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1 Synopsis 
 
1.1 Thesis background and objectives 
 
Vascular cognitive impairment (VCI) describes the spectrum of cognitive impairment due to 

vascular brain damage, ranging from subtle subclinical cognitive changes to manifest 

dementia.1 This spectrum not only encompasses pure vascular disorders, such as vascular 

dementia due to cerebral small vessel disease and stroke, but also mixed forms involving 

coincident Alzheimer’s disease or other pathologies.2 VCI is driven by cerebrovascular and 

metabolic risk factors including obesity, arterial hypertension, dyslipidemia and insulin 

resistance.1 How these risk factors contribute to VCI is intricate and remains not fully 

understood. 

 

The most common clinical manifestations of VCI are impairment of executive functioning (e.g., 

in planning, organizing and monitoring behavior), reduced information processing speed as 

well as memory issues.3 The symptom profile and severity of VCI are theorized to be shaped 

by the nature, size, and site of brain damage induced by vasculopathy.4 Given that lifestyle 

and medical interventions can alter the progression of VCI, comprehending its impact on the 

brain is vital for effective prevention and management of related cognitive sequelae. 

 

The development of reliable disease biomarkers is a key priority within the VCI research field 

as they are crucial for translating scientific advances into effective prevention and treatment 

strategies.5,6 Magnetic resonance imaging (MRI) has been instrumental in this development, 

enabling the characterization of VCI-related structural brain changes including white matter 

hyperintensities of presumed vascular origin (WMH) visible on T2-weighted imaging, gray 

matter morphological changes quantifiable via brain morphometry, and the disruption of tissue 

microstructure which can be measured in diffusion-weighted imaging.7 Despite this progress, 

considerable gaps in understanding persist. The role of brain structural changes in mediating 

the link between primary vascular damage and cognition remains to be understood.8 

Additionally, individual-level symptom prediction in VCI is still imprecise.4 Moreover, since the 

onset of the pandemic, COVID-19 has been repeatedly associated with cerebrovascular 

disease as well as the development of cognitive impairment and dementia.9  Still, it remains 

uncertain whether SARS-CoV-2 contributes to VCI pathophysiology. 

 

Advanced neuroimaging targeting brain network macro- and microstructure provides a means 

to bridge these knowledge gaps. It represents a promising avenue towards biomarkers 

improving pathomechanistic understanding, as well as informing diagnostics and treatment 

strategies.5 Therefore, this thesis encompasses three research projects that investigate macro- 
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and microstructural aspects of VCI leveraging multimodal neuroimaging, network 

neuroscience, and advanced statistical analyses. 

 

Figure 1. Vascular cognitive impairment. 

a) VCI encompasses 
a range of cognitive 
deficits linked to 
varying degrees of 
vascular pathology, 
including subjective 
cognitive impairment, 
mild cognitive 
impairment, and 
dementia. VCI can 
refer to a clinical 
syndrome caused 
solely by 

cerebrovascular 
pathology, known as 
vascular dementia, or 
a condition where 

cerebrovascular 
pathology contributes 
to cognitive decline to 
any extent, e.g., 
mixed dementia with 
joint vascular and 

Alzheimer’s 
pathology. b) Disease 
mechanism model of 
VCI. Of note, the listed 
mechanisms are 

considered to interact relevantly, and the displayed order of cause and effect is tentative. Modified with 
permission from van der Flier et al.2 Abbreviations: MCI – mild cognitive impairment, SCI – subjective 
cognitive impairment, VCI – vascular cognitive impairment. 

 

Study A.10 Brain atrophy is recognized as an imaging surrogate for VCI, but the specific 

morphological changes connecting vascular risk factors with cognition are unclear. The first 

presented study titled “A latent clinical-anatomical dimension relating metabolic syndrome to 

brain structure and cognition,” published in eLife on December 7, 2023, investigated this 

issue.10 We analyzed the relationship between metabolic syndrome (i.e., a joint vascular risk 

profile composed of obesity, arterial hypertension, dyslipidemia and insulin resistance), brain 

morphology, and cognitive function in 40,087 individuals from the UK Biobank and Hamburg 

City Health Study (HCHS), using multivariate statistics, imaging transcriptomics, and 

connectomics. 
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Study B.11 WMH are key imaging indicators of VCI. However, the correlation between WMH 

volume and symptom severity is not consistent across individuals, with some exhibiting fewer 

symptoms despite extensive WMH and vice versa. Because of this clinical-radiological 

paradox, current individual-level predictions of cognitive impairment in VCI remain inaccurate. 

In our project “Enhancing Cognitive Performance Prediction through White Matter 

Hyperintensity Disconnectivity Assessment: A Multicenter Lesion Network Mapping Analysis 

of 3,485 Memory Clinic Patients” we posit that analyzing the regional network disconnection 

caused by WMH may provide biomarkers with superior predictive power than WMH volumes 

alone. Based on this hypothesis, we investigated lesion and cognitive data of 3,485 patients 

of 10 memory clinic cohorts within the Meta VCI Map Consortium, aiming to refine cognitive 

impairment predictions in VCI. The project has been published as a preprint at medRxiv and 

is under review at BRAIN. 

 

Study C.12 In April 2021, as this thesis commenced, the COVID-19 pandemic was profoundly 

impacting global societies. In response, we decided to examine long-term effects of SARS-

CoV-2 on brain structure and cognition. This decision was particularly motivated by evidence 

that the virus adversely affects brain health through vasculopathy, which directly aligns with 

the focus of this thesis. Therefore, we examined neuroimaging and cognitive data of 223 

individuals on average 10 months after their SARS-CoV-2 infection from the HCHS COVID 

Program. This work has been published in PNAS on May 23, 2023 and is titled “Brain imaging 

and neuropsychological assessment of individuals recovered from a mild to moderate SARS-

CoV-2 infection”. 

 

The thesis is structured as follows: 1) a general overview over the investigated cohorts, MR 

preprocessing and applied analysis techniques; 2) background, methods, and results of the 

individual studies; 3) a general discussion section that interprets and contextualizes the 

collective findings of the thesis. 

 

1.2 Methods overview 

1.2.1 Study samples 

The presented thesis examined demographic, cognitive and MRI data of four large-scale 

datasets, including the UK Biobank, HCHS (both study A), the Meta VCI Map Consortium 

(study B), and the HCHS COVID Program (study C). The participants of these studies cover 

the full severity spectrum of cognitive impairment from healthy, over subclinical changes and 

mild cognitive impairment to manifest dementia (figure 2a). 

The UK Biobank study is a large-scale, prospective, population-based cohort study 

examining adults aged 45-80 to enhance the prevention, diagnosis, and treatment of various 
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serious illnesses.13 It collects detailed lifestyle and clinical data, complemented by multimodal 

brain MRI and a computerized battery of cognitive tests covering domains of attention, 

executive function, processing speed, memory, and reasoning.14 Neuroimaging is performed 

using Siemens Skyra 3T MRI scanners across four centers with identical software and 

hardware setups. 

The HCHS is a prospective, population-based, single-center cohort study based in 

Hamburg, Germany, investigating adults aged 45-75 to enhance the detection of major chronic 

disease risks through extensive clinical and imaging phenotyping.15 Cognitive functions are 

evaluated using an extended version of the Consortium to Establish a Registry for Alzheimer’s 

Disease Neuropsychological Assessment Battery (CERAD-NP/Plus), which includes tests for 

general cognitive status, attention and executive function, processing speed, memory, 

reasoning and verbal fluency. A subset of participants, chosen partly at random and partly due 

to elevated vascular risk, receive multimodal brain MRI scans using a 3T Siemens Skyra. 

The Meta VCI Map Consortium is a collaborative, multicenter initiative focused on 

studying vascular contributions to cognitive impairment through advanced neuroimaging and 

meta-analyses of lesion topography.16 It pools data from patients of multiple memory clinic 

cohorts, spanning different stages of cognitive disease from subjective cognitive impairment 

to manifest dementia.17 The cohorts consist of patients assessed at outpatient memory clinics 

for cognitive symptoms, undergoing MRI and cognitive evaluations. Patients with cognitive 

issues from non-vascular or non-neurodegenerative causes (e.g., alcohol abuse) or 

monogenic disorders (e.g., CADASIL) were excluded. Cognitive assessments, covering tests 

for attention and executive function, processing speed, memory and reasoning, were 

harmonized across cohorts.17 

The HCHS COVID Program is a substudy of the HCHS. It enrolled individuals after a 

SARS-CoV-2 infection to study multi-organ, long-term effects of COVID-19 at the start of the 

pandemic.18 Recruitment occurred between March 1 to December 31, 2020 with inclusion 

criteria being (1) a positive polymerase chain reaction (PCR) test for SARS-CoV-2 and (2) age 

between 45 and 74 at inclusion. Participants received the HCHS assessment, including 

cognitive testing and brain MRI, alongside a questionnaire on COVID-19-related information. 

 

1.2.2 MRI preprocessing (all studies) 

To mitigate the effects of acquisition artifacts, movement and physiological responses, MR 

images require preprocessing and quality assessment procedures. For the presented studies, 

we developed a software framework for MRI preprocessing implementing the latest 

advancements in neuroimaging. This framework unifies reproducible neuroimaging, facilitated 

data management and high-performance computing to meet the demands of the large-scale 

data analyses presented in this project. The corresponding code and pipeline documentation 
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can be found on GitHub (https://github.com/csi-hamburg/CSIframe). MR images were 

processed with this framework leveraging pre-configured and containerized pipelines. T1-

weighted MR images were processed based on the Computational Anatomy Toolbox (CAT, 

version 12.7).19 Diffusion-weighted MR images were preprocessed via QSIprep (version 

0.14.2).20 

 

1.2.3. Analysis techniques 

We capitalized on a broad range of advanced neuroimaging and statistical techniques in this 

thesis. The following sections provide an overview about the analysis concepts to provide 

enough context for understanding the study summaries in the subsequent sections. The 

techniques are depicted in figure 2b. 

  

Brain morphometry (study A and C) 

Brain morphometry refers to the quantitative study of macroscopic brain features. 

Morphometric measurements cover volume and cortical thickness, surface area, and the 

shape of various brain regions. These markers can provide insights into macrostructural 

disease effects like atrophy and neurodegenerative processes.19 

 

Connectomics (study A and B) 

The field of connectomics focuses on mapping and understanding the complex networks of 

neural connections within the brain.21 It utilizes functional and structural neuroimaging methods 

to reconstruct wiring diagrams of the brain network, so called connectomes. Functional 

connectomes, commonly obtained from resting-state fMRI, map connections between brain 

regions by identifying correlated fluctuations of the blood oxygen level dependency (BOLD) 

signal. Structural connectomes are reconstructions of anatomical pathways, specifically white 

matter fiber tracts, based on streamline tractography from diffusion-weighted imaging. 

 

Lesion network mapping (study B) 

Lesion network mapping is a technique for identifying the brain circuits affected by lesions.22 It 

involves overlaying lesion segmentations onto connectomes to measure the connection 

strength between brain regions and the lesion, thereby inferring the resulting disconnectivity. 

The employed connectomes are commonly derived from supplementary datasets of healthy 

adults to reduce bias by disease effects. There are two main types of lesion network mapping: 

functional lesion network mapping, using functional connectomes based on resting-state fMRI 

to quantify connections between regions and the lesion, and structural lesion network mapping, 

using structural connectomes based on streamline tractography from diffusion MRI. 
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Figure 2: Cohorts and applied analysis techniques. 

The thesis is based on data 
from the UK Biobank, the 
Hamburg City Health Study 
and the Meta VCI Map 
Consortium, which cover 
different parts of the severity 
spectrum in vascular 
cognitive impairment: normal 
population, normal 
population with elevated 
vascular risk, and memory 
clinic patients. Employed 
analysis techniques include 
brain morphometry, 
connectomics, lesion 
network mapping, 
microstructure imaging, 
partial least squares 
correlation analysis, 
predictive modelling and 
virtual histology. 

 

 

 

 

 

 

 

 

Imaging of tissue microstructure: diffusion-tensor imaging, free-water imaging and 

fixel-based analysis (study C) 

Beyond streamline tractography, diffusion MRI allows to assess microstructural integrity, i.e., 

microscale cellular and extracellular tissue organization. This thesis harnessed diffusion tensor 

imaging (DTI), free-water imaging, and fixel-based analysis to analyze the tissue 

microstructure of the white matter.23–25 DTI leverages diffusion information to compute the 

mean diffusivity (MD) and fractional anisotropy (FA), reflecting water diffusion extent and 

directionality in neural tissue, respectively. Free-water imaging complements metrics on 

extracellular volume and tissue-specific diffusion directionality. Fixel-based analysis, 

employing a more complex diffusion model, provides insights into fiber-bundle density and 

cross-section at a sub-voxel level. Together, these approaches aid in detecting abnormalities 

in tissue microarchitecture such as demyelination, axonal damage, dendritic alterations, and 

inflammation. 
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Partial least squares correlation analysis (study A) 

Partial least squares correlation analysis (PLS) is a data-driven, multivariate statistical 

technique designed to model and analyze the relationship between two sets of multivariable 

data domains, e.g., imaging data and clinical metrics.26 This technique uncovers latent 

variables — i.e., unobservable underlying factors — that represent a many-to-many mapping 

between the input data domains. By identifying these latent variables, it reduces the 

dimensionality of the data while preserving the core information, making it easier to understand 

and interpret the relationship between two large and complex datasets. 

 

Predictive modelling analysis (study B and C) 

In neuroimaging research, predictive modelling is instrumental for assessing the predictive 

power of imaging biomarkers for unseen outcomes, a key property for improving diagnostic 

and therapeutic approaches.27 To ensure robustness and generalizability, predictive models 

are trained through nested cross-validation on labelled data. Specifically, the dataset is split 

into multiple folds to enable training and validation across distinct segments resulting in reliable 

performance metrics. The splitting regimen involves an external loop for assessing model 

performance and an internal loop dedicated to choosing the optimal model and adjusting 

hyperparameters, thereby reducing overfitting and data leakage.28 

 

Virtual histology (study A) 

Virtual histology analysis represents a recently developed neuroimaging technique, combining 

high-resolution imaging transcriptomics data, such as that from the Allen Human Brain Atlas, 

with gene-cell assignments derived from single-cell sequencing techniques.29 This integration 

enables the inference of regional cellular densities and distributions within the brain 

complementing traditional histological methods. 

 

1.3. Study A: A latent clinical-anatomical dimension relating metabolic 

syndrome to brain structure and cognition 

1.3.1 Background and aims 

Metabolic syndrome (MetS), characterized by the joint presence of obesity, arterial 

hypertension, dyslipidemia, and insulin resistance, is a major etiological factor in VCI.30 

Recognizing that MetS is modifiable through lifestyle and pharmacological interventions 

highlights the importance of understanding its pathophysiological impact on brain structure to 

inform risk reduction and treatment strategies. 

 

Despite previous structural neuroimaging studies suggesting altered gray matter morphology 

in MetS, several research gaps persist.31 It is unclear if there is a specific pattern of brain 
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morphological differences in those at vascular risk, particularly whether MetS affects some 

brain regions more than others. The potential mediatory role of such brain structural differences 

in the link between MetS and cognitive performance is yet to be clarified. Additionally, the 

determinants of the interaction between MetS and brain structure remain incompletely 

understood. These uncertainties are compounded by the limitations of prior studies, such as 

small sample sizes, a focus on global rather than regional brain morphology, and the isolated 

examination of singular risk factors.31,32 

 

Our study capitalized on cortical thickness and subcortical volume data from 40,087 

participants of the UK Biobank and HCHS to investigate the relationship of MetS and brain 

morphology. We modelled the multivariable relationship between clinical risk factor measures 

and regional brain morphological measures using multivariate, data-driven statistics. 

Integrating cognitive assessments, we further investigated the mediation effect of brain 

structure on the relationship between MetS and cognitive function. Additionally, we explored 

cellular and brain network topological characteristics associated with MetS-related brain 

morphological abnormalities, aiming to deepen the understanding of the neurobiological 

underpinnings of MetS. 

 

1.3.2 Methods and results 

We analyzed cross-sectional clinical and imaging data from 40,087 individuals (mean age 

63.55 ± 7.59; 46.47% female) of the UK Biobank and HCHS, free from neurological or 

psychiatric conditions. We processed T1-weighted MR images with the CAT12 pipeline, 

yielding measures of cortical thickness and subcortical volumes for regions defined by the 

Schaefer400x7 atlas and Melbourne Subcortical Atlas.19,33,34 Regarding MetS-defining risk 

factors, clinical measurements included waist and hip circumferences, waist-hip ratio, body 

mass index (for obesity); systolic and diastolic blood pressures (for arterial hypertension); high-

density lipoprotein, low-density lipoprotein, total cholesterol, triglycerides (for dyslipidemia); 

and HbA1c, non-fasting blood glucose (for insulin resistance). Investigated cognitive tests 

covered executive function and processing speed (Reaction Time, Symbol Digit Substitution, 

Tower Rearranging, Trail Making Test A and B), memory (Numeric Memory, Paired Associate 

Learning, Prospective Memory, Word List Recall), reasoning (Fluid Intelligence, Matrix Pattern 

Completion, Multiple Choice Vocabulary B), verbal fluency (Animal Naming), and visuospatial 

ability (Clock Drawing Test).14 The analysis design is illustrated in figure A1. 

 

In our study, we addressed the data complexity of vascular risk factors and regional brain 

morphology by using partial least squares correlation analysis (PLS; figure A1a), a statistical 

method well-suited for relating high-dimensional data of two domains.26 Simplified, PLS acts 
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as a dual regression that yields interpretable loadings (like β coefficients in regression) for all 

input variables. The resulting two sets of loadings represent covariance profiles that capture 

the multivariate associative effects between the data domains. Put differently, the two sets of 

loadings provide a many-to-many mapping, capturing how the input data domains are linked, 

contrasting the many-to-one mapping provided by β coefficients in multiple regression. This 

approach facilitates the investigation of the link between MetS and brain structure within a 

unified model. The PLS was adjusted for age, sex, education, and cohort effects.  

 

Figure A1: Methodology.10 

 a) PLS was employed to relate 
multivariable datasets of MetS-
defining vascular risk factors and 
regional brain morphology. PLS 
results in latent variables that 
represent clinical and imaging 
covariance profiles representing the 
multivariate associative effects within 
the input data. b) Mediation analysis 
was performed to investigate whether 
the imaging PLS score – capturing 
how strongly an individual expresses 
MetS-related brain morphological 
abnormalities – mediates the 
relationship between the clinical PLS 
score – representing MetS severity – 
and cognitive test outcomes. c) To 
explore pathomechanistic pathways 
linking MetS to brain structure, a 
contextualization analysis was 
performed. Spatial correlations 
between the PLS-derived imaging 
covariance profile (i.e., bootstrap ratio) 
and regional information on cell 
densities and brain network topology 
were performed. Adapted from 
Petersen et al.35 Abbreviations: Astro 
– astrocytes, DWI – diffusion-weighted 
magnetic resonance imaging, Endo – 
endothelial cells, Ex – excitatory 
neuron populations (Ex1-8), In – 
inhibitory neuron populations (In1-8), 
Micro – microglia; Oligo – 
oligodendrocytes, PLS – partial least 
squares correlation analysis, rs-fMRI – 
resting-state functional MRI, SVD – 
singular value decomposition. 

 

PLS revealed 8 significant latent variables capturing the multivariable associative effects 

between MetS and regional brain morphology. As the first latent variable explained the major 
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share of covariance (71%, figure A2a), it was further investigated. The first latent variable 

encoded a positive link between MetS severity and brain morphological differences: higher 

MetS severity, i.e., higher degrees of obesity, hypertension, dyslipidemia, and insulin 

resistance (figure A2d), was associated to widespread brain morphological abnormalities 

(figure A2d). Specifically, higher MetS severity was linked to lower thickness and volume in 

the orbitofrontal, lateral prefrontal, insular, cingulate, temporal cortices and subcortical areas, 

alongside higher thickness in the superior frontal, parietal, and occipital regions. Among 

vascular risk factors, obesity measures contributed strongest to this relationship. 

 

Figure A2: Partial least squares (PLS) correlation analysis results.10 

 a) Explained shared 
variance (blue dots) 
and p-values (gray 
dots) of latent 
variables. b) Scatter 
plot illustrating the 
relationship between 
clinical and imaging 
PLS scores per 
subject, where higher 
scores reflect greater 
alignment with the 
respective identified 
covariance profile. c) 
Clinical covariance 
profile represented by 
clinical loadings, with 
95% confidence 
intervals determined 
through bootstrap 
resampling. Prior 
adjustments for age, 
sex, education, and 
cohort differences 
were made. d) Imaging 

covariance profile represented by bootstrap ratio of imaging loadings. A high positive or negative 
bootstrap ratio indicates high contribution of a brain region to the overall covariance profile. Regions 
with a significant bootstrap ratio (> 1.96 or < -1.96) are highlighted by colors (blue - positive, red - 
negative). Abbreviations: rsp - Spearman correlation coefficient. 

 

Subsequently, we computed subject-specific PLS scores to quantify individual-level 

expression of the identified covariance profiles, with higher scores indicating stronger 

alignment with these profiles. Hence, PLS scores can be understood as factor scores in factor 

or principal component analysis. In our analysis, lower clinical scores denoted higher MetS 

severity, while lower imaging scores suggested stronger expression of the abovementioned 

brain morphological abnormalities. The scores were correlated (figure A2b), indicating that, 
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on the subject level, higher adherence to the imaging covariance profile (less brain 

morphological abnormalities) coincided with higher adherence to the clinical covariance profile 

(lower MetS severity), and vice versa. To investigate if brain structural differences mediate the 

link between MetS and cognitive function, we performed a mediation analysis. Therefore, we 

tested if the imaging PLS scores, reflecting expression of MetS-related brain morphological 

abnormalities, mediate the link between the clinical PLS score – capturing MetS severity – and 

cognitive performance. Our findings, detailed in figure A3, revealed that imaging PLS scores 

fully mediated the link of clinical PLS scores on the performance of the Fluid Intelligence Test, 

Matrix Pattern Completion Test, and Trail Making Test B. Additionally, the associations 

between clinical PLS scores and the results of the Numeric Memory, Paired Associate 

Learning and Symbol Digit Substitution Tests were partially mediated. 

To explore potential pathomechanisms linking MetS to brain structural changes, we integrated 

our findings with normative data on imaging transcriptomics and connectomics.36,37 

Specifically, we investigated whether MetS-associated brain morphological abnormalities, 

identified through PLS, spatially correlated with the regional density of certain cell populations 

and markers of brain network topology (figure A1c). Spatial correlations were performed via 

Spearman correlation of the respective brain maps. Significance was tested via null models 

accounting for the spatial autocorrelation between brain maps.38–41 

Figure A3: Mediation analysis results.10 
 

Path plots display the 
statistical relationships 
between clinical PLS 
scores, imaging PLS 
scores and cognitive test 
results. Presented are 
standardized effects and 
p-values for: (a) clinical to 
imaging scores, (b) 
imaging to cognitive test 
scores, (ab) the indirect 
effect, (c') the direct 
effect, and (c) the total 
effect. Significant 
pathways are marked in 

blue, with non-significant ones in light gray. A blue highlight on the text for ab signifies a significant 
indirect effect. A blue dot signifies mediation (significant indirect effect ab with a reduced or non-
significant direct effect c’ compared to the total effect c), with an empty dot representing partial mediation 
and a full dot full mediation. Abbreviations: pFDR - false discovery rate-corrected p-values, PLS – partial 
least squares correlation, TMT-A – Trail Making Test A, TMT-B – Trail Making Test B. 
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 First, we implemented a virtual histology approach to correlate the PLS-derived pattern of 

brain morphological abnormalities (i.e., bootstrap ratio map) with cell-type specific gene 

expression from the Allen Human Brain Atlas.36 This technique allows to infer the regional 

density of specific cell populations by quantifying corresponding transcriptomic signatures. Our 

analysis showed significant positive correlations between the imaging covariance profile and 

the densities of endothelial cells, microglia, and excitatory neurons type 8, with these findings 

being consistent in sensitivity analyses. Thus, MetS-related brain morphological abnormalities 

were strongest in regions rich in these cell types (figure A4a). 

Second, we explored the relationship between the imaging covariance profile and brain 

network topology metrics, focusing, among others, on neighborhood abnormality measures 

derived from group consensus functional and structural connectomes of the Human 

Connectome Project. Neighborhood abnormality reflects the average of a cortical feature 

across a region's network neighborhood. We found a moderate positive correlation with 

functional neighborhood abnormality and a strong positive correlation with structural 

neighborhood abnormality, indicating that areas with similar MetS-related brain morphological 

abnormalities are highly functionally and structurally interconnected (figure A4b). 

Figure A4: Virtual histology and network contextualization analysis.10 
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a) Virtual histology analysis. The regional correspondence between MetS-related brain morphological 
abnormalities (bootstrap ratio) and cell type-specific gene expression profiles was examined. Left: 
barplot displaying spatial correlation results. The bar width displays the significance level. Colors encode 
the aggregate z-transformed Spearman correlation coefficient relating the Schaefer-parcellated 
bootstrap ratio map and respective cell population densities. Asterisks indicate statistical significance. 
The significance threshold of pFDR<.05 is highlighted by a vertical dashed line. Scatter plots show spatial 
correlations between MetS-related morphological abnormalities and specific cortical gene expressions 
in the endothelium, microglia, and excitatory neurons type 8, highlighting the top 5 correlating genes per 
cell type; cell types are identified by icons.  b) Network contextualization analysis. Spatial correlation 
results derived from relating Schaefer-parcellated maps of MetS-related brain morphological 
abnormalities (bootstrap ratio) to the functional (red) and structural (blue) neighborhood abnormality. 
Scatter plots that illustrate the spatial relationship are supplemented by surface plots for anatomical 
localization. Abbreviations: -log(pFDR) – negative logarithm of the false discovery rate-corrected p-value 
derived from spatial lag models38, rsp - Spearman correlation coefficient, prewire - p-value derived from 
network rewiring40, psmash - p-value derived from brainSMASH surrogates41, pspin - p-value derived from 
spin permutation results39, Z(rsp) – aggregate z-transformed Spearman correlation coefficient. 

 

1.4. Study B: Enhancing Cognitive Performance Prediction through White 

Matter Hyperintensity Disconnectivity Assessment: A Multicenter Lesion 

Network Mapping Analysis of 3,485 Memory Clinic Patients 
 

1.4.1 Background and aims 

White matter hyperintensities of presumed vascular origin (WMH) are the signature imaging 

correlate of cerebral small vessel disease, and mark sites of white matter disconnection caused 

by microangiopathic axonal loss and demyelination.42,43 Cerebral small vessel disease is 

considered the most frequent cause of VCI and relevantly contributes to mixed-type dementia.1 

Nonetheless, the pathomechanistic pathways connecting small vessel injury to clinical 

symptoms are not fully understood. Although considered a key imaging marker for evaluating 

cognitive health in at risk populations, WMH volume is not consistently linked to symptom 

severity across individuals: some individuals with extensive WMH exhibit few symptoms and 

vice versa.4 Successful individual prediction of clinical impairment is, however, essential to 

patient care and for designing individualized therapeutic interventions in VCI. 

 

Recent lesion-symptom inference analyses demonstrated an association between cognitive 

impairments and WMH located in strategic white matter regions, independent of total WMH 

volume.17,44 Yet, these insights may not capture the full complexity of small vessel pathology-

related cognitive impairment, which is thought to result from disruptions in the interactions of 

large-scale brain networks interconnecting cortical and subcortical gray matter areas through 

white matter tracts.45 In recent years, advanced imaging analysis models have been developed 

to capture lesion impacts on brain circuitry.46 Specifically, lesion network mapping (LNM) 

techniques map lesions onto brain network reconstructions to quantify a lesion’s connectivity 

to different brain regions.47 By that, it allows to infer which brain regions are disconnected by 
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the lesion. LNM has been shown to enhance symptom prediction in neurological disorders 

viewed as “disconnection syndromes”, including stroke and multiple sclerosis.48,49 

 

In this study, we argued that clinical impairment due to WMH in VCI is relevantly explained by 

the strategic location of WMH and their impact on brain connectivity rather than their size. 

Therefore, we integrated LNM with WMH segmentations and cognitive data from 3485 memory 

clinic patients of the Meta VCI Map Consortium to test the following hypotheses: (1) LNM-

informed markers surpass WMH volume-based metrics in predicting cognitive performance, 

and (2) WMH that contribute to cognitive impairment map to specific brain networks that 

determine their symptom profile.16,17 

 
1.4.2 Methods and results 

The methodological approach is illustrated in figure B1. We analyzed cross-sectional data of 

3,485 patients from 10 memory clinic cohorts in the Meta VCI Map Consortium (mean age 

71.71 ± 8.87; 49.8% female), using WMH segmentations as well harmonized cognitive domain 

scores (z-scores) for attention / executive function, information processing speed, language 

and memory (figure B1a). WMH segmentations were registered to the Montreal Neurological 

Institute standard space and integrated with normative functional and structural brain 

connectome data to perform LNM.50,51 Employing LNM we quantified WMH disconnectivity 

across 480 atlas-based anatomical gray and white matter brain regions, resulting in regional 

functional LNM (fLNM) and structural LNM (sLNM) scores (figure B1b).52 A higher fLNM or 

sLNM score of a region suggests higher WMH-related disconnectivity of the region. A 

predictive modelling analysis was performed to compare the performance of demographic 

confounds (age, sex and education), WMH volume-based metrics, and LNM scores to predict 

cognitive domain scores. Subsequently, to investigate whether WMH-related disconnectivity 

of specific brain circuits links to cognitive performance, we performed a region of interest-level 

analysis linking cognitive domain scores to the regional LNM scores in a general linear model 

(figure B1c). 

 

In the predictive modelling analysis, ridge regression models were optimized using repeated 

nested cross-validation (10 repetitions, 10 folds) to predict cognitive domain scores, evaluating 

model performance via Pearson correlation between predicted and actual scores. Models 

included age, sex, and education as baseline predictors. Prediction performance was 

compared via machine learning-adjusted t-tests of Pearson correlations.53 The analysis 

compared six feature sets: (1) demographic confounds (age, sex, education), (2) total WMH 

volume with confounds, (3) regional WMH volumes within 64 white matter tracts of the 

HCP1065 atlas with confounds, (4) regional fLNM scores with confounds, (5) regional sLNM 

scores with confounds, and (6) combined regional fLNM and sLNM scores with confounds. 
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Figure B1. Methodology.11 

 

 
a) Harmonized cognitive domain scores and WMH segmentations from 10 memory clinic cohorts of the 
Meta VCI Map Consortium were used. To perform functional lesion network mapping, we used the 
GSP1000 normative functional connectome, which includes resting-state fMRI data from 1,000 healthy 
participants of the Genomic Superstruct Project.50 For structural lesion network mapping, the HCP32 
normative structural connectome was employed, based on diffusion-weighted imaging from 32 healthy 
Human Connectome Project participants, representing fibre-bundle architecture.51 b) We conducted 
LNM to assess both functional and structural connections of WMHs to multiple ROIs, including the 
cortical Schaefer400x7 atlas, the Melbourne Subcortical Atlas, and the HCP1065 atlas of predefined 
white matter tracts. First, voxel-level connectivity maps were generated for each ROI, based on resting-
state BOLD correlations or anatomical connections through tractography, respectively. These maps 
encoded in each voxel the functional or structural connectivity to the respective region of interest, i.e., 
the Pearson correlation between the resting-state BOLD timeseries of voxel and ROI or the number of 
streamlines connecting the voxel and the ROI. Next, ROI-specific lesion network mapping scores were 
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calculated by averaging voxel-level functional or structural connectivity indices within WMH masks. For 
the functional lesion network mapping scores, only positive Pearson correlations were considered. This 
resulted in matrices of functional and structural lesion network mapping (fLNM and sLNM) scores for 
each patient across ROIs (nROIs x npatients). The matrices shown in the figure contain only random data 
for illustration purposes. c) In a predictive modelling analysis, the LNM scores were used to predict 
cognitive domain scores. In addition, a region of interest analysis was performed to identify regions in 
which LNM scores and cognitive domain performance were significantly associated. Abbreviations: 
fLNM – functional lesion network mapping, GSP – Genomic Superstruct Project, HCP – Human 
Connectome Project, ROI – region of interest, rsfMRI – resting-state functional magnetic resonance 
imaging, sLNM – structural lesion network mapping, WMH – white matter hyperintensities of presumed 
vascular origin. 

 

The corresponding results are visualized in figure B2. LNM-based models significantly 

surpassed the performance of those based on WMH volume measures and confounds for 

predicting attention/executive function, information processing speed, and verbal memory 

(figure B2a). As this analysis implements current best practices of predictive modelling in 

neuroimaging, our findings represent evidence for a true prediction of cognitive performance 

by LNM.54 Comparing the improvement from the confounds-based model to the model 

informed by total WMH volume with the improvement to the model based on both LNM 

modalities, the usage of fLNM and sLNM scores amounted to a 3- to 7-fold increase in added 

predictive performance across the three cognitive domains. For language scores, LNM 

measures did not significantly surpass prediction performance of WMH volume measures. 

 

To evaluate the stability of our predictive modelling results, we conducted the analysis across 

subsamples of increasing sizes (figure B2b). For the cognitive domains of attention/executive 

function and verbal memory, models informed by LNM began to surpass those based on WMH 

volume when the subsample size reached about 50% (attention / executive function: n=1723, 

verbal memory: n=1712, note variations in data availability across cognitive domains). In the 

case of information processing speed, LNM-based models exceeded WMH volume models at 

a subsample size of roughly 25% (n=604). For language abilities, LNM-based models matched 

the performance of WMH volume models as sample sizes increased. Across all cognitive 

domains, predictive accuracy showed high consistency and minimal improvement within the 

80-100% sample size range, suggesting a plateau in performance gains.  
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Figure B2. Predictive modelling analysis.11 

 
a) Violin plots display the distribution of prediction scores (Pearson correlations) across cognitive 
domains (100 Pearson correlations for 100 folds from 10-fold cross-validation repeated 10 times). Colors 
represent different feature sets: blue for demographic confounds (age, sex, education), orange for total 
WMH volume with confounds, green for tract-level WMH volumes with confounds, red for sLNM scores 
with confounds, purple for fLNM scores with confounds, and brown for combined sLNM and fLNM scores 
with confounds. Average Pearson correlations are shown above each violin. Training score averages 
are represented by colored dots on the violin. Machine learning adjusted t-test results comparing LNM-
based models to confound- and WMH volume-based models are indicated by geometric symbols: ▲ for 
significantly higher correlation than confounds, ■ for significantly higher than total WMH volume with 

confounds, and ⬟ for significantly higher than tract-level WMH volumes with confounds. b) Performance 

curves illustrate average Pearson correlations across folds for different sample subsets, increasing in 
size. Line colors correspond to those in the violin plots of panel a). Abbreviations: fLNM – functional 
lesion network mapping, sLNM – structural lesion network mapping, WMH – white matter 
hyperintensities of presumed vascular origin. 

To investigate the link between WMH disconnectivity in specific brain circuits and cognitive 

performance, we related regional LNM scores and cognitive domain scores. Associations of 

cortical and subcortical regions are displayed in figure B3. Higher fLNM scores in cortical 

regions of the dorsal and ventral attention networks were associated with lower scores in 

attention/executive function, information processing speed and verbal memory (figure B3a-c). 

Association between cognition and structural lesion connectivity showed a similar spatial 

pattern: sLNM scores in the dorsal attention network correlated negatively with 

attention/executive function and information processing speed (figure B3d-f). The link of 

sLNM and verbal memory showed a distinct spatial distribution: higher sLNM scores in the 

ventral attention, frontoparietal, and default mode network were significantly associated with 
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lower verbal memory. No significant association was found between LNM scores and language 

abilities. The spatial effect patterns, represented by the reported β-coefficient maps, 

demonstrated significant overlap, with 26 out of 28 effect pattern pairs showing significant 

correlation. 

Figure B3. Region of interest-level statistics for cortical and subcortical gray matter.11 
 Left panels depict 
anatomical maps with β-
coefficients from general 
linear models, where red 
indicates negative β-
coefficients (higher 
regional LNM scores 
associated with lower 
cognitive performance) 
and blue indicates 
positive β-coefficients 
(higher cognitive 
performance with higher 
LNM scores). Right 
panels display bar plots 
of these β-coefficients 
averaged across Yeo's 
canonical resting-state 
networks,55 with a color-
coded network 
distribution illustration in 
the lower right. 
Statistical significance 
was assessed via spin 
permutations. Rows 
represent different LNM-
cognitive domain pairs: 
a) fLNM – 
attention/executive, b) 
fLNM – processing 
speed, c) fLNM – verbal 
memory, d) sLNM – 
attention/executive, e) 
sLNM – processing 
speed, f) sLNM – verbal 
memory. Abbreviations: 
fLNM – functional lesion 
network mapping, pspin – 
p-value derived from 

spin permutations, sLNM – structural lesion network mapping. 
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Further regional analysis of predefined white matter tracts showed that lower cognitive 

performance in attention/executive function, information processing speed, and verbal memory 

was associated with higher LNM scores in tracts connecting the frontal as well as parietal 

cortex. This included, among others, the bilateral superior longitudinal fascicles, cingulate 

tracts, the anterior thalamic radiation, corticostriatal and corticopontine tracts. There was no 

significant association between tract-level LNM scores and language function.  

 

1.5 Study C: Brain imaging and neuropsychological assessment of individuals 

recovered from a mild to moderate SARS-CoV-2 infection 

1.5.1 Background and aims 

By February 11, 2024, over 750 million COVID-19 cases were reported globally by the World 

Health Organization (https://data.who.int/dashboards/covid19/cases). The pandemic has 

highlighted that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) not only 

induces respiratory dysfunction but can also affect multiple organ systems.18 Importantly, 

SARS-CoV-2 infections can have profound impacts on the central nervous system, leading to 

a range of neurological symptoms including, but not limited to, deficits of attention and 

executive function, memory impairment, headaches, and fatigue.56 These issues can last for 

months or years, then commonly referred to as long COVID, and severely challenge individual 

recovery and overall well-being.57 Comprehending the pathological underpinnings of these 

long-term consequences is essential for meeting ensuing health care needs. 

 

Histopathological studies on patients deceased from COVID-19 suggest that vascular damage 

and neuroinflammation may relevantly contribute to COVID-19's neuropsychiatric effects.58 

However, these post-mortem studies cannot directly investigate the disease-symptom 

relationship. In vivo brain imaging allows to link brain structural changes to clinical outcomes 

and could help to identify reliable biomarkers of long-term effects of COVID-19, enhancing 

diagnostics and prognostication. But studies jointly investigating brain imaging and 

neurological as well as psychiatric symptoms are scarce, highlighting the need for further 

investigations.  

 

Our study aimed to address this issue by examining the long-term neuropsychological and 

neuroanatomical outcomes associated with COVID-19, focusing on individuals with mild to 

moderate disease course. We analyzed 223 non-vaccinated individuals at a median of 10 

months post-recovery, using multimodal MRI to detect signs of neurodegeneration, 

neuroinflammation, and vasculopathy, coupled with broad neuropsychological assessments. 
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1.5.2 Methods and results 

In this cross-sectional case-control study, we analyzed 223 participants of the HCHS COVID 

Program (mean age 55.54 ± 7.07; 44.8% female) who had recovered from a SARS-CoV-2 

infection confirmed by PCR tests.18 These participants completed cranial MRI, 

neuropsychological testing, and symptom questionnaires, following HCHS protocols. We 

matched a healthy control group assessed pre-pandemic from the original HCHS for age, sex, 

education, and vascular risk factors (age: 55.54 ± 7.07, 41.7% female). We processed T1-

weighted, FLAIR, and diffusion-weighted MRI scans to assess measures of brain tissue 

integrity, including cortical thickness, white matter microstructure (via diffusion tensor imaging, 

free-water imaging, and fixel-based analysis), and cerebral small vessel disease markers 

(WMH load and peak width of skeletonized mean diffusivity, PSMD). The individual measures 

are described in figure C1. We analyzed imaging markers at three different scales: globally, 

by regions of interest (cortical regions defined by the Desikan-Kiliany atlas, white matter tracts 

derived via TractSeg), and at vertex- or voxel-levels. Cognitive and neuropsychiatric 

assessments included the Animal Naming Test, Clock Drawing Test, Mini-Mental State Exam, 

Trail Making Test, Word List Recall, GAD-7, and PHQ-9, plus self-reported neurological 

symptoms from the PHQ-15. Statistical group comparisons were adjusted for age, sex, 

education and vascular risk factors. 

 

Figure C1. Schematic illustration of the investigated imaging markers.12 

 
This figure outlines the derivation and interpretation of cerebral gray and white matter imaging markers. 
The first row details the imaging sequences used, while the second row illustrates the markers: cortical 
thickness (CT) as the distance from the pial surface to the gray/white matter boundary; fiber cross-
section (FC) indicating white matter bundle diameter; fiber density (FD) reflecting intraaxonal volume; 
fiber density and cross-section (FDC) assessing both micro- and macroscopic white matter alterations; 
complexity (CX) of fiber configurations; fractional anisotropy (FA) for diffusion directionality; mean 
diffusivity (MD) for diffusion rate; fractional anisotropy of the tissue (FAT); free-water (FW) quantifying 
the volume of the extracellular compartment; peak width of skeletonized mean diffusivity (PSMD) as the 
mean diffusivity 95th and 5th percentile difference; and white matter hyperintensity volume normalized 
by intracranial volume (WMH load). The third and fourth rows provide histological interpretations and 
information on sensitivity to pathologies of these markers. 
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Recovered SARS-CoV-2 individuals showed increased global MD and extracellular free-water 

in the cerebral white matter compared to controls (figure C2). The remaining global imaging 

markers showed no statistically significant group differences including cerebral small vessel 

disease markers, fractional anisotropy, cortical thickness and fixel-based analysis indices. For 

biological interpretability, we translated mean differences in MD and free-water between 

groups into "years of healthy aging" based on linear regression of the imaging markers with 

control group age. The observed differences corresponded to 7 years of healthy aging for MD 

and 6.67 years for free-water. For spatial localization we performed tract-based spatial 

statistics (TBSS) which represents a voxel-level analysis across the white matter skeleton. 

TBSS revealed widespread differences, with significantly higher free-water and MD across all 

brain lobes in post-SARS-CoV-2 individuals. 

 

Figure C2. Group comparison of mean diffusivity and extracellular free-water.12 

 Left: boxplots of averaged 
imaging measures and the 
corresponding statistical 
results (F-statistics and 
Bonferroni-corrected p-
values) from the ANCOVAs 
comparing matched controls 
with post-SARS-CoV-2 
individuals adjusted for age, 
sex, and years of education. 
Right: tract-based spatial 
statistics results showing 
group comparisons of 
skeletonized diffusion 
indices. Skeleton voxels that 
significantly differed between 
groups are highlighted by 
colors: post-SARS-CoV-2 
individuals > matched 
controls, red; post-SARS-
CoV-2 individuals < matched 
controls, blue. Abbreviations: 
FW – free-water, p – family-
wise error corrected p-

values, MD – mean diffusivity, post-SARS-CoV-2 – individuals who recovered from a severe acute 
respiratory coronavirus type 2 infection. 

 
 Furthermore, we assessed the predictive power of imaging markers in a supervised predictive 

modelling analysis, specifically logistic regression with ElasticNet penalties. Models were 

scored with prediction accuracy (accuracy = ncorrect predictions / ntotal predictions). Based on this, we 

aimed to predict SARS-CoV-2 infection status based on regional imaging data, i.e., cortical 
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thickness in Desikan Kiliany regions and white matter indices in anatomically predefined white 

matter tracts derived via TractSeg. Free-water and MD emerged as the most accurate 

predictors, with median accuracies of 80.21% and 79.38%, respectively (figure C3). Except 

for cortical thickness, all metrics significantly outperformed null models which were based on 

randomized group assignments. 

 

Figure C3. Predicting past SARS-CoV-2 infection with imaging markers.12 

 A supervised 
machine learning 
analysis was 
conducted to evaluate 
the diagnostic 
capacity of brain 
imaging markers. The 
boxplot illustrates the 
accuracy for 
predicting a past 

SARS-CoV-2 
infection via logistic 
regression models 
informed by regional 
brain imaging 
markers. Models were 
trained using 10-fold 
nested cross-

validation, repeated 100 times per marker with varied random splits. Asterisks denote models 
significantly outperforming null predictions based on permuted group labels. Abbreviations: CT – cortical 
thickness, CX – complexity, FA – fractional anisotropy, FAT – FA of the tissue, FD – fiber density, FDC 
– fiber density and cross-section, FW – free-water, Log. FC – logarithm of fiber cross-section, MD – 
mean diffusivity, PSMD – peak width of skeletonized mean diffusivity, WMH – white matter 
hyperintensity 

 

Clinical test results showed no significant differences between groups, including assessments 

of cognition, psychosocial and neurological symptom burden (table C4). However, exploratory 

regression analyses with an interaction term (imaging x group) for free-water and MD revealed 

significant interactions. Specifically, we found significant interactions for the association of free-

water with the Animal Naming Test, Clock Drawing Test, Mini-Mental State Exam and Word 

List Recall Test, indicating more pronounced effects in post-SARS-CoV-2 individuals. Similar 

patterns were observed for MD, indicating significant interactions for the Animal Naming Test, 

Clock Drawing Test, Mini-Mental State Exam, Trail Making Test A, Word List Recall. 
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Table C4. Results of clinical and neuropsychological assessments of post-SARS-CoV-2 
individuals compared to matched controls12 

Clinical measurea Post-SARS-CoV-2 Matched controls Puncorr
b Pbonf

c F 

Neurocognition 

Animal Naming Test 28.03 ± 6.04 (212) 26.43 ± 7.15 (212) .02 .14 5.94 

Clock Drawing Test 6.75 ± 0.78 (212) 6.57 ± 1.03 (214) .04 .37 4.20 

MMSE 28.37 ± 1.26 (211) 28.02 ± 1.72 (210) .02 .19 5.34 

TMT-A in seconds 31.89 ± 10.60 (212) 33.71 ± 11.67 (190) .12 >.99 2.40 

TMT-B in seconds 68.50 ± 22.69 (212) 70.89 ± 25.57 (187) .37 >.99 .81 

Word List Recall 8.52 ± 1.63 (210) 8.32 ± 1.61 (204) .25 >.99 1.33 

Psychosocial symptom burden 

PHQ-9 3.94 ± 3.74 (212) 3.91 ± 3.77 (215) .97 >.99 <.01 

GAD-7 2.94 ± 3.28 (212) 2.80 ± 3.06 (215) .67 >.99 .18 

Neurological symptom burden 

PHQ-15d 2.13 ± 1.83 (212) 1.83 ± 1.73 (215) .09 .82 2.86 

Abbreviations: GAD – General Anxiety Disorder, MMSE – Mini-Mental State Examination, PHQ – Patient Health 
Questionnaire, post-SARS-CoV-2 individuals – individuals who recovered from a severe acute respiratory 
coronavirus type 2 infection, SD – standard deviation, TMT-A – Trail Making Test A, TMT-B – Trail Making Test B 
 
aPresented as mean ± SD (N) 
bUncorrected P values of analyses of covariance, adjusted for age, sex and years of education 
cBonferroni-corrected P values of analyses of covariance, adjusted for age, sex and years of education (considering 
9 comparisons) 
dPHQ-15 items: headache, dizziness, fatigue, sleep disturbances 
 

 

1.6 General discussion 

Research in cognitive disorders of vascular origin is hampered by the lack of disease 

biomarkers, i.e., objectively measurable indicators that are specific to pathogenic processes. 

The presented thesis summarizes original research from three projects addressing this issue 

by investigating imaging biomarkers of brain network macro- and microstructure in the context 

of VCI. Our goal with this body of work was to improve the understanding of disease pathways 

that link primary vascular pathology to cognitive sequelae. Furthermore, we sought to explore 

ways in how these associations might be harnessed to predict symptoms at the individual level, 

which would have tangible implications for diagnostics and treatment. These aims were 

achieved by the development of a complementary set of analyses to integrate clinical data with 

advanced neuroimaging biomarkers at scale. The implemented workflows have since been 
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used beyond this thesis to investigate macrostructural and microstructural brain abnormalities 

in stroke, nutrition, periodontitis, COVID-19, aging and cerebral small vessel disease.18,35,59–67 

 

1.6.1 Vascular risk links to widespread brain morphological abnormalities 

Brain atrophy is considered a key imaging surrogate of VCI.8 However, the specific processes 

by which vascular pathology leads to brain structural changes are not well understood, partly 

due to the varied causes and severity levels of VCI. Multiple factors, including chronic 

alterations from cerebral small vessel disease and both direct and indirect damage caused by 

acute ischemic stroke, can drive brain atrophy. In study A (presented in section 1.3), we 

addressed this heterogeneity by narrowing our focus to cognitively healthy or subclinically 

affected individuals in two population-based cohorts, deliberately excluding participants with 

neurological diagnoses. This approach allowed us to concentrate on brain morphological 

abnormalities in the normal population at vascular risk, i.e., exhibiting obesity, arterial 

hypertension, dyslipidemia, and insulin resistance. 

 

By integrating vascular risk factors and brain imaging data via multivariate, data-driven 

statistics, we could demonstrate that composite vascular risk, commonly referred to as MetS, 

is associated with a specific pattern of brain morphological abnormalities, independent of age, 

sex and education status (figure A2). Although all risk factor measures contributed 

significantly to the observed associative effects, obesity measures were most strongly 

associated, which indicates that obesity might be the strongest driver of brain morphological 

abnormalities among MetS components. Contributing to the understanding of brain health in 

individuals at vascular risk in general, this finding points to potential clinical utilization by 

highlighting that future studies could focus on the investigation of weight-reducing interventions 

to examine their effects on brain structure and cognitive outcomes. 

 

Higher vascular risk was related to widespread brain morphological abnormalities across 

multiple regions, including the lower thickness in orbitofrontal and lateral frontal, insular, 

cingulate and temporal cortices as well as lower volume in subcortical regions. Strikingly, this 

morphological pattern mediated the association between vascular risk severity and cognitive 

performance in multiple cognitive tests of attention / executive function, information processing 

speed, memory and reasoning (figure A3). This underscores the role of macrostructural brain 

changes as a key pathway connecting vascular and cognitive health in individuals at risk. It 

aligns with prior evidence on the mediating role of brain structure in a pediatric sample at 

vascular risk.68 Considering its association with cognitive performance, we propose that the 

detected associative effects reflect a disease continuum, ranging from minor cognitive 

impairments associated with vascular risk to severe cognitive decline seen in cerebral small 
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vessel disease-related mild cognitive impairment and vascular dementia, as well as 

Alzheimer’s disease.69–71 This theory is supported by the similarity between the observed 

morphological profile and the atrophy patterns found in these conditions. Future studies 

capitalizing on longitudinal data of participants on the full severity spectrum of VCI should 

follow up on these findings.  

 

By integrating our in-vivo imaging findings with post-mortem transcriptomic data in a virtual 

histology analysis, we demonstrated that vascular risk-related brain morphological 

abnormalities were strongest in regions with higher density of endothelial cells, microglia and 

neurons entertaining long-range connectivity (figure A4a). These results affirm the roles of 

these cell types in vascular risk pathophysiology. Endothelial dysfunction has been shown to 

impact tissue integrity by promoting chronic inflammation and impairing blood supply.72 In 

addition, endothelial cell density indicates the level of overall tissue vascularization, with highly 

vascularized areas being more prone to effects of vascular pathology. Although our indirect 

approach has methodological limitations, the results are supported by animal studies linking 

vascular risk-related microglial activation to brain structural damage through inflammatory and 

oxidative mechanisms.73,74 Given the strengthening evidence, therapeutic approaches 

targeting pathways involving endothelial cells and microglia hold potential for preserving brain 

health in individuals at risk. We also discovered an association with the density of excitatory 

neurons of subtype 8 in cortical layer 6, which form long-range connections rendering them 

susceptible to the effects of VCI-related white matter disease.75,76 Collectively, these results 

provide a foundation for research that unifies brain imaging and histopathological data to 

deepen our understanding of cellular-level contributions to VCI. 

 

Leveraging normative brain network topological information from group-consensus 

connectomes, we showed that morphological brain abnormalities coincided within macroscale 

functional and structural brain networks (figure A4b), indicating that regions with similar 

thickness or volume effects were highly interconnected. Hence, the observed brain 

morphological abnormalities localize to large-scale brain networks rather than isolated regions. 

A potential mechanism linking connectivity to vascular risk-related morphological abnormalities 

is the impairment of white matter tracts through microvascular pathology, leading to concurrent 

degeneration in connected yet distant cortical areas. This implies that morphological 

abnormalities in highly connected regions may stem from their shared disconnectivity 

profiles.77 The demonstrated connection between brain morphology and network topology in 

individuals at vascular risk offers insights that could benefit research on patients with severe 

VCI stages, such as those experiencing cognitive impairment from ischemic stroke. While the 

localization of stroke-induced atrophy varies greatly depending on stroke location, contributing 
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to individual heterogeneity, the stroke-related brain morphological changes linked to cognitive 

effects may be more consistent and traceable to specific regions or networks.78 Future 

research should further investigate this hypothesis integrating lesion and brain morphometry 

data in stroke-related cognitive impairment. 

 

Taken together, study A covers a comprehensive analysis of brain health in individuals at 

vascular risk, highlighting widespread morphological abnormalities and their connection to 

cognitive function. In addition, these findings lent important insights into vascular risk-related 

pathophysiology at multiple scales: the observed brain structural differences were associated 

with microscale tissue composition and macroscale brain network organization. These findings 

were generalizable over the UK Biobank and HCHS subsamples as well as robust across 

sensitivity analyses. 

 

1.6.2 Lesion network mapping improves cognitive performance prediction in memory 

clinic patients 

Attributing cognitive symptoms to VCI is challenging. Clinically, the diagnosis of cognitive 

symptoms due to vascular causes often depends on the assessment of WMH. However, the 

considerable variance in the link between WMH burden and cognition complicates diagnostics 

and hinders accurate individual predictions. In study B (presented in section 1.4), we aimed 

to improve individual-level prediction of cognitive performance. Therefore, we investigated 

cognitive and imaging data of a large sample of memory clinic patients with varying degrees 

of VCI excluding individuals with a history of stroke. In this sample, we used LNM to assess 

the connectivity between predefined gray and white matter regions and WMH, thereby 

estimating the extent of disconnection due to WMH.  

 

Our analysis showed that models incorporating measures of regional WMH disconnectivity, 

i.e., fLNM and sLNM scores, surpassed those based on total or tract-level WMH volumes in 

predicting cognitive performance in three of four cognitive domains (figure B2). Comparing 

the improvement over models only informed by demographic confounds (age, sex and 

education), LNM-informed models surpassed the improvement of models informed by total 

WMH volume 3- to 7-fold. Additionally, our findings highlighted that the predictive capacity of 

total WMH volume was only marginally better than demographic factors. This questions the 

established reliance on WMH extent for assessing VCI and stresses the importance of 

including demographic confounds in models using WMH data. Collectively, these results 

underscore the significance of WMH-related “covert” network effects, confirming earlier results 

from smaller clinical or population-based studies.45,79–81 
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To localize these network effects, we analyzed the relationship between WMH disconnectivity 

and cognitive domain scores at the regional level. Our analysis revealed that higher WMH 

disconnectivity within gray and white matter regions of the dorsal and ventral attention 

networks were associated with lower attention / executive function, processing speed, and 

verbal memory (figure B3). This suggests that WMH impair cognitive function by disrupting 

brain circuits involved in attention control. Prior studies showing changes in functional 

connectivity and task activation within the attention control networks in VCI corroborate our 

results.82–84 Expanding on the results presented in study A, these findings reinforce the 

conceptualization of VCI as a network disorder. 

 

The dorsal attention network regulates top-down attention control, i.e., the voluntary and goal-

directed allocation of attention.85,86 The ventral attention network governs bottom-up attention 

control, i.e., the process of detecting and orienting to unexpected, salient stimuli in the 

environment.85,87 The observation that WMH-related disconnectivity in the attention control 

networks contributes to cognitive variance aligns with observations of attention and executive 

function deficits being prominent symptoms in VCI in general.1 As the investigation of different 

cognitive domains largely converged on the attention control networks, WMH may also 

influence other cognitive domains by affecting the attentional resources required by various 

tasks: e.g., VCI might contribute to variance in memory by affecting attention rather than the 

memory demands of corresponding tests. Future analyses should further explore this theory. 

Here, multivariate, data-driven techniques – e.g., PLS as used in study A – could be of help as 

they can resolve the potentially covarying associative effects of regional WMH disconnectivity 

and multi-domain cognitive performance in VCI. 

 

Intriguingly, the regions highlighted in this analysis, i.e., attention control networks, and the 

pattern of vascular risk-associated morphological abnormalities identified in study A, did not 

completely align. As VCI is a spectrum unified by vascular pathophysiology rather than a 

homogeneous condition, we speculate that brain morphometry and LNM may reveal different 

yet complementary pathological processes: morphometric indices capture local pathologies 

with macrostructural impact, whereas LNM scores specifically indicate a region’s connectivity 

to WMH, potentially highlighting remote effects. Although a region's connectivity to WMH is 

linked to lower cortical thickness, the observed statistical effects are small, suggesting that 

WMH disconnectivity is just one of several factors shaping morphological abnormalities in 

VCI.77 Other complementary pathologies, involving local cellular level pathways as well as 

network topological aspects beyond WMH connectivity as discussed in study A, should be 

considered. 
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Taken together, our study demonstrates that WMH disconnectivity metrics reveal disease-

specific signatures useful for predicting cognitive outcomes, while their computation was 

feasible in multiple large cohorts. Therefore, WMH disconnectivity is a viable candidate 

biomarker for a more robust identification of VCI pathophysiology in clinical research. Future 

studies should evaluate whether WMH disconnectivity information can contribute to 

streamlining the process of selecting participants who are most likely to experience cognitive 

deterioration due to vascular issues. By that, WMH disconnectivity measures could not only 

improve diagnostics but also treatment calibration. 

 

1.6.3 Mild COVID-19 is associated with long-term white matter abnormalities 

As in VCI, characterizing the pathophysiology and identifying disease biomarkers of COVID-

19 is crucial for advancing diagnosis, prognosis, and treatment stratification for individuals with 

long-term effects of the disease. Tapping into these research needs, we investigated if 

individuals recovered from a mild to moderate SARS-CoV-2 infection exhibit long-term brain 

structural differences and clinical sequelae in study C (presented in section 1.5). Therefore, 

we analyzed a broad range of macro- and microstructural neuroimaging markers alongside 

clinical assessments in a large cohort of COVID-19 convalescents on average 10 months after 

the acute infection and matched healthy controls. 

 

Our study found significantly higher global extracellular free-water and MD in post-SARS-CoV-

2 individuals indicative of higher amounts of water in the extracellular compartment and higher 

bulk diffusivity (figure C2). Similar microstructural differences have been demonstrated in 

hospitalized as well as cognitively impaired COVID-19 cases.88,89 Results from complementary 

analyses refined these insights: the observed effects were comparable to approximately 7 

"years of healthy aging," signifying a biologically significant effect. In addition, voxel-level 

analyses revealed that the group differences were widespread, i.e., involved the cerebral white 

matter of all brain lobes. Lastly, tract-level measurements of free-water and MD could be 

leveraged to predict a past SARS-CoV-2 infection with ~80% accuracy surpassing all other 

regional imaging markers under study (figure C3), further underscoring the diagnostic 

relevance of these markers. The remaining global imaging markers showed no statistically 

significant differences including cortical thickness, other microstructural markers based on 

diffusion MRI, as well as the WMH load. 

 

The response of the intrathecal immune system to the virus is thought to be a fundamental 

component of COVID-19 neuropathology.56 There is histopathological and clinical evidence on 

neuroinflammation including the activation of glial cells, a cytokine response in the 

cerebrospinal fluid as well as immune-mediated vasculopathy including endothelial injury and 
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blood brain barrier disruption.56,90,91 Both free-water and MD are sensitive to immune activation 

and accompanying vascular damage increasing extracellular free-water and thus diffusivity.24 

More specifically, activated microglia and astrocytes release cytokines, leading to osmosis of 

water from the blood into the extracellular space.92 Moreover, more pronounced 

neuroinflammation damages the neurovascular unit, exacerbating blood brain barrier 

leakage.93 Taken together, the observed increase in free-water and MD is suggestive of a 

prolonged neuroinflammatory reaction to a SARS-CoV-2 infection. 

 

Within the scope of this thesis, COVID-19-related vasculopathy was a pathway of particular 

interest, as vascular pathology might be a relevant intermediary in the link between SARS-

CoV-2 infection and long-term cognitive outcomes. There is evidence for this connection from 

other studies suggesting that long COVID-related cognitive impairment could be integrated 

into the VCI spectrum.93,94 Elevated free-water and MD are compatible with vascular 

involvement being demonstrably elevated in cerebral small vessel disease.95 Yet, WMH load 

and PSMD – biomarkers of more established vascular injury – did not significantly differ in 

post-SARS-CoV-2 individuals. More specifically, PSMD values were nominally higher in the 

post-SARS-CoV-2 cases, but the differences were not statistically significant after adjusting for 

multiple comparisons. Taken together, this may indicate that, within our primarily mildly 

affected cohort, vasculopathy is less pronounced, manifesting more as subtle alterations in 

tissue microstructure rather than detectable lesions in anatomical imaging. Future imaging 

studies focusing on more severely affected individuals could provide deeper insights into the 

nuanced relationship of vascular brain imaging markers and cognitive performance in COVID-

19 convalescents. 

 

Placing the observed microstructural white matter abnormalities in a clinical context is 

essential. Commonly reported long-term sequelae of COVID-19 include impairment of 

attention / executive function and memory, anxiety, depression, fatigue, headache and sleep 

impairment.96–98 Contrasting these reports, our findings showed no significant differences for 

any cognitive domain, depression, anxiety, or neurological symptoms between groups. 

Possible reasons for these findings could be the mild severity of symptoms in our subjects, the 

extended follow-up duration, a potential selection bias towards highly motivated participants in 

the HCHS COVID Program, and the impact of varying levels of social deprivation due to 

country-specific pandemic measures. Our exploration of interaction effects of the imaging-

behavior correlations with post-SARS-CoV-2 status revealed that associations between higher 

free-water and MD with lower executive function and information processing speed (Trail 

Making Test A and B), working memory (Word List Recall Test), and verbal fluency (Animal 

Naming Test) were stronger in post-SARS-CoV-2 individuals. These findings suggest a 
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pathophysiological connection between neurocognitive impairments and structural brain 

abnormalities in those recovered from COVID-19. This underscores the necessity for further 

research to elucidate the complex relationship between COVID-19 and long-term impact on 

brain health. 

 

Currently, the HCHS is enlisting participants who were examined in the study pre-pandemic 

and have since developed long COVID symptoms. Recruited long COVID cases will undergo 

a comprehensive assessment, including the standard HCHS protocol and additional 

evaluations focused on long COVID symptoms. This approach will enable us to examine a 

more severely affected cohort adopting a longitudinal analysis design. Consequently, we plan 

to build upon the findings discussed here, analyzing the forthcoming dataset to characterize 

biomarkers of long COVID, understand its progression over time, and assess its impact on 

cognitive and physical health. 

 

In summary, our research suggests that individuals recovering from COVID-19 show imaging 

evidence of a prolonged neuroinflammatory response, as demonstrated by subtle yet 

widespread higher extracellular free-water and MD across white matter regions. Additionally, 

these findings are compatible with a potential involvement of vascular pathology, despite 

macrostructural evidence for vascular damage like WMH being absent. Notably, while this 

distinct imaging profile was identified, the study cohort displayed no marked 

neuropsychological symptoms 10 months after the SARS-CoV-2 infection. Further research in 

individuals with long COVID will help to clarify the connection between SARS-CoV-2 infection, 

brain structure and cognition. 

 

1.6.4 Strengths and limitations 

The studies presented in this thesis exhibit multiple strengths involving the investigation of over 

40,000 individuals covering different segments of the VCI spectrum, broad behavioral 

phenotyping, and reproducible advanced neuroimaging enabling a comprehensive 

characterization of brain structure and connectivity. However, it is important to acknowledge 

certain limitations that need to be considered when interpreting our results. Firstly, the 

recruitment of selected participant samples in specific cohorts might limit the generalizability 

of our results to the broader population. For instance, as the participants were predominantly 

of European ancestry, the generalizability of our findings to other ethnicities remains to be 

established. Additionally, while efforts were made to harmonize cognitive and imaging data 

across cohorts, as well as to statistically adjust for site differences, the potential for biases due 

to variations in data collection and processing methods across the studied cohorts may have 

impacted our results. Furthermore, the cross-sectional nature of the study data limits our ability 
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to infer causality. Longitudinal assessment of the examined relationships would provide 

stronger evidence, suggesting this as a direction for future research. 

 

1.6.5 Conclusion 

This thesis leveraged advanced multimodal and multiscale neuroimaging approaches to 

improve our understanding of VCI as a complex heterogeneous spectrum of pathology and 

provides a foundation to translate this knowledge in clinical research. The presented studies 

are centered around the concept of VCI as a network disorder affecting brain macro- and 

microstructure and describe comprehensive analysis workflows to contextualize neuroimaging 

findings across different neurobiological domains. Through these advances, we were able to 

integrate gray matter morphology, white matter microstructure, cell-specific regional gene 

expression, connectomic properties and WMH network topology to characterize VCI-related 

brain network abnormalities. Based on this, three key findings emerged: 1) Composite vascular 

risk is associated with a distinct profile of brain morphological abnormalities that is linked to 

cognitive function, microscale tissue composition, and macroscale brain network architecture. 

2) Lesion network mapping techniques improve individual-level prediction of cognitive 

performance in memory clinic patients, highlighting the WMH-related disruption of attention 

control networks in VCI. 3) Individuals recovered from mild-to-moderate COVID-19 exhibit 

long-term widespread white matter microstructural alterations without cognitive deficits. 

Moving forward, the conceptual frameworks discussed here lay the groundwork for applying 

these findings to clinical management in the long-term to advance imaging-informed diagnosis, 

prognosis and patient-tailored therapeutic intervention in VCI. 
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2 Abbreviations 

 

COVID-19 – Coronavirus disease 2019 

DTI – Diffusion tensor imaging 

FA – Fractional anisotropy 

fLNM – Functional lesion network mapping 

rsfMRI – Resting-state functional magnetic resonance imaging 

LNM – Lesion network mapping 

MD – Mean diffusivity 

MetS – Metabolic syndrome 

MRI – Magnetic resonance imaging 

PLS – Partial least squares correlation analysis 

ROI – Region of interest 

SARS-CoV-2 – Severe acute respiratory syndrome coronavirus 2 

sLNM – Structural lesion network mapping 

TBSS – Tract-based spatial statistics 

VCI – Vascular cognitive impairment 

WMH – White matter hyperintensities of presumed vascular origin 
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5 Summaries 

5.1 Summary in English 

Vascular cognitive impairment (VCI) describes the spectrum of cognitive deficits due to 

vascular brain pathology, ranging in severity from subtle changes to pronounced dementia. As 

lifestyle and medical interventions can modify the progression of VCI, a better comprehension 

of how vascular damage links to cognitive decline is crucial for enhanced prevention and 

treatment strategies. This thesis presents three studies aimed at deepening our understanding 

of VCI by examining its effects on brain network macro- and microstructure integrating 

advanced neuroimaging and broad cognitive phenotyping of multiple large-scale cohorts. 

The first study identified a distinct pattern of brain morphological abnormalities, i.e., 

regional differences in cortical thickness and subcortical volumes, in individuals at vascular 

risk. This pattern not only mediated the relationship between vascular risk severity and 

cognitive function but also correlated with both microscale tissue composition and macroscale 

brain network organization. Together, these insights unravel the complex relationship between 

brain structure and VCI. 

Capitalizing on pooled imaging and cognitive data of 10 memory clinic cohorts, the 

second study demonstrated that integrating white matter hyperintensity (WMH) data with brain 

connectivity information to obtain biomarkers capturing the regional WMH-related 

disconnectivity improves individual-level prediction of cognitive function in VCI. This study 

further clarified the pathophysiological role of WMH in VCI, particularly by highlighting their 

disruptive impact on attention-related brain regions. 

The third study provided imaging evidence of long-term microstructural abnormalities 

in the cerebral white matter of individuals post a mild-to-moderate SARS-CoV-2 infection. 

Despite the absence of WMH, these results could suggest a possible link to vascular 

pathology. Importantly, even though this imaging profile was identified, the cohort exhibited no 

significant neuropsychological symptoms 10 months post-infection. 

Collectively, these studies integrate advanced neuroimaging with clinical data to offer 

a comprehensive view of VCI-related brain network abnormalities. By laying down conceptual 

frameworks for understanding VCI, this thesis provides the basis for future translational and 

clinical research aimed at improving imaging-based diagnostics, prognosis, and tailored 

therapeutic interventions for VCI. 

 

5.1 Summary in German 

Vaskuläre kognitive Beeinträchtigung (engl., vascular cognitive impairment, VCI) beschreibt 

das Spektrum kognitiver Defizite aufgrund vaskulärer Hirnpathologien, die in ihrer Schwere 

von subtilen Veränderungen bis hin zu ausgeprägter Demenz reichen. Lebensstil- und 

medizinische Maßnahmen können helfen, das Fortschreiten von VCI zu verlangsamen. 
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Deshalb ist es wichtig zu verstehen, wie vaskuläre Schäden und kognitive Veränderungen 

zusammenhängen, um Prävention und Behandlung zu verbessern. Diese Dissertation stellt 

drei Studien vor, die mittels moderner bildgebender Verfahren unser Verständnis davon 

vertieften, wie VCI die Makro- und Mikrostruktur des Gehirnnetzwerks beeinflusst. 

Die erste Studie identifizierte ein spezifisches Muster morphologischer 

Gehirnveränderungen bei Personen mit vaskulärem Risiko, d.h. regionale Unterschiede in der 

kortikalen Dicke und subkortikaler Volumina. Dieses Muster mediierte nicht nur die Beziehung 

zwischen dem Schweregrad des vaskulären Risikos und der kognitiven Funktion, sondern 

korrelierte auch sowohl mit der zellulären Zusammensetzung des Gewebes als auch mit der 

Makroarchitektur des Gehirnnetzwerks. Gemeinsam liefern diese Resultate ein verbessertes 

Verständnis der komplexen Beziehung zwischen Gehirnstruktur und VCI. 

Durch die Untersuchung gepoolter bildgebender und kognitiver Daten von 10 

Gedächtnisklinik-Kohorten demonstrierte die zweite Studie, dass Daten über 

Hyperintensitäten der weißen Substanz (engl., white matter hyperintensities of presumed 

vascular origin, WMH) mit Informationen zur Gehirnkonnektivität integriert werden können, um 

die regionale WMH-bezogene Diskonnektivität zu erfassen. Diese Biomarker der WMH 

Netzwerktopologie ermöglichten eine verbesserte individuelle Vorhersage der kognitiven 

Funktion bei VCI gegenüber WMH Volumina. Diese Studie beleuchtete zudem die 

pathophysiologische Rolle von WMH bei VCI, insbesondere indem sie deren störenden 

Einfluss auf aufmerksamkeitsbezogene Gehirnregionen hervorhebt. 

Die dritte Studie lieferte bildgebende Evidenz für langfristige mikrostrukturelle 

Veränderungen in der weißen Substanz des Gehirns von Personen, die sich von einer milden 

SARS-CoV-2-Infektion genesen sind. Trotzdass keine Unterschiede bezüglich WMH 

nachweisbar waren, könnten diese Ergebnisse auf einen möglichen Zusammenhang mit 

vaskulärer Pathologie hinweisen. Wichtig ist, dass trotz der Identifizierung dieses 

bildgebenden Profils die Kohorte 10 Monate nach der Infektion keine signifikanten 

neuropsychologischen Symptome aufwies. 

Zusammenfassend integrieren diese Studien fortgeschrittene bildgebende Verfahren 

mit klinischen Daten, um einen umfassenden Blick auf VCI-bezogene 

Gehirnnetzwerkabnormalitäten zu bieten. Durch die Etablierung konzeptueller Modelle zur 

Erklärung von VCI schafft diese Dissertation die Grundlage für zukünftige translationale und 

klinische Forschungen, deren Ziel es ist, bildbasierte Diagnostik, Prognostik und individuell 

angepasste Therapieansätze für VCI zu optimieren. 
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Abstract The link between metabolic syndrome (MetS) and neurodegenerative as well as cere-
brovascular conditions holds substantial implications for brain health in at- risk populations. This 
study elucidates the complex relationship between MetS and brain health by conducting a compre-
hensive examination of cardiometabolic risk factors, brain morphology, and cognitive function in 
40,087 individuals. Multivariate, data- driven statistics identified a latent dimension linking more 
severe MetS to widespread brain morphological abnormalities, accounting for up to 71% of shared 
variance in the data. This dimension was replicable across sub- samples. In a mediation analysis, we 
could demonstrate that MetS- related brain morphological abnormalities mediated the link between 
MetS severity and cognitive performance in multiple domains. Employing imaging transcriptomics 
and connectomics, our results also suggest that MetS- related morphological abnormalities are 
linked to the regional cellular composition and macroscopic brain network organization. By lever-
aging extensive, multi- domain data combined with a dimensional stratification approach, our anal-
ysis provides profound insights into the association of MetS and brain health. These findings can 
inform effective therapeutic and risk mitigation strategies aimed at maintaining brain integrity.
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based on state- of- the art multivariate imaging analysis and detailed micro- and macrostructural 
contextualization analyses is convincing and provides an understanding of the neurological 
correlates of metabolic syndrome, although the study would have benefitted from the inclusion of 
longitudinal data.

Introduction
Metabolic syndrome (MetS) represents a cluster of cardiometabolic risk factors, including abdom-
inal obesity, arterial hypertension, dyslipidemia, and insulin resistance (Alberti et  al., 2006). With 
a prevalence of 23–35% in Western societies, it poses a considerable health challenge, promoting 
neurodegenerative, and cerebrovascular diseases such as cognitive decline, dementia, and stroke 
(Aguilar et al., 2015; Scuteri et al., 2015; Beltrán- Sánchez et al., 2013; Boden- Albala et al., 2008; 
Atti et al., 2019). As lifestyle and pharmacological interventions can modify the trajectory of MetS, 
advancing our understanding of its pathophysiological effects on brain structure and function as 
potential mediators of MetS- related neurological diseases is crucial to inform and motivate risk reduc-
tion strategies (Eckel et al., 2005).

Magnetic resonance imaging (MRI) is a powerful non- invasive tool for examining the intricacies of 
neurological conditions in vivo. Among studies exploring MetS and brain structure, one of the most 
consistent findings has been alterations in cortical gray matter morphology (Yates et al., 2012). Still, 
our understanding of the relationship between MetS and brain structure is constrained by several 
factors. To date, there have been only a few studies on MetS effects on gray matter integrity that 
are well- powered (Beyer et al., 2019; Lu et al., 2021; Wolf et al., 2016; Tiehuis et al., 2014). The 
majority of analyses are based on small sample sizes and report effects only on global measures of 
brain morphology or a priori- defined regions of interest, limiting their scope (Tiehuis et al., 2014; 
McIntosh et al., 2017; Sala et al., 2014). As a result, reported effects are heterogeneous and most 
likely difficult to reproduce (Marek et al., 2022). Existing large- scale analyses on the isolated effects 
of individual risk factors (such as hypertension or obesity) do not account for the high covariance of 
MetS components driven by interacting pathophysiological effects, which may prevent them from 
capturing the whole picture of MetS as a risk factor composite (Hamer and Batty, 2019; Opel et al., 
2021; Schaare et al., 2019; Borshchev et al., 2019). In addition, analyses addressing the complex 
interrelationship of MetS, brain structure, and cognitive functioning by investigating them in conjunc-
tion are scarce (Yates et  al., 2012). Lastly, while previous studies adopted a case- control design 
treating MetS as a broad diagnostic category (Lu et al., 2021; Wolf et al., 2016; Tiehuis et al., 2014), 
a dimensional approach viewing MetS as a continuum could offer a more nuanced representation of 
the multivariate, continuous nature of the risk factor composite.

Despite reports on MetS effects on brain structure, the determinants and spatial effect patterns 
remain unclear. A growing body of evidence shows that spatial patterns of brain pathology are shaped 
by multi- scale neurobiological processes, ranging from the cellular level to regional dynamics to large- 
scale brain networks (Fornito et al., 2015). Accordingly, disease effects can not only be driven by 
local properties, when local patterns of tissue composition predispose individual regions to pathology, 
but also by topological properties of structural and functional brain networks (Fornito et al., 2015; 
Seidlitz et al., 2020). Guided by these concepts, multi- modal and multi- scale analysis approaches 
could advance our understanding of the mechanisms influencing MetS effects on brain morphology.

We argue that further research leveraging extensive clinical and brain imaging data is required to 
explore MetS effects on brain morphology. These examinations should integrate (1) a research meth-
odology that strikes a balance between resolving the multivariate connection of MetS and brain struc-
ture while accounting for the high covariance of MetS components; (2) the recognition of impaired 
cognitive function as a pertinent consequence of MetS; and (3) the analysis of the spatial effect pattern 
of MetS and its possible determinants.

To meet these research needs, we investigated cortical thickness and subcortical volumetric 
measurements in a pooled sample of two large- scale population- based cohorts from the UK Biobank 
(UKB) and Hamburg City Health Study (HCHS) comprising in total 40,087 participants. Partial least 
squares correlation analysis (PLS) was employed to characterize MetS effects on regional brain 
morphology. PLS is especially suitable for this research task as it identifies overarching latent rela-
tionships by establishing a data- driven multivariate mapping between MetS components and brain 
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morphometric indices. Furthermore, capitalizing on the cognitive phenotyping of both investigated 
cohorts, we examined the interrelation between MetS, cognitive function, and brain structure in a 
mediation analysis. Finally, to uncover factors associated with brain region- specific MetS effects, we 
mapped local cellular as well as network topological attributes to observed MetS- associated cortical 
abnormalities. With this work, we aimed to advance the understanding of the fundamental principles 
underlying the neurobiology of MetS.

Results
Sample characteristics
Application of exclusion criteria and quality assessment ruled out 2188 UKB subjects and 30 HCHS 
subjects resulting in a final analysis sample of 40,087 individuals. For a flowchart providing details 
on the sample selection procedure please refer to Appendix 1—figure 1. Descriptive statistics are 
listed in Table 1. To sensitivity analyze our results, as well as to facilitate the comparison with previous 
reports which primarily rely on a case- control design, we supplemented group statistics comparing 
individuals with clinically defined MetS and matched controls, where applicable. Corresponding group 
analysis results are described in more detail in appendix 2.

Partial least squares correlation analysis
We investigated the relationship between brain morphological and clinical measures of MetS (abdom-
inal obesity, arterial hypertension, dyslipidemia, insulin resistance) in a PLS considering all individuals 
from both studies (n=40,087) (Figure 1). By this, we aimed to detect the continuous effect of any MetS 
component independent from a formal binary classification of MetS (present/not present). A correla-
tion matrix relating all considered MetS component measures is displayed in Appendix 1—figure 2. 
Before conducting the PLS, brain morphological and clinical data were deconfounded for age, sex, 
education, and cohort effects.

PLS identified eight significant latent variables which represent clinical- anatomical dimensions 
relating MetS components to brain morphology (Appendix  1—table 1). The first latent variable 
explained 71.20% of the shared variance and was thus further investigated (Figure 2a). Specifically, 
the first latent variable corresponded with a covariance profile of lower severity of MetS (Figure 2c; 
loadings [95% confidence interval]; waist circumference: –0.230 [–0.239, –0.221], hip circumference: 
–0.187 [–0.195, –0.178], waist- hip ratio: –0.167 [–0.176, –0.158], body mass index: –0.234 [–0.243, 
–0.226], systolic blood pressure: –0.089 [–0.098, –0.080], diastolic blood pressure: –0.116 [–0.125, 
–0.107], high- density lipoprotein: 0.099 [0.090, 0.108], low- density lipoprotein: –0.013 [–0.022, –0.004], 
total cholesterol: 0.003 [–0.006, 0.012], triglycerides: –0.102 [–0.111, –0.092], HbA1c: –0.064 [–0.073, 
–0.54], glucose: –0.049 [–0.058, –0.039]). Notably, the obesity- related measures showed the strongest 
contribution to the covariance profile as indicated by the highest loading to the latent variable. Age 
(<0.001 [–0.009, 0.009]), sex (<0.001 [–0.009, 0.009]), education (<0.001 [–0.009, 0.009]), and cohort 
(<–0.001 [–0.008, 0.007]) did not significantly contribute to the latent variable, which is compatible 
with sufficient effects of deconfounding. Details on the second latent variable which explained 22.33% 
of shared variance are provided in Figure 2—figure supplement 1. In brief, it predominantly related 
lower HbA1c and blood glucose to higher thickness and volume in lateral frontal, posterior temporal, 
parietal, and occipital regions and vice versa.

Bootstrap ratios ( =
singular vector weight

bootstrap−estimated standard error ) were computed to identify brain regions with a 
significant contribution to the covariance profile (see Methods). Cortical thickness in orbitofrontal, 
lateral prefrontal, insular, anterior cingulate, and temporal areas as well as volumes of all investigated 
subcortical regions contributed positively to the covariance profile as indicated by a positive boot-
strap ratio (Figure 2d). Thus, a higher cortical thickness and subcortical volume in these areas corre-
sponded with less obesity, hypertension, dyslipidemia, and insulin resistance and vice versa, i.e., lower 
cortical thickness and subcortical volumes with increased severity of MetS. A negative bootstrap ratio 
was found in superior frontal, parietal, and occipital regions indicating that a higher cortical thickness 
in these regions corresponded with more severe MetS. This overall pattern was confirmed via conven-
tional, vertex- wise group comparisons of cortical thickness measurements based on the binary classi-
fication of individuals with MetS and matched controls (Appendix 2—figure 4) as well as subsample 
analyses considering the UKB and HCHS participants independently (Figure 2—figure supplements 
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Table 1. Descriptive statistics UKB and HCHS.

Metric Stat*

Age (years) 63.55±7.59 (40087)

Sex (% female) 46.47 (40087)

Education (ISCED) 2.62±0.73 (39944)

Metabolic syndrome components

Waist circumference (cm) 88.47±12.71 (38800)

Hip circumference (cm) 100.90±8.79 (38801)

Waist- hip ratio 0.88±0.09 (38800)

Body mass index 26.47±4.37 (38701)

RRsystolic (mmHg) 138.30±18.57 (31234)

RRdiastolic (mmHg) 78.88±10.09 (31238)

Antihypertensive therapy (%) 6.96 (39976)

HDL (mg/dL) 61.76±23.69 (34468)

LDL (mg/dL) 137.38±36.29 (37456)

Cholesterol (mg/dL) 211.29±56.42 (37531)

Triglycerides (mg/dL) 148.90±83.84 (37510)

Lipid lowering therapy (%) 14.44 (39976)

HbA1c (%) 5.37±0.48 (37284)

Blood glucose (mg/dL) 90.29±17.58 (34432)

Antidiabetic therapy (%) 0.45 (39976)

Imaging

Mean cortical thickness (mm) 2.40±0.09 (40087)

Cognitive variables of the UK Biobank

Fluid Intelligence 6.63±2.06 (36510)

Matrix Pattern Completion 7.99±2.13 (25771)

Numeric Memory Test 6.69±1.52 (26780)

Paired Associate Learning 6.92±2.63 (26048)

Prospective Memory 1.07±0.39 (37192)

Reaction Time (sec) 594.16±109.08 (37015)

Symbol Digit Substitution 18.96±5.25 (25810)

Tower Rearranging Test 9.91±3.23 (25555)

Trail Making Test A (sec) 223.03±86.51 (26048)

Trail Making Test B (sec) 550.01±270.09 (26048)

Cognitive variables of the Hamburg City Health Study

Animal Naming Test 24.78±6.92 (2416)

Clock Drawing Test 6.43±1.12 (2479)

Table 1 continued on next page
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2 and 3). The correlation matrix of all spatial effect maps investigated in this study (bootstrap ratio 
and Schaefer 400- parcellated t- statistic from group comparisons) is visualized in Figure 2—figure 
supplement 4. All derived effect size maps were significantly correlated ( rsp  =0.67−0.99,  pFDR  < 0.05) 
(Schaefer et al., 2018).

Subject- specific imaging and clinical scores for the first latent variable were computed. These scores 
indicate to which degree an individual expresses the corresponding covariance profiles. By definition, 
the scores are correlated ( rsp  = 0.201, p<0.005, Figure 2b) indicating that individuals exhibiting the 
clinical covariance profile (severity of MetS components) also express the brain morphological pattern. 
This relationship was robust across a 10- fold cross- validation (avg.  rsp  = 0.19, Appendix 1—table 2).

These results were consistent in separate PLS analyses for both the UKB and HCHS samples, as 
displayed in Figure 2—figure supplements 2 and 3. In these subset- specific analyses, cognitive test 
performances significantly contributed to the first latent variable when included in the PLS. Conse-
quently, the first latent variable associated more severe MetS with both brain morphological abnor-
malities and poorer cognitive performance.

Mediation analysis of cognitive outcomes
To gain a better understanding of the link between MetS, brain morphology, and cognitive func-
tion, we performed a mediation analysis on cognitive test results and subject- specific PLS scores. 
Therefore, we investigated whether the imaging PLS score (representing MetS- related brain structural 
abnormalities) acts as a mediator in the relationship between the clinical PLS score (representing MetS 
severity) and cognitive test performances. Importantly, scores of the main PLS analysis, which did not 
include cognitive measures, were considered. The corresponding path plots are shown in Figure 3. 
The imaging score was found to fully mediate the relationship of the clinical score and results of the 
Trail Making Test B (ab = –0.011, PFDR <0.001; c’=–0.012, PFDR = 0.072; c=–0.023, PFDR <0.001), Fluid 
Intelligence Test (ab = 0.017, PFDR <0.001; c’=0.011, PFDR = 0.072; c=0.028, PFDR <0.001) as well as 
Matrix Pattern Completion Test (ab = 0.015, PFDR <0.001; c’=0.010, PFDR = 0.172; c=0.025, PFDR <0.001). 
Further, the imaging score partially mediated the relationship of the clinical score and results of the 
Symbol Digit Substitution Test (ab = 0.010, PFDR <0.001; c’=0.036, PFDR <0.001; c=0.046, PFDR <0.001), 
Numeric Memory Test (ab = 0.014, PFDR <0.001; c’=0.044, PFDR <0.001; c=0.058, PFDR <0.001) and 
Paired Associate Learning Test (ab = 0.015, PFDR <0.001; c’=0.044, PFDR <0.001; c=0.059, PFDR <0.001). 
For the remaining cognitive tests, no significant mediation was found.

Contextualization of MetS-associated brain morphological 
abnormalities
We investigated whether the pattern of MetS effects on cortical structure is linked to the regional 
density of specific cell populations and global brain network topology in a surface- based contextual-
ization analysis (see Methods).

Therefore, we first used a virtual histology approach to relate the bootstrap ratio from PLS to the 
differential expression of cell- type specific genes based on microarray data from the Allen Human 
Brain Atlas (Hawrylycz et al., 2012). The results are illustrated in Figure 4. The bootstrap ratio was 
significantly positively correlated with the density of endothelial cells ( Zrsp  = 0.190,  pFDR  = 0.016), 
microglia ( Zrsp  = 0.271,  pFDR  = 0.016), excitatory neurons type 8 ( Zrsp  = 0.165,  pFDR  = 0.016), inhibi-
tory neurons type 1 ( Zrsp  = 0.363,  pFDR  = 0.036) and excitatory neurons type 6 ( Zrsp  = 0.146,  pFDR  = 
0.034) indicating that MetS- related brain morphological abnormalities are strongest in regions of the 

Metric Stat*

Trail Making Test A (sec) 40.09±14.33 (2290)

Trail Making Test B (sec) 90.05±37.30 (2264)

Multiple- Choice Vocabulary Intelligence Test 31.27±3.58 (2026)

Word List Recall 7.75±1.84 (2342)

*Presented as mean ± SD (N).

Table 1 continued
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Figure 1. Methodology. (a) Illustration of the partial least squares correlation analysis. Starting from two 
input matrices containing per- subject information of regional morphological measures as well as clinical data 
(demographic and metabolic syndrome (MetS)- related risk factors) a correlation matrix is computed. This matrix 
is subsequently subjected to singular value decomposition resulting in a set of mutually orthogonal latent 

Figure 1 continued on next page
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highest density of these cell types. No significant associations were found regarding the remaining 
excitatory neuron types (Ex1- Ex5, Ex7), inhibitory neurons (In2- In8), astrocytes, and oligodendrocytes 
(Appendix  1—table 3). Virtual histology analysis results for bootstrap ratios corresponding with 
latent variables 2 and 3 are shown in Figure 4—figure supplement 1. As a sensitivity analysis, we 
contextualized the t- statistic map derived from group statistics. The results remained stable except 
for excitatory neurons type 6 ( Zrsp  = 0.145,  pFDR  = 0.123) and inhibitory neurons type 1 ( Zrsp  = 0.432, 

 pFDR  = 0.108), which no longer showed a significant association (Figure 4—figure supplement 2, 
Appendix 1—table 4).

Second, we associated the bootstrap ratio with three pre- selected measures of brain network 
topology derived from group consensus functional and structural connectomes of the Human Connec-
tome Project (HCP) (Figure 5): weighted degree centrality (marking brain network hubs), neighbor-
hood abnormality, and macroscale functional connectivity gradients (Petersen et al., 2022b). The 
bootstrap ratio showed a medium positive correlation with the functional neighborhood abnormality 
( rsp  = 0.464,  pspin  < 0.001,  psmash  < 0.001,  prewire  < 0.001) and a strong positive correlation with the 
structural neighborhood abnormality ( rsp  = 0.764,  pspin  = <0.001,  psmash  < 0.001,  prewire  < 0.001) indi-
cating functional and structural interconnectedness of areas exhibiting similar MetS effects. These 
results remained significant when the t- statistic map was contextualized instead of the bootstrap ratio 
as well as when neighborhood abnormality measures were derived from consensus connectomes of 
the HCHS instead of the HCP (Figure 5—figure supplements 1 and 2). We found no significant asso-
ciations for the remaining indices of network topology, i.e., functional degree centrality ( rsp  = 0.163, 

 pspin  = 0 .365,  psmash  = 0.406,  prewire  = 0.870), structural degree centrality ( rsp  = 0.029,  pspin  = 0.423, 

 psmash  = 0.814,  prewire  = 0.103) as well as functional cortical gradient 1 ( rsp  = 0.152,  pspin  = 0.313,  psmash  
= 0.406,  prewire  = 0.030) and gradient 2 ( rsp  = –0.177,  pspin  = 0.313,  psmash  = 0.406,  prewire  < 0.001).

Discussion
We investigated the impact of MetS on brain morphology and cognitive function in a large sample 
of individuals from two population- based neuroimaging studies. We report three main findings: (1) 
multivariate, data- driven statistics revealed a latent variable relating MetS and brain health: partici-
pants were distributed along a clinical- anatomical dimension of interindividual variability, linking more 
severe MetS to widespread brain morphological abnormalities. Negative MetS- related brain morpho-
logical abnormalities were strongest in orbitofrontal, lateral prefrontal, insular, cingulate, and temporal 
cortices as well as subcortical areas. Positive MetS- related brain morphological abnormalities were 
strongest in superior frontal, parietal, and occipital regions. (2) The severity of MetS was associated 
with executive function and processing speed, memory, and reasoning test performances, and was 
found to be statistically mediated by MetS- related brain morphological abnormalities. (3) The pattern 
of MetS- related brain morphological abnormalities appeared to be linked to regional cell composition 
as well as functional and structural connectivity. These findings were robust across sensitivity analyses. 
In sum, our study provides an in- depth examination of the intricate relationship between MetS, brain 
morphology, and cognition. A graphical abstract summarizing the results is included as Figure 6.

variables. Latent variables each consist of a left singular vector (here, clinical covariance profile), singular value, 
and right singular vector (here, imaging covariance profile). In addition, subject- specific clinical and imaging scores 
are computed. (b) The interplay between MetS, brain structure, and cognition was investigated in a post- hoc 
mediation analysis. We tested whether the relationship between the clinical score, representing MetS severity, 
and different cognitive test performances was statistically mediated by the imaging score. (c) Contextualization 
analysis. Upper row: based on microarray gene expression data, the densities of different cell populations 
across the cortex were quantified. Middle and lower row: based on functional and structural group- consensus 
connectomes based on data from the Human Connectome Project, metrics of functional and structural brain 
network topology were derived. Cell density as well as connectomic measures were related to the bootstrap ratio 
via spatial correlations. Modified from Petersen et al., 2022b; Zeighami et al., 2019. Abbreviations: Astro – 
astrocytes; DWI – diffusion- weighted magnetic resonance imaging; Endo – endothelial cells; Ex – excitatory neuron 
populations (Ex1- 8); In – inhibitory neuron populations (In1- 8); Micro – microglia; Oligo – oligodendrocytes; rs- fMRI 
– resting- state functional magnetic resonance imaging; SVD – singular value decomposition.

Figure 1 continued
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Figure 2. Partial least squares correlation analysis (PLS). (a) Explained variance and p- values of latent variables. (b) Scatter plot relating subject- specific 
clinical and imaging PLS scores. Higher scores indicate higher adherence to the respective covariance profile. (c) Clinical covariance profile. 95% 
confidence intervals were calculated via bootstrap resampling. Note that confound removal for age, sex, education, and cohort was performed prior to 
the PLS. (d) Imaging covariance profile represented by bootstrap ratio. A high positive or negative bootstrap ratio indicates high contribution of a brain 
region to the overall covariance profile. Regions with a significant bootstrap ratio (>1.96 or <–1.96) are highlighted by colors. Abbreviations: BMI – Body 
mass index, HDL – high- density lipoprotein, LDL – low- density lipoprotein,  rsp  - Spearman correlation coefficient.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Partial least squares correlation analysis – Latent variable 2.

Figure supplement 2. Partial least squares correlation analysis – UK Biobank (including cognitive test results).

Figure supplement 3. Partial least squares correlation analysis – Hamburg City Health Study (HCHS) (including cognitive test results).

Figure supplement 4. Spatial correlation of effect size maps.

https://doi.org/10.7554/eLife.93246
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PLS reveals a latent clinical-anatomical dimension relating MetS and 
brain health
MetS adversely impacts brain health through complex, interacting effects on the cerebral vasculature 
and parenchyma as shown by histopathological and imaging studies (Borshchev et al., 2019). The 
pathophysiology of MetS involves atherosclerosis, which affects blood supply and triggers inflamma-
tion (Libby et al., 2002; Birdsill et al., 2013); endothelial dysfunction reducing cerebral vasoreactivity 
Lind, 2008; breakdown of the blood- brain barrier inciting an inflammatory response Hussain et al., 
2021; oxidative stress causing neuronal and mitochondrial dysfunction Mullins et al., 2020; and small 
vessel injury leading to various pathologies including white matter damage, microinfarcts, and cere-
bral microbleeds (Frey et al., 2019).

To address these interacting effects, we harnessed multivariate, data- driven statistics in the form 
of a PLS in two large- scale population- based studies to probe for covariance profiles relating the full 
range of MetS components (such as obesity or arterial hypertension) to regional brain morphological 
information in a single analysis. PLS identified eight significant latent variables with the first variable 
explaining the majority (71.20%) of shared variance within the imaging and clinical data (Figure 2a). 
This finding indicates a relatively uniform connection between MetS and brain morphology, implying 

Figure 3. Mediation analysis results. Mediation effects of subject- specific imaging PLS scores on the relationship between metabolic syndrome (MetS) 
represented by the clinical PLS score and cognitive test performances. Path plots display standardized effects and p- values: (a) clinical score to imaging 
score, (b) imaging score to cognitive score, (ab) indirect effect (c’) direct effect, and (c) total effect. Significant paths are highlighted in blue; non- 
significant in light gray. If the indirect effect ab was significant, the text for ab is highlighted in blue. A blue dot in the path plot indicates if a relationship 
is significantly mediated, i.e., the indirect effect ab was significant and the direct effect c’ was reduced or non- significant compared to the total effect c. 
An empty dot indicates a partial mediation, and a full dot indicates a full mediation. Abbreviations: pFDR  - false discovery rate- corrected p- values; PLS – 
partial least squares correlation; TMT- A – Trail Making Test A; TMT- B – Trail Making Test B.

https://doi.org/10.7554/eLife.93246
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that the associative effects of various MetS components on brain structure are comparatively similar, 
despite the distinct pathomechanisms each component entails.

PLS revealed that all MetS components were contributing to this latent signature. However, waist 
circumference, hip circumference, waist- hip ratio, and body mass index consistently contributed 
higher than the remaining variables across conducted analyses which highlights obesity as the stron-
gest driver of MetS- related brain morphological abnormalities.

We interpret these findings as evidence that MetS- associated conditions jointly contribute to the 
harmful effects on brain structure rather than affecting it in a strictly individual manner. This notion is 
supported by previous work in the UKB demonstrating overlapping effects of individual risk factors 
on brain morphology (Cox et  al., 2019). Specifically, the first latent variable related to increased 
severity of obesity, dyslipidemia, arterial hypertension, and insulin resistance with lower thickness 
in orbitofrontal, lateral prefrontal, insular, cingulate, and temporal cortices as well as lower volume 

Figure 4. Virtual histology analysis. The regional correspondence between metabolic syndrome (MetS) effects (bootstrap ratio) and cell type- specific 
gene expression profiles was examined via an ensemble- based gene category enrichment analysis. (a) Barplot displaying spatial correlation results. 
The bar height displays the significance level. Colors encode the aggregate z- transformed Spearman correlation coefficient relating the Schaefer100- 
parcellated bootstrap ratio and respective cell population densities. Asterisks indicate statistical significance. The significance threshold of  pFDR  <0.05 
is highlighted by a vertical dashed line. (b) Scatter plots illustrating spatial correlations between MetS effects and exemplary cortical gene expression 
profiles per cell population significantly associated across analyses – i.e., endothelium, microglia, and excitatory neurons type 8. Top 5 genes most 
strongly correlating with the bootstrap ratio map were visualized for each of these cell populations. Icons in the bottom right of each scatter plot 
indicate the corresponding cell type. A legend explaining the icons is provided at the bottom. First row: endothelium; second row: microglia; third row: 
excitatory neurons type 8. Virtual histology analysis results for the bootstrap ratios of latent variables 2 and 3 are shown in Figure 4—figure supplement 
1. A corresponding plot illustrating the contextualization of the t- statistic derived from group statistics is shown in Figure 4—figure supplement 2. 
Abbreviations:  −log

(
pFDR

)
  – negative logarithm of the false discovery rate- corrected p- value derived from spatial lag models (Dukart et al., 2021; 

Burt et al., 2018);  r   – Spearman correlation coeffient.  Z
(
rsp

)
  – aggregate z- transformed Spearman correlation coefficient.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Virtual histology analysis of latent variables 2 and 3.

Figure supplement 2. Sensitivity virtual histology analysis based on t- statistic map from group comparison.
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across subcortical regions (Figure 2c and d). This profile was consistent in separate PLS analyses of 
UKB and HCHS participants as well as group comparisons (Figure 2—figure supplement 4). Previous 
research aligns with our detection of a MetS- associated frontotemporal morphometric abnormality 
pattern (Beyer et al., 2019; McIntosh et al., 2017; Kotkowski et al., 2019). As a speculative caus-
ative pathway, human and animal studies have related the orbitofrontal, insular, and anterior cingulate 
cortex to food- related reward processing, taste, and impulse regulation (Tuulari et al., 2015; Rolls, 

Figure 5. Brain network contextualization. Spatial correlation results derived from relating Schaefer 
400×7- parcellated maps of metabolic syndrome (MetS) effects (bootstrap ratio) to network topological indices 
(red: functional connectivity, blue: structural connectivity). Scatter plots that illustrate the spatial relationship are 
supplemented by surface plots for anatomical localization. The color coding of cortical regions and associated 
dots corresponds. (a and b) Functional and structural degree centrality rank. (c and d) Functional and structural 
neighborhood abnormality. (e and f) Intrinsic functional network hierarchy represented by functional connectivity 
gradients 1 and 2. Complementary results concerning t- statistic maps derived from group comparisons between 
MetS subjects and controls are presented in Figure 5—figure supplement 1. Corresponding results after 
reperforming the analysis with HCHS- derived group- consensus connectomes are presented in Figure 5—figure 
supplement 2. Abbreviations: HCHS – Hamburg City Health Study;  prewire  - p- value derived from network rewiring 
(Maslov et al., 2004);  psmash  - p- value derived from brainSMASH surrogates (Burt et al., 2020);  pspin  - p- value 
derived from spin permutation results (Alexander- Bloch et al., 2018);  rsp  - Spearman correlation coefficient.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Sensitivity network contextualization analysis based on t- statistic map derived from group 
comparison.

Figure supplement 2. Sensitivity network contextualization analysis based on group- consensus connectomes 
from the Hamburg City Health Study.
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2016). Conceivably, structural alterations of these brain regions are linked to brain functions and 
behaviors that exacerbate the risk profile leading to MetS (Rolls, 2023; Price et al., 2019). We also 
noted a positive MetS- cortical thickness association in superior frontal, parietal, and occipital lobes, a 
less intuitive finding that has been previously reported (Krishnadas et al., 2013; Leritz et al., 2011). 
Although speculative, the positive effects might be due to MetS compensating cholesterol disruptions 
associated with neurodegenerative processes (Qin et al., 2021).

The second latent variable accounted for 22.33% of the shared variance and linked higher markers 
of insulin resistance and lower dyslipidemia to lower thickness and volume in lateral frontal, poste-
rior temporal, parietal, and occipital regions. The distinct covariance profile of this latent variable, 
compared to the first, likely indicates a separate pathomechanistic connection between MetS compo-
nents and brain morphology. Given that HbA1c and blood glucose were the most significant contrib-
utors to this variable, insulin resistance might drive the observed clinical- anatomical relationship.

Brain morphological abnormalities mediate the relationship between 
MetS and cognitive deficits
Cognitive performance has been consistently linked to cardiometabolic risk factors in health and 
disease (Genon et al., 2022). Yet, the pathomechanistic correlates of this relationship remain to be 
understood. Our mediation analysis revealed that increased MetS severity correlates with worse 
performance in executive function and processing speed (Symbol Digit Substitution Test, Trail Making 
Test B), memory (Numeric Memory Test, Paired Associate Learning Test), and reasoning (Fluid intel-
ligence, Matrix Pattern Completion Test), with brain morphological abnormalities statistically medi-
ating these relationships. Additionally, group comparisons indicated poorer cognitive performance in 
MetS subjects (Appendix 2—tables 1 and 2) and including cognitive outcomes in the PLS as clinical 
variables revealed a significant contribution to the first latent variable (Figure 2—figure supplements 
2 and 3). These results suggest that MetS is significantly associated with cognitive deficits across 
various domains, and brain morphological abnormalities are a crucial pathomechanistic link in this 
relationship. In support of this, previous studies have shown that brain structure mediates the relation-
ship between MetS and cognitive performance in a pediatric sample and elderly patients with vascular 
cognitive impairment (Laurent et al., 2020; Seo et al., 2010; Kim et al., 2014). The detected latent 
variable might represent a continuous disease spectrum spanning from minor cognitive deficits due to 
a cardiometabolic risk profile to severe cognitive deficits due to dementia. In support of this hypoth-
esis, the determined brain morphological abnormality pattern is consistent with the atrophy pattern 

Figure 6. Graphical abstract.
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found in vascular mild cognitive impairment, vascular dementia, and Alzheimer’s dementia (Seo et al., 
2010; Kim et al., 2014; Morys et al., 2023).

Collectively, these findings highlight the role of MetS in cognitive impairment and underscore 
the potential impact of therapies targeting cardiometabolic risk factors. Although the definitive role 
of such therapies in preventing cognitive decline is not yet fully established, emerging evidence 
suggests that these interventions can mitigate the adverse cognitive effects of MetS (Veronese et al., 
2017; Lennon et al., 2023; Gelber et al., 2013). As our results highlight obesity as a key factor in 
the observed clinical- anatomical relationship, we think that future studies should further investigate 
weight- reducing interventions to examine their effects on cognitive outcomes. Advanced neuro-
imaging techniques promise to refine these therapeutic approaches by enabling to identify MetS 
patients at risk of cognitive decline that would benefit the most from targeted interventions for cogni-
tive health protection.

MetS-related brain morphological abnormalities link to cellular tissue 
composition and network topology
To better understand the emergence of the spatial pattern of MetS- related brain morphological 
abnormalities, we conducted two contextualization analyses leveraging reference datasets of local 
gene expression data as well as properties of brain network topology.

Using a virtual histology approach based on regional gene expression data, we investigated MetS 
effects in relation to cell population densities (Figure 4). As the main finding, we report that higher 
MetS- related brain morphological abnormalities coincide with a higher regional density of endothe-
lial cells. This aligns with the known role of endothelial dysfunction in MetS compromising tissues via 
chronic vascular inflammation, increased thrombosis risk, and hypoperfusion due to altered vasore-
activity and vascular remodeling (Lind, 2008). As endothelial density also indicates the degree of 
general tissue vascularization, well- vascularized regions are also likely more exposed to cardiometa-
bolic risk factor effects in general (Libby et al., 2002). Our results furthermore indicate that microglial 
density determines a brain region’s susceptibility to MetS effects. Microglia are resident macrophages 
of the central nervous system that sustain neuronal integrity by maintaining a healthy microenviron-
ment. Animal studies have linked microglial activation mediated by blood- brain barrier leakage and 
systemic inflammation to cardiometabolic risk (Denes et al., 2012; Tucsek et al., 2014). Activated 
microglia can harm the brain structure by releasing reactive oxygen species, proinflammatory cyto-
kines, and proteinases (Dheen et al., 2007). Lastly, we found an association with the density of excit-
atory neurons of subtype 8. These neurons reside in cortical layer 6 and their axons mainly entertain 
long- range cortico- cortical and cortico- thalamic connections (Lake et  al., 2016; Thomson, 2010). 
Consequently, layer 6 neurons might be particularly susceptible to MetS effects due to their expo-
sition to MetS- related white matter disease (Petersen et al., 2022a; Petersen et al., 2020). Taken 
together, the virtual histology analysis indicates that MetS- related brain morphological abnormalities 
are associated with local cellular fingerprints. Our findings emphasize the involvement of endothelial 
cells and microglia in brain structural abnormalities due to cardiometabolic risk, marking them as 
potential targets for therapies aimed at mitigating MetS effects on brain health.

For the second approach, we contextualized MetS- related brain morphological abnormalities using 
principal topological properties of functional and structural brain networks. We found that regional 
MetS effects and those of functionally and structurally connected neighbors were correlated (Figure 5c 
and d) – i.e., areas with similar MetS effects tended to be disproportionately interconnected. Put 
differently, MetS effects coincided within functional and structural brain networks. Therefore, our find-
ings can be interpreted as evidence that a region’s functional and structural network embedding – i.e., 
its individual profile of functional interactions as well as white matter fiber tract connections – are 
associated with its susceptibility to morphological MetS effects. Multiple mechanisms might explain 
how connectivity might be associated with MetS- related morphological alterations. For example, 
microvascular pathology might impair white matter fiber tracts leading to joint degeneration in inter-
connected cortical brain areas: that is, the occurrence of shared MetS effects within functionally and 
structurally connected neighborhoods is explained by their shared (dis- )connectivity profile (Mayer 
et al., 2021). In support of this, previous work using diffusion tensor imaging suggests that MetS- 
related microstructural white matter alterations preferentially occur in the frontal and temporal lobe, 
which spatially matches the frontotemporal morphometric differences observed in our work (Segura 
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et  al., 2009). Furthermore, we speculate on an interplay between local and network- topological 
susceptibility in MetS: functional and structural connectivity may provide a scaffold for propagating 
MetS- related perturbation across the network in the sense of a spreading phenomenon – i.e., a region 
might be influenced by network- driven exposure to regions with higher local susceptibility. Observed 
degeneration of a region might be aggravated by malfunctional communication to other vulnerable 
regions including mechanisms of excitotoxicity, diminished excitation and metabolic stress (Saxena 
and Caroni, 2011). These findings underscore the relevance of brain network organization in under-
standing the pathomechanistic link of MetS and brain morphology.

While this work’s strengths lie in a large sample size, high- quality MRI and clinical data, robust image 
processing, and a comprehensive methodology for examining the link of MetS and brain health, it also 
has limitations. First, the virtual histology analysis relies on post- mortem brain samples, potentially 
different from in- vivo profiles. In addition, the predominance of UKB subjects may bias the results, 
and potential reliability issues of the cognitive assessment in the UKB need to be acknowledged 
(Gell et al., 2023). Lastly, the cross- sectional design restricts the ability for demonstrating causative 
effects. Longitudinal assessment of the surveyed relationships would provide more robust evidence 
and therefore, future studies should move in this direction.

Conclusion
Our analysis revealed associative effects of MetS, structural brain integrity, and cognition, comple-
menting existing efforts to motivate and inform strategies for cardiometabolic risk reduction. In 
conjunction, a characteristic and reproducible structural imaging fingerprint associated with MetS 
was identified. This pattern of MetS- related brain morphological abnormalities was linked to local 
histological as well as global network topological features. Collectively, our results highlight how an 
integrative, multi- modal, and multi- scale analysis approach can lead to a more holistic understanding 
of the neural underpinnings of MetS and its risk components. As research in this field advances, lever-
aging neuroimaging may improve personalized cardiometabolic risk mitigation approaches.

Materials and methods
Study population – the UK Biobank and Hamburg City Health Study
Here, we investigated cross- sectional clinical and imaging data from two large- scale population- based 
cohort studies: (1) the UK Biobank (UKB, n=39,668, age 45–80 years; application number 41655) and 
(2) the Hamburg City Health Study (HCHS, n=2637, age 45–74 years) (Miller et al., 2016; Jagodz-
inski et  al., 2020). Both studies recruit large study samples with neuroimaging data alongside a 
detailed demographic and clinical assessment. Respectively, data for the first visit including a neuro-
imaging assessment were included. Individuals were excluded if they had a history or a current diag-
nosis of neurological or psychiatric disease. Field IDs of the used UKB variables are presented in 
Appendix 1—table 5. UKB individuals were excluded based on the non- cancer illnesses codes (http:// 
biobank.ndph.ox.ac.uk/showcase/coding.cgi?id=6). Excluded conditions were Alzheimer’s disease; 
alcohol, opioid, and other dependencies; amyotrophic lateral sclerosis; brain injury; brain abscess; 
chronic neurological problem; encephalitis; epilepsy; hemorrhage; head injury; meningitis; multiple 
sclerosis; Parkinson’s disease; skull fracture. Same criteria were applied to HCHS individuals based on 
the neuroradiological evaluation and self- reported diagnoses variables. To enhance comparability to 
previous studies we supplemented a case- control analysis enabling to complement continuous multi-
variate statistical analyses by group statistics. Therefore, a MetS sample was identified based on the 
consensus definition of the International Diabetes Federation (Appendix 1—table 6) and matched to 
a control cohort.

Ethics approval
The UKB was ethically approved by the North West Multi- Centre Research Ethics Committee (MREC). 
Details on the UKB Ethics and Governance framework are provided online (https://www.ukbiobank. 
ac.uk/media/0xsbmfmw/egf.pdf). The HCHS was approved by the local ethics committee of the 
Landesärztekammer Hamburg (State of Hamburg Chamber of Medical Practitioners, PV5131). Good 
Clinical Practice (GCP), Good Epidemiological Practice (GEP), and the Declaration of Helsinki were the 
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ethical guidelines that governed the conduct of the HCHS (Petersen et al., 2020). Written informed 
consent was obtained from all participants investigated in this work.

Clinical assessment
In the UK Biobank, a battery of cognitive tests is administered, most of which represent shortened and 
computerized versions of established tests aiming for a comprehensive and concise assessment of cogni-
tion (Sudlow et al., 2015). From this battery, we investigated tests for executive function and processing 
speed (Reaction Time Test, Symbol Digit Substitution Test, Tower Rearranging Test, Trail Making Tests A 
and B), memory (Numeric Memory Test, Paired Associate Learning Test, Prospective Memory Test), and 
reasoning (Fluid Intelligence Test, Matrix Pattern Completion Test). Detailed descriptions of the individual 
tests can be found elsewhere (Fawns- Ritchie and Deary, 2020). Furthermore, some tests (Matrix Pattern 
Completion Test, Numeric Memory Test, Paired Associate Learning Test, Symbol Digit Substitution Test, 
Trail Making Test, and Tower Rearranging Test) are only administered to a subsample of the UKB imaging 
cohort explaining the missing test results for a subgroup of participants.

In the HCHS, cognitive testing was administered by a trained study nurse and included the Animal 
Naming Test, Trail Making Test A and B, Multiple Choice Vocabulary Intelligence Test B, and Word List 
Recall subtests of the Consortium to Establish a Registry for Alzheimer’s Disease Neuropsychological 
Assessment Battery (CERAD- Plus), as well as the Clock Drawing Test (Morris et al., 1989; Shulman, 
2000).

MRI acquisition
The full UKB neuroimaging protocol can be found online (https://biobank.ctsu.ox.ac.uk/crystal/ 
crystal/docs/brain_mri.pdf; Miller et al., 2016). MR images were acquired on a 3 T Siemens Skyra MRI 
scanner (Siemens, Erlangen, Germany). T1- weighted MRI used a 3D MPRAGE sequence with 1 mm 
isotropic resolution with the following sequence parameters: repetition time = 2000 ms, echo time = 
2.01 ms, 256 axial slices, slice thickness = 1 mm, and in- plane resolution = 1 × 1 mm. In the HCHS, MR 
images were acquired as well on a 3 T Siemens Skyra MRI scanner. Measurements were performed 
with a protocol as described in previous work (Petersen et al., 2020). In detail, for 3D T1- weighted 
anatomical images, rapid acquisition gradient- echo sequence (MPRAGE) was used with the following 
sequence parameters: repetition time = 2500 ms, echo time = 2.12 ms, 256 axial slices, slice thickness 
= 0.94 mm, and in- plane resolution = 0.83 × 0.83 mm.

Estimation of brain morphological measures
To achieve comparability and reproducibility, the preconfigured and containerized CAT12 pipeline 
(CAT12.7 r1743; https://github.com/m-wierzba/cat-container; Wierzba and Hoffstaedter, 2022) was 
employed for surface reconstruction and cortical thickness measurement building upon a projection- 
based thickness estimation method as well as computation of subcortical volumes (Gaser et al., 2022). 
Cortical thickness measures were normalized from individual to 32 k fsLR surface space (conte69) to 
ensure vertex correspondence across subjects. Subcortical volumes were computed for the Melbourne 
Subcortex Atlas parcellation resolution 1 (Tian et al., 2020). Volumetric measures for the anterior and 
posterior thalamus parcels were averaged to obtain a single measure for the thalamus. Individuals 
with a CAT12 image quality rating lower than 75% were excluded during the quality assessment. To 
facilitate large- scale data management while ensuring provenance tracking and reproducibility, we 
employed the DataLad- based FAIRly big workflow for image data processing (Wagner et al., 2022).

Statistical analysis
Statistical computations and plotting were performed in python 3.9.7 leveraging bctpy (v. 0.6.0), 
brainstat (v. 0.3.6), brainSMASH (v. 0.11.0), and the ENIGMA toolbox (v. 1.1.3). matplotlib (v. 3.5.1), 
neuromaps (v. 0.0.1), numpy (v. 1.22.3), pandas (v. 1.4.2), pingouin (v. 0.5.1), pyls (v. 0.0.1), scikit- learn 
(v. 1.0.2), scipy (v. 1.7.3), seaborn (v. 0.11.2) as well as in matlab (v. 2021b) using ABAnnotate (v. 0.1.1).

Partial least squares correlation analysis
To relate MetS components and brain morphology, we performed a PLS using pyls (https://github. 
com/rmarkello/pyls; Markello, 2021). PLS identifies covariance profiles that relate to two sets of vari-
ables in a data- driven multivariate analysis (Krishnan et al., 2011). Here, we related regional cortical 
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thickness and subcortical volumes to clinical measurements of MetS components, i.e., obesity (waist 
circumference, hip circumference, waist- hip ratio, body mass index), arterial hypertension (systolic 
blood pressure, diastolic blood pressure), dyslipidemia (high- density lipoprotein, low- density lipopro-
tein, total cholesterol, triglycerides) and insulin resistance (HbA1c, non- fasting blood glucose). Before 
conducting the PLS, missing values were imputed via k- nearest neighbor imputation (nneighbor = 4) with 
imputation only taking into account variables of the same group, i.e., MetS component variables were 
imputed based on the remaining MetS component data only and not based on demographic vari-
ables. To account for age, sex, education, and cohort (UKB/HCHS) as potential confounds, they were 
regressed out of brain morphological and MetS component data.

We then performed PLS as described in previous work (Petersen et al., 2022b). Methodological 
details are covered in Figure 1a and Box 1. Brain morphological measures were randomly permuted 
(npermute = 5000) to assess the statistical significance of derived latent variables and their corresponding 
covariance profiles. Subject- specific PLS scores, including a clinical score and an imaging score, were 
computed. Higher scores indicate stronger adherence to the respective covariance profiles: a high 
clinical score signifies pronounced expression of the clinical profile, and a high imaging score reflects 
marked adherence to the brain morphological profile. Bootstrap resampling (nbootstrap = 5000) was 
performed to assess the contribution of individual variables to the imaging- clinical relationship. Confi-
dence intervals (95%) of singular vector weights were computed for clinical variables to assess the 
significance of their contribution. To estimate the contributions of brain regions, bootstrap ratios 
were computed as the singular vector weight divided by the bootstrap- estimated standard error. A 
high bootstrap ratio is indicative of a region’s contribution, as a relevant region shows a high singular 
vector weight alongside a small standard error implying stability across bootstraps. The bootstrap 
ratio equals a z- score in the case of a normally distributed bootstrap. Hence, brain region contribu-
tions were considered significant if the bootstrap ratio was >1.96 or <−1.96 (95% confidence interval). 
Overall model robustness was assessed via a 10- fold cross- validation by correlating out- of- sample PLS 
scores within each fold.

Mediation analysis
In a post- hoc mediation analysis, we investigated how the subject- specific clinical PLS score of the 
first latent variable, reflecting the degree of an individual’s expression of the identified MetS risk 
profile, relates to cognitive test outcomes, and whether this relationship is influenced by the imaging 
PLS score of the first latent variable, which represents the degree of brain morphological differences 
(Figure 1b). This analysis allows to separate the total effect of the clinical PLS score on cognitive 
performance into: (1) a direct effect (the immediate link of clinical scores and cognition), and (2) an 
indirect effect (the portion influenced by the imaging PLS score). This approach helps to disentangle 
the complex interplay between MetS and cognitive function by examining the role of brain structural 
effects as a potential intermediary. We considered an indirect effect as mediating if there was a signif-
icant association between the clinical and imaging PLS scores, the imaging PLS score was significantly 
associated with the cognitive outcome, and if the link between clinical scores and cognitive outcomes 
weakened (partial mediation) or became insignificant (full mediation) after accounting for imaging 
scores. The significance of mediation was assessed using bootstrapping (nbootstrap = 5000), with models 
adjusted for age, sex, and education. To obtain standardized estimates, mediation analysis inputs 
were z- scored beforehand. Given the variation in cognitive test batteries between the UKB and HCHS 
cohorts, only individuals with results from the respective tests were considered in each mediation 
analysis. To account for the different versions of the Trail Making Tests A and B used in both cohorts, 
test results were harmonized through z- scoring within the individual subsamples before a pooled 
z- scoring step.

Contextualization analysis
We investigated the link of MetS and regional brain morphological measurements in the context 
of cell- specific gene expression profiles and structural and functional brain network characteristics 
(Figure 1c). Therefore, we used the Schaefer- parcellated (400×7 and 100×7, v.1) bootstrap ratio map 
and related it to indices representing different gene expression and network topological properties of 
the human cortex via spatial correlations (Spearman correlation,  rsp ) on a group- level (Schaefer et al., 
2018).
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 Research article Medicine | Neuroscience

Petersen et al. eLife 2023;12:RP93246. DOI: https://doi.org/10.7554/eLife.93246  17 of 38

Virtual histology analysis. We performed a virtual histology analysis leveraging gene transcrip-
tion information to quantify the density of different cell populations across the cortex employing 
the ABAnnotate toolbox (Lotter, 2022; Dukart et al., 2021). Genes corresponding with specific cell 
populations of the central nervous system were identified based on a classification derived from single 
nucleus- RNA sequencing data (Lake et al., 2016). The gene- cell type mapping is provided by the 

Box 1. Partial least squares correlation analysis 
explained.

Regional morphometric information (Schaefer 400- and Melbourne Subcortical Atlas- 
parcellated) and clinical data (age sex, education, and MetS component data) were arranged 
in two matrices  Xnparticipants×nbrain regions  and  Ynparticipants×nclinical variables  and then z- scored. Subsequently, 
a clinical- anatomical correlation matrix was calculated. Singular value decomposition was 
performed on the correlation matrix which resulted in a set of mutually orthogonal latent 
variables. The smaller dimension of the correlation matrix – its rank – equals the latent variable 
count. In our case, this was the number of clinical variables. Singular value decomposition 
results in a left singular vector matrix ( Unbrain regions×nlatent variables ), right singular vector matrix 
( Vnclinical variables×nlatent variables ) and a diagonal matrix of singular values ( ∆nlatent variables×nlatent variables ). 
Together, these represent a set of latent variables with a latent variable being composed 
of a left and right singular vector and a corresponding singular value. Each latent variable 
represents a specific covariance profile within the input data. A singular vector weights the 
corresponding original variables to maximize their covariance, i.e., the weighted regional 
values of a singular vector  Ubrain regions, latent variable j  can be interpreted as a maximally covarying 
brain morphology pattern and its corresponding clinical substrate ( Vclinical variables, latent variable j ). 
The explained variance of a latent variable was calculated as the ratio of its corresponding 
squared singular value to the sum of the remaining squared singular values. Significance 
of a latent variable was assessed by comparing the observed explained variance to a non- 
parametric distribution of permuted values acquired by permuting the subject order in X 
(npermute = 5000).
Subject- specific PLS scores measure to which extent an individual expresses a covariance 
profile represented by a latent variable. Thus, scores can be thought of as factor weightings in 
factor analysis. A high score describes the high agreement of a participant with the identified 
pattern. They were calculated by projecting U on X for an imaging score

 Imaging score = UX   

and V on Y for a clinical score

 Clinical score = VY   

Bootstrap resampling was performed to identify brain regions and clinical variables with a 
high and robust contribution to the clinical- anatomical association. Individuals were randomly 
sampled from X and Y with replacement (n=5000) which resulted in a set of resampled 
correlation matrices propagated to singular value decomposition resulting in a sampling 
distribution of singular vector weights for each input variable. This enabled the computation 
of 95% confidence intervals for the clinical variables and a bootstrap ratio for the brain 
regions.

 
Bootstrap ratio =

Singular vector weight Ubrain region i, latent variable j
Standard error estimated from bootstrapping   

The bootstrap ratio measures a brain region’s contribution to the observed covariance profile 
of a respective latent variable, as a relevant region shows a high singular vector weight 
alongside a small standard error implying stability across bootstraps.
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PsychENCODE database (http://resource.psychencode.org/Datasets/Derived/SC_Decomp/DER-19_ 
Single_cell_markergenes_TPM.xlsx; Wang et al., 2018). The abagen toolbox (v. 0.1.3) was used to 
obtain regional microarray expression data of these genes for Schaefer 100×7 parcels based on the 
Allen Human Brain Atlas (AHBA) (Markello et al., 2021). The Schaefer 100×7 atlas was used as it 
better matches the sampling density of the AHBA eventually resulting in no parcels with missing 
values. Regional expression patterns of genes corresponding to astrocytes, endothelial cells, excit-
atory neuron populations (Ex1- 8), inhibitory neuron populations (In1- 8), microglia, and oligoden-
drocytes were extracted. Instead of assessing the correspondence between MetS effects and the 
expression pattern of each gene directly, we employed ensemble- based gene category enrichment 
analysis (GCEA) (Fulcher et al., 2021). This approach represents a modification to customary GCEA 
addressing the issues of gene- gene dependency through within- category co- expression which is 
caused by shared spatial embedding as well as spatial autocorrelation of cortical transcriptomics data. 
In brief, gene transcription indices were averaged within categories (here cell populations) and spatially 
correlated with the bootstrap ratio map. Statistical significance was assessed by comparing the empir-
ical correlation coefficients against a null distribution derived from surrogate maps with preserved 
spatial embedding and autocorrelation computed via a spatial lag model (Burt et al., 2018). Further 
details on the processing steps covered by ABAnnotate can be found elsewhere (https://osf.io/gcxun; 
Lotter et al., 2023).

Brain network topology. To investigate the cortical MetS effects pattern in the context of brain 
network topology, three connectivity metrics were leveraged based on data from structural and 
functional brain imaging: weighted degree centrality, neighborhood abnormality as well as macro-
scale functional connectivity gradients as described previously (Petersen et al., 2022b). These were 
computed based on functional and structural consensus connectomes at group- level derived from 
the Human Connectome Project Young Adults dataset comprised in the ENIGMA toolbox (Larivière 
et al., 2021; Larivière et al., 2020). The preprocessing of these connectomes is described elsewhere 
(Larivière et al., 2020).

Weighted degree centrality. Weighted degree centrality is a measure of a brain region’s topolog-
ical relevance and is commonly used for the identification of brain network hubs (van den Heuvel 
and Sporns, 2013). The degree centrality of a node  i  was computed as the sum of its functional or 
structural connection weights (Rubinov and Sporns, 2010). The resulting values were ranked before 
further analysis.

Neighborhood abnormality. Neighborhood abnormality represents a summary measure of a 
cortical property in the node neighborhood defined by functional or structural brain network connec-
tivity (Shafiei et al., 2020). In this work, the MetS- related morphological abnormalities (bootstrap 
ratio or t- statistic) in nodes  j  connected to node  i  were averaged and weighted by their respective 
functional or structural seed connectivity ( wij ):

 
Ai = 1

Ni

∑
j∈Ni

Cjwij
  

where  j  is one of the connected nodes  Ni  ,  Cj  is the measure of MetS- related effects on cortical 
thickness and the corresponding connection weight  wij  . The term  

1
Ni  corrects for the nodal degree by 

normalizing the number of connections. For example, a high positive or negative  Ai  represents strong 
connectivity to nodes of pronounced MetS effects (Petersen et al., 2022b).

Functional connectivity gradients. To contextualize the MetS- related morphological abnormalities 
with the functional network hierarchy, we derived macroscale functional connectivity gradients as a 
proxy of the canonical sensorimotor- association axis, which determines the distribution of manifold 
cortical properties (Margulies et al., 2016; Sydnor et al., 2021). Functional connectivity gradients 
were derived by applying diffusion map embedding on the HCP functional connectivity matrix using 
BrainSpace (Vos de Wael et al., 2020). A functional connectivity gradient can be interpreted as a 
spatial axis of connectivity variation spanning the cortical surface, as nodes of similar connectivity 
profiles are closely located on these axes.

For this analysis, the statistical significance of spatial correlations was assessed via spin permuta-
tions (n=1000) which represent a null model preserving the inherent spatial autocorrelation of cortical 
information (Alexander- Bloch et al., 2018). Spin permutations are performed by projecting parcel- 
wise data onto a sphere which then is randomly rotated. After rotation, information is projected back 
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on the surface, and a permuted  rsp  is computed. A p- value is computed comparing the empirical 
correlation coefficient to the permuted distribution. To assure that our results do not depend on null 
model choice, we additionally tested our results against a variogram- based null model implemented 
in the brainSMASH toolbox (https://github.com/murraylab/brainsmash; Burt and Murray, 2020) as 
well as a network rewiring null model with preserved density and degree sequence (Burt et al., 2020; 
Maslov et al., 2004).

All p- values resulting from both contextualization analyses were FDR- corrected for multiple 
comparisons. As we conducted this study mindful of the reuse of our resources, the MetS effect maps 
are provided as separate supplementary files to enable further analyses (Supplementary files 1- 3).

Sensitivity analyses
For a sensitivity analysis, we reperformed the PLS separately within the UKB and HCHS cohorts. In 
contrast to the PLS main analysis, in these subset- specific PLS analyses cognitive test performances 
were also incorporated as clinical variables as cognitive batteries were subset- specific. This approach 
was employed to evaluate the stability of the results and to determine if cognitive tests contribute to 
the latent variables.

To test whether the PLS indeed captures the link of MetS and brain morphology, we conducted 
a group comparison as in previous studies of MetS. Besides descriptive group statistics, the cortical 
thickness of individuals with MetS and matched controls was compared on a surface vertex- level 
leveraging the BrainStat toolbox (v 0.3.6, https://brainstat.readthedocs.io/) (Larivière et al., 2023). A 
general linear model was applied correcting for age, sex, education, and cohort effects. Vertex- wise 
p- values were FDR- corrected for multiple comparisons. To demonstrate the correspondence between 
the t- statistic and cortical bootstrap ratio maps, we related them via spatial correlation analyses. The 
t- statistic map was also used for sensitivity analysis of the virtual histology analysis and brain network 
contextualization.

To ensure that the brain network contextualization results were not biased by the connectome 
choice, we reperformed the analysis with structural and functional group consensus connectomes 
based on resting- state functional and diffusion- weighted MRI data from the HCHS. The corresponding 
connectome reconstruction approaches were described elsewhere (Petersen et al., 2022b).
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Appendix 1
General appendix

Appendix 1—figure 1. Flowchart sample selection procedure.
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Appendix 1—figure 2. Correlation matrix of metabolic syndrome- related risk factors. The upper triangle of the 
matrix displays Pearson correlations with dot size and color representing the magnitude of the coefficients. The 
diagonal shows kernel density plots. The lower triangle illustrates the variables’ linear relationships via regression 
plots. Of note, non fasting plasma glucose was investigated in this analysis. Abbreviations: BP – blood pressure.

Appendix 1—table 1. Partial least squares analysis - latent variables.

Latent variable Explained variance (%) p- value

0 71.20 0.0002

1 22.33 0.0002

2 2.12 0.0002

3 1.84 0.0006

4 1.03 0.0026

5 0.52 0.0266

6 0.38 0.0100

7 0.23 0.0032

8 0.18 0.1178

9 0.16 0.2122

10 0.00 0.3137

11 0.00 0.0608

12 0.00 1

13 0.00 1

14 0.00 1

15 0.00 1

https://doi.org/10.7554/eLife.93246
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Appendix 1—table 2. Partial least squares analysis- Cross- validation.

CV fold rsp

0 0.17

1 0.21

2 0.22

3 0.16

4 0.15

5 0.18

6 0.23

7 0.13

8 0.20

9 0.22

Appendix 1—table 3. Virtual histology analysis - Bootstrap ratio (partial least squares, PLS).

Cell type Zrsp pFDR

Endo 0.190 0.016

Micro 0.271 0.016

Ex8 0.165 0.016

In1 0.363 0.036

Ex6 0.146 0.034

Oligo 0.207 0.057

In7 0.079 0.083

Ex1 0.122 0.144

In2 0.058 0.179

In3 0.047 0.208

Astro 0.071 0.259

In8 0.055 0.299

Ex7 0.044 0.336

In5 0.037 0.388

Ex4 –0.020 0.776

Ex5 –0.055 0.924

In4 –0.056 0.949

In6 –0.099 0.949

Ex2 –0.102 0.967

Ex3 –0.289 0.999

Appendix 1—table 4. Virtual histology analysis - t- statistic (group comparison).

Cell type Zrsp pFDR

Endo 0.208 0.020

Micro 0.321 0.040

Ex8 0.208 0.040

Oligo 0.233 0.055

Appendix 1—table 4 Continued on next page
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Cell type Zrsp pFDR

In1 0.432 0.108

Ex6 0.145 0.123

Ex1 0.156 0.229

In3 0.058 0.233

Astro 0.120 0.233

In7 0.059 0.233

In2 0.063 0.233

Ex7 0.089 0.263

In5 0.063 0.300

In8 0.066 0.317

Ex4 0.015 0.585

Ex5 –0.007 0.690

In6 –0.078 0.861

Ex2 –0.070 0.861

In4 –0.087 0.901

Ex3 –0.341 0.997

Appendix 1—table 5. UK Biobank field IDs.

Age 21003

Sex 31

Education 6133*

Waist circumference 48

Hip circumference 49

Body mass index 21001

RRsystolic 4080

RRdiastolic 4079

HDL 30760

LDL 30780

Cholesterol 30690

Triglycerides 30870

HbA1c 30750

Blood glucose 30740

Medication for cholesterol, blood pressure, diabetes 6153

Fluid Intelligence 20191

Matrix Pattern Completion 6373

Numeric Memory Test 20240

Paired Associate Learning 20197

Prospective Memory 20018

Reaction Time 20023

Appendix 1—table 4 Continued

Appendix 1—table 5 Continued on next page
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Age 21003

Symbol Digit Substitution 20159

Tower Rearranging Test 21004

Trail Making Test A 6348

Trail Making Test B 6350

Abbreviations: RR = blood pressure.
*Converted to International Standard Classification of Education (ISCED) via the UKBB parser (https://github.com/ 
USC-IGC/ukbb_parser; Zhu et al., 2019).

Appendix 1—table 6. Metabolic syndrome Criteria of the International Diabetes Federation (IDF) 
(Alberti et al., 2006).

Metabolic syndrome = obesity + two further criteria

Obesity waist circumference ♀:≥80 cm; ♂:≥94 cm

Dyslipidemia (raised triglycerides) ≥150 mg/dL (1.7 mmol/L) or lipid lowering medication

Dyslipidemia (reduced HDL cholesterol)
♀:<50 mg/dL (1.29 mmol/L); ♂:<40 mg/dL (1.03 mmol/L) in 
males

Arterial hypertension (raised blood pressure)
systolic BP ≥130 or diastolic BP ≥85 mm Hg or 
antihypertensive medication or diagnosis of hypertension

Insuline resistance

Fasting plasma glucose ≥100 mg/dL (5.6 mmol/L) or 
antidiabetic therapy or diagnosis of diabetes mellitus type 
2*

*Measurements of fasting plasma glucose were not available for the study sample. Consequently, the criterion of 
insulin resistance was only based on the diagnosis of diabetes mellitus and administration of antidiabetic therapy.

Appendix 1—table 5 Continued

https://doi.org/10.7554/eLife.93246
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Appendix 2
Case-control analysis
As a sensitivity analysis and to facilitate the comparison with previous reports which mainly rely on 
group statistics, we supplemented the continuous partial least squares correlation analysis with a 
group analysis based on a case- control design.

Matching procedure
After quality assessment, individuals with metabolic syndrome were identified based on the 
consensus criteria of the International Diabetes Federation (nUKB = 6746, nHCHS = 759). An individual 
was considered to exhibit MetS in case of obesity (increased waist circumference) and two further 
criteria being raised plasma triglycerides, reduced HDL cholesterol, arterial hypertension or insulin 
resistance. Of note, measurements of fasting plasma glucose were not available for the study sample. 
Consequently, the criterion of insulin resistance was only based on the diagnosis of diabetes mellitus 
and administration of antidiabetic therapy. Within each cohort, an equally sized control cohort was 
sampled which was matched for age, sex and education (International Standard Classification of 
Education) using propensity score matching as implemented in the matchit (v4.3.3) R package. MetS 
and control samples from both cohorts were pooled yielding an analysis sample of 15,010 individuals 
(nMetS = 7505,, ncontrols = 7505). For detailed matching results refer to Appendix 2—figures 1 and 2 
shown below.

Group comparison of clinical data
Sample characteristics were compared between participants with MetS and controls using  χ

2
  

-tests for binary and two- sample t- tests for continuous data. Cognitive variables were compared 
within UKB and HCHS subgroups via analyses of covariance (ANCOVA) adjusting for age, sex and 
education. Resulting test statistics were converted to Cohen’s d which quantifies the group difference 
in standard deviations. P- values were false- discovery rate (FDR)- corrected for multiple comparisons. 
Separate group statistics of demographic, risk and cognitive variables for the UKB and HCHS 
are shown in Appendix 1—table 1–2. Individuals with MetS exhibited a more severe risk profile 
indicating that the group definitions captured considerable differences in the MetS components 
profile. Group differences regarding MetS criteria proportions are visualized in Appendix 2—figure 
3. As the cognitive assessment of the UKB and HCHS differed, cognitive scores were compared 
between groups within the individual studies. UKB subjects with MetS performed significantly worse 
in the Fluid Intelligence Test (6.66±2.10 vs 6.82±2.09, Cohen’s d=0.08,  pFDR  < 0.001), Numeric 
Memory Test (6.64±1.61 vs 6.84±1.53, Cohen’s d=.12,  pFDR  < 0.001), Paired Associate Learning 
Test (6.45±2.60 vs 6.73±2.61, Cohen’s d=0.10,  pFDR  < 0.001) and Symbol Digit Substitution Test 
(18.47±5.12 vs 19.00±5.16, Cohen’s d=0.10,  pFDR  < 0.001). HCHS subjects exhibiting MetS showed 
worse cognitive performance in the Animal Naming Test (23.71±6.46 vs 24.77±6.75, Cohen’s d=0.16, 
 pFDR  < 0.009) and Multiple- choice Vocabulary Intelligence Test (31.18±3.43 vs 31.71±3.22, Cohen’s 
d=0.16,  pFDR  < 0.034).

Vertex-wise cortical thickness analysis
The cortical thickness of individuals with MetS and matched controls were compared on a 
surface vertex- level leveraging the BrainStat toolbox (v 0.3.6, https://brainstat.readthedocs.io/). 
Corresponding results are shown in Appendix  2—figure 4. The vertex- wise t- statistic, which 
captures the differential MetS effects across the cortical surface, was Schaefer 400 and Schaefer 
100- parcellated and propagated to further analyses. The t- statistic map strongly correlated with the 
bootstrap ratio maps derived from the PLS analyses. Furthermore, the t- statistic map was significantly 
associated with density of endothelial cells ( Zrsp  = 0.208,  pFDR  = 0.040), microglia ( Zrsp  = 0.321,  pFDR  
= 0.040), excitatory neurons type 8 ( Zrsp  = 0.208,  pFDR  = 0.004) and also correlated significantly with 
the functional neighborhood abnormality ( rsp  = 0.313,  pspin  = 0.024,  psmash  = 0.018,  prewire  < 0.001) 
and structural neighborhood abnormality ( rsp  = 0.775,  pspin  = <0.001,  psmash  < 0.001,  prewire  < 0.001).

https://doi.org/10.7554/eLife.93246
https://brainstat.readthedocs.io/
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Appendix 2—figure 1. Matching - UK Biobank.

https://doi.org/10.7554/eLife.93246
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Appendix 2—figure 2. Matching – Hamburg City Health Study.

https://doi.org/10.7554/eLife.93246
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Appendix 2—figure 3. Proportion of metabolic syndrome criteria. Barplots indicate the percentage amount of 
metabolic syndrome (MetS) criteria that apply by group for the pooled sample. Significant group differences in 
χ2- tests are highlighted by asterisks.

Appendix 2—figure 4. Vertix- wise group comparison of cortical thickness. Vertex- level group comparison 
between individuals with metabolic syndrome and matched controls. Resulting surface maps of standardized 
t- statistic estimates encode the group- differences between patients and controls, with lower cortical thickness in 
the metabolic syndrome (MetS) group being represented by a positive t and lower by a negative t. The vertex- wise 
t- statistic map was Schaefer- parcellated for the downstream analyses.

https://doi.org/10.7554/eLife.93246
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Abstract. Introduction: White matter hyperintensities of presumed vascular origin (WMH) are associated with cognitive impairment 
and are a key imaging marker in evaluating cognitive health. However, WMH volume alone does not fully account for the extent of 
cognitive deficits and the mechanisms linking WMH to these deficits remain unclear. We propose that lesion network mapping (LNM), 
enables to infer if brain networks are connected to lesions, and could be a promising technique for enhancing our understanding of 
the role of WMH in cognitive disorders. Our study employed this approach to test the following hypotheses: (1) LNM-informed markers 
surpass WMH volumes in predicting cognitive performance, and (2) WMH contributing to cognitive impairment map to specific brain 
networks. Methods & results: We analyzed cross-sectional data of 3,485 patients from 10 memory clinic cohorts within the Meta 
VCI Map Consortium, using harmonized test results in 4 cognitive domains and WMH segmentations. WMH segmentations were 
registered to a standard space and mapped onto existing normative structural and functional brain connectome data. We employed 
LNM to quantify WMH connectivity across 480 atlas-based gray and white matter regions of interest (ROI), resulting in ROI-level 
structural and functional LNM scores. The capacity of total and regional WMH volumes and LNM scores in predicting cognitive 
function was compared using ridge regression models in a nested cross-validation. LNM scores predicted performance in three 
cognitive domains (attention and executive function, information processing speed, and verbal memory) significantly better than 
WMH volumes. LNM scores did not improve prediction for language functions. ROI-level analysis revealed that higher LNM scores, 
representing greater disruptive effects of WMH on regional connectivity, in gray and white matter regions of the dorsal and ventral 
attention networks were associated with lower cognitive performance. Conclusion: Measures of WMH-related brain network 
connectivity significantly improve the prediction of current cognitive performance in memory clinic patients compared to WMH volume 
as a traditional imaging marker of cerebrovascular disease. This highlights the crucial role of network effects, particularly in attention-
related brain regions, improving our understanding of vascular contributions to cognitive impairment. Moving forward, refining WMH 
information with connectivity data could contribute to patient-tailored therapeutic interventions and facilitate the identification of 
subgroups at risk of cognitive disorders. 
 

Introduction 
Cerebral small vessel disease (CSVD) is a major driver of 
vascular cognitive impairment (VCI) and often also 
contributes to dementia with a primary neurodegenerative 
or mixed pathology.1 White matter hyperintensities (WMH) 
are the signature imaging marker of CSVD, and mark sites 
of white matter disintegration caused by microangiopathic 
axonal loss and demyelination.2,3 However, a 
comprehensive understanding of mechanisms linking WMH 
to their broad range of clinical manifestations, specifically 
cognitive impairment, is still lacking. 

Although there is a well-documented association 
between WMH volumes and cognitive functions at the 
group-level, the association between WMH volume and 
symptom severity demonstrates considerable variability 
with some individuals exhibiting fewer symptoms despite 
high WMH burden and vice versa.4 The apparent complexity 
of this relationship underscores the need for improved 
techniques for disease quantification to more accurately 
predict individual cognitive impairment for effective 
diagnostics and ultimately targeted treatment of CSVD 
patients.5 For example, lesion-symptom inference 
techniques have linked cognitive impairment to WMH 
located in strategic white matter regions, independent of 
total WMH volume.4,6,7  

However, these recent findings might not fully reflect 
the complexity of CSVD-related cognitive impairment, 
which is thought to emerge from disturbances in the 
interplay of large-scale brain networks involving cortical 
and subcortical gray matter areas, interconnected by white 
matter tracts.8  In recent years, advanced imaging analysis 
models have been developed to comprehensively capture 
lesion effects on brain circuitry.9 Specifically, lesion 
network mapping (LNM) techniques capitalize on advanced 
neuroimaging to map lesions on reconstructions of the 
human brain network.10 By that, a lesion’s impact on 
connectivity to different brain regions can be quantified – 
i.e., the lesion’s network embedding is measured – allowing 
to infer which regions are disconnected. Application of LNM 
has been shown to predict clinical symptoms in a variety of 

neurological disorders that can be understood as 
“disconnection syndromes”, such as stroke or multiple 
sclerosis.11,12  

Here, we propose LNM as a technique to quantify WMH-
related, strategic neuronal disconnectivity for improved 
prediction of cognitive performance in CSVD. We employ 
LNM on a large-scale, multicenter dataset, integrating 
cognitive test results and MRI-based WMH segmentations 
from 3485 patients of 10 memory clinic cohorts through the 
Meta VCI Map Consortium.6,13 Our hypotheses are twofold: 
(1) LNM-based measures of WMH connectivity surpass 
WMH volumes in predicting cognitive performance, and (2) 
WMH contributing to cognitive deficits map to specific brain 
networks that functionally determine their symptom 
profile. 
 

Materials and methods 
Study population 
Methodological details are illustrated in figure 1. We 
examined previously harmonized, cross-sectional clinical 
and imaging data of 3485 patients from 10 memory clinic 
cohorts of the Meta VCI Map Consortium.6,13 Meta VCI Map 
is a multi-site collaboration for conducting meta-analyses of 
strategic lesion topography in vascular cognitive 
impairment. The memory clinic cohorts included in this 
study comprise the Erasmus MC Memory Clinic Cohort 
(ACE, n=52, Netherlands), Alzheimer’s Disease 
Neuroimaging Initiative (ADNI, n=994, USA)14, UC Davis 
Alzheimer’s Disease Center Diversity Cohort (AUCD, n=641, 
USA)15, BrainIMPACT (n=53, Canada)16, Functional 
Assessment of Vascular Reactivity (FAVR, n=47, Canada)16, 
Harmonization (n=207, Singapore)4, Prospective Dementia 
Registry (PRODEM, n=367, Austria)17, TRACE-VCI (n=821, 
Netherlands)18, Utrecht Memory Clinic Cohort (UMCC, 
n=227, Netherlands) and VASCAMY (n=76, Germany). All 
cohorts include patients assessed at outpatient memory 
clinics for cognitive symptoms, undergoing structural MRI 
alongside neuropsychological tests of cognitive 
performance.  
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Figure 1. Methodology. a) Data from 10 memory clinic cohorts of the Meta VCI Map Consortium were used including harmonized cognitive scores and 
WMH segmentations in MNI space. For functional LNM we employed the GSP1000 normative functional connectome comprising resting-state fMRI data 
from 1000 healthy GSP participants. For structural lesion network mapping, we used the HCP32 normative structural connectome based on diffusion-
weighted imaging data from 32 healthy HCP participants, detailing the fiber bundle architecture. b) LNM was performed to quantify the functional and 
structural connectivity of WMH to multiple ROIs (Schaefer400x7 cortical, Melbourne Subcortical Atlas subcortical, HCP1065 white matter areas). For this, 
voxel-level functional and structural connectivity maps were computed for each ROI, reflecting resting-state BOLD correlations or anatomical connection 
strength via tractography streamlines, respectively. ROIwise LNM scores were derived by averaging voxel-level connectivity indices within the normalized 
WMH masks, considering only positive correlation coefficients for functional mapping. This resulted in a matrix for both fLNM and sLNM scores per ROI 
per patient (nROIs x npatients). The matrices shown in the figure are populated with random data only serving as a visual aid. c) The fLNM and sLNM scores 
across patients were used in predictive models to estimate cognitive domain scores (predictive modelling analysis) and analyzed in permutation-based 
general linear models to identify regions significantly influencing the cognitive domain-WMH disconnectivity relationship at the ROI level (ROI-level in-
ferential statistics). Abbreviations: fLNM = functional lesion network mapping, GSP = Genomic Superstruct Project, HCP = Human Connectome Project, ROI 
= region of interest, rsfMRI = resting-state functional magnetic resonance imaging, sLNM = structural lesion network mapping, WMH = white matter 
hyperintensities of presumed vascular origin. 
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Patients with cognitive impairment due to non-vascular, 
non-neurodegenerative causes (e.g., excessive alcohol use 
disorder, cerebral malignancies, multiple sclerosis) or 
monogenic disorders (e.g., CADASIL) were excluded. Fur-
ther details on each cohort including sample-specific inclu-
sion and exclusion criteria were reported previously.6 
 
Ethics approval 
All cohorts received the requisite ethical and institutional 
approval in accordance with local regulations, which in-
cluded informed consent, to allow data acquisition and 
sharing.6 
 
Cognitive assessments 
Detailed harmonization procedures, including specific test-
to-domain assignments, were reported previously.19 Neuro-
psychological tests from participating cohorts were norm-
referenced against local norms or a healthy control group, 
and adjusted on the individual subject level for age, sex, and 
education. These tests were categorized into four cognitive 
domains: attention/executive function, information pro-
cessing speed, language, and verbal memory. Within these 
domains, norm-referenced neuropsychological test scores 
were z-scored and averaged to obtain cognitive domain 
scores (z-scores), which capture individual-level cognitive 
domain performance relative to healthy controls. 
 
White matter hyperintensity segmentation 
WMH segmentations were provided by the participating 
centers or performed at the UMC Utrecht (ACE cohort). Seg-
mentation masks were obtained applying established auto-
mated neuroimaging software on fluid-attenuated inver-
sion recovery (FLAIR) MRI.20 WMH segmentations were 
spatially normalized to the Montreal Neurological Institute 
(MNI)-152 template.21 To ensure registration quality, the 
normalized WMH masks were visually inspected and pa-
tients with failed registrations were excluded. Furthermore, 
random subsamples of normalized WMH segmentations 
were returned to the respective participating institutions to 
confirm the data quality. WMH segmentation masks were 
used to compute the total WMH volume as well as tract-
level WMH volumes for each of the 64 white matter fiber 
tracts of the HCP1065 Tract Atlas.22 Details on cohort-spe-
cific segmentation and registration procedures were re-
ported previously.6,23 
 
Lesion network mapping 
LNM was performed to quantify the functional and struc-
tural connectivity of WMH to cortical, subcortical and white 
matter regions of interest (ROIs).24 ROIs were defined in 
MNI space according to the Schaefer400x7 Atlas 
(nROIs=400), the Melbourne Subcortical Atlas (nROIs=16) and 
the HCP1065 Tract Atlas (nROIs=64) (figure 1b).22,25,26 For 
visualization of the investigated HCP1065 tracts, see supple-
mentary figure S1. 

Functional lesion network mapping (fLNM) was 
conducted using a normative functional connectome, de-
rived from resting-state fMRI scans of 1,000 healthy indi-
viduals from the Genomic Superstruct Project (GSP1000).27 
Preprocessing included global signal regression and spatial 
smoothing at a 6mm full width at half maximum kernel as 

previously detailed.28 For each ROI, we averaged blood ox-
ygen level-dependent (BOLD) signal fluctuations across 
voxels within the ROI and correlated this aggregate time se-
ries with BOLD signals of all brain voxels. This process gen-
erated 1,000 Pearson correlation coefficients per voxel, i.e., 
one for each GSP1000 subject, which were then Fischer z-
transformed and averaged across subjects to create a func-
tional connectivity map per ROI. Functional connectivity 
map computations were performed using the ROI masks as 
seeds in the connectome mapper function of Lead-DBS 
(lead-dbs.org).29 Subsequently, ROI-level fLNM scores were 
calculated by averaging positive Pearson correlation coeffi-
cients within the WMH mask, reflecting each ROI's func-
tional connectivity to WMH. 

Structural lesion network mapping (sLNM) was 
performed employing a normative structural connectome 
of 32 subjects of the Human Connectome Project (HCP32).30 
The structural connectome was reconstructed by applying 
DSI Studio on multi-shell diffusion MRI data acquired on a 
MRI scanner specifically designed for high-fidelity connec-
tome reconstruction. Streamlines resulting from whole 
brain tractography were normalized to MNI and aggregated 
across subjects.31 Employing Lead-DBS, voxel-wise struc-
tural connectivity maps were computed per atlas ROI, quan-
tifying per voxel the number of streamlines connecting the 
voxel to the ROI.29 ROI-level sLNM scores, reflecting struc-
tural connectivity between WMH and individual ROI, were 
determined by averaging the voxel values (representing 
streamline counts to the ROI) within the WMH mask. 

Summarized, LNM yielded both a fLNM and sLNM 
score for each ROI per subject, indicating the functional and 
structural connectivity between WMH and ROI, respec-
tively. 
 
Predictive modelling analysis 
To evaluate the predictive capacity of fLNM and sLNM 
scores, we performed a predictive modelling analysis lever-
aging scikit-learn (v. 1.0.2, scikit-learn.org) and julearn (v. 
0.3.0, juaml.github.io/julearn).32,33 This work defines 'pre-
diction' in accordance with previous studies as the estima-
tion of target variables using a trained statistical model on 
new unseen data – emphasizing the crucial aspect of model 
generalizability.9,34,35 We note that this definition varies 
from those indicating longitudinal study designs used in ep-
idemiological contexts.36 In the analysis, six different fea-
ture sets were compared: (1) demographics (age, sex and 
education), (2) total WMH volume + demographics, (3) 
tract-level WMH volumes + demographics, (4) ROI-level 
fLNM scores + demographics, (5) ROI-level sLNM scores + 
demographics, (6) ROI-level fLNM and sLNM scores + de-
mographics. 

For each cognitive domain, multivariable ridge re-
gression models were trained using the abovementioned 
feature sets to predict cognitive domain scores. Ridge re-
gression models include a L2 penalty that reduces coeffi-
cients to mitigate overfitting and address multicollinearity. 
We optimized the L2 penalties through a 10-fold nested 
cross-validation, tuning α values ranging from 0.001 to 
1000 (α = 0.001, 0.01, 0.1, 1, 10, 100, 1000). The model per-
formance was scored by the Pearson correlation between 
actual and predicted cognitive domain scores, 
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supplemented with explained variance (R², coefficient of 
determination) and negative mean squared error as addi-
tional measures of performance. In line with best practices, 
explained variance was calculated via sum-of-squares for-
mulation (using scikit-learn's r2_score) instead of squaring 
Pearson correlations.34 Before model fitting, continuous in-
put features were z-scored in a cross-validation consistent 
manner to avoid data leakage.37 To maintain a consistent 
distribution of the target variable across training and test 
sets, we employed julearn’s ContinuousStratifiedKFold func-
tion for creating the folds. Cross-validations were repeated 
10 times with varied random splits to minimize bias from 
any single split.38 This approach yielded 100 scores for each 
feature-target set combination which were compared be-
tween feature sets using a machine learning-adjusted t-
test.39 We repeated the predictive modelling analysis for dif-
ferent sample sizes (20%-100%, 1% steps, randomly sam-
pled) to examine the robustness and sample size depend-
ency of predictive performances. As a whole, this analysis 
follows current best practices of predictive modelling in 
neuroimaging.34 
 
Region of interest-level inferential statistics 
To investigate whether WMH-related connectivity of spe-
cific brain circuits links to impaired cognitive performance, 
we conducted permutation-based testing for linear associa-
tions between regional LNM scores and cognitive domain 
scores in a general linear model. All statistical analyses 
were conducted in FSL’s Permutation Analysis of Linear 
Models (PALM) based on MATLAB (v. 2021b) and Python 
3.9.1 leveraging neuromaps (v. 0.0.5).40–42 Statistical tests 
were two-sided (npermutation=5000), with a p<0.05 as the sig-
nificance threshold. To account for multiple comparisons, p-
values were adjusted for family-wise error. General linear 
models were adjusted for age, sex and education. To obtain 
standardized β-coefficients, input variables were z-scored 
beforehand. As a result, β-coefficients and p-values were ob-
tained for each cortical, subcortical, and white matter ROI 
(nROIs=480) indicating the strength and significance of the 
LNM score's linear association with cognitive domain 
scores for each ROI. To aid in interpreting the spatial effect 
patterns, we averaged the β-coefficients representing corti-
cal effects in the 7 intrinsic resting-state networks (Yeo net-
works), which reflect the cerebral cortex's intrinsic func-
tional organization.28 The Schaefer400x7 Atlas assigns ROIs 
to these networks: visual, somatomotor, dorsal attention, 
ventral attention (salience), limbic, frontoparietal control, 
and default mode network.25 Significance was tested via 
spin permutations (nspins=1000) which represent a null 
model preserving the inherent spatial autocorrelation of 
cortical information. 
 
Sensitivity analyses 
During computations of fLNM scores, we decided to only 
consider positive Pearson correlations of resting-state 
BOLD signal within WMH masks following previous ap-
proaches as the role of negative correlations is controver-
sial.43 However, some studies suggest biological meaning in 
anticorrelations of BOLD signal fluctuations.44,45 Hence, we 
conducted a sensitivity analysis based on fLNM scores com-
puted by averaging only the negative Pearson correlations 

in the WMH masks. We reconducted the predictive model-
ling analysis and ROI-level inferential statistics using these 
negative fLNM scores.  

Moreover, previous work employs thresholding to discard 
potentially noisy connectivity information. To further ex-
amine the effect of thresholding on our results we repeated 
the predictive modelling analysis comparing the main anal-
ysis results to fLNM and sLNM scores computed based on 
25% and 50% highest voxel intensities in the WMH mask. 
For negative fLNM scores, the lowest 25% and 50% voxel 
intensities in the WMH mask were considered. 

Exploratory analyses 
Further exploratory analyses including investigations of 
voxel-level lesion network maps and structure-function 
coupling of LNM scores are described in supplementary text 
S2.  
 
Data availability 
Analysis code can be accessed on GitHub 
(https://github.com/csi-hamburg/2024_pe-
tersen_wmh_disconnectivity_memory_clinic). The data that 
support the findings of this study are available from the cor-
responding author/project leads on reasonable request 
(https://metavcimap.org/group/become-a-member/). Re-
strictions related to privacy and personal data sharing reg-
ulations and informed consent may apply. 
 

Results 
Sample characteristics 
The pooled study sample of 3485 patients had a mean age 
of 71.7 ± 8.9 years and 49.8% were female. Among patients, 
777 (22.3%) had subjective cognitive impairment, 1389 
(39.9%) had mild cognitive impairment, and 1319 (37.9%) 
had dementia. Further details on the sample characteristics 
can be found in table 1. A heatmap of WMH distribution can 
be found in supplementary figure S3. 
 
Predictive modelling analysis 
To evaluate if information on WMH network connectivity 
exceeds the predictive capacity of volumetric WMH metrics 
for cognitive performance, we first computed regional fLNM 
and sLNM scores, that capture the structural and functional 
connectivity profile of WMH. We then employed ridge re-
gression for predictive modelling. Model performance was 
assessed via Pearson correlation (r) of predicted and actual 
cognitive domain scores averaged across folds. All models 
incorporated age, sex, and education (demographics) as fea-
tures to establish a performance baseline. The correspond-
ing results are visualized in figure 2a.  In summary, LNM 
scores significantly improved cognitive function prediction 
in all domains, except language, over WMH volumes. In de-
tail, the predictive performance achieved by the de-
mographics-only model was r = 0.312 for attention / execu-
tive function, r = 0.239 for information processing speed, r 
= 0.404 for language, and r = 0.305 for verbal memory. Mod-
els informed by total or tract-wise WMH volumes achieved 
a predictive performance of r = 0.341 - 0.365 for attention / 
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executive function, r = 0.247 – 0.250 for information pro-
cessing speed, r = 0.404 – 0.416 for language, and r = 0.327 
– 0.356 for verbal memory. For the prediction of attention / 
executive function, models informed by LNM scores exhib-
ited a significantly higher predictive performance than 
models informed by volumetric WMH measures (LNM: r = 
0.399 - 0.410 vs. WMH volume: r = 0.341 – 0.365; adjusted 
t-test, all p < 0.05). LNM-informed models also better pre-
dicted information processing speed (LNM: r = 0.310 - 0.316 
vs. WMH volume: r = 0.247 – 0.250, adjusted t-test, all p < 
0.05) as well as verbal memory (LNM: r = 0.390 - 0.408 vs. 
WMH volume: r = 0.327 – 0.356; adjusted t-test, all p < 0.05). 
Across these domains, the best prediction was achieved by 
models incorporating both structural and functional LNM 
scores. For attention / executive function, comparing the 
improvement from the demographics-based model to the 
model informed by total WMH volume (0.341 – 0.312 = 
0.029) with the improvement to the model based on both 
LNM modalities (0.410 – 0.312 = 0.098), the usage of fLNM 
and sLNM scores amounts to a 3.38-fold increase (0.098 / 
0.029 = 3.38) in added predictive performance. Considering 
both LNM modalities for predicting information processing 
speed and verbal memory amounted to 7.00-fold and 4.68-

fold increase in predictive performance, respectively. For 
the prediction of language domain scores, performance be-
tween LNM-informed models and WMH volume measures 
did not differ significantly (LNM: r = 0.380 - 0.409 vs. WMH 
volume: r = 0.404 – 0.416, all p > 0.05). See supplementary 
materials S4 and S5 for predictive modelling results using 
explained variance and negative mean squared error as 
scoring methods. Details on regional averages of LNM 
scores are shown supplementary figure S6. 

To test the robustness of prediction results, we re-
peated the analysis in randomly chosen subsamples of in-
creasing sizes (figure 2b). For attention / executive function 
and verbal memory, LNM-informed models started to con-
sistently exceed WMH volume-based models at approxi-
mately 50% (attention / executive function: n=1723, verbal 
memory: n=1712; note that data availability differed be-
tween cognitive domain scores) of the sample size.  
  

Figure 2. Predictive modelling analysis. Violin plots illustrate prediction outcomes across cognitive domains. Each violin displays the distribution of 
Pearson correlations (between actual and predicted cognitive domain performance; 10-fold cross-validation × 10 repeats = 100 folds → 100 Pearson 
correlations) for a model informed by a different feature set. The higher the Pearson correlation, the higher the prediction performance. blue: de-
mographics (age, sex and education); orange: total WMH volume + demographics; green: tract-level WMH volumes + demographics; red: sLNM scores + 
demographics; purple: fLNM scores + demographics; brown: sLNM scores + fLNM scores + demographics. Average Pearson correlations are indicated 
above each violin, with colored dots showing training score averages. Geometric symbols denote t-test results comparing LNM-based models against 
demographics- and WMH volume-based models: ▲ indicates higher Pearson correlation than demographics, ■ than WMH volume + demographics, ⬟
than tract-level WMH volume + demographics. Below the violin plots, performance curves display the average Pearson correlations across folds, for sub-
sets randomly sampled in sizes ranging from 20% to 100% of the entire dataset.  Line colors match the corresponding violin plots in panel a) which 
display predictive modelling results for the full sample size. Again, higher Pearson correlation indicates higher prediction performance. Abbreviations: 
fLNM = functional lesion network mapping, sLNM = structural lesion network mapping, WMH = white matter hyperintensities of presumed vascular 
origin. 
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For information processing speed, LNM-informed 
models surpassed WMH volume-based models at approxi-
mately 25% (n=604) of the sample size. Regarding lan-
guage, LNM-informed models approximated the perfor-
mance of WMH volume-based models with increasing sam-
ple sizes. For all cognitive domain scores, predictive perfor-
mance in the sample size range 80-100% showed high sta-
bility and only minor increases indicating saturation. 
 
Contextualization of WMH connectivity: Region of interest 
analysis 
We tested if WMH connectivity of specific brain circuits 
links to cognitive performance by quantifying the associa-
tion between regional LNM scores (cortical brain regions 
and white matter tracts) and cognitive domain scores ad-
justing for age, sex and education. 

Results of the general linear model linking LNM 
scores in cortical and subcortical gray matter regions to 
cognitive domain scores are shown in figure 3. Higher fLNM 
scores (i. e. increased WMH connectivity) in cortical regions 
of the dorsal attention and ventral attention networks were 
linked to lower attention / executive function and verbal 
memory (figure 3a and c). Regarding information pro-
cessing speed, the extent of the effect was limited to several 
cortical brain areas mapping to the dorsal attention net-
work (figure 3b). In terms of sLNM, higher scores in the dor-
sal attention network were significantly associated with 
lower attention / executive function and information pro-
cessing speed (figure 3d and e). Again, information pro-
cessing speed showed a spatially more limited effect pat-
tern. The relationship of regional sLNM and verbal memory 
scores showed a different spatial distribution mapping to 
the ventral attention, frontoparietal and default mode net-
work (figure 3f). The cortical and subcortical LNM scores 
showed no significant association with the language domain 
score. 

The results for anatomically predefined white mat-
ter tracts are shown in figure 4. For tract-level fLNM, lower 
cognitive performance in attention / executive function, in-
formation processing speed and verbal memory was most 
strongly linked to higher fLNM scores in association and 
projection tracts connecting the parietal cortex (figure 4b): 
the middle longitudinal fasciculus (MdLF), parietal corti-
copontine tract (CPT), dorsal, medial and ventral sections of 
the superior longitudinal fasciculus (SLF 1-3), the parieto-
parahippocampal cingulate (C parietoparahipp.). For atten-
tion / executive function, a strong negative effect was also 
evident for the right arcuate fasciculus (AF). For verbal 
memory, significant negative effects were additionally 
found for the corticobulbar tract (CBT) and frontal aslant 
tract (FAT). 

Regarding tract-level sLNM, lower attention / exec-
utive function and verbal memory were significantly asso-
ciated with higher sLNM scores in association and projec-
tion tracts connecting frontal regions (figure 4c): the fron-
toparahippocampal cingulate (C parietoparahipp.), parol-
factory cingulate (C parolfactory), the superior longitudinal 
fasciculus (SLF 1-3), frontoparietal cingulate (C frontopari-
etal), anterior thalamic radiation, anterior corticostriatal 
pathways (CS anterior), uncinate fascicle, frontal corti-
copontine tract (CPT frontal). For attention / executive 
function, a strong negative effect was also evident for the 
right arcuate fasciculus (AF). Furthermore, higher verbal 
memory scores were significantly linked to higher sLNM 
scores in the fornices. Information processing speed 
showed a significant negative association with sLNM scores 
in the right medial superior longitudinal fasciculus (SLF 2) 
and frontoparahippocampal cingulate (C frontoparahipp.). 
Tract-level LNM scores showed no significant association 
with language function. For plots displaying all tract-level 
associations refer to supplementary figures S7 and S8. 

The spatial effect patterns, i.e., β-coefficient maps, 
showed significant overlap with 26 of 28 effect pattern pairs 
being significantly correlated (see supplementary figure S9 
for a correlation matrix). 
 
Sensitivity analyses 
Predictive modelling results were stable when using nega-
tive fLNM scores (based on anti-correlations in resting-
state fMRI measures) and when including a 25% or 50% 
thresholding step (supplementary figure S10). Exploratory 
ROI-level inferential statistics based on negative fLNM 
scores indicated that lower attention / executive function 
and information processing speed were more significantly 
associated with more negative fLNM scores in the default 
mode network (supplementary figure S11 & S12). 
 
Exploratory analyses 
Exploratory analyses are detailed in supplementary text S2. 
Functional and structural LNM scores were significantly 
correlated across ROIs and across subjects (supplementary 
figure S13). Voxel-level lesion network maps indicating 
white matter regions that contribute to variance in cogni-
tive domain function are shown in supplementary figure S14 
& S15. 
 
 

Figure 3. Inferential statistics results of cortical and subcortical gray matter. Anatomical plots on the left side display the regional relationship 
between LNM scores and cognitive domain scores. ROIs in which LNM scores across participants were significantly associated with cognitive domain 
scores after family-wise error-correction are highlighted by colors encoding β-coefficients from general linear models: a negative β (red) denotes that a 
higher regional LNM score, i.e., higher WMH connectivity, is associated to a lower performance in individual cognitive domains; a positive β (blue) indi-
cates that a higher regional LNM score is linked to a higher cognitive domain performance. Barplots on the right side display the corresponding β coeffi-
cients averaged in the canonical (Yeo) resting-state functional connectivity networks. The brain in the lower right corner indicates the regional distribu-
tion of the canonical resting-state networks with colors corresponding to the bars. Statistical significance was assessed using spin permutations. Each row
corresponds with a different combination of lesion network mapping modality and cognitive domain: a) fLNM – attention / executive function, b) fLNM –
information processing speed, c) fLNM – verbal memory, d) sLNM – attention / executive function, e) sLNM – information processing speed, f) sLNM –
verbal memory. Abbreviations: fLNM = functional lesion network mapping, pspin = p-value derived from spin permutations, ROIs = regions of interest, sLNM 
= structural lesion network mapping. 
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Discussion 
In a large multicentric sample of memory clinic patients, we 
conducted an in-depth examination of the link between 
functional and structural LNM scores and cognitive perfor-
mance. We report two main findings: (1) both structural 
and functional LNM scores, capturing WMH-related connec-
tivity, significantly improved the prediction of cognitive 
performance compared to WMH volume; (2) WMH connec-
tivity associated with lower cognitive performance, pre-
dominantly mapped to the dorsal and ventral attention net-
works. 
 
LNM scores surpass WMH volumes  in predicting cognitive 
performance 
In current clinical practice, vascular cognitive impairment 
in individual patients is often attributed to total WMH bur-
den, but interindividual variance in this relationship can 
lead to diagnostic dilemmas. Previous research has demon-
strated that strategic WMH locations, specifically in com-
missural and association tracts are statistically more likely 
to be associated with lower cognitive performance.4,6,7 Our 
approach adds to this perspective, not only considering the 
localization of WMH but also integrating them with network 
connectivity information to capture the WMH network em-
bedding. In our analysis, statistical models capitalizing on 
LNM scores demonstrated superior performance over those 
relying on total or tract-level WMH volume in predicting 
cognitive performance in almost all cognitive domains. As 
this analysis implements current best practices of predic-
tive modelling in neuroimaging, our findings represent evi-
dence for a true prediction of cognitive performance by 
LNM.34 Comparing the improvement from the de-
mographics-based model to the model informed by total 
WMH volume with the improvement to the model based on 
both LNM modalities, the usage of fLNM and sLNM scores 
yielded to a 3- to 7-fold increase in added predictive perfor-
mance across the three cognitive domains. Moreover, our 
findings highlighted that total WMH volumes only margin-
ally surpass age, sex, and education in predictive accuracy, 
stressing the importance of including demographic infor-
mation as a baseline in predictive models to assess the 
added value of WMH volume. Collectively, these findings are 
important, given the longstanding reliance on WMH extent 
as a primary imaging surrogate marker for cognitive im-
pairment in CSVD. We provide evidence for the considera-
ble role of WMH-related “covert” network effects as indi-
cated previously in studies from smaller clinical or popula-
tion-based studies.8,46–48 

Improved prediction of cognitive performance was 
achieved irrespective of the applied LNM modality. Con-
trasting prior studies suggesting the inferiority of func-
tional LNM compared to structural approaches for predict-
ing cognitive performance post-stroke,9,49 our contrary 

findings might arise from differences in the LNM approach 
as well as our focus on WMH rather than ischemic stroke 
lesions. The ROI-based functional LNM method we used 
may be more suitable to detect the widespread network dis-
turbances induced by WMH, as opposed to the localized dis-
ruptions from stroke lesions. Notably, fLNM and sLNM 
scores were positively correlated, suggesting some degree 
of structure-function coupling that could account for their 
comparable predictive performance. However, the correla-
tion strength was mostly moderate and prediction perfor-
mance of fLNM and sLNM differed noticeably across sample 
sizes. In addition, among LNM-informed models, those in-
corporating both fLNM and sLNM modalities yielded the 
strongest results. This suggests that both LNM approaches 
are equally valuable for achieving a high predictive accu-
racy in general but might also offer complementary infor-
mation. 

Although prediction of almost all cognitive do-
mains was improved by LNM scores, predictive perfor-
mance for language functions did not exceed that of WMH 
volumes and demographics. From a network perspective, 
we argue that this finding can be explained by the relatively 
confined network of left-lateralized brain regions involved 
in language functions which might present lower vulnera-
bility to WMH disconnectivity compared to cognitive func-
tions such as information processing speed, that rely on a 
widely distributed network of brain regions.50 In general, 
the minor improvement of WMH-based measures over the 
predictive performance attributed to demographics in the 
whole sample suggests that in this patient population, WMH 
contribute minimally to the variance in language function. 
 
WMH related to cognitive impairment map to attention con-
trol networks 
WMH compromise cognitive performance by impacting the 
function of specific brain networks. To localize these effects, 
we investigated regional associations between functional 
and structural LNM scores to cognitive performance. We 
found that higher LNM scores in cortical areas of the dorsal 
and ventral attention networks were linked to lower atten-
tion and executive function, information processing speed 
and verbal memory (figure 3). Therefore, higher WMH con-
nectivity in these networks is associated with reduced cog-
nitive performance indicating that WMH impair cognitive 
function by disrupting the respective connecting white mat-
ter fiber tracts. 

The dorsal attention network – including the 
frontal eye field, the superior parietal lobule, the intrapari-
etal sulcus and caudal areas of the medial temporal gyrus – 
governs top-down attention control by enabling voluntary 
orientation, with increased activity in response to cues in-
dicating the focus location, timing, or subject.51,52 The ven-
tral attention network comprises the frontal and parietal 
operculum in the inferior frontal gyrus, medial areas of the 

Figure 4. Inferential statistics results of white matter tracts. Radar plots displaying the top 10 of strongest linear associations (standardized β) for 
the functional (a) and structural (b) lesion network mapping scores in each tract in association with cognitive domain scores. Strongest associations are 
shown at the 3 o’clock position, decreasing in strength counterclockwise. Red dots indicate a negative association (higher LNM score – lower cognitive 
domain score) and blue dots indicate a positive association (higher LNM score – higher cognitive domain score). Faintly colored dots indicate non-signif-
icant associations. Tracts with a significant association are displayed below the radar plots in alphabetical order. For paired tracts only left side examples 
are visualized. Tract abbreviations: AF = arcuate fascicle, C = cingulate, CBT = corticobulbar tract, CPT = corticopontine tract, CS = corticostriatal pathway, 
F = fornix, FAT = frontal aslant tract, MdLF = middle longitudinal fasciculus, SLF = superior longitudinal fasciculus, UF = uncinate fasciculus; Abbreviations:  
fLNM = functional lesion network mapping, IPS – information processing speed, n.s. = non-significant, p = p-value, sLNM = structural lesion network 
mapping. 
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superior frontal cortex and the temporoparietal junc-
tion.44,53 This system exhibits activity increases during bot-
tom-up attention control, i.e., upon detection and orienta-
tion to salient targets, especially when they appear in unex-
pected locations.51,54 As the effect patterns largely con-
verged on these networks (supplementary figure S9), we ar-
gue that WMH affect the cognitive functions emerging from 
these networks, specifically top-down and bottom-up atten-
tion control. This aligns with the observation that deficits in 
attention and executive function are among the most prom-
inent symptoms in CSVD and VCI in general.1 Furthermore, 
prior work demonstrates altered resting-state functional 
connectivity as well as task activation in attention control 
networks related to CSVD.55–57 Given the covariance of the 
identified effect patterns, we speculate that WMH contrib-
ute to variance in the performance of other cognitive do-
mains, e.g., information processing speed by affecting the 
attention demands posited by the corresponding tests. 
 
WMH contribute to cognitive impairment by disrupting 
frontal and parietal white matter tracts 
Regional findings in gray matter areas of the attention con-
trol networks are further complemented by white matter 
tract-level results (figure 4). Functional and structural LNM 
converged on a significant involvement of tracts connecting 
frontal and parietal areas involved in attention: the dorsal, 
medial and ventral section of the superior longitudinal fas-
ciculus – which are known to connect the anterior and pos-
terior parts of the dorsal and ventral attention networks, 
the medial longitudinal fasciculus, the corticopontine tract, 
frontoparietal sections of the cingulate, the anterior tha-
lamic radiation, the frontal aslant tract and the arcuate fas-
cicle. Although there were some differences in highlighted 
tracts between functional and structural LNM, this possibly 
reflects that both approaches capture different aspects of 
the same anatomy, with sLNM possibly being more sensi-
tive to direct WMH-induced disruption of axonal connec-
tions and functional LNM also reflecting effects mediated 
via polysynaptic brain circuitry. 

Strikingly, in the context of verbal memory, struc-
tural WMH connectivity pinpointed a distinct set of 
memory-relevant tracts: the uncinate fascicle, cingulate, 
and fornix. Intriguingly, disruptions in fornix connectivity 
due to WMH were associated with improved verbal 
memory in patients, a finding that appears counterintuitive 
given the fornix's involvement in maintaining memory func-
tion. This paradox may be attributable to WMH disrupting 
inhibitory fibers. For further discussion covering negative 
fLNM scores/anticorrelations see supplementary text S16. 
 
A unifying hypothesis of WMH disconnectivity 
Drawing upon a comprehensive LNM analysis in a memory 
clinic sample of patients with differing extent and etiology 
of cognitive impairment, our research converges on a unify-
ing hypothesis: WMH contribute to variance in cognitive 
functions by disrupting brain circuitry involved in attention 
control. Our findings not only shed light on the intricate re-
lationships between CSVD, neuroanatomy and cognitive im-
pairment, but they also hint at potential avenues of clinical 
utilization. The definitive role of CSVD treatments, particu-
larly in precluding cognitive sequelae, is yet to be firmly 

established. Although there have been promising outcomes 
related to risk factor modification, particularly blood pres-
sure control,58,59 pointing towards enhanced cognitive tra-
jectories, clinical trials in VCI require biomarkers to ro-
bustly identify vascular contributions to cognitive impair-
ment and vulnerable individuals. Moving forward, leverag-
ing connectivity information could address this gap contrib-
uting to patient-tailored therapeutic interventions and fa-
cilitating the identification of subgroups at risk of cognitive 
disorders through vascular lesions likely to reap the most 
substantial benefits from medical interventions. 
 
Strengths and limitations 
This study's strength lies in its integration of innovative an-
alytical techniques with a large, multicentric dataset.60 
However, we acknowledge several limitations that warrant 
consideration when interpreting our findings. The inclusion 
of selected patient samples in several cohorts may limit gen-
eralizability to the broader memory clinic population. Addi-
tionally, with most patients being of European ancestry, the 
generalizability of our findings to other ethnicities remains 
to be established. Furthermore, despite the harmonization 
of cognitive and imaging data, biases stemming from varia-
tions in data acquisition and processing protocols across 
sites may have impacted our results. On a technical note, 
while computing fLNM scores, we sampled resting-state 
BOLD signals in the white matter, typically regarded as 
noisy and often dismissed as an artifact. However, by inte-
grating it with WMH data, we successfully predicted cogni-
tive performance and demonstrated correlations with 
structural connectivity information. This challenges the tra-
ditional view of the white matter BOLD signal as a mere ar-
tefact and supports recent studies – including LNM analyses  
of white matter lesions in multiple sclerosis – demonstrat-
ing that it contains biologically meaningful information.61–63 
 
 
Conclusion 
WMH-related brain network connectivity measures signifi-
cantly improve the prediction of current cognitive perfor-
mance in memory clinic patients compared to WMH volume 
or epidemiological factors. Our findings highlight the contri-
bution of WMH disconnectivity, particularly in attention-re-
lated brain regions, to vascular cognitive impairment. As 
this research field progresses, harnessing neuroimaging 
markers of WMH connectivity in CSVD has the potential to 
aid individualized diagnostic and therapeutic strategies. 
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Table 1. Sample characteristics 
 

 

 



1 
 

Enhancing Cognitive Performance Prediction 
through White Matter Hyperintensity Disconnectivity 
Assessment: A Multicenter Lesion Network Mapping 

Analysis of 3,485 Memory Clinic Patients 

Supporting Information 

 

Marvin Petersen, Mirthe Coenen, Charles DeCarli, Alberto de Luca, Ewoud van der 
Lelij, Alzheimer's Disease Neuroimaging Initiative, Frederik Barkhof, Thomas Benke, 
Christopher P. L. H. Chen, Peter Dal-Bianco, Anna Dewenter, Marco Duering, Chris-
tian Enzinger, Michael Ewers, Lieza G. Exalto, Evan F. Fletcher, Nicolai Franzmeier, 
Saima Hilal, Edith Hofer, Huberdina L. Koek, Andrea B. Maier, Pauline M. Maillard, 
Cheryl R. McCreary, Janne M. Papma, Yolande A. L. Pijnenburg, Anna Rubinski, Rein-
hold Schmidt, Eric E. Smith, Rebecca M. E. Steketee, Esther van den Berg, Wiesje M. 
van der Flier, Vikram Venkatraghavan, Narayanaswamy Venketasubramanian, Meike 
W. Vernooij, Frank J. Wolters, Xu Xin, Andreas Horn, Kaustubh R. Patil, Simon B. 
Eickhoff, Götz Thomalla, J. Matthijs Biesbroek, Geert Jan Biessels, Bastian Cheng 
 

  



2 
 

Content 
Methods .................................................................................................................................................. 3 

Supplementary figure S1 – Investigated white matter tracts of the HCP1065 atlas .......................... 3 

Supplementary text S2 - Exploratory analyses .................................................................................... 4 

Correlation of lesion network mapping scores ............................................................................... 4 

Voxel-level lesion network maps..................................................................................................... 4 

Results ..................................................................................................................................................... 5 

Figure S3 – White matter hyperintensity distribution ........................................................................ 5 

Figure S4 – Predictive modelling analysis with explained variance (R2, coefficient of determination) 
scoring ................................................................................................................................................. 6 

Table S5 – Predictive modelling analysis results – Average negative mean squared error ................ 7 

Figure S6 – Region of interest-level averages of lesion network mapping scores .............................. 8 

Figure S7 – Tract-level functional lesion network mapping ................................................................ 9 

Figure S8 – Tract-level structural lesion network mapping ............................................................... 10 

Figure S9 – Spatial correlations of region of interest-level β coefficients ........................................ 11 

Figure S10 – Sensitivity analysis: Predictive modelling analysis........................................................ 12 

Figure S11 – Sensitivity analysis: Inferential statistics results of cortical and subcortical gray matter 
based on negative functional lesion network mapping scores ......................................................... 13 

Figure S12 – Sensitivity analysis: Inferential statistics results of white matter tracts based on 
negative functional lesion network mapping scores......................................................................... 14 

Figure S13 – Structure-function correlations of regional lesion network mapping scores............... 15 

Figure S14 - Voxel-level lesion network maps ................................................................................... 16 

Figure S15 - Voxel-level lesion network maps scaled by the white matter hyperintensity 
distribution map ................................................................................................................................ 17 

Discussion .............................................................................................................................................. 18 

Text S16 – Negative functional lesion network mapping scores / anticorrelations.......................... 18 

References ............................................................................................................................................. 19 



3 
 

Methods 

Supplementary figure S1 – Investigated white matter tracts of the HCP1065 at-
las 

 

Anatomical depiction of the white matter tracts investigated, categorized into association, 
projection and commissural tracts. For paired tracts only left side examples are visualized. 
Tract abbreviations: Commissural tracts – CC = corpus callosum; Association tracts - AF = 
arcuate fascicle, C = cingulate, FAT = frontal aslant tract, IFOF = inferior fronto-occipital fas-
ciculus, ILF = inferior longitudinal fasciculus, MdLF = middle longitudinal fasciculus, PAT = 
posterior aslant tract, SLF = superior longitudinal fasciculus, UF = uncinate fasciculus; Pro-
jection tracts – CBT = corticobulbar tract, CPT = corticopontine tract, CS = corticostriatal 
pathway, CST = corticospinal tract, FPT = frontopontine tract, F = fornix, OPT = occipitopon-
tine tract, OR = optic radiation, VOF = Vertical occipital fasciculus.   
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Supplementary text S2 - Exploratory analyses 

Correlation of lesion network mapping scores 
To test for a structure-function-coupling of lesion network mapping scores, we corre-
lated functional and structural lesion network mapping scores 1) across subjects per 
region of interest and 2) across regions of interests per subjects. Corresponding results 
can be found in supplementary figure S13. 

Voxel-level lesion network maps 
In addition, we generated voxel-level lesion network maps to identify white matter ar-
eas crucial for cognitive performance. This involved averaging the voxel-level connec-
tivity maps of the ROIs significantly linked to cognitive domain scores. These maps, 
created for each combination of the four cognitive domains and two LNM modalities, 
highlight regions where connectivity links to cognitive variance. We then scaled these 
maps by the WMH frequency map, which reflects the prevalence of WMH in each voxel 
across the analysis sample. The resulting maps reveal regions where WMH most com-
monly contribute to variance in cognitive performance. The maps can be found in sup-
plementary figures S14 & S15. 
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Results 

Figure S3 – White matter hyperintensity distribution 

 

Heatmap indicating the frequency of white matter hyperintensities across the analysis sample. 
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Figure S4 – Predictive modelling analysis with explained variance (R2, coefficient of determination) scoring 

 

Violin plots illustrate prediction outcomes across cognitive domains. Each violin displays the distribution of explained variance of cognitive domain 
scores (10-fold cross-validation x 10 repeats = 100 folds → 100 Pearson correlations) for a model informed by a different feature set. The higher the 
explained variance, the higher the prediction performance. Blue: confounds (age, sex and education); orange: total WMH volume + confounds; 
green: tract-level WMH volumes + confounds; red: sLNM scores + confounds; purple: fLNM scores + confounds; brown: sLNM scores + fLNM scores 
+ confounds. The average explained variance is indicated above each violin, with colored dots showing training score averages. Geometric symbols 
denote t-test results comparing LNM-based models against confound- and WMH volume-based models: ▲ indicates higher explained variance than 

confounds, ■ than WMH volume + confounds, ⬟ than tract-level WMH volume + confounds. Of note, a negative explained variance is possible using 
sum-of-squares formulation. A negative value indicates that the optimized model fits the data worse than a horizontal line representing the mean of 
the target variable. 
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Table S5 – Predictive modelling analysis results – Average negative mean 
squared error 

 
Attention / 
executive 
function 

Information 
processing 

speed 
Language Verbal memory 

Confounds (age, 
sex education) 

-1.06219 -2.43104 -2.91271 -1.51663 

WMH volume + 
confounds 

-1.03992 -2.41763 -2.9114 -1.49302 

Tract-level WMH 
volumes + 
confounds 

-1.02051 -2.42529 -2.8931 -1.45587 

sLNM + 
confounds 

-0.98846 -2.33568 -2.98366 -1.38662 

fLNM + 
confounds 

-0.99139 -2.33465 -2.92767 -1.40741 

sLNM + fLNM + 
confounds 

-0.97774 -2.33223 -2.97935 -1.38486 
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Figure S6 – Region of interest-level averages of lesion network mapping scores 

Region of interest-
level average func-
tional and structural 
lesion network map-
ping scores. Aver-
age lesion network 
mapping scores of 
gray matter regions 
of interest are 
mapped on the cor-
tical surface and 
subcortical regions. 
For the white matter 
tracts, average le-
sion network map-
ping scores are dis-
played in radar 
plots. Radar plots 
display white matter 
tracts in alphabeti-
cal order starting at 
the 3 o’clock posi-
tion.
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Figure S7 – Tract-level functional lesion network mapping 

Radar plots display tract-level 
β coefficients from inferential 
statistics indicating the rela-
tionship between regional 
functional lesion network 
mapping scores and cogni-
tive domain scores. This plot 
shows the associations for all 
tracts while in the main man-
uscript only the top 10 effects 
per combination of LNM mo-
dality and cognitive domain 
are featured. In contrast to 
the main manuscript, tracts 
are displayed in alphabetical 
order starting at the 3 o’clock 
position in the counterclock-
wise position. Red dots indi-
cate a negative association 
(higher LNM score – lower 
cognitive domain score) and 
blue dots indicate a positive 
association (higher LNM 
score – higher cognitive do-
main score). Faintly colored 
dots indicate non-significant 
associations. Tracts with a 

significant association are displayed below the radar plots in alphabetical order. For paired tracts only left side examples are visualized.
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Figure S8 – Tract-level structural lesion network mapping 

Radial plots display tract-
level β coefficients from in-
ferential statistics indicating 
the relationship between re-
gional structural lesion net-
work mapping scores and 
cognitive domain scores. 
This plot shows the associa-
tions for all tracts while in the 
main manuscript only the top 
10 effects per combination of 
LNM modality and cognitive 
domain are featured. In con-
trast to the main manuscript, 
tracts are displayed in alpha-
betical order starting at the 3 
o’clock position in the coun-
terclockwise position. Red 
dots indicate a negative as-
sociation (higher LNM score 
– lower cognitive domain 
score) and blue dots indicate 
a positive association (higher 
LNM score – higher cognitive 
domain score). Faintly col-
ored dots indicate non-signif-
icant associations. Tracts 

with a significant association are displayed below the radar plots in alphabetical order. For paired tracts only left side examples are visualized.
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Figure S9 – Spatial correlations of region of interest-level β coefficients  

 

Spatial correlation matrix of all ROI-level effect maps (β). To investigate the spatial correspond-
ence between effect maps of the ROI-level analysis, we performed Spearman correlations of 
each pair of maps. The upper triangle of the matrix displays spearman correlations with dot 
size and color representing the orientation and magnitude of the correlation coefficients. As-
terisks highlight significant correlations after permutation testing and false discovery rate cor-
rection. The diagonal shows kernel density plots. The lower triangle illustrates the linear rela-
tionships via regression plots. Each dot of the regression plot corresponds with a ROI. Abbre-
viations: fLNM = functional lesion network mapping, pperm = p-value obtained via comparison 
of empirical Spearman correlation to permutation-based null distribution, ROI = region of inter-
est, rsp = Spearman correlation, sLNM = structural lesion network mapping.  
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Figure S10 – Sensitivity analysis: Predictive modelling analysis 

 

This plot corresponds with Figure 2 of the main manuscript but displays model performances informed by negative fLNM scores as well as LNM 
scores computed via different thresholding schemes alongside original LNM-informed models. Negative fLNM scores were obtained by only con-
sidering negative Pearson correlation coefficients within the WMH mask. Thresholding was performed by averaging only the highest 25% (25% 
peak) and highest 50% (50% peak) of intensity values of the ROI-level connectivity map in the WMH mask. For the negative fLNM scores, the 
lowest 25% and 50% voxel intensity values were averaged instead. Combined fLNM indicates models informed by positive and negative fLNM 
scores. Abbreviations: fLNM = functional lesion network mapping, sLNM = structural lesion network mapping, WMH = white matter hyperintensities 
of presumed vascular origin.
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Figure S11 – Sensitivity analysis: Inferential statistics results of cortical and sub-
cortical gray matter based on negative functional lesion network mapping scores 

 

This plot corresponds with Figure 3 a) – d) of the main manuscript but in contrast displays 
regional associations of fLNM scores based on anticorrelations. Left: ROIs that were signifi-
cantly associated with cognitive domain scores after family wise error-correction are high-
lighted by colors encoding β-coefficients from general linear models: a negative β (red) denotes 
that a higher regional LNM score, i.e., higher WMH disconnectivity, is associated to a lower 
cognitive domain performance; a positive β (blue) indicates that a higher regional LNM score 
is linked to a higher cognitive domain performance. Right: Barplots displaying the average β in 
the canonical (Yeo) resting state networks. The brain on the right indicates the regional distri-
bution of the canonical resting state networks with colors corresponding to the bars. Statistical 
significance was assessed using spin permutations. Each row corresponds with a different 
combination of lesion network mapping modality and cognitive domain: a) fLNM – attention / 
executive function, b) fLNM – information processing speed, c) fLNM – language, d) fLNM – 
verbal memory. Abbreviations: fLNM = functional lesion network mapping, pspin = p-value de-
rived from spin permutations, ROIs = regions of interest, sLNM = structural lesion network 
mapping.  
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Figure S12 – Sensitivity analysis: Inferential statistics results of white matter tracts based on negative functional lesion network 
mapping scores 

This plot corresponds with Figure 4 
of the main manuscript but in con-
trast displays regional associations 
of fLNM scores based on anticorre-
lations. Tract abbreviations: Com-
missural tracts – CC = corpus callo-
sum; Association tracts - AF = arcu-
ate fascicle, C = cingulate, FAT = 
frontal aslant tract, IFOF = inferior 
fronto-occipital fasciculus, ILF = infe-
rior longitudinal fasciculus, MdLF = 
middle longitudinal fasciculus, PAT 
= posterior aslant tract, SLF = supe-
rior longitudinal fasciculus, UF = un-
cinate fasciculus; Projection tracts – 
CBT = corticobulbar tract, CPT = 
corticopontine tract, CS = corticostri-
atal pathway, CST = corticospinal 
tract, CT = corticothalamic pathway, 
FPT = frontopontine tract, F = fornix, 
OPT = occipitopontine tract, OR = 
optic radiation, VOF = Vertical occip-
ital fasciculus. Abbreviations:  fLNM 
= functional lesion network mapping, 
n.s. = non-significant, p = p-value, 

sLNM = structural lesion network mapping.  
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Figure S13 – Structure-function correlations of regional lesion network mapping 
scores 

 

a) Swarmplot displaying the Pearson correlation of fLNM and sLNM scores across ROIs per 
subject. Each dot represents a subject and is colored by the Pearson correlation. b) and c) 
Pearson correlation of fLNM and sLNM scores across subjects per ROI. Abbreviations: fLNM 
= functional lesion network mapping, ROI = region of interest, sLNM = structural lesion network 
mapping.  
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Figure S14 - Voxel-level lesion network maps 

 

Voxel-level lesion network maps indicate the connectivity to regions of interest that significantly 
contribute to a cognitive domain. Each row corresponds to a different combination of lesion 
network mapping modalities (functional and structural) and cognitive domain scores. For the 
functional lesion network maps, positive z-scores indicate a positive Pearson correlation with 
the resting-state BOLD signal of the significantly associated ROIs. Negative z-scores indicate 
anticorrelated voxels and are highlighted in blue. For the structural lesion network maps, 
deeper red indicates that a voxel is connected by a higher amount of streamlines to significantly 
associated ROIs. Abbreviations: ROI = region of interest.  
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Figure S15 - Voxel-level lesion network maps scaled by the white matter hyper-
intensity distribution map 

 

Voxel-level lesion network maps scaled by the WMH frequency map indicate the connectivity 
to regions of interest that significantly contribute to a cognitive domain and are likely lesioned 
by WMH. Abbreviations: ROI = region of interest, WMH = white matter hyperintensities of pre-
sumed vascular origin. 
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Discussion 

Text S16 – Negative functional lesion network mapping scores / anticorrelations 

The attention control networks are functionally contrasted by the default mode network which 
shows, instead of being engaged during externally focused tasks, increased activity during 
internally directed attention and self-referential processes.1 As a result, the default mode net-
work and the attention control networks are often found to be anticorrelated at rest.2 This anti-
correlation is thought to reflect a fundamental aspect of brain organization and the complex 
dynamic interplay between the networks is thought to be central for cognitive processing. Rest-
ing-state fMRI studies in CSVD patients suggest that WMH might affect the DMN and attention 
network interaction, particularly affecting anterior-posterior communication by disrupting long 
associative white matter fiber tracts.3,4 Our findings indicate that stronger anticorrelation be-
tween the default mode network and WMH – reflected by more negative fLNM scores – corre-
lates with reduced attention, executive function, and processing speed, supporting this hypoth-
esis. Furthermore, by demonstrating enhanced predictive performance based on negative 
fLNM scores our results underscore the perception of anticorrelations yielding biologically and 
clinically meaningful information.  
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Significance

In this case–control study, we 
demonstrate that non-vaccinated 
individuals recovered from a mild 
to moderate severe acute 
respiratory syndrome 
coronavirus type 2 (SARS-CoV-2) 
infection show significant 
alterations of the cerebral white 
matter identified by diffusion-
weighted imaging, such as global 
increases in extracellular free 
water and mean diffusivity. 
Despite the observed brain white 
matter alterations in this sample, 
a mild to moderate SARS-CoV-2 
infection was not associated with 
worse cognitive functions within 
the first year after recovery. 
Collectively, our findings indicate 
the presence of a prolonged 
neuroinflammatory response to 
the initial viral infection. Further 
longitudinal research is 
necessary to elucidate the link 
between brain alterations and 
clinical features of post-SARS-
CoV-2 individuals.
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Brain imaging and neuropsychological assessment of individuals 
recovered from a mild to moderate SARS-CoV-2 infection
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As severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infections have 
been shown to affect the central nervous system, the investigation of associated alter-
ations of brain structure and neuropsychological sequelae is crucial to help address 
future health care needs. Therefore, we performed a comprehensive neuroimaging and 
neuropsychological assessment of 223 nonvaccinated individuals recovered from a mild 
to moderate SARS-CoV-2 infection (100 female/123 male, age [years], mean ± SD, 
55.54 ± 7.07; median 9.7 mo after infection) in comparison with 223 matched controls 
(93 female/130 male, 55.74 ± 6.60) within the framework of the Hamburg City Health 
Study. Primary study outcomes were advanced diffusion MRI measures of white matter 
microstructure, cortical thickness, white matter hyperintensity load, and neuropsycho-
logical test scores. Among all 11 MRI markers tested, significant differences were found 
in global measures of mean diffusivity (MD) and extracellular free water which were 
elevated in the white matter of post-SARS-CoV-2 individuals compared to matched con-
trols (free water: 0.148 ± 0.018 vs. 0.142 ± 0.017, P < 0.001; MD [10−3 mm2/s]: 0.747 
± 0.021 vs. 0.740 ± 0.020, P < 0.001). Group classification accuracy based on diffusion 
imaging markers was up to 80%. Neuropsychological test scores did not significantly 
differ between groups. Collectively, our findings suggest that subtle changes in white 
matter extracellular water content last beyond the acute infection with SARS-CoV-2. 
However, in our sample, a mild to moderate SARS-CoV-2 infection was not associated 
with neuropsychological deficits, significant changes in cortical structure, or vascular 
lesions several months after recovery. External validation of our findings and longitudinal 
follow-up investigations are needed.

COVID-19 | neuroimaging | diffusion MRI | structural MRI | neuropsychological assessment

As the number of patients recovering from an acute infection with the severe acute res-
piratory syndrome coronavirus type 2 (SARS-CoV-2) grows, the study of its long-term 
consequences on health outcomes has gained much attention (1–4).

It is widely recognized that coronavirus disease 2019 (COVID-19) caused by 
SARS-CoV-2 not only leads to respiratory dysfunction but also impacts various other 
organ systems during the acute phase and well beyond (1, 5, 6). Neurological symptoms, 
such as headache, fatigue, memory, and attention deficits, may significantly impede 
well-being in individuals suffering from COVID-19 sequelae (4, 7, 8). Advancing our 
understanding of the underlying pathological mechanisms will be crucial for addressing 
future health care needs.

Different potential mechanisms have been suggested to be involved in the development 
and persistence of neurological symptoms in patients with COVID-19. Postmortem his-
topathological and molecular studies have demonstrated viral neurotropism, signs of 
neuroinflammation (9, 10), neurodegeneration (11), demyelination (12), axonal disrup-
tion (13), and micro- and macrovascular damage (14, 15). However, most studies were 
conducted in patients with severe COVID-19, whereas histopathological findings from 
individuals with mild to moderate courses are lacking.

In vivo studies applying modern brain imaging joined by comprehensive clinical and 
neuropsychological assessment are scarce. Recent preliminary evidence from the UK 
Biobank suggests cortical thickness reductions in the olfactory and limbic network, as 
well as neurocognitive decline in former COVID-19 patients, although these findings still 
need to be replicated in independent datasets (11). The majority of remaining studies 
focused on visually apparent pathological findings such as intracranial hemorrhage, stroke, 
or white matter hyperintensities in small case series or single case reports of more severely 
affected patients (16–19). Taken together, current evidence is of limited transferability to 
patients with a mild to moderate SARS-CoV-2 infection, therefore necessitating further 
investigations.
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In order to address this research need, we studied 223 nonvac-
cinated individuals in median 289 d after recovery from mainly 
mild to moderate SARS-CoV-2 infections in a retrospective, 
cross-sectional case–control design. We leveraged advanced MRI 
techniques enabling the study of imaging phenotypes associated 
with neurodegeneration, atrophy, myelin/cellular disruption, 
inflammation, and vascular damage (20–23). Moreover, study 
participants received a comprehensive clinical and neuropsycho-
logical assessment. Building upon our previous multiorgan assess-
ment in this cohort (1), here, we provide a detailed in vivo 
assessment of the cerebral white and gray matter, as well as neu-
ropsychological outcomes in former COVID-19 patients.

Results

Sample Characteristics. We examined participants of the 
Hamburg City Health Study (HCHS) and its COVID Program. 
Imaging data were available for 230 post-SARS-CoV-2 individuals. 
Following quality assessment (QA), in total, 7 post-SARS-CoV-2 
individuals had to be excluded, leaving 223 cases for propensity 
score matching with healthy controls who had passed QA. The 
results of the matching procedure are visualized in SI Appendix, 
Fig.  S1. The final sample included 223 matched controls (93 
female, age in years, mean ± SD, 55.74 ± 6.60) and 223 post-SARS-
CoV-2 individuals (100 female, 55.54 ± 7.07; see Table 1). Of the 
latter, the majority had a mild to moderate course of COVID-19 
(without symptoms, n = 7; mild symptoms, n = 125; moderate 
symptoms, n = 67), 18 were hospitalized, and none required 
mechanical ventilation or intensive care unit treatment. There were 
no significant differences between post-SARS-CoV-2 individuals 
and matched controls regarding age, sex, years of education, and 
cardiovascular risk factors.

Clinical Data. Although post-SARS-CoV-2 individuals showed 
nominally better test performances in Verbal Fluency (VF), Mini-
Mental State Examination (MMSE), and clock drawing test (CDT) 
compared to matched controls, after Bonferroni correction for 
multiple comparisons, no significant group differences remained in 
any neuropsychological test score, including those associated with 
executive functioning, memory, psychosocial, and neurological 
symptom burden (Table 2).

Imaging. We first conducted analyses of covariance, adjusted for sex, 
age, and education, to test for group differences in imaging markers 
averaged across the entire white matter or cortical gray matter 
in the case of cortical thickness. A schematic illustration of the 
imaging markers under investigation is shown in Fig. 1. Post-SARS-
CoV-2 individuals exhibited higher global extracellular free water 
and mean diffusivity (MD) in the cerebral white matter relative 
to matched controls, markers associated with immune activation 
and atrophy (mean ± SD, free water: 0.148 ± 0.018 vs. 0.142 ± 
0.017, F = 18.47, Pbonf < 0.001; MD [10−3 mm2/s]: 0.747 ± 0.021 
vs. 0.740 ± 0.020, F = 17.28, Pbonf < 0.001) (Fig. 2 and SI Appendix, 
Table S1). To aid the biological interpretation, we converted the 
mean group differences in free water and MD to units of “years 
of healthy aging” using the estimates of linear regressions with 
age in the matched control group (free water: beta = 0.0009, 
 P < 0.001, MD: beta = 0.000001, P < 0.001). Considering the mean 
differences between groups of 0.006 in free water and 0.000007 
in MD, this resulted in group differences of 6.67 and 7 “years of 
healthy aging”, respectively. While peak width of skeletonized mean 
diffusivity (PSMD) (Puncorr = 0.005), a marker of cerebral small 
vessel disease, and cortical thickness (Puncorr = 0.01) were nominally 
increased in post-SARS-CoV-2 individuals, both measures, as well 

as the remaining averaged imaging markers of white matter fiber 
structure, were not significantly different between groups after 
Bonferroni correction (Fig. 2 and SI Appendix, Table S1).

To detect spatial patterns of brain structural alterations, we 
additionally performed vertex- and voxel-wise analyses of gray 
and white matter imaging markers. Vertex-wise comparisons of 
cortical thickness did not reveal significant differences between 
matched controls and post-SARS-CoV-2 participants. Voxel-wise 
statistics on the entire white matter skeleton, a representation 
of major white matter fiber bundles, revealed predominant free 
water and MD increases in the white matter skeleton of 
post-SARS-CoV-2 subjects encompassing all brain lobes, com-
pared to very localized changes in other diffusion markers 
(Fig. 3 and SI Appendix, Table S2). More specifically, the con-
ventional diffusion tensor imaging (DTI) markers fractional 
anisotropy (FA) and MD showed significant differences between 
groups, with FA increases in 0.8% and decreases in 1.2% of the 
skeleton in cases relative to healthy controls. MD was signifi-
cantly increased in 41.3% and decreased in 0.1% of the skeleton 
of post-SARS-CoV-2 participants. Employing free-water imag-
ing, post-SARS-CoV-2 individuals showed significant free-water 
elevations in 38.3% and reductions in 0.4% of the skeleton, as 

Table  1. Baseline characteristics of post-SARS-CoV-2 
individuals and matched controls

Post-SARS-
CoV-2 individ-
uals (N = 223)

Matched 
controls
(N = 223) Puncorr

Demographics

  Age in years,  
mean ± SD

55.54 ± 7.07 55.74 ± 6.60 0.76

 Female sex, N (%) 100 (44.8) 93 (41.7) 0.56

  Education in years, 
mean ± SD

15.70 ± 2.56 15.67 ± 2.86 0.91

COVID-19-specific characteristics
 Self-reported disease severity at the time of infection

 Asymptomatic, N (%) 7 (3.1)

 Mild, N (%) 125 (56.1)

  Moderate, nonhospi-
talized, N (%)

67 (30.0)

  Moderate, hospital 
ized, without ICT,  
N (%)

18 (8.1)

  Days between the 
first positive 
SARS-CoV-2 PCR test 
and study enroll-
ment, median (IQR)

289 (163, 318)

Cardiovascular risk factors

 Hypertension*, N (%) 131 (58.7) 121 (54.3) 0.39

 Dyslipidemia†, N (%) 54 (24.2) 51 (22.9) 0.82

  Diabetes mellitus‡,  
N (%)

16 (7.2) 13 (5.8) 0.70

 Smoking, ever, N (%) 107 (48.0) 105 (47.1) 0.92
Abbreviations: COVID-19 = coronavirus disease 2019, ICT = intensive care treatment, IQR 
= interquartile range, PCR = polymerase chain reaction, post-SARS-CoV-2 individuals = 
individuals who recovered from a severe acute respiratory coronavirus type 2 infection, 
SD = standard deviation.
*Prevalence of hypertension was defined as blood pressure ≥140/90  mmHg, intake of 
antihypertensive medication, or self-report.
†Prevalence of dyslipidemia was defined as LDL cholesterol/HDL cholesterol ratio >3.5 or 
intake of lipid-lowering therapies.
‡Prevalence of diabetes mellitus was defined as fasting blood glucose level >126 mg/dL 
or self-report.
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well as FA of the tissue (FAT) elevations in 3.3% of the skeleton, 
but no FAT reductions. Alterations of the remaining diffusion 
markers were of even less spatial extent (<3%).

We complemented voxel-based approaches by an assessment of 
diffusion indices averaged within anatomically predefined white 
matter fiber tracts in a tract of interest analysis. The tract-of-interest 
approach revealed widespread effects of significantly higher MD and 
FW in multiple association, commissural, and projection tracts includ-
ing the anterior thalamic radiation, the corpus callosum, cingular pro-
jections, the frontopontine tract, the inferior fronto-occipital fascicle, 

the optic radiation, the superior longitudinal fascicle, the striatal as 
well as thalamic projections, and the uncinate fascicle (Fig. 4). FA and 
FAT also significantly differed in association and commissural tracts. 
Corresponding details to FA and FAT results as well as boxplots 
displaying data of all tracts investigated are provided in SI Appendix.

Associations between Clinical and Imaging Data. Exploratory 
regression analyses were performed between clinical measures 
and averaged imaging markers that showed significant group 
differences, i.e., free water and MD.

Table  2. Results of clinical and neuropsychological assessments of post-SARS-CoV-2 individuals compared to 
matched controls
Clinical measure* Post-SARS-CoV-2 individuals Matched controls Puncorr

† Pbonf
‡ F

Neurocognition

TMT-A in seconds 31.89 ± 10.60 (212) 33.71 ± 11.67 (190) 0.12 >0.99 2.40

TMT-B in seconds 68.50 ± 22.69 (212) 70.89 ± 25.57 (187) 0.37 >0.99 0.81

VF 28.03 ± 6.04 (212) 26.43 ± 7.15 (212) 0.02 0.14 5.94

WLR 8.52 ± 1.63 (210) 8.32 ± 1.61 (204) 0.25 >0.99 1.33

MMSE 28.37 ± 1.26 (211) 28.02 ± 1.72 (210) 0.02 0.19 5.34

CDT 6.75 ± 0.78 (212) 6.57 ± 1.03 (214) 0.04 0.37 4.20
Psychosocial symptom burden

PHQ-9 3.94 ± 3.74 (212) 3.91 ± 3.77 (215) 0.97 >0.99 <0.01

GAD-7 2.94 ± 3.28 (212) 2.80 ± 3.06 (215) 0.67 >0.99 0.18
Neurological symptom burden

PHQ-15§ 2.13 ± 1.83 (212) 1.83 ± 1.73 (215) 0.09 0.82 2.86
Abbreviations: CDT = clock drawing test, GAD = general anxiety disorder, MMSE = Mini-Mental State Examination, PHQ = Patient Health Questionnaire, post-SARS-CoV-2 individuals = indi-
viduals who recovered from a severe acute respiratory coronavirus type 2 infection, SD = standard deviation, TMT-A = Trail Making Test Part A, TMT-B = TMT Part B, VF = verbal fluency, 
WLR = word list recall.
*Presented as mean ± SD (N).
†Uncorrected P values of analyses of covariance, adjusted for age, sex, and years of education.
‡Bonferroni-corrected P values of analyses of covariance, adjusted for age, sex, and years of education (considering 9 comparisons).
§PHQ-15 items: headache, dizziness, fatigue, and sleep disturbances.

Fig. 1. Schematic illustration of the investigated imaging markers. To assess the cerebral gray and white matter, micro- and macrostructural imaging markers were 
derived. The first row of the schematic describes the imaging sequences utilized to derive the imaging markers below. The second row presents diagrammatic illustrations 
of the markers: CT was determined as the distance between the pial surface and white matter/gray matter boundary; FC represents the macroscopic white matter fiber-
bundle diameter; FD reflects the microscopic intraaxonal volume; as the combinatorial measure of FC and FD, FDC simultaneously assesses micro- and macroscopic 
alterations of white matter tracts; CX measures the intricacy of fiber configurations within a voxel; FA measures the directional preference of diffusion; MD denotes the 
molecular diffusion rate; free-water imaging enables the adjustment of traditional diffusion tensor imaging markers for extracellular diffusion signal, which increases 
their tissue specificity (FAT); FW represents the volume of the extracellular compartment; PSMD was calculated as the difference of the 95th and 5th percentile of 
skeletonized MD values; WMH load represents the white matter hyperintensity volume normalized by the total intracranial volume. Histological interpretations of the 
respective imaging markers and their potential sensitivity for pathologies are described in the third and fourth row, respectively. Abbreviations: CT = cortical thickness, 
CX = complexity, FA = fractional anisotropy, FAT = FA of the tissue, FD = fiber density, FDC = fiber density and cross-section, FLAIR = fluid-attenuated inversion recovery, 
FW = free water, Log. FC = logarithm of fiber cross-section, MD = mean diffusivity, PSMD = peak width of skeletonized MD, WMH = white matter hyperintensity.
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Linear regression revealed a significant positive association of free 
water with Trail Making Test Part A (TMT-A) (P = 0.008) and Part 
B (TMT-B) (P < 0.001), as well as significant negative associations 
of free water with VF (P = 0.003) and Word List Recall (WLR) 
(P < 0.001) in the entire sample (SI Appendix, Table S3). MMSE, 

CDT, Patient Health Questionnaire-9 (PHQ-9), General Anxiety 
Disorder-7 (GAD-7), and PHQ-15 scores were not significantly 
correlated with free water. Moreover, we observed significant group 
× free-water interactions for VF (P = 0.006), WLR (P = 0.02), 
MMSE (P = 0.02), and CDT (P = 0.04). Post hoc Spearman 

Fig. 2. Group comparison of neuroimaging indices on a global scale. Boxplots of averaged imaging measures and the corresponding statistical results (F-statistics 
and Bonferroni-corrected P values for 11 comparisons) from the ANCOVAs comparing matched controls with post-SARS-CoV-2 individuals adjusted for age, sex, 
and years of education. Abbreviations: CT = cortical thickness, CX = complexity, FA = fractional anisotropy, FAT = FA of the tissue, FD = fiber density, FDC = fiber 
density and cross-section, FW = free water, Log. FC = logarithm of fiber cross-section, MD = mean diffusivity, post-SARS-CoV-2 = individuals who recovered from 
a severe acute respiratory coronavirus type 2 infection, PSMD = peak width of skeletonized MD, WMH = white matter hyperintensity.
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correlations performed for matched controls and post-SARS-CoV-2 
individuals, separately, confirmed positive associations with TMT-A 
(rho = 0.20, P = 0.004) and TMT-B (rho = 0.22, P = 0.001), as well 
as negative correlations with VF (rho = −0.23, P < 0.001) and WLR 
(rho = −0.25, P < 0.001) in the post-SARS-CoV-2 group. However, 
among all neuropsychological measures, free water was only signif-
icantly correlated with TMT-B (rho = 0.15, P = 0.04) in the group 
of matched controls (SI Appendix, Table S3 and Fig. S5).

Results for MD were very similar. Linear regression analyses 
showed significant positive associations of MD with TMT-A (P 
= 0.03) and TMT-B (P = 0.001), as well as negative associations 
of MD with VF (P = 0.01) and WLR (P < 0.001) in the combined 
group of matched controls and post-SARS-CoV-2 individuals. 

Further, significant group × MD interactions were present for 
TMT-A, VF, WLR, MMSE, and CDT (SI Appendix, Table S4). 
Post hoc Spearman correlations revealed significant positive cor-
relations of MD with TMT-A (rho = 0.17, P = 0.01) and TMT-B 
(rho = 0.20, P = 0.005), as well as negative correlations of MD 
with VF (rho = −0.22, P = 0.001) and WLR (rho = −0.23,  
P < 0.001) in the post-SARS-CoV-2 group only. All other corre-
lations were nonsignificant (SI Appendix, Table S4 and Fig. S6).

Additional regression analyses with age as the predictor of free 
water and MD showed significant positive associations of age with 
both imaging markers, as well as group × age interactions indi-
cating stronger effects in post-SARS-CoV-2 individuals (please 
refer to SI Appendix, Table S5 and Fig. S7, for more detail).

Fig. 3. Group comparison of skeletonized diffusion indices. Skeleton voxels that significantly differed between groups are highlighted by colors: post-SARS-CoV-2 
individuals > matched controls, red; post-SARS-CoV-2 individuals < matched controls, blue. Abbreviations: CX = complexity, FA = fractional anisotropy, FAT = FA of 
the tissue, FD = fiber density, FDC = fiber density and cross-section, FW = free water, FWE = family-wise error corrected, Log. FC = logarithm of fiber cross-section, 
MD = mean diffusivity, post-SARS-CoV-2 = individuals who recovered from a severe acute respiratory coronavirus type 2 infection.
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Prediction of a Past SARS-CoV-2 Infection Based on Imaging 
Markers. We examined the predictive capacity of derived 
imaging markers employing a supervised machine learning 
approach (Fig.  5). Free water (80.21%) and MD (79.38%) 
achieved the strongest median prediction accuracies. The 
median cortical thickness score was 45.95%. All investigated 

metrics but cortical thickness scored significantly better than 
null models for which the group assignment was randomly 
permuted.

Sensitivity Analyses. Analysis results remained stable if formerly 
hospitalized post-SARS-CoV-2 individuals were excluded and if 

Fig. 4. Tract of interest analysis of mean diffusivity and free water. Left: 3D visualization of investigated white matter fiber tracts represented as streamline 
bundles. Tracts that significantly differed between groups are highlighted by colors encoding directionality. Presented perspectives are coronal, anterior to 
posterior (Upper Left); axial, superior to inferior (Upper Right); sagittal, left to right (Lower Left); sagittal, right to left (Lower Right). Right: Boxplots displaying differences 
of post-SARS-CoV-2 individuals to the control group average. Only data of tracts that significantly differed after Bonferroni correction (71 comparisons) are shown. 
Boxplots considering all tracts reconstructed by TractSeg can be found in SI Appendix. Abbreviations: ATR = anterior thalamic radiation, CC = corpus callosum, 
CG = cingulum, FPT = frontopontine tract, FW = free water, IFO = inferior fronto-occipital fascicle, MD = mean diffusivity, OR = optic radiation, post-SARS-CoV-2 = 
individuals who recovered from a severe acute respiratory coronavirus type 2 infection, SLF = superior longitudinal fascicle, ST FO = striato-fronto-orbital tract, 
ST OCC = striato-occipital tract, ST PREF = striato-prefrontal tract, ST PREM = striato-premotor tract, STR = superior thalamic radiation, T OCC = thalamo-occipital 
tract, T PREF = thalamo-prefrontal tract, T PREM = thalamo-premotor tract, UF = uncinate fascicle.
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post-SARS-CoV-2 individuals were stratified by recruitment route 
(SI Appendix).

Discussion

We investigated brain structural alterations and neuropsycholog-
ical sequelae in a large sample of individuals who recovered from 
mainly mild to moderate COVID-19. At median 289 d after the 
acute infection, these individuals showed significantly higher aver-
age free water and MD in the white matter compared to matched 
healthy controls. In contrast, cortical thickness and markers of cer-
ebral small vessel disease were not significantly different between 
groups. In addition, white matter diffusion indices successfully pre-
dicted a past SARS-CoV-2 infection. We did not detect neuropsy-
chological deficits in post-SARS-CoV-2 individuals. Collectively, 
our study suggests that a mild to moderate SARS-CoV-2 infection 
is associated with subtle microstructural alterations in the cerebral 
white matter beyond the stage of acute infection.

A key aspect of COVID-19 neuropathology appears to be the 
dynamic response of the intrathecal immune system to the virus. 
Evidence of neuroinflammation was reported in histopatholog-
ical and clinical studies of COVID-19 patients: virus invasion 
(24, 25), activation of glial cells (9, 26, 27), and a cytokine 
response in the cerebrospinal fluid accompanying neurological 
and psychiatric COVID-19 symptoms (10). In our study, we 
observed widespread increases of extracellular free water and 
MD in post-SARS-CoV-2 individuals encompassing all brain 
lobes. Supplementary analyses showed that these increases relate 
to approximately 7 “years of healthy aging” indicating a biolog-
ically relevant effect. Both free water and MD are sensitive to 
an activated immune response causing excessive extracellular 
free water and thus increased diffusivity (28–30). More specifi-
cally, microglia and astrocytes emit cytokines upon activation, 
inducing osmosis of water from the blood into the extracellular 
space (31, 32). Interestingly, endothelial dysfunction and 

subsequent vascular leakage due to persistent immune activation 
have been previously implicated in the pathophysiology of 
COVID-19 (33, 34). Taken together, it is conceivable that the 
observed increase in free water and MD could be an indirect 
sign of a prolonged neuroinflammatory reaction to a SARS-CoV-2 
infection. Nevertheless, other possible mechanisms for changes 
in the extracellular space need to be considered.

Volume increases in the extracellular compartment might be 
accompanied by structural damage like demyelination as well as 
axonal disruption secondary to neuroinflammation. Free-water 
corrected diffusion markers enable further guidance in microstruc-
tural interpretations. While analyses of overall mean values showed 
no significant group differences in free-water corrected FAT, 
voxel-wise statistics identified increased FAT in corresponding 
frontal areas of post-SARS-CoV-2 individuals. Yet, these changes 
included only ~3% of the white matter skeleton, indicating either 
subtle or spatially limited effects localized to association tracts. 
Normal to increased FAT in the presence of elevated free water 
suggests minor microstructural alterations like axonal compression 
or displacement rather than damage to myelin sheaths or axons 
which would rather lead to FAT decreases (21). Moreover, fixel 
markers, which also model properties of the tissue compartment 
(35, 36), did not show group differences averaged across the entire 
white matter skeleton. Thus, in contrast to previous work demon-
strating more widespread FA reductions in small samples of hos-
pitalized COVID-19 cases (37–39), our findings suggest that 
white matter changes following a mild to moderate SARS-CoV-2 
infection most likely reflect subtle increases in extracellular free 
water as opposed to structural neural damage.

Based on previous histopathological reports of vasculopathy in 
COVID-19 and higher ACE-2 expression in cells of the blood–
brain barrier, we hypothesized that post-SARS-CoV-2 individuals 
would show alterations in imaging markers of small vessel disease 
burden (14). However, in our study, WMH (white matter hyper-
intensity) load was not significantly different, indicating that a 
mild to moderate course of COVID-19 does not lead to visually 
accessible vascular lesions (WMH) as previously reported (40). 
PSMD, an established imaging marker of small vessel disease more 
sensitive to microstructural changes (23), showed nominally 
higher values in post-SARS-CoV-2 individuals, but differences 
did not survive Bonferroni correction. Taken together, follow-up 
investigations are needed to understand whether subtle long-term 
vascular impairments will eventually increase the prevalence of 
cerebrovascular disease among COVID-19 convalescents (33).

Alterations of cortical gray and white matter commonly 
co-occur in neurological diseases (41, 42). Notably, this was not 
the case in our study. This is contrasted by a recent report on 
mildly affected COVID-19 subjects in the UK Biobank demon-
strating longitudinal volumetric reductions in the gray matter 
in olfactory networks (11). On the other hand, a current 
cross-sectional study has shown gray matter volume increases in 
long-COVID patients compared to healthy controls (43). The 
discrepancies between these studies and our work may be due to 
general differences in recruitment strategies (general population 
vs enriched samples of individuals suffering from long-term seque-
lae) and study designs (longitudinal vs. cross-sectional), both of 
which likely affect the sensitivity to detect gray matter changes 
associated with a SARS-CoV-2 infection.

By providing scores of prediction accuracy, our machine learn-
ing analysis evaluated brain imaging markers for their diagnostic 
relevance. Logistic regression models based on free water and MD 
achieved a considerable accuracy of ~80% in predicting a past 
SARS-CoV-2 infection, outperforming other imaging markers 
under study. Of note, cortical thickness achieved the lowest 

Fig. 5. Prediction of past SARS-CoV-2 infection based on imaging markers. 
To assess the diagnostic relevance of evaluated brain imaging markers, 
a supervised machine learning analysis was performed. The displayed 
boxplots represent the accuracy of logistic regression models trained on 
regional imaging metrics to predict past SARS-CoV-2 infection. Model training 
occurred in a 10-fold nested cross-validation setup and was repeated 100 
times for each marker with different random split regimens. Asterisks indicate 
significant difference to null model predictions, which were based on group 
label permutation. Predictive models based on free water and MD reached a 
considerable accuracy of approximately 80% in predicting a past SARS-CoV-2 
infection. By that, they outperformed other imaging markers under study. 
All models except those based on cortical thickness achieved a significantly 
better performance than null models. Abbreviations: CT = cortical thickness, 
CX = complexity, FA = fractional anisotropy, FAT = FA of the tissue, FD = fiber 
density, FDC = fiber density and cross-section, FW = free water, Log. FC = 
logarithm of fiber cross-section, MD = mean diffusivity, PSMD = peak width 
of skeletonized MD, WMH = white matter hyperintensity.
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accuracy, not significantly differing from prediction by chance. 
The difference in accuracy between diffusion metrics and cortical 
thickness might highlight that in mild to moderate COVID-19, 
pathophysiological aspects are better detected by diffusion imag-
ing–based techniques. Finally, the higher accuracy of fiber 
cross-section compared to cortical thickness—both morphometric 
measures—might imply that COVID-19-associated alterations 
preferably occur in the white matter.

We want to emphasize that our results represent average effects, 
i.e., not every mild to moderate affected COVID-19 patient may 
exhibit the reported changes. In addition, our results are based on 
a nonvaccinated cohort. As vaccination has been repetitively 
demonstrated to be a highly effective measure against COVID-19, 
vaccinated patients possibly exhibit less of the pathophysiological 
substrates identified in our study (44).

It is important to put the observed brain white matter altera-
tions into a clinical perspective. Reported persisting clinical seque-
lae of COVID-19 include executive dysfunction, anxiety, 
depression, fatigue, muscle weakness, and sleep impairment (11, 
45–47). In contrast, we found no significant difference for any 
cognitive domain, depression, anxiety, and neurological symptoms 
between groups. Similar to our previous finding in a larger, yet 
overlapping sample (1), nominally, post-SARS-CoV-2 individuals 
showed even better performances in MMSE, CDT, and VF com-
pared to matched controls. Besides the absence or mild expression 
of the respective symptoms, other reasons, such as our relatively 
long follow-up period and a potential selection bias of highly 
motivated post-SARS-CoV-2 participants, as well as differing 
degrees of social deprivation as a result of country-specific pan-
demic control measures, may explain the discrepancy with other 
studies. Exploration of imaging–behavior interactions showed that 
relatively increased free water and MD were associated with worse 
executive performance (TMT-A/B), working memory (WLR), 
and VF in post-SARS-CoV-2 individuals, thus providing a pre-
liminary pathophysiological link between neurocognitive deficits 
and brain alterations in individuals recovered from COVID-19. 
Clearly, more research is needed to increase our understanding of 
factors underlying the persistence of neurological symptoms in a 
subgroup of COVID-19 patients.

Strengths of this work lie in its considerable sample size; 
high-quality imaging and phenotypical data; a robust and repro-
ducible image processing pipeline; the investigation happening at 
an early stage of the pandemic, potentially alleviating the problem 
of different COVID-19 strains and vaccinations as confounders; 
and a conservative statistical correction scheme to reduce the 
false-positive rate.

However, our study also exhibits limitations. Our investigation 
lacks information about SARS-CoV-2 strains as well as precise 
disease severity stratification beyond the self-reported information 
on hospitalization and subjective perception of disease intensity. 
In addition, we follow a cross-sectional observational study design 
unable to fully address premorbid group differences despite a rig-
orous matching procedure and insufficient to infer causality. Future 
longitudinal studies could not only elaborate on the trajectory of 
the identified microstructural white matter alterations but also 
address the question whether these findings are markers of increased 
susceptibility for the development of neurological sequelae. Finally, 
our correction scheme for multiple testing may not only be 
regarded as a study strength but also as overly conservative, con-
sidering the potential statistical dependencies between variables. 
We opted for this strategy, as we prioritized the minimization of 
false-positive findings. Nevertheless, we did report uncorrected P 
values and recognized nominal group differences in clinical and 
imaging markers to encourage future hypothesis-driven studies on 

neurological manifestations of COVID-19 with less conservative 
approaches.

We performed a comprehensive assessment of established neuro-
imaging markers for structural neural integrity to characterize neu-
robiological changes potentially underlying postacute COVID-19 
neuropsychological sequelae after a mainly mild to moderate disease 
course. Our findings support the notion of a prolonged neuroin-
flammatory response indicated by subtle but widespread increases 
in extracellular free water and mean diffusivity in the white matter 
of COVID-19 convalescents. In contrast, we did not observe signs 
of cortical atrophy or macrostructural vascular damage. Importantly, 
despite identifying this characteristic imaging footprint, the investi-
gated sample exhibited no marked neuropsychological symptoms 
10 mo after SARS-CoV-2 infection. External validation and longi-
tudinal investigations are needed to further clarify the clinical rele-
vance of our findings.

Materials and Methods

Study Population. We examined participants of the HCHS COVID Program. 
A detailed description of the study design has been published previously (1). 
Post-SARS-CoV-2 participants 1] had a positive PCR test for SARS-CoV-2 and 2] 
were aged between 45 and 74 y at inclusion. Recruitment routes included both 
invitation upon laboratory-confirmed SARS-CoV-2 infection and self-referral of 
participants following newspaper announcement. Subsequent to recruitment, the 
participants underwent the study protocol of the HCHS (48)—including cranial MR 
imaging, neuropsychological testing, and a self-report questionnaire on COVID-
19-associated symptoms. In addition, a healthy control group was sampled from 
the original HCHS cohort which was assessed prior to the SARS-CoV-2 pandemic 
(48). The previously reported matching procedure (1) considered confounders 
allowing for a comprehensive investigation of COVID-19 pathophysiology in mul-
tiple organ systems beyond the brain, including the lungs, heart, vasculature, and 
kidneys. In contrast to the previous procedure, we performed a 1:1 propensity 
score matching specifically accounting for confounds known to affect cognitive 
performance as well as indices derived from structural and diffusion MR imaging: 
the groups were matched for age, sex, and years of education as well as for the 
prevalence of arterial hypertension, diabetes mellitus, dyslipidemia, and smoking 
behavior using the matchit (v4.3.3) R package (49).

Ethics Approval. The local ethics committee of the Landesärztekammer Hamburg 
(State of Hamburg Chamber of Medical Practitioners, PV5131) approved the 
study, and written informed consent was obtained from all participants (1, 50).

Clinical Assessments. Cognitive testing was performed by a trained study 
nurse and included the MMSE (51), TMT-A/B (52), VF, and WLR subtests of the 
Consortium to Establish a Registry for Alzheimer’s Disease Neuropsychological 
Assessment Battery (CERAD-Plus) (53), as well as the CDT (54). Psychosocial symp-
tom burden was evaluated by the GAD-7 (anxiety) (55) and PHQ-9 (depression) 
(56). Moreover, self-reported neurological symptoms (headache, dizziness, 
fatigue, and sleep disturbances) were assessed by part of the PHQ-15 (57).

Brain Imaging. Image acquisitions have been described in detail before (50). 
Put briefly, 3D T1-weighted rapid acquisition gradient-echo sequence (MPRAGE, 
0.83 × 0.83 × 0.94 mm), 3D T2-weighted FLAIR (0.75 × 0.75 × 0.9 mm), and 
single-shell diffusion MRI (2 × 2 × 2 mm, 64 noncollinear gradient directions, 
b = 1,000  s/mm2) were acquired on a single 3T Siemens Skyra MRI scanner 
(Siemens, Erlangen, Germany). Detailed parameters can be found in SI Appendix.

An overview of the derived imaging markers for the gray and white matter 
can be found in Fig. 1. For a detailed account on image preprocessing, derivation 
of morphometric and diffusion indices, and QA, please refer to SI Appendix (58).

Following preprocessing, we derived conventional DTI markers of white matter 
microstructure, i.e., FA and MD, which have been extensively used in neuroscien-
tific and neuropsychological research (59, 60). Free-water imaging was employed 
to model an extracellular free-water compartment, sensitive to immune activa-
tion (61) and atrophy (62), as well as a cellular tissue compartment (FAT), more 
closely reflecting myelin and axonal alterations than their DTI equivalents (28). 
Fixel-based analysis, a multitissue model addressing more complex white matter D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 "

ST
A

A
T

S 
U

N
D

 U
N

IV
E

R
SI

T
A

E
T

B
IB

L
IO

T
H

E
K

 H
A

M
B

U
R

G
, Z

E
IT

SC
H

R
IF

T
E

N
B

E
A

R
B

E
IT

U
N

G
 "

 o
n 

M
ar

ch
 2

0,
 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

13
4.

10
0.

97
.2

03
.

http://www.pnas.org/lookup/doi/10.1073/pnas.2217232120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2217232120#supplementary-materials


PNAS  2023  Vol. 120  No. 22  e2217232120 https://doi.org/10.1073/pnas.2217232120   9 of 10

compositions, was used to derive metrics of fiber density, fiber-bundle cross-sec-
tion (FC), fiber density and cross-section (FDC), and complexity (63). For further 
statistical analysis, diffusion markers were averaged across a representative skeleton 
of the entire white matter derived by tract-based spatial statistics as well as within 
71 anatomical white matter fiber tracts reconstructed with TractSeg (64, 65). Finally, 
PSMD, a surrogate marker of cerebral small vessel disease, was calculated (23).

After cortical surface reconstruction with the Computational Anatomy Toolbox 
for SPM (CAT12), mean cortical thickness was estimated as a proxy for neurode-
generative processes (20, 66, 67). Normalized volumes of white matter hyper-
intensities (WMH load) were obtained by FSL’s Brain Intensity AbNormality 
Classification Algorithm (BIANCA) with LOCally Adaptive Threshold Estimation 
(LOCATE) (68, 69).

Statistical Analysis. All statistical analyses were conducted in Python 3.9.1 (70, 
71), CAT12 (66, 67, 72), as well as mrclusterstats (73). Statistical tests were two 
sided, with a P < 0.05 as significance threshold. In the case of averaged imaging 
and clinical data, P values were adjusted by Bonferroni correction for 11 and 
9 comparisons, respectively. We chose this conservative correction scheme in 
order to minimize the possibility of false-positive findings. Additionally, sensitivity 
analyses were performed by 1] excluding post-SARS-CoV-2 individuals who had 
been hospitalized, and 2] stratifying the post-SARS-CoV-2 group by recruitment 
strategy, following the same procedures as described above.
Phenotypical data. Sample characteristics were compared between healthy con-
trols and post-SARS-CoV-2 participants using Χ2 tests (binary) and two-sample t 
tests (continuous). Clinical variables were compared between groups in separate 
analyses of covariance (ANCOVA) adjusted for age, sex, and education.
Imaging. Statistical analysis of imaging parameters was conducted in two steps. 
First, global measures, i.e., mean skeletonized diffusion parameters, mean cor-
tical thickness, WMH load, and PSMD, were compared between post-SARS-CoV-2 
individuals and healthy controls in separate ANCOVAs, adjusted for age, sex, and 
education. In the case of FC and FDC, total intracranial volume served as an addi-
tional covariate. Next, in an effort to interrogate spatial patterns of brain structural 
alterations associated with a mild to moderate SARS-CoV-2 infection, we per-
formed whole-brain voxel-wise permutation-based testing for skeletonized diffu-
sion markers. Utilizing the same design matrices as in the ANCOVAs, we employed 
5,000 permutations, threshold-free cluster enhancement, and family-wise error 
correction across multiple hypotheses. We supplemented voxel-wise statistics 
with a tract of interest approach by performing abovementioned ANCOVAs on 
the level of TractSeg-derived anatomical white matter tracts. Here, P values were 
adjusted by Bonferroni correction for 71 comparisons. Vertex-wise cortical thick-
ness was statistically analyzed in a general linear model as implemented in CAT12 
with family-wise error correction and a cluster threshold of 10.
Associations between clinical and imaging data. In case of significant group 
differences of averaged imaging markers, we performed exploratory regression 
analyses testing for associations between these imaging markers and neuropsy-
chological scores in the entire sample. Moreover, group × imaging marker 
interactions were included in the regression model, and post hoc Spearman 
correlations were conducted for each group separately. As imaging markers are 
known to change as a function of age, we performed additional regression analy-
ses with age in the matched control group to derive beta estimates for conversion 
of group differences in units of “years of healthy aging” in order to aid biological 
interpretation of our results. As we deemed these analyses exploratory, no cor-
rection for multiple comparisons was performed.

Machine Learning Prediction. To further evaluate their predictive capacities, 
all brain imaging markers calculated in the study were averaged within regions 
of interest where applicable (Desikan–Killiany cortical atlas parcels and TractSeg-
derived anatomical white matter tracts) and propagated to a comparative supervised 
machine learning pipeline (scikit-learn v1.0.2) (65, 74, 75). Per marker, multivariate 
logistic regression models were trained to predict past COVID-19. Models were 
scored with prediction accuracy, and statistical significance was assessed via com-
parison to null model predictions. Further details are provided in SI Appendix.

Data, Materials, and Software Availability. Analysis codes and processed 
global imaging parameters data have been deposited in GitHub (See SI Appendix, 
Table S12; https://github.com/csi-hamburg/2022_petersen_naegele_postcovid_
imaging/blob/main/global_imaging_markers.csv) (76). Personalized data from 
individual participants of the HCHS are not publicly available due to data protection 
regulations, but anonymized data can be accessed by interested researchers via a 
request to the HCHS steering committee based on a material transfer agreement.
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