
Challenges and Solutions
for the Protection of Training Data

of Machine Learning Models

CUMULATIVE DISSERTATION

with the aim of achieving a doctoral degree at the

Faculty of Mathematics, Informatics and Natural Sciences

Department of Informatics

University of Hamburg

submitted by

Joshua Lukas Stock

March 30, 2025



Reviewers:

Prof. Dr. Hannes Federrath
Prof. Dr. Konrad Rieck

Date of the oral defense:

July 9, 2025



Abstract

Few technologies have had as great an impact on society in recent years as machine
learning (ML) algorithms, and their influence continues to grow. Many applications, such
as voice assistants, self-driving vehicles, and advanced chatbots, would not be possible
without ML models at their core. Before being deployed, these models go through a
training phase where they are optimized using a training dataset. This automated process
is the key to the popularity of ML models: Models can answer complex questions repre-
sented by data in different forms – including image, audio and tabular data. Successful
model training often requires vast amounts of training data. The increasing digitization
of business processes has led many organizations to collect and store data on large scales,
which can be used for ML training. However, this data may contain sensitive information,
such as personal information or trade secrets. Using it for training and publishing a
trained model afterwards does not come without risks.

As numerous publications have shown, ML models often store more sensitive information
of their training data than intended, even if this is not necessary for the fulfillment of
their tasks. In particular, so-called inference attacks aim at recovering such sensitive
information from models after their training process. This dissertation fills a research
gap regarding the reconstruction of statistical training data properties from ML models –
the property inference attack (PIA). Both the white-box threat model, where the attacker
has access to the model’s internal parameters, and the black-box threat model, where
the attacker can only compute model outputs through an interface, are examined. For
the white-box variant, a defense mechanism is introduced and evaluated. Outlining its
limitations, the functionality of the attack is analyzed, revealing severe traces of training
data properties in the trained parameters of ML models. For the black-box scenario of the
PIA, a new attack framed as a regression problem is proposed. Its performance is tested
in experiments and compared to a white-box benchmark, exhibiting strong R² test values
of up to 0.86. To defend against this attack, a promising adversarial learning defense
strategy is presented and experimentally evaluated.

When training data is spread across multiple parties, distributed training algorithms
such as federated learning (FL) enable the collaborative training of ML models without
the transmission of training data. This dissertation examines the benefits and practical
limitations of FL through a case study in official statistics. Simulations across three use
cases – medical insurance, fine dust pollution, and mobile radio coverage – demonstrate its
strong potential for producing official statistics. FL is particularly advantageous when data
owners wish to retain control over their data while still benefiting from a collaboratively
trained model. A common privacy concern in FL is the potential leakage of sensitive
information through data exchanged during the training process. To prevent leaked
information from being linked to individual participants, a novel FL protocol that enhances
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client anonymity is also presented in this dissertation. An independent dealer party is
introduced to facilitate an efficient cryptographic masking mechanism, reducing runtimes
by up to 87.8% compared to related work. The security of the protocol is validated by a
mathematical proof and its performance is assessed in various experiments.

As ML algorithms continue to gain relevance, this dissertation aims to contribute to an
understanding and improvement of training data privacy, both for PIAs on trained models
and distributed FL training processes.
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Zusammenfassung

Die gesellschaftliche Relevanz von Algorithmen des maschinellen Lernens (ML) ist in den
letzten Jahren stetig gestiegen. Moderne Anwendungen wie Sprachassistenten, selbstfah-
rende Fahrzeuge und Chatbots basieren zunehmend auf leistungsfähigen ML-Modellen.
Bevor solche Modelle eingesetzt werden können, durchlaufen sie eine Trainingsphase, in
der sie schrittweise an einen Trainingsdatensatz angepasst bzw. dafür optimiert werden.
Dieser algorithmengesteuerte Anpassungsprozess ist von entscheidender Bedeutung für
den Erfolg der Technologie: Er ermöglicht es den ML-Modellen, komplexe Problemlö-
sungen aus den vorliegenden Daten abzuleiten. Diese Daten können in verschiedenen
Formaten vorliegen, etwa als tabellarische Daten, Bild- oder Audiodateien. Für ein er-
folgreiches Training sind oftmals große Mengen an Daten erforderlich. Begünstigt durch
die fortschreitende Digitalisierung fallen in vielen Bereichen enorme Mengen an Daten
an, die zum Training von ML-Modellen genutzt werden können. Allerdings enthalten
viele dieser Datensätze auch schützenswerte Informationen, etwa Geschäftsgeheimnis-
se oder personenbezogene Daten, die nicht für die Öffentlichkeit bestimmt sind. Der
Einsatz solcher Datensätze zum Training eines ML Modells und dessen anschließende
Veröffentlichung können Gefahren für den Datenschutz mit sich bringen.

Wie in zahlreichen wissenschaftlichen Arbeiten gezeigt werden konnte, beinhalten trai-
nierte ML-Modelle oft mehr sensible Informationen aus den Trainingsdaten als notwendig.
Sogenannte Inferenzangriffe zielen darauf ab, diese sensiblen Informationen aus den
trainierten Modellen zu extrahieren. Die vorliegende Dissertation schließt eine Forschungs-
lücke im Bereich der Rekonstruktion von statistischen Trainingsdateneigenschaften – der
sogenannten Property Inference. Dabei werden sowohl das White-Box-Angreifermodell,
bei dem Angreifende Zugriff auf die internen Modellparameter haben, als auch das Black-
Box-Angreifermodell, bei dem lediglich über eine Schnittstelle Modellausgaben berechnen
werden können, untersucht. Für das White-Box-Modell wird ein neuer Verteidigungsme-
chanismus vorgestellt und evaluiert, wobei festgestellt wird, dass seine Wirksamkeit auf
bestimmte Instanzen von Property Inference Angreifern, die zum Zeitpunkt der Verteidi-
gung bekannt sein müssen, limitiert ist. Die Analyse jener Einschränkung führt zu einer
tiefergehenden Untersuchung der Funktionsweise von White-Box Property Inference.
Dabei wird gezeigt, dass die Spuren statistischer Eigenschaften der Trainingsdaten über
weite Teile der trainierten Modellparameter hinweg verteilt sind und häufig deutlich
erkennbar sind. Im Black-Box-Angreifermodell wird eine neue Version des Angriffs vorge-
stellt, bei der Property Inference nicht wie herkömmlich als Klassifikations-, sondern als
Regressionsproblem betrachtet wird. In eigens durchgeführten Experimenten wird die
Leistungsfähigkeit dieses Angriffs mit einem R²-Wert von bis zu 0,86 demonstriert, und
mit einem entsprechenden White-Box-Angriff verglichen. Ein vielversprechender Verteidi-
gungsmechanismus gegen diesen Black-Box-Angriff, der auf adversarial learning basiert,
wird ebenfalls eingeführt und in Experimenten auf seine Wirksamkeit hin evaluiert.
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In der Praxis sind Trainingsdaten oftmals nicht an einem zentralen Ort gebündelt, sondern
auf mehrere Parteien verteilt. Verteilte Trainingsalgorithmen wie Federated Learning (FL)
ermöglichen es, ein gemeinsames Modell zu trainieren, ohne dass die Trainingsdaten
selbst übertragen werden müssen. Diese Dissertation enthält eine Analyse der Vorteile
und der praktischen Herausforderungen von FL, die aus einer simulierten Fallstudie zum
Potenzial von FL für die amtliche Statistik abgeleitet wird. Die Simulationen beziehen sich
auf Themen, die für die amtliche Statistik von Bedeutung sind, nämlich Luftverschmut-
zung, Kosten von Krankenversicherungen und die Empfangsabdeckung für den Mobilfunk.
Die Ergebnisse dieser Simulationen zeigen, dass FL in Bezug auf die Modellleistung mit
herkömmlichen Trainingsalgorithmen konkurrieren kann. Daher bietet FL besonders in
Szenarien, in denen Besitzer von Trainingsdaten ihre Datenhoheit nicht aufgeben möch-
ten, ein großes Potenzial. Allerdings bergen auch FL-Trainingsalgorithmen Risiken für
die Geheimhaltung sensibler Informationen aus den Trainingsdaten. Denn das Training
durch FL beinhaltet regelmäßige Übertragungen von trainierten Modellen zwischen einer
zentralen Partei und den Teilnehmern – den sogenannten Clients. Um zu verhindern,
dass sensible Informationen einzelnen Clients zugeordnet werden können, wird in die-
ser Dissertation ein neuartiges Protokoll vorgestellt, das eine verbesserte Anonymität
der Teilnehmer ermöglicht. Dazu wird eine unabhängige Dealer-Partei eingeführt, die
rechenintensive kryptografische Operationen übernimmt und somit einen effizienten
Algorithmus zur Maskierung der Client-Updates ermöglicht. Im Vergleich zu verwandten
Arbeiten kann die Laufzeit des Protokolls um bis zu 87,8% reduziert werden. Experimente
belegen sowohl die Effizienz als auch die Skalierbarkeit des neuen Protokolls, dessen
Sicherheit zudem mathematisch bewiesen wird.

Mit der stetig wachsenden Relevanz von ML-Algorithmen zielt diese Dissertation darauf
ab, einen Beitrag zum Verständnis und zum Schutz der Privatsphäre von Trainingsdaten
zu leisten – sowohl in Bezug auf Property Inference bei bereits trainierten Modellen als
auch während verteilter Trainingsprozesse.
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1 Introduction

Machine learning (ML) algorithms have become integral to a wide range of technological
applications, playing a pivotal role in various sectors of modern society. In fact, many
ML solutions are so deeply integrated into daily life that their underlying presence often
goes unnoticed. Examples of interactions with ML systems which occur seamlessly in the
background of other applications are

• modern search engines [Goo24],

• smartphone keyboards with autocorrect and next word prediction [HKR+18],

• voice assistants such as Apple’s Siri [KB18],

• self-driving vehicles [NCC+20],

• e-mail spam filters [DBC+19], and

• recommender systems for online shopping or entertainment [PAC18].

In many domains, ML has revolutionized existing workflows or opened up new opportu-
nities. For instance, ML has drastically improved genetic analyses, drug discovery and
different areas of cancer research in the medical field [DDO+20, LHS+24, VR24].

In addition to these specialized applications, more generic large language model (LLM)
chat tools such as ChatGPT have received a lot of attention recently, at the latest with
ChatGPT opening to the public in November 2022 [Hu23]. Especially in the wake of
the recent LLM hype, ML1 has become a vital part of popular debates – with much of
the focus on ML’s capabilities, sociological implications of its use, and ethical dilemmas.
However, the critical issues of data protection, privacy, and anonymity are often over-
looked. Most likely, this is due to their technical complexity, lack of visibility, and the
public’s normalization of allowing third parties the extensive use of personal data for
technological convenience. But since ML is data driven and data often contains personal
information, these concerns are foundational to ML systems.

1. In public discourse, artificial intelligence (AI) is often mistakenly used as a synonym for ML. Strictly
speaking, AI is an umbrella term encompassing not only ML but also other fields like rule-based systems
and heuristics. Hence, I use the term ML consistently throughout this dissertation – except when referring
to the established concept explainable artificial intelligence (XAI).
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1.1 Problem Description

As the term “machine learning” suggests, ML algorithms are based on models which learn
patterns and rules extracted from large amounts of training data. ML models are usually
trained to fulfill a single specified task, such as predicting a future event given data from
the past. Hence, a good model contains a representation of useful patterns and rules
for the input data to predict a likely outcome. However, as a by-product of the learning
process, other (potentially sensitive) information in the data that goes beyond these basic
rules and patterns is also accumulated in the models [SRS17]. The following example is
used to illustrate this problem.

Example 1. Consider an ML model for a recommender system. The model is trained
and hosted by the data science department of a (fictive) company which runs an online
shop. The data of purchases made by the company’s customers are used as the training
data. The model’s task is to recommend an item from the shop on the input of a person’s
characteristics such as their gender, age and hometown. Therefore, personal attributes of
the customers are labeled with purchased store items in the training data.

Now let us assume that this model is leaked to the public – perhaps after a cyber attack
on the company or due to an incautious data scientist who uploads the model to a public
model store. Although the model in Example 1 is not a database itself, from which
concrete customer information could be queried, it still contains a significant amount
of sensitive information that can be extracted from the now published and unprotected
model. Here is a brief overview of the information a potential attacker could infer from
the trained model itself:

• Determine whether an individual was part of the training data, i.e., whether a
person has purchased an item from the online store before. Depending on what the
shop is selling, this information could be sensitive. In the literature, this is called a
membership inference attack (MIA) [SSSS17].

• Infer the average traits of customers buying a certain product by launching a model
inversion attack [FJR15]. While this attack primarily targets group-level attributes,
it may expose individual data points in scenarios where the records associated with
the same label are highly homogeneous [FJR15, SSSS17].

• Launch a reconstruction attack to reproduce actual training data samples, i.e., ex-
tracting data of individuals whose data was used during training [BCH22, CTW+21,
CHN+23].

• Infer general, statistical, properties about the company’s customers via a property
inference attack (PIA), such as the gender ratio [AMS+15, GWY+18]. This could
be particularly interesting for competing companies.
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1.2 Research Questions and Methodology

Trained ML models “remembering too much” [SRS17] and their tendency of leaking
information on many levels is an active field of research. Within the field, attacks like
MIAs or model inversion attacks, being among the first published ML privacy attacks,
have become quite popular. Significantly less research has been published on PIAs, which
is why this dissertation addresses this gap in the literature.

But information leakage does not only occur after training an ML model, it may also occur
during the training phase. This is particularly the case when training data is distributed
among multiple data owners. One way to resolve the distributed scenario to train a model
would be to centralize or merge the data set before training (merge-then-train). But
when the data is valuable to the data owners, and/or it contains sensitive information,
transmitting training data from one party to another is not a desirable option.

Distributed training methods are popular alternatives to the merge-then-train approach.
Federated learning (FL) has become the state-of-the-art technique for this purpose
[KMRR16, MMR+17]. While FL allows collaborative training of an ML model without
sharing the actual training data, the training algorithm requires a central coordinating
party who receives model updates from the data owners (see Section 2.3 for more details
on the FL training process). It has been shown that these updates can leak information
about the training data from contributors [LYY20]. Additionally, data owners send their
model updates to the coordinator in plain text, such that their contributions can be linked
to their identities in the original FL protocol [KMRR16, MMR+17].

These considerations show that sensitive information in the training data of ML models
is at risk of being exposed by adversaries. They furthermore highlight the importance of
developing and employing suitable protection mechanisms when using ML algorithms.
This motivates the topic of this dissertation, which deals with the protection of training
data during and after the training phase. The first part of this dissertation is dedicated to
a thorough understanding and the exploration of defense mechanisms against PIAs in
Chapters 3 and 4. The second part is focused on distributed training scenarios, practical
limits of FL and the anonymity of FL participants in Chapters 5 and 6.

1.2 Research Questions and Methodology

The problem description in Section 1.1 underscores the need for more research in the
areas of PIAs and distributed FL training scenarios, specifically focusing on the protection
of training data during and after the training of an ML model. Therefore, I derive the
following research questions for this dissertation:

RQ1 How can training data properties be reconstructed from trained ML models?
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RQ2 Which strategies can help to mitigate the reconstruction of training data properties?

RQ3 What are the benefits and practical limits of FL?

RQ4 How can the anonymity of FL contributors be enhanced without sacrificing effi-
ciency?

Different variants of the PIA have been proposed in the literature, most notably a white-
box and a black-box attack scenario [GWY+18, ZTO21]. In order to answer RQ1, both
scenarios are addressed: Chapter 3 elaborates on the white-box scenario, in which
adversaries have full access to the target model during an attack. The state-of-the-art
white-box PIA [GWY+18] is implemented and evaluated on three data sets. To get
further insights into the effects and functionality of this attack, Chapter 3 also contains
experiments with an explainable artificial intelligence (XAI) tool and the data visualization
tool t-distributed stochastic neighbor embedding (t-SNE). Following up on potential
shortcomings of the XAI tools in Chapter 3, the results are additionally validated in
Appendix A with a broader range of tools. In contrast, Chapter 4 is mostly focused on the
black-box PIA scenario, where the adversary can query a target model but has no access to
the model’s internal parameters. Additionally, PIAs are framed as a regression problem to
better grasp the continuous nature of many training data properties. Chapter 4 advances
the proposals from related work by introducing a novel black-box attack variant and a
white-box counterpart for regression PIAs. Multiple experiments are performed to show
their efficacy, including comparisons to related work. Again, three different data sets are
used to validate the results.

This dissertation considers not only the PIA itself, but also possible defense approaches.
As of yet, no viable defense approach has been established as a standard [RG23]. While
differential privacy (DP) [Dwo06] is a key defense technique against other privacy attacks
such as MIAs, it is not effective against PIAs. This is because PIAs target global properties
of the training data and not nuances in a dataset caused by individual contributions that
DP helps to blur [RG23, SE22]. With RQ2, I therefore explore novel defense strategies
in both the white-box (Chapter 3) and the black-box setting (Chapter 4). The idea is
to harden target models, which are at risk of being targeted by a property inference
adversary, against the leakage of a specific training data property. I measure the success
of a defense strategy in terms of meeting three goals:

1. It should be easy to implement, without changing the training data or model
architecture;

2. defended models should leak as little information about the selected training data
property as possible, i.e., the success rate of any PIA adversary under the respective
threat model should be significantly decreased; and

3. the defense should harm the performance of target models as little as possible.
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1.3 Contributions

In the white-box setting, I develop a post-training adversarial learning strategy called
property unlearning and evaluate it experimentally. Initial results show how successfully
defending against a specific PIA adversary instance does not generalize to defending
against other PIA instances with the same target property (violating the second goal
as stated above). Hence, I investigate the strategy of consecutively employing multiple
adversary instances to defend a target model through further experiments in the white-box
setting. For defending against black-box attacks, I evaluate another adversarial learning
strategy which hardens the model during the training process. This defense strategy is
also evaluated experimentally regarding its efficacy and induced utility loss, exhibiting
promising results. A follow-up experiment regarding its generalizability is provided in
Appendix B.

While RQ1 and RQ2 address the protection of training data regarding different aspects
of the PIA on ML models, RQ3 and RQ4 attend to the protection of training data on
another level: protecting the data and identity of participants in distributed FL training
scenarios.

RQ3 focuses on FL, its advantages and limitations. Chapter 5 is dedicated to this research
question, based on the example scenario of official statistics. FL is considered as an
enabler technology in this chapter, enabling the use of data and the training of ML models
where company policies and data protection rules otherwise make it impossible. Three
concrete application scenarios are discussed and simulated through experiments. Based
on the evaluation of these three use cases, general conclusions are drawn regarding
common issues and limitations when employing FL in practice.

To answer RQ4, existing solutions regarding the anonymity of FL contributors from the
literature are grouped, analyzed and compared. Masking is a simple, yet effective way to
hide individual updates from an FL aggregator: Participants can mask their individual
updates with seemingly random values, the aggregator can aggregate all masked updates
as a sum and subtract the sum of all masks to receive the sum of unmasked updates. While
this process is simple in theory, practical issues like client dropouts during the training
process demand efficient solutions to facilitate the procedure. Since pairwise- and single-
masking strategies in the literature come with a high computational overhead for mask
recovery if clients drop out, I introduce a novel protocol called DealSecAgg in Chapter 6.
The protocol is evaluated and compared to related work in multiple experiments.

1.3 Contributions

Within this dissertation, various research contributions regarding the protection of training
data, specifically in the context of PIAs and distributed scenarios, and the anonymity of
FL training data providers are presented. This section summarizes the main contributions
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and explains their relation to the research questions. While Contributions C1–C3 concern
the privacy of training data after training an ML model, C4 is focused on protecting
training data during distributed training and C5 is dedicated to the anonymity of data
providers in an FL training scenario.

C1. Insights into White-Box Property Inference

Summary In this contribution, the efficacy of white-box PIAs is highlighted with experi-
ments on multiple data sets. Then, the manifestation of property values in the weights of
ML models is analyzed. Evidence shows that statistical training data properties tend to be
present in different parts of the model weights, such that PIA adversaries with the same
goal can deduce a property value from different parts of a target model. Furthermore, it is
discovered that different training data property values can lead to substantially different
model weights, such that t-SNE is able to cluster models with different property values
apart.

White-Box Property Inference The state-of-the-art white-box PIA [GWY+18] by Ganju et
al. was developed specifically to attack artificial neural networks (ANNs). Following their
proposal, a property inference adversary trains another ANN – the so-called meta-classifier
– to attack target models. The training data of the meta-classifier consists of the weights
of hundreds or thousands of shadow models, i.e., models which are similar to the target
model. By deliberately training these shadow models on auxiliary data sets with different
properties, the adversary’s meta-classifier learns to extract training data properties from
target models. In this dissertation, the efficacy of this attack approach [GWY+18] is
showcased for three data sets: MNIST, Census and UTKFace. UTKFace was not included
in the original experiments by Ganju et al., for which a PIA test accuracy2 of 99.8% is
achieved in this work’s experiments. For the other two data sets, test accuracies of 100%
(MNIST) and 99.3% (Census) are achieved, similarly high to the results by Ganju et al.

Explaining Property Inference To the best of my knowledge, this dissertation contains
the first work on analyzing the functionality of white-box PIAs. Specifically, the XAI tools
local interpretable model-agnostic explanations (LIME) and integrated gradients (IG)
are used to examine which parts of a target model’s weights are used by the adversary’s

2. Here, test accuracy (and later test R² value for the regression setting) refers to a value obtained by
benchmarking the adversary on a test data set, opposed to measuring its performance on the training
data set. In the case of PIAs, this means that not only a set of shadow models is created, but also a set of
test models with training data disjunct from the shadow models is trained. While the shadow models,
respectively their outputs in the black-box setting, are used for training the adversary, the test models
(or their outputs) are only used for benchmarking its performance.
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meta-classifier to infer a training data property. In the experiments of Chapter 3 and
Appendix A, it is shown how two meta-classifiers with the same target property rely on
different parts of a target model’s weights. Specifically, the distributions of importance
vectors – values assigned by the XAI tools to the weights of target models to measure
their importance on the decision of the meta-classifier – are entirely different for two
meta-classifiers attacking the same target model. This indicates that the influence of
training data properties is not restricted to a small area of weights of a target model.
Instead, such properties influence different areas of model weights, such that different
PIA meta-classifier instances can infer properties through analyzing varying target model
weights.

Visualizing Training Data Properties While the XAI tools show how widespread the
influence of training data properties is on the weights of a target model, this is also
the first work analyzing the magnitude of their influence. For this purpose, the data
visualization tool t-SNE is used. t-SNE is a clustering tool: on the input of a data set, it
clusters the contained data records apart, without any further knowledge about the data.
The t-SNE experiments are performed with target models trained on the three data sets
MNIST, Census and UTKFace. For each data set, the weights of target models with two
different training data property values are used as an input for the tool. For two of the
three data sets, t-SNE automatically clusters most target models apart such that they are
grouped according to their training data property. Specifically, the clustering accuracy
is 72.0% for the UTKFace data set and 86.8% for the MNIST data set (with a baseline
for random guessing at 50%). Since t-SNE has no background information about the
nature of its input data, i.e., the target model weights and their training data properties,
this shows how severe the influence of training data properties can be on the weights of
target models: Different property values change resulting model weights enough for an
external data analysis tool, such as t-SNE, to differentiate between them.

C2. Novel Approach for Black-Box Property Inference

Summary In this contribution, a novel version of a black-box PIA is proposed: In the
black-box threat model, an adversary can choose the input for a target model and observe
its output, since no access to the internal weights is granted. When the attack is carried
out, the adversary’s input is called the attack data set. In contrast to related work, the
attack data set the adversary uses is not part of the training data in the new proposal,
hence allowing for more flexibility. Furthermore, PIAs are formulated as a regression
problem rather than a classification problem in this work, as commonly seen in related
research. This approach better captures realistic distributions of sensitive properties,
particularly those based on ratios. Unlike classification, which requires predefined ratio
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classes (e.g., 40:60, 60:40), regression allows for a continuous range of values from
0:100 to 100:0, offering greater flexibility and precision. Multiple experiments are
performed, generating evidence for the efficacy of this black-box attack variant. A
white-box regression benchmark for the same data sets is provided, exhibiting similar
performance rates.

Regression Black-Box Property Inference While black-box PIAs have been discussed
in the literature before [ZTO21], this is the first attack design where the adversary can
choose an arbitrary attack data set, which may be independent from the training data
set. The experiments of Chapter 4 are based on the three data sets Adult, CIFAR-10
and UTKFace. In each setting, different attack data sets are used. For attacking models
trained with the tabular data set Adult, an artificial data set is created. For the other two
settings, data sets from a similar domain are used: parts of the CIFAR-100 data set for an
attack on models trained on CIFAR-10 and another image data base for attacking models
trained on the UTKFace data set. Most of related work frames PIAs as a classification
problem [AMS+15, GWY+18, ZTO21], while recent proposals have also extended PIAs to
a regression setting to better capture the nature of ratios in training data properties [SE22,
ZCSZ21].

Results The proposed attack is effective in all tested settings: The black-box regression
attack achieves R² test values of 0.72 for the Adult data set, 0.63 for UTKFace and 0.64
for CIFAR-10. While an R² value of 1.0 would mean that the adversary predicts each
property value perfectly, 0.0 is the baseline for random guessing. Since all observed
values are well above 0.5, the adversary is able to infer properties with a small margin of
error.

Benchmarks For the two image data sets UTKFace and CIFAR-10, the target models of
the experiments are ANNs (in contrast to Adult, where random forest classifiers are used).
Hence, the UTKFace and CIFAR-10 models can be attacked by a variant of the white-box
PIA by Ganju et al. [GWY+18] in the regression setting for comparison. For UTKFace,
the white-box regression attack achieves an even stronger R² test value of 0.86, while
the R² test value for CIFAR-10 is slightly lower at 0.60. In general, the results are in a
similar range for both settings. Since related work on regression PIAs unfortunately uses
different data sets and/or metrics to measure the success of their attacks [SE22, ZCSZ21],
only one comparison to related work could be made. One publication on classification
PIAs contains a results for a “fine-grained attack” on the Adult data set [ZTO21] with five
target ratios. Translating the regression results from this dissertation into a classification
result similar to [ZTO21] leads to test accuracies of 40–68% (where random guessing
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would amount to 20%). In comparison, the accuracy results of [ZTO21] amount to
similarly high 51% on average.

C3. Development and Analysis of Property Inference Defense
Mechanisms

Summary This is the first published work dedicated to practical PIA defense strategies.
Two different defense strategies are proposed to harden models against PIAs. They are
based on the idea of adversarial learning, meaning that the adversary itself is used to
harden a target model. For PIAs, this means that the model is retrained – during or
after the initial training phase – such that it reveals less about the training data property
which the adversary tries to infer. The defense success is measured in terms of efficacy
(the adversary’s utility loss) and the performance decrease of the target model induced
by the defense. For white-box PIAs, property unlearning is developed and evaluated in
experiments. This technique is applied after the initial training phase of a target model.
In the experiments, property unlearning proves to be very efficient against a specific
instance of a PIA adversary and does not significantly harm the target model’s utility.
However, it fails to generalize, i.e., protect against a whole class of PIA adversaries. In the
black-box attack scenario, a similar adversarial learning approach is proposed which is
applied during training. As with property unlearning, this approach is very effective and
induces little harm regarding the target model’s performance. The defense also seems to
generalize well to adversaries with the same target property which were not used during
adversarial learning.

Adversarial learning Adversarial learning has been originally introduced in the context
of training generative adversarial networks (GANs) [GPAM+14]. During GAN training,
the adversary (usually modeled as an ANN) helps the generative model to improve the
quality of its generated data by continuously revealing flaws in the generator’s output.
By integrating the adversary into the training process of generative models, any revealed
error of implausibly generated data can be directly propagated back into the generative
model, therefore improving its capabilities in each training iteration. Beyond GANs,
adversarial learning has also been established as the most reliable defense strategy against
adversarial examples [ACW18]. And among other applications, it has been successfully
employed to defend against black-box MIAs [NSH18b], and to achieve fairness in ML
models [GRLD20] as well.

White-Box Defense To defend against white-box PIAs, property unlearning is introduced
in Chapter 3. Property unlearning is an adversarial learning strategy applied after
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training a potential target ANN. While adversarial training for GANs uses an adversary to
discriminate real data from generated fake data, the PIA adversary in property unlearning
is used to “unlearn” a training data property from the model weights: When applying
property unlearning, the defender chooses a target property value, which may differ from
the true property value of the target model’s training data. E.g., when training a model
on a data set which is dominated by female records, a defender might wish to hide this
fact from adversaries by setting the gender ratio target property value to 0.5, indicating
that only 50% of the records are female. During the adversarial learning of property
unlearning, the weights of a target model are iteratively adapted by backpropagating the
“error”, i.e., the difference from the adversary’s property value prediction to the target
property value, into the model. While this strategy is effective against the adversary
used during adversarial training and the utility loss of target models is less than 1% on
average, other adversaries with the same goal can still infer the property after it has been
applied.

Black-Box Defense For defending against black-box PIAs, a similar approach is presented
and evaluated. A black-box PIA adversary is used in adversarial learning, which is applied
during the training process of the target model. This means that in every training iteration,
both the usual training loss of a model is calculated to optimize its weights for the model’s
task, but also the adversarial loss, i.e., the distance of the adversary’s prediction to the
target property value, is computed. Both loss values are combined to calculate the model’s
gradient via backpropagation, with a parameter λ∈ [0,1] controlling the influence of
the adversarial loss. λ= 0 would amount to ordinary model training with no adversarial
influence, while λ = 1 means that the model is only trained to make the adversary
predict the target property value, ignoring the model’s original task. In the experiments
of Chapter 4, a good tradeoff between model utility and defense is found at λ= 0.15:
While the model utility stays in the same range across both tested data sets (UTFace and
CIFAR-10), the adversary’s performance decreases from an R² of 0.6 to 0.07. Additional
experiments in Appendix B show how this defense strategy also generalizes well to other
adversaries with the same goal, which were not included in the adversarial learning
process. For the other adversarial instances (trained on different shadow models than
the adversary used in adversarial learning), the R² performance drops from 0.6 to 0.3 on
average.

C4. Analysis of Benefits and Practical Limits of Federated Learning

Summary In this contribution, an analysis of the potential of FL is provided, framed in
a case study regarding official statistics. Simulations for three different use cases in the
areas health, sustainability and mobility are evaluated. The first two use cases focus on
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the performance comparison of an ML model trained on centralized data and a variant of
the same model trained via FL in a distributed manner. The third use case is situated in a
more realistic environment, where the training data remains private, meaning that there
was no training data available during model development. Therefore, the evaluation
provides insights on the performance of FL in different use cases, as well as it discovers
limitations and common issues when applying FL in practice.

Official Statistics In the domain of official statistics, national statistical offices (NSOs)
aim to produce high-quality statistics that accurately reflect reality. To keep up with a
rapidly changing world, NSOs are modernizing by adopting new data sources, methodolo-
gies, and technologies. Similar to many other domains, NSOs are increasingly adopting
ML technologies. But as of now, many potential data sources, such as private or official
entity data, remain untapped due to slow legal adaptation and privacy concerns. In this
context, FL is a particularly interesting technology, since this decentralized technique
enables a privacy friendly data analysis, opening up new use cases while maintaining a
basic data privacy. The study presented in Chapter 5 aims to investigate the potential of
FL in the context of official statistics as an enabling technology.

Use Cases The case study explores three use cases to evaluate the effectiveness of
FL compared to centralized models. In predicting medical insurance charges, the best
centralized model achieved an R² of 0.85, while the FL model reached 0.78, demonstrating
a small but acceptable performance gap in exchange for improved data privacy. For
fine dust pollution classification, the centralized approach achieved 72% classification
accuracy, whereas the FL model performed slightly lower at 68%, still proving its viability
for environmental monitoring. The third use case, predicting users’ daily movement radius
from mobile network data, showed weaker overall model performance, with the best
centralized approach achieving an R² of 0.16 and the FL model reaching 0.11. Despite
its challenges, FL consistently delivered results close to centralized models, making it a
promising approach for privacy-sensitive applications in official statistics.

Key Insights The study highlights that FL can achieve performance close to centralized
models while preserving data privacy, making it a valuable approach for official statistics.
Although a slight, but expected, performance gap is observed due to the decentralized
nature of FL, it remains an effective solution, especially in domains where data sharing is
restricted. The results also emphasize the importance of hyperparameter optimization,
which remains a challenge in FL due to limited automated optimization tools. Additionally,
the study underscores the practical difficulties of implementing FL in real-world scenarios,
such as technical barriers, communication costs, and the need for efficient infrastructure.
Despite these challenges, FL enables statistical offices to access and analyze sensitive data
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without violating privacy regulations, potentially accelerating the adoption of new data
sources in official statistics.

C5. Novel Protocol for the Anonymity of Data Providers in Federated
Learning

Summary While FL enables multiple data owners to train an ML model collaboratively
without exchanging training data, a central party is responsible for orchestrating the
training process. This central party is called the aggregator, since their main tasks are
collecting and aggregating model updates from the participants and redistributing the
updated global model in each training round. The aggregator has no access to training
data. However, private information can also be reconstructed from individual model
updates. Since the aggregator receives these updates directly from the FL participants,
i.e., the data holders, mapping received information to an individual contributor is trivial.
Although there are solutions in related work which create an anonymity group around all
FL contributors, they all lack communication or computational efficiency, especially when
clients drop out before completing a training round. Hence, a novel masking protocol
called DealSecAgg is proposed. By introducing a dealer party, cryptographic operations
are outsourced from both the aggregator and clients. The protocol only needs two
communication rounds (strictly less than related work) and its runtime is not increased
if clients drop out during execution. The dealer party never has access to any training
data or model updates, thus little trust is needed – apart from the requirement that the
dealer does not collude with the aggregator. A variant of DealSecAgg with multiple
dealers is also presented, in which all but one dealer may collude with the aggregator
to maintain the protocol’s integrity. Multiple experiments are performed to verify the
reduced runtimes, improved dropout resilience and enhanced communication efficiency
compared to related work. A security proof is also provided.

Federated Learning Masking Strategies In FL, masking strategies are a popular choice
to ensure that individual client updates remain private while still allowing for crypto-
graphically secure model aggregation. By adding random noise, or “masks”, to updates
before transmission, these techniques prevent attackers from linking sensitive data to
specific users. Pairwise-masking, as used in SecAgg [BIK+17] and SecAgg+ [BBG+20],
generates shared masks between client pairs, ensuring that when updates are summed,
the masks cancel out. While effective, this approach is computationally demanding,
leading to optimized variants like FastSecAgg [KRKR20], which reduces complexity using
a secret-sharing scheme. Single-masking, introduced in LightSecAgg [SNY+22], simplifies
the process by allowing unmasking in a single step but introduces additional encoding
overhead. To address these overheads, DealSecAgg is introduced to improve efficiency
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by outsourcing mask aggregation to a separate dealer, reducing computational burden
while maintaining privacy guarantees.

DealSecAgg Protocol The DealSecAgg protocol, as introduced in Chapter 6, enhances
secure aggregation in FL by introducing a dealer-assisted masking strategy that reduces
computational overhead while preserving privacy. Instead of requiring clients to establish
pairwise masks, each client generates a single random mask and sends only the mask key
to a trusted dealer. The dealer then reconstructs and aggregates the masks without ever
accessing the model updates themselves. Clients transmit their masked updates to the
aggregator, which receives the aggregated mask from the dealer and subtracts it to recover
the sum of all client updates. This process requires only two communication rounds,
making DealSecAgg significantly more efficient than previous protocols. A multi-dealer
variant further strengthens security by ensuring that privacy remains intact as long as at
least one dealer does not collude with the aggregator. By offloading mask management
to an independent entity, DealSecAgg minimizes the computational burden on clients
and reduces communication overhead while maintaining strong privacy guarantees.

Experimental Results The experimental results demonstrate that DealSecAgg signifi-
cantly improves efficiency compared to existing secure aggregation protocols. When tested
on FL with the CIFAR-10 dataset, the protocol achieved the same accuracy as standard
federated averaging, confirming that privacy-preserving masking does not degrade model
utility. In terms of computational efficiency, DealSecAgg reduced runtimes by up to 87.8%
compared to LightSecAgg [SNY+22] and even 97.6% compared to SecAgg+ [BBG+20],
particularly benefiting resource-constrained client devices. The protocol also scaled well
with increasing numbers of clients, dropouts, and dealers, maintaining low computa-
tional costs even as complexity grew. Communication overhead remained comparable
to SecAgg [BIK+17] and SecAgg+, with DealSecAgg requiring only two communication
rounds per training step, significantly reducing delays in high-latency networks. The
results confirm that DealSecAgg is a scalable solution for secure FL offering strong privacy
protection with minimal computational and communication costs.

13



Chapter 1: Introduction

1.4 Structure of this Dissertation

As summarized in Table 1.1, this dissertation is structured as follows: Chapter 2 provides
general background information for the following chapters. The main part is divided
into two parts: The first part focuses on PIAs, covering white-box attacks in Chapter 3
and black-box attacks in Chapter 4. The focus of the second part is FL, with Chapter 5
exploring strengths and practical limits of FL and Chapter 6 proposing a masking scheme
for the anonymity of FL participants. The dissertation is concluded by a summary and an
outlook in Chapter 7. In Appendices A and B, the results of additional experiments are
presented, focusing on white-box PIA explainability and the black-box PIA defense.
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Chapter 2: Background
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Chapter 3: White-box
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Chapter 4: Novel Black-Box
PIA, White-Box Comparison
and Defense
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Practical Limits of FL

RQ3 C4 [SHWF23]

Chapter 6: Efficient Protocol
for the Anonymity of FL
Participants

RQ4 C5 [SHSD24]

Chapter 7: Conclusion

Table 1.1: Overview of chapters and their connection to research questions, contributions
and publications.

1.5 List of Publications

The following is a list of the publications included in this cumulative dissertation.
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2 Background

The umbrella term machine learning (ML) describes a class of algorithms to build predic-
tive models from training data. Building on the definition in [Zho21], a data set generally
consists of multiple samples. For supervised learning1, each sample comes with a label. A
data set DSt thus contains pairs (x i, yi), where yi ∈ Y is the label of the ith sample x i ∈ X
and Y is the set of all labels (the output space). A model establishes a mapping f : X 7→ Y
from the input space X to the output space Y by learning from a training data set DSt .
The output space depends on the type of prediction problem at hand: For classification
problems, the output space is discrete, while the output space is continuous for regression
problems.

Let us revisit Example 1 of Section 1.1 and apply the notation above. Here, the model
for the recommender system maps customer data X to purchased items Y . Hence, the
output space is discrete and the model solves a classification problem. This dissertation
primarily discusses classification problems, with the exception of Chapter 4.

The key to the success of ML models is their automated optimization – the training phase.
During this phase, a model is fit to training data by algorithms. In other words, the model
“learns” to make correct predictions based on the examples contained in the training
data. Ideally, this ML model can be used afterwards to classify (respectively regress on)
previously unseen data, a property which is called generalization in the literature [Zho21].
The lifespan of an ML model, including its training, is discussed in Section 2.2.

The following sections provide the necessary background information relevant for Chap-
ters 3 to 6, the research papers of this cumulative dissertation. Although brief introduc-
tions to some of the topics are also provided within these publications, this chapter is
meant to provide a comprehensive and more detailed overview of the covered topics.
First, a popular type of ML model is introduced.

2.1 Artificial Neural Networks

While there are many different types of ML models, this dissertation is mainly concerned
with ANNs. On one hand, ANNs are generic in their design, which enables them to solve
a variety of problems. On the other hand, ANNs are extremely powerful, which has

1. The scope of this dissertation is limited to supervised learning. Although the research in this dissertation
could be applied to other fields such as unsupervised learning (ML with unlabeled data, e.g., for data
clustering), but much of related work is limited to supervised learning which motivates the scope here.
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input
layer

hidden layer

output
layer

Figure 2.1: ANN schematic diagram. By Izaak Neutelings, licensed under CC BY-SA 4.0.

been proven in many competitions2. The following introduction to ANNs is based on
[Zho21].

As their name suggests, ANNs are based on neural networks, i.e., biological nervous
systems like the human brain. At the core of such networks are neurons, which are inter-
connected. In a biological network, a neuron sends neurotransmitters to its neighbors
whenever it is “excited”, changing their electric potentials. In turn, the excitement (or
activation) of a neuron occurs when the electric potential exceeds a certain threshold. The
idea to apply these concepts in a mathematical context dates back to the 1940s [MP43].
But while natural evolution has found a way to logically adjust the neuron activation
thresholds in biological networks via learning, training algorithms for ANNs were com-
putationally too expensive for generally available hardware of the 20th century. It took
until around 2010, when the significant advantages of cheap computing power and big
data started to make the use of ANNs more popular [Zho21].

In most modern ANNs, neurons are structured by layers, with activations flowing from an
input layer through an arbitrary number of “hidden” layers to an output layer. In a fully
connected neural network, a special case of such an ANN, the neurons of one layer are all
interconnected with the neurons of its neighboring layers, but there are no connections
between neurons within a layer. This is shown in Figure 2.1.

Artificial neurons are typically equipped with non-linear activation functions such as
sigmoid or ReLu (rectified linear unit) [Zho21]. Each neuron assigns a variable weight
value w to each incoming edge from other neurons. As shown in Figure 2.2, the output
of a neuron is calculated as follows: The activation function σ is applied to the sum of
all weighted inputs from neighboring neurons and a variable bias value b. The weights

2. As a popular example, variants of ANNs have won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) many times: https://www.image-net.org/challenges/LSVRC/ (accessed on February 3, 2025)
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Figure 2.2: The activation of a neuron in an ANN is computed by summing up its n
weighted inputs x iwi, adding its bias value b and applying the activation
function σ. Adapted from Izaak Neutelings, licensed under CC BY-SA 4.0.

wi and bias values b of all neurons make up the trainable parameters of an ANN. More
details on how the parameters are trained are provided below.

2.2 The Machine Learning Pipeline

Training a model is at the core of the ML data flow. To put the training phase into
perspective, the entire lifespan of an ML model is described in this section and illustrated
in Figure 2.3. The data flow is called a pipeline [HN20] and is made up of the following
steps3:

data collection preprocessing model training inference

Figure 2.3: The ML pipeline.

Data Collection and Labeling The first step of the ML pipeline is the collection of data.
Often data is collected automatically, e.g., orders of an online shop are entered by its
customers and collected in a data base. The result of this step is a data set DSu.

Depending on the data set, the labels yi ∈ Y might be an integral part of the data, such
as in Example 1. In other scenarios however, labeling is a manual or semi-automated
and often expensive process [HZ24], especially if domain experts need to be payed to
perform the labeling. This is often the case for medical or image data.

3. While the term ML pipeline usually refers to reproducible, automated workflows in the literature [HN20],
it is used in an abstract way here, covering the manual execution of the steps as well. The number and
scope of the steps may vary depending on the source in the literature.
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Data Preprocessing and Feature Engineering DSu may still lack a certain degree of
integrity, which can get in the way of training algorithms. To ensure usability of the data,
it is often necessary to apply preprocessing steps. Depending on the data set condition,
these steps might include:

• cleaning (removing outliers or faulty data records),

• handling missing data (interpolation or removal of incomplete data records),

• standardization (alignment of image data, scaling numeric data, converting textual
attributes to class labels or numbers), and

• feature extraction: In more complicated settings, e.g., when text or audio is being
processed, features need to be extracted from the data prior to training. For
text classification, this could include introducing word embeddings, as a way of
discretizing natural language into vectors of word embeddings to make the natural
language machine readable for the ML model [WWC+19].

• Feature selection, the choice of appropriate attributes and features from the pre-
processed data, can be considered as the last step in preprocessing.

Preprocessing can be framed as a transformation from a data set DSu to a training data
set DSt ⊆ X ×Y .

Model Training After preprocessing, the model can be trained with the training data set
DSt , consisting of pairs (x i, yi). The model is trained to output the correct label yi ∈ Y
on input of a data sample x i ∈ X . A loss function quantifies the error of a model, i.e., how
much the model diverges from its optimal behavior (correctly predicting the respective
label of every sample in the training data). An example loss function for regression
problems is the mean squared error (MSE) which calculates the error between the true
labels (as in the training data) and the output of the model. The better a regression model
is trained to solve the task at hand, the lower is its resulting MSE. In general, the objective
is to minimize a model’s loss function during training. This can also be called the empirical
risk minimization approach, where the goal is to find model parameters that minimize
the risk or an objective function (such as the loss function) of the model [Vap91].

Modern ANN training algorithms use backpropagation, which typically relies on stochastic
gradient descent (SGD) or similar techniques to optimize the model’s parameters [Zho21].
In simple terms, SGD examines the output of the loss function and calculates the direction
in which the model’s parameters should be adjusted to minimize the loss. This process
involves propagating back the error calculated by the loss function into the model. Since
the direction for adjusting parameters provided by SGD (indicated by the term descent in
SGD) is only applicable to the model’s current state, these adjustments must be made
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cautiously. If the parameter values are updated too drastically, it can cause the model to
skip over a local minimum of the loss function, potentially leading to an increase in the
loss. The amount of induced change is regulated by the learning rate η∈ (0,1). In order
to slowly approach a (local) optimum of the parameter values, training processes are
always iterative, where a single round of training is called epoch. A lower learning rate
generally means that the training process will need more epochs to converge to a local
optimum, but increases the chance of actually finding a good optimum. While the details
of the backpropagation algorithm are out of scope of this dissertation, the interested
reader can be pointed to [Zho21, Chapter 5.3].

Before starting the training process, an ML model m must be constructed. For neural
networks, this means that their architecture must be designed: This includes the number
of layers, the number of neurons per layer and the type of activation function. Additional
hyperparameters concern the training process and must also be decided on [Zho21]:

• the learning rate η (controlling how much model parameters are adapted in each
training step; might also be adjusted during the training process),

• the batch size (training data samples are typically not processed individually but in
batches for performance reasons),

• the loss function (such as categorical crossentropy for classification or mean squared
error for regression problems),

• and the number of training epochs.

• Optionally, early stopping mechanisms can be provided, e.g., to stop training when
a certain performance threshold has been reached.

Choosing these hyperparameters is not trivial. In order to find optimal hyperparameters
for a given problem, there are automated tools in the area of hyperparameter optimiza-
tion (HPO), which can perform a grid search over a predefined parameter space, for
example [FH19]. When the model is designed and hyperparameters for its training are
set, each neuron in an ANN must be initialized with pre-defined or random weights.
Then, the training itself, i.e., the iterative tuning of the neurons’ weights and biases, can
begin.

During and after training epochs, the model’s performance is typically evaluated using
test data, which is a separate dataset not involved in the training process. Carefully
selected test data can help to discover overfitting, i.e., when a model is tailored well to
specific patterns in the training data, but does not generalize to other data. A clear sign
of overfitting is when the loss of a model is low for training data, but error rates on test
data are much higher [Zho21].
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Inference After a model has been trained, it can be used for its designated prediction task.
Depending on the context, it might be used internally in the model owner’s organization,
or it could be embedded into software, deployed on a server, published, archived, etc.
For some use cases, it could be important to update the trained model regularly, e.g., if
the data used as training data is changing frequently. Since predictions can be inferred
with the model, this step is often referred to as the inference phase.

2.3 Distributed Training Data

In many cases, data sets are stored on multiple premises, and not in one single place
[KMRR16]. Combining this data to train an ML model on the entirety of the data can
often unlock large potentials, as the examples in Section 2.3.2 below will show. In order to
train a model on this decentralized data, the most straightforward approach is to combine
the data into one data set and let one party train the model on this aggregated data set
(merge-then-train). The disadvantage of merge-then-train is that a single party gains
access to the whole data set. Since data potentially includes sensitive and/or personal
information, this approach is often unfavorable. As an alternative, decentralized learning
techniques can be applied, such that no data records need to be transferred to a central
party.

Some decentralized model training approaches are in the area of fully decentralized
learning or peer-to-peer learning, such as gossip learning [OHJ13, HDJ19] or swarm
learning [WHSS+21]. These techniques rely on data owners within a network without
orchestrating central parties, where trained models are exchanged with neighboring
nodes. However, the focus in this dissertation is on federated learning, a much more
popular strategy which involves a central coordinating party.

2.3.1 Federated Learning

Federated learning (FL) enables multiple data owners to train an ML model in a de-
centralized way [KMRR16, MMR+17]. While different versions of FL exist, the focus of
this work is on horizontal FL, in which the local data sets of all data owners share the
same (or similar) features but contain different samples. This is in contrast to vertical FL,
where a data set is distributed in its features but concerns the same samples across data
holders [LYY20].

A schematic overview of FL is illustrated in Figure 2.4. The data owners, also referred to
as clients or participants, initially receive a model from the central party, known as the
aggregator. Upon receiving the initial model, clients begin training for a pre-determined
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Figure 2.4: Schematic diagram of FL. The dashed lines represent data flows, while full
lines represent possible actions. This graphic is inspired by [RG23] and
includes content by Izaak Neutelings, licensed under CC BY-SA 4.0.
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number of epochs on their local data before returning their updated models. Once the
aggregator has received all client updates, it combines them to compute the next iteration
of the global model. Typically, the average update for each weight (calculated across all
client updates) is used, which is known as federated averaging (FedAvg) [MMR+17]. The
updated global model is then redistributed to the clients to start the next decentralized
training round. Depending on the context, the set of participating clients may vary in
each round. E.g., if the pool of potential clients is large, a different subset of participants
may be selected in each round to minimize computational effort while ensuring diversity
in the training contributions.

A formal definition based on [MMR+17] is presented in Section 6.2: Generally, n FL
clients have the goal of training a global model g. In each training round τ, a set of clients
Cτ is chosen from a pool of data holders such that |Cτ| ≤ n. After their local training, the
aggregator combines the clients’ model updates u to calculate the new global model for
the next round τ+1 via FedAvg:

gτ+1=
∑

ci∈Cτ

ui

|Cτ|
, with model update ui of client ci.

2.3.2 Applications of Distributed Training

A popular FL application from the real world is Google’s mobile keyboard prediction
model Gboard [HKR+18]. Installed on millions of Android devices worldwide, keyboard
inputs are stored locally. Updates to the Gboard models are trained overnight with 100
participating devices in each training round [HKR+18]. Participants may be chosen if
they are connected to a battery charger and have an active WiFi connection. The global
model is redistributed to the devices after training and customized according to individual
user inputs. FL is easily scalable beyond 100 clients, as demonstrated in the original
proposal paper [KMRR16]. Here, experiments with up to 10000 clients are discussed for
the use case of predicting comments in a social network.

In reference to Example 1, let us transfer the fictive scenario to a distributed setting:

Example 2. Consider the model owning company partnering up with other companies
who run online shops selling similar products. The idea is to combine the data of all
partnering companies, in order to train a model on a more comprehensive data set. Since
sharing customer data with competitors is not an option, FL can be applied – using an
independent trade association as their coordinating party. Now, they can cooperatively
train a model on their combined data sets, without exchanging actual data records. The
resulting model can then be used by all participants after the training process has been
completed.
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The technical requirements and challenges of such a collaborative training scenario are
covered in Chapter 5.

2.4 Privacy Risks in Machine Learning

Both centralized and distributed ML can come with risks for the privacy of data owners
and data subjects, as numerous publications have shown [LYY20, RG23]. Since privacy
and security in the context of ML have become a large field of research, the focus of this
dissertation is on selected scenarios: The possibility of extracting information from a
trained model, specifically PIAs, and training a model in a distributed way via FL. For
these scenarios, threat models and relevant attacks are summarized below.

2.4.1 Information Leakage of Machine Learning Models

When trained models are made accessible to the public, adversaries may exploit them to
extract information beyond their intended use, such as solving classification or regression
tasks. Research has shown that models often disclose more information about their
training data than the model owners might expect [RG23, LWH+22]. While overfitting
models are more likely to leak information, it has been demonstrated that overfitting is
not a necessary condition for these leaks [YGFJ18].

One of the first relevant works in this line of research was by Shokri et al. They have
introduced the membership inference attack (MIA) [SSSS17], i.e., an attack to decide
whether a specific data sample was part of a target model’s training data. While Shokri
et al. leverage a target model’s black-box access in the centralized training setting,
multiple publications have extended this approach, e.g., to white-box and distributed
settings [NSH18a] or to other model types like GANs [CYZF20, HMDDC17, HHB19].

There are several other well-studied forms of information leakage in trained ML models,
including reconstruction attacks [BCH22, CTW+21, CHN+23], model inversion [FJR15],
or model stealing in black-box scenarios [JSMA19]. Aiming to address a gap in this area
of research, this dissertation focuses on PIAs.

2.4.2 Threat Models for Property Inference

For the centralized training data setting, the data owner (as an individual or as an
organization) is assumed to have access to all training data. The ML model is assumed
to be created, trained and used on premise, such that no data is transferred to other
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parties and the data owner is also the model owner. Hence, more complex attack surfaces
such as external services for model training or insider attacks within the data owner’s
organization are out of scope. Poisoning attacks, where the adversary may control parts
of the training data, are also out of scope.

In this dissertation, the threat model for centralized learning is focused on model owners
with a published ML model. Potential adversaries have access to the trained and published
model as well as to general information about the training data or to a small excerpt from
it4. In its simplest form, publishing a trained model means uploading a model file to the
internet, i.e., releasing all trained weights and biases of a model. When adversaries can
read these weights and biases, e.g., by downloading them from a website like a legitimate
model consumer, they have white-box access to the model as illustrated in Figure 2.5.

More careful approaches to publishing an ML model usually offer an application program-
ming interface (API) to consumers outside of the model owner’s organization. Through
this API, consumers can then query the model with input data to receive its predictions.
In such a black-box scenario, the model owner stays in control of the model and can limit
its access, as depicted in Figure 2.6. For instance, model access could only be granted to
registered users, queries may be logged and rate limiting can be applied, such that only a
certain number of queries can be executed per time interval and user. Both white-box and
black-box threat models are common and realistic [SLCE23], thus both are considered in
this dissertation.

2.4.3 Property Inference Attacks

The property inference attack (PIA) was introduced by Ateniese et al. in 2015 [AMS+15].
In contrast to other types of information leakage, like MIAs, a PIA is aimed at global
statistical properties of a training data set DSt . These global properties can take many
different forms, as the following examples show:

• sentiments in emails as the training data of a spam classifier, or the volume of a
company’s transactions from a fraud detection system [MGC22],

• the most dominant medical specialty in the training data leaked from a rating-
prediction system for health care text reviews [ZTO21], or

4. While the adversary might not have access to parts of the training data in realistic scenarios, this
assumption is made in various other publications [NSH18b, SM21, TMS+21]. However, information
about the training data can also be reconstructed through separate attacks [SSSS17], even without
having access to any training data, which has been shown to be just as effective [LWH+22].
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Figure 2.5: White-box threat model for PIAs against ML systems. The dashed line repre-
sents a data flow, while full lines represent possible actions. This graphic is
inspired by [RG23] and includes content by Izaak Neutelings, licensed under
CC BY-SA 4.0.
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Figure 2.6: Black-box threat model for PIAs against ML systems. Dashed lines represent
data flows, while full lines represent possible actions. This graphic is inspired
by [RG23] and includes content by Izaak Neutelings, licensed under CC BY-SA
4.0.
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• the presence of a dialect in the training data of a speech recognition system, respec-
tively nuanced traffic information from the training data of a coarse network traffic
classifier [AMS+15].

• In [GWY+18], the authors identify whether a system has been patched against spe-
cific security breaches given a cryptocurrency mining detector trained on hardware
performance counters. They also infer the gender ratio from an income predictor,
the level of noise for images in the training data of a digit classifier, and various
demographic properties from a smile detecting model and a gender classifier.

PIAs can also be used as a building block for sophisticated MIAs [ZCSZ21]. And beyond
the standard attack scenario in which an adversary maliciously gathers information, a
PIA can also serve as a tool for fairness audits – since global properties of a training data
set can indicate bias of a target model5.

The original PIA proposal is aimed specifically at the leakage of hidden Markov models
(HMMs) and support vector machines (SVMs) in a white-box threat model [AMS+15].
Ganju et al. adapted the approach to attack ANNs. Like Shokri et al.’s MIA [SSSS17],
both PIA proposals use the technique of shadow model training [GWY+18], involving the
training of multiple shadow models which each mimic the target model. The weights of the
shadow models are then used as a training data set for the adversary’s property inferrer
– which is implemented as an ANN itself. A detailed description of the state-of-the-art
white-box attack by Ganju et al. [GWY+18] is described in Section 3.2.4. Different flavors
of the black-box attack are presented in Section 4.2.

Our formal definition of a PIA6 is based on [SE22]. Both the model owner and the
adversary A have access to a public distribution of data D= (X ,Y ) with data X and
corresponding labels Y . Both parties also have access to two distribution transforming
functions G0 and G1. Property inference is now defined as a game in which the model
owner trains a model by using training data from either of the distributions G0(D) or
G1(D), i.e., DSt← G0(D) or DSt← G1(D). After training model m with DSt , the trained
model is released to the adversary. The task of the adversary is to infer whether m was
trained with G0(D) or G1(D), i.e., to infer the value b= {0,1} of Gb(D).

5. There is a large body of research around the topic of fairness in ML which is out of scope for this
dissertation [MMS+21]. A popular example for bias in a real-world ML system is demonstrated in
[ALML16].

6. This definition covers the classic way of interpreting property inference as a classification problem, i.e.,
the adversary infers a property value from a limited set of values. While most of the PIA literature
follows this approach (including [AMS+15] and [GWY+18]), Chapter 4 is focused on PIAs as a regression
problem. When formulating property inference as a regression problem, the adversary tries to infer a
property value from a continuous range of values, e.g., from the range of 0 to 1.
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After receiving m, the adversary uses algorithm H to make its prediction b̂ of Gb̂(D).
Therefore, we can define the adversary’s advantage by using H in the following way:

AdvH = |Pr[b̂|b= 1]−Pr[b̂|b= 0]|.

Example 3. Revisiting the domain of Example 1 once more, the distribution D= X ,Y
would be defined over customer data X and product labels Y . A PIA could be targeted at
the gender distribution of customers, with G0(D) defined as the transformation over D
such that 80% of the customer data is male and G1(D) for an equal split of 50% males
and 50% females. The adversary thus wants to infer whether the company’s customers
are predominantly male or of a balanced nature.

By basing the definition on publicly known functions which work on the same underlying
distribution D, a wide range of possible attack goals and scenarios (even beyond PIAs)
can be captured [SE22].

A new approach to black-box PIAs called Kullback-Leibler (KL) divergence has been recently
introduced by Suri et al. [SLCE23]. For this KL divergence attack, the adversary first
samples data from G0(D) and G1(D). These two auxiliary data sets are then used to train
multiple shadow models M0 and M1, just like in the other attacks mentioned above. The
adversary uses an attack data set DSatt to query both the shadow models and the target
model m. Now for all pairs of shadow models (m0,m1) ∈ M0×M1, the estimated KL
divergence from m to m1 is subtracted from the divergence of m to m0. The divergences
are calculated using the outputs of the models on the input of DSatt. Then, the adversary
calculates the sum of all the differences calculated above

∑

mi
0∈M0

∑

j j
1∈M1

KL[m(x),mi
0(x)]−KL[m(x),m j

1(x)] (2.1)

with x = DSatt and the KL divergence KL. If the result7 of Equation 2.1 is positive, the
sum of all divergence differences between the outputs of m1 ∈M1 and m is smaller than
the sum of divergences between m0 ∈M0 and m – thus the adversary predicts b̂= 1, and
vice versa. The main advantage of this attack is that significantly less shadow models
need to be trained. Suri et al. claim that the attack works with as little as 5 shadow
models per property, although an increased number of shadow models improves the
results [SLCE23]. This is in contrast with training thousands of shadow models, which is
needed to carry out the original PIA proposals [AMS+15, GWY+18].

7. Note that this is a simplified explanation of the attack. For more details, refer to [SLCE23, Section II-B].
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2.4.4 Threat Models for Distributed Training

In distributed ML training settings, model training always entails communication with
other parties. In FL, each client communicates with the aggregator – while both the
clients and the aggregator could be controlled by an adversary. Note that in the plain
FL protocol, the aggregator receives model updates from the clients in the clear, which
means that the aggregator has white-box access to individual client model parameters.

There are two main threat models to consider in distributed settings: In an honest-but-
curious (or passive) setting, infiltrated parties follow the protocol but try to gain as much
information as possible. This means that the training process is executed as expected,
but the adversary collects all information available and can run further analyses. In
contrast, the malicious (or active) setting allows corrupted parties to deviate from the
protocol. Hence infiltrated clients could send arbitrary updates to the aggregator and the
aggregator could send arbitrary model updates to the clients, allowing for sophisticated
attacks.

In this dissertation (specifically Chapter 6), the focus is primarily on the anonymity
of FL clients: Thus, a corrupted aggregator is considered, who tries to link inferred
information from model updates to individual clients as illustrated in Figure 2.7. The
protocol presented in Chapter 6 is tailored for the honest-but-curious setting, although
an extension to the malicious setting is discussed.

2.4.5 Attacks on Distributed Training Processes

Since the aggregator has full white-box access to the clients’ model updates in plain FL,
all attacks on trained models which have been mentioned above could be carried out by
an infiltrated aggregator on the received client updates. Furthermore, the aggregator is
aware of which client has submitted each update. Together with the ability to compare the
results of attacks on different individual contributions, this provides powerful adversarial
capabilities and enables precise, fine-grained attacks [LYY20].

In the distributed setting, poisoning attacks are a natural threat, since an adversary
controls part of the training data if a client has been infiltrated. While still considering
this kind of attack as out of scope, the interested reader can be pointed to [BCMC19].
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Figure 2.7: Threat model for FL with infiltrated aggregator. Dashed lines represent data
flows, full lines represent possible actions. The adversary has access to all
local models, arrows omitted for clarity. This graphic is inspired by [RG23]
and includes content by Izaak Neutelings, licensed under CC BY-SA 4.0.
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2.5 Preventing Information Leakage

Two of this dissertation’s contributions (C.3 and C.5) concern the mitigation of PIAs and
the anonymity of FL clients. Related work concerning these topics is briefly summarized
here.

2.5.1 Mitigating Property Inference

Differential privacy (DP) [Dwo06] is a privacy model aimed at reducing the impact of
individual contributions to a computation. This is achieved by distorting the computation
with randomness. In ML, or more specifically privacy-preserving machine learning (PPML),
DP is often used to limit the influence of individual samples from a training data set on a
trained model, thereby mitigating MIAs and other attacks targeting individuals [YGFJ18].
However, DP is not suitable as a defense strategy against PIAs, since they target global
training data properties [AMS+15, SE22].

Due to the nature of ML models, removing sensitive attributes from training data does
not help as well: Correlated information contained in other attributes is hard to rule out
and can still lead to a leak of sensitive information [ZTO21]. In general, there are no
established defense mechanisms against PIAs as of yet [SE22]. Hartmann et al. present a
study on the reasons for property leakage and discuss directions for defense strategies on
a theoretical level [HMP+23]. They suggest to use causal learning [TSN20], minimizing
wrong inductive bias, e.g., by further optimizing the architecture of potential target
models, and to increase the size of training data sets. Another recent proposal by Suri et
al. is to change the distribution of training data itself, which hides the true distribution of
a sensitive property [SLCE23]. However, this entails a major manipulation of the training
data, just as the suggestion of node multiplicative transformations by Ganju et al. means
a major change in model architecture [GWY+18]. Hence, all of these strategies violate
first requirement formulated for RQ2 in Section 1.2. In contrast, the strategies presented
in Chapter 3 and Chapter 4 do not require changes in the model architecture or in the
training data set, as they are variants of adversarial learning.

2.5.2 Adversarial Learning

The concept of adversarial learning is most commonly known for its application in
training a generative adversarial network (GAN). A GAN [GPAM+14] consists of two
main components, each modeled as an ANN: a generator G and a discriminator D. The
concept is illustrated in Figure 2.8. While G tries to generate plausible data from latent
noise, the task of D is to discriminate fake data produced by the generator from real data,
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Figure 2.8: Schematic diagram of a generative adversarial network (GAN). By Janosh
Riebesell, MIT licensed.

i.e., reveal the shortcomings of G. When D detects implausible results, i.e., correctly
identifies fake data, a penalty is backpropagated into G. This is how the generator’s
weights are adapted to produce more realistic samples over time. Thus, the ultimate
goal of a GAN is to train a generative model G which is able to create high-quality data,
e.g., text or images, and fool the discriminator D. During its training process, G and D
are trained in parallel. Therefore, the generator is forced to produce more realistic data
samples, while the discriminator can adjust to the improving capabilities of the generator.
So even though the discriminator is not necessarily used after training, it plays a vital
part in training the generator – as an adversary to the generator.

Since its introduction in 2014 [GPAM+14], adversarial learning has been successfully
applied to other ML domains: For instance, it has been shown to be the most reliable
defense strategy [ACW18] against adversarial examples or model poisoning – attacks
aimed at manipulating an ML model into making false predictions [SZS+13, GSS14].
More related to the topic of this dissertation, adversarial training has also been introduced
as a successful mitigation strategy against black-box MIAs [NSH18b]. And as discussed
in Section 4.4, it can also be used to achieve fairness in ML decisions [GRLD20].

The concept of adversarial learning is applied in both chapters Chapter 3 and Chapter 4
for defending against PIAs. Before introducing these strategies, methods for preventing
information leakage on a different level need to be discussed: leakage during collaborative
training processes, the topic of Chapter 6.

2.5.3 Secure Aggregation for Federated Learning

The state-of-the-art techniques to achieve anonymous training contributions for FL clients,
in the sense that the aggregator cannot link individual model updates to specific clients, are
based on secure aggregation. While there are secure aggregation strategies based on secure
multi-party computation (SMPC) and homomorphic encryption (HE) as summarized in
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Section 6.3, masking has the potential to be much less computationally expensive while
being just as cryptographically secure [MÖJC23].

The intuition behind FL masking strategies is that clients can add a pseudo-random mask
to their update before sending it to the aggregator. When the central party has received
all updates, they can still be aggregated by computing a sum. Afterwards, the aggregated
sum over all pseudo-random masks can be subtracted from the aggregated (masked)
updates, such that the average (unmasked) update can be computed for the next training
round. As long as the number of participating clients in a training round is high enough
and the aggregator does not learn single masks, the aggregator has no insights into
individual client contributions.

There are two main challenges to overcome in designing a good masking protocol:
Computing (respectively serving) the aggregated mask to the aggregator and handling
dropouts, i.e., clients who lose their connection to the aggregator within a training round.
In Chapter 6, the newly proposed DealSecAgg protocol with a focus on communication
and computation efficiency is compared to three other state-of-the-art masking strategies.
As the theoretical analysis and experiments show, the other protocols all lack efficiency in
overcoming either of the two challenges – being not resilient regarding dropouts or lacking
scalability regarding mask aggregation in the first place, in contrast to DealSecAgg.
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Abstract

This work investigates and evaluates defense strategies against property inference attacks
(PIAs), a privacy attack against machine learning models. While for other privacy attacks
like membership inference, a lot of research on defense mechanisms has been published,
this is the first work focusing on defending against PIAs. One of the mitigation strategies
we test in this paper is a novel proposal called property unlearning. Extensive experi-
ments show that while this technique is very effective when defending against specific
adversaries, it is not able to generalize, i.e., protect against a whole class of PIAs. To
investigate the reasons behind this limitation, we present the results of experiments with
the explainable artificial intelligence tool LIME and the visualization technique t-SNE.
These show how ubiquitous statistical properties of training data are in the parameters of
a trained machine learning model. Hence, we develop the conjecture that post-training
techniques like property unlearning might not suffice to provide the desirable generic
protection against PIAs. We conclude with a discussion of different defense approaches,
a summary of the lessons learned and directions for future work.

3.1 Introduction

The term machine learning (ML) describes a class of self-adapting algorithms which fit
their behavior to initially presented training data. It has become a very popular approach
to model, classify and recognize complex data such as images, speech and text. Due
to the high availability of cheap computing power even in smartphones and embedded
devices, the presence of ML algorithms has become a common sight in many real-world
applications. At the same time, issues related to privacy, security, and fairness in ML are
increasingly raised and investigated.

This work1 focuses on ML with artificial neural network (ANN). After an ANN has
been constructed, it can “learn” a specific task by processing big amounts of data in an
initial training phase. During training, the connections between the network’s nodes (or
neurons) are modified such that the performance of the network regarding the specified
task increases. After a successful training phase, the model, i.e., the network, is able
to generalize, and thus enables precise predictions even for previously unseen data
records. But while the model needs to extract meaningful properties from the training
data to perform well in its dedicated task, it usually “remembers” more information
than it needs to [SRS17]. This can be particularly problematic if training data contains
private and sensitive information such as intellectual property or health data. The
unwanted manifestation of such information, coupled with the possibility to retrieve

1. This is an abbreviated conference version. For the full paper, please refer to [SWDF22].

37



Chapter 3: Lessons Learned: Defending Against Property Inference Attacks

it, is called privacy leakage. In recent years, a new line of research has evolved around
privacy leakage in ML models, which investigates privacy attacks and possible defense
mechanisms [RG20].

In this paper, we focus on a specific privacy attack on ML models: the property inference
attack (PIA), sometimes also called distribution inference [AMS+15, GWY+18]. Given a
trained ML model, PIAs aim at extracting statistical properties of its underlying training
data set. The disclosure of such information may be unintended and thus dangerous as
the following example scenarios show:

1. Computer networks of critical infrastructures have collaboratively trained a model
on host data to detect anomalies. Here, a PIA could reveal the distribution of host
types in the network to refine a malware attack.

2. Similarly, a model within a dating app has been trained on user data to predict
good matches. Another competing app could use a PIA to disclose properties
of the customer data to improve its service, e.g., the age distribution, to target
advertisements more precisely.

If such models are published or leaked to the public on other channels, PIAs can reveal
secrets of their training data. These secrets do not need to be in obvious correlation
to the actual model task, like the property host type in the anomaly detection model of
example 1.

Contributions

To the best of our knowledge, we are the first to evaluate defense strategies against PIAs,
such as a novel approach called property unlearning. Our goal with property unlearning
is to harden a readily trained ANN, further called target model, against PIAs, i.e., against
the adversarial extraction of one or more predefined statistical properties in the training
data set of a target model. The idea is to deliberately prune chosen properties from a
target model, while keeping its utility as high as possible, thus protecting the privacy of
the data set used for training.

Property unlearning is designed for the white-box attack scenario, where the adversary
has full access to the internal parameters of a target model which are learned during the
training phase. We have conducted thorough experiments which show that (a) property
unlearning allows to harden ANNs against a specific PI attacker with small utility loss but
(b) it is not possible to use the approach to completely prune a property from a trained
model, i.e., to defend against all PI attackers for a chosen property in a generic way.

38



3.2 Background

Consequently, we have conducted further experiments with the XAI tool LIME [RSG16]
and the visualization framework t-SNE [VdMH08]. Both provide evidence for the conjec-
ture that properties are ubiquitous in the trained weights of an ANN, such that complete
pruning of a property from a trained ANN is not possible without greatly limiting its
utility.

In the full version of this paper, we additionally investigate the impact of simple training
data preprocessing steps such as adding Gaussian noise to images of a training data set
on the success rate of PIAs. This is meant as an inspiration for possible alternatives to
techniques such as differential privacy, which has been established as a de-facto standard
against many privacy attacks with the exception of PIAs [RG20, SKMP22].

Organization of this paper

Section 3.2 briefly explains ANNs, ML privacy attacks, our threat model and PIAs. Sec-
tion 3.3 deals with an overview of related work. Our defense strategy property unlearning
is presented in Section 3.4. Section 3.5 describes our property unlearning experiments,
including our findings regarding its limitations. We further experimentally explore the
reasons for these limitations via the XAI tool LIME and t-SNE visualization in Section 3.6.
We summarize and discuss our findings in Section 3.7. Directions for future work are
provided in Section 3.8, and Section 3.9 concludes this paper.

3.2 Background

Notation We denote the set of integers [k] = {1,.. . ,k}. Properties of a data set are
denoted as blackboard bold, e.g., A and B. Replacing the property-subscript with an ∗,
we reference all possible data sets DS, e.g., DS∗ means both DSA and DSB. An absolute
increase of x percent points is denoted as +x%P.

3.2.1 Artificial Neural Networks

An artificial neural network (ANN) consists of interconnected neurons, organized in
multiple layers. Inputs are propagated through the network layer by layer. For this,
each neuron has an associated weight factor w and a bias term b. A (usually non-linear)
activation function σ computes each neuron’s output on a given input, specifically for a
neuron n and input x: n=σ(w · x+ b)
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Prior to training an ANN, all neurons are individually initialized with random weights
and biases (also called parameters). Utilizing a labeled training data set in an iterative
training process, e.g., batch-wise backpropagation, these parameters are tuned such that
the network predicts the associated label to its given input. The speed of this tuning
process, respectively its magnitude per iteration, is controlled by the learning rate. The
higher the learning rate, the more the parameters are adapted in each round.

3.2.2 Machine Learning Privacy Attacks

In general, privacy attacks against ML models extract information about training data of
a target modelM or the target model itself from its trained parameters. Some attacks,
like membership inference [SSSS17] extract information about a single record from a ML
model. Other attacks try to recover the model itself [PMG+17] or to recover the training
data set or parts of it [FJR15]. In contrast, this paper focuses on property inference attacks
(PIAs), which reveal statistical properties of the entire training data set. This is not to
be confused with attribute inference attacks, e.g., [SS20], which enable the adversarial
recovery of sensitive attributes for individual data records from the training data set.

3.2.3 Threat model

In the remainder of this paper, the following threat model is assumed: A model owner has
trained and shared the model of an ANN. The owner wishes to keep their training data
and its property A or B (a statistical property of the training data) secret. An example
may be a company that has trained a model on its customer data and does not want to
disclose any demographic information about their customers. If an attacker gets access
to this model, they can perform a PIA and reconstruct the demographics of its training
data, breaching the desired privacy. In another scenario, an attacker might want to
gather information about a computer network before launching a malware attack. Such
networks are often monitored by intrusion detection systems (IDS), which have been
trained on network traffic to detect unusual behavior. Having access to this IDS model,
the attacker could infer the OS most computers are running on in the system, or even
detect specific vulnerabilities in the network, as demonstrated in [GWY+18].

We assume that the attacker has full white-box access to the target model M . This
means that the attacker can access all parameters and some hyperparameters ofM : The
adversary has a complete overview of the ANN architecture and can access the values
of all weights and biases, as well as other useful hyperparameters of M such as the
batch size during training, the learning rate and the number of training epochs. This
helps the adversary to tailor their shadow models (see Section 3.2.4) as close to the
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target model as possible. In contrast, an adversary in a black-box scenario typically has
oracle-access to the target modelM , allowing only to send queries toM and to analyze
the corresponding results, i.e., the classification of a data instance.

As assumed in previous defenses against privacy attacks [NSH18, SM21, TMS+21], the
attacker can access parts of the target model’s training data, or knows a distribution of
the training data, but cannot access the whole training data set. Information about the
training data may also be reconstructed like in [SSSS17], which is just as effective for
privacy attacks [LWH+22].

3.2.4 Property Inference Attacks (PIAs)

[AMS+15] were the first to introduce PIAs, with a focus on hidden Markov models and
support vector machines. In this paper, we refer to the state-of-the-art PIA approach
by [GWY+18] who have adapted the attack to fully connected neural networks, a popular
sub-type of ANNs. In a typical PIA scenario, an adversary has access to a trained ML
model called target modelM , but not its training data. By using the model at inference
time, a PIA enables the adversary to deduce information about the training data which
the model has learned. Since the adversary’s tool for the attack is a ML model itself, we
call it adversarial meta classifierA . Thus, the adversary attacks the target modelM by
utilizing the meta classifierA to extract a property from its training data.

A PIA typically involves the following steps [GWY+18], see also Figure 3.1:

1. Define (at least) two global properties about the target model’s training data set,
e.g., A and B. A successful PIA will show which property is true or more likely for
the training data set of the given target model.

2. For each defined property, create an auxiliary data set DS∗, i.e., DSA and DSB. Each
auxiliary data set fulfills the respective property.

3. Train multiple shadow models on each auxiliary data set DS∗. Shadow models have
the same architecture as the target model. Due to the randomized nature of ML
training algorithms the weights and biases of every model have different initial
values.

4. After training the shadow models, use their resulting parameters (weights and
biases) to train the adversarial meta classifierA . During this training, the meta
classifierA learns to distinguish the parameters of target models that have been
trained on data sets with property A and data sets with property B, respectively. As
a result,A is able to determine which of the properties A or B is more likely to be
true for the training data of a given target model.
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Figure 3.1: Property inference attack (PIA).

For example, suppose the task of a target modelM is smile prediction with 50000 pictures
of people with different facial expressions as training data. For a PIA, the adversary
defines two properties A and B about the target model’s training data set, e.g.,

A:proportion of male:female data instances 0.7:0.3

B:male and female instances are equally present.

GivenM , the task of the adversary is to decide which property describesM ’s training
data set more accurately. As mentioned in step 2., the adversary first needs to create
two auxiliary data sets DSA and DSB, with the male:female ratios as described in the
properties above. After training shadow models on the auxiliary data sets, the adversary
uses the trained weights and biases of the shadow models to train the adversarial meta
classifierA , which is ready for the adversarial task after its training.

The meta classifier can also be easily extended to more than two properties: For k
properties, the adversary needs k auxiliary training data sets, trains shadow models in k
groups and constructsA as a classifier with k outputs instead of two.
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3.3 Related Work

This section briefly summarizes related work in the area of ML privacy attacks and
defenses.

PIA defense strategies Effective universal defense mechanisms against PIAs have not
been discovered yet [RG20]. Differential privacy [DMNS06] is a promising approach
against other privacy attacks like membership inference [RG20, SKMP22]. However, it
only slightly decreases the success rate of PIAs, since it merely limits the impact of each
single input, but does not influence the presence of general properties in the training
data set [AMS+15, LWH+22, ZTO21].
[GWY+18] propose node multiplicative transformations as another defense strategy. As
long as an ANN uses ReLU or LeakyReLU as an activation function, it is possible to multiply
the parameters of one layer by some constant and dividing the constants connecting it
to the next layer by the same value without changing the result. Although they claim
that this might be effective, this strategy is limited to ReLU and LeakyReLU activation
functions and requires changes in the model architecture. In contrast, the approaches
we test in this paper do not require any changes to the target model and do not require
specific activation functions.

Other PIA versions [MSDCS19] explore PIAs in the context of collaborative learning:
Herein, the adversary is a legitimate party in a collaborative setting, where participants
jointly train a ML model via exchanging model updates – without sharing their local and
private data. The authors present an active and a passive method to infer a property of
the training data of another participant by analyzing the shared model updates of other
participants.

Focusing on a black-box scenario, [ZTO21] study both single- and multi-party PIAs for
tabular, text and graph data sets. While their attack does not need access to the parameters
of a target model, several hundreds of queries to the target model are needed for the
attack to be successful.

An advanced PIA by [MGC22] introduces poisoning as a way to ease the attack in a
black-box scenario. This requires the adversary to control parts of the training data. In
this adversarial training data set, the label of data points with a target property A are
changed to an arbitrary label l. After training, the distribution of a target property can
then be inferred by evaluating multiple queries to the target model – loosely summarized,
the more often the label l is predicted, the larger the portion of samples with property A
is in the training data set.

[SS20] propose a very similar attack to property inference, which we call attribute
inference: They assume a ML target model which is partly evaluated on-premise and
partly in the cloud. Their attribute inference attack reveals properties of a single data
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Figure 3.2: Property unlearning as a defense strategy against PIAs.

instance, e.g., whether a person wears glasses on a photo during the inference phase. In
contrast, we focus on PIAs which reveal global properties about a whole training data
set.

3.4 Property Unlearning

In this section we elaborate on our novel defense strategy against PIAs, which we call
property unlearning. An overview of the approach is given in Figure 3.2.

As a prerequisite, an adversarial classifierA needs to be constructed. This is achieved as
described in Section 3.2.4: constructing one auxiliary data set DS for each property A
and B, and training a set of shadow models for each property with the corresponding data
sets DSA and DSB. Note that when creating an adversary as a preparation for protecting
one’s own model, the auxiliary data sets DSA and DSB can trivially be subsets of the
original training data of the target model, since the model owner has access to the full
training data set. This yields a strong adversarial accuracy as opposed to an outside
adversary who might need to approximate or extract this training data first. The same
holds for white-box access to the model, which is straightforward for the owner of a
model. Hence, the training of a reasonably good adversarial meta classifierA (> 99%
accuracy) as a first step of property unlearning is easily achievable for the model owner
(see Section 3.5). As a second prerequisite, the target modelM , which the owner wants
to protect, also needs to be fully trained with the original training data set – having either
property A or B.

To unlearn the property fromM , we use backpropagation. As in the regular training
process, the parameters of the target modelM are modified by calculating and applying
gradients. But different from original training, property unlearning does not optimize
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M towards better classification accuracy. Instead, the goal is to disable the adversaryA
from extracting the property A or B fromM while keeping its accuracy high.

In practice, the output of the adversarial meta-classifier A is a vector of length 2 (or:
number of properties k) which sums up to 1. Each value of the vector corresponds to
the predicted probability of a property. As an example, the output [0.923,0.077] means
that the adversaryA is 92.3% confident thatM has property A, and only 7.7% to have
property B. Thus, property unlearning aims to disable the adversary from making a
meaningful statement aboutM , i.e., an adversary output of [0.5,0.5] is pursued – or
more generally [1

k , . . . , 1
k ] for k properties.

Algorithm 1 shows pseudocode for the property unlearning algorithm. The termination

Algorithm 1 Property unlearning for a target modelM , using property inference adver-
saryA , initial learning rate l r, and set of properties P = {A,B, ...}

1: procedure PROPUNLEARNING(M ,A , l r, P)
2: k←|P| ▷ number of properties (default 2)
3: Y ←A (M ) ▷ original adv. output |Y |= k
4: let i ∈ [k]
5: while ∃i : Yi≫

1
k or Yi≪

1
k do

6: g← gradients forM s.t. ∀i : Yi→
1
k

7: M ′← apply gradients g onM with l r
8: Y ′←A (M ′) ▷ update adversarial output
9: if ADVUTLT(Y ′) < ADVUTLT(Y ) then

10: M ,Y ←M ′,Y ′

11: else
12: l r← l r/2 ▷ retry with decreased l r
13: end if
14: end while
15: returnM
16: end procedure
17: function ADVUTLT(adv. output vector Y )
18: k←|Y | ▷ number of properties (default 2)
19: return max

i∈[k]
(|Yi−

1
k |) ▷ biggest diff. to 1

k

20: end function

condition for the while-loop in line 5 addresses the ability of the adversaryA : As long
as A is significantly more confident for one of the properties, the algorithm needs to
continue. After calculating the gradients g automatically via TensorFlow’s backtracking
algorithm in line 6, the actual unlearning happens in line 7. Here, the gradients are
applied on the parameters of modelM , nudging them to be less property-revealing.
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Figure 3.3: A visualized example of the decreasing adversarial utility during property
unlearning with one adversary for a single target modelM . In each round,
the adversarial utility ofM either decreases further towards the goal of 0
(green bar), or the unlearning round is repeated with a smaller learning rate
(after a red bar). The final result of round 8 is a completely unlearned target
modelM with an adversarial utility close to 0, see Algorithm 1.

As described in Section 3.2.1, the learning rate controls how much the gradients influence
a single step. If the parameters have been changed too much, the current M ′ gets
discarded and the gradients are reapplied with half the learning rate (see line 12 and
visualization in Figure 3.3). Reducing the learning rate to its half has yielded the most
promising results in our experiments.

The effect of property unlearning in between rounds of the algorithm is measured by
the adversarial utility, see lines 17–20. We calculate the adversarial utility by analyzing
the adversary output Y . Recall that Y is a vector with k entries, with each entry Yi
representing the adversarially estimated probability that the underlying training data set
of the target modelM has property i. The adversarial utility is defined by the largest
absolute difference of an entry Yi to 1

k (see line 19). Remember that the goal of property
unlearning is to nudge the parameters ofM such that the output of the adversary is
close to 1

k for all k entries in the output vector Y . The condition in line 9 therefore
checks whether the last parameter update fromM toM ′ was useful, i.e., whether the
adversarial utility has decreased. Only if this is the case, the algorithm gets closer to the
property unlearning goal. Otherwise, the last update inM ′ is discarded and the next
attempt is launched with a lower learning rate. A visualization of an exemplary run is
given in Figure 3.3.
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Experiment Data set Size Target Property |DS∗| Shadow model
accuracy

Init. PIA
accuracy

EMNIST [LBBH98] 70K Gaussian noise 12K 88.3–94.5% 100%

ECensus Census Income 48K gender distrib. 15K 84.7% 99.3%

EUTK [ZSQ17] 23K race distrib. 10K 88.0–88.3% 99.8%

Table 3.2: The data sets used for the experiments. init.=initial, distrib.=distribution

3.5 Property Unlearning experiments

To test property unlearning in practice, we have conducted extensive experiments with
different data sets.

Adversarial property inference classifier As described in Section 3.2.4, we use the attack
approach by [GWY+18]. This means that each instance of an adversary A is an ANN
itself, made up of multiple sub-networks φ and another sub-network ρ. Per data set,
we train one such adversarial meta classifierA , which is able to extract the respective
properties A and B from a given target model.

Depending on the number of neurons in a layer of the target model, our sub-NNs φ
consist of 1–3 layers of dense-neurons, containing 4–128 neurons each. In the adversarial
meta classifier A , the number of layers and number of neurons within the layers are
proportionate to the input size, i.e., the number of neurons in the layer of the target model.
These numbers are evaluated experimentally, such that the meta classifiers perform well,
but do not offer more capacity than needed (which would encourage overfitting).

Our sub-network ρ ofA consists of 2–3 dense-layers with 2–16 dense-neurons each. In
our experiments the output layer always contains two neurons, one for each property A
and B. For each of the three data sets in the next section, we apply the following steps to
prepare for property unlearning:

• Design appropriate target modelM for task.

• Extract two auxiliary data sets DSA and DSB for each property A and B.

• Use each DSA and DSB as training data for 2000 shadow models. Shadow models
have the same architecture as the target modelM .

• Design and train an adversarial meta classifierA on parameters of shadow models.

This adversarial modelA may then be employed in our property unlearning algorithm
(see Section 3.4).
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Data sets and network architectures We use three different data sets to evaluate our
approach, as summarized in Table 3.2. For each data set and auxiliary data set DS∗, we
train 2000 shadow models and 2000 target models. For faster training and a more realistic
scenario, the auxiliary data sets DS∗ are smaller. While the shadow models are used to
train the adversariesA , the target modelsM are the subjects of our experiments, i.e.,
we apply property unlearning on these target models and measure the resulting privacy-
utility trade-off. The shadow models and target models share the same architecture per
data set.

MNIST is a popular database of labeled handwritten digit images. As in [GWY+18], we
distort all images with Gaussian noise (parameterized with mean= 35, sd= 10) in a
copy of the database. We choose the property of having original pictures without noise
(AMNIST) and pictures with noise (BMNIST). Our models for the MNIST classification task
are ANNs with a preprocessing-layer to flatten the images, followed by a 128-neurons
dense-layer and a 10-neuron dense-layer for the output.

Census is a tabular data set for income prediction. The PIA aims at extracting the ratio
of male to female persons in the database, which is originally 2:1. The auxiliary data set
for property ACensus DSACensus

has a male:female ratio of 1:1, DSBCensus
the original ratio of

2:1. The architecture of the Census models consists of one 20-neurons dense-layer and a
2-neurons output dense-layer.

UTKFace contains over 23000 facial images. We choose gender recognition as the task for
the target modelsM . Concerning our choice of properties, we create a data set consisting
only of images with ethnicity White from the original data set for property AUTK. The
data set for property BUTK is comprised of images labeled with Black, Asian, Indian, and
Others.

For UTKFace gender recognition, we use a convolutional neural network (CNN) ar-
chitecture with three sequential combinations of convolutional, batch normalization,
max-pooling and dropout layers, leading to one dense-layer with 2 neurons.

3.5.1 Experiment 1: Property unlearning

In this section we experimentally evaluate the performance of property unlearning to
defend against a specific PIA adversary. For each of the data sets described above, we
have trained 2000 test models in the same way we have created the shadow models. We
refer to these test models as target models.

The figures in this section contain boxplot-graphs. Each boxplot consists of a box, which
vertically spans the range between the first quartile Q1 and the third quartile Q3, i.e., the
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Figure 3.4: Each experiment before and after property unlearning, depicting the certainty
of adversaryA in classifying A and B. The dashed lines represent the avg.
accuracy before property unlearning was applied on 2000 target models.
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values before property unlearning was applied on 2000 target models.
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range between the median of the upper and lower half of the data set. The horizontal
line in a box marks the median and the diamond marker indicates the average value.

MNIST For the MNIST experiment EMNIST, the adversary classifies the properties A and B
with high certainty in all instances before unlearning, see Figure 3.4a. After unlearning,
the adversary cannot infer the property of any of the MNIST target models MMNIST –
as intended. Meanwhile, the accuracy of the target modelsMMNIST decreased slightly
from an average of 94.6% by 0.4%P to 94.2% for models with property A, respectively
from 88.3% by 0.8%P to 87.5% for models with property B (see Figure 3.5a). Recall
that property B was introduced by applying noise to the training data, hence the affected
models perform worse in general.

Census Property unlearning was also successfully applied in the ECensus experiment to
harden the target modelsMCensus against a PI adversaryACensus, see Figure 3.4b. Note
that the performance of ACensus is not ideal for property A, classifying some of the
instances incorrectly. However, 99.3% of the 2000 instances were classified correctly by
the adversary before property unlearning. As desired, the output ofACensus is centered
around 0.5 for both properties after property unlearning. The magnitude of the target
models’ accuracy loss is small, with an average drop of 0.1%P for property A (84.8% to
84.7%) and 0.3%P (84.6% to 84.3%) for property B, see Figure 3.5b.

UTKFace In the EUTK experiment, property unlearning could be successfully applied to
all models (see Figure 3.4c) to harden the target models against PIAs. On average, the
accuracy of the target models dropped by 1.3%P (from 88.2% to 86.9%) for models
trained with the data set DSA and by 0.1%P (from 87.9% to 87.8%) for target models
trained with DSB, see Figure 3.5c. This yields an average accuracy drop of 0.8%P across
the target models for both properties (from 88.1% to 87.3%).

3.5.2 Experiment 2: Iterative property unlearning

In the previous section, the results of Experiment 1 have shown that property unlearning
can harden a target modelM against a single PI adversary, i.e., a specific adversarial
meta classifierA (see Figure 3.2). The setup of Experiment 2 aims to improve that by
generalizing the unlearning. Therefore, the same target modelM is unlearned iteratively
against a range of different adversary instancesA (see Figure 3.6). The results of our
experiments are based on 200 target models. We unlearn each initial target model
M (0) iteratively for n different adversarial meta classifiers Ai, where n= 15. After
that, the resulting iteratively unlearned target modelM (n) is tested by another distinct
adversarial meta classifier. To increase the significance of our results, we choose to
test the resulting target model M (n) with m= 5 additional distinct adversarial meta
classifiers. Furthermore, we apply a 4-fold cross validation technique to this constellation
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Figure 3.6: In reference to Figure 3.2, iterative property unlearning works by performing
single property unlearning for n different adversarial meta classifier instances
A iteratively on a target modelM (0). The resulting target modelM (n) is
then evaluated by additional m instances ofA .

of in total 20 distinct adversarial classifiers. Finally, the results are plotted in boxplots
similar to Experiment 1: Here, each boxplot is visualizing 200 (target models)∗4 (folds)∗
5 (adversary outputs in a fold)= 4000 data points.

The shadow models which were used to train the 20 adversariesA have been grouped
such that the 5 testing adversaries’ training set is disjunct from the training set of the 15
adversaries used for unlearning. The order of the 15 adversaries for unlearning has been
chosen randomly for each of the 200 target modelsM .

The overall results on the MNIST data set in Figure 3.7 show the iterative unlearning
process for property A and B. Each column on the x-axis represents an iteration step
of the iterative unlearning procedure. On the y-axis, the prediction of the adversary
regarding the corresponding property is plotted, which is ideal for property A and B
to be 0 and 1, respectively. The goal of property unlearning is y = 0.5, such that the
attacker is not able to distinguish the property. Clearly, the second column shows that
after applying property unlearning once, a distinct adversary, i.e., not the adversary which
was involved in the unlearning process, is still able to infer the correct property for most
target modelsM . The plots show that after about ten iterations of property unlearning,
the average output of the 5 testing adversaries converges towards an average of prediction
probability 0.5 (for both properties A and B). While this could be misinterpreted as
ultimately reaching the goal of property unlearning, we introduce Figure 3.8 which paints
a more fine-grained picture of the last column of Figure 3.7. Here, each of the four plots
contain five independent boxplots corresponding to the five distinct test adversaries in one
fold of the cross validation process. Each boxplot presents the prediction results of one
adversary for the 200 independently unlearned target modelsM (15)

i of the experiment.
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Figure 3.7: Results of iterative unlearning experiment for property A (left) and B (right).
For each of the 200 target modelsM , the predictions of all 5 testing adver-
saries are plotted along the y-axis before unlearning (first column) and after
each unlearning iteration (other 15 columns).
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Figure 3.8: Individual adversary outputs after all 15 unlearning iterations for property A
target models. Recall that before unlearning, all adversaries have correctly
inferred property A by outputting y = 0.

While the plots of Figure 3.7 suggest that the adversaries’ outputs are evenly spread
across the interval [0,1] with both an average and median close to 0.5, Figure 3.8 shows
that this is only true for the indistinct plot of all 4 experiments with 5 testing adversaries
each. We want to point out three key observations:

1. Most adversaries do not have median outputs near 0.5 after 15 unlearning iterations.

2. For some adversary instancesA , target models have been “over-unlearned” by the
15 iterations with their output clearly nudged into opposite of their original output,
e.g., adversary 3 in Figure 3.8d.

3. Most importantly, other adversaries are still correctly inferring the property for
most or even all 200 target models with high confidence after the 15 unlearning
iterations, e.g., the second adversary in Figure 3.8a.
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3.5.3 Experiment discussion

Recall our goal for property unlearning: We want to harden target models in a generic
way, such that arbitrary PI adversaries are not able to infer pre-specified properties after
applying property unlearning.

Experiment 1 (single property unlearning) shows that property unlearning is very reliable
to harden target models against specific adversaries. However, Experiment 2 (iterative
property unlearning) indicates that single property unlearning fails to generalize, i.e.,
protect against all PI adversaries of the same class. This is shown in Experiment 2
by putting each target model through 15 iterations of property unlearning with one
distinct adversary per iteration. After this, some adversaries are still able to infer the
original properties of all target models (see third key observation in Section 3.5.2). This
means that in the worst case, i.e., for the strongest adversaries, 15 iterations of property
unlearning do not suffice – while for other (potentially weaker) adversaries, 15 or even
less iterations are enough to harden the models against them. In conclusion, property
unlearning does not meet our goal of being a generic defense strategy, i.e., protecting
against a whole class of adversaries instead of a specific adversary.

3.6 Explaining PI Attacks

To explore the reasons behind this limitation of property unlearning, we use the XAI tool
by [RSG16]: Local interpretable model-agnostic explanations (LIME) allows to analyze
decisions of a black-box classifier by permuting the values of its input features. By
observing their impact on the classifier’s output, LIME generates a comprehensible ranking
of the input features.

Recall that in the previous experiment (Section 3.5.2), we have seen that adapting the
weights of a target model M s.t. an adversarial meta-classifier A1 cannot launch a
successful PIA does not defend against another adversarial meta-classifierA2 trained for
the same attack. Therefore, we use LIME to see whether different meta-classifiers A1
andA2 rely on the same weights of a target modelM to infer A or B.

For comprehensible results, we use LIME images. We convert the trained parameters
of an MNIST target modelM into a single-dimensional vector with length 101770, so
LIME can interpret them as an image. For segmentation, we use a dummy algorithm
which treats each weight ofM (resp. pixel) as a separate segment of the ’image’. This
is necessary because unlike in an image, neighboring ’pixels’ of M ’s weights do not
necessarily have semantic meaning. For reproducible and comparable results, we have
initialized all LIME instances with the same random seed.
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Figure 3.9: LIME produced, partial heat maps of different meta-classifier instancesA1 and
A2 for the same MNIST target modelM . Dark pixels represent parameters
with high impact on the decision ofA , yellow pixels imply a low impact.

LIME Results We have instantiated LIME with two meta-classifiersA1 andA2 to explain
their output for the same MNIST target model instanceM . The output of LIME is a heat
map representing the weights and biases ofM , see Figure 3.9. For practical reasons,
we have only visualized the first 784 pixels of the heat map and transformed them to a
two-dimensional space. AlthoughA1 andA2 are trained in the same way and with the
same shadow models (see Section 3.5), the two heat maps for classifying the property of
the same target modelM in Figure 3.9 are clearly different: While some ofM ’s weights
have similar importance, i.e., the heat map pixels have a similar color, many weights
have very different importance for the two adversarial meta classifiersA1 andA2.

To understand why meta-classifiers can rely on different parts of target model parameters
to infer a training data property, we analyze the parameter differences induced by such
properties on an abstract level. t-SNE [VdMH08]) is a form of dimensionality reduction
which is useful for clustering and visualizing high-dimensional data sets. In particular,
the algorithm needs no other input than the data set itself and some randomness.

In the t-SNE experiment, the input data set is comprised of the trained weights and biases
of the shadow models. We apply this to the three data sets MNIST, Census and UTKFace.
As before, we use 2000 shadow models (1000 with property A and 1000 with property B).
Our goal is revealing to which extend the trained parameters are influenced by a statistical
property of the training data set. In particular, if the data agnostic approach t-SNE is
able to cluster models with different properties apart, we can assume the influence of a
property on model parameters to be significant.

t-SNE Results As depicted in Figure 3.10, t-SNE has produced a well defined clustering
for the two image data sets MNIST and UTKFace: models trained with property A training
data sets (yellow dots) are placed close to the center of the visualization, while property B
models (purple dots) are mostly further from the center. This indicates that the properties,
defined in Section 3.5 for MNIST and UTKFace, heavily influence the weights and biases
of the trained models. In fact, without any additional information about the parameters
or the properties of the underlying training data sets, t-SNE is able to distinguish the
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Figure 3.10: t-SNE visualization of MNIST (left), Census (center) and UTKFace (right)
models. Each yellow dot represents a model with property A, each purple
dot a B model.

models by property with surprisingly high accuracy. Based on these results, one could
construct a simple PI adversaryA t-SNE by measuring the euclidean distance ℓ of a target
model from the center of the t-SNE clustering. If ℓ is below a certain threshold for a target
modelM ,A t-SNE infers property A, otherwise it infers property B. For MNIST,A t-SNE

has 86.7% accuracy based on our experiment, while the UTKFace A t-SNE has 72.0%
accuracy. We stress that these twoA t-SNE are solely based on the t-SNE visualization of
the model parameters, no training on shadow models is needed.

However for Census, t-SNE has not clustered models with different properties of their
training data sets apart (see second visualization in Figure 3.10). In contrast to the other
two data sets MNIST and UTKFace, Census is a tabular data set. It also may be that the
properties defined in Section 3.5 have a smaller imminent impact on the weights and
biases during training. We leave a more profound analysis of possible reasons for the
different behavior of the t-SNE visualization on the three data sets for future work.

3.7 Discussion

We now discuss our results to yield insights for future research in the yet unexplored field
of defending against PIAs.

Choosing the right defense approach We have introduced defense mechanisms at dif-
ferent stages of the ML pipeline. Both property unlearning experiments are positioned
after the training and before its prediction phase, respectively its publication. In contrast,
the preprocessing approach is applied prior to the training. Since most ML algorithms
require several preprocessing steps, implementing a defense mechanism based on prepro-
cessing training data could be easily adapted in real-world scenarios. At least for tabular
data, our preprocessing experiments (see full paper [SWDF22]) have shown a good
privacy-utility trade-off, especially the artificial data approach. Nevertheless, depending
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on the organization and application scenario of a ML model, a post-training approach
like property unlearning might have its benefits as well. Further experiments could test
the combination of both pre- and post-training approaches. Since both of them are not
promising to provide the generic PIA defense we aimed for, we assume the combination
of both does not significantly improve the defense. Instead, we suggest to focus further
analyses on other approaches during the training, as laid out in Section 3.8.

Lessons learned With our cross-validation experiment in Section 3.5.2, we have shown
how PI adversaries react to property unlearning in different ways. Some adversaries
could still reliably infer training data properties after 15 property unlearning iterations,
while other adversaries reliably inferred the wrong property after the same process. This
shows that it is hard to utilize a post-training technique like property unlearning
as a generic defense against a whole class of PI adversaries: After all, one needs to
defend against the strongest possible adversary while simultaneously being careful not to
introduce additional leakage by adapting the target model too much. Depending on the
adversary instance, most of our target models clearly show one of these deficiencies after
15 rounds of property unlearning.

Our t-SNE experiment in Section 3.6 shows that at least for image data sets, statistical
properties of training data sets have a severe impact on the trained parameters of a
ML model. This is in line with the LIME experiment, which shows how two PI adversaries
with the same objective focus on different parts of target model parameters. If a property
is manifested in many areas of a model’s parameters, PI adversaries can rely on different
regions. This implies that completely pruning such properties from a target model after
training is hard to impossible, without severely harming its utility.

3.8 Future work

Preprocessing training data We have not tested training data preprocessing in an
adaptive environment yet, where the adversary would adapt to the preprocessing steps
and retrain on shadow models with preprocessed training data as well. Intuitively, this
would weaken the defense while costing the same utility in the target models. Additionally,
as the technique with most potential for defending against PIAs for tabular data, the
generation of artificial data could be further explored: One could adapt the synthesis
algorithm s.t. statistical properties are arbitrarily modified in the generated data set. A
similar goal is pursued in many bias prevention approaches in the area of fair ML.

Adapting the training process Another method from a similar area called fair represen-
tation learning is punishing the model when learning biased information by introducing
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a regularization term in the loss function during training, e.g., [CMJ+19]. As a defense
strategy against PIAs, one would need to introduce a loss term which expresses the current
property manifestation within the model and causes the model to hide this information
as well as possible. In theory, this would be a very efficient way to prevent the property
from being embedded in the model parameters. Since it would be incorporated into the
training process, the side effects on the utility of the target model should be low.

Post-training methods [LWH+22] experiment with knowledge distillation (KD) as a
defense against privacy attacks like membership inference. The idea is to decrease the
number of neurons in an ANN in order to lower its memory capacity. Unfortunately, the
authors do not consider PIAs – it would be interesting to see the impact of KD on their
success rate.

3.9 Conclusion

In this paper, we performed the first extensive analysis on different defense strategies
against white-box PIAs. This analysis includes a series of thorough experiments on
property unlearning, a novel approach which we have developed as a dedicated PIA
defense mechanism. Our experiments show the strengths of property unlearning when
defending against a dedicated adversary instance and also highlight its limits, in particular
its lacking ability to generalize. We elaborated on the reasons of this limitation and
concluded with the conjecture that statistical properties of training data are deep-seated
in the trained parameters of ML models. This allows PI adversaries to focus on different
parts of the parameters when inferring such properties, but also opens up possibilities for
much simpler attacks, as we have shown via t-SNE model parameter visualizations.

Apart from the post-training defense property unlearning, we have also tested different
training data preprocessing methods (see full paper version [SWDF22]). Although most
of them were not directly targeted at the sensitive property of the training data, some
methods have shown promising results. In particular, we believe that generating a
property-free, artificial data set based on the distribution of an original training data set
could be a candidate for a PIA defense with very good privacy-utility tradeoff.
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4.1 Introduction

Abstract

In contrast to privacy attacks focussing on individuals in a training dataset (e.g., member-
ship inference), property inference attacks (PIAs) are aimed at extracting population-level
properties from trained machine learning (ML) models. These sensitive properties are
often based on ratios, such as the ratio of male to female records in a dataset. If a
company has trained an ML model on customer data, a PIA could for example reveal the
demographics of their customer base to a competitor, compromising a potential trade
secret. For ratio-based properties, inferring over a continuous range using regression is
more natural than classification. We therefore extend previous white-box and black-box
attacks by modelling property inference as a regression problem. For the black-box attack
we further reduce prior assumptions by using an arbitrary attack dataset, independent
from a target model’s training data. We conduct experiments on three datasets for both
white-box and black-box scenarios, indicating promising adversary performances in each
scenario with a test R² between 0.6 and 0.86. We then present a new defense mechanism
based on adversarial training that successfully inhibits our black-box attacks. This mecha-
nism proves to be effective in reducing the adversary’s R² from 0.63 to 0.07 and induces
practically no utility loss, with the accuracy of target models dropping by no more than
0.2 percentage points.

4.1 Introduction

Machine learning (ML) technologies are as present as never before and their advancement
is significantly enhancing capabilities across multiple domains. However, this progress
also introduces new challenges, particularly in the realm of data privacy. In healthcare
and other user-centric areas, training large ML models requires ever increasing amounts
of personal data to provide the desired outcomes. Dangers to privacy mostly stem
from ML models being prone to leaking information about their training data under
adversarial attacks [ARC19]. A famous example among these are membership inference
attacks [SSSS17], deciding membership of individuals in training data, given a trained
model. More recently property inference attacks (PIAs) [AMS+15] have emerged as
a critical threat, where adversaries aim to infer sensitive properties from the training
data of target models without direct access to the underlying data. Examples for such
critical properties include the gender ratio (male to female) in a dataset or the status
of security patches in log files used by an intrusion detection system [GWY+18]. These
adversarial threats lead to an increasing body of research in privacy-preserving machine
learning (PPML) that revolves around attacking and defending ML models in various
scenarios [XBJ21].
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The threat of PIAs is especially severe in white-box scenarios, where attackers have com-
plete knowledge of the target model’s architecture and parameters [AMS+15, GWY+18,
SWDF23]. However unlike their white-box counterparts, black-box attacks do not re-
quire detailed knowledge of the model, reflecting more realistic adversarial scenarios
against services that only query models for their outputs [ZTO21]. We introduce a novel
method of training a black-box adversary for property inference, where we extend the
conventional black-box PIAs to use an arbitrary attack dataset as input to the target
model, which can be independent from the model’s training data. By formulating PIAs as
a regression problem, the adversary can freely extract the most likely distrubtion of a
property in the original training data [SE22]. We show the feasibility of our black-box
PIA in attacking Random Forest models and artificial neural networks (ANNs). To put
our black-box results into context, we compare them to an adapted white-box attack by
[GWY+18] that we run for the same scenarios. In all scenarios, we are able to obtain
adversaries with a coefficient of determination (R²) of at least 0.6, ranging up to 0.72
with black-box access and up to 0.86 with white-box access.

As a defense mechanism to our black-box PIA, we test the possiblity of directly including
an adversarial loss in model training, which is inspired by [GRLD20] who showed the
effectiveness for enhancing a model’s fairness. The idea is to check the model’s proneness
to PIAs after each training round and to then accordingly influence the model’s next
updates to steer the model into hiding the original property distibution from its outputs.
The model is instead trained to blind the adversary with a predefined target property
value. We evaluate the resulting ability on mitigating the risks associated with black-box
PIAs but also monitor the negative impact on model utility from impairing model training.
Our results demonstrate that our mechanism effectively reduces black-box PIA success by
an order of magnitude to an R² of 0.07, while only incurring a negligible utility loss of
less than 0.2% accuracy.

We summarize our contributions as follows:

• We expand current PIAs for the black-box setting by enabling our meta-classifier to
use an arbitrary attack dataset, which is indepedent from the target’s original data
distribution.

• For this meta-classifier, we frame our property inference as a regression problem
that is able to extract a more realistic range of sensitive property distributions
compared to the predefined distributions of a classification task.

• As a new defense mechanism we propose an adversarial training scheme that hides
the actual property distribution from attacks by guiding the model during training
to produce more balanced outputs, while preserving model utility. In contrast to
defense schemes in related work, our method generalizes well, i.e., defends against
a whole class of PIAs instead of defending against a single adversary instance.
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For organizing this work, Section 4.2 provides an introduction to important related work
on PIAs and possible defense mechanisms. Section 4.3 describes our methodology for
conducting black-box PIAs and framing these attacks as a regression problem. Section 4.4
then outlines the proposed countermeasures for mitigating PIAs. In Section 4.5, we
present our experimental setup, including the datasets used, the models evaluated,
and the metrics for assessing the success of attack and defense. Section 4.6 discusses
the results of our experiments, demonstrating the effectiveness and limitations of our
approaches, and suggests future research directions. Finally, Section 4.7 concludes with
a summary of our findings.

Performance metrics

Since we model the adversarial task as a regression problem, we measure the adversary’s
success with the coefficient of determination (R²). A dummy regressor always outputting
the expected value of the trained labels would yield an R² of 0, while an ideal regressor’s
predictions would amount to an R² of 1.

In our evaluation, we use boxplot graphs, since they capture multiple characteristics of a
distribution: the average is plotted as a diamond, while a line within the box is the mean
of the distribution. The upper and lower line of the boxes capture the first and third
quantile, while the whiskers below and above the box imply the range of values outside
the two main quantiles. Outliers are plotted as points above or below the whiskers.

4.2 Related Work

The task of property inference, also known as distribution inference, is first introduced
by [AMS+15] who describe attack patterns on traditional machine learning models. The
current state-of-the-art white-box PIA by [GWY+18] is based on permutation-invariant
networks and adapts earlier PIAs with a focus on fully connected ANNs. Their solution has
since found successful adoption to other ML models and is the main focus for evaluating
white-box PIAs [HMP+23, SE22]. In the same vein, we find the first approach for black-
box attacks introduced by [ZTO21] to form the basis for the current implementations of
black-box PIAs in these works. Their attack method uses a set of shadow models each
trained on data exhibiting different distributions of the attacked property. They then
train a meta-classifier that learns to predict the property of interest based on the shadow
models’ outputs on a query dataset. During execution, the attacker queries the target
model with the attack query set, feeds the outputs to the meta-classifier, and obtains a
prediction of the sensitive property in the data. The standard attack setting for PIAs is a
binary classification over two predefined distribution values to infer to which of them the
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dataset property conforms. For a more realistic case of continuous distribution values
like for the gender ratio, other works extend the inference task from binary to a larger
set of possible distributions [ZTO21, ZCSZ22, SE22].

For defending against PIAs, [HMP+23] try to evaluate the fundamental reasons for why
models leak sensititve information about their distribution. They come to believe that
three factors play an intervening role in enabling such exploits. As solutions they conversly
suggest to reduce the model’s memorization about the expected label given the features
of adversary interest, optimizing model architecture against wrong inductive bias, and
increasing the amount of training data. While these mitigations may help, they each
come at a cost. Reducing memorization impacts model performance, optimizing model
architecture requires prior assumptions, and collecting more training data is not always
feasible.

Other methods for protecting against PIAs also have shown only limited effectiveness in
reliably preventing their success. In contrast to membership inference attacks, differential
privacy techniques are not effective at mitigating inference risks related to data distribu-
tions as tested by [AMS+15]. This is because differential privacy focuses on obfuscating
the contributions of individual records, whereas in the PIA setting, the adversary is able
to uncover statistical properties of the underlying data distribution on a population level.
Another approach by [ZTO21] tries to remove sensitive attributes from datasets, which
has also proven ineffective, as the correlations between different attributes still prevails.
[GWY+18] propose a defense using scaling transformations applied in models with ReLU
activations that hide their learned distributions in the internal weights. However, this
technique does not offer any protection against black-box attacks. [ZCSZ22] suggest
alterations to the training data with respect to the target property before training the
model. This can be done in two ways: either by removing records or by adding new
records. By this, the ratio of a property should reach a predetermined fixed value, such as
0.5, regardless of the original ratio. However, this strategy would either strive for acquir-
ing new data or removing records from the dataset to balance the property ratio, leading
to expensive data acquisition or a potential reduction in training data. In [SWDF23],
they test property unlearning as a defense mechanism against white-box attacks. It uses
an adversarial classifier to identify the model parameters that leak information about a
property. They then use backpropagation to modify them into unlearning the property.
Experiments show this can be effective against a specific white-box adversary, but has
limitations in generalizing and can therefore not protecting against black-box or different
white-box PIAs targeting a certain property. In summary, the currently available defences
against property inference still have significant limitations and do not provide reliable
protection across various attack scenarios.

To address the limitiations stemming from related work, we first take the black-box PIA
approach by [ZTO21] and shift the attack set to be independent from the original data
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Figure 4.1: Black-box PIA in three steps: Train shadow models, generate output and train
adversary.

distribution to further reduce the burden of pre-requisites on black-box PIAs. We further
adopt the suggestion by [SE22] and take property inference as a logistic regression
problem to directly infer specific property ratios through our meta-classifier, where others
only consider a definite set of distributions and formulate the adversarial task as a
classification problem. For defending against black-box PIAs, we adapt an adversarial
learning strategy introduced by [GRLD20], where they directly include an adversarial loss
term during model training to influence its memorization regarding specific properties.
In their work they utilize this training framework to achieve fairness in decision tree
models. Transitioning this process to PIA defense, we use a PIA adversary during training
to punish a model, when it memorizes a distribution too much, leading to an increased
adversary loss term. Using this process, we can dictate a model to learn a specific
distribution output, and to hide its true distribution, regarding a sensitive property. Our
goal in defending is comparable to the proposition by [ZCSZ22] but is applicable without
actively removing training samples and we instead just reduce their influence to steer
the property exposure.

4.3 Regression Property Inference Attacks

Given a trained target model, the overall aim of a PIA is to recover sensitive information
about the model’s training data. In contrast to other attacks, PIAs are not directed at
properties of an individual data sample but rather at global properties of the training
dataset. Examples for such critical properties include the gender ratio (male to female)
in a dataset or the status of security patches in log files used by an intrusion detection
system [GWY+18]. While some properties are binary, this work focuses on the more
difficult problem of extracting continuous properties. Hence, we introduce PIAs as a
regression problem, as proposed in [SE22].
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4.3.1 Black-box attacker model

In this work, we focus on a black-box attacker model, in which an attacker does not
have access to the target model itself, but can choose input values and observe the target
model’s output. This is a realistic scenario for many applications in which machine
learning models are deployed as a service. In real-world applications, the internal model
weights are often hidden from clients and only API-access is granted, meaning that
requests are forwarded to the model internally and clients only receive its output. This
helps the model owner to stay in control, and attacks such as model stealing [TZJ+16]
can be prevented more easily.

The attacker has some information about the target model’s training data or can access
parts of it. This is an assumption also made for previous defense strategies [NSH18,
SM21, TMS+21, SWDF23]. Otherwise, information about the training data can also be
reconstructed with separate attacks [SSSS17], which is just as effective [LWH+22].

4.3.2 Attack Description

For our black-box PIA execution, we adapt the techniques from [ZTO21] for our scenario.
The attack can be split in four steps, as described below and depicted in Figure 4.1.

Step 1: Training shadow models

Since the ultimate goal of an adversaryA is to predict a property for a target model,A
trains on the output of models with known property values – the shadow models. Hence,
the first step in a PIA is to train multiple shadow models for different property values, i.e.,
shadow models are trained on training datasets with the respective property values. Since
the adversaryA is modeled as a regressor, we first create auxiliary training datasets with
the property values x ∈ [0.1,0.2,. . . ,0.8,0.9], i.e., each auxiliary training dataset DSx

aux
features ratio x regarding a predefined property. As an example, the property might
be defined over the ratio of men to women in a dataset. To create an auxiliary dataset
DSx

aux in our experiments, we use the original training dataset and delete records until
property value x is reached. This process is repeated for all x ∈ [0.1,0.2,. . . ,0.8,0.9],
such that the resulting 9 auxiliary training datasets DSx

aux can be used to train shadow
models. On each DSx

aux, k shadow models are trained. For the datasets we have used in
our experiments, k= 200 has proven useful. While a higher number for k might increase
the utility of the advesary, it comes with higher computational costs.

By basing the auxiliary datasets on the original training datasets, we create worst-case
adversaries, i.e., the strongest possible adversaries: Since the distribution of the DSx

aux is
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as close as possible to the original training data distributions, the adversary learns the
behaviour of very similar models to the attacked model. This is especially helpful when
model owners defend their models during training. Since original training data must
be available to the model owner during the training process, this prerequisite is easily
fulfilled.

Step 2: Generating output from shadow models

The focus of this work is on a black-box attacker model, meaning that the adversaryA
does not have access to a target model itself but can only survey its output on a chosen
input. Therefore, after training the 9*200 shadow models, they are each queried with
the same input. This input can be arbitrary, as long as it yields a meaningful output when
used as input to the shadow models. Since this input is an essential part of the black-box
attack, we call it attack dataset DSatt. The output of the shadow models, labeled with the
according property values [0.1,0.2,. . . ,0.8,0.9], is then stored as the training dataset for
the adversaryA . The same process of training and generating output on shadow models
is repeated on equally sized and non-overlapping auxiliary test datasets. For creating
a test dataset for the adversary, we use 50 shadow models per property value, i.e., in
total there are 9*200 shadow models to generate the meta training set and 9*50 shadow
models to generate the meta test set.

Step 3: Training adversary on shadow model output

The adversaryA , or meta-classifier, is modeled as a simple ANN. The training dataset of
the adversary (meta training set) consists of the outputs of the trained shadow models
on the chosen input data, paired with the property values of their respective training
datasets. The hyperparameters of the adversary such as neurons per layer and batch size
are optimized via the framework keras-tuner1. The optimizer Adam is used to fit the
model and early stopping is applied to avoid overfitting. After approximately 65 epochs,
the meta-classifierA reaches its peak test R² value and the training stops.

Step 4: Attacking target model

After training the adversary A , a target model m can be attacked by querying it with
the attack dataset DSatt. The output of m then serves as the input for the adversary to
infer the sensitive property, i.e.,A (m(DSatt)) = x , where x is the value of the sensitive
property inferred by the adversaryA .

1. https://keras.io/keras_tuner/,accessedonMarch30,2024
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4.3.3 White-Box Benchmark PIA

In order to benchmark our novel black-box regression adversaries described above,
we train white-box advesaries on the same datasets for comparison. In principle, we
follow the work of [GWY+18], which is also based on shadow models. Hence, step 1
in Section 4.3.2 is identical in the white-box setting. Step 2 (generating output from
shadow models) is not necessary, since the adversary is trained on the shadow model
weights and biases itself – constituting the final step of training a white-box adversary.
The white-box attack is carried out by directly using the weights and biases of a target
model as input to the trained adversary.

4.4 Defending Black-Box PIA

To defend against black-box PIAs, we propose a form of adversarial training. We borrow
the technique of [GRLD20], originally intended to make models fair, in the sense of
making decisions independent from pre-specified sensitive characteristics in the data.
Grari et al. design an adversary with the task of deducing the sensitive data property from
the model output for Gradient Boosted Trees (GBTs). Using this adversary during training,
they create additional gradients for the trained model – to minimize the success of the
adversary, i.e., to minimize the influence of the sensitive property on the model’s output.
A parameter λ is introduced which controls the tradeoff between the two competing
training goals model performance and property suppression.

We have extended the strategy of [GRLD20] for GBTs to defend ANNs against PIAs. For
defending a target ANN during training, we can simply modify its loss function. To be
precise, we define two terms within the loss function: A first term punishing the model if
its prediction deviates from the labels of the training data, and a second term punishing
the model if the PIA adversary infers another value than the predefined target distribution
from the model’s output. As in the work of [GRLD20], the two terms are weighted with
(λ−1) and λ, allowing to find an optimal tradeoff between model optimization and PIA
defense.

When computing the loss ℓ as a mean squared error (mse), this yields

ℓ= (1−λ)∗mse(ytrue, ypred)+λ∗mse(advtar,advpred)

for training data labels ytrue and model predictions ypred, the adversary’s target distribution
advtar and the adversary’s current prediction advpred based on the model’s output.
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4.5 Experiments

We perform our experiments on the three datasets Adult, UTKFace and CIFAR-10. We
have performed our experiments on linux machines using Python 3.10 and the latest
versions of TensorFlow and keras2. The defense experiments have been performed on
10 target models per property value and dataset. The target models are trained on a
different portion of the datasets than the shadow models (i.e., the auxiliary test datasets
as described in Section 4.3.2, Step 2) to avoid side effects.

4.5.1 Datasets

Adult is a dataset consisting of 32,561 records from the US census [K+96]. The 14
attributes include information about the individual gender, work hours per week and
education level. The machine learning task is to predict whether an individual earns
more than 50k dollars per year. For this tabular dataset, we use random forest classifiers,
reaching an accuracy of 85%.

As the sensitive attribute, we choose the attribute gender in the adult dataset, i.e., the
adversary’s goal is to predict the ratio of male:female records in the training dataset.
For the attack dataset which the adversary uses to generate output from target models,
we generate a synthetic dataset with 10,000 records based on Adult using a conditional
generative adversarial network (CTGAN) [XSCIV19].

UTKFace consists of 20,000 color images with annotations of age, gender and ethnicity
[ZSQ17]. We choose the ML task of inferring the correct gender from an image. ANNs
with convolutional layers are used for recognizing the images, reaching a test accuracy
of 90%.

We define our sensitive property over the age attribute, i.e., the property is defined by
the distribution of old to young instances in the data. For simplicity, we consider all
age labels above 59 as old. Our attack dataset is based on the Labeled faces in the wild
dataset [HMBLM08], containing 13,233 images of 5,749 different people.

CIFAR-10 contains 60,000 color images for image recognition tasks with 32x32 pixels
each [Ale09]. The dataset is grouped into 10 classes, such as airplane, horse and truck. For
the target and shadow models, we use ANNs with the same architecture as for UTKFace
above, reaching accuracies of 70% (random guessing would amount to 10% accuracy).

The sensitive attribute we define in this dataset is the amount of animals in the training
dataset, i.e., the adversary’s task is to predict the ratio of animal:non-animal images in

2. The code is available open source at [Sto25b]
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Access white-box black-box
Defense none none λ= 0.15

Adult – 0.72 –
UTKFace 0.86 0.63 0.070
CIFAR-10 0.60 0.64 0.069

Table 4.2: Adversary performance measured as R² on test data, comparison black-box
and white-box. Both the white-box attack and the black-box defense are not
applicable to the tree-based models for the Adult dataset.

the training dataset of the target model. The attack dataset which the adversary uses to
generate output from the target model is based on the CIFAR-100 dataset [Ale09]. We
randomly select 5,040 samples of 21 CIFAR-100 classes, which share similarities with
CIFAR-10 classes, e.g., images of the CIFAR-100 class lion have similar features as the
CIFAR-10 class cat.

4.5.2 Regression PIA results

The results of our attack experiments are summarized in the first two columns of Ta-
ble 4.2. Following the regression approach explained in Section 4.3, we have trained
PIA adversaries both in white-box and black-box scenarios3. The black-box adversaries
reach R² values from 0.63 (UTKFace) to 0.72 (Adult). Their performance is visualized in
Figure 4.2a: An ideal adversary would infer all property values correctly, as shown by the
dotted red line. It is apparent that all three adversaries perform best in the mid-ranges of
property values (0.2–0.7), where their predictions are closest to the ideal. For CIFAR-10,
the largest deviation is at property value 0.1, where the mean prediction amounts to 0.38.
The smallest deviations are observed for property value 0.6, where all three adversaries’
mean predictions deviate less than 5% from the correct value.

Focusing on the first column of Table 4.2, we can see that the white-box adversary for
UTKFace outperforms its black-box counterpart (R² of 0.86 compared to 0.63), while the
performance of the white-box adversary for CIFAR-10 is worse than the black-box version
(R² of 0.60 opposed to 0.64). The great performance of the white-box UTKFace adversary
is also reflected in Figure 4.2b, where the plotted deviations from the ideal predictions
(dotted red line) are small or even non existent in the case of property value 0.1. At the
same time, the CIFAR-10 white-box adversary performs worst at property value 0.1, its
mean prediction deviating even more from the truth than its black-box counterpart in

3. The white-box approach was not applicable to the GBTs of the adult dataset, since the proposal in
[GWY+18] is designed for ANNs.

72



4.5 Experiments

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

distribution (property value)

m
ea

n
ad

v p
re

d

Adult
UTKFace
CIFAR-10

(a) Black-box.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

distribution (property value)

m
ea

n
ad

v p
re

d

UTKFace
CIFAR-10

(b) White-box.

Figure 4.2: Performance of adversaries, mean adversary output on test data for different
distributions (resp. property values) for the two attack scenarios.

Figure 4.2a. Interestingly, the CIFAR-10 white-box adversary obtains its best predictions
for property value 0.9, contrary to the UTKFace white-box adversary.

4.5.3 Regression black-box PIA defense results

We have implemented the defense strategy of Section 4.4 and conducted experiments
for different values of λ. To recapitulate, the higher the value of λ, the more the trained
model is defended against a PIA adversary, hence λ= 0 implies a regular training without
any defense mechanisms. All experiments were run with the target property value 0.5.

To show the effect of our adversarial training, we plot the adversarial outputs after
defending target models with λ= 0.15 in Figure 4.3: The plot is very different from the
original adversary performance in Figure 4.2a, with mean adversary outputs close to the
target 0.5 for target models with all property values. This underlines the results in the
third column of Table 4.2 with an adversary R² of 0.07 on defended models for both
datasets UTKFace and CIFAR-10.

More detailed results for different values of λ are presented in Figure 4.3a for UTKFace
and Figure 4.3b for the CIFAR-10 dataset. The green boxplots at the bottom of both
figures represent the distance of adversary outputs to the target value 0.5 – as λ increases
along the x-axis, this distance decreases. The black boxplots at the top of the figures show
the accuracies of the defended models. For both datasets, we can observe practically
no accuracy decrease: The mean accuracy even increases for the UTKFace models from
86.19% (λ=0) to 86.60% (λ=0.15), before it decreases slightly to 84.91 for λ=0.2. For
CIFAR-10, the accuracy decreases slightly from 67.46% (λ= 0) to 67.33% (λ= 0.25).
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Figure 4.3: Accuracy of defended models for different values of lambda (black) and
absolute divergence from target 0.5 of the adversary for defended models
(green) for two data sets.

4.6 Discussion

Regarding the attack success rates, the black-box and white-box adversaries are in the
same range of 0.6 to 0.86 R². While the age property for the UTKFace dataset is easily
extracted in the black-box scenario (highest R²: 0.86), the animal property of CIFAR-10
seems to be harder to extract for an adversary, especially for property values below 0.3
(both in the black-box and white-box scenarios). The reasons behind this are guesswork;
one hypothesis could be that as long as the share of animal images during CIFAR-10
training is below a certain threshold, the ANN does not account for typical animal features
to an extend which is inferrable for an adversary.

In general, the attack success rates are hard to compare to related work, since PIAs are
only considered as a classification problem, not covering the more natural continuous
value range of property distributions. To the best of our knowledge, [ZTO21] is the only
work with a similar PIA experiment. In reference to their “fine-grained” attack using 5
classes for the property gender in the Adult dataset, we calculate approximate accuracy
values for our attackers by classifying our adversary outputs into 4 classes across the
range 0–1. The value from [ZTO21] is the average value of the rightmost column in
Table 7, i.e., the average accuracy across the 5 classes. The results (see Table 4.3) exhibit
similar accuracy rates across all adversaries (39.8%–67.6%), although Zhang et al.’s work
seems to outperform our black-box attacks. The two white-box attacks show significantly
higher accuracy rates than the black-box attacks. However, we need to stress that the
accuracy values are extracted from our regression outputs and that our adversaries have
not been optimized to achieve high accuracies in a classification task.
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black-box white-box
related work ours ours

Adult 50.6% 39.8% –
UTKFace – 44.9% 67.6%
CIFAR-10 – 49.2% 62.4%

Table 4.3: Approximated accuracies for our attacks to establish comparability to related
work. The value for related work is extracted from [ZTO21], Table 7.

In our defense experiments, we have shown that the adversarial approach, actively
suppressing property information in target model outputs, works well and does not
negatively affect the performance of defended target models. Across both datasets,
λ= 0.15 has proven to create a reasonable tradeoff during training, minimizing the
adversary’s R² to 0.07 while harming the target models’ performance by less than 0.2
percentage points on average. As Figure 4.3a exhibits, using a higher λ than 0.15 is not
necessary, since the difference in adversary performance is negligible (R² of 0.067 for
λ= 0.25 instead of R² of 0.069 for λ= 0.15) and two outliers imply possibly unwanted
behavior for higher values of λ. Another notable observation from Figure 4.3a and
Figure 4.3a is that not only the accuracy values are stable, but also their deviations do
not increase for bigger values of λ.

For demonstration purposes, we have used 0.5 as the target property value across all
defense experiments. In practice, this value could be either randomly chosen from
the range 0–1 for each target model individually, or set to some other constant value.
Depending on the use case, one option might make more sense than the other.

In [SWDF23], the authors have demonstrated how it does not suffice to harden a target
model against a single white-box adversary to defend a whole class of PIA adversaries. For
black-box adversaries, this is different, since the information available to the adversary is
a lot more sparse than in white-box scenarios (model output vs. all trained weights and
biases). Therefore, adversaries cannot circumvent the adversarial defense by focusing
on another part of available information, as has been shown for the white-box case
in Section 6 of [SWDF23]. We were able to confirm this experimentally by validating
that defending a target model against one black-box adversary limits the capabilities of
another adversary with the same task4. This shows that the defense mechanism in this
work generalizes well, in contrast to the white-box defense presented in [SWDF23].

4. Details on this experiment are presented in Appendix B.
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4.6.1 Future Work

Through our experiments, we have demonstrated the feasibility of regression PIAs. Al-
though this will not prevent attackers from executing them, the process of implementing
the attack takes a lot of effort, entailing the identification of a target model’s training
data distribution, creating shadow models, fine-tuning the architecture of the adversary
model, etc. Follow-up work could investigate whether this effort could be limited, while
maintaining the success rates shown in this work. Inspiration could be taken from [LZ21],
where a “boundary attack” for membership inference is presented, which bypasses the
creation and usage of shadow models altogether.

Also, our defense mechanism could be transferred to a hybrid scenario. Instead of using
a static adversary during the adversarial training of a target model, the adversary is
retrained on the modified output of the target model in every epoch of the target model
training, as in [GRLD20]. Such a hybrid adversarial training could potentially further
reduce the leaked property information of a target model, although further investigation
is necessary.

Last but not least, the adversarial training for fairness in [GRLD20] could have side
effects on the success rate of PIAs. Since Grari et al. train their models to yield outputs
independent from a sensitive property p, it would be interesting to investigate whether
their approach could also defend a target model against a PIA focussing on property p.

4.7 Conclusion

In this work, we have expanded upon existing black-box PIAs by using an arbitrary
attack dataset, which can be based on other datasets than the training dataset. As the
natural fit for many ratio-based properties, we have modeled the PIAs in this work as
regression problems. We have explored a defense mechanism based on adversarial
training which hardens a target model against black-box PIAs during its training process.
We have evaluated our approach on three datasets, comparing the attack against white-
box benchmarks and related work. In our experiments, we have shown our defense
scheme to be both effective (by decreasing the adversary’s performance from an R² of
0.63–0.64 to 0.07) and practical, decreasing the mean accuracy of target models by less
than 0.2 percentage points.
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Methodology For each use case, the case study provides experiments comparing the
performance of ML models trained in the conventional centralized
way and a federated learning simulation (in which the data sets were
split and distributed among the simulated clients). While the first
two use cases were entirely simulated, the third use case was set in
a more realistic scenario where the direct access to training data was
not possible during development.
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Abstract

This work investigates the potential of federated learning (FL) for official statistics and
shows how well the performance of FL models can keep up with centralized learning
methods. At the same time, its utilization can safeguard the privacy of data holders, thus
facilitating access to a broader range of data and ultimately enhancing official statistics.
By simulating three different use cases, important insights on the applicability of the
technology are gained. The use cases are based on a medical insurance data set, a fine
dust pollution data set and a mobile radio coverage data set – all of which are from
domains close to official statistics. We provide a detailed analysis of the results, including
a comparison of centralized and FL algorithm performances for each simulation. Our
key observations and their implications for transferring the simulations into practice are
summarized. We arrive at the conclusion that FL has the potential to emerge as a pivotal
technology in future use cases of official statistics.

5.1 Introduction

The aim of national statistical offices (NSOs) is to develop, produce and disseminate high-
quality official statistics that can be considered a reliable portrayal of reality [YTB+22].
In order to effectively capture our rapidly changing world, NSOs are currently under-
going a process of modernization, leveraging new data sources, methodologies and
technologies.

NSOs have effectively extracted information from new data sources, such as scanner
data1 or mobile network provider (MNO) data2. However, the potential of numerous
other data sources, including privately held data3 or data from official entities, remains
largely untapped. Legal frameworks, which are fundamental to official statistics, only
adapt slowly to changing data needs and currently hinder access to valuable new data
sources. Cooperation with potential data donors faced restrictions due to concerns about
disclosing individual business interests, privacy or confidentiality.

In contrast, the methodology employed by NSOs is evolving rapidly, with machine learning
(ML) gaining substantial popularity and, as a result, undergoing a process of establishment.

1. Scanner data in consumer price statistics and for determining regional price differences https://www.de
statis.de/EN/Service/EXSTAT/Datensaetze/scanner-data.html, accessed on July 17, 2023

2. Use of MNO data https://cros-legacy.ec.europa.eu/content/12-use-mno-data_en, accessed on July 17,
2023

3. Guidance on private sector data sharing https://digital-strategy.ec.europa.eu/en/policies/private-sector-
data-sharing, accessed on July 17, 2023

83

https://www.destatis.de/EN/Service/EXSTAT/Datensaetze/scanner-data.html
https://www.destatis.de/EN/Service/EXSTAT/Datensaetze/scanner-data.html
https://cros-legacy.ec.europa.eu/content/12-use-mno-data_en
https://digital-strategy.ec.europa.eu/en/policies/private-sector-data-sharing
https://digital-strategy.ec.europa.eu/en/policies/private-sector-data-sharing


Chapter 5: The Applicability of Federated Learning to Official Statistics

ML has been applied in various areas of official statistics (e.g. [DB17, BDF18]), and new
frameworks such as [YTB+22] address the need to measure the quality of ML.

Within official statistics, ML tools have proven effective in processing new data sources,
such as text and images, or enabling the automation of statistical production tasks,
including classifying information or predicting not (yet) available data.

Federated learning (FL) is an emerging approach within ML that provides immense
unexplored potential for official statistics. It addresses the challenge of extracting and
exchanging valuable global information from new data sources without compromising
the privacy of individual data owners. Introduced in [MMR+17], FL enables collaborative
model training across distributed data sources while preserving data privacy by keeping
the data localized. In scenarios where external partners are unwilling to share individual-
level information due to regulatory or strategic considerations, but still aim to analyze
or disseminate global insights in their field of application, NSOs can offer trustworthy
solutions utilizing FL. In return, FL empowers contributing NSOs to integrate new data
sources in statistical production.

This work investigates the methodological and practical potential of FL for NSOs to lever-
age new data sources. The primary contribution of this work involves a comprehensive
investigation through three simulations that address current data needs representative
for official statistics. In the first simulation related to health, individual healthcare cost
are predicted utilizing a regression. In the second simulation related to sustainability,
the newest fine dust pollution levels are classified based on meteorological data. In the
third simulation related to mobility, the daily range of movement of mobile phone users
are classified by MNO data. The first two simulations focus on assessing the estimation
performance achieved by FL in comparison to centralized models that have complete
access to all available data. The third application presents valuable insights and lessons
learned from the implementation of FL, involving the active participation of a real external
partner. We draw conclusions on the applicability of FL in NSOs in Section 5.5, which
are summarized in Section 5.6.

5.2 Background

Before presenting the simulated use cases in Section 5.3, this section provides an overview
of FL and privacy challenges with ML.
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5.2.1 Federated Learning

In FL, a centralized server (or aggregator, in our case a NSO) coordinates a process of
training a ML model (mainly deep ANNs) by initializing a global model and forwarding
it to the data owners (clients). In each training round, each client trains the model
with their private data and sends the resulting model back to the central server. The
central server uses a FL method to aggregate the updates of the participants into the next
iteration of the global model and starts the next round by distributing the updated model
to the clients. This process is repeated to improve the performance of the model.

NSOs primarily strive to generate global models that accurately represent the available
data, which, in our setting, is distributed among multiple clients. Thus, we compare the
performance of FL to models with access to the combined data of all clients. Alternatively,
if upcoming applications seek to supply each client with the an optimized individual
model by leveraging information from the other clients, personalized FL can be used. It is
not covered in this paper but can be found in [KKP20, HGLM18].

5.2.2 Privacy Challenges with Machine Learning

When training data for an ML model is distributed among multiple parties, the data
needs to be aggregated on a central server prior to applying traditional ML algorithms.
FL has become a popular alternative to this approach, as it allows to train a model in a
distributed way from the start, without the need to aggregate training data first. Thus,
using FL has the privacy advantage that there is no need to exchange private training data.
Instead, data holders can train a global model collaboratively in a distributed fashion,
without giving any party access to their individual data set.

But although FL makes sharing private training obsolete, there are other privacy challenges
inherent to ML which have also been observed for FL. While ML models are always trained
to fulfill a dedicated task, often more information than strictly necessary for fulfilling the
task is extracted into the model weights during training [SRS17]. This excessive, and
potentially private, information in the model weights is called privacy leakage.

Examples on how this privacy leakage can be leveraged are attacks such as training data
extraction [ZLH19], which allows to extract actual training data records from a trained
model. Another known attack is model inversion [HAPC17], where repeated requests to
the model are used to reconstruct class representatives. This is especially feasible if the
records are very similar to each other, as shown in [SSSS17]. The authors of [SSSS17]
have also introduced the membership inference attack, which has evolved to one of the
most important ML privacy attacks. This is because membership inference is a simple
attack aiming at individual training data records: the attack’s target is to decide whether
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a specific data record was part of the training data. Due to its simplicity, it is often used
as a benchmark for general privacy leakage. Building on the original proposal, other
works have transferred membership inference attacks to the FL scenario [NSH19]. Last
but not least, property inference attacks [MSDCS19] allow to deduce statistical properties
of the target model’s training data. This is especially relevant in FL scenarios, where
the characteristics of each client’s local data set can be highly sensitive, e.g., in medical
domains.

The applicability of these attacks depends on the use case, the type of model and other
factors. Concerning attacker models, i.e., the scenario in which an attack is executed, some
FL-specific attacks rely on a malicious aggregator. Nonetheless, all attacks mentioned
above also work in an environment where not the aggregator, but one of the FL clients is
the attacker. Hence, even if the aggregator can be trusted, e.g., because the aggregator’s
role is assumed by a NSO, these attacks can still be executed by other FL clients. Analyzing
the individual privacy leakage of the simulated use cases in this paper are out of scope,
nonetheless we want to stress the importance of awareness towards these privacy issues,
which persist in many ML (including FL) scenarios. In an FL process, the least one can do
is communicating potential privacy risks to clients. Beyond this, there are some strategies
under the umbrella term privacy-preserving machine learning (PPML) which might help
in mitigating these attacks, although most of them are not yet computationally feasible
enough for practical applications [YZH21].

5.2.3 Frameworks

In our simulations, we use the frameworks TensorFlow4 for ANNs and TensorFlow Fed-
erated5 for FL. For data processing, we use scikit-learn6 and PyCaret7 for automizing
benchmark experiments in the centralized settings.

The code we have written for this work is openly available on GitHub [Sto23]8.

4. TensorFlow https://www.tensorflow.org/, accessed on July 17, 2023
5. TensorFlow Federated: Machine learning on decentralized data https://www.tensorflow.org/federated,

accessed on July 17, 2023
6. scikit-learn, Machine Learning in Python https://scikit-learn.org/, accessed on July 17, 2023
7. Pycaret https://pycaret.org/, accessed on July 17, 2023
8. Note that for the mobile radio coverage simulation, the code has only been executed locally on the

private data set, hence it is not included in the repository.
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5.3 Simulations

Most relevant for NSOs is cross-silo FL, where a few reliable clients train a model, e.g.
official authorities. In contrast, cross-device FL uses numerous clients, e.g. smartphones,
to train a model. To analyze the potential of cross-silo FL for official statistics, we run
simulations with three different data sets. For each use case, we first compute benchmarks
by evaluating centralized ML models, i.e., models which are trained on the whole data
set. Afterwards, we split the data set and assign the parts to (simulated) FL clients for the
FL simulation. This way, we have a basis for interpreting the performance of the model
resulting from the FL training simulation. The performance metrics of the trained ML
models (including coefficient of determination R2 or accuracy) are computed on test sets
of each data set.

5.3.1 Medical insurance data

The demand for timely and reliable information on public health is steadily increasing.
The COVID-19 pandemic has significantly accelerated this trend, bringing questions about
the financial feasibility of our healthcare system and the availability of medical supplies
to the forefront.

Thus, our first experiment focuses on modeling a regression problem related to healthcare
by considering the following question: Given individuals’ health status characteristics,
what is the magnitude of their insurance charges? Our study aims to address two primary
questions. Firstly, we explore the suitability of ANNs in comparison to other models for the
regression task. Secondly, we assess the feasibility of utilizing a simulated decentralized
data set with an FL setting to tackle the problem.

Data set The first data set links medical insurance premium (charges) to related in-
dividual attributes9. Considered are the six features age, sex, bmi (body mass index),
children (count), smoker (yes/no) and four regions. In our studies, the feature region
was excluded during training and solely utilized for partitioning the data within the
FL setting. It consists of 1338 complete records, i.e. there are no missing or undefined
values. Also, the data set is highly balanced: The values in age are evenly dispersed, just
as the distribution of male and female records is about 50/50 (attribute gender) and each
region is represented nearly equally often. The origin of the data is unknown, however
its homogeneity and integrity suggest that it has been created artificially.

9. US health insurance dataset https://www.kaggle.com/datasets/teertha/ushealthinsurancedataset,
accessed on July 17, 2023
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Data preprocessing We encode the binary attributes sex and smoker into a numeric
form (0 or 1). The attributes age, bmi and children are scaled to a range from 0 to 1. In
the centralized benchmarks, we use the region attribute one-hot-encoded.

Setup In this research, we aim to investigate the suitability of ANNs for estimating
insurance charges and explore the extent to which this problem can be addressed us-
ing a FL approach. To achieve this, we compare different models and evaluate their
performance.

In this study, a basic fully connected ANN architecture, that takes five input features, was
utilized. The network consists of three hidden layers with 40, 40, and 20 units in each
respective layer. Following each layer, a Rectified Linear Unit (ReLU) activation function
is applied. The final output layer comprises a single neuron. To optimize the network,
the Adam optimizer with a learning rate of 5e-2 was employed. In the federated task, we
utilized the same initial model but integrated FedAdam for server updates. This decision
was based on previous research [RCZ+20], which emphasized the benefits of adaptive
server optimization techniques for achieving improved convergence.

In the centralized approach, we allocate a training budget of 100 epochs. In contrast, the
federated approach incorporates 50 rounds of communication between the client and
server during training. Each round involves clients individually training the model for 50
epochs. To evaluate our results in both scenarios, we employ 5-fold cross-validation for
testing. To track the running training, 10% evaluation data is used by each client in the
FL setting and 20% is used in the centralized scenario. It is neglected in calculating the
final test performance. The remaining shallow learning models underwent HPO using
a random search approach with a budget of 100 iterations. Similar to the ANNs, we
conducted evaluation using 5-fold cross-validation.

Results We conducted a performance comparison of the models based on their 5-
fold cross-validation R2 scores and considered their standard deviation (see Table 5.2).
The Random Forest model achieved the highest performance with R2 of 0.845, closely
followed by XGBoost and Decision Tree, which scored 0.2 and 0.5 percentage points
lower, respectively.

The ANN model achieved an R2 of 0.815, indicating a performance 3.5 % worse than
the best model. However, it still provides a reasonable result compared to K-Nearest
Neighbors (KNN) and Linear Regression, which obtained significantly lower R2 scores of
12 % and 13.8 %, respectively.

The federated ANN demonstrated an R2 of 0.784, slightly lower than the centralized ANN
but 7.2 % worse than the Random Forest model. Notably, the Federated ANN exhibited

88



5.3 Simulations

Model R2(± std) Rel. loss (%)

ANN 0.815 (0.04) 3.5

ANN (federated) 0.784 (0.03) 7.2

random forest 0.845 (0.05) 0.0

XGBoost 0.843 (0.04) 0.2

decision tree 0.841 (0.04) 0.5

k-nearest neighbors 0.744 (0.06) 12.0

linear regression 0.728 (0.06) 13.8

Table 5.2: Performance comparison of different prediction models for the medical in-
surance use case. The performance is quantified using R2, along with the
corresponding standard deviation (std). Additionally, the relative loss to the
best centralized model (rel. loss) is reported.

a lower standard deviation of 0.04 compared to the centralized ANN (0.05) and also
outperformed the Random Forest model (0.05) in this regard.

Discussion Based on the research questions, we can draw clear conclusions from the
findings presented in Table 5.2. Initially, we compared the performance of different
models, including a simple ANN. Although the random forest model outperformed others,
its performance was only 3.5 % higher, distinguishing it significantly from models such
as KNN and linear regression, which performed 12 % and 13.8 % worse than the random
forest, respectively.

The observed performance decrease from 0.815 to 0.784 in the FL approach can be
attributed to the training process and falls within a reasonable range. Considering
the privacy advantages of FL, the 7.2 % accuracy loss compared to the best model is
acceptable, particularly when taking into account the reduction in standard deviation
from 0.05 to 0.04.

Although this example is hypothetical, it highlights the potential benefits and importance
of FL in official statistics. It showcases how FL provides access to crucial data sets for
ML while maintaining nearly negligible loss in accuracy compared to a centralized data
set.
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Figure 5.1: Location of meteorological stations for simulation 2 (fine dust pollution) on
a map of Bejing, China. 12 of the 13 stations are included in the public data
set which we have used for our simulations. The dashed lines mark regions
of the “Region-Learning” approach in [HGLM18]. Image source: [HGLM18].

5.3.2 Fine dust pollution

Reducing air pollution is a significant part of the Sustainable Development Goals (SDGs)
established by the United Nations10. To measure progress toward achieving SDGs, NGOs
and other data producing organizations developed a set of 231 internationally comparable
indicators, including annual mean levels of fine particulate matter (e.g. PM2.5 and PM2.5).
[HGLM18] showed that personalized FL can be used to extract timely, high frequent and
more accurately than models using centralized data.

In our second use case, we additionally provide a comparison between centralized and FL
models (without personalization) and make the developed code and methods accessible.
It should be noted that we utilize a slightly different data set and methodology compared
to [HGLM18]. We model a classification task in which the current fine dust pollution
is inferred based on meteorological input data. More precisely, 48 consecutive hourly
measurements are used to make a prediction for the current PM2.5 pollution (the total
weight of particles smaller than 2.5 µm in one m3). The output of the predictor is one
of the three classes low, medium or high. The threshold for each class are chosen in a
way such that the samples of the whole data set are distributed evenly among the three
classes.

10. Air quality and health https://www.who.int/teams/environment-climate-change-and-health/air-quality-
and-health/policy-progress/sustainable-development-goals-air-pollution, accessed on July 17, 2023
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Figure 5.2: Example plot for the data of one meteorological station and the two features
PM2.5 and temperature. The four year time span is clearly visible by the
temperature wave, due to hot summers and cold winters.

Data set The data set we use is a multi-feature air quality and weather data set [ZGD+17]
which is publicly available online11. It consists of hourly measurements of 12 meteoro-
logical stations in Beijing, recorded over a time span of 4 years (2013–2017). Figure 5.1
depicts the locations of the 12 stations in Beijing. In total, more than 420000 data records
are included in the data set. Although some attributes are missing for some data records,
most records have data for all of the 17 attributes. An example plot for the two attributes
PM2.5 and temperature is shown in Figure 5.2.

Data preprocessing To complete the missing data records, we use linear interpolation.
We use one-hot encoding for the wind direction attribute. All other features are scaled
using a standard scaler implementation. For the attributes PM10, SO2, NO2, CO and
O3, we observe a high correlation with the target attribute and thus exclude them from
training. 80% of the data are used as training data, the rest is used as test data.

Setup As in the first use case, we implement a centralized learning benchmark and
compare it with a FL approach. We model one FL client per meteorological station and
split the data accordingly, while the benchmark model is trained with data from all 12
stations. In both settings, we use an ANNs with long-short term memory (LSTM) layers

11. Beijing multi-site air-quality data set https://www.kaggle.com/datasets/sid321axn/beijing-multisite-
airquality-data-set, accessed on July 17, 2023
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Model Accuracy (± std) Precision (± std) Recall (± std) Rel. loss (%)

ANN 72.4% (4.92) 72.8% (8.66) 72.3% (8.10) 0.0

ANN (fed.) 68.0% (2.38) 67.9% (10.05) 68.0% (9.59) 5.9-6.7

Table 5.3: Performance in the fine dust pollution simulation. The span of the relative loss
refers to all three metrics.

true class / predicted class low medium high

low 114450 23712 5769

medium 23635 80718 33754

high 1944 24629 111581

Table 5.4: Exemplary confusion matrix for one of the five models in the cross-validation
training of the centralized model for the fine dust pollution use case.

and apply 5-fold cross validation. The architecture of the ANNs is similar across both
settings and has been manually tuned to reach a good performance. For the same reasons
as in the first use case, we use the Adam optimizer and apply a learning rate of 0.05 on
the server and 0.005 on the client. The client learning rate is decreased every 64 epochs
by a factor of 10 to facilitate fine tuning in later stages of the training. The total training
budget we have allocated is 10 epochs for centralized learning and 200 epochs for FL.

Results A summary of our results for the fine dust pollution use case is provided in
Table 5.3. Depicted are the means of our 5-fold cross validation experiments.

The centralized learning benchmark reaches a mean classification accuracy of 72.4%,
with similarly high numbers for precision and recall (72.8%, respectively 72.3%). In
comparison, the FL classifier reaches a performance of both an accuracy and a recall
of 68.0% and a precision of 67.9%. The relative standard deviation is higher in the FL
scenario for all three metrics, reaching from +2.67 percentage points (accuracy) to +2.9
percentage points (both precision and recall).

An exemplary confusion matrix for one of the five resulting models of the centralized
learning is depicted in Table 5.4. Most misclassifications are made for the medium class.
The same could be observed for the other models (both in centralized and FL).

Discussion Compared to the first use case, the training data base has been significantly
larger. With 12 clients, there have also been 4 times as many participants in the FL
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scenario as in the first use case. Still, the performance decrease is small, with an accuracy
of 68.0% (FL) compared to 72.4% in the centralized training scenario.

Apart from preprocessing the data set, another time consuming part of the engineering
was tuning the hyperparameters of the FL training. Tools for automatic FL HPO were out
of scope for this work, thus it was necessary to manually trigger different trial runs with
varying hyperparameters.

Comparison with literature The authors of [HGLM18] compare the results of their
personalized FL strategy “Region-Learning” to a centralized learning baseline and standard
FL. Although according to the authors, their personalized FL approach outperforms the
other two approaches (by 5 percentage points compared to standard FL), we want to stress
that Region-Learning has another goal than standard FL – namely multiple specialized
models, and not one global model as in standard FL and most use cases for official
statistics (also see Section 5.2.1).

Furthermore, Hu et al. have not provided sufficient information to properly retrace their
experiments. Especially the number of classes for PM2.5 classification and information on
the features used for training the classifiers are missing, so that their results are hard to
compare to ours. For example, setting the number of classes to 2 and using all features of
the data set (including the other pollution attributes PM10, SO2 etc.) would significantly
ease the estimation task. Also, we have no information on the choice of test sets or
whether cross validation was applied in the work of Hu et al. It is even possible that Hu
et al. have used a slightly different data set than we have: The data set they describe
includes “more than 100000” data records from 13 meteorological stations in Beijing,
while our data set contains more than 420000 records from 12 stations.

One consistency across both their work and ours is the accuracy drop from centralized
learning to FL, with 4 percentage points in [HGLM18] and 4.4 percentage points in our
work.

5.3.3 Mobile radio (LTE)

MNO data is a valuable source for obtaining high-frequency and spacial insights in
various fields, including population structure, mobility and the socio-economic impact of
policy interventions. However, a lack of legal frameworks permitting access to data of
all providers, as seen in cases like Germany, constrain the quality of analysis [SBH22].
Accessing only data of selected providers introduces biases, making FL an attractive
solution to enhance the representativeness by enabling the aggregation of insights from
multiple major MNOs.
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Thus, our third use case is based on private MNO data owned by the company umlaut
SE12. Different from the thirst two use cases, we had no direct access to the data, just as
the aggregation party in realistic FL settings. While this allows practical insights, it also
comes with economy-driven constraints regarding resources available for the simulation.
Hence, the focus of this use case is more on practical engineering issues of FL and less on
optimal results.

The data set in this use case contains mobile communication network coverage data,
including latency and speed tests, each linked to the mobile LTE devices of individual
users and a specific timestamp. The data records are also associated with GPS coordinates,
such that a daily “radius of action” can be computed for each user. This radius describes
how far a user has moved from their home base within one day. The user home bases
have also been computed on the available data – a home base is defined as the place
where most data records have been recorded. The ML task we model in this use case is to
estimate the daily radius of action for a user, given different LTE metrics of one particular
day (see below).

Data set The whole data set originally contains 286329137 data records. The following
features of the data set have been aggregated for each day and user: radius of action in
meters, share of data records with WiFi connection and the variance and mean values for
each of the following LTE metrics: RSRQ, RSRP, RSSNR and RSSI. The date has been
encoded into three numeric features (calendar week, day of the week and month) and the
boolean feature weekend.

Data preprocessing We set a specific time frame of six months and a geofence around
the German state of North Rhine-Westphalia, all other records are excluded – leaving
2718416 records in the data set. Additionally, we apply a filtering strategy to clean our
data: each user in the data base needs to have data for at least 20 different days (within
the time span of six months) and 10 records on each of these days. Otherwise, all records
of this user are discarded. After the second filtering step, there are 1508102 data records
in the data set, which we scale using a standard scaler implementation and then use for
training, validating and testing our models.

60% of the data are used as training data, 20% are used as validation data and the
remaining 20% as test data. For FL, we have divided the data set according to the mobile
network operators (MNOs) of the users. Since more than 99.6% of the data records are
associated with three major providers, the other 0.4% of the data records (belonging to
29 other MNOs) are eliminated from the data set.

12. umlaut website https://www.umlaut.com/, accessed on July 17, 2023
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Model R2 Rel. loss (%)

ANN 0.130 17.7

ANN (federated) 0.114 27.8

random forest 0.158 0.0

Table 5.5: Performance in the mobile radio simulation.

Setup We use two centralized learning benchmarks: a random forest regressor and an
ANN, which have both been subject to a hyperparametersearch prior to their training.
The network architecture for both the centralized benchmark ANN and the FL training
process is the same: The first layer consists of 28 dense-neurons and the second layer
consists of 14 dense-neurons, which lead to the single-neuron output layer. All dense
layers except for the output layer use the ReLu activation function. For FL, we use the
SGD optimizer with a server learning rate of 3.0, a client learning rate of 0.8 and a batch
size of 2.

Results The benchmarks of the centralized learning regressors are R2 values of 0.158
(random forest), 0.13 (ANN) and 0.13 (linear regression). For the ANN trained in the FL
scenario, we achieve a slightly lower R2 value of 0.114 (see Table 5.5).

Discussion The reasons behind the weak performance of the benchmark models (R2

of 0.158 and 0.13) are not clear. The hyperparameters might not be optimal, since we
were not able to spend many resources on hyperparameter tuning due to time constraints
of the data owner. Another reason might be the that the modeled task (estimating the
radius of action based on LTE connection data) is inherently hard to learn. With an R2 of
0.114, we were able to reproduce this performance in the FL setting.

Since the private data set in this use case has not left company premises, there are
important lessons to be learned from a practical perspective:

1. Even if the data set is not directly available during the model engineering process,
it is crucial to get basic insights on the features and statistical properties before
starting the training. Crucial decisions, such as the type of model to be trained, can
be made based on this.

2. Thorough HPO is crucial to obtain useful results. It might take a lot of time and
computational resources to find hyperparameters which are suited for the task.
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3. Technical difficulties while creating the necessary APIs and setting up the chosen
ML framework at the FL clients can slow down the process even more. Without
access to the data base, it might be hard to reproduce some of the errors.

While all points mentioned above were encountered in the third simulation, there was
only one party who held all data. In real FL scenarios with multiple data holders, the
process might get much more complicated.

5.4 Key Observations

Our simulations lead to the following key observations:

Models trained via FL can reach a performance very close to models trained with central-
ized ML approaches, as we have shown in all three use cases. While the performance
gap itself is not surprising (since the FL model has been exposed to the complete data
set only indirectly), we want to stress that without FL, many ML scenarios might not be
possible due to privacy concerns, trade secrets, or similar reasons. This is especially true
for health care data, i.e., the domain of our first simulation.

While the random forest regressor has demonstrated superior performance compared to
other centralized learning benchmarks in all three simulations, exploring the potential of
tree-based models within a FL context [AQKC+23, YOW22, LWH20] could be a promising
avenue for further investigation. The improved interpretability and explainability over
many other models, e.g., ANNs, is another advantage of tree-based models.

On the other hand, random forest regressors are not suitable if tasks get more complicated.
Also, their architecture, i.e., many decision trees which may be individually overfitted
to parts of the training data, can facilitate the extraction of sensitive information of the
training data and thus pose an additional privacy risk.

Choosing the right hyperparameters is crucial for any ML model. Since automatic HPO is
still an open problem for FL algorithms, (manually) finding the right settings can be a
time consuming process. Developing a suitable framework for automated HPO for FL
would be important future work – although for official statistics, other issues might be
more pressing at the moment (see Section 5.5).

In our third simulation (mobile radio data), we did not have access to the training and
test data set, just like in a real-world scenario. This means both HPO and technical
debugging needed to be performed remotely, without access to the data. Although this
was already challenging, we believe that in scenarios with multiple data holders and
possibly heterogeneous data sets, these tasks will be significantly harder.
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All FL simulations were performed on the machine which also had access to the complete
data set. In a real-world application, where each client runs on a distinct machine, other
settings and other frameworks might be more practical than TensorFlow Federated.

Last but not least, we want to emphasize that FL, despite its privacy-enhancing character,
may still be vulnerable to some ML privacy issues (see Section 5.2.2). Hence, analyzing
these risks is a crucial step before an application is rolled out in practice. Possible
mitigation strategies might be found in privacy-preserving machine learning (PPML)
techniques [YZH21].

5.5 Implications for Official Statistics

In this study, we demonstrated how FL can enable NSOs to address pressing data needs in
fields that are relevant to policymakers and society. Official statistics are characterised by
high accuracy while underlying strict standards in confidentiality and privacy. Accuracy,
explainability, reproducibility, timeliness, and cost-effectiveness are essential quality
for statistical algorithms [YTB+22]. In this setting, our findings indicate that FL holds
significant potential to support statistical production and improve data quality.

We showed that FL can empower NSOs to generate reliable models that accurately capture
global relations. In each of our use cases, the FL-generated models exhibited nearly
identical predictive performance compared to a model created by combining all available
data. Each model architecture that performed well on centralized or local data could be
easily adapted to a FL training process with a similar level of predictive performance only
using distributed data.

If upcoming applications require to optimize an individual model for each participating
party, personalized FL can be used to generate potentially improved models tailored to
individual clients. This increases the interest to cooperate for each participating party,
as it offers to enhance the analytic potential for each client and the server. However, it
is important to note that this customization may come at the cost of global predictive
performance.

FL provides the main advantage of not needing to exchange sensitive data (see Sec-
tion 5.2.2). Additionally, there is no need to store or process the complete data set
centralized in the NSOs.

NSOs can be empowered to appraise novel data sources sans the need for new legislation.
In cases where legislative changes prove impractical, FL provides a crucial pathway to
assess and prepare for regulations’ modernization. By showcasing the advantages and
implications of accessing new data sources before legal frameworks permit, FL not only
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significantly accelerates and relieves statistics production but also occasionally enables
it.

To ensure successful future implementations of FL in NSOs, it is essential to focus on
futher advancements. Specifically, improvements are crucial in communication frequency
to enable high-speed and efficient exchanges. Our observations indicate that FL gen-
erally requires a greater number of epochs (distributed across communication rounds)
compared to centralized training to achieve similar performance levels. In our use cases,
even with small datasets, we found that at least 50 rounds of communication were
necessary. This would result in high delay and cost in real-world applications. Therefore,
the developmentof infrastructure for seamless sending and receiving ML models is nec-
essary. Addressing this challenge, we discovered that the implementation of adaptive
server optimization techniques reduced the training rounds and contributed to training
stability. As a result, we recommend the use of adaptive optimizers to help minimize
communication costs and enhance the efficiency of FL processes. By incorporating such
adaptive optimization methods, NSOs can optimize the performance and effectiveness of
FL while reducing the burden of communication overhead.

Additionally, partners need tools to update models effectively. This requires coordina-
tion of the server and expertise from all participating parties. In practice, real-world
applications of FL often involve the challenge of harmonizing client data without directly
accessing it. Achieving an optimized model architecture uniformly across all clients also
necessitates the knowledge and collaborative efforts of the clients themselves. Providing
comprehensive tools and resources to partners enables them to actively contribute to the
model updating process while maintaining data privacy and security.

FL is evolving rapidly and both industry and research will continue to improve the field in
the coming years. The performance and efficiency of practical FL frameworks is expected
to be further optimized. Similarly, we expect the development of more usable PPML
algorithms including the ones based on secure multi-party computation (SMPC) and
homomorphic encryption (HE) – allowing for provably secure collaborative ML. Although
such PPML methods have been proposed and frameworks exist, their performance today
is often far from acceptable for many practical applications. With more standardization
and simpler, respectively more efficient, applications, FL will become even more beneficial
to official statistics.

In summary, FL should indeed be recognized as an important technology that can facilitate
the modernization of legal frameworks for official statistics. It enables NSOs to safely
use publicly relevant information that is not expected to be accessed by future legal
frameworks, ultimately enhancing the quality and relevance of official statistics. However,
further development is still required to fully realize the potential of FL in this context.
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5.6 Conclusion

In conclusion, FL has a lot of potential for official statistics. In scenarios where external
partners are unwilling to share individual-level information but still aim to analyze or
disseminate global insights in their field of application, FL can help to overcome these
issues. We have shown across a range of three simulated use cases that FL can reach a
very similar performance to centralized learning algorithms. Hence, our results indicate
that if classic (centralized) ML techniques works sufficiently, also FL can possibly produce
models with similar performance.

One of the next steps to transfer FL into the practice of official statistics could be to
conduct practical pilot studies. These could further showcase both the applicability and
challenges of FL beyond a simulated context. Another focus of future work in this area
could be the analysis of privacy risks in FL scenarios of official statistics and possible
mitigation strategies. This would be an important stepping stone in ensuring the privacy
protection of involved parties, even if FL itself is often already categorized as a privacy-
preserving technology. Just as in countless other domains, we expect FL to become a
relevant technology for official statistics in the near future.
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Methodology The performance of the developed protocol is evaluated both theoreti-
cally and experimentally. Its runtimes are compared to related work
in terms of computational complexity and through experiments. A
mathematical proof for the security of the proposed protocol is also
provided.

Contribution DealSecAgg, a federated learning protocol which creates an anonymity
group around all participating clients regarding their contributions, is
introduced. Anonymity is achieved by masking client updates crypto-
graphically, which preserves the resulting model performance of plain
federated learning. In DealSecAgg, the masks are managed by one
or more independent dealer parties, a concept borrowed from secure
multi-party computation protocols. Dealers have no access to client
updates or training data, thus little trust is needed. At the same time,
the DealSecAgg protocol needs strictly less communication rounds
than related work. This is reflected in the experimental results of this
paper, where DealSecAgg takes up to 87.8% less time to run than re-
lated work. Also, clients dropping out during the training process have
no negative impact on DealSecAgg’s runtimes, which is a significant
advantage compared to related work. The code for the experiments of
this paper is available open source [Hei23].
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6.1 Introduction

Abstract

Federated learning eliminates the necessity of transferring private training data and
instead relies on the aggregation of model updates. Several publications on privacy
attacks show how these individual model updates are vulnerable to the extraction of
sensitive information. State-of-the-art secure aggregation protocols provide privacy for
participating clients, yet, they are restrained by high computation and communication
overhead.

We propose the efficient secure aggregation protocol DealSecAgg. The cryptographic
scheme is based on a lightweight single-masking approach and allows the aggregation
of the global model under encryption. DealSecAgg utilizes at least one additional dealer
party to outsource the aggregation of masks and to reduce the computational complexity
for mobile clients. At the same time, our protocol is scalable and resilient against client
dropouts.

We provide a security proof and experimental results regarding the performance of
DealSecAgg. The experimental evidence on the CIFAR-10 data set confirms that using
our protocol, model utility remains unchanged compared to plain FL. Furthermore, the
results show how our work outperforms other state-of-the-art masking strategies both
in the number of communication rounds per training step and in computational costs,
which grows linearly in the amount of active clients. By employing our protocol, runtimes
can be reduced by up to 87.8% compared to related work.

6.1 Introduction

With federated learning (FL), machine learning models can be trained on a distributed
data set in a decentralized manner [KMRR16, MMR+17]. FL does not require participants
to transmit their private training samples. Instead, an aggregation server distributes
an initial model to the data holders, who train it locally with their private data. After
each local training round, the aggregator collects the model updates and combines them,
resulting in an updated global model.

While FL allows the participants to keep their data private, the exchange of model updates
between aggregator and clients might still leak sensitive information (see Section 6.2.2).

Contributions We propose a simple, yet effective dealer-assisted masking strategy to
mitigate the aforementioned information leakage. Our scheme DealSecAgg has the
following properties:
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• Utility: The performance of FL is not negatively impacted by our protocol; no utility
loss is induced.

• Privacy: In our protocol, dealers are never exposed to actual model updates. Their
domain is limited to storing, aggregating and communicating random vectors, i.e.,
masks.

• Security: DealSecAgg is provably secure against a semi-honest adversary unless the
aggregator and all dealers are corrupted, or the aggregator and sufficiently many
clients per honest dealer are corrupted.

• Efficiency: By outsourcing mask administration to the dealer party, clients and
the aggregator only need to perform trivial computations in O(1). The dealer’s
computational effort grows linearly in the number of active clients. Our protocol
requires only 2 communication rounds per training epoch, which is strictly faster
than related work.

• Minimal non-collusion requirements: We propose two flavors of the DealSecAgg
protocol – a single dealer setting and a setting with multiple dealers. In the multi-
dealer version, privacy guarantees are not violated as long as one of the dealers
does not collude with the aggregator. Hence, a single trusted dealer is sufficient.
Very little computational overhead is introduced in the multi-dealer scenario (since
all dealers can compute in parallel) and the communication grows linearly in the
number of dealers.

• Robustness: Client dropouts do not introduce any computational overhead.

Paper outline The rest of this paper is organized as follows: After a brief recap on FL
and privacy attacks in Section 6.2, we provide an overview of existing secure aggrega-
tion techniques for FL in Section 6.3. In Section 6.4, we present our masking scheme
DealSecAgg in the basic single dealer scenario and a multi-dealer scenario. We evaluate
our scheme both theoretically in Section 6.5 and experimentally in Section 6.6, comparing
its performance to three state-of-the-art masking schemes from related work. We discuss
our results in Section 6.7 and draw conclusions in Section 6.8.

6.2 Background

In this section, we provide an overview of FL and relevant privacy attacks.
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6.2.1 Federated Learning

In FL, a central machine learning model is trained by n data holders in a collaborative
fashion. In each training round τ, the aggregation server selects a set of the data holders
as clients Cτ with |Cτ| ≤ n to which it sends the global model gτ. After each client ci ∈ Cτ
has updated the global model per local training, they send the updated model back to
the aggregator. The received updates are then combined by the aggregation server with
an aggregation function to obtain the new global model for round τ+1. In this work, we
use the most common aggregation function federated averaging (FedAvg) as suggested by
McMahan et al. [MMR+17]. The global model gτ is updated by

gτ+1=
∑

ci∈Cτ

ui

|Cτ|
, with model update ui of client ci.

DealSecAgg focuses on cross-device FL [MPP+21], which is characterized by a large number
of clients (e.g., 10.000 clients in each training round [KMRR16]). In this setting, clients
are often run on mobile devices, e.g., smartphones, which are powered by battery and
rely on mobile networks for connectivity. Hence dropouts, i.e., clients failing to respond
on time during an FL training process, can occur frequently and must be accounted
for [MÖJC23].

6.2.2 Privacy Attacks

In the standard version of FL [MMR+17], all model updates are transferred from the
clients to the aggregation server in the clear. The aggregation server and potential
eavesdropper can extract sensitive information from these model updates. We briefly
introduce the most important privacy attacks to motivate our masking strategy. Note that
other threats, such as poisoning and Byzantine attacks, significantly differ in their goals
and threat models and are therefore out of scope for this work [MPP+21].

Membership inference. The goal of membership inference attacks [SSSS17] is to decide
whether a specific data sample was included in a model’s training data. A white-box
attack, where the adversary has full access to the trained weights of a model (which is
the case for an FL aggregator), is more likely to reveal membership information than a
black-box attack [NSH19]. The relevance of membership inference for FL is also stressed
in [TLG+19], where the authors demonstrate how more variety in the training data sets
among different clients yields higher attack success rates.

Property inference. Property inference attacks do not aim at specific training data samples,
but at stochastic properties of the whole training data set [AMS+15, SWDF23]. A popular
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example are demographic properties such as the distribution of age or gender. By observ-
ing a model’s weights or its behaviour, an attacker can reveal customer demographics
information of a (competing) company or the distribution of host types in a computer
network to refine a malware attack [GWY+18].

Data reconstruction. There are also attacks aiming at extracting concrete training samples
from a trained model [BX22, RG21]. While model inversion, a similar attack, allows
to reconstruct class representatives [FJR15], reconstruction attacks (or data extraction)
reconstruct exact training samples. An example in the federated setting has been demon-
strated in the domain of facial recognition [WSZ+19].

Most of these attacks can be performed on the trained global model after training.
Attacking the clients’ model updates however usually leads to more precise information,
due to the direct training data exposure. Since the extracted information can be directly
linked to the individual client, the promise of FL to keep the data of clients private is
violated. This motivates our threat model, in which individual client updates are targeted
by an attack (see Section 6.4.1).

6.3 Related Work

Before presenting our secure aggregation approach DealSecAgg, we introduce relevant
techniques from related work. Secure aggregation is an umbrella term describing methods
which create an anonymity group of all contributors during a distributed data aggregation
process. Secure aggregation does not prevent the aforementioned attacks in FL alltogether,
since the global model can still be attacked after training. However, it renders the linkage
of extracted information to an individual client impossible and therefore protects the
privacy of individual client contributions during FL training. More specifically, secure
aggregation allows participants to collaboratively compute the aggregation of all updates.
In order to compute this function, a cryptographic protocol is required. Various approaches
have emerged that are able to provide this functionality. They can be grouped into the four
categories single-masking, pairwise-masking, secure multi-party computation (SMPC)
and homomorphic encryption (HE) [MÖJC23]. Compared to our proposed masking
scheme, these techniques come with high computational overhead, as the following
overview shows.

The focus of this work is secure aggregation in the semi-honest threat model (see Sec-
tion 6.4.1). While Bonawitz et al. [BIK+17] add a consistency check to achieve security
in the malicious threat model, only semi-honest versions of the protocols are mentioned
throughout the rest of this paper to ensure comparability.
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6.3.1 Secure Aggregation Based on Masking

In masking schemes, a pseudo-random vector of the same size as the update vector is
added to the update vector — similar to a one-time pad. Therefore, it becomes infeasible
to distinguish the masked vector from a random vector and no information is leaked.
There are two possible procedures to unmask the aggregate: pairwise-masking and
single-masking.

Pairwise-Masking First introduced by Ács and Castelluccia [ÁC11], pairwise-masking
generates pairs of masks between every pair of participating clients. The idea is that
every pair of clients (u, v) agrees on a shared mask m — e.g., using the Diffie-Hellman
key exchange [DH76]— such that u adds and v subtracts m from their model update.
Therefore, m cancels out when u and v are added. After the aggregation (summation)
of all model updates, all masks cancel out. Bonawitz et al. [BIK+17] were the first to
introduce secure aggregation to FL in 2017. They chose a similar approach to Ács and
Castelluccia [ÁC11] using pairwise-masking.

Bell et al. [BBG+20] have enhanced this approach by limiting the amount of clients each
client has to share masks with. Previously, each client had to share a mask with each
other client, resulting in a complete communication graph. Bell et al. have shown that a
k-regular graph is sufficiently secure and reduces the communication and computation
overhead significantly. More precisely, each client shares a mask with its O(logn+σ+η)
neighbors. σ and η are security parameters to ensure security with low numbers of
clients and recoverability of masks. Nevertheless, with high numbers of clients, the
communication graph is nearly logarithmic. Thus, less messages have to be exchanged
and fewer masks must be generated.

The initial secure aggregation protocol by Bonawitz et al. [BIK+17] has also been enhanced
by others. Kadhe et al. [KRKR20] introduced FastSecAgg, a protocol that uses a secret
sharing scheme based on the fast Fourier transformation. While FastSecAgg lowers
the computational complexity during secret sharing and mask recovery, it has lower
guarantees regarding dropout resilience and colluding clients. So et al. [SGA21] proposed
Turbo-Aggregate, which divides clients into groups to achieve logarithmic overhead,
similar to Bell et al. [BBG+20]. Whereas in previous protocols, clients agreed on a
shared seed to generate masks, this protocol requires clients to share their masked model
parameters with other clients in the group. Therefore, a higher amount of data needs to
be transferred and multiple rounds to share the masks between clients are needed. Similar
proposals to decrease communication costs and improve dropout resilience [MWA+23,
JNMALC22, JNMALC23] have been published since [SGA21]. Mansouri et al. give a
good overview of the state of the art [MÖJC23].
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Single-Masking As introduced by So et al. [SNY+22], single-masking allows for faster
generation of masks compared to pairwise-masking. A mask-encoding that is shared
between clients allows the aggregator to unmask the result in a single step. Unlike in
previous pairwise-masking schemes, this approach does not require quadratic overhead
when clients drop out.

In this protocol, each private mask is encoded and split into n individual masks, one of
which is sent to each other client. The encoding allows to reconstruct the aggregate of
all private masks of active clients, even if a fraction of clients dropped out. After the
aggregator has received the masked updates, it notifies the active clients about which
clients dropped out. The active clients perform an aggregation of the encoded masks
they have received in the first round of the protocol, ignoring the masks of dropouts.
The aggregation server can then unmask the aggregate of the models in a single step.
While this protocol eliminates the overhead created by pairwise-masking, it introduces
additional computational complexity in the encoding algorithm on client and server side.
Additionally, just as in pairwise-masking, each client has to communicate with every other
client to share its mask encoding.

6.3.2 Secure Aggregation with Secure Multi-Party Computation

Another approach to achieve secure aggregation in FL is secure multi-party computation
(SMPC). One of the most celebrated SMPC proposals for FL is SAFELearn by Ferei-
dooni et al. [FMM+21]. Their approach requires multiple aggregators to aggregate the
global model using a SMPC protocol. Clients generate m secret shares of their local model
update, one for each of the m aggregators. The aggregators perform a joint evaluation of
the FedAvg algorithm on these shares afterwards. The aggregators do not learn anything
about the model. After the aggregation, the global model is retransmitted to the clients
using secret-sharing, such that clients can combine the shares to receive the plaintext
global model.

The clients’ overhead consists of the arithmetic secret sharing [GMW87], performed in
only two rounds of communication. Yet, multiple semi-honest and non-colluding aggre-
gators are required to achieve security guarantees. On top, SMPC protocols introduce
additional overhead – even efficient protocols such as garbled circuits [Yao86] require
substantial overhead to evaluate simple boolean circuits. And although FedAvg only
consists of additions and one division, these need to be performed on vectors of high
dimension.

Another set of SMPC-based secure aggregation protocols has been released recently
by Mirval et al. with a focus on reliability and dropout resilience [MBSP23]. Further-
more, similar protocols have been improved in regards to robustness against malicious
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clients [KTC20], robustness against malicious aggregators [BTL+21, TLB+21] and ro-
bustness against poisoning attacks [BIMP+23]. A notable improvement on computing
time has been recently proposed in [BDG+23], using GPU powered SMPC secure aggre-
gation. However, our protocol DealSecAgg is still more efficient in comparison, due to
the aforementioned overhead introduced by SMPC protocols.

6.3.3 Secure Aggregation with Homomorphic Encryption

Secure aggregation can also use homomorphic encryption (HE) to prevent the aggregator
from learning anything about the private model parameters. Zhang et al. [ZLX+20]
proposed BatchCrypt, an HE scheme for FL that allows the encryption of batches to reduce
computation and communication overhead caused by HE. Still, the computations that are
performed suffer from a bottleneck caused by runtimes. Hence, they limit their approach
to the cross-silo setting, i.e., to a low number of clients with reliable connections and high
computational resources. Zhang et al. train their model on nine clients. In the instance
of BatchCrypt, more than 80% of the runtime is spent on encryption or decryption. Also,
the amount of transferred data is 150 times greater compared to plain FedAvg.

The aforementioned protocol SAFELearn [FMM+21] is also adaptable to HE. Instead of
performing an SMPC protocol between multiple aggregators, clients homomorphically
encrypt their local model updates, which are evaluated by a single aggregator. They use
a multi-party encryption scheme [MTPBH21] that splits the secret key between clients.
Clients are able to encrypt and decrypt the model parameters, whereas the aggregator is
not.

6.4 Dealer-Assisted Secure Aggregation

The overall goal of FL is to jointly compute a shared global model without the need to share
private data of individuals. Naive methods to achieve this goal are not sufficiently secure
due to the attacks discussed in Section 6.2.2. Cryptographic protocols have been applied
to bridge this gap. However, the protocols presented in Section 6.3 create extensive
computation and communication overhead. Our protocol DealSecAgg is designed to
work more efficiently, while maintaining user privacy and being able to handle thousands
of clients and potential dropouts.

Compared to pairwise-masking, generating masks is simpler in single-masking. However,
the protocol by So et al. [SNY+22] introduces expensive computations to realize the
unmasking of the aggregate. That is, clients that did not drop out need to compute the
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sum of all encoded masks of other surviving clients, which results in O(n) operations on
vectors of the same size as the model.

In this paper, another approach to single-masking is proposed. Just like in many SMPC
protocols [Bea97, Bea98, DHNO19], we involve an independent dealer party. While a
dealer is often used to provide randomness to parties in SMPC protocols, it is responsible
for administering masks in our protocol. This drastically reduces the computations and
communication performed by clients and the aggregator, without compromising the
privacy of clients, as the dealer only sees random masks and never gains access to private
client data.

6.4.1 Adversary Model

Our solution builds on the semi-honest adversary model [Gol04], meaning that an adver-
sary follows the protocol while gathering as much information as possible. In contrast, a
malicious adversary is allowed to deviate from the protocol, e.g., send corrupted model
updates during an FL training process.

The single dealer variant of DealSecAgg in Section 6.4.3 assumes that aggregator and
dealer do not collude. Since collusion is hard to rule out in practice, an extension to the
protocol using multiple dealers is introduced in Section 6.4.4. This multi-dealer variant
assumes that at least one dealer is not colluding with the aggregator. All other dealers
may collude with the aggregator, i.e., a corrupt majority of dealers is assumed.

6.4.2 Quantization

To save bandwidth and to enable a secure masking of model updates, we propose quanti-
zation for DealSecAgg, i.e. the encoding of real numbers in integers. We use the encoding
technique of [CS10], as suggested in [KS22]: A real number x ∈ [−2r ;2r −2− f ] is en-
coded as Q f (x) := ⌊x ·2 f ⌉ ∈Z∩[−2 f +r ;2 f +r−1] where f is a positive integer specifying
the precision and r characterized the domain of the real numbers. The decoding Q f

−1

works accordingly, i.e., Q f
−1(x) := x ·2− f . Since this work is focused on machine learning

models gτ which contain many real numbers, we focus on vectors x ∈R|gτ| generalizing
Q f and Q f

−1.

With the result of the encoding Q f , we can compute on a signed ℓ-bit number, i.e., in a
ring of integers modulo 2ℓ for secure masking. Let qℓ : Z|gτ|→ (Z2ℓ)

|gτ| denote the natural
quotient map. Also, the lifting q−1

ℓ
works accordingly, i.e., q−1

ℓ
(x) ∈ [−2ℓ−1;2ℓ−1−1]

denotes the integer y of smallest absolute value with favorism for negatives in case of
equality such that q(y) = x ∈ (Z2ℓ)

|gτ|.
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Correctness of our construction requires that ℓ≥ f + r+1+⌈log2(|Cτ|)⌉ where Cτ is the
set of clients the global model is sent to in round τ. Otherwise the aggregation in (Z2ℓ)

|gτ|

of encoded model updates might be reduced modulo 2ℓ. Then, its lift to Z|gτ| would
deviate from the aggregation of encoded model updates in Z|gτ|. Provided f is large
enough, quantization and aggregation in Z|gτ| do not degrade the model accuracy as
shown in [KS22].

6.4.3 The single dealer protocol

Single-masking requires the aggregator to learn the sum of all masks to recover the
aggregate of the updated model parameters (see subsection 6.3.1). In our protocol, the
mask summation is calculated by a dealer, who learns nothing besides the masks. The
aggregator on the other hand learns nothing but the masked model updates, as well as
the global model. Therefore, none of these parties on their own are able to learn the
model parameters of an individual client.

The dealer is a third party chosen by the clients. In the single dealer scenario, it is
assumed that only a single dealer exists, that they are known to all clients, and that
they do not collude with the aggregator. Their sole purpose is to aggregate the masks
of all clients who stay active during a round of FL training. They do not have to learn
the complete set of chosen clients in a training round or the tasks that the clients are
performing. The dealer only learns the clients’ masks and the set of clients that have
stayed active throughout a training round.

The communication graph is shown in Figure 6.1. The architecture in the single dealer
scenario consists of one dealer d, one aggregator a and n clients ci ∈ C . Clients com-
municate with the aggregator and the dealer, but not with each other. The aggregator
only learns the masked model updates of clients, but not the plaintext parameters. It
communicates with the dealer to receive the aggregated masks which it needs to unmask
the aggregated model.

The DealSecAgg protocol consists of two communication rounds. In the following, the
first round is called the masking phase and the second round is called the unmasking phase.
The aggregator holds the global model gτ for the current training round τ. Beforehand,
all parties agreed on a threshold t that defines the minimum amount of clients that must
stay active throughout a training round.

To start the masking phase, the aggregator selects a subset of clients Cτ ⊆ C to which it
sends the global model gτ. Clients ci ∈ Cτ generate model updates ui by training gτ with
their local data. In our protocol, model updates ui are encoded and mapped as described
in Section 6.4.2. To mask the model, every client ci selects a random key ki ∈ {0,1}κ.
This key ki is used as a seed for a pseudo-random generator PRG to generate a random
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Figure 6.1: Communication between clients ci ∈ C , dealer d and aggregator a during the
aggregation and masking of one training round in the single dealer scenario.

vector mi, the mask, which has the same size as gτ and ui, i.e. mi = PRG(ki)|gτ| ∈ (Z2ℓ)
|gτ|.

A masked model ũi is computed by adding every integer-encoded value of ui to the
respective value of mi ∈Z2ℓ , i.e. ũi =Q f (qℓ(ui))+mi ∈ (Z2ℓ)

|gτ|. The key ki is sent to the
dealer and the masked model parameters ũi are sent to the aggregator. Clients do not
send their mask mi but their key ki to the dealer to save bandwidth. Therefore, the size
κ of the key space {0,1}κ should be chosen such that it is large enough to fulfill security
requirements but significantly smaller than the size of the model. A dealer can compute
the mask from a client key ki by instantiating the PRG with ki. The aggregator waits
until all clients ci ∈ Cτ have sent their ũi, or, if clients dropped out, until a predefined
timeout interval is reached. All clients that respond with ũi are considered active clients
Cα ⊆ Cτ.

In the unmasking phase, the aggregator sends a list of active clients Cα, as well as
the size of the global model |gτ| to the dealer. The value of |gτ| is sent to the dealer,
such that the size of generated masks is correct. The dealer then checks whether the
amount of active clients is sufficient, i.e., |Cα| ≥ t, and aborts otherwise. This prevents the
aggregator from requesting the mask of a single client (see Section 6.4.3). Subsequently,
the dealer computes the aggregated mask mτ for the current training round τ. For every
ci ∈ Cα, it reconstructs the private mask mi. As the dealer received the keys of all active
clients, it is able to compute mi = PRG(ki)|gτ| ∈ (Z2ℓ)

|gτ| for each client. All of these
masks are summed up to compute the aggregated mask of active clients mτ, such that
mτ=
∑

ci∈Cα
(mi)∈ (Z2ℓ)

|gτ|. The aggregated mask mτ is sent back to the aggregator.
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The aggregator is now able to compute the global model gτ+1 for the next training round,
according to FedAvg. Since ũ contains exactly the same masks as mτ, the subtraction of
mτ uncovers the sum of all model parameters usum, which can be decoded back to the
domain of real numbers (see functions q−1

ℓ
and Q f

−1 in Section 6.4.2). To average the

parameters and receive the global model, Q f
−1(q

−1
ℓ
(usum))∈R|gτ| is divided by the amount

of models that were summed. Hence, the aggregator needs to perform the following at
the end of each round:

usum=
∑

ci∈Cα

ũi−mτ ∈ (Z2ℓ)
|gτ| (6.1)

gτ+1=
Q f
−1(q

−1
ℓ
(usum))

|Cα|
∈R|gτ| (6.2)

To initiate the next round τ+1, the aggregator broadcasts the new global model gτ+1 to
all clients in Cτ+1.

A note on parameter t

It is important to state that |Cα| ≥ t. Otherwise, the aggregator would be able to select
|Cα|= 1, which would leak the unmasked model parameters of a single client after the
unmasking phase. If t = 2, at least two model updates are aggregated into the global
model. In practice, t should be selected high enough to prevent information leakage over
multiple rounds. With only a few active clients in each round, the aggregator might be
able to run a variant of a set intersection attack on the model parameters to learn which
parameters were trained by which client. Bonawitz et al. [BIK+17] observed an average
dropout-rate of around 10% in a mobile setting. Therefore, if t was selected to allow
15% or 20% of dropouts, high security would be achieved without risking the need to
abort due to a lack of active clients.

6.4.4 The multi-dealer protocol

The main pitfall of the single dealer design is the assumption that the dealer does not
collude with the aggregator, since collusion between these two parties would uncover all
private model parameters. However, there is a way to allow collusion without sacrificing
security. This requires multiple dealers.
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DealSecAgg
protocol
variant

Client ci Aggregator Dealer(s)

single
dealer

choose key ki, mask update ui
with PRG(ki), send ki to dealer

request aggregated masks
mτ from dealer, compute
gτ+1 according to Equa-
tions 6.1 and 6.2

generate
mτ and
send to
aggregator

multi-
dealer

choose multiple keys Ki such
that |Ki| = |Di| ≤ p, mask up-
date ui with
∑

ki∈Ki
PRG(ki)|gτ|,

send each ki ∈ Ki to different
dealer in Di

request aggregated mask
mτ from all active dealers
in Dα, compute gτ+1 ac-
cording to Equations 6.3
and 6.2

generate
mτ and
send to
aggregator

Table 6.2: A summary of the two protocol variants single dealer (see Section 6.4.3) and
multi-dealer (see Section 6.4.4).

In the multi-dealer setting of DealSecAgg, each client ci selects a set of dealers Di ⊆ D.
Instead of masking the model parameters once, clients mask the parameters up to p
times in total, once for each of the dealers in Di, using a different key ki for each mask.
The dealers Di are carefully selected by the clients from a pool of trusted dealers D with
|D|= p. Dealers could be provided by independent organizations in different locations to
minimize the risk of collusion. The communication graph is shown in Figure 6.2. Clients
are free in the choice of their dealer(s), the number of chosen dealers can also vary
between clients. However, to be able to aggregate a sufficient amount of masks, dealers
must be chosen such that each dealer receives enough keys ki. If K j are the keys that a
dealer d j ∈ D received, then |K j| ≥ t must be satisfied.

Each client ci ∈Cα notifies the aggregator about the dealers Di ⊆ D it used. Dα=
⋃

ci∈Cα
Di

therefore is the set of all dealers that are active in the current training round. The
aggregator is able to request the aggregated masks from each of these dealers. After
receiving all aggregated masks m j

τ from the active dealers d j ∈ Dα, they are subtracted
from the aggregated masked models ũi to receive usum:

usum=
∑

ci∈Cα

ũi−
∑

d j∈Dα

m j
τ ∈ (Z2ℓ)

|gτ| (6.3)

After lifting and decoding usum to a vector in R|gτ|, the average over the number of active
clients |Cα| yields the new global model gτ+1. This calculation is identical to the single
dealer protocol, see Equation 6.2. Note that the only difference between Equation 6.3
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mask keys
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Figure 6.2: The communication between clients ci ∈ C , multiple dealers di ∈ D and ag-
gregator a during the aggregation and masking of one training round.

and Equation 6.1 (the single dealer setting) is the aggregation of the received masks m j
τ.

An overview of the differences of our two protocol variants is provided in Table 6.2.

In the multi-dealer variant of the protocol, p−1 dealers are allowed to collude with
the aggregator. With the aggregated model parameters being hidden by p masks, the
removal of p−1 masks would reveal nothing about the parameters. Therefore, choosing
multiple dealers can drastically reduce the risk of private data being leaked, since only
one of the dealers has to be non-colluding with the aggregator. Also, the total runtime
only increases slightly, as all dealers can compute in parallel and additional operations
on the clients and the aggregator are negligible.

6.5 Theoretical Analysis

This section evaluates the security and efficiency of the DealSecAgg protocol.

6.5.1 Security Analysis

In our analysis, we consider the security of the multi-dealer protocol, with the single-
dealer protocol being a special case. The secure aggregation protocol should provide
privacy for clients in regard to their private model parameters. The model parameters
that the aggregator receives are masked using the additive masking scheme defined
in Section 6.4.4. The masking scheme is a generalization of the one-time pad (OTP)

117



Chapter 6: DealSecAgg: Efficient Dealer-Assisted Secure Aggregation for Federated
Learning

encryption with pseudorandomness from (Z2)|gτ| to (Z2ℓ)
|gτ|, i.e., a mask of the same size

as the plaintext, which is chosen pseudorandomly, is added. A security proof of the OTP
with pseudorandomness was given by Katz and Lindell [KL07, Theorem 3.18], building
upon [KL07, Theorem 2.9] . This proof can be adapted to the additive masking scheme
and results in the following theorem:

Theorem 1. Additive masking has computationally indistinguishable encryptions in the
presence of an eavesdropper.

Intuitively, encrypting a model with a mask of the same size, which is chosen pseudo-
randomly, results in a masked model that is computationally indistinguishable from
a different masked model. This idea is used to show that executing the DealSecAgg
protocol is secure against a semi-honest adversary unless the aggregator and all deal-
ers are corrupted or the aggregator and sufficiently many clients per honest dealer are
corrupted. Executing a protocol, the view of a party (client, dealer, aggregator) consists
of its input, its random tape, its received messages and all computation results by this
party. Because the results can be computed using the inputs, the view of a party does not
include results.

Theorem 2. Let V ′ be the collection of...

• ...the old global model gτ,

• ...the local updates ui of corrupted clients ci ∈ Cτ,

• ...information on which dealers are chosen, which clients are active and which parties
are corrupted,

• ...the random tape of corrupted parties.

If the aggregator is honest let V ′P = V ′. If the aggregator is corrupted let thonest ∈N and
let C>0 denote the set of honest clients ci for which there is an honest dealer d ∈ Di with
|{ci ∈ C | ci is honest,d ∈ Di}| ≥ thonest. In the case of a corrupted aggregator, for a partition
{Pw}w∈W of C>0 with index set W let V ′P be the collection of ...

• ...the collection V ′ above,

• ...the new global model gτ+1,

• ...the local updates ui of all honest clients ci ∈ Cτ \{C>0},

• ...the sums {
∑

ci∈Pw
qℓ(Q f (ui))}w∈W .
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Let F be a multivariate function. Then, for each semi-honest adversary A receiving the
collection V of views of corrupted parties in the DealSecAgg protocol, there is a partition
{Pw}w∈W of C>0 with |Pw| ≥ thonest for all w∈W and an adversary A ′ receiving V ′P such
that there is negligibility in κ of
�

�Pr[A (1κ,V ) = F((ui)ci∈C)]−Pr[A ′(1κ,V ′P) = F((ui)ci∈C)]
�

� .

Proof. First, assume an honest aggregator. Then V consists of V ′P , all keys k j
i for a

corrupted dealer d j, all masks m j
i for a corrupted dealer d j, and all sums of masks m j

τ for
a corrupted dealer d j.

ConstructA ′ as follows: A ′ samples the keys k j
i of corrupted clients according to their

random tape and the keys of honest clients uniformly at random. Then,A ′ computes
m j

i =PRG(k j
i ) and m j

τ=
∑

d j∈Di m j
i . Let Vart denote the resulting artifical view of corrupted

parties. Finally,A ′ callsA as a subroutine on input 1κ and Vart. So,

A (1κ,Vart) =A ′(1κ,V ′P). (6.4)

The only difference between V and Vart is who chooses k j
i uniformly at random and hence

Pr[A (1κ,V ) = F((ui)ci∈C)] = Pr[A (1κ,Vart) = F((ui)ci∈C)]. (6.5)

Equation 6.4 and 6.5 show the statement for an honest aggregator.

Now, assume that the aggregator is corrupted. Then V consists of V ′P except for the

sums {
∑

ci∈Pw
qℓ(Q f (ui))}w∈W together with all keys k j

i sent to corrupted dealers d j, the

respective masks m j
i , all sums of masks m j

τ, and all masked updates ũi. We complete the
proof in three steps. First, we construct a partition of C>0. Then, we reduce the problem
s.t. we can use Theorem 1 in the last step.

We construct the partition of C>0 inductively. For each n∈N with n≤ p, let Cn denote
the set of honest clients ci for which there are exactly n honest dealers d ∈ Di with
|{ci′ ∈ C | d ∈ Di′}| ≥ thonest. Start with n= 1 and W0= ;. For n> 0, set Wn :=Wn−1. Pick
ci ∈ Cn \ (
⋃

w∈Wn
Pw) and choose a dealer d ∈ {d ∈ D | d ∈ Di}. Let Wn :=Wn∪{d} and

Pd := {ci ∈ C>0 : d ∈ Di}. Repeat this process picking ci if possible, else increment n and
repeat this process. Stop if n= p+1.

Now, let V ′′P = VP except for m j
τ with d j ∈W but including {

∑

ci∈Pw
qℓ(Q f (ui))}w∈W .

ConstructA ′′ like this: On input V ′′P ,A ′′ computes m j
τ=
∑

ci∈Pd j
ũi−
∑

ci∈Pw
qℓ(Q f (ui))−
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∑

d j∈Dα\W m j
τ. Let Vart be the resulting artificial view of corrupted parties. Finally, A ′′

callsA as a subroutine on input 1κ and Vart. So,

A (1κ,Vart) =A ′′(1κ,V ′′P ) (6.6)

and

Pr[A (1κ,V ) = F((ui)ci∈C)] = Pr[A (1κ,Vart) = F((ui)ci∈C)]. (6.7)

Now, construct A ′ as follows: A ′ samples k j
i and computes m j

i as in the case of the
aggregator being honest. For corrupted clients and honest clients ci ∈ Cτ \C>0 set ũi :=
qℓ(Q f (ui))+mi. It remains to construct ũi for all ci ∈C>0. For each w∈W choose ciw ∈ Pw.
For each ci ∈ Pw \{ciw} set uart

i = 0∈ (Z2ℓ)
|gτ| and set uart

iw
:=
∑

ci∈Pw
qℓ(Q f (ui)). For each

ci ∈ C>0, set ũi :=uart
i +mi. Let V ′′art denote the resulting artifical view of corrupted parties.

Finally,A ′ callsA ′′ as a subroutine on input 1κ and V ′′art. So,

A ′′(1κ,V ′′art) =A
′(1κ,V ′P). (6.8)

Note that in V ′′art, the masks m j
i of clients ci ∈ C>0 to dealers d j ∈W appear exactly once,

namely in masking ũi. This was the reason for the construction ofA ′′. Then, using the
indistinguishability hop lemma [Sho04] we can apply Theorem 1 yielding that
�

�Pr[A ′′(1κ,V ′′P ) = F((ui)ci∈C)]−Pr[A ′′(1κ,V ′′art) = F((ui)ci∈C)]
�

� (6.9)

is negligible. Equation 6.6, 6.7, 6.8 and 6.9 show the statement for a corrupted aggregator.

This shows that DealSecAgg is as secure as handing out only V ′P to an adversary for a
partition {Pw}w∈W of C>0. If thonest is large enough and C>0 contains all honest clients
in Cτ, this information is no more helpful to the adversary than V ′ together with gτ+1.
So in this case, DealSecAgg is secure even if the aggregator and multiple dealers are
corrupt.

6.5.2 Performance Analysis

In this section, the DealSecAgg protocol is analyzed in terms of its runtime and com-
munication complexity. A summary is depicted in Table 6.3. Computational complexity
is reduced to the number of vectors that need to be expanded from a seed, the most
expensive computation in a masking scheme.
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Client Dealer Aggregator

Masking phase (round 1) O(1) — O(1)
Unmasking phase (round 2) — O(n−d) O(1)

Table 6.3: Comparison of computation costs of the DealSecAgg protocol in the two com-
munication rounds. n is the number of clients participating in a training round
and d is the number of dropouts.

Protocol Rounds Client Aggregator Dealer

Bonawitz et al. [BIK+17] 4 O(n) O((1−d) n+d n2) –

Bell et al. [BBG+20] 4 O(log n) O((1−d) n+d n log n) –

Kadhe et al. [KRKR20] 3 O(log n) O(log n) –

So et al. [SGA21] n/ log n O(log n) O(n) –

So et al. [SNY+22] 3 O(1) O(1) –

DealSecAgg (ours) 2 O(1) O(1) O(n−d)

Table 6.4: Comparison of communication and computation costs of various masking
protocols with number of participating clients n and number of dropouts d.

The main computational complexity of the protocol is the generation of masks using a
PRG. Yet, in the DealSecAgg single dealer protocol, only one mask has to be generated by
each client. As apparent in Table 6.4, this is a major benefit compared to related work.
Additionally, masks have to be generated by the dealer(s). More precisely, a dealer has to
generate one mask for every client that did not drop out. For the number of dropouts
d and the number of total clients n, up to n−d masks are generated per dealer. The
aggregator does not generate masks, it has to perform m subtractions on the masks (one
for each of the m dealers). However, this computation is cheap in comparison to the
mask generation.

Communication consists of two rounds: training and masking (1), and unmasking (2).
Most of the message size in the first round consists of the global model that is sent
to the clients and the masked model sent back to the aggregator. Masking the model
does not add any bits to the model size. Also, clients send their key(s) to the dealer(s).
The key has a variable size, however, a 128 bit key was used in the simulation. This is
the only communication overhead compared to plain FedAvg. In the unmasking phase,
the aggregator sends the model size (16 bits) and a list of active clients (16n bits) to
the dealer(s). Subsequently, the dealer(s) send(s) a single mask to the aggregator. If
the mask has 100,000 parameters of int32, then the message would have the size
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of 3,200,000 bits. In comparison, the aggregator has to send a model to every client.
Therefore, sending a single mask per dealer does not add significant overhead.

6.6 Experiments

Simulations were performed to further evaluate the efficiency of DealSecAgg. The source
code of the experiments is available on Github [Hei23].

6.6.1 Simulation Setup

The DealSecAgg protocol is compared to the protocols SecAgg by Bonawitz et al. [BIK+17],
SecAgg+ by Bell et al. [BBG+20] and LightSecAgg by So et al. [SNY+22]. All protocols
were initialized with a minimum number of active clients t = ⌈n/2⌉. For SecAgg+, the
recommended parameters were used: σ= 40, γ= 0.3, δ= 0.2 and η= 30 [BBG+20].

In our experiments, we have not implemented the encoding and decoding of real values
as described in Section 6.4.2. Instead, we have directly operated on floating-point values,
both for model parameters and masks, similar to the authors of SecAgg [BIK+17]. We
expect the impact of utilizing quantization on runtimes to be negligible and focus our
experiments on the computational impact of the cryptographic functions introduced by
DealSecAgg.

The protocols were implemented in Python using the FedML framework [HLS+20]. It
uses the Message Passing Interface to enable clients to communicate on multiple threads,
and PyTorch for training the model parameters. Simulations were carried out by two Intel
Xeon E5-2690 processors with a total of 32 threads. The Debian Linux 9.5 system had a
total of 384 GiB of DDR3 memory. Also the training of the parameters was performed by
the CPU.

6.6.2 Results

This section analyzes the runtimes, the bits that were transmitted between parties and
the performance of the learned model. The main aspect that has been investigated is the
scalability of the protocol, that is, how the number of clients, dropouts, and dealers affect
the runtime. Furthermore, the runtime of each device is measured in order to better
understand when and where expensive computations are performed. A special emphasis
is put on client devices which are often mobile and therefore resource constrained. The
displayed runtimes do not include the time that was used to train the parameters. Only
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Figure 6.3: Comparison of runtimes for a varying number of clients.

the runtimes for operations that are introduced by the secure aggregation protocols are
considered.

To determine the load on the network, we have tracked the amount of bits that are
transmitted among FL parties. This is the basis of an evaluation in different bandwidth
and latency settings.

Number of Clients The first set of analyses examines the impact of the number of
clients on the total runtime of one training round. Figure 6.3 depicts a comparison of
DealSecAgg to related work in (a) and the runtimes per party in (b). For this experiment,
the DealSecAgg protocol operated in the single dealer setting. The former figure provides
an overview of the total runtime of one training round for 8 to 200 clients. It validates the
runtime complexities that have been presented in Table 6.3 and Table 6.4. The DealSecAgg
protocol significantly reduces the runtime by 97.6% in comparison to SecAgg+ and 87.8%
in comparison to LightSecAgg for 200 clients. With 200 clients, one training round took
27 seconds in total for DealSecAgg. As shown in Figure 6.3b, the majority of the time
is spent computing the aggregated mask at the dealer, followed by the aggregation of
the model parameters at the aggregator. Due to the reduced complexity of computations
on the clients, they only need 0.3 seconds for computing the mask and masking the
parameters.

Number of Dropouts Further analysis shows that the runtime for the DealSecAgg pro-
tocol decreases with an increase in dropouts. Figure 6.4a compares the runtime of the
protocols in settings with different numbers of dropouts. In the simulation, clients drop
out when they are expected to send their mask to the dealer and their masked model
to the aggregator. As expected, SecAgg and SecAgg+ perform worse with an increase
in dropouts due to an inefficient mask recovery process. LightSecAgg shows a slight
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Figure 6.4: Comparison of runtimes for a varying number of dropouts. 200 clients partic-
ipated in total.

5 10 15
Number of Dealers

26

28

30

Ti
m

e 
pe

r R
ou

nd
 (s

ec
)

DealSecAgg

(a) Varying number of dealers

1 3 5 7 10 15
Number of Dealers

0

5

10

15

20
Ti

m
e 

pe
r R

ou
nd

 (s
ec

)
client
server
dealer

(b) Runtime of each device

Figure 6.5: Comparison of runtimes for a varying number of dealers in the multi-dealer
variant of DealSecAgg. 200 clients participated in total.

decrease in runtime due to their use of the mask-encoding. However, DealSecAgg still
has a 87.3% shorter runtime compared to LightSecAgg with 60 dropouts (30% of all
clients). In Figure 6.4b, the runtime of each device is shown. From this figure, it can be
seen that the runtime of the dealer decreases the most. Since it has to generate fewer
masks with fewer active clients, its runtime decreases. Additionally, the aggregator has
to aggregate fewer model parameters.

Number of dealers An inspection of the experimental evidence on efficiency in the multi-
dealer setting of DealSecAgg is depicted in Figure 6.5, illustrating the total runtimes per
round with 1 to 15 dealers. Figure 6.5a shows a slight increase in runtime when the
number of dealers is increased. To be precise, the runtime increases from 27 seconds with
one dealer to 31.3 seconds with 15 dealers. This is still a decrease in runtime of 85.8% in
comparison to the LightSecAgg protocol. In this instance, the runtime mainly increases
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DealSec- SecAgg Sec- LightSec-

Agg (ours) Agg+ Agg

Round 1
Aggr. 916.386 944.045 927.120 1841.151

Client 4.582 4.605 4.591 9.206

Dealer 0 — — —

Round 2
Aggr. 0.017 1.083 0.432 1.083

Client 0 0.008 0.003 0.023

Dealer 4.582 — — —

Table 6.5: Comparison of communication costs in MiB sent by each party in the single-
dealer setting with 200 clients and no dropouts.
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Figure 6.6: Comparison of communication in total bits sent in each training round.

at the clients and the dealer as shown in Figure 6.5b. This is the result of multiple
masks being generated and added to the model parameters. However, the runtime of
the aggregation of the global model is not affected by an increase of dealers. Overall,
it is apparent that an increase in the number of dealers and therefore in security has
comparatively little effect on the total runtime.

Communication The next section of the evaluation is concerned with the communication
overhead that is induced by DealSecAgg. The main observation is that most of the
transmitted data is made up of the model itself. The total amount of bits that are sent
is shown in Figure 6.6a. It shows that the protocols DealSecAgg, SecAgg and SecAgg+
almost send the identical amount of bits. This can be explained by the relatively small
induced overhead compared to the actual model size. Table 6.5 shows the amount of
transferred bits by each device in the masking and the unmasking phase. With a model
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Figure 6.7: Test accuracy and loss on the CIFAR-10 dataset for each training round of
various secure aggregation protocols in comparison to plain FedAvg.

size of 4.582 MiB, the aggregator sends 200× this amount in the masking phase, one
to each client. Subsequently, the clients send the trained model back. Little overhead is
generated in SecAgg and SecAgg+ for the secret shares, and in DealSecAgg for the key
that is sent to the dealer. In the DealSecAgg protocol, the aggregated mask in the size of
the model is sent to the aggregator. Compared to the total amount of transferred bits, this
is rather insignificant. Significantly more data is transferred in the LightSecAgg protocol,
because each client sends the encoded mask besides the masked model, amounting to
twice the size of the actual model. Figure 6.6b shows the effect of multiple dealers:
Clients have to send a key to each of the dealers and those have to send their aggregated
mask to the aggregator. This results in a slight increase in transmitted bits with an
increasing amount of dealers.

Model Performance In the final part of the evaluation, a comparison of the model
performance is presented. A resnet56 was trained on the CIFAR-10 dataset over 50
rounds. Clients trained 10 epochs locally with SGD and a learning rate of 0.02. Each
client received a non-overlapping partition of the training set. Figure 6.7 shows the test
accuracy: Overall, all protocols performed similarly, as expected. Slight deviations in the
graph are due to the different training sets of clients. As the masking does not change
any model parameters, the model performance is not affected. Both plain FedAvg and
DealSecAgg, which also uses the FedAvg algorithm, achieve a test accuracy of around
85% after 50 training rounds.
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6.7 Discussion

Secure aggregation was introduced to protect FL against various attacks on individual
model parameters. Unlike other approaches like differential privacy [Dwo08], masking
does not have a negative influence on the training performance. Hence, the resulting
model is just as accurate as a model that is trained without secure aggregation. With
DealSecAgg, a protocol is proposed that aims to improve efficiency while guaranteeing a
similar level of security as previous secure aggregation protocols, i.e., SecAgg [BIK+17],
SecAgg+ [BBG+20] and LightSecAgg [SNY+22].

Regarding computational overhead, the amount of computations has been reduced to
the generation and addition of a single mask on the client side – the least amount of
operations necessary to perform a masking scheme. In contrast, SecAgg requires n and
SecAgg+ requires logn generations of masks for each client. The aggregator needs one
subtraction to unmask the global model – also the least amount of operations that need
to be performed in single-masking. All these operations are performed in constant time.
In contrast on the dealer side, computing the aggregated mask requires n generations
and additions of masks for each of the n clients. Therefore, the computational overhead
grows linearly in the number of active clients. In comparison to SecAgg, which grows
quadratically, and SecAgg+, which grows logarithmically, this is a great improvement.

When it comes to communication, the amount of bits sent between parties is similar to
SecAgg and SecAgg+. Yet, while those protocols require four communication rounds,
DealSecAgg requires only two rounds. This gives our protocol an advantage in networks
with a high latency. Although LightSecAgg performs only slightly worse than DealSecAgg,
it also introduces a high communication overhead. In practice, with limiting network
bandwidth and latency, this overhead would be much more significant.

Unlike other masking-based protocols, DealSecAgg requires a dealer party. Although
trusted third parties are common in SMPC protocols, e.g., to outsource operations, it
might be difficult to select a trustworthy party. DealSecAgg minimizes the dealer’s input,
hence limiting the possibilities of a malicious dealer. Although a dealer is not able to
obtain any sensitive information, they can still obfuscate the global model by sending a
tampered aggregated mask.

As in most cryptographic protocols, colluding parties are a risk in DealSecAgg, as they
could compromise individual model updates. By choosing the dealer carefully, the
probability of a collusion can be reduced. Furthermore, incorporating multiple dealers
increases the trust in the system, as it reduces the trust required for individual dealers: It
suffices to have one dealer who does not collude with the aggregator to preserve privacy.
The results of the simulation show that an increase in dealers only slightly increases the
runtime of the protocol.
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6.7.1 Future Work

Our main assumption is that all parties are semi-honest, i.e., that all parties follow the
protocol as defined. However, an adaption of DealSecAgg to the malicious adversary
model could be possible. For example, Bonawitz et al. [BIK+17] propose an extension
to SecAgg that protects against malicious aggregators. They add an additional com-
munication round with a consistency check to ensure that the aggregator follows the
protocol. Applying this approach to DealSecAgg would be an interesting direction for
future work.

Another direction could be to assess whether DealSecAgg can be extended to protect
against malicious clients, who could cause privacy and security risks or affect the global
model through model poisoning. Approaches making FL robust against corrupted client
updates could also be applicable to our protocol [LCW+20, PKH22].

Extending our protocol to other aggregation functions than FedAvg is left to future work
as well. Weighted averaging can be implemented as long as the aggregator informs
the clients about their individual weight at the beginning of each training round. Then,
clients can scale their update ui with their assigned weight before encoding and masking
it. At the end of each round, the aggregator has to account for clients who have dropped
out by scaling the unmasked updates accordingly.

Last but not least, it could be valuable to extend our experiments to different settings for
encoding model updates, as described in Section 6.4.2. Comparing model performance
and communication costs for different values ℓ could provide more insights into the
performance-utility tradeoff.

6.8 Conclusion

In this work, we have presented DealSecAgg, a lightweight single-masking protocol
for secure aggregation in FL. We have improved on previous secure aggregation pro-
tocols [BIK+17, BBG+20, SNY+22], which either introduce high computation and com-
munication overhead or are not able to efficiently handle dropouts. In networks with
thousands of clients, these protocols are heavily limited by their runtime. In contrast, our
findings clearly indicate that in large scale cross-device scenarios, DealSecAgg drastically
improves the runtime. By outsourcing the unmasking process to one or multiple dealers,
the computation at the clients and the communication overhead are reduced to a mini-
mum. While the single dealer setting requires a non-colluding third party, we provide an
extension for multiple dealers in which all but one dealers may be untrusted. We have
proven the security of both scenarios and have shown how the utility of the resulting FL
model remains unaffected.
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7 Conclusion

ML algorithms have gained widespread popularity due to their remarkable ability to
improve existing workflows and unlock new possibilities across various domains. Central
to this success are modern training algorithms that automatically uncover useful patterns
and rules from vast amounts of data. However, as this dissertation highlights, the pervasive
use of data – often containing sensitive information – also introduces substantial privacy
risks. As the reliance on ML models increases, safeguarding the privacy of data used for
training these models becomes a critical challenge.

7.1 Summary

The focus of this dissertation has been on the protection of data used for training ML
models. On one hand, training data properties can be extracted from trained ML models.
In this area, white-box and black-box PIAs have been analyzed, discussed and further
developed with contributions C1 and C2. Contribution C3 entails defense mechanisms
against white-box and black-box PIAs, which have been thoroughly tested in experiments.
On the other hand, when training data is not in one central data base but spread among
multiple parties, decentralized training protocols such as FL enable a distributed training
of ML models, with the decisive advantage of avoiding the transmission of training data.
Contribution C4 has investigated the performance, practical limits, and applicability of
FL in different scenarios. Finally, contribution C5 presents an FL protocol that provides
additional anonymity for FL participants, such that their individual model updates cannot
be linked to their identity by the coordinating party during or after training.

These contributions emerged while answering the four research questions posed in
Chapter 1. Concluding my dissertation, this section revisits each research question and
briefly summarizes the answers I could find in my work.

RQ1: How can training data properties be reconstructed from trained ML models?

In Chapter 3, PIAs were explored in a white-box scenario where an adversary has access to
a trained target model’s inner parameters and tries to reconstruct statistical properties of
its training data. Specifically, the severity of the state-of-the-art white-box attack by Ganju
et al. [GWY+18] was demonstrated for three different data sets, with success rates as high
as 99.3% or even 100% depending on the scenario. Experiments with the XAI tool LIME
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– complemented with experiments in Appendix A – exhibited how ubiquitous property
information is distributed in the weights of trained ANNs. This facilitates white-box PIAs,
as an adversary has multiple opportunities to extract property information from trained
model weights. Experiments with the visualization tool t-SNE additionally showed how
deeply different properties in the training data set affect an ANN’s weights: Without any
context information, t-SNE could cluster apart most of the models by their training data
property for two of three tested data sets.

In contrast, Chapter 4 also covered black-box PIAs, where the adversary does not have
direct access to the model’s internals but can only query a model and observe its output.
To query the model and infer training data property distributions, the adversary uses
an attack data set. A new approach to black-box PIAs was introduced, differing from
related work in two ways: First, the proposal formulates PIAs as a regression problem
rather than a classification task, which offers a more nuanced approach to understanding
property distributions. Second, it allows adversaries to use an attack data set which
is not necessarily part of the model’s training data, broadening the scope for practical
applications in real-world settings. In experiments with three data sets, the novel attack
proved successful with R² test values between 0.63 and 0.72.

RQ2: Which strategies can help to mitigate the reconstruction of training data
properties?

Recall that a successful defense strategy should meet three requirements, as mentioned in
Section 1.2: It should be easy to implement, decrease the success rates of attackers and
sustain model performance as best as possible. Adversarial learning, the state-of-the-art
defense strategy against other attacks, such as model poisoning [GSS14, ACW18], is a
good candidate to fulfill all three goals. For adversarial learning, the defender creates and
utilizes their own adversary instance. This adversary is then used to steer the model away
from revealing its secret, i.e., to intentionally lower the adversary’s performance. In the
case of defending against a PIA, this means that the model will be less prone to revealing
a chosen sensitive training data property. Therefore, adversarial learning changes the
training process but does not require changes in model architecture or training data,
meeting the first requirement.

In Chapter 3, the adversarial learning strategy property unlearning is introduced for
white-box PIA scenarios. It is designed as a post-hoc strategy, applied after model training
has been completed. Experiments have shown that property unlearning works well when
defending against a specific adversary instance, deterring the adversary from property
inference while keeping the target model’s utility high. However it fails to generalize,
i.e., the defense is ineffective when the hardened model is attacked by another instance
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of a property inference adversary with the same goal. Therefore, this approach does not
meet the second requirement stated in Section 1.2.

In contrast, the black-box defense strategy from Chapter 4 is applied during model
training, with a parameter λ controlling the adversarial influence during the training
process. Experiments have shown that λ= 0.15 is low enough to maintain the target
model’s performance (with an observed accuracy decrease of less than 0.15 percentage
points) and high enough to prevent a successful attack, lowering the adversary’s test R²
to 0.07. Opposed to the white-box approach of Chapter 4, this strategy also generalizes
well (see Appendix B), therefore meeting all three requirements for a successful defense
strategy.

RQ3: What are the benefits and practical limits of FL?

In distributed ML training scenarios, FL has become a key technology. While sharing
sensitive data is often not a viable option for companies and other organizations, FL
enables training an ML model in a distributed way without the need to transfer any
training data. As discussed in Chapter 5, FL therefore provides a basic level of training
data privacy. The chapter also spotlights three simulated use cases, two of which focused
on the performance of differently trained ML models. It was observed that the relative
performance loss of models trained via FL was no greater than 7.2% compared to the
respective models trained centrally on the same data.

On the other hand, the third use case of Chapter 5 showed how setting up an FL coopera-
tion takes a lot of engineering effort. First, a framework suitable for all parties must be
settled on. While the exchange of model updates could also be performed manually (e.g.,
by sending email attachments), the automated training orchestration by frameworks
comes with huge manual labor savings in the long run. Second, the appropriate APIs
and workflows must be implemented for all parties in order to ensure responsiveness
during the training process. Third, the decentralized nature of the training data in FL
scenarios can lead to a number of issues. Primarily it must be ensured that the training
data is formatted and preprocessed in the same way for all parties. But even with unified
data formats, hyperparameter optimization can be a particularly hard challenge, since
the coordinating party – who is responsible for the model architecture and other training
hyperparameters – usually does not have access to any of the actual training data. At least,
this should be accounted for from the beginning by planning enough time for multiple
iterations of HPO prior to the actual model training. This way, different settings can be
tested before a final setting is decided on.

It should also be noted that the plain FL protocol [MMR+17] does not eliminate all risks
regarding training data privacy. Hence, plain FL does not protect participants beyond
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the aforementioned basic training data privacy, as many publications on the topic have
shown [LYY20]. One particular issue is that participants transfer their model updates to
the central party in the clear, leading to the fourth research question.

RQ4: How can the anonymity of FL contributors be enhanced without sacrificing
efficiency?

Chapter 6 contains a proposal for a cryptographic FL masking protocol called DealSecAgg.
This protocol ensures the anonymity of FL participants by masking their updates prior
to sending them to the aggregator. Masking is an established method in the area of
secure aggregation for FL model updates, an active area of research. In the evaluation,
DealSecAgg was compared to three similar protocols from related work. All of the other
approaches have their individual shortcomings regarding computation efficiency. By
introducing at least one independent dealer party who learns nothing besides the size
of the trained model and the number of parties involved, runtimes of related work are
reduced by up to 87.8% when using DealSecAgg. Additionally, DealSecAgg is efficiently
handling dropouts, i.e., clients dropping out in the midst of a training process. The
computation time of DealSecAgg is even marginally decreased when many clients drop
out. This is a huge advantage compared to most related work, where the masks of
dropouts need to be recovered through expensive cryptographic operations. Chapter 6
also contains a security proof, showing that DealSecAgg is provably secure against a semi-
honest adversary unless the aggregator and all dealers are corrupted, or the aggregator
and sufficiently many clients are corrupted.

While DealSecAgg outperforms related work in terms of runtimes, it requires at least one
additional independent party, the dealer. Depending on the scenario the protocol is used
in, this third party might be hard to find or instantiate. However, creating a dealer party
should be feasible in most situations. For example, a non-profit organization could see
the benefit of cooperating health institutions, or a trade association could help companies
to train a model together. Given the speedup provided by using DealSecAgg, searching
for such a dealer party would be a worthwhile investment.

7.2 Future Work

The research presented in this dissertation has addressed critical privacy concerns in
machine learning, but many questions remain open for future exploration. Given the
rapid pace of advancements in both privacy-preserving techniques and ML methodologies,
there are numerous avenues for future research. In particular, several open challenges
can build on the findings of this dissertation. This section combines a summary of future
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work discussed in previous chapters with new directions that emerged when writing up
this dissertation.

Property Inference Attacks

In this dissertation, two adversarial learning approaches to mitigate PIAs were explored.
Future research could include transferring both approaches to a dynamic scenario, in
which the adversary may adapt their attack to the implemented defense strategy. For the
presented white-box and black-box defense approaches, the most straightforward way
forward would be to train new adversaries on defended shadow models and measure
their success rates. For the black-box defense from Chapter 4, which is applied during
training, also the adversary could be retrained during the training process, much like
when training a GAN [GPAM+20]. Property unlearning, the white-box defense from
Chapter 3, could similarly be applied during the training process. It would be interesting
to see whether this – both the application during training and the dynamic setting – has
positive effects on its generalizability. Note that the inspiration for the defense presented
in Chapter 4, the adversarial approach to achieve ML fairness by Grari et al. [GRLD20],
also makes use of a dynamic adversary. However their adversary has another goal and
is much more simple, since it does not need anything beyond the training data and the
current output of the target model (in contrast to the PIA adversary trained on the output
of multiple shadow models).

Another direction for future work could be to find alternative approaches for both white-
box and black-box PIA defenses. A candidate strategy could be knowledge distillation (KD).
The idea of KD is to lower the memory capacity of an ANN. The primary goal of this is to
reduce the size of the model, thereby reducing storage and computation requirements for
its use [Hin15]. The first step of KD is to train a (potentially large) model and store its
detailed probability outputs for the training data. To train the distilled, smaller network,
the original class labels of the training set (hard class labels) are replaced with the
trained model’s probability output (soft labels). When training the distilled model, it can
therefore make use of the large model’s training encoded in the preprocessed soft labels.
Other works have shown how this technique can make a model more robust towards ML
attacks, e.g., against adversarial examples [PMW+16] and MIAs [SH21]. However for
other attacks such as model inversion and model stealing, another publication could not
observe a significant decrease in attack success rates by using KD [LWH+22]. It would be
interesting to evaluate the impact of KD on PIA success rates and the associated decrease
in model performance.

Another way to expand the research of this dissertation is to explore the applicability of
the developed defense strategies of Chapters 3 and 4 on other PIA attacks. One example
for this would be the novel black-box KL divergence attack by Suri et al. [SLCE23], as
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introduced in Section 2.4.3. Since the black-box defense approach from Chapter 4 is
generic and any adversary could be plugged into the algorithm, the technical barriers for
its implementation are low. Experiments on defending against the KL divergence attack
could determine whether the findings of this work generalize to other attacks. Particularly,
the results could show whether the observed privacy-utility tradeoff in Chapter 4 can be
reproduced in other attack scenarios.

As far as new types of PIA strategies are concerned, an open challenge is to further reduce
the effort required for an attack. Suri et al. have shown how the KL divergence attack
succeeds with training less shadow models than comparable black-box attacks. However
for other attacks such as MIAs, there are approaches without training any shadow models
at all [LZ21]. This approach is not directly transferrable to the property inference setting,
since MIAs have a different goal than PIAs. But if there were certain observations to
be made about models and their properties which can lead to a PIA design without any
auxiliary data sets and shadow models, this would significantly advance the PIAs research
community.

Masking for Federated Learning

Regarding FL, a secure aggregation masking scheme called DealSecAgg was proposed
in Chapter 6. Note that DealSecAgg was designed for the FedAvg aggregation function,
which means that the aggregator computes the average of all the clients’ model updates
at the end of each training round. Computationally, this is the most simple aggregation
function, since it only involves summing up the client updates and dividing by the number
of contributors afterwards. Extending DealSecAgg to work for other aggregation functions
as well would be a major feature to broaden the applicability of the protocol. Lately
byzantine-robust aggregation functions have been proposed, in order to account for single
malicious contributions which may easily skew the average model update of FedAvg1. The
term byzantine-robust means that these alternatives to FedAvg are less sensitive to such
outliers [FCJG20]. As an example, one could simply calculate the median update instead
of the mean, since outliers have less impact on the median. However this is not trivial to
implement for the DealSecAgg protocol, which relies on forming sums of both masked
model updates and masks. The same applies to Krum [BEMGS17], another popular
byzantine-robust aggregation function [FCJG20]. Krum calculates pairwise Euclidean
distances between all client updates. For n clients, including at most c corrupted clients,
the distances between each contributed model update and its closest m−c−2 neighboring
model updates (with respect to the Euclidean distance) are calculated. The model with
the smallest sum of respective distances is then selected as the global model for the

1. The term byzantine means that clients might behave arbitrarily, i.e., contribute model updates with
unexpected values [BEMGS17].
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next round. Since the aggregator has to analyze individual model updates for Krum
and masking approaches prevent the aggregator from having access to such individual
contributions, this is not straightforward to implement either. DealSecAgg could however
be adapted such that the dealer splits the n clients into a constant number of equally sized
client groups g ∈ G, say |G|= 10 with

∑

g∈G |g|= n. As long as there are enough clients
taking part in the training process, masks and model updates could be aggregated within
each group. The idea is that if the number of byzantine clients c is small (say c < |G|),
the updates of byzantine clients could be isolated such that there are groups without
byzantine updates. Inspired by Krum, a cautious aggregator might then update the global
model with the average update of the group with the smallest sum of distances, when
compared to the other groups’ average updates. Since splitting clients into groups could
harm their anonymity, the number of groups and the minimal number of participating
clients must be carefully chosen before applying such a scheme in practice.

Beyond this, future work could include transforming DealSecAgg into a setting with
malicious parties, where either a corrupted aggregator or corrupted clients may deviate
from the protocol. This could be achieved by introducing consistency checks, as discussed
in Section 6.7.1.

Privacy and Security for Machine Learning

The landscape of privacy and security in ML is rapidly evolving, particularly with the
increasing deployment of large-scale models like LLMs. As the demand for ML continues
to grow, so does the importance of safeguarding sensitive data throughout the training
process. The future of FL and other ML systems could lie in the integration of advanced
cryptographic PPML methods such as HE and SMPC. With the continuous advancements
in computational power and dedicated hardware [ZCY+24], these privacy-preserving
tools could become increasingly practical and widely adopted, allowing for the secure
and private deployment of ML models in a variety of sensitive applications.

Complementing ongoing efforts to understand and mitigate different forms of privacy
leakage in ML applications, a more widespread use of such PPML techniques could play
a significant role to make the future of ML more privacy friendly and secure.

7.3 Final Outlook

The advent of ML algorithms has transformed numerous industries, offering unprece-
dented opportunities for innovation and efficiency. However, as these technologies
become increasingly embedded in our daily lives, the need for robust privacy protection is
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more critical than ever. This dissertation has focused on addressing the privacy concerns
associated with ML systems, particularly in the context of PIAs and FL.

By developing novel defense strategies for PIAs and proposing advanced protocols to
ensure the anonymity of FL participants, this work has contributed to the growing body
of research focused on safeguarding sensitive data in the age of machine learning. While
significant progress has been made, it is clear that the journey is far from complete. As
ML continues to evolve, so too must our strategies for mitigating privacy risks.

Looking ahead, the challenges of ensuring data privacy will only become more complex,
as new models and techniques emerge. The growing scale of ML models, the rise of
large-scale deployments such as generative models, and the increasing interconnectivity
of systems all pose new risks. It is essential that the research community continues to
explore innovative solutions to prevent privacy breaches and develop secure frameworks
that allow ML models to thrive while respecting individuals’ privacy.

This dissertation has laid a foundation, but the need for further research remains. As
we move forward, we must refine existing methodologies, expand our understanding of
emerging attack vectors, and continue pushing the boundaries of PPML. The future of
ML is not only about making models smarter but also about making them safer and more
privacy friendly. The work presented here serves as one step in this ongoing effort, and
the path ahead promises to be both challenging and rewarding.
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A Revisiting the Explainability of
White-Box Property Inference

The focus of the experiments in Chapter 3 is on white-box PIAs. As discussed, the state-of-
the-art approach for constructing such adversaries to attack fully-connected ANNs is based
on permutation invariance [GWY+18]. Since the explainability experiment in Section 3.6
does not fully account for this permutation invariance, additional experimental evidence
is provided here.

For the following two experiments, the same experimental setup as in Section 3.6 is
used: Two sets of shadow models are trained on the MNIST data set for handwritten
digit recognition [LBBH98]. On each set of shadow models, one PIA adversary is trained.
Both adversaries then attack the same target model.

As in Section 3.6, the tool local interpretable model-agnostic explanations (LIME) [RSG16]
is used in the first experiment – but its results are evaluated in a different way. In the
second experiment, integrated gradients (IG) [STY17] is applied. The additional use of
IG is to make sure that the XAI results are valid, motivated by shortcomings of the LIME
approach.

Limitations of LIME

In an evaluation of XAI tools by Warnecke et al. [WAWR20], IG outperforms LIME in 4 out
of 6 evaluation criteria, while the remaining two categories show a similar performance
of the two tools. When explaining the decisions of PIA adversaries, the XAI tools are
employed in a very limited scope: one fixed input for two classifiers with the same task.
Therefore, many robustness and security concerns about LIME [AMJ18, BCL23, WAWR20]
do not apply to the use case at hand.

However, Warnecke et al. raise issues which could limit the significance of the LIME
experimental results. One of them is captured by the criterion descriptive accuracy: When
the most important attributes of a sample x leading to a classifier’s decision are removed
from x , the accuracy of the classifier should decrease [WAWR20, Def. 2]. The other
“general criterion” is descriptive sparsity, measuring how well an XAI tool assigns important
weights to input attributes – understanding sparsity in the sense that only a few attributes
should be deemed important in a good explanation [WAWR20, Def. 3]. Out of the
six tested XAI tools in the paper, IG has the best performance regarding both general
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criteria, outperforming LIME and the other four tools. This indicates that the quality
of IG explanations tends to be inherently higher than the quality of LIME explanations.
Furthermore, LIME treats the explained model as a black box, while IG is a white-box
method calculating its explanations directly from the weights of the classifiers which
are explained. Since access to the internal weights of the PIA meta-classifier is not an
issue in the experiments at hand, the LIME experiment can be repeated with the stronger
white-box XAI tool IG.

Experimental Setup

Recall that within the experiment in Section 3.6, two PIA adversaries have been trained
with the same goal: inferring a specific property of a target model’s training data. When
these two adversaries are attacking the same target model M , the explainability tool
LIME is used to highlight the parts in the target model’s weights which are important
for the decision of both adversaries. To quantify importance, LIME assigns importance
values to each input value – which correspond to the target model parameters in the case
at hand.

In order to account for the permutation invariance of neurons within a layer of a fully
connected ANN, only the distributions of these importance values for the weights of M
are considered in the experiments here1, beginning with the neuron weights of the first
layer.

Results

Table A.1 describes the distributions of the experiment outcomes: For both XAI tools
LIME and IG, the distributions of the explanations, i.e., importance vectors, calculated
for both adversary instances 1 and 2 are compared. To provide better comparability, the
importance vectors are also scaled to a range between 0 and 1 and display both variants
(scaled and unscaled) in the table.

Apart from similar metrics in the scaled LIME explanations, the distributions of importance
vectors are very different, especially those calculated by IG. This is also reflected in
Figure A.1, where the histograms for both adversary instance explanations are plotted in
one graph for each scenario (LIME and IG, scaled and unscaled). It is apparent that the
distributions differ in each scenario.

1. The code for the experiments of this Appendix is available at [Sto25a], specifically in the files
mnist/LIME-revisited.ipynb and mnist/ig-explainability.ipynb.
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Tool LIME IG

Scaled no yes no yes

PIA inst. 1 2 1 2 1 2 1 2

Mean 7.77×10−6 9.82×10−7 0.537 0.488 −3.41×10−9 8.33×10−7 0.613 0.400

Std Dev 8.98×10−5 6.21×10−5 0.105 0.119 1.67×10−6 1.21×10−5 0.032 0.070

Min −4.54×10−4 −2.54×10−4 0.000 0.000 −2.03×10−5 −6.77×10−5 0.000 0.000

25% Q. −5.23×10−5 −4.09×10−5 0.467 0.408 −3.35×10−7 −4.95×10−7 0.603 0.366

50% Q. 7.95×10−6 9.01×10−6 0.538 0.488 −1.20×10−9 1.75×10−7 0.614 0.396

75% Q. 6.83×10−5 4.27×10−5 0.608 0.568 3.32×10−7 6.29×10−6 0.624 0.432

Max 4.05×10−4 2.69×10−4 1.000 1.000 1.28×10−5 1.04×10−4 1.000 1.000

Range 8.59×10−4 5.23×10−4 1.000 1.000 3.30×10−5 1.71×10−4 1.000 1.000

Variance 8.06×10−9 3.85×10−9 0.011 0.014 1.14×10−12 1.48×10−10 0.001 0.005

Table A.1: Descriptive statistics of the attribute importance values produced by the two
XAI tools LIME and IG. inst.=instance, Q.=Quantile.

Discussion and Conclusion

The main conjecture of Section 3.6 can be summarized as follows:

Conjecture 1. Two white-box PIA adversary instances with the same goal rely on different
parts of a target model M to infer a training data property from M.

If this conjecture were not true, the explanation of an XAI tool would be expected to
reveal that both instances rely on the same weights of M ’s trained weights, i.e., assign
similar importance values to the neuron weights of one layer within M . However, the
experiments show that both LIME and IG assign different importance values to the weights
of neurons within M ’s first layer2. Hence, further experimental evidence supporting
Conjecture 1 has been gathered, such that the same conclusion as in Section 3.6 can be
drawn, i.e., the conjecture seems to be true.

2. The results for the other layers are omitted, since the differences for the first layer suffice for the validation
of Conjecture 1.
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(a) Unscaled LIME. (b) Scaled LIME.

(c) Unscaled IG. (d) Scaled IG.

Figure A.1: Histograms of importance values when two PIA adversary instances (green
and blue histogram) classify the same target model M. The importance values
from both tools LIME and IG are each shown as they are calculated by the
tools (unscaled) and scaled from 0 to 1.
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B Generalizability Experiment for the
Black-Box Property Inference
Defense

In Chapter 4, a strategy to defend against black-box PIAs is introduced and evaluated.
The goal of the defense, as explained in Section 1.2, is to harden target models against
the inference of a specific training data property. This Appendix is an extension of the
experiments of Section 4.5.3. Specifically, the experiments presented here1 are designed
to gather evidence for answering the following question, related to the second goal of
RQ2 in Section 1.2:

Question 1. Consider two adversaries A and A0, both aimed at inferring a property p
from target models m∈M but trained on the outputs of different shadow models. When
using A during adversarial learning of model m as introduced as a defense strategy in
Section 4.4, how well can another adversaryA0 infer p from m?

Recall that the white-box PIA defense of Chapter 3 did not meet this generalizability goal.
In contrast, this Appendix is dedicated to the black-box regression setting.

Experimental Setup

The same initial experimental setup as in Section 4.5.3 is used: An adversary A is
trained on the output of shadow models with different training data property values
pv ∈ {0.1,0.2,. . . ,0.9}. For the UTKFace data set, 200 shadow models are trained on
auxiliary data sets with the respective pv, while 400 shadow models per property value
pv are trained and used for CIFAR-10. After successfully training the adversary A , it
is used for adversarial learning to harden five target models m∈M per property value
pv. The training data of the target models m∈M is disjunct from the training data of
shadow models used for adversary training. For this experiment, 5 additional adversaries
A0, . . . ,A4 are trained with the same target property asA . The additional adversaries
are each trained on different sets of shadow models, which are disjunct from the set of
shadow models used duringA ’s training.

1. The code for the experiments of this Appendix is available at https://github.com/joshua-stock/regression-
property-inference/blob/main/src/generalizability.ipynb
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no defense defended models

λ= 0.0 λ= 0.15

UTKFace 0.58 (0.63) 0.30 (0.07)

CIFAR-10 0.64 (0.64) 0.32 (0.07)

Table B.1: The performance of the black-box defense as R² values when other adversaries
infer the property from defended models. Values in brackets are the reference
performance of the adversary used during adversarial learning (as presented
in Table 4.2).

Hence, there are five target models for each of the nine property values pv. These
models are attacked by five different adversaries, yielding 5∗9∗5= 255 measurements
per setting. The training of target models is conducted twice, once without adversarial
learning (λ= 0.0) and once with an adversarial influence of λ= 0.15.

Results

The results of the experiment are summarized in Table B.1: The mean test R² performance
of the additional adversaries A0, . . . ,A4 on undefended target models is compared to
their performance on defended models with λ= 0.15. For the UTKFace data set, the
R² drops from 0.58 to 0.30, while the CIFAR-10 adversaries exhibit a similar decrease
from 0.64 to 0.32. This is compared to the performance of adversaryA , which was used
during the adversarial learning of the target models: Here, the R² value drops from 0.64
(resp. 0.63) to 0.07 for both data sets.

Figure B.1 offers more details on the performance of adversariesA0, . . . ,A4: For both data
sets UTKFace and CIFAR-10 and both settings λ∈ {0.0,0.15}, the adversary predictions
are plotted on the y-axis, for each of the property values pv on the x-axis. The dotted
red lines represent a perfect adversary prediction, while the dashed gray lines display
the target of the defense, i.e., a constant adversarial output of 0.5. The performance in
the four different settings as described in Table B.1 is reflected in these plots, i.e., the
adversary outputs for defended models is generally closer to 0.5. The output values of
the adversaries are not significantly more spread out in one scenario or the other: The
range of values, displayed by the space between the “whiskers” in each boxplot, is similar
in the four graphs.
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(a) Undefended UTKFace models (λ= 0.0)
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(b) Defended UTKFace models (λ= 0.15)
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(c) Undefended CIFAR-10 models (λ= 0.0)
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(d) Defended CIFAR-10 models (λ= 0.15)

Figure B.1: Plotted results of the generalizability experiment: Results for the UTKFace
data set are displayed in the top row, results for CIFAR-10 are in the bottom
row. The plots in the left column display the output of adversariesA1, . . . ,A4
for undefended models, the right column shows the outputs for defended
models with λ= 0.15.
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Discussion and Conclusion

The defense strategy of Chapter 4 works very well for defending against the adversary
which was used during the adversarial learning of a target model (reflected by the
reference values of Table B.1). While the defense mechanism performs slightly worse
to protect against other adversaries, such asA0, . . . ,A4 in the experiment above, it still
achieves a major disruption in the adversaries’ performance. On one hand, this is reflected
in significantly worse R² values for the adversaries, dropping from ∼ 0.6 for undefended
models to ∼ 0.3 when the defense was applied. On the other hand, the performance
decrease is also evident in the plots of Figure B.1, where the mean outputs for most of
the property values pv get worse, i.e., the difference between the predicted values and
the true values is generally increased by the defense strategy.

Note that, as discussed in Section 4.6, setting the target property value pv for all target
models to 0.5 is an artificial setting for a comprehensive experimental setup. In real
applications, it might be wise to deliberately choose a target pv which is far away from
the real pv, or a random value between 0 and 1.

In conclusion, the black-box PIA defense strategy of Chapter 4 does not only protect
against the adversarial instanceA which was used during adversarial learning, but also
interferes with the property inference of other adversaries with the same goal. Considering
the results of the experiment above, an answer to Question 1 can be formulated as follows:
Compared to the effect of the defense onA , the effect on other adversaries such asA0
is smaller. Still, the defense achieves significant performance disruptions on the other
adversaries, i.e., generalization could be observed in the experiments.
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