
an der Universität Hamburg eingereichte

kumulative Dissertation

Emerging Threats to Online Security:
Securing Systems Against Unauthorized

Automation and Web Bots

submitted by

Richard August See

Dissertation to receive the title Dr. rer nat.

Faculty of Mathematics, Informatics and Natural Sciences
Departments of Informatics

Computer Networks (NET) Group

Hamburg, March 25, 2025

Reviewers

Prof. Dr. Mathias Fischer
Prof. Serge Egelman, PhD

Disputation date: June 02, 2025

URN: urn:nbn:de:gbv:18-ediss-130048

Whoever said there’s no such thing as a free lunch was never a grad student.

— Serge Egelman

Poor Essence. Little value.

— Abathur

Abstract
Internet services increasingly suffer from unwanted automation through bots, which pose
significant challenges including financial losses, security breaches, and diminished user trust.
The ability of bots to convincingly emulate human interactions complicates detection efforts,
particularly as advancements in machine learning enable increasingly sophisticated automated
agents. Bots are used to carry out a wide range of attacks, including credential stuffing,
web scraping, and distributed denial-of-service attacks. Traditional countermeasures, such as
CAPTCHAs, have become increasingly ineffective due to advances in artificial intelligence,
highlighting the need for alternative detection approaches.

This cumulative dissertation addresses key challenges in bot detection, analysis, and prevention,
with the goal of mitigating bot-related risks through novel, non-intrusive, and scalable solutions.

For bot detection, approaches are introduced that leverage the interaction behaviors of humans
with web-based services, such as mouse movements, typing patterns, and website navigation.
Unlike traditional methods that rely on static identifiers (e.g., IP addresses) or explicit user
challenges (e.g., CAPTCHAs), these methods passively distinguish humans from bots by
analyzing user interaction patterns using machine learning based detection models trained on
behavioral data. Evaluations of synthetic and human behavior demonstrate the effectiveness of
these approaches.

Effective bot defense also requires the analysis of bot software to uncover operational strategies
and vulnerabilities. A method is presented to accelerate the reverse engineering of closed-source
applications, a critical yet resource-intensive task. Specifically, dynamic binary instrumentation
is employed to systematically identify and prioritize critical code segments (Points-of-Interest)
related to sensitive data, as specified by the analyst (Items-of-Interest). Empirical validation
on complex malware, including ransomware and peer to peer botnets, demonstrates substantial
efficiency improvements and reliable identification of key functionalities.

To address the scalability challenge posed by automated bots, a preventive strategy is proposed
that targets API-based automation. Existing obfuscation techniques primarily hinder the
initial creation of bots but fail to prevent subsequent large-scale deployments. The proposed
method obfuscates client-server communication protocols by assigning distinct protocols to
each client. Consequently, attackers are required to reverse engineer each instance individually,
significantly increasing the cost and complexity of large-scale bot operations without disrupting
legitimate user interactions.

This thesis presents methods to enhance bot defenses across detection, analysis, and prevention.
While it advances all three areas, challenges remain. As defenses improve, a shift toward
UI-based bots that circumvent APIs is expected. Moreover, ongoing progress in AI will
further blur the distinction between human users and automated agents, undermining current
detection techniques. A promising direction lies in strong, yet privacy-preserving authentication
mechanisms that robustly bind virtual identities to human identities.

iv

Zusammenfassung
Internetdienste leiden zunehmend unter unerwünschter Automatisierung durch Bots. Die
sich daraus ergebenden Herausforderungen sind immens. Es können finanzielle Verluste
entstehen, Sicherheitsverletzungen auftreten und das Vertrauen der Nutzenden kann Schaden
nehmen. Die Fähigkeit von Bots, menschliche Interaktionen überzeugend zu imitieren, erschwert
die Erkennung von Bots, insbesondere da Fortschritte im maschinellen Lernen zunehmend
ausgeklügelte automatisierte Agenten ermöglichen. Bots werden eingesetzt, um eine Vielzahl von
Angriffen durchzuführen, darunter Credential Stuffing, Web-Scraping und verteilte Denial-of-
Service Angriffe. Traditionelle Gegenmaßnahmen, wie CAPTCHAs, sind durch die Fortschritte
in der künstlichen Intelligenz zunehmend unwirksam geworden, was den Bedarf an alternativen
Erkennungsmethoden aufzeigt.

Diese kumulative Dissertation behandelt zentrale Herausforderungen in der Bot-Erkennung,
-Analyse und -Prävention, mit dem Ziel, botbedingte Risiken durch neuartige, passive und
skalierbare Lösungen zu mindern.

Für die Bot-Erkennung werden Ansätze vorgestellt, welche die Interaktionsmuster von Menschen
mit webbasierten Diensten wie Mausbewegungen, Tippmuster und Website-Navigation, nutzt.
Im Gegensatz zu herkömmlichen Methoden, die auf statischen Identifikatoren (z.B. IP-Adressen)
oder expliziten Aufgaben (z.B. CAPTCHAs) beruhen, unterscheidet diese Methode passiv
zwischen Menschen und Bots, indem sie die Interaktionsmuster der Nutzenden mithilfe von
auf maschinellem Lernen basierenden Erkennungsmodellen analysiert, die auf Verhaltensdaten
trainiert wurden. Evaluierungen von synthetischem und menschlichem Interaktionsverhalten
belegen die Effektivität dieser Technik.

Eine effektive Bot-Abwehr erfordert zudem die Analyse von Bot-Software, um operative Strate-
gien und Schwachstellen aufzudecken. Es wird eine Methode vorgestellt, die das Reverse
Engineering von Closed-Source-Anwendungen beschleunigt, eine kritische, jedoch ressourcenin-
tensive Aufgabe. Konkret wird Instrumentierung eingesetzt, um systematisch kritische Code-
Segmente (Points-of-Interest) in Bezug auf Daten (Items-of-Interest), wie von der analysierenden
Person festgelegt, zu identifizieren und zu priorisieren. Empirische Validierungen an kom-
plexer Malware, einschließlich Ransomware und peer-to-peer-Botnets, belegen eine zuverlässige
Identifikation zentraler Funktionalitäten.

Um die Skalierbarkeitsproblematik durch automatisierte Bots anzugehen, wird eine präventive
Strategie vorgeschlagen, die sich gegen API-basierte Automatisierung richtet. Existierende
Obfuscationstechniken behindern hauptsächlich die anfängliche Erstellung von Bots, verhin-
dern jedoch nicht deren nachfolgenden großflächigen Einsatz. Die vorgeschlagene Methode
verschleiert Client-Server-Kommunikationsprotokolle, indem sie jedem Client unterschiedliche
Protokolle zuweist. Folglich sind Angreifende gezwungen, jede Instanz einzeln zu reverse-
engineeren, was die Kosten und die Komplexität großflächiger Bot-Operationen erheblich
erhöht, ohne dabei legitime Aktionen von Nutzenden zu stören.

Diese Arbeit präsentiert Methoden zur Verbesserung der Bot-Abwehr in den Bereichen Erken-
nung, Analyse und Prävention. Obwohl in allen drei Bereichen Fortschritte erzielt wurden,

v

bleiben Herausforderungen bestehen. Mit der Verbesserung der Abwehrmaßnahmen ist ein
Übergang zu UI-basierten Bots zu erwarten, die APIs umgehen. Darüber hinaus wird die
fortschreitende Weiterentwicklung im Bereich der künstlichen Intelligenz die Unterscheidung
zwischen menschlichen Nutzern und automatisierten Agenten weiter verwischen und die derzeit-
igen Erkennungstechniken unterminieren. Ein vielversprechender Ansatz liegt in robusten,
jedoch datenschutzfreundlichen Authentifizierungsmechanismen, die virtuelle Identitäten zuver-
lässig an menschliche Identitäten binden.

vi

Acknowledgement

Someone once told me a PhD thesis is like navigating through the sea—you see islands along
the way without knowing where you’ll eventually land. I was lucky to have a great crew helping
me steer this journey.

I would like to thank Mathias for his unwavering support throughout my Bachelor’s and
Master’s studies, during every DISScussion, and for helping me stay focused, even when I
was tempted to pursue new directions. You were there until the end, tirelessly helping me to
improve. I am also grateful to Hannes, whom I met during my first semester. He was one of
the reasons I chose to pursue security and privacy! I would further like to thank Serge, whose
humor and cheerful spirit brought much, needed levity to academic work, and whose approach,
often mirroring my own, was a source of inspiration.

My gratitude extends to my fellow colleagues and crewmates. I would like to thank first
Doğanalp, who warmly welcomed me and was a supportive crewmate and seat neighbor. I
learned a great deal about research from him, and he was always open to both fun and athletic
challenges. The same appreciation goes to my ever-changing office quartet—Doğanalp, Flo,
Nurefşan, Max, and Conny, whose presence made daily work both productive and enjoyable.
The same holds for Tatjana, the cook of our ship. My spirited crew of four, whose camaraderie
and light-hearted banter were a continual source of encouragement. A special thank you goes
to my office mate Kevin, whose willingness to take on a variety of tasks significantly eased our
collective workload.

I also thank Anne and Pascal, friends from my first semester, whose parallel journeys in
our research group have been both inspiring and enjoyable. My appreciation extends to my
students; supervising your theses has been as rewarding as it has been challenging, and your
dedication has significantly enriched my own work.

Thank you, Ulf, whose remark back in 2012, predicting that I would eventually come to
appreciate LATEX, sparked both my enduring interest in science and a lasting appreciation for
typesetting. Wilfried, who was the first to show me a path beyond school mathematics and
encouraged me to explore further. I also thank Oliver for teaching me the value of balance and
the importance of taking time to simply “chill.” I also thank my friends Merle, Lukas, Nils, and
Kim, whom I occasionally burdened with my research problems and involuntary discussions.
The same goes for my privacy-conscious friends who prefer not to be mentioned by name.

Finally, I thank my family and my girlfriend, who never doubted me for a second and simply
said, “You will do it.” Your unwavering confidence and support have meant a great deal to me.

Now at the shore, I hope my crewmates will not linger too long at sea—so that we will see
each other again for the next trip.

It was really a pleasure with you all. Reading this text is a reminder for you to write me!

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Research Questions . 3
1.4 Contributions . 5
1.5 Thesis Organization . 6
1.6 List of Publications . 7

2 Background and Related Work 9
2.1 Bot Creation and Analysis . 9

2.1.1 Definition and Overview . 9
2.1.2 Bot Creation and Analysis Techniques 12

2.2 Bot Detection . 14
2.2.1 Static Detection . 14
2.2.2 Behavioral Detection . 14

2.3 Bot Prevention . 16
2.3.1 Prove of being a Human . 16
2.3.2 Obfuscation . 17

2.4 Summary . 18

3 Bot Detection Using Behavioral Analysis 19
3.1 Bot Detection Using Mouse Dynamics . 20

3.1.1 Method . 21
3.1.2 Key Results . 23
3.1.3 Discussion and Implications . 26

3.2 Bot Detection Using Keystroke Dynamics . 27
3.2.1 Method . 28
3.2.2 Key Results . 30
3.2.3 Discussion and Implications . 32

3.3 Bot Detection Using Behavioral Analysis in High-Traffic Applications 34
3.3.1 Method . 35
3.3.2 Key Results . 38
3.3.3 Discussion and Implications . 40

3.4 Summary . 41

4 Automated Analysis and Control of Binaries 43
4.1 Method . 45

viii

4.1.1 Generic POI Discovery . 47
4.1.2 Use Case: Automated P2P Botnet Monitoring 48

4.2 Key Results . 49
4.2.1 Setup . 49
4.2.2 Results RQ2.1: Identification . 50
4.2.3 Results RQ2.2: Slowdown . 50
4.2.4 Results RQ2.3: Quality of Confidence Scores 52

4.3 Summary and Discussion . 52

5 Bot Prevention through Endpoint and Protocol Obfuscation 54
5.1 Polymorphic Protocols for Limiting Protocol Analysis and Bot Scalability . . . 55

5.1.1 Method . 56
5.1.2 Key Results . 61
5.1.3 Discussion and Implications . 64

5.2 Encrypted Endpoints for Limiting Bot Scalability 65
5.2.1 Method . 66
5.2.2 Key Results . 70
5.2.3 Discussion and Implications . 72

5.3 Summary . 73

6 Conclusion 75

Bibliography 80

ix

Appendices 87

A Detecting Web Bots via Mouse Dynamics and Communication Metadata 89

B Detecting Web Bots via Keystroke Dynamics 104

C BOTracle: A framework for Discriminating Bots and Humans 120

D Binary Sight-Seeing: Accelerating Reverse Engineering via Point-of-Interest-Beacons 140

E Polymorphic Protocols at the Example of Mitigating Web Bots 157

F Encrypted Endpoints: Defending Online Services from Illegitimate Bot Automation 177

x

List of Figures

2.1 Simplified bot-generated mouse trajectories from Iliou et al. [IKT+21] (page 18,
table 7). 16

3.1 Examples of mouse tracks from different applications: a browser-based chat
application (left), an advanced bot using ghost-cursor1(center), and a human
user playing a rhythm game (right). 22

3.2 Distribution of participants by number of data points collected. 24
3.3 t-SNE visualization of real (red) vs. synthetic (blue) keystroke distributions. . 33
3.4 Multi-Stage bot detection pipeline process. 35

4.1 Overview of the POI discovery process. 45
4.2 Architecture of the PinPuppet system. 49
4.3 Distribution of confidence scores for IP-based POIs in ZeroAccess, Sality, Nu-

gache and Kelihos. Each plot shows the number of POIs per confidence score
range (horizontal axis). 51

4.4 Correctness versus confidence score for identified POIs. Points above the dashed
diagonal indicate that the actual correctness exceeds the POI score, suggesting
a conservative, non-overestimating metric. The green dotted line marks the
filtering threshold of 0.8. 53

5.1 High-level view of polymorphic protocol generation. A base protocol, client ID,
and secret seed are fed into a protocol generator, which outputs a client-specific
custom protocol. 57

5.2 Example on how a custom protocol can be requested, delivered, and deployed
between a client and an ingress server acting as a proxy. 60

5.3 Encrypted Endpoint usage in the context of webpages and browsing. 67
5.4 Encrypted Endpoint usage (backend only). 68
5.5 Attempt to use a URL generated for a different client: The MAC verification fails. 68
5.6 Directly accessing a non-issued URL also fails due to MAC mismatch. 69

xi

List of Tables

1.1 The organization of the thesis. 6

3.1 Request data model performance with varying number of requests. 25
3.2 Performance of the mouse-based model with different event counts. 25
3.3 Mouse based classifier performance against basic and advanced bots. 25
3.4 Combined model performance on unseen users. 26
3.5 Generator models with varying degrees of dependence on surrounding keys. . . 31
3.6 Excerpt of SVM performance results (subset shown for brevity). 31
3.7 Performance of Transformer and LSTM trained on a mixed dataset wit 32k

samples. 32
3.8 LSTM performance with keycodes included. 32
3.9 Features included in WT graphs. 37
3.10 Ground truth based on initial assumptions and heuristic refinement. 38
3.11 Comparison of detection performance between models. 39
3.12 Excerpt of technical feature importance scores for the SGAN classifier. 40
3.13 Classification performance as a function of WT graph size. 40

5.1 Mean program build properties: Difference of polymorphic compared to the
original protocol in percent (N=100). 63

5.2 Runtime cost per transformation class . 64
5.3 Latency overhead when rendering encrypted URLs in Jinja2, measured via

profiling over 100,000 requests. 71

xii

Chapter 1

Introduction

1.1 Motivation

The Internet has transformed into a vast ecosystem of interconnected services that relies
heavily on automation to enable functionality. For example, real-time financial market trackers
aggregate stock prices and news updates, fully automated price comparison engines allow
consumers to instantly gauge market prices, and search engines operate by automatically
consuming and indexing all content on the Internet. While such automation brings efficiency,
it also creates opportunities for misuse. Bots exploit free access to resources for various
malicious activities, such as scraping proprietary data to train AI models or collecting personal
information, such as names, addresses, and email addresses, for use in phishing attacks. They
are also used to automatically scan for and exploit security vulnerabilities in applications.

Beyond the operational costs of traffic and repairing attacked systems, bots impose a significant
social cost. In user-centric applications such as social media, gaming, and dating platforms,
malicious bots distort perceived popularity and crowd out genuine users. This undermines
the authenticity of interactions and erodes user trust, ultimately threatening the platform’s
success. Bots can also be used to spread opinions and misinformation on social media, making
them appear more popular than they actually are. This effect is amplified by recommender
algorithms that prioritize and promote popular content. As a result, bots can be leveraged to
influence public opinion, including electoral processes [BF16].

The problem of bots is significant. Recent statistics indicate that bots accounted for nearly 50%
of Layer 7 global Internet traffic in 2023, with approximately one-third of this traffic classified
as malicious [Imp24]. Beyond merely inflating traffic, bots impose substantial operational costs
by overloading servers, consuming bandwidth, and straining support systems.

Early defense strategies often targeted fixed indicators such as IP addresses or user-agent
strings. However, modern bots readily evade these tactics by rotating through IPs or spoofing
legitimate browser signatures. Meanwhile, more advanced methods leverage behavioral and
interaction-based analysis to detect automated scripts masquerading as human users. Most
of these approaches are proprietary and lack thorough evaluation. Additionally, they often
assume low attacker capabilities, particularly in areas such as mouse or keyboard dynamics.
The tension between maintaining a seamless user experience and implementing robust bot
defenses becomes increasingly pronounced as the threat landscape evolves.

1

1.2 Problem Statement

This dissertation addresses core challenges in detecting, analyzing, and preventing malicious
bots. This sections highlights current shortcomings and guides the research questions posed in
Section 1.3.

Traditional defenses like CAPTCHAs represent the most widely adopted mechanism against bots.
However, CAPTCHAs increasingly fail to provide adequate protection due to advancements
in AI. These systems rely on tasks that are easy for humans but computationally challenging
for machines. Recent progress in AI, particularly in areas like image recognition and logical
reasoning, has diminished the effectiveness of CAPTCHAs [SPK16, AA20]. This has made
tasks that were once bottlenecks for bots relatively trivial, requiring novel approaches to address
the challenge of bot scalability effectively.

Bot Detection: Limitations of Static Features and Active Challenges Most existing bot
detection methods rely on static features, such as IP addresses, user-agent strings, and device
fingerprints. Although practical to deploy, these signals can be easily spoofed. Modern bots
often utilize full browser environments or automated frameworks to appear indistinguishable
from legitimate traffic.

A further limitation is the risk of false positives, which can increase user friction and potentially
lead to lost revenue due to user frustration. Therefore, detection approaches should ideally be
transparent and avoid active challenges such as CAPTCHAs.

While behavioral analysis, such as mouse movements, keystroke timings, or browsing patterns,
offers a more promising alternative, it raises privacy concerns when outsourced to third-party
services [Liu18, Mac18], as behavioral data can also be used for tracking [AMM+21]. Conse-
quently, detection must evolve to meet the privacy, scalability, and adaptability requirements
of real-world scenarios.

Another fundamental challenge is that detection is inherently retrospective. In the absence of
static features, a sufficient amount of behavioral data is required for accurate classification.
This raises the question of whether detection can occur quickly enough to prevent damage. For
example, if five minutes of user behavior are needed per session to classify a bot, the response
may be too late for effective mitigation on a per-session basis.

Bot Analysis: Reverse Engineering Effective bot detection and prevention might require
tailored defenses based on a deep understanding of the bot’s inner workings. This includes, for
example, understanding how bots behave in order to design detection methods that specifically
target these behaviors. This makes reverse engineering an essential step in developing targeted
countermeasures. Through the analysis of the closed-source and obfuscated bot application,
defenders can uncover a bot’s communication protocols, control logic, and attack strategies.
However, this process is typically slow, requires substantial expert knowledge, and is resource-
intensive. Despite the availability of general-purpose tools such as IDA1 and Ghidra2, analyzing

1https://hex-rays.com/ida-pro
2https://ghidra-sre.org/

2

https://hex-rays.com/ida-pro
https://ghidra-sre.org/

sophisticated, obfuscated bots still demands considerable manual effort. As a result, the high
cost and limited scalability of reverse engineering hinder the timely development of customized
defense mechanisms. Automating parts of this workflow could reduce overhead and accelerate
the development of effective, and adaptive bot prevention mechanisms.

Bot Prevention: Scaling Challenges Once a bot has been developed, it can be replicated
with minimal effort and deployed at scale. While a single automated account on a social platform
may have limited impact, thousands of such accounts can collectively manipulate engagement
metrics, such as likes, comments, and shares, amplifying certain posts or viewpoints far beyond
the reach of any individual bot. This scalability enables large-scale influence operations, spam
campaigns, and data harvesting efforts that are difficult to counter once initiated.

Existing prevention strategies, including anti-reverse engineering and code obfuscation tech-
niques, are primarily designed to hinder the initial reverse engineering process and thus the
creation of the initial bot. Tools such as Tigress [Col01] are effective at obfuscating individual
binaries, making it more difficult for adversaries to analyze or instrument them. However, their
protective value diminishes once a bot has been successfully developed and replicated. Moreover,
these techniques do not protect the underlying application protocol. Any protocol change
must be synchronized with all legitimate communication partners which cannot currently be
achieved through obfuscation techniques. Further, in many cases, bot developers do not require
a complete understanding of the application’s internal logic, extracting the protocol alone is
often sufficient to build a bot. Consequently, new strategies are required to limit the scalability
of bot deployments without affecting legitimate user activity.

1.3 Research Questions

Automation enables scalable and efficient Internet services but is increasingly exploited by
malicious bots. These abuses include resource misuse, protocol mimicry to evade defenses, and
evasion of static-feature detection. Reverse engineering remains slow, expert-heavy, and costly.
Existing prevention mechanisms lack scalability and often disrupt legitimate users.

Guided by open problems in detection, analysis, and prevention, the following research questions
aim to explore solutions to improve their integration.

RQ1: What are the limitations of passive anomaly detection based on user behavior for
identifying bots? Effective bot detection must balance accuracy with usability. Active
challenges, such as CAPTCHAs, are increasingly ineffective due to advances in machine
learning and are often detrimental to the user experience. For instance, Cloudflare
CAPTCHAs alone are estimated to waste 500 years of user time per day [Meu21]. To
avoid frustrating legitimate users and reducing engagement, passive detection techniques,
those that operate transparently in the background, are essential.

Historically, passive detection has relied on static signals such as IP addresses or user-
agent strings. However, these are easily spoofed and require continuous maintenance of
blacklists or heuristics. In contrast, behavioral data, such as mouse movements, keystroke

3

dynamics, and navigation patterns, offers a more robust signal, as it is harder to mimic
and does not rely on static identifiers.

This research question investigates the effectiveness and limitations of passive detection
methods that leverage user behavior. Subquestions include: How accurately can bots
be distinguished from humans based on various types of behavioral data? How do
different classification approaches perform across behavioral modalities such as mouse
dynamics, keyboard timing, and browsing patterns? Can behavioral detection be made
privacy-preserving, for example by removing user-identifiable features or applying data
minimization techniques?

Another important aspect is the timeliness of detection. Since behavioral data accu-
mulates over time, an open challenge is determining how much interaction is required
to make a reliable decision. The generalizability of behavioral models is also exam-
ined: can detection models trained on one application be transferred to another, or is
application-specific training necessary?

These questions highlight the need for non-intrusive, privacy-aware detection mechanisms
that are both effective and scalable without compromising user experience.

RQ2: How can reverse engineering techniques be optimized to accelerate the analysis of
closed-source bot binaries? Sophisticated bots can mimic human-like behavior, which
undermines the effectiveness of traditional detection methods. Understanding the internal
workings of bot applications is essential for uncovering specific behavioral patterns that
can inform both detection and prevention strategies.

Reverse engineering enables analysts to identify how bots automate interactions, whether
through direct API access, UI manipulation, or instrumentation of running processes. It
also facilitates the discovery of operational logic, communication protocols, and software
dependencies. Those information can be used for developing tailored mitigation tech-
niques. However, analyzing closed-source, compiled binaries is particularly challenging
due to the lack of source code and the inherent complexity of such analysis. This process
is often time-consuming, requires expert knowledge, and can be resource-intensive. In
practice, a key challenge lies not only in locating relevant sections of the binary but also
in assessing their relevance. Effective techniques are needed to rank and match binary
components with the analyst’s specific interests, while minimizing analysis overhead to
avoid breaking application functionality.

RQ3: How can the scalability of bots be limited? The primary threat posed by bots lies
not in isolated instances but in their capacity to scale with minimal effort. Once a bot
is developed, it can be effortlessly replicated and deployed across a large number of
clients or sessions, amplifying its overall impact. This scalability enables adversaries
to perform widespread attacks, such as large-scale misinformation campaigns on social
media platforms [BF16], with relatively low overhead.

Existing work has primarily focused on detecting and blocking individual bots, for
example by flagging suspicious IP addresses or deploying active challenges. However,
these techniques can often be bypassed and do not directly address the root problem, scal-
ability. To effectively mitigate large-scale bot threats, it is necessary to embed scalability
limitations directly into the architecture of the targeted application. Rather than relying
solely on detection after deployment, prevention strategies aim to restrict the feasibility

4

of bot proliferation from the outset. Such approaches must be lightweight, transparent
to legitimate users, and straightforward to integrate for application developers.

This research question therefore investigates approaches that shift the defensive focus
from detecting individual bots to inherently preventing large-scale deployment, thereby
tackling the scalability challenge at its root.

1.4 Contributions

The contributions of this thesis address the challenges outlined in the research questions by
proposing novel techniques for bot detection, reverse engineering, and prevention. These
contributions are grouped according to the primary objectives of this work:

C1: Passive Bot Detection A passive bot detection method is proposed, leveraging behav-
ioral signals—such as website traversal patterns, mouse movement dynamics (e.g., acceleration
and trajectory), and keystroke timing profiles—to differentiate between human users and bots.
In contrast to active detection approaches, this technique imposes no interaction burden on
users, thereby maintaining a frictionless user experience. The method relies on self-trained
machine learning models for analyzing user input behavior, addressing limitations of prior work
that often assumed overly simplistic bot interactions. Privacy can be enhanced by excluding
keystroke identities from the classification process, with only minimal impact on accuracy.
The approach also exhibits low detection latency, enabling robust classification within a few
seconds of user activity. Furthermore, evaluation shows that models benefit from larger train-
ing datasets, even when collected across different applications, indicating the potential for
cross-application generalization.

C2: Accelerating Program Analysis When generic detection techniques prove insufficient,
an in-depth understanding of the behavior and structure of existing bots becomes essential
for enhancing bot detection and prevention mechanisms. This contribution addresses RQ2 by
providing tools to facilitate reverse engineering processes and thus making binary analysis more
targeted. Specifically, we introduce Points-of-Interest beacons, which guide reverse engineering
by highlighting critical instructions in binary code. Analysts provide input data, such as
contacted IP addresses or file content, and the approach identifies the instructions accessing
this data. Consequently, reverse engineering efforts, both manual and automated, become more
focused. We validate our approach using real-world malware and botnet binaries and integrate
it into established reverse engineering frameworks such as IDA and Ghidra.

C3: Preventing Bot Scalability A significant contributor to bot-related issues is the bots’
inherent capability to scale effortlessly: once developed, they can be duplicated easily, amplifying
their impact. To counter this, we propose an obfuscation technique that specifically targets
application communication, complicating scalability for bots reliant on automating interactions
via communication protocols. Existing binary hardening methods primarily aim to impede
initial reverse engineering but typically neglect obfuscation at the communication protocol
level. Currently, attackers need only reverse engineer a single, static communication protocol

5

to create a first bot and subsequently scale effortlessly. In contrast, the proposed approach
requires attackers to reverse engineer a unique communication protocol for each individual
application instance, substantially increasing the effort required to scale bot deployments. This
mechanism remains transparent to users and introduces minimal overhead for service providers.

1.5 Thesis Organization

This cumulative thesis is structured to present a comprehensive approach to bot detection,
binary analysis, and prevention through a series of contributions detailed in the previous
section. The structure and associated contributions are summarized in Table 1.1. Each chapter
is designed to build upon the foundational challenges and solutions introduced in the research
questions and contributions.

Table 1.1: The organization of the thesis.

Chapter Section Publication Contribution

Chapter 1: Introduction

Chapter 2: Background

Chapter 3: Bot Detection using
Behavioral Analysis

Section 3.1 [bWRF23]

C1Section 3.2 [bWWF24]

Section 3.3 [KbSF24]

Chapter 4: Automated Analysis and
Control of Binaries

Section 4 [bGFK23] C2

Chapter 5: Bot Prevention through
Endpoint and Protocol Obfuscation

Section 5.1 [bFF22]
C3

Section 5.2 [bRF24]

Chapter 6: Conclusion

Chapter 2 provides the necessary background by reviewing existing methods and highlighting
their limitations within the domains of bot detection, reverse engineering, and bot prevention.
This chapter establishes the foundational context for the contributions presented in the
subsequent chapters.

Chapter 3 investigates bot detection through behavioral analysis techniques. Specifically, it
describes approaches based on mouse dynamics, keystroke dynamics, and high-traffic behavioral
analysis frameworks aimed at effectively identifying bots accross different applications (C1).

Chapter 4 addresses the necessity of efficient binary analysis, introducing Points-of-Interest
beacons that facilitate reverse engineering and enhance the understanding of bot and malware
behavior (C2).

6

Chapter 5 emphasizes bot prevention through endpoint and protocol obfuscation. It presents
novel techniques, including encrypted endpoints and polymorphic protocols, that increase
complexity and cost for attackers attempting to scale their bots (C3).

Finally, Chapter 6 concludes the thesis by summarizing the key findings and their implications,
and outlines potential directions for future research in bot prevention and detection.

1.6 List of Publications

Thesis Contributions

[bFF22] August See, Leon Fritz, and Mathias Fischer. Polymorphic protocols at the
example of mitigating web bots. In European Symposium on Research in Computer
Security, pages 106–124. Springer, 2022.

[bGFK23] August See, Maximilian Gehring, Mathias Fischer, and Shankar Karuppayah.
Binary sight-seeing: Accelerating reverse engineering via point-of-interest-beacons.
In Proceedings of the 39th Annual Computer Security Applications Conference,
pages 594–608, 2023.

[bRF24] August See, Kevin Röbert, and Mathias Fischer. Encrypted endpoints: Defending
online services from illegitimate bot automation. In Proceedings of the 27th
International Symposium on Research in Attacks, Intrusions and Defenses, pages
166–180, 2024.

[bWRF23] August See, Tatjana Wingarz, Matz Radloff, and Mathias Fischer. Detecting web
bots via mouse dynamics and communication metadata. In IFIP International
Conference on ICT Systems Security and Privacy Protection, pages 73–86. Springer,
2023.

[bWWF24] August See, Adrian Westphal, Cornelius Weber, and Mathias Fischer. Detecting
web bots via keystroke dynamics. In IFIP International Conference on ICT
Systems Security and Privacy Protection, pages 423–436. Springer, 2024.

[KbSF24] Jan Kadel, August See, Ritwik Sinha, and Mathias Fischer. Botracle: A framework
for discriminating bots and humans. In European Symposium on Research in
Computer Security, SecAI workshop, 2024.

7

Further Contributions

[bb21] August See. Polymorphic protocols for fighting bots. Electronic Communications
of the EASST, 80, 2021.

[bF23] August See and Mathias Fischer. Binding bot resources and uncovering their behav-
ior. Extended Abstract, presented at the International Conference on Networked
Systems (NetSys), 2023.

[bGLF25] August See, Thimo Grußendorf, Jona Laudan, and Mathias Fischer. Rubber ducky
station: Advancing hid attacks with visual data exfiltration. In IFIP International
Conference on ICT Systems Security and Privacy Protection, 2025.

[bOSF25] August See, Benedikt Ostendorf, Lilly Sell, and Mathias Fischer. Flatdc: Automatic
schema reverse engineering of flatbuffers. In IFIP International Conference on ICT
Systems Security and Privacy Protection, WNDSS workshop, 2025.

[WbF23] Pascal Wichmann, August See, and Hannes Federrath. Secpassinput: Towards
secure memory and password handling in web applications. In IFIP Interna-
tional Conference on ICT Systems Security and Privacy Protection, pages 236–249.
Springer, 2023.

[WbGF24] Tatjana Wingarz, August See, Florian Gondesen, and Mathias Fischer. Privacy-
preserving network anomaly detection on homomorphically encrypted data. In
2024 IEEE Conference on Communications and Network Security (CNS), pages
1–9. IEEE, 2024.

8

Chapter 2

Background and Related Work

This chapter provides an overview of key concepts and challenges related to web bots. Specifi-
cally, it examines bot creation, bot prevention, and bot detection.

2.1 Bot Creation and Analysis

The development of bots involves various methods and tools aimed at automating interactions
with networked services. This section provides a detailed analysis of different types of bots,
the techniques used in their implementation, and the role of reverse engineering in creating but
also analyzing bots.

2.1.1 Definition and Overview

Bots are automated programs designed to perform specific tasks by interacting with systems.
This includes scraping bots that collect data and bots that simulate user interactions on social
media platforms. Additionally, botnets, malicious software that turns compromised systems
into coordinated bot instances, also fall within the broader definition of bots. The effectiveness
and complexity of bots vary depending on their implementation. The major categories of bots
are as follows:

API-Based Bots

API-based bots interact directly with the application programming interface (API) of a service,
bypassing the graphical user interface (GUI) to achieve faster execution and lower computational
overhead. By reverse engineering APIs, bot developers can extract endpoints and the necessary
data structures to facilitate automated interactions. This method of automation enables
high scalability and operational efficiency, making it particularly effective for tasks such as
automating social media interactions1 or data scraping.

A key advantage of API-based bots is their ability to scale efficiently. For example, a single bot
can generate thousands of interactions and significantly impact content visibility with minimal
effort once API endpoints for liking or commenting on a social media platform are identified.

1Example bot: https://github.com/subzeroid/instagrapi

9

https://github.com/subzeroid/instagrapi

This scalability is a key reason for their widespread impact, as a single bot can evolve into a
network of automated agents capable of overwhelming a service.

Existing obfuscation techniques, such as those implemented by Themida [Tec22], can impede
reverse engineering of individual protocols or APIs. However, they do not address the funda-
mental scalability of API-based bots, which remains their greatest threat. These obfuscation
methods focus on increasing the difficulty of creating an initial bot, but fail to significantly
increase the effort required to deploy multiple bot instances.

UI-Based Bots

User interface (UI)-based bots simulate human interactions with graphical user interfaces.
These bots use tools such as computer vision to identify interface elements or rely on fixed
coordinates to simulate mouse movements and clicks2. Unlike API-based bots that interact
directly with application endpoints, UI-based bots operate by interacting with the visual
components of an application. This approach typically has a higher computational overhead
and slower execution speed due to the need to render graphical elements.

UI-based bots are particularly useful in scenarios where APIs are unavailable or highly restricted.
For example, an e-commerce bot designed to purchase high-demand items mimics a human
user by navigating through product pages, adding items to the shopping cart, and completing
the checkout process. They are also not dependent on structured API endpoints, making them
versatile for automating tasks in different environments.

However, UI-based bots are constrained by their reliance on GUI interactions, which limits
their effectiveness in environments where user interfaces are limited or costly, such as in games.
Another significant drawback is the amount of maintenance required to keep them functional.
User interfaces tend to change more frequently than structured APIs, which are often versioned
(e.g., /api/v1/resource) and thus more stable. These frequent UI changes require constant
updates to the bot’s logic, making UI-based bots more labor-intensive and less scalable than
their API-based counterparts.

Common Use Cases

Bots are used in a variety of domains, with different levels of sophistication depending on the
application.

Web Scraping Bots often extract data from websites, such as product prices, reviews, or
other publicly available information. These bots typically rely on HTTP requests or web
automation frameworks like Puppeteer3 to retrieve and parse data. Because web scraping
involves limited interaction, reverse engineering is generally not required. Instead, these bots
target specific endpoints or HTML elements, making them relatively easy to develop and
deploy.

2Example bot: https://github.com/Xian55/WowClassicGrindBot
3https://pptr.dev/

10

https://github.com/Xian55/WowClassicGrindBot
https://pptr.dev/

Crawling and Indexing Legitimate bots, such as those used by search engines, systematically
crawl and index Web content. These bots are typically granted implicit permissions, such
as when a robots.txt file is absent or does not restrict access, and they are not considered
malicious. They provide essential services, including search engine indexing and digital
archiving.

Spamming Spamming bots automate repetitive tasks such as account creation, login processes,
and posting messages or comments. They are common on social media platforms, forums, and
e-commerce sites. These bots typically automate only the functionality necessary for their
specific purpose, such as posting messages, and require minimal reverse engineering focused on
identifying key interaction points.

Task Automation Task automation bots perform complex, interactive activities that often
require extensive reverse engineering of application protocols or binaries. Examples include

• Gaming: Bots automate gameplay activities such as resource gathering, quest completion,
or PvP combat [LWK+16].

• Social Media: Bots manage accounts, engage with posts, and run targeted cam-
paigns [OMAAK20, BF16]. This often requires direct interaction with an API.

• Application Testing: Bots automate tasks such as UI testing using browser automation
tools such as Selenium4 or Puppeteer.

• Fraud and Scalping: Bots facilitate fraudulent activity, including the creation of fake
accounts and the automated purchase of high-demand items such as concert tickets or
limited edition products [Par19].

Focus on API-Based Bots

API-based bots are the most scalable and impactful form of automation, making them a
critical focus of this research. In contrast to UI-based or binary bots, API-based bots make
use of structured and often stable application programming interfaces that allow for efficient
automation with minimal computational overhead. Their scalability amplifies their threat,
allowing a single bot to grow into a large-scale network that can manipulate content or
overwhelm services.

Modern application architectures rely on APIs as the primary communication layer between
clients and servers. APIs are an integral part of web applications, mobile apps, and IoT devices,
providing standardized mechanisms for data exchange and interaction. This ubiquity makes
APIs a prime target for automation, as their structured interfaces allow for predictable and
efficient use by bot developers.

4https://www.selenium.dev/

11

https://www.selenium.dev/

2.1.2 Bot Creation and Analysis Techniques

Bot development requires a deep understanding of the target application, including its pro-
tocol and deployed defense mechanisms. Analysis of such applications often involves reverse
engineering techniques, including binary analysis and traffic inspection.

These techniques are equally valuable for bot detection and analysis, allowing researchers to
uncover a bot’s internal logic and potential weaknesses. By analyzing a bot’s internal logic,
researchers can identify effective detection and prevention strategies. Conceptually, both bot
creators and analysts function similarly to man-at-the-end (MATE) attackers [ASA+15], who
have unrestricted access to the application. This level of access allows them to inspect, modify,
and manipulate the software without restriction.

MATE Attackers

MATE attackers [ASA+15] have complete control over a client device, including access to
software binaries, network traffic, and run-time memory. This access allows them to reverse
engineer applications, extract sensitive information (such as API keys or communication
protocols), and modify application behavior to their advantage.

Defending against MATE attackers is particularly challenging because, given sufficient time
and resources, they can successfully reverse engineer most applications. For example, a mobile
application that relies on hard-coded API keys for authentication is vulnerable to decompilation.
A MATE attacker can extract these keys and use them to generate malicious requests that
mimic legitimate client behavior.

Development Tools

Browser Automation Frameworks Browser automation frameworks such as Selenium
and Puppeteer make it easier to interact with Web applications by replicating human-like
behavior. These tools are particularly effective for automating interactions with dynamic or
JavaScript-heavy content.

Mimicking Browsers Through the rendering of JavaScript, these frameworks can interact with
dynamic web applications. This capability allows bots to process and manipulate dynamic
content inaccessible to simpler HTTP request libraries.

Stealth Techniques To evade detection, these frameworks often integrate stealth solutions such
as Puppeteer Stealth5, which reduce fingerprint discrepancies between automated and real
browser sessions. In some cases, full-headed browser instances are used to further simulate
authentic user behavior.

Reverse Engineering and Instrumentation Tools Reverse engineering and instrumentation
tools help analyze applications, especially when dealing with obfuscated APIs or native
applications. Static analysis tools such as IDA Pro, Ghidra, and Radare26 decompile and

5https://www.npmjs.com/package/puppeteer-extra-plugin-stealth
6https://rada.re/

12

https://www.npmjs.com/package/puppeteer-extra-plugin-stealth
https://rada.re/

analyze binaries, while dynamic tools such as Frida7 provide runtime inspection and function
hooking. Platforms such as PANDA8 and Qiling9 facilitate dynamic analysis by monitoring and
replaying system execution. These tools are often used to bypass protections such as HTTPS
pinning or custom encryption by intercepting and modifying function calls.

There are also more targeted approaches. BotWatcher [BDYGP15] is an example of a
dynamic analysis tool for botnet malware. It performs forensic analysis to identify key events,
such as file creation or network connections, by periodically capturing memory snapshots of a
bot’s execution. By applying inference rules to these events, it can determine higher-level bot
behavior, including payload downloads and command-and-control activities.

Protocol Analysis Tools Protocol analysis tools play a critical role in examining how
applications communicate over networks. Tools such as Wireshark10 capture and analyze
communication at the packet level, while mitmproxy11 and Proxyman12 allow HTTPS traffic
to be intercepted. Automated tools such as mitm2swagger13 generate API documentation by
analyzing intercepted traffic. These tools help extract API endpoints, headers, and payload
structures.

Reverse engineering also facilitates analysis of bot communication protocols and input formats.
Approaches, such as ReFormat [WJC+09], reconstruct protocol structures even in the presence
of encryption. ReFormat achieves this by identifying cryptographic operations through bitwise
analysis and using taint tracking to follow data flows within binaries. However, encrypted or
obfuscated protocols, such as those used in Marionette [DCS15], present significant challenges
to these techniques.

API Bot Creation Process

Bot creation involves analyzing and understanding a target application’s communication
protocols or interfaces. In the case of API-based bots, the goal is to circumvent user interfaces
entirely by interacting directly with the application’s APIs.

1. Bypassing Encryption and Obfuscation: Many applications implement custom encryption
and obfuscation layers to impede analysis. These protections must be bypassed using
static or dynamic analysis techniques, code modification, or disabling HTTPS pinning to
facilitate traffic interception.

2. Protocol Reverse Engineering: Once traffic is decrypted, API structures can be reverse
engineered through manual analysis or automated tools such as mitm2swagger.

3. Reimplementation: Extracted API calls are reimplemented in lightweight scripts using
libraries such as Python’s requests.

7https://frida.re/
8https://github.com/panda-re/panda
9https://github.com/qilingframework/qiling

10https://www.wireshark.org/
11https://mitmproxy.org/
12https://proxyman.io/
13https://github.com/alufers/mitmproxy2swagger

13

https://frida.re/
https://github.com/panda-re/panda
https://github.com/qilingframework/qiling
https://www.wireshark.org/
https://mitmproxy.org/
https://proxyman.io/
https://github.com/alufers/mitmproxy2swagger

2.2 Bot Detection

Detecting bots is essential to mitigate their negative impact on Web services, including
increased operational costs, degraded user experience, and abuse of systems designed for human
interaction. Bot detection involves identifying automated behavior and distinguishing it from
legitimate human actions. This applies not only to web-based systems, but also to desktop or
mobile environments.

2.2.1 Static Detection

Static detection methods identify bots based on predefined system or network characteristics,
such as IP address, browser fingerprint, and device attributes. These approaches rely on fixed
identifiers rather than behavioral patterns. A basic static detection method involves blocking
IP addresses associated with spamming or malicious activity. Services such as abuseipdb14

maintain databases of such addresses for proactive filtering.

Many CAPTCHA systems integrate static detection into their risk assessment workflows [Mac18,
Liu18]. They analyze user-agent strings, screen resolution, cookies, and IP addresses to assign a
risk score that determines the CAPTCHA challenge level. However, these features can also be
used to track users across multiple sites, raising privacy concerns. In addition, tracking mouse
movements and keystrokes can identify not only the browser or system, but also individual
users [AMM+21], raising ethical concerns about user privacy.

Privacy-preserving alternatives include honeypot-inspired techniques. Brewer et al. [BLRP10]
propose embedding invisible fake links in web pages. Bots that interact with these links expose
themselves as automated agents, achieving low false positive rates while preserving user privacy.

Cabri et al. [C+18] propose a heuristic-based static detection approach. Their analysis of
HTTP logs uses known bot user agents and IP addresses to classify sessions. Using multi-layer
perceptrons (MLPs) and Wald’s sequential probability ratio test [Wal45], they categorize
sessions as Bot, Human, or None, with ambiguous cases re-evaluated as more data becomes
available. Their method achieved an F1 score of 0.96; however, its reliance on external databases
and static identifiers makes it vulnerable to circumvention by sophisticated bots that spoof
user agents.

Static detection methods are particularly effective against bots with consistent characteristics.
However, their reliance on fixed attributes makes them vulnerable to evasion by adaptive bots
that mimic real browsers or users.

2.2.2 Behavioral Detection

Behavioral analysis distinguishes bots from humans by examining patterns in user interactions.
Bots can be detected by analyzing request data, e.g., pages requested, request sequences, and
time intervals, and behavior such as keystroke dynamics and mouse movement patterns. This

14https://www.abuseipdb.com/

14

https://www.abuseipdb.com/

section divides these approaches into three subtopics: request data, mouse dynamics, and
keystroke dynamics.

Request Data

Request data analysis is a widely used bot detection method that leverages HTTP metadata
such as request frequency, page access sequences, referrer information, and session attributes
(e.g., total bytes transferred, percentage of image requests). This approach is appealing due to
its simplicity and stringer privacy-preserving nature, as it does not rely on cross-site tracking
or biometric features. Furthermore, numerous approaches exist for detecting bots based on
request characteristics [IKT+19, Mac18, Liu18, SCRM21, LARN21, JKV19].

Iliou et al. [IKT+19] introduced a comparison of different request-based detection machine
learning models and features. Their method, evaluated on a year-long dataset of HTTP logs
from MK-Lab’s public web server, analyzed request paths, user-agent strings, and timestamps.
They categorized bots as simple or advanced based on browser agent names and previous
malicious activity. While simple bots were detected with an AUC of 1.00, advanced bots were
more difficult to identify, achieving an AUC of 0.64. The authors recommended incorporating
more sophisticated features to improve detection accuracy, especially for advanced bots where
false positive rates remain a concern.

Mouse Dynamics

Mouse movement analysis is a possibility to distinguish bots from humans. Automated mouse
movements often exhibit unnatural patterns, such as linear or exaggerated trajectories, which
contrast with the fluid and irregular nature of human interactions [AMFVR22].

Shen et al. [SCG12] studied mouse-based authentication using features such as click types (e.g.,
single-click, double-click, drag-and-drop), motion ranges, and timestamps. They compared
classification models and found that Support Vector Machines (SVMs) performed best, achieving
low false positive and false negative rates over long authentication durations.

Acien et al. [AMFVR22] introduced a GAN-based approach to generate human-like mouse
trajectories and trained classifiers such as Random Forests, K-Nearest Neighbors, and Recur-
rent Neural Networks (RNNs). Their method achieved 98.7% accuracy using only a single
mouse trajectory. However, research on GAN-generated mouse movements also highlights the
challenges of evading such detection methods [AFA19].

Iliou et al. [IKT+21] incorporated mouse trajectory analysis into their request-based detection
system, using convolutional neural networks (CNNs) to classify raw mouse positions. However,
their dataset included simplistic bot behaviors, such as perfectly linear movements, which are
easily distinguishable from human patterns. Figure 2.1 illustrates such basic bot-generated
movements.

15

Figure 2.1: Simplified bot-generated mouse trajectories from Iliou et al. [IKT+21] (page
18, table 7).

Keystroke Dynamics

Keystroke dynamics analyzes typing patterns, including key press durations, inter-key latencies,
and typing rhythms, to distinguish humans from bots.

TypeNet [AMM+21], an RNN-based model, demonstrated the effectiveness of keystroke analysis
for user authentication. By processing keystroke sequences to generate feature embeddings,
TypeNet achieved an Equal Error Rate (EER) of 2.2% for desktops and 9.2% for smartphones,
outperforming previous CNN-RNN and SVM models.

De Alcala et al. [DMT+22] synthesized keystroke data using Kernel Density Estimation (KDE)
and tested SVM and TypeNet classifiers. While both approaches yielded high accuracy, their
reliance on synthetic data limited their real-world applicability, as the features generated were
independent of contextual typing behavior.

Ceker et al. [ÇU17] used CNNs for keystroke-based user classification, augmenting datasets
with synthetic Gaussian-generated features. Their model performed well, but highlighted the
challenge of accurately replicating nuanced human typing behavior.

Despite advances, the detection of behavioral anomalies still faces inherent limitations: bots that
are able to perfectly mimic human behavior remain undetectable. Forcing bots to mimic human
behavior reduces their efficiency, making them slower and limiting some of their advantages.
At the same time, scaling remains crucial for large-scale operations. Both enhancing human-
like behavior and achieving scalability increase development costs, making widespread bot
deployment more challenging.

2.3 Bot Prevention

Bot prevention is essential to maintaining the security and usability of online services. Effective
bot prevention strategies aim to deter bot creation, limit scalability, while minimizing disruption
to legitimate users.

2.3.1 Prove of being a Human

Approaches to proving humanity attempt to distinguish between human users and automated
systems that are attempting to mimic human behavior. These methods typically rely on
challenges or certifications of being a human.

16

One simple but controversial method is to require users to present government-issued identifi-
cation. While this provides strong guarantees against automation, it is highly privacy-invasive.
Many users are reluctant to provide sensitive personal information, which can reduce participa-
tion and deter new users from completing the registration process. Ultimately, this approach is
impractical for widespread adoption because of user friction [Hea10].

The most common human verification mechanism is the CAPTCHA [Mac18, Liu18].
CAPTCHAs present challenges that are designed to be easy for humans but difficult
for machines, such as recognizing distorted characters, identifying objects in images, or
solving logic-based tasks. However, CAPTCHAs have two major limitations. First, they
introduce significant user friction-Cloudflare estimates that CAPTCHAs collectively consume
approximately 500 years of human effort per day [Meu21]. Second, advances in machine
learning have significantly improved automated CAPTCHA solving capabilities, reducing their
effectiveness [KJK22, HTR+20, SPK16].

Alternative approaches have been proposed to mitigate these challenges. Privacy Pass [DGS+18]
allows users to solve a CAPTCHA once and receive cryptographic tokens that can be redeemed
to bypass future CAPTCHAs. These tokens enhance privacy by preventing repeated challenges
without tracking user identities. However, the continued decline of tasks that are trivial for
humans but difficult for machines raises concerns about the long-term viability of CAPTCHA-
based methods.

An emerging alternative uses cryptographic techniques and hardware-based attestations to
prove humanity without requiring interactive challenges. These methods use Trusted Platform
Modules (TPMs), Trusted Execution Environments (TEEs), or secure hardware devices to
provide cryptographic attestations of human presence [WMK+22, Inca]. Unlike CAPTCHAs,
these approaches eliminate direct user interaction while ensuring that attestations cannot be
transferred. They can also be integrated with existing privacy mechanisms such as Privacy
Pass [DGS+18], providing a seamless and secure verification method.

2.3.2 Obfuscation

Obfuscation techniques aim to hinder bot development by increasing the difficulty and cost
of reverse engineering. By obfuscating code, protocols, or API endpoints, these techniques
force attackers to expend significantly more effort to extract the information necessary for
automation.

A fundamental challenge in assessing the effectiveness of obfuscation is that, when operating
on their own devices, attackers always retain full control of their execution environment (cf.
Section 2.1.2) . Consequently, obfuscation can increase the difficulty of reverse engineering,
but cannot provide absolute protection [ASA+15, TIF19, BCG+16].

There are several tools and frameworks for obfuscating web content, ranging from academic
research prototypes [Bin24, Yun24, Kac] to commercial solutions [Incb, Jsc, Mob]. These tools
obfuscate HTML, JavaScript, and CSS while claiming minimal performance overhead. However,
independent evaluations of their real-world impact remain limited.

Tools like NOMAD dynamically randomize HTML form element names and IDs on a per-session
basis, forcing bots to dynamically extract attributes during execution [VYG13]. Similarly, We-

17

bRanz applies randomized obfuscation to HTML attributes, disrupting predefined automation
patterns while preserving the visual and functional integrity of a web page [WZX+16]. While
effective in specific contexts, such as form submission or DOM manipulation, these techniques
have limited applicability to broader automation scenarios.

Beyond web applications, obfuscation is widely used to protect binary software. Tools such as
Tigress [Col01], VMProtect [Sof21], and Themida [Tec22] use advanced obfuscation techniques
to protect compiled binaries from reverse engineering. However, a key limitation of these tools
is their inability to effectively obfuscate network endpoints. Attackers can intercept and analyze
network traffic using system-wide proxies, allowing them to identify API endpoints and bypass
obfuscation-based protections.

In addition to code obfuscation, developers often use API keys to encrypt traffic between client
and service in addition to HTTPs [See20b]. This serves as an authentication mechanism and
add a layer of complexity for bots. Bots must extract these keys to interact with protected
endpoints and thus the cost of creating bots is increased.

2.4 Summary

The increasing sophistication of AI has enabled bots to mimic human behavior more convinc-
ingly, posing significant challenges to traditional detection mechanisms such as CAPTCHAs.
This trend highlights a fundamental trade-off between usability, ensuring seamless access for
legitimate users, and security, preventing automated abuse.

Many current detection methods rely on easily spoofable static features, such as IP addresses and
user-agent strings. While behavioral detection offers a more robust alternative, its effectiveness
can be further improved by adopting more realistic threat models that account for advanced
simulation of human-like inputs, such as mouse movements and keystroke dynamics.

Bot analysis remains a critical, yet resource-intensive component of defense. Reverse engineering
techniques are essential for understanding bot functionality and serve as a prerequisite for
developing effective detection and prevention strategies. However, they typically require
significant manual effort and expert knowledge, limiting their accessibility and scalability.

On the prevention side, many mechanisms aim to increase the cost of initial bot development,
for example through binary obfuscation or proof-of-humanity techniques. However, these
approaches typically do not scale against large bot deployments. Once a bot is created, it can
often be replicated and deployed with minimal additional effort, particularly when targeting
automation-friendly interfaces such as APIs. To address this limitation, recent work has
proposed prevention strategies based on cryptographic attestations and trusted execution
environments. These approaches move away from traditional challenge-response mechanisms
by providing verifiable proofs of human presence. While promising, they require significant
infrastructure support and widespread adoption to be effective in practice.

18

Chapter 3

Bot Detection Using Behavioral Analysis

Automated programs, commonly referred to as web bots, systematically make requests to
online endpoints, increasing operational costs and degrading the experience of legitimate users.
A notable example is the disruption caused by such bots in the e-commerce sector, where they
made popular items (e.g., graphics cards and gaming consoles) unavailable for extended periods
of time by purchasing them faster than human customers could. Commercial countermeasures,
such as intrusion detection systems (IDS), are designed to detect anomalous or malicious
behavior. However, bots often evade detection by interacting with websites as intended, for
example by navigating to product pages and clicking the ”buy now” button.

CAPTCHAs have long served as a commonly used mechanism to combat automated bot
activity. These challenges require users to complete tasks designed to verify their human
identity. However, despite their widespread use, CAPTCHAs are generally disliked due to the
inconvenience they cause [Hea10], as they disrupt the user experience and consume considerable
time. In modern implementations, most CAPTCHA systems are tightly coupled with risk
assessment techniques [Mac18, Liu18]. Although the specific features used in these assessments
are not disclosed, there is evidence that Google’s reCAPTCHA, for example, assigns lower trust
scores to users who are not logged into a Google account [Liu18]. Despite these advances, even
risk-based CAPTCHA systems still result in significant wasted time - Cloudflare alone reports
approximately 500 years of cumulative time lost every day [Meu21]. In addition, ongoing
advances in artificial intelligence and image recognition have steadily eroded the effectiveness
of CAPTCHA-based defenses [SPK16].

These limitations underscore the need for more transparent, non-intrusive bot detection methods
that do not disrupt the user experience. Building on the related work discussed in Section 2.2,
this chapter presents an improved classification approach for distinguishing between human
and automated behavior and input patterns.

The main contributions of this chapter are as follows:

• Mouse Dynamics Detection (Section 3.1): This section examines mouse movement
patterns to distinguish between human and automated interactions. It extends previous
research on simple, bot-like cursor patterns by incorporating more nuanced features to
improve detection performance.

• Keystroke Dynamics Detection (Section 3.2): This section analyzes keystroke patterns
to distinguish between human and automated input. It examines dependencies between
keystrokes and applies state-of-the-art neural network architectures to model and detect
artificial typing behavior.

19

• Cascaded Detection Framework (Section 3.3): This section introduces a layered detection
approach that combines lightweight heuristics with more detailed behavioral analysis.
Initial indicators, such as window size, provide fast detection, while subsequent steps
analyze browsing behavior and navigation patterns to improve accuracy. The performance
of the approach is evaluated using a real-world e-commerce dataset.

3.1 Bot Detection Using Mouse Dynamics

Existing approaches to bot detection have several limitations: many are proprietary, rely solely
on HTTP request data, or make overly simplistic assumptions, such as the assumption that
advanced bots produce only straight-line mouse movements (see Figure 3.1). Another common
assumption is that mouse behavior is consistent across sites and applications, which is often
not the case.

To address these challenges, we investigate the use of mouse dynamics for bot detection under
realistic conditions. Specifically, we contribute the following:

• Mouse Dynamics-Based Bot Classification. We perform a comparative analysis of bot
classifiers that use mouse dynamics alongside those that rely solely on HTTP request
data. To facilitate this comparison, we create a unified dataset1 containing mouse and
HTTP request data collected from the same user sessions, including advanced bots that
are able to simulate human-like cursor movements.

• Cross-Site Training for Bot Detection. We evaluate the generalizability of mouse
dynamics-based detection by training classifiers on datasets obtained from external
sources. This analysis evaluates whether detection models can be trained on third-party
data to reduce the need for site-specific training efforts. For this purpose, we use external
tools to simulate mouse movements (see Figure 2.1).

• Impact of Data Volume and Time Until Detection. We examine how detection accuracy
varies with the amount of available data, including the number of requests and recorded
mouse movements. In addition to overall accuracy, we analyze how quickly a reliable
classification can be made, quantifying the time until detection.

To structure our research, we address the following research questions:

RQ1.1: How does the performance of our proposed detection approach vary with different
amounts of available data, especially with respect to the number of requests and mouse
movements?

RQ1.2: To what extent does the detection performance change when the model is trained with
mouse dynamics data collected from external sources? In other words, can we build
generic detection models that remain effective across different Web sites?

1Due to privacy concerns related to the potential re-identification of users across applications, we
cannot make this dataset publicly available.

20

Building on these research questions, the following publication2 summarizes our findings on the
effectiveness of mouse dynamics for bot detection. Our results indicate that mouse dynamics can
serve as a reliable indicator, with our classifiers achieving competitive performance compared
to related work, even under more stringent and realistic conditions. Specifically, we report a
classification accuracy of 0.966 and an AUC of 0.994.

August See, T. Wingarz, M. Radloff, M. Fischer. Detecting Web Bots

via Mouse Dynamics and Communication Metadata. IFIP International

Conference on ICT Systems Security and Privacy Protection (IFIP

SEC), 2023.

The following sections describe our approach to classifying and generating synthetic mouse
movements, summarize the results, and outline limitations.

3.1.1 Method

Our approach improves web bot detection by integrating request-based features with mouse
dynamics data and training machine learning models to classify interactions as human or
automated. While request metadata (e.g., user agent or screen size) can be easily spoofed,
continuous mouse trajectories are much more difficult to replicate. As a result, attackers
attempting to evade detection must generate realistic, human-like cursor movements for each
interaction.

Figure 3.1 illustrates that human users do not exhibit strictly linear mouse movements. The
left panel shows a user interacting with a browser, the center panel depicts synthetic mouse
movements, and the right panel presents a human playing a rhythm game. Further, even
advanced bots can generate non-linear trajectories, indicating that the naive assumption of
perfectly straight paths is insufficient for bot detection. Additionally, mouse movement patterns
vary across applications, emphasizing the importance of domain-specific considerations. In this
work, we use:

• HTTP request-based features, adapted from Iliou et al. [IKT+19], with the removal of
attributes inappropriate for our setting.

• Mouse dynamics-based features, derived from Acién et al. [AMFVR22] and extended by
using feature engineering techniques from previous studies [GF04, AEZ19].

The following sections describe these features and their role in bot detection.

2The core concept, methodological design, and evaluation strategy of this paper originate from the
author of this dissertation. The third author implemented and conducted the experiments, while the
second and fourth authors contributed to the refinement of the final publication.

3https://github.com/Xetera/ghost-cursor

21

https://github.com/Xetera/ghost-cursor

0 500 1000 1500 2000 2500
Screen Width (in pixel)

0

200

400

600

800

1000

1200

1400

Sc
re

en
 H

ei
gh

t (
in

 p
ixe

l)

Browser
Bot (Browser)
Rythm Game (Osu!)

Figure 3.1: Examples of mouse tracks from different applications: a browser-based chat
application (left), an advanced bot using ghost-cursor3(center), and a human user playing
a rhythm game (right).

Request Data

We refine the feature set proposed by Iliou et al. [IKT+19], omitting attributes irrelevant to
our experimental setup (e.g., search engine detection via the Referer header). The final set
includes:

1. Fraction of HTTP requests that result in 4xx errors.

2. Fraction of requests for CSS files.

3. Fraction of requests for JavaScript files.

4. Fraction of requested URLs that contain the previously requested URL as a substring.

5. Total session time (time elapsed from first to last request).

6. Standard deviation of requested page depth (number of “/” characters in the URL path).

7. Mean and standard deviation of intervals between requests.

These features capture patterns that distinguish between human and automated web interac-
tions.

22

Mouse Features

Following previous work [AMFVR22, GF04, AEZ19], we extract:

• Base Signals: Resampled coordinates (x′t, y
′
t), path length s′t, tangential velocity v,

angular velocity ω, and higher order terms such as acceleration and jerk.

• Statistical Descriptors: Mean, standard deviation, minimum, maximum, and range for
each base signal.

• Global Characteristics: Total duration of each action, total raw path length, and
additional motion descriptors such as straightness (ratio of the Euclidean distance
between the first and last points to the total path length) and jitter (ratio of the original
path length to the smoothed path length).

Each action is represented as a 50-dimensional feature vector that serves as input to machine
learning models trained to distinguish between human and bot-generated mouse movements.
By leveraging continuous motion data, this approach provides a more robust defense against
automated agents, as generating highly realistic human-like trajectories remains a challenging
task for attackers.

3.1.2 Key Results

In the following, we summarize evaluation of our bot detection approach and summarize
the key results. We focus on two main aspects: (i) performance under varying amounts of
available data (RQ1.1) and (ii) effectiveness when incorporating external mouse dynamics data
(RQ1.2). Our experiments use a random forest classifier for both request and mouse-based
features, following recommendations from previous work [IKT+19, AMFVR22]. Random forests
provide interpretable measures (e.g., feature importance) that help us understand the model’s
decision-making process.

Evaluation Setup

Our dataset consists of user query data along with the corresponding mouse trajectories. Since
no publicly available dataset integrates both aspects [IKT+21], we created our own by setting
up two dedicated websites. We recruited 322 participants to visit the first website and 163 to
visit the second, logging every request and mouse event. Mobile devices and sessions without
mouse data were excluded.

Figure 3.2 illustrates the distribution of collected data points across participants.

To simulate bot behavior, we used Puppeteer to emulate automated browsing with random
delays of 0–2,s. The bots accessed top-level pages, randomly selected subpages, and attempted
account registration to mimic the behavior of a moderately throttled web scraper. Two bot
variants were evaluated:

23

Figure 3.2: Distribution of participants by number of data points collected.

• Basic Mouse Bot: Moves the cursor in a straight line at a constant speed, similar to
approaches in related work (see Figure 2.1).

• Advanced Mouse Bot: Uses ghost-cursor4 to generate smoother, human-like trajecto-
ries.

We ensured an equal number of bot and human sessions to allow for balanced dataset.

For features based on mouse dynamics, each recorded mouse trace is segmented into actions
sequences of up to 50 data points or a maximum of two seconds, typically ending with a click.
To ensure consistency, each action is resampled at fixed 20 ms intervals, producing time-aligned
signals for x and y coordinates. This allows additional motion-based metrics to be derived,
including velocity, acceleration, and angular velocity.

Results RQ1.1: Bot detection under varying data availability

Request Data Classifier The Table 3.1 shows how the performance of the request-based
classifier varies with the number of HTTP requests per session. Even with only 10–20 requests,
the model achieves an accuracy of 0.89–0.91. With 200 or more requests, the performance
approaches 0.98, indicating that increasing request data significantly improves classification
reliability.

Mouse Dynamics Classifier Table 3.2 shows the performance of the mouse-based classifier
at different event counts. Even with only 50 recorded events, the model achieves an accuracy
better than 0.93 against advanced bots. Since users typically generate about 30 mouse events
per second, collecting 50 events takes only about 1.66 seconds, making the approach practical
for real-time applications such as CAPTCHAs.

4https://github.com/Xetera/ghost-cursor

24

https://github.com/Xetera/ghost-cursor

Table 3.1: Request data model performance with varying number of requests.

Requests Acc Prec Recall AUC Time (s)

200 0.980 0.980 0.980 0.982 0.209
100 0.970 0.961 0.980 0.985 0.209

No limit 0.960 0.960 0.960 0.972 0.215
50 0.950 0.941 0.960 0.976 0.208
20 0.910 0.918 0.900 0.975 0.221
10 0.890 0.842 0.960 0.956 0.220
5 0.900 0.885 0.920 0.945 0.220
4 0.880 0.913 0.840 0.922 0.211

Table 3.2: Performance of the mouse-based model with different event counts.

Events Acc Prec Recall AUC Time (s)

No limit 0.966 0.964 0.968 0.993 0.449
50 0.933 0.943 0.922 0.979 0.124
200 0.930 0.951 0.906 0.979 0.189
100 0.920 0.942 0.895 0.975 0.149
20 0.855 0.846 0.868 0.949 0.114
10 0.850 0.862 0.833 0.903 0.120
5 0.846 0.909 0.769 0.916 0.099
4 0.826 0.895 0.739 0.879 0.098

These results indicate that both request-based and mouse-based models benefit from increased
data availability. However, mouse dynamics provides faster improvements, suggesting its
suitability for low-latency scenarios such as authentication checks.

Basic vs. Advanced Mouse Bot Table 3.3 compares classifier performance on basic (linear)
and advanced (non-linear) mouse bots. As expected, detection of basic bots is trivial (accuracy
≈0.995, AUC=1.000), while advanced bots slightly reduce the accuracy to 0.966.

Table 3.3: Mouse based classifier performance against basic and advanced bots.

Scenario Acc Prec Recall AUC Time (s)

Basic Mouse 0.995 0.997 0.994 1.000 0.857
Advanced Mouse 0.966 0.962 0.970 0.994 1.293

Combining Request and Mouse Features Next, we evaluated a combined model that
averages the predictions from the request-based and mouse-based classifiers. Table 3.4 shows
that this combined approach achieves high accuracy (0.95–0.96) and produces zero false positives

25

in our test sets, suggesting potential for production environments where false positives are
costly [Hea10].

Table 3.4: Combined model performance on unseen users.

Test Ratio Acc Recall AUC TP FP TN FN

0.1 0.960 0.953 0.976 122 0 22 6
0.2 0.950 0.940 0.970 252 0 49 16

Results RQ1.2: Incorporating External Mouse Dynamics

To evaluate whether external mouse datasets can improve detection, we incorporated data
from Antal et al. [ADF19], which contains 1.54 million mouse movement records from 21 users
performing common computing tasks. The combined dataset increased accuracy to 99.71%
and reduced false positive and false negative rates to below 1%. This suggests that general
mouse dynamics can aid in bot detection without the need for site-specific patterns.

3.1.3 Discussion and Implications

Our results indicate that mouse dynamics combined with request-based data can effectively
distinguish between human and automated activity.

Limitations The primary limitation of our work is its reliance on synthetic bot behavior,
similar to previous work [IKT+21]. While we used tools designed to mimic human-like
movements, the lack of a public dataset of verified bot behavior limits the generalizability of our
results. Furthermore, advanced attackers could record and replay authentic user movements to
evade detection.

In addition, the current approach focuses exclusively on mouse interactions, excluding users
who rely solely on keyboards, touchscreens, or assistive technologies. Future research should
address these limitations by extending detection mechanisms to accommodate different input
modalities.

Higher-Level Implications As bot developers continue to refine their methods-for example,
by training models on human-generated mouse traces-the detection task will become more
challenging. Privacy concerns also arise with the collection of detailed mouse trajectories,
as such data can potentially enable user re-identification. Therefore, future implementations
should use techniques such as differential privacy or anonymization to balance security and
user privacy.

26

3.2 Bot Detection Using Keystroke Dynamics

While mouse dynamics provide valuable signals for bot detection, they are not always available,
e.g., there are no mouse movements in SSH. This section extends the work presented in
Section 3.1 by using keystroke dynamics to distinguish between automated and human input.
Previous research in this area has primarily focused on user authentication [AMM+21] rather
than bot detection. In addition, some approaches rely on simplistic assumptions, such as
treating keystroke events as independent or ignoring character-level dependencies [DMT+22].
In contrast, we employ classifiers that analyze keystroke timing patterns across multiple
dimensions, capturing temporal dependencies within keystroke sequences, e.g., through bigram
and trigram distributions. In addition, we introduce generative models that synthesize realistic
keystroke sequences to augment training datasets.

Our main contributions are:

• Keystroke Timing for Bot Detection. We demonstrate that keystroke timing alone,
without access to keycodes, can effectively discriminate between human and automated
typing patterns. Our results show that omitting key identity results in only a small
performance penalty of about 2% in accuracy.

• Character-Dependent Keystroke Synthesis. We introduce a keystroke synthesis approach
that generates character-dependent timing data using a diffusion model. By associating
specific key codes with more human-like timing patterns, this method improves upon
prior key-independent models. It leverages the success of diffusion models in other
domains, such as image generation [HJA20], and adapts them to the domain of keystroke
dynamics.

• Synthetic Data for Improved Classification. We evaluate the impact of augmenting
training datasets with synthetic keystroke data. Our results indicate that classifiers
trained on more diverse synthetic samples achieve higher detection accuracy.

To structure our research, we address the following research questions:

RQ1.3: How well can classifiers discriminate between human and artificially generated
keystrokes?

RQ1.4: How does character-level dependency modeling affect the accuracy of bot detection?

RQ1.5: How accurately can generative models replicate human keystroke dynamics?

Building on these research questions, the following publication5 summarizes our findings on
keystroke-based classification. Our results indicate that classifiers trained on datasets containing
both human and artificially generated keystrokes can achieve high performance using only
timing information, without relying on keycode data. In this configuration, we observe an

5The core idea, methodological design, and evaluation strategy for this publication originate from
the author of this dissertation. The second author implemented the models and experiments, while the
third and fourth coauthors contributed to refining the final paper.

27

accuracy and F1 score of approximately 0.98. Incorporating keycode information further
improves classification performance beyond this level.

August See, A, Westphal, C. Weber, M. Fischer. Detecting Web Bots

via Keystroke Dynamics. IFIP International Conference on ICT Sys-

tems Security and Privacy Protection (IFIP SEC), 2024.

The following sections describe our approach to classifying and generating synthetic keystrokes,
summarize the results, and outline limitations.

3.2.1 Method

This section presents a method for bot detection based on keystroke patterns and the generation
of synthetic data that closely resembles human typing behavior. The method consists of
four main components: data preparation, feature extraction, synthetic data generation, and
classification.

Data Preparation and Cleansing

High-quality, representative data sets is essential for training classifiers and generating realistic
synthetic samples. For our analysis, we used the Dhakal dataset [DFKO18], which consists of
136 million keystrokes collected from over 168,000 users. Each participant typed 15 predefined
sentences, e.g., ”Have I mentioned how much I love Houston traffic?”, with the exact press and
release times recorded per keystroke.

We applied automated preprocessing to remove records with missing values or null timestamps.
In addition, we filtered out human errors that resulted in abnormally high or low latencies, as
such anomalies could cause the model to misinterpret irregular typing patterns as indicative of
automated input. While this filtering slightly reduces the natural error rate of the dataset, it
ensures that the model learns primarily from intentional, human-like typing behavior.

Feature Extraction for Keystroke Analysis

Building on established approaches [AMM+21, DMT+22], we characterize each keystroke by
extracting the following temporal features:

• Hold latency : Time between pressing and releasing the same key.

• Press latency : Time between pressing a key and pressing the next key.

• Release latency : Time between releasing a key and releasing the next key.

• Inter-key latency : The time between releasing a key and pressing the next key.

28

To investigate the role of key identity in detection performance, we consider two different
feature sets:

• Lnokey: hold, press, release, inter-key latencies without key identity information.

• Lkey: The same latencies, plus the ASCII value of each key.

Key-Independent Modeling Key-independent models ignore the identities of individual
keys and rely solely on timing patterns. While this simplification can reduce model complexity
and improve generalizability [DMT+22], it also ignores potential differences in typing behavior
between characters.

Key-Dependent Modeling Typing patterns often vary depending on the character and
its context. For example, transitions such as ab or aµ can have different latency profiles. To
capture these dependencies, we model key transitions using bigrams, inverted bigrams, and
trigrams, incorporating the ASCII keycodes into the feature set.

Synthetic Data Generation

The generation of synthetic keystroke data serves two purposes: to augment training data sets
and to test the robustness of classifiers against artificially generated keystrokes. We use two
complementary approaches:

Kernel Density Estimation (KDE) Following the methodology of [DMT+22], we fit Gaus-
sian KDE models to observed latency distributions. This technique allows us to generate new
samples by drawing from these learned distributions.

• Key-Independent Generation: Latencies are sampled from a single distribution per
feature, regardless of character identity.

• Key-Dependent Generation: Separate KDE models are trained for different bigram and
trigram transitions (e.g., ab and abc). If an unknown transition occurs during sampling,
the model defaults to a more general latency distribution.

Diffusion Model Inspired by recent advances in generative modeling [DN21], we apply a
probabilistic denoising diffusion model (DDPM) [HJA20] using the denoising diffusion pytorch
library [Phi]. Unlike KDE, this method learns to reconstruct entire keystroke sequences (e.g.,
sequences of 30 consecutive keys) rather than isolated events.

The model first applies a hyperbolic tangent normalization to the timing features. During
inference, it starts with Gaussian noise and iteratively denoises it to produce realistic keystroke
patterns. This approach naturally captures long-range dependencies between characters and
sequences.

29

Classifier Training and Evaluation

Differentiating human keystrokes from those generated by automated processes is the final
step. We evaluate the performance of the following classifier architectures:

• Long Short-Term Memory (LSTM): We implement a two-layer LSTM network with
dropout regularization [SHK+14] and batch normalization [IS15] to prevent overfitting.
The hidden states of the LSTM are passed through a fully connected layer to predict
human or bot input. The model is optimized using cross-entropy loss.

• Transformer: We use a transformer architecture with multi-head self-attention. Keystroke
sequences are embedded and augmented with sinusoidal position encodings. The model
is trained with cross-entropy loss and uses early stopping to avoid overfitting.

• Support Vector Machine (SVM): For a baseline comparison, we train an SVM with an
RBF kernel on the extracted feature vectors. Although SVMs do not inherently model
sequential dependencies, prior work suggests that they can achieve strong performance
with well-defined timing features.

Each model is trained on a balanced dataset of real and synthetic keystroke sequences. Per-
formance is evaluated in terms of accuracy, precision, recall, and F1 score. Through this
evaluation, we aim to determine the feasibility of distinguishing automated from human-
generated keystrokes, and to assess the utility of better synthetic data in improving model
robustness.

3.2.2 Key Results

This subsection presents the evaluation and results of our synthetic keystroke generation
and bot detection experiments. We address three primary research questions: How well can
classifiers distinguish synthetic from real keystrokes (RQ1.3)? How does the inclusion of keycode
information affect classification accuracy (RQ1.4)? How closely do the generated keystrokes
resemble human typing patterns (RQ1.5)?

Overview of Generator Models The Table 3.5 gives an overview of the considered generative
models. The simplest, KDE Universal [DMT+22], independently models each latency type
(hold, press, release, inter-key) without considering character identity. In contrast, the Diffusion
model processes sequences of up to 30 keystrokes, allowing it to capture temporal dependencies
over longer contexts.

Results RQ1.3: Differentiating Human and Synthetic Keystrokes

To evaluate recognition performance, we trained support vector machines (SVMs), LSTMs, and
transformers on datasets containing 7,500 real and 7,500 synthetic samples (one sentence per
sample). In addition, we included a Random Sequences dataset in which keystroke latencies
were drawn uniformly at random to serve as a naive baseline.

30

Table 3.5: Generator models with varying degrees of dependence on surrounding keys.

Model Timing Context Abbreviation

KDE Universal

Based on general key timing;

KDE Univ.No dependency on surrounding keys

KDE Bigram
Dependent on the current and

KDE Bi.
successor key.

KDE Bigram Reversed
Dependent on the current and

KDE Bi. Rev.
predecessor key.

KDE Trigram
Dependent on the current,

KDE Tri.
predecessor and successor key.

Diffusion Considers up to 30 keystrokes. Diff.

SVM Detection Performance Table 3.6 shows the accuracy (ACC) and F1 scores of the SVM
on different training and test datasets. The model performs well when evaluated on similarly
generated data, but struggles with cross-generator generalization. For example, performance
degrades significantly when trained on Diffusion-based samples but tested on random sequences,
suggesting that the model relies heavily on generator-specific timing patterns. As expected,
incorporating more realistic assumptions about key surroundings improves detection. However,
the impact is less pronounced than anticipated. For example, an SVM trained on KDE Univ.
achieves only slightly lower performance compared to one trained on KDE Tri.

Table 3.6: Excerpt of SVM performance results (subset shown for brevity).

Train
Test KDE

Univ.
KDE
Bi.

KDE
Bi. Rev.

KDE
Tri.

Diff.
Rand.
Seq.

KDE Univ.
ACC 0.9869 0.9440 0.9871 0.9436 0.4949 0.9866
F1 0.9870 0.9422 0.9873 0.9418 0.0270 0.9868
ACC 0.9810 0.9794 0.9816 0.9774 0.4968 0.9809

KDE Tri.
F1 0.9813 0.9797 0.9819 0.9777 0.0549 0.9812
ACC 0.5317 0.6100 0.5304 0.5907 0.7348 0.3311

Diff.
F1 0.4624 0.5891 0.4600 0.5599 0.7530 0.0033

LSTM and Transformer Performance Next, we evaluated the LSTM and Transformer
models on a larger Mixed dataset, consisting of 16000 synthetic and 16000 real samples
(sentences). Table 3.7 shows that both architectures outperform SVM, especially when tested
on more complex generators. The LSTM model achieves F1 values close to 0.98 on all
test datasets, highlighting the effectiveness of sequence-aware models in capturing keystroke
dynamics.

31

Table 3.7: Performance of Transformer and LSTM trained on a mixed dataset wit 32k
samples.

Model
Test KDE

Univ.
KDE
Bi.

KDE
Bi. Rev.

KDE
Tri.

Diff.
Rand.
Seq.

Transformer
ACC 0.9332 0.8919 0.9154 0.9363 0.9270 0.9293
F1 0.9314 0.8880 0.9145 0.9350 0.9271 0.9268

LSTM
ACC 0.9807 0.9776 0.9797 0.9810 0.9808 0.9803
F1 0.9802 0.9778 0.9799 0.9806 0.9810 0.9797

Results RQ1.4: Impact of Keycode Inclusion

To enhance privacy, some evaluations were conducted with classifiers that had access only
to timing data, excluding keycode identity. To assess the impact of incorporating keycode
information (ASCII values), we trained LSTMs on the same datasets both with and without this
feature. Table 3.8 shows that performance consistently improves when keycodes are available.
This finding aligns with previous research [DMT+22], which evaluated simpler synthetic data
and reported that key-dependent models better capture character-specific typing behavior.

Table 3.8: LSTM performance with keycodes included.

Train
Test KDE

Univ.
KDE
Bi.

KDE
Bi. Rev.

KDE
Tri.

KDE Univ.
ACC 1.000 0.998 0.998 0.998
F1 1.000 0.998 0.998 0.998

Results RQ1.5: Authenticity of Generated Keystrokes

We first assessed how closely the generated keystrokes resembled human typing patterns.
Figures 3.3a and 3.3b show t-SNE embeddings comparing real human data (red), sourced from
the Dhakal dataset [DFKO18], with synthetic samples (blue). While the KDE-based models
produce distinct clusters that are separate from the real data, the Diffusion model produces
distributions that more closely resemble human typing patterns.

Additional t-SNE analysis for the KDE Bigram, Bigram Reversed, and Trigram models showed
no significant improvement in clustering quality over the Universal variant. In contrast, the
Diffusion model captures both local and global context, allowing for more realistic keystroke
timing distributions.

3.2.3 Discussion and Implications

Our results demonstrate that trained classifiers can successfully distinguish generated keystroke
patterns from real human keystrokes, achieving higher accuracy when keycode information

32

(a) KDE Universal (b) Diffusion

Figure 3.3: t-SNE visualization of real (red) vs. synthetic (blue) keystroke distributions.

is available and when trained on a diverse dataset. While more advanced generative models,
such as the Diffusion model and KDE Trigram, produce keystroke patterns that more closely
resemble human behavior compared to simpler models, they remain detectable by our approach.

Limitations The performance of both the KDE and Diffusion models is heavily influenced
by the quantity and diversity of the training data. In particular, KDE models struggle when
training samples are insufficient, especially for rare keystroke transitions. Diffusion models, on
the other hand, face scalability limitations, currently supporting sequences of only up to 30
keystrokes. Moreover, the generated samples often reflect generic typing behavior rather than
the distinct patterns of individual users, which may introduce detection biases. Additionally,
the detection models remain highly dependent on the training distributions, making them less
reliable when encountering novel timing patterns.

Higher-Level Implications Keystroke dynamics offer a promising direction for bot detection,
but they also pose privacy risks. Collecting timing data can reveal individual typing habits
and potentially be used to re-identify users. Future research should explore privacy-preserving
techniques (e.g., differential privacy) and investigate the potential of combining keystroke and
mouse dynamics to create more robust detection systems.

33

3.3 Bot Detection Using Behavioral Analysis in High-

Traffic Applications

To counter automated threats in high-traffic environments, we introduce a fast, multistep
detection pipeline designed to minimize bot interactions as early as possible. The system first
applies lightweight heuristics based on static features, e.g., IP addresses, before escalating to
more advanced machine learning models that analyze user behavior through website traversal
patterns.

Our contributions can be summarized as follows:

• Multi-Stage Bot Detection. We present a multi-stage detection pipeline that combines
computationally efficient heuristics with advanced machine learning models for bot
detection.

• Large-Scale Evaluation. We present a comprehensive evaluation based on a large-scale,
real-world e-commerce dataset containing raw HTTP request data of customers.

• Behavioral and Graph-Based Analysis. We provide a detailed analysis of the impact of
various behavioral attributes and graph-based features on detection performance.

To guide our investigation, we address the following research questions:

RQ1.6: What is the performance of each stage within the multi-stage detection approach in
distinguishing between bots and human users?

RQ1.7: Which attributes have the greatest impact on detection performance?

RQ1.8: How does the dimensionality of a website traversal (WT) graph influence classification
accuracy?

Building on these research questions, the following publication6 summarizes an evaluation
conducted on a proprietary e-commerce dataset. Our results demonstrate that the proposed
approach achieves high performance, with precision, recall, and AUC exceeding 98%, outper-
forming alternative methods such as Botcha.

Jan Kadel, August See, R. Sinha, M. Fischer. BOTracle: A Framework

for Discriminating Bots and Humans. European Symposium on Research

in Computer Security, SecAI Workshop, 2024.

The following sections describe our approach to multi-state detection using heuristics on
individual requests and across a user session, summarize the results, and outline limitations.

6The core concept, website traversal graph approach, and evaluation design originated from the
author of this dissertation. The first author implemented the methodology and performed the evaluation.
The third and fourth co-authors contributed to the refinement of the manuscript.

34

3.3.1 Method

In this section, we summarize our approach to a multi-stage bot detection pipeline. Our
methodology integrates multiple classification strategies, with some applied to the first request
and others analyzing entire sessions.

Bot Detection

The proposed approach combines heuristic methods, a Semi-Supervised Generative Adversarial
Network (SGAN), and a Deep Graph Convolutional Neural Network (DGCNN) within a
multi-stage detection pipeline. Figure 3.4 illustrates the overall process. An incoming hit
(i.e., a web server request) is first evaluated using lightweight heuristics. If the heuristic
analysis confidently classifies the hit, a bot or human label is assigned. Otherwise, the hit is
preprocessed: irrelevant features are discarded, and the remaining attributes are converted
into a one-dimensional numeric vector using labeling, integer encoding, and one-hot encoding.
Rare categorical values are aggregated into special categories to reduce dimensionality. The
resulting vector is fed into the SGAN, which generates a probability score. If this score exceeds
a confidence threshold λ ∈ [0, 1], a label is assigned. Hits below the threshold are aggregated
into sessions, converted into WT graphs, and then analyzed by the DGCNN. The DGCNN
also produces a probability score, which is compared to λ, with additional hits collected as
needed to improve the session representation.

Figure 3.4: Multi-Stage bot detection pipeline process.

35

Bot Attribute Analysis

A thorough analysis of client attributes is essential for distinguishing between bots and human
users. We divide these attributes into two groups:

Non-Behavioral Attributes:

• Identity Attributes: Contains static identifiers such as IP addresses.

• Technical Attributes: Includes browser properties such as user agents and screen
sizes.

Behavioral Attributes:

• Traversal Attributes: Captures the navigation path through the site.

• Interaction Attributes: Records interactions with elements on the page.

• Visit Attributes: Reflects visit frequency and timing patterns.

Because identity attributes are easily spoofed, our detection approach relies primarily on
behavioral and technical attributes, which are more difficult for bots to mimic.

Heuristic Detection of Obvious Bots

Heuristic methods are used to detect obvious bot activity and augment the labeled training
dataset. The heuristics used by us are:

Forged User Agent: User agents such as python-request strongly indicate automated behavior.
If the reported capabilities differ from those of legitimate browsers, the match is classified
as a bot [Z+15, DS11].

Regular Inter-Hit Timing: Consistent, evenly spaced requests often indicate automation, as
human interactions typically exhibit temporal variability [T+20, S+21].

Unrealistic window sizes: Extremely small window sizes (e.g., below 50 pixels) are unusual
for human users, but are often used by bots to reduce computational overhead [JKV19].

Bot Detection Using Technical Features

This stage uses a semi-supervised Generative Adversarial Network SGAN [Ode16] to classify
individual hits based on both labeled and unlabeled data. The classifier transforms the
preprocessed vector into a probability distribution over bot and human classes using a softmax
activation. The loss of the classifier is computed using the cross-entropy function:

L(Yk, pk) = −
n∑

k=1

Yk · log(pk)

36

Here Yk is the true label and pk is the predicted probability for class k. Both the discriminator
and the classifier are trained using backpropagation [RHW86]. To improve the model’s ability
to discriminate between real and synthetic data, the discriminator uses the ExpSum [SGZ+16]
activation function:

E(Z) =
F (Z)

F (Z) + 1
with F (Z) =

∑

zk∈Z
ezk

Bot Detection Using Web Site Traversal Graph Analysis

WT graphs model user navigation behavior by representing website pages as nodes and
navigation actions as edges. Edges are weighted based on visit frequency, and nodes are
annotated with relevant attributes, e.g., timestamps and page types. We hypothesize that bots
exhibit distinct navigation patterns, such as exhaustive, breadth-first traversal, that are rarely
observed in human behavior.

The WT-based detection process consists of three steps:

1. Feature Extraction: Relevant attributes are extracted from raw web server logs.

2. Graph Construction and Transformation: The extracted features are structured as
graph representations, ensuring compatibility with graph-based learning. Dynamic edge
updates account for variations in session behavior.

3. Graph-Based Classification: A Dynamic Graph Convolutional Neural Network (DGCNN)
[ZCNC18] learns hierarchical features from the constructed graphs, capturing both local
and global traversal patterns to classify sessions effectively.

Table 3.9 shows the primary features considered within the WT graphs.

Table 3.9: Features included in WT graphs.

Attribute Description Component
First hit page name initial page of a session node
Detailed Pagename Specific page of a hit Node, Edge
Previous page name Previous page in a hit Node, Edge
Timestamp Time of visit Node Label
Page type category of visited page node label
Benchmark label hit-specific benchmark

identifier
node label

Additional graph-based features include node degree, node count, edge count, page type
distribution, session topics, identified using the RAKE algorithm [R+10], hits per session, hits
per subpage, degree centrality, and betweenness centrality.

37

3.3.2 Key Results

This section summarizes the evaluation of our detection pipeline and addresses three research
questions: the effectiveness of each component of the pipeline (RQ1.6), the importance of
individual features (RQ1.7), and the influence of the dimensionality of the WT graph on the
classification performance (RQ1.8).

Data Labeling and Ground Truth

Our evaluation is based on a real-world dataset provided by Adobe from an e-commerce website
with approximately 40 million monthly visits. We analyzed approximately 1.4 million visits
acquired over two consecutive days. The dataset captures a diverse range of previously unknown
bot types; however, it lacks definitive ground truth. To address this limitation, we labeled the
data based on the following assumptions:

Human Assumption: Traffic is labeled human if it originates from verified user accounts within
the hosting organization. This assumption is based on the expectation that employees
are unlikely to use bots on their own site.

Bot Assumption: Traffic is labeled as bot if it originates from IP addresses associated with
known cloud providers, despite the potential presence of legitimate users relying on
proxies or VPNs.

This labeling strategy is more conservative than that of previous work (e.g., Botcha [DSV+21]),
which assumed that bots do not engage in purchases-a claim invalidated by recent evidence
showing that bots purchase high-demand products [Bro21, Par19].

Table 3.10 summarizes the number of hits classified under our initial assumptions and after
applying heuristic refinement. The heuristics, designed to identify additional bot instances
without affecting human classifications, increased the number of bot hits from 51,462 to
65,018, while the number of human hits remained unchanged at 7,630. Unknown classifications
decreased from 723,579 to 710,023. Notably, nine human interactions were misclassified as
bots, resulting in a recall rate of 0.9988.

Table 3.10: Ground truth based on initial assumptions and heuristic refinement.

Class Initial Assumption (#Hits) After Heuristics (#Hits)
Bot 51,462 65,018
Human 7,630 7,630
Unknown 723,579 710,023

Results RQ1.6: Detection Performance

We evaluated two primary models: one based on technical features using a Semi-Supervised
GAN (SGAN), and another based solely on behavioral data using a Deep Graph Convolutional

38

Neural Network (DGCNN). Their performance was compared to the baseline method Botcha,
configured as described in the Botcha Paper [DSV+21]. Table 3.11 shows the key metrics -
accuracy, recall, precision, F1-score and AUROC - for each model. Both SGAN and DGCNN
achieved high detection rates (accuracies above 98%), with SGAN showing slightly better
performance in terms of accuracy and AUROC. However, the DGCNN model is more resilient
against bots that mimic technical attributes, as behavior patterns are inherently more difficult
to spoof. Although Botcha-RAM outperformed the other models in certain metrics, its reliance
on static cues may limit its effectiveness in dynamically evolving threat environments. The
DGCNN operating on WT graphs does not rely on these static cues.

Table 3.11: Comparison of detection performance between models.

Model Accuracy Recall Precision F1-Score AUROC
SGAN 0.9895 0.9875 0.9189 0.9519 0.9886
DGCNN 0.9845 0.9833 0.9791 0.9812 0.9892
Botcha-MAM 0.9364 0.8383 1.0000 0.9120 0.9437
Botcha-RAM 0.9952 0.9663 0.9807 0.9735 0.9996

Results RQ1.7: Importance of Technical Feature

To identify the technical features that have the most impact on the detection, we applied the
permutation importance algorithm [ATSL10] to the SGAN classifier. In this procedure, each
feature is shuffled multiple times (with K = 50) to measure the corresponding drop in classifier
performance relative to a baseline score. The importance of each feature id is calculated as

id = s− 1

K

K∑

k=1

sk,d

Table 3.12 lists the average decrease in accuracy (reported via the R²-score and negative MSE)
for the most influential features. These include browser height and width, whether Java was
enabled, the user agent (excluding standard browsers such as Firefox, Chrome, and Safari),
the number of (sub)page visits, and the total visit count. Notably, post_browser_height and
post_browser_width emerged as the most critical features. However, these attributes are
relatively easy to spoof, highlighting the need to incorporate behavioral metrics that are more
resistant to manipulation.

Results RQ1.8: Importance of WT Graph Size

The evaluation dataset was partitioned using overlap clustering (70% training, 30% testing).
Table 3.13 presents the results. The number of nodes represents the number of subpages
accessed, while #Graphs indicates the number of instances (sessions) that accessed only a
single subpage. Note that additional activity, such as page refreshes, is incorporated into the
graph.

39

Table 3.12: Excerpt of technical feature importance scores for the SGAN classifier.

Feature R2-Score Negative MSE
µi σi µi σi

post browser height 0.542 ± 0.008 0.051 ± 0.001
post browser width 0.287 ± 0.010 0.027 ± 0.001
post java enabled N 0.082 ± 0.003 0.008 ± 0
post java enabled Y 0.061 ± 0.002 0.006 ± 0
user agent Other 0.024 ± 0.002 0.002 ± 0
visit page num 0.022 ± 0.003 0.002 ± 0

visit num 0.012 ± 0.004 0.001 ± 0

Even graphs with only one to three nodes exhibited high classification accuracy, recall, and
precision, with performance further improving as graph size increased. The near-perfect
accuracy was unexpected, given the classifier had access to only a limited set of features. We
assume this is due to the dataset primarily containing simple bots that, for example, repeatedly
refresh a single page to monitor products. A controlled test with a dataset containing more
realistic bots would be beneficial to further evaluate this behavior.

Table 3.13: Classification performance as a function of WT graph size.

Nodes # Graphs ACC Recall Precision F1-Score
1 26137 0.998 0.981 0.998 0.990
2 17066 0.973 1.000 0.974 0.986
3 3533 1.000 1.000 1.000 1.000
4 371 0.998 0.999 0.999 0.999
5 251 0.998 1.000 0.998 0.999
6 101 0.998 1.000 0.998 0.999
7 526 0.997 1.000 0.997 0.998
8 1579 1.000 1.000 1.000 1.000
9 1175 1.000 1.000 1.000 1.000
10 108 1.000 1.000 1.000 1.000

3.3.3 Discussion and Implications

Our evaluation indicates that the proposed bot detection framework is both robust and effective
across different detection modules. The integration of technical and behavioral analysis achieves
high accuracy and provides adaptability to the evolving characteristics of automated traffic.

Limitations There are several limitations to consider. First, the inability to share the
underlying dataset due to privacy constraints restricts external validation and comprehensive
benchmarking against related work. While we benchmarked against another approach, we
could not test on a dataset with ground truth. At the time of writing, no such dataset

40

was available. The primary challenge is that publishing such a dataset would expose user
behavior and potentially personalized data, raising privacy concerns and potentially violating
data collection agreements or e-commerce platform policies. Alternative approaches, such
as generating synthetic datasets or using federated evaluation methods, could mitigate this
limitation but may not fully capture real-world bot behavior. Finally, the approach may fail to
identify bots that perfectly mimic human behavior. However, such bots inherently operate less
efficiently, as they are slowed down by the need to replicate natural user interactions.

Higher-Level Implications The results suggest that forcing bots to mimic human behavior
significantly reduces their efficiency, as they are slowed down by the constraints of human-like
interactions. This undermines key advantages such as fast task execution. Consequently, bot
developers must design increasingly complex systems, which raises operational costs. While
adversaries can partially offset these costs by deploying a larger number of bots, these bots,
too, are ultimately slowed down, making large-scale automation less effective.

3.4 Summary

This chapter examines the advantages and limitations of passive anomaly detection methods for
identifying bot traffic through user behavior analysis. The results demonstrate that machine
learning can reliably differentiate between genuine human interactions and synthetic bot
behavior.

In particular, we achieved improved classification accuracy for mouse and keyboard data
compared to existing approaches, especially in scenarios involving more realistic synthetic
bot behavior. The synthetic mouse movements we generated deliberately mimic human-like
trajectories, incorporating slight curvatures and irregular paths rather than unrealistic straight-
line movements. Regarding keyboard inputs, our method accounts for key dependencies,
recognizing that keystroke timing and rhythm are influenced by adjacent characters. For
instance, typing sequences such as aa exhibit different timing characteristics than sequences like
a@. For classification on request data, we analyzed a real e-commerce dataset, comparing our
approach to an existing method. We found that heuristics, technical features, and session-wide
detection of website traversal yielded strong performance in identifying bots.

A significant challenge in bot detection research is the lack of labeled, standardized, and publicly
accessible datasets containing both human and bot behaviors. This limitation hinders direct
performance comparisons across different methodologies. To address this issue, we utilized
publicly available datasets documenting authentic human mouse movements and keystrokes.
When suitable datasets were unavailable, we reimplemented existing methods from literature
or used third-party tools to generate the necessary data. Where applicable datasets existed,
we evaluated multiple detection methods to enable comprehensive benchmarking and ensure
methodological rigor.

Detection methods, including the approaches presented in this dissertation, effectively identify
bots by distinguishing them from real user behavior. However, they rely on the assumption that
bots exhibit detectable differences, which may change as adversaries develop more sophisticated
evasion techniques. For mouse and keyboard data, we generated synthetic datasets from scratch

41

and successfully detected bots. While attackers could attempt to record and replay or augment
human-like input to evade detection. Similarly, for website traversal graphs, recorded patterns
could be reused to simulate authentic user behavior, but this would limit a bot’s adaptability
and efficiency.

While these approaches perform well, future improvements may be necessary to address evolving
attack strategies. However, by forcing bots to mimic human behavior more precisely, these
methods inherently reduce their effectiveness, increase operational costs, and limit large-scale
automation. Further, all detection approaches in this work were generic, meaning they were
designed to identify bots in general and could be applied to different application scenarios.

42

Chapter 4

Automated Analysis and Control of
Binaries

In the previous chapter, user interaction patterns, such as mouse and keyboard behavior, were
utilized for bot detection. While this approach remains effective against many automated scripts,
its long-term viability is challenged by advancements in machine learning, which at some point
will replicate human input behavior with such high fidelity that it becomes indistinguishable
from genuine user activity. As a result, such generic detection approaches alone become less
reliable. Consequently, more targeted reactive defense techniques are required, focusing on the
distinct behavior and operational characteristics of specific bots. For example, vulnerabilities
can be identified within a bot’s communication protocol, enabling the development of tailored
detection and prevention mechanisms. In web-based scenarios, this may involve analyzing
how the bot constructs requests and interacts with the service. Similarly, on gaming or social
media platforms, detection efforts can focus on the bot’s request patterns and communication
behavior. While obtaining the binary is not always possible, many bots are publicly available12

or can be purchased.

Unfortunately, most malicious bots remain closed source and are often deliberately obfuscated.
Although powerful reverse engineering tools exist (e.g. IDA3 and Ghidra4), analyzing these
binaries still requires significant expertise and time (see Section 2.1). To address this challenge,
our work introduces an automated approach to accelerate the reverse engineering process.
The core of our methodology involves identifying Points of Interest (POIs) in binaries. POIs
are specific instructions or memory addresses that meaningfully interact with specific data
elements, which we refer to as Items of Interest (IOIs). These IOIs can be derived from sandbox
observations, existing threat intelligence, or expert knowledge. For example, in the case of
ransomware that reads and encrypts files, providing plaintext or ciphertext content as an IOI
allows our approach to identify the corresponding addresses of instructions, thereby labeling
these instructions as POIs.

We investigate the applicability of this approach by applying it to representative malware.
Specifically, we focus on identifying key functionality, such as ransomware encryption routines,
and instrumenting malware for runtime monitoring, for instance, to enumerate infected peers
in a P2P botnet. More specifically, our contributions are as follows:

1Example bot: https://github.com/subzeroid/instagrapi
2Example bot: https://github.com/Xian55/WowClassicGrindBot
3https://www.hex-rays.com/
4https://ghidra-sre.org/

43

https://github.com/subzeroid/instagrapi
https://github.com/Xian55/WowClassicGrindBot
https://www.hex-rays.com/
https://ghidra-sre.org/

• Method for POI Identification. We present a systematic method for identifying binary
instructions that interact with relevant IOIs, such as file content or network requests.
This approach allows analysts to quickly focus on core components of the executable.

• Confidence-Based POI Ranking. Our methodology assigns each POI a confidence score
that reflects the degree to which it interacts with the target data. This scoring mechanism
helps to filter out routine functions, e.g., memcpy while prioritizing more relevant ones,
e.g., encrypt_file.

• Automated Reverse Engineering Support. We implement a workflow that integrates
with popular reverse engineering suites, IDA and Ghidra, to assist analysts in their
investigations. In addition, we present a prototype that can instrument malware binaries
at runtime, facilitating tasks such as botnet enumeration without extensive manual effort.

• Empirical Evaluation. We evaluate the effectiveness of our approach in two primary
areas:

1. Ransomware Analysis: We apply our POI-based technique to the Locky and
WannaCry ransomware families and demonstrate that we can quickly identify their
file encryption routines.

2. P2P Botnet Monitoring: Our runtime instrumentation is tested on four different
P2P botnets (ZeroAccess, Sality, Nugache, and Kelihos), allowing us to enumerate
peers by tracking POIs that interact with known IP addresses.

We structure our investigation around the following research questions:

• RQ2.1 Identification: How effective is our method at identifying high-quality POIs? We
aim to evaluate the accuracy of our approach in detecting instruction addresses that
interact exclusively with IOIs, thereby identifying high quality POIs and reducing the
manual effort required to analyze numerous irrelevant POIs.

• RQ2.2 Performance Impact: What performance overhead does our instrumentation
introduce, and how does it affect malware execution? Since instrumentation can degrade
performance or disrupt time-sensitive routines such as TCP streams, we evaluate potential
side effects, including socket timeouts and anti-instrumentation defenses.

• RQ2.3 Confidence Score Quality: How accurately does the confidence score reflect the
relevance of the extracted indicators? We investigate whether higher-scoring POIs improve
IP address extraction, using P2P botnets as a representative case due to their obfuscated
and closed-source nature, which makes them particularly challenging to analyze.

Building on these research questions, the following publication5 summarizes our findings on POI-
based detection. Our findings indicate that POIs effectively highlight critical bot functionality,

5The approach to multi-instruction POIs, including the corresponding confidence scores and evalua-
tions (including ransomware), originates from the author of this dissertation. The multi-instruction POI
detection methodology was refined from the author’s master’s thesis. The concept, implementation, and
evaluation of single-instruction POIs were contributed equally by the first and second authors. The
second author developed the confidence scoring mechanism and conducted the practical evaluation using
automated botnet monitoring. The third author proposed the core idea, while the third and fourth
co-authors provided feedback and helped to refine the final paper.

44

accelerating reverse engineering efforts. Empirical validation confirms that identified POIs
consistently correspond to essential operations, such as encryption and network communication
logic.

August See, M. Gehring, M. Fischer, S. Karuppayah. Binary Sight-

Seeing: Accelerating Reverse Engineering via Point-of-Interest-

Beacons. Annual Computer Security Applications Conference, 2023.

In the following sections, we discuss our design choices, prototype implementation, and
evaluation results. The evaluation demonstrates that the POI-based approach effectively
identifies relevant instruction addresses while maintaining a manageable performance overhead
that does not interfere with the execution of the monitored software.

4.1 Method

Our methodology for identifying and exploiting points of interest (POIs) in binaries consists of
five main steps, as summarized in Figure 4.1. These steps are designed to minimize the manual
effort involved in reverse engineering and to facilitate automated analysis scenarios, such as
P2P botnet monitoring. We then describe two concrete applications of our approach: first, a
generic discovery tool that integrates with Ghidra and IDA, and second, an automated botnet
monitoring system, PinPuppet. The latter serves as an example of applying POIs to a complex
reverse engineering task, demonstrating how peer-related information in P2P botnets can be
uncovered without prior protocol knowledge, despite their obfuscated and closed-source nature.

Identifying POI
Candidates POI Filtering

Identifying Code
Artifacts for

Software Sample Trace Data
Collection

POI Beacons

Sandbox Analysis
& Expert Knowledge

1 2

3

4 5

Figure 4.1: Overview of the POI discovery process.

Step 1: Obtaining a Software Sample

The first step is to obtain a sample of the software of interest. For malicious software, samples
are often acquired from honeypots, malware repositories6, infected machines, or underground
forums where bot-related tools are traded and distributed. Since our research is primarily
focused on malicious applications, we assume that the sample under investigation is typically
closed source and obfuscated.

6https://github.com/ytisf/theZoo

45

https://github.com/ytisf/theZoo

Step 2: Collecting Trace Data

Next, we record the interactions between the binary and its environment by instrumenting the
software using a dynamic binary instrumentation (DBI) tool. Examples of such frameworks
include Intel Pin [LCM+05], DynamoRIO, and Frida. During execution, we log each (data,
address, access type) tuple, collectively referred to as trace data. Here, data represents the
values read from or written to memory or registers. The address corresponds to the instruction
pointer. The access type indicates whether the operation is a read or a write. This fine-grained
view of the program’s runtime behavior captures low-level data manipulations that can later
be matched against indicators provided by the analyst.

Step 3: Identifying IOIs

The next step is to identify a set D of Items of Interest (IOIs) that contain data elements
relevant to the analyst’s objectives. For example, when investigating how malware contacts its
command and control (C2) servers, IP addresses or domain names extracted from a sandbox
report [Gua10] could be used as IOIs. To maximize detection accuracy, analysts must consider
various representations (e.g., little-endian versus big-endian integers) and potential encodings
(e.g., binary or ASCII). However, not all values are equally appropriate: indicators that are
too generic (e.g., 80, for port 80) run the risk of matching irrelevant code paths. Therefore,
analysts should choose distinctive values, such as full IP addresses or unique registry keys, to
identify instructions of functional significance.

Step 4: Identifying POI Candidates

We define a POI as an instruction address that reads or writes an IOI from D. However,
matching these data elements in the trace is not always straightforward. Some indicators (e.g.,
a 32-bit integer) may align with the read or write operation of a single instruction, while others
(e.g., a string) may be processed across multiple instructions. To handle this variability, we
distinguish between two search strategies:

1. Single-Instruction POI Search This approach compares each data access in the recorded
trace with each IOI in D. If an instruction directly processes an IOI in a single operation (e.g.,
mov eax, [esp]), the corresponding instruction address is marked as a POI candidate.

2. Multi-Instruction POI Search Identifying multi-instruction POIs is computationally chal-
lenging due to the variability in the order and manner in which IOI-related data is accessed.
With access patterns that can be sequential, reverse, or random, and an unknown number
of involved instructions, a brute-force approach quickly becomes infeasible. To efficiently
address this problem, we employ two custom lookup tables: a memory map and an identifier
map. The memory map associates addresses with the instructions that read or write data,
while the identifier map tracks memory region sizes and dynamically updates them as memory
usage changes. Together, these tables enable a fast memory lookup algorithm that efficiently
compares memory contents to IOIs and records the corresponding instruction addresses as POI
candidates.

46

Step 5: Ranking and Filtering POIs

Once a set of POI candidates has been identified, we assign each one a confidence score to
help analysts to prioritize high-quality POIs. The core idea is to measure how exclusively a
POI processes elements from D compared to unrelated data. Scores range from 0 to 1, where
a score of 1.0 indicates that the POI interacts exclusively with IOI-related data. In contrast,
general-purpose functions (e.g., memcpy) often appear as POIs but are associated with diverse
data, resulting in lower scores. A threshold-based filter then excludes POIs with low scores to
reduce noise.

• Single Instruction Score (scoreS): For each instruction p, we count how many times an
IOI appears in the trace and compare it to the total number of data accesses made by p:

scoreS(p) =
∑

d∈D

C(d, trace(p))

|trace(p)|

Here, C(x, L) counts the occurrences of x in the list L.

• Multiple-Instruction Score: (scoreC) For multi instruction POIs, we track how many IOI
bytes a candidate instruction reads or writes, relative to its total data accesses:

scoreC(p) =
∑

s∈P

C(addr(p), s)

#p

where P is the set of memory write sequences that reconstruct IOIs from D, and #p is
the total number of bytes accessed by instruction p.

4.1.1 Generic POI Discovery

We developed a generic tool to automate the five-step process shown in Figure 4.1, using
Intel Pin as the DBI framework along with Python scripts to search for single and multiple
instruction POIs. The tool requires three inputs from the analyst:

1. A binary sample (e.g., a suspicious executable).

2. A set of IOIs (D) obtained from sandbox logs or domain knowledge.

3. (optionally) a confidence score threshold to exclude low quality IOIs.

Upon execution, the tool outputs a ranked list of POI candidates along with detailed trace
information. Custom plugins for IDA and Ghidra highlight these POIs, allowing analysts to
navigate directly to the instructions associated with the relevant functionality (e.g., file encryp-
tion routines in ransomware). The flexibility of the POI framework also enables automated
applications beyond manual reverse engineering.

47

4.1.2 Use Case: Automated P2P Botnet Monitoring

In addition to supporting manual reverse engineering, POIs can facilitate automated analysis.
As an example, PinPuppet is a prototype tool designed to dynamically instrument live malware
samples and enumerate P2P botnets at runtime.

P2P Botnet Characteristics

In a P2P botnet, infected machines maintain peer lists that allow for decentralized commu-
nication. This mechanism, often referred to as membership management (MM), complicates
botnet tracking due to the absence of a centralized command and control server. MM typically
operates as follows: each bot maintains an internal peer list and attempts to contact entries
from this list. Upon successfully reaching a live peer, the bots exchange information about other
active peers, thereby updating their respective peer lists dynamically. However, by identifying
POIs that handle peer-related data, PinPuppet can iteratively probe and map the structure of
the botnet.

PinPuppet Workflow

Figure 4.2 illustrates the architecture of the system:

1. Puppet VM: Runs the malware sample under Intel pin instrumentation.

2. Agent: A lightweight service that allows remote upload, execution, and retrieval of
results (e.g., trace logs and POI information).

3. Router: Intercepts and manipulates network traffic to redirect bot communication at
runtime.

4. Puppeteer: Coordinates the crawling process, including snapshot management, peer
selection, and result aggregation.

Step-by-Step Crawling Process The following steps describe how PinPuppet leverages
POIs to automate the exploration of a live P2P botnet during execution.

1. Trace Collection and Baseline IOIs: The malware is first executed to generate a trace
log. In parallel, any observed peers (e.g. IP addresses or ports) are extracted to form
the initial IOI sets D.

2. POI Candidate Identification: The Puppeteer scans the trace to identify statements that
manipulate D.

3. Filtering and Confidence Scores: Confidence scores are calculated, and POIs with low
scores are discarded.

48

Puppet VM

Agent

Puppeteer

Router

Analysis Package
Botnet Sample
Configuration
Start Script

Puppet

Botnet Access and crawling

Figure 4.2: Architecture of the PinPuppet system.

4. Crawling Primitive: The router redirects outgoing connections to selected peers, allowing
PinPuppet to iteratively explore the network by following newly discovered peers.

By iteratively applying this process, PinPuppet enumerates significant portions of the botnet
without requiring explicit protocol knowledge. All critical information is inferred at runtime
from the identified POIs.

4.2 Key Results

This section summarizes the evaluation results of our reverse engineering methodology applied
to malicious program binaries-specifically, ransomware and botnets. We address three primary
research questions: (RQ2.1) the effectiveness of identifying high-quality POIs, (RQ2.2) the
performance impact introduced by the instrumentation, and (RQ2.3) the reliability of the
confidence score in improving the quality of results. To demonstrate the applicability of POIs in
reverse engineering challenging binaries, we use examples of complex, hard-to-analyze malware.
Specifically, Locky and WannaCry serve as ransomware samples for identifying encryption
routines, while four real-world P2P botnets (ZeroAccess, Sality, Nugache, and Kelihos) are
analyzed within an isolated local testbed as a ground-truth-based case study.

The evaluation was conducted in two stages. First, we performed a manual analysis focused
on ransomware. Subsequently, we conducted a more in-depth evaluation on P2P botnets to
gather information regarding the quality of POIs.

4.2.1 Setup

For the ransomware evaluation, we executed samples such as Locky and WannaCry within a
virtual machine, monitoring file access to identify the affected files. From these, we extracted
segments of the encrypted file contents to serve as IOIs.

49

To obtain quantitative insights, we analyzed the behavior of PinPuppet, which uses POIs to
extract peers from P2P botnets, as described in Section 4.1.2. All experiments were conducted in
virtual machines running on a Proxmox hypervisor within a network isolated from the Internet.
Multiple VMs were infected with instances of the botnets. One instance was instrumented prior
to any communication between the bots. We recorded the IP addresses and ports contacted by
the instrumented bot from its fixed peer list, using them as IOIs (e.g., IP 1.2.3.4 or port 60124).
Based on this a priori information, we aimed to identify and score the instructions responsible
for processing the peer list. Subsequently, the bots were allowed to discover each other on the
network. By monitoring the behavior of the previously identified POIs, we observed which
data they accessed and verified whether valid IP addresses were involved, leveraging the known
ground truth from our controlled infection and IP distribution.

4.2.2 Results RQ2.1: Identification

This section presents the results for the research question: How effective is our method at
identifying high-quality POIs?

The ransomware analysis was straightforward. Manual reverse engineering confirmed that the
function containing multiple POIs with the highest aggregated score was responsible for the
encryption process.

For P2P botnet monitoring, Figure 4.3 shows the distribution of confidence scores for IP-related
POIs across the evaluated botnets. It displays the number of register-based, memory-based,
and contiguous memory (multi-instruction) POIs identified for each botnet, grouped into 10%
confidence score bins.

We see that each botnet contains a subset of POIs with confidence scores greater than 0.8
(i.e., confidence class 8 or higher), suggesting a specialization in handling specific IP addresses.
Furthermore, multi-instruction POIs were detected in Nugache and Kelihos, attributed to the
storage of peer data as ASCII sequences.

Overall, this high-confidence subset of POIs was sufficient to locate key code regions, such as
peer-handling routines and encryption functions. The validity of POIs was verified through
manual inspection. This result confirms that our method effectively identifies meaningful POIs
while minimizing the inclusion of irrelevant instruction addresses. Section 4.2.4 describes the
role of the confidence score in more detail.

4.2.3 Results RQ2.2: Slowdown

This subsection addresses the overhead introduced by our instrumentation. Excessive overhead
may lead to two issues: the malware binary may detect that it is being monitored, or it may
fail to execute correctly due to timing-related disruptions, such as TCP connection timeouts
during data exchange. What performance impact does our instrumentation introduce, and does
it disrupt malware execution?

We measured performance overhead by running each sample under Intel Pin [LCM+05] and
comparing its execution time to the uninstrumented baseline. Our measurements showed

50

110

120

0 1 2 3 4 5 6 7 8 9
Confidence Class

0

10

20

30

40

Nu
m

be
r o

f P
OI

s

(a) ZeroAccess

0 1 2 3 4 5 6 7 8 9
Confidence Class

0
2
4
6
8

10
12
14
16

Nu
m

be
r o

f P
OI

s
(b) Sality

0 1 2 3 4 5 6 7 8 9
Confidence Class

0

5

10

15

20

25

Nu
m

be
r o

f P
OI

s

(c) Nugache

17
18
19
20

0 1 2 3 4 5 6 7 8 9
Confidence Class

0
1
2
3
4
5
6
7
8
9

Nu
m

be
r o

f P
OI

s

(d) Kelihos

Figure 4.3: Distribution of confidence scores for IP-based POIs in ZeroAccess, Sality,
Nugache and Kelihos. Each plot shows the number of POIs per confidence score range
(horizontal axis).

51

moderate overhead without any functional breakdowns. For example, in one of its membership
management cycles, Kelihos exhibited a 6.5% runtime increase (approximately 13 additional
seconds). Other botnets exhibited similar or smaller slowdowns, and none of the samples failed
to execute or lost network connectivity. While the added instrumentation inevitably increases
execution time, it did not trigger any observed anti-instrumentation mechanisms or led to
network communication failures.

4.2.4 Results RQ2.3: Quality of Confidence Scores

This section analyzes the influence of our quality score. Given that our approach identifies
multiple POIs (Section 4.2.2), we evaluate whether POIs with high confidence scores effectively
prioritize relevant behavior, that is, whether they access all correct IPs within the network on
which we deployed the botnets, or whether the results include noise. How accurately does the
confidence score reflect the reliability of the extracted indicators?

To assess the relationship between confidence scores and extraction accuracy, we compared
the set of peers extracted by each POI to the botnet’s ground-truth peer list as well as from
our knowledge of the network. Figure 4.4 shows a scatter plot of correctness scores, indicating
whether a POI actually accessed an IP address from our ground truth, in relation to its
confidence score. The vertical green dotted line indicates the 0.8 threshold we used when
filtering POIs. The majority of POIs with scores above 0.8 exhibit high correctness, with few
false positives. Furthermore, most data points lie on or above the diagonal line, indicating that
the actual correctness often matches or exceeds the predicted confidence. This trend suggests
that the confidence score is conservative, it tends to underestimate rather than overestimate
performance. As a result, it provides a reliable filtering mechanism that allows analysts to
focus on the most relevant parts of the code. This makes the confidence score particularly
useful for both automated tasks, such as botnet crawling, and for prioritizing functions during
manual reverse engineering.

4.3 Summary and Discussion

Our reverse engineering approach allows data-driven reverse engineering of closed-source binaries
by identifying and ranking critical instructions, referred to as Points of Interest (POIs). These
POIs directly or indirectly interact with specific data elements, termed Items of Interest (IOIs),
which can be derived from sandbox analyses, execution traces, or expert-defined criteria. By
leveraging automated dynamic binary instrumentation, our approach reduces manual effort by
capturing detailed runtime traces to pinpoint relevant code regions.

We validated our methodology through practical security applications, including the automated
crawling of peer-to-peer botnets (e.g., ZeroAccess, Sality, Nugache, and Kelihos) and the
analysis of ransomware behavior (e.g., Locky, WannaCry). Evaluation results demonstrated
that high-confidence POIs consistently identified critical malware functionalities, such as file
encryption routines and peer management mechanisms, thereby significantly reducing manual
reverse engineering efforts. Performance tests indicated a modest instrumentation overhead of
approximately 6.5%, with no noticeable impact on malware execution.

52

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Score

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

ct
ne

ss

ZeroAccess Sality Nugache Kelihos

Figure 4.4: Correctness versus confidence score for identified POIs. Points above the
dashed diagonal indicate that the actual correctness exceeds the POI score, suggesting
a conservative, non-overestimating metric. The green dotted line marks the filtering
threshold of 0.8.

Limitations Despite its ability to reduce analyst workload, our method remains susceptible to
certain adversarial techniques, such as code virtualization obfuscation [Col01], which causes the
same instructions to be used for different data, thereby limiting the reliability of our confidence
score. Adversaries may also insert irrelevant instructions to mimic legitimate IOI interactions,
generating extraneous and misleading POIs. Although such tactics increase analysis complexity,
our method remains effective, as critical data must still be accessible in memory before system
calls or library function executions.

Higher-Level Implications This approach facilitates the analysis of closed-source binaries
in a data-driven manner, significantly reducing manual effort. However, it also raises dual-use
concerns. Adversaries could exploit similar methodologies to study legitimate software or refine
their obfuscation techniques to evade detection.

53

Chapter 5

Bot Prevention through Endpoint and
Protocol Obfuscation

Rather than detecting bots, prevention offers a proactive approach to defending against them.
Although detection strategies and binary analysis, as described in the previous chapters, help
us identify and understand how bots operate, adversaries continue to refine their methods
to mimic legitimate user behavior, thus countering detection approaches. To address this,
prevention techniques aim to prevent or mitigate bot activity before it becomes practical or
scalable.

One prevention approach focuses on increasing the difficulty of initial bot development and
deployment by making the targeted application harder to analyze. This strategy employs
obfuscation techniques. The related work is further discussed in Section 2.3.2. Existing
obfuscation approaches [Sof21, Tec22] primarily focus on impeding reverse engineering of client
software but do not address the threat posed by API-based bots (Section 2.1.1). The problem
lies in the fact that the protocol itself cannot be obfuscated only on client-side, as it must
remain consistent between the client and server to ensure proper communication. Since both
rely on mutually understandable protocols and endpoints to maintain synchronization, these
methods only hinder initial bot creation by obfuscating client-side components. However,
API-based bots typically bypass obfuscation that exclusively focuses on the client-side, by
directly extracting protocols, endpoints, and payload formats from client software. Moreover,
traffic interception techniques available at both device and router levels further diminish the
effectiveness of traditional client obfuscation.

Recognizing these limitations, this chapter proposes extending obfuscation, initially devised as
a defense against reverse engineering (discussed in Section 2.1.2), to the network endpoints and
communication protocols themselves. Assigning unique endpoints and protocols to individual
clients forces each bot to adapt to a client-specific protocol, significantly increasing the cost
and complexity of sclaing bots and thus large-scale automated attacks.

The main contributions of this chapter are summarized below:

• Section 5.1 extends the concept of obfuscation to protocols, proposing the assignment of
unique communication protocols to each client. This technique ensures bot prevention
relying solely on protocol-level obfuscation to prevent bot scaling.

• Section 5.2 introduces a novel and more lightweight method for obfuscating endpoints.
This method is designed for lightweight bot prevention strategies specifically designed to
network services.

54

5.1 Polymorphic Protocols for Limiting Protocol Analysis

and Bot Scalability

Communication protocols are a common target for bot developers aiming to automate interac-
tions with services. While existing defenses often focus on obfuscating client-side components
such as binaries, HTML, or JavaScript [Col01, Jsc, Sof21, Tec22], the underlying protocols
typically remain static and predictable. To address this gap, we explore the use of polymorphic
protocols as a means to increase the effort required for bot replication. By assigning each client
a customized protocol variant, our approach requires attackers to reverse engineer individual
instances. For each bot they create, a different protocol must be analyzed, thereby increasing
the cost of automated abuse. This approach is conceptually similar to current practices such as
embedding API keys in applications and rotating them upon release, which forces attackers to
extract the key in order to build a bot1. However, polymorphic protocols generalize this idea by
potentially including API keys while also obfuscating the protocol logic itself. As a result, they
offer at least the same level of protection as API keys, while additionally requiring attackers to
extract the protocol structure, rather than simply updating a single data dependency in their
bot code.

Polymorphic protocols are particularly useful for services with stateful user interactions, such
as social media platforms and online games. In these contexts, large numbers of automated
accounts are often required to achieve meaningful impact. For example, a single bot may
be sufficient to scrape data from a website, but on social media, one bot can typically like
or share a post only once. This creates a strong incentive to scale bot deployments. By
constantly changing data formats and field definitions per client, the attacker’s cost of scaling
bots increases. In the following sections, we investigate the technical feasibility and evaluate the
performance and overhead of implementing polymorphic protocols in real-world applications.

Our primary goal is to increase the cost of duplicating bots while keeping performance and
organizational overhead low:

• Client-Specific Protocols. We introduce Polymorphic Protocols, which assign each client
a unique protocol variant. The core idea is that protocol messages can be encoded and
ordered differently across multiple rounds, resulting in complex and diverse protocol
structures. Our approach builds on strong obfuscation techniques for binaries [Col01,
Tec22] and censorship-resistant protocol obfuscation [DCS15, MMLDG12]. To the best
of our knowledge, we are the first to apply protocol obfuscation specifically to combat
bot replication at scale.

• Reference Implementation. We provide an implementation for Java and Protobuf,2 that
can be easily integrated into continuous integration (CI) pipelines. Given a standard
Protobuf definition file, our system automatically generates custom protocol variants.

• Performance Evaluation. We measure the computational overhead of polymorphic
protocols and show that our approach can be applied without affecting user experience.

1https://github.com/8mas/SINoALICE-API/
2https://github.com/UHH-ISS/polymorphic-protocols

55

https://github.com/8mas/SINoALICE-API/
https://github.com/UHH-ISS/polymorphic-protocols

Our research is guided by the following questions:

RQ3.1: Can polymorphic protocol obfuscation limit bot scalability, and how does it compare
to unique, client-specific API keys?

RQ3.2: What is the performance overhead of polymorphic protocols? Does this affect legitimate
users and service providers?

Building on these research questions, the following publication3 summarizes our findings on
limiting bot scalability. We have integrated our approach into an existing Java/Protobuf
ecosystem with minimal effort. Depending on deployment choices and protocol configurations,
polymorphic protocols introduce only a small performance penalty for end users, while increasing
the cost of scaling the bot. The ability to generate client-specific protocols on-demand further
complicates the attacker’s task of reusing a single protocol implementation across multiple
accounts.

August See, L. Fritz, M. Fischer. Polymorphic Protocols at the Ex-

ample of Mitigating Web Bots. European Symposium on Research in

Computer Security, 2022.

In the following sections, we discuss the construction and application of polymorphic pro-
tocols, summarize the key findings of our evaluation, and outline limitations and potential
improvements.

5.1.1 Method

This section presents our approach to generate and deploy polymorphic protocols. By assigning
a unique protocol variant per client, our method significantly increases the cost to duplicate
API bots.

Overview of Polymorphic Protocols

Polymorphic protocols customize the message formats that clients use to communicate with a
service. Instead of relying on static tokens (such as API keys) that can be easily duplicated,
polymorphic protocols generate structurally different protocols for each client. This forces
adversaries to reverse engineer or recreate a new protocol per bot, which quickly becomes too
expensive and time-consuming. Figure 5.1 outlines the main components of the method:

A Protocol Specification defines the base protocol, including the structure and semantics of
messages. Each client is associated with a Client Identifier, such as a user ID, which is
commonly used in many applications (see Section 5.2.1 for more examples). Additionally, a
Secret Seed, a private random value, ensures that the resulting client protocol is both unique

3The core idea, solution approach, and evaluation design for this publication stem from the author
of this dissertation. The second author performed the implementation and evaluation. The third author
contributed to the refinement of the work.

56

Protocol generator
Secret seed

Client identifier

Protocol specification
Custom protocol

Public

Private

Can be public or private

Figure 5.1: High-level view of polymorphic protocol generation. A base protocol, client
ID, and secret seed are fed into a protocol generator, which outputs a client-specific
custom protocol.

and unpredictable. Building on this foundation, the protocol is instantiated for each client
through a generation process.

Protocol Generation. The protocol generator processes the base protocol and applies
transformations such as permutations, re-encodings, or insertions to it, to derive a custom
protocol. These transformations are chosen deterministically based on the client ID and the
secret seed. When an adversary duplicates a client, all clones share the same protocol signature,
which can be detected and then blocked. To reason about these transformations formally, we
introduce a simple model of protocol structure and semantics.

Formal Model

We define a protocol as P = {F, S}, where F = {f1, f2, . . . , fn} denotes the set of message
format specifications and S = s1, f2, . . . , sm represents their semantics. A semantic s can be
associated with one or multiple messages. A message format specification f may take the form
f = {field1 : int, field2 : string-base64, . . .}. The deterministic generator G(P, client, seed) 7→
P ′ applies transformations Tx that convert format specifications F , or subsets thereof N ⊆ F ,
into new variants N ′. Transformations must be computationally efficient and unambiguously
invertible, ensuring that valid messages can be easily decoded into the original protocol message.

Protocol Transformations

There are various transformation methods, each with distinct properties. We distinguish
between unconditional transformations and conditional transformations.

Unconditional Transformations. These transformations do not require any semantic knowl-
edge of the message and can be applied to any message without affecting cross-message
functionality. This includes all possible permutations, encodings, or additions to a format
specification.

Permutation Shuffle fields or field bytes within a message.

Radix Convert fields to a different base (2–255).

57

Encryption Encrypt selective fields.

Dummy Bytes Append random bytes anywhere in the message.

Hash Hash data in the message and append the digest (e.g., SHA-1).

Such transformations may include cryptographic operations (e.g., field encryption) to further
complicate reverse engineering [WJC+09].

Conditional Transformations. These require knowledge of message semantics and thus
cannot be applied to every message without considering semantics:

Delay Delay non-urgent messages.

Swap Rearrange fields of a messages.

Split Split a logical message into several smaller ones.

Merge Merge messages into one.

Custom Logic Delegate domain-specific calculations to the client.

Semantics (e.g., ordering dependencies, timing constraints) must be modeled to ensure that
delayed or reordered messages do not break the application’s logic.

Transformation Metrics. To evaluate the effectiveness of transformations, we use three
metrics derived from a sampled subset of messages, Ms ⊆M , where M denotes the set of valid
messages. Let Txi and Txj represent two transformations within the same transformation class
x, e.g., radix transformation, and let C(·) be a compression function. Furthermore, let D1x

denote a set of transformation indices, and D2x denote a set of transformation index pairs, e.g.,
two different transformations of the same class like radix i radix j. The difference between two
transformations is quantified by the normalized compression distance (NCD) [LCL+04].

∆Tx – Average distance between transformed messages:

∆Tx =
∑

m∈Ms

∑

(i, j)∈D2x

∣∣Txi(m) − Txj(m)
∣∣

|Ms| · |D2x|

A lower value indicates that messages transformed by different methods are relatively similar,
making them potentially more guessable.

∅Tx – Average difference in compressed length:

∅Tx =
∑

m∈Ms

∑

i∈D1x

∣∣C(Txi(m)) − C(m)
∣∣

|Ms| · |D1x|

This metric quantifies the extent to which each transformation inflates or shrinks the data
when compressed.

58

δTx – Uniqueness of transformations:

δTx =
|X|

|D1x| · |Ms|
, X =

{
Txi(m)

∣∣∣ i ∈ D1x, m ∈Ms

}

This metric measures how often different transformations produce identical outputs. A lower
value indicates that transformations can map different inputs to the same output, thereby
reducing protocol diversity.

Randomizing Protocols

Protocols can be randomized by selecting appropriate transformations. Algorithm 1 illustrates
a typical procedure for generating a customized protocol. For each message format f ∈ F (line
2), we select (lines 3–4) one unconditional (line 5) and one conditional transformation (line
6) using a pseudorandom generator (prg) initialized with the client ID and a secret seed (line
4). If no semantics are specified, conditional transformations are omitted to avoid potential
application failures. The transformed format is then added to the new format set F ′ (line 7).
Unconditional transformations do not depend on semantics and can be randomly applied on
top of previously applied ones. In contrast, conditional transformations require tracking the
applied semantics (line 8), as they may alter message behavior, for example, by combining or
delaying messages, which can modify or violate the original communication semantics.

Algorithm 1: Selecting transformations for each message format.

Input :P = {F, S} - base protocol
Input : prg - seeded with client ID and secret seed
Input : Tc - set of conditional transformations
Input : Tu - set of unconditional transformations
Result: P ′ = {F ′, S ′} - custom protocol

1 F ′ ← {}, S ′ ← S;
2 for f ∈ F do
3 (T ′

c, T
′
u)← getAllowedTransformations(Tc, Tu, f, S

′);
4 (tc, tu)← prg.choice(T ′

c, T
′
u);

5 f ′ ← tc(f) ; // apply conditional transformation

6 f ′ ← tu(f
′) ; // apply unconditional transformation

7 F ′.add(f ′);
8 S ′.update(f, tc) ; // track multi-msg transforms if needed

9 return {F ′, S ′};

This results in a different protocol per client. The method also allows for partial or multi-round
transformations, although these may introduce complexity if transformations conflict.

Deployment of Polymorphic Protocols

Once generated, a custom protocol can be integrated into the client and server via a standalone
proxy or by tightly integrating the generated code into the application. Figure 5.2 illustrates

59

Client

Service

Ingress

ok

get_protocol(id)

Protocol Generator

C
re

at
e

pr
ot

oc
ol

register(id, protocol)
protocol / binary

In
te

gr
at

e
pr

ot
oc

ol
/b

in
ar

y

In
st

an
tia

te
 p

ro
to

co
l

D
yn

am
ic

 in
st

an
tia

tio
n

of
 a

 c
us

to
m

 p
ro

to
co

l
im

pl
em

en
ta

tio
n

de
pe

nd
en

t

Bi
na

ry
 a

nd
 p

ro
to

co
l

ca
n

al
so

 b
e

pr
e-

bu
ilt

Tr
an

sl
at

io
n

co
ul

d
al

so

be
 in

te
rg

ra
te

d
di

re
ct

ly

in
 th

e
se

rv
ic

e

custom_protocol_hello(id)

custom_protocol_message
protocol_message

protocol_message
custom_protocol_message

Figure 5.2: Example on how a custom protocol can be requested, delivered, and deployed
between a client and an ingress server acting as a proxy.

an example of dynamically instantiating and using a polymorphic protocol. The client initiates
the process by requesting a custom protocol using its client ID. The protocol generator creates
the custom protocol, registers it with the ingress server, and returned to the client, either as a
standalone binary, as direct machine code that is streamed and executed, or integrated into the
main application. To communicate with the server, the client sends a custom protocol hello
message. The ingress server locates and instantiates the protocol. Once the client is notified
of the successful instantiation, it can start to send custom protocol messages to the ingress,
which acts as a proxy and translates these messages into a format that the service understands.
This procedure represents only one possible deployment approach; other methods are equally
feasible. For example, the protocol can be generated a priori and integrated into the client
during application compilation.

Deployment Strategies. In addition to the actual deployment implementation, there are
different modes for using the polymorphic protocol.

Full-Polymorphic Each client runs a unique protocol. This provides maximum diversity, but
comes with a higher overhead.

Time-Polymorphic All clients share the same protocol, which is replaced periodically (e.g.,
weekly or after suspicious traffic is detected).

All deployment strategies and modes introduce overhead, as the applied transformations incur
additional computational cost and increase bandwidth usage. Furthermore, generating and
streaming protocol instances is not free and contributes to the overall resource consumption.

60

Reducing Overheads. Polymorphic protocols inevitably introduce some performance and
maintenance overhead. To mitigate these we recommend the following:

• Use polymorphic protocols only for high-risk clients, such as those running on emulators
or rooted devices4.

• Use grouped deployments, assigning protocol variants by region, operating system, or
device integrity checks.

• Coordinate with bot detection systems so that legitimate users experience fewer forced
updates.

5.1.2 Key Results

This section summarizes our key findings. First, we evaluate how our approach increases the
attacker’s cost of scaling bots (RQ3.1). We then evaluate the performance overhead of using
our approach (RQ3.2).

Results RQ3.1 Attacker Cost and Security Discussion

Estimating the cost to a man-at-the-end (MATE) attacker (see Section 2.1.2) is inherently
difficult [ASA+15, TIF19], and existing metrics for evaluating obfuscation [BCG+16, BCP17]
are often too narrow for our broader goal: raising the cost of duplicating bots rather than just
thwarting a single, one-time reverse engineering. We compare our approach to the typical
practice of using custom API keys, focusing on two deployment models (time-polymorphic and
full-polymorphic) and two types of attackers:

Restricted-MATE (R-MATE). This attacker has access to the binary (as usual in MATE
scenarios [ASA+15]), but lack sophisticated means or tools to automatically extract
embedded secrets, e.g., API keys. This attacker is considered the most common, as
fully automated code/data extraction for encrypted protocols is non-trivial [WJC+09,
LJLW13, NSC15].

Unrestricted-MATE (U-MATE). This attacker can employ a full range of advanced static
and dynamic analysis, code slicing, or code reuse techniques without limitation. How-
ever, large-scale automation requires reliable extraction of only the minimal protocol
transformation logic, which remains a complex task [TIF19, CLGJ19].

Comparison to Client-Only Obfuscation. Client-side obfuscation techniques, such as vir-
tualization and control flow transformations [Col01, Jsc, Tec22, Sof21], aim to make reverse
engineering more difficult by obfuscating the binary. However, these approaches ignore the un-
derlying communication protocol, which remains exposed and consistent. As a result, attackers

4https://developer.android.com/google/play/integrity/overview

61

https://developer.android.com/google/play/integrity/overview

like R-MATe and U-MATE can bypass such protections by simply recording and replaying net-
work interactions, without the need for reverse engineering. In contrast, our approach addresses
this limitation by obfuscating the protocol itself. This prevents straightforward recording and
replaying, thereby offering protection even when the client is not reverse engineered.

Comparison to API Keys. In practice, many services rely on a single API key embedded in
clients, which is occasionally updated. An attacker who extracts this key can replicate bots
at scale as long as the key remains valid. For the sake of a fair comparison, we assume that
each client is assigned a unique API key. Polymorphic protocols change not only the secret but
also the structure (e.g., permutations, dummy bytes) and can embed cryptographic keys. This
applies to both time-polymorphic (periodic protocol updates) and full-polymorphic (per-client)
variants:

• R-MATE attackers must actively re-extract entire protocols instead of simply swapping
a key. This makes bot duplication more expensive, as each protocol variant introduces
new transformations.

• U-MATE attackers face the additional challenge of automating protocol extraction
(beyond just the key). Since polymorphic protocols may also contain standard encryption
steps, extracting embedded keys is essentially a subset of inverting the entire protocol.
Tools that slice or reuse code (e.g., hooking [BB10]) struggle when large transformations
are scattered or heavily obfuscated.

Although U-MATE adversaries may ultimately succeed in extracting partial or complete
protocols, each protocol update (time-polymorphic) or unique variant (full-polymorphic) forces
repeated reverse engineering. In contrast, simply replacing an API key in a known protocol
often remains a simple adaptation.

Scaling Bots. Once attackers have a functioning bot, they typically replicate it at scale.
Polymorphic protocols require a new protocol variant for each additional bot instance. We
recommend, and have implemented, an additional encryption layer around each message
specification. This makes it infeasible for an attacker to guess the protocol, as the search space
for the key is equivalent to that of a 256-bit key.

Code Reuse and Hardening. Attacks on polymorphic protocols may attempt to slice
transformation logic from the binary and reuse it. However, reliably extracting executable
protocol transformations without extraneous dependencies remains a non-trivial and error-prone
process [TIF19, CLGJ19]. In addition, commercial obfuscation solutions [Sof21, Tec22] and
publicly available tools [Col01] can further hinder automated code slicing, e.g., via function
virtualization. Although these defenses are outside the core scope of our polymorphic design,
they can be integrated to increase the cost and complexity for U-MATE attackers, effectively
reducing them to the R-MATE scenario if the automated approach fails.

Overall, polymorphic protocols slow down adversaries more than API keys alone by coupling
protocol structure changes with secret data. In scenarios where bots pose a significant business
or security risk, these additional layers can be critical in preventing large-scale bot creation.

62

Table 5.1: Mean program build properties: Difference of polymorphic compared to the
original protocol in percent (N=100).

G(P1,15) G(P100,15) G(P1,150) G(P100,150)

Build Time +3% +72% +9% +128%
Memory -14% +18% +33% +94%

Protocol Size +138% +144% +202% +295%

Results RQ3.2: Performance Overhead

To evaluate the performance overhead of polymorphic protocol generation, we applied our
approach on top of Protocol Buffers (protobuf). The build process involves transforming
message formats using various transformations, including radix conversion, field encryption,
and insertion of dummy bytes, followed by the generation of wrapper classes and the compilation
of the resulting protocol using the protobuf compiler. For transformation we included only one
round.

Table 5.1 summarizes the overhead introduced during this process. Each entry G(Px,y) denotes
a protocol consisting of x messages, each containing y fields. The reported values indicate
the relative difference compared to the original, unmodified protocol. The build time for the
base protocol from 500ms to 600 ms, with memory usage ranging from 3 MB to 131 MB. The
protocol binary size ranged from 0.57 MB for the base version to 42 MB for the largest variant.

The table reports relative differences compared to the original, unmodified protocol. For smaller
protocols such as G(P1,15), the overhead remains modest: build time increases by only 3%,
memory usage decreases by 14%, and the protocol size grows by 138%. However, for larger
configurations such as G(P100,150), the overhead becomes more pronounced, with build time
increasing by 128%, memory usage by 94%, and protocol size by 295%.

These results demonstrate that the overhead scales with the number of messages and fields
in the protocol. While the increase in protocol size is significant, it is primarily due to the
structural complexity introduced by transformations. Build time overhead is most relevant for
large-scale deployments or environments with tight build-time constraints.

Runtime overhead is more difficult to quantify precisely, as it strongly depends on the specific
transformations applied and the fields they target. For example, inserting dummy bytes or
applying base64 encoding increases message size, whereas transformations like hashing or radix
conversion introduce varying computational costs.

To provide a clearer view of runtime characteristics, Table 5.2 lists the average time required
to apply each transformation class, measured in seconds per one million applications. These
values represent isolated transformation costs and serve as a reference for understanding their
relative impact during protocol execution.

In practical scenarios, polymorphic protocols approximately double the CPU time required for
serialization and deserialization. This overhead arises because the applied transformations are
reversed through an additional wrapper layer executed alongside standard protobuf decoding.
These costs remain acceptable for non-real-time applications or systems with moderate traffic

63

Table 5.2: Runtime cost per transformation class

Transformation class Time (s per 1 million applications)
Permutation of message bytes 413.23
Dummy bytes (4) 1.07
Hash 2.91
Radix (2–255) 160.85

volumes. Developers can further mitigate the overhead by excluding large or static fields,
such as media payloads, from transformation, allowing for more fine-grained control over
performance.

5.1.3 Discussion and Implications

Our approach increases the cost of large-scale bot creation by frequently changing the structure
of the application layer protocol. Polymorphic protocols apply transformations, such as
permutations and the insertion of dummy bytes, to generate client-specific protocol variants.
As a result, each bot instance requires separate reverse engineering, significantly increasing
the effort needed to analyze or replicate the protocol at scale. While these protocols do not
guarantee permanent deterrence of attackers, they render the scaling attacks much more difficult
for services that experience significant bot abuse.

Limitations As with other obfuscation schemes, it remains difficult to accurately quantify
the additional overhead that polymorphic protocols impose on different adversaries [BCG+16,
BCP17]. In addition, attackers can still use techniques such as code slicing to extract pro-
tocols. To mitigate this, polymorphic protocols can be complemented with anti-slicing tech-
niques [CLGJ19], which further complicate the extraction of minimally functional code. Given
that the operational overhead introduced by polymorphic protocols is manageable but present,
this approach is most effective for services already burdened by bot attacks, where the increase
in adversary cost outweighs the moderate performance or deployment overhead.

Higher-Level Implications Malware often communicates with external entities, for example,
to exfiltrate data or interact with command and control servers. While this communication is
often encrypted, it can exhibit recognizable patterns that intrusion detection systems can use
to identify and block such activity. By randomizing protocol formats, polymorphic protocols
reduce the predictability of patterns such as packet timing, message lengths, and static field
signatures. This unpredictability can hinder IDS systems that rely on detecting consistent
data structures and behaviors. Beyond security monitoring, polymorphic protocols provide a
flexible and effective way to disrupt mass bot replication across application domains. However,
they may force bot builders to turn to alternative techniques, such as UI automation, while
increasing the complexity of code and deployment processes.

64

5.2 Encrypted Endpoints for Limiting Bot Scalability

Bots that interact with APIs scale easily because the API, and specifically its endpoints,
remain consistent across clients. To counter this, we introduce an approach that assigns
client-specific communication endpoints. These endpoints must first be extracted from the
client, such as a web application or binary, before they can be used. Since each instance has
unique endpoints, the extraction process must be repeated for every new bot, significantly
increasing the effort required for replication. We refer to this approach as encrypted endpoints,
a lightweight and practical variant of polymorphic protocols. Encrypted endpoints effectively
impede bot scalability by breaking the uniformity of the communication interface, while
remaining straightforward to implement and incurring minimal overhead. The overhead is
limited to a slightly increased URL length and a single encryption or decryption step at runtime.

Our contributions are as follows:

• Encrypted Endpoints. We assign unique endpoints to each account to thwart bots that
rely on static, reusable APIs. Even if attackers reverse engineer the client or capture
network traffic, the extracted endpoints remain tied to a specific account, limiting
their reuse across multiple bot instances. This feature can be combined with traditional
obfuscation techniques [Col01, VYG13, DB18, XZZ12] and defenses against traffic capture
attacks [See20a, Koc23] to further impede automated abuse.

• Adaptability. Our approach is not limited to services that require a login. It can also be
used in applications that do not require authentication. For user convenience, URLs can
be shared without compromising bot protection. In addition, service owners do not need
to predefine all endpoints; they can be generated as needed.

• Secondary Security Benefits. By making URLs user-specific and unguessable, potential
attacks such as URL guessing or directory traversal are effectively mitigated. This
mechanism effectively acts as a per-user allowlist for valid URLs, restricting access to
only those endpoints explicitly issued to a given client.

• Implementation and Evaluation. We implemented our method as middleware for the
FastAPI framework and the Jinja2 template engine.5 For the evaluation, we measured end-
to-end latency and used a profiler to obtain reliable results, as the individual operations
were too fast and subject to variability due to system jitter. Our measurements show
that the middleware introduces less than 1% overhead, corresponding to an added latency
of under 0.1ms per request. The implementation is thus lightweight and can be easily
integrated into existing projects.

The following research questions guide our investigation:

RQ3.3 To what extent do encrypted endpoints limit the scalability of bots, and how do they
compare to alternative bot detection or mitigation strategies?

RQ3.4 What is the computational and operational overhead associated with using encrypted
endpoints?

5https://github.com/8mas/encrypted-endpoints

65

https://github.com/8mas/encrypted-endpoints

RQ3.5 What types of secondary security threats, beyond bot replication, are mitigated by
encrypted endpoints?

Building on these research questions, the following publication6 summarizes our approach.

August See, K. Röbert, M. Fischer. Encrypted Endpoints: Defending

Online Services from Illegitimate Bot Automation. International

Symposium on Research in Attacks, Intrusions and Defenses, 2024.

In the following sections, we discuss the construction of encrypted endpoints, strategies to
mitigate potential drawbacks, summarize the key findings of our evaluation, and outline their
limitations.

5.2.1 Method

This section outlines our approach to obfuscating network service endpoints and mitigating
bot scalability. The goal is to prevent automated extraction of API endpoints and ensure that
even if a bot is developed, it cannot be easily reused across multiple accounts or sessions.

Core Idea and Workflow

Each client (user) is provided with a uniquely customized Web site (or application resources)
where all endpoints (URLs) are encrypted and signed with a client-specific key.

Formal Model (Brief). Given Ic as the client identifier, such as an IP address or user
ID, shared between the client and the service, a client-specific key kc is derived using a key
derivation function (KDF) and the master key km, both of which are known only to the service:

kc = KDF(km, Ic).

Each URL u = p∥a (path and parameters) is encrypted using an authenticated encryption
scheme:

u′ = ⟨e, te⟩ = AEkc(u),

where e is the ciphertext and te is the message tag (MAC). The client cannot forge valid URLs
because it does not have access to kc or km. In the following, {message}ka is shorthand for
AEkc(message).

6The solution approach and full implementation and evaluation for this publication originated from
the author of this dissertation. The second author is credited with the core idea. The second and third
authors contributed to the refinement of the work.

66

Workflow. The basic function of encrypted endpoints is as follows: the middleware maintains
a master key km and derives a client-specific key kc based on a client identifier Ic. When the
client accesses the site, all server-generated URLs are replaced with encrypted and signed
versions using kc. This binds unique endpoints to the client. These URLs are only valid for the
client associated with Ic, thereby preventing large-scale bot replication.

When a user visits a page for the first time during browsing, the initial functionality is triggered
as illustrated in Figure 5.3. The user requests the root page without any encrypted URL, as
this is the initial visit. However, a client identifier is still transmitted in some contexts, such as
the IP address or a session cookie from a previous interaction. The middleware derives the
client-specific key and forwards the request to the backend, including the client key ka of client
A as shown in the figure. The backend responds with the requested webpage and encrypts all
embedded endpoints or URLs using ka.

The functionality of browsing is shown in Figure 5.4, when a client accesses an endpoint via its
URL, the respective encrypted endpoint is used. The middleware verifies that the endpoint
comes from the backend by checking its signature, since only the middleware and backend
have access to the master key km and the client key kc derived from it. This ensures that the
URL was issued to the specific client, effectively preventing simple duplication of bots. Since
bots must extract valid URLs for each individual client, large-scale replication is significantly
hindered. Both binary programs and web applications can be further hardened against URL
extraction by applying established obfuscation techniques [VYG13, DB18, BLRP10], which
complicate parsing and reverse engineering efforts.

Client-A Middleware Backend

example.com/
Identifier Ia

ge
ne

ra
te

cl
ie

nt
 k

ey
 k

a

example.com/

response en
cr

yp
t U

LR
s

ka

Figure 5.3: Encrypted Endpoint usage in the context of webpages and browsing.

Error Handling and Security. If a URL that was not generated for the current client
is accessed, decryption fails and the middleware returns an error response. As shown in
Figure 5.5, attempts to reuse another user’s URLs are blocked by the MAC verification.
Similarly, attackers scanning for sensitive files will only be blocked, as the URLs are invalid
(see Figure 5.6), providing an effective URL allowlist.

67

Client-A Middleware Backend
example.com/{v1/login}ka

Identifier Ia

ge
ne

ra
te

cl
ie

nt
 k

ey
 k

a
de

cr
yp

t
U

R
L

example.com/v1/login

response

Figure 5.4: Encrypted Endpoint usage (backend only).

Ac
ce

ss
 e

nd
po

in
t

of
 a

no
th

er
 c

lie
nt

.
e.

g.
, B

ot
 is

 u
se

d
on

 a
no

th
er

 a
cc

ou
nt

Client-B Middleware

example.com/{v1/login}ka

ge
ne

ra
te

cl
ie

nt
 k

ey
 k

b
de

cr
yp

t
U

R
L

U
R

L
ha

s
no

 v
al

id
M

AC
 a

s
U

R
L

ha
s

M
AC

 o
f k

a
an

d
no

t k
b

error

Identifier Ib

Figure 5.5: Attempt to use a URL generated for a different client: The MAC verification
fails.

Client Identifier

A robust, tamper-proof identifier Ic is critical to ensuring the integrity of the system. Possible
implementations include:

• User/Session ID: This approach is tied to user login and ensures that URLs are unique
per user. It is particularly effective when session state can be persistently associated
with the user, for example, through an authentication mechanism.

• IP Address: While simple, this method is susceptible to address changes, for example,
when switching from cellular data to Wi-Fi, which can disrupt functionality. Additional
rate-limiting mechanisms are recommended to mitigate potential abuse. Furthermore,

68

Ac
ce

ss
 m

od
ifi

ed
re

so
ur

ce

Client-A Middleware
example.com/.env

Identifier Ia

ge
ne

ra
te

cl
ie

nt
 k

ey
 k

a
de

cr
yp

t
U

R
L

U
R

L
ha

s
no

 v
al

id
M

AC

error

Figure 5.6: Directly accessing a non-issued URL also fails due to MAC mismatch.

the use of shared IP addresses, such as in NAT scenarios, may cause issues when multiple
users appear under the same identifier and must be appropriately accounted for.

• Browser Fingerprint: This approach is effective when combined with client-side code
execution, as it allows for detailed client identification.

For services without login functionality, a combination of IP address and browser fingerprinting
is useful. Session resumption techniques can account for changes in Ic, such as those caused by
network switches.

Practical Considerations

Encrypted endpoints alter fundamental aspects of how the Internet currently operates. Conse-
quently, certain interleaving technologies are also affected by these endpoint modifications. In
this section, we summarize some of the affected principles and discuss how their drawbacks
can be mitigated.

URL Sharing. Encrypted URLs are inherently client-specific. In cases where read-only or
public sharing is required, certain URLs or HTTP methods (such as safe GETs) can be left
unencrypted or re-encrypted for a different client. This allows selective URL sharing while still
protecting sensitive endpoints.

Session Resumption. Change-prone identifiers, such as IP-address identifiers, can invalidate
existing URLs when networks are switched. A token-based session resumption mechanism can
store the old key, allowing the middleware to decrypt and re-encrypt URLs using a new key kc,
thereby maintaining session continuity.

Partial Encryption of Endpoints. When certain parameters (such as search fields) are fully
user-controlled, only known segments of the URL are encrypted. The remaining parameters
are appended in clear text. The application or middleware must clearly define which segments
should remain obfuscated to limit the enumeration of endpoints.

69

URL Validity and Refresh. To prevent long-term bot operation, URLs can expire by incorpo-
rating a time-based or version-based nonce into the key derivation process:

kc = KDF(km, Ic,noncet).

This forces bots to periodically re-extract valid links, increasing their maintenance costs.

Performance Optimizations

While encrypting endpoints is expected to be fast, certain performance optimizations can
further enhance efficiency.

Stateful vs. Stateless. A stateless approach redetermines kc and re-encrypts URLs as needed,
reducing memory requirements but increasing computational load. In contrast, a stateful
system caches keys or pre-generated URLs, reducing latency at the expense of additional
storage requirements.

Risk Assessment. The server can selectively apply encrypted endpoints to high-risk clients
or suspected bots [WZC19, SCRM21], reducing overhead for normal traffic. This provides a
balance between performance and the need to prevent automated endpoint extraction and
large-scale bot creation.

5.2.2 Key Results

This section provides a summary of our findings with respect to the defined research questions.
The primary goal is to evaluate the impact of encrypted endpoints on bot scalability (RQ3.3),
assess the overhead they introduce (RQ3.4), and examine the additional protection they provide
(RQ3.5). We implemented our approach as middleware in FastAPI, requiring minimal changes
to both back-end and front-end code. The middleware provides functionality to encrypt and
decrypt URLs, including partial encryption support to accommodate dynamic web pages and
templating engines such as Jinja2. The implementation is available as open source7.

Results RQ3.3: Limiting Bot Scalability

Our evaluation closely follows that defined in Section 5.1.2. We consider two attackers: (i)
Endpoints-Only, where adversaries rely on intercepting and replaying traffic without analyzing
client-side code to retrieve endpoints, for example by using tools such as [See20a, Koc23]; and
(ii) Endpoints and Data Parsing, where adversaries extend their efforts to parsing HTML,
JavaScript, or binaries to extract encrypted endpoints.

In the Endpoints-Only model, encrypted endpoints renders captured URLs ineffective for reuse
across accounts, thereby neutralizing replay-based automation attacks. In contrast, traditional
code obfuscation provides no resistance to such attacks.

7https://github.com/8mas/encrypted-endpoints

70

https://github.com/8mas/encrypted-endpoints

In the Endpoints and Data Parsing model, attackers can theoretically extract encrypted URLs
by decompiling or analyzing the application. However, combining encrypted endpoints with
established code obfuscation techniques [Kac, Sof21, Tec22], which alone cannot prevent these
attacks, significantly increases the effort required do extract and exploit such URLs, making it
difficult to sustain large-scale bot operations.

Compared to alternative strategies such as CAPTCHAs or risk-based detection, encrypted
endpoints are complementary : they do not actively interact with or challenge legitimate users,
but instead prevent bots from reusing or replaying links across multiple clients. As a result, this
approach raises the barrier to scalable automated abuse, especially when used in conjunction
with other security measures.

Results RQ3.4: Overhead of Encrypted Endpoints

In terms of performance overhead, our experiments show only a small increase in response time
and CPU usage. All measurements were conducted on a Linux laptop equipped with an Intel
i7-10700K processor.

Processing Overhead We evaluated the runtime performance of encrypted endpoints using
a local test setup. The application served HTML pages with varying numbers of encrypted
URLs. To ensure accuracy, we used profiling in addition to end-to-end measurements, which
are subject to millisecond-level jitter.

For backend processing, we observed that handling encrypted URLs introduces only minimal
latency. In the ENC configuration, where the client-specific key is derived per request, the
added latency was +0.031ms. Caching the key on the server (S-Key) reduced this to +0.020ms,
and caching the encrypted URLs (S-URLs) further lowered it to +0.002ms. All configurations
used AES-GCM with hardware acceleration via AES-NI [Gue10].

Table 5.3 presents the overhead observed when rendering encrypted URLs using the Jinja2
template engine. We tested responses with 10 and 100 unique URLs. As expected, the
overhead increases with the number of encrypted URLs, but remains within acceptable limits.
Caching client keys and URLs significantly reduces this overhead, especially in high-traffic or
large-template scenarios.

Table 5.3: Latency overhead when rendering encrypted URLs in Jinja2, measured via
profiling over 100,000 requests.

URLs Base ENC S-Key S-URLs

10 0.033ms +0.158ms +0.076ms +0.023ms
100 0.087ms +1.470ms +0.662ms +0.128ms

These performance measurements demonstrate that encrypted endpoints introduce only negli-
gible overhead, even at scale, and can be efficiently integrated into existing web applications.
However, one practical consideration when deploying encrypted URLs is the potential increase
in their length. We examine this aspect in the following section.

71

URL Stretch Encrypted endpoints increase URL length due to encryption and encoding
overhead. Although HTTP/1.1 does not specify a maximum URL length [FGM+99], browsers
enforce practical limits, e.g., Chromium supports up to 2MB.8 Our tests (April 2024) show
that major desktop and mobile browsers handle URLs longer than 20,000 characters.

In our implementation, length expansion comes from base64 encoding (ca 33% overhead),
padding and MAC (16 bytes each), and 2-byte separators for partial encryption. The total
URL length is calculated as:

Lfinal = Ldata · 1.33 + nblocks · (16 + 16 + 2)

This overhead is negligible and below current browser limits.

Results RQ3.5: Protection Against Other Attacks

While our primary focus is on limiting bot scalability, we find that encrypted endpoints also
serves as an implicit URL allow list. By requiring a valid cryptographic signature from the
server for each link served, this mechanism can be used to prevent bot attacks:

• Prevent directory traversal attacks (e.g., /../../etc/passwd) and accidental file expo-
sures, since such URLs are never served by the server.

• Reduces the risk of local file inclusion exploits and certain types of reflected XSS or
SQL injection attacks, provided that these exploits rely on modifying predefined URL
parameters.

However, fully user-controlled URL parameters remain outside the scope of this approach: if
the server cannot anticipate or restrict a parameter, encryption alone will not provide sufficient
protection. Furthermore, this mechanism only applies to URLs explicitly issued by the server. If
attackers force the server to generate malicious URLs, those URLs will still be valid. Therefore,
while encrypted endpoints do not provide a comprehensive security solution, they do limit the
attack surface for specific URL-based exploits.

5.2.3 Discussion and Implications

Our primary goal is to prevent bot scalability across multiple user accounts by assigning unique,
encrypted endpoints to each user. This forces attackers to continuously extract valid endpoints
from server responses, making bot reuse and mass automation much more difficult. In this way,
we aim to reduce the proliferation of simple scripts and automated tools, and further restrict
advanced attackers when combined with proper code obfuscation.

8https://chromium.googlesource.com/chromium/src/+/HEAD/docs/security/url_display_

guidelines/url_display_guidelines.md

72

https://chromium.googlesource.com/chromium/src/+/HEAD/docs/security/url_display_guidelines/url_display_guidelines.md
https://chromium.googlesource.com/chromium/src/+/HEAD/docs/security/url_display_guidelines/url_display_guidelines.md

Limitations Despite the increased difficulty for bots that rely on direct endpoint knowledge,
resource-rich attackers can still resort to UI-based automation (Section 2.1.1), such as scripting
interactions at the front-end layer. Although this process is slow and often requires significant
computational overhead (e.g., via VMs or sequential bot launches), determined adversaries may
still succeed. In addition, sites that require shareable URLs - such as online retailers, payment
providers, or social media sites - must first identify which URLs can remain unencrypted so
that legitimate external linking can continue to function. This identification process places an
up-front burden on developers and system architects and can add complexity to deployment.

Higher-Level Implications Encrypted endpoints help to hide URL paths and parameters,
limiting third-party visibility into resource details and thus oppose anti-tracking add-ons such
as ClearURLs.9 However, some level of tracking is inherently tied to these encrypted endpoints,
as any parameter embedded for authentication or customization effectively becomes a persistent
identifier. In some cases, this can be more invasive than tracking cookies, as the tracking
information is stored directly in the URL itself. When such links are shared, the embedded
parameters may inadvertently reveal sensitive details or user-specific tokens, exacerbating
privacy concerns. This highlights the need for further research on the privacy implications of
encrypted and user-specific URLs, particularly in contexts where links are exposed or shared
across users or systems.

On a broader level, encrypted endpoints help make bot creation more resource-intensive
and technically challenging. This raises the entry barrier for attackers, potentially reducing
bot proliferation. However, it also encourages the development of more sophisticated attack
methods, fueling an ongoing arms race between bot creators and defenders. In addition,
widespread adoption of such methods may shift adversaries’ focus to alternative attack vectors,
such as UI automation.

5.3 Summary

This chapter examines techniques for bot prevention. Unlike detection, which by definition
occurs after a bot has been deployed, prevention approaches aim to hinder bot creation in the
first place.

We focus on limiting the scalability of API-based bots, whose key strength lies in their ability
to scale very efficiently once developed. Our core idea is to require different clients or users of
a service to communicate using their unique application protocols. As a result, for a bot to
scale, it must extract valid configurations from legitimate clients. This impedes large-scale bot
operations, restricting not only bot operators but also individuals attempting to use public
bots, such as in online gaming or automated shopping.

We propose two approaches. The first, called polymorphic protocols, randomizes the full
application protocol between the client and the service. This applies both at the representation
level, e.g., how data is encoded or ordered, and at the semantic level, where message sequences
can be randomized when permitted. This approach forces bot creators to extract valid protocols

9https://github.com/ClearURLs/Addon

73

https://github.com/ClearURLs/Addon

from legitimate clients, a challenging task that can and should be combined with existing
obfuscation techniques to complicate reverse engineering. Our approach is configurable to be
lightweight in terms of CPU usage and message size overhead.

The second approach, called encrypted endpoints, can be seen as a more specific version of
polymorphic protocols, where only the endpoint, often a URL, is obfuscated. This counters
adversarial techniques such as traffic recording and replay attacks, as well as protocol reverse
engineering. Like polymorphic protocols, encrypted endpoints require extraction from legitimate
clients to scale bot operations. Application obfuscation should be employed to further complicate
the extraction process for adversaries. This approach is lightweight, as it increases URL size
by only 33% plus a constant overhead for authentication tags and padding.

A key challenge in obfuscation research is assessing the extent to which such techniques
hinder adversaries. The difficulty arises from the fact that man-at-the-end (MATE) attackers
have full control over the device running the application (client) and can employ arbitrary
analysis techniques. We demonstrate that our approaches impose at least the same level of
complexity as extracting API keys, which are a subset of our approach. That is, extracting
protocols and endpoints is at least as difficult as extracting API keys and likely imposes greater
implementation overhead on bot developers, as they must reimplement the complex protocol
transformations.

Our approaches may shift the advantage in favor of defenders by limiting the greatest strength
of bots, their scalability. While attackers may turn to UI bots to circumvent API-based
restrictions, such methods are significantly more expensive, require direct interaction with the
user interface, and are harder to automate efficiently. By forcing adversaries to rely on such less
scalable and more labor-intensive techniques, our approach makes large-scale bot operations
increasingly impractical.

74

Chapter 6

Conclusion

Web bots are becoming increasingly common, as they allow to automate tasks for various
purposes. They can serve beneficial roles, such as web crawling for search engines, or be used
for profit, by scraping data to train proprietary AI models. However, they can also be employed
maliciously, e.g., by executing automated attacks or by pretending to be humans to influence
public opinion on social media. As AI technology advances, creating sophisticated bots becomes
easier. Autonomous AI agents are capable of making decisions, further complicating the task of
distinguishing human users from bots. The most common defense against bots are CAPTCHA
systems. However, these can be bypassed using AI techniques, while simultaneously causing
frustration for legitimate users. Alternative approaches, such as requiring strong authentication
(e.g., government-issued IDs), increase user friction, leading to reduced usability and raise
privacy concerns. Therefore, there is a need for alternative methods that do not impose direct
challenges on human users.

This cumulative thesis examines these challenges and proposes potential solutions. Guided
by the research questions RQ1-3, three groups of contributions C1-3 are derived. Detection
methods based on human behavior are introduced to differentiate humans from bots (C1). An
analysis technique is presented to accelerate the reverse engineering of closed-source binaries
(C2), which can aid in understanding bot behavior, which is a pre-requisite for novel detection
and prevention strategies. Finally, bot prevention methods are proposed that specifically target
the scalability of bots (C3).

In the following, we answer the research questions defined in Section 1.3, which guided the
development of these contributions.

RQ1: What are the limitations of passive anomaly detection based on user behavior for
identifying bots? To address this question, we developed and evaluated several machine
learning models and detection strategies based on user behavior. These include classification
models for mouse dynamics on web pages, various modeling strategies for keystroke dynamics,
such as character-independent, character-dependent, and sentence-level models, as well as
heuristics for individual request classification. Additionally, a machine learning model was
designed to operate on graph representations of website traversal behavior for bot detection
based on this behavioral data.

Our evaluation shows that behavior-based detection is generally effective, achieving an accuracy
of over 0.95 across all approaches. In the case of mouse dynamics, bots can be reliably
distinguished from human users with high accuracy after approximately 1.66 seconds of
interaction. Our models outperform related work, under stricter conditions that account for
more sophisticated mouse movements, such as those that do not follow straight-line patterns.

75

For keystroke dynamics, our models also demonstrate strong performance. We evaluate both
character-identity-dependent and character-agnostic classifiers. While including key identity
achieves near-perfect accuracy (close to 1), we achieve 0.98 accuracy in a more privacy-
preserving variant that omits key identity information. Compared to related work, our models
perform better even against more sophisticated synthetic keystroke sequences, which incorporate
dependencies on preceding and following keys. We further show that both mouse and keyboard
behavior models generalize across different applications, indicating that application-specific
training is not strictly necessary for effective detection. Also the graph-based bot detection
framework, which captures user website traversal behavior, performs well with over 0.98
accuracy. However, the high accuracy observed may partly result from the relative simplicity
of the bots included in the evaluation.

These findings confirm that passive behavioral detection is currently effective. However, the
results for mouse and keyboard input indicate that as the synthesis of bot behavior becomes
more advanced, detection accuracy decreases.

RQ2: How can reverse engineering techniques be optimized to accelerate the analysis of
closed-source bot binaries? To address this question, we developed a novel, data-driven reverse
engineering approach. Instead of manually identifying relevant instructions, analysts specify
the data they are interested in, and our approach performs two tasks: it locates the instructions
that access this data and ranks them based on how exclusively they interact with it. This
allows general-purpose instructions to be filtered out, significantly reducing the analysis scope.
The analysis is not limited to single-instruction access but considers data interactions across
multiple instructions.

Our method is implemented using Intel Pin and supported by plugins for Ghidra and IDA, en-
abling integration with standard reverse engineering workflows and allowing detailed inspection
of binary behavior and resource usage. To validate our confidence-based filtering mechanism,
we applied the approach to four P2P botnets. By analyzing a local bot instance, we attempted
to automatically crawl the botnet and collect the IP addresses of all infected peers. This setup
served as ground truth for evaluating the filtering accuracy. Our results show that instructions
with a high confidence score consistently interacted with correct peers, demonstrating the
utility of the ranking for identifying relevant code.

Overall, the proposed approach supports more efficient and targeted reverse engineering by
narrowing down the analysis to the most relevant binary components, thereby reducing reverse
engineering overhead.

RQ3: How can the scalability of bots be limited? To address this question, we developed novel
obfuscation techniques aimed at limiting the scalability of API-based bots, which represent
the most easily replicated class of bots. The core idea is to increase the overhead for bot
creators by requiring them to reverse engineer multiple distinct client applications rather than
a single one to scale their bots. This is achieved by assigning each client a unique, randomized
application-layer protocol, thereby preventing bots from reusing the same automation logic
across instances.

We explored two approaches. The first, termed polymorphic protocols, randomizes the entire
application-layer protocol through structural transformations such as field reordering and inser-
tion of dummy bytes. This approach offers strong obfuscation, though at a higher deployment

76

cost. The second, more lightweight method involves randomizing API endpoints through
encrypted URLs. These encrypted endpoints maintain compatibility with user expectations
and established conventions, for instance, enabling URL sharing in e-commerce scenarios, while
still hindering bot scalability.

Both approaches were implemented and evaluated. Polymorphic protocols require bot developers
to reverse engineer each randomized protocol variant, as even elements such as API keys are
embedded within the transformations. This significantly increases the effort required to scale
bots. Compared to traditional defenses, such as binary obfuscation or API key rotation, our
approach targets the protocol itself, which is the primary interface used by scalable bots.
However, both approaches benefit significantly when combined with application obfuscation
techniques. These techniques make reverse engineering more difficult, thereby hindering
application slicing and targeted protocol extraction. Encrypted endpoints incur minimal
overhead, adding only a small increase in URL length and approximately one millisecond of
computational cost for encryption, decryption, and validation. These endpoints are thus fitting
for modern desktop and mobile browsers and can additionally serve as an allowlist mechanism,
mitigating attacks that exploit non-server-generated URLs, such as directory brute-forcing or
path traversal.

Overall, both methods raise the cost and complexity of large-scale bot creation. By forcing
attackers to invest in repeated reverse engineering, they shift the balance in favor of defenders
and provide scalable, lightweight protections that are harder to circumvent than conventional
techniques.

Effective Bot Mitigation While the approaches were evaluated independently, they are comple-
mentary and can be combined for more robust bot mitigation. Effective protection requires
both prevention and detection mechanisms that hinder the creation of individual bots and
limit their scalability. For binary applications that face significant bot abuse, we recommend
deploying polymorphic protocols in conjunction with standard obfuscation and application
hardening techniques. For web applications or scenarios where performance overhead must
be minimal, encrypted endpoints offer a lightweight and practical solution. In addition to
prevention, a multi-stage detection pipeline is essential. Initial stages should rapidly filter out
obvious bots to conserve computational resources. Ongoing risk assessment should leverage
website traversal patterns, mouse dynamics, and keystroke behavior to detect more subtle or
evasive bots. Finally, understanding adversaries is important. This includes collecting usage
data from application logs and acquiring bot samples when possible. Such insights enable the
development of more targeted and adaptive detection and prevention strategies.

Future Work

This doctoral thesis contributes novel solutions for bot detection, analysis, and prevention.
However, further potential for future work remains in the following areas:

In-Depth, Privacy-Friendly Authentication Services must defend against bots to protect
their human users. Users have a right to privacy, and services aim for frictionless usage. The
solution is a privacy-preserving authentication approach, conceptually similar to Single Sign-On

77

(SSO), in which an identity provider certifies user attributes, e.g., that the user is human
and over 18 years old. Unlike current SSO systems, the identity provider should not learn
which services the user is accessing. To prevent bots, there should be a limit on the number of
different authentications or accounts per human user on a given service that are non-linkable
to the service. This could also be combined with physical tokens, e.g., national ID cards to
bind the user to an identity.

UI-Based Bot Prevention and Detection With increasing resources and state-level actors
leveraging the user interface (UI) of applications to create bots that mimic human behavior,
traditional prevention approaches become less effective. These approaches, which focus on
lower levels such as APIs, are insufficient against UI-level threats. Prevention strategies could
involve minor randomization of the UI, which is imperceptible to human users but disrupts
bots that rely on recorded clicks and keystrokes. Additionally, detection approaches could
combine behavioral and request-based monitoring by analyzing UI event patterns to identify
bot activity.

Web Tarpits and Bot Fingerprinting Instead of immediately blocking detected bots, an
alternative approach is to redirect them into controlled environments similar to honeypots,
so-called web tarpits. These environments serve two purposes. First, they help reduce bot
activity in the wild by consuming bot resources such as bandwidth, CPU, and memory. Second,
they enable the collection of detailed behavioral data to build bot fingerprints, which can inform
future detection strategies. As a potential added benefit, scraping bots used for AI training
could later be reidentified if the tarpit serves distinct, traceable content, such as intentionally
embedded false facts.

Compiler-Level Network Obfuscation A common limitation of obfuscation approaches
is that they operate at the source-to-source level. For example, C++ code is transformed
into obfuscated C++ code. However, this introduces a dependency on the programming
language, limiting the general applicability of the obfuscation. By leveraging compilers, for
example the LLVM infrastructure, it would be possible to perform obfuscations directly on
the intermediate representation (LLVM-IR). This could be implemented, for instance, as an
LLVM optimization pass, enabling language-independent transformations at the compiler level.
As a result, obfuscation would be applicable to many, or even all, LLVM target architectures,
significantly broadening its reach. This line of work aligns with moving target defense, which
relies on frequent reconfigurations to stay ahead of attackers. While some existing approaches
move in this direction, they have not yet been applied to networked services in the context of
the proposed polymorphic protocols and endpoints.

Identifying Large-Scale Bot Campaigns Detection approaches that only examine single
user instances are losing effectiveness. To counter large-scale bot campaigns, solutions could
focus on clustering similar behavior, such as mouse movements, website traversal, posts or
likes, to identify bot networks. This approach could render large-scale campaigns less effective,
as it would facilitate the identification and disruption of bot clusters.

78

Statement on the Use of AI-based Tools

The author used ChatGPT-4 as a language editing tool to check the text of this thesis. The
tool was employed solely to correct typographical errors, improve grammar and refine phrasing.
The prompts instructed the model to act as a computer science professor reviewing a PhD
dissertation, with a focus on expert-level scientific American English and adherence to LaTeX
formatting. The model was explicitly instructed not to add any information or content beyond
the original text. Additionally, Grammarly and DeepL were used for spelling and grammar
corrections, including rephrasing.

79

Bibliography

[AA20] Fatmah H Alqahtani and Fawaz A Alsulaiman. Is image-based captcha secure
against attacks based on machine learning? an experimental study. Computers
& Security, 88:101635, 2020.

[ADF19] Margit Antal and Lehel Denes-Fazakas. User verification based on mouse dynam-
ics: a comparison of public data sets. In 2019 IEEE 13th International Symposium
on Applied Computational Intelligence and Informatics, pages 143–148. IEEE,
2019.

[AEZ19] Margit Antal and Elöd Egyed-Zsigmond. Intrusion detection using mouse dy-
namics. IET Biometrics, 8(5):285–294, 2019.

[AFA19] Ismail Akrout, Amal Feriani, and Mohamed Akrout. Hacking google recaptcha
v3 using reinforcement learning. arXiv preprint arXiv:1903.01003, 2019.

[AMFVR22] Alejandro Acien, Aythami Morales, Julian Fierrez, and Ruben Vera-Rodriguez.
Becaptcha-mouse: Synthetic mouse trajectories and improved bot detection.
Pattern Recognition, 127:108643, 2022.

[AMM+21] Alejandro Acien, Aythami Morales, John V Monaco, Ruben Vera-Rodriguez, and
Julian Fierrez. Typenet: Deep learning keystroke biometrics. IEEE Transactions
on Biometrics, Behavior, and Identity Science, 4(1):57–70, 2021.

[ASA+15] Adnan Akhunzada, Mehdi Sookhak, Nor Badrul Anuar, Abdullah Gani, Ejaz
Ahmed, Muhammad Shiraz, Steven Furnell, Amir Hayat, and Muhammad Khur-
ram Khan. Man-at-the-end attacks: Analysis, taxonomy, human aspects, moti-
vation and future directions. Journal of Network and Computer Applications,
48:44–57, 2015.

[ATSL10] André Altmann, Laura Toloşi, Oliver Sander, and Thomas Lengauer. Permutation
importance: a corrected feature importance measure. Bioinformatics, 26(10):1340–
1347, 2010.

[BB10] Jan Berdajs and Z Bosnić. Extending applications using an advanced approach to
dll injection and api hooking. Software: Practice and Experience, 40(7):567–584,
2010.

[BCG+16] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and
Alexander Pretschner. Code obfuscation against symbolic execution attacks. In
Proceedings of the 32nd Annual Conference on Computer Security Applications,
pages 189–200, 2016.

80

[BCP17] Sebastian Banescu, Christian Collberg, and Alexander Pretschner. Predicting
the resilience of obfuscated code against symbolic execution attacks via machine
learning. In 26th USENIX Security 17, pages 661–678, 2017.

[BDYGP15] Thomas Barabosch, Adrian Dombeck, Khaled Yakdan, and Elmar Gerhards-
Padilla. Botwatcher: Transparent and generic botnet tracking. In Research in
Attacks, Intrusions, and Defenses: 18th International Symposium, RAID 2015,
Kyoto, Japan, November 2-4, 2015. Proceedings 18, pages 565–587. Springer,
2015.

[BF16] Alessandro Bessi and Emilio Ferrara. Social bots distort the 2016 us presidential
election online discussion. First monday, 21(11-7), 2016.

[Bin24] BinBashBanana. BinBashBanana/html-obfuscator, June 2024. Accessed: 2024-
07-01. URL: https://github.com/BinBashBanana/html-obfuscator.

[BLRP10] Douglas Brewer, Kang Li, Laksmish Ramaswamy, and Calton Pu. A link
obfuscation service to detect webbots. In 2010 IEEE International Conference
on Services Computing, pages 433–440. IEEE, 2010.

[Bro21] Steven Brock. Scalping in ecommerce: ethics and impacts, 2021. Accessed:
2024-11-10. URL: https://ssrn.com/abstract=3793357.

[C+18] A. Cabri et al. Online web bot detection using a sequential classification approach.
In IEEE 20th International Conference on High Performance Computing and
Communications; IEEE 16th International Conference on Smart City; IEEE 4th
International Conference on Data Science and Systems (HPCC/SmartCity/DSS).
IEEE, 2018.

[CLGJ19] Xiaoyang Cheng, Yan Lin, Debin Gao, and Chunfu Jia. Dynopvm: Vm-based
software obfuscation with dynamic opcode mapping. In International Conference
on Applied Cryptography and Network Security, pages 155–174. Springer, 2019.

[Col01] Christian Collberg. the tigress c obfuscator, 2001. Accessed: 2024-12-07. URL:
https://tigress.wtf/about.html.

[ÇU17] Hayreddin Çeker and Shambhu Upadhyaya. Sensitivity analysis in keystroke
dynamics using convolutional neural networks. In 2017 IEEE workshop on
information forensics and security (WIFS), pages 1–6. IEEE, 2017.

[DB18] Ahmed Diab and Tawfiq Barhoum. Prevent xpath and css based scrapers by
using markup randomizer. Int. Arab. J. e Technol., 5(2):78–87, 2018.

[DCS15] Kevin P Dyer, Scott E Coull, and Thomas Shrimpton. Marionette: A pro-
grammable network traffic obfuscation system. In 24th USENIX Security 15,
pages 367–382, 2015.

[DFKO18] Vivek Dhakal, Anna Maria Feit, Per Ola Kristensson, and Antti Oulasvirta.
Observations on typing from 136 million keystrokes. In Proceedings of the 2018
CHI conference on human factors in computing systems, pages 1–12, 2018.

81

https://github.com/BinBashBanana/html-obfuscator
https://ssrn.com/abstract=3793357
https://tigress.wtf/about.html

[DGS+18] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo
Valsorda. Privacy pass: Bypassing internet challenges anonymously. Proceedings
on Privacy Enhancing Technologies, 2018.

[DMT+22] Daniel DeAlcala, Aythami Morales, Ruben Tolosana, Alejandro Acien, Julian
Fiérrez, Santiago Hernandez, Miguel A Ferrer, and Moisés Dı́az. Statistical
keystroke synthesis for improved bot detection. CoRR, 2022.

[DN21] Prafulla Dhariwal and Alex Nichol. Diffusion Models Beat GANs on Image
Synthesis. In Advances in Neural Information Processing Systems, volume 11,
2021.

[DS11] D. Doran and S. Swapna. Web robot detection techniques: overview and
limitations. Data Mining and Knowledge Discovery, 22:183–210, 2011.

[DSV+21] Sunny Dhamnani, Ritwik Sinha, Vishwa Vinay, Lilly Kumari, and Margarita
Savova. Botcha: detecting malicious non-human traffic in the wild. arXiv preprint
arXiv:2103.01428, 2021.

[FGM+99] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul
Leach, and Tim Berners-Lee. Hypertext transfer protocol–http/1.1. Technical
report, 1999.

[GF04] Hugo Gamboa and Ana Fred. A behavioral biometric system based on human-
computer interaction. In Biometric Technology for Human Identification, volume
5404, pages 381–392. SPIE, 2004.

[Gua10] Claudio Guarnieri. Cuckoo cuckoo sandbox, 2010. Accessed: 2020-04-11. URL:
cuckoosandbox.org.

[Gue10] Shay Gueron. Intel advanced encryption standard (aes) new instructions set.
Intel Corporation, 128, 2010.

[Hea10] Nick Heath. Expedia on how one extra data field can cost $12m,
2010. Accessed: 2021-10-18. URL: https://www.zdnet.com/article/

expedia-on-how-one-extra-data-field-can-cost-12m/.

[HJA20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic
models. In Advances in Neural Information Processing Systems, volume 2020-
December, 2020.

[HTR+20] Md Imran Hossen, Yazhou Tu, Md Fazle Rabby, Md Nazmul Islam, Hui Cao,
and Xiali Hei. An object detection based solver for google’s image recaptcha v2.
In RAID 2020, pages 269–284, 2020.

[IKT+19] Christos Iliou, Theodoros Kostoulas, Theodora Tsikrika, Vasilis Katos, Ste-
fanos Vrochidis, and Yiannis Kompatsiaris. Towards a framework for detecting
advanced web bots. In Proceedings of the 14th international conference on
availability, reliability and security, pages 1–10, 2019.

82

cuckoosandbox.org
https://www.zdnet.com/article/expedia-on-how-one-extra-data-field-can-cost-12m/
https://www.zdnet.com/article/expedia-on-how-one-extra-data-field-can-cost-12m/

[IKT+21] Christos Iliou, Theodoros Kostoulas, Theodora Tsikrika, Vasilis Katos, Stefanos
Vrochidis, and Ioannis Kompatsiaris. Detection of advanced web bots by com-
bining web logs with mouse behavioural biometrics. Digital threats: research and
practice, 2(3):1–26, 2021.

[Imp24] Imperva. Bad Bot Report | Evasive Bots Drive Online Fraud | Imperva,
2024. Accessed: 2024-11-18. URL: https://www.imperva.com/resources/
resource-library/reports/bad-bot-report/.

[Inca] Apple Inc. Replace CAPTCHAs with Private Access Tokens - WWDC22 -
Videos. Accessed: 2022-11-21. URL: https://developer.apple.com/videos/
play/wwdc2022/10077/.

[Incb] ProtWare Inc. Encrypt HTML source, Javascript, ASP. Protect links & images.
HTML encryption. Accessed: 2024-07-01. URL: https://www.protware.com/.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In 32nd International
Conference on Machine Learning, ICML 2015, volume 1, 2015.

[JKV19] H. Jonker, B. Krumnow, and G. Vlot. Fingerprint surface-based detection of
web bot detectors. In European Symposium on Research in Computer Security,
pages 586–605. Springer, 2019.

[Jsc] Jscrambler. Webpage Integrity: Manage Third-party Risks. Accessed: 2024-07-01.
URL: https://jscrambler.com/webpage-integrity.

[Kac] Timofey Kachalov. javascript-obfuscator/javascript-obfuscator: A powerful
obfuscator for JavaScript and Node.js. Accessed: 2024-07-01. URL: https:
//github.com/javascript-obfuscator/javascript-obfuscator.

[KJK22] Mohinder Kumar, MK Jindal, and Munish Kumar. A systematic survey on
captcha recognition: types, creation and breaking techniques. Archives of
Computational Methods in Engineering, 29(2):1107–1136, 2022.

[Koc23] Albert Koczy. Mitmproxy2swagger, January 2023. Accessed: 2023-01-13. URL:
https://github.com/alufers/mitmproxy2swagger.

[LARN21] X. Li, B. A. Azad, A. Rahmati, and N. Nikiforakis. Good bot, bad bot: Char-
acterizing automated browsing activity. In IEEE Symposium on Security and
Privacy (SP), pages 1589–1605. IEEE, 2021.

[LCL+04] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul MB Vitányi. The similarity metric.
IEEE transactions on Information Theory, 50(12):3250–3264, 2004.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. Acm sigplan
notices, 40(6):190–200, 2005.

83

https://www.imperva.com/resources/resource-library/reports/bad-bot-report/
https://www.imperva.com/resources/resource-library/reports/bad-bot-report/
https://developer.apple.com/videos/play/wwdc2022/10077/
https://developer.apple.com/videos/play/wwdc2022/10077/
https://www.protware.com/
https://jscrambler.com/webpage-integrity
https://github.com/javascript-obfuscator/javascript-obfuscator
https://github.com/javascript-obfuscator/javascript-obfuscator
https://github.com/alufers/mitmproxy2swagger

[Liu18] Wei Liu. Introducing recaptcha v3: the new way to stop bots, 2018. Accessed:
2021-05-20. URL: https://developers.google.com/search/blog/2018/10/
introducing-recaptcha-v3-new-way-to.

[LJLW13] Min Liu, Chunfu Jia, Lu Liu, and Zhi Wang. Extracting sent message formats
from executables using backward slicing. In 2013 Fourth International Conference
on Emerging Intelligent Data and Web Technologies, pages 377–384. IEEE, 2013.

[LWK+16] Eunjo Lee, Jiyoung Woo, Hyoungshick Kim, Aziz Mohaisen, and Huy Kang Kim.
You are a game bot!: Uncovering game bots in mmorpgs via self-similarity in
the wild. In Ndss, pages 1–15, 2016.

[Mac18] Intuition Machines. Stop more bots. start protecting user privacy., 2018. Accessed:
2021-05-20. URL: https://www.hcaptcha.com/.

[Meu21] Thibault Meunier. Humanity wastes about 500 years per day
on CAPTCHAs. It’s time to end this madness, May 2021.
Accessed: 2022-11-21. URL: http://blog.cloudflare.com/

introducing-cryptographic-attestation-of-personhood/.

[MMLDG12] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian
Goldberg. Skypemorph: Protocol obfuscation for tor bridges. In Proceedings
of the 2012 ACM conference on Computer and communications security, pages
97–108, 2012.

[Mob] Genesis Mobile. JavaScript Obfuscator - Protect your JavaScript Code. Accessed:
2024-07-01. URL: https://jasob.com/.

[NSC15] John Narayan, Sandeep K Shukla, and T Charles Clancy. A survey of automatic
protocol reverse engineering tools. CSUR, 48(3):1–26, 2015.

[Ode16] Augustus Odena. Semi-supervised learning with generative adversarial networks.
arXiv preprint arXiv:1606.01583, 2016.

[OMAAK20] Mariam Orabi, Djedjiga Mouheb, Zaher Al Aghbari, and Ibrahim Kamel. De-
tection of bots in social media: a systematic review. Information Processing &
Management, 57(4):102250, 2020.

[Par19] Debra Parma. At ticketmaster, scalpers score and fans come last. JL & Com.,
38:463, 2019.

[Phi] Phil Wang. Denoising Diffusion Probabilistic Model, in Pytorch.
Accessed: 2025-03-25. URL: https://github.com/lucidrains/

denoising-diffusion-pytorch.

[R+10] S. Rose et al. Automatic keyword extraction from individual documents, volume 1.
Text mining: applications and theory, 2010.

[RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, 1986.

84

https://developers.google.com/search/blog/2018/10/introducing-recaptcha-v3-new-way-to
https://developers.google.com/search/blog/2018/10/introducing-recaptcha-v3-new-way-to
https://www.hcaptcha.com/
http://blog.cloudflare.com/introducing-cryptographic-attestation-of-personhood/
http://blog.cloudflare.com/introducing-cryptographic-attestation-of-personhood/
https://jasob.com/
https://github.com/lucidrains/denoising-diffusion-pytorch
https://github.com/lucidrains/denoising-diffusion-pytorch

[S+21] G. Suchacka et al. Efficient on-the-fly web bot detection. Knowledge-Based
Systems, 223:107074, 2021.

[SCG12] C. Shen, Z. Cai, and X. Guan. Continuous authentication for mouse dynamics: A
pattern-growth approach. In IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2012), pages 1–12, 2012. doi:10.1109/DSN.2012.
6263955.

[SCRM21] Grażyna Suchacka, Alberto Cabri, Stefano Rovetta, and Francesco Masulli.
Efficient on-the-fly web bot detection. Knowledge-Based Systems, 223:107074,
2021.

[See20a] August See. Charles-Extractor, July 2020. Accessed: 2023-01-13. URL: https:
//github.com/8mas/Charles-Extractor.

[See20b] August See. Jodelapi, 2020. Accessed: 2021-05-20. URL: https://github.com/
see-aestas/JodelApi.

[SGZ+16] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. Improved techniques for training gans. Advances in neural
information processing systems, 29, 2016.

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15, 2014.

[Sof21] VMProtect Software. VMProtect Software Protection, 2021. Accessed: 2022-12-
07. URL: https://vmpsoft.com/.

[SPK16] Suphannee Sivakorn, Iasonas Polakis, and Angelos D Keromytis. I am robot:(deep)
learning to break semantic image captchas. In 2016 IEEE EuroS&P, pages 388–
403. IEEE, 2016.

[T+20] T. Tanaka et al. Bot detection model using user agent and user behavior for web
log analysis. Procedia Computer Science, 176:1621–1625, 2020.

[Tec22] Oreans Technologies. Oreans Technologies : Software Security Defined., 2022.
Accessed 2021-12-07. URL: https://www.oreans.com/Themida.php.

[TIF19] Mahin Talukder, Syed Islam, and Paolo Falcarin. Analysis of obfuscated code
with program slicing. In 2019 International Conference on Cyber Security and
Protection of Digital Services (Cyber Security), pages 1–7. IEEE, 2019.

[VYG13] Shardul Vikram, Chao Yang, and Guofei Gu. Nomad: Towards non-intrusive
moving-target defense against web bots. In CNS, pages 55–63. IEEE, 2013.

[Wal45] A. Wald. Sequential tests of statistical hypotheses. Ann. Math. Statist., 16(2):117–
186, 1945.

85

https://doi.org/10.1109/DSN.2012.6263955
https://doi.org/10.1109/DSN.2012.6263955
https://github.com/8mas/Charles-Extractor
https://github.com/8mas/Charles-Extractor
https://github.com/see-aestas/JodelApi
https://github.com/see-aestas/JodelApi
https://vmpsoft.com/
https://www.oreans.com/Themida.php

[WJC+09] Zhi Wang, Xuxian Jiang, Weidong Cui, Xinyuan Wang, and Mike Grace. Re-
format: Automatic reverse engineering of encrypted messages. In European
Symposium on Research in Computer Security, pages 200–215. Springer, 2009.

[WMK+22] Tara Whalen, Thibault Meunier, Mrudula Kodali, Alex Davidson, Marwan
Fayed, Armando Faz-Hernández, Watson Ladd, Deepak Maram, Nick Sullivan,
Benedikt Christoph Wolters, et al. Let the right one in: Attestation as a usable
{CAPTCHA} alternative. In Eighteenth Symposium on Usable Privacy and
Security (SOUPS 2022), pages 599–612, 2022.

[WZC19] Ang Wei, Yuxuan Zhao, and Zhongmin Cai. A deep learning approach to web
bot detection using mouse behavioral biometrics. In Biometric Recognition:
14th Chinese Conference, CCBR 2019, Zhuzhou, China, October 12–13, 2019,
Proceedings 14, pages 388–395. Springer, 2019.

[WZX+16] Weihang Wang, Yunhui Zheng, Xinyu Xing, Yonghwi Kwon, Xiangyu Zhang,
and Patrick Eugster. Webranz: web page randomization for better advertisement
delivery and web-bot prevention. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 205–216,
2016.

[XZZ12] Wei Xu, Fangfang Zhang, and Sencun Zhu. The power of obfuscation techniques
in malicious javascript code: A measurement study. In 2012 7th International
Conference on Malicious and Unwanted Software, pages 9–16. IEEE, 2012.

[Yun24] Jason Yung. json2d/obscure, June 2024. Accessed: 2024-07-01. URL: https:
//github.com/json2d/obscure.

[Z+15] Y. Zhang et al. Detecting malicious activities with user-agent-based profiles.
International Journal of Network Management, 25(5):306–319, 2015.

[ZCNC18] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end
deep learning architecture for graph classification. In Proceedings of the AAAI
conference on artificial intelligence, 2018.

86

https://github.com/json2d/obscure
https://github.com/json2d/obscure

Appendices

87

Copyright Notice
This appendix presents publications as originally published and reprinted with permission
from the corresponding publishers. The copyright of the original publications is held by the
respective copyright holders; see the following copyright notices.

• ©2023 Springer. Reprinted, with permission, from Richard August See, T. Wingarz, M
Radloff, and M.Fischer, Detecting Web Bots via Mouse Dynamics and Communication
Metadata, IFIP International Conference on ICT Systems Security and Privacy Protection
(IFIP SEC), 2023.

• ©2024 Springer. Reprinted, with permission, from Richard August See, A. Westphal, C.
Weber, and M.Fischer, Detecting Web Bots via Keystroke Dynamics, IFIP International
Conference on ICT Systems Security and Privacy Protection (IFIP SEC), 2024.

• ©2024 Springer. Reprinted, with permission, from Jan Kadel, Richard August See, R.
Sinha and M. Fischer, BOTracle: A Framework for Discriminating Bots and Humans,
European Symposium on Research in Computer Security, SecAI Workshop, 2024.

• ©2023 ACM. Reprinted, with permission, from Richard August See, M. Gehring, M.
Fischer and S.Karuppayah, Binary Sight-Seeing: Accelerating Reverse Engineering via
Point-of-Interest-Beacons, Annual Computer Security Applications Conference (ACSAC),
2023.

• ©2022 Springer. Reprinted, with permission, from Richard August See, L. Fritz and
M. Fischer, Polymorphic Protocols at the Example of Mitigating Web Bots, European
Symposium on Research in Computer Security (ESORICS), 2022.

• ©2024 ACM. Reprinted, with permission, from Richard August See, L. Fritz and
M. Fischer, Encrypted Endpoints: Defending Online Services from Illegitimate Bot
Automation, International Symposium on Research in Attacks, Intrusions and Defenses
(RAID), 2024.

88

Appendix A

Detecting Web Bots via Mouse Dynamics
and Communication Metadata

Abstract

The illegitimate automated usage of Internet services by web robots (bots) is an ongoing
problem. While bots increase the cost of operations for service providers and can affect user
satisfaction, e.g., in social media and games, the main problem is that some services should
only be usable by humans, but their automated usage cannot be prevented easily. Currently,
services are protected against bots using visual CAPTCHA systems, the de facto standard.
However, they are often annoying for users to solve. Typically, CATPCHAs are combined with
heuristics and machine-learning approaches to reduce the number of times a human needs to
solve them. These approaches use request data like IP and cookies but also biometric data like
mouse movements. Such detection systems are primarily closed source, do not provide any
performance evaluation, or have unrealistic assumptions, e.g., that sophisticated bots only move
the mouse in straight lines. Therefore we conducted an expeiment to evaluate the usefulness
of detection techniques based on mouse dynamics, request metadata, and a combination of
both. Our findings indicate that biometric data in the form of mouse dynamics performs better
than request data for bot detection. Further, training a mouse dynamic classifier benefits from
external and not only website-specific mouse dynamics. Our classifier, which differentiates
between artificial and human mouse movements, achieves similar results to related work under
stricter and more realistic conditions.

Reference

August See, T. Wingarz, M. Radloff, M. Fischer. Detecting Web Bots

via Mouse Dynamics and Communication Metadata. IFIP International

Conference on ICT Systems Security and Privacy Protection (IFIP

SEC), 2023. ©2023 Springer.

Contribution

The core concept, methodological design, and evaluation strategy of this paper originate from
the author of this dissertation. The third author implemented and conducted the experiments,
while the second and fourth authors contributed to the refinement of the final publication.

89

Detecting Web Bots via Mouse Dynamics and
Communication Metadata

August See, Tatjana Wingarz, Matz Radloff, and Mathias Fischer

Universität Hamburg, Hamburg, Germany
{richard.august.see,tatjana.wingarz,mathias.fischer}@uni-hamburg.de

matzradloff@gmail.com

Abstract. The illegitimate automated usage of Internet services by web
robots (bots) is an ongoing problem. While bots increase the cost of oper-
ations for service providers and can affect user satisfaction, e.g., in social
media and games, the main problem is that some services should only be
usable by humans, but their automated usage cannot be prevented easily.
Currently, services are protected against bots using visual CAPTCHA
systems, the de facto standard. However, they are often annoying for
users to solve. Typically, CATPCHAs are combined with heuristics and
machine-learning approaches to reduce the number of times a human
needs to solve them. These approaches use request data like IP and
cookies but also biometric data like mouse movements. Such detection
systems are primarily closed source, do not provide any performance
evaluation, or have unrealistic assumptions, e.g., that sophisticated bots
only move the mouse in straight lines. Therefore we conducted an exper-
iment to evaluate the usefulness of detection techniques based on mouse
dynamics, request metadata, and a combination of both. Our findings
indicate that biometric data in the form of mouse dynamics performs
better than request data for bot detection. Further, training a mouse
dynamic classifier benefits from external and not only website-specific
mouse dynamics. Our classifier, which differentiates between artificial
and human mouse movements, achieves similar results to related work
under stricter and more realistic conditions.

Keywords: web bots, mouse dynamics, captchas

1 Introduction

Programs that can automatically request endpoints increase operating costs and
can frustrate users. For example, web bots made popular items such as graphics
cards and new game consoles unavailable for years because they were purchasing
them automatically. Commercial countermeasures, such as IDS solutions, prove
ineffective against web bots because these bots operate within the constraints of
the targeted e-commerce website’s existing APIs or user interface. For instance,
web bots may mimic human behavior by navigating to a product and clicking on
the ”buy now” button. The problem is that the endpoints are used as intended.

2 See. et al.

A defense that scans, e.g., for malicious payload in requests is pointless here. One
solution is CAPTCHAs, which give users tasks that are difficult for a computer
but easy for a human to solve. However, this introduces user friction that can
cost a company customers and thus revenue [9]. Modern CAPTCHAs are used
together with risk assessment methods. Depending on the risk score, a certain
hard CAPTCHA or no CAPTCHA at all is presented [15]. While we see this
as a step in the right direction, the problem remains that such solutions are
not privacy friendly as request data and biometric features are passed on to
third parties. Commercial CAPTCHA providers, understandably, do not disclose
which features they use for detection and which are most beneficial to identify
bots.

Existing approaches are subject to various limitations, such as being closed-
source, considering only request data or mouse dynamics, or having shallow
assumptions in their evaluation. For instance, some approaches assume that
advanced web bots only produce mouse movements in straight lines rather than
curved human-like movements. Moreover, these approaches fail to address other
real-world problems, such as whether website-specific mouse data or any mouse
data can be used for bot detection. We address this in our paper.

Our main contribution is evaluating the usefulness of mouse dynamics for
detecting bots in realistic settings. In more detail:

– We evaluate the performance of classifiers for bot detection based on mouse
dynamics and compare them to the performance of using request data. We do
this on a consistent dataset that contains mouse- and request data belonging
to the same user. Our evaluation includes advanced bots that mimic human
mouse movements utilizing third-party software.

– We show that bot detection based on mouse dynamics can benefit from not
being solely trained on website-specific mouse movements, indicating that
website operators do not need to train on the mouse movements of their
users exclusively but can leverage third-party datasets.

– We investigate the relationship between the number of data points and the
performance of bot detection, thus allowing us to determine the amount of
data required for good performance and, consequently, the speed at which a
classification can take place.

The rest of this paper is structured as follows: Section 2 discusses web bot
detection using request data and mouse dynamics. Section 3 explains how and
which features we used to train classifiers from related work. Section 4 describes
our evaluation, how we created our dataset, and the limitations of our work.
Finally, section 5 concludes the paper.

2 Related Work

We divide the related work into approaches that detect bots based on request
data and ones detect bots based on mouse data. Note that there are also ap-
proaches that recognize bots based on other biometric data [5,6], or approaches
that are based on trusted platforms [8].

Detecting Web Bots via Mouse Dynamics and Communication Metadata 3

Modern CAPTCHA systems like hCaptcha and reCAPTCHA [15, 16] are
already using biometric data like mouse movements in addition to request data.
However, they do not disclose if the detection of bots is website specific and
how well which factor performs. This is most likely due to protecting business
secrets and denying bot creators information about where improvements need
to be made. Google itself doesn’t even specify what data they use exactly for
reCAPTCHA. However, there is related work that tries to break this down [19].

2.1 Bot Detection via Request Data

A simple way for bot detection is to block IPs that are known for spamming
or cyber attacks, for example, using abuseipdb1. Furthermore, there are many
approaches for the detection of bots based on request data [11,12,14–16,20].

Iliou et al. [11] present a comparison of different machine learning algorithms
and combinations of various attributes used in previous literature. Their ap-
proach does not rely on cross-website tracking or using external resources like
IP databases. This makes their approach simple to reimplement and validate.
Their methods were tested on a year’s worth of HTTP log data from MK-Lab’s
public web server2. The data included IP addresses, the request method, the re-
quest path, referrers, user agent strings, and timestamps. The attributes mainly
include request metadata that would be suitable for a privacy-friendly bot de-
tection system, for example, the percentage of image requests or the number
of total bytes per session. The authors split the bot data in their dataset into
simple and advanced bots, which are determined by whether the requests have
a browser agent name and, in case they do, whether the IPs have shown mali-
cious activity before. Their results show that different sets of attributes perform
best depending on the classification algorithm used. The best machine learn-
ing methods are Random Forest and Multilayer Perceptron, although the paper
concludes that using an ensemble classifier that averages over all used methods
would be more stable. Additionally, simple web bots can be detected very easily,
while detecting advanced bots is significantly harder, with areas under the ROC
curve of 1.00 and 0.64, respectively. Especially in false positive intolerant use
cases, the performance of detecting advanced bots is too poor to be used in the
real world. The authors conclude that future work would need to incorporate
more advanced features that bots cannot easily simulate.

2.2 Bot Detection via Mouse Dynamics

There is a lot of related work in the area of authentication using biometric data
using mouse dynamics [13,17,18].

The work by Shen et al. [18] shows that it is possible to use mouse and
trackpad actions to verify the authenticity of users. For this purpose, they group

1 https://www.abuseipdb.com/
2 Multimedia Knowledge and Social Media Analytics Laboratory, https://mklab.

iti.gr/

4 See. et al.

mouse events such as single-click, double-click, or drag-and-drop. This data is
combined with information about the current application type, e.g., web brows-
ing or gaming, the screen area where the mouse movement occurred, the win-
dow position, and the timestamp. The data is transformed into a feature vector
containing data such as the time it took a user to click a button, the speed
of movement, or the acceleration. Finally, three different one-class classifiers
(Nearest Neighbor, Single-Layer Neural Network, Support Vector Machine) are
compared, with the Support Vector Machine method performing best with false
positive and false negative rates of 0.37% and 1.12%, respectively. This was
achieved only when 3000 operations and 30 minutes of processing time for suc-
cessful authentication are considered. With a more feasible authentication time
of one minute, the values for FPR and FNR increase to 44.65% and 34.78%,
respectively. This drastically limits the applicability of this approach, which the
authors also note.

Acien et al. [1] show the feasibility of using biometric features for bot de-
tection. They use both function-based and GAN-based mouse trajectory syn-
thesis methods to generate training and evaluation data. Six different classifier
types (Support Vector Machine, K-Nearest Neighbor, Random Forest, Multi-
Layer Perceptron, and 2 Recurrent Neural Networks with Long Short-Term
Memory and Gated Recurrent Units, respectively) are compared to each other,
with Random Forest performing the best. Combined, their method can distin-
guish between humans and bots with up to 98.7% accuracy with only one mouse
trajectory as input. They conclude that, compared to state-of-the-art works, the
usage of mouse data has unexploited potential in the context of bot detection.
While there are other approaches for bot detection based on mouse dynam-
ics [5, 21], they are all quite similar to each other. There are even approaches
and projects that try to synthesize human mouse movements [1, 2].

2.3 Bot Detection via Request Data and Mouse Dynamics

Iliou et al. [10] present a method of using request data together with mouse
data for bot detection, building on their previous work on bot detection using
requests [11]. When classifying mouse dynamics, they do not build on existing
work but create a new model that performs the classification using a convolu-
tional neural network (CNN) on the raw mouse positions. As they do not have a
labeled bot dataset, they create bots themselves. While the general idea of their
approach has merit, they perform their evaluation with advanced bots that only
move the mouse in straight lines. Figure 1 shows an example of the advanced
bot behavior used for evaluation in their paper.

Fig. 1. Excerpt of the ad-
vanced mouse movements of
[10] (Page 18, Table 7).

The mouse movements created by such a bot
are not realistic enough to challenge human be-
havior and are very easy to classify as a bot by,
e.g., looking at the straightness/curvature or an-
gular velocity of the purported mouse movements.
While our approach is similar to the one presented
by Iliou et al., we utilize more advanced bots for

Detecting Web Bots via Mouse Dynamics and Communication Metadata 5

our evaluation that do not only move in straight
lines and thus mimic human-like behavior more
closely. We describe our advanced bot setup in
Section 3.

In summary, there is already relevant research on bot detection using bio-
metric features, including mouse dynamics, but most of it is closed-source. Most
publicly available approaches tackle the problem of bot detection independent
of the website being defended, i.e., the bot detection systems are trained on a
dataset that does not originate from the website being defended. Additionally,
the majority of approaches consider only request data or mouse data for detec-
tion, while the ones combining both techniques only evaluate their approaches
with easily detectable bots.

3 Bot Detection using Requests and Mouse Dynamics

Our core idea is to improve the detection of web bots by using mouse dynamics
in addition to request data. While request (meta)data like user-agent or screen
size can easily be faked, mouse movements are continuous and contain many
features, making them significantly harder to replicate. Thus an attacker would
need valid, human-like mouse movements for each action. An example of several
mouse movements is given in Figure 2, which shows three different recordings
of mouse movements, two from using a chat app (one activity produced by a
human, the other by the advanced bot used in our evaluation) and one from
using a rhythm game3 where the mouse is used heavily. This image depicts that
the mouse dynamics are different per application and that advanced bots exist
which do not exclusively move in straight lines.

To be consistent with prior work, we use machine learning models and request
features proposed by [11] for bot detection on request data. For bot detection on
mouse dynamics, we use machine learning models and mouse features proposed
by [1]. Both papers are described in Section 2.

3.1 Request Data

Iliou et al. [11] ranked the best-performing metrics for simple and advanced bots
per classification algorithm. However, some attributes used in their analysis are
not suitable for this paper. For example, the authors include a Boolean indicating
whether a request has a known search engine in their ”Referer” header. Because
we asked participants to visit the websites directly, this attribute is omitted. We
use the following selection of metrics from Iliou et al.’s work [11] for our analysis:

1. The percentage of HTTP requests that led to an HTTP 4xx code response.
2. The percentage of HTTP requests that requested a CSS file.
3. The percentage of HTTP requests that requested a JavaScript file.

3 https://osu.ppy.sh/home
5 https://github.com/Xetera/ghost-cursor

6 See. et al.

0 500 1000 1500 2000 2500
Screen Width (in pixel)

0

200

400

600

800

1000

1200

1400

Sc
re

en
 H

ei
gh

t (
in

 p
ixe

l)
Browser
Bot (Browser)
Rythm Game (Osu!)

Fig. 2. Mouse dynamics example. Browser activity in a chat app on the left. In the
middle movements of ghost-cursor5creating a path between four given points. On the
right a human playing a rythm game (Osu!).

4. The percentage of HTTP-requested URLs that contain the previously re-
quested URL as a subpart.

5. The total time between the first and the last HTTP request of the session.
6. Standard deviation of requested pages’ depth (number of ”/” in URL path).
7. Mean and Standard Deviation of times between successive requests.

3.2 Mouse Features

Mouse dynamic features consist of the relative x- and y-coordinates as well as
a time value for each mouse event (e.g., left-click). Single mouse data points
are grouped based on the following rules: They either end with a click, have a
maximum of 50 data points, or span a maximum of two seconds. The features
are calculated for each group. As a basis for all derived values, the time, x and
y coordinates are linearly interpolated such that vectors with uniformly spaced
values x′

t and y′t every 20ms are generated. All indices start at zero.
In the following, we describe the additional used features engineered similarly

to Gamboa et al. [7] and [4]. We include the path length from the origin, angle
of the path tangent, horizontal, vertical, and overall velocity, acceleration, jerk,
and angular velocity. Additionally, the type of action, length of the movement,
and time needed to complete the action will be used.

The path length from the origin s′t, i.e., the accumulated sum of previous
segment lengths:

s′t =
t−1∑

k=0

√
(x′

k+1 − x′
k)

2 + (y′k+1 − y′k)
2

Detecting Web Bots via Mouse Dynamics and Communication Metadata 7

The angle of the path tangent with the x-axis θt is the arctangent (atan2 is
used, which returns only values −π < θ < π) of the segment at time t > 0. At
t = 0 an angle of 0 is assumed.

θt = atan2((y′t+1 − y′t), (x
′
t+1 − x′

t))

The temporal features horizontal (vx), vertical (vy), tangential (v) and angu-
lar velocity (ω) as well as tangential acceleration (v̇) and jerk (v̈) are computed
as follows:

vx =
δx

δt
; vy =

δy

δt
; v =

√
v2x + v2y;

ω =
δθ

δt
; v̇ =

δv

δt
; v̈ =

δv̇

δt

For each of the 9 vectors (x′
t, y

′
t, s

′
t, vx, vy, v, ω, v̇, v̈) the mean, standard deviation,

minimum, maximum and value range (max-min) is calculated and yields the first
45 feature values.

Additionally, the time ttotal and length sn−1 of the stroke (i.e. group of n
data points), its straightness and jitter are computed. The time is the difference
between the first and last data points’ timestamps and the length can is the ac-
cumulated sum of segment lengths but using the raw instead of the interpolated
data.

ttotal = tn−1 − t0

sn−1 =
n−1∑

k=0

√
(x′

k+1 − x′
k)

2 + (y′k+1 − y′k)
2

Analogous to Gamboa et.al.’s definition [7], the straightness is defined as the
ratio of the Euclidian distance between the first and last points of each group,
and the total distance:

straightness =

√
(x0 − xn−1)2 + (y0 − yn−1)2

sn−1

The jitter is the ratio between the original and smoothed path lengths:

jitter =
s′n′−1

sn−1

In total, these 50 values make up the input vector that is computed for each
mouse action group. We base our detection on whether a mouse movement is
human on the features described above.

4 Evaluation

In this section, we summarize the evaluation results of our approach. We em-
ployed the best classifiers that were identified in related work. We utilized a
random forest classifier [11] to analyze the request data, and for the mouse data,

8 See. et al.

we also employed a random forest classifier [1]. One of the advantages of using
a random forest classifier for the mouse data is its explainability, which helps
in understanding how the model arrived at its predictions. We used the dataset
described in Section 4.1 for our training and evaluation. The features used for
the classifiers are described in Section 3.1 and Section 3.2. Further, we answer
the following research questions:

RQ1: What is the performance of the detection depending on the available data,
i.e., the number of requests and mouse movements?

RQ2: How does the performance of the machine learning model change when
trained additionally with mouse dynamics from an external dataset, i.e.,
unrelated to mouse dynamics on our websites?

4.1 Data Collection and Augmentation

To train and evaluate bot detection approaches, we need a dataset of request
data together with related mouse dynamics, i.e., the combination of requests and
matching mouse movements of a user. However, such a dataset does not exist
to our knowledge [10]. While some datasets on mouse dynamics exist [3], they
are obtained by users that repeatedly perform specific mouse-intensive tasks.
Since such a type of mouse dynamics differs from the mouse dynamics of users
visiting a website, it could affect a classifier’s performance. We use this dataset
in a second step to explore whether this is true.

Since no suitable dataset combining both features is publicly available [10], we
need to build our dataset. For this, we invited users to visit and browse our two
websites that log each request and every mouse movement. We announced our
experiment with a link to our websites via a mailing list and had 322 participants
visiting the first and 163 participants visiting the second website mentioned in
the mail. We excluded mobile users, as well as users with no recorded mouse
movements. Figure 3 shows the distribution of all users on both websites and
their generated data points.

To integrate bot data we had to write our own. For this we use puppeteer.
The behavior looks like this:

1. Accepting the initial prompt dialogue to start the experiment
2. Visiting the top-level pages {About, Blog, Contact/Imprint, Login, Register}
3. Visiting 10 randomly selected single blog pages
4. Visiting 100 randomly selected pages
5. Registering an account

All actions are configured to wait for the target element to be visible and
clickable, scrolling it into view, if not. A random delay between 0 and 2 seconds
is applied before each action. The behavior should reflect a scraper that does
not scrape at full speed and in a specific order, e.g., width search.

Further, we distinguish between a basic mouse bot and an advanced mouse
bot. The basic mouse bot moves the mouse on a direct path and at a constant
speed to the target (links, blog posts, ...). The advanced mouse bot does not

Detecting Web Bots via Mouse Dynamics and Communication Metadata 9

Fig. 3. Distribution of users in terms of data point count

do this but uses bezier curves implemented in the popular javascript library
ghost-cursor6, which promises human-like mouse movements. An example of
such movements created by ghost-cursor is depicted in Figure 2. We sample as
many bot users as human users in the experiment.

4.2 Results

This section presents our results. Limitations are described in Section 4.3.

RQ1 - Bot Detection Performance The performance of our model for the
detection of bots depends on the data available. With more data available, the
request data model’s evaluation metrics show increasingly good performance.
Table 1 shows the detailed results. Note that there are many cases where fewer
data points than the limit are available (cf. Figure 3). The mouse data model gen-
erally performs better the more data is available. Table 2 lists the performance
for different amounts of data points per user. A big advantage of this approach
is that more data points can potentially be acquired in a shorter amount of
time compared to request data. For example, when sampling at 30 events per
second, as this work’s implementation does, it only takes on average 1.66s (50
samples) to capture the number of data points needed to surpass the request
data model’s performance. When, for example, considering a potential applica-
tion for a CAPTCHA, this time does not represent a significant disruption of
most user interactions, e.g., filling in a registration form.

Parameter Tuning We used combinations of the following parameters to deter-
mine the best random forest parameters for bot detection empirically. Note that
the number of bots and users in the dataset is the same, i.e., the same number
of sessions. For mouse movements, we use the advanced bot that mimics human
mouse movements.
6 https://github.com/Xetera/ghost-cursor

10 See. et al.

Table 1. Request data model performance with varying amounts of data points per
user

Data Points / User Acc Precision Recall AUC Time

200 0.980 0.980 0.980 0.982 0.209
100 0.970 0.961 0.980 0.985 0.209

No limit 0.960 0.960 0.960 0.972 0.215
50 0.950 0.941 0.960 0.976 0.208
20 0.910 0.918 0.900 0.975 0.221
5 0.900 0.885 0.920 0.945 0.220

10 0.890 0.842 0.960 0.956 0.220
4 0.880 0.913 0.840 0.922 0.211

Table 2. Mouse data model performance with varying amounts of data points per user
(Advanced Mouse Bot)

Data Points / User Acc Precision Recall AUC Time

No limit 0.966 0.964 0.968 0.993 0.449
50 0.933 0.943 0.922 0.979 0.124

200 0.930 0.951 0.906 0.979 0.189
100 0.920 0.942 0.895 0.975 0.149
20 0.855 0.846 0.868 0.949 0.114
10 0.850 0.862 0.833 0.903 0.120
5 0.846 0.909 0.769 0.916 0.099
4 0.826 0.895 0.739 0.879 0.098

1. Number of estimators (10, 50, 100, 150, 200, 1000)
2. Maximum number of features (None, log2, sqrt)
3. Maximum tree depth (None, 1, 2, 3, 4, 6, 7)

Tables 3 and 4 show the 10 best-performing combinations for mouse and
request data. The data is sorted by accuracy. The additional scores Precision,
Recall, AUC, and training time are computed as well. Their values of the top-
performing results lie close together except for training time. The different values
for the number of estimators and the maximum number of features for split con-
sideration perform very similarly. For request data, the values for the following
experiments were chosen to be 100 and None, respectively, as their result had
the same accuracy and AUC as the top result. Analogously for the mouse data
result, 200 and sqrt were chosen. All results have in common that no restriction
to the decision trees’ maximum depth is applied, which is also the default value
of scikit-learn’s implementation. This is expected as the tree depth is directly
correlated with the ability to classify multi-dimensional input data.

Basic vs. Advanced Mouse Bot The first direct comparison used all available
human mouse data and the generated basic and advanced mouse data for train-

Detecting Web Bots via Mouse Dynamics and Communication Metadata 11

Table 3. Model accuracy for different parameters (request data)

Features Estimators Acc Prec. Recall AUC Time

None 1000 0.910 0.887 0.940 0.973 4.348
log2 200 0.910 0.887 0.940 0.973 0.732
log2 1000 0.910 0.887 0.940 0.975 3.965
None 100 0.910 0.887 0.940 0.973 0.486
sqrt 1000 0.910 0.887 0.940 0.972 3.912
log2 100 0.910 0.887 0.940 0.971 0.389
log2 150 0.910 0.887 0.940 0.972 0.694
None 50 0.900 0.870 0.940 0.971 0.273
sqrt 200 0.900 0.870 0.940 0.972 0.727
None 150 0.900 0.870 0.940 0.972 0.703

Table 4. Model accuracy for different parameters (mouse data)

Features Estimators Acc Prec. Recall AUC Time

sqrt 150 0.967 0.964 0.969 0.994 11.305
log2 1000 0.966 0.962 0.970 0.993 70.796
sqrt 200 0.966 0.962 0.970 0.994 5.899
sqrt 50 0.966 0.964 0.968 0.993 9.280
sqrt 100 0.966 0.962 0.969 0.994 9.815
sqrt 1000 0.966 0.960 0.971 0.994 82.889
log2 200 0.964 0.963 0.965 0.993 20.381
log2 150 0.962 0.963 0.960 0.993 5.950
None 150 0.961 0.954 0.969 0.991 91.586
None 200 0.961 0.953 0.969 0.991 110.588

ing and testing datasets. Table 5 shows that the model performs better in every
aspect and can classify inputs more reliably when using data generated only by
the basic mouse bot with linear movements. This is expected as the bots’ linear
movements are uniquely identifying properties that result in very specific out-
comes for many input features. The model only correctly differentiated between
humans and bots 96.6% of the time but still has a very high AUC.

Combining Mouse and Request Data for Advanced Bot detection Since we have
a dataset containing request data and a user’s matching mouse dynamics, we
can explore whether a bot detection system that combines both mouse and
request data may improve the performance compared to using them individually.
Therefore, we apply the classifiers mentioned above to the mouse and request
data individually. Afterward, we combine the calculated predictions of the two
classifiers and average them to determine the final result. We split the data

12 See. et al.

Table 5. Simple and Advanced Mouse Data Performance

Scenario Acc Prec Recall AUC Time

Basic mouse 0.995 0.997 0.994 1.000 0.857
Advanced mouse 0.966 0.962 0.970 0.994 1.293

into training and test sets on the user level, i.e., each user instance (human or
bot) is only part of either the training or test set. We use two test ratios for
this experiment, namely 0.1 and 0.2. Table 6 shows the overall performance, the
precision of 1.0 was omitted from the table for readability. The most valuable
difference is that there are no false positive results, while the false negative
rates of 0.272 and 0.327 are higher in contrast to using the classifiers separately.
However, the lower false positive rate and same overall performance favor using
the combined approach as it is a priority not to disrupt the user experience [9].

Table 6. Combined Mouse and Request Data Performance

Test ratio Acc Recall AUC TP FP TN FN

0.1 0.960 0.953 0.976 122 0 22 6
0.2 0.950 0.940 0.970 252 0 49 16

RQ2 - Using Unrelated Mouse Dynamics for Training We used Antal et
al.’s dataset [3] to compare the performance to different real-world data. Inputs
from 21 users were collected during their normal computer activities on one desk-
top and 20 laptop devices. Both mice and touchpads were used. Their raw mouse
movement and interaction data are preprocessed similarly to the experiment’s
data. The whole dataset yielded 1.54M input vectors. The initial assumption
was that these mouse movements do not match the interaction with our website
and the performance decreases when using these mouse movements. However,
when trained additionally with the external dataset, the accuracy increases to
99.71%, and the values for FPR and FNR decrease to 0.55% and 0.15%, respec-
tively. This indicates that the origin of the mouse movements is not important
with regards to their effectiveness.

4.3 Limitations

The strongest limitation of our approach is that we only have access to a syn-
thetic bot dataset, similar to approaches like [10]. Further, we create bots using

Detecting Web Bots via Mouse Dynamics and Communication Metadata 13

fitting third-party projects. However, an external, labeled dataset with bot- and
real-human traffic would be more suitable. The lack of such a realistic dataset
leads to the performance of our model likely being worse outside our lab setting.
Bots may act more camouflaged, e.g., by using recorded mouse movements.
Those bots would probably escape detection. However, this is universal. Bots
that behave completely like humans cannot be distinguished from humans. At
the same time, making a bot behave like a human increases the costs for an
attacker because the bot cannot work at full performance, e.g., scrape all data
available or monitor a website for a long duration.

Further, while we were able to show that mouse data can easily be used
for the detection of bots, another limitation is the focus on mouse data. This
excludes users who interact without a mouse, e.g., only via keyboard, mobile
devices, or screen readers.

5 Conclusion

We demonstrated the value of incorporating both mouse dynamics and request
data when detecting bots. Unlike previous research that relied solely on one of
the two data types or made unrealistic assumptions about the capability of ad-
vanced bots, we used a consistent dataset that included both mouse movements
and request data belonging to the same user. Furthermore, we utilized a third-
party library to create bots that performed human-like mouse movements. We
used classifiers that performed best in literature for these tasks. We achieved
better results with similar performance but in a more realistic setting. Thus
mouse dynamics remain a useful tool for identifying even advanced bots. An
interesting finding was that mouse data from third-party sources can be used
to train the classifiers while achieving similar performance, thus simplifying the
usage process. By leveraging third-party mouse data, operators can minimize
the need to save and train on potentially sensitive user data. In the future, we
intend to test our approach on a larger e-commerce dataset. Further, we want
to consider more combinations of alternative approaches to bot detection, e.g.,
by including typing behavior as well as touch events from smartphones.

References

1. Acien, A., Morales, A., Fierrez, J., Vera-Rodriguez, R.: BeCAPTCHA-Mouse: Syn-
thetic Mouse Trajectories and Improved Bot Detection. arXiv:2005.00890 [cs] (Mar
2021), http://arxiv.org/abs/2005.00890

2. Akrout, I., Feriani, A., Akrout, M.: Hacking google recaptcha v3 using reinforce-
ment learning. arXiv preprint arXiv:1903.01003 (2019)

3. Antal, M., Denes-Fazakas, L.: User verification based on mouse dynamics: a com-
parison of public data sets. In: 2019 IEEE 13th International Symposium on Ap-
plied Computational Intelligence and Informatics. pp. 143–148. IEEE (2019)

4. Antal, M., Egyed-Zsigmond, E.: Intrusion detection using mouse dynamics. IET
Biometrics 8(5), 285–294 (2019)

14 See. et al.

5. Chu, Z., Gianvecchio, S., Wang, H.: Bot or human? a behavior-based online bot
detection system. In: From Database to Cyber Security, pp. 432–449. Springer
(2018)

6. Dee, T., Richardson, I., Tyagi, A.: Continuous transparent mobile device touch-
screen soft keyboard biometric authentication. In: 2019 32nd International Con-
ference on VLSI Design and 2019 18th International Conference on Embedded
Systems (VLSID). pp. 539–540. IEEE (2019)

7. Gamboa, H., Fred, A.: A behavioral biometric system based on
human-computer interaction. Proc SPIE 5404, 381–392 (08 2004).
https://doi.org/10.1117/12.542625

8. Gummadi, R., Balakrishnan, H., Maniatis, P., Ratnasamy, S.: Not-a-bot: Improv-
ing service availability in the face of botnet attacks. In: NSDI. pp. 307–320 (2009)

9. Heath, N.: Expedia on how one extra data field can cost $12m. https://www.
zdnet.com/article/expedia-on-how-one-extra-data-field-can-cost-12m/

(2010), accessed: 2021-10-18
10. Iliou, C., Kostoulas, T., Tsikrika, T., Katos, V., Vrochidis, S., Kompatsiaris, I.:

Detection of advanced web bots by combining web logs with mouse behavioural
biometrics. Digital threats: research and practice 2(3), 1–26 (2021)

11. Iliou, C., Kostoulas, T., Tsikrika, T., Katos, V., Vrochidis, S., Kompatsiaris, Y.:
Towards a framework for detecting advanced web bots. In: Proceedings of the
14th International Conference on Availability, Reliability and Security. ARES ’19,
Association for Computing Machinery, New York, NY, USA (2019)

12. Jonker, H., Krumnow, B., Vlot, G.: Fingerprint surface-based detection of web
bot detectors. In: European Symposium on Research in Computer Security. pp.
586–605. Springer (2019)

13. Jorgensen, Z., Yu, T.: On mouse dynamics as a behavioral biometric for authen-
tication. In: Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security. pp. 476–482 (2011)

14. Li, X., Azad, B.A., Rahmati, A., Nikiforakis, N.: Good bot, bad bot: Characterizing
automated browsing activity. In: 2021 IEEE symposium on security and privacy
(sp). pp. 1589–1605. IEEE (2021)

15. Liu, W.: Introducing recaptcha v3: the new way to stop
bots. https://developers.google.com/search/blog/2018/10/

introducing-recaptcha-v3-new-way-to (2018), accessed: 2021-05-20
16. Machines, I.: Stop more bots. start protecting user privacy. https://www.

hcaptcha.com/ (2018), accessed: 2021-05-20
17. Sayed, B., Traoré, I., Woungang, I., Obaidat, M.S.: Biometric authentication using

mouse gesture dynamics. IEEE systems journal 7(2), 262–274 (2013)
18. Shen, C., Cai, Z., Guan, X.: Continuous authentication for mouse dy-

namics: A pattern-growth approach. In: IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN 2012). pp. 1–12 (2012).
https://doi.org/10.1109/DSN.2012.6263955

19. Sivakorn, S., Polakis, J., Keromytis, A.D.: I’m not a human: Breaking the google
recaptcha. Black Hat 14 (2016)

20. Suchacka, G., Cabri, A., Rovetta, S., Masulli, F.: Efficient on-the-fly web bot de-
tection. Knowledge-Based Systems 223, 107074 (2021)

21. Wei, A., Zhao, Y., Cai, Z.: A deep learning approach to web bot detection using
mouse behavioral biometrics. In: Chinese Conference on Biometric Recognition.
pp. 388–395. Springer (2019)

Appendix B

Detecting Web Bots via Keystroke
Dynamics

Abstract

The increasing presence of malicious web bots within the digital ecosystem has not only escalated
operational costs for web services but also significantly deteriorated user satisfaction, especially
in sectors like online gaming and social media. These bots engage in a range of unauthorized
activities, contributing to a complex threat landscape. The situation is further complicated by
rapid advancements in AI, which not only increase the demand for data, often sourced through
unauthorized web scraping by bots, but also blur the lines between human and computer
interactions. Enhanced image recognition capabilities allow AI to effectively bypass CAPTCHA
systems, and the deployment of large language models provides sophisticated reasoning abilities.
In response, this paper introduces an approach to mitigate these challenges by leveraging
keystroke dynamics as a means for bot detection. Classifiers that differentiate between humans
and bots based on keystroke patterns necessitate the use of synthetically generated keystroke
data for training purposes. Such data is typically generated using generative AI models;
however, it often lacks contextual accuracy, leading to easily distinguishable keystrokes and
consequently affecting the classifiers’ efficacy. To address this issue, our method models
keystroke dynamics in a key-dependent fashion, employing a state-of-the-art diffusion model
to produce data of superior quality. We further illustrate that classifiers, particularly those
based on Transformer and LSTM architectures, exhibit enhanced performance when retrained
with this refined data. We furthermore assess the feasibility of bot detection by exclusively
analyzing keystroke timings without including key identity, which we find feasible with only a
marginal performance decrease.

Reference

August See, A, Westphal, C. Weber, M. Fischer. Detecting Web Bots

via Keystroke Dynamics. IFIP International Conference on ICT Sys-

tems Security and Privacy Protection (IFIP SEC), 2024. ©2024

Springer.

104

Contribution

The core idea, methodological design, and evaluation strategy for this publication originate from
the author of this dissertation. The second author implemented the models and experiments,
while the third and fourth coauthors contributed to refining the final paper.

Detecting Web Bots via Keystroke Dynamics

August See, Adrian Westphal, Cornelius Weber, and Mathias Fischer

Universität Hamburg, Germany
{richard.august.see,adrian.westphal

cornelius.weber,mathias.fischer}@uni-hamburg.de

Abstract. The increasing presence of malicious web bots within the
digital ecosystem has not only escalated operational costs for web ser-
vices but also significantly deteriorated user satisfaction, especially in
sectors like online gaming and social media. These bots engage in a
range of unauthorized activities, contributing to a complex threat land-
scape. The situation is further complicated by rapid advancements in
AI, which not only increase the demand for data, often sourced through
unauthorized web scraping by bots, but also blur the lines between hu-
man and computer interactions. Enhanced image recognition capabilities
allow AI to effectively bypass CAPTCHA systems, and the deployment
of large language models provides sophisticated reasoning abilities. In
response, this paper introduces an approach to mitigate these challenges
by leveraging keystroke dynamics as a means for bot detection. Clas-
sifiers that differentiate between humans and bots based on keystroke
patterns necessitate the use of synthetically generated keystroke data
for training purposes. Such data is typically generated using generative
AI models; however, it often lacks contextual accuracy, leading to eas-
ily distinguishable keystrokes and consequently affecting the classifiers’
efficacy. To address this issue, our method models keystroke dynamics
in a key-dependent fashion, employing a state-of-the-art diffusion model
to produce data of superior quality. We further illustrate that classifiers,
particularly those based on Transformer and LSTM architectures, ex-
hibit enhanced performance when retrained with this refined data. We
furthermore assess the feasibility of bot detection by exclusively ana-
lyzing keystroke timings without including key identity, which we find
feasible with only a marginal performance decrease.

Keywords: web bots, keystroke dynamics, captchas

1 Introduction

Web bots present significant challenges in digital environments, impacting user
experience and escalating operational costs. Their widespread presence in social
media, online gaming, and dating platforms necessitates effective strategies to
differentiate between human and bot interactions.

The emergence of sophisticated AI has fueled an increase in bot deployment
across digital platforms. This is largely due to the high demand for training data

2 See. et al.

for AI algorithms, often sourced through unauthorized scraping. This practice
not only incurs ethical and legal issues but also highlights an urgent need for
robust bot detection mechanisms.

One approach to addressing this issue is the implementation of CAPTCHAs,
which present tasks that are generally straightforward for humans but chal-
lenging for computers to complete. However, the effectiveness of this class of
problems is diminishing due to advancements in AI technologies [7]. Further-
more, CAPTCHAs inadvertently create barriers to user engagement, potentially
leading to customer loss and, consequently, a reduction in revenue [8].

A more recent approach to addressing this issue is the analysis of keystroke
dynamics. Research has shown that the unique typing patterns of individuals
can serve as reliable identifiers [2], providing a potential means to differentiate
human users from bots. For that, machine learning models have been at the fore-
front. Examples include TypeNet, which employs a Recurrent Neural Network
(RNN) for classification [2], and methods that use the Support Vector Machine
(SVM) for classification and the Kernel Density Estimation (KDE) algorithm
for feature synthesis [4]. However, a common limitation of these approaches is
the generation of synthetic data without considering specific keycodes [4], which
may compromise the realism and effectiveness of the models.

The main contribution of this paper is the exploration of innovative gener-
ative methods aimed at producing more realistic synthetic data to enhance the
accuracy of bot classifiers. We further make the following contributions:

– We introduce a method using a Diffusion Model to synthesize character-
dependent keystroke data, linking keycode with its biometric features, a
significant advancement over prior key-independent techniques, inspired by
diffusion models’ success in image generation [9].

– Our evaluation of bot detection through keystroke timing analysis, excluding
key identity, shows feasibility with a slight performance drop of about 0.03%
in accuracy.

– Our results indicate that training classifiers with newly generated synthetic
data enhances their performance.

The remainder of this paper is organized as follows: Section 2 reviews exist-
ing methodologies for web bot detection, with a focus on keystroke dynamics.
Section 3 details the features and methods employed to train classifiers, drawing
from insights in related research. Section 4 outlines the evaluation process and
limitations of our approach. Finally, Section 5 concludes the paper.

2 Related Work

Contemporary CAPTCHA systems, including hCaptcha [14] and reCAPTCHA [13],
employ biometric indicators such as mouse movements, along with request data,
for bot detection. Their effectiveness in distinguishing bots from human users
remains undisclosed, and the specifics of how this is achieved are also omitted.
This is likely due to the protection of trade secrets and the intention to withhold

Detecting Web Bots via Keystroke Dynamics 3

critical information from bot developers. Google, the developer of reCAPTCHA,
has not publicly detailed the data utilized in their system, although attempts to
demystify this have been made in related research [19].

Bot detection using behavioral data, such as mouse movements, is a known
concept [1,10]. In our study [17], we address limitations—such simplistic assump-
tions about mouse movements, e.g., straight lines [10]. Our method differenti-
ates between bots and humans, including those bots that simulate human mouse
movements via third-party software. We incorporate mouse movement data not
only collected on our websites but also from external sources. Our results show
significant improvement in bot detection using a diverse set of mouse movement
data, eliminating the need for website-specific user data. Additionally, we inves-
tigate the relationship between data volume and detection accuracy, discovering
that with a sampling rate of 30 points per second, we require only 1.66 seconds
(50 samples) to detect a bot with 99.71% accuracy. This finding highlights the
minimal amount of data necessary for effective bot detection.

TypeNet [2], an RNN-based neural network, is developed for individual iden-
tification through keystroke dynamics. It operates by analyzing M keystroke
sequences and corresponding features F , creating embeddings to authenticate
individual keystrokes. The network processes a M×F vector, with F comprising
various latencies: Hold Latency (time between key press and release), Inter-key
Latency (time between releasing a key and pressing the next), Press Latency
(time between consecutive presses), Release Latency (time between consecutive
releases), and normalized ASCII code of keystrokes. TypeNet, consisting of two
LSTM layers with 128 units and a tanh activation function, was trained us-
ing the Dhakal and Palin datasets, incorporating both physical and smartphone
keystrokes. In performance comparisons for free text scenarios, TypeNet’s Equal
Error Rate (EER) of 2.2% on desktop data and 9.2% on smartphone data signif-
icantly outperformed the CNN-RNN model and the SVM model, demonstrating
its effectiveness in keystroke-based individual authentication.

A recent study [4] aimed to distinguish human keystrokes from bot keystrokes,
examining the role of key codes. They used the Dhakal [5] dataset and features
from TypeNet. Two methods were tested: The first used Kernel Density Estima-
tor (KDE) to generate synthetic keystrokes based on feature distributions for a
non-specific group of persons. KDE is a non-parametric way to estimate the prob-
ability density function of a random variable. KDE works by smoothing sample
data points with a kernel function, typically a Gaussian, to produce a continu-
ous density estimate from discrete data. The second synthesized keystrokes for
specific individuals using the Dhakal dataset. Both methods produced synthetic
keystrokes to train two classifiers, a SVM and TypeNet, for separating human
and non-human keystrokes. The study balanced synthetic and human keystroke
data and found similar performance between the SVM and TypeNet. However, a
limitation was the synthetic features’ generation independent of the input text.

A study [3] investigated CNNs for classifying individuals based on keystroke
dynamics across three datasets: CMU labs (51 users), GREYC KeyStroke (133
users), and GREYC web-based (83 users). Synthetic data were generated using

4 See. et al.

Gaussian parameters from these datasets, effectively tripling the volume. Fea-
tures such as hold, inter-key, and press latencies served as feature vectors. The
CNN architecture included two convolutional layers, two max pooling layers,
and a fully connected layer, trained on an 80/20 split using the Adam optimizer
at a 0.001 learning rate in TensorFlow, achieving high accuracy.

GANs demonstrate potential in bypassing mouse movement-based bot de-
tection and may be applicable in creating human-like keystrokes, as indicated
in Web bot detection evasion using generative adversarial networks [11]. This
paper used GANs to emulate human mouse movements, utilizing a web dataset
of Wikipedia viewer mouse movements and a subset of the HuMidb dataset.
Mouse movements were represented as images. For evaluating bot detection,
balanced accuracy was used, and recall measured bot evasion. Training a CNN
with datasets X (human images) and Y (GAN images), the study found effective
bot detection. However, retraining the GAN with new human data unseen by
the detection model significantly decreased recall in both datasets.

The current research partly focuses on detecting synthetic data to challenge
classification systems, with methods like SVMs and CNNs. A study [11] re-
vealed the potential of generative models in creating synthetic mouse move-
ments. There’s room for improvement in synthetic keystroke generation, notably
through advanced generative models like diffusion models, which have shown
promising results in image synthesis [6]. A key limitation in existing approaches
is the independence of synthetic keystrokes from input keystrokes, ignoring the
potential impact of the input on typing behavior. Thus, the research questions
for this paper are as follows:

RQ1: How accurately can generator models replicate keystroke dynamics?
RQ2: To what extent can classifier models distinguish between human and non-

human keystrokes?
RQ3: How does key-dependency modeling affect bot detection accuracy?

3 Bot Detection via Keystroke Dynamics Analysis

The aim of this paper is to devise a robust model proficient in distinguishing
between human and artificial keystroke dynamics. This necessitates a model
proficient in generating keystrokes that mimic human behavior for training data
purposes. The initial phase involves preprocessing the data to make it amenable
for subsequent analysis. This is followed by the aggregation of datasets that
typify human keystrokes, which serve as a standard for the model. Next, we
fabricate synthetic keystroke data using an array of generative models. The cul-
minating phase includes the development and training of classifiers that discern
between human-generated and synthetic keystrokes, utilizing both datasets for
this purpose.

3.1 Dataset and Data Cleansing

The generation of synthetic data and the development of an effective classifier
necessitate a significant amount of high-quality data. In this context, ‘high qual-

Detecting Web Bots via Keystroke Dynamics 5

ity’ denotes a dataset that comprehensively encompasses a wide spectrum of
scenarios, facilitating robust generalization capabilities. For keystroke analysis,
this entails incorporating a diverse cohort of participants, employing a variety
of sentences or characters, and utilizing different keyboard layouts. A prime ex-
ample of a dataset fulfilling these requirements is the Dhakal dataset [5]. The
Dhakal dataset encompasses 136 million keystrokes, collated from 168,000 par-
ticipants. Data collection entailed participants typing 15 distinct predefined sen-
tences, such as “Have I mentioned How much I love Houston traffic?”, as swiftly
and accurately as possible using their keyboards. Each sentence was displayed
individually, with a new sentence appearing only after the participant pressed
“continue”. The dataset recorded each keystroke, including the press and release
times.

We scrutinized the dataset automatically. The aim was to identify and elim-
inate incomplete data, focusing particularly on rows with null values or any
missing values. Given that human typing is inherently imperfect, errors such
as mistyping the intended key (e.g., pressing “s” instead of “a”) are common.
However, training the model on such data could skew its accuracy. Accidental
keystrokes, like typing ”aq” instead of ”a@”, introduce noise into the training
data, not only in terms of incorrect characters but, more critically, in the timing
and rhythm that diverge from the typical pattern for these characters. If such
data are not filtered out, the model might erroneously associate these timing
patterns with the typed characters. This is comparable to typing random letters
without intention; the rhythm and speed would differ from deliberate typing. To
ensure the model’s accuracy, it is essential to exclude these anomalies, thereby
guaranteeing that the timing data the model learns from truly represents inten-
tional, deliberate keystrokes. This may lead to the unintended consequence that
human typing errors could be more likely misidentified as bot-generated text.
The preprocessed dataset was thus curated to encompass a broad spectrum of
inputs from all participants.

3.2 Data Preparation for Keystroke Classifiers

Key-Independent Modeling Previous research, such as Statistical Keystroke
Synthesis for Improved Bot Detection [4], has explored keystroke modeling and
synthesis without distinguishing sentences or letters, yet achieving notable suc-
cess in bot detection. Nonetheless, these authors acknowledged a limitation in
their approach: the modeling does not account for the specific keys being pressed.
For instance, the timing sequence for ”1.5µ²” would be identical to that of ”hello”
under their model. This approach overlooks the reality that latency features do
differ depending on the specific key pressed.

Inter-Key Dependent Modeling In contrast to key-independent models,
timing features in reality are influenced by the specific key pressed. Moreover,
the timing can be affected by adjacent keys. For example, the latency of the
letter ”m” in the sequences ”@m” and ”mm” would differ due to the influence
of preceding and succeeding characters.

6 See. et al.

For our analysis, data is transformed into a sequence of features. These la-
tencies are well-established in keystroke dynamics literature [2] [4] and facilitate
comparison with related work.

Based on these features, we define the following feature lists:

– Lnokey: A feature list comprising:
hold latency, press latency, release latency, and inter-key latency.

– Lkey: A feature list that extends Lnokey by including keycode.

3.3 Synthetic Keystroke Generation

The aim of generating synthetic keystrokes is to closely emulate human keystroke
patterns, rendering them indistinguishable from actual human input by existing
detection systems. Consistent with contemporary research, we employed kernel
density estimation for synthesis, as utilized in [4]. Additionally, we explored
the application of diffusion models, inspired by their success in image synthesis
domains, such as DDPM [9] and Stable Diffusion [16]. The methodologies and
training protocols for both models are elaborated below.

Kernel Density Estimation Utilizing the scikit-learn library1, we adhered
to the hyperparameters established in existing literature, particularly those in
[4], which recommends a bandwidth of 1.0 using the Gaussian Kernel. Given
the unimodal, approximately normal distribution of all features, we employed
the Gaussian kernel for optimal parameter search, applying Silverman’s rule of
thumb [18] in conjunction with a grid search method.

Key-Independent Generation For a given sentence X, the generator aims to
produce a synthetic sequence mimicking human keystroke features (hold-latency,
inter-key-latency, press-latency, release-latency, keycode (cf. Section 2, Section
3). In key-independent modeling, separate KDE models are trained for each
latency type based on optimal parameters identified earlier. Synthetic sequences
are then generated for each letter using these KDE models.

Letter-Dependent Generation This approach employs bigrams, reversed bigrams,
and trigrams to analyze correlations between consecutive keystrokes in human
typing. Bigrams and trigrams are defined by corresponding pairs and triplets
of keystrokes, each characterized by various latencies and keycodes (the ASCII
code of a letter). In the case of bigrams, the latencies of the current key are
influenced by the successor key, while for reversed bigrams, they depend on the
predecessor. In trigrams, the latencies of the current key are affected by both the
predecessor and successor keys. A dictionary of KDE estimators is created for
each unique bigram and trigram, trained on the corresponding latencies. When
encountering elements not present in the training data, we resort to separate
KDE estimators trained on the overall latency data.

1 https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html

Detecting Web Bots via Keystroke Dynamics 7

The generation process starts by decomposing input text into bigrams, re-
versed bigrams, and trigrams. Synthetic latencies are generated for each of these
elements, adjusting for the number of letters in a sentence. If a KDE estima-
tor exists for a specific sequence, a sample is drawn from it and modified with
random deviations. Otherwise, samples are drawn from the unigram KDE es-
timators. The synthetic latencies, once generated and adjusted to include the
ASCII code of the respective letter, are compiled into the final synthetic latency
list. To maintain dataset balance, an equivalent number of synthetic keystroke
sequences to the number of human sequences are generated.

Denoising Diffusion Probabilistic Models The integration of diffusion mod-
els for generating synthetic keystroke sequences is particularly intriguing, given
their success in other generative tasks, notably surpassing state-of-the-art GANs
in image generation [6]. We utilize the denoising diffusion pytorch package [15],
that implements Denoising Diffusion Probabilistic Model [9]. Optimal hyper-
parameters, such as batch size and learning rate, were determined through a
grid search approach. Differing from the KDE method, this model processes and
generates sequences in the format Press time0, Release time0, . . ., Press timen,
Release timen, corresponding to the list L1 from Section 3.2. As these data re-
quire normalization for DDPM usage, we applied the tangent hyperbolic func-
tion for normalization, due to its effective mapping of positive values into the
0-1 range and the existence of an inverse function.

The diffusion model, unlike KDE generators, is trained on full sequences of
human keystroke timings, not just unigrams, bigrams, or trigrams. It trains on
sequences of up to 30 keystrokes. New data generation occurs through model
sampling. Sampled values, ranging from 0-1 and derived from normalized data,
are reverted to their original scale using the inverse of the hyperbolic tangent.
Since the sampling basis of a DDPM model is Gaussian noise, the process is
inherently non-deterministic. These sampled sequences are converted into laten-
cies, which are then used as input for classifiers.

3.4 Classification Models

The primary objective of the classifiers is to determine whether a given sequence
of features originates from human or synthetic input. Architectures capable of
integrating temporal dependencies, such as Long Short-Term Memory (LSTM)
networks and Transformers, are particularly suitable for this task. Additionally,
SVMs have shown promising results in related literature. Thus, in this paper, we
evaluate LSTM, SVM, and Transformer-based models as classifiers. All models
are trained on diverse datasets comprising both human and synthetic keystroke
sequences, with each set containing roughly equal distributions of both data
types. Each sequence is associated with a label: 1 for bot-generated data and 0
for human data.

Long Short-Term Memory For effective sequence processing and temporal
data consideration, we utilized a LSTM-based model, implemented using Py-

8 See. et al.

torch Lightning. The architecture comprises two LSTM layers, each followed by
a dropout layer [20] to prevent overfitting, and a batch normalization layer [12]
to stabilize training. The model employs Relu and Elu activation functions, with
the output of the second LSTM layer passing through a linear layer, sized for
two classes. Outputs are converted into logistic probabilities using logarithmic
softmax, and Xavier initialization is applied to linear layers’ weights.

The model is optimized using cross-entropy loss. To mitigate overfitting, an
early stopping mechanism halts training upon no significant improvement in vali-
dation dataset performance. Training employs batch processing for efficiency and
robustness against noise, and checkpoints are saved for model state restoration
or continued training.

Transformer The Transformer model, implemented similarly using PyTorch
Lightning, starts with a linear embedding layer for feature sequence transfor-
mation, supplemented by positional encoding. The encoded embeddings pass
through a transformer encoder, comprising multiple identical layers with multi-
head self-attention and feed-forward networks.

The output of the transformer encoder undergoes global average pooling for
a final fixed-size output. Xavier initialization is used for weights, and ELU func-
tions are the primary activation method. Like the LSTM model, the Transformer
uses cross-entropy loss, with early stopping and checkpointing implemented to
optimize training and prevent overfitting.

4 Evaluation

In this section, we present our findings addressing three research questions: the
authenticity of generated keystrokes, the discrimination between human and
non-human keystrokes, and the impact of keycode inclusion on classifier per-
formance. An overview of the evaluated generator models is given by Table 1.
These models are employed in our evaluation to generate synthetic keystrokes
for training and testing classifiers, which are designed to differentiate between
human and synthetic keystrokes. We employ a cross-evaluation approach, train-
ing classifiers on one generator model’s data and testing them on synthetic data
generated by a different generator.

4.1 RQ1: Authenticity of Generated Keystrokes

To evaluate the generator models (cf. Table 1), we first employed data visual-
ization techniques, including t-SNE analysis, to compare synthetic and human
data. t-SNE, a technique for reducing dataset dimensionality, helps ascertain if
the synthetic data closely mirrors the human data’s distribution, a key aspect in
evading existing classifiers and aligns with methods used in current literature [4].

The t-SNE analysis presented in Figures 1a and 1b provides initial evidence
suggesting the superiority of the diffusion model over alternative generators like
KDE in emulating human keystroke dynamics. The synthetic keystroke timings

Detecting Web Bots via Keystroke Dynamics 9

Model Generation of timing informa-
tion

Abbreviation

KDE Universal [4]

Based on normal key timing,
independent of current and
surrounding keys.

KDE Univ.

KDE Bigram
Dependent on the current and
successor key.

KDE Bi.

KDE Bigram Reversed
Dependent on the current and
predecessor key.

KDE Bi. Rev.

KDE Trigram
Dependent on the current,
predecessor, and successor keys.

KDE Tri.

Diffusion Based on a 30-keystroke input. Diff.

Table 1: Models for Generating Timing Information: Models are different by key
sequence context, ranging from independent (KDE Universal) to dependent on
immediate (KDE Bigram, KDE Bigram Reversed) and extended (KDE Trigram)
key sequences, as well as sentence-level context (Diffusion).

(a) Generator Model: Universal KDE (b) Generator Model: Diffusion

Fig. 1: t-SNE visualization comparing the Synthetic (blue) and Human (red)
keystroke timing features for two models.

10 See. et al.

generated by the diffusion model are notably more indistinguishable from hu-
man keystrokes. This observation warrants further investigation in the ensuing
evaluation.

In relation to the other t-SNE analyses of KDE, particularly for bigram and
trigram models, the lack of significant divergence from the universal KDE results
suggests that the keystrokes generated by the universal, bigram, and trigram
models are more similar than previously assumed. It is important to note that
Figures depicting these analyses were omitted due to space constraints and their
similarity.

4.2 RQ2: Discrimination Between Human and Non-Human
Keystrokes

This section assesses the capability of distinguishing between human and non-
human keystroke sequences. We evaluate three classifiers—Support Vector Ma-
chine, LSTM, and Transformer—across various datasets to determine their effi-
cacy with different data types. Training datasets, each comprising 7500 human
and 7500 synthetic samples, where one sample represents a single written sen-
tence randomly selected from the Dhakal dataset, were generated using various
generators. As per similar research [4], we consider two scenarios: Using four fea-
tures (hold-latency, inter-key-latency, press-latency, release-latency) and, RQ3,
including keycodes. The first scenario could also be somewhat advantageous from
a privacy perspective, as classifiers do not have direct access to the keycode in-
formation but can indirectly infer it based on the keystroke timings.

An additional Random Sequences dataset, simulating unsophisticated attack-
ers with random number sequences, was also created. The Mixed dataset com-
prises an equal blend of synthetic data from all generators and human data.

The SVM classifier demonstrates a comparable proficiency in distinguishing
synthetic from human keystrokes in Universal KDE, akin to the performance
observed in related work [4]. Furthermore, the classifier exhibits robust gener-
alizability to random sequences and extends this capability to both bigram and
trigram KDEs.

The SVM classifier’s ability to differentiate between synthetic and human
keystrokes in Bigram, Bigram Reversed, (and Trigram) configurations demon-
strates a significant reliance on the predecessor key in a sequence. This finding is
crucial in understanding the classifier’s performance. The classifier showed excep-
tional accuracy on data resembling its training set but its effectiveness markedly
declined when confronted with unfamiliar data. This is most pronounced in
scenarios involving where the SVM was trained using sequences generated by
the Diffusion Model. Then the classifier struggled considerably to distinguish
synthetic keystrokes with random timings (Rand. Seq.), from human-generated
sequences. Further insights were gained from the t-SNE analysis, which high-
lighted that keystrokes synthesized by the Diffusion Model closely mimic human
keystrokes, more so than those generated by other models. Despite this, even
when the classifier was trained with data from the Diffusion Model, it was un-
able to effectively differentiate these from human keystrokes in the Random Se-

Detecting Web Bots via Keystroke Dynamics 11

Trained on
Tested on

KDE
Univ.

KDE
Bi.

KDE
Bi. Rev.

KDE
Tri. Diff.

Rand.
Seq.

ACC 0.9869 0.9440 0.9871 0.9436 0.4949 0.9866
KDE Univ.

F1 0.9870 0.9422 0.9873 0.9418 0.0270 0.9868
ACC 0.8824 0.8569 0.9871 0.8261 0.4993 0.9014

KDE Bi.
F1 0.8908 0.8640 0.9873 0.8298 0.2790 0.9101
ACC 0.9869 0.9474 0.9871 0.9439 0.4949 0.9865

KDE Bi. Rev.
F1 0.9870 0.9459 0.9873 0.9420 0.0274 0.9867
ACC 0.9810 0.9794 0.9816 0.9774 0.4968 0.9809

KDE Tri.
F1 0.9813 0.9797 0.9819 0.9777 0.0549 0.9812
ACC 0.5317 0.6100 0.5304 0.5907 0.7348 0.3311

Diff.
F1 0.4624 0.5891 0.4600 0.5599 0.7530 0.0033
ACC 0.7814 0.7927 0.7792 0.7444 0.5192 0.9343

Mixed
F1 0.7600 0.7753 0.7571 0.7075 0.2590 0.9383

Table 2: Accuracy (ACC) and F1-Score (F1) of the SVM Classifier when trained
and tested on various synthetic keystrokes datasets. Training and testing were
conducted on datasets corresponding to the generator used for creation, such as
KDE Univ, which includes synthetic keystrokes generated by the KDE Univer-
sal generator. Keycode information was intentionally omitted during the training
and testing processes, compelling the classifier to rely solely on timing charac-
teristics for differentiation. Each dataset consisted of 15.000 samples.

quences test. This underlines a notable limitation in the classifier’s generalizabil-
ity, raising questions about its reliance on predecessor keys and its adaptability
to diverse keystroke patterns.

This generalization issue persisted even when the classifier was trained and
tested on the Mixed dataset, which included a variety of data types. The consis-
tent occurrence of this challenge across different datasets suggests a fundamental
limitation in the model’s adaptability to diverse data types. Given these results,
it’s possible that the volume of training and test data was insufficient for the
classifier to develop a robust and generalizable model. This hypothesis merits
further exploration. Therefore, we plan to investigate the effects of varying data
sizes on classifier performance in subsequent sections, utilizing a different clas-
sifier to gain a more comprehensive understanding.

In consideration of space limitations, we will focus on the results of two
advanced classifiers: LSTM and Transformer, as shown in Table 3. Both models
were trained on a balanced mixed dataset with 16,000 synthetic and 16,000
human data points. The results indicated significant performance improvements
over models trained on smaller datasets, with the Transformer model achieving
an average accuracy of 0.90 and the LSTM model an impressive 0.97.

The increased training data volume notably enhanced model performance,
particularly evident in the sophisticated LSTM and Transformer classifiers. The
LSTM model was especially effective in differentiating between human and syn-

12 See. et al.

Model
Tested on

KDE
Univ.

KDE
Big.

KDE
Big. Rev.

KDE
Tri. Diff.

Rand.
Seq.

ACC 0.9332 0.8919 0.9154 0.9363 0.9270 0.9293
Transformer

F1 0.9314 0.8880 0.9145 0.9350 0.9271 0.9268
ACC 0.9807 0.9776 0.9797 0.9810 0.9808 0.9803

LSTM
F1 0.9802 0.9778 0.9799 0.9806 0.9810 0.9797

Table 3: Performance metrics of the LSTM and Transformer Classifier trained
and evaluated using the Mixed dataset. Keycode information was intentionally
omitted during training and testing. Samples: 32000.

thetic keystrokes, including the challenging Diffusion dataset that had stumped
other models.

4.3 RQ3: Assessing the Impact of Keycode Inclusion on Classifier
Performance

In our analysis, the decision to omit keycodes could potentially affect classifier
performance. This approach however aligns with methodologies observed in other
studies [4]. Thus, our research includes a focused investigation into the impact
of incorporating keycodes on the classifier’s effectiveness. Table 4 presents the
results of the LSTM classifier, our best performer, in differentiating between
human and synthetic keystroke data, using a balanced dataset of 32,000 samples
(half human, half synthetic).

Trained on
Tested on

KDE
Univ.

KDE
Bi.

KDE
Bi. Rev.

KDE
Tri.

ACC 1.000 0.998 0.998 0.998
KDE Univ.

F1 1.000 0.998 0.998 0.998
ACC 1.000 1.000 1.000 1.000

KDE Tri.
F1 1.000 1.000 1.000 1.000

Table 4: Performance of the LSTM Classifier on various KDE synthetic samples
with keycodes in feature vectors, evaluated across different datasets. Samples:
32000.

As illustrated in Table 4, the inclusion of keycodes significantly enhances the
performance of the LSTM classifier, underscoring the pivotal role of keycode
information in augmenting classifier efficacy. The improvement achieved with
Trigram training over the Universal training approach underscores the effective-
ness of Trigram data in enabling the classifier to discern between synthetic and

Detecting Web Bots via Keystroke Dynamics 13

human keystrokes more accurately than when trained with universal synthetic
keystrokes. This effectiveness might be attributed to the trigram model’s ca-
pacity to capture more intricate details regarding timing, which stems from its
sensitivity to key positions and sequences. These observations are in harmony
with findings presented in related literature [4], reinforcing the recommendation
to integrate keycodes into bot detection models.

4.4 Limitations

The primary limitation of KDE generators stems from their focus on key depen-
dencies, especially considering the challenge that arises from the rarity of certain
sequences in trigrams or higher-order models. The scarcity of human data for
these longer sequences results in a lack of training data, rendering KDE-based
approaches less feasible as they cannot infer knowledge about unseen sequences.
This limitation significantly affects the sophistication of the synthetic data gen-
erated. The diffusion model currently is confined to a sequence length of 30, thus
prohibiting the generation of extended synthetic keystroke sequences. This limi-
tation is also crucial for classifiers, as they are restricted to a maximum sequence
length of 30 in the present framework. A pervasive limitation among contempo-
rary generators is their capacity to emulate a blend of human typing styles, yet
they thus fail to accurately replicate the typing behavior of a specific individual.
This shortfall can adversely affect classifier performance, as classifiers may excel
by detecting this particular discrepancy.

5 Conclusion

This paper focused on enhancing synthetic keystroke generation and evaluating
classifiers ability to discern this improved data. It introduced key-dependent gen-
eration using bigrams and trigrams, employing Kernel Density Estimator and,
notably, a diffusion model trained on the Dhakal dataset. Evaluation of various
classifiers showed that LSTM and Transformer models outperform the SVM,
especially when trained with ample data. However, these models’ effectiveness
decreased with limited data. Future research could aim to refine the recreation
of individual typing patterns. Ultimately, the progression of these technologies
may culminate in generators that can flawlessly replicate or generate new human
typing behaviors.

References

1. Acien, A., Morales, A., Fierrez, J., Vera-Rodriguez, R.: BeCAPTCHA-Mouse: Syn-
thetic Mouse Trajectories and Improved Bot Detection. arXiv:2005.00890 [cs] (Mar
2021), http://arxiv.org/abs/2005.00890

2. Acien, A., Morales, A., Monaco, J.V., Vera-Rodriguez, R., Fierrez, J.: Type-
Net: Deep Learning Keystroke Biometrics (1 2021), http://arxiv.org/abs/2101.
05570

14 See. et al.

3. Çeker, H., Upadhyaya, S.: Sensitivity Analysis in Keystroke Dynamics using Con-
volutional Neural Networks. Tech. rep.

4. DeAlcala, D., Morales, A., Tolosana, R., Acien, A., Fierrez, J., Hernandez, S.,
Ferrer, M.A., Diaz, M.: Statistical Keystroke Synthesis for Improved Bot Detection
(7 2022), https://arxiv.org/pdf/2207.13394v2.pdf

5. Dhakal, V., Feit, A.M., Kristensson, P.O., Oulasvirta, A.: Observations on typ-
ing from 136 million keystrokes. In: Conference on Human Factors in Computing
Systems - Proceedings. vol. 2018-April. Association for Computing Machinery (4
2018). https://doi.org/10.1145/3173574.3174220

6. Dhariwal, P., Nichol, A.: Diffusion Models Beat GANs on Image Synthesis. In:
Advances in Neural Information Processing Systems. vol. 11 (2021)

7. Guerar, M., Verderame, L., Migliardi, M., Palmieri, F., Merlo, A.: Gotta
captcha’em all: a survey of 20 years of the human-or-computer dilemma. ACM
Computing Surveys (CSUR) 54(9), 1–33 (2021)

8. Heath, N.: Expedia on how one extra data field can cost $12m. https://www.
zdnet.com/article/expedia-on-how-one-extra-data-field-can-cost-12m/

(2010), accessed: 2021-10-18
9. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances

in Neural Information Processing Systems. vol. 2020-December (2020)
10. Iliou, C., Kostoulas, T., Tsikrika, T., Katos, V., Vrochidis, S., Kompatsiaris, I.:

Detection of advanced web bots by combining web logs with mouse behavioural
biometrics. Digital threats: research and practice 2(3), 1–26 (2021)

11. Iliou, C., Kostoulas, T., Tsikrika, T., Katos, V., Vrochidis, S., Kompatsiaris, I.:
Web bot detection evasion using generative adversarial networks. In: Proceedings
of the 2021 IEEE International Conference on Cyber Security and Resilience, CSR
2021. pp. 115–120. Institute of Electrical and Electronics Engineers Inc. (7 2021).
https://doi.org/10.1109/CSR51186.2021.9527915

12. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: 32nd International Conference on Machine
Learning, ICML 2015. vol. 1 (2015)

13. Liu, W.: Introducing reCAPTCHA v3: the new way to stop
bots. https://developers.google.com/search/blog/2018/10/

introducing-recaptcha-v3-new-way-to (2018), accessed: 2021-05-20
14. Machines, I.: Stop more bots. start protecting user privacy. https://www.

hcaptcha.com/ (2018), accessed: 2021-05-20
15. Phil Wang: https://github.com/lucidrains/denoising-diffusion-pytorch
16. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution

image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 10684–
10695 (June 2022)

17. See, A., Wingarz, T., Radloff, M., Fischer, M.: Detecting web bots via mouse
dynamics and communication metadata (2023), accepted for publication at Inter-
national Conference on ICT Systems Security and Privacy Protection (IFIP SEC)

18. Silverman, B.: Density Estimation for Statistics and Data Analysis. Routledge (2
1998). https://doi.org/10.1201/9781315140919

19. Sivakorn, S., Polakis, J., Keromytis, A.D.: I’m not a human: Breaking the Google
reCAPTCHA. Black Hat 14 (2016)

20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research 15 (2014)

Appendix C

BOTracle: A framework for
Discriminating Bots and Humans

Abstract

Bots constitute a significant portion of Internet traffic and are a source of various issues across
multiple domains. Modern bots often become indistinguishable from real users, as they employ
similar methods to browse the web, including using real browsers. We address the challenge of
bot detection in high-traffic scenarios by analyzing three distinct detection methods. The first
method operates on heuristics, allowing for rapid detection. The second method utilizes, well
known, technical features, such as IP address, window size, and user agent. It serves primarily
for comparison with the third method. In the third method, we rely solely on browsing behavior,
omitting all static features and focusing exclusively on how clients behave on a website. In
contrast to related work, we evaluate our approaches using real-world e-commerce traffic data,
comprising 40 million monthly page visits. We further compare our methods against another
bot detection approach, Botcha, on the same dataset. Our performance metrics, including
precision, recall and AUC, reach 98 percent or higher, surpassing Botcha.

Reference

Jan Kadel, August See, R. Sinha, M. Fischer. BOTracle: A Framework

for Discriminating Bots and Humans. European Symposium on Research

in Computer Security, SecAI Workshop, 2024. ©2024 Springer.

Contribution

The core concept, website traversal graph approach, and evaluation design originated from the
author of this dissertation. The first author implemented the methodology and performed the
evaluation. The third and fourth co-authors contributed to the refinement of the manuscript.

120

BOTracle: A framework for Discriminating Bots
and Humans

Jan Kadel1⋆, August See2⋆ , Ritwik Sinha3 , and Mathias Fischer2

1 Adobe Inc. {kadel,risinha}@adobe.com
2 Universität Hamburg, Germany

{richard.august.see,mathias.fischer}@uni-hamburg.de

Abstract. Bots constitute a significant portion of Internet traffic and
are a source of various issues across multiple domains. Modern bots often
become indistinguishable from real users, as they employ similar meth-
ods to browse the web, including using real browsers. We address the
challenge of bot detection in high-traffic scenarios by analyzing three
distinct detection methods. The first method operates on heuristics, al-
lowing for rapid detection. The second method utilizes, well known, tech-
nical features, such as IP address, window size, and user agent. It serves
primarily for comparison with the third method. In the third method,
we rely solely on browsing behavior, omitting all static features and fo-
cusing exclusively on how clients behave on a website. In contrast to
related work, we evaluate our approaches using real-world e-commerce
traffic data, comprising 40 million monthly page visits. We further com-
pare our methods against another bot detection approach, Botcha, on
the same dataset. Our performance metrics, including precision, recall,
and AUC, reach 98 percent or higher, surpassing Botcha.

Keywords: web bots, bot detection, website navigation, user behavior

1 Introduction

The automation of work through software is increasingly common, and used
to alleviate the burden of monotonous tasks, particularly in internet communi-
cations, where bots automate repetitive functions. A prime example is search
engine bots indexing the internet autonomously. However, the prevalence of ma-
licious bots is concerning, with over half of internet traffic being bot-related
[43]. Trends indicate a rise in malicious activities by bots, including spamming,
scalping, and influencing elections [9,43,6].

Differentiating between bot and human traffic is challenging due to the
diverse and sophisticated nature of bots, some of which can mimic complete
browser environments to evade detection. The issue is compounded when detec-
tion systems incorrectly identify humans as bots or fail to detect bots, especially
as bots increasingly evade measures like CAPTCHAs [14,3,15,42]. Such errors

⋆ These authors contributed equally to this work.

2 Kadel et al.

can lead to customer dissatisfaction and security risks. Therefore, bot detection
systems should prioritize identifying bots based on characteristics impervious to
common evasion techniques, focusing on passive monitoring and analyzing in-
herent traits of web clients, such as behavior or intent, rather than relying solely
on challenge-response tests [14,3,15,42].

The primary contribution of this paper is the development of a multi-stage
web bot detection pipeline with distinct detectors, evaluated on a real-world
e-commerce dataset. In greater detail, our contributions include:

– We propose a layered bot detection approach suitable for business envi-
ronments, given our industry focus. This approach combines multiple tech-
niques into an efficient pipeline. It begins with heuristic methods that uti-
lize static features, such as IP addresses, to make quick decisions, primarily
to conserve computing resources. For more detailed per-request analysis, a
semi-supervised Generative Adversarial Network (SGAN) is employed. Ad-
ditionally, a Deep Graph Convolutional Neural Network (DGCNN) evalu-
ates potential bots using website traversal graphs, emphasizing session-wide
behavior. Notably, this approach concentrates solely on behavior, without
relying on features such as IP addresses, user agents, or window sizes. Bots
are generally unaware of the average behavior on a specific website, making
it challenging for them to mimic it. Furthermore, even if a bot attempts to
mimic typical user behavior, it loses its inherent advantages, such as tire-
lessness and speed.

– Our approach and its individual components are evaluated using a propri-
etary, anonymized dataset from a real-world e-commerce platform3. This
platform attracts approximately 40 million monthly page visits and gener-
ates an estimated annual revenue of between 500 million and 1 billion USD.
We benchmark the performance of our method against related works that
have utilized the same dataset.

– We conduct an in-depth analysis to ascertain which bot features most signif-
icantly influence the SGAN’s effectiveness. Furthermore, we explore how the
size of website traversal graphs impacts the performance of the DGCNN.

In this paper, we first review existing bot detection methods, assessing their
strengths and weaknesses (Section 2). We then introduce our novel approach
for effective bot detection (Section 3), followed by an evaluation of its perfor-
mance against established methods using real-world data (Section 5). The paper
concludes with a summary of our findings and their implications (Section 6).

2 Related Work

Research in this field can be categorized into two main streams: active and pas-
sive approaches. Active methods, such as CAPTCHAs, present direct challenges

3 Unfortunately, we cannot release this dataset or disclose the company’s name, as
this may violate our business contract with them

BOTracle: A framework for Discriminating Bots and Humans 3

to users. Passive methods typically involve risk assessment strategies that utilize
heuristics or machine learning algorithms. This section will review a selection of
prior studies, highlighting their respective advantages and limitations.

2.1 Active Approaches

Modern CAPTCHA systems, like hCaptcha and reCAPTCHA [22,24], blend bio-
metric data, including mouse movements, with request information. Despite this
integration, the specifics of their bot detection strategies, such as website-specific
tailoring or the effectiveness of various elements, remain undisclosed. This opac-
ity is likely strategic, aimed at safeguarding proprietary methods and hindering
bot developers from adapting their strategies. Google, for instance, keeps the
data utilized in reCAPTCHA under wraps. Research efforts, including those by
Sivakorn et al. [37], are dedicated to deciphering these CAPTCHA mechanisms.
Moreover, CAPTCHAs, despite their technological advances, still detract from
user experience and can be time-consuming. This is true even in modern systems
that employ risk assessment to reduce the frequency of CAPTCHA challenges
for users [2].

This category also includes registration with personal data, such as using
telephone numbers or presenting an official ID, are included. These methods,
however, may deter users due to the additional hurdles they present [13] and
their lack of privacy friendliness.

2.2 Passive Approaches

Bot detection can be straightforwardly implemented by blocking IPs known for
malicious activities, utilizing resources such as abuseipdb4. Moreover, various
methods focus on analyzing request data to detect bots [16,24,22,38,20,18,12].
However, there is an issue wherein a bot might abandon browser automation
frameworks like Selenium or Puppeteer and opt instead for a headful Chrome
instance. This approach could circumvent fingerprints that are specific to browser
automation frameworks.

There are also obfuscation approaches that complicate bot creation. See et
al. [33] proposed polymorphic protocols that aim to generate a unique protocol
for each client (user). While this approach is effective for native applications, it
does not perform well for web clients and within the HTTP context.

Iliou et al. [16] compared machine learning algorithms using attributes from
previous studies, avoiding cross-website tracking or external resources like IP
databases for a more replicable and privacy-friendly approach. Analyzing a year’s
worth of HTTP log data from MK-Lab’s web server5, they categorized bots as
simple or advanced based on browser agent names and IP history. Their findings
indicate that the effectiveness of attribute sets varies with the chosen machine
learning method, with Random Forest and Multilayer Perceptron performing

4 https://www.abuseipdb.com/
5 https://mklab.iti.gr/

4 Kadel et al.

best. An ensemble classifier provided more stable results. While simple bots
were easily detectable, advanced bot detection proved challenging, especially in
scenarios requiring low false positive rates.

Related research also explores biometric authentication using mouse dynam-
ics or typing behavior[35,34,36,31,19,32]. See et al. [35,34] demonstrated the
feasibility of distinguishing humans from bots based on mouse dynamics and
typing behavior, utilizing open-source datasets for human data and generating
bot data from third-party projects. They concluded that, while differentiation is
currently possible, the sophistication of methods for generating artificial human-
like keystrokes and mouse movements is likely to increase.

The Botcha framework [10] centers on identifying malicious bots, employ-
ing Positive Unlabeled Learning (PU Learning) for data labeling. It assumes
e-commerce platform clients making purchases are human, while others remain
unlabeled. A machine learning classifier then categorizes these unlabeled ses-
sions, determining human-like characteristics. Dhamnani et al. modified the tra-
ditional PU classifier to increase accuracy. Their validation used cloud provider
IP addresses as negative benchmarks, with the model incorrectly classifying 2.5%
of these as human but correctly identifying 99% of human-labeled data. The
framework tagged 82% of sessions as human, leaving 18% unclassified. While
effective in data-scarce scenarios, using purchasing behavior as a sole human
indicator is problematic, given some bots are designed for purchases [21] or con-
tent scraping [4]. Additionally, Botcha’s reliance on authentication mechanisms
to deter bots may be ineffective against advanced bots capable of autonomous
authentication. Although Botcha’s adaptation of PU learning improves perfor-
mance with specific datasets, this approach may limit its broader applicability.
We later compare our approach to Botcha’s results.

Cabri et al. [9] analyzed web sessions from HTTP logs, using heuristics for
initial classification. Sessions were identified as bots based on factors like known
bot user agents and IP addresses, or as humans if matching Udger database
browsers [1]. Their approach used a multi-layer perceptron (MLP) and Wald’s
sequential probability ratio test [41] to classify sessions as Bot, Human, or None,
with uncertain cases reassessed using more data. This method achieved a notable
F1 score of approximately 0.96. However, the lack of external benchmarking and
reliance on database labels for human-bot distinction, which could be exploited
by bots altering user agents, are limitations. Yet, its innovative use of common
HTTP features and reassessment of ambiguous cases demonstrate its potential
effectiveness.

BotGraph [23] is a web bot detection method, analyzes client sessions through
website traversal patterns. It constructs a website’s sitemap, then maps session
requests onto a sitemap subgraph, representing client navigation. These sub-
graphs are transformed into images to train a Convolutional Neural Network
(CNN), classifying sessions as bot or non-bot using supervised learning. Over
30 experts manually labeled the data, focusing on behavioral and fingerprinting
features. The model achieved 93.5% accuracy on a search engine dataset, 95.7%
on a news site, and 98.4% on a university site, with overall precision and recall

BOTracle: A framework for Discriminating Bots and Humans 5

around 95%. BotGraph effectively differentiates bot and human website usage
patterns. However, it faces challenges in sessions with few requests (¿ 3), where
both bots and humans show similar patterns [23]. Despite its reliance on manual
labeling, which might introduce biases [26], BotGraph’s adaptability across web-
sites and its efficient performance (adding 2-6 milliseconds of latency on GPUs)
are notable strengths.

The reviewed bot detection methods, while effective to some degree, each
have notable limitations. Approaches relying on user agents are vulnerable to
manipulation [9]. Botcha assumes bots do not make purchases, a premise eas-
ily challenged by bots capable of transactions [10]. BotGraph’s focus on client
traversal patterns overlooks critical page metadata, leading to potential false
positives [23]. Additionally, CAPTCHAs, commonly used for bot detection, de-
grade user experience and can be bypassed [3,14]. These issues highlight the need
for more robust, non-circumventable bot detection systems with high precision
and recall, which current methodologies do not fully offer.

3 Detecting Bots

Our methodology integrates multiple classification strategies, including heuristic
techniques, a Semi-Supervised Generative Adversarial Network (SGAN), and a
Deep Graph Convolutional Neural Network (DGCNN). This integration aims to
automate captcha resolution, thereby enhancing user experience by minimizing
human intervention.

Fig. 1. Multi-Stage Bot Detection Pipeline Process as Flow Chart

6 Kadel et al.

Figure 1 depicts our bot detection pipeline. The procedure commences with
an incoming hit - a request to a web server record. Initially, rapid heuristic-
based bot detection is employed. If the heuristic approach successfully classifies
a hit, the process concludes by issuing a class prediction. If not, the hit under-
goes processing and encoding to prepare it for the SGAN model. This prepro-
cessing involves discarding irrelevant features and transforming the data into
a one-dimensional numerical vector using flagging, integer, and one-hot encod-
ing. Additionally, we aggregate rare categorical values into special categories to
compact the input vector. Once transformed, the numerical vector is input into
the SGAN, yielding a bot or human probability. This probability is evaluated
against a confidence threshold λ ∈ [0, 1]. Probabilities below λ lead to a rejec-
tion of the prediction due to insufficient confidence. Conversely, exceeding the
threshold results in a definitive class label. Hits failing to produce a confident
SGAN prediction are accumulated into client sessions, subsequently transformed
into Website Traversal (WT) graphs, and analyzed by the DGCNN. Similar to
the SGAN, the DGCNN produces a probability compared against λ. Surpassing
this threshold finalizes the process with a class prediction, while falling short
requires additional hits to augment the session before repeating the analysis.

Subsequent sections detail the pipeline components. We commence by out-
lining our approach to labeling in an unlabeled dataset from a website with over
50 million monthly visits, differentiating between bot and human characteristics.
Generated using Adobe Analytics® within the Adobe Experience Cloud®, this
dataset lacks pre-existing bot-related labels. Our labeling strategy is versatile,
suitable for various websites. We then describe the heuristic bot detection meth-
ods, designed to identify straightforward cases like unmodified user-agent bots,
thereby enriching the labeled data for SGAN and DGCNN training. Moreover,
we elucidate the concept of WT graphs and their efficacy in bot detection. The
machine learning models utilized in the pipeline are not detailed, as our focus
was on their application rather than modifying their fundamental principles.

3.1 Bot Feature Analysis

In the task of distinguishing web clients as either bots or humans, it is essential
to conduct a comprehensive analysis of client attributes, identifying those most
indicative of bot activity. We categorize these attributes into two main groups:
behavioral and non-behavioral. Non-behavioral attributes encompass identity,
and technical factors, whereas behavioral attributes are defined by patterns in
navigation, interaction, and frequency of website visits.

Non-behavioral Attributes :
– Identity Attributes: Consist of user identifiers, such as IP addresses.
– Technical Attributes: Relate to technical aspects, like user agent and

screen size.
Behavioral Attributes :

– Traversal Attributes: Capture user’s navigation patterns on the website.
– Interaction Attributes: Chronicle user interactions with site elements.

BOTracle: A framework for Discriminating Bots and Humans 7

– Visit Attributes: Indicate the frequency and pattern of user visits.

Identity attributes, such as user location, or name, are seldom used in bot
detection models due to their ease of manipulation. Focus is instead placed
on behavioral and technical attributes, which compel bot developers to mimic
human behavior more intricately to evade detection.

Technical attributes, such as user agent, screen size, and Java applet support,
provide valuable insights. Models can detect bots through unusual user agents
and atypical screen dimensions. Java applet support helps identify outdated or
falsified user agents. However, these can also be forged.

Traversal attributes map a client’s website journey, highlighting visited pages.
Patterns like exhaustive breadth-first traversal suggest bot activity, unlike hu-
mans’ targeted visits. Interaction attributes chronicle client engagements, such
as using promo codes and purchasing. These patterns can distinguish bot types,
for instance, crawlers that avoid purchases or scalper bots aiming for bulk ac-
quisitions. Additionally, visit attributes, including visit frequency and patterns,
help detect spammer bots, especially with high visit frequency and volume.

Heuristics for Detection of Obvious Bots The primary aim of bot detection
heuristics is to identify and filter out apparent bots, a process that also aids in
training machine learning models. For example, a user agent self-identified as
”python request” is typically indicative of a bot. Labeling all data linked to
such an agent as ”bot” and integrating this into the training dataset enables the
machine learning model to discern patterns, like bots making requests at regular
intervals, for specific durations, or targeting certain pages. These heuristics are
intentionally broad to ensure high precision in bot detection.

Forged User Agent: Some user-agents, like those from automation libraries
(e.g., python-request), indicate bot activity. Bot operators often disguise
them as regular browser user-agents like Firefox. If the user-agent’s capa-
bilities do not match a genuine agent, it is likely fraudulent. Human users
typically do not modify their user-agents in this manner It is generally as-
sumed that human users do not alter their user-agents in this way [45,11].

Time Between Hits Similarity: The interval between website visits can in-
dicate bot activity [40,39]. Consistent timing between requests suggests au-
tomated browsing, as human interactions typically exhibit variability due to
innate randomness. For example, a monitoring bot might be programmed to
visit a website hourly with precise intervals.

Unrealistic Window Sizes: Effective human web browsing requires sufficiently
large browser windows for clear graphical display. Bots, conversely, often uti-
lize minimal window sizes, like those used by deep learning bots employing
convolutional neural networks [17]. Smaller windows demand less process-
ing power, which is cost-effective. Therefore, very small browser dimensions,
such as an axis under 50 pixels, strongly suggest bot traffic.

8 Kadel et al.

3.2 Bot Detection Using Technical Features

This approach employs a SGAN trained on a mix of labeled and unlabeled data
to analyze individual hits for bot-related characteristics. The choice of an SGAN
is strategic due to its proficiency in processing both labeled and unlabeled data.
Within this framework, a classifier is trained using the labeled data to differ-
entiate between bots and humans. The SGAN’s generator and discriminator
are trained using both labeled and unlabeled data; the generator aims to cre-
ate realistic labeled data points, while the discriminator’s objective is to identify
fabricated data points. Any generated data points not recognized as artificial are
further utilized to refine the classifier. This approach enables the exploitation of
features from unlabeled data in classifier training, making the SGAN model par-
ticularly suitable for addressing web bot challenges. Web log datasets, like the
one used in this research, often contain a significant portion of unlabeled data
points. The labels for training are derived from the assumptions regarding bot
and human clients outlined in Section 5.1. These labels allow for confident cate-
gorization of the behavioral aspects of each data point, which are then employed
to train the binary classifier within the SGAN’s discriminator.

The primary goal of adversarial learning is to refine the generator to produce
synthetic samples indistinguishable from real ones by the discriminator. How-
ever, in the context of bot detection, where the focus is on identifying rather
than generating realistic bot data, it is necessary to modify the model architec-
ture accordingly. Consequently, the discriminator in our model consists of two
components sharing a common neural network framework: the classifier and the
discriminator components. The discriminator component fulfills the traditional
role of differentiating between fake and real samples. It outputs a probability
preal ∈ [0, 1], indicating the likelihood of a sample being real; values near one
suggest a real sample, while values close to zero imply a generated sample. The
classifier component, meanwhile, is tasked with determining the class member-
ship of a data point by predicting a vector of class membership probabilities
[p1, ..., pn] for n classes, utilizing the Softmax activation function. Despite their
distinct objectives, the integration of shared weights enhances the classifier’s
performance by allowing it to benefit from both supervised and unsupervised
learning through the discriminator. This is particularly advantageous when la-
beled data is scarce.

During the training phase, the classifier is trained with supervised samples.
Its objective is to predict a vector of class membership probabilities for each
sample and compute a loss value LC using the cross entropy loss function [25].
The cross entropy loss function, represented as L, is generally defined in equa-
tion 4.1. Here, n represents the number of classes, and k refers to the k-th class.
Additionally, Yk indicates the true class value, being one if a sample belongs to
class k and zero otherwise. pk denotes the class membership probability result-
ing from the Softmax-activated output layer. The loss is minimized when the
predicted probabilities align closely with their respective true values.

BOTracle: A framework for Discriminating Bots and Humans 9

L(Yk, pk) = (−1) ·
n∑

k=1

Yk · log(pk) (1)

Both the discriminator and classifier components in our model utilize the
cross entropy loss function, leading to their respective loss values being repre-
sented as LD for the discriminator and LC for the classifier. The class member-
ship probabilities essential to this process are calculated by applying the Softmax
activation function to the output layer of the shared neural network [25,8]. The
Softmax function, denoted as S, is defined in equation 4.2. Here, Z represents
the vector of all output activations, and zi signifies the activation of the i-th neu-
ron in the output layer. Softmax is responsible for converting these real-valued
inputs into normalized probabilities. The output is a categorical probability dis-
tribution, indicating the likelihood of each class membership.

S(Z, zi) =
ezi∑

zk∈Z ezk
(2)

The loss value is critical for optimizing the weights of the shared neural net-
work through the backpropagation algorithm [29]. The discriminator, trained on
both real and synthetic samples, aims to enhance its proficiency in distinguishing
between these two types. The loss value LD, derived from the discriminator’s
predictions, is backpropagated through both the discriminator and generator
networks to refine the generator’s performance. As the generator produces la-
beled, realistic data points, it significantly augments the classifier’s efficacy by
providing a larger pool of labeled data.

Distinct from the classifier, the discriminator employs a unique method for
its output layer activation, a technique developed by Salimans et al. to optimize
the training of generative adversarial networks [30]. This method, termed the
ExpSum Activation Function and denoted as E, is formulated in equation 3.
Here, Z represents the k activations in the output layer of the shared neural
network, each playing a role in the improved discrimination of real versus fake
data points.

E(Z) =
F (Z)

F (Z) + 1
F (Z) =

∑

zk∈Z

ezk (3)

3.3 Bot Detection through Analysis of Website Traversal Graphs

The appealing aspect of these graphs is that they are purely based on behavioral
features. Website traversal graphs, which depict user navigation on a website
with nodes representing sub-pages and edges as navigational links, are further
enhanced by weighting edges according to visit frequency and labeling nodes with
pertinent attributes. This enriched graphical representation serves as a compre-
hensive data source for analysis. Our core hypothesis posits that automated web
bots exhibit unique navigation patterns, distinct from those of human users,
characterized by intensive search tactics and specific page refresh frequencies.

10 Kadel et al.

Our approach involves a three-layered methodology. The first layer involves
extracting prominent features from the raw data. Following this, a sorting pool-
ing layer restructures these features into a format conducive to deep learning
analysis. The final stage employs a one-dimensional Convolutional Neural Net-
work (CNN). Notably, incoming data points, termed as hits, incrementally ex-
pand the existing session graph, allowing for dynamic graph development. The
classification process thus takes into account the entirety of session hits, rather
than isolated events.

Table 1 outlines the specific features utilized in our analysis and their asso-
ciation with the elements of the Website Traversal (WT) graph.

Attribute Description Component

First Hit Pagename The initial page of a session Node
Detailed Pagename The specific page related to a hit Node, Edge
Previous Pagename The preceding page in a hit Node, Edge
Timestamp The time of page visit Node Label
Page Type The category of the visited page Node Label
Benchmark Label Associated with a specific hit’s

benchmark label
Node Label

Table 1. Features Incorporated in WT Graphs

Furthermore, the following metrics are extracted from WT graphs:

Node Degree The count of edges linked to a node.

Node Count The aggregate number of nodes within the graph.

Edge Count The complete count of edges in the graph.

Page Type Distribution This metric calculates the relative frequency of var-
ious page types within a set of hits, based on their occurrence and total
number of hits for each page type in the set, applicable to a single session
or WT Graph.

Session Topics Extracted using the RAKE algorithm [28], this metric com-
prises keywords from page titles within the WT graph, focusing only on
those with a score of 1 or higher. It aims to differentiate between known
bots and humans by comparing session topic sets of unidentified clients.

Number of Hits The total visits across all pages in the graph.

Hits per Sub Page The visit count for each subpage.

Degree Centrality A metric indicating a node’s centrality in the graph, based
on its connected edges.

Betweenness Centrality This measure reflects a node’s significance in the
graph, determined by the number of shortest paths passing through it among
all other nodes.

BOTracle: A framework for Discriminating Bots and Humans 11

4 Implementation

4.1 SGAN Architecture and Training

The SGAN used in the evaluation comprises a discriminator and a generator
network. The discriminator integrates parallel, aligned layers for discrimination
and classification. It employs binary cross-entropy for the discriminator layer and
sparse categorical cross-entropy, coupled with a Softmax activation function, for
the classifier layer. Both layers utilize the Adam optimization algorithm, with
learning rate parameters set at α = 0.0002 and β1 = 0.5. The architecture
features seven shared hidden layers: the first, third, and fifth are dense layers
with 100 units each, activated by the Sigmoid function. The second, fourth, and
sixth layers are leaky ReLU layers with a fixed scaling parameter of α = 0.2. A
dropout layer with p = 0.4 constitutes the seventh layer. The generator network
comprises three layers: an input layer drawing from a 100-dimensional latent
vector with 200 units activated by the Sigmoid function, and an output layer
with units corresponding to each dataset feature, activated by ReLU. The SGAN
employs binary cross-entropy for loss and Adam for optimization, mirroring the
discriminator’s initialization.

4.2 DGCNN Architecture and Training

For implementing bot detection via WT graphs, we follow the framework pre-
sented in the study by [44]. This research introduces a graph-based deep learning
mechanism for classification tasks, enabling the encoding of undirected graphs
with node features for neural network training.

The DGCNN consists of a GCN and a 1D-CNN. The GCN section includes
four graph convolution layers with 32, 32, 32, and 1 hidden units, respectively,
followed by a sort pooling layer to format outputs for the 1D-CNN. Activation
in each layer is achieved through tanh. The GCN parameter k is fixed at 35. The
1D-CNN features two convolutional layers: the first with 16 filters, kernel size,
and stride matching the sum of hidden units in all GCN layers; the second with
32 filters, a kernel size of five, and a stride of one. A max pooling layer with a
pool size of two separates these layers. Following the second convolutional layer is
a dense layer with 128 hidden units activated by ReLU, succeeded by a dropout
layer with p = 0.5. The final output layer, activated by Sigmoid, uses a single
unit. Binary cross-entropy serves as the loss function, and Adam, parameterized
with a learning rate of α = 0.0001, is the optimization algorithm.

5 Evaluation

The evaluation of the proposed methodologies encompasses both individual and
collective assessments. Specifically, this paper aims to elucidate the following
research inquiries:

RQ1: What is the efficacy of each module within the detection pipeline in dif-
ferentiating between bots and human users?

12 Kadel et al.

RQ2: Which attributes exert the most significant impact on the outcomes of
detection?

RQ3: How does the dimensionality of a WT graph influence the classification
accuracy?

5.1 Data Labeling and Ground Truth

Our analysis leverages a dataset from an e-commerce website, which garners
approximately 40 million monthly visits. The evaluation is conducted on a subset
of around 1.4 million of these visits. To our knowledge, there currently exists no
standardized dataset suitable for this type of evaluation.

There are several advantages to utilizing a real-world dataset, such as its
realism and the inclusion of unknown types of bots. However, a significant draw-
back is the lack of ground truth, specifically identifying who is a bot and who is
not. We address this issue by using assumptions to provide labeling of the data.

Human Assumption Traffic is labeled as human if it originates from accounts
of human users (i.e., not automated test users) within the organization host-
ing the website. This is based on the assumption that it is highly unlikely for
an employee to create a bot to interact with their own company’s website, as
this would risk potential employment termination for engaging in malicious
activities.

Bot Assumption A client is categorized as a bot if their requests originate
from an IP address associated with a cloud provider’s computational center.
While it is acknowledged that some legitimate users may access websites via
proxies or VPNs, this is considered a minority scenario.

It is important to note that generating ground truth through assumptions is
a practice that has been used previously. However, we adopt a stricter approach
than related work. For instance, Botcha’s [10] hypothesis that bots do not engage
in purchases is increasingly being questioned. Modern examples demonstrate
that bots actively purchase items such as graphics cards, concert tickets, and
game consoles [7,27].

Table 2 illustrates the quantity of data points labeled under the human and
bot assumptions, in conjunction with those identified by the heuristics. It is
critical to acknowledge, however, that the heuristics—excluding the human as-
sumption—are incapable of discerning human users. Additionally, our analysis
examined potential conflicts between the heuristics and our fundamental as-
sumptions. We discovered that the heuristics erroneously classified 9 instances
of human interactions as bot activities. Despite this, the obtained recall rate of
0.9988 was deemed satisfactory for our purposes.

Table 2 presents categorizes individual requests from our dataset based on
their identification as either human, bot, or unknown. It is structured to compare
the number of hits identified through our initial assumptions (cf. 5.1) with those
further refined by the application of our heuristics (cf. 3.1), which are designed
to identify more bots but not humans. It shows a refinement in bot detection

BOTracle: A framework for Discriminating Bots and Humans 13

Class Assumption Enhanced by
(#Hits) Heuristics (#Hits)

Bot 51.462 65.018
Human 7.630 7.630
Unknown 723.579 710.023

Table 2. Ground Truth Based on Initial Assumptions and Heuristic Refinement

in our dataset, increasing from 51,462 to 65,018 instances with the application
of heuristics, while maintaining consistent human identification and reducing
unknown classifications.

5.2 Results

In this section, we present the results of our comparative analysis.

RQ1: Detection Performance We compare the performance of the model
relying on technical features like window size (SGAN) and the model relying
on behavior only (DGCNN) with another bot detection approach on the same
dataset. Botcha was configured with the exact parameters described in its pub-
lication [10].

Model Accuracy Recall Precision F1-Score AUROC

SGAN 0.9895 0.9875 0.9189 0.9519 0.9886
DGCNN 0.9845 0.9833 0.9791 0.9812 0.9892

Botcha-MAM 0.9364 0.8383 1.0 0.9120 0.9437
Botcha-RAM 0.9952 0.9663 0.9807 0.9735 0.9996

Table 3. Comparison to Related Work (Botcha)

All approaches exhibit strong performance. SGAN and Botcha, which rely on
technical (non-behavioral) attributes, might seem more effective. However, the
superiority of WT graphs that leverage behavioral features is noteworthy. This
aspect is increasingly significant in the dynamic and challenging landscape of bot
detection, where bot creators constantly adapt to evade detection mechanisms.

Behavioral features are paramount due to their independence from the under-
lying automation technology. For instance, while using a real, rendered browser
enables bots to mimic human activity and evade detection based on technical,
non-behavioral features, achieving this level of mimicry requires sophisticated
emulation of human behavior. Bot creators encounter difficulties in replicating
the nuanced user behavior unique to each website, which varies with the site’s
type and structure. Furthermore, programming bots to mimic human-like brows-
ing can significantly hinder their efficiency. For example, adhering to human
browsing patterns, such as generating an average of 10 results per minute over

14 Kadel et al.

5-minute sessions, compromises the inherent speed and endurance advantages of
bots.

In this landscape, while SGAN and DGCNN demonstrate commendable per-
formance, with SGAN slightly ahead in terms of accuracy and AUROC, Botcha-
RAM stands out as the most effective model, achieving high scores in accuracy,
recall, precision, F1-Score, and AUROC. Botcha-MAM, despite its unmatched
precision, shows reduced efficiency in other essential metrics.

RQ2: Technical Feature Importance In our investigation into SGAN’s de-
tection capabilities, we aim to identify which features exert the most significant
impact. To this end, we employ the Permutation Importance Algorithm [5], a
method effective in discerning key features influencing data point classification.
Initially, the algorithm calculates a reference score s, assessing the classifier’s
performance on a particular dataset, using a chosen scoring function.

The process involves iterating over each feature column d = 1, . . . , D, where
D = |features|. For every column, the algorithm shuffles the data K times, with
k = 1, . . . ,K, and computes a new score sk,d for the perturbed dataset. It then
evaluates how this new score compares with the reference score s. This com-
parison is crucial as it reveals each feature’s effect on classification accuracy. A
significant drop in the score due to feature manipulation signals a high impor-
tance of that feature, while a negligible change indicates low importance. The
importance of a feature is quantified using the equation: id = s− 1

K

∑K
k=1 sk,d

Applying the SGAN classifier to the test dataset, we determine the feature
importances, as detailed subsequently. Notably, the algorithm was configured
with a K value of 50, and various scoring functions were employed. Additionally,
the application of Onehot encoding to some features accounts for the presence
of specific values in feature names.

Feature R2-Score Negative MSE
µi σi µi σi

post browser height 0.542 ± 0.008 0.051 ± 0.001
post browser width 0.287 ± 0.010 0.027 ± 0.001
post java enabled N 0.082 ± 0.003 0.008 ± 0
post java enabled Y 0.061 ± 0.002 0.006 ± 0
user agent Other 0.024 ± 0.002 0.002 ± 0
visit page num 0.022 ± 0.003 0.002 ± 0

visit num 0.012 ± 0.004 0.001 ± 0
hourly visitor 0.010 ± 0.001 0.001 ± 0

page type product 0.005 ± 0.001 0 ± 0
last purchase num 0.004 ± 0.001 0 ± 0

user agent Mozilla/5.0 0.003 ± 0.001 0 ± 0
Table 4. Feature Importance Scores of the SGAN Classifier for the most important
features. MSE: Mean Squared Error. µ: Mean accuracy decrease. σ: Standard deviation.

BOTracle: A framework for Discriminating Bots and Humans 15

As shown in Table 4, the most prominent features in bot detection are at-
tributes such as post browser height and post browser width. These features, de-
spite their high significance as shown by their R2-scores and Negative MSE val-
ues, are relatively easy for bots to falsify. By simply adjusting the browser height
and width to mimic those of a typical user, bots can effectively camouflage their
non-human nature. This insight highlights the imperative of integrating behav-
ioral characteristics into bot detection mechanisms. Behavioral features explore
the intricacies and patterns inherent in human interactions, which are consider-
ably more arduous for bots to emulate. Contrasting with static attributes such
as browser dimensions or Java enablement status, behavioral patterns encom-
pass intricate, dynamic, and frequently nuanced human activities. Even if a bot
were to mimic these patterns, it would result in a significant loss of efficiency.

RQ3: WT Graph Size Importance For this investigation, we utilized a
dataset formed through overlap clustering, assigning 30 percent as test data.
The most efficacious DGCNN model, pretrained on 70% of the dataset and
employing overlap clustering, was used in this study. It is important to note that
the AUROC metric was excluded from use, given its inapplicability in certain
graph sizes where only a single class exists.

Nodes # Graphs ACC Recall Precision F1-Score

1 26137 0.998 0.981 0.998 0.99
2 17066 0.973 1.0 0.974 0.986
3 3533 1.0 1.0 1.0 1.0
4 371 0.998 0.999 0.999 0.999
5 251 0.998 1.0 0.998 0.999
6 101 0.998 1.0 0.998 0.999
7 526 0.997 1.0 0.997 0.998
8 1579 1.0 1.0 1.0 1.0
9 1175 1.0 1.0 1.0 1.0
10 108 1.0 1.0 1.0 1.0

Table 5. Classification performance depending on WT graph size.

The findings indicate that an increase in graph size correlates with enhanced
performance of the model. The data presented in the table reveals that even min-
imal graphs, comprising one to three nodes, are classified with high accuracy.
This underscores the efficacy of WT graphs in encapsulating web client char-
acteristics, thereby facilitating the DGCNN’s ability to learn representations,
leading to heightened accuracy, precision, and recall. It is noteworthy that this
performance is attainable due to the unique feature of WT graphs, which ag-
gregate multiple interactions with the same webpage into a singular node. This
characteristic enables the trained DGCNN to identify bots effectively, even in
scenarios where they interact with only a single sub-page multiple times. Addi-
tionally, the classification’s performance augments with the expansion of nodes

16 Kadel et al.

in the WT graph, suggesting that the DGCNN’s bot detection capabilities are
more pronounced as clients engage with a greater number of sub-pages.

5.3 Limitations

There are several limitations to this paper that should be considered. First, we
are unable to share the dataset that was used for this research due to data
protection reasons. This limitation is also present in many related works, and
thus limits our ability to fully benchmark our approach against these studies.

Since we are using a real world dataset we lack an accurate ground truth. We
rely instead of the most basic assumptions we can think of (cf. 5.1). However,
while we have considered the characteristics and behaviors of both groups in
the design of our approach, it is possible that some bots or humans may exhibit
behaviors that we have not accounted for. This could potentially impact the
accuracy of our method in detecting certain types of bots.

Additionally, it is worth noting that our approach may not be able to detect
bots that behave exactly like humans. This however is a common limitation
among bot detection approaches. However, a bot that behaves exactly like a
human is less effective for the bot operator and makes it more difficult to perform
malicious activities.

6 Conclusion

In conclusion, our bot detection framework, applied to a large-scale e-commerce
site with a substantial monthly visitor count of 50 million, demonstrates its
robustness and effectiveness. The methodology begins with heuristic-based ap-
proaches for simple bot detection, and then advances to more sophisticated tech-
niques involving technical features analyzed through a Semi-supervised Genera-
tive Adversarial Network (SGAN). Behavioral features, particularly those related
to website navigation patterns transformed into a Website Traversal Graph and
processed via a Deep Graph Convolutional Neural Network (DGCNN), further
strengthen our detection capabilities.

Our assessment, when benchmarked against the Botcha methodology, demon-
strates that our approach achieves a level of effectiveness similar to theirs, albeit
solely relying on behavioral features. The focus on behavioral analysis not only
yields high detection accuracy but also necessitates a greater level of sophistica-
tion from bot developers. This requirement for bots to more accurately imitate
human behavior leads to a decrease in their effectiveness and operational viabil-
ity, thus enhancing the efficacy of our bot detection framework.

Future work will explore the development of more reliable measures that
require less user interaction up to the point of detection, aiming to enhance the
efficiency in identifying bots.

BOTracle: A framework for Discriminating Bots and Humans 17

References

1. Udger database for user agents, ip addresses, and other web technologies. https:
//udger.com. Accessed 2024-04-05.

2. Humanity wastes about 500 years per day on captchas. it’s
time to end this madness. http://blog.cloudflare.com/

introducing-cryptographic-attestation-of-personhood/, 2021. Accessed:
2022-11-21.

3. Commercial image captcha solving service. https://bestcaptchasolver.com/,
2022. Last visited on October 6th.

4. Was ist content scraping? https://www.cloudflare.com/de-de/learning/bots/

what-is-content-scraping/, 2022. Last visited on October 6th.
5. A. Altmann et al. Permutation importance: a corrected feature importance mea-

sure. Bioinformatics, 26(10):1340–1347, 2010.
6. A. Bessi and E. Ferrara. Social bots distort the 2016 us presidential election online

discussion. First Monday, 21(11-7), 2016.
7. S. Brock. Scalping in ecommerce: ethics and impacts. https://ssrn.com/

abstract=3793357, 2021.
8. J. Brownlee. How to implement a semi-supervised gan (sgan)

from scratch in keras. https://machinelearningmastery.com/

semi-supervised-generative-adversarial-network/, July 24 2019.
9. A. Cabri et al. Online web bot detection using a sequential classification approach.

In IEEE 20th International Conference on High Performance Computing and Com-
munications; IEEE 16th International Conference on Smart City; IEEE 4th In-
ternational Conference on Data Science and Systems (HPCC/SmartCity/DSS).
IEEE, 2018.

10. S. Dhamnani et al. Botcha: Detecting malicious non-human traffic in the wild.
https://arxiv.org/abs/2103.01428, 2021.

11. D. Doran and S. Swapna. Web robot detection techniques: overview and limita-
tions. Data Mining and Knowledge Discovery, 22:183–210, 2011.

12. D. Goßen et al. Hlisa: Towards a more reliable measurement tool. In Proceedings
of the 21st ACM Internet Measurement Conference, 2021.

13. N. Heath. Expedia on how one extra data field can cost $12m. https://www.zdnet.
com/article/expedia-on-how-one-extra-data-field-can-cost-12m/, October
18 2010.

14. M. I. Hossen and X. Hei. A low-cost attack against the hcaptcha system. In IEEE
Security and Privacy Workshops (SPW), pages 422–431, 2021.

15. C. Iliou et al. Web bot detection evasion using generative adversarial networks.
In IEEE International Conference on Cyber Security and Resilience (CSR). IEEE,
2021.

16. C. Iliou, T. Kostoulas, T. Tsikrika, V. Katos, S. Vrochidis, and Y. Kompatsiaris.
Towards a framework for detecting advanced web bots. In Proceedings of the 14th
International Conference on Availability, Reliability and Security, 2019.

17. H. Jonker, K. Benjamin, and V. Gabry. Fingerprint surface-based detection of web
bot detectors. In Computer Security–ESORICS 2019: 24th European Symposium
on Research in Computer Security, volume 24. Springer International Publishing,
2019.

18. H. Jonker, B. Krumnow, and G. Vlot. Fingerprint surface-based detection of web
bot detectors. In European Symposium on Research in Computer Security, pages
586–605. Springer, 2019.

18 Kadel et al.

19. Z. Jorgensen and T. Yu. On mouse dynamics as a behavioral biometric for authen-
tication. In Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security, pages 476–482, 2011.

20. X. Li, B. A. Azad, A. Rahmati, and N. Nikiforakis. Good bot, bad bot: Character-
izing automated browsing activity. In IEEE Symposium on Security and Privacy
(SP), pages 1589–1605. IEEE, 2021.

21. C. Lin and H-C. Hsiao. Need tickets? a case study of bot-enabled ticket scalping.
Document reference needed.

22. W. Liu. Introducing recaptcha v3: the new way to stop bots. https://developers.
google.com/search/blog/2018/10/introducing-recaptcha-v3-new-way-to,
2018. Accessed: 2021-05-20.

23. Y. Luo et al. Botgraph: Web bot detection based on sitemap. https://arxiv.

org/abs/1903.08074, 2019.
24. Intuition Machines. Stop more bots. start protecting user privacy. https://www.

hcaptcha.com/, 2018. Accessed: 2021-05-20.
25. M. Martinez and R. Stiefelhagen. Taming the cross entropy loss. In German

Conference on Pattern Recognition. Springer, Cham, 2018.
26. S. Mohanty. Hand labeling considered harmful. https://www.oreilly.com/radar/

arguments-against-hand-labeling/, 2021. Last visited on October 6th, 2022.
27. D. Parma. At ticketmaster, scalpers score and fans come last. JL & Com., 38:463,

2019.
28. S. Rose et al. Automatic keyword extraction from individual documents, volume 1.

Text mining: applications and theory, 2010.
29. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by

back-propagating errors. Nature, 323(6088):533–536, 1986.
30. T. Salimans et al. Improved techniques for training gans. In Advances in Neural

Information Processing Systems, volume 29, 2016.
31. B. Sayed, I. Traoré, I. Woungang, and M. S. Obaidat. Biometric authentication

using mouse gesture dynamics. IEEE Systems Journal, 7(2):262–274, 2013.
32. A. See, T. Wingarz, M. Radloff, and M. Fischer. Detecting web bots via mouse

dynamics and communication metadata. In International Conference on ICT Sys-
tems Security and Privacy Protection (IFIP SEC), 2023. Accepted for publication.

33. August See, Leon Fritz, and Mathias Fischer. Polymorphic protocols at the ex-
ample of mitigating web bots. In European Symposium on Research in Computer
Security, pages 106–124. Springer, 2022.

34. August See, Adrian Westphal, Cornelius Weber, and Mathias Fischer. Detect-
ing web bots via keystroke dynamics. In IFIP International Conference on ICT
Systems Security and Privacy Protection, pages 423–436. Springer, 2024.

35. August See, Tatjana Wingarz, Matz Radloff, and Mathias Fischer. Detecting
web bots via mouse dynamics and communication metadata. In IFIP Interna-
tional Conference on ICT Systems Security and Privacy Protection, pages 73–86.
Springer, 2023.

36. C. Shen, Z. Cai, and X. Guan. Continuous authentication for mouse dynamics: A
pattern-growth approach. In IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2012), pages 1–12, 2012.

37. S. Sivakorn, J. Polakis, and A. D. Keromytis. I’m not a human: Breaking the
google recaptcha. In Black Hat, volume 14, 2016.

38. G. Suchacka, A. Cabri, S. Rovetta, and F. Masulli. Efficient on-the-fly web bot
detection. Knowledge-Based Systems, 223:107074, 2021.

39. G. Suchacka et al. Efficient on-the-fly web bot detection. Knowledge-Based Sys-
tems, 223:107074, 2021.

BOTracle: A framework for Discriminating Bots and Humans 19

40. T. Tanaka et al. Bot detection model using user agent and user behavior for web
log analysis. Procedia Computer Science, 176:1621–1625, 2020.

41. A. Wald. Sequential tests of statistical hypotheses. Ann. Math. Statist., 16(2):117–
186, 1945.

42. G. Ye et al. Yet another text captcha solver: A generative adversarial network
based approach. In ACM SIGSAC Conference on Computer and Communications
Security, 2018.

43. I. Zeifman. Bot traffic report 2016. https://www.incapsula.com/blog/

bot-traffic-report-2016.html, 2017. Retrieved: 2017-02-01.
44. M. Zhang et al. An end-to-end deep learning architecture for graph classification.

In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.
45. Y. Zhang et al. Detecting malicious activities with user-agent-based profiles. In-

ternational Journal of Network Management, 25(5):306–319, 2015.

Appendix D

Binary Sight-Seeing: Accelerating
Reverse Engineering via
Point-of-Interest-Beacons

Abstract

Reverse engineering is still a largely manual and very time-consuming process. To ease this
process, beacons in the form of known instructions or code patterns are commonly used to guide
reverse engineers in dissecting a binary. However, if done manually, identifying high-quality
beacons can be very laborious. This paper introduces a novel method to automatically identify
the so-called Points-of-Interests (POIs) in binaries. POIs are instructions that interact with
data specified by the analyst known a priori, e.g., via sandbox analysis or expert knowledge.
These POIs are then used as beacons to guide analysts to find interesting parts of the binary
that interact with the specified data, e.g., the encryption routine. Compared to taint analysis,
our approach offers simplicity while delivering a select few, yet high-quality beacons, thereby
establishing clear focus points. Based on our proposed method, we implemented two types
of prototypes. First, a prototype whose output can be loaded via custom plugins into IDA
and Ghidra, i.e., two of the more popular reverse-engineering tools. We show the applicability
of our method via the prototype by summarizing the insights of the analysis for the Locky
and Wannacry ransomware as one of the potential application domains, i.e., malware reverse
engineering. Second, we also introduced a prototype that monitors P2P botnets in a fully
automated manner by directly instrumenting the botnet malware without requiring manual
reverse-engineering. We demonstrate the effectiveness of our prototype by applying it to
the ZeroAccess, Sality, Nugache, and Kelihos botnets and summarize our findings in this
paper. Using our approach, we effortlessly found the encryption function in the two analyzed
ransomware. For P2P botnets, our monitoring prototype could enumerate the bots in all
analyzed botnets, only relying on our POIs

Reference

August See, M. Gehring, M. Fischer, S. Karuppayah. Binary Sight-

Seeing: Accelerating Reverse Engineering via Point-of-Interest-

Beacons. Annual Computer Security Applications Conference, 2023.

©2023 ACM.

140

Contribution

The approach to multi-instruction POIs, including the corresponding confidence scores and
evaluations (including ransomware), originates from the author of this dissertation. The multi-
instruction POI detection methodology was refined from the author’s master’s thesis. The
concept, implementation, and evaluation of single-instruction POIs were contributed equally by
the first and second authors. The second author developed the confidence scoring mechanism
and conducted the practical evaluation using automated botnet monitoring. The third author
proposed the core idea, while the third and fourth co-authors provided feedback and helped to
refine the final paper.

Binary Sight-Seeing: Accelerating Reverse Engineering via
Point-of-Interest-Beacons

August See∗
richard.august.see@uni-hamburg.de

Universität Hamburg
Hamburg, Germany

Maximilian Gehring∗
gehring@cs.tu-darmstadt.de

TU Darmstadt
Darmstadt, Germany

Mathias Fischer
mathias.fischer@uni-hamburg.de

Universität Hamburg
Hamburg, Germany

Shankar Karuppayah
kshankar@usm.my

National Advanced IPv6 Centre, Universiti Sains Malaysia
Penang, Malaysia

ABSTRACT
Reverse engineering is still a largelymanual and very time-consuming
process. To ease this process, beacons in the form of known instruc-
tions or code patterns are commonly used to guide reverse engi-
neers in dissecting a binary. However, if done manually, identifying
high-quality beacons can be very laborious. This paper introduces
a novel method to automatically identify the so-called Points-of-
Interests (POIs) in binaries. POIs are instructions that interact with
data specified by the analyst known a priori, e.g., via sandbox anal-
ysis or expert knowledge. These POIs are then used as beacons to
guide analysts to find interesting parts of the binary that interact
with the specified data, e.g., the encryption routine. Compared to
taint analysis, our approach offers simplicity while delivering a se-
lect few, yet high-quality beacons, thereby establishing clear focus
points. Based on our proposed method, we implemented two types
of prototypes. First, a prototype whose output can be loaded via
custom plugins into IDA and Ghidra, i.e., two of the more popular
reverse-engineering tools. We show the applicability of our method
via the prototype by summarizing the insights of the analysis for
the Locky and Wannacry ransomware as one of the potential ap-
plication domains, i.e., malware reverse engineering. Second, we
also introduced a prototype that monitors P2P botnets in a fully-
automated manner by directly instrumenting the botnet malware
without requiring manual reverse-engineering. We demonstrate
the effectiveness of our prototype by applying it to the ZeroAccess,
Sality, Nugache, and Kelihos botnets and summarize our findings in
this paper. Using our approach, we effortlessly found the encryp-
tion function in the two analyzed ransomware. For P2P botnets,
our monitoring prototype could enumerate the bots in all analyzed
botnets, only relying on our POIs.

CCS CONCEPTS
• Security and privacy→ Software reverse engineering; Mal-
ware and its mitigation.
∗Both authors contributed equally to this research.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
ACSAC ’23, December 4–8, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0886-2/23/12. . . $15.00
https://doi.org/10.1145/3627106.3627139

KEYWORDS
reverse engineering, binary instrumentation, malware, P2P Botnets
ACM Reference Format:
August See, Maximilian Gehring, Mathias Fischer, and Shankar Karuppayah.
2023. Binary Sight-Seeing: Accelerating Reverse Engineering via Point-
of-Interest-Beacons. In Annual Computer Security Applications Conference
(ACSAC ’23), December 4–8, 2023, Austin, TX, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3627106.3627139

1 INTRODUCTION
The global economic losses caused by cybercrimes were reported
to be nearly 1 trillion USD in 2020 [25]. Malware is at the heart of
many cybercrime activities. For this reason, security researchers
reverse-engineer malware to obtain valuable information about
its targets, propagation vectors, and how to mitigate it. However,
reverse engineering is a time-consuming and manual effort and
requires high-skilled analysts. Given that more than 116 Million
new versions of malware have emerged1 in 2021 alone, any effort to-
wards accelerating or automating the reverse-engineering process
would save valuable resources. Hence, various tools and projects
that aim to automate parts of the reverse engineering process have
emerged recently, e.g., replay of protocols using symbolic execu-
tion [23], analysis of data structures [19], or taint tracking [6]. In
addition, reverse engineering efforts are also made easier with the
availability of comprehensive reverse engineering suites and tools
like IDA2 and Ghidra3. However, these advancements have evolved
into an arms race between analysts and malware authors. There
is no silver bullet for binary analysis. For instance, some of the
advanced tools and methods that were proposed can be circum-
vented via obfuscation techniques, e.g., binary packing to counter
static analysis, copying data via a timing side channels to counter
taint tracking, or causing path explosions to hinder symbolic exe-
cution [1, 2, 5]. Another problem is that many tools are resource
intensive and complex to use. Finally, only some tools are interop-
erable with one another, e.g., software reverse engineering suites.
Hence, malware analysts continuously require more advanced tools
and techniques to stay abreast with the advancements of malware
authors. Our main contribution is a technique designed to acceler-
ate the reverse engineering process. This technique is applicable

1https://portal.av-atlas.org/malware/statistics
2https://www.hex-rays.com/
3https://ghidra-sre.org/

ACSAC ’23, December 4–8, 2023, Austin, TX, USA See et al.

to both manual and automated approaches. It relies on data-driven
methods, making it more user-friendly and accessible. Compared
to taint analysis, our approach offers simplicity while delivering a
select few but high-quality beacons, thus offering clear focus points.
• We introduce the concept of Point-of-Interests (POIs) within
binaries that can guide analysts as beacons [30] during re-
verse engineering. POIs are instructions (addresses) within
a binary that interact with a set of data items, so-called Data
Items of Interest (DIOIs). In other words, our approach allows
analysts to input data such as IP addresses or file content
(data, referred to as DIOIs), and it retrieves all the addresses
that interact with this data (addresses, referred to as POIs).
• We provide a metric confidence score which allows us to
rate the POIs. It specifies how exclusively a POIs interacts
with data from DIOIs. For example, an analyst wants to
know where the encryption of files in ransomware takes
place. The file content is known and serves as DIOIs. Our
approach returns a list of POIs. Among them, POIs that are
located in, e.g., encrypt_file can be found, but also POIs
that are located in functions like memcopy. Memcopy is a
general-purpose function and is not essential for the analyst.
Because the memcopy POI interacts (read, write) with data
not specified as DIOI, the confidence score is low, and thus
the POI can be filtered.
• We implement both approaches and will make them open-
source. We further implement plugins for Ghidra and IDA.
• We evaluate our approach. First, in manual reverse engineer-
ing, by discovering the encryption routine of two notorious
ransomware (Locky, Wannacry). Second, we show that hav-
ing high-quality POIs can enable the automatic crawling
and monitoring of four distinct botnets (ZeroAccess, Sal-
ity, Nugache, Kelihos). Given the increasing significance of
automated analysis, we focus on the second part. Further-
more, the successful utilization of POIs within an automated
framework indicates that discovering and, notably, scoring
POIs is effective. Consequently, these findings underscore
the applicability of POIs not only in automated scenarios but
also in manual settings.

The remainder of this paper is structured as follows. In Section 2,
we introduce the necessary reverse engineering background and
related work. Section 3 introduces our proposed technique, and
Section 4 details the implementation of our prototypes and further
discusses the setup for evaluating our prototype in a controlled
environment. Then, Section 5 describes our evaluation with the cor-
responding results, and Section 6 describes the effect an adversary
could have on POIs. Finally, Section 7 concludes this paper.

2 RELATEDWORK
This section provides an overview of related work to our POI
methodology.

Beacons in Reverse Engineering Tools. IDA and Ghidra are two
of the most commonly used tools in malware reverse engineering.
They provide valuable beacons to aid reverse engineering efforts,
e.g., automatic identification of known functions or automatic gen-
eration of high-level programming language code. However, an
analyst would have to review all beacons exhaustively and hope

that something eventually leads to the intended goal of the analyst.
In contrast, our proposal empowers the analyst to define their own
goals, e.g., discovering ransomware’s encryption routine. Based
on the specific goals, the corresponding DIOIs can be identified,
e.g., the filename of an encrypted file, and used during the analysis
of identifying suitable beacons. Hence, the resulting beacons are
specific to the goal of the analyst. We created custom plugins to in-
tegrate our beacons with the commonly used tools IDA and Ghidra
(cf. Appendix F) to strengthen interoperability with other reverse
engineering tools.

PANDA [7] is a platform dedicated to dynamic analysis based on
QEMU. It stands out because it it allows to record and accurately
replay a whole system execution with all running processes. This
allows the reproducible analysis and execution of samples. There are
many addons avaiable for more specialised analysis. In particular,
PANDA cannot be used to resume after a recording or modify the
execution of an existing recording4.

Taint Analysis. Our approach to identifying POIs shares certain
similarities to (dynamic) taint analysis [26]. However, they pursue
different goals and function differently. Taint tracking is used to
identify if and how specific instructions or operations can reach
and potentially manipulate data, e.g., sensitive or user-controlled. It
helps uncover security risks and vulnerabilities by tracking tainted
data flow within a program or system, such as buffer overflows or
command injections. It can also be used for analysis or reverse en-
gineering purposes to better understand a system [10, 29]. Initially,
there are taint sources and sinks, which refer to addresses within
the program or memory. The first step involves identifying these
sources and sinks. Subsequently, taint propagation occurs, marking
all addresses that interact with the taint sources. If marked instruc-
tions write new data, such as in registers, memory, or even status
registers, that newly written data becomes tainted. Additionally,
instructions that interact with this tainted data are marked again.
That is why it is called taint propagation. When execution reaches a
taint sink, it is examined whether it currently interacts with tainted
data.

Our approach, in comparison, aims to facilitate reverse engineer-
ing by finding specific points in the program an analyst is interested
in. Furthermore, it focuses solely on the data itself, disregarding its
origin. Thus our approach is simpler to use as it does not require
the identification of sources and sinks. The major challenge in taint
tracking lies in the complex propagation step. Further, many meth-
ods hinder or prevent taint analysis from identifying data flows
[1, 5]. For instance, tainted data can be written to a file and subse-
quently read, losing its tainted status. Furthermore, taint analysis
often marks a large number of instructions, potentially resulting
in the discovery of more POIs, metaphorically speaking. However,
marking too many instructions as beacons might diminishes their
usefulness as it can be overwhelming to the analyzer.

Ultimately, both techniques operate similarly but have differ-
ent objectives. Therefore, combining both approaches would be
interesting, e.g., using our approach to identify taint sources. The
drawbacks of our approach are described in Section 6.

4https://github.com/panda-re/panda/blob/master/panda/docs/manual.md

Binary Sight-Seeing: Accelerating Reverse Engineering via Point-of-Interest-Beacons ACSAC ’23, December 4–8, 2023, Austin, TX, USA

Executable Binary Characteristics. Our approach works by first
identifying DIOIs and based on those POIs. This raises the question
if and how suitable DIOIs can be obtained. This is more straight-
forward than it seems at first. A binary generally needs to interact
with the host’s operating system. It reads and writes files or reg-
istery, it spawns threads and processes and sends and receives
data from the internet. This is also true for malware. For example,
ransomware must read and write files for extortion and botnets
must keep contact with the internet to send or receive commands.
These interactions are observable through various tools, such as
sandboxes [12] or API monitoring5. Generally, the interactions
themselves can not be hidden by the binary and thus may reveal
parts of the binaries core behavior.

Dynamic Analysis of Botnets. BotWatcher [3] is a tool that uti-
lizes dynamic analysis of a botnet malware to infer higher-level
behavior. By periodically taking memory snapshots and performing
forensic analyses on the snapshots, BotWatcher detects events
such as file creations or TCP connections. Based on these events, in-
ference rules are utilized to infer high-level malware behaviors, e.g.,
malware/payload download. In contrast, our proposal can provide
low-level behavioural analysis such as providing direct references
to individual instructions and code segments of interest.

Related approaches are found in the field of procotol and input
format reverse engineering. While many approaches deal with this
problem, only few deal with encrypted data [8]. ReFormat [31] is
a system for protocol reverse engineering that can even operate
on encrypted messages. It relies on the amount of bitwise oper-
ations to identify potential cryptographic functions. Further, it
uses taint tracking to mark buffers tainted by the received mes-
sage. Our approach is similar in that regard, that it can find the
buffers holding the encrypted or unencrypted data, if some data is
known. However, it does not rely on heuristics to do so. Protocol
extraction approaches may have difficulty with new approaches
that obfuscate the protocol [9, 27]. While our approach and format
reverse engineering have some techniques in common to achieve
their respective goals, the actual goals are different. The goal of
format reverse engineering approaches is to determine the struc-
ture of messages or structured inputs. Our approach, in contrast, is
more generic and identifies and assesses code locations within a
binary program (POIs) that interact with the data being searched
for (DIOIs).

Automated P2P Botnet Monitoring. The core idea of our PinPup-
pet prototype (see Section 4.3) revolves around reusing the P2P
communication module of the malware to replay and respond to
membership maintenance (MM)-messages. The idea of reusing ex-
isting functionalities of a malware was already proposed in Inspec-
tor Gadget[16] by Kolbitsch et al. In their work, they identify and
extract specific functionalities from an executable, e.g., domain
generation algorithm, as a so-called gadget, to speed up their anal-
ysis. The main difference between our approach and this particular
work is that their approach still requires a human analyst to manu-
ally spot and extract the gadgets. Furthermore, Inspector Gadget
extracts code, whereas our approach extracts data.

5https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

3 POIS AS BEACONS
POIs are instructions that are known to interact with data from a
prespecified set of data, the so-called DIOIs. POIs can be represented
as tuples (data, address). In this context, interact can, for example,
mean reading or writing data from and to memory. The core idea
is to use these identified instruction POIs as beacons in reverse
engineering. In the identification process for POIs, the DIOIs serve
as a ground truth of relevant data.

Listing 1: Example Assembly Code

1 // eax , address of the message buffer
2 mov [eax], 0xcafe
3 // further message construction
4 push eax
5 // send message buffer to recipient
6 call send_message

For example, consider having a binary that sends several types
of messages over the network. The first 4 bytes of the message
determine the message type. Let us further assume an analyst is
interested to investigate the purpose of a particular message type
that is identified by 0xcafecafe in its payload. The corresponding
assembly code could look like the one shown in Listing 1. Using
the message type information as the a priori DIOIs, the analyst
could focus on the region of the assembly code that is associated
to this instruction, i.e., the POI. In the listing, line 2 would, for
example, be identified as a POI as it constructs the relevant part
of the message, i.e., writes 0xcafecafe to memory. However, the
process of selecting POI candidates is not trivial as several factors
may affect the suitability of a candidate. In this example, the DIOIs
were specified based on expert knowledge, however, the set of
DIOIs can also be constructed based on sandbox analysis results (see
Section 2). For example, IP addresses occurring in a packet capture
could be used as DIOIs to identify POIs processing IP addresses.

In the following, we provide a high level overview of our method-
ology to identify and use POIs. Then, we elaborate the details of
some of the intermediate steps and finally present two strategies
for identifying high-quality POIs.

3.1 Methodology
Our methodology consists of five steps as illustrated in Figure 1.
In Step 1○, a software sample needs to be obtained. This is rela-
tively straight forward for benign software. For malware, one could
use honeypots, malware repositories, or obtain a sample from an
infected machine. Next in step 2○, by instrumenting the software
using dynamic binary instrumentation (DBI) (see Section 2) tools,
all interactions of the sample with the Operating System (OS) to
access registers and memory regions are traced and logged as a
list of (data, address, access_type) tuples (here onwards referred
to as trace data). In Step 3○, the set of DIOIs (𝐷) accessed by the
software, e.g., registry modifications and network communication,
is identified via sandbox analysis reports or expert knowledge. As
𝐷 reflects the information that the software processes or interacts,
elements DIOI (𝑑 ∈ 𝐷), e.g., IP addresses or registry filenames, are
also expected to appear in the trace data from Step 2○. Hence, Step
4○ uses the trace data and 𝐷 to identify potential POI candidates.
Finally, Step 5○ filters out low-quality POI candidates. These are

ACSAC ’23, December 4–8, 2023, Austin, TX, USA See et al.

Identifying POI
Candidates POI Filtering

Identifying Code
Artifacts for

Software Sample Trace Data
Collection

POI Beacons

Sandbox Analysis
& Expert Knowledge

1 2

3

4 5

Figure 1: The POI discovery process.

candidates that, instead of mostly processing data in 𝐷 or related
to 𝐷 , also process other data. By filtering them, we prevent them
from adversely affecting the final outcome of using the POIs as bea-
cons. Note that our methodology shares some similarities with taint
analysis [26]. We highlight and discuss the differences in Section 6.

3.2 Identifying Code Artifacts
The process of identifying the DIOIs (Step 3○) that are unique to the
investigated sample is relatively straight forward as every binary
needs to interact with the operation system (Section 2). It can be
done as follows:

• An analyst can leverage sandboxing environments, e.g., a
Cuckoo Sandbox [12], to generate reports of changes made
by the software during the analysis. From those reports, data
that is unique to the software can be identified and used as
DIOIs. Depending on the data type, alternative representa-
tions and encodings have to be considered. For example, for
an IP addresses in binary form, one may include the most
significant byte (MSB) and least significant byte (LSB) equiv-
alent representation. For floating point numbers, single and
double precision representations have to be added.
• As alternative to sandboxes, an analyst can leverage tools for
monitoring OS-APIs, e.g., API Monitor6 or strace7, to identify
unique values as potential inputs into 𝐷 .
• Additional expert knowledge, e.g., from manual analysis or
published research, can also be considered as DIOIs.

The choice of information that is considered as DIOIs is driven by
the main goals of the analyst in studying the software. For instance,
if understanding the network communications of a malware is of
interest, the set of outgoing IP addresses and ports used by the
malware, e.g., for Command and Control (C2) communication, can
be a suitable choice. However, not every information can be used as
a DIOI. Consider the following scenario where a sandbox analysis
reported an outgoing connection from the software to a remote
host with the destination IP address 10.20.30.40 and port 80: only
the IP address would be suitable to be considered as DIOIs. The port
information is not suitable as the (decimal) value for port 80 can
be easily used by other components within the malware, e.g., as an
internal counter or as the ASCII representation of the character ’P’.
A poor quality POI would be the result. In contrast, the likelihood
of observing a random data access that matches the exact binary
representation of the IP address 10.20.30.40 is rather low.

6http://www.rohitab.com/apimonitor
7https://linux.die.net/man/1/strace

3.3 Identifying POI Candidates
POIs are defined as instruction addresses that interact with any
DIOI, i.e., by reading or writing any registers or memory. How-
ever, the process of identifying POIs instructions (Step 4○) based
on the trace data 2○ and the set of DIOIs 3○ is not trivial. The main
challenge is due to the different methods of how data or values are
processed by an OS. Depending on the CPU architecture and avail-
able instruction extensions, the maximum length of data associated
with an instruction varies. Hence, the elements within 𝐷 may not
necessarily always fit a single recorded instruction execution. For
instance, an integer value can be processed in a single instruction,
but for example strings require multiple instruction executions for
processing. To address this issue, we introduce two search strate-
gies, the first one to identify single instruction POI and the second
one to identify multiple instruction POI.

3.3.1 Identifying single instruction POIs. We define three possible
ways for the software to interact with a DIOI via a single instruction:
(i) reading from memory, e.g., a mov eax, [esp] instruction, (ii)
writing to memory, e.g., a push eax instruction, and (iii) having
DIOIs loaded in a register while being executed (note that this does
not need to be a memory read, e.g. by increasing the value in the
register).

This search strategy iterates each entry in the execution trace and
compares the values of the registers, memory reads, and memory
writes for each DIOI. Whenever the data access of a single instruc-
tion in the execution trace matches any 𝑑 ∈ 𝐷 , the corresponding
instruction’s address is marked as a potential POI candidate.

3.3.2 Identifying multiple instruction POIs. Searching for amultiple
instruction POI is more challenging because the order of how aDIOI
𝑑 ∈ 𝐷 is accessed is unknown. Hence, 𝑑 could be accessed in the
memory using a sequential, reverse, or randomized pattern. As it is
impossible to know upfront the total number of instructions nor the
exact access pattern for a DIOI, the corresponding memory region
needs to be searched and matched exhaustively against each DIOI
per memory-write operation. Moreover, the memory allocation
information provided by the OS can only report the total allocation
to an application or process. It does not give information on the
exact, i.e., current, utilization of the allocated memory. Therefore,
we need to track the current utilization of the allocated memory by
the binaries process, i.e., the actual memory writes recorded in the
execution trace from Step 2○. For this purpose, we leverage lookup
tables in our internal tracking mechanism.

Lookup Tables. To track the utilization of each memory block
we introduce two custom lookup tables: the memory map and the
identifier map. The memory map dynamically assigns new memory
regions and continuously tracks them to map each address of a

Binary Sight-Seeing: Accelerating Reverse Engineering via Point-of-Interest-Beacons ACSAC ’23, December 4–8, 2023, Austin, TX, USA

contiguous block of written memory to the corresponding region.
It also tracks which instruction reads and writes which value. The
identifier map is then used to keep track of the size of each particular
tracked memory region. Hence, for each change in thememory map,
an updated size of the affected memory region is also tracked and
reflected via the identifier map. The ability to track the current
utilization size of a particular memory region enables a targeted
DIOI search as described in the following.

Memory Search. For eachmemorywrite-operation in the recorded
trace data, we only need to search within the exact memory region
that we continuously track using our aforementioned lookup ta-
bles. Hence, we introduced a custom memory search algorithm as
illustrated in Algorithm 1 to leverage the tracking information of
the lookup tables to search for POIs that accesses any DIOI. The al-
gorithm first obtains the information of the memory region for the
currently accessed memory address from the lookup tables (Lines
1 − 3 and 5 − 6). Next, the algorithm checks if the size of a DIOI
(𝑑 ∈ 𝐷) fits the size of the currently considered memory region
(Line 7). If the size fits, the contents within the memory region are
compared to 𝑑 (Line 8 − 9). Upon a successful match, the algorithm
stores the address where 𝑑 was found and continues with the next
𝑑 ∈ 𝐷 . Since the memory map tracks which instructions read and
wrote which values, all instructions that accessed the searched DIOI
𝑑 are known. Those instruction are marked as POI candidates.

Algorithm 1: Searching for DIOIs d in memory.
Input: lastAddr, 𝐷
Result: The start addresses of the searched DIOIs 𝐷 if it is

found. Otherwise, the start address is -1.
1 // A region ID is the start address of a memory region
2 regionID← memoryMap[lastAddr]
3 regionSize← identifierMap[regionID]
4 for 𝑑 in 𝐷 do
5 startAddr ← max(regionID, lastAddr- 𝑑 .size)
6 endAddr ← min(regionID + regionSize, lastAddr + 𝑑 .size)
7 if 𝑑 .size ≤ (endAddr-startAddr) then
8 buffer← readMemory(startAddr, endAddr)
9 pos← buffer.find(d)

10 results [𝑑]← pos
11 results [𝑑]← −1
12 return results;

3.4 POIs Filtering
The POI candidates identified in Step 4○ consists of all instruction
addresses that interacted with any DIOIs within the trace data.
Thus, the choice of DIOIs can greatly affect the quality of identified
POIs. When one, for example, uses the integer 80 as a DIOI, this
could refer to a port in the context of networking, but also occur
in the context of a loop as a counter. Thus, it is possible that some
of the identified POIs are false positives, i.e., misleading beacons.
Alternatively, it is also possible that a DIOI is processed in a general
purpose function, e.g., the memcpy. Even though this does not reveal
any code specific to the DIOI, it would still appear as a POI. Of

course, such cases could be easily identified and skipped by expert
analysts, the performance of automation tools that rely upon these
POIs can be adversely affected (see Section 4.3 for a discussion of
such an automation tool).

As the quality of a POI cannot be determined upfront without
reverse engineering, we introduce a metric called POI confidence
score to estimate the quality of a POI. It assesses the frequency of
an address associated to a particular POI being used to access only
some set of DIOIs. This metric assigns a score between 0.0 and 1.0
to each POI as an estimation of the quality of the POI. A score of 1.0
indicates that the POI is used exclusively by the code for accessing
only DIOIs. A score of < 1.0 indicates that some other contents
(𝑑′ ∉ 𝐷) are also accessed by the instruction at the POI. Based on
the resulting confidence scores, a threshold-based filter can then
be applied to select only high-quality POIs as beacons. Next, we
elaborate on the required adaptations of the proposed metric for
the two search strategies outlined in Section 3.3

3.4.1 Filtering of single instruction POIs. First, function 𝐶 (𝑥, 𝐿) is
the operation that returns the number of elements in 𝐿 that are equal
to 𝑥 . 𝐿 is a list of elements (𝐿 = 𝑒1, . . . , 𝑒𝑚). The POI confidence
score metric for a single instruction POIs 𝑝 is then formulated as:

𝑠𝑐𝑜𝑟𝑒𝑆 (𝑝) :=
∑︁
𝑑∈𝐷

𝐶 (𝑑, trace(𝑝))
|trace(𝑝) | (1)

where trace(𝑝) is the list of data processed by the instruction at
POI 𝑝 . Hence, for each POI we calculate the number of interacted
data that is in 𝐷 , divided by the total number of accessed data.

3.4.2 Filtering of multiple instruction POIs. Meanwhile, the con-
fidence score metric for multiple instruction POIs leverages the
tracking information of the lookup tables introduced in Section 3.3.
In more detail, let 𝑃 = 𝑠1, ...𝑠𝑛 be a list of lists of instruction ad-
dresses. Each 𝑠 is a list of instruction addresses that wrote the bytes
for a DIOI 𝑑 , where 𝑠 = 𝑖1, ..., 𝑖𝑚 and every 𝑖 is the address of an
instruction that wrote some byte of a DIOI. In addition, let 𝑝 be a
POI, addr(𝑝) be the address corresponding to 𝑝 , and #𝑝 the number
of bytes this POI wrote during the runtime of the process. Then,
the confidence score for a POI 𝑝 is calculated using

𝑠𝑐𝑜𝑟𝑒𝐶 (𝑝) =
∑︁
𝑠∈𝑃

𝐶 (addr(𝑝), 𝑠)
#𝑝 (2)

Hence, for each POI, we calculate the number of written DIOI
bytes, divided by the total number of written bytes. Note that only
bytes written that result in a complete DIOI match are considered.
The confidence score for a read-memory POIs is also calculated
analogously.

4 APPLICATIONS OF POI
Our methodology to identify POIs is mainly envisioned to be used
to identify high-quality beacons to accelerate reverse-engineering
efforts by improving the usability. However, POI-based beacons can
also be integrated into automated tools for more advanced use-cases.
In the following, we first describe the implementation details for a
generic POI identification tool. Then, to demonstrate the advantages
offered by the POIs, we describe a more complex tool: our PinPuppet

ACSAC ’23, December 4–8, 2023, Austin, TX, USA See et al.

prototype that attempts to leverage found beacons for automated
P2P botnet monitoring without the need for reverse engineering.

4.1 Generic POI Discovery Tool
Our generic POI discovery tool implements our proposal according
to the stages depicted in Figure 1. First, an executable binary is
needed and a goal or idea of what needs to be achieved, e.g., finding
instructions that process a file that is read or are those that are
responsible for sending some data. In addition, some DIOIs that are
known to be interacted with by the malware sample should also be
identified a priori through means of a malware sandbox analysis
report or expert knowledge (see Section 3.2). Next, to obtain the
execution trace of the binary, we instrument the malware sample
using Intel Pin [20] (in the following only Pin) as our choice of the
DBI framework. Another script implements the logic to search for
single instruction and multiple instruction POIs (see Section 3.3)
on the recorded execution trace against the set of data 𝐷 , POI
candidates are then identified. Afterwards, the confidence score
filtering is further applied as described in Section 3.4 to omit poor-
quality POIs. Finally, the remaining high-quality POIs are loaded
into IDA and Ghidra using custom plugins that we developed (see
Appendix F). Using these plugins, analysts can focus on the relevant
beacons in dissecting the binary.

4.2 Ransomware Analysis
Ransomeware encrypts user files for extortion. One goal of reverse
engineering can be to find the function responsible for the encryp-
tion. Encryption involves reading a file and writing the encrypted
file. The contents of the encrypted and unencrypted file can be
used as DIOIs to finds the encryption function. In detail, this can
be done as follows. The ransomeware should be executed on a VM
with snapshot capabiliites and before executing the malware it is
advised to create a new snapshot. When the ransomeware is done
encrypting some files, save them to the host machine also back up
the associated original files by rolling back the snapshot. Now the
file contents can be used as DIOIs. Using the encrypted file content
POIs can be found that access this. The encrypted file content is
assumed to be in memory for the first time immediately after the
encryption process. Thus, the first POI found is likely to be within
the encryption function. This can be supplemented by using the
cleartext file content to find matching POIs. Here, the last found
POI may be of interest, since after encrypting the file content is
encrypted, the cleartext file contents no longer have any use to the
ransomware and are likely deleted.

4.3 PinPuppet: Botnet Monitoring
To demonstrate the applicability of POIs on advanced use cases, we
developed an automated P2P botnet monitoring prototype called
PinPuppet. PinPuppet uses the POI mechanism to instrument a
malware to automatically perform botnet monitoring. The main
goal of PinPuppet is to crawl a P2P botnet without presuming
detailed knowledge on the botnet communication protocol.

4.3.1 P2P Botnet Characteristics. P2P botnets do not need to rely on
dedicated C2 servers to enable infected machines to communicate
with their botmasters [13]. Each bot in the P2P botnet maintains
a peer list that contains information, e.g., IP addresses and ports,

Puppet VM

Agent

Puppeteer

Router

Analysis Package
Botnet Sample
Configuration
Start Script

Puppet

Botnet Access and crawling

Figure 2: System overview for PinPuppet.

necessary to contact other bots in the botnet. This list is updated
via a MM mechanism that periodically probes peers within the
peer list and exchanges knowledge on other peers (via getL and
retL messages) with them to ensure a connected botnet overlay.
Due to the open nature of P2P botnets, the MM mechanism can be
exploited to monitor botnets using custom tools such as crawlers
and sensors [13].

4.3.2 System Overview. PinPuppet consists of four dedicated com-
ponents as depicted in Figure 2 that interact with each other to
perform an automated crawling of P2P botnets.

The Analysis Package component bundles all information that
is required for crawling a P2P botnet. It consists of the malware
sample, the samples bootstrap list 𝑃bootstrap, a crawling configu-
ration file, and a script that defines how the malware should be
executed while being instrumented by Pin. The two main compo-
nents that are running on the Virtual Machine (VM) are the Puppet
and Agent. The Agent is our foothold in the Puppet VM. It allows
uploading analysis packages, running them, and downloading the
results. Meanwhile, the Puppet is the malware sample instrumented
by Pin to trace instructions. The Router is used for routing the
traffic between the Puppet VM, the Puppeteer, and the botnet itself.
Finally, the Puppeteer is the brain of PinPuppet. It is able to set
up and reconfigure the Router and controls the Puppet VM (e.g.,
creating snapshots, starting, and stopping it). It also communicates
with the Agent via the network and sends commands to it. Data
collected by the Puppet, is downloaded by the Puppeteer using the
Agent for further processing.

4.3.3 Methodology. The automated crawling by PinPuppet is a
four-step process. These steps incorporate the processes described
in Figure 1. In the first step, trace data is collected. Next, DIOIs are
identified from the information gathered in the first step, 𝐷 is con-
structed, and POI candidates are identified. In the third step, these
POI candidates are filtered based on a confidence score threshold.
Finally, the identified POIs are used for crawling.

POI Candidate Identification. In this step, the Puppeteer performs
the POI candidate identification (see Section 3.3 and Figure 1) for
identifying IP- and port-POIs, i.e., POIs corresponding to instruc-
tions frequently associated with IPs or ports. The identification
process uses the data set 𝐷𝑖 for IP-POIs and 𝐷𝑝 for port-POIs. Both
sets are constructed based on the IPs and ports in 𝑃bootstrap∪𝑃socket.

Binary Sight-Seeing: Accelerating Reverse Engineering via Point-of-Interest-Beacons ACSAC ’23, December 4–8, 2023, Austin, TX, USA

For identifying single instruction-POIs, the 4-byte binary LSB-first
and MSB-first representations of the IPs and ports are used. For
identifying Contigous-POIs, the ASCII representations of the IPs
are used.

The intuition behind using 𝑃bootstrap ∪ 𝑃socket as the basis for
ground truth of our data sets is that it approximates all peers that the
puppet can know. The true set of known peers is 𝑃bootstrap∪𝑃socket∪
𝑃shared where 𝑃shared are all peers that were shared with the Puppet
in the trace data collection step. Of course, we do not know which
peers were shared with the Puppet, however, as bots who request
new shared peers oftentimes eventually contact these shared peers,
there is an overlap between 𝑃socket and 𝑃shared. Thus the difference
between 𝑃bootstrap∪𝑃socket∪𝑃shared and 𝑃bootstrap∪𝑃socket is small.

POI Filtering. In this step, the Puppeteer performs POI filtering
(Section 3.3) for the identified IP-POIs. First, the Puppeteer cal-
culates the confidence score of each IP-POI and then filters them
based on the confidence score threshold. To filter port-POIs, we first
need to find the mapping between IP- and port-POIs. Hence, for
each identified POI, we extract all valid representation of IPs and
ports that are found in the trace data. Then, we search exhaustively
for valid mappings using known good IP-Port combinations (see
Appendix B for pseudocode).

Crawling Primitive. The crawling primitive used in PinPuppet
mainly aims to: (i) contact a specified “crawl peer” 𝑝𝑐 using a getL,
and (ii) extract peers shared in the corresponding retLmessage – in-
formation which is otherwise not immediately visible to an analyst.
For this purpose, the router is configured to redirect all outgoing
traffic destined to 𝑝𝑜 , the first peer contacted after rolling back,
i.e., restoring VM snapshot, the Puppet to the intended 𝑝𝑐 . For all
replies sent by 𝑝𝑐 , the Router changes the source to 𝑝𝑜 . Therefore,
the Puppet will assume it is talking to 𝑝𝑜 even though it is commu-
nicating with 𝑝𝑐 . To prevent peers 𝑝𝑥 ≠ 𝑝𝑐 from interfering with
this step, all traffic except between the Puppet and 𝑝𝑐 is blocked
by the router. This ensures that the extracted peers are only based
on the immediate getL-retL exchange between the Puppet and 𝑝𝑐 .
The sample is now left running for a short time period 𝑇crawl (con-
figured using the Analysis Package) after which the trace data is
downloaded. Then, using the IP- and port-POIs, the Puppeteer ex-
tracts IPs and ports from the trace data. For every IP- and port-POI
which are mapped together in the POI mapping, the extracted IPs
and ports are merged to obtain the endpoints of the shared peers.
The resulting address list is returned of the crawling primitive.

5 EVALUATION
Our utilization of POI beacons accelerates reverse engineering by
simplifying and enhancing the process, resulting in improved us-
ability and efficiency. However, we focus on malware in this paper
to show that our approach also works with software that generally
takes countermeasures against analysis.

We evaluated our generic POI discovery tool (see Section 4.1)
using two of the recently infamous ransomewares: Locky [18] and
Wannacry [21]. We proceeded as described in Section 4.2. By using
the contents of some of the encrypted files as DIOIs, we were able
to find the instructions of both malware which were responsible
for encrypting files. We also verified this using manual reverse

engineering (see Appendix F). Nevertheless, an extensive quanti-
tative evaluation would not be feasible for a larger set of general
malware due to the lack of ground truth, i.e., without reverse engi-
neering every malware. In contrast, for P2P botnets we are able to
construct a controlled evaluation environment providing us with
the required ground truth. Hence, we decided to rely upon the
evaluation of PinPuppet which leverages POI beacons to conduct
automatic P2P botnet monitoring to demonstrate the feasibility and
potential of our approach. As PinPuppet utilizes identified POIs to
extract shared peers from a P2P bot, we are thus able to analyze
whether our POI identification methodology works in identifying
relevant POIs. In the following, we first describe the experimental
setup and then present our findings.

5.1 Experimental Setup
As the main goal is to perform automated P2P botnet monitoring,
it is critical to have an environment that provides ground truth
information as well as the ability to repeat the experiments. Hence,
evaluation with real-world botnets would not be possible due to the
presence of churn and lack of a ground truth. Therefore, we decided
to deploy an isolated network testbed to bootstrap the P2P botnets
into forming an overlaywithin this network and evaluate PinPuppet
on them. In the following, we first elaborate our methodology in
bootstraping the botnets. Then, we discuss the research questions
that we are interested to answer in our evaluation.

5.1.1 Evaluation Environment. We picked four well-known real-
world unstructured P2P botnets to evaluate PinPuppet’s perfor-
mance: 1) ZeroAccess [13], 2) Sality [11], 3) Nugache [28], and 4)
Kelihos [15]. These four botnets were selected as they have wrecked
havoc in their heyday and Sality is even still active till date. we
bootstrapped botnets – using real-world, unmodified malware sam-
ples – locally, i.e., isolated from the Internet. For the identification
of POIs, this has no negative impact because the bot will not realize
that it is only talking to a local botnet. Thus it behaves the same and
uses the same instructions as if it were talking to a real botnet. We
performed this bootstrapping process for four Windows botnets:
ZeroAccess [13, 22], Sality [13], Nugache [28] , and Kelihos [14].
The hashsums of the corresponding samples used, are available in
Appendix A.

Our approach for making the botnet available in the testbed
setting is similar to the work of Calvet et al. for creating an in-
the-lab Waledac botnet [4]. In their approach, they exploited a
vulnerability found in the botnet’s communication protocol to reset
and manipulate the neighbor list of their emulated bots to establish
connections with other emulated bots. Hence, their approach is not
generalizable to other botnets unless a similar vulnerability exists
in other botnets. In contrast, our generic approach leverages regular
MM-mechanism features of P2P botnets to establish connectivity
with other bots in the testbed.

Due to limited space constraints, we only briefly explain the
concepts of our ’local botnet’8. We bootstrap our local botnet with
𝑛 +𝑚 peers (denoted by the set 𝑃local) as following:

8A complete setup and code for the setup will be made available in a public repository
for the camera ready version

ACSAC ’23, December 4–8, 2023, Austin, TX, USA See et al.

(1) Create 𝑛-VMs with IPs from the sample’s bootstrap list and
execute the sample on the VMs. These peers are called the
“local bootstrap peers”.

(2) Create𝑚-VMswith arbitrary public IP addresses. These peers
will contact the local bootstrap peers, i.e., the initial 𝑛-VMs,
and join the botnet overlay. Note that this is a normal be-
havior similar to a newly infected machine that inherits the
neighbor list of the infecting node as its own bootstrap list.

For all botnets except Nugache, we utilized 𝑛 = 1 local bootstrap
peers and𝑚 = 40 other peers. Due to the nature of the Nugache’s
MM mechanism which has a relatively small-sized neighbor list,
we adapted to 𝑛 = 8 and 𝑚 = 40. Further information on the
configuration of the four local botnets can be found in Appendix
C and our public repository. From this point onwards, we use live
snapshots to save the state of all the VMs within the local botnet.
This allows us to restore the state later on when running PinPuppet
(see Section 4.3.3).

5.1.2 ResearchQuestions. In the following, we briefly introduce
our four research questions and elaborate the corresponding exper-
imental setup.

RQ1 – Slowdown: To what extent is the malware affected in terms
of a delay in execution of instructions due to the overhead from the
PinPuppet instrumentation? Instrumenting a binary means adding
overhead in terms of additional instructions that needs to be ex-
ecuted during runtime, in our case Intel pin and our PinPuppet
pintool. If the instrumentation introduces a significant delay to the
regular execution of malware instructions, a sample’s behavior may
be altered, for instance, due to transmission timeouts. Therefore,
prior to exploring the utility of POIs, we conduct an investigation
to determine the feasibility, taking into account the associated over-
head. To measure the impact of the introduced overhead across the
different samples, we measure the time each sample sends out its
first (𝑡0), 20th (𝑡1), and 40th (𝑡2) message during execution for both
scenarios, i.e., with and without instrumentation. For the analysis
we then compare the values𝑇0 := 𝑡0−0,𝑇1 := 𝑡1−𝑡0, and𝑇2 := 𝑡2−𝑡1.
Each sample was evaluated five times for each measurement.

RQ2 – Identification: How effective is our identification method
in identifying high-quality POIs? Our crawling primitive heavily
depends upon the availability of high-quality POIs, i.e., high con-
fidence score (Section 3.4). To answer this research question, we
analyze the confidence scores of all POIs and their distribution
according to bins that are called confidence-classes. Confidence
class 0 corresponds to the interval [0.0; 0.1], class 1 to the interval
(0.1; 0.2], etc..

RQ3 – POI confidence score Quality: How well does the confidence
score predict the quality of extracted IPs for IP-POIs? The POI confi-
dence score metric needs to be a good estimator of the quality of an
IP-POIs. On the one hand, if the confidence score were overestimat-
ing the quality, we would extract spurious IPs. On the other hand,
if the confidence score were underestimating the quality, we would
disregard good POIs and potentially miss out extracting some IPs.

To quantify the quality of the results extracted by POIs, we
further introduce the correctness metric. To calculate this metric, we
refer to the set of all peers extracted by a POI as 𝑃extracted. The sets

𝑃bootstrap and 𝑃local refer to the set of all bootstrap peers and all
peers in the local botnet, respectively. Note that in our local botnet,
𝑃bootstrap ∩ 𝑃local ≠ ∅. A peer is considered extracted correctly if
and only if it is in the set 𝑃bootstrap ∪ 𝑃local. The correctness for a
POI is then defined as:

correctness =
|𝑃extracted ∩ (𝑃bootstrap ∪ 𝑃local) |

|𝑃extracted |
(3)

RQ4 – Monitoring: How effective is PinPuppet in leveraging POIs
to monitor the local botnet? Verification of the ability of PinPuppet
to crawl a botnet would also indirectly validate the methodology
for POI identification and prove their usefulness as beacons. For
PinPuppet, among others, the crawling primitive extracts (new)
peers when it receives shared peers in the response messages for
the getL messages, i.e., a retL message, from bots within the local
botnet. With this information, PinPuppet can identify new peers
and subsequently request or crawl all newly discovered peers.

For the evaluation, we used the crawling primitive to crawl 100
random peers from 𝑃local (peers can be crawled multiple times).
Then, we classified all extracted peers 𝑃extracted according to COR-
RECT, WRONG, and BOOTSTRAP. Extracted peers are classified
as CORRECT if they were part of the local botnet CORRECT :=
𝑃extracted ∩ 𝑃local. Meanwhile, if the extracted peers are not part of
the local botnet but was present in the bootstrap list, they are
considered BOOTSTRAP := 𝑃extracted ∩ (𝑃bootstrap − 𝑃local). Fi-
nally, if the extracted peers are not part of the local botnet nor
the bootstrap list, the extracted peers are classified asWRONG :=
𝑃extracted − 𝑃bootstrap − 𝑃local.

5.2 Results
In the following, we present our evaluation results based on the
research questions outlined in Section 5.1.2.

RQ1 – Slowdown. From our analysis, the additional delays intro-
duced for 𝑇1 and 𝑇2 with and without PinPuppet did not have any
adverse effects towards the MM-related communication activities
of the malware. The complete result of our analysis is presented in
Appendix E. The largest (average) difference between instrumented
and uninstrumented execution, i.e, without intel pin, was recorded
for Kelihos with a 6.5% (12.95 seconds) increase for 𝑇1. This tim-
ing delay for 𝑇1 is rather expected and evident for all botnets, as
they mostly wait after 𝑡0, e.g., for network responses, incoming
requests, or by idling. In addition, our filtering mechanisms (see
Section 4.3.3) further limit the number of times an instruction is
traced and thus reduces the additional overhead introduced in the
analysis. Throughout the evaluation, we have used a limit of 1000,
i.e., each instruction was traced at most 1000 times. This value is
a good starting point as the bootstrap lists of our botnets had less
than 1000 peers, thus we expect relevant instructions to be executed
less than 1000 times in a single MM-cycle. However, the limit value
is not that important as long as it is large enough to capture enough
instruction executions such that it paints an accurate picture of the
data processed by the instructions.

RQ2 – POI confidence score Effectiveness. The distribution of POIs
identified by PinPuppet for each botnet in the evaluation set is
depicted in Figure 3. Due to the fact that the confidence score is

Binary Sight-Seeing: Accelerating Reverse Engineering via Point-of-Interest-Beacons ACSAC ’23, December 4–8, 2023, Austin, TX, USA

not used for filtering the port-POIs (cf. Section 4.3.3), the plots only
contain the data for IP-POIs.

Based on our analysis single instruction-POIs, i.e., the types
“Register” and “Memory”, were identified for all botnets. Moreover,
there are at least a few POIs that have a high confidence score, i.e., a
confidence class of eight or nine. In addition, our analysis revealed
that multiple instruction-POIs were identified only for Kelihos and
Nugache. Upon further investigation using the identified beacons
for Nugache, we discovered a code region that is responsible to store
peers in the registry using ASCII representation. As for the two
Kelihos’ multiple instruction POIs with confidence class of 0, the
were caused by the access of instruction to the memcpy function.

Compared to single instruction-POIs, very fewmultiple instruction-
POIs with a high confidence score were found. The concept and def-
inition of confidence scores are not robust for multiple instruction-
POIs compared to single instruction-POIs (cf. Section 4.3.3). Since
PinPuppet heavily depends on high-quality POIs to automatically
crawl the P2P botnets, multiple instruction-POIs are not considered
to avoid introducing poor quality POIs which would adversely af-
fect the effectiveness of PinPuppet. Regardless, multiple instruction-
POIs are still very useful in a generic setting as it is the only option
to discover long DIOIs, i.e., fitting more than a single instruction
(cf. Section 3.4).

RQ3 – Identification. The detailed analysis of the data for all
botnets and POIs is presented as a scatter plot in Figure 4. Note that
markers are merged and their size are increased when there are
multiple POIs having the identical confidence score and correctness.
The red-dashed line is the identity line (𝑥 = 𝑦) and the green-dotted
vertical line indicates our confidence score threshold of 0.8 which
was determined through a parameter study (see Appendix D). The
threshold is set < 1.0 as it is not always possible to identify all peers
within the local botnet via crawling.

The correctness, as defined in Section 5.1.2, can only be calcu-
lated when 𝑃local is known. With a real-world botnet 𝑃local is often
unknown, thus the correctness cannot be calculated. The goal for
the POI confidence score is to estimate the correctness without
overestimating it. For example, if a POI with a confidence score of
0.9 has a correctness of 0.2, this would mean that a lot of spurious
peers were extracted. For our analysis in Figure 4, this means that
the POIs should be ideally above the red line. This is mostly the
case with a few exceptions that are below the line. Based on our
filtering based on the confidence score threshold, i.e., ≥ 0.8, all the
POIs are on or above the red line, i.e., not overestimated. Finally,
as explained in Section 4.3.3, underestimation is also possible as
𝐷 may not necessarily be complete. In our analysis, these are the
markers way above the red line.

RQ4 – Monitoring. For each botnet, we compared the classifica-
tion results with and without applying the confidence score thresh-
old as depicted in Table 1. The results are split up between “Without
confidence score threshold,” i.e., by using all identified POIs, and
“With confidence score threshold”, i.e., removing results from POIs
with a confidence score below 0.8. In addition, we also show the
average confidence score used by the POIs to extract the results
of each category. For simplicity, the term ”correct“ is used in the
following if a peer falls into the CORRECT category. This applies
analogously to wrong peers and bootstrap peers.

First, we observed that the confidence score threshold helps to ef-
fectively decrease |WRONG|. As the size of WRONG can adversely
affect the crawler’s performance, e.g., random data interpreted as
IP addresses, we further investigated the nature of the peers in
WRONG after applying the confidence score threshold. We com-
pared the sets WRONG from each of the 100 crawl iterations with
each other (from here on,WRONG𝑖 refers to the setWRONG ob-
tained in the 𝑖-th iteration) by calculating the average Jaccard index
for each pair (WRONG𝑖 ,WRONG𝑗) where 𝑖 < 𝑗 . For Nugache and
Kelihos, the resulting similarity scores are 1.0, i.e., the set WRONG
is consistent across all iterations and thus would become negligi-
ble with an increasing number of iterations (repeating peers can
be ignored when crawling). We speculate that the large size of
|WRONG| = 32 for Kelihos stems from an undiscovered peer list,
which are contacted only in certain circumstances. This speculation
is supported by the fact that WRONG always contain the same 32
peers and 26 IPs are reported to be associated with Kelihos 9.

For Sality, the similarity Score is 0.008. Throughout the analysis,
except for three WRONG𝑖 sets which interacted with a data not in
𝐷 , the rest contained no peers, i.e., empty. If the emptyWRONG𝑖

sets were excluded from the similarity score calculation, this would
result in a high similarity score of 0.802. Hence, they would not
adversely impact any monitoring performed by PinPuppet.

Second, our findings validated that PinPuppet’s crawling primi-
tive can extract correct peers with |CORRECT| > 0 for each crawl
cycle. However, the maximum number of correct peers that can be
extracted per crawl cycle is dependent on the MM-protocol used
by the botnet [13], e.g., limited neighbor list replies. Our initial ex-
pectation was that the average POI confidence score for CORRECT
and BOOTSTRAP would be greater than WRONG after applying
the threshold. This was the case except for Kelihos and Sality which
had an equal confidence score with the other two categories. For Ke-
lihos, we attribute this to the incomplete 𝐷 , i.e., undiscovered peer
list. Meanwhile, for Sality, the similar high score of 1.0 is mainly
due to the fact that a particular non-IP data was extracted using
the POI three times during the entire evaluation. Hence, when con-
sidering all non-empty unique elements WRONG, unfortunately,
the average confidence score is considered to be 1.0 as well.

Two additional interesting observation are that for Sality and
Kelihos, a big part of the bootstrap list is extracted each crawl
cycle, and that Kelihos extracts almost all local peers each crawl
cycle (|𝑃local | = 41 compared to |CORRECT| = 40.79). For Sality
|𝑃bootstrap | = 740 but due to the fact that |𝑃bootstrap ∩ 𝑃local | = 1,
we get that |BOOTSTRAP| = 739 is the maximum amount possible
for this metric.

Based on the results outlined above, we can conclude that extract-
ing shared peers from instrumenting a malware sample is feasible
idea and suitable using PinPuppet. Hence, one can explore using
the crawling primitive to develop a full-fledged crawler for live
deployment of automated botnet monitoring.

6 DISCUSSION OF ADVERSARIAL ATTACKS
It is only natural to expect malware authors to attempt to make POIs
less informative to hinder analysis using our proposal. Typical ob-
fuscation techniques such as adding dead codes, modifying control

9https://pastebin.com/9euC4K9N

ACSAC ’23, December 4–8, 2023, Austin, TX, USA See et al.

110

120

0 1 2 3 4 5 6 7 8 9
Confidence Class

0

10

20

30

40

Nu
m

be
r o

f P
OI

s

(a) ZeroAccess

0 1 2 3 4 5 6 7 8 9
Confidence Class

0
2
4
6
8

10
12
14
16

Nu
m

be
r o

f P
OI

s

(b) Sality

0 1 2 3 4 5 6 7 8 9
Confidence Class

0

5

10

15

20

25

Nu
m

be
r o

f P
OI

s

(c) Nugache

17
18
19
20

0 1 2 3 4 5 6 7 8 9
Confidence Class

0
1
2
3
4
5
6
7
8
9

Nu
m

be
r o

f P
OI

s

(d) Kelihos

Figure 3: The distribution of confidence scores of POIs identified for each botnet.

Without confidence score threshold With confidence score threshold (≥ 0.8)
ø (𝑛 = 100) Avg. confidence score ø (𝑛 = 100) Avg. confidence score

Ze
ro
Ac

ce
ss |𝑃extracted | 91.89 (𝜎 ≈ 8.62) 0.44 (𝑛 = 100 𝜎 ≈ 0.01) 17.00 (𝜎 ≈ 0.14) 0.94 (𝑛 = 100 𝜎 ≈ 0.01)

|CORRECT| 15.91 (𝜎 ≈ 0.51) 0.48 (𝑛 = 100 𝜎 ≈ 0.05) 1.00 (𝜎 ≈ 0.14) 0.85 (𝑛 = 99 𝜎 ≈ 0.01)
|BOOTSTRAP| 16.00 (𝜎 ≈ 0.00) 0.62 (𝑛 = 100 𝜎 ≈ 0.01) 16.00 (𝜎 ≈ 0.00) 0.96 (𝑛 = 100 𝜎 ≈ 0.01)
|WRONG| 59.98 (𝜎 ≈ 8.39) 0.20 (𝑛 = 100 𝜎 ≈ 0.01) 0.00 (𝜎 ≈ 0.00) n/a

Sa
lit
y

|𝑃extracted | 742.09 (𝜎 ≈ 1.11) 1.00 (𝑛 = 100 𝜎 ≈ 0.00) 741.12 (𝜎 ≈ 1.07) 1.00 (𝑛 = 100 𝜎 ≈ 0.00)
|CORRECT| 1.94 (𝜎 ≈ 0.24) 0.83 (𝑛 = 100 𝜎 ≈ 0.03) 1.94 (𝜎 ≈ 0.24) 1.00 (𝑛 = 100 𝜎 ≈ 0.00)

|BOOTSTRAP| 739.00 (𝜎 ≈ 0.00) 1.00 (𝑛 = 100 𝜎 ≈ 0.00) 739.00 (𝜎 ≈ 0.00) 1.00 (𝑛 = 100 𝜎 ≈ 0.00)
|WRONG| 1.15 (𝜎 ≈ 1.05) 0.29 (𝑛 = 97 𝜎 ≈ 0.02) 0.18 (𝜎 ≈ 1.03) 1.00 (𝑛 = 3 𝜎 ≈ 0.00)

N
ug

ac
he

|𝑃extracted | 14.09 (𝜎 ≈ 0.72) 0.98 (𝑛 = 100 𝜎 ≈ 0.00) 13.09 (𝜎 ≈ 0.72) 0.99 (𝑛 = 100 𝜎 ≈ 0.00)
|CORRECT| 3.45 (𝜎 ≈ 0.80) 0.98 (𝑛 = 100 𝜎 ≈ 0.01) 3.45 (𝜎 ≈ 0.80) 0.99 (𝑛 = 100 𝜎 ≈ 0.00)

|BOOTSTRAP| 8.64 (𝜎 ≈ 0.71) 0.99 (𝑛 = 100 𝜎 ≈ 0.00) 8.64 (𝜎 ≈ 0.71) 0.99 (𝑛 = 100 𝜎 ≈ 0.00)
|WRONG| 2.00 (𝜎 ≈ 0.00) 0.48 (𝑛 = 100 𝜎 ≈ 0.00) 1.00 (𝜎 ≈ 0.00) 0.92 (𝑛 = 100 𝜎 ≈ 0.00)

Ke
lih

os

|𝑃extracted | 301.98 (𝜎 ≈ 12.89) 0.63 (𝑛 = 100 𝜎 ≈ 0.06) 235.79 (𝜎 ≈ 1.49) 0.85 (𝑛 = 100 𝜎 ≈ 0.00)
|CORRECT| 40.79 (𝜎 ≈ 1.49) 0.46 (𝑛 = 100 𝜎 ≈ 0.12) 40.79 (𝜎 ≈ 1.49) 0.85 (𝑛 = 100 𝜎 ≈ 0.00)

|BOOTSTRAP| 163.00 (𝜎 ≈ 0.00) 0.76 (𝑛 = 100 𝜎 ≈ 0.03) 163.00 (𝜎 ≈ 0.00) 0.85 (𝑛 = 100 𝜎 ≈ 0.00)
|WRONG| 98.19 (𝜎 ≈ 12.41) 0.72 (𝑛 = 100 𝜎 ≈ 0.02) 32.00 (𝜎 ≈ 0.00) 0.85 (𝑛 = 100 𝜎 ≈ 0.00)

Table 1: Analysis of the average number of peers extracted for each crawl iteration classified by category.

flow, etc. [32] do not affect POIs as there will still be instructions
which process data using a particular context. Furthermore, we
successfully applied our approach to pack all our malware samples
using UPX [24] or a custom packer. Despite encountering various
packing mechanisms, none were able to bypass our technique.

Nevertheless, future malware that leverage code virtualization
techniques built upon VM technologies would definitely pose a
problem [17]. Such malware will no longer exhibit useful POIs, as
they only execute virtual instructions that would appear random
and misleading to our approach.

In Section 4.1, we assumed all possible anti-Pin countermeasures
to be circumvented. This is required due to Pin not being specifically
designed for malware analysis. Again we did not need to modify
our malware samples in any way, hinting that concrete anti-pin
mechanisms are not that common. However, there are other DBI

frameworks similar to Pin with added anti-instrumentation hard-
enings, e.g., PEMU [33] and PANDA [7]. For instance, Pin operates
from within the same memory space as the process being instru-
mented, PEMU instruments a process running within a VM from
outside of the VM. Thus PEMU does not introduce memory arti-
facts that could be detected by the instrumented process. However,
even hardened frameworks are not fully transparent to the appli-
cation being instrumented. Considering the lack of development
of PEMU at the time of writing, we opted for Pin which had better
development, documentation, and support.

An adversary could also employ mechanisms that are specifically
targeting our POIs identification process. Firstly, the deliberate in-
troduction of irrelevant POIs within the binary. A malware could be
designed to additionally process legitimate botnet data at dead ends
in control flows. While this action does not change the behavior

Binary Sight-Seeing: Accelerating Reverse Engineering via Point-of-Interest-Beacons ACSAC ’23, December 4–8, 2023, Austin, TX, USA

0.0 0.2 0.4 0.6 0.8 1.0
Confidence Score

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

ct
ne

ss

ZeroAccess Sality Nugache Kelihos

Figure 4: The correctness of POIs.

of the malware itself, the additional instructions would however
be marked as POI by our methodology. As such, manual reverse
engineering could again become more labor intensive, i.e., due to
irrelevant beacons. Nevertheless, despite the introduction of the
irrelevant POIs, the relevant POIs would still remain a subset of all
identified POIs. As such, automated analyses similar to PinPuppet
would not be affected by this attack.

Secondly, an adversary could try to actively manipulate the POI
confidence score. For instance, a P2P bot could always include a
subset of random IPs and ports within a valid retL message that
would eventually ignored by the recipient bot. Since these “peers”
are never contacted, they would also not appear in 𝐷 . Hence, the
POI confidence score for would be artificially lowered, making it
harder to compare the quality of POI. This could cause PinPuppet
to extract erroneous peers thus significantly hindering its crawling
capabilities.

7 CONCLUSION AND FUTUREWORK
Malware reverse engineering is a tedious and labor-intensive task
that can provide valuable insights to detect, monitor, or remediate
malware. In this paper, we proposed a method to introduce POI
as beacons to aid reverse engineers in analyzing malware. POIs
are instructions that are found to interact with user-specifed data
(DIOIs) that allows an analyst to focus, i.e., via the beacons, on
the main goals of dissecting the malware. The identification of the
beacons can be influenced by the analyst by providing goal-relevant
data, e.g., filecontent – to discover encryption related routines,
within the proposed methodology. To demonstrate the feasibility
and the potentials offered by POIs, we analyze two ransomware
and successfully identify their encryption routines. Additionally
we have developed a prototype called PinPuppet that is able to
automatically crawl four well-known P2P botnets. Moreover, our
POI scoring mechanism succesfully managed to reduce the number
of falsely extracted peers in our crawling. As future work, we would

like to investigate combining our approach with dynamic taint
tracking to enhance POI identification.

ACKNOWLEDGMENTS
This work has been partly funded by Universiti Sains Malaysia’s
Short Term Grant [304/PNAV/6315576].

REFERENCES
[1] Golam Sarwar Babil, Olivier Mehani, Roksana Boreli, and Mohamed-Ali Kaafar.

2013. On the effectiveness of dynamic taint analysis for protecting against private
information leaks on Android-based devices. In 2013 SECRYPT. 1–8.

[2] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and Alexan-
der Pretschner. 2016. Code obfuscation against symbolic execution attacks. In
Proceedings of the 32nd ACSAC. 189–200.

[3] Thomas Barabosch, Adrian Dombeck, Khaled Yakdan, and Elmar Gerhards-
Padilla. 2015. BotWatcher. In Research in Attacks, Intrusions, and Defenses.
Springer International Publishing, Cham, 565–587.

[4] Joan Calvet, Carlton R. Davis, Jose M. Fernandez, Jean-Yves Marion, Pier-Luc
St-Onge, Wadie Guizani, Pierre-Marc Bureau, and Anil Somayaji. 2010. The case
for in-the-lab botnet experimentation: creating and taking down a 3000-node
botnet. In Proceedings of the 26th ACSAC. 141–150.

[5] Lorenzo Cavallaro, P. Saxena, and R. C. Sekar. 2007. Anti-Taint-Analysis : Practical
Evasion Techniques Against Information Flow Based Malware Defense.

[6] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: a generic dynamic
taint analysis framework. In Proceedings of the 2007 international symposium on
Software testing and analysis. 196–206.

[7] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and Ryan Whelan.
2015. Repeatable reverse engineering with PANDA. In Proceedings of the 5th
Program Protection and Reverse Engineering Workshop. 1–11.

[8] Julien Duchene, Colas Le Guernic, Eric Alata, Vincent Nicomette, and Mohamed
Kaâniche. 2018. State of the art of network protocol reverse engineering tools.
Journal of Computer Virology and Hacking Techniques 14, 1 (2018), 53–68.

[9] Kevin P Dyer, Scott E Coull, and Thomas Shrimpton. 2015. Marionette: A pro-
grammable network traffic obfuscation system. In 24th USENIX Security Sympo-
sium (USENIX Security 15). 367–382.

[10] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014),
1–29.

[11] Nicolas Falliere. 2011. Sality: Story of a peer-to-peer viral network. Technical
Report, Symantec Corporation 32 (2011).

[12] Claudio Guarnieri. 2010. Cuckoo Cuckoo Sandbox. cuckoosandbox.org. Accessed:
2020-04-11.

[13] Shankar Karuppayah. 2018. Advanced Monitoring in P2P Botnets: A Dual Perspec-
tive. Springer.

[14] Max Kerkers, José Jair Santanna, and Anna Sperotto. 2014. Characterisation of
the kelihos. b botnet. In IFIP AIMS. Springer, 79–91.

[15] Max Kerkers, José Jair Santanna, and Anna Sperotto. 2014. Characterisation of the
Kelihos.B Botnet. In Monitoring and Securing Virtualized Networks and Services,
Anna Sperotto, Guillaume Doyen, Steven Latré, Marinos Charalambides, and
Burkhard Stiller (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 79–91.

[16] Clemens Kolbitsch, Thorsten Holz, Christopher Kruegel, and Engin Kirda. 2010.
Inspector gadget: Automated extraction of proprietary gadgets from malware
binaries. In 2010 IEEE Security and Privacy. IEEE, 29–44.

[17] Kaiyuan Kuang, Zhanyong Tang, Xiaoqing Gong, Dingyi Fang, Xiaojiang Chen,
and ZhengWang. 2018. Enhance virtual-machine-based code obfuscation security
through dynamic bytecode scheduling. Computers & Security 74 (2018), 202–220.
https://doi.org/10.1016/j.cose.2018.01.008

[18] Malwarebytes Labs. [n. d.]. Locky: Ransom.Locky | Malwarebytes Labs | De-
tections. https://blog.malwarebytes.com/detections/ransom-locky/. Accessed:
2022-01-31.

[19] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. 2010. Automatic reverse en-
gineering of data structures from binary execution. In Proceedings of the 11th
Annual Information Security Symposium.

[20] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. Acm
sigplan notices 40, 6 (2005), 190–200.

[21] Savita Mohurle and Manisha Patil. 2017. A brief study of wannacry threat:
Ransomware attack 2017. International Journal of Advanced Research in Computer
Science 8, 5 (2017), 1938–1940.

[22] AlanNeville and Ross Gibb. 2013. ZeroAccess Indepth. Symantec Security Response
(2013).

ACSAC ’23, December 4–8, 2023, Austin, TX, USA See et al.

[23] James Newsome, David Brumley, Jason Franklin, and Dawn Song. 2006. Replayer:
Automatic protocol replay by binary analysis. In Proceedings of the 13th ACM
conference on Computer and communications security. 311–321.

[24] Markus F.X.J. Oberhumer, László Molnár, and John F. Reiser. [n. d.]. UPX: The
Ultimate Packer for eXecutables - Homepage. https://upx.github.io/

[25] Tonya Riley. 2020. The Cybersecurity 202: Global losses from cy-
bercrime skyrocketed to nearly $1 trillion in 2020, new report finds.
washingtonpost.com/politics/2020/12/07/cybersecurity-202-global-losses-
cybercrime-skyrocketed-nearly-1-trillion-2020/. Accessed: 2022-01-31.

[26] Edward Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You Ever
Wanted to Know about Dynamic Taint Analysis and Forward Symbolic Execution
(but Might Have Been Afraid to Ask). Proceedings - IEEE Security and Privacy,
317–331. https://doi.org/10.1109/SP.2010.26

[27] August See, Leon Fritz, and Mathias Fischer. 2022. Polymorphic Protocols at
the Example of Mitigating Web Bots. In European Symposium on Research in
Computer Security. Springer, 106–124.

[28] S. Stover, D. Dittrich, John Hernandez, and S. Dietrich. 2007. Analysis of the
Storm and Nugache Trojans: P2P Is Here. login Usenix Mag. 32 (2007).

[29] Mingshen Sun, Tao Wei, and John CS Lui. 2016. Taintart: A practical multi-level
information-flow tracking system for android runtime. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. 331–342.

[30] Daniel Votipka, Seth Rabin, Kristopher Micinski, Jeffrey S Foster, and Michelle L
Mazurek. 2020. An observational investigation of reverse {Engineers’} processes.
In 29th USENIX Security Symposium (USENIX Security 20). 1875–1892.

[31] Zhi Wang, Xuxian Jiang, Weidong Cui, Xinyuan Wang, and Mike Grace. 2009.
ReFormat: Automatic reverse engineering of encrypted messages. In European
Symposium on Research in Computer Security. Springer, 200–215.

[32] Ilsun You and Kangbin Yim. 2010. Malware Obfuscation Techniques: A Brief Sur-
vey. Proceedings - 2010 International Conference on Broadband, Wireless Computing
Communication and Applications, BWCCA 2010, 297–300.

[33] Junyuan Zeng, Yangchun Fu, and Zhiqiang Lin. 2015. PEMU: A Pin Highly Com-
patible Out-of-VM Dynamic Binary Instrumentation Framework. In Proceedings
of the 11th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE ’15). Association for Computing Machinery, New York, NY,
USA, 147–160.

A HASHES OF MALWARE SAMPLES USED FOR
THE EVALUATION

Table 2 lists the MD-5 hashes of the samples used in our evaluation.

Botnet MD5
ZeroAccess ea039a854d20d7734c5add48f1a51c34

Sality d35cf3c2335666ac0be74f93c5f5172f
Nugache 0c859cfad2fa154f007042a1dca8d75b
Kelihos 9b68b45afa269ba1b0c01749fa4b942f

Wannacry 84c82835a5d21bbcf75a61706d8ab549
Locky d9e1e9cf9bc5322fa3de1f4cb731a624

Table 2: Hashes of the samples used.

B MATCHING IP-PORT POIS
Algorithm 2 illustrates the algorithm we used to map IP- and port-
POIs. This allows us to extract the exact IP and port combination
used to crawl a peer. This algorithm is not needed when a botnet
uses a fixed port for its MM-protocol (e.g., ZeroAccess).

Algorithm 2:Matching IP- and port-POIs.
Input: IPPois, PortPois, 𝑃bootstrap ∪ 𝑃socket
Data: PoiMapping<IPPoi, List<PortPoi>>: poiMapping
Result: The mapping between IP- and port-POIs.

1 // extractedIPs and extractedPorts correspond
2 // to the data processed at the respective POI.
3 for ipPoi, extractedIPs in IPPois do
4 for portPoi, extractedPorts in PortPois do
5 matches←true
6 for ip, port in zip(extractedIps, extractedPorts) do
7 if (ip, port) ∉ 𝑃bootstrap ∪ 𝑃socket then
8 matches←false
9 if matches then
10 poiMapping [ipPoi].append(portPoi)
11 return poiMapping

C AUXILARY INFORMATION ABOUT THE
LOCAL BOTNETS

The Nugache local botnet requires eight local bootstrap peers, as
every peer has at most 15 active connections [28]. Thus, only having
one local bootstrap peer is not enough. Not all peers who join the
overlay receive new local peers.

Sality does not use a fixed port and, instead, uses ports which
depend on the computer name [13]. To make our Sality local botnet
more realistic, all peers in the local botnet have unique computer
names. In addition, we have added NAT rules to set the correct port
for MM-traffic being sent to the local bootstrap peer.

D CONFIDENCE SCORE THRESHOLD
PARAMETER STUDY

The POI confidence score threshold needs to be carefully chosen
to find the balance between a) wrong peers being extracted and b)

Binary Sight-Seeing: Accelerating Reverse Engineering via Point-of-Interest-Beacons ACSAC ’23, December 4–8, 2023, Austin, TX, USA

Without PinPuppet
𝑇0 𝑇1 𝑇2

ZeroAccess 12.21 (𝜎 ≈ 0.24) 20.01 (𝜎 ≈ 0.00) 20.00 (𝜎 ≈ 0.00)
Sality 335.58 (𝜎 ≈ 0.56) 32.57 (𝜎 ≈ 0.00) 43.71 (𝜎 ≈ 0.00)

Nugache 0.61 (𝜎 ≈ 0.32) 405.60 (𝜎 ≈ 0.00) 405.60 (𝜎 ≈ 0.00)
Kelihos 0.78 (𝜎 ≈ 0.02) 200.30 (𝜎 ≈ 0.00) 600.29 (𝜎 ≈ 0.00)

With PinPuppet
𝑇0 𝑇1 𝑇2

ZeroAccess 14.81 (𝜎 ≈ 0.03) 19.97 (𝜎 ≈ 0.01) 20.00 (𝜎 ≈ 0.00)
Sality 689.36 (𝜎 ≈ 82.87) 32.51 (𝜎 ≈ 0.10) 43.44 (𝜎 ≈ 0.15)

Nugache 58.67 (𝜎 ≈ 32.80) 406.75 (𝜎 ≈ 0.08) 406.27 (𝜎 ≈ 0.09)
Kelihos 0.81 (𝜎 ≈ 0.02) 213.25 (𝜎 ≈ 0.31) 601.19 (𝜎 ≈ 0.03)

Table 3: The overhead measurements for each botnet in seconds (𝑛 = 5).

how many peers are extracted. We have analyzed these metrics in
Figure 5 and have determined 0.8 as the threshold (marked with a
gray-vertical line). 0.8 strikes a good balance between the number
of wrong extracted peers, i.e., the distance between the upper and
the lower lines, and the total number of extracted peers. 0.9, for
example, would not have been suitable as then, Kelihos only extracts
very few peers.

0

20

40

60

80

N
um

be
r

ZeroAccess

740

741

742

743

744
Sality

0.0 0.5 1.0
Confidence score threshold

11

12

13

14

N
um

be
r

Nugache

0.0 0.5 1.0
Confidence score threshold

0

100

200

300
Kelihos

Extracted Correct

Figure 5: Peer extraction analysis

E OVERHEAD MEASUREMENT RESULTS
The complete measurement data from the analysis of the overhead
introduced by using Pin to trace a sample is provided in Table 3. For
each botnet, the measurement was repeated 5 times. The evaluation
in Section 5.2 is based on this data.

F IDA AND GHIDRA PLUGINS FOR
IMPORTING AND DISPLAYING POIS
APPLIED TO RANSOMWARE

After having identified POIs using the process from Figure 1, a
reverse engineer can use the binary where the POIs were identified,
the generated list of POIs, and our IDA or Ghidra plugin for further
analysis. Note that the base address in IDA or Ghidra must be the
same as when extracting the POIs.

For the ransomware Locky and Wannacry it went as follows. We
use a VM with snapshot capability. In the VM an API monitor is
running, that monitors file reads and writes. Then the ransomware
is executed and our Pintool attached, step 2○ of Figure 1. After
the ransomware wrote (encrypted) some files, appending its file
extension (.osiris, .wnncry), the ransomware process is suspended.
The tracefiles as well as the encrypted files are copied to another
machine. By reverting the VM the unencrypted files can be restored
and can also be copied. The encrypted or cleartext file content bytes
can be used as 𝑑 ∈ 𝐷 (Step 3○). We used 4-16 bytes of the encrypted
file and of the unencrypted file. Using the algorithms of Section 3.3
POIs were automatically identified (Step 4○). We filter the POIs
that were found system modules (Step 4○). The memory regions
where the remaining POIs were located were then extracted as a
memory dump, one region each for both ransomware. Both regions
were not listed as modules, but contained executable code. Below,
the Ghidra plugin shows the results for Locky and the IDA plugin
shows the results for Wannacry. The shown POIs were validated
using dynamic analysis, i.e, whether file content is really accessed
at these points.

For Ghidra, the plugin is implemented in Python. After enabling
the Plugin in the script manager, it can be activated in the toolbar.
One is presented with a dialog box where one needs to select the
POIs JavaScript Object Notation (JSON) file. Afterwards, the POIs
show up as bookmarks in the disassembled code. Figure 6 shows
the Locky ransomware POI loaded in Ghidra.

The IDA plugin is also a Python script which is read by IDA.
This script can be selected via the menu File→Script File. . . . After-
wards, a dialog box will appear and allows the selection of a JSON

ACSAC ’23, December 4–8, 2023, Austin, TX, USA See et al.

file where the exported POIs are stored. These POIs are then im-
ported into IDA as disabled breakpoints. They are then visible as an
overview in the breakpoint view and also in the disassembler view.
Figure 7 shows such a view for the Wannacry ransomware. Unlike
Locky, several POIs were identified. The image shows an AES en-
cryption function where byte_10007A3C could be confirmed to be
the S-box.

As the reverse engineer knows the data set 𝐷 corresponding to
the POIs, it is immediately known which data is processed at the
marked code locations. Based on this information, reverse engineer-
ing efforts can be focused on relevant code regions. Based on the
goals of the analyst, these beacons would significantly reduce the
time take to review the malware under scrutiny.

Binary Sight-Seeing: Accelerating Reverse Engineering via Point-of-Interest-Beacons ACSAC ’23, December 4–8, 2023, Austin, TX, USA

Figure 6: Ghidra plugin overview for Locky (excerpt, Base Address: 0x1090000)

Figure 7: IDA plugin overview for Wannacry (excerpt, Base Address: 0x10000000)

Appendix E

Polymorphic Protocols at the Example of
Mitigating Web Bots

Abstract

Unwanted automation of network services by web robots (bots) increases the operation costs,
and affects the satisfaction of human users, e.g., in online games or social media. Bots impact
the revenue of service providers and can damage society by spreading false information. While
few bots are usually not a problem, a large number is. Thus, we focus on bots that directly
use a service’s application protocol, as they are the most efficient and easiest to scale. Current
solutions such as registration with personal data or CAPTCHAs are frustrating for users or
can be easily evaded. Anti-reverse engineering and solutions for digital rights management that
impede bot creation, e.g., unique client specific API keys, are only effective for the first bot.
In this paper, we introduce a novel obfuscation approach that we call polymorphic protocols
and that is inspired by polymorphic malware and methods to bypass censorship resistance.
When using polymorphic protocols, each client of a service has an own application protocol,
so that the costs of duplicating bots for an attacker significantly increases. For every bot
that an attacker wants to create, he has to extract and reimplement a protocol from a valid
client. We integrate our approach into an existing ecosystem and implement it exemplarily for
Protobuf and Java. Our results indicate that the overhead for service providers and users is
low, depending on the deployment and chosen protocol configuration. At the same time, our
polymorphic protocols significantly increase the attacker costs to create multiple bots, when
limited to conventional reverse engineering techniques only.

Reference

August See, L. Fritz, M. Fischer. Polymorphic Protocols at the Ex-

ample of Mitigating Web Bots. European Symposium on Research in

Computer Security, 2022. ©2022 Springer.

Contribution

The core idea, solution approach, and evaluation design for this publication stem from the
author of this dissertation. The second author performed the implementation and evaluation.
The third author contributed to the refinement of the work.

157

Polymorphic Protocols at the Example of
Mitigating Web Bots

August See, Leon Fritz, and Mathias Fischer

Universität Hamburg, Germany
{richard.august.see,leon.fritz,mathias.fischer}@uni-hamburg.de

Abstract. Unwanted automation of network services by web robots
(bots) increases the operation costs, and affects the satisfaction of human
users, e.g., in online games or social media. Bots impact the revenue of
service providers and can damage society by spreading false information.
While few bots are usually not a problem, a large number is. Thus, we
focus on bots that directly use a service’s application protocol, as they
are the most efficient and easiest to scale. Current solutions such as reg-
istration with personal data or CAPTCHAs are frustrating for users or
can be easily evaded. Anti-reverse engineering and solutions for digital
rights management that impede bot creation, e.g., unique client specific
API keys, are only effective for the first bot. In this paper, we introduce a
novel obfuscation approach that we call polymorphic protocols and that
is inspired by polymorphic malware and methods to bypass censorship
resistance. When using polymorphic protocols, each client of a service has
an own application protocol, so that the costs of duplicating bots for an
attacker significantly increases. For every bot that an attacker wants to
create, he has to extract and reimplement a protocol from a valid client.
We integrate our approach into an existing ecosystem and implement it
exemplarily for Protobuf and Java. Our results indicate that the over-
head for service providers and users is low, depending on the deployment
and chosen protocol configuration. At the same time, our polymorphic
protocols significantly increase the attacker costs to create multiple bots,
when limited to conventional reverse engineering techniques only.

1 Introduction

The automated use of Internet services is an essential building block of the In-
ternet and the web. Many services depend on each other. Examples are the
embedding of a weather feed into a web page or a service that provides a price
comparison by automatically querying different marketplaces. Many services pro-
vide specific interfaces for other services to allow the automation of their usage.
However, there are also services without such interfaces that are intended for hu-
mans only. Automated use of a service by a program, hereafter called a bot, can
affect the satisfaction of human users and can cause financial or social damage.
For example, the automated use of social media can be used to spread opinions
and false information, which can even influence elections [7].

2 A. See et al.

Automation of a service can be done in different ways [3]. The most effi-
cient approach is to automate API of the service. Using the API directly only
requires a script. By simply executing the script multiple times, it is possible to
create a large number of bots, e.g., to influence voting opinions on social media
through nationwide spamming [7]. This puts service providers in a dilemma. A
service needs to be easy and quick to use, as complicated requirements, e.g.,
for registration scare users away [14]. But registration without requiring limited
resources such as phone numbers or passports makes it easier to create a bot
army. The main problem is that automation can be made harder for attackers,
but not completely prevented as human users must still be able to use the service
without too much friction.

The threat model of this paper is as follows: The focus lies on services with
a state tied to an entity, e.g., game progress or social media likes bound to
an account. These services in particular suffer from bots, as there is a gain in
running multiple bots. For example, it can be beneficial to use hundreds of bots
to control hundreds of social media accounts. However, there is no gain in using
hundreds of bots to query the static content of some blog or news portal. The
attacker is not limited to a subset of reverse engineering techniques, but limited
to using the application protocol to create bots.

In many cases, CAPTCHAs are the first and last defence against bots. How-
ever, they introduce user friction and are losing effectiveness as machine learn-
ing advances [24,2]. Other approaches use anti-reverse engineering techniques to
oppose Man-At-The-End (MATE) attackers [1], that have access to a client ap-
plication on a controlled device. Those approaches aim at making the extraction
and use of the application protocol more difficult, e.g., embedding (unique) API
keys in the client application or using obfuscation and anti-reverse engineering
techniques [23,12]. Most of these techniques only make it difficult to create the
first bot. Once a bot is created, it can be scaled again. But this is what makes
API bots so threatening: the ability to quickly and inexpensively spawn large
numbers of bots. Because this approach can be really harmful, this paper focuses
on how such automation can be restricted.

The main contribution of this paper is an approach to combat the cost-
efficient duplication of bots, which can be applied with low performance and
organizational overhead. In more detail, we make the following contributions:

– We propose a method, to increase the cost of duplicating bots by assigning
each client of the same service its own application protocol. We call this Poly-
morphic Protocols (PPs). While there are already many strong obfuscation
techniques for binaries (Tigress, Thermida) [10,27] and protocol obfuscation
techniques in the censorship resistance realm [11,21], we are the first to our
knowledge to use obfuscation of application protocols against bots.

– We implement the approach for the widely used protocol language protobuf
and the programming language Java1. It is easily applied to existing pro-
tocols and just requires the existing protobuf file as input. Everything else

1 Avaiable open source at https://github.com/UHH-ISS/polymorphic-protocols

Polymorphic Protocols at the Example of Mitigating Web Bots 3

is generated automatically so that it can even be used in a CI/CD pipeline
without the need for a developer.

– We evaluate the technical performance overhead of the approach. We also
discuss the organizational overhead for developers and the additional effort
for attackers to duplicate bots.

Note that polymorphic protocols are an obfuscation technique to make the
scaling of bots more difficult and not to prevent the creation of bots. The ap-
proach gains from being used along-side existing anti-reverse engineering mecha-
nisms that impede code extraction (slicing), e.g., anti symbolic execution, virtu-
alization, or just in time compilation [4,10]. Legitimate bots and interoperability
across different services is still possible, e.g., by providing special API keys after
thorough verification.

The rest of the paper is structured as follows. Section 2 discusses other ap-
proaches that make it harder to create bots. Section 3 explains how polymorphic
protocols can be created and applied. Section 4 describes the implementation,
evaluates and discusses the results. Finally, Section 5 concludes the paper.

2 Related Work

Regarding fighting bots there are mainly three different classes of approaches.
Proofs of being human, detecting unusual behavior and anti-analysis.

Proofs of being human. The main technique to identify humans are
CAPTCHAs [19,20], but also personal information often requested during the
registration. Such information could be, from easy to harder to provide, email
address, phone number, an image of the user holding an identity card. While
requiring an identity card for registration would likely solve the problem of un-
wanted automation, it is a hard and privacy-unfriendly requirement. Related
techniques try to detect human presence through hardware interaction. As an
example, Not-a-Bot [13] uses TPMs to add a tag to each network request sent
some time before a mouse or keyboard interaction.

Detecting unusual behaviour. These approaches try to detect bots so that
countermeasures can be taken. Well known CAPTCHA providers like [19,20] use
these approaches to reduce the disturbance for human users. Unfortunately, the
machine learning models are not public. A major criticism is that users then have
to send their data (browser fingerprinting [8]) and behaviour (mouse movement,
website traversal [19]) to third parties to assess whether or not a bot is present.
Another problem arises when a user cannot be classified as a human or a bot.
Then again approaches of the class proofs of being human like CAPTCHAs are
needed which have their own weaknesses[2,24].

Anti-analysis against MATE attackers. Approaches in this class try
to increase the cost of creating bots. It includes anti-reverse engineering and
obfuscation techniques, e.g., detecting whether a debugger is attached, binary
packing or even dummy code [12,23]. For network services, a common anti-
analysis technique is to authenticate the used application protocol using API

4 A. See et al.

keys prior to the use of TLS 2. To automate a service that uses this technique,
the application protocol and the relevant keys need to be extracted [15,16]. The
keys themselves can also be protected by anti-reverse engineering techniques.

Tigress [10], VMProtect [25] and Themida [27] are examples for advanced
software protection systems. They are applied to the source code of an applica-
tion and create a protected executable, using different anti-reverse engineering
and obfuscation techniques. However, even those advanced protection systems
do not obfuscate the protocol. If someone can reverse engineer the protocol, de-
spite the used protection system, the bot can again be scaled very easily. The
main problem of anti-reverse engineering is that it is difficult to quantify how
effective a technique is against an arbitrary attacker [1,26,4]. When a device is
fully controlled by an attacker, all techniques can only increase the cost for an
attacker to reverse engineer an application, but they cannot prevent it.

Polymorphic protocols are an obfuscation approach and thus related to pro-
tocol obfuscation techniques. Most of the approaches mentioned in the literature
are in the area of censorship resistance [21,11]. The objective is to bypass cen-
sorship and traffic inspection by cloaking specific traffic as usual traffic. Thus,
censored services can be accessed despite lacking encryption and techniques like
deep-packet inspection. All those approaches have the main focus on cloaking
traffic and consider performance and ease of use in other applications in the
second place. Also, they assume a different attacker, namely an attacker that
has only access to the traffic. Thus existing approaches cannot be directly used
as PP to combat bots.

3 Polymorphic Protocols

The core idea of limiting the cost-efficient duplication of API bots are polymor-
phic protocols. Every client for a service communicates with the service via its
own application protocol. This protocol can be seen as an identifier to distinguish
between clients. When a bot is simply duplicated, all duplicates would share the
same protocol. This way duplicates can be detected and excluded from further
communication with the service. This effectively increases the cost to create mul-
tiple different bots. To create an API bot army, bot creators can either manually
reverse engineer the application protocol from a different client for each bot that
is created which is laborious. Or they can find a way to automate the reverse
engineering and bot creation, but this is difficult on a technical level [18,22]. In
contrast, API keys can be much easier extracted, e.g., using function hooks, and
do not force the bot creators to modify their code for each new bot.

3.1 Basic Approach

An overview of the basic approach is given by Figure 1. The protocol specification
is the base protocol, used by the service. It specifies the format of messages as well
2 https://github.com/see-aestas/SINoALICE-API
https://github.com/see-aestas/JodelApi

Polymorphic Protocols at the Example of Mitigating Web Bots 5

as semantic information, e.g., if a message is time-critical or the dependencies
between messages (order of transmission). The client identifier is an identifier
for a client. Each client has a different identifier. Since our approach focuses
on services that hold a state over a client (cf. Section 1) this is already given,
because the service needs some way to match some state to a client. The secret
seed is exactly what it is named after.

Protocol generator
Secret seed

Client identifier

Protocol specification
Custom protocol

Public

Private

Can be public or private

Fig. 1. Polymorphic Protocol Generation Overview

The protocol generator gets the protocol specification and the client identifier
as well as the secret seed as an input. It outputs a new custom protocol that is
different from the base protocol but keeps all mandatory semantic dependencies.
Message formats, orders, encodings and other features are (pseudo)randomized
transformed. There are three main classes of so-called transformations. Figure 2
shows these as well as some example sub-classes.

Permutations Encodings Additions

RadixField
permutation Encryption Dummy

bytes

Field
hashing

Fig. 2. Possible transformation classes

The classes are: Permutations that are length-preserving and permute mes-
sage content, encodings that modify (parts of) a message, and additions that add
more information to a message. These so-called transformation classes are a col-
lection of different transformations under one label. This abstraction is needed to
compare the performance of different transformations. A class can also contain
sub-classes. For example, the class dummy bytes includes all transformations
that append some extra bytes to a message. The class field hashing includes all
transformations that hash all fields and then append the hash to the message.
This class is a subclass of dummy bytes as a hash can be considered as a special
way to generate dummy bytes. Here it is important to note that the transfor-
mations should ideally be hard to understand during reverse engineering. For

6 A. See et al.

example, a custom hash function to append bytes is harder to reverse engineer
than directly appending some bytes to a message. Other transformations shown
here are the field permutation where the order of data fields of a message is
permuted, radix encoding where a message is encoded to some other base and
encryption where a message is encrypted using some cipher. A developer can
always add more classes. The transformations are used to deterministically gen-
erate a custom protocol. The custom protocol is later integrated into the client
application. Each client has its own client identifier and thus custom protocol
to communicate with the same service. Only the secret seed must be private. Its
function is to prevent an adversary to generate valid custom protocols using the
protocol generator for a service that uses an unknown, secret seed.

3.2 Formal Model

A protocol P is defined as a set of message format specifications F and their
semantics S: P = {F, S}, F = {f1, f2, ..., fn} where f is a format specifica-
tion for some protocol message, e.g., f = {field1:int, field2:string-base64, ...,
fieldx:Object}. A generator G deterministically generates a new, custom pro-
tocol based on the base protocol P , client ID and the secret seed as inputs.
G(P, client, seed) 7→ P ′. The generator relies on transformations of message for-
mat specifications Tx(N,S) 7→ N ′, with N ⊆ F where x denotes a transforma-
tion class. Note that multiple message format specifications can be transformed
together. A transformation class is the assignment of different transformations
to a more generic class (cf. Figure 2). N ′ are then the new custom message
format specifications and the actual transformations that operate on the real
messages. For simplicity, Tx(m) 7→ m′, where m is some actual message from
the set of all valid protocol messages M , is used for transformations on the mes-
sages. Transformations can be applied on single message format specifications
or across multiple ones, respecting their dependencies and can also be chained.

Transformations are required to be easily computable and unambiguous in-
vertible, as an encoded message must be easily decoded. Transformation classes
are used to compare the performance across different schemes of transformations.
In this context, we are mainly assessing the impact on the resulting protocol.
Assume a developer builds the transformation class Tx. Now one would like
to estimate the effects on a protocol beforehand. How much additional data
is transmitted using the resulting protocol on average (∆Tx)? How expensive is
the calculation for the client and server? How different are the protocol messages
(∅Tx)? The calculation of the metrics is described in the following.

The difference between two transformations is denoted to as |Txi(N,S) −
Txj(N,S)| and |Tx| to the number of transformation in a transformation class.
The difference between two transformations is calculated using the normalized
compression distance (NCD) [17]. The metrics can be calculated numerically.
Let D1x be a set of uniform random sampled indices of transformations from
a transformation class x. Let D2x be a a set of pairs (i, j) where i ̸= j and
∄(i′, j′) ∈ D2x | i = j′ ∧ j = i′. The indices i, j are uniform random sampled

Polymorphic Protocols at the Example of Mitigating Web Bots 7

indices of transformations from a transformation class x. Let Ms ⊆ M , e.g.,
uniform random sampled.

The average distance ∆ of transformed protocol messages of Tx. A low value
indicates that a valid message might be easy to guess for an attacker.

∆Tx =
∑

m∈Ms

∑

(i,j)∈D2x

|Txi(m)− Txj(m)|
|Ms| ∗ |D2x|

(1)

The average compressed message length difference ∅ between original and
message transformed by Tx.

∅Tx =
∑

m∈Ms

∑

i∈D1x

|C(Txi(m))− C(m)|
|Ms| ∗ |D1x|

(2)

The uniqueness of transformations in a transformation class δ. Uniqueness
is closely related to collisions. A collision is when two different transformations
of the same transformation class transform a message into the same new mes-
sage. A low value indicates that an attacker might be able to successfully replay
monitored messages.

δTx =
|X|

|D1x| ∗ |Ms|
, X = {Txi(m) | i ∈ D1x | m ∈Ms} (3)

3.3 Transforming Protocols

Unconditional Protocol Transformations Unconditional transformations
include every transformation that can be done without knowing the semantic S
of messages. Those transformations do not require knowledge of the protocol.

Permutation : The protocol message is permuted.
Dummy bytes : The protocol message is appended with random bytes.
Hash : A hash is appended to the protocol message (SHA1 or SHA256 or MD5)
Radix : The protocol message is converted to another random base (2-255).

Especially using cryptographic routines as part of creating the protocol hard-
ens this approach against input reverse engineering approaches for encrypted
protocols like [28] since there is no clear boundary where the protocol message
is constructed and where it is encrypted.

Conditional Protocol Transformations For transformations in this class,
semantic information about the protocol must be available. This requires a for-
mal protocol specification which should also contain semantic information. A
distinction needs to be made between transformations that are applied to a
single message (S) and those that are applied to multiple messages (M).

Delay : Delay a non-critical message (S).

8 A. See et al.

Swap : Swap the sequence of messages (M).
Split : Split messages (S).
Merge : Merge messages (M).
Custom logic : Process messages already in some way on client side, e.g., cal-

culation of certain data (SM).

Transformations on multiple messages are more difficult to use and main-
tain for a developer as they may introduce side effects. In addition, semantic
changes in an application must be correctly transferred to the protocol. Thus,
conditional transformations are considered less safe than unconditional trans-
formations. The possible conditional transformations depend on the application
and the semantics of messages. While some transformations make it harder to
recover the protocol, e.g., Swap and all unconditional transformations, others
make it difficult to associate actions with sent network messages, e.g., the delay
transformation.

Randomizing Protocols The next step is to select transformations for a cus-
tom protocol and chain them together. For each message format specification
in a protocol, first possible conditional and then unconditional transformations
are selected. In the end, multiple transformations are applied to each format
specification. How many is up to the developer and also depends on the format
specification and semantics.

Algorithm 1: Selecting transformations
input: P - the base protocol P = {F, S}
input: prg - PRG initialized using client ID and secret seed
input: Tc - set of conditional transformations
input: Tu - set of unconditional transformations
Result: P ′ transformed custom protocol

1 F ′ = {}, S′ = S ;
2 for f ∈ F do
3 T ′

c, T
′
u = getAllowedTransformations(Tc, Tu, f, S’);

4 tc, tu = prg.choice(T ′
c, T

′
u) ;

5 f ′ = tc(f) // conditional transformation
6 F ′.add(tu(f’)) // unconditional transformation
7 S′.add(f, tc) // necessary for transforming multiple f

8 P ′ = {F ′, S′}

One possibility is to use a pseudo-random generator to select transforma-
tions, as displayed in Algorithm 1. The basic idea is that for each message format
specification f ∈ F a random, allowed unconditional and conditional transfor-
mation is applied. If no transformation is allowed, f is not transformed. If a
transformation of Tc is a transformation for multiple messages (multiple f), the
transformation is applied to all of them. This can be handled using the semantics

Polymorphic Protocols at the Example of Mitigating Web Bots 9

and identifying the allowed transformations in Line 3 and 7. How the allowed
transformations are selected depends on how the semantics are implemented.
One possibility to assign semantics via annotations of message format specifica-
tions (@delay, @not[Tx, Ty, ...]). The implementation and which semantics have
to be modeled depends heavily on the application.

While it is possible to use the algorithm without assigning semantics to for-
mat specifications, it can cost performance. For example, for video streaming
or downloading files, a relative increase of the transmitted data might not be
desired. This can be addressed by excluding transformations that increase the
data length, or by excluding this message completely from any transformation.

3.4 Using Polymorphic Protocols

Our approach enables the generation of custom protocols. How this is used is up
to the service.

Deployment Strategies We highlight two deployments.

Full-Polymorphic Each client has a different custom protocol.
Time-Polymorphic Each client has the same custom protocol, the protocol is

changed after a certain time.

Client

Service

Ingress

ok

get_protocol(id)

Protocol Generator

C
re

at
e

pr
ot

oc
ol

register(id, protocol)
protocol / binary

In
te

gr
at

e
pr

ot
oc

ol
/b

in
ar

y

In
st

an
tia

te
 p

ro
to

co
l

D
yn

am
ic

 in
st

an
tia

tio
n

of
 a

 c
us

to
m

 p
ro

to
co

l
im

pl
em

en
ta

tio
n

de
pe

nd
en

t

Bi
na

ry
 a

nd
 p

ro
to

co
l

ca
n

al
so

 b
e

pr
e-

bu
ilt

Tr
an

sl
at

io
n

co
ul

d
al

so

be
 in

te
rg

ra
te

d
di

re
ct

ly

in
 th

e
se

rv
ic

e

custom_protocol_hello(id)

custom_protocol_message
protocol_message

protocol_message
custom_protocol_message

Fig. 3. Overview of Possible Polymorphic Protocol Communication Usage

While the approach in this paper tries to keep the complexity, performance
loss, developer and user friction as low as possible, they still exist (Section 4).

10 A. See et al.

Thus, PPs are best used for applications that are already heavily affected by
bots, e,g, social networks or games and resource-intensive to emulate (mobile or
desktop applications). Figure 3 shows how dynamically instantiating and using
a PP, e.g., for Full-Polymorphic deployment, could be implemented. The client
starts with the capabilities to request a custom protocol. It sends its client ID
to the protocol generator. The protocol generator generates a custom protocol,
registers it at the ingress server and sends it to the client. Depending on the
use case the custom protocol is sent back as a standalone binary or a binary
fused with the main application. When the client wants to communicate with
the server it first sends a custom protocol hello. The custom protocol is looked
up at the ingress, server and instantiated. When a client receives the message
that the protocol is found and instantiated it can begin sending custom protocol
messages to the ingress. The ingress acts as a proxy and translates the custom
protocol messages back to protocol messages that can be understood by the
service. Note that the procedure in Figure 3 is meant as an example and there
are many more ways to use and deploy PPs.

Reducing Deployment Costs Polymorphic protocols do not necessarily have to
be dynamically loaded by the client and not every client must use a custom
protocol by default. A practical approach for mobile applications is to use PP
only on clients that are running on rooted devices or emulators. Devices running
unmodified systems must pass an integrity check, e.g, play integrity3 and share
one custom protocol. This check also ensures that a bot cannot simply use the
base protocol as it would need to pass those integrity checks. It is also possible
to assign a new protocol to a client after a certain time or number of protocol
messages. Another strategy is to give a set of devices the same custom protocol,
e.g., based on region, OS, IP address, update version or time. It can also be
coupled with bot detection systems, to control the protocol change cycle for
users. Slow for legitimate users, and fast for abusive users. Thus, the cost of
using a custom protocol can be reduced, as well as the user friction, as legitimate
users have fewer forced updates due to protocol changes.

4 Evaluation

In this section we are summarizing the evaluation results of our approach. For
that, we have evaluated the costs for service providers to use the approach and
the effort for attackers that want to build multiple bots for services protected
by a polymorphic protocol. We answer the following research questions:

RQ1 : What is the overhead of different transformations?
RQ2 : How does the approach compare to using unique and client-specific API

keys to hinder an attacker to create multiple bots for a service?
RQ3 : What is the technical and organizational overhead for a service that

wants to use polymorphic protocols?
3 https://developer.android.com/google/play/integrity/overview

Polymorphic Protocols at the Example of Mitigating Web Bots 11

4.1 Implementation

Our objective is to minimize the effort of using our approach. Instead of cre-
ating our own (unrestricted) protocol description language, we integrate it into
an existing ecosystem. For this, we have chosen to use Google protobuf as the
description language and extended their Java bindings to be compatible with
our approach. Porting the implementation to other programming or protocol
languages is possible. Currently, the implementation is not feature complete to
protobuf v3 4. We support the basic features, i.e., messages, all primitive (scalar)
data types, and nesting (inheritance). Other features may work, but are not fully
tested. Thus, if some service already uses protobuf and Java, creating a poly-
morphic protocol is effortless (cf. Appendix A).

As there is support for protobuf and java on all major systems, our approach
can be used on all these systems without adjustments. Our implementation1

only needs the proto file (protocol specification) as input and generates the
new custom protocol, i.e., another proto file and necessary code wrappers. The
wrappers are used by both the client and the server. To use the protocol, the
generated wrapper files only need to be integrated into the respective project by
replacing the old files and setting the package name.

4.2 Performance Evaluation

Using PPs comes with a performance overhead, which we evaluate in this sec-
tion. We evaluate the transformation classes first individually and then in their
combination with our protocol implementation. Everything is run on a Windows
11 computer I7 7700K CPU with 16GB DDr4 2660 Mhz RAM.

RQ1: Transformation Performance The metrics (average distance between
two transformed protocol messages ∆x, average compressed message length in-
crease in bytes ∅x , uniqueness of transformations δx) from Section 3.2 are used
to analyze the performance of the transformation classes. The number of dummy
bytes is limited to four and the radix transformation to the bases 2-255. Further-
more, we also measure the time for doing the transformation. Transformations
are applied directly to bytes. To not assume some specific protocol, we sample
100,000 protocol messages as random bytes with the length derived from a nor-
mal distribution N (100, 25). Each sampled message is transformed up to 1,000
times per transformation class.

The results (Table 1) indicate that not every transformation class is the same
and classes must be selected according to use cases. The permutation transfor-
mation does not increase the message length (by definition). Dummy bytes affect
the message length but are way faster to calculate. The hash transformation af-
fects the message length but is also fast to calculate. Since it is also about forcing
an attacker to invest as much work as possible to extract the different transfor-
mations, efficient but complex transformations are wanted. While an evaluation
4 https://developers.google.com/protocol-buffers/docs/proto3

12 A. See et al.

of transformation classes gives some insight into the performance, it does not
assess the performance and usage of the classes in a system.

Transformation class ∆x ∅x δx time
Permutation of message bytes 0.924 0 1 413.23 (s per 1 mil)
Dummy bytes (4) 0.086 4 1 1.07 (s per 1 mil)
Hash 0.261 26.6 1 2.91 (s per 1 mil)
Radix (2-255) 0.88 12.89 1 160.85 (s per 1 mil)

Table 1. Transformation class properties

RQ3: Protocol Performance While RQ1 evaluates the individual perfor-
mance of single transformations this does not allow to assess the performance
of the complete protocol. The performance, namely processing time, additional
program size, build time and resource utilization, is compared to the base proto-
col. Four different protocols are considered. The notation Pmessages,fields, e.g.,
P10,15 is a protocol with 10 different messages, each message has 15 fields. In the
following P denotes the base protocol and G(P) the transformed protocol gen-
erated from P . There are a total of 15 different (scalar) value types in protobuf.
For our evaluation we use all types equally often within one message. Thus, each
message always contains a multiple of 15 fields.

Build Overhead Table 2 shows the results of the build overhead. A build includes
the transformation of the protocol, the creation of wrapper classes, and the
compilation of the (new) protocol using the protobuf compiler.

G(P1,15) G(P100,15) G(P1,150) G(P100,150)

Build Time +3% +72% +9% +128%
Memory -14% +18% +33% +94%

Protocol Size +138% +144% +202% +295%
Table 2. Mean program build properties: Difference of polymorphic compared to the
original protocol in percent (N=100)

For PP, the size of the necessary wrapper classes is included in the protocol
size. As expected the build time for the PP is higher than for the base protocol.
However, the number of protocol messages seems to have a higher impact on the
build time and protocol size for PP than the number of fields. The protocol size
can be explained by the fact that for each message a separate additional java
wrapper is created for the transformations. This also affects the build time.

The peak memory utilization is harder to interpret as it is mostly dependent
on the protobuf compiler. The more and the larger the messages are, the more

Polymorphic Protocols at the Example of Mitigating Web Bots 13

memory is needed to create the protocol. That the build process for G(P1,15)
uses less memory than for P1,15 could be confirmed by multiple measurements.
A reason for this could not be found.

Client and Server Performance Table 3 shows the performance overhead of using
PP. Note that this is the overhead while processing messages. Thus, handling
multiple messages sequentially does not multiply the load. A division in client
and server is not necessary as PP can be implemented as a proxy that translates
a list of protocol messages (cf. Section 3.4). The performance for handling con-
nections is then that of the chosen reverse proxy. We divide the performance in
sending and receiving messages. In doing so performance assessments are pos-
sible for servers that primarily receive or send more data. Send Time includes
setting each field and serializing the message, Receive Time includes deserializing
and accessing all fields. Time on the wire is not measured. The data size is the
size of the serialized message. We choose random values for fixed-length fields
and 100 random bytes for dynamic fields, e.g., strings. We only consider single
messages since the time for multiple messages can be upscaled. We also do not
include dummy fields, as they just increase the message size to the set value.

G(P1,15) G(P1,75) G(P1,150) G(P1,225)

Send Time +118% +79% +117% +180%
Send Memory +130% +178% +150% +187%

Send CPU Load +85% +71% +83% +66%
Receive Time +41% +98% +116% +125%

Receive Memory +46% +12% +31% +85%
Receive CPU Load +85% +71% +83% +66%

Data size +23% +19% +24% +27%
Table 3. Mean protocol performance without dummy fields. Difference of polymorphic
protocol compared to the original protocol in percent (N=100)

The results show that PP are 2.09 times slower (around 1.5 ms) than the
base protocol and cause approx 76% more CPU and 102% more memory load
(average of send and receive performance). Thus, a service needs to spend approx
two times more resources to handle the same amount of clients. This can be
improved using optimizations described in Section 3.4.

The reason for this is that access to a field of a PP passes through two
wrapper classes. First, the wrapper created by our implementation is called,
which performs the transformation and additionally calls the wrapper created
by protobuf. For the base protocol, the wrapper created by protobuf is directly
used. Even though the PP are two times slower, this is in the area of single
milliseconds and should be negligible for non real-time applications. When using
PP around 1.2 times more data is used. Note that certain messages or fields, e.g.,
real-time messages or large byte arrays that are used to stream video data, can
be excluded from being transformed, thus saving data and computation time.

14 A. See et al.

4.3 Security Discussion

This section discusses the additional cost of an attacker against polymorphic
protocols as well as the organizational effort for service providers to use them.

RQ2: Attacker Cost Estimating the costs for an arbitrary Man-At-The-End
attacker is difficult and cannot be calculated accurately [1,26]. Many existing
techniques that assess how much an obfuscation costs an attacker [4,5] cannot
be applied to our scenario because they are targeted to a specific subset of
reverse engineering techniques. In contrast, our approach is about increasing the
cost of duplicating bots for an attacker and not targeted against any particular
reverse engineering technique. Testing our approach against automated protocol
reverse engineering approaches was also not possible, as many approaches focus
on unencrypted protocols[28] and only a few implementations are available 5.

To estimate the effort required by an attacker, we compare our approach to
the method currently used in practice, i.e., using API keys to encrypt and au-
thenticate protocols. We consider the Full-Polymorphic and Time-Polymorphic
deployment described in Section 3.4 as well as two different attackers.

Restricted-MATE Normal Man-At-The-End [1] attacker who has access to
the binary. The attacker is restricted and cannot automatically extract API
keys or the custom protocols (R-MATE).

Unrestricted-MATE MATE attacker, without any restriction and limitation
of reverse engineering techniques (U-MATE).

The attacker wants to setup multiple bots for the service. The U-MATE
attacker loses when it needs to put in manual work, as this already impedes the
creation of a bot army. We divide the bot creation into the reverse engineering
and bot writing phases.

R-MATE This attacker is probably most common since automatic extraction of
data (API keys) and code (polymorphic protocol) is difficult on an engineering
level, especially for encrypted protocols [28,18,22].

Using the Time-Polymorphic deployment the attacker needs to extract the
protocol or API key within the period. After that, the bot has to be written
within this period. Then the bot can be effectively duplicated and the attacker
can exploit the service. After some time the attacker must repeat all the steps.
Since the custom API key does not change the protocol, the attacker only has
to replace the key in the existing bot program. Using a PP, the entire protocol
of the bot needs to be replaced and all new transformations implemented. This
indicates that the development time for PP is larger than for API keys. The
argumentation for the Full-Polymorphic deployment strategy is analogues. Thus
for this limited attacker PP increase the cost of duplicating bots. The analysis
of the next attacker argues that since PP can include variable API keys, PP are
at least as hard to extract as API keys alone.
5 https://github.com/techge/PRE-list

Polymorphic Protocols at the Example of Mitigating Web Bots 15

U-MATE This attacker needs to automatically extract protocols from a given
binary. Whether this extraction happens for each update (Time-Polymorphic)
or multiple client binaries (Full-Polymorphic) does not matter. Thus, the two
deployment strategies are equivalent for the attacker. This results in comparison
on how much effort it takes to automatically extract an API key and how much
effort it takes to extract the communication protocol. A PP can also contain
encryption transformations and cryptographic keys. These keys can be hidden
and protected just like the API keys. Thus, the extraction of API keys can be
seen as a sub-problem of extracting a communication protocol and requires at
least as much effort as extracting API keys only.

The most effective attacks on PP are code reuse and slicing techniques, where
certain parts of a binary are reused or extracted, e.g, the communication pro-
tocol. The challenge here is to isolate and extract minimal and executable code
responsible for transforming network messages. In the simplest case, the attacker
just executes the whole application and uses dynamic binary instrumentation
techniques, e.g., code injection and hooks [6], to directly call the desired func-
tions. However, running the whole application is very resource-intensive and thus
not suitable for creating a large number of bots. Extracting minimal and exe-
cutable code is still an open research field and not completely reliable [26,9].
Note that defending against code reuse and slicing attacks is out of scope for our
approach. There is a lot of research [9,4] in this regard, including commercial
[25,27] and public tools [10], especially in the areas of digital rights management
and anti-reverse engineering. Those countermeasurements, e.g., function virtu-
alisation and just in time compiling, can be used together with our approach.

By using these techniques to hinder the attacker from using automated tech-
niques and tools, the attacker remains with the capabilities of the R-Mate at-
tacker and the approach can increase the effort to create a bot army. This shows
that PPs slow down an attacker more than API keys.

RQ3: Organisational cost The appropriate deployment depends heavily on
the needed security. Furthermore, optimizations discussed in Section 3.4 should
be used to decrease the operational and organizational cost.

Full-Polymorphic In this setting, the remote backend must provide a match-
ing endpoint for each custom protocol. A simple but resource-intensive way is
to keep them up all in parallel. Another option is to spin endpoints up dynami-
cally, however this requires development effort (cf. Figure 3). Due to the dynamic
nature of custom protocols they cannot be served as a static file from CDNs,
e.g., from the AppStore or PlayStore. A solution is to create a base application
that dynamically loads and integrates protocols. This base application can be
served again from CDNs (cf Section 3.4). While the protocol is then dynamically
loaded, a large part of the application, i.e, all static assets like models, images,
and videos can still be served from CDNs.

Time-Polymorphic This deployment strategy introduces almost no organi-
zational cost. CDNs can be used as usual and only one endpoint needs to be
provided. On the downside, the approach allows an attacker to create a bot

16 A. See et al.

army for a certain time (cf. Section 4.3). Different to the Full-Polymorphic de-
ployment, this approach burdens the user by requiring regular updates. This
burden can be reduced by using approaches from Section 3.4.

The results show that the costs for a defender are not large but not marginal
either. For consumer devices and applications that exchange only a few and
rather small messages, the technical overhead should be well manageable. Es-
pecially since time critical messages or messages that transmit large amounts
of data do not have to be transformed. The organizational effort for Time-
Polymorphic deployments is minimal but impedes an attacker less (cf. Section
4.3). For Full-Polymorphic deployments, however, there is some organizational
effort involved. This mode is more suitable for applications that suffer heavily
from bots, otherwise, it does not justify the effort.

4.4 Limitations

First, while PPs make it harder to create bots for a service in comparison to API
keys, it is not accurately determined how much harder it is for an arbitrary at-
tacker. This is something the approach shares with other obfuscation techniques.
Similar literature addresses this by limiting attackers to subsets of techniques,
e.g., only static analysis. These attacker models however do not fit our objective.
Determining the hardness could be approached in an empirical study, but would
require access to a lot of reverse engineers. This limitation is compensated by
the benefit that while the increased effort for an attacker cannot be accurately
determined, the overhead for using PPs in their simplest form is low and can be
easily be tested for a service. PPs are nonetheless an additional overhead and
should only be used for services that are already having problems with bots.

Second, PPs are affected by slicing and code reuse approaches where an
attacker can use the existing code of a client to build a bot. Therefore, PPs
should be used together with anti-reverse engineering approaches that impede
slicing and code reuse, e.g., [9].

5 Conclusion

While previous work focused on making it harder to build a first bot, we present
an approach that fights the scaling of bots by forcing a bot creator to extract not
just client API keys but the whole application protocol for each bot that is cre-
ated. We evaluate the resources needed to build and use polymorphic protocols.
Without optimization, polymorphic protocols transmit approx. 1.2 times more
data compared to the base protocol and are 2.09 times slower (around 1.5 ms).
Depending on the deployment the organizational effort required to integrate our
approach into existing services is low as it can be used as a drop-in replacement.
Considering MATE attackers polymorphic protocols introduce more cost for an
attacker compared to using API keys alone. In the future, we would like to inves-
tigate the extent to which polymorphic protocols make it harder for an attacker
to create bots, compared to API keys. This shall be evaluated as part of a CTF
or as a study.

Polymorphic Protocols at the Example of Mitigating Web Bots 17

References

1. Akhunzada, A., Sookhak, M., Anuar, N.B., Gani, A., Ahmed, E., Shiraz, M., Fur-
nell, S., Hayat, A., Khan, M.K.: Man-at-the-end attacks: Analysis, taxonomy, hu-
man aspects, motivation and future directions. Journal of Network and Computer
Applications 48, 44–57 (2015)

2. Alqahtani, F.H., Alsulaiman, F.A.: Is image-based captcha secure against attacks
based on machine learning? an experimental study. Computers & Security 88,
101635 (2020)

3. Amin Azad, B., Starov, O., Laperdrix, P., Nikiforakis, N.: Web runner 2049: Eval-
uating third-party anti-bot services. In: Proceedings of the 17th DIMVA (2020)

4. Banescu, S., Collberg, C., Ganesh, V., Newsham, Z., Pretschner, A.: Code ob-
fuscation against symbolic execution attacks. In: Proceedings of the 32nd Annual
Conference on Computer Security Applications. pp. 189–200 (2016)

5. Banescu, S., Collberg, C., Pretschner, A.: Predicting the resilience of obfuscated
code against symbolic execution attacks via machine learning. In: 26th USENIX
Security 17. pp. 661–678 (2017)

6. Berdajs, J., Bosnić, Z.: Extending applications using an advanced approach to
dll injection and api hooking. Software: Practice and Experience 40(7), 567–584
(2010)

7. Bessi, A., Ferrara, E.: Social bots distort the 2016 us presidential election online
discussion. First monday 21(11-7) (2016)

8. Boda, K., Földes, Á.M., Gulyás, G.G., Imre, S.: User tracking on the web via
cross-browser fingerprinting. In: Nordic conference on secure it systems. pp. 31–46.
Springer (2011)

9. Cheng, X., Lin, Y., Gao, D., Jia, C.: Dynopvm: Vm-based software obfuscation with
dynamic opcode mapping. In: International Conference on Applied Cryptography
and Network Security. pp. 155–174. Springer (2019)

10. Collberg, C.: the tigress c obfuscator (2001), https://tigress.wtf/about.html
11. Dyer, K.P., Coull, S.E., Shrimpton, T.: Marionette: A programmable network traf-

fic obfuscation system. In: 24th USENIX Security 15. pp. 367–382 (2015)
12. Gagnon, M.N., Taylor, S., Ghosh, A.K.: Software protection through anti-

debugging. IEEE Security & Privacy 5(3), 82–84 (2007)
13. Gummadi, R., Balakrishnan, H., Maniatis, P., Ratnasamy, S.: Not-a-bot: Improv-

ing service availability in the face of botnet attacks. In: NSDI. pp. 307–320 (2009)
14. Heath, N.: Expedia on how one extra data field can cost $12m. https://www.

zdnet.com/article/expedia-on-how-one-extra-data-field-can-cost-12m/
(2010), accessed: 2021-10-18

15. Karuppayah, S., Fischer, M., Rossow, C., Mühlhäuser, M.: On advanced monitoring
in resilient and unstructured p2p botnets. In: 2014 IEEE International Conference
on Communications (ICC). pp. 871–877. IEEE (2014)

16. Karuppayah, S., Roos, S., Rossow, C., Mühlhäuser, M., Fischer, M.: Zeus milker:
circumventing the p2p zeus neighbor list restriction mechanism. In: 2015 IEEE
35th International Conference on Distributed Computing Systems. pp. 619–629.
IEEE (2015)

17. Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.M.: The similarity metric. IEEE trans-
actions on Information Theory 50(12), 3250–3264 (2004)

18. Liu, M., Jia, C., Liu, L., Wang, Z.: Extracting sent message formats from executa-
bles using backward slicing. In: 2013 Fourth International Conference on Emerging
Intelligent Data and Web Technologies. pp. 377–384. IEEE (2013)

18 A. See et al.

19. Liu, W.: Introducing recaptcha v3: the new way to stop
bots. https://developers.google.com/search/blog/2018/10/
introducing-recaptcha-v3-new-way-to (2018), accessed: 2021-05-20

20. Machines, I.: Stop more bots. start protecting user privacy. https://www.
hcaptcha.com/ (2018), accessed: 2021-05-20

21. Mohajeri Moghaddam, H., Li, B., Derakhshani, M., Goldberg, I.: Skypemorph:
Protocol obfuscation for tor bridges. In: Proceedings of the 2012 ACM conference
on Computer and communications security. pp. 97–108 (2012)

22. Narayan, J., Shukla, S.K., Clancy, T.C.: A survey of automatic protocol reverse
engineering tools. CSUR 48(3), 1–26 (2015)

23. Roundy, K.A., Miller, B.P.: Binary-code obfuscations in prevalent packer tools.
ACM Computing Surveys (CSUR) 46(1), 1–32 (2013)

24. Sivakorn, S., Polakis, I., Keromytis, A.D.: I am robot:(deep) learning to break
semantic image captchas. In: 2016 IEEE EuroS&P. pp. 388–403. IEEE (2016)

25. Software, V.: VMProtect Software Protection (2021), https://vmpsoft.com/
26. Talukder, M., Islam, S., Falcarin, P.: Analysis of obfuscated code with program

slicing. In: 2019 International Conference on Cyber Security and Protection of
Digital Services (Cyber Security). pp. 1–7. IEEE (2019)

27. Technologies, O.: Oreans Technologies : Software Security Defined. (2022), https:
//www.oreans.com/Themida.php, accessed 2021-12-07

28. Wang, Z., Jiang, X., Cui, W., Wang, X., Grace, M.: Reformat: Automatic reverse
engineering of encrypted messages. In: European Symposium on Research in Com-
puter Security. pp. 200–215. Springer (2009)

A Generating a custom protocol

An example is given in the following. Consider a game with multiple messages.
All messages are defined in GameMessages.proto. One message is StatusInfor-
mation. A part of the message definition is shown in Listing 1.1.

message StatusInformation {
string name = 1;
int32 playerNumber = 2;
int32 plays = 3;
...

}

Listing 1.1. Untransformed protobuf excerpt

The protobuf file is then transformed by applying our implementation of
Algorithm 1. The result is another protobuf file, including some transformations
(Listing 1.2). The whole message is encrypted using AES with a random key.
Some message types have changed and some variables have been split into two
variables.

message StatusInformation { // Encrypted using AES
string plays_p1 = 1; /* before: int32 | p1 */
int32 playerNumber = 2; /* unmodified */
bytes name = 3; /* before: string */
bytes plays_p2 = 4; /* before: int32 | p2 */

Polymorphic Protocols at the Example of Mitigating Web Bots 19

...
}

Listing 1.2. Transformed protobuf excerpt

The normal protobuf compiler uses the transformed protobuf file GameMes-
sages.proto and generates methods to read, write and serialize the fields and
messages in a file called GameMessages.java. Our implementation automatically
adds classes that apply the transformations on top of the code generated from
the protobuf compiler. If the supported feature set of protobuf has already been
used previously the generated classes of our implementation are a drop-in re-
placement. This process is the same for the client as well as for the server of an
application.

Appendix F

Encrypted Endpoints: Defending Online
Services from Illegitimate Bot
Automation

Abstract

Automated usage of web services by programs, known as bots, poses risks such as data scraping,
spam, and cyber attacks. For instance, X suffers from millions of bot accounts typically
controlled by relatively fewer adversarial organizations to create fake likes and comments. The
most widely used solution to distinguish humans from bots (CAPTCHA) is perishing due to
advances in machine learning. Obfuscation techniques in binaries, applications, or websites
are designed to impede the creation of bots but fail to prevent their scalability. Bypassing
these measures often requires only a one-time effort. We propose encrypted endpoints as
a novel strategy to combat the scalability of web bots, particularly in scenarios where bots
leverage multiple accounts. For that we assign unique endpoints (URLs) to each user account,
thereby restricting bot applicability across different accounts and necessitating the extraction
of account-specific endpoints per bot instance. Our approach is applicable to a wide range
of services utilizing endpoints, including desktop and mobile applications, web applications,
and even static or HTML-only websites. We implemented our approach directly within a
backend framework and observed that the latency overhead is less than 0.1ms per request,
which constitutes less than 1% of the total request time. Our solution, developed as simple
middleware, can be easily integrated in existing projects with low effort. Additionally, we
have extended our approach to the Jinja2 template engine, thereby supporting encrypted
endpoints for websites out of the box. Our analysis indicates that our approach not only
effectively protects against simple bots but also, when coupled with obfuscation techniques,
further impedes bot creation.

Reference

August See, K. Röbert, M. Fischer. Encrypted Endpoints: Defending

Online Services from Illegitimate Bot Automation. International

Symposium on Research in Attacks, Intrusions and Defenses, 2024.

©2024 ACM.

177

Contribution

The solution approach and full implementation and evaluation for this publication originated
from the author of this dissertation. The second author is credited with the core idea. The
second and third authors contributed to the refinement of the work.

Encrypted Endpoints: Defending Online Services from
Illegitimate Bot Automation

August See
Universität Hamburg
Hamburg, Germany

richard.august.see@uni-hamburg.de

Kevin Röbert
Universität Hamburg
Hamburg, Germany

kevin.roebert@uni-hamburg.de

Mathias Fischer
Universität Hamburg
Hamburg, Germany

mathias.fischer@uni-hamburg.de

ABSTRACT
Automated usage of web services by programs, known as bots,
poses risks such as data scraping, spam, and cyber attacks. For
instance, X suffers from millions of bot accounts typically con-
trolled by relatively fewer adversarial organizations to create fake
likes and comments. The most widely used solution to distinguish
humans from bots (CAPTCHA) is perishing due to advances in
machine learning. Obfuscation techniques in binaries, applications,
or websites are designed to impede the creation of bots but fail to
prevent their scalability. Bypassing these measures often requires
only a one-time effort. We propose encrypted endpoints as a novel
strategy to combat the scalability of web bots, particularly in sce-
narios where bots leverage multiple accounts. For that we assign
unique endpoints (URLs) to each user account, thereby restricting
bot applicability across different accounts and necessitating the
extraction of account-specific endpoints per bot instance. Our ap-
proach is applicable to a wide range of services utilizing endpoints,
including desktop and mobile applications, web applications, and
even static or HTML-only websites. We implemented our approach
directly within a backend framework and observed that the latency
overhead is less than 0.1ms per request, which constitutes less than
1% of the total request time. Our solution, developed as simple
middleware, can be easily integrated in existing projects with low
effort. Additionally, we have extended our approach to the Jinja2
template engine, thereby supporting encrypted endpoints for web-
sites out of the box. Our analysis indicates that our approach not
only effectively protects against simple bots but also, when coupled
with obfuscation techniques, further impedes bot creation.

CCS CONCEPTS
• Security and privacy→Web application security; Software
reverse engineering.

KEYWORDS
web bots, obfuscation, endpoints

ACM Reference Format:
August See, Kevin Röbert, and Mathias Fischer. 2024. Encrypted Endpoints:
Defending Online Services from Illegitimate Bot Automation. In The 27th
International Symposium on Research in Attacks, Intrusions and Defenses

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RAID 2024, September 30-October 02, 2024, Padua, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0959-3/24/09
https://doi.org/10.1145/3678890.3678918

(RAID 2024), September 30-October 02, 2024, Padua, Italy. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3678890.3678918

1 INTRODUCTION
The automated use of Internet services is an integral part of the In-
ternet and the Web, especially as web services increasingly depend
on each other. This ranges from retrieving resources from CDNs
to price comparison portals to unauthorized automation, e.g., by
bots in social media. In the following, the unauthorized automated
use of a service by scripts or computer programs is called a bot. In
addition, we focus on bots that gain an advantage by creating many
accounts.

While automation is a drive of our Internet, some services should
not be automated, as this can lead to financial and even social dam-
age. Bots significantly increase the load of services (bad bots 27.7%
and automated traffic in total 42.3% in 2021 [2]) and thus increase
infrastructure costs. This applies to all services, but there are cer-
tain services where bots can do greater harm. Social media, for
example, is intended for human users only. Bots that automatically
create or control multiple accounts can be used on a large scale
to spread false information and opinions. This does not only in-
crease infrastructure costs but also affects the satisfaction of human
users. Beyond that, bots have been successfully used in the past to
influence elections [9].

Utilizing the Application Programming Interface (API) or end-
points of a service is the most efficient method for bot development,
known as API/endpoint-based bots. These bots, which operate
through HTTP requests from scripts or automated browsers, can
be easily created using automated tools [24, 34]. These tools facili-
tate extracting service interaction data, simplifying session replays.
Given their prevalence, our paper focuses on defenses against these
bots, as discussed in Section 2.

The main problem of bots is something all bot types have in
common. Once written, they are easy to duplicate and thus to scale.
For example, a X bot that automatically likes everything with a
specific tag, e.g., #conference will work for every account. This
ability to scale is what makes bots so dangerous. While one bot
likely will not have much negative effect, an army of bots will.
Using the endpoint directly is most natural and scales better than
automation via the user interface, so we focus on how such bots
can be restricted.

More and more companies are using anti-bot solutions, such as
CAPTCHA or obfuscation approaches.CAPTCHAs are the most
popular defense against bots. They use problems that are easy for
humans to solve but difficult for computers. However, the number
of problems that fall into this category is decreasing with the ad-
vancement of machine learning [7, 35]. Additionally, CAPTCHAs

RAID 2024, September 30-October 02, 2024, Padua, Italy See et al.

negatively impact the user experience and waste time, even when
modern risk assessment approaches do not prompt every user with
a CAPTCHA challenge [1]. As a result, obfuscation approaches are
used to hinder the creation of bots by making it more difficult for
bots to extract information [40], such as URLs, email addresses, or
information about the availability of specific products, e.g., graphic
cards. However, many bots do not need to extract information, e.g.,
those that replay sessions or that use the API directly. For example,
for spamming comments a bot needs to know the endpoint location
(URL) and what data is accepted. Existing obfuscation approaches
leave this aspect out because it changes the way the web works.
While, our proposed obfuscation approach addresses this gap.

Our main contribution are unique encrypted endpoints so that
bots cannot be scaled easily anymore. In more detail, we make the
following contributions:
• We introduce encrypted endpoints to hinder the scaling of
bots. This is achieved by assigning unique endpoints to each
account in a service. Thus, every bot is only valid and usable
for a specific account. We call this encrypted endpoints. Ex-
isting obfuscation techniques for Binaries [12] or for HTML
and JavaScript [14, 40, 44], obfuscate the "application" itself
but not the endpoints. Thus, they offer no protection against
bots that use the endpoints directly, e.g., using python re-
quests or which replay previously recorded sessions [24, 34].
Our approach and code obfuscation work in tandem, comple-
menting each other. While our approach safeguards against
session replays and API bots, code obfuscation adds an ex-
tra layer of complexity, rendering the extraction of client-
specific encrypted endpoints more challenging. By altering
the endpoints for each client periodically, the effort required
by an attacker can be further increased. It is worth noting
that while our approach was initially designed for accounts,
it is also applicable to services without a login feature.
• We purpose methods to enhance the usability of our ap-
proach for both users and service providers. So, despite
unique URLs, those URLs can still be shared between users
without impacting the efficacy against bots. Further, service
providers do not have to predetermine all of their endpoints
to utilize our approach.
• We implement the approach as a middleware for FastAPI
and the Jinja2 templating engine. The source can be found
here1 as well as simple demonstration in form of a video.
• We evaluate our approach’s performance and organizational
overhead and discuss the additional effort required for at-
tackers to scale bots.
• As an added benefit, our approach can protect against direc-
tory traversal attacks and attacks that rely on guessing or
injecting data into the path or parameters, as our method
renders URLs non-guessable and user-specific.

Note that the primary objective is to increase the effort to scale
bots by preventing a bot to be used on a different account, and
not the creation itself. While our approach alone achieves this, it
heavily benefits from being used together code obfuscation to
make the extraction of client-specific encrypted endpoints more
challenging (cf. Section 5.1). Legitimate bots, security testing, and
1https://github.com/8mas/encrypted-endpoints

interoperability across different services are still possible, e.g., by
providing special API keys after thorough verification.

The remainder of this paper is structured as follows. Section 2
introduces our threat model, specifying the types of bots we aim to
protect against, and describes the attacker model used throughout
this paper. Section 3 outlines the requirements for bot defense and
reviews related work in the field. Section 4 describes our approach
to encrypted endpoints and discusses potential optimizations to
restore functionalities such as link sharing. Section 5 presents our
evaluation of the proposed approach and discusses its effectiveness
in defending against the specified attacker model. It also explores
the limitations of our approach. Section 6 doutlines the require-
ments for code obfuscation techniques that can be integrated with
our method. Finally, Section 7 concludes the paper.

2 THREAT AND ATTACKER MODEL
In our threat model a service is accessed by bots. The service either
cannot or chooses not to depend on more robust user authentica-
tion methods, such as phone verification or presenting personal
identification documents. This decision is grounded in realism, as
authentication processes that introduce friction tend to deter users
from engaging with the service [18]. The service has already im-
plemented account-bound rate limiting, ensuring that actions like
purchases and upvotes are constrained within certain limits per
account. This setup necessitates a logical reason for bot creators to
create multiple bots, each controlling distinct accounts. This sce-
nario is common across various types of websites, including those
in social media, e-commerce, and gaming. However, for websites
that solely provide information, our approach is not applicable.

For example, on most social media platform, content visibility
is influenced by upvotes. Each account is permitted to vote only
once, making it advantageous for bot operators to control multiple
accounts for the purpose of artificially boosting the visibility of
specific content through coordinated upvoting.

2.1 Considered Bots
Our defensemechanisms against bots, specifically targets API-based
bots. Our rationale is that API-based bots are prevalently used,
easily scalable, and consequently represent a substantial threat.
Delving further into the matter:

API-based bots are simpler to develop and maintain because
they interact directly with a service’s endpoints, circumventing
the complexities associated with graphical user interfaces (GUIs).
In contrast to GUI elements that are prone to frequent changes,
API endpoints, particularly those that are versioned (for example,
"/v1/user"), provide a stable interface for automation. This stabil-
ity diminishes the necessity for continual updates in contrast to
bots operating on the UI. However, with current technological ad-
vancements, UI-based bots are expected to become more adaptable
shortly.

Furthermore, API-based bots have the advantage of automated
tools that facilitate the creation of bots by extracting endpoints and
data from service interactions. These tools enable straightforward
session replays [24, 34], making API/endpoint-based bots a more
viable option for our research, which emphasizes efficient and stable
automated interactions.

Encrypted Endpoints RAID 2024, September 30-October 02, 2024, Padua, Italy

API-based bots also require significantly less computational re-
sources compared to their UI-based counterparts, which need to
render graphical interfaces and are tightly bound to the underlying
program and UI. For each instance of a UI-based bot, a separate inter-
face instance is required, leading to escalated resource consumption
and higher scaling costs. This contrast is especially pronounced in
contexts like gaming and mobile applications, where UI-based bots
are resource-intensive, and scaling becomes more costly.

2.2 Attacker Models
We define two attacker profiles:

Endpoints Only (EO) Attacker. : This EO attacker strategy focuses
solely on utilizing service endpoints to develop bots. By recording
network traffic, attackers can use tools such as mitmproxy2swagger
and charles-extractor [24, 34] to extract endpoints and data formats
from the session, facilitating session replay and bot creation with
minimal technical expertise required. This approach bypasses the
need to parse desktop binaries, mobile applications (APKs, IPAs),
or web elements (HTML, CSS, JavaScript), offering a streamlined
method to create efficient bots.

Endpoints and Data Parsing (EP) Attacker. : Contrary to the first
attacker model, this EP attacker involves utilizing service endpoints
and processing and parsing available data. In the context of mobile
and desktop programs, this includes binaries and apps (APKs, IPAs),
which are inherently difficult to parse and often require reverse-
engineering using disassembly and debugging tools. In the context
of the web, this encompasses server responses in formats such as
HTML, XML, and JavaScript. This method is typically adopted for
services that lack a comprehensive API. Direct interaction with
specific endpoints to obtain structured data, such as JSON (e.g.,
"/v1/product/id" providing product prices and availability), is gener-
ally more straightforward and reliable than parsing semi-structured
data like HTML. The latter, often relying on tools such as XPath or
CSS selectors, is more susceptible to errors and complications due
to potential changes in the data’s structure or format [26].

3 REQUIREMENTS AND RELATEDWORK
3.1 Requirements for Bot Defense Approaches
We have identified several requirements for bot defense approaches:
• Transparent to user : The approach should not disrupt the user
experience, thus avoiding time wastage throughmechanisms
such as captchas [1] and preventing loss of revenue due to
additional hurdles in website navigation [18].
• Zero data collection: No data should be collected to differen-
tiate between humans and bots, thereby ensuring privacy.
This includes overt measures like requiring an ID to use a
service, as well as subtler techniques that collect data such
as IP addresses and mouse movements [27].
• Seamlessly integrable: The approach should be seamlessly
integrable into existing services and codebases with minimal
effort.
• Small performance overhead: The approach should have min-
imal impact on the performance of the service, ensuring it
remains usable.

• UI and domain agnostic: The approach should be UI-agnostic
to allow versatile application across different user interfaces.
Additionally, it should be domain-agnostic, suitable for use in
various contexts such as desktop applications, mobile apps,
or HTML-only websites.
• Resistance against attackers (EO, EP): The approach should
effectively counter the described attacker models (EO and
EP).
• Open source: Ideally, the approach should be open source to
ensure developers can adapt it as needed.

3.2 Related Work
We divide the related work into three categories. Proving Human-
ity, Anomaly Detection, and Anti-Analysis. The approach we take
in this paper falls into the Anti-Analysis category. A high-level
overview of how our approach compares to related work is given
in Table 1.

Requirements CA
PT

CH
A
[2
7,
28
]

Br
ew

er
et

al
.[
11
]

Se
e
et

al
.[
32
]

Co
de

ob
fu
sc
at
io
n.

[1
2,
36
,3
9]

Us
er

sp
ec
ifi
cA

PI
ke
ys

Fa
ce
bo

ok
A
nt
i-T

ra
ck
in
g[
3]

O
ur

Sy
st
em

Transparent to users
Zero data collection
Seamlessly integrable
Small performance overhead
UI and domain agnostic
Resistance against attacker (EA)
Resistance against attacker (EDA) 2 2 2

Open source 3 4

partially fulfilled fulfilled
Table 1: Related bot defending techniques.

Proving Humanity. Approaches in this category aim to prove
a user’s humanity directly, for example, through possession or
human knowledge. The strongest proof that a user is a humanwould
be requiring an official government-issued ID. While this would
certainly make it hard to scale bots, it is also a privacy-unfriendly
requirement. Even if users did not care about privacy, it would
disrupt the user experience, directly impacting companies’ revenues
[18]. A very well-known, and at present, the standard way to prove
humanity is CAPTCHA (Completely Automated Public Turing test
to tell Computers and Humans Apart) [27, 28]. CAPTCHA relies on
problems that are hard to solve for computers and easy for humans,
such as reading distorted characters or selecting specific images.
2Only when coupled with code obfuscation approaches.
3Some implementations like Tigress are available.
4This is more a generic technique than an implementation.

RAID 2024, September 30-October 02, 2024, Padua, Italy See et al.

This approach, however, has some serve limitations and is becoming
less and less effective. First, CAPTCHA breaks the user experience.
Second, the time wasted to prove humanity is 500 years each day,
alone for CAPTCHA issued by Cloudflare [1]. To deal with this,
there is research to decrease the number of issued challenges to
users, e.g., privacy pass [13]. In addition, for each correctly solved
CAPTCHA, the users receive some tokens. These tokens do not leak
information about the user and can be used to bypass CAPTCHA.
However, the main problem of CAPTCHA is that the number of
problems that are hard to solve for computers and easy to solve
for humans is decreasing because of the advancements in machine
learning [19, 25, 35].

To address the problems of CAPTCHA, there are developments to
attest humanity through cryptographic routines, Trusted Plattform
Modules (TPMs), and Trusted Execution Environments (TEEs). The
idea is that by possessing a rare resource, e.g., security keys [43],
Iphones [20], etc. CAPTCHA no longer has to be solved. Here
it must be ensured that no information about the actual user is
leaked, but also that a simple (virtual) transfer of the resource is not
possible. These approaches [20, 43] are compatible with the pricacy
pass [13] protocol and are designed to avoid displaying CAPTCHA
altogether.

Anomaly Detection. These approaches try to detect bots through
their characteristics, e.g., user-agent or display size and behav-
ior. CAPTCHA providers use these approaches for an initial risk
assessment to decrease the number of CAPTCHA presented to
users [27, 28]. A harder or no CAPTCHA is presented depending
on the calculated score. However, characteristics such as IPs, user
agent, resolution, and cookies are needed to calculate the risk. This
information can fingerprint the system and track users across mul-
tiple websites. In addition, mouse movements and keystrokes allow
the user to be identified, not just the browser or system [5, 33]. This
is a major criticism of current CAPTCHA systems.

Brewer et al. [11] introduce another way that resembles the idea
of honeypots. Every link on a web page is surrounded by fake links
that are not visible to the user. A bot that tries to crawl or scrape the
website will likely visit a fake link and is thus exposed. In contrast
to other anomaly detection approaches, this is very privacy-friendly
and stands out positively due to low false positives.

Last, anomaly detection approaches for bot detection suffer from
one common problem. If a bot behaves exactly like a human user
(characteristics and behavior), distinguishing between humans and
bots is no longer possible. However, forcing a bot to behave like a
human is a great achievement since it increases the cost of creating
undetected bots. Bot writers then need to consider the character-
istics and behaviors of humans on a website, and the written bots
are not as effective as they could be. However, these advanced bots
will not be detectable through anomaly detection alone.

Anti-Analysis. These approaches aim to complicate the creation
of bots and increase the costs associated with extracting informa-
tion, thereby aligning with the objectives of this paper. We describe
the requirements for code obfuscation used in conjunction with
our approach in Section 6.

The primary challenge in anti-analysis engineering lies in quan-
tifying the efficacy of a technique against an undefined attacker
[6, 8, 38]. When an attacker fully controls a device, all anti-analysis

techniques can merely elevate the cost for an attacker to reverse
engineer an application without the possibility of completely pre-
venting it.

In the context of web bots, obfuscation techniques serve to com-
plicate the extraction of essential information required for bot cre-
ation, such as accepted protocols, endpoints, or API keys. Numerous
methods exist both for data extraction from a program and for its
obfuscation.

However, more than obfuscating the location of elements is
required. For many bots, e.g., spambots, only the endpoint and
the data format are needed. Consider Listing 1 website that dis-
plays a URL with GET parameters and a form. Even if the loca-
tion is obfuscated (cf. listing 2), the endpoint (example.com/api,
example.com/api/user) and the parameters (param1, name1) are
always the same. Thus, once known, e.g., through recording the
traffic, they can be used indefinitely, and the bot can be scaled easily.

Listing 1: Unobfuscated HTML
1 <a i d = " l i n k 1 "

h r e f = " example . com / ap i ? param1= h e l l o " >Link1< / a>
2 <form a c t i o n = " example . com / ap i / u s e r " method= " POST " >
3 < inpu t name= " name1 " i d = " i npu t 1 " va l u e = " world " / >
4 < / form>

Listing 2: Obfuscated HTML (IDs, XPath)
1 <form a c t i o n = " example . com / ap i / u s e r " method= " POST " >
2 < inpu t name= " name1 " i d = " random2 " va lue = " world " / >
3 < / form>
4 <a i d = " rand1 "

h r e f = " example . com / ap i ? param1= h e l l o " >Link1< / a>

There are many approaches that address code obfuscation in the
web context. These include academic papers, free-to-use tools [10,
23, 45], and commercial software [21, 22, 29]. Some commercial
solutions offer comprehensive packages that handle all three aspects
at once [21, 29]. While most approaches claim minimal overhead,
they often do not evaluate it.

It is ideal to have an approach where the resource cost of cre-
ating the obfuscation is low, and ideally, each client receives its
own obfuscated version of the website. While some approaches
are non-deterministic, the majority are deterministic, necessitating
an additional randomization step. However, websites can be pre-
obfuscated, and the obfuscated versions can then be distributed to
clients. Most tools are user-friendly and do not require extra con-
figuration for the frontend. Typically, users need only to give their
final HTML, JS, or CSS files as input, which are then obfuscated.

A paper analyzing the top 10K Alexa websites found that less
than 0.4% use obfuscation on JavaScript [30] and 68.8% use mini-
mization. Another paper analyzing the top 100K Alexa websites
found that 0.67% of scripts are obfuscated, but 38% are minimized.
While these percentages are not high, they indicate that code ob-
fuscation is employed on some of the most popular websites.

Vikram et al. [40] address this. They build a tool, NOMAD, to
defend against web bots without breaking the website for human
users. The tool randomizes the Name and ID parameters of HTML
form elements for each session. Thus, forcing the bot to extract the
correct names and IDs for each session. However, this is limited to
only forms and does not apply to (GET) parameters.

Encrypted Endpoints RAID 2024, September 30-October 02, 2024, Padua, Italy

Wang et al. [41] introduce WebRanz, a novel mechanism for cir-
cumventing ad-blockers by employing randomization techniques
to mutate HTML elements and their attributes without affecting
the visual appearance or functionality of web pages. This approach
invalidates the pre-defined patterns utilized by ad-blockers, thereby
enabling content publishers to deliver advertisements effectively.
WebRanz also provides a defense against web bots that manipulate
DOM objects using similar pattern-matching techniques. The au-
thors evaluate the system on 221 Alexa top web pages and eight
bot scripts, demonstrating that WebRanz successfully evades ad-
blockers and mitigates the impact of bot scripts with minimal over-
head. It is a promising candidate to use in conjunction with our
approach to counter the Endpoint and Data Parsing Attacker.

See et al. [32] follow a similar path. Their approach assigns a
new application protocol for every user. Thus all protocol messages
are unique, and bots cannot be scaled. The main problem of this
work is that it is not easily usable for HTTP, and to be lightweight
needs much fine-tuning.

The examples provided thus far have predominantly pertained to
the web context. However, the same principles apply to binary ob-
fuscation techniques. Examples of sophisticated software protection
systems include Tigress [12], VMProtect [36], and Themida [39].
These systems are directly applied to the source code of an applica-
tion, yielding a protected executable that utilizes a range of anti-
reverse engineering and obfuscation techniques, thus complicating
the extraction of information such as endpoints from compiled
binary. However, despite the sophistication of these systems, they
struggle to effectively obfuscate endpoints. This limitation arises
because data transmission to these endpoints can be observed, for
example, by utilizing a system-wide proxy. Consequently, bots can
be scaled with relative ease once again.

User-specific API keys that are located in the client application
and CSRF tokens might be used to impede bot creation, but original
serve distinct purposes. For example, API keys may be used for
identifying and authenticating a user across sessions, providing a
persistent form of security, whereas CSRF tokens are designed to
protect against cross-site request forgery attacks by ensuring that
each request to a server is accompanied by a unique token, verify-
ing the request’s legitimacy. These mechanisms can be considered
predecessors or foundational elements for our technique aimed at
impeding the scaling of bots. Essentially, our method applies the
concept of a CSRF token across a broader domain, compelling bot
creators to extract it to make server-accepted requests. API keys
in applications can offer similar functionalities by requireing an
attacker to first reverse engineer the API key to authenticate cus-
tom requests. Our design, in contrast, is more versatile than CSRF
tokens or API keys. It does not require an execution mechanism
(like necessary for API keys to authenticate data), nor is it limited
to HTTP. Further, it can operate statelessly. The only necessity is an
endpoint identifier, which could include, but is not limited to, URLs.
Our methodology and API keys are complementary, not exclusive.
Integrating them can further obscure not only the endpoint but
also the transmitted data, thus forming a comprehensive defense
against direct and indirect attacks.

Facebook is using encrypted URLs to combat URL stripping [3].
Every parameter of a URL is encrypted and signed. Thus, it is no
longer possible to drop tracking parameters without invalidating

the whole link. As this technique is most similar to our approach,
we provide a side by side comparison in Table 2.

Feature Facebook’s Imple-
mentation

Our Implementation

Goal Prevent addons like
Clear URL from drop-
ping certain tracking
parameters, as they
break the link.

Prevent scaling of bots
by requiring them to
extract URLs from the
source or binary.

Method Encrypt and sign pa-
rameters using (likely)
a general key, not
client-specific.

Encrypt and sign both
path and parameters
using a client-specific
key.

Security – Prevents techniques
like directory travers-
ing, guessing paths,
local file inclusion.

Availability – Free and open source.
Table 2: Comparison of URL Protection Strategies

4 ENCRYPTED ENDPOINTS
The core idea to limit the scalability of endpoint-based bots is the
usage of encrypted endpoints. Every client (user), e.g., distinguished
by session cookie or IP, receives a version of the same website
with unique URL-Paths and parameters. Paths and parameters are
encrypted, signed, and only valid for one client. If a bot is created,
it cannot be duplicated easily, as the URLs are only valid for the
particular client instance and, i.e., the bot. To create multiple bots,
the bot creator is forced to extract the customURLs from thewebsite.
This effectively prevents bots that rely on the simple replay of
data [24, 34]. While extraction of URLs is trivial in normal cases,
this can be made considerably more difficult by using obfuscation
approaches from related work like [11, 14, 40]. Since URL paths and
parameters are signed, any modification to them can be detected. A
live demonstration of this concept has been implemented in a web
application5. It is important to note that while the example provided
is a web app, for ease of sharing and demonstration purposes, the
underlying principle is equally applicable to both computer and
mobile applications.

4.1 Basic Approach
Figure 1 outlines the proposed methodology. The encrypted end-
pointsmiddleware, which can be integratedwith the server, receives
requests from clients. The middleware generates a secure client key
from the client identifier (e.g., a user ID) as detailed in Section 4.3.1.
We assume that this identifier is non-forgeable.

In a typical scenario as seen in Figure 1a, the client sends a
request to an encrypted endpoint, such as a URL, accompanied by its
client identifier. The middleware, upon receiving this information,
generates a client-specific key to decrypt the URL. If decryption is
successful, the URL is forwarded to the backend server, which then
retrieves the response and sends it back through the middleware
5https://github.com/8mas/encrypted-endpoints

RAID 2024, September 30-October 02, 2024, Padua, Italy See et al.

Client-A Middleware Backend
example.com/{v1/login}ka

Identifier Ia

ge
ne

ra
te

cl
ie

nt
 k

ey
 k

a
de

cr
yp

t
U

R
L

example.com/v1/login

response

(a) Encrypted Endpoint Usage Backend Only

Client-A Middleware Backend

example.com/
Identifier Ia

ge
ne

ra
te

cl
ie

nt
 k

ey
 k

a

example.com/

response en
cr

yp
t U

LR
s

ka

(b) Encrypted Endpoint Usage in Context of Webpages and HTTP

Figure 1: Overview of Encrypted Endpoint Usages

to the client. It is important to note that clients are incapable of
generating valid URLs independently; instead, the middleware and
backend collaborate to create and distribute these URLs to the
client, as illustrated in Figure 1b. In this process, the initial request
from a client is directed to an unencrypted endpoint, for instance,
example.com/. The middleware subsequently generates the client
key and relays the request to the backend. The backend server then
retrieves the resources and encrypts all URLs within these resources
using client-specific encrypted endpoints.

The encrypted response is then transmitted back to the client,
enabling the use of these encrypted endpoints as shown in Figure 1a.
Navigation on the client’s side proceeds normally, with additional
URL requests being validated and decrypted by the middleware.
For applications such as desktop and mobile apps, these endpoints
can be pre-populated during compilation or installation, enhancing
the security and functionality of the system.

Figure 2 illustrates the efficacy of encrypted endpoints in miti-
gating bot activities and preventing accidental exposure of sensitive
files. In Figure 2a, Client-B attempts to access a URL specifically
generated by the server for Client-A. As part of this process, Client-
B sends its identifier, prompting the middleware to generate the
client-specific key 𝑘𝑏 and attempt to decrypt the accessed URL.
This attempt fails due to a Message Authentication Code (MAC)
mismatch, as the URL was encrypted using 𝑘𝑎 , resulting in an er-
ror response. This mechanism ensures that bots configured for
one account cannot be repurposed for another, enhancing security.
However, it is important to acknowledge the unintended conse-
quence of inhibiting link sharing, a potentially undesirable outcome.
We address this issue in Section 4.3.3.

Figure 2b depicts a scenario where a client attempts to access
a URL not issued by the server, such as during an attack aimed
at discovering sensitive files through techniques like environment
variable file scanning or directory traversal. The principle remains
consistent with the previous example, where the middleware gener-
ates 𝑘𝑎 based on the client’s provided identifier. Since the accessed
URL lacks a valid MAC, an error is returned, and access to the
resource is denied. This feature of our approach effectively acts as a

URL whitelist, allowing access only to URLs returned by the server
to the client. Consequently, this strategy significantly reduces the
risk of resource guessing, scanning for sensitive files, and mitigates
certain attack vectors such as directory traversal and SQL injection
in specific contexts (refer to Section 5.3).

This construction compels bot creators to dynamically search
for the current endpoints, representing a significant step forward
in impeding bots that rely on hardcoded or memorized endpoints
[24, 34]. Nevertheless, extracting endpoints from sources such as
HTML, binary code, software, Java, applications, or similar materi-
als is not inherently challenging. Therefore, our approach gains a
considerable advantage by incorporating obfuscation techniques
that increase the difficulty of identifying specific endpoints.

It is essential to recognize that relying solely on code obfuscation
is inadequate for deterring bots. Automated tools, as mentioned
in [24, 34], can efficiently extract all necessary endpoints and data
from a recorded session, facilitating the easy creation of session
replays and bots.

4.2 Formal Model
An application, e.g., a website W contains a list of URLs, 𝑈 =
{𝑢1, ..., 𝑢𝑛}. We filter URLs from this list, that either cannot be en-
crypted, e.g., if the resource is located on a third party location or
should not be encrypted, e.g., if it is a public shared URL (cf. Section
4.3.3). While normally URLs contain more, e.g., the scheme, for
simplicity, our URLs only contain a path p and a set of parameters
a. Any operation on a URL 𝑢𝑖 is on the concatenated string of path
and parameters, i.e., 𝑢𝑖 = 𝑝𝑖 | |𝑎𝑖 . A client 𝑐 has a unique identifier
𝐼𝑐 . The server has a main key 𝑘𝑚 . Using a key derivation function
KDF (𝑘𝑚 , 𝐼𝑐), the server generates a client key 𝑘𝑐 . If identifiers are
reused between clients, e.g., IP addresses, a nonce that is regularly
changed should also be included in the KDF. The client key encrypts
and authenticates each URL 𝑢 ∈ 𝑈 of a website using authenticated
encryption (AE) like AES-GCM, which return the encrypted mes-
sage 𝑒 as well as a Message-Authentication-Code (MAC) 𝑡𝑒 . The
URL line must not leak anything about the URL’s semantics. Thus,

Encrypted Endpoints RAID 2024, September 30-October 02, 2024, Padua, Italy

Ac
ce

ss
 e

nd
po

in
t

of
 a

no
th

er
 c

lie
nt

.
e.

g.
, B

ot
 is

 u
se

d
on

 a
no

th
er

 a
cc

ou
nt

Client-B Middleware

example.com/{v1/login}ka

ge
ne

ra
te

cl
ie

nt
 k

ey
 k

b
de

cr
yp

t
U

R
L

U
R

L
ha

s
no

 v
al

id
M

AC
 a

s
U

R
L

ha
s

M
AC

 o
f k

a
an

d
no

t k
b

error

Identifier Ib

(a) Invalid URL for Client B because the URL was generated for Client A,
rendering the MAC invalid.

Ac
ce

ss
 m

od
ifi

ed
re

so
ur

ce

Client-A Middleware
example.com/.env

Identifier Ia

ge
ne

ra
te

cl
ie

nt
 k

ey
 k

a
de

cr
yp

t
U

R
L

U
R

L
ha

s
no

 v
al

id
M

AC

error

(b) Invalid URL due to the client’s direct access attempt on a URL not
issued by the server.

Figure 2: Overview of Potential Errors and the Effectiveness of Encrypted Endpoints in Enhancing Security.

a MAC alone is not enough. Since URLs might be differentiable by
their length, padding can be used to increase the length of URLs.

𝑢′ = ⟨𝑒, 𝑡𝑒 ⟩ = AE𝑘𝑐 (𝑢) (1)

In this equation, 𝑢′ is the newly constructed URL that replaces
URL 𝑢. The encrypted path and parameters are 𝑒 , and 𝑡𝑒 is the mes-
sage authentication code of 𝑒 . Both are constructed using the client
key 𝑘𝑐 , only known by the middleware. The client then receives a
version of the web page𝑊 ′ where every URL 𝑢𝑖 ∈ 𝑈 is replaced
with 𝑢′𝑖 . In the subsequent figures, we employ the shorthand nota-
tion {𝑢𝑟𝑙}𝑘𝑒𝑦 to denote authenticated encryption of URLs.

This construction is stateless, i.e., the middleware does not need
to save any client keys as they are derived from the client identifier
sent with every request. Note that encrypting URLs is necessary,
and a MAC is not sufficient because URLs can be identified by their
paths and parameters (cf. Section 4.3.1 and Section 5.1). A stateful
construction can save CPU time but uses space as compensation,
i.e., each custom URL must be stored for each client.

As long as the client identifier is not easy to share and secure
cryptographic primitives are used, these constructions allow URLs
to be used only by the respective client. No URLs can be created
that the server did not create itself.

4.3 Using Encrypted Endpoints
This section describes how encrypted endpoints could be used pro-
ductively. The choice of the client identifier, possible error handling,
and possible optimizations are discussed.

4.3.1 Choosing the Client Identifier. We operate within a desig-
nated threat model, where mechanisms such as rate limiting are
implemented (cf. Section 2). The client identifier, depicted in Figure
1 serves as the foundation for generating the corresponding client
key, a crucial element utilized in URL encryption. To preempt du-
plication, the client identifier must be associated with a resource
that proves challenging to replicate or that can be subject of rate
limiting. For example, one can achieve this by constraining account
activities and limiting actions based on User IDs, IP addresses or

browser fingerprints. This safeguard is necessary since the URLs
generated will be identical for a given client identifier.

There are several ways to choose client identifiers or even to
combine different factors. Here, we will discuss the advantages and
disadvantages of the identifiers User ID, IP address and browser
fingerprint. However, combining different identifiers can improve
the robustness of the system.
Session Cookie / User ID In scenarios where the service incor-

porates encrypted endpoints alongside a login mechanism,
a user ID or session cookie is used to identify a client. This
setup ensures that URLs are customized for individual ac-
counts, thereby anchoring bots to specific accounts.
Note that although duplicating a session cookie is feasible, this
offers no advantage to the attacker. The subsequent bot would
be confined to the same account without any incremental
capabilities. For example, it could neither cast additional
upvotes on the same post on a social media platform nor
purchase more products than its predecessor. Despite the po-
tential feasibility of generating valid session cookies, perhaps
through automated registration, the differentiation provided
by unique user IDs mandates that bots be specifically tai-
lored to their respective accounts.However, is its reliance on
a login feature, which might not be applicable for all services.
In such cases, alternative identifiers should be considered.

IP Address The IP address constitutes a practical identifier for a
broad range of applications, automatically accompanying
each request. To prevent IP address spoofing, this identi-
fication method relies on the exchange of multiple pack-
ets, such as those involved in a full TCP handshake, which
helps deter trivial alterations of the source IP. However, the
use of IP addresses as client identifiers presents challenges,
such as the invalidation of all URLs upon an IP address
change—occurring when a user switches from mobile data
to Wi-Fi—due to the resultant alteration in the derived client
key. Strategies to address these concerns are discussed in
Section 4.3.3. It is crucial to enforce a per-IP rate limit to
thwart the repeated initiation of a single bot from the same
IP. Additionally, the coexistence of multiple devices behind

RAID 2024, September 30-October 02, 2024, Padua, Italy See et al.

NAT, sharing an IP address, necessitates the combination of
IP and port for a more effective client identifier construction.

Device/Browser Fingerprint Utilizing a device or browser fin-
gerprint generated on the client side serves as an effective
method for identifying users accessing the service through
an app or browser. This technique surpasses the limitations
of easily spoofable attributes, such as browser version and
installed fonts, by incorporating at least one distinctive and
difficult-to-replicate feature. For instance, leveraging a can-
vas fingerprint allows for the unique identification of devices
based on their graphics processing capabilities [31]. The pri-
mary challenge with this method is the reliance on executing
client-side code, such as JavaScript, to obtain the fingerprint.
This necessitymight restrict its applicability in environments
where client-side code execution is disabled.

While numerous techniques exist for creating an identifier, the
optimal solution is undoubtedly the use of a user/client/account
ID, generated after login. This method is inherently unique to each
client, thereby circumventing issues associated with IP-based iden-
tifiers, which may change when switching networks.

For services not requiring authentication, a combination of the
non-forgeable IP address and browser fingerprint is potentially the
most effective approach. This is because, even if the IP address
changes, it does not necessarily disrupt the user’s session.

In the subsequent sections, we will focus on addressing chal-
lenges related to URL sharing and session resumption.

4.3.2 Partial Encrypted Endpoints. Our methodology is optimally
applied to endpoints that are fully known beforehand by the server.
However, this is not always feasible. For instance, search fields
that accept arbitrary user input and incorporate it into a parameter
present a challenge. In such cases, only the parts of the URL known
to the server in advance can be encrypted, while the dynamic, user-
controlled portion must be appended. This approach necessitates
distinguishing between encrypted and unencrypted parts, which
can be achieved, for example, by using delimiters or length fields.

If the application cannot modify itself at runtime, such as HTML
without JavaScript, and defense against the EP attacker is required,
no static part of the URL should remain unencrypted. This could
be a vector for differentiating URLs. Furthermore, URLs should
be padded to equal or random lengths so that an attacker cannot
differentiate them by length.

For applications that can modify themselves at runtime, and
depending on the obfuscation used, this might not be a major prob-
lem, as the URL can be split into multiple locations and the parts
themselves can be obfuscated as well.

When utilizing partially encrypted endpoints, developers must
specify in advance which parts are always encrypted and which
may remain unencrypted. Failure to do so could enable an attacker
to supply unencrypted endpoints and attempt to deduce and use
them.

4.3.3 Shared URLs and Session Resumption. Two issues need to be
addressed for practical use: URL sharing and session resumption.
URL sharing is a widespread practice on the Internet for sharing
resources. An online store, for example, relies on customers being
able to send product links to each other. Further, session resumption,

e.g., switching between devices or networks, is crucial for a smooth
user experience.

URL Sharing. With the current design, URL sharing between
users is only possible if they have the same client identifier, which
should be avoided. The same is true for shared URLs between
services, e.g., a online shop that is not using our approach linking
to a payment provider that uses encrypted URLs. If the user is
already logged in, the link will break.

The service using encrypted URLs could retain certain URLs or
operations (e.g., HTTP methods like POST, GET, DELETE) to be
used without our approach, i.e., as normal URLs. This could apply
to URLs or URL paths that need to be public, such as incoming links
that are used by unknown third parties, e.g., the payment site of a
payment provider. The drawback of this method is that bots could
operate on those URLs normally, so it should be used only when
necessary. Note that after accessing the service using the normal
URL, all subsequent URLs are encrypted again. Thus, our approach
is only diminished for one URL operation. This requires the service
to identify URLs and operations that should be public and to make
them known to the middleware.

Another approach is to allow URLs to be accessed by a different
user while restricting the access to read-only, i.e., only sharing
URLs that do not alter state by restricting the operations on the
URLs. This requires identifying URLs and operations that do not
modify state. If HTTP is used, this should be straightforward, as
the method has properties like safe, which indicate that they should
not alter state. This is defined in the HTTP RFCs[16, 17]; however,
it is currently treated as a convention and may be violated by
developers. Consequently, safe methods like GET cannot always be
relied upon to be safe. This necessitates operators verifying whether
their application adheres to the standard. If not, the first method
must be used. Thus this approach as well requires the service to
identify URLs and operations that should be public and to make
them known to the middleware.

This makes URL sharing between users possible, it does not affect
the defense against bots. Multiple bots can now access the same
URL without requiring the same client identifier. However, this
applies only to „read” access. Whether one or more bots have read
access to the same resource is mainly inconsequential and offers no
additional value for the bot creator. In edge cases, such as displaying
the availability of a product, rate limiting could be circumvented.
In contrast, multiple bots can benefit the bot creator for operations
that alter the state, such as sending spam or purchasing products.

For sharing encrypted URLs, the approaches the middleware
needs to be able to process the request, thus the URL needs to
be decrypted. In a stateless construction, the client key can be
appended to the URL, encrypted, and authenticated with the server
key. Thus for a read-only operation, the URL can be decrypted by
the middleware by decrypting the client key first.

𝑢′ = ⟨𝑒, 𝑡𝑒 , 𝑔, 𝑡𝑔⟩
⟨𝑔, 𝑡𝑔⟩ = 𝐴𝐸𝑘𝑚 (𝑘𝑐)

(2)

New to Equation 1 are the encrypted client key 𝑔 and the ac-
companying MAC tag 𝑡𝑔 . Additionally, the authenticated encrypted

Encrypted Endpoints RAID 2024, September 30-October 02, 2024, Padua, Italy

client key 𝑘𝑐 is constructed using the secret key 𝑘𝑚 , which is known
only to the middleware.

In deployment, shared URLs can be identified by adding an iden-
tifier to it, e.g., between the client encrypted URL and the client
key ⟨𝑒, 𝑡𝑒 , delimiter, 𝑔, 𝑡𝑔⟩. It would check if it is a state-modifying
request and 𝑔 is not forged. Then it can decrypt 𝑔 to obtain 𝑘𝑐 . Next,
it needs to verify 𝑒, 𝑡𝑔 and can obtain the URL. In theory, a delimiter
is not necessary if 𝑔, 𝑡𝑔 are of fixed size, but that would force the
backend to treat every URL first as a shared URL.

Session Resumption. This issue arises only when an identifier
that is prone to change is selected, such as relying solely on the IP
address. For instance, a user’s IP can change when transitioning
from a mobile network to a WiFi network, leading to a scenario
where all current URLs become invalid. This is not conducive to a
user-friendly experience.

In cases where utilizing a more stable client identifier is not
feasible, one straightforward solution is to enable URL sharing.
This allows users to access shareable URLs even if their identifier
changes.

A stateful approach to addressing this challenge involves the
use of one-time tokens, which can circumvent URL verification
once. These tokens could be stored as cookies in HTTP contexts.
However, it is crucial that the token is valid only for the respective
user, meaning it should bypass URL verification exclusively for
that user. This can be achieved by storing the client key in an
encrypted and authenticated form using the server key, as outlined
in a manner similar to Equation 2.

When a client initiates a request from a new IP, resulting in a
changed derived client key, the token comes into play. The process
begins with the verification and decryption of the token, followed
by the verification and decryption of the requested URL. It is im-
portant to note that this token is inapplicable to URLs belonging
to a different client, as they are authenticated with a distinct client
key. Successful access to the new URL leads to the construction of
all subsequent URLs with the new client key.

Employing this method for session resumption does not under-
mine defenses against bots, as it does not offer them any advantage.
While a bot may transfer the URL to another bot, accessing the
resource is an action the original bot could have executed, main-
taining the integrity of the system’s bot defense mechanisms.

4.4 Optimisations
4.4.1 Validity period for URLs. In the current design, URLs for a
client remain the same if the client identifier does not change. This
means that when a client-specific bot is created, it does not have
to re-extract the URLs for that client. The client key can be made
expirable to increase the effort required to maintain bots. In a state-
less design, client keys 𝑘𝑐 can be regenerated at specified intervals
𝑡 , or for each application update, by incorporating a nonce into the
derivation of the client key, which would always change, KDF (𝑀, 𝐼𝑐 ,
nonce𝑡). In a distributed infrastructure, e.g., using anycast or a load
balancer, to avoid syncing the nonce, one could derive the nonce
using a deterministic pseudorandom function. Due to our method
of session resumption (Section 4.3.3), this does not result in any
loss of user experience. Furthermore, any previously shared URLs
do not expire.

4.4.2 Minimizing the Overhead. Several optimizations can be made
to reduce the overhead or increase the cost of maintaining bots.

Space-Time Tradeoff The current design is stateless and regener-
ates client keys and URLs on the fly, which might result in increased
latency due to the frequent execution of CPU-intensive operations.
One optimization is to introduce a state which stores client keys or
URLs. Then, if a client requests a URL, the backend only needs to
check whether the URL is known. No cryptographic operation is
required. The URLs can be cached in a database or memory. How-
ever, storing all URLs for each client is storage-intensive. Another
less extreme time-space tradeoff is to store the client key, so it does
not have to be regenerated for each request. This will decrease
the CPU-intensive operations and decrease the latency. We will
evaluate these methods in Section 5.2.

Risk Assesment A strong resource optimization is the use of
risk assessment approaches. The generation of client-specific URLs
is computationally more expensive. By using risk assessment ap-
proaches [37, 42], this overhead can be reduced for the server and
legitimate clients. Simple examples of such risk assessments include
identifying high-volume IPs or clients that have been connected to
the service for an unusually long time or checking if the client is
an automated browser like Selenium or Puppeteer. This way, the
URLs can be generated only for clients that are flagged as high-risk,
while the rest of the clients will be served directly from the server
or a Content Delivery Network (CDN).

5 EVALUATION
In this section, we summarize the results of our evaluation. The
focus is to determine the approach’s overhead and compare it to
similar obfuscation techniques. In detail, we answer the following
research questions:
RQ1: To what extent does our approach restrict the scalability of

bots, and how does it perform in comparison with alternative
bot detection or mitigation strategies?

RQ2: What is the computational and operational overhead associ-
ated with employing encrypted endpoints?

RQ3: Against which specific attacks do encrypted endpoints pro-
vide protection?

We implement our approach as middleware in FastAPI, ensur-
ing seamless integration by simply incorporating the middleware
into the backend. Our implementation extends beyond the back-
end, offering support for rendering via Jinja2. This enables the
straightforward inclusion of webpages, encompassing HTML and
JavaScript, directly out of the box. Furthermore, we have also im-
plemented features for partially encrypted endpoints, URL sharing
and session resumption. These functionalities utilize authenticated
encryption, specifically AESSIV, to maintain security and integrity.

For transparency and accessibility, we will release our imple-
mentation open-source on GitHu6

5.1 RQ1: Security Discussion
In this section, we delve into the security ramifications of our pro-
posed methodology, specifically crafted to curtail the scalability of
bot operations. Unfortunately, directly quantifying the effectiveness

6https://github.com/8mas/encrypted-endpoints

RAID 2024, September 30-October 02, 2024, Padua, Italy See et al.

of our strategy in thwarting bot proliferation presents a consider-
able challenge. This difficulty primarily stems from the inherent
complexity in measuring the success rates of bots, as accurately
distinguishing between legitimate and automated requests would
essentially address the issue at hand. Moreover, we do not have
direct access to popular web services that are frequently targeted
by bot activities. Therefore, we opt for an analytical comparison,
evaluating how our approach impedes the deployment of common
bot creation techniques and attacker strategies, as outlined in our
threat model detailed in Section 2.

Additionally, we conduct a comparative analysis between our
approach and alternative bot mitigation strategies. In particular, we
focus on code obfuscation due to its closely related nature.

5.1.1 Protection Against Scaling of Bots. A bot that scales is usable
for other clients and accounts without being adapted to them be-
forehand. Exceptions are credentials or IDs, such as a username,
password, or session token, which are needed to use the service.

As for the defense, we consider the following obfuscation ap-
proaches:
Code obfuscation: The client code (e.g., HTML, Binary, Android

App) is obfuscated using, for example, techniques from re-
lated work [12, 41]. WWe describe the requirements for a
suitable code obfuscation to be used in conjunction with our
approach in Section 6.

Encrypted endpoints: The obfuscation approach described in
this paper. Each request is on an encrypted URL.

Attacker: Endpoints Only. Code obfuscation cannot stop this at-
tacker because the code is completely ignored. This attacker exam-
ines in which order to which endpoint what was sent and repeats
the session. There are simple-to-use, automated tools that facilitate
this [24, 34].

Encrypted endpoints stop this attacker completely. While the
attacker can build a bot that works for their client, i.e., with their
client identifier, the bot does not function for a different client.
Furthermore, since this attacker cannot extract endpoints from the
client-side application, the bot cannot be scaled. The attacker can
also not predict or generate new valid URLs if a secure authenticated
encryption method is used and correctly implemented.

Attacker: Endpoints and Data Parsing. Code obfuscation alone
fails to offer any significant protection, as the endpoint-only at-
tacker represents a specific subset of adversaries who can employ
the same techniques for bypassing such measures. Similarly, en-
crypted endpoints, in isolation, do not guarantee resilience. Attack-
ers might extract endpoints from client-side source code, such as
Java classes in Android applications, by identifying the <a> tag’s
ID or XPath in HTML documents or using disassemblers for binary
programs.

However, the combined application of code obfuscation and
encrypted endpoints introduces a robust layer of protection. En-
crypted endpoints specifically counteract the weak-points inherent
in code obfuscation, by preventing straightforward access to the
URLs by recording the traffic. Concurrently, code obfuscation com-
plicates the attacker’s ability to pinpoint and exploit individual
URLs, thereby safeguarding against direct attacks on encrypted
endpoints. It is crucial to ensure that endpoints do not inadvertently

disclose information that could undermine this defense, for example,
by adopting consistent encryption practices across URLs. Obfusca-
tion becomes ineffective if URLs can be distinguished through their
paths.

To augment this security strategy, we advocate for the use of
advanced obfuscation techniques, akin to those described in [11],
which can thwart brute-force attacks. Such attacks involve sys-
tematically probing all extracted URLs to identify the correct one
through trial and error.

Direct attacks on encrypted endpoints, without compromising
cryptographically secure methods, are implausible. Thus, attackers
are compelled to extract URLs, with the complexity of this process
being contingent upon the sophistication of the employed HTML
obfuscation technique. Regularly updating the endpoints for each
client can significantly escalate the effort and resources required
for an attacker to maintain their offensive capabilities.

5.1.2 Encrypted Endpoints Compared to Other Approaches. Our ap-
proach does not claim to replace other approaches. On the contrary,
it can and should be applied in addition. All following approaches
are considered in the context of web bots and their scaling.

Code Obfuscation. The limitations of code obfuscation strategies
have been discussed previously, both in the preceding section and
in Section 3.2. These techniques enhance the difficulty of extracting
specific data from client-side sources, such as from Java Classes
or HTML, for instance, by employing XPath or CSS selectors (re-
fer to Section 3.2). This increased complexity presents substantial
obstacles for the development of bots that depend on information
derived from the web, such as detecting product availability.

As described in Section 5.1.1, obfuscation methods fall short in
mitigating the threats posed by API bots or tactics that involve
replaying previously recorded sessions [24, 34]. Likewise, similar
to our proposed model, they offer no defense against UI-based
bots. However, encrypted endpoints effectively counter session
replay attacks and escalate the difficulty for API bot operations.
Although our methodology may be bypassed by parsing request
responses to acquire currently valid endpoints, the integration of
code obfuscation techniques significantly impedes the extraction of
such information, including endpoints. This synergy underscores
the advantage of combining our approach with code obfuscation
methods.

User-Specific Client-Side API Keys. As discussed in Section 3.2,
employing user-specific client-side API keys and CSRF tokens for
user authentication and request validation marks preliminary mea-
sures against bot proliferation. Our strategy enhances these mech-
anisms, extending their application to comprehensively obstruct
bot scalability through the mandatory retrieval and utilization of
valid tokens for server requests.

CAPTCHAs. CAPTCHAs are another kind of defense. They are
designed to confirm that a client is a human by their knowledge or
ability to perform tasks. This means that they are an active chal-
lenge, which is counterproductive to gaining services [18], and
wastes time [1]. Our approach does not hinder regular users, but it
presents difficulties for those attempting to create or scale multiple
bots. The difficulties arise that session replaying tools are rendered
useless and force the extraction of client/account-specific encrypted

Encrypted Endpoints RAID 2024, September 30-October 02, 2024, Padua, Italy

endpoints. The use of code obfuscation techniques further compli-
cates this extraction process.

Bot Detection and Risk Assesment. These approaches detect bots
or gauge a client’s likelihood of being a bot, leading to allowance,
blocking, or CAPTCHA challenges. They aim to block bots without
overusing CAPTCHAs, avoiding user frustration and revenue loss.
Our approach does not differentiate bots. A possible combination
with these approaches would be to provide only clients that are
likely to be bots with encrypted endpoints and leave all others
without.

Facebooks Encrypted URLs. As outlined in Section 3.2, Facebook’s
deployment of encrypted URLs primarily aims to prevent URL strip-
ping, rather than deterring bot activities [3]. By encrypting and
signing every URL parameter, the integrity of tracking parameters
is preserved, thwarting attempts to remove them without com-
promising the link’s validity. This method, while not designed for
bot mitigation, shares similarities with our approach, prompting a
detailed comparison in Table 2.

5.2 RQ2: Overhead
5.2.1 Ease of Integration. Integrating the proposed approach into
a backend system is straightforward, facilitating the redirection of
all requests through our middleware (cf. Listing 3). This middle-
ware verifies the legitimacy of each request, offering configuration
options such as custom identifier selection and support for par-
tial URLs. For partially encrypted URLs, a custom validator must
be written to check whether a partially encrypted URL is correct.
Specifically, it must ensure that the dynamic, user-controlled part is
valid so that the user cannot include more than necessary, such as
extra parameters or paths. Load balancing and distributed deploy-
ment should function normally and seamlessly, as long as the client
ID is deterministic, and the key derivation function (KDF) used to
derive the client key is consistent, given that the implementation is
stateless.
1 app . add_middleware (
2 m idd l ewa r e _ c l a s s =EncryptedEndpo in t sMidd leware ,
3 main_key=b " some_key ")

Listing 3: Adding EncryptedEndpointsMiddleware to FastAPI

For the frontend, support is extended to Jinja2, enabling the
invocation of an encryption function within our framework. This
functionality is not confined to HTML but is also applicable to
JavaScript tags and files (cf. Listing 4 and Listing 5).
1 Templa teResponse (" s t a r t _ p a g e . html " , { " r e q u e s t " :

r e q u e s t })

Listing 4: Rendering a Template Response in FastAPI

1 < ! −− Encrypt URL to r e s o u r c e s −−>
2 < s c r i p t s r c = " { { e n c r yp t _v a l u e (' / t emp l a t e s / s c r i p t s . j s ' ,

r e q u e s t) } } " >< / s c r i p t >
3 < ! −− Encrypt URLs −−>
4 < i c l a s s = " logout − i c on "

o n c l i c k = " l o c a t i o n . h r e f = ' { { e n c r yp t _v a l u e (' / l o gou t / ' ,
r e q u e s t) } } ' " >< / i >

5 < ! −− In J a v a S c r i p t −−>
6 < s c r i p t >
7 f e t c h (' { { e n c r yp t _v a l u e (" / p o s t s / " , r e q u e s t) } } ')

8 < / s c r i p t >

Listing 5: Using Encrypted URLs in the Frontend

For binaries and applications, multiple integration methods ex-
ist. The simplest is to compile the binary with user-specific end-
points embedded. Alternatively, it is feasible to dynamically inject
the endpoints into the application at startup. In this scenario, the
application contacts a server, which then provides all necessary
endpoints to the client. This necessitates that this information is
obfuscated as well. For example, instead of transmitting the text
form of endpoints, the endpoints could be embedded in a library,
or the URLs could be transmitted encrypted and integrated into the
main package within a secure enclave, such as Intel SGX.

5.2.2 URL Stretch. It is crucial to be aware of the limitations that
various platforms impose on the length of URLs. Although the
HTTP/1.1 specification RFC 2616 [15] does not define a maximum
URL length, practical constraints are enforced by web browsers,
for example, a limit of 2MB in Chromium7. Our experiments indi-
cate that, as of the latest version in April 2024, all major desktop
browsers (Firefox, Chrome, Edge, Safari), as well as mobile browsers
(Chrome, Firefox, Safari), support URLs exceeding 20,000 characters.

Several factors influence the final size (𝐿𝑓 𝑖𝑛𝑎𝑙) of encrypted URLs,
depending on the implementation specifics. The following holds
for our implementation. These factors include padding (𝑂𝑝𝑎𝑑𝑑𝑖𝑛𝑔)
to reach the block size, which might require an additional 128 bits,
and the addition of a MAC (𝑂𝑚𝑎𝑐), contributing another 128 bits.
Our implementation incorporates separators to support partially
encrypted URLs due to their dynamic nature, adding an overhead
of 2 bytes (𝑂𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑠). The overhead per encrypted URL segment,
denoted by 𝑛blocks, typically comprises only one segment, meaning
that the entire URL is encrypted. Moreover, the transformation
of encrypted data using base64 encoding typically increases the
size by approximately 33% as it encodes every 3 bytes into 4 bytes
(𝑂𝑏𝑎𝑠𝑒64).

Given these considerations, the formula for calculating the length
in bytes of data post-encryption can be expressed as follows:
𝐿final = 𝐿data ·𝑂base64 + 𝑛blocks · (𝑂padding +𝑂mac +𝑂separators)

𝐿final = 𝐿data · 1.33 + 𝑛blocks · (16 + 16 + 2)
Given the length expansion, current browser limits and consider-

ing typical URL lengths, the length expansion from encryption does
not appear to be problematic. Should one approach these limits,
exploring text compression methods could offer a viable solution.

5.2.3 Runtime Performance. Table 5presents the latency results ob-
tained within a local network environment using a test application
we developed. The application returns a simple HTML page with a
configurable number of embedded links. The baseline is the web
application without our approach of encrypted endpoints, utilizing
AES-GCM for authenticated encryption. It is worth noting that the
processor in use is equipped with AES-NI [4]. The terminologies
used in the table are defined as follows. ENC indicates a scenario
where encrypted URLs are utilized, with the client key being dynam-
ically derived for each request, thus eliminating the requirement
7https://chromium.googlesource.com/chromium/src/+/HEAD/docs/security/url_
display_guidelines/url_display_guidelines.md

RAID 2024, September 30-October 02, 2024, Padua, Italy See et al.

for the server to maintain state. S-Key denotes a method similar
to ENC, wherein the client key is cached on the server, adopting
a stateful approach to enhance performance by balancing storage
space against CPU time. S-URLs employs a strategy akin to the
S-Key method, with the encrypted URLs being cached on the server
to avoid the need for recalculating or re-encrypting identical URLs.

The results from the first table highlight that caching the client
key or the accessed URLs on the server, thereby maintaining a
stateful approach (S-Key), reduces latency, though the overall run-
time overhead remains minimal across all methods tested. Ideally,
caching client keys temporarily, along with frequently accessed
(hot) URLs, should be implemented to minimize latency.

ENC S-Key S-URLs
Latency Increase +0.0311ms +0.0199ms +0.0016ms

Table 3: Impact on backend server response times due to
the handling (decryption) of encrypted URLs, measured in
milliseconds. Profiling was conducted internally, avoiding
end-to-endmeasurements due to their millisecond-level vari-
ability, which could compromise accuracy. An average end-
to-end request in a local network is estimated between 12ms
and 14ms. The average latency increase was determined over
100000 requests.

Table 4 examines the performance overhead of rendering en-
crypted URLs using Jinja2, employing profiling to ensure accuracy
over end-to-end timing due to the latter’s variability at the millisec-
ond level.

The table compares the mean communication latency for the
base approach, which involves not encrypting URLs, against various
methods employing encrypted URLs. For each request, an HTML
document containing between 10 to 100 unique URLs was returned.
This comparison illustrates that caching both the client key and
the URLs significantly reduces latency, a strategy that should be
particularly effective for URLs with high demand.

Base ENC S-Key S-URLs
10 URLs 0.033ms +0.158ms +0.076ms +0.023ms
100 URLs 0.087ms +1.470ms +0.662ms +0.128ms

Table 4: Performance overhead of encrypting and rendering
unique URLs. Profiling was utilized instead of end-to-end
timing to circumvent the latter’s millisecond-level variabil-
ity, which could lead to inaccuracies. The table presents the
mean communication latency in milliseconds for direct and
encrypted URLs. Base refers to the baseline, meaning our
web application without encrypted endpoints. The average
latency increase was observed over 100000 requests.

5.3 RQ3: Protection Against Attacks
The methodology outlined in this paper primarily aims to mitigate
bot-related threats while also functioning as an automatic whitelist

mechanism for URLs. We briefly discuss this feature, considering it
as a subject for future exploration.

This approach ensures that only URLs explicitly authorized by
the server are accepted, offering protection against certain types of
attacks:
Directory Traversal This method prevents attackers from nav-

igating outside the web root directory to access restricted
files, thus safeguarding against unauthorized directory ac-
cess attempts (e.g., example.com/../../etc/passwd).

Accidental Data Exposure It protects against the accidental ex-
posure of sensitive files, such as configuration files (exam-
ple.com/.env), by ensuring that only URLs deliberately ex-
posed by the server are accessible.

Local File Inclusion (LFI) It obstructs attempts to include files
from the server’s filesystem in the output of a web applica-
tion, a tactic often used to execute arbitrary code or access
sensitive information.

Reflected XSS and SQL Injection Attacks It offers some protec-
tion against attacks that misuse URL parameters to inject
malicious scripts (Reflected XSS) or manipulate database
queries (SQL Injection), as exemplified by attempts like
example.com?item=’– drop table. This method, however, is
only applicable to endpoints where the URL parameters are
predetermined, such as a shopping page displaying related
products or a social media/blog platform suggesting tags
(e.g., example.com?tag=outfit). This protection mechanism
is ineffective if fully user-controlled input is accepted, such
as in search fields. Additionally, in cases where this method
is effective, it may inadvertently restrict users who guess
parameters. For instance, a user interested in exploring hard-
ware instead of outfits cannot simply change the tag in the
URL bar, even if the tag exists.

At the heart of this protective mechanism is the requirement for
each URL to carry a valid MAC issued by the server. The use of a
MAC that resists existential forgery under chosen-message attacks
ensures the impossibility for attackers to forge valid URLs.

However, it is crucial to recognize the limitations of this security
measure. For URL segments that are completely under user control,
such as parameters in search fields, our approach falls short. This is
because the URL cannot be entirely pre-constructed by the server;
it can only be partially created, as the user’s search parameter
is unknown. Further, in scenarios where an attacker successfully
persuades the server to serve a malicious URL, the URL would
be considered valid. In the previous example with the tag system
(example.com?tag=outfit), this prevents an attacker from merely
attempting to insert malicious payloads directly into the parameter
system. However, if the attacker can create a new tag containing
the malicious payload, the attack would succeed. The practicality
of such an exploit depends on the website’s specific configurations
and security measures, which may deter or entirely prevent the
attacker’s success.

5.4 Limitations and Privacy Implications
While encrypted endpoints limit the scalability of bots, it is hard
to quantify how much harder they make it. This is mainly due to
the quality of the used obfuscation. In an ideal scenario, a perfect

Encrypted Endpoints RAID 2024, September 30-October 02, 2024, Padua, Italy

obfuscation is used in conjunction with our approach, which would
prevent bots’ scaling. However, there is no such thing as a perfect
obfuscation.

Services that use encrypted endpoints and require URL sharing
between users (e.g., an online shop or social media) or need to be
interoperable with third-party services (e.g., a payment provider or
identity provider) must identify URLs or URL paths that need to be
shareable. These URLs and corresponding actions must be commu-
nicated to the middleware implementing the encrypted endpoints.
In large applications, this might increase the initial cost of using
encrypted endpoints.

Further, despite the introduction of unique endpoints for each
account, attackers with substantial resources, be it in terms of com-
putational power or time, could potentially overcome this hurdle.
By programming bots that simulate user interactions with the UI,
attackers could sidestep the account-specific endpoint requirement.
While such UI-based bot creation might prove resource-intensive,
especially in the case of smartphone apps requiring the use of Vir-
tual Machines (VMs), determined attackers may still find ways
to automate these processes effectively, e.g., by starting bots se-
quentially to save resources. Moreover, the reliance on UI inter-
actions constrains the capabilities of these bots to the scope of
functionalities exposed through the UI. This limitation could hinder
attackers seeking more nuanced and intricate actions that direct
controlled requests could achieve. Therefore, while the „encrypted
endpoints” approach offers strong protection against simple and
some advanced bots, it might fall short against adversaries who are
adept at crafting UI-based automation techniques.

Our approach can be used more as defending against bots alone.
It also destroys the ability to read URLs and their parameters. In
today’s Internet, the URL path or its parameters often reveal infor-
mation about a resource. When these URLs are encrypted, this is no
longer the case. Authenticating URLs alone cannot remove tracking
parameters without invalidating the URL. Facebook has already
started doing this [3]. Unfortunately, we do not have any technical
countermeasures against this approach. The main problem with
this approach, which makes it worse than tracking cookies, is that
all tracking information is stored in the URL itself and thus affects
shared links.

6 COMBINING ENCRYPTED ENDPOINTS
WITH CODE OBFUSCATION

Code obfuscation is orthogonal to our approach but necessary
to protect against advanced and realistic EP attackers. We define
several requirements that a code obfuscation technique should
fulfill. The issue is that even if all endpoints are encrypted, the
location within the application remains unchanged. Thus, a bot
creator does not need to save the endpoint but rather the position
where the URL is stored. This could be a file offset, an XPath or CSS
Selector in a web context, or even a line number in JavaScript.

We identified several requirements for a code obfuscation ap-
proach. The most important is the obfuscation of the URL location,
ensuring that the URL is not easily identifiable through its position
or the relationship between objects. The URL may also be split
and stored in multiple locations if the context permits, such as
in programming languages like JavaScript, but not in languages

like HTML or CSS. Another requirement is non-deterministic re-
sults, meaning the code obfuscation should ideally produce differ-
ent versions of the application for different users. Deterministic
obfuscation methods should be combined with non-deterministic
techniques. Additionally, the obfuscation should have low overhead
in runtime and build. The resources required to build the obfuscated
application should be minimal, which could be addressed by pre-
building multiple versions of the application. Lastly, full application
obfuscation is essential, meaning the entire application containing
or potentially containing URLs should be obfuscated. This is par-
ticularly important for web applications, where it is insufficient to
obfuscate only the JavaScript if it inserts URLs into the HTML.

While most applications have many options due to their ability
to modify themselves at runtime, standalone HTML pages with-
out JavaScript present a challenge. HTML cannot modify itself at
runtime and must therefore include all URLs in clear text. Given
that the obfuscation technique can change the location of URLs as
specified in our requirements, an attacker could still brute force all
possible URLs. To mitigate this, some form of rate limiting or trap
URLs should be included. For instance, if a bot attempts to access a
fake URL, it should be blocked from further interaction.

Using our approach, the URLs do not reveal any information
about themselves as they are encrypted and can be padded to equal
lengths. Suitable approaches are discussed in Section 3.2.

7 CONCLUSION
Our investigation reveals that while numerous strategies primar-
ily aim at complicating the initial creation of bots, our proposed
methodology focuses on impeding their applicability across dif-
ferent user accounts. This objective is accomplished by assigning
unique, encrypted endpoints (URLs) to each client, thereby necessi-
tating that attackers extract fresh endpoints for every bot directly
from server responses. Implemented as a middleware layer within
the backend architecture, our solution facilitates seamless integra-
tion with existing systems, ensuring minimal impact on perfor-
mance. An empirical evaluation of our approach indicates a modest
increase in latency overhead by approximately 0.03ms - 0.0016ms
for incoming requests under the most realistic operational scenar-
ios. Alone, our method proves effective in thwarting the efforts of
simple bots and automated tools. However, its efficacy is markedly
enhanced when combined with targeted code obfuscation tech-
niques, significantly curtailing the scalability of sophisticated bot
operations. Looking forward, we aim to conduct a comprehensive
empirical analysis of our approach, focusing on identifying and
integrating code obfuscation methods specifically designed to com-
bat bot activities. This will thereby further reinforce the security of
web services against automated threats.

REFERENCES
[1] 2021. Humanity Wastes about 500 Years per Day on CAPTCHAs. It’s Time

to End This Madness. http://blog.cloudflare.com/introducing-cryptographic-
attestation-of-personhood/

[2] 2022. 2022 Bad Bot Report | Evasive Bots Drive Online Fraud | Imperva. https:
//www.imperva.com/resources/resource-library/reports/bad-bot-report/

[3] 2022. Facebook Gets Round Tracking Privacy Measure by Encrypting
Links. https://www.malwarebytes.com/blog/news/2022/07/facebook-gets-
round-tracking-privacy-measure-by-encrypting-links

[4] 2023. Intel® Advanced Encryption Standard Instructions (AES-NI). https:
//www.intel.com/content/www/us/en/developer/articles/technical/advanced-

RAID 2024, September 30-October 02, 2024, Padua, Italy See et al.

encryption-standard-instructions-aes-ni.html
[5] Alejandro Acien, Aythami Morales, John V Monaco, Ruben Vera-Rodriguez,

and Julian Fierrez. 2021. TypeNet: Deep learning keystroke biometrics. IEEE
Transactions on Biometrics, Behavior, and Identity Science 4, 1 (2021), 57–70.

[6] Adnan Akhunzada, Mehdi Sookhak, Nor Badrul Anuar, Abdullah Gani, Ejaz
Ahmed, Muhammad Shiraz, Steven Furnell, Amir Hayat, and Muhammad Khur-
ram Khan. 2015. Man-At-The-End attacks: Analysis, taxonomy, human aspects,
motivation and future directions. Journal of Network and Computer Applications
48 (2015), 44–57.

[7] Fatmah H Alqahtani and Fawaz A Alsulaiman. 2020. Is image-based CAPTCHA
secure against attacks based on machine learning? An experimental study. Com-
puters & Security 88 (2020), 101635.

[8] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and Alexan-
der Pretschner. 2016. Code obfuscation against symbolic execution attacks. In
Proceedings of the 32nd Annual Conference on Computer Security Applications.
189–200.

[9] Alessandro Bessi and Emilio Ferrara. 2016. Social bots distort the 2016 US
Presidential election online discussion. First monday 21, 11-7 (2016).

[10] BinBashBanana. 2024. BinBashBanana/html-obfuscator. https://github.com/
BinBashBanana/html-obfuscator original-date: 2020-04-22T00:23:10Z.

[11] Douglas Brewer, Kang Li, Laksmish Ramaswamy, and Calton Pu. 2010. A Link
Obfuscation Service to Detect Webbots. In 2010 IEEE International Conference
on Services Computing. IEEE, Miami, FL, USA, 433–440. https://doi.org/10.1109/
SCC.2010.89

[12] Christian Collberg. 2001. the tigress c obfuscator. Retrieved 2021-12-07 from
https://tigress.wtf/about.html

[13] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo
Valsorda. 2018. Privacy Pass: Bypassing Internet Challenges Anonymously. Proc.
Priv. Enhancing Technol. 2018, 3 (2018), 164–180.

[14] Ahmed Diab and Tawfiq Barhoum. 2018. Prevent XPath and CSS Based Scrapers
by Using Markup Randomizer. Int. Arab. J. e Technol. 5, 2 (2018), 78–87.

[15] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul
Leach, and Tim Berners-Lee. 1999. Hypertext transfer protocol–HTTP/1.1. Techni-
cal Report.

[16] R Fielding, M Nottingham, and J Reschke. 2022. RFC 9110: HTTP Semantics.
[17] Roy Fielding and Julian Reschke. 2014. RFC 7231: Hypertext Transfer Protocol

(HTTP/1.1): semantics and content.
[18] NickHeath. 2010. Expedia on how one extra data field can cost $12m. https://www.

zdnet.com/article/expedia-on-how-one-extra-data-field-can-cost-12m/. Ac-
cessed: 2021-10-18.

[19] Md Imran Hossen, Yazhou Tu, Md Fazle Rabby, Md Nazmul Islam, Hui Cao,
and Xiali Hei. 2020. An Object Detection based Solver for {Google’s} Image
{reCAPTCHA} v2. In RAID 2020. 269–284.

[20] Apple Inc. [n. d.]. Replace CAPTCHAs with Private Access Tokens - WWDC22 -
Videos. https://developer.apple.com/videos/play/wwdc2022/10077/

[21] ProtWare Inc. [n. d.]. Encrypt HTML source, Javascript, ASP. Protect links &
images. HTML encryption. https://www.protware.com/

[22] Jscrambler. [n. d.]. Webpage Integrity: Manage Third-party Risks. https://
jscrambler.com/webpage-integrity

[23] Timofey Kachalov. [n. d.]. javascript-obfuscator/javascript-obfuscator: A pow-
erful obfuscator for JavaScript and Node.js. https://github.com/javascript-
obfuscator/javascript-obfuscator

[24] Albert Koczy. 2023. Mitmproxy2swagger. https://github.com/alufers/
mitmproxy2swagger

[25] Mohinder Kumar, MK Jindal, and Munish Kumar. 2022. A systematic survey on
CAPTCHA recognition: types, creation and breaking techniques. Archives of
Computational Methods in Engineering 29, 2 (2022), 1107–1136.

[26] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2014. Reducing
web test cases aging by means of robust XPath locators. In 2014 IEEE International
Symposium on Software Reliability Engineering Workshops. IEEE, 449–454.

[27] Wei Liu. 2018. Introducing reCAPTCHA v3: the new way to stop
bots. https://developers.google.com/search/blog/2018/10/introducing-recaptcha-
v3-new-way-to. Accessed: 2021-05-20.

[28] Intuition Machines. 2018. Stop more bots. Start protecting user privacy. https:
//www.hcaptcha.com/. Accessed: 2021-05-20.

[29] Genesis Mobile. [n. d.]. JavaScript Obfuscator - Protect your JavaScript Code.
https://jasob.com/

[30] Marvin Moog, Markus Demmel, Michael Backes, and Aurore Fass. 2021. Statically
Detecting JavaScript Obfuscation and Minification Techniques in the Wild. In
2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). 569–580. https://doi.org/10.1109/DSN48987.2021.00065

[31] Keaton Mowery and Hovav Shacham. 2012. Pixel perfect: Fingerprinting canvas
in HTML5. Proceedings of W2SP 2012 (2012).

[32] August See, Leon Fritz, and Mathias Fischer. 2022. Polymorphic Protocols at
the Example of Mitigating Web Bots. In European Symposium on Research in
Computer Security. Springer, 106–124.

[33] August See, Tatjana Wingarz, Matz Radloff, and Mathias Fischer. 2023. De-
tecting Web Bots via Mouse Dynamics and Communication Metadata. In IFIP

International Conference on ICT Systems Security and Privacy Protection. Springer,
73–86.

[34] see-aestas. 2020. Charles-Extractor. https://github.com/see-aestas/Charles-
Extractor

[35] Suphannee Sivakorn, Iasonas Polakis, and Angelos D Keromytis. 2016. I am
robot:(deep) learning to break semantic image captchas. In 2016 IEEE EuroS&P.
IEEE, 388–403.

[36] VMProtect Software. 2021. VMProtect Software Protection. Retrieved 2021-12-07
from https://vmpsoft.com/

[37] Grażyna Suchacka, Alberto Cabri, Stefano Rovetta, and Francesco Masulli. 2021.
Efficient on-the-fly Web bot detection. Knowledge-Based Systems 223 (2021),
107074.

[38] Mahin Talukder, Syed Islam, and Paolo Falcarin. 2019. Analysis of obfuscated
code with program slicing. In 2019 International Conference on Cyber Security and
Protection of Digital Services (Cyber Security). IEEE, 1–7.

[39] Oreans Technologies. 2022. Oreans Technologies : Software Security Defined.
https://www.oreans.com/Themida.php Accessed 2021-12-07.

[40] Shardul Vikram, Chao Yang, and Guofei Gu. 2013. Nomad: Towards non-intrusive
moving-target defense against web bots. In CNS. IEEE, 55–63.

[41] WeihangWang, Yunhui Zheng, Xinyu Xing, Yonghwi Kwon, Xiangyu Zhang, and
Patrick Eugster. 2016. Webranz: web page randomization for better advertisement
delivery and web-bot prevention. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 205–216.

[42] Ang Wei, Yuxuan Zhao, and Zhongmin Cai. 2019. A deep learning approach
to web bot detection using mouse behavioral biometrics. In Biometric Recogni-
tion: 14th Chinese Conference, CCBR 2019, Zhuzhou, China, October 12–13, 2019,
Proceedings 14. Springer, 388–395.

[43] Tara Whalen, Thibault Meunier, Mrudula Kodali, Alex Davidson, Marwan
Fayed, Armando Faz-Hernández, Watson Ladd, Deepak Maram, Nick Sullivan,
Benedikt Christoph Wolters, et al. 2022. Let The Right One In: Attestation as a
Usable {CAPTCHA} Alternative. In Eighteenth Symposium on Usable Privacy
and Security (SOUPS 2022). 599–612.

[44] Wei Xu, Fangfang Zhang, and Sencun Zhu. 2012. The power of obfuscation
techniques in malicious JavaScript code: A measurement study. In 2012 7th Inter-
national Conference on Malicious and Unwanted Software. IEEE, 9–16.

[45] Jason Yung. 2024. json2d/obscure. https://github.com/json2d/obscure original-
date: 2016-05-30T22:04:01Z.

Encrypted Endpoints RAID 2024, September 30-October 02, 2024, Padua, Italy

Direct ENC S-Key S-URLs
Latency 10 URLs 13.9ms +3.1% +2.4% +1%
Latency 100 URLs 14ms +4.3% +2.1% +0.7%
Latency 1000 URLs 14.1ms +5.7% +2.1% +0.8%

Table 5: Mean communication latency in milliseconds rela-
tive to direct server communication, expressed as a percent-
age increase (N=100000). Dynamic URL generation and 100
KB webpage padding were employed.

A ALTERNATIVE PROXY IMPLEMENTATION
We further explored implementing our approach through a trans-
parent proxy rather than as middleware, eliminating the need for
any modifications to the service’s code. While this method offered
ease of integration to any backend, it introduced significant per-
formance drawbacks, primarily due to the additional resources
required for parsing.

A.1 Performance Overhead
Our proxy-based implementation involved intercepting requests to
dynamically identify URLs, generate keys, and encrypt URLs, con-
tributing to increased latency due to the computational demands
of these operations. To quantify the impact on latency, we con-
ducted tests on three simulated websites containing 10, 100, and
1000 URLs, respectively. Each website was standardized to 100 KB
in size, inclusive of URLs and randomly generated padding bytes,
with 1000 URLs approximating 95 KB of the total content. This
choice was informed by an analysis of 10,000 random websites
from the Majestic Million list, revealing a median presence of 106
URLs per site. The latency measurements were performed on a
Debian 11 system equipped with an Intel i5-8365U CPU, targeting
a Gunicorn/Flask HTTP server. Latency was calculated from the
initiation of the request to the full receipt of the response, without
reusing TCP connections for subsequent requests.

Table 5 presents the latency findings within a local network
context, employing AES-GCM for authenticated encryption, with
the processor supporting AES-NI.

The results indicate that direct server communication (Direct)
is the fastest, with latency increases for encrypted URLs (ENC),
stored client keys (S-Key), and stored encrypted URLs (S-URLs)
being attributable to the additional computational steps involved.
Notably, the performance gain from storing client keys or URLs is
modest, given the already low overhead from encryption.

Transitioning from a proxy to backend middleware implementa-
tion enhances efficiency, albeit at the cost of requiring code adjust-
ments. The proxy model, despite its straightforward setup, incurs
significant performance losses, especially with an increasing num-
ber of URLs, due largely to the time-intensive nature of HTML URL
parsing.

A.2 Organisational Overhead
The complexity of directly implementing encrypted endpoints
varies with the existing codebase. Here, the primary challenge
lies in statically extracting URLs from backend responses, a process
that may miss URLs dynamically generated via JavaScript.

0.0 0.2 0.4 0.6 0.8 1.0
Error (dynamic - static)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
eq

ue
nc

y

Difference of static to dynamically identified URLs

Figure 3: Overview of Possible Encrypted Endpoint Usage
(N=10000)

Our analysis of 10,000 URLs from the Majestic Million list, com-
paring static and dynamic extraction methods, sought to quantify
the potential discrepancy. While not exhaustive, this comparison
sheds light on the limits of static extraction in capturing dynami-
cally generated URLs, as illustrated in Figure 3.

This analysis reveals instances where dynamic extraction iden-
tifies URLs not found through static methods, with a mean error
rate of 0.1188 and 78.22% of sites showing no discrepancy between
the two. Further investigation into sites with large discrepancies
highlighted asynchronous JavaScript processes as a primary fac-
tor, suggesting that encrypted endpoint deployment could benefit
from mechanisms like mutation observers to capture and encrypt
dynamically generated links.

Reflecting on the findings from Section 5.2, the deployment of
our approach, particularly as a proxy, appears less burdensome
than initially anticipated. The performance is deemed acceptable
for non-time-critical applications, and the proxy model allows for
experimentation without altering the existing system architecture.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Sofern im Zuge
der Erstellung der vorliegenden Dissertationsschrift generative Künstliche Intelligenz (gKI)
basierte elektronische Hilfsmittel verwendet wurden, versichere ich, dass meine eigene Leistung
im Vordergrund stand und dass eine vollständige Dokumentation aller verwendeten Hilfsmittel
gemäß der Guten wissenschaftlichen Praxis vorliegt. Ich trage die Verantwortung für eventuell
durch die gKI generierte fehlerhafte oder verzerrte Inhalte, fehlerhafte Referenzen, Verstöße
gegen das Datenschutz- und Urheberrecht oder Plagiate.

Ort, Datum Unterschrift

	Title
	Quote
	Quote
	Abstract
	Zusammenfassung
	Acknowledgement
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Research Questions
	1.4 Contributions
	1.5 Thesis Organization
	1.6 List of Publications

	2 Background and Related Work
	2.1 Bot Creation and Analysis
	2.1.1 Definition and Overview
	2.1.2 Bot Creation and Analysis Techniques

	2.2 Bot Detection
	2.2.1 Static Detection
	2.2.2 Behavioral Detection

	2.3 Bot Prevention
	2.3.1 Prove of being a Human
	2.3.2 Obfuscation

	2.4 Summary

	3 Bot Detection Using Behavioral Analysis
	3.1 Bot Detection Using Mouse Dynamics
	3.1.1 Method
	3.1.2 Key Results
	3.1.3 Discussion and Implications

	3.2 Bot Detection Using Keystroke Dynamics
	3.2.1 Method
	3.2.2 Key Results
	3.2.3 Discussion and Implications

	3.3 Bot Detection Using Behavioral Analysis in High-Traffic Applications
	3.3.1 Method
	3.3.2 Key Results
	3.3.3 Discussion and Implications

	3.4 Summary

	4 Automated Analysis and Control of Binaries
	4.1 Method
	4.1.1 Generic POI Discovery
	4.1.2 Use Case: Automated P2P Botnet Monitoring

	4.2 Key Results
	4.2.1 Setup
	4.2.2 Results RQ2.1: Identification
	4.2.3 Results RQ2.2: Slowdown
	4.2.4 Results RQ2.3: Quality of Confidence Scores

	4.3 Summary and Discussion

	5 Bot Prevention through Endpoint and Protocol Obfuscation
	5.1 Polymorphic Protocols for Limiting Protocol Analysis and Bot Scalability
	5.1.1 Method
	5.1.2 Key Results
	5.1.3 Discussion and Implications

	5.2 Encrypted Endpoints for Limiting Bot Scalability
	5.2.1 Method
	5.2.2 Key Results
	5.2.3 Discussion and Implications

	5.3 Summary

	6 Conclusion
	Bibliography
	Appendices
	A Detecting Web Bots via Mouse Dynamics and Communication Metadata
	B Detecting Web Bots via Keystroke Dynamics
	C BOTracle: A framework for Discriminating Bots and Humans
	D Binary Sight-Seeing: Accelerating Reverse Engineering via Point-of-Interest-Beacons
	E Polymorphic Protocols at the Example of Mitigating Web Bots
	F Encrypted Endpoints: Defending Online Services from Illegitimate Bot Automation

