tele- 
scope (Punturo et al. 2010 ; Harms et al. 2022 ), where extremely 
sensitive gravitational wave detections need to be free from seismic 
disturbances. Additionally, our approach also opens up the potential 
for the novel concept of virtual seismic arrays. 
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Key Points:6

• We introduce Virtual Seismic Arrays to predict array recordings from a single sta-7

tion for data collection after physical array removal.8

• To capture transfer characteristics between stations, we train deep learning mod-9

els on GRF array recordings of secondary microseisms.10

• The Virtual Seismic Array’s performance is assessed through beamforming, show-11

ing strong agreement between predicted and original results.12
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Abstract13

We introduce Virtual Seismic Arrays, which predict full array recordings from a single14

reference station, eliminating the need for continuous deployment of all stations. This15

innovation can reduce costs and logistical challenges while maintaining multi-station func-16

tionality. We implement a Virtual Seismic Array using a deep learning encoder-decoder17

approach to predict transfer properties between stations. Training on recordings from18

the Gräfenberg array in the secondary microseism frequency band allows us to retrieve19

models capturing transfer characteristics between stations. These models form the Vir-20

tual Seismic Array. To evaluate performance, we beamform original and predicted wave-21

forms to detect dominant secondary microseism sources. We assess three scenarios: one22

aligning with the training dataset, another with two regimes in training but testing on23

one, and a third where training data does not align with the testing regime. Our results24

show strong agreement between predicted and original beamforming results, demonstrat-25

ing the potential of Virtual Seismic Arrays.26

Plain Language Summary27

In geophysics, analyzing various signals, including those from earthquakes and environ-28

mental noise, is essential for understanding Earth’s behavior and seismic activity. To col-29

lect seismic data, groups of sensors known as seismic arrays are used. This approach helps30

analyzing seismic data and improves our ability to locate where seismic waves come from.31

In this study, we introduce Virtual Seismic Arrays, which use data from one reference32

station within the array to predict the recordings captured by the entire array. This re-33

duces the need to have all stations actively collecting data all the time. We create this34

Virtual Seismic Array using a deep learning method called encoder-decoder networks,35

which learns how seismic signals propagate between stations. We train our algorithm us-36

ing data from the Gräfenberg array, focusing on a frequency range of 0.1 to 0.25 Hz as-37

sociated with ocean-generated seismic waves. This way, we create models that learn and38

predict how the reference station is related to the other stations in the array. To eval-39

uate how well our Virtual Seismic Array works, we compare original and predicted data40

across different cases. Our results show a strong similarity between original and predicted41

data, demonstrating the potential of Virtual Seismic Arrays for future applications.42
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1 Introduction43

Seismic arrays are an essential approach to collect and analyze seismic data, improving44

the understanding of geophysical processes like seismic source localization and determi-45

nation of large- and fine-scale structures of the Earth’s interior (Gibbons & Ringdal, 2006;46

Rost & Thomas, 2009; Schweitzer et al., 2012). By increasing the capability to detect47

seismic events, seismic arrays significantly improve seismic monitoring and allow for in-48

sights into wave propagation phenomena. An essential processing technique enabling this49

is beamforming, which allows directional signal detection by combining multiple sensor50

inputs, thereby improving signal-to-noise ratio and allowing seismic arrays to operate51

as wave number filters (Capon et al., 1967; Rost & Thomas, 2002; Wang et al., 2020).52

Array beamforming is also widely applied in other fields, such as ultrasound and astron-53

omy, where it improves image resolution and diagnostic precision (J. Y. Lu et al., 1994;54

Holfort et al., 2009; Luijten et al., 2020), as well as the sensitivity of observations (van der55

Veen et al., 2004; Warnick et al., 2016).56

This research aims to advance seismic observation techniques by introducing the con-57

cept of Virtual Seismic Arrays, which could help vastly decrease costs and improve mon-58

itoring in environments with limited resources or insufficient seismic infrastructure. A59

Virtual Array is able to acquire seismic data from previously instrumented areas even60

after the physical sensors have been removed. The concept includes the prediction of ar-61

ray recordings based on data from a single reference station, which was originally part62

of the array, thereby eliminating the need for continuous deployment of all array stations.63

While multiple stations often provide advantages in event location and signal character-64

ization (Gibbons & Ringdal, 2006; Rost & Thomas, 2009), they can be challenging to65

deploy, require regular maintenance, and are associated to high operating costs. Our new66

approach uses deep learning to achieve capabilities similar to those of seismic arrays with67

just a single station. By learning signal propagation characteristics between a reference68

station and all stations within a seismic array, our method maintains the ability to mon-69

itor seismic activity effectively, while significantly reducing the physical infrastructure70

required. We note that the term ”virtual seismic array” has been used before in a dif-71

ferent context (Alhukail, 2012), where it refers to an approach for enhancing the response72

of an existing seismic array. In contrast, our approach aims to allow the continued op-73

eration of seismic arrays after most stations have been removed from the field.74
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Encoder-decoder networks, a type of neural network, have been widely applied in seis-75

mology to learn complex patterns from seismic data enabling earthquake event classi-76

fication (W. Li et al., 2022), fault detection (S. Li et al., 2019) or seismic inversion (Gelboim77

et al., 2023). Klinge et al. (2025) employed encoder-decoder networks that represent the78

transfer function between two seismic stations by learning the underlying signal trans-79

formations. Within a supervised framework, the network is trained with time series data80

from a fixed seismic reference station to successfully predict measurements of different81

neighboring stations (Klinge et al., 2025).82

We investigate the applicability of encoder-decoder networks to realize Virtual Seismic83

Arrays. As a proof-of-concept, we train a Gräfenberg Virtual Seismic Array in the sec-84

ondary microseism frequency band (0.1 to 0.3 Hz), where wind-driven ocean waves in-85

teract with the solid Earth, resulting in continuous seismic noise detectable on land (Longuet-86

Higgins & Jeffreys, 1950; Hasselmann, 1963; Ardhuin et al., 2019). By using beamform-87

ing techniques, we analyze the noise signals recorded in the given frequency band to iden-88

tify and differentiate the dominant wave type regimes present in the seismic noise field.89

In the following, we describe the data used, the network architecture and compare beam-90

forming results on original and predicted recordings.91

2 Data and Methods92

2.1 Seismic data and beamforming93

We train the neural networks with data from the Gräfenberg seismic array (GRF), which94

consists of 13 seismic broadband stations (Harjes et al., 1977). The array is located in95

the Franconian Jura in central Bavaria, Germany, extending approximately 100 kilome-96

ters north-south and 40 kilometers east-west (Fig. 1a). We select two time frames for97

analysis, each consisting of two days of data from all array stations, with one frame cor-98

responding to summer (July 2013) and the other to winter (November 2013), chosen to99

avoid earthquakes. To prepare the data for the neural network training, we remove the100

instrument response, detrend, and demean. Seismograms are filtered in the secondary101

microseism frequency band using a Butterworth bandpass filter from 0.1 Hz to 0.25 Hz.102

Finally, we resample the data to 20 Hz.103

Beamforming enables the extraction of propagation characteristics of seismic waves by104

analyzing the waveforms recorded across the array (Rost & Thomas, 2002; Ruigrok et105
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Figure 1. Gräfenberg array beamforming. a Map of Germany showing the location of the

Gräfenberg (GRF) array, with seismic stations indicated by orange triangles. The reference sta-

tion GRB2 is indicated with a white frame. An inset in the top-left corner provides a zoomed-in

view of the station arrangement within the array. b Beamforming results for the selected two-day

time period during summer. Colors indicate the normalized beampower in each slice along the

best-fitting backazimuth and slowness dimensions. The best-fitting backazimuth and slowness are

indicated with a black dot.

al., 2017). We use cross-correlation beamforming, which applies the delay-and-sum ap-106

proach (Rost & Thomas, 2002) to correlation functions in order to estimate the dom-107

inant direction of arrival (backazimuth) and slowness. This method assumes plane waves108

propagating across the array and is closely connected to Bartlett beamforming (Baggeroer109

et al., 1988). Both, backazimuth and slowness, not only provide important insights into110

the seismic waves being analyzed, but, in this study, are the quantities we use to vali-111

date the quality of the Virtual Seismic Array.112

We apply beamforming to the original GRF recordings using 1-hour windows with 75%113

overlap. It is important to note that station GRB2 serves as the reference station and114

is therefore excluded in the beamforming. Figure 1b shows backazimuth and slowness115

for the selected two-day summer period. Background colors are slices through the slow-116

ness domain normalized by beampower, highlighting the best-fitting backazimuth and117

slowness with a black dot. During the first 22 hours, we observe waves from the north,118

with a single dominant backazimuth of 7◦, measured clockwise from North, and slow-119
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ness of 0.32 s/km (Fig. 1b). We call this the surface wave-dominated regime due to the120

presence of Rayleigh waves in this frequency range (Juretzek & Hadziioannou, 2016). We121

further observe a stark transition to waves arriving from the southwest, with backazimuth122

and slowness values of 235◦ and 0.03 s/km, respectively, indicating the transition to a123

body wave-dominated regime (Landès et al., 2010; Pedersen & Colombi, 2018; Y. Lu et124

al., 2022; Zhang et al., 2023). These are the regimes we refer back to later in the text.125

2.2 Waveform prediction126

To obtain the models that predict seismic waveforms and together constitute the Vir-127

tual Seismic Array, we build on the approach introduced by Klinge et al. (2025). By learn-128

ing the transfer functions between a reference station and all other stations within a given129

seismic array, we obtain unique models that capture the transfer characteristics for each130

station pair individually. This allows modeling data at each station even if they are no131

longer in operation, provided that the reference station is still installed and running. We132

select GRB2 as the reference station because it is located near the center of the array133

(Fig. 2a).134

Klinge et al. (2025) used an encoder-decoder network to learn the transfer properties be-135

tween two seismic stations. We use the same network architecture with minor changes136

to account for the different sampling frequency and frequency band. The approach in-137

volves feeding input data from a seismic reference station to the network, with the aim138

of learning the transfer to target data from a neighboring seismic station. As a result,139

the network generates predictions that ideally approximate the waveforms of the target140

data. We demonstrate that this methodology is applicable not only to the original study’s141

data but also to the GRF array. While the original study involved an array with inter-142

station distances of hundreds of meters (about seven wavelengths) and varying sources,143

like oil pumps, at frequencies below 10 Hz, we now apply the methodology to the GRF144

array with tens of kilometers between stations and in the frequency range of 0.1–0.25 Hz.145

Figure 2b illustrates example results from training the network with GRF array data,146

comparing target data and predictions for each station alongside the corresponding cor-147

relation coefficient (CC) for quality assessment. While amplitude predictions show vari-148

ability, resulting in over- or underestimation, phase information is consistently well pre-149

dicted, which is essential for effective beamforming applications. Although our average150

CC values are lower than those reported by Klinge et al. (2025), the maximum CC value151
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we achieve is comparable to the results, highlights that the algorithm has the potential152

to capture key aspects of wave propagation in the GRF data as well.153

Figure 2. The Virtual Seismic Array. a The arrangement of stations within the Virtual GRF

Array, highlighting the reference station GRB2 with a bold white outline, while the virtual sta-

tions are displayed in faded orange. Dashed lines illustrate the connections from the reference

station to each of the array stations, forming station pairs for model training. b A selection of

example data, featuring the target time series, i.e., the original recording, for each station (orange

line) and the corresponding model predictions (blue line). The normalized correlation coefficient

is provided on the right side for the example trace depicted (CC) as well as for the entire target

data (CC all), indicating the degree of similarity between the two time series.

Based on this methodology we perform the network training for every station combina-154

tion with the reference station GRB2. Before training, the data are scaled with a com-155

bination of standard scaling and normalization. We allocate 80% of the data to the train-156

ing set and 20% to the testing set. The testing set consists of data that the model has157

not seen during training (e.g. target data in Fig. 2b), allowing us to evaluate how well158

the algorithm generalizes to new data. The performance of the models on the testing data159

of each station represents the Virtual Seismic Array, enabling the prediction of seismic160

data across the array even if stations encounter failures or downtimes.161

3 Performance of the Virtual Seismic Array162

We evaluate the performance of the Virtual Seismic Array across three different scenar-163

ios of increasing complexity. First, we analyze a single dominant noise regime, charac-164

terized by surface waves only for both the training and testing data. Next, we evaluate165
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its adaptability to a changing regime by training the models with data that transition166

from surface wave-dominance to body wave-dominance (Fig. 1b). Finally, we assess the167

performance for an unseen regime, where surface waves dominate in training but body168

waves dominate in testing. In the following, ”real array” refers to the original data, where169

all stations are still active. Our predictions constitute the Virtual Array.170

3.1 A single dominant regime171

For a single dominant regime (Fig. 3) we find that backazimuth and slowness detected172

by the real array in the test data (Fig. 3c,d) closely match those in the training set (Fig.173

3a,b). The Virtual Array detects the same dominant backazimuth and slowness (Fig. 3e,f).174

Both the real and Virtual Array find surface waves incoming from North. The predicted175

slowness closely matches the original measurements, showing precise and focused detec-176

tions.177

The strong correspondence between the performance of the real array and Virtual Ar-178

ray demonstrates the proposed method effectively learns and predicts relevant seismic179

features in the data, despite low correlation coefficients. This highlights the algorithm’s180

ability to capture the transfer characteristics between each station pair during training181

and to apply this knowledge to unseen data, showing its robustness with less than two182

days of training data. Our findings indicate the algorithm performs particularly well when183

the dominant noise regime is stable and aligns with the training dataset. Given that the184

model was trained on and applied to a single type of wave regime, we anticipated good185

performance. The question remains whether the Virtual Array can achieve similar pre-186

dictive accuracy in more complex scenarios.187

3.2 A changing regime188

We investigate a more complex scenario, where the dominant regime changes (Fig. 4).189

Here, the training set contains a transition from surface to body wave-dominated regime,190

indicated by backazimuths and slownesses. We show the training set twice (Fig. 4a,b &191

g,h) to visually emphasize the application to two different testing datasets. First, we ap-192

ply the models to body wave-dominated test data from the summer period post train-193

ing set (Fig. 4c-f). Second, we evaluate the performance of the models on surface wave-194

dominated test data from the winter period (Fig. 4i-l). This cross-application helps to195
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Figure 3. Beamforming results for the single dominant regime, with backazimuth in the top

row and slowness in the bottom row. Panels a and b show results for the training set, which

includes the first 80% of the two-day winter data dominated by surface waves. Panels c and d

highlight results from the real array as ground truth, representing the last 20% of the two-day

winter data, while panels e and f illustrate findings for the Virtual Array. Each plot includes

background slices through the slowness domain, where blue indicate negative correlation and red

indicate positive correlation. Black dots mark the maximum beampower, representing best-fitting

waves.

investigate the algorithm’s ability to generalize and precisely capture seismic wave be-196

havior under varying conditions.197

In the first case, beamforming the Virtual Array reveals body waves arriving from south-198

west (Fig. 4e,f), similar to the direction observed by the real array (Fig. 4c,d). While199

the Virtual Array shows a very stable distribution of beampower values with time (Fig.200

4e), the real array results deviate slightly from the average (Fig. 4c). In this example,201

the real array (Fig. 4c,d) detects less well-focused beampowers compared to those in the202

single dominant regime (Fig. 3), likely due to the presence of more complex wavefields203

and lower resolution at low slownesses. In contrast, the Virtual Array (Fig. 4e,f) finds204

remarkably sharp detections.205
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In the second case, beamforming the Virtual Array (Fig. 4k,l) detects predominantly sur-206

face waves coming from the north, which aligns well with detections by the real array207

(Fig. 4i,j). The observed values are in line with the surface wave-dominated regime seen208

in the first 22 hours of the training set (Fig. 4g,h), although body waves dominate the209

second part of the training set. For both the real array and Virtual Array, the beampow-210

ers are sharply focused around the maxima.211

Figure 4. Beamforming results for the changing regime. The training set consists of the first

80% of the two-day summer data dominated by surface and body waves (a, b, g, and h). Panels

c and d: Results from the real array, displaying the last 20% of the summer data, which is body

wave-dominated, while panels i and j feature data from the real array during winter with a sur-

face wave-dominance. Outcomes for the respective Virtual Arrays are illustrated in panels e, f

and k, l . For further description of the plot see caption of Figure 3.
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These two scenarios show that the algorithm is able to predict the wavefield from a single-212

station recording as long as the wavefield regime, i.e., dominant wave type and direction,213

has been part of the training. This highlights the algorithm’s ability to generalize to more214

complex training sets compared to the single dominant regime while effectively differ-215

entiating between two distinct regimes. The sharper beampower focus for body waves216

detected by the Virtual Array compared to the real array supports this further (Fig. 4a-217

f). Although the algorithm was trained on both body and surface wave-dominated regimes,218

in the first case, the real array is dominated by body waves only, while in the second case,219

it is dominated by surface waves only. The models predict a simpler dominant wavefield220

compared to the original training set, resulting in sharper predictions and enhanced pre-221

dictive accuracy.222

Note that each time window is predicted independently from its neighboring time win-223

dows so that the prediction for a beamforming window is not affected by previous or later224

predictions. The algorithm furthermore successfully predicts the correct wavefield across225

seasons, with models trained on data from summer being applied to winter data. This226

demonstrates its ability to generalize across seasonal variations of noise.227

3.3 An unseen regime228

We demonstrate the main limitations of this approach by evaluating the algorithm’s per-229

formance when encountering an unseen wavefield regime. The training set consists mainly230

of surface waves arriving from the north (Fig. 5a,b). Meanwhile, the original recordings231

of the real array are dominated by body waves arriving from the southwest (Fig. 5c,d).232

The Virtual Array is unable to predict the wavefield seen by the real array (Fig. 5e,f).233

Instead, it predicts surface waves arriving from north, the only wavefield regime it was234

trained on. This misalignment indicates a lack of generalization, suggesting that the mod-235

els cannot adapt to the conditions present in the real array.236

The algorithm fails to make accurate predictions when faced with a wavefield regime that237

was not included in the training set, as is the case for the unseen regime. The training238

set predominantly includes surface waves, which do not match the characteristics present239

in the real array, which are predominantly body waves. These limited generalization ca-240

pabilities highlight that the algorithms effectiveness in making accurate predictions re-241

lies on the characteristics it encounters during the training process. However, when sim-242
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Figure 5. Beamforming results for the unseen regime. Panels a and b show the training set

consisting of the first 80% of the two-day winter data dominated by surface waves. In panels

c and d, results from the real array are displayed, showing body wave-dominance during the

summer period. The outcomes of the Virtual Array are illustrated in panels e and f. For further

description of the plot see caption of Figure 3.

ilar characteristics are present in the training set, as demonstrated in the single and the243

changing regime, the beamforming results for the Virtual Array are of high accuracy (Figs.244

3,4). Furthermore, it is likely that the models can only predict cases that have been en-245

countered frequently during the training process. For earthquakes, which are intention-246

ally excluded in the selected data, accurate predictions would therefore require training247

on datasets that include many examples. This limitation of encoder-decoder models for248

earthquake recordings has been reported before (Mousavi et al., 2020; Yin et al., 2022;249

Zlydenko et al., 2023). For our study, this underscores the importance of having a di-250

verse training set that covers various regimes to enhance the algorithm’s ability to gen-251

eralize and make accurate predictions on different data characteristics. Therefore, we chose252

ocean microseism noise for this first demonstration of Virtual Seismic Arrays, as it is par-253

ticularly well-suited due to its stability over days and weeks (Ardhuin et al., 2019).254
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4 Applications and Outlook255

Our findings demonstrate that Virtual Seismic Arrays can work and deliver promising256

wavefield predictions. As a result, several potential applications emerge, especially in re-257

mote areas where seismic array deployment can be challenging. By training models ca-258

pable of predicting waveforms even without physical sensors, we can reduce the need for259

continuously deploying all array stations. For example, data from previous short-term260

deployments could be used as the training set, enabling ongoing predictions in the area261

of interest and maintaining data coverage without physical deployment of the full array.262

New deployments can be planned that involve using a minimal number of stations ini-263

tially and repositioning those stations step by step to achieve full regional coverage over264

time while reducing the amount of resources needed. On an operational level, this ap-265

proach also allows to compensate for temporary outages of individual stations. However,266

to fully realize Virtual Seismic Arrays in production, further steps are necessary. These267

include evaluating the performance in more complex datasets, such as those with frequent268

transitions between different wave type regimes and including transient sources such as269

earthquakes. It is important to integrate our findings with other approaches to enhance270

the adaptability of this method in different contexts. Additionally, understanding the271

most suitable conditions for implementing Virtual Seismic Arrays should be accompa-272

nied by detailed parameter studies. It is particularly important to understand, why cer-273

tain station combinations are more effective than others and to assess how data qual-274

ity and specific hyperparameters influence the model training, which we aim to pursue275

in the future.276

5 Conclusion277

In this study, we evaluate the applicability of encoder-decoder networks to implement278

Virtual Seismic Arrays, which predict data for an entire array using a single reference279

station. As a proof-of-concept, we train a Gräfenberg Virtual Seismic Array in the sec-280

ondary microseism frequency band. By leveraging data from a single reference station281

to predict array recordings for all other stations within the array, we train models that282

successfully capture the wavefield propagation across the stations. Beamforming the re-283

sulting predicted waveforms reveals good agreement between the real and Virtual Ar-284

ray when the dominant wave regime encountered is included in the training set. This285

highlights the effectiveness of our approach in capturing underlying wave dynamics and286
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the potential for future applications of Virtual Seismic Arrays. We propose to expand287

the application of this framework to diverse regions and seismic conditions, unlocking288

its potential to significantly enhance approaches for measuring and analyzing seismic data,289

particularly in challenging, remote areas. Temporary array deployments, for instance,290

can enable long-term “virtual operation” that allows seismic monitoring to continue when291

the physical array is unavailable. We test the most extreme version of a Virtual Array,292

where all but one station are removed and show that this approach can effectively com-293

pensate temporarily unavailable stations. This cost-effective advancement offers a promis-294

ing approach for improving data availability and has the potential to substantially im-295

prove the reliability and efficiency of our global seismic monitoring capabilities.296

Data Availability Statement297

We use publicly available seismograms provided by the German Regional Seismic Net-298

work (GR) operators (Federal Institute for Geosciences and Natural Resources, 1976),299

accessed via the ORFEUS European Integrated Data Center (EIDA). We use accessi-300

ble colors (Crameri, 2023; Tol, 2025).301

Acknowledgements302

The authors thank the BGR for seismic data access. This work is financially supported303

by the Federal Ministry of Education and Research (BMBF) project ”3G-GWD” with304

references 05A20GU5 and 05A23GU5 and partially funded by the European Union’s Hori-305

zon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant306

agreement No. 955515 (SPIN ITN - https://spin-itn.eu).307

References308

Alhukail, I. (2012). The Concept of Virtual Arrays in Seismic Data Acquisition (Un-309

published doctoral dissertation). Texas A&M University.310

Ardhuin, F., Gualtieri, L., & Stutzmann, E. (2019, March). Physics of Ambi-311

ent Noise Generation by Ocean Waves. In (pp. 69–108). doi: 10.1017/312

9781108264808.005313

Baggeroer, A. B., Kuperman, W. A., & Schmidt, H. (1988, February). Matched field314

processing: Source localization in correlated noise as an optimum parameter315

estimation problem. The Journal of the Acoustical Society of America, 83 (2),316

–14–



manuscript submitted to Geophysical Research Letters

571–587. doi: 10.1121/1.396151317

Capon, J., Greenfield, R., & Kolker, R. (1967). Multidimensional maximum-318

likelihood processing of a large aperture seismic array. Proceedings of the319

IEEE , 55 (2), 192–211. doi: 10.1109/PROC.1967.5439320

Crameri, F. (2023). Scientific colour maps. Retrieved from https://doi.org/10321

.5281/zenodo.8409685322

Federal Institute for Geosciences and Natural Resources. (1976). German Regional323

Seismic Network (GRSN). Bundesanstalt für Geowissenschaften und Rohstoffe.324

doi: 10.25928/MBX6-HR74325

Gelboim, M., Adler, A., Sun, Y., & Araya-Polo, M. (2023). Encoder–Decoder Archi-326

tecture for 3D Seismic Inversion. Sensors, 23 (1). doi: 10.3390/s23010061327

Gibbons, S. J., & Ringdal, F. (2006, April). The detection of low magnitude seis-328

mic events using array-based waveform correlation. Geophysical Journal Inter-329

national , 165 (1), 149–166. doi: 10.1111/j.1365-246X.2006.02865.x330

Harjes, H.-P., Seidl, D., & others. (1977). Digital recording and analysis of broad-331
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4. Optimizing network performance – A parameter study 

In this section, the influence of different parameters on the performance of the encoder-decoder 

network introduced in Study I is investigated. To understand and optimize its predictive 

capabilities, an analysis of how specific parameters affect the results is conducted, gaining 

insights into the algorithms behaviour under specific conditions. While a comprehensive testing 

of individual parameters and their interactions is beyond the scope of this study, the analyses 

offer some initial insights into the current strengths and limitations of the approach. In the 

following, it will be investigated how the network performance depends on interstation distance 

and frequency, how data scaling affects the results, and how the network responds to 

parameters such as network depth, number of training epochs, final activation functions, and 

information content. Therefore, the corresponding parameters are adapted in the network and 

model training is performed for each configuration, which allows to evaluate how these 

adjustments influence the network’s behaviour and thus the results.  

4.1. Parameter testing 

This parameter study builds on the principles introduced 

in Study I where an encoder-decoder architecture with a 

depth of five and 1500 training epochs is developed and 

used. The focus is again on the Vienna Basin, which is 

characterized by seismic velocities that approximate 

acoustic velocities of 300 m/s or below and the presence 

of several noise sources, such as roads, wind turbines and 

oil pumps (Schippkus et al., 2020). To allow for direct 

comparison, the primary focus is on a station pair 

previously investigated in Study I, situated towards the 

center of the array. In order to evaluate the influence of the 

interstation distance on the results, nearby stations are 

further considered in ascending order of their distance 

Figure 4.1. Map view of selected 

stations (grey triangles). The 

reference station is outlined in 

orange. The surrounding region 

includes seismic sources like oil 

pumps (green) and wind turbines 

(black). 
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from the reference station. Figure 4.1 shows the locations of the selected reference station that 

was earlier part of the analysis in Study I, its proximity to other stations, and the surrounding 

region including nearby sources. The seismic data used in this study are filtered below 10 Hz, 

similarly to Study I. 

Interstation distance 

In order to interpret seismic measurements and optimize the performance of machine learning 

models such as the network, it is important to understand the propagation behaviour of seismic 

waves. As they travel through the Earth, seismic waves interact with the medium they pass 

through, which changes their characteristics like frequency, amplitude, and velocity (Bormann 

and Wielandt, 2013; Haendel et al., 2018). Thereby, local geology and processes like attenuation, 

scattering, and frequency-dependency alter both the wave's properties and the data that can be 

extracted from it (Haendel et al., 2018). Interstation distance is therefore important to analyse, 

because it influences the degree to which different seismic stations record coherent seismic 

signals. 

The effect of interstation distance on model performance is investigated by systematically 

increasing the distance between station pairs. Utilizing a fixed reference station, it is paired with 

other stations at greater distances. This approach allows observing and analysing how the quality 

of the model's prediction changes as the interstation distance grows. To interpret and compare 

the results, two evaluation metrics are used: Root Mean Square Error (RMSE) and correlation 

coefficient (CC). By using both metrics, the model's performance is assessed in terms of both 

amplitude prediction (RMSE) and phase alignment (CC). Thereby, lower RMSE values indicate 

better amplitude prediction, while a CC closer to one shows good alignment of the phases.  

Figure 4.2 displays the relationship between model performance and interstation distance for 

RMSE (Figure 4.2, top) and CC (Figure 4.2, bottom). The reference station is at zero meters distance, 

while station locations of target stations are indicated by grey triangles on both plots. The 

analysis reveals that the predicted and observed waveforms have a strong positive correlation at 

the shortest distance of 165 meters, with a CC of approximately 0.75. With increasing interstation 
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distance, there is a decay in CC values, with a CC dropping to 0.22 at 570 meters and further 

decrease to a CC of 0.05 at 600 meters. For all distances beyond 600 meters and up to 1800 

meters, the CC reaches zero or even slightly goes negative, suggesting no relevant phase 

correlation. Due to the lack of station coverage in this range, it is anticipated that important 

developments in the data that could influence the understanding of the relationship between 

interstation distance and model performance may be missed. In contrast to the CC plot, the RMSE 

plot does not show a trend with distance. The RMSE values for interstation distances up to 600 

meters range from 0.08 to 0.13, while the RMSE values for distances above 1000 meters primarily 

cluster around 0.06, with one exception at 1040 meters. In conclusion, both plots show distinct 

behaviour up to 600 meters, which is equivalent to about 20 wavelengths at a velocity of 300 

m/s and a maximum frequency of 10 Hz, and then clearly change for distances greater than 1000 

meters, approximately 33 wavelengths. 

The trends found in the CC and RMSE plots show some interesting details of the model 

performance with increasing interstation distance in the observed frequency range up to 10 Hz. 

The decay in Correlation Coefficients (CCs) with distance is attributed to several factors related 

to wave propagation and the algorithms learning process. As seismic noise travels through the 

Earth, it attenuates at varying speeds because it is composed of distinct signals with a broad 

spectrum of frequencies. For instance, higher frequency components attenuate more quickly 

over distance than lower frequency components, which leads to a loss of signal coherence 

(Bormann and Wielandt, 2013). Because of scattering, reflection, and refraction, seismic waves 

that travel farther also encounter more geological heterogeneities, which further mitigates 

correlation (Schimmel and Gallart, 2007). Based on these wave propagation effects and the 

influence of local site conditions, the transfer functions from the reference station to each of the 

other stations become more complex for increasing distances. This makes it more difficult for the 

machine learning algorithm to learn the transfer function and explains why CC values decrease 

with distance. The effects of sampling rate and signal periods on the results will further be 

investigated later in this work, which may also explain why the models perform worse the farther 

they are from the reference station.
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Figure 4.2. Relationship between model performance and interstation distance. The top 

panel shows the Root Mean Square Error (RMSE) against distance, while the bottom 

panel displays the correlation coefficient (CC) against distance. The reference station is 

at zero meters distance, and grey triangles on both plots mark target station locations. 

In contrast to the CC trend, the RMSE shows a decrease of values with greater distances, 

indicating a better amplitude fit, whereas the CC values suggest a poorer phase fit with 

increasing distance. This apparent improvement is, in fact, a misleading artefact of the models 

output. The algorithm predicts constant zeros as distance increases because it is unable to 

capture wave propagation effects. This leads to smaller RMSE values because the differences 

between the actual signal and the zero prediction cancel each other out. While the algorithm fails 

to capture the transfer function between station pairs at larger distances, the findings in the 

lower distance range are promising, yet they indicate amplitude differences present in the data. 

This is consistent with the findings from Study I and Study II, showing the need for additional 

research to determine the cause of this and being able to modify the algorithm to address this 

issue. To gain a better understanding of the algorithms performance across smaller frequency 

ranges, its performance in discrete frequency bands will be analysed in the following. 
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Frequency content 

This frequency band analysis, more detailed than the previous broadband analysis, allows 

investigating how the model performs in specific frequency bands that were previously not 

analysed separately. This helps to identify which components of the seismic noise field are most 

predictable by the models in this specific dataset and provides insights on the variations in 

performance across different frequencies and interstation distances. To do so, the model is 

trained on 10 Hz lowpass filtered data and additional filters are applied afterwards to determine 

the model’s performance in six specific frequency ranges: 0-1 Hz, 1-2 Hz, 2-3 Hz, 3-5 Hz, 5-7 Hz, and 

7-10 Hz. The CC is estimated in the respective frequency band for each target station and plotted 

against the distance to the reference station (Figure 4.3).  

 

Figure 4.3. Frequency-dependent model performance across interstation distance. 

Shown are correlation coefficients for discrete frequency bands (0-1 Hz, 1-2 Hz, 2-3 Hz, 

3-5 Hz, and 7-10 Hz), each represented by a distinct coloured marker. 

These frequency-dependent CCs are shown as coloured markers across various distance ranges 

in Figure 4.3. The analysis shows that the CC values for frequencies between 0 and 3 Hz are 

approximately zero at all distances, indicating that the model performs poorly in this lower 
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frequency ranges. On the other hand, frequencies higher than 3 Hz demonstrate superior model 

performance, particularly for station pairs that are up to 600 meters apart. Here, the 5-7 Hz and 

7-10 Hz ranges show the strongest results, with CC values almost consistently above 0.6 up to 

380 meters, then decreasing to around 0.30 between 400 meters and 570 meters, before 

dropping close to zero at 600 meters. This overall decrease again follows a nearly linear trend, 

with an exception at 380m. The 3-5 Hz range further shows positive CC values up to 400 meters, 

though generally lower than the higher frequency ranges. Its maximum CC reaches 0.54, but 

values mostly find around 0.20 or towards zero. Beyond 600 meters, CC values for frequencies 

above 3 Hz also converge towards zero, indicating a general decline in model performance at 

greater distances, similar to what is observed for lower frequency bands. 

These observations provide information about the performance of the algorithm and the seismic 

noise field, which is influenced by various sources and processes. Particularly at shorter distances, 

the model shows higher predictability in the 5-10 Hz range. This might be due to the presence of 

local sources, such as the nearby wind turbine, that emit signals not only with distinct patterns 

(Neuffer et al., 2019), but also with strong amplitudes at higher frequencies. This makes these 

signals more prominent and thus easier for the model to learn, which consequently leads to 

higher accuracy in these ranges. While signals closer to the station are affected less by 

interference, the overlap of multiple sources with increasing distance might contribute to a more 

complex wave field the farther away from the reference station. This makes accurate predictions 

more difficult. Further considering the dominant seismic velocity in the study area 

(approximately 300 m/s), the performance drop at 600 meters occurs after about 10-20 

wavelengths for the 5-10 Hz frequency range. This could be a result of seismic signals becoming 

more complex and harder to predict because of attenuation and scattering with distance. 

Moreover, due to the lack of station coverage between 600 and 100 meters, it is necessary to 

anticipate the possibility of missing important transitions in model performance here. 

The frequency spectrum of the local seismic noise field is probably the reason for poor 

performance at lower frequencies (0-3 Hz) over all distances. Although this has not been analysed 

in detail, a predominance of higher frequency noise could affect the algorithm's ability to learn 

the characteristics of lower frequency data, potentially reducing its performance in this range.
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This thesis supports by Schippkus et al. (2020), who examined PSDs for various noise sources 

(wind turbines, oil pumps, roads, railways) in the same region. Their study showed that the power 

at frequencies around 10 Hz is significantly greater than at frequencies around 1 Hz. As mentioned 

earlier, this explains why the algorithm performs better at higher frequencies. Furthermore, the 

data used in this study are measured using geophones, which may contribute to the algorithms 

reduced performance as their sensitivity decreases towards lower frequencies (Dean and Grant, 

2024). 

Seismic wave attenuation and the complexity of the wave field over longer distances are likely 

the reason why the models performance decreases with distance, particularly for higher 

frequencies. This decay highlights the predictive limitations for this specific dataset. Due to the 

lack of station coverage between 600 and 1800 meters, the model’s performance cannot 

accurately assessed in this range, which makes it hard to draw conclusions on the general 

behaviour of the model across different frequency ranges at these distances. However, the same 

algorithm successfully predicts lower frequency data in the range of 0.1-0.25 Hz, as shown in 

Study II with seismometer data from the GRF array. This suggests that rather than fundamental 

limitations of the model itself, the observed limitations are probably caused by the dataset’s 

characteristics, such as instrumentation, local geology, and noise sources. 

Data scaling 

Data pre-processing is one of the most important steps in developing successful machine 

learning models (Kotsiantis et al., 2006). Data scaling, which is part of this process, makes sure 

all features are on a similar scale and contribute equally to the model’s learning. This has the 

potential to receive significant improvements in model performance and training effectiveness 

(Ahsan et al., 2021; Sharma, 2022), ranging from basic linear regression to more complex neural 

network tasks. This subsection explores how different scaling approaches affect the performance 

of the encoder-decoder network. The aim is to show how different scalings impact the results of 

the machine learning method and highlight the importance of data scaling in this context. 
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The data in the earlier studies Study I and II were scaled using a combination of standard and 

min-max scaling. In order to investigate better the effects of different scalings, three additional 

approaches are tested: no scaling, standard scaling alone, and min-max scaling alone. For this 

comparison, the focus is on the station pair from Study I, training the encoder-decoder network 

on its data using each of these scaling approaches. For easy comparison, the results are plotted 

using the same method as in Study I, which provides a visual representation of the data as well 

as the evaluation metrics RMSE and CC to assess the results. It is important to note that RMSE 

values are not directly comparable across different scaling methods, as they are expressed in 

different units or scales. However, the CC remains scale-invariant and can be compared directly. 

In this analysis, the colours around the boxes represent the different scaling methods applied. 

No scaling 

If there is no scaling applied to the data, the amplitude range of the data remains notably small 

between [-0.0013, 0.0013]. Observing the network output (Figure 4.4b, blue line), the prediction 

of the network appears as horizontal line. This indicates that the network was unable to learn 

meaningful features from the unscaled data and fails to capture the underlying structure of the 

seismic signal. This reflects further by the CC of zero (Figure 4.4b), showing no correlation 

between predicted and actual values. The RMSE is zero here as well, which is misleading, as it 

results from very small scales of the original data. The histogram plot (Figure 4.4e) displaying CC 

values across the entire test dataset confirms that this poor performance is further consistent 

across all traces.  

MinMax scaling (mm) 

The MinMax scaling approach, which normalizes the data based on the minimum and maximum 

values to a range of [-1, 1], yields significantly different results compared to the no-scaling method 

(Figure 4.4f-j). The prediction closely follows the target data (Figure 4.4g), with the blue line 

aligning well with the orange line in many areas. This alignment is particularly noticeable for the 

seismic phases, while the amplitudes are generally over- and underestimated. Subplot h provide 

a detailed view of this, showing the distribution of CC values over the example trace. Most values 

are around 0.5 or higher, which highlights accurate phase fitting along this trace. As seen in the 

scatter plot l, the data cloud is widely dispersed rather than closely condensed along the ideal fit 
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line (purple dashes). This reflects the model’s tendency to over- and underestimate amplitudes. 

However, the models overall CC of 0.64 demonstrates that it can identify important patterns in 

the data. This is further supported by the histogram plot j, which shows the CC values for the 

entire dataset. CC values are broadly distributed between zero and one, with a gradual increase 

and peak towards higher values, suggesting generally strong prediction capabilities throughout 

the dataset. 

Standard scaling (std) 

With standard scaling applied, which standardizes the data by subtracting the mean and dividing 

by the standard deviation, the data amplitudes range approximately from [-8, 8]. The prediction 

(Figure 4.4l, blue line) shows a somewhat static pattern, characterized by consistent upward 

movement followed by small plateaus and subsequent downward movement. These oscillations 

further tend to reach similar positive and negative amplitudes throughout the trace, which is 

further visible in the scatter plot n that appears as a vertical column. The plot further shows that 

amplitudes are both over- and underestimated again, as it does not distribute along the best-fit 

line. Because of this repetitive nature, the phase fit is quite good, reflected in the overall CC of 

0.66. Compared to the MinMax scaling, the histogram plot o displays a distribution that is spread 

less across the entire range, but with CC values between zero and one again. Its peak occurs 

around 0.75, before and after which the distribution drops off steeply. Notably, there are very few 

instances of CC values close to zero, indicating that the model consistently achieves some level 

of correlation across the dataset. 

Combination (std + mm) 

In the combination of MinMax and standard scaling, the amplitudes are again between [-1, 1] due 

to the mm scaling included. The predictions closely align with the target data (Figure 4.4q), which 

results in the highest CC of 0.75 among all scalings tested. The histogram plot t also shows this, 

with no values near zero. Starting from around 0.50 the distribution peaks at approximately 0.90, 

indicating consistently strong correlations across the dataset. While some amplitude mismatch 

persists, it is fewer pronounced than in previous examples. The scatter plot s supports this with 

a cloud of points distributed along the best-fit line, though deviations in both positive and 

negative directions are still present.
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Figure 4.4. Results for different scalings using RMSE and cross-correlation coefficient (CC) 

across the entire target time-series. (a, f, k, p) Input data. (b, g, l, q) Target data and network 

prediction. (d, i, n, s) Density plots of prediction vs. actual target data; the dotted line is the 

ideal best-fitting line for the regression. (c, h, m, r) CC for 20-sample sections. (e, j, o, t) 

histograms of CC for 512 sample windows. The black marker highlights the overall CC.



 

59 

 

The results show, that the performance of the encoder-decoder network can significantly be 

impacted by the choice of scaling method. Without scaling, the model fails to identify and learn 

meaningful patterns, which results in poor predictions. Because features with different ranges 

cause large values to dominate smaller ones, numerical instability may be the cause of this 

(Braiek and Khomh, 2020; Sun et al., 2022), making it challenging for the model to learn 

appropriate weights. The optimization process may also fail or converge slowly because of 

backpropagation of unscaled data, which can cause very large or very small gradients.  

MinMax scaling significantly improves the network performance and outputs more accurate 

predictions by scaling data between -1 and 1. The normalization of the data range is expected to 

stabilize the learning process and thus contribute positively to the results with a common scale 

for all data. Standard scaling normalizes data to zero mean and unit variance and achieves a 

similar phase prediction quality with a CC of 0.66. The predictions show a repetitive pattern of 

similar-sized waveforms forming small plateaus. The scaling might cause these consistent 

patterns, which emphasizes the relative changes in the data rather than their absolute values. 

Finally, the combination of standard scaling and MinMax scaling is the most effective, since it 

results in the highest CC of 0.75. In conclusion, using both standard and MinMax scaling together 

is likely the most effective approach, as it addresses the large- and fine-scale aspects as well as 

the data distribution. This provides the model with a more robust input representation for 

capturing global trends and local variations in the data. 

Network depth 

The number of layers in a neural network defines its depth, which affects how effectively it can 

identify and learn complex patterns. If the network depth is too low, the model fails to capture 

complex patterns in the data, which leads to underfitting and an insufficient representation of 

features (Sun et al., 2016; Telgarsky, 2016). If the network is too deep, the computational 

complexity is increased and can result in overfitting (Hastie et al., 2009; Nichani et al., 2021). 

Therefore, it is essential to find the right depths and balance between these options.
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In this section, the impact of network depth on the algorithm’s performance is investigated. 

Therefore, the depth of the network is systematically increased from one to seven layers (Figure 

4.5, left), while each setting is trained individually. The results are evaluated using CC (Figure 4.5, 

middle), and Root Mean Square Error (RMSE) (Figure 4.5, right) again. Both of these evaluation 

metrics were introduced previously in Study I and Figure 4.4. 
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Figure 4.5. Impact of network depth on the network performance. Left: Schematic 

illustration of the network architecture with one to seven (a-g) layers. Middle: 

Histograms of correlation coefficients (CC) for 512 sample windows. Right: Density plots 

of prediction vs. actual target data as RMSE. For further description, see Figure 4.4. 

The findings show that the CC generally improves with depth, going from 0.45 at depth one 

(Figure 4.5a) to 0.75 at depth six (Figure 4.5e,f), while the RMSE decreases corresponding and 

stabilizes after depth five. However, two exceptions are observed: depth two (Figure 4.5b), which 

outperforms depth three in both metrics (Figure 4.5c) but remains lower than higher depths 

(Figure 4.5e,f), and depth seven, which drops to a CC value of 0.69 again (Figure 4.5f). The CC 

distribution, as visualised in the bar plot (Figure 4.5, middle), shows a notable shift towards higher 

CC values as network depth increases. Initially for depth one, the distribution is broadly dispersed 

across the range from [0, 0.8], with a mean around 0.45 (Figure 4.5a, middle). For higher depths 
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(four, five, six, and seven), the distribution is visually very similar and more condensed between 

values of 0.40 and 0.90 (Figure 4.5d,e,f,g, middle). The distribution of depth seven, however, 

becomes broader again, showing more CC values closer to zero compared to depth four to six. 

As depth increases, the distribution becomes more concentrated, showing a narrower spread and 

a more pronounced central peak at higher CC values up to depth six. Scatter plots, showing the 

amplitude fit between target and prediction data, evolve from a near vertical distribution at 

depth one (Figure 4.5a, right) to a more diagonal arrangement along the best-fit line, which 

indicates improved amplitude predictions with increasing depth. Overall, depth four, five and six 

yield results that are almost identical (Figure 4.5d,e,f, right), with depth four showing a somewhat 

more condensed distribution along the best-fit line compared to depth six. For depth seven, the 

data scatter more widely again (Figure 4.5g, right), resulting in a broader distribution in both 

positive and negative directions, while the RMSE remains consistent with that of the previous 

depths. 

The findings of varying network depth show, that the performance of the algorithm further 

depends on the choice of the number of layers in the network. For depth one, the performance of 

the model is already surprisingly good. This might be due to the regular intervals between seismic 

phases in the data, which may allow the model to recognize this even with minimal processing 

and a shallow network structure. Furthermore, it is surprising that a lower depth two 

outperforms the next higher depth three while not outperforming even higher depths. For this 

particular task, depth two might achieve a better balance between model capacity and 

generalization, whereas the network at depth three might encounter more optimization 

challenges during training, such as vanishing gradients. Additionally, features learnt at depth two 

might be more relevant or effective for this particular task than those learned at depth three. 

However, the significant improvement in performance from depth three to depth four suggests 

that the network can now more effectively identify the underlying patterns in the data. Notably, 

performance varies very little at depths four to five, suggesting little to no further improvements 

across the settings. However, depth seven shows a performance decrease again, which might be 

due to overfitting and indicates that this higher depth produces poorer results compared to 

former depths. Although we decided to use depth five for studies I and II, depth four might have
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been sufficient for the best results. This underscores how important it is to conduct empirical 

testing across different depths in order to determine the best architecture for a given task.  

Training length 

An epoch represents a complete cycle in which the neural network processes the entire training 

dataset one time. The number of epochs thereby defines how many times the network will repeat 

this entire process. To balance the learning capacity and prevent overfitting, the number of 

epochs must be set to a suitable value for a good model’s performance and generalization (Belkin 

et al., 2018; Too et al., 2019). To maximize learning and minimize overfitting, the ideal number of 

epochs is often determined by experimentation. Its number can vary widely depending on the 

dataset and model, typically ranging from a few dozen to hundreds or thousands (Too et al., 2019; 

Byrd and Lipton, 2019). It is common in practice to start with a moderate number and make 

adjustments according to the development of learning curves and validation metrics. Learning 

curves, which show training and validation metrics against the number of epochs, help in 

visualising the evolution of the model's performance over time. For instance, they allow the 

detection of when the model begins to overfit, which indicates by diverging training and 

validation curves, or when learning reaches plateaus (Viering and Loog, 2023; Mohr and van Rijn, 

2024). The y-axis of these curves typically represents the loss function value, which quantifies the 

model's prediction error and should generally decrease over time for a well-learning model 

(Wang et al., 2022). 

The model is trained with various numbers of epochs: 150, 375, 750, 1500, and 3000, arranged 

from top to bottom in Figure 4.6. The left column displays the loss curve for each epoch setting 

and shows how the model’s error changes over the training process. In the middle column, 

histograms of the CC for phase accuracy are shown, similar to those presented in Figure 4.5. The 

right column contains scatter plots of RMSE for amplitude predictions, also consistent with the 

ones used in Figure 4.5. This allows assessing how well the predicted amplitudes align with the 

true target values as the number of epochs increases and helps to identify the optimal training 

duration for this specific task.
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Figure 4.6. Impact of the number of training epochs on the model performance. The model is 

trained with 150, 375, 750, 1500, and 3000 epochs. Left column: Loss curves showing the 

models error evolution during training. Middle column: Histograms of CCs for phase accuracy. 

Right column: scatter plots of RMSE. Plots are similar to Figure 4.5.
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For 150 epochs, the loss and validation loss curves consistently decrease (Figure 4.6a, left), closely 

overlaying each other. The CC histogram plot shows a condensed, nearly Gaussian distribution 

with a mean of 0.56 (Figure 4.6a, middle), while the amplitude scatter plot reveals a nearly 

elliptical data cloud, oriented more vertically than along the diagonal best fit line (Figure 4.6a, 

right). In contrast, over the course of 375 epochs, the loss decrease rate significantly slows down 

after about 150 epochs, with small oscillations starting to appear from around 100 epochs (Figure 

4.6a, left). Nevertheless, a clear downward trend continues. The CC histogram plot for 375 epochs 

shows a wider spread of values, including some negative CCs (Figure 4.6b, middle). The amplitude 

scatter plot further exhibits a more dispersed pattern, resembling a rectangular shape rather 

than an ellipse or diagonal line (Figure 4.6b, right). This shows deviations in predicted amplitudes 

in both positive and negative directions to the target data. 

For 750 epochs, the loss curve slowly continues decreasing, but is not reaching yet a plateau 

(Figure 4.6c, left). The bars of the overall CC histogram plot mostly distribute around a value of 

0.73 (Figure 4.6c, middle), but also reveal two outliers near CCs of -1. Although there are still 

notable deviations in both positive and negative directions, the scatter plot displays improved 

alignment with the best-fit line compared to 375 epochs (Figure 4.6c, right). The loss curves for 

1500 and 3000 epochs (Figure 4.6d & Figure 4.6e, left) reach a plateau after about 1200 epochs, 

with a small gap appearing between the lines for training and validation loss. Interestingly, 

training loss becomes smaller than validation loss in this plateau region. With overall CC values 

slightly increasing for higher overall epochs, the histogram plots are remarkably similar to those 

at 750 epochs (Figure 4.6d & Figure 4.6e, middle). Scatter plots become more elliptical and align 

better with the best-fit line, although deviations in both directions persist (Figure 4.6d & Figure 

4.6e, right). 

Analysing the results across different epoch settings shows, that in the early stages of 150 epochs, 

a consistent decrease in both training and validation loss is observed, indicating an ongoing 

learning process. The mid-range of 375-750 epochs shows a slowing rate of improvement, wider 

CC distributions including some negative values, and gradual alignment of amplitude predictions 

with the best-fit diagonal. Loss curves reach a plateau around 1200 epochs in later stages (1500-

3000 epochs), suggesting that additional training yields negligible to no improvements. Notably, 
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it can be observed that validation loss becomes smaller than the training loss in Figure 4.6d and 

e from 600 epochs onwards, which might be due to several reasons or a combination of them. As 

dropout is used to improve model generalization and prevent overfitting, it is possible that the 

model is generalizing too well to the validation set. However, this might result in a situation 

where the model performs better on the validation than on the more diverse training data. 

Another option is that it is easier to predict for the model when the validation data has certain 

characteristics, such as a mean that is comparable to the one of the training data but has less 

scatter. In this case, the network might become better at predicting the central tendency of the 

data distribution, performing well on the more focused validation set, while struggling with the 

training sets larger sample size. These observations suggest that lowering the dropout rate may 

be necessary to address the problem of validation loss decreasing relative to training loss. 

However, all examples demonstrate that the models learning rate is highest during the initial 

epochs and that training beyond 1200 epochs may not lead to significant performance 

improvements. According to these findings, 1500 epochs achieve a good balance between 

reaching stable model performance and minimizing additional computational costs linked to 

longer training periods. In studies I and II, 1500 epochs were chosen for training the models. As 

shown by the scatter plots, amplitude deviations between target and prediction data indicate 

further room for refinement.  

Neuron activation 

A neural network’s activation function is a function that decides whether or not a neuron should 

be activated and whether an input is important to the prediction process. It transforms a 

neuron’s input signal into an output signal, which is then passed to the subsequent layer. 

Without activation functions, neural networks would be limited to modeling only linear 

relationships, which reduces the networks power regarding more complex tasks such as image 

recognition or natural language processing (Sharma et al., 2017; Rasamoelina et al., 2020). The 

final activation function, sometimes referred to as the output layer’s activation function, is 

applied to the final layer of a neural network and is typically distinct from the ones of the hidden 

layers. Its choice depends on the goal the network is designed to reach (Sharma et al., 2017). Linear 

activation allows any real number, while the hyperbolic tangent constrains outputs to [-1, 1], 
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which is useful for normalized values. In contrast, sigmoid takes any input value and limits 

outputs from 0 to 1, which is often applied for predicting probabilities, but can also be used to 

decide which neuron should be activated based on the input (Sharma et al., 2017). Although there 

are dozens of activation functions (Ramachandran et al., 2017; Sharma et al., 2017) the focus in 

the following will be on the three previously mentioned ones. 

To compare the algorithms performance on the three final activation layers - tanh, linear, and 

sigmoid - an individual model for each activation function is trained. The previously introduced 

metrics CC and RMSE are used to evaluate their performance, and again the same kind of 

histogram and density plots are used for visualisation.  

 

Figure 4.7. Comparison of performance of different final activation functions: (a) 

tanh, (b), linear, and (c) sigmoid. The top row displays histogram plots showing the 

correlation coefficients for the entire test dataset for each activation function 

individually. The bottom row are density scatter plots showing the amplitude 

deviations as RMSEs between target data and predictions.
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Figure 4.7 shows the performance of all three activation functions on the test data. The CC values 

for the first two examples are nearly the same, with histogram plots ranging from about 0.30 to 

0.90 and a mean of 0.75 and 0.74 (Figure 4.7a-b, top). The scatter plots for linear and tanh 

activation functions are further very similar (Figure 4.7a-b, bottom). In contrast, the overall CC for 

the sigmoid activation function is lower compared to the other activation functions, with a mean 

CC of 0.53 (Figure 4.7c, top), while the scatter plot shows a sharp transition from low to high 

values (Figure 4.7c, bottom). Additionally, all three plots show outlier bars in the negative range.  

The comparable performance of the tanh and linear activation functions is probably related to 

the data distribution and pre-processing. The target data range between [-1, 1], which allows both 

activation function to operate effectively. For tanh, this range is its natural output range, while 

linear can easily map inputs to outputs without scaling issues here. In contrast, the outputs of 

the sigmoid function are limited to the interval [0, 1], which leads to a mismatch with the target 

data range of [-1, 1], as it merges all negative values into the positive range. As a result, important 

information from the negative values in the target data is lost, causing a decline in performance. 

When input data is normalized, it benefits the tanh and linear activation functions, as it enables 

them to perform efficiently within their natural ranges. This same normalization, however, 

emphasizes the limitations of the sigmoid function for this task, as it has difficulty capturing the 

full range of the normalized data.  

Information density 

The sampling rate gives the number of samples that are recorded per second when measuring a 

continuous seismic signal. In general, higher sampling rates provide more data and can capture 

finer signal details, but also increase the storage space needed. Lower sampling rates, on the 

other hand, require less data storage, but may also not fully capture all frequency components of 

the seismic signals of interest. The sampling rate thus affects which information are in the data 

that can be learned by neural networks. For instance, higher sampling rates capture more 

detailed waveform information, which might improve the networks learning process, but also 

increase the size of input data to the network and thus the information that need to be processed. 
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Figure 4.8.  Results for data with varying numbers of periods at 100 Hz: (a) 10 periods, (b) 100 

periods, (c) 200, and (d) 500 periods. Each row displays an example target trace against the 

model prediction (left), the distribution of correlation coefficients (CCs) over the entire range 

of data (middle), and the distribution of amplitudes of the target data against the prediction 

(right). 

By adjusting the amount of data, e.g. through upsampling or downsampling, the time resolution 

and frequency range present in the data can be controlled. This adaption not only changes the 

characteristics of the data, but also influences the information that are included in the
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network training. For instance, the length of the input trace can be changed to control the 

number of periods present in the data, which indicates how many complete waveform cycles are 

included in a given time series segment. To approximate the amount of periods, two key 

assumptions are made: the data are filtered below 10 Hz, which gives the longest possible period 

of 0.1 seconds (calculated as 1 / 10 Hz), and a seismic velocity of 300 m/s is assumed. With these 

variables, the number of periods in the data are calculated by dividing the total length of the 

signal by the period of one cycle (0.1 seconds). In this subsection, it will be analysed how the 

number of periods and the sampling rate of the input data influence the performance of the 

neural network approach. To investigate this, several scenarios are analysed. Firstly, the original 

sampling rate of 100 Hz is maintained and the number of periods in the data is increased from 

10, 100, to 200 and then to 500 periods. Afterwards, the data are downsampled to 25 Hz and the 

same process is repeated, again by increasing the number of periods from 10 to 500.  

Figure 4.8 shows the results for the original sampling rate of 100 Hz and the respective number 

of periods from top (a) to bottom (d) starting with the lowest number of 10 periods. Both the 

results for 100 and 200 periods achieve similar values with overall CCs of 0.75 and RMSEs of 0.09. 

The bar plot (Figure 4.8, middle) reveals that the phase prediction is further consistent across the 

range of test traces for both examples and with values between 0.50 and 0.90 also of moderate 

to high accuracy. Furthermore, the density plots (Figure 4.8, right) show that the predicted 

amplitudes deviate from the target trace equally in positive and negative directions for both 

examples. Having 100 (b) and 200 (c) periods in the data reveals similar results, both achieving 

high performance. In contrast, the performance for 500 periods (d) is notably lower, yielding an 

overall CC of 0.50 and RMSE of 0.11. The performance for 10 periods (a) falls between these two 

extremes, showing intermediate results with a CC of 0.66 and RMSE of 0.10. While the CCs for 10 

periods (Figure 4.8a, middle) show a distribution a little broader but very similar to those in b and 

c, the CCs for 500 periods distribute over a much broader range (from approximately -0.10 to 

0.90) compared to the other period examples (Figure 4.8d, middle). The RMSE of 0.11 indicates 

more significant amplitude deviations compared to former examples, which supports by the 

density plot’s nearly vertical distribution of points.
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Figure 4.9. Results for data with varying numbers of periods at 25 Hz: (a) 10 periods, (b) 100 

periods, (c) 200 periods, and (d) 500 periods. Description for subplots see Figure 4.8. 

For a better comparison of the model performance across different sampling rates, the findings 

for data sampled at 25 Hz are further analysed (Figure 4.9). The results show that 100 (b) and 200 

(c) periods in the data yield similar results again, with overall CCs of 0.75 and 0.74 respectively. 

While the overall distribution of CCs in these cases is even more focused around the mean values 

for 25 Hz, amplitude distributions show slightly lower performances compared to 100 Hz. 

Particularly in the 200-period case (Figure 4.9c), the amplitudes are less tightly distributed along 
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the best-fit line, which leads to an RMSE of 0.10 compared to 0.09 for 100 Hz data. For the case 

of 10 periods at 25 Hz (Figure 4.9a), the lowest model performance is received across all examples 

with a CC of 0.44 and a RMSE of 0.13. Very close to this is also the results for 500 periods with a 

CC of 0.47 and RMSE of 0.13 (Figure 4.9d). This decrease in prediction accuracy is also visible in the 

density scatter plot, which shows a nearly vertical elliptical shape rather than an alignment with 

the best-fit line for 10 and 500 periods. While the overall CC histogram is clustered within a 

smaller range for 100 to 500 periods, the values are spread over a broader range with several 

peaks, including one around zero, for 10 periods. 

For both 100 Hz and 25 Hz sampling rates, the consistency between 100 and 200 periods indicates 

that the models can learn the underlying patterns and features of the data. It seems that the 

signal’s characteristics are represented in both 100 and 200 periods, so that an extension of the 

data after 100 periods do not provide new information for the model to learn. With an increased 

number of periods (500), a noticeable decrease in model performance is observed, with a more 

pronounced effect for 25 Hz compared to 100 Hz data. This may be attributed to several reasons: 

with an extension to 500 periods, the data contain more information and potentially include 

more complex patterns that the model fails to learn. This increase in data complexity can further 

lead to difficulties in generalization and can cause overfitting while the model tries to capture 

very specific details. Due to this increased amount of data, an adaption of the model architecture 

might also be needed, for instance, by increasing the network depth to better handle the new 

complexity of the data. A reduction in model performance is seen with a smaller number of 

periods (10), which is more pronounced at 25 Hz than 100 Hz. Data with only 10 periods contain 

limited information and potentially lack sufficient patterns for the model to learn effectively. This 

can lead to difficulties in generalization and may cause underfitting as the model struggles to 

capture the underlying trends. While the sampling rate does not seem to influence the results 

significantly, it is evident that the right amount of data for the training is important. The findings 

demonstrate that there can be both too little and too much information in the data, which 

suggests that the identification of the optimal data quantity is essential to achieve the best 

model performance.
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4.2. Discussion and Conclusion 

This study delivers first insights into parameters that affect the performance of the neural 

network approach and gives a place to start when trying to improve it in the future. Several 

parameters are investigated, including interstation distance, frequency ranges, data scaling 

methods, network depth, number of training epochs, final activation functions, and sampling 

rates. The findings highlight settings where the models perform well and identify limitations 

where additional parameter and data tuning is needed. Notably, the outcomes of this parameter 

study support that the choice of parameters taken in Study I and Study II works very well.  

To find the best combination of parameters or optimize an existing setting while training a neural 

network, grid search can be used. It defines a grid of parameter values and trains models for all 

combinations, before evaluating their performance and selecting the parameter set that is 

performing best (Bergstra and Bengio, 2012). However, testing multiple different sets of 

parameters can be computationally expensive and may not provide improvements if a good set 

of parameters be already found. Furthermore, it efficiency depends on the definition of the 

parameter grid – if it does not cover optimal regions for testing, an automated grid search might 

not improve the results any further. Since various parameter settings were tested manually for 

the neural network approach, no further large improvements in the model results are expected 

from an automated grid search.  

Based on the results, future studies need to consider that the information content of the data 

changes with e.g. measurement method or regional geology, which makes it highly important to 

understand the characteristics of the dataset before starting detailed investigations. This could 

include the computation of spectrograms or other time-frequency representations to better be 

aware of signal characteristics at different sampling rates. In the context of machine learning 

methods, it is further necessary to understand how different parameters influence each other, 

which can reveal relationships that might affect the model performance. For instance, the 

number of layers and the number of periods are related. If the number of layers is increased, the 

network can resolve increasingly finer details within the data. However, this refinement occurs 

only in the close neighbourhood of the features being processed, which is very helpful for image 



 

74 

 

processing, but might not be ideal for capturing longer-term relationships in waveforms. 

Furthermore, there is a relationship between the network depth and the number of training 

epochs. Deeper networks often require more epochs to converge, but this also increases the risk 

of overfitting, where the model begins to memorize the training data instead of generalizing to 

unseen data. To address this, an early-stopping criterion can be implemented to end training as 

soon as the validation performance stops to improve. Higher sampling rates further allow 

capturing higher frequency components, which may affect how the data are filtered. 

Moreover, it can be necessary to advance the network architecture, for instance, to improve the 

algorithm’s ability to predict amplitudes more accurate, which would reduce the deviations 

between target and predicted data and enhance the overall model performance. This can include 

the adjustment of layer types, the optimization of activation functions or even the adoption of 

an entirely different neural network architecture. To continue research in these directions seems 

promising to improve the understanding regarding the performance, robustness, and 

applicability of the approach.
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5. Summary and Conclusions 

Machine learning offers new ways for the analysis and interpretation of complex seismic data. 

Building on this potential, this study presents a novel machine learning application to seismic 

data analysis, which focuses on the use of encoder-decoder neural networks to predict wave 

propagation between seismic stations. This work involves setting up an encoder-decoder model 

to learn and predict transfer functions between seismic stations, testing it with selected station 

pairs in the noise-rich Vienna Basin (Austria), and expanding the analysis to a full array of stations, 

assessing the results through beamforming. Additionally, the role of pre-processing and different 

parameter settings on the model performance was examined. These three studies allow 

addressing the overarching research questions regarding the application of neural networks to 

predict seismic wave propagation.  

  Q1 Can machine learning techniques be adapted to learn the transfer function between 

 seismic stations for predicting seismic wave fields? 

The findings of Study I demonstrate that it is possible to successfully learn the transfer function 

between two seismic stations using an encoder-decoder network architecture. By using one-

dimensional time-series data from a reference station as input to the model training and data 

from a nearby station as the target, the network learns the signal transformations between the 

two locations and demonstrates its potential for transfer function modeling. Remarkably, the 

model achieved good predictions using only two days of field data consisting solely of ambient 

seismic noise. This highlights the robustness of the approach and shows its capacity to identify 

meaningful patterns in seismic noise records with a comparatively small amount of data. 

Interestingly, for all examples, network predictions for phases are of higher accuracy than those 

for amplitudes. This suggests that the network is more effective at capturing phase-related 

features, which is likely because the regular intervals between phases present a more predictable 

pattern for the model to learn in contrast to the highly variable nature of amplitudes. Overall, 

since resolving this issue would produce a more accurate representation of the transfer function, 
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the difference between phase and amplitude prediction offers valuable information for 

additional research. This might involve modifications of the network architecture, for example 

by using variational autoencoders (VAEs) instead of classical encoder-decoder networks, which 

are probabilistic models that learn the underlying distribution of a dataset and may allow better 

modeling of seismic amplitude variability (Kingma et al., 2013). Furthermore, exploring the use of 

amplitude terms in the loss function and modifying the decoder architecture, which is important 

for reconstructing seismic features, might be worth considering to improve the accuracy of 

amplitude predictions (Wolfe and Godsill, 2003; Yin et al., 2022). This would further expand the 

significant strength of accurate phase prediction with improved amplitude prediction, 

highlighting the potential of this machine learning approach to complement conventional 

seismological methods and predict ground motion in a range of geological settings.  

  Q2  Can we use a single seismic station to predict the data of an entire seismic array? 

Study I demonstrated that it is possible to learn the transfer function between two seismic 

stations appropriately, using the encoder-decoder approach introduced. This achievement in 

single station pair analysis lays the groundwork for its application in more advanced applications, 

such as predicting the transfer functions of an entire seismic array. The approach was applied to 

every station pair in a given array, and the consistency of the original and predicted records was 

assessed using beamforming individually. Similar to Study I, each station pair model exhibits 

differences in amplitude prediction compared to the target data. Despite these variations, the 

beamforming demonstrates that all models effectively learn the most important features from 

the data, as the plots for the target data and predictions are identical. This shows that even when 

predictions are not perfect, the algorithm successfully learns and predicts key wave 

characteristics, which highlights its robustness as well as its ability to use data from a single 

reference station to reconstruct seismic recordings at multiple locations. This approach creates a 

Virtual Seismic Array – a set of trained models, one for each array station - that enables data 

prediction in areas where physical sensors are no longer present. Based on these findings, Virtual 

Seismic Arrays are a promising new approach for seismic data acquisition and analysis, as they
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could reduce the need for physical sensor deployments, for example in regions that are difficult 

to access, and lower costs associated with the maintenance of seismic arrays. This study 

established a successful proof of concept for Virtual Seismic Arrays, while further investigations 

are needed to refine the method. The findings show that the algorithm only makes predictions 

based on patterns it has discovered during training. At present, the investigations focus on 

seismic data containing at most two regimes. This presents a great opportunity to expand the 

approach, since training in more complex regimes may significantly deepen understanding of the 

algorithm’s behaviour and potentially move Virtual Seismic Arrays closer to real-world 

implementation. Exploring how the algorithm responds to a wider range of geological features 

could further lead to more robust and adaptable Virtual Seismic Arrays. This may be realized by 

assessing different periods, such as days, weeks or months apart from the initial training data 

and evaluating how well the algorithm works in regions with various geological conditions. 

Furthermore, extending the study to other frequency ranges – specifically, the primary 

microseism frequency band – would provide valuable insights into the algorithm’s adaptability. 

Building on this, exploring the its applicability to other types of seismic signals, such as 

earthquakes or volcanic tremors, in addition to seismic noise, could further expand the 

algorithm’s potential use cases.  

  Q3  What impact do different parameters have on the performance of machine learning 

 techniques for predicting seismic wave fields? 

To complement the promising development of an encoder-decoder approach for learning 

transfer functions between seismic stations (Study I) and applying it to a full seismic array (Study 

II), the parameter study in chapter 4 evaluates the influence of various parameters on the model 

performance. In this way, the robustness of the approach could be examined across various 

settings, including how the network responds to parameters like network depth, the amount of 

training epochs, final activation functions or information content in the data. According to the 

results of this study, network performance is impacted by data scaling, and the best results were 

obtained when two scaling techniques were combined. This finding confirms that the choice of
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combined scaling used in earlier studies I and II was reasonable. Furthermore, network depth had 

a complex effect; shallower networks were already capable of learning specific features 

effectively, while deeper networks had higher accuracy and captured even more features. 

Therefore, it is important to estimate the proper trade-off between them. In the earlier studies, 

this was achieved using a network depth of five, though a depth of four might have been 

sufficient and would have reduced computation time. The length of training was also found to 

be important, with both too little and too excessive training having a negative effect on the 

performance. It is interesting to note that the final activation functions tested had minimal 

impact on the results, while the amount of training data significantly influenced the findings, 

with both too little and too much information limiting the best possible learning. Understanding 

how all of these parameters interact is therefore crucial because these relationships can 

fundamentally affect the model performance. To improve the outcomes and their interpretability, 

it would further require appropriate techniques to better understand and visualise what the 

model is learning in order to be able to implement targeted next steps. As was previously 

discussed for Study I, upcoming research may also look into more advanced network 

architectures like Variational Autoencoders (VAEs). Overall, the parameters selected for studies I 

and II performed very well. While they might need to be modified for other datasets or regions, 

they provide a solid starting point for future applications.  

By leveraging a novel machine learning approach, this study reveals the complex relationship 

between seismic stations, enabling to use data from one seismic station to predict signals at 

another. This method is unique in its application, since machine learning, specifically encoder-

decoder networks, has yet not been used to model seismological transfer functions. Notably, the 

estimated models achieve high precision in predicting seismic phases and perform well in 

estimating amplitudes, still leaving room further refinement. This method is especially beneficial 

for applications that need precise seismic isolation or compensation, including active vibration 

isolation, semiconductor manufacturing, and 3-D microfabrication (Hwang et al., 2004; Kerber et 

al., 2007; Kim et al., 2009). In projects like the Einstein telescope (Punturo et al., 2010; Harms et 

al., 2022), minimizing seismic disturbances is further essential to guarantee the sensitivity of 

gravitational wave detections. Through precise mapping of seismic noise between two locations,
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the encoder-decoder approach provides a powerful tool for learning the characteristics of 

disturbing background sounds and thus allows for their controlled suppression. Virtual Seismic 

Arrays (VSAs) extend the idea of station-pair modeling to entire arrays, and offer unique potential 

to revolutionize the field of seismology by reducing the need for extensive sensor deployments 

through predictive modeling.  

This work not only promises to improve the efficiency and cost-effectiveness of seismic 

monitoring, but it also opens the way for new insights into the dynamics of the Earth. With the 

ongoing evolution of this methodology, it may reshape seismological research and monitoring, 

leading to a greater understanding of the Earth’s internal structure.
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