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Abstract

This thesis presents my research on a new type of local displacement sensors pro-
posed to be used in gravitational wave detectors to improve upon the alignment and
control noise in the low frequency regime around 3 Hz.

Gravitational wave astronomy is an emerging field using large interferometers with
km long arms to measure small displacements of less than 10~2°m/v/Hz caused
by passing gravitational waves. The currently running LIGO and Virgo detectors
are limited in the low-frequency region (below 30 Hz) by alignment and control
noises of their suspended optics. As a possible path to improve upon these noise
limitations, the use of more precise local sensors to measure the local displacement
of the optics, counteract their motion and improve upon their alignment has been
proposed. This thesis presents my research on local displacement sensors based
on “deep—frequency modulation interferometry (DFMI)” which allows for precise
measurements down to displacements in the order of ~ 100fm/v/Hz while simul-
taneously providing an absolute displacement readout allowing for measurements
over a large dynamic range over millimeter and centimeter, necessary for some of
the suspended optics in gravitational wave detectors. I present an “analytic read-
out algorithm” developed to extract the displacement parameters of interest from a
measured DFMI signal and I conduct a thorough analysis of the achievable precision
limits of DFMI using the “Cramér-Rao bound”. The readout algorithm I present
allows for a faster readout than previous experiments using DFMI, significantly in-
creasing the control bandwidth and the number of sensor channels that can be pro-
cessed. My noise analysis proves that the readout algorithm runs close to optimal
precision (given by the Cramér-Rao bound) and provides a displacement readout
similar to other interferometry—based displacement sensing techniques. These re-
sults show that using “deep—frequency modulation interferometry (DFMI)” based
local displacement sensors can help current and future planned ground-based gravi-
tational wave detectors to reach their target/design sensitivity in the low frequencies
around 1072' m/+/Hz.






Zusammenfassung

In dieser Arbeit wird mein Forschungsbeitrag zu einem neuartigen Typ lokaler
Langensensoren vorgestellt, mit dem Ziel solchen lokalen Sensoren in zukiinftigen
Gravitationswellendetektoren einzusetzen, um dort die Ausrichtung der Optiken zu
verbessern und das Rauschen im Niederfrequenzbereich um 3 Hz zu reduzieren. Die
Gravitationswellenastronomie ist ein aufstrebendes Gebiet, bei dem grofle Interfer-
ometer mit kilometerlangen Armen eingesetzt werden, um kleinste Langenanderun-
gen von weniger als 1072m/+/Hz, die durch vorbeiziechende Gravitationswellen
verursacht werden, zu messen. Die derzeit laufenden LIGO- und Virgo-Detektoren
sind im Niederfrequenzbereich (unter 30 Hz) durch Rauschen in der Ausrichtung und
der Regelungstechnik ihrer aufgehangten Optiken limitiert. Als moglicher Weg zur
Verbesserung dieser Rauschlimitierungen wurde die Verwendung praziserer lokaler
Sensoren vorgeschlagen, um die lokale Verschiebung der Optiken zu messen, ihrer
Bewegung entgegenzuwirken und ihre Ausrichtung zu verbessern. In dieser Arbeit
werden meine Forschungen zu lokalen Langensensoren auf der Grundlage von ,acr-
fulldfmi” vorgestellt. DFMI ermoglicht préazise Messungen in Groflenordnung von
bis zu ~ 100fm/ VvHz, und gleichzeitig eine absolute Distanzmessung iiber einen
groflen dynamischen Bereich von Millimetern und Zentimetern, was fiir einige der
aufgehangten Optiken in Gravitationswellendetektoren erforderlich ist. Ich stelle
einen ,analytic readout algorithm” vor, der entwickelt wurde, um die relevanten
Parameter aus einem gemessenen DFMI-Signal zu extrahieren, und ich fiihre eine
umfangreiche Analyse der erreichbaren Genauigkeitsgrenzen von DFMI unter Ver-
wendung des ,,Cramér-Rao bound” durch. Der von mir vorgestellte Auslesealgorith-
mus ermoglicht eine schnellere Auslesung als frithere DFMI Experimente, wodurch
die Bandbreite von verbundenen Regelschleifen und die Anzahl der zu verarbeit-
enden Sensorkanéle deutlich erhoht werden konnen. Meine Rauschanalyse beweist,
dass der Auslesealgorithmus nahe an der optimalen Genauigkeit (gegeben durch den
Cramér-Rao bound) arbeitet und eine Messung der Distanz ermoglicht, die mit an-
deren interferometrischen Messtechniken vergleichbar ist. Diese Ergebnisse zeigen,
dass die Verwendung von lokalen Langensensoren, die auf , acrfulldfmi” basieren,
aktuellen und zukiinftig geplanten bodengestiitzten Gravitationswellendetektoren
helfen kann, ihre Ziel-Empfindlichkeit in den niedrigen Frequenzen um 107! m/ VHz
zu erreichen.
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Thesis structure

The following thesis is structured into 4 main parts:

Part I serves as basic introduction to the field of gravitational wave detectors and
presents the main motivation for my later work: the improvement of current and
future ground—based gravitational wave detectors. I give a brief rundown of the his-
tory of gravitational waves and their detectors, starting with the earliest attempts to
detect them, up to the currently running, and future planned detectors. Although
I specifically highlight the Einstein Telescope — a potential future detector that my
work may support — a more detailed analysis of how local displacement sensors can
enhance the sensitivity of gravitational wave detectors in general is provided in the
chapter thereafter, using the currently operational LIGO detector as an example.
Part II then provides a “What is ... 7”7 summary of the deep—frequency modulation
interferometry (DFMI) technique (the main topic of this thesis) and an in-depth ex-
planation of the “analytic readout algorithm (ARA)” I developed for DFMI. As I
consider this readout algorithm one of the main results of my Ph.D. studies, I am
providing an extensive guide (corresponding to chapters 4 and 5) that one could
use as reference for the DFMI readout in the future. To keep the overall structure
concise, this part also contains some references to an “optimal precision” which is
only explained later and a summary of the “ReDFMI” technique which is similarly
motivated by my noise analysis of the next part, but included here as part of the
basic summary of DFMI related techniques.

Part III then contains an in-depth mathematical analysis of the noise sources lim-
iting the DFMI readout. As I was aiming to provide a mathematical rigorous for-
malism to calculate the precision limits for different noise sources, this part also
includes recapitulations of common terms of (mathematical) statistics and signal
analysis and how they relate to one another, relevant for the later explanations.
While not strictly necessary for understanding the other parts of this thesis, it might
be interesting for readers already well-versed in the field to look at some commonly
used expressions from a sightly different perspective. The main takeaway for the
reader here is to show how a “power spectral density (PSD),” which is often used
to express measured signals, relates to the probability density function of a signal
and its noise, which is the key component when calculating the formal noise limits
using the “Cramér-Rao bound.” The Cramér-Rao bound and the precision limits
for deep—frequency modulation interferometry signals derived from it are then the
main subjects of this part and present the second major result of my Ph.D. studies.
While the noise limits given by the Cramér-Rao bound presented there only apply
to some very specific noise sources affecting DFMI sensors, I believe that the formal
use of the Cramér-Rao bound can be extended to other (non-white) noise sources
in the future as well.

The final Part IV of this thesis shows an experimental DFMI setup implement-
ing the analytic readout algorithm and an example noise analysis of the previously
derived readout limits. It serves mainly as example application of the theoretical
concepts presented earlier and adds some minor practical considerations.
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Gravitational waves and their
detectors
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Chapter 1

A short history of gravitational
waves and their detectors

The first part of this thesis is inspired by an article from Sormani et al. [1] about the
mathematical history of gravitational waves. As it is often helpful for understanding
a topic to follow its historic development, this chapter provides some historic con-
text to the research of gravitational waves and their detectors. For any interested
reader, I recommend having a look at Sormani’s article, as it briefly mentions these
contributions and adds further references for reading.

1.1 Einstein’s first prediction of gravitational waves

Nov 1915
General relativity

1916 & 1918
Einstein’s first
prediction of linear
gravitational waves

Einstein published his field equations in November 1915 [2], de-
scribing a connection between physical quantities like masses and
geometric quantities like the metric- and curvature-tensors that de-
scribe the shape of space-time. A common way to write Einstein’s

field equations (EFE) is:

R
RMV - Eguy + Ag,w = Z—LLV (11)
with R, as Ricci curvature tensor, R as scalar curvature, g,, as
metric tensor, A as cosmological constant and T}, as stress-energy-
tensor with pu, v € {0,1,2,3} as indices.

Einstein himself also studied (and published in 1916 and 1918
[2]) the case of small perturbations of the metric tensor for
empty space-time (setting 7},, = 0), which yields a wave equation
(8h,, = 0) for small metric perturbations h,, which he interpreted
as gravitational waves.

As the solutions to this linearized wave equations do not solve the
full (non-linear) field equations, Einstein was uncertain if physical
gravitational waves that solve the full EFE exist.
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For completeness and later reference, the calculations leading to the theory of “lin-
earized gravity” and the resulting “plus” and “cross” polarized gravitational waves
are given here briefly:

1.1.1 Definition : Linear gravitational waves

The first step is to decompose the gravitational field given by the metric tensor
g, into a static (and flat) background given by the Minkowski-Metric (,, =
diag(—1,1,1,1)) and a perturbation (the gravitational wave) given by ch,,, with
€ < 1 as small scaling factor:

Guv = Opp +€hyy . (1.2)

Inserting (1.2) into the EFE and neglecting all higher order terms of € (2 & 0)
yields as “linearized” EFE for empty space (and A = 0):

1

1 1
— 50 + 5000+ 5 (8°0,ha + 00, hay — 8,,0°hap — 8,8,h) = 0 (1.3)

This approximation is also referred to as “linearized gravity” [3]. Imposing
the “harmonic gauge” condition (¢g"'T', = 0 2 D hew = $0°h) simplifies the
term inside the brackets in (1.3) to (—%5WDh). Using this gauge and multiplying
with —2, (1.3) becomes

5 (1 Lot} =o. o

Further restricting the choice of coordinates (hy, + h,,) by scaling the ratio
between time and space coordinates such that the trace of the metric perturba-
tion vanishes (h¢ = h = 0, the “traceless” condition), simplifies (1.4) further to
a wave equation for the metric perturbation

Oh,, = 0. (1.5)

When writing the solutions down explicitly, the coordinate choice is usually
restricted further by setting the time coordinate orthogonal to the spatial coor-
dinates (hg; = 0) and choosing a (light-like) observer travelling along the gravi-
tational wave in the time coordinate (hgy = 0). This, together with the traceless
condition (which yields together with the “harmonic gauge” = 0%h,, = 0)
is also referred to as “transverse-traceless (TT)” gauge which can be defined
directly as:

hoy, =0, h™ =0, 0%/)5 =0 (1.6)
The wave equation (1.5) in this TT-gauge is solved by

BEVT = Ay, cos(ksz?). (1.7)
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The TT-gauge conditions translate here to conditions for the amplitude A,, and
the wave-vector ks given by:

For a wave travelling along the x3 = z (spatial) direction with frequency w (such
that kg = w/c) fixes the wave vector to k, = (w/c,0,0, —w/c) and allows us to
write the metric perturbation / the gravitational wave down as

with the free parameters h, and hy being referred to as “plus-” and “cross-
polarization” amplitudes of the gravitational waves, and xq =t as time coordi-

hyy =0 = A, =0 (1.8)

PP =0 = A%=0 (1.9)
Fhye =0 = Ak =0 (1.10)

(and Ohy,, =0 = k%, =0) (1.11)

0 0 0 O

- 0 hy hx O

hEVT 0 hi _}Z_ 0 cos(w(z/c —t)), (1.12)
0 0 0 O

nate.
B 1.93,7 d After his initial presentation of linearized GWs, Einstein together
R mS:GeHES Ean with Nathan Rosen continued to work on finding a solution that
osell s) firs on- would satisfy the full (non-linear) theory. By 1937, Rosen and
linear solution ® . - .
i Einstein [4] were somewhat successful and even published a paper
and his doubts on « L. ” . i
) (“On gravitational waves”) presenting an exact solution for what
the existence of . o o
S can be considered cylindrical gravitational waves.
gravitational waves
Despite this success, Einstein remained highly doubtful that such
mathematical solutions correspond to real physical phenomena.
E.g., his cylindrical solution contained coordinate singularities
which he did not recognize as such at the time, and even with a
better choice of coordinates they contain a singularity along the ro-
tational symmetry axis and the wavefront being infinitely stretched,
which lead Einstein to believe that such mathematical solution
were non-physical and gravitational waves may not exist [1]. With
Einstein adapting a critical opinion about gravitational waves the
search for them did not make significant progress for about 20 years
until new researchers began to work on this problem again.
The first singularity free rigorous solution of gravitational waves
. and answers to the questions of whether GWs carry energy and
Chapel Hill Con- . : .
; 0 1057 ® could physically exist were answered by the combined works of
erence Herman Bondi, Ivor Robinson, Felix Pirani and Andrzej Trautman,
shortly after they met at the Chapel Hill Conference in 1957.
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Pirani, Bondi and Robinson tried to find a proper definition
Priani 1957 e of gravitational waves by drawing analogies to electromagnetic
waves in 4-d spacetime and found additional solutions that ful-
filled their newly defined conditions for gravitational waves [5, 6, 7].

The most mathematically rigorous definition came however in
1958 by Andrzej Trautman, who published two papers about
Trautman 1958 @ conditions for metrics to be associated with gravitational radiation
independent of the choice of coordinates [8, 9.

His findings also revealed that the known linearized waves can be
seen as the asymptotic limit of exact gravitational waves emitted by

Bondi (1957), Pirani some bounded sources. Later Trautman and Robinson additionally
& Robinson ’(1959) found a large class of gravitational waves solutions that satisfied
Trautman’s rigorous conditions, carry energy and have a closed

Robinson & surface as wavefront (corresponding to a localized source) [10, 11].
Trautman 1962 t

1.2 Modern approaches to calculating GW wave-
forms

Today, a set of different techniques is used to calculate waveforms of gravitational
waves which can be compared to measured data. Paradoxically, the mathematically
most rigorous calculations are done by numerical simulations. While this can lead
to numerical errors, it usually involves the full, non-linear EFE to calculate the
metric, unlike the finite or weak-field approximations. Prof. Alessandra Buonanno
from the Max Planck Institute for Gravitational Physics in Potsdam once! referred
to the numerical method as being “the slow but exact method” compared to the
analytic “fast but approximate” way of calculating gravitational waves. Most other
methods to calculate waveforms that are used and explained in literature like [12,
13, 14] usually involve linearized gravity or some other kind of (post-Newtonian)
series approximation. Calculating waveforms for comparison with measurable sig-
nals is still an active research field where new models and techniques with varying
precision, computational time and ease of use are being investigated.

One way to model a waveform that could be measured by gravitational wave detector
is by using the linearized EFE (also referred to as the weak-field approximation). In
this approximation, the linearized EFE given by

1 _
oG p (1.13)

Ohy = — i
are solved using the retarded Green’s function G(z — z') = —1/4n|z — /| - §(t — 1)
of the Laplace operator. The resulting weak-field (gravitational wave) for a given
dynamic mass distribution 7}, can be calculated by convolution with the Green’s

'During a lecture that I visited during my Ph.D. studies in 2022.
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function (with a more detailed explanation for the Green’s function in section 7.3)

via i . | :
- - r—x
hy(t, z) = —/ d*z’ — x’|TW (t — ,x/) . (1.14)

ct |z c

The T}, describing the dynamics of a physical system (the moving masses) are gen-
erally unknown and what physicists try to deduce from (some) measured gravita-
tional wave signals. For practical purposes, the expression inside the integral (1.14)
is expanded into a series of spherical harmonics (different Bessel functions) and by
applying additional gauges and some further approximations, the integral is reduced
to leave only a small set of parameters (like masses, initial /current separation dis-
tance and speeds). For a given set of these parameters, the linearized gravitational
waves received by a far away observer can then be calculated. A detailed calculation
of this can be found in [12, Chapter 3|. Since the initial assumptions for linear grav-
ity assume only a small disturbance (a “weak” field), waveforms from sources with
strong dynamic fields like two coalescing binary stars are typically calculated using
more elaborate techniques like the “post-Newtonian” expansion where the metric
tensor is expanded further into additional coefficients beyond the linear expansion.
[12, Chapter 5.

1.3 Typical sources of gravitational waves

The first indirect detection of gravitational waves was done by observing the peri-
odic bursts of a binary pulsar system discovered by Hulse and Taylor in 1974 [15].
The decay in frequency matched the theoretical prediction of the energy emitted by
gravitational waves [16] for such a binary mass system, giving evidence for the exis-
tence of gravitational waves. The discovery of the pulsar lead to Hulse and Taylor
being awarded the Nobel Prize in Physics in 1993. The first direct detection of grav-
itational waves was made on the 14th September 2015 by the LIGO detectors with
the signal named GW150914. Related to this, in 2017, Weiss, Barish and Throne
received a Nobel Prize “for decisive contributions to the LIGO detectors and the
observation of gravitational waves.”

Besides measuring and thus proving the existence of gravitational waves a more
detailed analysis of their exact shape can yield new insight on their sources, the
space-time between sources and detector, and the equations and fundamental physics
describing it. Figure 1.1 shows the amplitude spectral density (ASD) of some of these
expected sources and proposed detectors that are briefly described below:

Coalescing binaries

Binary systems of dense and heavy objects like black holes (BH) or neutron stars
(NS) are the most common and best understood sources of gravitational waves [17,
Section 3.4.1]. Especially black holes, which are almost completely characterized by
their mass and angular momentum offer a good theoretical reference without addi-
tional internal dynamics. Figure 1.2 shows the shape of the characteristic “chirp”
signal that such a system would emit around the time of its coalescence. In Figure
1.1, these chirps lead to the marked “compact binary inspirals” region. Any binary
system, like the binary pulsar Hulse and Taylor discovered, emit gravitational waves,
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Figure 1.1: ASD plot of some expected gravitational wave signals and sensitivity curves
of gravitational wave detectors. Depending on the publication, the exact values for these
sensitivity curves can vary by over an order of magnitude, with the values shown here
corresponding to the highest design sensitivity proposed. LIGO is an exception here as
its most recent observation run is better by an order of magnitude compared to aLIGO’s
initial design sensitivity.

not only shortly before their coalescence. These signals are however much weaker
due to the larger distances between the masses and at much lower frequencies in the
order of the orbital periods. For very large and (or) massive binaries, some of these
signal are expected to become measurable in the mHz region marked as “Massive
binaries” in Figure 1.1.
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Figure 1.2: Example sketch of a characteristic signal. The signal in this plot was not
calculated from a proper multipole formula but serves only as reference of the shape of a
binary inspiral GW signal. Up to the merge event at around 0.2 seconds, the frequency and
amplitude of the emitted waves increase. From the merge onward, there is a characteristic
“ring-down” of the newly formed single massive object.
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Asymmetric rotating neutron stars

Rotating neutron stars have also been suggested as sources of continuous gravita-
tional waves. An individual, fast rotating neutron stars that is not perfectly spheri-
cally symmetric, would lead to non—vanishing higher order multipole moments in the
metric. The frequency of the emitted gravitational waves would then be proportional
to the rotational frequency of the star, leading to almost continuous gravitational
waves in a frequency range of up to 1kHz. By observing the gravitational waves of
a pulsar together with the received electromagnetic (EM) signal, which also helps
to pinpoint the source, physicists hope to gain insight into the internal structure of
neutron stars and their corresponding equations of state [17].

Supernova explosions

Supernova explosions are another potential candidate for significant gravitational
waves emissions that might be detectable in the future and would also produce an
electromagnetic signal that could be observed with optical telescopes on Earth. As a
relatively sudden and fast process (involving large accelerations), where large masses
move in a non-spherical-symmetric way, the multipole expansion of the metric (as
given in (1.14)) would yield significant contribution from the quadrupole- and higher
order moments which would lead to strong detectable gravitational waves. Calcu-
lations of supernova explosions are however difficult, and it is uncertain just how
“asymmetric” the process actually is and how strong the possible gravitational waves
might be [17, Section 3.4.2]. The emitted gravitational wave would yield another
way, independent of the measured EM emissions, to verify the mass and distance of
the supernova and its use as standard siren in astronomy.

Stochastic background

Besides individually resolvable signals, different kinds of sources are expected to
produce stochastic backgrounds, creating regions where individual signals cannot
be isolated from the abundance of overlapping signals. The low frequency region
labelled “stochastic background” in Figure 1.1 corresponds to the expected back-
ground signals caused by the hypothesized supermassive black holes in the center
of galaxies which could create signals with a large strain at frequencies of ~ 1yr—!
[18]. With a much smaller strain, smaller binaries also create a “background” noise
which could at some point limit the detection of individual signals. Mapping the
exact shape of this background does however still yield insights into the popula-
tion and distribution of these sources. Besides an overabundance of known signals
causing a stochastic background, there are also more exotic processes theorized to
have caused a cosmological stochastic background (in analogy to the cosmological
microwave background) which is assumed to be in a similar region as the aforemen-
tioned supermassive black hole stochastic background.

Other cosmological sources

Besides these cases of large moving masses, there are also theorized processes like
i.e. a Ist order phase transition in the early universe that could have emitted grav-
itational waves. The scales and frequencies for these events is expected to be very
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different from the more localized sources above and their measurement could yield
insight into new physics [19].

1.4 Gravitational wave detectors

First experimental
GW Detectors:
Joseph Weber and
his bars (1960s)

Planing of in-
terferometric
detectors (1970s)

1990s — today

The beginning of the experimental search for gravitational waves
and the first gravitational wave detector is generally attributed to
Joseph Weber in the 1960s [20]. Weber’s concept was to use “res-
onant bar detectors,” large rigid aluminum bars as mechanical res-
onators for passing gravitational waves. A passing gravitational
wave would, in principle, excite the mechanical modes of the res-
onator and a bonded piezo-crystal would convert this stress into
measurable current. The geometry of these bars (and their elastic
modulus) set the resonance frequency around which the conversion
between gravitational energy to electric signal would be strongest.
In his laboratory, Weber used a set of 1.53 m long aluminum cylin-
ders, with resonance frequencies around 1660 Hz, where he expected
to see transient signals from waves generated during supernova ex-
plosions [20]. The search for gravitational waves using this kind of
mechanical oscillators remained however unsuccessful [19] (claims
of detected GW signals by Weber could not be verified by other
research groups doing similar experiments).

From the 1970s onward, researchers began to consider alternative
concepts like laser interferometers as detectors for gravitational
waves. The basic principle is that a passing gravitational wave
stretches and contracts the distance between two test-masses (two
mirrors) and by interfering a light beam traveling along two differ-
ent paths, this change can be made visible. One general advantage
of using interferometers compared to Weber-type bar antennas for
detection is their inherent broadband detection bandwidth (com-
pared to the narrow detection bandwidth close to the resonance
frequency of the bar antennas). Some of the first experimental
interferometer setups to detect gravitational waves were done in
Miinchen (Germany) starting from the 1970s. Ranging from table-
top setups, and going over a 3-meter prototype up to a 30-meter
prototype in the 1980s [19].

The work of this early research on gravitational wave detectors cul-
minated in the planning and eventual building of multiple larger
scale interferometers starting with German-British gravitational
wave observatory GEO600, and leading to the LIGO dectector in
the USA, the Virgo detector in Italy and the KAGRA detector in
Japan that operate today.
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1.4.1 : Laser interferometers as gravitational wave detectors

The basic principle of a Michelson Interferometer as gravitational wave detector
is straight forward: The light emitted by the laser (ox Asin(wot — kZ)) travels
along (null-) geodesics within both arms of the interferometer and recombines
at the beam-splitter. The light measured at the photodiode is proportional to
~ cos(p) with ¢ = 27(Ly — L1) /Ao with L; and Ly as proper distances between
the beam-splitter and the end-mirrors of both arms (and Ag as the light’s wave-
length). A passing gravitational wave leads to changes of this proper length and
thus to a change of measurable power proportional to the phase .

Ly

Wo

L,

Figure 1.3: Sketch of a Michelson Interferometer with two perpendicular arms of
length L; and Lo. For GWD, the interferometer arms are keep close to the same
length Ly ~ L; ~ Ly to reduce certain types of noise (laser frequency noise and
shot noise) while passing gravitational waves cause a measurable arm length change
0L := Ly — L.

While the effect of the gravitational wave is measured as differential length by
the detector, the signal and the detectors’ sensitivity are usually expressed as
dimensionless “strain” factor h := L /Ly which is the ratio of the differential
length 0L = (Ly — Ly) relative to the initial absolute total length Ly. As long
as the wavelength of a passing gravitational wave is larger than the arm length,
the “stretching” of space will sum up along the interferometer arms to a larger
absolute length increase, which is why longer interferometer arms directly im-
prove the sensitivity of the interferometer for gravitational waves.
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Figure 1.4: Schematic overview of the interferometer setup used in current ground—
based gravitational wave detectors like LIGO. Some additional cavities and optical
setups i.e. related to the generation of the squeezed light, while crucial for achieving
a high performance of the detector, are not shown here.

Current GWDs employ more elaborate optical setups shown in Figure 1.4, where
the arms themselves act as (Fabry—Pérot) cavities, and additional mirrors at
the input and output port of the interferometer, used for “power-" and “signal-
recycling,” similarly increases the sensitivity of the whole detector. The addi-
tional cavities before the input and after the output are used for preparation
and filtering of the laser light to remove control signals and unwanted noise (i.e.
higher order laser modes) from the signal. The use of so-called “squeezed light”
explained further below, further reduces noise from certain quantum effects of
the light.

1.4.1 The first large interferometric detector: GEOG600

The earliest (but also the smallest) of the large scale interferometric GW detectors
was the German-British gravitational wave observatory named GEO600. While
initially planned to be larger, due to cost reasons, its final design was reduced
to 600m long arms whose construction started in 1995 and finished in 2002 [21].
While the detector is too small to detect common GW signals directly (with an
optimistic design sensitivity of h ~ O(1072%)), its main objective was to advance
the instrument development and improve the techniques for future and potentially
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larger GWDs [19]. E.g. GEOG600 pioneered techniques like “squeezed light” [22] to
improve the sensitivity beyond the “standard quantum limit” (mentioned in the next
section) or the use of a signal recycling cavity which were first tested in GEO600
before they were implemented in the larger detectors like LIGO [23].

GEO600 also first employed and tested an elaborate seismic isolation system which
isolated the optical components from the seismic motion of the ground [21], which
is sketched out in Figure 1.5. It consists of active and passive noise filters in form of
geophones (ground motion velocity sensors) and Piezo actuators as active part, and
a multi-stage pendulum suspension which passively dampens the test—-mass motion
above its resonance frequencies. (The same suspension design tested here was later
used for the two LIGO detectors in their initial setup [24]). The basic principle of
such seismic isolation systems is also explained in more detail below in section 2.2.

/ cantilever sm
Y

upper mass

cantilever

TT “~spring
intermediate
mass

‘ ‘/

test mass

= 7

rotational stage

stack stabiliser —
flex-pivot —]

passive layer—

active layer—|

spacer ——

K;antilever spring\
5

> I

> Il
4>

L >

| »

reaction/ré;

+_damping
arm

upper
« Mmass

™ <+— cantilever

spring

intermediate
mass

N

test mass

—_—

—

Figure 1.5: The GEO600 main optics suspension (Beamsplitter and End-Mirrors of the
Michelson setup.) [21]
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1.4.2 LIGO

While the GEO600 detector project had to struggle with a lack of funding in the
early 1990s, the US American NSF approved the Laser Interferometer Gravitational-
Wave Observatory (LIGO) project proposal in 1991. The LIGO project consists of
two identical detectors build in the USA: LIGO Hanford in Washington and LIGO
Livinigston in Louisiana. The LIGO detectors have an arm length of 4km and are
the largest gravitational wave detector build to date. The LIGO project was planned
with the intention to start using known and proven techniques for the initial LIGO
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design and improve upon them over time with several major updates. After the
initial LIGO measurement campaign ended in 2007, the LIGO detectors received a
first upgrade called “enhanced LIGO” from 2007 onward (improving the laser source
and changing to a DC readout system) and a second upgrade from 2011-2014 [23]
called “advanced LIGO” (aLIGO) which culminated in the world’s first detection of
a gravitational wave signal in 2015 [25].

Compared to the smaller and simpler GEO600 setup, advanced LIGO runs as a
Fabry—Pérot-Michelson Interferometer with the arms operated as Fabry—Pérot Cav-
ities, leading to a higher laser power in the arms and higher sensitivity. Currently,
at the “advanced LIGO plus” (or A+) stage, LIGO continues to run with ongoing
improvements and is in its 4th observation run planned from 2023 to 2025. In the re-
cent “O4a” observation part from 2023 to 2024, LIGO detected an average of ~ 100
signal alerts per year. Most of these signals are attributed to transient events like
BB, BN or NN inspiral merging events (with B: black hole and N: neutron star) [26].

Besides the two LIGO detectors, there are two more “second generation” gravita-
tional waves detector: The “Virgo interferometer” built in Italy (3km long arms)
and the “Kamioka Gravitational Wave Detector (KAGRA)” built in Japan (also
with 3km long arms). There are also several other GWD concepts in various imple-
mentation stages.

1.4.3 The Virgo detector

The Virgo detector was the first larger (3km arm length) detector built in Eu-
rope and started out as a joint project between the French Conseil Nationale de la
Recherche Scientifique (CNRS) and the Italian Istituto Nazionale di Fisica Nucleare
(INFN)[27]. It evolved at the same time as the LIGO project, with Virgo’s initial
construction finished in 2003. It joined during advanced LIGQO’s second observation
run [28] and it adds to the global network of GWDs, allowing for a precise triangula-
tion of detected signals by being in a different geographical location compared to the
two LIGO detectors (which are, on a global scale, relatively close to one-another).

1.4.4 The KAGRA detector

The Kamioka Gravitational Wave Detector (KAGRA) is the most recent of the 2nd
generation gravitational wave detectors and became first operational in 2020. Com-
pared to LIGO and Virgo, it has some novel features like being built underground,
and it employs cryogenic cooling of its optics to reduce thermal noise. Because of the
new technology development in KAGRA, it is sometimes also referred of being a 2.5
generation detector. The KAGRA has however not yet reached its design sensitivity
[29] and its new technology is still being worked on.

1.4.5 The Laser Interferometer Space Antenna (LISA)

Since before the construction of the first 2nd generation ground-based gravitational
wave detector even began, the concept of a space-based interferometer setup to sim-
ilarly measure the effects of gravitational waves has been worked on. Submitted
to and approved by the European Space Agency, this work resulted in the “Laser
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Interferometer Space Antenna (LISA)” mission which is currently being worked on
and planned to launch in 2035.

The LISA mission consists of 3 satellites (sketched in Figure 1.6) that will make up a
triangular interferometer with 2.5 million km arm length. The long arm length and
the nonexistence of any seismic and Newtonian noise promise a very high sensitivity,
especially in the low frequency region that is impossible to achieve for a ground—
based detector. The working principle of LISA differs however from ground—based
detectors in several key points. Unlike ground-based interferometers, the arm length
of LISA cannot be held stable as the satellites drift and move with speeds up to
~ 50km/h. Instead of a constant signal (in case of no gravitational wave), LISA
employs a heterodyne interferometer scheme where beat—frequency is measured, and
only relative length changes are resolved (in the frequency domain). To deal with
~10 orders of magnitude of laser frequency noise, a core feature of LISA is the so-
called “time-delay interferometry” [30] to achieve a high precision readout.

Strain h sensitivity in [1/v/Hz]
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Figure 1.6: Left: Sketch of the LISA satellites. Right: Design sensitivity of LISA. Source:
31]

1.4.6 Pulsar timing array

Not a singular detector, but a collaboration that tries to detect gravitational waves
by measuring the timing of radio signals emitted by pulsars is the “International
Pulsar Timing Array” project [32]. Pulsars are rotating neutron stars that emit a
periodic signal when observed from the earth. (I.e., when the rotational axis differs
from the magnetic field axis and earth lies within the resulting radiation cone.) The
timing of these pulses is very uniform (with variations below a ps). In theory, a
gravitational wave passing between the pulsar and earth would lead to variations of
the path length and consequently in the timing between pulses. However, since space
is expected to be filled with gravitational waves from numerous sources with varying
strength, directions and points of origin, no direct detection of a single timing delay
attributed to a single gravitational wave can be made. Instead, the project measures
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the seemingly irregular (noisy) time delays from many known pulsars and correlate
the measured signals. The idea is that signals travelling through the same space
also experience the same gravitational wave background noise which would lead to
a seemingly noisy, but correlated measured signal.

In 2023, the American “NANOGrav” collaboration announced the existence of a
gravitational wave background noise measured with a 3¢ significance from a dataset
of 67 pulsars over a period of 15 years [33]. Further measurements with more data
are expected to improve the significance and the detailed results of this in the future.

1.4.7 The Lunar gravitational wave antenna concept

Another (not necessarily interferometric) concept is the 2021 published “Lunar grav-
itational wave antenna” by Harms et al. [34, 35]. It is, in some sense, an evolution of
an earlier concept of Weber as it intends to use the moon as a large resonant body
(with much less seismic noise than on earth) to detect gravitational waves. The
concept suggests that placing an array of very precise seismometers or gravimeters
on the moon’s surface could detect relative changes when a passing gravitational
wave induces seismic waves (similar to the resonant bar antennas from Weber). An
interesting feature of the concept is that the expected sensitivity could bridge the
gap between space-based detectors (LISA) and ground-based detectors and provide
a higher sensitivity in the region of 0.1 — 1 Hz. So far the project is in an early
conceptual stage and has not yet been adopted by any space Agency.

1.4.8 3rd generation ground—based gravitational wave de-
tectors

While the second generation ground—-based gravitational wave detectors are currently
running and regularly detecting new events, the planning for future “3rd generation”
detectors is already underway with technical designs being specified and potential
sites being scouted. On the US American side there is the concept of the “Cosmic
Explorer” [36] which is planned to be 10x larger than LIGO with the initial setup
taking a conservative approach of using already tested technologies and potentially
employing new techniques (like different laser wavelength or cryogenic cooling) at
later expansion stages like LIGO did with enhanced- and advanced LIGO.

On the European side, there are plans for the so-called “Einstein Telescope” [37,
38], an underground, 10km long detector employing several new techniques right
from its initial design to improve upon the limits set by currently used techniques.
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1.5 The Einstein Telescope

The Einstein Telescope (ET) is a planned 3rd generation gravitational wave detector
to be built in Europe. While it follows the same basic working principle as the
current 2nd generation detectors, it aims to be more sensitive by at least one order
of magnitude (and several orders of magnitude at low frequencies ~ 3Hz) and to
have a wider bandwidth (a larger frequency range) to detect signals, compared to
the current most sensitive detectors.

10 km 10 km

10 km

Figure 1.7: Left: Artistic image of ET built in its proposed triangular geometry under-
ground. Right: Simplified sketch of the interferometer topology of the proposed triangu-
lar geometry. Each corner station supports two interferometers, one cryogenic for “low”
frequencies and one at room temperature for “high” frequencies leading to a total of 6 in-
terferometers as sketched in the figure. The real proposed setup is however more complex
and includes additional optical paths inside the tunnels corresponding to different cavities
which are not sketched here.

Key features

From its initial design, ET is planned to include several novel features that have not
yet been realized in the current ground—based gravitational wave detectors. Besides
the techniques tested and integrated in the most recent 2nd generation detectors
upgrades, ET’s new features would be:

1. Underground
ET is designed to be built a few hundred meters underground to reduce
the effect of (surface) seismic waves, the seismic disturbance from anthro-
pogenic/human influence (which is more significant as ET would be built in
the rather densely populated Europe compared to the remote LIGO locations),
and the correlated Newtonian noise which is generally weaker in the homoge-
neous (and stiff) environment underground.

2. Cryogenic + Xylophone design
To reduce thermal noise (from mechanical suspensions and light absorption /
mirror coatings) that is expected to limit future GWD sensitivity, parts of ET
are planned to be cooled down to cryogenic temperatures [38]. Besides the
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Figure 1.8: Plot of ET’s design sensitivity. ET is planned to operate two separate
"detectors, one optimized for low-frequencies (ET-LF, dashed green line) and one for high-
frequencies (ET-HF, dashed yellow line). The visible peaks in the sensitivity curve of ET-
HF are projected resonance frequencies of the mechanical suspension (including “thermal
modes”) based on Virgo’s design. The actual resonance and control signal peaks will likely
change for the final design. Source: [38]

cooling infrastructure, running cryogenic will require new, actively cooled sus-
pensions systems to hold the optics. Due to the interferometer arms effectively
being Fabry-Pérot cavities, current detectors operate with relatively high op-
tical power in their arms (~ 200 kW in LIGO [39]) and even the currently best
available low absorption coatings would cause the mirrors (and suspension) to
significantly heat up when running cryogenic. To mitigate this problem, ET
will be split into two interferometer “parts” being referred to as “Xylophone”
design. One interferometer (for low frequencies) will run cryogenic / being
cooled and only has a moderate optical power increase in the interferometer
arms. And a second interferometer (for high frequencies) will run at room
temperature like the current 2nd generation detectors.

3. Multi—-interferometer Detector
The currently favored design for ET features a geometry of an equilateral tri-
angle instead of the “L” shape of the 2nd generation detectors. A sketch of this
geometry can be seen in Figure 1.7. ET would then operate 2 interferometers
(a high frequency one and a low frequency one) for each of the 3 corners of the
geometry leading to a total of 6 interferometers. The main argument for this
geometry is twofold: As drilling the tunnels is the main cost factor for ET), it
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would allow for 6 interferometers in total, compared to only 2 interferometers
in an “L” shape geometry, for the cost of only 3 tunnels (compared to 6 tunnels
when building 3 L’s). Secondly, by having multiple interferometers, the detec-
tor would have additional redundancy of the signal, a better sky localization
of the signal and no, or at least less of a “blind spot” compared to a single
interferometer. It should be noted however that the triangular geometry is not
yet fully decided and alternative concepts of multiple individual “L” shaped
detectors are still being discussed. [38]

4. New seismic isolation systems for sensitivity at a few Hz
One of the design goals of ET is to be sensitive in the region from ~ 1Hz
to ~ 30 Hz, which the 2nd generation (and current plans for the initial Cos-
mic Explorer [36]) are not. To achieve this, ET will employ new suspensions
to reduce the seismic and control noise and new techniques to remove the
Newtonian noise from the measured signal.

The science case of ET

Being more sensitive by an order of magnitude in the high frequencies and many
orders of magnitude at low frequencies (meaning a wider frequency bandwidth) as
shown in Figure 1.8, ET will be able to detect more signals with a higher signal-
to-noise ratio (SNR) allowing for new discoveries in astrophysics, cosmology and
fundamental physics.

On the astrophysical side, the higher sensitivity means a farther reach / a larger
detection volume for events, and generally more detections of events. With an
expected O(10°) [40] detections per year (compared to a current rate of O(10%)), ET
enables the statistical analysis of known GW sources and comparison of astrophysical
models with the measured population of binary BH/NS merger events. The higher
SNR will allow for a more in-depth analysis of the properties of black holes and
neutron stars. Especially in the low frequency regime (shown in 1.8), the higher SNR
will allow for an early detection of events (whose signal frequency increases over time)
and a much longer observation time. By detecting such events early, ET will enable
researchers to align other (directional) telescopes to these sources and perform multi-
messenger astronomy by observing not only the emitted gravitational wave but also
any electromagnetic signals, neutrinos or cosmic rays emitted by the same source.
Besides detecting more of already known types of GW sources with greater accuracy,
there are also new types of signals expected to become visible with ET like transient
signals from “core collapse supernovae” or isolated rotating neutron stars. Beyond
the large number of distinguishable detection, ET could even reach the “stochastic
background” of some coalescing binary gravitational wave signal frequencies, which
cannot be isolated/distinguished from one another anymore. There is also hope to
detect more exotic (stochastic) signals from cosmic inflation, phase transition, or
cosmic strings [40] that go beyond standard cosmological models.
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Chapter 2

Current limitations of
gravitational wave detectors
shown by example of LIGO

As this thesis focuses on the development of local displacement sensors as compo-
nents to improve the sensitivity of current and future gravitational wave detectors,
this chapter gives a brief overview of the noise contributions in GWDs (taking LIGO
as example), and shows how local displacement sensors can help to improve upon
current limitations.

2.1 LIGO'’s noise budget from the third observa-
tion run (0O3)

For the currently running second generation GWDs, different noise sources limit
the sensitivity at different frequencies. At low frequencies (below ~ 10 Hz), “con-
trol noise” from the alignment and length control systems limit the sensitivity for
aLIGO. And above that, thermal noise and “quantum noise” (shot noise and radia-
tion pressure noise) are more fundamental limits of the detector’s current sensitivity.
Figure 2.1 shows the “noise budget” of aLIGO Hanford with all known and mea-
sured noise sources affecting its sensitivity. As a short summary, the shown noise
contributions are:

1. Quantum noise
“Quantum noise” is the term for the sum of “shot noise” and “radiation pres-
sure noise.” By Heisenberg’s uncertainty principle, the quantum nature of the
photons leads to an uncertainty of their position and momentum. The position
uncertainty translates to a varying number of photons (the measured signal)
arriving at the photodiode at a given time interval which leads to so-called
“shot noise” [17, Chapter 5]. The momentum uncertainty leads to a variation
of the radiation pressure acting upon the suspended optics. The resulting force
moves the optics and causes a change of the path length, also coupling into
the measured readout. The sum of these two unmitigated noise contributions
is called the “standard quantum limit.” Currently, the detectors operate close
to the “dark-fringe” to reduce the effect of this shot noise and employ a tech-
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Figure 2.1: Measured detector noise sources during the O3 run of LIGO. The current O4
observation run includes some technical improvements and can be assumed to be slightly
better. Source: Cahillane’s interactive noise budget [41]

nique called “squeezed light” to reduce this quantum noise below the standard
quantum limit (SQL)[22].

. Thermal noise

The relevant thermal noise contributions in LIGO comes from the Brownian
motion of the mirror coatings and the suspension mechanics, which couples
as phase noise into the laser beam and limit the sensitivity in the frequency
band between 40 Hz and 100 Hz. Besides laser light absorption from the coat-
ing, the mirrors are also (thermally) coupled to the mechanical suspension
holding them, contributing to the bulk thermal noise of the mirror substrates.
Special materials (i.e. fused silica wires) are used to reduce this thermal noise
contribution but it remains one of the main limiting noise sources.

. Seismic noise

Seismic motion couples into the readout since a moving ground will lead to
changes of the mirror positions (which stand on / are coupled to the ground)
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and thus change the optical path length of the interferometer arms. To block
this induced motion and to mitigate the effect of seismic waves, the optics of
the interferometer are suspended by special suspensions systems to dampen
the induced motion by many orders of magnitude [42]. While the dampening
of the seismic motion can generally be improved by scaling these suspensions
(making them larger / adding additional suspension stages), the suspension
system also adds additional “control noise” and thermal noise which limits
arbitrary scaling.

. Newtonian noise

Newtonian noise is the effective noise coming from the (local) gravitational
potential that couples, same as the gravitational wave, into the readout. I.e.,
a passing seismic wave corresponds to a tiny motion of the ground which
in turn causes a small change in the gravitational pull from the ground to
the mirrors. This type of noise cannot be shielded against in ground—based
GWDs since it acts on the detector same as the signal itself by gravitational
interaction. Schemes to reduce the Newtonian noise aim to measure the seismic
motion of the ground with high precision and try to subtract the expected local
gravitational signal from the full measured signal [43].

. Residual gas noise

While the vacuum chambers of detectors like LIGO and Virgo are pumped
down to a pressure of O(107% mbar) [44], the remaining (residual) gas particles
have multiple effects on the readout described by an effective low frequency
(residual gas) noise. The movement of the vacuum chamber walls (which is
mainly due to seismic motion) couples to the residual gas, resulting in acoustic
waves inside the vacuum chamber. At the suspended optics, this causes a force
on the suspended optics and a small displacement / path length change. In
between the optics, the pressure fluctuations cause the refractive index to
fluctuate which causes the light’s optical path length to change resulting in
a phase noise for the light itself. (Additionally, the residual gas causes a
small viscous damping of the suspension’s mechanics slightly reducing their
efficiency.)

. Aux. length and Alignment control noise

A precise alignment of the optics is necessary to archive a high optical contrast,
minimize stray light, achieve good mode-matching / mode-filtering and high
finesse for the optical cavities. This is achieved by the length and alignment
control system(s), consisting of: (a) local sensors, which measure the precise
position and alignment of the optics (b) controllers/systems, which take the
sensors signals (input) and derive a control signal from it (output), and (c)
motors/actuators which act on the optics and “force” them into position. The
length and alignment control noise is effectively the self-noise of the used sensor
and actuators of these control systems. At low frequencies, these are currently
one of the limiting noise sources in LIGO. These noise sources are discussed
in more detail in section 2.2.

. Beam jitter noise
Beam jitter noise is the result of fluctuations of the laser beam position (align-
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ment fluctuation) on the optics, where small inhomogenities (point absorbers)
on the mirrors cause an effective jitter noise of the beam.

8. Scattered light noise
Scattered light noise is mainly caused by motion of the optics (i.e. due to
seismic noise) leading to scattering of small parts of the main beam that couple
back into the main beam. It is mainly mitigated by using baffles to capture
stray beams and by improving the suspensions to reduce the overall motion of
the optics and variations of the stray light coupled to it.

9. Laser intensity and frequency noise
Extensive laser preparations are done to reduce the laser noise as much as
possible, i.e., by using input filter cavities to filter higher modes, and control
loops to stabilize the laser. The remaining intensity and frequency noise is
currently about an order of magnitude below the other limiting noise sources.

10. Photodiode dark-noise
Even when no light hits the photodiode, thermal fluctuations in the photodiode
cause a (temperature dependent) noise current. Since it is present without
light (when it’s dark), this temperature- (and bias voltage-) dependent noise
is called photodiode dark-noise.

11. OMC length and PUM DAC noise

Output mode cleaner length noise (OMC length) is the noise coming from
side-bands and higher order laser modes that are not properly filtered out
by the output mode cleaner cavity. The efficiency of the filter is given by
the precise length of the OMC and variation of its length translate to more
noise in the output beam of the cavity. PUM DAC noise is the DAC noise
from the actuators at the penultimate mass (PUM) position of the mechanical
suspensions.

While a longer arm length and other scaling factor are expected to improve the
sensitivity by a factor of ~ 10— 100 in the high frequency range for the future (larger)
3rd generation GWDs, additional effort is necessary to bridge the gap of nearly 6
orders of magnitude difference in the low frequency region between the currently
most sensitive running alLIGO+ detector and the planned Einstein Telescope, as
shown in Figure 2.2.

At frequencies below 20 Hz, LIGO is currently limited by “technical” noise coming
from the (global) alignment control and auxiliary length control. More precisely,
the self-noise of the local displacement sensors and actuators used for the alignment
(and seismic isolation) of the suspended optics limits these systems. New sensors
have been suggested to replace the currently used “Birmingham Optical Sensor and
Electromagnetic actuator (BOSEM),” which have an accuracy of O(10%pm) [47],
with more precise (interferometric) displacement sensors. I.e., van Dongen et al.
[48] have shown that they could reduce the control noise at LIGOs main optics sus-
pension by replacing the currently used optical shadow sensors (component of the
BOSEMs) with their own interferometric sensors called HoQI for the local displace-
ment readout.
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Figure 2.2: Measured detector noise of LIGO Hanford and Virgo during the third ob-
servation run (O3) compared to the ET design sensitivity. Source: [45, 38, 46, 41]

Besides the HoQI, there are currently a number of different interferometric local
displacement sensors being developed [49], and this thesis focuses on another specific
type of sensor concept called “DFMI.” To better understand the mode of operation
and the challenges of the alignment control and the seismic isolation, a brief overview
of their working principle is given in the following section.

2.2 Seismic isolation and local control systems

To isolate the optics in GWDs from the ground motion, a mix of passive and active
systems is used. Figure 2.3 shows the schematic display of aLIGO’s “Internal Seis-
mic Isolation (ISI)” system, which is a more advanced version of the initial GEO600
main suspension system mentioned earlier.

LIGO’s seismic isolation system combines multiple active and passive layers to iso-
late the suspended optics from the ground motion. On the ground stand seismome-
ters measuring the seismic motion and a “support pier” holding the seismic isola-
tion system. The first isolation layer is the active “Hydraulic External Pre-Isolator”
(HEPI) on top of the pier outside the vacuum chamber. It acts as first filter in the
frequency range from 0.1 Hz to 10 Hz. Connected to it is the vacuum chamber and
in it is the “Internal Seismic Isolation” (ISI) system. The ISI is the second layer
of (active) isolation. Its three substages of stiff mechanical structures contain can-
tilever blade springs, and an array of seismometers, geophones, capacitive position
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Figure 2.3: aLIGO seismic isolation system for the test—mass optics. Source: [23]

sensors and electromagnetic actuators to further isolate the suspended masses in the
frequency range from 0.1 Hz to ~ 100 Hz and help with the rough alignment of the
suspension. The third layer of seismic isolation system is the actual pendulum sus-
pension. It consists of two, 4-stage pendulum suspensions, positioned closely next
to each other. The frontal mirror at the bottom of the first suspension (the one
that is hit by the interferometers laser beam) is also referred to as “test—mass” The
mass closely behind it at the bottom of the second suspension is called the “reaction
mass.” Due to an electrostatic coupling between the test—mass and the reaction
mass, the second suspension with the reaction mass, allows for further electrostatic
dampening and thermal control through the “compensation plate” mounted to the
reaction mass. Keeping test-mass and reaction mass close to each other also leads
(together with the residual gas in the chamber) to so called “proximity-enhanced
gas damping.” At the upper stages of the “quad suspension,” so-called “optical
(shadow) sensor and electromagnetic actuator” (OSEMs) [23, 24] are used as fi-
nal active dampening system. Due to the OSEM’s control noise, they can however
not be used to further alignment, currently limiting the precision of the alignment
and leading to added “alignment control noise” from the test—mass tilt-to-length
coupling as explained further below.
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2.2.1 Passive seismic isolation using pendulum suspensions

The basic principle of pendulum suspensions as “passive” motion isolators is that
of the driven harmonic oscillator. I.e., the equation of motion of some suspended
mass m at position x(t) = [-sin @(t) ~ [-¢(t) (using the small angle approximation)
would be given by
0? 0
ml——o(t) + B o) + mg-o(t) = Fex(t) (2.1)
ot ot
with Fi, as external Force, [ as fixed length wire, g as gravitational acceleration
(causing the linear restoring force), and 3 as (velocity) dampening factor. Expressing
the external force by a dimensionless angular acceleration Fi =: m g aey allows one
to write
g
— 7 w) = & < w 22
o) = i = ) 22)

w2

. e Gt () (23)
(wfes + z%w — w2>

with T, Qex; as Fourier-Transform of z,aey. The external motion given by (the
angular acceleration) . is reduced by the transfer function T'(w) := w2, /(w2, +

res

iWres/Q — w?), With wies 1= 1/g/l as “resonance frequency” and Q = m+/gl/f as
“quality factor.” Figure 2.4 shows the transfer function of a harmonic oscillator
with a resonance frequency of 10 Hz.

Q=103
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Figure 2.4: (a): Sketch of the forces acting on a suspended mass (mirror) in a pendulum
suspension (when using the small angle approximation sin(¢) ~ ¢). (b): Approximate
ASD-Plot of the transfer function of a harmonic oscillator with a resonance frequency of
10 Hz and a quality factor of @@ = 1000. The color of the plotted line is used as additional
indicator of the frequency (x-axis) as used below.

By chaining multiple harmonic oscillators together one can achieve a higher suppres-
sion of the ground motion (above the resonance frequencies). I.e., when chaining
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Figure 2.5: Sketch of the induced movement of a suspended mass for different input
frequencies. For low frequencies (below the resonance frequency), the suspended mass
simply follows the induced movement (T o 1). Around the resonance frequency, the
transfer function (the gain |T|) becomes large (|T] > 1). The energy of the external
movement couples strongly into the system and the induced kinetic energy accumulates.
The motion of the suspended mass can exceed the external motion. At high frequencies
(above the resonance frequency), the system is damped as the external motion does not
couple well into the system (|T] < 1). The induced motion of the suspended mass is
smaller than the external motion.

multiple linear systems together, the total transfer functions would just be the prod-
uct

2 2
- w w
res,1 res,2
Tmulti—stage ~ 5 wroen : 5 Wros 2 R (24)
y Lres,1 _ 2 y Lres,2 — 2
(wre&l +1 0, W W ) ((,um&2 +1 0, W W )
With Wres 1, Wres 2, - - - as resonance frequencies of the individual harmonic oscillators

/ stages. As the exact equation of motion of a single pendulum stage is however not
perfectly linear, the linearized models of multi-stage pendulums used in GWDs are
more complex and contains additional terms to account for these deviations.

LIGO’s seismic isolation includes a 4-stage pendulum suspension as well as blade
springs (with a linear restoring force described by their Young’s modulus), which
can be well modelled as such chained harmonic oscillators.

Besides any losses, modelled by more elaborate transfer functions / differential equa-
tions than (2.3), active isolation schemes are required to deal with the passive sys-
tems’ resonance frequencies around which noise couples well into system and can
accumulate to potentially large (RMS) motion of the suspended masses.

2.2.2 Active seismic isolation using local sensors and actu-
ators

In active isolation schemes, local sensors are used to measure the (seismically in-
duced) motion of a local mass and counteract this motion with actuators. The ad-
vantage of active control systems is that they allow for an (almost) freely designable
frequency response up to the precision limits of the used sensors and actuators.

Figure 2.7 shows the schematics of an active control loop in a seismic isolation sys-
tem. Here the position of a suspended mass is measured with an optical sensor
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Figure 2.6: ASD plot for the horizontal transfer function for different (simplified) multi-
stage pendulum examples.

target
position

Sensor Controller / Filter

external motion (taking local and
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“A(w)

Figure 2.7: Simple block diagram of an active control plant. In LIGO’s suspension
system, optical shadow sensors are used as “sensors” to measure the position of a target.
The “controller” takes the sensors readout and applies a custom filter / transfer function
to the signal. The “actuator” is realized by an electromagnetic coil drive acting upon the
target.

(described by S(w)) and fed to a controller which “filters” the signal according to
the set design F'(w). The output of the controller (the “control signal”) is then fed
to a motor / an actuator which acts upon the system. In a real system, sensor S(w)
and actuator A(w) will at least have a time-delay between their input and output
and add additional noise, specific to the device used. The main purpose of the con-
troller for the case of some suspended optics is so filter out the passive isolations
resonances and help with the alignment of the optics.

The effect of such an active control loop on the movement of a suspended mass
would look similar to the “effective suspension TEF” shown in Figure 2.8. Assuming
a white frequency input (like an instantaneous kick of the suspension), the lines
shown there would correspond to the frequency spectrum of the induced motion of
the suspended mass. By designing the controller to have a “zero” F(w) ~ (w — Wyes)
at the passive systems’ resonance frequency, the motion of the test-mass around
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Figure 2.8: Plot of a model single-stage suspension transfer function (yellow) with a
resonance frequency at 1 Hz, an active control / dampening (blue) around the resonance,
and the combined transfer function of the passive + active system (purple). The gray
dashed line marks the precision limit of the used sensor (within LIGO’s suspension system
given by the used BOSEMSs), which adds in as noise limiting the effective dampening of
the suspended mass.

this resonance can be reduced significantly. The trade off is the additional noise
introduced by the used sensors and actuator. I.e., sensors have a limit in the pre-
cision they can reach and introduce sensor noise even when the position is exact.
Actuators similarly have a limited precision (step-size) and introduce actuator noise
even with a constant error signal.

While the currently used BOSEMs in LIGO’s suspension system can significantly
reduce the motion at the resonance frequencies of the passive suspensions, they
introduce noise at higher frequencies leading to more overall or “root-mean-square
(RMS)” motion, compared to only the passive isolation. This is one of the reasons
why better local displacement sensors can help reduce the RMS motion of the target
and improve upon the sensor’s sensitivity at low frequencies.

2.2.3 Active alignment control and tilt-to-length coupling

Besides the dampening of the passive isolation systems resonance frequencies, local
sensors and actuators are also used for the precise alignment of the optics. A mis-
alignment in beam position and tilt leads to additional noise in the readout [50].
Changes in the beam position (together with inhomogenities of the optics) cause
beam jitter noise. Variation of the tilt couple into the laser beams path length as
shown in Figure 2.9. Additionally, offsets in both beam position and tilt of one
mirror lead to the beam not hitting the other mirror centrally and add a torque to
it (via the beams’ radiation pressure). The resulting motion and the corresponding
noise is also correlated to the misalignment of both mirrors.

Since the primary mirrors in GWDs are separated by large distances O(10% m), small
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Figure 2.9: Sketch showing the simplified tilt-to-length coupling between two mirrors.
By tilting the left mirror by an angle 6, the optical path length of the laser light changes
from L to L + 6L with L = L- (1 —cosf) ~ L/2-6%. The actual coupling of the mirrors
is however more complex as the radiation pressure also causes a coupling of the mirrors
motion. In the shown picture the right mirror would also experience a torque tilting
it, which leads to additional mechanical (“Sigg-Sidle”) modes, requiring a more complex
(global) control scheme.

angular displacements of ~ 1 urad already lead to length errors of L ~ 5nm ~ h ~
10~1® which is many orders of magnitude larger than the length changes due to
gravitational waves (h < 10721).

2.3 A path to overcome the “seismic wall”’: im-
provements on local displacement sensors

At frequencies below 30 Hz, LIGO is currently limited by “technical” noise coming
from the alignment control and auxiliary length control. Maggiore et al. [50] have
shown that the angular control noise that is present in both LIGO and Virgo would
potentially also limit the performance of the planned Einstein Telescope when using
a suspension design similar to either LIGO or Virgo without any improvements. The
(internal) limits to the angular-alignment control systems are the self-noise of the
used sensors (BOSEMs) and actuators.

The used BOSEMs operate by shining a collimated light beam directly into a pho-
todiode with a 'flag’ mounted at the suspended target blocking this beam partially.
When the target moves, more or less light is blocked leading to a change of the
brightness at the photodiode. While their dynamic range, given by the width of the
beam, is sufficient, their precision limit in the order of ~ 0.3 nm/Hz at 1 Hz (as
shown in Figure 2.10) is one of the currently limiting noise sources in the alignment
and control system of the suspensions in GWDs.

New sensors have been suggested to replace the currently used BOSEMs with more
precise (interferometric) displacement sensors. Il.e., van Dongen et al. [48] have
shown that they could reduce the control noise at LIGO’s main optics suspension
by replacing the currently used optical shadow sensors with their own interferomet-
ric sensors called “HoQI.” Other approaches suggest building dedicated tilt sensors
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Figure 2.10: Example sensitivity of the shadow sensor part of a BOSEM (blue line).
The sensitivity can vary slightly between different BOSEMs due to small variations in
quality of its components. BOSEM sensor noise is usually modelled by ~ 0.3nm/\/f
(black dashed line) with a limit at around ~ 50 pm/+/Hz.

to reduce the noise introduced by the tilt-to-length coupling [51, 52]. Reducing the
overall / RMS motion of the optics could also help to reduce the amount of scat-
tered light which has been suggested to be the cause of some of the unknown noise
contributions at low frequencies.

While interferometric sensors are generally very precise being able to resolve dis-
placements 0L of a fraction of the laser’s wavelength )y, their dynamic range is
usually also limited to less than a wavelength as the measured signal i.e. for homo-
dyne interferometry is periodic with one wavelength ~ sin(27 - §L/\g), which is not
enough to measure the sometimes larger motion of the suspended optics in GWDs.

The core of my Ph.D. thesis focused using a new kind of interferometric sensors
called “DFMI” as local displacement- (and possibly tilt-) sensors intended to su-
persede the currently used optical shadow sensors. DFMI sensors provide a more
precise displacement readout and would improve the alignment, leading to less noise
from the “tilt-to-length” coupling described above. Unlike the previously tested
HoQI, which uses two phase-offset signals and tries to measure large displacements
by tracking of the changing phase, DFMI sensors inherently provide an absolute
distance readout of a dynamic range of ~ 1 m and have achieved a precision of down

to ~ 230 fm/v/Hz.

The next part of this thesis explains what DFMI sensors are, how they work, and
my contributions to their development.
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Chapter 3

History and definition of DFMI

Deep—frequency modulation interferometer (DFMI) is an interferometry technique
first developed by O. Gerberding [53] as derivative of an earlier deep—phase modu-
lation interferometry (DPMI) developed by Heinzel et al. [54].

In a deep—phase modulation setup by Heinzel, as sketched in Figure 3.1, a sinusoidal
phase modulation is added to one of two interfering laser-beams. This creates a
characteristic signal consisting of several harmonic frequencies (shown in Figure
3.4), different from conventional single-carrier / sideband signals. With their setup,
Heinzel et al. managed to reach picometer precision and track the distance of a
target mirror, encoded in the signals phase, over several fringes.

Wo

oL

Figure 3.1: Sketch of an example Deep-Phase modulation setup. Here an electro—optic
modulator is placed in one arm and modulated the laser beam with “a fixed modulation
index” (explained in the next section).

Inspired by deep—phase modulation interferometry, Gerberding [53] first researched
deep—frequency modulation interferometry as a more compact multi—fringe displace-
ment sensing technique, reusing the DPM readout algorithm. In deep—frequency
modulation interferometry (DFMI), the frequency of the main beam itself is modu-
lated, leading to less optical components (required for the phase modulation) com-
pared to DPMI. Instead of being only applied to one beam, in DEMI all beams carry
the frequency modulation which simplifies the setup. The resulting interference sig-
nal measured on a photodiode is then nearly identical to the signal measured in
DPMI. A novelty of DFMI is that it allows for an absolute path-length difference
readout. More precisely, the DFMI readout yields two displacement parameters:
a microscopic displacement derived from the interferometric phase, similar to the
DPM readout, and a macroscopic, absolute path-length difference independent of
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the used laser’s mean wavelength and unique to DFMI.

The “deep” in the DFM name refers to the strength of the frequency modulation.
Modulating the laser frequency (the “carrier frequency” wy) by some sinusoidal sig-
nal (wg — wo + Awsin(w,,t)) is, to some degree, common practice in physics and
engineering. For small enough values of Aw, the resulting signal can be approxi-
mated by the carrier frequency and two so—called “sidebands” of frequency wg + w,,
and wy — wy,, i.e.

sin(wot + Aw sin(wy,t)t) ~ Asin(wot) + B sin((wo + wim)t) + B sin((wo — wpm )t) +7()

(3.1)
with some amplitudes A and B and some rest term r(t) which is considered un-
wanted noise. I.e., for the PDH locking technique, such a sinusoidal modulation is
used to create these single sidebands which are then used to read out the cavities’
length. The exact/full signal of a sinusoidal modulation contains, however, an infi-
nite amount of sidebands (in r(t)) with their signal power depending on Aw. For
the approximation (3.1) to hold (and for r(¢) to remain small) the modulation depth
Aw needs to be sufficiently small. In deep—phase and deep—frequency modulation
interferometry this same modulation depth is chosen to be large or “deep” enough
to have significant signal energy in many (usually > 10) of such sidebands. Instead
of approximating the signal like above, the full analytic signal is then used to derive
the length information.

Classic homodyne interferometry only operates within a single ’fringe’/ wavelength
and while homodyne and heterodyne schemes exists that allow for larger displace-
ments by tracking the phase of the signal, none of them provide an absolute dis-
placement readout. For Michelson Interferometers using such techniques, the two
interferometer arms are usually kept at (close to) the same length so that the abso-
lute arm length difference is as small as possible. Fluctuations of the laser frequency
then cancel mostly out when interfering the two beams. In DFMI, the two interfer-
ometer arms intentionally have different lengths to create a macroscopic arm length
difference that is measured. For only a single DFMI setup this leads to a higher
impact of laser frequency noise. For the intended use case of using multiple DFMI
sensors for a local displacement readout, one additional sensor would be used in a
fixed setup, to lock the laser frequency to this fixed length and suppress the laser
frequency noise for all other setups.
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3.1 Definition of DFMI

3.1.1 Definition : Deep—Frequency Modulation Interferometry

Deep-Frequency Modulation Interferometry (short: DFMI) is an interferom-
etry technique where the frequency of the laser beam is modulated by adding a
sinusoidal signal. The laser frequency is given by

wprM(t) = wo + Aw - sin(wp,t + ) . (3.2)

The idealized (plane wave) electric field of a DFMI laser beam (at a fixed posi-
tion) can be written as Eppmi(t, 7) = Eg - cos(wppm(t) - 7) with parameters:

Wo mean laser frequency “DFM
. Ly

Win modulation frequency
Aw modulation depth

WY modulation phase

t time of emission Ly

T time of propagation

Ey electric field amplitude . Figure 3.2: Typical DFMI setup with its

unequal arm lengths L; and Lo.

Figure 3.2 shows a typical DFMI setup. The propagation-time difference of
01 := 2(Ly — L1)/c between the two beams in the setup leads to a measurable
signal on the photodiodes of*:

sprmi(t, 7) = B + A - cos(wodT + AwdT - sin(wi,t + 1)) (3.3)
= =m
=B+ A-cos (gp +m - sin(wp,t + w)> (3.4)
with
B constant offset A signal (AC) amplitude

¢ interferometric phase m modulation index
v modulation phase

as main signal parameters. Any signal with a from as in (3.4) is referred to as
a “DFMI signal” in this thesis.

—_
1

in units of A

DFM signal

.00 025 050 075 1.00 1.25 1.50 1.75  2.00
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o ©

Figure 3.3: Plot an example time series of a DFMI signal with m =7, ¢ = 7/4 and
B = A over two modulation periods 2 - 1/ fy,.

%The exact calculation can be found in appendix A.
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It is important to note that B is not the constant DC part of the signal. The
cos(p +m - sin(wy,t + 1)) = A Jy(m) cosp + O(t) part adds another constant part
of A Jy(m) cos¢ dependent on the signal parameters as seen in (3.7).

The displacement information, e.g. the arm length difference AL is encoded twice
in the signal, once in the modulation index m = Aw/c - AL (with ¢ as speed of
light), encoding the absolute path-length difference, and once in the interferometric
phase ¢ = 27/ - (AL mod ), encoding the relative displacement.

One of the key features of DFMI signals is that they can be written as a somewhat
compact Fourier-Series:

3.1.2 Definition : DFM signal harmonics
Using the Jacobi-Anger identity

eimsin@ _ Z Jn<m> ein@ (35)

nel

with J,, as Bessel functions of the first kind, a DFMI signal (3.4) can also be
written as Fourier series with integer n € Z as

s(t)=B+ A Z Jn(m) cos <n(wmt + ) + go) . (3.6)

Using the symmetry of the Bessel functions J_,(z) = (—=1)"J,(x) for n € Z, the
series can also be written with a summation index n € N as

s(t) = B+ AJy(m) cose
+24)
n=1

— Jon_1(m) - sin - sin <(2n — D) (wmt + ¢)>

Jon(m) - cos ¢ - cos <2n(wmt + ¢)>

(3.7)

Further expanding the sine and cosine terms allows one to write this Fourier
series with factors of sin(nw,,t) and cos(nw,t) as

s(t) = B+ A Jy(m) cose (3.8)

- — sin(p) cos(ny) - sin(nwy,t) — sin(p) sin(ny) - cos(nw,,t) for n odd
" nz_; ) {—l— cos(p) cos(ny)) - cos(nwy,t) — cos(y) sin(ny) - sin(nw,,t) for n even

Throughout this thesis I refer to the individual parts of the Fourier series
(3.6) - (3.8) as signal harmonics and integer multiples of w,, as harmonic
frequencies.
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Figure 3.4 shows a time series and the power spectral density of an example signal
with these signal harmonics clearly visible as 'peaks’ in the spectrum.

Example timerseries of an ideal DFM signal
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Figure 3.4: Plot of an example DFMI signal with B =0, A =1V, m =7, ¢ = 0.2,
¢ = 7w/8 and wy,, = 27w - 1kHz. The upper plot shows a segment of the time series
with its characteristic shape that is periodic with the modulation frequency w,,. The
lower plot shows the ASD of the signal with the signal harmonics being clearly visible as
“peaks” in the frequency spectrum. The harmonics are enveloped by the Bessel functions
| Jn(m)| = \J( )(m)|, with m = const.
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The naming conventions used here and throughout this thesis were taken over from
the initial publications from Heinzel and Gerberding et al. Switching between this
thesis and the cited publications should be mostly seamless. In Heinzel’s initial pub-
lication and the names “modulation depth” and “modulation index” are sometimes
used interchangeably both of Aw and m = Awdr. In the initial DFM publication
m is referred to as “effective modulation depth.” Other publications by Gerberding
& Isleif also refer to m just as “modulation depth.” In this thesis I refer to Aw as
“modulation depth” and m as “modulation index.”
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3.2 Previously done research on DFMI

The following section gives a brief overview of the publication history of DFMI.

1987 — 2010
Precurser to DFMI

Gerberding 2015
First DFMI study

Kissinger et al. 2015
An alternative
DFMI approach

The origin of DFMI ranges back to several publications in the 1990’s
where researchers added a sinusoidal phase modulation to a laser
causing a DFM-like signal being measured [55, 56, 57]. The DFM
parameter estimation was done there by either approximating and
simplifying the signal [55, 56, 57], or the use of a numeric, non—
linear fit algorithm [54]. The signal was generally treated as having
a fixed modulation index such that only the interferometric phase
was used for the displacement readout. The direct precurser for
DFMI was the deep—phase modulation interferometry publication
bei Heinzel et al. [54] with its fitting readout algorithm being reused
later for DFMI.

Gerberding’s initial DFM publication [53] presents the concept
of Deep—Frequency modulation interferometry as compact multi—
fringe measurement technique that also allows for an absolute
length readout via the modulation index (m) parameter. The two
major arguments made for DFMI here are the absolute ranging
capabilities and the greatly compactified setup compared to other
heterodyne setups. The concept for implementing DFMI sensors
is presented and analyzed, and their feasibility is demonstrated by
simulating a DFMI signal with different types of noise and, using
Heinzel’s DPM readout algorithm, the signal parameters are calcu-
lated, showing promising performance comparable to other tabletop
interferometer setups.

Besides Heinzel and Gerberding, Kissinger et al. also published an
interferometer concept [58] which uses a DFMI signal to measure
the displacement to a target. One of the key features of Kissinger’s
concept is to use a single modulated laser source, splitting the beam
multiple times and sending them over different optical path (with
different lengths), but recombining them all at a single photodiode,
and then extracting the displacement information of the different
paths from the measured signal. For the parameter calculation,
Kissinger uses a special filtering technique which essentially isolates
different signal harmonics which can be attributed mostly to a single
optical path (a specific modulation index m) which needs to be
sufficiently different from all other optical paths encoded in the
signal. While Kissinger’s alternative readout algorithm alone is
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less well suited for a high-precision readout, it demonstrates how
DFMI signals with different modulation indices can be (mostly)
separated within a measured time series. This suggests that DFMI
might be able to mitigate parasitic/ghost beams that travel along
a sufficiently different path better than other interferometry tech-
niques. (This is also briefly discussed in section 9.3.4).

Shortly after the initial DFM paper, Isleif & Gerberding et al. per-
formed a first experimental demonstration of DFMI [59]. They set
up an in-air experiment with a Mach—Zehnder interferometer setup
and a second Michelson interferometer, both fed with the same
modulated laser source. The readout was done, same as the first
DFMI publication, using Heinzel’s DPM algorithm. By comparing
both interferometers, and by splitting some of the outputs multi-
ple times and feeding it to additional ADC channels, they could
perform a detailed noise analysis. l.e., they managed to isolate
and attribute thermal noise (and air density fluctuations), ampli-
tude and shot-noise of the laser beam and digitization noise of the
ADCs. With this first experiment, they reached a performance
level of down to 250 pm/ VHz as first ever high precision DFMI
measurement, published.

As part of his Ph.D. thesis in 2018 [60], Thomas Schwarze also
presented a slightly different phase extraction scheme for DFMI
by using a Kalman filter to extract the signal parameters. In his
implementation, a Kalman filter uses the anayltic description of
the DFMI signal and interativly models a DFMI signal using the
measured signal as live feedback. As the DFMI signal is non—linear
in most of its parameters (m, ¢ and ), the Kalman filter operation
is somewhat comparable to a gradient descent where (derivatives
of) the analytic model yield the gradient and the difference between
the last filter result and the new data yield the step size for the
filters iterative steps. In Schwarze’s experiment, the readout of the
Kalman filter reaches almost (within x2) the same precision as the
DPM fitting algorithm while using significantly less computational
resources.
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Some time later, Isleif et al. published another DFMI measurement
[61] of a tabletop setup using a bonded ultra stable optical bench
in vacuum, involving two DFMI heads with prisms (angled optics)
to measure the distance to an optical mirror from both sides. All
4 interferometer outputs (2 per interferometer) were measured and
one of the outputs was measured with a 4-Quandrant PD to addi-
tionally measure the tilt of the target. Besides some novel features
like the in-vacuum measurement and tilt sensing, the setup also had
a more elaborate control scheme, with frequency— and amplitude—
control of the laser and a three axis position control of the target.
The angled optics additionally helped to reduce the influence of un-
wanted reflections / ghost beams in the setup as these ghost-beams
were reflected out of the main beams line of propagation. (Remark:
Angled optics can however cause issues when working in vacuum.
Due to the change of index of refraction from air (n ~ 1.0003) to
vacuum (n = 1); the angles of reflection also slightly change, which
reduces the contrast of the interferometer output and requires care-
ful readjustment which makes handling of such setups difficult.)
The payoff for this work was a very high precision measurement
with a noise floor of down to 230 fm/+/Hz which remains (as of the
writing of this thesis) the most precise DFMI measurement done to
this day.

A continuation of Isleif et al. 2019 work is the publication by Yang
et al. 2020 [62]. There, they presented a new interferometer setup
featuring a single “triangular prism optical head” which is the sin-
gle (monolithic) optical component of the setup (besides the PDs).
It incorporates two seperate interferometers using the same compo-
nents, one as fixed reference interferometer and one using an addi-
tional target mirror. It demonstrates a very compact optical setup
featureing both a “measurement” interferometer and a “reference”
interferometer.

In 2021, Gerberding and Isleif [63] published another paper for a
new “optical head” design to be used with a DFMI laser source.
This new design features a very compact, quasi—-monolithic compo-
nent ("QMC”) which incorporated all optical components (polar-
izing beam-splitters and reflective surfaces/mirrors) of a compact
Michelson interferometer setup, measuring the distance to a target
mirror. The optical head has a single outgoing beam which would
be reflected from the target, re-enter the head at the same port,
and interfere with the internal beam. Using this special setup and
utilizing different polarization, Gerberding and Isleif showed that
the major contributions of unwanted reflections at the plane
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surfaces of the QMC, referred to as “ghost-beams,” can be removed
from the readout by using balanced detection, i.e., by adding and
subtracting the different measured ports. By measuring both out-
going ports (using all of the outgoing signal energy), the setup also
enables one to reach the maximal readout precision, as shown in
more detail in this thesis in chapter 8. Due to its straight design
without any angled optics, this optical head would be well-suited
to be used in vacuum setups as it is the case for the local displace-
ment sensors used in gravitational wave detectors. In later works,
the here designed optical head has been given the name “Compact
Balanced Readout Interferometer” Short: COBRI. [64]

In 2022 another group at the University of Birmingham tested
DFMI based sensors and designed an optical head from purely com-
mercially available components [65]. Their readout scheme is how-
ever again different from the others used. Here, the modulation
depth is tuned such that the amplitude of a selected pair of signal
harmonics becomes equal and only a single pair of signal harmonics
is used for the distance readout. By keeping the modulation index
roughly fixed, their readout does not provide the macroscopic dis-
tance information generally encoded in a DFMI signal, but only the
phase, which is then tracked to cover a range larger than one wave-
length to achieve a displacement readout beyond a single fringe.
While this approach showed a more easily reproducible way to build
a DFMI sensor (without the need for specialized optical compo-
nents), it did not archive the same performance level as previous
setups which was later addressed and analyzed in more detail by
the authors in [66].

In 2022, Gerberding and I published a survey and analytical study
of the readout noise limits of various interferometer types [67] with
a focus on DFMI sensors. Since the distance information is en-
coded in a non-linear way into a measured DFM type signal, it is
not immediately clear how different noise sources couple into the
readout and how precise a DFM interferometer can be compared
to e.g. a more simple homodyne interferometer setup. This paper
aims at giving an answer to this question, provides some predicted
noise curves for a measured DFM readout and shows that DFMI
sensor can in principle reach (close to) the same performance as
other interferometry techniques. The primary results of this paper
are are incorporated in part III of this thesis.
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Up to this point, most of the previously done DFMI experiments
used variants of Heinzel’s DPM readout algorithm, which uses at
its core a non-linear (Levenberg-Marquard) fitting algorithm, or
other types of approxmations and fitting routines to find values for
the m parameter encoded in the non—elemental and non—invertible
Bessel-function J,(m) appearing in the measured signal. In my
second paper [68], I present a new readout algorithm that only uses
analytical operations to find values for all signal parameters with-
out the need for any approximations or iterative fitting. Here, the
Bessel-functions are eliminated by use of a recurrence relation. I
consider this new algorithm, which we called “Analytic Readout Al-
gorithm” as my biggest contribution toward DFM-interferometry.
As a major part of my work, it is presented in chapter 4 of this

thesis.

3.3 Planned DFMI applications

The primary planned use case for DEMI sensors is as local displacement sensors in
gravitational wave detectors.

A key features of DFMI is that it allows for a very compact optical setup. O.
Gerberding once stated that “DFMI takes the complexity from the optical setup
[compared to other multi—fringe capable interferometry setups| and puts it into the
digital [signal processing] domain.” Having a simple and compact optical setup
is highly beneficial for the integration into the mechanical suspensions in GWDs.
And its high precision, multi—fringe readout allows for displacement sensing beyond
currently used sensor capabilities. A potential candidate that might be used for
such displacement sensing is the “COBRI” design.

3.3.1 Compact Balanced Readout Interferometer
— “COBRI”

As mentioned in the previous section, Gerberding and Isleif developed the COBRI
with an optical layout as shown in Figure 3.5. By using polarizing beamsplitters
and a quarter—wave plate, the reflected beam can be separated from the incoming
beam while using the same optical path in this miniature Michelson Interferometer
setup. By having one of the two Interferometer arms (the internal one) very short,
the measured DFMI signal is also very close to the ideal one written in (3.4) as the
additional rest terms O(v1) as written in Appendix A become very small. In its
mechanical design, the optical components are fused together into a quasi mono-
lithic component (QMC). The measured arm length difference is almost exactly the
distance between the exit point of the COBRIs QMC and the target mirror. The
design notably features plain optics (perpendicular to the beam’s path) to intention-
ally avoid angles between the reflective surfaces and the laser beam, which would
change in vacuum. When aligning an optical setup at normal pressure and subse-
quently switching to a vacuum, the reflective index changes from n,; ~ 1.0003 to
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Figure 3.5: Simplified sketch of the optical setup of the COBRI design by Gerberding &
Isleif [63]. By using of the polarization of the beam, the incoming and outgoing beam can
be separated, and all reflected light is measured in photodiodes 1 and 2. In the COBRI
design, all optical parts are fused together in a “quasi monolithic component (QMC).”

Nyacuum = 1. While this change is not large, it does affect the non—zero angles of
reflection at every air/vacuum surface which can reduce the contrast and lower the
readout precision of the setup. Plain aligned optics prevented this, and allow for the
use of retroreflectors on the target which minimize the loss of contrast due to tilts.
The downside of such a setup is however that every surface causes a small amount of
unwanted reflections of the passing beam called “ghost beams.” For angled optics,
these ghost beams usually diverge away from the main beam’s path of propagation.
For plain aligned optics, they do couple back strongly into the main beam. To deal
with these additional unwanted signals, Gerberding and Isleif developed a scheme to
remove the major ghost beam in their COBRI setup by calculating different linear
combinations of the two (or more) COBRI outputs. The COBRI design also features

Photo diodes

PCB

Collimator

Half- inch ring

PEEK

S}I;‘;};\\ ; ,j'jwi(( T A Ty . Wil
(a) Mechanical CAD drawing of the COBRI by (b) Picture of the used COBRI prototype build
[M. Mahesh] by M. Mahesh. The scale shows a total length

of ~ 3 cm length of the COBRI prototype.

the option to use a quadrant photodiode at e.g. the “direct port” to read out the
tilts (yaw and pitch) of the target. By measuring the phase differences between the
different quadrants of the photodiode, tilts of the target down to ~ 20nrad/ VHz
have been measured in previous DFM experiments [61].
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3.3.2 DFMI sensor network in GWDs

A compact and precise interferometric sensor, like the COBRI presented in the last
section, would enable a precise positioning and local displacement readout for the
optics in a suspension chain used in GWDs. The sensor readout would be used
to improve the active damping and to support the global interferometer control.
Figure 3.7 shows a sketch of where an array of compact COBRI-type sensors (and
additional target mirrors) would be added to the suspension to measure all degrees
of motion of a suspension stage. A single modulated laser source would supply

(modulated) Laser source

y-axis
readout

1
1
1
1
1
1
1
1
-
1
1
1
1
1

x—axis

Optical head(s) readout

Suspension stage
Suspension stage
Suspension stage

Figure 3.7: Simplified sketch of sensor network of multiple COBRI-type sensors at a
test mass suspension.

a potentially large number of optical heads / COBRIs, where each COBRI would
measure displacements in one dimension. Three COBRIs at different positions could
measure the target displacement in every direction and additional 3 COBRIs tar-
geting another point of the same object would allow measurements of tilt, yaw and
pitch.
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3.3.3 DFM parameters for local displacement readout in
GWDs

In such a mechanical suspension, the DFMI sensor would be mounted closely (Lg ~
5 cm) to the masses and would need to provide a multi-fringe readout with a dynamic
range in the order of 6L ~ 1 cm. Aiming for a typical modulation depth of m =7,
which was used in previous DFMI experiments that reached a high precision, leads
to a modulation depth of Aw =7 ¢y/Ly = 27 - 3.37 GHz. Orienting myself on the
1550 nm external cavity laser I used for my experiments, I recommend a modulation
frequency of around f,, = 500 Hz which should be as high as possible but below
typical resonance frequencies of the Piezos used to modulate the laser frequency,
and small enough to not be limited by non-linear (frequency) behavior of the laser.
For the ADC, I consider a fully differential input (so that B can be zero) with 1 MHz
sampling frequency. In Summary, what I consider the default DFMI parameters for
a local test-mass readout, leading to a signal as shown in Figure 3.8, are:

fs = 1MHz Af =3.37GHz fm = 500Hz
T = 16 ms B =0V A =35V
Ao = 1550 nm Y =0.1

SL=(10£1)ecm = m=(7£0.77)rad ¢ = (0.81 £ 445904) rad

Table 3.1: Typical DFM parameters for a local test—mass readout. The laser and mod-
ulation parameters are based on the laser I used, and the measurement time is based on
readout considerations presented in the next chapter.
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Figure 3.8: Plot of a DFM signal for a local test—mass readout with the DFM signal
parameters as given in table 3.1.
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3.3.4 Alternative signal parameters for different scenarios

While the parameters shown above correspond to a common use—case scenario,
DFMI could be used in a wide range of applications for distance measurements
with very different signal parameters. lL.e. while ADC sampling frequencies of 1 — 2
MHz are not uncommon, the setup above does not fully utilize the frequency range
provided by such a fast sampling rate compared to the modulation frequency (as-
suming that the analog electronics in front of the ADC do not add significant noise
at high frequencies). This leaves room to either increase the absolute distance or
to increase the readout speed. I.e. by increasing the absolute distance, leading to a
larger modulation index, the higher order harmonics (at higher frequencies) contain
more signal energy and become relevant for the readout. Table 3.2 shows DFMI pa-
rameters for an alternative setup with its signal plotted in Figure 3.9. Such a setup
could measure the absolute range and interferometric displacements in picometer
precision over a range of ~ 10 m. The shorter measurement time of only 2 ms would
lead to a readout frequency of ~ 1/2ms = 0.5kHz, which is useful when tracking
(relatively) fast moving targets.

fs=2MHz Af=1GHz f,, =4kHz
T =2ms B =25V A=25V
0L =10m )y = 1064nm =20

— m = 210rad

Table 3.2: DFM parameters with a focus on a long absolute distance readout.
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Figure 3.9: Time series and signal spectrum of a DFM signal for a “high-speed readout.”
Here, the DFM signal is distributed over ~ 110 relevant signal harmonics. The Region in
the orange rectangles is zoomed in for a smaller window for better visibility of the signal.
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Chapter 4

Analytic Readout Algorithm

Most of the previously done DFMI experiments used of Heinzel’s DPM readout
algorithm [54]. It makes use of the Fourier series form (3.6) of the signal which
includes Bessel-functions of the first kind .J,,(m) which are non-linear (in m) and
non—invertible. To be able so solve all parameters; the DPM readout algorithm
uses an iterative (Levenberg—Marquard) fit algorithm. Two disadvantages of this
approach are that (a) the algorithm needs sufficiently good starting values to find
precise results for all parameters and (b) it is computationally expensive and limits
the speed of the readout (and requires sufficiently potent hardware to run). Le. in
Isleif et al. [61], the readout algorithm required a (~2019 era) 8-core desktop CPU to
exclusively run Heinzel’s readout algorithm on 8 channels allowing for a max speed
of ~ 100 Hz with almost full CPU utilization.

In this chapter I present an alternative method to calculate the signal parameters
in a non-iterative way that does not require initial values. This new algorithm was
named analytic readout algorithm and published in [68].

The analytic readout algorithm operates on a set of signal harmonics, which are
demodulated individually, and from the resulting Fourier coefficients, the signal pa-
rameters are calculated by arithmetic operations. The non—linear Bessel functions
that appear in the signal’s Fourier coefficients are eliminated by use of a recurrence
relation without any approximations or restrictions to the signal parameters.

A detailed overview of the algorithm and its individual steps can be seen as flowchart
in Figure 4.1. And a more compact overview, that will be used to guide the reader, is
shown at the beginning of every of the following sections, with each section expand-
ing one of the colored algorithm steps. Throughout this chapter, algorithm results
are sometimes compared to an “optimal result” or “optimal readout performance.”
This refers to the CRB of the discussed parameter which is explained in detail in
the later part of this thesis.



4. Analytic Readout Algorithm

99

Section
Measure Measure s(t)
4.2 s(t) with N datapoints sampled with fg
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
C?,lculate Calculate

4 . 3 i Agstimate

& Bestimate

Aestimate
& Bestimate

Y
Calculate Calculate
I,&Q I,&Q
4.4 coefficients coefficients
Y
No Is the Yes
Is ¢ already Calculated v
known?? (Provided expected to be
externally?) very noisy?
Calculate
45 g
estimate Yes
Calculate
¢estimate
from I, &Q,
Y
Calculate Calculate
Calculate len|

46 o

cn »a
coefficients [~ coefficients
from I, & Qn (without )

Y Y
Calculate
Calculate Mp1y---yMnd
My, for each possible
from ¢, sign combination
of the |cy|
A7 Calculate
. Mestimate v \ 4
Calculate Cluster mp,i
Mestimat Calculate and use
estimate H .
from m, & w, velght w, cluster point as

A

48 Calculate

Pestimate

Cfilculate L,

Pestimate

A




60 4. Analytic Readout Algorithm

4.1 The algorithm

The ideal DFMI signal (as written in 3.6) is given by

s(t) =B+ A-cos (gp +m - sin(wp,t + w)> (4.1)
=B+ A-Y _Ju(m) cos(nwpt +nt + ) . (4.2)

In general this signal has 5 free parameters (B, A, m, ¢, ¥) with ¢ as time and
Wy, as fixed parameter. While the w,, parameter could also be derived from the
measured signals simply by finding the (frequency) position of the harmonics in the
power spectrum; in a DFMI experiment, the laser modulation (including w,,) is a
set / fixed parameter and not an unknown.

4.1.1 Example Case (Definition of Sexample)

For a better understanding of the algorithm, the following algorithm steps also
include calculations and results for a simulated example signal Sexample(t) Which uses
the signal parameters of a DFMI signal for a local displacement readout, as presented
in section 3.3.3, with the signal parameters as written in Table 3.1. I.e.,

Sexample,ideal(t) - Bex + Aex - COS (Soex + Mex * Sin(wm,ext + 77Z)ex)> + n(t) (43)

with signal parameters as written in Table 4.1 and n(t) ~ N (u = 0,0% = 1073 V?) as
random, additive, Gaussian distributed noise with zero mean (1 = 0) and a variance
of 02 =103 V2.

B, =0V Ay =5V Yex = 0.81rad fs = 1MHz
Mex = Trad Wy, ex = 27 - 500 Hz, Yex =0 o2 =10"3V?

Table 4.1: Table of the DFM parameters used for the simulation of Scxample-
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4.2 The digitized signal

As a “zero’th” step, the signal is measured over a time period 7" and sampled (and
digitized) with a sampling frequency of fg, leading to N = T - fs data points.
The measured signal is then given as discrete time series s = {s(t = ) s(t =
%) st = D= l)} =: {s0, -+ ,Sn—1}. Analytically, the finite measurement time
can be expressed by multiplying the ideal signal with (4.2) with a rectangular win-
dow function recty(t) = rect((t — 7//2)/T) such that:

lfor0<t<T

Smeasured (£) = 8(t) - rectp(t)  with recty(t) = {0 | : (4.4)
else

While not strictly necessary, it is beneficial (as explained later in section 4.4.2) to
choose a measurement time 7' close to an integer multiple of the modulation period
27 /wy, to improve the readout’s precision. For the example signal we assume at
this stage a sampling frequency of f¢ = 1 MHz and a measurement period of T, =
16 ms = 827 /w,,. This leads to a total of N = 16000 data points. The analytic de-
scription of the example signal then becomes: Sexample(t) = Sexample ideal (t) -TeCtT,, (1).
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Figure 4.2: Example sketch of the ideal signal Sexample,ideal (yellow line), the time of
measurement [0,77] (light blue background) and the resulting sampled data of Sexample
(blue dots). For visibility, in this plot only 4 signal periods (so Tcx/2) are displayed with
a slower sampling frequency of only 0.1 MHz.
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4.3 Calculating the amplitude A and offset B

Calculate

Aestimate
&B estimate

As first step of the analytic readout algorithm we calculate the constant B coefficient
and the amplitude of the signal A. For typical DFM applications these two param-
eters are however only of minor interest. B is used in the next (demodulation) step
as it adds to the zeroth harmonic n = 0. Since the DC part of the measured signal is
however usually more noisy than the other signal harmonics, I generally recommend
not using it all together. The amplitude A can be used to measure effects which
reduce the optical power, like a loss of optical contrast or as error signal to correct
power fluctuations of the laser. The precision of the B and A parameters do however
not directly influence the precision of the length / displacement measurement.

Assuming that the modulation index is larger than m > 7 immediately shows that

s(t) = B+ Acos(p +m - sin(wy,t + 1)) (4.5)
min{s(t)} = B— A

max {s(t)} = B+ A. (4.6)

From the maximal and minimal value of the measured signal we calculate the pa-
rameter estimates via:

(max {s(t)} + min{s(¢)}) (4.7)
(max {s(t)} — min {s(t)}) 4.8

= N

> 0

A feature of the DFM signal is that “DC” or mean signal measured over an interval
also depends on the signal parameters and is given by:

T
Spc = / s(t)dt =B+ A- Jy(m) - cose (4.9)
0

This is a key difference to other typical heterodyne signals which only carry signal
at frequencies w > 0 and where the DC value of the signal can simply be estimated
by calculating the mean as in (4.9). The downside of having to use (4.7) and (4.8)
as estimators for B and A is that for most (symmetric) additive noise terms, picking
the absolute minimum and maximum of the measured signal will lead to a slightly
larger error (~ o - 1/2In(T fs), compared to calculating a mean).
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4.4 Demodulation and definitions for I,,, Q, & |c,|*

Calculate

I,8Q,
coefficients

The second step in the analytic readout algorithm is (similar to [54, 53]) to calculate
the coefficients of the Fourier series of the signal. Experimentally this is done with
the so-called “I/Q demodulation” technique.

4.4.1 Definition of I, and (@),
When writing the DFMI signal as Fourier series
s(t) =: Y I, cos(nwpt) + Qu sin(nwpt) | (4.10)
n=0

I define the I, and @),, as the Fourier coefficients of the signal harmonics sin(nw,t)
and cos(nwy,t) as written in Table 4.2.

n even n odd

I, A - J,(m) - cosg - cosny + Bong —A-J,(m) -sinp - sinny
Qn —A- J,(m) - cosp -sinny —A - J,(m) - sing - cosny

Table 4.2: Table of the (ideal) I,, and @, coefficients for a DFMI signal without any
noise.

Practically, we calculate these coefficients by “I/Q demodulation,” i.e., by calculat-

ing:
1 /T 1 /T
fAs@mmmmymmﬁ and %:TAS®SMWMfMWﬁ

1 & 1 & _
N Z s(tg) - cos(nwmty) - Wr(ty) ~ N Z s(tg) - sin(nwpty) - Wr(ty),

k=0 k=0

with Wr(t) as window function (4.15) as explained in detail below.

Inserting the ideal Fourier series (4.10) into (4.11), using n’ as summation index,
choosing a measurement time of an integer multiple of the modulation period i.e.,
T = 27 /wy,, and setting W = 1, causes to all other parts (with n’ # n) of the sum
in (4.10) to vanish and leaves only the n'th Fourier coefficient leading to the values
as written in Table 4.2. In practice, the time T and the frequency w,, are however
not exact and the other parts of the sum of (4.10) will also slightly contribute to the
calculation of the I, and @),,. To mitigate this effect I employ an additional filter in
form the window function Wr(t).

(4.11)

(4.12)
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4.4.2 Filtering of the demodulated signal with the W win-
dow function

Only when integrating in (4.11) over exactly an integer multiple of 27 /w,, do the
other parts of the sum in (4.10) vanish. This can also be visualized by looking at the
signal in Fourier domain as shown in Figure 4.3 where the finite window of length
T leads to zeros in the spectrum at exactly integer multiples of 27 /7. Analytically,

10*
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102 - rect window o 1/w!
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Figure 4.3: Plot of an example DFMI signal spectrum and two window functions (a
rectangular window (yellow) and a squared Hann window (red)) with Window length /
measurement time of T' = 27 /wyy,.

the I, and @, coefficients in (4.11) can also be written as function of the Fourier
transformed! of the signal (with Wr and s real and * as convolution operation) as

} and @, = Imag { <§ * %WT> } .
(4.13)

For a plain rectangular window, the Fourier transformed is the sinc function given

by
1 A
f{—rectT(t)} =e 2% -sinc ( ;jr
T (%)
Le. it has zeros at integer multiples of 27 /T (i.e., with T = 27 /w,, = zeros

at all harmonic frequencies nw,, with n # 0) and falls off asymptotically with 1/w
(the yellow dashed line in Figure 4.3). The convolution operation in (4.13) causes

I,, = Real { <§ * %WT>

()

) ~ for large w . (4.14)
w

'For the convention of the used Fourier transform, signified by the tilde”, see section 7.1.
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only the same harmonic §(nw,,) to contribute to I,, (or @),,) as all other harmonics
($(n'wp,) with n’ # n) are multiplied with the zeros of the window function.

In a real experiments, the signal is always measured with a finite precision and the
T and w,, can be imprecise (i.e., due to timing jitter noise). In this case, the other
harmonics are shifted slightly off the zeros of the window function, which leads to
errors in the calculated I, and @, coefficients. For a rectangular window, these
errors are attenuated by a factor of o 1/w (visible in Figure 4.3). Choosing another

1071
. 1071 ‘ .
5
g «E 107
= |
=
S 5 7 )
z = 1077 result from rect window
< result from Hann window
1077 1 result from Hann? window

0 5 10 15
Frequency in [n - wy,]

Figure 4.4: Plot showing the absolute error AI, = |I,, — fn| of the calculated I,, coef-
ficients calculated from Sexample When plugged into (4.12) for different window functions
W (t). To showcase the filtering effect of the window, the measurement time was slightly
offset (1.01 - Tex) from an exact integer multiple of the modulation period 27/w,, and no
additional noise was added (02 = 0), leaving only the truncation noise from the finite
digital precision. Al, = I, — fn is the difference between the exact values I, written in
the second column (calculated from Table 4.2), and the values calculated I, from (4.12).

window function with a steeper fall-off like a Hann window (o< 1/f3) or a squared
Hann window (o< 1/f%) can further mitigate these errors. Figure 4.4 shows the
error of some calculated I, coefficients for different window function, showcasing
this effect. In my algorithm implementation, I use a squared Hann-Window given
by:
R I 1

Wr(t) := 372 Sin (mt)T) with Wy (w) ~ > (4.15)
Keeping the total measurement time close to an integer multiple of 27 /w,, (I choose
a measurement time of 8 modulation periods), will keep the zeros at the other har-
monic frequencies when calculating I,, and @), and the steeper falloff from using
(4.15) as window will help mitigate timing jitter noise. The integration operation (or
sum) in (4.11) also factors in as another 1/ f attenuation factor in frequency domain.

Remark 1: Choosing a squared Hann window has some subtle implications for the
required measurement time 7. While a rectangular window has zeros (in the fre-
quency domain) at all frequencies n-27/T with n # 0; the Hann window has “only”
zeros at all n ¢ {—1,0,1}, and the squared Hann for all n ¢ {—2,—1,0,1,2}. Fig-
ure 4.5 illustrates this graphically as the different window function behave slightly
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Figure 4.5: Plot of the ASD of a rectangular window, a Hann-window and a squared
Hann window function, all with the same length 7. While the Hann and squared Hann
window have a steeper asymptotic falloff than just the rectangular window, the tradeoff
can be a slightly higher contribution at low frequencies. While the rectangular window
has its lowest zero at w = 1-27 /T, the Hann window has a first zero at w = 2 - 27/T and
the squared Hann at w = 3 - 27/T.

differently at low frequencies. This means that with a Hann window, the measure-
ment time needs to be at least 2 modulation periods long; and for the squared Hann
window at least three modulation period; to have again a zero at 1 - w,, from the
window function.

Remark 2: In the general I/Q demodulation scheme, this filtering would be part
of the “low-pass” filter stage which does not necessarily need to be realized by such
a window function.

4.4.3 |c,|* as SNR of the signal harmonics

From just the here calculated I,, and @),,, one can already eliminate the ) dependency
directly by calculating

|A - J,(m)-cosp| mneven
= V2L Q2 = . 4.16
e @ {|A - Jp(m) -singp| nodd (4.16)

For the later algorithm steps it turned out, however, that the missing sign informa-
tion of these absolute |c,| is required to calculate exact values of the other signal
parameters. Nevertheless, are the absolute |c,|? as defined here still useful as they
correspond to the signal harmonic’s SNR. More specifically: Calculating the |c,|
using the I,, and @, as defined in (4.11) is exactly the definition of the spectral
density as written in (7.32), meaning that |c,|? = Sss(nwy,).

For a DFMI signal, the distribution of the signal energy over the DFM harmonics
depends on, and changes with, the signal parameters. This is shown in Figure 4.6
by example of two DFM signals which are identical up to a different phase . At
¢ = 0 (like the blue curve in Figure 4.6), the signal energy is distributed mostly at
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Figure 4.6: PSD of two DFMI signal with parameters identical to Sexample as given in
(4.1) but one time with ¢ = 0 and one time with ¢ = /2. For these values of ¢, either
the even numbered or the odd numbered harmonics at frequencies n - w,, vanish.

the harmonics with n even (n € {0,2,4,...}) and no signal energy at the harmonics
with 7 odd. With any kind of noise present, the calculated I, @, and |c,| coeffi-
cients for n odd are dominated by noise and have a high relative error.

We can see this also from the exact values in Table 4.2 as for e.g. ¢ = 0, all the odd
I, and @),, becomes zero and the calculated values would in this case be only noise.
For the case of ¢ = 7/2 (the yellow curve in Figure 4.6), it is exactly the other way
around with all the even harmonics being zero and all the odd harmonics carrying
all the signal energy. Values of ¢ in-between will lead to different distributions of
the signal energy over the “even” and “odd” harmonics.

To mitigate the noise introduced by these relative errors of the calculated I,,, @,
coefficients, the |c,|* (~ harmonic SNR) will be used to weight the individual coef-
ficients.
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4.5 Calculating the modulation phase

Calculate

1/’estimate

The calculation of the modulation phase v is done similar to the algorithm by
Heinzel et al. [54]. By calculating the arctan of the ratio I,,/Q, for the measured
n’th harmonics and unwrapping the resulting values one obtains .

4.5.0.1 Definition of %egtimate

As first step we calculate

t —&n In
U, = arctan(=Qn/In) 1 even = ny mod 7 (4.17)
arctan(l,,/Qy) n odd.

and unwrap the resulting list by adding +7 at “jumps” where ¥, .1 < ¥,,. Averag-
ing over the gradient of this unwrapped list would then yield an estimate for ).

As shown above in section 4.4.3, either even or odd harmonics can be very noise and
add relatively larger errors to a ¥estimate calculated this way. As small adjustment, I
split the list of ¥,, into even and odd harmonics = Weyen, = { Vg, Yo, Uy,...} and
Uoqa = {1, ¥3, Us, ...} and unwrap the resulting lists separately (by adding 4+ at
jumps where ¥, o < ¥,,). Then, we can calculate the gradient of these lists by us-
ing some finite difference technique and calculate a weighted average, using |c,|* as
weight to account for the individual harmonic’s SNR. The result of this calculation

IS 77Z)estiman:e .

For a testimate calculated this way there remains, however, an ambiguity of Yegstimate ~
v mod 7. Due to the arctan mapping only into an interval of [—7 /2, +7 /2], a phase
shift of +7 yields the exact same V¥, in (4.17) and subsequently the same testimate-
In other phase unwrapping application, this is commonly overcome by using an “arc-
tan2” routine which also compares the sign of the sin and cos terms. In our case
this is not possible since the J,, and sin ¢/cos ¢ factors affect the signs of the I,, &
Q. as well.

While this algorithm cannot calculate an unambiguous estimate of 1), the ambigu-
ity of Yestimate does not hinder the algorithm to get accurate (and unambiguous)
estimates of the other signal parameters as we will later see.

4.5.1 V¥, as data quality check

In my experimental setups the laser modulation signal w,,t + 1 is a set parameter
which can be measured independently of the DFMI signal. Even when the 1 is
given or can be measured directly, the here present ¥, and estimate are, however,
still useful to estimate the noise at exactly the signal harmonics. E.g. Figure 4.7
shows the calculated U,, and ©estimate for two signals. In one case (left side of the
Figure) there is very high level of white (frequency independent) noise, which is
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clearly visible in the time series; but has only a small effect at the DFM harmonics,
leading to still accurate ¥,, estimates. The lower part of Figure 4.7 seems, in its time
series, to be less noisy; calculating the ¥,, reveals however more noise at exactly the
DFM harmonics as the calculated ¥,, values do not “line up” nicely (on the line
given by 7 - Yestimate). This way, calculating the difference of |¥,, — 7 - Yestimate| can
still be used as a measure of noise present at the DFM harmonics and is an indicator
for the quality of the data even before calculating the remaining signal parameters.
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Figure 4.7: Plots of two DFM signals and the calculated ¥, and i parameters. The
upper two plots show a part of the time series of the measured signals and the lower plot
shows the calculated ¥,, (as blue crosses) and the calculated ©estimate (and dashed yellow
line with y = n - (Yestimate + 7 - N)) from the same signals. The upper two plots correspond
to the simulated signal sexample but with x10 more white noise and a larger modulation
phase of 1) &~ 2. The lower plots are from real measured DFM data from a tabletop DFMI
experiment. While the upper signal looks much nosier (and has more ’white’ noise), the
calculation of the ¥, (and all following parameters) yield much better results compared
to the lower signal. The reason in this case is that the lower signal has much more (non—
Gaussian) noise located at exactly the signal harmonics (i.e. due to ghost beams), which
is not obvious from looking at the shown time series alone.
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4.6 Definition of the ¢, coefficient

Calculate
Cn

The next step in the algorithm is to eliminate the 1) dependency from the calculated
coefficients. While the 1) dependency can be eliminated directly from the I,, and @,
coefficients by simply summing their squares as done in section 4.4.3, the resulting
absolute value is insufficient for the later calculation steps where the sign will play
a significant role. Instead, I will use either a given, or the previously calculated
value, to eliminate it from the I,, and Q,,.

4.6.1 Calculation of the (signed) c¢,

By using either the previously calculated tegimate Or an externally provided ), I
define the ¢, coefficients as:

. +1I, - cosny — Q, -sinnyy neven | A-J,(m)-cosp neven
") =1, - sinny — Q, - cosnyy 1 odd A-J,(m)-sing n odd
(4.18)

Using @estimate = (¥ mod ) in place of ¥ here can still lead to a wrong sign of all
Cn, as replacing ¥ +— 1 + 7 in equation (4.18) will yield —¢,, instead of +¢,. This
“error” is however consistent for all ¢,, meaning they all have a flipped sign which
will cancel out later on and not be an issue for further calculations.
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4.7 Calculating the modulation index m

Calculate

Mestimate

4.7.1 Definition of m,,

The crucial step in the algorithm is the estimation of the modulation index m. The
recurrence relation (4.19) for Bessel-functions of the first kind can be rearranged to
yield m m:

2nJ,(m)

formeZ.
Jn—l(m) + Jn+1 (m>

(4.19)
Since the ¢, coefficients contain a sin ¢ factor for n even and cos ¢ factors for n odd,
one cannot directly insert them in (4.19). However, applying the recursive relation

twice yields

2n
Jn_l(m) + Jn+1(m) = EJn(m) — m =

_ dn(n — 1)(n + 1)J,(m)
m = \/Qan(m) +(n+ 1) Jyo(m)+ (n—1)Jysa(m) (4.20)

Inserting the ¢, coefficients obtained from (4.18) into this relation in place of the
Jn, the A and ¢ factors cancel out and only the J,(m) factors remain such that

My, 1= dn(n = 1)(n + Den =m forVn. (4.21)
2ne, + (n+ Do+ (n— 1)cpie

These m,, correspond to an estimate of m for each set of 3 harmonics with indices
(n—2,n,n+2). Figure 4.8 shows these calculated m,, values for an example DFMI
signal. The final step would now be to average the m,, from the sets of 3 harmonics
to calculate an m estimate.

Remark: For noise dominated harmonics, leading to highly erroneous c,,, the value
under the square-root of (4.21) becomes also highly erroneous and can even be-
come negative. To avoid errors in the implementation, use the absolute value of the
expression under the square-root and effectively discard the erroneous m,, later by
using a weight that takes the harmonics individual signal-to-noise ratio into account.

Without any prior knowledge, i.e., when running the algorithm on a first set of data,
use the power of the harmonics |c,|* as weight when averaging over the m,, values.
To achieve the highest possible precision it is however necessary to use a specific
weighting function as shown in the next section.

4.7.2 Averaging over individual harmonics

In the algorithm, every harmonic yields a ¢, coefficient which are used to calculate
estimates for m and later ¢. When using just the harmonics signal powers ~ |c,|?
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Figure 4.8: Plot of calculated m,, values for sexample- The blue dots correspond to the
calculated m,, values with the dashed green line as exact m, both scaled to the left y-axis.
The filled light-blue area corresponds to the PSD using the right y-axis. Comparing both
shows that at harmonics with a relatively high power, the calculated m,, are close to the
exact value while the higher harmonics are ’hidden’ below the white noise floor leading
to erroneous m,, values. Since 2 more harmonics to either side are needed to calculate a
value of my,, the lowest two used harmonics yield no values here (i.e., m; = ma = 0).

as weight, the resulting parameter estimate can still become highly erroneous and
many order of magnitude above their ideal precision?. Figure 4.9 shows the error
of the calculated m,, coefficients for two example DFMIs signal with two different
modulation indices. For the particular case of the 100 used harmonics in the right
plot of Figure 4.9, the difference between smallest to the largest error of the m,, is
over 4 orders of magnitude.

Due to the linearity of the equations, any white noise in the signal will lead to
the same white noise level for the I,, @), and ¢, coefficients. In an attempt to
estimate the error of the calculated m,, I calculate the linear error propagation of
equation (4.21) for variations of the input ¢, coefficients. E.g. adding the errors
(0Cp_2,0¢n, 8Cyya) to (4.21) yields:

My, = My (Jn_o(m) + dcp_a, Jn(m) + 0¢p, Jpia(m) + dcyi2) (4.22)
~m+ Z Om dey, + O(0¢?) (4.23)
Ck;
ke{n—2,n,n+2}

421 m m?

(4.24)
m m?
= m, —m= ST () 4dc,, — m((n — 1)0cpio + 2ndc, + (n + 1)5cn_2) )

(4.25)

2Given by the CRB explained in chapter 8
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Figure 4.9: Absolute error |m — my| of the calculated m,, values for Sexample (left plot)
and for an almost identical signal but with a x10 larger modulation index m = 70 (right
plot). The right signal with its larger m value corresponds to an identical DFMI setup
but a larger absolute distance (x10L) being measured. In case of a small m (left plot),
the signal energy is distributed between fewer harmonics compared to the case of a larger
m (right plot), and the individual harmonics can have a smaller relative error close to the
CRB. The average is however roughly the same for both cases given by the CRB (explained
in the next part of this thesis). The errors at the edges of the spectrum (the two largest
and the two smallest harmonics) are the result of equation (4.21) not being applicable as
there are neighboring harmonics missing. The dc for the calculated linear error of (4.26)
is here given by the o parameter of the simulated Gaussian noise.

Approximating the d¢,,4 2, d¢,, dc,—o by some upper error e (i.e., dc, < dc Vk) then
yields:

m m? (1+5,)
(my, —m) < 37 ()] {1 + (2 =1) 1 dc. (4.26)
The result of this calculated error estimation is also shown in Figure 4.9 as “calcu-
lated linear error” where it aligns with the measured error of the m,, coefficients. To
reach a high precision readout I therefore use the inverse of (4.26) as weight for the
m,, coefficients and approximate the harmonics individual dc, error by (the inverse
of) their signal power |c,|?. The resulting weight is then given by

_ 2Ju(m)] (1 . m> el (1.27)

" m (n?—1)
A drawback is that this weight itself also depends on the modulation index m,
making it unusable for the initial weighting. The algorithm therefore performs the
weighting of the m,, twice: the first time, an my,;. estimate is calculated using
the harmonics signal power |c,|* as weight. This M is then used in (4.27) to
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calculate the more precise weight and average over the m,, a second time to get a
high precision estimate for m.

A~ Moy = Wo | TNi10i43
Minitial = W and Mestimate - — Zn nzn Zj(n 1n1t1a1)

For an application with a continuous readout where the changes of the signal pa-
rameters are sufficiently small between measurements, it is also possible to simply
use the m estimate of the previous measurement to calculate the w,, weights directly
(and thus reducing the number of necessary calculations).

(4.28)

4.7.3 Alternative calculation for mestimate Using |c,|

The advantage of calculating the absolute |¢,| directly from

lenl = VIR + Q7 (4.29)

is that it eliminates the ¢ dependency without needing any knowledge of ¢ and
without adding any errors from an imprecise Yestimate- Figure 4.10 shows an extreme
case, where the calculated tegtimate 18 Very erroneous, resulting in erroneous ¢, and
m,, coefficients. Calculating the m,, for the same noisy signal, but using the absolute
|c,| from (4.29) and any possible combination of signs for the +|c,| in (4.21) yields
however much better values for some m,, candidates.

B m,, canidate . Mn (calculated
Xact m calculated from |c,| with Yestimate)
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Figure 4.10: Plot of the calculated values for m,, for the example signal sexample but
with x10 more white noise (which lead to an erroneous ¥estimate). LThe dashed green line
marks the exact value of m of the simulated signals. The blue dots mark the m,, calculated
from (4.21) when using the ¢, calculated with testimate- The yellow crosses mark the m,,
calculated from the all possible sign combinations when using the absolute |¢,| of (4.29).

Examining (4.21) again shows that there are 4 unique combination of signs for the
three given ¢, values as written in Table 4.3. Each of these 4 combinations yields a
“candidate” for the correct m,, value as, plotted as yellow cross in Figure 4.10, but
there is no way of knowing initially which is the correct one per harmonic.
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Sign of the ¢, c¢ui2 Cuo

+ o+ o+
+ -+
+ o+ -
+ — —

Table 4.3: Combination of signs for the ¢, leading to different results for m,, calculated
from (4.21). While there are in total 23 = 8 possible combinations, the symmetry of (4.21)
reduces them to only 4.

My initial approach was to calculate all possible m,, candidates, 4 for each harmonic,
and try to cluster the resulting values. The resulting most dense region should give
a first approximate value for m and reveal the correct signs of the ¢,, allowing
for a proper calculating of an m estimate as weighted average over the harmonics.
Practically, it turned out however that an m estimate calculated this way was prone
to glitching specifically around phase values of ¢ = 0 or ¢ = 7/2 where all of
the signal energy was either at the even or odd harmonics and the accuracy of the
resulting m estimate was in most scenarios worse than the ones calculated from the
signed ¢, when using estimate-

4.7.4 Absolute length calculated from m

In an DFMI context, the m parameter contains the information on the absolute
path length difference via m = Aw - 7 with 7 as propagation time (difference) of
the light (compared to the second interferometer arm). The absolute path length is
given by

Co

L= A_w * Mestimate - (430)
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4.8 Calculating the interferometric phase ¢

Calculate

Pestimate

Since the summed up |c,|? equal the total signal energy, the ¢ information is also
entirely contained in the ¢, coefficients. The remaining task would be to eliminate
the A and m dependency without adding additional errors. While the amplitude A
can be eliminated by calculation ratios of different c,, coefficients, eliminating the
Jy(m) is not so straight forward.

As the ¢, scale differently for even and odd n (with sin/cos ¢) the two quadratures
have to be treated separately. Using the Jacobi-Anger identity and the recurrence
relations of differences and sums of Bessel functions, I was able to find summation
formulas for even and odd n:

> (i) = S Jo(m)) (1.31)
f; B3, (m) = 11— 273(m) + Jo(2m) (439
i Fa(m) = (0= Jo(2m) (.34

Using these summation formulas; summing over even and odd ¢,, allows one to write
either

D et Con—1 _ 2J1(m) + [ Jo(m/)dm’

— - tan 4.35
5= o = Jo(m) ° (4.35)

or
2 on1 Con |1 = 2J5(m) + Jo(2m)
PORETC 1= Jo(2m)

- |tan | . (4.36)

To calculate @, I use one of these summation formulas and remove the m dependent
factor by multiplying with its inverse. The advantage of the second formula (4.36)
is that it does not contain an integral and only depends on a single Bessel function
Jo, and it also makes the calculation independent of the v estimation. The resulting
| tan | has however a limited range of only [0,7/2] compared to the full 27 range
than can be gained from using an atan2 routine on the two quadratures of 4.35,
which is why this first summation formula is preferred in this algorithm.



4. Analytic Readout Algorithm 7

4.8.1 Definition of Qestimate

Summing over the even and odd harmonic amplitudes I define two phase quadratures
as:

2 o0
IL=(—>"—). = A d 4,
’ (1—Jo(m)> ;C% e (437)
1 o0
— _ o = Asi 4.38
Qe <J1<m>+%fo J2<m'>dm'> £ Gt T AR (438)

Similar to other interferometric phase readout procedures, we calculate the final
estimate for ¢ from the two quadratures via

@estimate = atanZ(ng Icp) . (439>

4.8.2 Alternative calculation of Qestimate

An alternative and computationally more expensive way to calculate an estimate of
 would be to eliminate the m dependency individually per harmonic, where

(4.40)

Cn A-cosp for n even
Jn(m)

A-singp for n odd

In this case the individual harmonic SNR can be accounted for by averaging over the
harmonics as shown in section 4.7.2, which can improve the readout performance in
some cases.

4.8.3 Relative displacement calculated from ¢

From the calculated phase estimate, the 'microscopic’ distance in a DFMI setup
with mean wavelength )\g is then given by
Ao

0L = — + Qestimate - 4.41
o Pestimat ( )

4.9 Example readout performance

4.9.1 Readout precision for a large parameter range

Figure 4.11 shows the precision of the analytic readout algorithm for Sexample With
varying distance to the target. It shows that the analytic readout algorithm reaches
the highest possible precision (for ¢) for a large dynamic range starting from a few
centimeters up a meter. (The details of the “highest possible precision,” given by
the Cramér-Rao bound, are explained and discussed in part III of this thesis).

Starting from a range of AL = 4cm, the analytic readout algorithm consistently
reaches the CRB for the ¢ readout for the entire simulated parameter range of up
to 1m. At smaller distances, the frequency spectrum does not contain enough har-
monics above the noise level for the algorithm to work correctly leading to larger
noise and glitches below. Since the algorithm requires at least three even or three



78 4. Analytic Readout Algorithm
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Figure 4.11: Plot showing the performance of the analytic readout algorithm for a
simulated DFMI signal with the signal parameters as before (given in Table 3.1), with
varying range / arm length difference AL.

odd harmonics to calculate estimate for m, if all the signal energy is concentrated
in the first 4 (or less) harmonics (meaning 2 even and two odd), the calculated m
and ¢ estimates will be dominated by noise.

The m calculation is generally less precise than the ¢ calculation. Around a tar-
get distance of 10 4 1 cm, the modulation index too, reaches its highest precision,
and is less optimal for larger distances. For a high precision absolute length mea-
surement however, the modulation index only needs to reach a precision of roughly
one wavelength to provide the distance information up to an optical fringe as the
interferometric phase provides the high precision distance readout beyond that.

4.9.2 Readout precision for moving targets

Figure 4.12 shows the performance of the analytic readout algorithm for sexample and
different scenarios of varying absolute distance. The algorithms results are displayed
as distance to the target with the green curve corresponding to the macroscopic dis-
tance calculated from the modulation index via Lyacro = Mestimate * Co/Aw and the
yellow curve as microscopic distance calculated from the unwrapped interferometric
phase Liicro = Pestimate * Co/wo- Ideally, the macroscopic distance readout reaches a
precision down to the wavelength (one fringe) of the used laser corresponding to 27
in interferometric phase. The distance readout is then truly absolute down to i.e.
picometer precision and no tracking or unwrapping of the phase is necessary for a
multi-fringe readout. (It is however not a 'hard’ requirement for the functionality
of the algorithm.)

For a still target (and only additive Gaussian noise with ¢ = 1072 VZ) as displayed
in Figure 4.12a, the analytic readout algorithm reaches ~ 0.15pum/+v/Hz for the
macroscopic distance and & 1.1 pm/+/Hz for the microscopic distance.
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Figures 4.12b and 4.12c¢ show the readout performance for the same signal but for a
moving target in which case m(t) and (t) change over the course of the measure-
ment and are no longer constant as assumed so far. While the algorithm is able to
follow the simulated movement (seen by the overlap between exact movement and
algorithm readout), it is several orders of magnitude less precise compared to a still
target. To first order, these examples show that the faster the target moves, the less
precise the readout is.

In the context of a local DFMI displacement sensors in gravitational wave detectors,
the readout algorithm does not need to reach the same (highest) precision for every
scenario. It is sufficient if the readout can detect the movement precise enough
for an actuator to slow the target down, leading again to a more precise readout
and ultimately to a graceful degradation of the target’s displacement (readout). By
analyzing the changes of the signal in case of a moving target in more detail, I found
that the algorithm can be extended to improve its precision for moving targets. The
extension and some discussion of the changes of the signal are presented in the next
chapter.

4.9.3 Readout speed using a python implementation

To run and test the analytic readout algorithm presented in this thesis, I created a
reference implementation in python3 (available upon request). The python imple-
mentation does not implement any kind of parallelization to speed up the calculation
of the individual harmonics and simply calculates the signal parameters as presented
in this chapter for a given number of harmonics (usually from n =1 to 16).

With all algorithm steps including the demodulation a single algorithm run, mea-
suring the runtime of a single calculation (i.e. demodulation of 16 harmonics and
calculation of the parameter estimates), using the pythons ”timeit” module, leads
to an average runtime of 11.13ms (~ 89.8 Hz). Which is, for this unoptimized im-
plementation, similar to the previously used fitting algorithm.

Implementing the demodulation of the harmonics into an FPGA and performing
only the calculations using the I, and @,, coefficients (still not parallelized) reduces
the average time of a single run to ~ 0.5ms (~ 2kHz), which corresponds to a speed
improvement by a factor of x20. Further paralleling the calculations into different
threads for each harmonic could potentially further improve the readout speed by a
factor of the number of the used harmonics.
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(b) Analytic Algorithm performance for a linearly moving target. While the macroscopic distance readout is
too imprecise for a correct distance within a single fringe, unwrapping that phase readout (by adding 427 at
jumps larger than |7| between two consecutive measurements) still yields the correct absolute distance. The
constant speed of the target is ~ 0.25 mm/s.
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(¢) Analytic Algorithm performance for a sinusoidal moving target. The phase is unwrapped as before and the
maximum speed of the target is &~ 0.23 mm/s. While the absolute movement in smaller than the purely linear
movement above, both microscopic and macroscopic distance readout reach roughly the same precision with
the phase being less precise with significant errors at multiples of the movement frequenecy of 4 Hz.

Figure 4.12: Output of the analytic readout algorithm for sexample for different distances L(t) to the
target. In all three cases the initial distance to the target at ¢ = 0 is given by Ly = 10cm. In (a), this
distance remains constant and only the noise varies between consecutive measurements. For (b) the
distance is given by L(t) = Lo + 160\ - ¢t and for (c) by L(t) = Lo 4+ 6X\o(1 — cos(2m - 4Hz - t)).
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Chapter 5

Dynamic DFMI signals

In DFMI, the length information AL in encoded in the modulation index m =
Aw-AL/c and the interferometric phase ¢ = (wy-AL/c mod 27) with ¢ as speed of
light. So far we considered the phase ¢ and the modulation index m to be constant
over the course of a DFMI measurement. When using DFMI sensors to measure the
local displacement in gravitational wave detectors, we are particularly interested in
the changes of the distance AL over time, where AL is not constant. In this chapter
I will look into the effect of a moving target on the DFMI signal and present how
the analytic readout algorithm can be adjusted to improve its performance for fast
moving targets.

5.1 DFMI signals with linear (phase) term

We start by considering a DFMI sensor measuring a linear moving target. For the
arm length difference of two interferometer arms we write

AL (t) = ALy + 6v -t + O(#?) (5.1)

with dv as momentarily speed of the target. The corresponding DFM signal then
becomes

Sin(t) :=B + Acos ((po + 0w - t) + (mg + dm - t) - sin (wt + 1)) (5.2)

:B+A2Jn(m+§m~t) cos ((nwpm, + dw)t +n + ) . (5.3)
nez
with A
dw 1= %(51} and  0m:= Tw&; . (5.4)

Equation (5.3) shows that the DFMI signal for a linearly moving target consists of
a (Doppler) frequency shift dw of the harmonics and a shift of the modulation index
om.

For a still target with dw = 0, the parts in the sum of (5.3) with positive and negative
n indices have the same frequencies, leading to overlapping signals for every nw,
harmonic. For dw # 0 this is not the case as all of the harmonics are shifted in the
direction of dw and appear to split into a ’'positive’ and a 'negative’ index part since



82 5. Dynamic DFMI signals

cos(nwy,t 4+ dwt) # cos(—nwy,t + dwt) = cos(nwy,,t — dwt). Figure 5.1 shows this
behavior for a small dw < w,, where instead of a single harmonic at exactly nw,,
two harmonics with nw,, + éw and nw,, — dw appear.

S signal with

T 10y T Sw ~ 0.033w,,

= , lhegative

R= 104 harmonics

C% . positive.

[ harmonics
1077

5.0 9.9 6.0 6.5 7.0
Frequency in multiples of wy, [n - wy]
Figure 5.1: Example of a DFM signal with signal parameters as in Table 3.1 and a

'small’ (dw < wy,) Doppler frequency shift. The positive and negative index parts of the
signal harmonics become visible and do no longer overlap.

For large enough frequency shifts, the signal is shifted so much that positive and
negative harmonics are no longer close to each other but clearly separated, and the
signal appears symmetric around the Doppler frequency as seen in Figure 5.2.

static signal
{ (0w = 0)

1072 F signal with
ow =~ 33w,

10-5 1 -==Doppler frequency dw

PSD in [A2/H]

negative
harmonics

0 20 40 60 positive
Frequency in multiples of wy, [n - wy) harmonics

Figure 5.2: Example of a DFM signal with signal parameters as in Table 3.1 and a ’large’
(6w > wn,) Doppler frequency shift. The DFM signal is shifted so far that all positive
and negative index parts of the signal harmonics become separate and not even neighbor
their counterpart.

If one would run an unmodified DFM readout algorithm for static DFM signals on
such dynamic signals, two major errors would occur: First, the demodulation step
would demodulate the wrong frequencies. Since the harmonics are shifted; they
also need to be demodulated at their shifted frequencies. Secondly, the calculated
phase of the demodulated harmonics picks up an additional phase (éw - T') due to
the Doppler shift of the carrier frequency. For the algorithm to work in the pres-
ence of a large Doppler shift, an estimator for dw is needed to (a) demodulate the
DFM harmonics at their correct frequencies (nw,, & éw) and (b) to account for the
additional phase shift dwT that is added to ¢ over the course of the measurement
period T'.
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The effects of m on the readout are mostly neglected in the following section and
only treated as additional noise. In typical DFMI applications, where the modula-
tion depth is much smaller than the mean laser frequency Aw < wy, the error due
to dm is similarly smaller dm < dw and can be mostly neglected.

For a DFMI setup using a 1550 nm laser the plotted signals corresponds to an end-
mirror moving with dv & 0.26 um/s for the ’slow’ case (Figure 5.1) and ~ 26 mm/s
for the 'fast’ case (Figure 5.2). At these velocities, the target already moves many
wavelengths over the course of a single measurement and a high precision sub-—
micrometer readout is practically not necessary.

5.2 Dynamic Extension of the analytic readout
algorithm

The simplest way to improve any DFMI readout precision for dynamic signals is to
increase the speed of the readout. By shortening the measurement period, the abso-
lute changes of the parameters also become smaller. Depending on the experimental
setup, this is however not always possible.

For linearly changing distances, the analytic readout algorithm can be adjusted to
compensate for most of the readout errors cause by the movement. For this case, we
approximate the dynamic DFMI signal (5.3) further by dropping the dm, leaving

Sdynamic(t) = B+ A Ju(m) cos ((nwp + 6w)t + nip + @) . (5.5)

nel

The main idea to account for the additional Doppler frequency dw.

In the following I also restrict my analysis to speeds where the Doppler shift is
smaller than the modulation frequency dw < w,,. While the extension presented
here generally also works for larger Doppler shifts; if the Doppler shift is close to
an integer multiple of the modulation frequency, some harmonics start to overlap
and cannot be isolated/demodulated properly. While those harmonics could just
be ignored for the readout; it introduces additional edge cases that will need addi-
tional steps for the algorithm to work, which I do not include here for simplicity
and because they are outside the intended use case of local displacement sensing for
seismic isolation.

5.2.1 Demodulation of ’positive’ and ’negative’ harmonics

Instead of a single demodulation for each harmonic we implement two for each of the
split harmonics. Demodulating at exactly (nw,, +d0w) and (nw,, —dw) by calculating

L. = %/0 dt s(t) - cos((nwy, = dw)t) - W(t)

Qn+ = %/0 dt s(t) - sin((nwy, + dw)t) - W(t) (5.6)
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yields slightly different I and @) coeflicients (— I, + and @, 1) given by

Qn+ = é - Jp(m) - [ = (sing — (=1)"sin(6wT + ¢)sinc(éwT’)) cos(ni)
— (cos @ + (=1)" cos(6wT + p)sinc(éwT)) sin(ny)]
(5.7)
Qn-=(—1)"- é s Jp(m) - [+ (sing — (—1)"sin(6wT + ¢)sinc(éwT’)) cos(ny)
— (cos ¢ + (—1)" cos(6wT + p)sinc(éwT)) sin(ny)]
(5.8)
A :
I+ = 5 Ju(m) - [ = (sing — (=1)" sin(0wT + ¢)sinc(dwT)) sin(ne))
+ (cos ¢ + (—1)" cos(6wT + p)sinc(6wT)) cos(ny)]
(5.9)
I, =(-1)"- g < Jp(m) - [+ (sing — (=1)"sin(6wT + ¢)sinc(6wT)) sin(ny)

+ (cos ¢ + (—1)" cos(6wT + p)sinc(6wT)) cos(ny)]
(5.10)

In the limit of dw +— 0, the @, + and I, + coefficients converge to the previously
introduced I,, and @),, coefficients from Table 4.2. These @), + and I,, + can now be
combined to factor out the J,(m) and 1) dependence written in Table 5.1.

n even n odd

(Qn,+ + Qn,—)

(Qn,+

(ln,+

—AJ( (cos ¢ + cos(0wT + @)sinc(dwT) ) sin(ny)  —AJdu( (sm ¢ + sin(owT + p)sinc(dwT’) ) cos(na))
(In++ 1) <COS © + cos(dwT + )sinc(dwT) ) cos(ny)  —AJ( (sm @ + sin(dwT + ¢)sinc(dwT) ) sin(n)
— Qn—) | —AJ( <smgp — sin(dwT + ¢)sinc(dwT) ) cos(ny) —Ad,(m (COb @ — cos(0wT + p)sinc(dwT) ) sin(ny)

—I,) | —AJ,(m) (sin © — sin(0wT + go)sinc((SwT)) sin(ny)  AJ,(m) (cos © — cos(6wT + p)sinc(dwT ) cos(na))

Table 5.1: Table of additional coefficients derived from equations (5.7) to (5.10).

5.2.2 Modified parameter estimation

By replacing the static I,, and @),, with these new, dynamic /,, + and @), + coefficients
the analytic readout algorithm works almost the same as before with only a few
minor adjustments as follows:
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5.2.2.1 Modified ¢ estimation

Instead of calculating the @@/, the Yestimate is now calculated via

Q/A}estimate = arctan (%) (511)
5.2.2.2 Calculation of the ’positive’ and 'negative’ ¢, .
In analogy to the previous ¢,, I define ¢, 1 and ¢, _ coefficients via
—(Qnt + Qn—)sin(ny) + (I 4+ + I, ) cos(nyp)  for neven (5.12)
Cn .
" (Qn+ + Qn—)cos(ny)) — (I, + + I, ) sin(na) for nodd
—(Qn+ — Qn—) cos(ny) — (I, + — I, ) sin(ny) for neven (5.13)
Cp— = :
—(Qn+ — Qn—)sin(ny) + (I, + + I, —) cos(n) for nodd
(5.14)

The resulting ¢, 4+ and ¢, _ coefficients, as written in Table 5.2, are now independent
of the 9. In the limit of éw — 0, the ¢, — +— 0 and ¢, + — 2c¢,.

n even n odd

AJg(m) (COS @ + cos(owT + gp)sinc(&uT)) AJi(m) (sin @ + sin(owT + gp)sinc(&uT))

AJy(m) (sin p — sin(6wT + go)sinc(éwT)) AJy(m) (Cos o — cos(6wT + go)sinc(&uT))

Table 5.2: Table of additional coefficients derived from equations (5.7) to (5.10).

5.2.2.3 Calculating m,,

With the J,,(m) factored out, we can use either the ¢, ; or the ¢, _ in place of the ¢,
in equation (4.21) as before to calculate the m,, and average them exactly as done
in section 4.7.

For small speeds (small dw) one should rather use the ¢, + as the ¢, — become small
and will have more noise than the ¢, 4.

5.2.2.4 Modified ¢ estimation

For a high precision phase readout, we first define an additional helper coefficient
d4 via:

Cn,+
dyp = — 5.15
+, 7. (m) (5.15)

which yields for even and odd n:

i oo = A(c0s @ + cos(6wT + @)sinc(dwT))
d— peven = A(sin p — sin(owT" + ¢)sinc(dwT’))
d+ noaa = A(sin @ + sin(dwT' + p)sinc(dwT))
—nogq = A(cos p — cos(0wT + p)sinc(dwT)) (5.16)
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Next, we average these coefficients over all even and odd harmonics using our custom
weights, leading to exactly 4 averaged coefficients d even, A+ 0dd, d— even; d— odd- From
these 4 coefficients we calculate the phase via:

dJr,odd + d*,even
d—i—,even + d—,odd

@ 1= arctan ( (5.17)
The calculated interferometric phase ¢ now corresponds to the distance of the target
at the beginning of the measurement (at time t = 0). When converting this phase
into a distance; one has to keep in mind that due to the target’s movement, the
position will be different and proportional to ¢ + Téw. A precise value for the
Doppler frequency dw is therefore crucial to archive a high precision readout.

5.2.3 Precision in case of a linear frequency shift dw

Figure 5.3 shows the performance of the dynamic extension of the analytic readout
algorithm for simulated DFM signals with different linear frequency shifts dw and
additive white noise.

In the simulation, that lead to Figure 5.3 I used the ’full’ DFM signal of a linearly
moving target given by:

SDFM, moving(t) = B + A cos (m(t) - sin (wmt + ) + ¢ + dwt) (5.18)
:B+A2Jn(m+5m-t) - o8 ((nwy, + 0w)t + np + @) (5.19)
nez

with ém = Aw? # 0. The “error” |@ex — Qestimate| Plotted is saturated around 27
(in the y-axis), since the phase results of the readout algorithm are wrapped to
the interval Qegtimate € [—7, 7]. An error of ~ 27 simply means that the algorithm
is unable to calculate the proper phase value and the interferometric phase can
no longer be used to calculate a correct distance. Since I also only consider a
linear moving target here; the improvements from the dynamic readout extension
are maximized in this scenario and will be less (compared to the static algorithm)
for other, more non—linearly moving targets.

Results for the “static” readout:

While the performance of the static readout algorithm looks much worse than the
dynamic in Figure 5.3, it is not quite as imprecise as it seems to be at first glance.
The error of the phase readout of the static algorithm below 30 Hz is dominated by
the additional phase from the Doppler shift T'éw. The output of the static algorithm
corresponds in this case to something of an average phase (displacement) between the
beginning of the measurement L(t = 0) ~ @ey and the end L(t = Tyy) ~ Pex + Texow.
The static readout algorithm will still yield a relatively low noise floor in its frequency
spectrum as demonstrated earlier in Figure 4.12b; it will however contain an “offset”
or “averaged” phase values since the phase does not remain constant throughout
the measurement. In Figure 5.3 this is demonstrated with the dotted brown line
which corresponds to the results of the static algorithm minus a Doppler frequency
dependent offset T.xdw/2 (and minus the exact ¢qx value to get the “error”). From
~ 10 Hz on, the static algorithm does however become erroneous beyond this offset
due to the imprecise demodulation of the shifted harmonics as explained before.
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Figure 5.3: Error (|pex — @estimate|) Of the analytic readout algorithm for a simulated
DFMI signal (Sexample With parameters as given in Table 3.1, additive white Gaussian noise
(0 =2-1077) and an initial of distance Ly = 20cm) which changes of the course of the
measurement with L(t) = Lo + dvt, with dv as “target speed.” The lower x-axis shows
this target speed dv in m/s while the upper x—axis shows this speed converted into the
Doppler frequency shift dw = 27/Ag - dv. For each point in the plot, I simulated a target
moving with constant speed 100 times (but always starting at the same position Lg) and
averaged the result. The blue line shows the readout algorithm result in case the Doppler
shift is ignored, and the algorithm runs as described in chapter 8. The orange line shows
the algorithms result in case the Doppler shift is known before and the algorithm can
account for it as explained in this chapter. The dashed green line is the CRB of the phase
showing the highest reachable precision (calculated in section 8.2.2). The dashed red line
marks the additional phase from the Doppler shift Tdéw and the vertical purple line marks
a Doppler shift of f,,/2 (here at 250Hz). At this point two neighboring harmonics (e.g.
Nnwy, + 0w and (n+ 1)w,, — dw) overlap and the demodulation of a single isolated harmonic
is not possible, leading to the algorithm yielding erroneous results at exactly multiples of

fm/2.
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Results for the “dynamic” readout:

For Doppler shifts below ~ 50 Hz the target is moving so slow that the algorithm
consistently reaches the lower theoretical limit (green dashed line, given by the
CRB), showing that the dynamic readout extension shown here works and can be
used to improve the readout precision. Comparison with the static algorithm and
the explanation before, the greatest improvement from static to dynamic readout
happens for targets speeds between dv ~ 3-107°m/s and ~ 3 - 10~*m/s. Below
that, in many applications, the “averaged” static readout results will suffice for i.e.,
dampening the movement of the target with an actuator. In this specific speed range,
the dynamic readout will yield however more precise displacement values useful for
i.e., small but fast movements. The simulation also shows that within the reasonable
target speeds assumed here, the error due to the m term (that was present in the
simulation) can be safely ignored as the other considered errors dominate the phase
readout.

5.2.4 Example readout for an oscillating mass

As more realistic example of a measurement, Figure 5.4 shows the results of the
readout algorithm for an oscillating target with the target’s position given by: L(t) =
Lo+ 2Xo - (1 — cos(6m - 4Hz - t)), which has a maximum speed of &~ 233 - 107 %m/s
at the slopes (150 Hz Doppler frequency). While Figure 5.3 shows ~ 3 orders of
magnitude difference between the static and dynamic algorithm for such speeds, the
difference in Figure 5.4 is only a factor of 10!. The reason is that, unlike before, the
target’s speed varies over time and the movement contains not only linear but also
higher order terms in ¢.
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Figure 5.4: Algorithm results for a simulated moving target, oscillating with L(t) =
Lo 4+ 6Ao(1 — cos(2m - 4Hz - t)), same as in Figure 4.12c before. The black line marks
the exact phase of the target. The blue and purple lines are the (static) algorithm output
(without the dynamic extension) and the red and orange line are the result when using the
dynamic extension presented here. The upper plot shows three periods of the resulting
time series and the lower plot shows the ASD of the error calculated with an LPSD

algorithm [69].
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Chapter 6

Resonantly enhanced DFMI

Another technique that derived from DFMI interferometry is what we call Reso-
nantly enhanced Deep—Frequency Modulation Interferometry. Originally
motivated by the studies of the Cramér-Rao bound of the readout of DFMI signals,
early simulations have shown that combining cavities with a DFMI laser signal can
lead to a more precise length readout compared to the regular DFMI phase read-
out. My studies of the Cramér-Rao bound for DFMI signals is discussed in the
next part of this thesis and for ReDFMI specifically in section 8.5. This Chapter
gives an overview of the technique and a series description of the expected signal.
The ReDFMI technique itself is currently being investigated at the University of
Hamburg and a first paper presenting the technique is being written.

6.1 Definition of ReDFMI

Resonantly enhanced Deep-Frequency Modulation Interferometry (ReDFMI) is
an interferometry technique where a sinusoidal modulated laser beam is sent into a
cavity and the reflection and/or the transmitted beam from the cavity is measured
to calculate the cavity length. Figure 6.1 shows an example ReDFMI setup.

-Ptrans

P, refl

Figure 6.1: Sketch of a ReDFMI setup.

The response to a cavity for a plane wave is well understood and can be found
in standard textbooks for optics as e.g. [70, Chapter 4.2]. To calculate the cavity
response for the plane wave, all of the reflections inside the cavity are being added up,
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resulting in an (infinite) converging geometric series yielding the closed expressions:

S 5} (1_R)2 — 4 1
Ptrans = P1 <<1 —R)2—|—4Rsin2(<p)) - Rn <1+FSiH2 (WO%)> (61>

1
and -Preﬂ - -Pin - -Ptrans - Pin <1 2L)> (62)

1 + Fsin? (w(]?

for the reflected Py and transmitted P, signals, r as reflective coefficient identical
for both mirrors and F' = 472 /(1—7r?)? as Finesse coefficient. For a DFMI signal, the
starting point of the calculation is similar, deriving a closed expression is however
more complicated.

6.2 The Fourier Series of a ReDFMI signal

To simplify the calculation, we write the electric field of the DFM signal as (complex)
phasor given by
EDFM(& 7_) _ EO ei(on—i-AwT-sin(wmt—l—@b)) ) (63)

In this case we use t as time of emission and 7 as (fixed) propagation time. This
corresponds to the photon field being measured at a fixed point in time (and space).
When writing EM-waves, the t is usually used as propagation time variable, here
this would be 7. Next we consider a simple Fabry—Pérot cavity as shown in Figure
6.2 with identical reflective coefficients of r for both mirrors (leading to reflectivity
R :=r? and transmissivity of (1 — R)).

The ReDFMI signal transmitted out of the cavity would then be the sum over all
reflections that exit the cavity at the same time given by the time of emission plus
the propagation time ¢t47. The first beam emitted at time ¢, that would go “straight
through” the cavity, would travel some time until it reaches the first mirror, travel
through the cavity and exit at time ¢ 4+ 7. The beam that is reflected twice (once at
each mirror) before being transmitted would have been emitted at an earlier time
t — 11, with 7, = 2L/¢q so that after a propagation time of 7o + 77, it would exit the
cavity to the right at time (¢t — 7) + (70 + 72) =t + 79, and so on and so forth.

(1 — R) . EDFM<t,7—O)

(1—R)'R'EDFM(t—TL,TQ—|—TL)

Lo

Figure 6.2: Sketch of a (Fabry—Pérot) cavity where both mirrors have the same reflective
coefficient r.
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As series this can be written down as

ERrepru, trans(t, 7) = (1 — R) Z R* Eppm(t — k7p, 70 + k) (6.4)
k=0
(6:3) (1 _ R)EO Z Rkei(w07+konL+Aw(To+kTL)-sin(wmt—kmeL—l-wo))
k=0
(6.5)

—- (1 . R)EO Z Rkei(cpo+k<pL+(m0+kmL)~sin(wmt—kwL+1ZJo)) (66)
k=0

From (6.5) to (6.6), I introduced a set of composite parameters (also written in
Table 6.1) to shorten the expression.

Wo - To =: o Wo*TL =1 QL W To=: YL
Aw-19=:myg Aw-71=:mp

Table 6.1: Table of ReDFMI composite parameters

After more extensive calculations using multiple summation formulas for the Bessel
functions and applying the residual theorem of complex analysis, shown in detail
in appendix B, this expression can be rewritten as complex Fourier series of “plane
wave” exponentials as:

EReDFM, trans(ta 7-0) = Z Cn : einwmt (67)

nel

2i cosh (nx — mqsinh(z))

with C, = (1 — R)Eye'l#otnvo) (6.8)

my, cosh z

(6.9)

and x := arcsinh (lnR +ilpr — mﬁ))

mr

This complex field description is not yet equivalent to the (real) measured current
on a photodiode which corresponds to the energy flux / Poynting vector calculated
from this electric field. The series written above can however be helpful for further
calculations and research in this topic.
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Part 111

Noise analysis of a DFMI signal
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One of the questions Oliver Gerberding and I discussed when working on DFM-
Interferometry was: How precise can DFMI actually be? Isleif and Gerberding
have conducted multiple DFMI tabletop experiments reaching sub-picometer preci-
sion [61] similar to other tabletop interferometry experiments. DFMI signals differ,
however, in some aspects from other interferometry signals. I.e., homodyne inter-
ferometers operate near the dark fringe to mitigate the effects of shot noise. A
DFMI signal varies between the light and dark fringe and would have a poten-
tially higher shot noise. Heterodyne interferometry, on the other hand, is used with
carrier frequencies up to the MHz range, which is much higher than the typical
DFMI frequency range of a few kHz. Since many noise sources have a frequency
dependence, they could affect DFMI signals differently than other heterodyne sig-
nals. As a DFMI signal is also spread over multiple frequencies, calculating an SNR
is also not as straight forward when trying to assess the quality of a measured signal.

To answer the initial questions of “How precise can DFMI actually be?,” I found a
solution in the Cramér-Rao bound of statistics.

For a given noise model, it allows one to calculate how precise a parameter estimate
would be. While terms like the signal-to-noise ratio (SNR) are commonly used in
physics or engineering as indicator of how good a measured signal is, with a higher
SNR correlating to a higher precision of the readout, the Cramér-Rao bound (and
its inverse, the “Fisher Information”) are the mathematical rigorous quantification
of how precise a parameter estimates / the readout will be. For some common cases
as e.g. in a heterodyne interferometer, the signal-to-noise ratio of the amplitude
spectral density of a measured signal is exactly its Fisher Information.

The Cramér-Rao bound uses the probability distribution function of a random sig-
nal to calculate the precision limits for a given parameter. Outside quantum physics
where i.e. the quantum wave function / a quantum field serves as probability distri-
bution, this formalism is often not directly applicable. In the field of GWD physics
for example, signals are more commonly described by their amplitude spectral den-
sity or power spectral density. To keep this thesis as much self—contained as possible,
I will recapitulate these expressions briefly in the following part and show explicitly
how a probability distribution relates i.e. to the amplitude spectral density of a mea-
sured signal. The next chapter will therefore mostly recapitulate many commonly
used statistical expressions with their application on a DFMI signal being the novel
case.
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Chapter 7

Revision and clarifications on used
terms from signal analysis

This chapter is mainly a reference for some common equations used in this thesis. I
assume that most readers know the content presented here already sufficiently well
(i.e. what a PSD is). There are, however, some subtleties that students new to this
field may not know or that can be helpful to briefly refresh before delving into the
more theoretical parts of this thesis.

When analyzing and discussing signals in the gravitational wave detector community,
it is usually done by expressing the measurement as either “power spectral density”
or “amplitude spectral density.” While being defined by the Fourier transform of
the autocorrelation function of stochastic signals, these expressions are very closely
related to the Fourier transform?! of the measured signal itself, and I want to highlight
these similarities here once.

7.1 Used Conventions for the Fourier transform

7.1.1 Definition : Fourier transform F

The Fourier transform f (w) is a bijective integral transformation between two
(complex valued) function spaces. For a given function f(t) the Fourier transform
(and its inverse) of the real parameters ¢ to w is defined by:

1 —jwt 7 W
Find 1} = o= / F(t) - e dt = f(w) (7.1)
Fof) = %Q_W / F(w) - e dt = f(t). (7.2)

In this thesis, a“above a function refers to its Fourier transform as defined here. The
image of F (or the domain of f) is sometimes referred to as “Fourier domain” with
w as frequency. While the signals we measure are usually real-valued functions,
their Fourier transform is complex (~ C) and generally has non—trivial real and
complex parts. In my case, where signals are measured over time ¢, the domain of
f(t) is also referred to as “time domain.” Throughout my work I use the “unitary”
Fourier transforms as defined above with its pre-factors of 1/4/27. This way, the

1Or other closely related integral transformations like the Laplace Transform
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Fourier transform, and its inverse are simply related by complex conjugation and
don’t differ by any other factors. In most cases I refer to w as angular frequency,
when writing or plotting discrete values I use however the ordinary frequency (like
ie. “f,, = b00Hz") related via w = 27 - f. Any frequency variables in this thesis
that appear as w and f but share the same subscript refer to the same frequency
and are only represented differently.

The Fourier transform plays a special role in mathematics for solving differential
equations as it translates a large class of differential equations onto algebraic equa-
tions of rational functions. For systems described by a linear differential operator,
like the equations of motion for a suspended mass in a GWD, the corresponding
algebraic rational function is closely related to the so called “transfer function” of
the system which I explain further in section 7.3. In engineering, there is often
another integral transformation used to describe systems and simplify calculations:
the Laplace transform.

7.1.2 Definition : Laplace transform £

The Laplace transform £{f}(s) is a bijective integral transformation between two
(complex valued) function spaces. For a given function f(¢) the Laplace transform
(and its inverse) of the parameter ¢ to s is defined by:

Lis(f) = /000 f(t) et dt = F(s) and (7.3)
Lt (F):= ! lim " F(s)-e™ds= f(t). (7.4)

27‘[‘2 T—o00 ’y—iT

While the Fourier transform mostly considers the transformed variable w real valued;
the domain of a Laplace transformed function is complex valued (s € C).

The Laplace transformed of a function is generally different from its Fourier trans-
formed. Both integral transformations are however closely related, and the Laplace
transform of a function can be expressed as a Fourier transform of:

Losa(f) = / dt f(t)- et = F(s) (75)
\l,./
=[pdt O(t)

= Vor Fou{ £(2) - 00 0 = —is) (76)

with O(t) as Heaviside / unit-step function. Specifically for functions that are zero
for t < 0, meaning when f(t)-©(t) = f(t), Fourier transform and Laplace transform
are identical up to a substitution of the Laplace variable s to the Fourier (frequency)
variable s — iw. In experimental setups we often consider exactly such signals where
a system is “at rest” before some event, and after switching some button, or when
some external transient signal (like a passing seismic wave) reaches the setup, a
measurement starts. For such signals, Fourier transform and Laplace transform are
almost identical and while engineers will often describe their signals by its Laplace
transform (with the Laplace variable s), I will use in almost all cases the Fourier
transform to describe systems, their function and measured signals.
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7.1.3 Definition : Convolution Operator x

The convolution between two functions f(¢) and ¢(t) is defined by

/f gt —r)dr = (f * 9)(t) (7.7)

Under both Fourier F and Laplace £ transformation, the convolution is mapped
onto a simple multiplication of the transformed of the two functions. I.e.

Fiow{f*gy=fW)-g(w) and Lo {f*g}=L{f}(s) - L{g}(s) (7.8)
and Hw{f g} Ft)* g(t) = LA {L{f}(s) - L{g}(s)} (7.9)

And similarly, the n’th derivative of some function f(¢) mapped to Fourier or Laplace
domain becomes:

wa{f(")(t)}:(' )" f(w) (7.10)
and L, {f™M@)} = anl lim f*Y () (7.11)

to—0~
Here, limy,_,o- is the limit of ¢, going to O from the negative ¢ plane. For signals
that are = 0 for ¢t < 0 as mentioned above, all the coefficients of the sum in (7.11)
become zero and the Laplace and Fourier transformed become identical up to a
variable substitution.

7.2 The autocorrelation function and the “PSD”

In physics and engineering, measured signals are often expressed as power spectral
density (PSD) or its square root, the amplitude spectral density (ASD). While the
PSD is strictly defined as the Fourier transform of the autocorrelation function
of a signal, for the practical calculation, it can often simply be regarded as an
approximation of the absolute value of a signals Fourier transform. There are,
however, some differences in the actual calculation of the PSD (or the autocorrelation
function) for different types of signals, which are not always explained. Especially
when comparing an analytic expression of an idealized signal, like the Cramér-Rao
bound that I present later, to a measured or simulated noisy sample, it is important
to understand which equation for the power spectral density (PSD) needs to be used,
and how they relate to one another. For this reason I briefly explain the calculations
leading to a proper PSD in a bit more detail and show how the different expressions
relate to one another. For the names and conventions presented here I mostly follow
the textbook for Oppenheim and Verghese [71] who discuss this topic in bit more
detail.

7.2.1 Definitions for deterministic signals

For a square-integrable function? (z € L?), with z : R — C, the deterministic
autocorrelation (marked with a bar™) is defined as

Ryr(T) == x(7) x 2" (—7) = /R[E(t) cxf(t—T)dt (7.12)

2A function being called square—integrable is exactly when [, [z(¢)[2dt < co.
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with % as convolution operator. If the deterministic autocorrelation exists, then the
energy spectral density (ESD) is defined as its Fourier transform:

Sualw) 1= Fros { Rualr)} = 302 (7.13)

This (deterministic) energy spectral density is in fact just the squared absolute value
of the signals Fourier transform. For 7 = 0, the right side integral of (7.12) also
defines the so called “energy” of the signal. E.g.

Plancherel
E::/|x(t)|2dt theggem /|:z=(w)|2dw. (7.14)
R - R -
=Rqex(0) :fR Szaz(w)dw

For many practical applications these definitions are however not very useful as com-
mon analytic (not random) signals in physics and engineering, like a sine sin(wot),
are not square-integrable and the deterministic autocorrelation and the energy spec-
tral density do not exist®.
For a random signal z, the signal energy also relates to the mean p and variance o>
of the random variable via

0% := Var(z) = E[(z — p)?] = E[il —  (E[z])? (7.15)
=Rye(7=0)=F =u?
— E=0*+u’= / Spe(w)dw (7.16)

(with E as expected value) which is a useful relation I will refer to later on.
Specifically when discussing the random motion of a suspended mass in a GWD,
its movement is often characterized by its “RMS motion” which corresponds to the
square root of the variance o or signal energy vE (when p = 0) of its position
signal.

7.2.2 Strict definition of the autocorrelation and the PSD

The mathematically rigorous definition of the autocorrelation of a random pro-
cess z(t) (random variable x depending on some time parameter t) is given by

R, (t1,t2) == E[z(t1)x"(t2)] (7.17)

with z* as the complex-conjugate of x and E as expected value.

The expected value is calculated (for any function f depending on the random
variable x) by the integral or sum of the probability density function p over the
space €2 of all possible outcomes of x:

Blf)) = [ plot)- fa)do. (7.18)

3In Fourier domain, many of these signals don’t exist as regular functions, but can be expressed
as distributions. In the space of distributions, multiplication “-” is however not a proper operation
and the product |7(w)|? = #(w) - #*(w) may not exist.
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Additionally, the signals (or rather the noises) are generally assumed to be weak—
sense stationary (WSS). For a weak—sense stationary process, (a) the mean value
does not change over time (E[z(¢)] = const), (b) the variance is finite for all times
and (c) the autocorrelation only depends on the time difference 7 := t; —t5. Le. for
an arbitrary t := t; value, the autocorrelation can be written as

Ryx(t1,t2) = Ryp(thy — t2,0) = Ryp(7) = E[z(t)x™(t — 7)]. (7.19)

Now, for such WSS processes, the power spectral density (PSD) is defined as
the Fourier transform of the autocorrelation function with respect to the time delay
T, e.g.

Sua(w) 1= Fys {Ruu(7)} (7.20)

It is important to note here that our measured signals themselves are generally not
(weak—sense) stationary processes. In many cases, we can describe them however by
an analytic (and maybe non—stationary) part and some random noise which often
is weak—sense stationary or even fully stationary (meaning that it has no explicit
dependence on time t).

Instead of calculating the PSD of a measured signal by the integral (7.18) over some
probability space, it is usually calculated differently as an integral or sum some over
some time interval. The measured signal is then (even if often not explicitly stated)
considered to be “ergodic.”

7.2.3 Autocorrelation for “ergodic” signals

To simplify stochastic calculations, signals (random processes) are often considered
to be “ergodic.” Oppenheim and Vergese state that “a process is simply termed
ergodic if ensemble statistics can be replaced by temporal statistics on (almost) every
particular realization” [71, p. 391]. Le. it is implicitly assumed that the random
variable x takes on every random realization from € in either a finite or infinite time
interval ¢ € [0,7] or ¢t € R, and that the probability is uniformly distributed over
this time (such that p(z(t)) = 1/T). (A little more rigorous definition of signals
being “ergodic in the wide sense” is also given in [71] but skipped here).

7.2.3.1 Autocorrelation for ergodic signals with finite signal energy

In its most general form, an ergodic signal is assumed to take on every realization
of some random variable exactly once over infinite time ¢ € R. The expected value
of some function depending on x would then be written as

E[f(2)] :/Qp(x,t)~f(x) do~ tim [ e fla() dt (7.21)

T—oo _T ﬁ '

and for a WSS process one finds the better known formula for the autocorrelation
of:

Rou(r) = /Q (1) - 2™t — 1) dz~ lim | = a®at(t—7) dt.  (7.22)

T—oo J_p T
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If (t) is also a square-integrable function, the PSD for such an ergodic “over infinite
time” signal is identical to the energy spectral density. IL.e.

(7.22) .. 1 T .
2t /_Tx(t) Foo {at(t— 1)) di (7.24)
illl_rggo%/rect( ) a(t) e T (w) dt (7.25)

(W) - V21 Fis { ( lim s-rect (%))} (7.26)

SEL 7 ( <hm sinc (L) ) (7.27)

™

~ () *6(w)
= |Z2(w)]?. (7.28)

In other words, for finite signal energy, the PSD converges toward the ESD as
T +— o0.

7.2.3.2 Autocorrelation for periodic signals (ergodic within a finite in-
terval)

For periodic (and non-square integrable) signals with period T, the more restrictive
assumption is usually made that the random signal takes on every realization within
one (finite) signal period. In this case the autocorrelation becomes:

R..(7) = /Qp(x,t) cx(t)x*(t —7)dr =~ / i % cx(t)x*(t —7) dt (7.29)

to
and the PSD can in this case be expressed as
T

Spz(W) = T*(w) - <:z(w) * —e=sinc (32) e—i5w> : (7.30)

Writing a periodic function z(t) with period T as complex Fourier series, these
expressions can also be written as:

ch emT —> Ry, (T Z]cn\Q i T (7.31)

neL neZ

and Sy (T Z|C"|2 \/_5(w+n2%). (7.32)

nez

The often not mentioned difference between the autocorrelation (and PSD) as writ-
ten in (7.22) and (7.31) is that one signal is considered ergodic over the entire ¢ € R
while the other is ergodic over a smaller interval ¢ € [0, 7.

7.3 Linear systems, the fundamental solution, greens
functions and the transfer function

Another often unclear topic that one encounters when working in the intersection
between physics, mathematics and engineering, is that researchers sometimes talk
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about the same, or at least very similar objects, while using very different words
and terminology. The prime example for this is the “transfer function” of a system.
While it is defined straightforward as the ratio of the Laplace transformed output
divided by the Laplace transformed input of a “system,” there are very similar
objects like the “fundamental solution” in mathematics and the “greens function”
which are more commonly used in physics. While these three words refer, strictly,
to different objects; they are very closely related to one another.

7.3.1 Linear time-invariant systems (LTI)

In mathematics and physics we often describe physical systems by linear differential
equations. Written as operator L, one would write i.e.

(t)=10 homogeneous linear differential equation (7.33)

ﬁ x
z(t) = f(t) inhomogeneous linear differential equation (7.34)

with L linear meaning that L {z(t) + 22(t)} = L{xz1} + L {x5} for two solutions
21, x5 and L{a-21(t)} = a- L{x} for a scalar a not dependent on .

In engineering, slightly different terminology is used for similar objects.

A system described by a homogeneous differential operator L, with no explicit time
dependency, is here called a linear time-invariant (LTI) system. The signal
that it acts upon is usually referred to as the input signal z;,(¢), and the inho-
mogeneous part of the differential equation is referred to as the output signal

L xin(t) = Zow ().

When discussing (linear) differential equations in mathematics, a common tool for
solving these equations, that is related to the LTT systems transfer function, is the
fundamental solution.

7.3.2 The fundamental solution
7.3.2.1 Definition: Fundamental solution

For a given linear differential operator L the fundamental solution z g is defined
by
Lxps(t) =0(t) with t € R (7.35)

with 0(¢) as Dirac delta distribution.

Because linear differential operators commutate with the convolution operation s,
e.g. R ) R
L(fxg)=(Lf)*g=[x(Lg) (7.36)

the solution z(t) to any inhomogeneous linear differential equation L z(t) = f(t) can
be calculated from the fundamental solution via:

La(ty=f(t) and  Laxps(t)« f(t) = 0(t) % f(t) = f(t) (7.37)

=  z(t) = xps(t) x f(t) = /Rmpg(t') Sft—t) dt’. (7.38)
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As a brief example, let us consider the fundamental solution for the harmonic oscil-
lator:

7.3.2.2 Fundamental solution of the harmonic Oscillator

L.e. starting the differential operator describing the harmonic oscillator
N 02 9
Lharmonic = ﬁ + Wo (739)

inserting the fundamental solution as defined in (7.35) and using the Fourier trans-
form F to simplify the equation yields:

. . 1
Lharmonic Trs = 5(t) é F {Lharmonic xFS} = _2 (74())
T
1
= (—w? + Wd)Tps = — (7.41)
27
1 1

<~ ips(w) = —

VaR (=) )

1 1 1
— — 7.43
2oV 27 (w—i—wo W—WO) ( )

transforming back into time domain now yields the fundamental solution as

1 1
2 s parmonic(t) = o sin(wot)(20(t) — 1) (7.44)
0

with O(t) as Heaviside / unit step function.

Fundamental solutions as tools to solve inhomogeneous differential equations are
mostly encountered in mathematics, whereas in physics, the closely related “Green’s
functions” are often referred to instead.

7.3.3 Green’s functions

Green’s functions (here denoted by G) are similarly used to find a solution to an
inhomogeneous linear differential operator L. They are very closely related to fun-
damental solutions as they are generally defined by

A

LG(z,2)=6(x—2') forze DCR" (7.45)

with G(z,2") = [some condition] for x € OD. (7.46)

[.e a Green’s function can be understood as the fundamental solutions of a specific
linear differential operator within a finite domain D that fulfill a boundary con-
dition on dD. They are used, identical to the fundamental solution, to calculate
the solution of some inhomogeneous differential equation by convolution with the
inhomogeneous part. Sometimes their name is also used interchangeably to express
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a fundamental solution. Whereas fundamental solutions are usually defined for the
entire domain of i.e. ~ R" (or C), Green’s functions are only required to be valid
within a (smaller) region and to satisfy some boundary condition [72].

Commonly used Green’s function are for example the solution to the Laplacian
A = §%/0x* + 92 /0y* + 0%/02* with the Dirichlet condition (fixed boundary con-
dition), which is solved by the Green’s function G(x — z’) = —1/4n|z — 2’|, which
was mentioned in the introductions as tool calculate solutions to the linearized field
equations of gravity.

7.3.4 The transfer function

In engineering, a linear time-invariant system (LTI) is instead described by its
“transfer function.”

7.3.4.1 Definition: Transfer function
For a given LTI with input z;,(¢) and output xo.(t) such that

Lirt Tin = Tous (7.47)
the transfer function H(s) is defined by:

H(S) L *C {xout}

e (7.48)

Using that 6(¢)*xi,(t) = xin(t), the Laplace transformed of (7.47) can also be written
as

LAzou} =L {iLTI :cm} =L {f}LTI (0 % :cin)} =L {f)é} LAz} (7.49)

— H(s)=L {ﬁ(s} . (7.50)

Experimentally, (7.50) is used to measure the transfer function of a system by provid-
ing an approximate delta peak (a short, high pulse) as input and simply measuring
the output. The Laplace transformed of this output (and using that £{0} = 1)
yields the systems transfer function.

Comparing this expression to the fundamental solution (or Green’s function) above
shows:

def. of fundamental solution [Ai Tpg— (S(t) '£> r {IA/(S} L {I’FS} —1 (751)
:Lé*xps
s H(s) = — (7.52)
S) = .
ﬁ {I’FS}

Le. the transfer function of a system is the (inverse of the) Laplace transformed
of the fundamental solution. Whether it is directly the Laplace transformed of the
fundamental solution or its inverse depends on the “direction” of the signal as shown
in the example below.
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7.3.4.2 Transfer function of the driven harmonic Oscillator (Single stage
pendulum)

When describing a system with its transfer function, the “direction” of the signal,
i.e. what counts as “input” and as “output” slightly changes the way the transfer
function is written. Let us consider for example the transfer function of a simple 1-
stage pendulum described as a driven (undamped) harmonics oscillator. In this case,
the inhomogeneous part of the equation would be the input driving the pendulum,
such that

7 _ 71
LLTI Tin = Lharmonic

Tin = Tout (7.53)

with I:hamonaC as defined before in (7.39). Since I already wrote the fundamental
solution for Lyarmonic in (7.44), I can directly write the transfer function as:

1

H(S) =L {xFS,harmoniC} - m . (754)
0

Similar to the fundamental solution or the Green’s function, the transfer function
of a system allows one to easily calculate the response of the system for arbitrary
input signals.
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Chapter 8

Limits of the readout : Fisher
Information and the Cramér-Rao

bound

8.1 The Cramér-Rao bound

In the following section I denote a measured noisy signal with z(t, §), the ideal (non—
random) signal with s(¢, §), and n(t) as noise (random variable). Here ¢ it the time of
the measurement and 6 some parameter of interest. Additionally, I introduce a “hat”
" above a variable as signifier for an estimator of the same parameter. An estimator
is a function to calculate a parameter from a given sample. Common estimators
are for example the “arithmetic mean” as estimator for the mean p or the “sample
variance” as estimator for the variance 0. For a random sample z = {xy,... 2y}
of the random variable z, I would write these two estimators as:

LN L
~ S ~ 2
=5 ;:1 T and 0% = N1 ;:1 (i —x;)°. (8.1)

Other estimators are for example the phase ¢, that is calculated from a measure-
ment of an interferometric signal, which is proportional to the distance of a target
mirror in a GWD suspension. The Cramér-Rao bound states how precise such an
estimator can be for a given known noise distribution.

8.1.1 Definition : Fisher Information and Cramér-Rao bound (CRB)

Let z = {z(t1),...x(tn)} be a sample (random vector) representing a measurement
with z(¢,0) as random variable, p(z, ) as probability distribution of z, depending
on the time ¢ and a # parameter. Let further 0 be an unbiased estimator of 0,
meaning that 6(z) is a function of the sample z (estimator) and its expected value
is given by E[f] = 6 (unbiased).

If p(z, 0) fulfills the “regularity conditions” written in Appendix C, then the Fisher
Information for 6 (in z) is defined as:

Flp:=E (%@LQ)))Q] . (8.2)
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If the Fisher Information exists and is # 0, then the Cramér-Rao bound (CRB)
is defined by [73, Sec 4.3]:

. 1 1
)= E {(Nlng(gﬂ)))j - Fly(x) (8:3)

When constructing an estimator for a parameter of interest, the CRB gives us a
lower limit of the variance of this calculated estimator. Or in other words, for a
given measurement, the CRB tells us the lower limit of how precise the readout of a
parameter (here: é) could be. Requiring the probability distribution p to calculate
(8.3) is a rather strong restriction on the usability of the CRB. Often we don’t know
the exact cause of the random noise that we see in a measurement, and we don’t
know exactly how it is distributed. We can however derive the CRB for common
and known noise source and calculate a model CRB.

Since we usually express measured signals z(¢) (and also derived signals like the
phase ¢(t)) as spectral densities, I want to introduce a slightly more specialized
variation of the CRB expressed as PSD.

8.1.2 Definition : Spectral density approximation of the CRB

In terms of signal analysis (for ergodic signals), the variance of some random process
x is related to its PSD as written in (7.16) via:

var(r) = o2 = /Rsm(w) dw — |pe|* . (8.4)

For the variance of the difference between estimator and exact value Af = 6 — 0 we
can thus write

var(Af) /R Snono(w) dw . (8.5)

While the exact shape of the spectrum Sagag(w) depends on the present noise and
how it couples into 6, I can approximate the expression by assuming it is uniformly
distributed over the measured frequency bandwidth such that Sagag(w) is constant.
With a readout frequency of fg (corresponding to calculating a single estimate for
the interval of length 1/fg) the Nyquist-Shannon theorem specifies the resolvable
frequency bandwidth to f € [0, fr/2] with higher frequencies being projected /aliased
back into this finite interval. For the spectral density of the error A =0 —0 of
some unbiased estimator 6 this allows us to write:

2 1
Sg?B(w) . ——— = const. in w (8-6)

" frFl(z)

with SZ(I;B as lower limit of the error of § expressed as spectral density.

8.2 The CRB for uncorrelated additive Gaussian
noise

As first case, I consider additive Gaussian noise. Meaning that the measured signal

z(t) = s(t,0) + n(t) (8.7)
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can be expressed by an analytic part s(¢, 6) and an added, WSS, Gaussian distributed
noise n(t) that does not explicitly depend on the # parameter, but could depend
explicitly on time ¢. For simplicity, I assume in the following the noise term to have
zero mean, such that n ~ A (u = 0,02)(¢). For non-zero mean noise, the calculation
is mostly identical and can be reduced to the one shown by shifting the ideal signal
by this offset s — s+ p. I also shorten the expression for a specific time point ¢;
from z(t;) = s(t;,0) + n(t;) to simply z; = s; + n; in the following section. For the
Gaussian distribution of n, I can write the probability distribution for measuring a
single point at fixed time ¢; as

o (75) = o exp (—@) (5.5)

2mo;

For uncorrelated noise, the joint probability distribution p(z) can simply be ex-
pressed as the product of the individual probability functions

N
x;, x; uncorrelated = p(z) = HP(%) (8.9)

i=1
and the resulting joint distribution would again be Gaussian.

For correlated (”colored”) noise, the joint probability distribution for z can however
be more complex and cannot be generally expressed from only the probability of
a single point as written above. While I have a few more considerations regarding
additive correlated noise terms which I included in Appendix D, I was unable to find
a closed, useful expression for the CRB for such correlated noise. In the following
I will therefore assume the noise n to be uncorrelated such that its variance o2 is

constant over time (leading to E[n;n;] = 02d;;).

For uncorrelated Gaussian noise, the Fisher Information for some parameter 6 can
be calculated straight forward via:

o )
FIy = E (% In p(z, 9)) ] (8.10)
D , ,
G g (; —elnpz(ml,0)> (8.11)
- N
(8.8) N o 0 1 d [ (x; — s;)?
- S ) s 8.12
z’:1\a/0./ (axi n(\/ﬂai)J ?xz ( 202 >> (8.12)
:8% ;?) 1 ~~
o U_f(ri_si)
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N
Expanding the (..)? asi aSj i g, S — S
- 20 00 o* E|(zi —si)(z; — s5) (8.13)

1,j=1 L
TV
=E[n;nj]=026;; because uncorrelated

N=fsT 2 T 2
1 (95(151,(9) - fS 83(@,9)

i=1

for uncorrelated Gaussian noise.
Expressed as (single-sided) spectral density this yields:

i : 207
STUMEES () 0 7 5 for uncorrelated Gaussian noise , (8.15)

AO - <
fr fs fOT (—8 é@f”) dt

with fr as readout frequency (and fr/2 as bandwidth of the measurement). The
Fisher Information contained in a measure signal s(t), with some uncorrelated addi-
tive Gaussian noise, therefore corresponds to how strongly the signal changes, with
respect to the parameter (~ 0s/00).

For the original equation for the Fisher Information, the noise is characterized by its
variance o2 which is, for zero-mean noise, equal to is (signal) energy. For practical
applications, this noise energy would be given in the same units as the signal s. IL.e.,
for a signal measured in i.e. Volt, the additive white noise would also have to be given
in Volt (squared). If the additive white noise is already given in form of some am-
plitude spectral density, the 02/ fs factor corresponds to this PSD value of the noise
(with total noise energy o distributed over the frequency band [—1/2fs, +1/2fs]).

8.2.1 Example CRB for the phase information of a single
carrier frequency with uncorrelated additive Gaussian
noise

As the previously derived formulas for the CRB may be rather abstract, let us
consider a more practical example of the calculated CRB and it’s meaning. Let’s
assume we measure a signal given by:

x(t) = Asin(wot + ¢) +n (8.16)

with the phase ¢ as parameter of interest and n as zero-mean, uncorrelated Gaussian
noise n ~ AN(0,0%). Such signals appear for example when modulating a signal
©(t) containing information onto a carrier frequency wy resulting in the measured
z(t). In such applications, ¢ changes sufficiently slow and can be assumed to be
approximately constant within a “short” interval [0, 7] for which we estimate .
Calculating the Fisher Information contained in a measurement interval of exactly
one signal period ¢t € [0,T = 27 /w] and using (8.14) yields:

N 2 T

1 8x(t i 90) fS fsTAQ

FI, = — —— L) m=— [ A% cos®(wot = 8.17

° T 5 ; < 00 o2 /0 st to) =T (817
=A cos(wot+p) % (14cos(2wot+2¢))




Flp
Fl,
FI,,,
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If only a single phase value is estimated for a measurement of length 7" (correspond-
ing to a readout frequency of fr =1/T'), the CRB written as PSD is:

2T  4o?

mln ,gauss _ - _
55 (w) = FI,  Afs

Ap

(8.18)

The calculated CRB now tells one the lower limit of how accurate ¢ can calculated
from the measured data; independent of how exactly this calculation looks like.
Calculating alternatively the (classic) SNR from the PSD of the same measured
signal yields

=(A2T+4202/fs)~A%T

—

Sm(wo) ~ fsTA2
sz (w 7£ wO) - 20 .
—_—

~202/fs

SNR =

(8.19)

Comparing this expression with the one above for the Fisher Informations shows
that

here i 2 1
SNR FI d SmlP,gauss s
; and 955" (w) fRSNR’

(8.20)
which means that the SNR of the measured signal corresponds in this case to the
Fisher Information for the phase ¢. The inverse of the SNR therefore yields its CRB
and tells us how precise an estimate for ¢ could be.

8.2.2 CRB for a DFMI signal with additive white Gaussian
noise

My main motivation for the calculation of the CRB was initially to calculate the
maximal reachable precision for DEMI. Using equation (8.14) similar to the example
before, I can now calculate the CRB for all parameters of a DFMI signal. I.e.
assuming an ideal signal

s(t) = B+Acos(g0+m-sin(wmt+@/))) (8.21)
=B+ A Z Jn(m) cos(nwpt + ny + ) (8.22)
nez

being measured over an exact integer multiple of the modulation period 27 /w,, and
plugged into (8.14) yields for the Fisher Information of the DFMI signal parameters:

i 5 =

LT 1 (34 4Jo(m) cos(p) + Jo(2m) cos(2¢)) Smm (W) = fRfsT o) oos(7) T ) v
{f—zTAQ%l (1= Jo(2m) + J2(2m) cos(2¢)) Smm (W) = fRfSTA2 (1— Jo(2m)+Ji(2m) c0s(29))
fj—zTA % (1 — Jo(2m) cos(2¢)) mm gauss(w) fRfSTA2 (- JO(QTr?) c0s(2¢))

fj—QTAQi (m*—m Ji(2m) cos(2¢)) Smm (W) = fRfSTA2 (m2— mJl(gm) c0s(2¢))

Table 8.1: Table of Fischer-Information and the CRB of the DFMI parameters for addi-
tive uncorrelated Gaussian noise.
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I present here only the results of the calculation. The full calculation leading to these
parameters involves using multiple summation identities for the Bessel functions and
the integrals shown in Appendix E to reduce the expressions to their compact form
written here.

8.3 The CRB for uncorrelated, Poisson distributed
noise (shot noise)

When measuring the electric current consisting of individual electrons, or the power
of a laser beam consisting of individual photons, the probability of measuring a
number of n identical particles within a fixed time period 1/ fg is described by the
Poisson distribution [17, section 5.1]

p(n) = , (8.23)

with v as mean number of particles (E[n] = v), which is identical to the variance
for the Poisson distribution (E[n?] = v). The physical signal would be described by
x(t) = q - N(t) with g as conversion factor and N as random number of particles.
Le. for an electric current measured as elemental charges e~ over the time 1/fs the
conversion factor would be given by ¢ = e~ - fg. For the optical power of a laser
beam consisting out of photons with the power of Awy sampled with the same sam-
pling frequency and converted into an electric current by a photodiode with some
responsivity Rpp the factor would be ¢ = hw fs Rpp. In Interferometry, photon shot
noise is one of the fundamental noise sources, which is not the result of some faulty
or imperfect technical equipment, but stems from Heisenberg’s uncertainty principle
for the time of arrival of the photons hitting the photo diode.

With the mean number of particles v of the signal signal s given by v = s/q, the
joint probability distribution for a measurement n would be given by

pw) = [T+ (8.24)

Plugged into (8.2) to calculate the resulting Fisher Information then yields:

. [/ 0 2
poisson v
FI} =E (89 In p(n, 9)) ] (8.25)

N 2
=E (% ; —v;+n;-Iny; —1In nﬁ) (8.26)

i N 8 2
Vi (1Y
- (; 99 (Z - 1)) (8.27)
1
OVZ- 81/]' 1
- le 9090 v, L v~ v)] (8.28)

=v;6;; for uncorr. Poisson dist. noise
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= i (‘Z”;)Q Vl (8.29)
= XN: (%Z)Q - 13 (8.30)

2
T 0s(t,0)
~ I8 / M dt (8.31)
0

For a DFMI signal with optical power Py (~ s) and Poisson distributed noise,
calculating the CRB for the phase ¢ yields:

1 AQe
(14 Jo(m) cosp) 7frRpprFy

SE:;’POiSSOH (UJ) _

(8.32)

8.4 Digitization Noise and Dithering

Digitization noise is the result of the truncation of the analog signal into digital bits.
For example: a 16-bit ADC and an input range of £10V will truncate a digitized
signal to the next smallest integer multiple of LSB = 20/2'°V ~ 0.3mV. Here, LSB
denotes the voltage level of the least significant bit of the digitized signal. The noise
of this truncation is the difference between exact and digitized (truncated) value
and can be expressed as additive noise given by

r(t) == s(t) — |s(t)] € [0, LSB]. (8.33)
Respectively, the measured signal can be written as |s(t)| = s(t) + r(t) .

For an extended measurement this type of noise is at first however correlated to the
exact signal. To mitigate the effects of this quantization noise, a technique called
“dithering” is used. While the total noise power cannot be reduced, dithering aims
to break the correlation between the noise and the signal to convert the correlated
noise to white noise leading to effectively less noise within a finite measurement
band. To achieve this, an additional (known) random signal is added, referred to as
dither noise, which effectively shapes the quantization noise to an almost uniformly
distributed white noise. While the uniform distribution does not satisfy the CRB
regularity conditions [73, Section 4.3] (meaning that the CRB inequality cannot be
applied directly for such (purely) uniform distributed noise), a CRB for similar white
additive Gaussian noise with the same variance can be used as a good approximation.

8.4.1 Dithering

Let us first consider a simplified example where adding random 'noise’ can improve
a truncated signal’s accuracy: Consider a constant signal of e.g. s = 0.9 which
will be truncated during some processing step, down to the next smallest integer
|0.9] = 0. Without dithering, this value will always remain at 0. Aiming to improve
the accuracy, we add a random number z uniformly distributed between 0 and 0.9
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in steps of 0.1. Ten consecutive measurements of |s + x| now yield on average:

s+x€{09,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7, 1.8, 1.9} (8.34)
— |s+x]€{0,1,1,1,1,1,1,1,1,1,1} (8.35)
—> mean(|s+z]|) =0.9 (8.36)

While the truncated value of |s + | remains inaccurate; the mean value of = over
an extended measurement with dithering (mean(|s + z]) = 0.9) is more accurate
than the mean value without dithering (mean(|s]) = 0).

8.4.1.1 Breaking noise correlation using dither noise

Truncating a digital signal s down to a smaller number of bits introduces "truncation
noise’ as the difference between the original signal and the truncated one. Adding
a uniformly distributed dither noise x to a signal s before truncation, with x in the
range of 0 up to the least significant bit of the truncated signal, reduces the average
error due to truncation noise to 0.

To show this formally: let sexact be a digitized signal with bit length b and s,0_qither =
| s] the truncated signal with fewer bits (b — Ab). The truncation operation rounds
down to the nearest integer multiple of Ab. Additionally, we will assume that the sig-
nal is positive (Sexact > 0). For arbitrary (positive and negative) values the following
calculation is largely the same but requires additional case distinctions expanding
the equations significantly which I omit here.

The rest term that is dropped by the truncation can be written as
T := Sexact — Sno-dither With 0 <7 < Ab. (8.37)

Without any dithering, the additive noise of the truncation operation is given by
this r:

Sno-dither = Sexact — T - (838)

Now let x be a random dither variable with 0 < x < Ab added to the signal Scyact
before truncation. The truncated signal with dithering can then be written as

Sdithered -— Lsexact + xJ = Sexact — Tdithered (839)
with T'dithered ‘= Sexact — Lsexact + .Z‘J =Tr—- LT + (L’J (840)
—_——

= Lsnofdither +7‘+$J
=Sno-dither+[7+]

The expected value of the (dithered) truncation noise can be calculated by:

E[ragiherea) =7 — E[[r +2]] = 7"—/0 p(x) - [r+a] do. (8.41)

Since r < Ab and x < Ab for the sum we find that 0 < r+x < 2Ab. After truncation
this leads to |r + x| being either 0 or 1 - Ab. In other words I can write:

0 if r+x<Ab

—Ab-O Ab 8.42
Ab if 4z > Ab (v+r—Ab)  (842)

Tdithered = |7+ 2| = {
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with © as unit step function. For a uniformly distributed dither noise pyni(z) =
1/Ab, the expected error of the dithered and truncated signal thus becomes:

Ab
IE[lr‘dithered] =Tr—= / puni($) : LT + fL’J dz (843)
0
Ab
:r—/ — - Ab-O(z+1r — Ab) dx (8.44)
oAb
(i=oir=Ab) _ / O(z") dx’ (8.45)
r—Ab
@bz . _ / 1 da’ (8.46)
0
=0 (8.47)

Le. for a perfect uniformly distributed dither, the additive truncation noise (7githered)
becomes zero—mean and since ]E[rdithered : sexactj| = IE:|:Tditheredj| “Sexact = 0 Sexact = 0,
the (cross-) correlation between truncation noise and exact signal vanishes as well.
The remaining noise level for this dither noise would be given by the variance of the
uniform distribution (of length Ab) equal to Ab?/12.

Practically, the dither noise x does not have infinite precision but would also be
quantized to the LSB of Sexaet Which leaves a still correlated noise part in the trun-
cation noise. (Is most cases this correlated noise part is however smaller than the
white noise contribution from the dithering). Besides a uniformly distributed dither
noise, differently shaped noise distributions like a triangular distribution or higher
order distributions are also used to generate the dither noise. For these distributions
(not shown explicitly here), the mean / the correlated noise part, and the white noise
part vary in power and depending on the signal it can be useful to choose a distri-
bution which causes a slightly higher correlated noise part if the resulting effective
(white) noise may be lower compared to the uniform distribution.

8.4.1.2 Approximate CRB for the digitization noise of a dithered DFMI
signal

For a perfect uniform dither distribution with variance o3, = LSB?/12, the CRB
for additive Gaussian noise with the same power, would be

LSB?
var(f) > 12 , (8.48)

el ()

which I later will use as approximate CRB for the digitization noise.

8.5 CRB for ReDFMI

When first analyzing the CRB for a given signal with additive noise; equation (8.14)
showed analytically that the amount of Fisher Information (and therefore a higher
possible precision) scaled with the slope / the derivative of the signal with respect to
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the readout parameter. In Interferometry, signals from optical cavities on resonance
are known to have such a steep slope for the phase, and they are commonly used
to generate error—signals, highly sensitive to the ratio of laser frequency to optical
cavity length. As mentioned in chapter 1, the arms of the laser interferometers of
gravitational wave detectors are in fact set up as resonant cavities, as it improves
the sensitivity and thus the precision of the readout. For a homodyne signal, this
can directly be shown by calculating the CRB:

8.5.1 CRB for the cavity response to a homodyne signal

With a cavity response for a homodyne signal of the form:

KB

Prans = T 4 - 9/ N
’ 1+ Fsin®(y)

and Preﬂ - Pin - Ptrans 5 (849)

the Fischer-Information for additive white Gaussian noise can be calculated via:

FIGaussian _ fS ! dt aPtlrans ? o fS 4 dt aPrelf 2 o fST K2‘Pi%1F2 Sin2(290)
0 T g2 B) 2 ) - 2 2 1"
a? J, © a? J, @ o2 (14 Fsin®(p))

(8.50)

Close to the resonance (where ¢ < arcsin(y/1/F) and thus Fsin*(¢) < 1 and
F?sin?(2¢p) ~ F), increasing the Finesse coefficient F' = 4R/(1 — R)? of the cavity
(meaning higher reflectivities R) also increases the amount of Information in the
signal.

8.5.2 Cavity response to a frequency ramped signal

Next we consider a signal with a (slow) linear frequency shift where the phase would
be given by ¢ — ¢ + AQ - t, leading to an approximate cavity response of

1
Peg=PFPn|1—- - 8.51
b ( Kl—l—Fst(@—l—AQ-t)) (8:51)

1
d Prans = L'in . 5 8.52
o ' ﬁ(l—l—Fsmz(go—l—AQ%)) (8.52)

with the squared derivative:

(apmﬂ)2 B (aptrm)? _ 4AP2R’F?sin®(p + AQ - ) cos?(p + AQ - 1) (8.53)

0o 0p (1+ Fsin?(p + AQ-1))4

For the Gaussian noise limit, the Fischer Information for a measurement over the
interval [0, 27/AQ] is given (up to some constant coefficients) by:

fS /2TF/AQ 8f)reﬂ ?
Froauss — 212 dt 54
@ o2 0 (9(,0 (8 5 )

Substituting \/Fsm(go + AQ-t) =y with dt iAQﬂdy and using the symme

over the 27 interval to rearrange the integration boundaries leads

tries of the sin?
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to:

/ T (ap reﬂ)Q = / Ty ALt (8.55)
0 0 AQ (1+y?)? '
 16P2k2 mF3(F +2)

AQ 32(F + 1)3/?
~ F3/2. (8.57)

(8.56)

(The integral on the right side can be solved by repeated integration by parts).

The resulting Fisher Information (and the corresponding CRB) scales with the Fi-
nesse coefficient ~ F3/2 meaning that by increasing the Finesse of the cavity (using
mirrors with a higher reflectivity), one could theoretically improve the readout preci-
sion not just for homodyne signals close to the cavity resonance, but for a frequency
modulated signal as well.

While the signal used here is only an approximation, it is the first indication that a
DFMI signal, in combination with a cavity, can also yield a higher precision phase
readout compared to the DFMI signal alone. This is the main motivation for the
concept of ReDFMI presented in chapter 6.
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Chapter 9

Noise model of a measured DFMI

signal

In this chapter the theoretical results of the previous chapter are applied to calculate
the lower limit of the phase readout for the case of a measured DFMI signal.

optical segment digital segment
A N
s N
non-linear modulation ghost beams shot-noise electronic noise
noise Prup Pg Panot Uea
Ideal DFM 1

Signal Pigeal ‘Rpp - HgL, ‘55 > Xout

DFM approx. residual amplitude laser-frequency digitization

noise Papprox modulation noise Pram noise Plreqnoise noise Uggit

Figure 9.1: Schematic view of all 8 contributions to the noise model considered in this
chapter

Figure 9.1 shows a block diagram of the readout 'chain’ with the noise contributions
considered here and the conversion factor appearing when converting the initial op-
tical signal into bit values within the computational hardware.

For the initial optical signal Pge., I assume a signal power of Py = 2mW and an
optical contrast of kK = 0.9 which leads to B =1mW and A = 0.9mW. From left to
right, the initial signal and the noise sources in the DFM interferometer are given
as optical signals in units of [W]. The optical signals are converted by a photo diode
into a small photo current in units of [A]. The proportionality factor is given by the
photo diode responsivity Rpp ~ 1 A/W. The electrical current is then amplified
by a trans-impedance amplifier and filtered. The full effect of this electronic stage
is modeled by the electronic transfer function Hgy(w) which is for my experimen-
tal setup discussed in Appendix F. For the noise analysis here, I use a simplified
model and approximate this transfer function only by an idealized amplifier gain
Hgp,(w) =~ 3320 V/A converting the current into a voltage signal (in units of [V]). In
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the end, the voltage signal is digitized by a 16-bit ADC with a total range of 10V
leading to a least significant bit conversion factor of LSB = 10V /216 ~ 152.59 V.

The noise sources considered here are sorted into 3 categories: (1) additive (uncorre-
lated) white noise sources, (2) additive “colored” noise sources and (3) DFMI-type
noise sources. As DFMI-type noise sources I denote additional DFMI-type sig-
nals superposed on the main signal and with the same modulation frequency as the
main signal. “Colored” noise source are all other noise contributions that have a
frequency dependent shape, and white noise sources are the remaining uncorrelated
noise contributions with a flat frequency spectrum.

9.1 White noise sources

For uncorrelated white noise sources, the previously calculated CRB as presented
in (8.14) and (8.32) can be applied directly. Such noise terms are often expressed
in one of three ways: as stochastic variance (or “RMS amplitude”), as time series /
signal or already as ASD/PSD. When plugging the signal s(¢) and noise in the CRB
equation, one has to make sure that both are given in the same units and applying
additional factors of Rpp, He and/or LSB to the signal may be necessary. A noise
expressed as stochastic variance o2 can be plugged in directly in (8.14). A noise
expressed as PSD equals the 02/ fs factor in (8.14). For a noise expressed as time
series, the corresponding variance has to be calculated via o? = fOT(:c(t) — 7)%dt
(with T as mean value of x(t), which is in all cases considered here zero).

9.1.1 Digitization (ADC) noise Ugigit

For the technical specifications of the used ADC (1 MHz sampling frequency, 16-bit
precision) the noise limit derived in section 8.4 leads to a limit due to digitization
noise of

rad m
~ 0L < 375107 —. 0.1
—HZ ADC /_HZ ( )

dpapc < 1.52-1078

9.1.2 Electronic noise and PD dark noise Uy

For the effective electric- and PD dark noise, I use the values measured from the
electronics as shown in Figure 9.2. Without any signal on the photodiode, the com-
bined electronic-amplifier and photodiode dark-noise lead roughly to a white noise
floor of oe/+/fs = 2uV/v/Hz. For frequencies above ~ 50kHz, the electronic cir-
cuit seems to oscillate / 'ring’ at certain frequencies. This was also confirmed when
measuring the electronic amplifiers output with a different ADC and is likely the
caused by non—ideal and not properly damped OpAmps. The amplifier circuit is
currently being worked on to remove these resonances.

The readout limit from the measured white-noise floor and calculated by (8.1) is:

d
71 o Ly > 120107 B

0w < 4.88-10" .
Pel v Hz vHz

(9.2)
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Figure 9.2: Electronic noise of the electronic amplifier circuit while the laser is switched
off, measured with a 1 MHz ADC, downsampled to ~ 4kHz, and plotted with a LPSD
plotting routine. The measured noise shown here is dominated by a white noise floor
from the analog amplifier and filter electronics, even when it’s not connected to any photo
diode. When connecting a photodiode, some excess noise above 10kHz appears. This
additional noise visible as distinct “peaks” /resonances of the electronics are likely related
to the additional capacitance of the connected cables and interaction with the OpAmps.
The electronics board is currently being redesigned to fix this issue.

9.1.3 Shot noise Pyt

For the shot noise, described by a Poisson’ instead of a Gaussian distribution, I
derived the CRB in section 8.3 (and specifically in (8.32)) to be:

1 Age
1 + |J0(m)|) ’/TfRRPD/iPO

O Pshot < ( (9.3)
For an optical power of roughly Py ~ 2mW, an optical contrast of x ~ 0.9 and a
photodiode responsivity of Rpp = 0.9, the resulting shot noise limit is:

d
85/% ~ 6Lsh0t<2.93~1015\/% (9.4)

(5QOShOt <1.19-107

9.2 “Colored” noise sources

As “colored” mnoise sources I consider all independent noise sources that have a
specific frequency-dependent shape but do not depend on the main DFMI signal.
In my experiment, I only consider the laser frequency noise of this class.

9.2.1 Laser Frequency noise Pfeqnoise

Independent of the applied frequency modulation, the laser frequency is not per-
fectly constant but noisy with a characteristic 1/f dependence. This noise couples
directly into the measured phase (phase from laser frequency noise is indistinguish-
able from the signals phase) which allows me to write down the resulting phase
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and length noise limit directly. For the laser I used, the frequency noise was mea-
sured by interfering two identical lasers and tracing the resulting “beat-frequency”
(the varying frequency difference between the two lasers). This measurement was
done by Leander Weickhardt of our working group who measured an approximate
laser frequency noise of ~ 10kHz/ VvHz at 1Hz (with a mean laser frequency of
1550 nm ~ f; = 193 THz). With a relative arm length difference of AL = 10cm
between two interfering laser beams, the phase (and subsequent length) noise can
be written as

Hz AL Hz rad Hz
SProw-taser (f) A 10P——= - 21— — =210 10" —— - — 9.5
Plowet (f) \/E Co f /HZ f ( )
H
and 6L10W—f—1aser(f) ~ 5.17 - 10_12£ . z (96)

vHz 7
As this phase noise adds linearly to the measured phase, it can be subtracted by

measuring a second, fixed reference signal sharing the same laser frequency noise
and subtracting its measured phase from the main measurement.

9.3 DFMI-type noise sources

As DFMI-type noise sources I denote additive DFMI signals with DEMI parameters
different from the main signal but sharing the same modulation frequency. These
signal appear at the same harmonic frequencies as the main signal and are highly
correlated to it.

My calculations using the CRB did not yield a prediction for the precision of cor-
related noise terms. For the precision limits caused by this noise I therefore use the
following estimate: In a “worst case” scenario, a DFMI-type noise “signal” has the
same modulation index as the main signal and only varies in phase and amplitude.
In this case the DFMI-type noise has the highest correlation with the main signal
as its signal power shares (almost) the same distribution over the signal harmonics.
When calculating the phase within the analytic readout algorithm, the noise terms
then add linearly to the quadratures of the harmonics such that for the I, and @,
from section 4.8 one finds:

I, ~ cos ¢+ €cos Pnoise  and @y, ~ sin ¢ + €sin Ppeige , (9.7)

with ¢neise as deterministic phase of the DFMI-type noise “signal” (and not the
resulting phase noise itself) and e as amplitude ratio between the DFMI-type noise
and the main signal € ~ Pppmitype-noise/ Pideal. Expanding the result of the subse-
quent arctan calculation yields

esin(A noise
Pestimate = arctan (%) = ¢ + arctan (1 n ecés(igonole)) (9.8)
o + € - Sin(ASOnoise) +O(€2) (99)
N————’

zAQtonoise

with Avnoise = © — @noise @s phase difference between the “noise signal” and the
main signal. With 0peror = Qestimate — @ = € + A@noise, the effective noise ASD
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would to first order be the ASD of the DFMI-type noise phase difference Sa,,.,..(w)
attenuated by the amplitude ratio e.

Some of DFMI-type noise sources presented below should only have a constant offset
compared to the main signal, which would lead to effectively no contribution to the
noise for w > 0. More generally, I consider a phase difference noise of Appeise ~
103 rad/ vHz which roughly corresponds to some of the expected movement of a
suspended mass in a GWD suspension. Practically, it should be possible to mitigate
these noise contribution by subtracting the corresponding (deterministic) DFMI
signals from the measured signal if their signal parameters are known.

9.3.1 DFMI approximation noise P,pprox

As “DFMI approximation noise” I denote the terms promotional to ¢, = w,,7, that
are dropped when calculating the “ideal” DFMI signal as shown in Appendix A.
To first order, (when dropping all O(?) terms), the exact DFM signal measured is
given by

Pexact (t) = Pideal(t) + Papprox(t) + O(Q/J%) (910)

with the DFMI approximation noise given by

PapprOX(t) = (m + mo) . Siﬂ<wmt + lp) - Pgeal (9.11)
Pa 1{0).¢

== €approx — IMax {PL} = wL : ('ITL + mo) . (9.12>
ideal

The mg here corresponds to the total propagation time of the light since emission
and not only the path length difference of the two interfering beams. For the Free-
Beam setups in my experiment (shown in the next chapter), this mq is larger ~ 4 xm
than the path length difference. Together with a modulation frequency of 500 Hz
and a path length difference of AL = 10 cm, this yields an “approximation phase”
of ¢y, = 1 prad, which yields (with m & 7) for the error of the Free-Beam setup:

d
Spu o A~ 3.67 - 10812 9.13
Papp \/E ( )
~ 8 Lapprox & 9.05 - 10715 (9.14)

vk

For the COBRI, with a shorter second arm leading to my ~ 0.1 X m, the same
approximation noise should be roughly a factor of ~ 5 smaller.

9.3.2 Non-linear laser modulation noise Prap

The second DFMI-type noise considered here are additional terms caused by an
imperfect sinusoidal frequency modulation.

A common class of frequency tunable lasers are “external-cavity diode laser.” By
tuning the length of the external cavity, the frequency of the light coming from the
laser diode is filtered and only the specific frequency on resonance with the cavity is
amplified and emitted. The tuning’ of the external cavity length is usually done by
a Piezo element which expands when a voltage is applied. In the experimental setup
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presented in the next chapter, the modulation of the laser frequency is realized by
applying a (sinusoidal) voltage Unod = Umoa,0 + Ua - sin(wy,t) to the Piezo, changing
the cavity length and with it, the laser output frequency.

In an ideal scenario, the Piezo length changes linearly with an applied voltage. In
practice, the Piezo crystal has a hysteresis behavior [74] and heats up over time.
Figure 9.3 displays an exaggerated example of such (non-linear) hysteresis behavior
and how it would affect the laser output frequency. Both of these effects cause the
Piezo displacement, and thus the outgoing laser frequency, to not scale perfectly
linear with the input voltage. For the sinusoidal input voltage, this will lead to
additional higher order terms (42w, +3wy,, . ..) of the laser frequency. The ratio
of the summed up RMS amplitude of these higher order terms divided by the am-
plitude of the fundamental frequency (here: w,,) defines the “harmonic distortion”
in electrical engineering.
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(a) ”Displacement-response” of a model Piezo-crystal to a supplied input voltage.
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Figure 9.3: Plots of the (non-linear) behavior of an example Piezo. The blue line
corresponds to an ideal, fully linear displacement response of a Piezo and the yellow line
to a more realistic Piezo response that leads to the harmonic distortion visible in (c).

Assuming that most of this unwanted noise is concentrated in the second harmonic
(closest to the main modulation frequency), the laser frequency could be written as:

wprm(t) & wo + Aw - (sin(wy,t + ¢) + THD - sin(2w,,t + ¥1up)) (9.15)

with THD as “total harmonic distortion” coeflicient.
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A series expansion of the measured DFMI signal then yields:
Pmeasured = B+ ACOS(WDFM (t) : T) (916>
= B + Acos <<p +m - sin(wy,t + w))

— THD - m - sin(2w,t + rup) A sin (gp +m - sin(wp,t + 1/1)>

—:Pran (1)
+ O(THD?) (9.17)
= Prup(t) = —THD - m - sin(2wp,t + Yrup) - Pieal (1) (9.18)

The THD noise as written in (9.18) can alternatively be expressed as amplitude
noise where the main signals amplitude P,ge. is modulated by

Pideal — (1 — THD -m - sin(2wmt + wTHD)) . Rdeal(t) (919)

In previous experiments with a similar laser, Isleif & Gerberding measured a THD
in the order of 5% of the main signal. For the resulting phase noise with erpp =~
THD - m, this yields:

d
S ~ 3.5 - 10_45/?{7 (9.20)
~ 6Lmp ~ 8.63- 10711 2 (9.21)

VHz

9.3.3 Residual amplitude modulation noise Pram

Besides the laser frequency, the laser output power also varies with the applied
modulation signal. Figure 9.4 shows the laser power output, depending on the
applied Piezo voltage. This amplitude modulation is however not completely random

20.10 4 > datasheet values
= polynomial fit (ord = 23)
= 20.08 1
=R Expected modulation range
=
. 20.06
[«
g ! \
O |
A< 20.04 1

20.02 A | = .

0 20 40 60 80 100 120
Piezovoltage in [V]

Figure 9.4: Picture of the Laser-manufacturers’ test data sheet showing a measurement
of the laser’s output power depending on the applied Piezo voltage. If unaccounted for, a
mean Piezo voltage of Uy = 60V and a modulation amplitude of Ux = 5.05V (leading to
Aw =~ 3.34 GHz) would lead to amplitude variations in the order of egay ~ 1.5 - 1073,

but a deterministic response of the laser to the frequency modulation signal. It can
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be compensated by an amplitude stabilization control loop that measured the laser’s
outgoing power and compensates fluctuations by using a variable gain amplifier. If
not stabilized, the expected modulation signal will lead to an output power (and
thus the signal amplitude) fluctuation of a factor of egay ~ 1.5 - 1073, For the
resulting phase and length noise this would yield

¢ rad

Spran = 1510 (9.22)
~ SLpam ~3.7-1078 2 (9.23)

VHz

9.3.4 Stray light & ghost Beams Fypost

The remaining noise that can be written exactly as DFMI-type noise are stray light
or “ghost beams” of the optical setup. Small partial reflections of the main beam
(ghost beams) that leave the main path of propagation but hit the photo diode
again will interfere with the main beam leading to a DFMI-type noise. Gerberding
and Isleif specifically discuss the effect of such beams traveling along the main beam
in their COBRI setup in [63]. In their setup, they consider the ghost beams that
are caused by small reflections at the various (plane) surfaces between two mediums
with different refractive indices. Being reflected back and forth in the optical setup,
these ghost beams can have a wide range of potentially very large modulation indices
(corresponding to a large path length difference between the main beam and the
ghost beam). Additionally, seismic motion slightly shaking the setup also causes
some additional ghost beams that will correlate with the (low frequency) seismic
noise. For the COBRI, the main ghost beam contributions are expected to come from
some residual reflectivity of Rghost < 0.25% (assumed as upper limit by Gerberding
& Isleif [63]). In the most extreme case this would lead to a readout limit of

d
§Pahost & 1.0 - 10—5\1"/% (9.24)
~ O Lghost ~ 24710712 (9.25)

Vi

Realistically, these ghost beams vary in path length difference (and thus modulation
index and phase) from the main beam. For a DFMI signal with a (much) larger
modulation index, the signal energy is spread over (many) more harmonic frequencies
and also distributed differently which would further reduce their impact on the
harmonics of the main signal. Figure 9.5 shows a simulated example ASD of a main
signal and two ghost beams with different modulation indices.
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Figure 9.5: Plot of a example DFMI signal and two ghost beams with different modu-
lation indices and random phases. The “short” ghost beam corresponds to a length (and
modulation index) of x0.1 of the main signal and the “long” ghost beam corresponds
to x8 the length of the main signal. For the “short” ghost beam all of its signal power
is concentrated at the first two harmonics leading to a relatively large error there, but
having almost no impact at all other harmonics. The “long” ghost beams signal power is
distributed over more harmonics with a significant part of the ghost beam power localized
at the higher harmonics where the main signal has almost no signal power.

For ghost beams only traveling within the fixed optical setup (and not to a poten-
tially moving target), the additional ghost beam signal would remain constant and
could in theory be subtracted from the main signal if the ghost beam parameters
are known. In previous publications, Gerberding and Isleif modified their fitting
algorithm also fit smaller DFMI-type signals besides the main signal which corre-
sponds in parts to these ghost beams. Similarly, if the modulation index of the
ghost beams is sufficiently different from the main signal, using only specific sig-
nal harmonics that carry a lot of energy of the ghost beam and very little of the
main signal, the analytic readout algorithm can be used to calculate the ghost beam
parameters. (For the signals shown in Figure 9.5, one could for example use only
the harmonics around 10kHz to derive the signal parameters for the “long” ghost
beam). The ghost beam can then be subtracted from the measured signal before
calculating the main signal parameters. The implementation of such a ghost beam
mitigation scheme is currently being investigated and might be included into the
analytic readout algorithm at a later stage.

9.4 Estimated phase readout limit

The results of the preciously estimated noise limits are shown together in Figure
9.6. It should be noted that the shown DFMI-type noise limits of Pram, Pghost,
P, pprox and Pryp correspond to rough upper limits where their corresponding DEMI-
type signals share the same parameters as the main signal and only vary in their
(random) phase and amplitude. In this case they couple strongest into the main
beam leading to the largest errors. The values presented here serve as guidelines
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for i.e. approximating the noise contributions from different sources relative to each
other. Their actual contribution to the overall readout is likely smaller than the
here presented upper estimate.
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Figure 9.6: Plot of the estimated lower limit for the length (phase) readout of my
experimental DFMI setup.
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Chapter 10

DFMI ARA-—phasemeter setup

After testing the analytic readout algorithm for DFMI signals on simulated signals
(shown in section 4.9), and reaching nearly optimal performance (given by the CRB
derived in chapter 8), the next steps are the implementation of the analytic readout
algorithm into modern hardware that can be used in gravitational wave detectors
and to verify its performance in a physical setup.

As chapter overview, Figure 10.1 shows the main steps of the experimental setup I
used to verify and test the readout algorithm.

Optical segment Electronic segment Infrastructure &
(Multiple DFMI setups with (PD, trans—impedance amplifie
e e opans pedence peyter | Software segment

1% Ao T T e

Figure 10.1: Sketch of the “readout chain” of the experimental setup discussed in this
chapter.

10.1 Optical segment

Figure 10.2 shows an overview of the full optical setup used in my phasemeter exper-
iment which was built up together with my colleague M. Mahesh. It consists of two
Mach—Zehnder setups and one COBRI prototype with ideally all setups measuring
the same distance of AL = 10cm. This corresponds to the distance DFMI sensors
and target mirrors could be installed inside the suspensions of GWDs, where they
would act as local displacement sensors. The experiment aims to create a DFMI
signal similar to one that would be measured there, allowing me to investigate the
performance of the analytic readout algorithm for such cases in a more realistic
environment. Instead of only a single interferometer, the setup includes three indi-
vidual setups, supplied by the same laser source. This allows one to “lock” the laser
frequency to the measured length of one of the two setups and additionally compare
the COBRI prototype to a regular free beam setup. I.e. due to its short second arm,
the COBRI signal is expected to show less “DFMI approximation noise,” but more
noise from ghost beams due to the number of additional plane surfaces.
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Figure 10.2: Schematic overview of the optical setup used for the DFMI phasemeter test.
It consists of two Mach—Zehnder setups and a COBRI prototype all set up with roughly
AL = 10cm path-length difference between their two interfering beams. For the COBRI
this corresponds to a target distance of 5 cm which leads for the beam traveling back and
forth to an absolute path length difference of 10 cm. All shown beam-splitter should split
the beams 50/50 in both directions.

The laser is tuned to a modulation depth and modulation frequency of

Aw =3.37GHz and f,, =500Hz
= wprm(t) = 3.37GHz - sin(27 - 500 Hz - t) .

Together with the distance AL = 10 cm the DFMI parameters should be similar to
the previous simulations using the same values as written earlier in Table 3.1.

Measuring all outgoing beams and also splitting one of the signals again allows for
a more granular analysis of some of the occurring noise contributions. Taking the
difference between the two quadratures of one setup will subtract the signal and
all common noises sources in both signal quadratures and leave only the channel
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specific noises (photodiode noise, electronic noise and algorithm noise). This is also
referred to as zero-measurement as it removes the “signal” and the data will only
show non—common noise contributions.

Similarly, splitting one of the quadratures again into two separate photodiodes (i.e.
photodiodes A2 and A3 in Figure 10.2) allows one to isolate noise sources that de-
pend on the signal power / amplitude (which is identical for PDs A2 and A3, but
differs for A1 and A2). E.g. when the signal power in PD A1 goes high, it goes low
in PDs A2 and A3.

The second Mach—Zehnder setup serves mainly as reference to remove the laser
frequency. It does allow, however, to estimate errors due to misalignment and the
influence of different components (like i.e., slight variations in the non—perfect 50/50
beam splitters).

The used COBRI (shown earlier in section 3.3.1) is a prototype developed in Ham-
burg and build by M. Mahesh using custom optics with a quasi monolithic compo-
nent (QMC) size of bmm x 5mm x 11mm. Its signal is expected to contain stronger
ghost beams due to the plain aligned surfaces of its QMC, compared to a free beam
DFMI setups. For the interferometric signal, this means that the short arm (Lgpert
in Figure 3.5) has a length of ~ 2.5 mm which leads together with a modulation
frequency of f,, = 500 Hz to v¢;, ~ 10~®rad for the DFMI approximation noise.

At the end of the optical segment, the interfering beams with a respective power of

~ 2mW are converted into an electric current by photodiodes with a responsivity
of Rpp ~ 1 A/W and continue in the electronic segment.

10.2 Electronic segment (Amplifier, Filter and ADCs)

In the electric segment the small currents coming from the PDs are amplified and
filtered by a custom electronic circuit shown in Figures 10.3 and 10.4.

ADC
trans—impedance “Sallen—Key” offset and inverter (incl. additional
amplifier low-pass filter anti—alias filter)

Figure 10.3: Overview a single channel of the electronic segment of the readout chain.
The greyed out capacitance at the start and end of the circuit correspond to the connected
cables.

A more detailed discussion of used PDs, the build electronics and their transfer
function are shown in Appendix F. Its main purpose is to amplify the small photo
current (~ 2mA) and convert it into a differential signal measured by the used dif-
ferential ADCs (~ £5V). The additional low-pass filter helps to mitigate parasitic
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RIS

Figure 10.4: Picture of the electronic amplifier I build consisting of 16 channels with
the schematic as shown in Figure 10.3. The front is made up of 8 D-Sub-9 Connectors,
each of which connects to two channels. The back contains a power connector to the GEO
infrastructure and a half-pin D-Sub-39 connector as connection to my ADC module (the

“ACQ425ELF").

electronic noise and acts as further antialiasing filter for the ADC.

The measured transfer function of the amplifier and filter circuit can be seen in
Figure 10.5. It shows both a phase delay and a small attenuation of the amplitude
for different harmonic frequencies. To reach a high precision readout, this delay and
attenuation must be compensated by applying the appropriate factors during de-
modulation and subtracting the delay when calculating the phase within the analytic
readout algorithm.

Le. the phase of the individual n’th harmonic as written in (4.2) is proportional to
~ © + N1 + el delay (N frm). The easiest way to remove the phase delay and get a high
precision absolute phase readout, is to subtract the linear factor (36.06 prad x 500 Hz)
from the v coefficient when calculating the ¢, and subtract the constant offset
(214.95 prad) from the calculated Qegtimate- In Heinzel et al. [54] the phase delay
from the electronics was similarly measured and subtracted from the harmonics.
When using Qﬁestimate as calculated in 4.5, it already includes the linear component
Of Qel delay and no further corrections are necessary.

10.3 Hardware and Software infrastructure

At the end of the electronic segment, the signal is digitized by a 16-bit “LTC2380-
16”7 ADC and further processed in a “Zynq7000” FPGA where my implementation
of the analytic readout algorithm in VHDL and python calculates the DFMI signal
parameters.

The ADCs and the computing hardware used are integrated components in a larger
“MTCA” infrastructure. A significant part of my Ph.D. studies revolved around
understanding and commissioning of this infrastructure, and specifically the usage
of “FPGAs” and the implementation of the readout algorithm thereon. “Field Pro-
grammable Gate Array (FPGA)” are specialized chips emulating the behavior of
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Figure 10.5: Transfer function of the complete electronic TTA-amplifier and filter seg-
ment, measured with a “Moku:Lab.” The left (upper and lower) plots show the full
measured transfer function gain and phase. The right plots show a “zoomed in” pic-
ture in the frequency range of the DFM harmonics. In the frequency region of the
DFM harmonics, the transfer function Hgp, of the circuit can be approximated by
|Hgp| ~ —5.84107% - f/Hz + 3320.54 and a phase delay of arg(Hgr) = Pel delay () ~
36.06 urad - f/Hz + 214.95 urad, shown as dashed line.

logic gate level hardware which allows for the design of highly specialized (“hard-
ware”) function blocks yielding two main advantages for the readout algorithm:

1. A high readout speed (due to parallelization and specialized hard-
ware modules)
In the DFM readout algorithm a potentially large number of harmonics need to
be demodulated and filtered. Especially the demodulation is a computation-
ally expensive task for which many DSPs or MCUs have dedicated hardware
modules. Implementing the demodulation and the filtering of the harmonics in
an FPGA allows for a very efficient calculation of analytic readout algorithm
within a few s, faster than on comparable CPUs or DSPs.

2. Stable synchronous timing for operating control systems
Due to the planned implementation of various control loops to regulate i.e.,
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the laser frequency and amplitude modulation, using an FPGA as custom
controller allows one to regulate multiple in- and outputs synchronous to the
same clock, leading to short delays and a wide control bandwidth.

The infrastructure I used is based on the “Micro Telecommunication and Computing
Architecture (MTCA)” open industry standard. MTCA is a modular Infrastructure
standard specifying “mechanical, electrical, thermal and management [hardware
properties]” used for data processing and control systems in large research facili-
ties and industry [75]. It is partially developed by DESY and extensively used in
i.e., their European XFEL. We also currently investigate the option to implement the
“Control and Design System (CDS)” used in LIGO into our MTCA hardware which
would greatly simplify the implementation of the DFMI readout into gravitational
wave detectors that use LIGOs CDS. In my experiment, using MTCA hardware al-
lows me to use different digital computing modules (a “AM-G6x/msd” (CPU) and
a “Z710” (FPGA) module) and analog modules (a “ACQ420FMC” as ADC module
and a “AO420FMC” as DAC module), from different manufacturers. A detailed
overview and description of the components I used can be found in Appendix G.1
and a picture of the MTCA crate containing all of the mentioned modules is seen
in Figure 10.6.

After digitization of the electronic signal by the “ACQ420FMC” module, the de-
modulation and calculation of the I,, and (),, coefficients is done within the FPGA
fabric of the “Z710” module. Figure 10.7 shows a schematic overview of the imple-
mented [-Q-demodulation. Every channel (every PD signal digitized by a separate
ADC) is fed to ~ 16 identical I-Q-demodulation blocks (one for each DFM har-
monic) which calculate the I, and @, coefficients in parallel (for n = 1,...,16).
The operation of an individual I-Q-demodulation block corresponds to a regular
“phase locked loop” with the modulation frequency as input parameter. Integrating
the given frequency value, and applying a dither to mitigate truncation noise, yields
a phase value ~ (nwy,t). This phase value is used as input value for a lookup table
(LUT) which contains sine and cosine values in a given (here: 16-bit) range, yielding
output values ~ sin(nw,,t). (Together these individual components correspond to a
numerically controlled oscillator (NCO) generating an output signal of sin(nwy,t)).
This signal is then mixed with the input signal and low-pass filtered (as described
in section 4.4) to calculate the I,, and @, coefficients for all relevant harmonics.

The remaining computational parts of the analytic readout algorithm are currently
implemented in a python script running on the “AMG6” CPU. A single run with the
default parameters (Table 3.1) running exclusively on the CPU takes ~ 10 ms, which
would lead to a similar readout frequency of ~ 100 Hz of older publications by Isleif
et al. using Heinzel’s fitting algorithm [61]. Using the parallelized demodulation in
the FPGA fabric, and the resulting I,, and @, coefficients, reduces the computational
time to 0.55ms per run improving the readout speed and thus the corresponding
control bandwidth by a factor ~ 20. Implementing the remaining calculation steps
into the FPGA fabric as well should reduce the readout computation time even
further.
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Figure 10.6: Pictures of a partially filled “NATIVE-R9” (MTCA) Crate. The left picture
shows the front side and the right the back side of the crate. From left to right of the
front side one can see: the PSM, the MCH, a “CPU” AMC module, two empty slots, the
“Z710” AMC module I use, 5 more open slots, and then 3 more Z710 AMC modules. In
the rear / back side, from left to right are: the PSM, the MCH, empty slots, and a single
RTM connected to the Z710 AMC that I use.
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10.4 ARA-Phasemeter performance

AL AL

Al

A2

A3

Figure 10.8: Sketch of the free beam Mach—Zehnder setup, operated in air, used to test
the analytic readout algorithm.

Figure 10.9 shows the (ARA) ¢ phase readout for one of the free beam Mach—
Zehnder setups (shown in Figure 10.8) with the three separate PD outputs Al, A2
& A3. PD A1 measures one of the two signal quadratures and PDs A2 and A3 mea-
sure the other quadrature, each one with their own separate amplifier electronics
and readout channel.

The direct readout of Al, A2 and A3 is dominated by some kind of noise that is
common to all channels which has yet to be determined. It could be related to real
optical path length changes due to air fluctuations or ground motion coupling in the
mechanical components moving them by O(100 nm). As similar DFMI setups in air
have achieved a significantly higher precision, there is likely another noise sources
limiting the readout here, From the noise models derived in section 9.3, ghost beams,
residual amplitude modulation, and the laser’s harmonics distortion are all possible
candidates that can be present at these levels and would be common to all channels.

The ASD of the phase differences a1 — a2 (different quadratures, zero measure-
ment) and a2 —@as (same quadrature, T measurement) removes this common noise
and reveals a lower noise floor almost at the level of the laser frequency noise (up to
10 Hz) which couples directly into the phase readout. The white noise floor above
10Hz as well as the slightly higher noise for the 7 measurement hint however at
an additional noise term that limits the readout here. The main difference between
zero and m measurement is that any amplitude noise would affect the zero measure-
ment more strongly than the m measurement (where both signals experience the
exact same amplitude noise). The fact that the noise floor of the m measurement
is actually higher (and not flat) hints to an additional non—linear noise term where
the smaller power of the A2 and A3 signals could possibly factor in the effective
higher noise (as A2 and A3 only have around half the power of A1 signal since their
quadrature is split an additional time).

The COBRI prototype yields a similar noise floor as the free beam setup for the
“direct” single channel readout, as shown in Figure 10.10. Subtracting the two
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COBRI channels from another leads however to a x10 higher noise compared to the
free beam’s zero measurement.

1075 3 zero—measurement
—+— Al (a=0.31) (A1 — ©A)
107° 3 ¢ A2 (a=020) T-measurement
10_7_' A3 (= 0.10) T (PA9 — ©A3)
—-—--Laser frequency noise === White eletronic noise

Displacement ASD in [m/v/Hz|

Frequency in [Hz]

Figure 10.9: Phase Readout for the free beam Mach—Zehnder Setup with three PD
outputs (Al, A2 & A3) and the difference between the different phase readouts. The

a = KA/ADC-range value mentioned in the legend corresponds to the “filling factor” of
the ADC (k as optical contrast).
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Figure 10.10: Phase Readout for the COBRI prototype setup.
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Besides the worse contrast of the COBRI prototype in this particular setup, the
signal ASD as shown in Figure 10.11 reveals significant signal energy in the higher
harmonics (> 15 - f,,) above the noise floor, with orders of magnitude more for the
COBRI compared to the free beam signal. This indicates the presence of additional
ghost beams which have a longer path length (larger modulation index) leading to
more signal energy at higher frequency harmonics and which could explain parts of
the excess noise of the COBRI measurement. Not specifically shown here is another
effect of the used COBRI prototype: During its assembly and initial testing, M.
Mahesh discovered a “signal envelope,” a signal around the modulation frequency
correlated to the polarization of the laser beam, that distorts the DFMI signal and
creates a characteristic enveloped signal, different from other free beam DFMI setups
tested so far. Its origin and effect are still being investigated, and we consider it
another likely cause for the excess noise observed from the COBRI.

—— COBRI (C1) —-== Expected Signal Envelope ~ |J,,(m =~ 9)|
—— FreeBeam (B1) -+ Signal Envelope for ~ |J,(m =~ 90)|
101_
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Figure 10.11: Signal ASD for a single FreeBeam and a single COBRI channel. Above
frequencies of 15 - f,,, = 7500 Hz there is significant signal energy above the expected level
(red dashed line). An additional DFMI signal (ghost beam) with i.e. a x10 longer path
length difference (dotted red line) could explain this excess signal.

As of now the setup is still several orders of magnitude less precise than the previ-
ously achieved noise-floor of ~ 230 fm/ VHz. The next steps would be to improve
upon the setup by increasing the amplifier gains and the optical contrast to improve
the ADC filling-factor «, repeat the measurement in a vacuum environment to re-
move noise due to air fluctuations, and stabilize the laser frequency (and power)
by locking it to one of the two free beam interferometers. For the COBRI, addi-
tional baffles and software schemes to subtract static ghost beams from the signal
could also help to improve the readout. Newly ordered optics aimed to reduce the
undesired polarization effects and the resulting signal envelope should also help to
remove the excess noise in the next COBRI prototype.
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Chapter 11

Conclusion

Motivated by a limited sensitivity of current ground based gravitational wave de-
tectors around 3 Hz due to alignment and control noise, I present and discuss the
use of deep—frequency modulation interferometry (DFMI) based sensors for the lo-
cal displacement readout of the optics in these detectors to improve upon these
limitations.

The readout algorithm (by Heinzel et al. [54]) used in previous DFMI experiments
to calculate the distance information from a measured DFMI signal relied on a non—
linear fit algorithm which was computationally expensive and limited the readout
bandwidth to ~ 100 Hz. The two main results of my Ph.D. work presented in this
thesis are a new and potentially faster analytic readout algorithm for DFMI signals
presented in chapter 4, and the noise analysis of DFMI signals using the CRB pre-
sented in chapter 8.

The “analytic readout algorithm (ARA)” I developed does not iteratively fit a model
signal but instead calculates the DFMI signal parameters by arithmetic calculations
from the measured signals. While a first implementation has already shown an
increase of the readout speed by a factor of ~ 20, its non—iterative structure allows
for its implementation within an FPGA can yield an even higher readout speed up
to the used sampling frequency of ~ 1 MHz.

Presented as an extension of the ARA, I also analyzed the changes of DFMI signals
for a fast moving target (dynamic DFMI signals). By using the dynamic extension
to the ARA presented here, I am able to improve the precision in some extreme
(purely linear moving) cases by a factor of 10* compared to a readout where the
changes to the ideal DFMI signal are ignored.

With my analysis of how noise affects the DFMI readout, I could show that the
analytic readout algorithm performs close to optimal precision, given by the CRB,
for the intended use case for a local displacement readout.

The analysis of the Cramér-Rao bound for DFMI signals presented in this thesis pro-
vides new insight into how additive white noise affects the precision of the different
DFMI parameters and allows for an a priori prediction of the achievable precision
for known noise sources in an experiment.

By calculating the CRB for the response of an optical cavity to a phase modulated
signal, I was also able to show that the amount of Fisher information in the signal,
and thus the precision of the length readout, can be significantly increased by com-
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bining a DFMI signal with an optical cavity. This served as initial motivation for
the presented ReDFMI concept, which allows for an even higher precision readout
for local displacement sensors in the future.

Lastly, the experimental implementation of the ARA presented in Part III demon-
strates the functionality of the algorithm in a real experiment, and it incorporates
the first ever readout of a COBRI sensor prototype. A significant part of my Ph.D.
work involved the commissioning of the hardware and computing infrastructure that
was used to operate this first experiment, and while it is only briefly mentioned in
this thesis (and mainly in Appendix G), it will help to pinpoint sources of excess
noise and allow for several improvements to the setup in order to reach the theoret-
ical optimum with sub-picometer precision in the future.

Besides these local improvements, steps are being taken to implement a LIGO com-
patible CDS into the here used (MTCA) hardware which would allow for an easy
implementation of the COBRI and ARA into i.e. the LIGO detectors.

While the final decision, which local displacement sensor to use in LIGOs future has
not been made yet, both COBRIs and the here developed ARA are major contenders
for an implementation in LIGO post-O5 upgrades within this decade, which would
significantly improve their sensitivity in the low frequency regime and thus allow for
an earlier detection and a higher SNR of the detected gravitational waves.
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Appendix A

Appendix

A Exact DFM interference signal

In complex phasor notation, the electric field of laser signal can be written as

EDFMI(tu 7_) _ EO . ei(wm’—l—Awrsin(wmt—s—d))). (Al)
WDFM
Ly
L
Ly Lo

Figure A.1: Typical DFMI setup with laser frequency wprm = wo + Aw sin(wpt + ¥)
and its unequal arm-lengths L1 and Ls.

For a DFM interferometer setup as shown in Figure A.1, the signal measured on the
photo-diode (the time averaged Poynting vector) can be written as:

. . 2
Prxact () = coeoRpp HEDFMI(t> 70) + Eprmi(t — 71, 7o + TL)H (A.2)

with ¢ being the time of measurement, 74 := (Lo + 2Ly + L3)/co as propagation time
of the beam traveling along the upper arm and 7, := 2(Ly — L1)/co as propagation
time difference between the two beams traveling through L; and L,. Expanding
(A.2) yields:

. . 2
Prxact () = coeo Rpp HEDFMI(ta 70) + Eppw(t — 71, 70 + 1)

(A.3)

= cocoRpp B (2 +2 K cos (wOTL + Aw(ry + 71)

optical contrast

~~

=sin(Wmt+1) —wmTL cos(Wmt+1)+O(wmTL)?)

: §in(wmt + - meLl —AwTy - sin(wp,t + ¢)>) (A.4)
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= coeoRpp E22 (1 + K cos <£+ m -sin(wpt + ) — (@—i—m) Y cos(wWpt + 1) + O(w%)))

wor AwWTL AwTg WmTL
(A.5)
—cocoRpp E22 (1 + K cos (go 4 m - sin(wpt + w)) (A.6)
— Ypk(mg + m) cos(wpt + 1) sin (go +m - sin(wpt + ¢)> + O(¢i))>
=: Pgeal(t) + Papprox(t) + O(17) . (A.7)

Besides the ideal DFMI signal

Pieal(t) = 2coeo Rpp Eg + 2060 Rpp Ej K - cos <wOTL + AwTyg - sin(wy,t + w)>, (A.8)
N —~ N ~— ——  N——

=B =:A [ m

the exact expression of the power of the DFMI laser beam also contains additional
terms proportional to ¥y, := w,, 7. Due to the relativly small modulation frequency
Wy, these terms are generally small (¢, &~ 107% in the experimental setups discussed
in this thesis) and can be neglected. In leading order, the difference between exact
and ideal signal can be expressed by Pupprox, Written as:

Popprox(t) = YA (mg +m) cos(wpt + 1) sin <gp + m - sin(w,,t + @b))
=AwTy+AwTy,

Using coszsiny = 1/2sin(z 4+ y) — 1/2sin(x — y), shortening the expression by
writing x := (wn,t + ©) and using the Jacobi-Anger identity this can be expressed
as Fourier series via:

Popprox(t) = ¥p, - KA(mo + m) - cos(z) - sin(p + m - sin(x))
= - Loy +m). (Z Tulm) s (p+ (n-+ 1)a) — Ju(m) sin (5 + (n 1>x>) .

Reordering the indices and applying the recurrence relations J,,_1(m) — Jy41(m) =
20J,(m)/0m also allows one to write the approximation term as:

KA

Pappros(t) = thr, - ==(mo +m) Y (na(m) = Juia(m)) sin (¢ + nx)
neZ :2 g(irjn(m)
= - KA(mg +m) - 6% (; Jp(m) sin (¢ + m:))

=sin(p+msinz)
= - KA(my + m) - sin(zx) cos(p + msin z)
= - (mo +m) - sin(wpt + 1) - Pgeal(t) -
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B Calculations of the exact ReDFMI signal

As already stated in section 6, we start from the complex Phasor description of the
DFMI signal given by

EDFM(t77_> — EO ei(onJrAwT-sin(wmter))‘ (A9>

with ¢ as time of emission and 7 as (fixed) propagation time. The signal transmitted
from a Fabry-Perot cavity as shown in Figure 6.2 with identical reflective coefficients
r for both mirrors (with reflectivity R := r? and transmissivity of (1 — R)) can be
written as the sum over all reflections that exit the cavity at the same time given
by the time of emission plus the propagation time ¢ 4+ 7. The first beam emitted at
time t that would go "straight through” the cavity would travel some time until it
reaches the first mirror, travel through the cavity and exit at time t + 7. The beam
that is reflected twice (once at each mirror) before being transmitted would have
been emitted at an earlier time ¢t — 7, with 7, = 2L/¢q so that after a propagation
time of 7o + 77, it would exit the cavity the right at time (¢t —77) + (70 +72) = t + 7o,
and so on and so forth.

(1 — R) . EDFM(t,TO)

(I—R)'R'EDFM(t—TL,TQ+TL)

Ly

Figure B.1: Sketch of a Fabry-Perot-Cavity where both mirrors have the same reflective
coefficient r.

As series this can be written down as

ERQDFM7 trans(ta T) = (1 — R) Z Rk EDFM(t — /ﬂTL, T0 + kTL) (AlO)
k=0
(4.9) (1—-R)Ey Z REei(worthwotr +Aw(To+kTr ) sin(wmt—kwmTr+40))
k=0
(A.11)
—. (1 - R)EO Z Rkei(gooJrkgoL+(m0+kmL)-sin(wmtfki/)Lero)) <A12)
k=0

with ReDFMi parameters

Wo - To =2 Yo Wo: TL =1 QL  Wm-To=: YL
Aw-19=:myg Aw- 7, =:mp



150 A. Appendix

Next we use the Jacobi-Anger expansion

e = 3 T ( (A.13)

nez

to further rewrite the signal to

ERreprm, trans(t, 70) = (1 — R)Ep Z RFeileother) Z I (mo + kmL)em(w’”t_kw“%)

k=0 nez
(A.14)
= Z ((1 _ R)Eoei(soo+ml)o) ZRkeikan(mo + kmL)einkwL> einwmt
— Oy
(A.15)

This expression already has the general shape of a complex Fourier Series like

EReDFM trans t 7-0 ch eznwmt <A16)

nel

with the fundamental frequency w,,. What remains is to find a closed expression for
the ”"C,,” term, e.g. the term inside the brackets in (A.15).

To find a closed expression for the C),, we start by using the ”Hansen-Bessel formula”

1 L .
Ju(m) = 5- / gino—msin(@)) o (A.17)

to replace the appearing Bessel function with an integral expression. Using it, we
can write

A5 . > , ‘
c, 2 ((1 — R) Byl o) 37 Reeiher g (mg + kmL)e_”‘WL> (A.18)
k=0
(A.:17) (1 —2R)E0 ei(¢0+n¢0) ekz(ln R+ipr) /ﬂ— ei(na—mo sinoc—kmp, sino) do 6—ink1/JL
™
k=0 o

(A.19)

- S
:(1 — R)EO ei(gp0+n1/10) / do ei(nofmo sin o) Z ek (In R+i(pr—nyr—my sino))

2
- k=0

(A.20)

The sum over k on the right corresponds to the geometric series which can be written
as:

00 00
Zek(lnR+i(g&L—nwL—mL sing)) _ Z lnR—H (pr—mypr—myp, sma))k <A21)
k=0 k=0

_ ! (A.22)

1 — eln B+i(pr—nyr—my sino)
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Plugged back in, this yields

_ (A= B)Eo ippinpe) [ i(no—mg sin o) 1
C, = o e - do e Ty e eyl
(A.23)
(A—17)—(1 _ R>E0 i(@0+n¢0) T 67:(710'—7'710 Sino')
B 2m ‘ _r 1 — elnR+i(pr—nyr—my sino) do (A24)

The final step in the calculation is to solve the integral in (A.24). To do this we
rewrite the expression as integral in the complex plane and solve it by applying the
residue theorem of complex analysis.

Starting with the integral and again using the Jacobi—-Anger expansion we can write

T i(nc—mg sin o) T ino —ilo
e (a13) [T €73 g Ji(mo) €
/71- 1— elnRJri(chfm/)Lme sino) do == /71- 1— Rei(chfm,lJLme sino) do (A25)
w ei(nfl)a
- Z Jl(mo) /_7-( 1 _ Rei(ch—nlpL—mL sina) dU

l€Z

(A.26)

Substituting z := €' this integral becomes an integral of z over the unit circle S;

(1-Sphere) in the complex plane (with an additional 1/z factor from the substitution
do =dz/z).

4 ei(nU—mo sin o)
/71' 1 —eln R+i(or—nyp—myg sino) do (A27)
4 eliln=1)o
= ZJz(mo)/ 1 — Reiler—npr—mysino) do (A.28)
LEZ -7
plO (nfl) d
(z:=¢'7) 5 _Z
= ;Jz(mo) /S ce (1 = Reller—nin) gimpsin(iinz)) (A.29)
€ 1%
Z(n—l—l)
= Z Jl(mo) / ) my (22—1) dz (A‘go)
ez S1eC (1 — Reiler—my1) 6_7T>
= 1(2)
= Z Jy(myg) f(2) dz (A31)
€7 S1CC

Since this is a closed integral in the complex plane we can apply the residual theorem
to calculate the integral via

/S . f(z) dz = Z 27i - Res(f, 2). (A.32)

z€Residuals in Sy

Firstly, we can directly read off the singularities of the nominator of f(z) in (A.30),
which is a pole of order (n —1—1) at z = 0. The denominator however also diverges
in the limit of z — 0 and scales with oc 1 — !/,

z2—0

. m 227
lim <1 — Reiler—mn) =315 ”) = 00 (A.33)
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Further calculation yields that the residual at z = 0 is in fact zero:

Res(f,z=0)=1limz- f(z) =0. (A.34)

z—0

The other singularities would be given by the zeros of the denominator of f(z) which
requires a few more steps. First, we find the zeros of the denominator by calculating:

_myp (z%-1)

0 =1— Reller—mvr) o= 5= (A.35)
: my (25 — 1)
< 0=InR+i(p, —nyr) — 5 (A.36)
0
2
= O:z§+m—(lnR+i(g0L—m/JL)) cz9— 1 (A.37)
L
VS 5 I
N <i\/(1nR+z(g0L2 mpn)? | (mR (e n¢L))) (A.38)
mi, mr

Thus we found that the denominator of f(z) has two singularities, one at zp_ and
one at zp_. At this point I also want to define an auxiliary variable of

~ InR+i(pL —niyp)
= o

0, :

(A.39)

which allows us to write the values for zp 4 as:

200 = —0, £ /02 +1 (A.40)

which makes the following equations a little shorter. Since we derived these singular-
ities from a quadratic equation, I start with the assumption that both singularities
are 1st (or 2nd order) poles and try to calculate the residuals directly via:

(2)

u
A\

Ve

_ (n—1-1)
Res(f,20+) = lim (2 —241)- f(2) = lim (2~ 204) - (A.41)
2—r20,+ 2—20,+ (1 _ R@i(%%_m/’fl)@% (z —1)>
::"L:(z)
In the limit of 2 — 2+ and using the two simplifications:
22, —1 A
( 0,4 ) (A.37)ﬁ(14.39) —920, and eLbn _ Reiler—mir) (A.42)

20,4+

we find that both nominator and denominator of (A.41) become zero. To calculate
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the limit we must apply L’Hoptial’s rule which yields:

lim u(z) ~ i u'(2) ~ lim 2= 4 (n— 11— 1) (2 — Zo,i)z(n_l_m (A.43)

Z—20,+ v(z) Z—20,+ U’(Z) 220+ 0 0 mucu '

_emL n —e 2
0z
_ TR my 2

_ g 2TV A (= (e = 204)2 (A.44)

e my, (22 my (z2-1) ‘

—20,+ emLanTL(z——;l) .e 2L z
(n—1-1)
20,+
— ’ A.45
(z2 +1) ﬂ(zg’i_l) ( )
emLGnﬂ% .e 2 20,4
20,+
(A.42) Z((Jfliilil) A .46
o 0, mrp (.41 —myp,6 ( ' )
emL n_zvg—i ceTmLUn
(n—1+1)
2 z

I (A.47)

my (254 +1)

Now, applying the residual theorem to calculate the integral in (A.32) yields:

/Slgc f(z) dz= Z 27i - Res(f, z) (A.48)

z€Residuals in Sy

. (n—1+1) (n—1+1)
4 Z 2. _
Ly (A.49)
mp (zo,+ +1) (z07, +1)

477 1 (n=I+1), 2 (n—1+1), 2 >
mp, (Zg,+ + 1)(23,_ +1) <ZO’+ (z07_ + 1)+ 2 (ZO,+ +1)
(A.50)

This expression can now be further simplified. By substituting a second time with

1 (oL —
x := arcsinh (6,,) = arcsinh < nft i mZ)L)) (A.51)
mrp,
the the 2z + values can be written as:
20,4 (404D sinh(x) + 1/sinh®(2) — 1 = — sinh(x) % cosh(z) (A.52)
= 24+ =€ and z_ = —e". (A.53)

Using (A.53) in place of zp 1 yields the relations

2z =e e =1 (A.54)

e
and (204 +1)(z_+1) = 4 cosh® x (A.55)
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Plugged back into (A.50) this yields

i n—l+1) (n 1) 4 (n=l=1) | (n=l-1)
/Slcc /z) my, cosh? x \"OF o K ( )
= T et e ) et (e ) | (A5T)
my, cosh” x — v
=2coshz =—2coshz
o
_ X (6_(n_l)x+e(n—l)x) (A58)

my, cosh x

Using this, we can now write the earlier integral expression of (A.27) as

m 2(n0 mo sin o)
[Wl €1nR+7’(§0L nyr—my sino) do = Z‘Jl mO) f(Z) dz

lez S
9
= Z Ji(mo) # (em(n=he 4 ln=h) (A.59)
my, cosh x
leZ
_ J —nx zl (—ix) ne zl (iz A
T (D SICIER D ST IO
leZ US4
2m -
_ —nx imo sin(—iz) nw zmo sin(iz) A 61
my, cosh x c° te ) ( )
2mi : A
_ —nx+mo sinh(x) nz—mg sinh(z) A.62
my, cosh x (6 te ) ( )
Ai
= Fzr)zshx cosh (nx — my sinh(z)) (A.63)

_ 4mi cosh (narcsinh 0, — mg0,) (A.64)

Plugging this expression for the integral in (A.24) yields for the C,,:

: 21
= (1 — R)Eyelvotnvo) =" ¢osh — inh A.
C, = (1 — R)Eye ——— cosh (nz — mgsinh(z)) (A.65)

This allows us to write the transmitted electric field phasor of the ReDFMI signal
as:

21 . ,
E © rans 14 1—R)E E——— h — inh i(potnipo) | Linwmt
ReDFM, trans (£5 70) = ( )Eo EGZ T coshz cosh (nz — mgsinh(z)) e e

(A.66)

The signal measured with a photodiode of such an incoherent EM-wave would be
proportional to the (real valued) averaged Poynting-vector

(S) = LR(E x H"), (A.67)

which corresponds here to (S) o< | ERepru, trans|®
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C Regularity Conditions for the Cramér-Rao bound

The Cramér-Rao regularity conditions as written in [73], for a statistic model /
estimator 7'(x) and a random variable X with variable € (such that the probability
distribution of X is a function of p(z,0)), are:

1. The set © C R is open.
With 6 € © as the set of possible values of 0. (If © were only half-open or
closed, the derivative at the boundary of ©® would not exist).

2. Q:={z € R" : p(z,0) > 0} does not depend in ¢, and the derivative
0/001n p(x,0) exists and is finite for Vo € Q,V0 € O©.

The derivative, being the Fisher-Information, is always defined.

3. For an estimator T with finite expected value E[T] < oo for V8 € ©, the

integraion over x and differention with respect to § commute for the expected
value E[T7; i.e.

g [ oo 0T (@)de = /Q O (e, 0)T (@) (A.68)

The probability distribution and the estimator are ”sufficiently smooth”.

D Additional considerations for the CRB of cor-
related noise

For noise correlated to the main signal, the (joint) probability distribution of an
extended measurement can not simply be written as product of the (not explicitly
time dependent) probability distributions of a single measurement as done in (8.9).
It might however still be possible to derive the CRB for such cases without actually
knowing the precise joint probability distribution (and its behavior over time). Using
the “chain rule of probability,” we can write the joint probability distribution p(z) =

p(x1,...,xN) as

o(z) = pi(a) - / (21, al ) dT (A.69)

Q;

Calculating the derivative 0/0z; of (A.69) yields the later usefull equation:

0 0 , ,

= axip@) = a—gjzpz(xz) : /Q, play, ..., 2, ... o) dx; (A.70)
) i)
5 P(Z) 5 pi(:)

PZ) g ATl
e A
= 0 Inp(z) = 0 In p;(z;) (A.72)

axi p =) axl pl 2 .

Le. the partial derivative of the logarithm of the full/joint probability p equals the
partial derivative of the specific individual distribution p;. Using this expression



156 A. Appendix

when calculating the CRB then yields:

_ 5 )
Fly =E (%lnp(g, 9)) ] (A.73)
S )
total derivative axl a
pal E . 1 A.74
(lzl 90 Oz, np(w)) (A7)
: ZN or; 0 ’
(A.72) X

N
(8.8) 0s; 0 ( 1 ) 0 ((a:Z — 5 — M)Z)
T E iy 1 _

—~ 90 <8$i ! V270, Ox; 207 s

(.

- 0._];2(171'_51'—#)
- (A.76)
N
Expanding the (...)? asi 0s.: 1
= 27 3_01 : P E [(xz — (s + ) (x; — (55 + M))} (A.77)

=Rzz (tiatj ) - (S’L+H’) (Sj +lu‘)

= |Fly = Y _ (83(875;, 9>> (83%‘;’ 9)> : 0; 5 (Raatisty) = (s(ts) + p)(s(t;) + )

i

ij=1

(A.78)

I want to note here that for WSS noise n, the autocorrelation only depends on the
time-difference ¢; — ¢;. The signal s is however generally not WSS and the full mea-
sured signal x = s + n therefore also not.

While the autocorrelation of  can be decomposed into the auto- and cross-correlation
of its constituents:

rT=s+n = Rmz(tzatj) = Rss(ti7tj> + Rsn(tiu tj) + RSTl(tj)ti) + Rnn(tz;tj) )
(A79)

I was yet unable to find a useful expression from inserting this term back into (A.78).
Maybe some additional assumptions as i.e. s being somehow WSS and the use of
Plancherels theorem theorem might provide a more useful expression for the Fisher
Information somehow derived from the the auto- and cross-spectral densities of the
signal s and the noise n. For now, it remains however an open problem which I was
unable to solve yet.

E List of used integrals of DFMI signal deriva-
tives

This section contains a selection of integrals of the squared derivative of the ideal
DFMI with respect to different variables. These integral appear when calculating
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the Fisher-Information or CRB of a DFMI signal for different signal parameters.
The integration period is always assumed to be (exactly) an integer multiple of the
modulation period i.e. T = 27/w,, - N. Such that terms containing the modulation
frequency exactly vanish, i.e.

T
/ cos(0 + kwt) =T 0k - (A.80)
0

Integration of the ideal DFMI signal yields:

/0 ' dt Paeal(t) = /0 : dtA (1 + cos(m - sin(wpt + 1) + ¢)) (A.81)
_ /0 " (A + AN J(m) cos(n(wnt + 1) + go)) (A.82)
=TA+AY Ju(m) /0 ' dt cos(nwpt + nap + ) (A.83)
—TA+A g Jn(m) 60T cos() (A.84)
=TA(1 +7jf€oz(m) cos @) (A.85)

The integrals appearing when calculating the Fisher-Information for additive white
gaussian noise for the different DFMi parameters are: For ¢

/OT dt (W%;g(t)y = /OT dt A% sin®(m - sin(wp,t + ) + ¢) (A.86)
_ /0 Lt a2 % (1= cos(2m - sin(wnt + &)+ 20)]  (A87)
= TA; — A; OT dt cos(2m - sin(wy,t + 1) +2¢)  (A.88)
= TA; - T%2J0(2m) - cos(2y) (A.89)
- TA; (1 — Jo(2m) - cos(2¢)) (A.90)

— var(p) 20° (A.91)

= FTAZ(1— Jy(2m) - cos(29))
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For m

T 2 T
/ " (aPDFM(t)> _ / dt A2 sin(wpt + 1) sin?(m - sin(wnt + ¥) + @) (A.92)
0 om 0

2

T A
_/ dt T {1 — cos(wpmt 4+ 1) — cos(2m - sin(wp,t + 1))
0

1
+ 3 cos(2m - sin(wpt + ) + 2¢ + 2(wt + 1))

+ %cos(Qm -sin(wpt + ) 4+ 29 — 2(wt + w))] (A.93)

:AZQ {T —0—Jo(2m)T + %Jg(Qm) cos(2¢)T + %Jg(Qm) cos(2p)T

(A.94)

:Tf [1 — Jo(2m) + Jr(2m) COS(Z@)] (A.95)

— var(ih) > do” (A.96)

— fsTA%2(1— Jo(2m) + J2(2m) cos(2¢)) '
For A
/T dt <8PDFM(t))2 = /T dt (1 + cos(m - sin(wmt + V) + ¢))° (A.97)
0 dp 0

= /0 dt% + 2 cos(m - sin(wy,t + 1) + ) + cos(2m - sin(w,,t + ) + 2¢p)

(A.98)

= T(g + 2Jp(m) - cos(p) + %Jo(Qm) : cos(2g0)> (A.99)

A 207

— var(A) (A.100)

= fsT (34 4Jo(m) cos(p) + Jo(2m) cos(2¢))
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For ¢ (substituting w,,t + 1 =: x for readability):

/OT dat (W%L@ZMY = /OT dt A*m* cos®(z) sin®(m - sin(z) + ) (A.101)

T 2.2
:/ thm
0 4

1 1
— —cos(2m - sin(z) — 2z + 2¢p) — 5 cos(2m - sin(x) + 2x + 2¢p)

1 + cos(2x) — cos(2m - sin(z) + 2¢)

2
(A.102)
_ A o T Jo(2m) cos(2¢p) — gJQ(Zm) cos(2¢)
- %J_2(2m) cos(2g0)] (A.103)
_ TAimz 1 — Jo(2m) cos(2¢) — Jo(2m) cos(2¢) | (A.104)
_ TA4m (1 _hem) cos(2<p)) (A.105)
n 40°
— var(y) 2 fsT A% (m? —m Ji1(2m) cos(2¢)) (A.106)

In the expressions above, o2 is the variance of the gaussian noise given in the units
of the measured signal. If one would want to calculate the CRB for a given ex-
perimental setup, appropriate conversion factor may need to be added (multiplied)
either to the noise (o) or the signal (A) to ensure that noise and signal are given in
the same units.
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F The electronic segment in detail

The electronics segment of the DFMI phasemeter test-setup consists of 5 parts: The
conversion of the optical signal into an electrical one by the PD. The amplification
of the small photo current by a trans-impendace amplifier. The (low-pass) filtering
of the amplified signal. The generation of an offset and a signal inverter to generate
a fully differential output. And finally the digitization of the electronic signal by an
ADC.

An overview of the used electric circuit is shown in Figure F.1 with its individual
parts and the resulting transfer function discussed in the following subsections.

PD

N

«k

Ipp eff

trans-impedance

L low-pass filter offset & output inverter ADC
amplifier

+ additional low-pass
(anti-alias) filter

T T. T T T
[’mnp Lﬁhvn l’m\m’»; I_r‘nul Lum.im

Figure F.1: Overview of the electronic segment of the readout chain

F.1 PD characterization

As Photodiodes we used LAPD-1-09-17-T0O463 InGaAs photodiodes for the free-
beam setup and two MTSM2601SMF2-150 InGaAs photodiodes glued directly to
the QMC (direct and indirect output) as part of the COBRIs. Table F.1 shows some
characteristic values of these two photo-diodes extracted from their data-sheets. In

Bias Voltage Ug;.s | Responsivity Rpp | Dark Capacitance
In-Air PD 5V ~ 14 ~ 60 < 55pF < 80
COBRI PD 0.83V ~ 0.7874 NA

Table F.1: Characteristic of the used photo-diodes extracted from their data-sheets by
use of a Plot-digitizer application (”WebPlotDigitizer”)

our configuration we set the photo-diodes in "reverse bias” mode. For an unbiased
PD the photo-current flows in the direction of the PDs Anode (+) to Cathode (-)
pole. When supplying a positive Bias voltage to the PDs cathode, the depletion
area of the semiconductor becomes larger, the reaction time becomes shorter (the
signal bandwidth becomes larger) and the photo-current will flow ”away” from the
PDs Anode. The direction of the PD in a circuit is in this case flipped or "reversed”.
This mode of operation is called "reverse bias” mode.




A. Appendix 161

For the Free-Beam PD, the internal capacitance for unbiased operation is given by
~ 140pF. With a bias voltage of 5V this capacitance if halved down to = 7OpF.
While the dampening effect on the harmonics of the expected DFMI signals (with
~ 500Hz as modulation frequency) is relatively small, running the Photo-diode
in revered bias mode lowers this small attenuation of the harmonics further by
another factor of ~ 2. The trade-off for this setup is a higher parasitic capacitance
and a slightly higher dark current (offset) of about I =~ 0.275nA and a higher
capacitance.

| CCable
N\ ”
UBias
UBias H RSH + RCable #

Figure F.3: Circuit model of a Photodiode. Be-
Figure F.2: Schematic symbol of sides the ideal diode and the photo-current, there

a Photodiode. Ideally it only acts is an additional dark current Ig,.x, a shunt resis-
as a current source with an output tance Rgp and a junction capacitance Cj. This
current proportional to the incom- capacitance (and the dark current) depend also
ing light Pppum on the Bias Voltage Ugias.

For an optical signal Pppyv on the photo diodes, the resulting current Ipp g is given
by

Ipp e = Rpp * Porm + Ldark - (A.107)

F.2 Trans-Impedance Amplifier (TIA) stage

The trans-impedance amplifier stage (sketched in Figure F.4) amplifies the small
photo-current to a larger voltage by using an operational amplifier.
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| |CG Figure F.4: Sketch of

a simple trans-impedance
amplifier with inverted
output. The value of the
@ Rg —r resistor Rg corresponds to
the gain of the amplifier.
Connecting incoming sig-
nal Ipp o and the feedback
current (R%; + iwCq)Uamp
to the negative port of
the OpAmp leads to an
inverted (negative) voltage
output.

Ipp it

1||—

Applying Kirchhoffs law for the arising currents (shown in red in Figure F.4) allows
on to calculate the transfer function directly as:

i g

0= Ippe Uam wCqUamy, < ———————— Ipper = Uam A.108
PD,fH—RG p T+ wClqg p 1+ iwRaCa PD,eff b ( )

The ”amplification” or gain of the amplifier circuit mainly scales with the value of
the feedback resistor Rg. The feedback capacitance Cg main purpose is to dampen
potential resonance frequencies of the OpAmp component. An ideal OpAmp acts as
a "large gain” amplifier of the voltage difference between ”+” and ”-” port with a flat
frequency response. Real OpAmps are however not completely flat and, together
with the the capacitance of the connected cable, can have resonances (usually at
high frequencies above > 1MHz). To damp them ”"away”, a small capacitance is
added.

In my amplifier circuit, the incoming photo-diode signal is in a range of 0 < [}, <
1 wV. With supply voltages of Vo = £5V, I chose a value of Rg = 3.32k() and
Ce = 100nF, which lead to an ideal gain of 3320 V/A.

F.3 ”Sallen key” low-pass filter stage

The frequencies of interest for in our DFMI setup are relatively low (multiples of
500 Hz for the DFM harmonics) compared to the signal sampling frequency of fg =
1MHz. To reduce the readout noise we add a second order ”Sallen-Key” low-pass
filter to filter out additional high-frequency signals. Applying Kirchhoffs laws to
the occurring currents and Voltages (ignoring the OpAmp for now) yields the 3
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Q

Uamp + Rf1 el + Uﬁlter1

Figure F.5: Some text

equations:
Uamp - Uﬁlten = Rfl Il + - [3 (A109)
wlg,
1
p £, 1+( f2+szf2) 2 ( )
L=1+1 (A.111)

In a stable state the Voltage level at the positive (Up) and the negative input (Uy)
of the OpAmp must be identical (Up = Ux = Uger,) Which yields an additional
equation between the input voltage U,mp and the voltage the junction of Up:

Usmp — Up = Uamp — Utitter, = Ry 1 + Ry, 1o (A.112)

Solve this set of 4 linear equations (and eliminating I, Io & I3) yields the (well
known) transfer function of this Sallen key topology:

1 .

Ustter, (W) = : U A113
filt (w> 1 + Z(A)Cf2 (Rfl -+ RfQ) — W2Rf1 RfZCfl Cf2 p(W) ( )
2
Wr ~
= Frie o el (A-114)
2 ~
= = + Uamp (w)

(;"—g;(i — /A7 1) —i—w) (;—5(2' /407 1) —I—w)
(A.115)
(A.116)
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with wy = /Ry R, Cy, Cp, and Q = ~ RflRfQCfle2. Figure F.6 shows the ideal

Cty (Rey +Ryy)
and the measured transfer function (measured with a ”MokuPro”) for the amplifier
circuit I build.

Bode-Plots of the transfer-function of the Sallen-Key Filter stage

i 100_
=
=
g 107
ch ]
— 1072 5
(<D} ]
E
E 10—3 -
[oh
s
3 10—4 4
10" 108 10° 107 10°
Frequency in [Hz|

—ZW 1 === ideal cutoff frequency

297 . )
N i | — ideal TF F100 €
g 2 —— measured TF &
= LA <
= o
2 0 0 g
F —Lir4 3
< 4 E
ol 14 5

i - —100 ﬁ

_3 ]
1
- 1
10! 108 10° 107 10°

Frequency in [Hz]

Figure F.6: Plot of the ideal and the measured transfer function of the Sallen-key low-
pass filter build. The circuit design is shown in Figure F.5 and was realized with the values
Ry, = 30k, Ry, = 18k, Cf, = 100 pF, C, = 47 pF.

In the full electronics chain two identical Sullen-key low-pass filter are chained one
after the other. The transfer function between Uwlp and Uamp — Uﬁ]terl — UﬁlterQ is
then just the square of (A.116):

wi

@%@— 4@2—1y+wf(§gr+ 4@2—1y+wf

Uﬁlterg (W) = : Uamp(w)

(A.117)
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F.4 Offset stage and Inverter stage

The ADCs we use ("LTC2378-16”) have a fully differential input with one positive
and one negative pin and digitize the voltage difference AV between these to pins
with values between AV € [-5V, —5V]. Since the initial PD signal only provides
signals between 0 A and ~ 2mA and the following amplifier stage only multiplies
this signal with some gain factor GG, I needed to add an offset and convert the signal
from single ended to differential in order to make use of the full [-5V, —5V] Voltage
range of the ADC.

At the end of the filter stage the signal scales between zero and the supply voltage
so that Ugier, (w) € [0, =5 V]. In the offset stage I add an (inverting) offset of +2.5V
(vielding Uoy € [-2.5V,+2.5V]) and invert the signal to get an additional output
of Usut, iny € [+2.5V, —2.5V]. The voltage difference that the ADC digitized is then
in the range of Usyt — Usut,inv € [-5V,+5 V].

During the first measurements using the circuit presented here, an excess noise was
detected which was ultimately the result of internal resonances of the non-ideal
OpAmps. Additional capacitors (shown in grey in the following circuit diagrams)
were added later to dampen them and reduce the excess electronic noise. For the
idealized circuit design, I neglect their influence (and the non-ideal behavior of the
OpAmp) in this section.

F.5 Offset stage

To add a stable offset voltage we used a specialized chip (a "MAX6126AASA50+")
which provides a stable +5V reference voltage. (For the COBRI PDs this voltage is
regulated down with a very stable voltage divider to 0.83V). The voltage reference
Chip can however only supply a very small current and since the same voltage is
used as reference for up to 16 readout Channels, I use an additional Operational
Amplifier as an (inverting) buffer to not draw too much from the (reference) offset
supply. Figure F.7 shows the circuit diagram of this (inverting) offset stage. Like
before, the transfer function can be easily read off by applying Kirchoffs current law:

1 1 1
Uﬁlterg + —Uoffset +
Roffset offset

Uout =0 — Uout - (Uﬁlterg + Uoffset)
(A.118)

Roﬂset

F.6 Inverter stage

Finally, the ADC we use have a fully differential input with one positive and one
negative pin and digitize the voltage difference AV between these two pins.

1 1
Rinv UOUt + Rinv UOUt’inv =0 — Uout,inv = _Uout (A119)

F.7 The used ADC

In the experimental setup, using the MTCA infrastructure discussed in the next
chapter, an ACQ425ELF Board (from the company D-TACQ) was used to measure
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. Roffset .

Uﬁlterg + Roffset . 4

Uout

Roffset
L]
L]

I

Uoffset

Figure F.7: Circuit Diagram of the ”Offset stage”. By using an OpAmp as inverting
buffer we prevent drawing too much power from the Offset Voltage source.

Uout + Rinv

Uout, inv
1|—

Figure F.8: Circuit Diagram of the ”Inverter stage”.

the signals. One the ACQ425ELF board are 16 "LTC2378-16" ADCs which are con-
nected by a ”VHDCI” (half-inch 68-pin D-Sub) connector to an electronic amplifier
and filter board (Figure 10.4).

In its datasheet, the "LLTC2378-16" ADC is specified to have a SNR of 97dB and a
total harmonic distortion of < —103dB for signals around 2kHz. For an ideal har-
monic with an (maximal) amplitude of ~ 10V (2 x 5V at the end of the differential
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amplifier), the given SNR translates to a white-noise floor of

CADC whitenoise & 0.14mV = 1.2.107 M= (A.120)

VHz

and
PTHD ~ 027% Pideal . (A].Q].)

With these values much smaller than the expected white noise from the remaining
electronics and the harmonic distortion from the modulation signal (both discussed
in chapter 9), the noise characteristic of the used ADCs won’t be limiting the readout
performance beyond the limitations set by the 16-bit precision.

F.8 Full electronic transfer function

The ideal transfer function between the Photo-current and the digitized signal
Uapc = Uout — Usut, inv can now be written as:

4
R
Uapc = ;)f (1 + 'w;}% Co) Ipp, et — 2Uofset
<;”—C§(i— 4@2—1)+w> (;—é(i+\/4Q2—1)+w> whaCa
—Ha(w)

(A.122)

This transfer function has both a specific gain and phase delay for different (har-
monic) frequencies that distort the demodulated harmonics and must be corrected
for, to reach a high precision readout.

While the ideal transfer function written above is a helpful for modeling the circuit
and understanding its general behavior, to get the gain and phase factors of the
harmonic frequencies, I use the values derived from the measured transfer function
of the real electronics (which also includes the build tolerances).

G Hardware and Software infrastructure in detail

After amplifying and filtering the analog signal by the electronic circuit discussed
in the previous chapter, the signal in form of an electric current is next digitized
by an ADC and the analytic readout algorithm presented in chapter 4 runs on an
(embedded) system.

The ADCs that I use are integrated components in a larger (MTCA) infrastruc-
ture system that also contains computational units with FPGAs and CPUs. A
large part of my Ph.D. studies revolved around understanding and commissioning
of this computing infrastructure, and specifically the usage of "FPGAs” and the
implementation of the readout algorithm thereon. This chapter will give the reader
an overview of the used hardware and explain their basic functionality. Together
with the specific data-sheets of the individual components, it should be possible to
recreate my setup with reasonable effort.
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Power Supply
Module (PSM)

AMC 2 - ”Z710”

FMC - ” A0420”
(DAC module)

AMC3 .. 16

backplane

RTM 16 - ”ACQ400-MCTA”

FMC-
» ACQ420ELF”
(ADC module)

FMC - "ACQ425”
(ADC module)

Figure G.1: Schematic overview of the MTCA hardware infrastructure that I use.

G.1 MTCA Infrastructure

The infrastructure I used is based on the “Micro Telecommunication and Computing
Architecture (MTCA)” open industry standard. MTCA is a modular Infrastructure
standard specifying "mechanical, electrical, thermal and management” properties
of the hardware. The ADCs and the computing hardware that I use are (all) build
by a company called "D-TACQ” following (mostly) the MTCA standard. Figure
G.1 shows the schematic overview and rough hierarchical structure of this hardware.
From top (MTCA Crate) to bottom (ADC module), the components that I use are:

1. MTCA Crate ”NATIVE-R9” to as frame for the hardware

2. PSM & MCH for basic functionality

3. A 7AM-G6x/msd” AMC board for data processing and as network (ethernet)

server
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4. A 7770”7 AMC board for data acquisition, control of the hardware and run-
ning the readout algorithm

5. A "ACQ420MTCA-RTM” RTM board to as extension for the ”Z7I0” with
addition FMC slots

6. 3 FMC cards ("AO420FMC”, "ACQ425FMC” and ”ACQ420ELF”) which
contain the ADCs and DACs that I use.

G.1.1 MTCA Crate

The top layer of the MTCA infrastructure is the the MTCA Crate holding the
MTCA components. In my experiments, I used a "NATIVE-R9 Crate” that is
shown in Figure G.2. Each MTCA Crate has at least one dedicated slot for a
”Power supply module” (PSM), one for an "MTCA Carrier Hub (MCH)” manage-
ment board, a number of slots on the front and the back for additional modules
following the ”AMC” and "RTM” standard and a connection plane (”backplane”)
providing a physical (PCI) connection for all ” AMC” cards. The power supply mod-

Figure G.2: Pictures of a partially filled ”"NATIVE-R9” (MTCA) Crate. The left picture
shows the front side and the right the back side of the crate. From left to right of the
front side one can see: the PSM, the MCH, an XYA AMC module, two empty slots, the
777i0” AMC module I use, 5 more open slots, and after 3 more ”z7i0” AMC modules. In
the rear / back side, from left two right are: the PSM, the MCH, empty slots, and a single
RTM connected to the z7i0o” AMC that I use.

ule provides power for the crate and all connected components. The MCH is the
"management board” of the crate and allows among other things to monitor the
individual components, regulate their power and configure the connections between
all components. The backplane of the crate, controlled by the MCH, can be for
example be set up such that two plugged modules are directly connected by some
PCI connection (which is something I made use of during my measurements).

With the MTCA Crate, the PSM and the MCH provide the infrastructure basis to
run any MTCA compliant component. More specific functionality for applications
comes from the connected "AMC” (and "RTM”) modules.
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G.1.2 AMC modules

"AMC” stands for ” Advanced Mezzanine Cards” which specifies i.e. the mechani-
cal form factor (to fit into an MCTA Crate), the electrical properties including the
"back” connector (which is connected to the backplane of the crate), power spec-
ifications, and a minimal management system in form of an "Intelligent Platform
Management Bus” (IPMI) system which interfaces with, and can be accessed from
the MCH. I.e. MTCA compliant components usually contain an onboard i2c inter-
face and one or more memory chips containing information like i.e. name of the
board, serial number, manufacturer etc. which can be read from the MCH (with its
i2¢c controller).

During my work I made use of two specific AMC modules plugged into my MTCA
Crate.

G.1.3 The Z7IO (my computing and FPGA unit)

The primary component that I worked with was an ”Z7I0” AMC board which si
shown in Figure G.3. It features a Xilinx 7-series SoC which combines an ARM
CPU with an FPGA (see G.4.3 for details) which is the main computational unit I
use to implement the analytic readout algorithm and control all other peripherals
like the ADCs and DACs. Besides the SoC and all the MTCA specific components,
it has one "FMC” slot connecting a plugged FMC module directly to the 7-series
SoC. During my work with the Z7IO, I used a prepared Linux distribution provided

Figure G.3: Pictures of a "Z710” AMC board. The picture to the right shown the
’empty’ Z710 with a free FMC slot. In the left picture an FMC extension card is plugged
into the board.

by the DESY-MTCALab (which originally developed the Z710), that ran on the
ARM Core(s) of the SoC, which made it very convenient to use. IL.e. I developed
and tested most of my (python) scripts on my own PC and simply copied the script
over to be able to run it on the SoC. While I needed to adjust (install or replace)
specific software packages a few times, the (software) transition is almost seamless
and an advantage of the setup. A minor downside is that certain computational
task like i.e. computing graphical outputs are very inefficient on the ARM CPU
compared to other systems with an integrated or a dedicated GPU.
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G.1.4 A”AM-G6x/msd” (AMG6) (an additional CPU/Computer mod-
ule)

Besides the Z710, I also made use of a second " AM-G6x/msd” (short: AMG6) AMC
which contained a dedicated CPU featuring more performance than the Z710s CPU.
[.e. I unloaded demanding computational task like the plotting of data to this CPU
and tested the readout algorithm for large sets of data to get results faster / at a
higher rate.

G.1.5 RTM modules

”Rear Transition Modules” (RTMs) are designed to be connected to an AMC mod-
ule, as shown in Figure G.4. Where AMC modules are plugged into the ”front” of
an MTCA Crate, RTM modules are plugged the back. The purpose of RTMs is

Figure G.4: Picture of an AMC module (a ”Z7I0”, right) connected to an RTM module
(a "ACQ420MTCA-RTM”, left), outside of an MTCA Crate.

to provide an extension platform for AMC modules and are used i.e. to separate
sensitive electronic parts and provide an analog front end to the AMC. In my case
I used a "ACQ420MTCA-RTM” RTM module (shown in Figure G.5) developed by
D-TACQ. This RTM provides (almost) no functionality on its own but only serves
as extension card providing two more FMC connector slots to the AMC. Besides the

Figure G.5: Pictures of a ?ACQ420MTCA-RTM” module from D-TACQ (Company).

these FMC slots the "ACQ420MTCA-RTM” contains a handful of microcontrollers
for monitoring, for switching on some of the power lines of the FMC slots, and an
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additional 12C and SMBus I/O Expander connected to some of the RTMs FMC pins
to the RTM connector (”Zone-3” connector). As deviation of the MTCA standard,
D-TACQ uses some signal lines of the RTM connector as additional power lines
which makes it generally not compatible to all MTCA compliant AMCs.

G.1.6 FMCs (my ADC and DAC modules)

"FPGA Mezzanine Cards” (FMCs) are another, not MTCA specific, standard for a
type of electronic (mezzanine) board and connector (the FMC connector), designed
to be connected to an FPGA. I worked with 3 distinct FMC, cards which contained
the ADCs and DACs I used, all of the connected to the same FPGA.

G.1.7 ACQ420FMC — A 4 Channel ADC board

The first FMC that I worked with the ”ACQ420FMC” shown in Figure G.6. It
contains 4x 16-bit ADCs ("LT(C2380-16") and allows a sampling speed up to 2
MHz. The communication between the ADCs and the FPGA works via a custom
SPI-like interface which I build into the FPGA fabric. It should be noted that this
specific module has not a very robust timing and every channel needs to be adjusted
with specific delays to achieve a continuous error free readout from the ADCs.

Figure G.6: Pictures of the ? ACQ420FMC” FMC.

G.1.8 ACQ425ELF — A 16 Channel ADC board

The second and main FMC that I used was the ?ACQ425ELF” board as shown
in Figure G.7. ELF stands for ”Electrically Extended FMC” which is a term used
for a series of products from "D-TACQ” and it is not compatible to regular FMC
modules. ELF modules use the same physical FMC connector and share many of
the pins with FMC modules, but are generally not compatible to standard FMC
connectors. The ”ACQ425ELF” uses i.e. additional pins to power the board. While
regular FMC modules (at least the other two mentioned here) run on "ELF” slots
(like the two provided by the "ACQ420MTCA-RTM”), the inverse, ELF modules
plugged into standard FMC slots, does not work. Function wise, the ” ACQ425ELF”
work very similar to the ”ACQ420FMC” | the key differences are that it provides 16
separate ADC Channels ("LTC2378-16") and has a maximum sampling speed of 1
MHz.
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Figure G.7: Pictures of the ” ACQ425ELF” module.

G.1.9 AO420FMC — A 4 Channel DAC board

The last FMC I worked with was the ”AO420FMC” shown in Figure G.8. It is a 4
Channel DAC board that I plan to use as output for the DFMI laser modulation sig-
nal and possible control & error signals later on. Function wise the DACs have, like
the ADCs before, an SPI interface for communication. They require however a more
elaborate setup routine than the ADCs (which work with minimal configuration).

Figure G.8: Pictures of the ”AO420FMC” FMC.

G.2 Field-Programmable Gate-Arrays (FPGAs)

While I started my initial FPGA work on a ”ZC706” development board designed by
Xilinx, I later switched to a "Z7I10”-AMC board designed by DESY which was de-
signed in compliance with their MTCA .4 standard. Both boards contain a ”7-series
FPGA” from Xilinx (now AMD) of their ZYNQ7000 product series which is an SoC
containing both an FPGA part and an ARM CPU (4Peripheral connections).

The two major reasons, and main motivation, to use an FPGA for my DFMI readout
are:

1. A high readout speed (due to parallelization and specialized hard-
ware modules)
In the DFM readout algorithm as presented in chapter 4 a (potentially) large
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number of harmonics need to be demodulated and filtered. Especially the
demodulation is a computationally expensive task for which many DSPs or
MCUs have dedicated harware modules. Implementing the demodulation and
the filtering of the harmonics in an FPGA allows potentially for a very efficient
calculation of analytic readout algorithm within a few ms.

2. Stable synchronous timing for operating (multiple) control systems
Due to the planned implementation of various control loops to regulate i.e.
the laser frequency and amplitude modulation, using an FPGA as custom
controller is advantageous as it allows me to regulate multiple in- and output
synchronous to the same clock.

Before diving into the details of the FPGA chip I used and my implementation,
I want to give a brief overview of what FPGA are briefly explain their working
principles.

G.3 Integrated Circuits as collection of logic gates

At their lowest hardware level, any integrated circuit (CPU, GPU, FPGA, MCU,
DSP and so on) is a collection of transistors and resistors form flip-flops that together
form logic ”gates”.

G.3.1 Logic gates

A logic gate is a device (circuit) that perform a single boolean (bit-wise) logic op-
eration like i.e. AND, OR, XAND, XOR etc. Figure G.9 shows an example ”AND”
gate and its function commonly expressed as "truth table”. Physically, these '0’s
and ’1’s correspond to some chip specific internal voltage levels of e.g. 0V and 1.5V.
From these very basic logic Gates, more complex circuits are build performing larger,
more complex operations like the addition of two 64-bit integers or even the calcu-
lation of the FFT of an array of 32-bit numbers in specialized microchips.

I\
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z=z-y
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Figure G.9: Example of a single logic ”AND” gate. The left shows the symbolic repre-
sentation of an AND gate and the right shows the "truth table” of the operand. Arith-
metically, this single AND gate can already be seen as a 1-bit multiplicator.
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When designing larger function blocks like i.e. the 4-bit Adder as pictured in Figure
G.10, the hardware designer also needs to take timing considerations into account.
Le. the output of a logic gate (or generally flip-flop) does not change instantaneously
with the input but has a short delay, the so-called ”setup time”. The setup time
is the time it takes between a stable input signal to lead to a stable output signal.
And after the output signal is stable, the minimum time that it remains valid is
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called the "hold time”. In the case of this 4-bit Adder example, the designer has to
make sure that for synchronous input of 4 bits, all 4 bits of the output are valid at
roughly the same time. Otherwise, the measured output bits would not correspond
to a single specific input and this Adder would simply not work properly.
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Figure G.10: Example of a 4-bit Adder "hardware module” build from logic gates.
Source: Wikimedia

Some common examples for integrated circuits build from these logic gates are:

e Hardware module or ”IP Core”
Larger logic arrays performing a specific function are sometimes just referred
to as "hardware modules” (like the Adder block mentioned before). In a more
specific FPGA environment (explained below), the term ”"IP” or "IP Core”
is also used to refer to individual design blocks build from "logic gates”. IP
stands here for "Intellectual Property” that is the specific hardware design.

e MCU
Microcontroller unit (MCU) and Microprocessors is a broad category for usu-
ally small processors (smaller than a CPU or GPU) performing various tasks
from managing a specific interface (like SPI, Ethernet, etc.) of a small micro-
controller to more general purpose microprocessors running a supplied program
within a control system.

e DSP
Digital signal processors are microprocessors usually used for computational
"heavy” task and often include i.e. FTT function blocks to speed up common
calculation in signal processing which would take much more time on not
specialized microprocessors.
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e GPU
Graphics processing unit are specialized for parallel calculations of arrays of
(usually less precise) data like the (color) values of the number of pixels on a
screen.

e CPU

Central processing units are designed to be versatile ICs being able to perform
various different operations depending on their input instructions. In some
abstract sense CPUs are electric circuits that take an ”instruction” in form of
a specific input sequence of bits 70110101” and perform a predefined task like
adding two 32-bit numbers (written in some specific location in memory). The
sum of all these possible inputs (tasks) is called its "instruction set”. When
creating a computer program, the programmer writes code in a programming
language of their choice at this code is translated by a compiler (another pro-
gram) into "machine code” i.e. into the CPU specific instruction set. This
instruction sets differ for different CPUs (and different generations) and even
newly released CPUs today likely have a slightly different (extended) instruc-
tion set than CPUs from the same manufacturer from a few years ago. Some of
the most used instruction set are the "x86-64” (or ”AMD64”) instruction set
that most PCs use and the ”ARM?” instruction sets (used in many embedded
and mobile CPUs), and a multiplicity of versions (i.e. ARMv1 to ARMv9) and
extensions to these sets (i.e. the "Intel AVX-512” instructions for some ”x86-
64” CPUs from Intel). In hardware, a single instruction often corresponds to
a specific hardware module performing the intended operation.

For CPUs or (micro)processors in general, the circuit made from such logic gates
is created/burned fixed into some silicon substrate and does not change any more.
The goal of an FPGA is to provide or at least emulate the behavior of an array of
configurable logic gates.

G.4 FPGA definition

A Field-Programmable Gate-Array (FPGA) is a type of integrated circuit that em-
ulates the behavior of a dynamically configurable array of logic gates. Unlike the
"fixed” ICs mentioned before, where the logic gates are build fixed in form of phys-
ical present arrays of transistors; modern FPGA emulate the behavior of a these
logic gates by a tiny piece of memory (SRAM) holding the truth table of the emu-
lated logic gate[76]. For given inputs to the logic cell, the output will correspond to
the logic operation written in its "truth table memory”. While an idealized FPGA
consists only of a number of identical logic cells and blocks dedicated to connect-
ing cells and routing signals, modern FPGAs are more in-homogenious constructs
with > 100 "design primitives” that can be used like, different kind of signal buffers
(with different ”timing” behavior), specialized routing blocks for ”clock” signals,
larger dedicated memory blocks, basic arithmetic function blocks and more. Theo-
retically, any kind of the previously mentioned ICs could be emulated with a large
enough FPGA with "enough” configurable logic gates.

One of the two main advantages of an FPGA for me is that it allows me to
’build’ /emulate a specialized chip performing exactly the calculations that I need
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with the potential to run much faster than a comparable DSP or CPU could. E.g.
a DSP may include a single FFT function block, but in case I need to calculate
multiple FFTs for a single measurement; I will need to use the function block mul-
tiple times in sequence which will add a delay until the final calculation results are
available. And while modern desktop CPUs are well optimized and fast (performing
calculations within a few ns speed), their sequential mode of operation can still lead
to slower speeds (and efficiency) compared to a dedicated IC, or a dedicated design
realized in an FPGA.

G.4.1 ”Programming” an FPGA

The ”programming” of an FPGA, differs significantly from programming a ”regu-
lar” CPU. While there are hardware agnostic languages designed to describe a logic
level design, so-called "hardware description languages” (HDLs), programming an
FPGA also includes a set of additional vendor specific tools to fully integrate a
more abstract logic level design into a specific FPGA chip. ”Programming” an
FPGA specifically requires tools to manage the timing and delays of signals travel-
ing physically through the IC, which does not exist for other types of programmable
ICs where the hardware designer already ensure a proper propagation of signals
within the chip. In my case of using a Xilinx/AMD FPGA, the vendor specific
toolset comes in the form of the ”Vivado” software suite.

HDL

As hardware description language I worked mostly with ”VHDL” (” Very High Speed
Integrated Circuit Program Hardware Description Language”). While (micro) pro-
cessors usually some fixed length register (i.e. 8-bit or 64-bit) as smallest unit. Rep-
resenting other objects like 'characters’ or 'floats” with these fixed length registers,
the natural unit in an FPGA is a single bit (0’ or '1’) and all other types are de-
rived from them. In VHDL this is presented by the "std_logic” type as single bit
and ”std_logic_vector” as array of bits, which would written in VHDL as:

signal my_enable : std_logic := ’0’;
signal my_data : std_logic_vector(15 downto 0) := (others => ’0’);

While there exists additional type definitions in commonly used libraries like i.e. ”in-
tegers” derived from std_logic_vectors, these types are merely renamed constructs
with limited functionality. There is i.e. not a fixed length for an ”integer” in VHDL
and and only simple arithmetic operations like an addition between two integers are
included in the standard numeric library. In what is called the ”"synthesis” step of
the FPGA programming process, written HDL code is compiled /translated into the
logic gate structure / the hardware primitives available for the used FPGA chip.

Timing constraints (with TCL)

The biggest difference between ”programming” FPGAs and a processor lies however
in the additional complexity for FPGAs in the signal timing. For processors, the
engineer designing the circuit manages the runtime delays introduced by different
logic gates or larger function blocks of the signal, making sure that the output
of some function block (and by extension the entire processor) is available at a
specific fixed time (given i.e. by a fixed number of processor clock cycles) later.
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For FPGAs, it is the task of the ”programmer” / hardware designer to manage
the delays of signals such that all input of a given function block are available at
the same time for processing. Within an FPGA, the individual logic cells are also
"clocked”, meaning that besides the signal inputs, they also have an addition input
"clock” signal and the update of their output is triggered on a rising (or falling)
edge of this clock signal and stable after a device specific setup time (as mentioned
earlier). The signals inside the FPGA also do not travel instantaneously and take a
certain time to travel to different (physical) locations on the chip.

Different setup and hold times of the logic cells and actual differently sized and
structured chips are the reason why the programming of an FPGA is not entirely
platform agnostic. The same hardware module written in HDL will have different
signals timings in different physical chips.

During the ”Implementation” step of FPGA programming process, the vendor spe-
cific FPGA programming tools physically place the logic gate structure into the given
FPGA chip layout while trying to minimize the signal delays and keeping multiple
signal used by individual function blocks synchronous. While these software tools
take care of the majority of the signal timing, it is often nesseccary to adjust the tim-
ing of specific (critical) signals 'by hand’. In Vivado, this is done by specific keyword
added to the HDL code and by additional ”constraint” files written in the ”Tool
command language (TCL)” script language that includes Vendor specific commands.

In case Vivado is unable to successfully place a logic part so that all input signals
arrive at the same time; a very simple solution would be to write a constraint file,
"telling” Vivado to increase the time these signals are allowed to travel until they
reach the critical logic block, and in VHDL, add a 'manual’ counter to wait for
multiple clock cycles until the signals are stable for certain.

G.4.2 The FPGA Programming Process

With the Vivado toolset for FPGAs from Xilinx/AMD, the ”programming” of an
FPGA is structures into multiple specific steps:

1. HDL source code & the Block design

After selecting a specific chip, the initial step is to include the HDL coded
source files of the project. Besides "hand written” HDL source code, Vivado
uses additional "board design” files, which are managed via a GUI. Board
design files allow a kind of ”visual programming” using prepared IP cores as
functional blocks and Xilinx strongly encurages using the Block design for all
of their own IP cores which are not freely accessable as source code. From the
block design, Vivado generates a wrapper written in the used HDL.

2. Simulation
The next step is the hardware agnostic simulation of the written HDL source
code. Here the basic functionallity and any possible bugs and logical errors
can be revealed before continuing.

3. RTL Analysis
The ”Register Transfer Level” (RTL) Analysis does a first translation of the
HDL source code into a logic gate structure and nets connecting them.
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4. Synthesis (conversion into LUT blocks)
In the Synthesis step, the logic gate structure is translated into the device
specific hardware primitives. This can be seen as an equivalent of translating
some hardware agnostic software code written e.g. in C into the chip specific
instruction set / assembler code which can vary for different processors (like

x86 or ARM).

5. Instantiation
In the Instantiation step the placement of the Synthesised hardware design on
the selected chip is done. Vivado calculated the timing delays of the signals
and used hardware components and uses the specified timing constraints.

6. Bitstream generation and programming
After a successful Instantiation, the design is finally compiled into a machine
readable "bitstream’ file which programms the LUTs of the FPGA cells to to
emulate the hardware design.

G.4.3 Xilinx (now AMD) 7 series FPGA

The SoCs that I worked with were all part of the ”Zyng-7000”" product line from
(formerly ”Xilinx”) now " AMD Inc.”, first released in 2012. The ”Zynq-7000" prod-
uct line is a family of SoCs that incorporate both a (configurable) FPGA fabric and
an " ARM Cortex-A9” CPU-core (together with a set of additional peripheral micro-
controllers for various interfaces like i.e. USB, SPI, 12C, etc.). In FPGA designs it
is not uncommon to replicate a small CPU core within the FPGA fabric to perform
various serial tasks. Xilinx themselves offer a so-called ”MicroBlaze™ processor” as
IP core for synthesis within their FPGA fabric. Having however a full ARM core
connected to the FPGA has some advantages as it is generally faster and easier to
program with many pre-made software libraries for the ARM architecture readily
available compared to the smaller ”MicroBlaze” architecture from Xilinx. Figure
G.11 shows a schematic overview of the Zyng-7000 SoC that is the main Chip on
the earlier mentioned Z710 board that I used in my project.

G.4.4 Readout algorithm Implementation into FPGA

From the components shown in Figure G.11, I mostly used the ”CPU” in form of
the ” Application Processing Unit”, its ”Direct Memory Access (DMA)” Channels
and the ”Programmable Logic to Memory Interconnect” which connected the CPU
to the FPGA fabric denoted as ”Programmable Logic”.

As default interface within the FPGA fabric and to the DMA Channels, Xilinx
Chips use the ” Advanced eXtensible Interface (AXI)” which is a close-to-hardware,
memory-mapped interface for which Xilinx offers many prebuild components and
which T also implemented manually within my own VHDL code.

Figures G.12 shows an overview of the Board design I implemented within the SoCs
FPGA fabric. The biggest part of my FPGA work so far was building the various
interfaces to the difference MTCA components. In the lower picture of Figure G.12
they are incorporated into the "RTM_ACQ_-400-0" IP core (which also holds the two
ADC FMCs that I use) and the " AO420FMC_top_0” IP core for the DAC module.
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Figure G.11: Schematic overview of the ”Zyng-7000” SoC from AMD as printed in the
technical reference manual.
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Publications

2022 7 An analytic, efficient and optimal readout algorithm for compact interferome-
ters based on deep frequency modulation” (Link: https://www.nature.com/articles/s41598-
024-70392-9)
An article a novel readout algorithm for nested sinusodial signals as they ap-
pear i.e. in ”Deep-Frequency modulation Interferometry”.

2024 ”Noise Limitations in Multi-Fringe Readout of Laser Interferometers and Res-
onators.” (Link: https://www.mdpi.com/2673-8244/2/1/7)
An article about the limit (Cramér-Rao bound) for the readout of various
interferometer techniques.
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