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Abstract

Abstract — English

The advent of self-supervised pretraining on large-scale internet data has produced
powerful generic representations, giving rise to pretrained foundation models that
can be fine-tuned for a wide range of downstream tasks more efficiently and ef-
fectively than models trained from scratch. Typically, downstream adaptation as-
sumes that all relevant fine-tuning data are available from the outset. However, in
dynamic environments where new data arrive continuously, the model’s predictive
performance on previously learned tasks degrades as new tasks are introduced, a
problem commonly referred to as catastrophic forgetting. A naive solution is to
retrain the model whenever new data arrive, but this is prohibitively expensive for
real-time processing of large data streams. Moreover, this approach requires storing
all past data, which can directly conflict with legislative and privacy constraints
governing the handling of sensitive information.

Continual Learning (CL) has emerged as a subfield of machine learning dedicated
to mitigating catastrophic forgetting by enabling neural networks to learn from
non-stationary data—practically represented as sequence of datasets with dis-
joint probability distributions—while preserving previously acquired knowledge.
However, most existing CL approaches are designed for relatively small networks
trained from scratch on simple tasks, which limits their scalability and practical
utility for large foundation models.

In this thesis, we address the challenge of downstream CL with foundation mod-
els. Ideally, such approaches leverage the broad generalizability of pretrained rep-
resentations and introduce cost-effective, scalable mechanisms for incrementally
adapting to a variety of downstream tasks. To this end, we compare and con-
trast different paradigms for CL, including methods that regularize crucial model
parameters, replay a selected subset of historical data, or introduce new parame-
ters as data distributions shift. We clarify which contexts favor (or hinder) each
paradigm’s applicability to foundation models. Beyond the widely adopted focus
on unimodal tasks such as image or text classification, we also explore more de-
manding multimodal tasks that require integrating pretrained representations from
multiple sources, for instance combining images and text. This broader scope mir-
rors practical deployments in which heterogeneous modalities must be fused and
diverse tasks must be solved within a single, unified representation space.

We introduce four novel strategies for downstream CL with foundation models:
two dedicated to unimodal incremental classification and two focused on multi-
modal reasoning. For unimodal CL, our first contribution is a dual-memory ap-
proach that uses self-organizing networks to map foundation model features onto
a topology-preserving manifold, thereby retaining discriminative structure and in-
creasing robustness to representational drift. The second approach aggregates low-
and mid-level activations from multiple foundation model layers to construct high-
fidelity class prototypes, markedly improving class separability and generalization
under severe domain shift and data scarcity. Shifting to multimodal CL, the third
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Abstract

proposed method incrementally trains a lightweight modality interaction network
that fuses multimodal representations by selectively specializing a compact subset
of interaction parameters for each task while keeping the remainder shared. The
fourth and final method optimizes the extraction of knowledge from stored mul-
timodal features by injecting targeted spatially aware noise, ultimately improving
the reconstruction of prior data distributions.

Our results demonstrate that all four methods introduced in this thesis greatly en-
hance the ability of foundation models to manage non-stationary data during fine-
tuning, while imposing minimal assumptions about data type, size, or presentation
order. By strategically augmenting pretrained representations, safeguarding crucial
parameters that capture generalized knowledge, and recovering past distributions
from a minimal set of stored representations, this thesis provides practical and
scalable solutions for a broad spectrum of CL problems involving large pretrained
models. Collectively, these advances empower foundation models to meet the de-
mands of dynamic and evolving downstream data in real-world settings.
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Abstract

Zusammenfassung — Deutsch

Die zunehmende Verbreitung selbstüberwachter Vortrainingsverfahren auf groß-
skaligen Internetdaten hat leistungsfähige generische Repräsentationen hervorge-
bracht. Daraus resultierende vortrainierte Basismodelle können durch nachgelager-
te Feinabstimmung weitaus effizienter und wirkungsvoller an ein breites Spektrum
von Downstream-Aufgaben adaptiert werden als Modelle, die vollständig neu trai-
niert werden. In der Regel wird dabei angenommen, dass sämtliche relevanten Fein-
abstimmungsdaten zu Beginn vollständig verfügbar sind. In dynamischen Einsatz-
szenarien jedoch, in denen fortlaufend neue Daten eintreffen, verschlechtert sich
die Vorhersageleistung des Modells auf zuvor gelernte Aufgaben, sobald neue Auf-
gaben hinzukommen – ein Phänomen, das gemeinhin als katastrophales Vergessen
bezeichnet wird. Eine naive Gegenmaßnahme bestünde darin, das Modell bei jedem
Dateneingang vollständig neu zu trainieren; für die Echtzeitverarbeitung umfan-
greicher Datenströme ist dies jedoch prohibitiv kostspielig und setzt zudem die
Speicherung sämtlicher historischer Daten voraus, was häufig gegen gesetzliche
und datenschutzrechtliche Vorgaben verstößt.

Das Forschungsgebiet des kontinuierlichen Lernens versucht, dieses katastrophale
Vergessen zu mindern, indem es neuronalen Netzen ermöglicht, aus nicht-statio-
nären Daten – in der Praxis repräsentiert durch Sequenzen von Datensätzen mit
disjunkten Wahrscheinlichkeitsverteilungen – zu lernen und dabei zuvor erworbenes
Wissen zu bewahren. Die meisten etablierten Methoden zum kontinuierlichen Ler-
nen wurden jedoch für relativ kleine Netze entworfen, die von Grund auf und auf
vergleichsweise einfachen Aufgaben trainiert werden; dies limitiert ihre Skalier-
barkeit und praktische Nutzbarkeit für große Basismodelle.

Die vorliegende Dissertation stellt sich der Herausforderung der kontinuierlichen
Feinabstimmung von Basismodellen. Idealerweise nutzen entsprechende Verfahren
die weitreichende Generalisierungsfähigkeit vortrainierter Repräsentationen und
führen kosteneffiziente, skalierbare Mechanismen ein, um sich inkrementell an viel-
fältige Downstream-Aufgaben anzupassen. Zu diesem Zweck vergleichen und kon-
trastieren wir verschiedene Paradigmen des kontinuierlichen Lernens, darunter Ver-
fahren, die kritische Modellparameter regularisieren, eine ausgewählte Teilmenge
historischer Daten wiedergeben oder bei Verteilungsverschiebungen neue Param-
eter einführen. Wir zeigen auf, in welchen Kontexten welches Paradigma die An-
wendbarkeit auf Basismodelle begünstigt beziehungsweise einschränkt. Über den
traditionellen Fokus auf unimodale Aufgaben wie Bild- oder Textklassifikation
hinaus untersuchen wir zudem anspruchsvollere multimodale Aufgaben, die vor-
trainierte Repräsentationen aus mehreren Quellen kombinieren, etwa aus Bildern
und Text. Dieser erweiterte Fokus reflektiert reale Szenarien, in denen hetero-
gene Modalitäten zusammengeführt und diverse Aufgaben in einem einheitlichen
Repräsentationsraum gelöst werden müssen.

Wir präsentieren vier neuartige Strategien für das kontinuierliche Downstream-
Lernen mit Basismodellen: zwei für die unimodale inkrementelle Klassifikation
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Abstract

und zwei für multimodales Schlussfolgern. Für unimodales kontinuierliches Ler-
nen besteht unser erster Beitrag in einem Dualen-Gedächtnis-Ansatz, der selbstor-
ganisierende Netze nutzt, um Vektorrepräsentationen eines Basismodells auf eine
topologiebewahrende Mannigfaltigkeit abzubilden; dadurch bleibt die diskrimina-
tive Struktur erhalten und die Robustheit gegenüber Repräsentationsverschiebun-
gen erhöht sich. Der zweite Ansatz aggregiert niedrige und mittlere Aktivierun-
gen aus mehreren Schichten des Basismodells, um hochauflösende Klassenpro-
totypen zu konstruieren, was die Klassentrennschärfe und Generalisierung unter
starkem Domänenshift und Datenknappheit deutlich verbessert. Im Bereich mul-
timodales kontinuierliches Lernen trainiert die dritte Methode inkrementell ein
leichtgewichtiges Modalitäts-Interaktions-Netzwerk, das multimodale Repräsenta-
tionen fusioniert, indem es für jede Aufgabe selektiv einen kompakten Teil der In-
teraktionsparameter spezialisiert und den Rest über alle Aufgaben hinweg teilt. Die
vierte Methode optimiert schließlich die Wissensextraktion aus gespeicherten mul-
timodalen Vektorrepräsentationen, indem sie zielgerichtetes, räumlich bewusstes
Rauschen injiziert und so die Rekonstruktion früherer Datenverteilungen verbes-
sert.

Unsere Ergebnisse zeigen, dass alle vier in dieser Arbeit vorgestellten Metho-
den die Fähigkeit von Basismodellen erheblich steigern, nicht-stationäre Daten
während der Feinabstimmung sequenziell zu erlernen, wobei sie nur minimale
Annahmen hinsichtlich Datentyp, -umfang oder Präsentationsreihenfolge treffen.
Durch das strategische Ergänzen vortrainierter Repräsentationen, das Schützen
entscheidender Parameter, die generalisiertes Wissen kodieren, und das Wieder-
herstellen vergangener statistischer Verteilungen aus einem minimalen Satz ge-
speicherter Repräsentationen liefert diese Arbeit praktische, skalierbare Lösungen
für ein breites Spektrum kontinuierlicher Lernprobleme mit großen vortrainierten
Modellen. Zusammengenommen versetzen diese Fortschritte Basismodelle in die
Lage, den Anforderungen dynamischer und sich fortlaufend wandelnder Down-
stream-Daten in realen Einsatzumgebungen gerecht zu werden.
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Chapter 1

Introduction

“It is not the most intellectual of the species that survives; it
is not the strongest that survives; but the species that
survives is the one that is able best to adapt and adjust to
the changing environment in which it finds itself.”

Darwin’s Theory paraphrased by Leon C. Megginson

1.1 Motivation

Imagine being the head chef of a bustling culinary school. Your kitchen is leg-
endary—a state-of-the-art foundation capable of producing nearly any dish from
all over the world. From day one, you have meticulously trained your staff in
hundreds of recipes: soufflés from France, dumplings from China, intricate pastries
from Vienna. This training took months, but it was worth it. Your kitchen staff—
the foundation model—now possesses an impressive breadth of culinary skills.

However, your school faces a constant stream of new requests. One day, a guest
wants a gluten-free twist on a traditional baguette; the next, a celebrity chef chal-
lenges you to replicate a 200-year-old Italian dessert. These updates may seem like
minor tweaks—just fine-tuning an already expert team—but here’s the catch: each
time you teach your crew a new recipe, they risk forgetting key details of the old
ones. Perhaps your sous-chefs start mixing up the measurements for your famous
soufflé or forget the subtle folding technique for dumpling wrappers. You could
retrain everyone from scratch with each new request, but that would be expensive,
time-consuming, and wasteful. Clearly, you need a way to continuously incorporate
new recipes without discarding your staff’s hard-earned knowledge.

This scenario mirrors how contemporary foundation models in machine learning op-
erate. Like your kitchen staff, foundation models start with an extensive repertoire
of capabilities, developed through large-scale pretraining on diverse data sampled
from a joint probability distribution. However, when fine-tuning them sequentially
for new downstream tasks, unrestricted parameter updates can lead to catastrophic
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forgetting, where previously learned knowledge is overwritten. In dynamic environ-
ments where data evolve and new tasks gradually emerge, we cannot afford to start
from scratch each time. Instead, we need models that can update incrementally in
a way that preserves old skills while effectively learning new ones.

In this thesis, we explore methods for downstream Continual Learning (CL) with
foundation models. Rather than retraining on all data at once, we aim to exploit
their existing knowledge, efficiently adapt them to incrementally available tasks,
and prevent them from forgetting previously learned ones. In short, we strive to
develop artificial systems that learn like real-world chefs: building on what they
already know, selectively refining their expertise, and remaining versatile in the
face of ever-changing culinary—or computational—challenges.

1.2 Research Objectives

CL research in the context of foundation models aims at equipping these large-
scale pretrained neural networks with the ability to adapt to emerging tasks or
shifting data distributions while preserving previously acquired capabilities. Al-
though foundation models often excel under the assumption that training samples
originate from a fixed—albeit unknown—probability distribution, real-world ap-
plications such as autonomous driving or embodied robotics commonly involve
evolving, complex, and multimodal data streams. In these dynamic settings, foun-
dation models are susceptible to catastrophic forgetting, whereby earlier learned
skills deteriorate when the model is fine-tuned on new tasks. A naive solution
might involve retaining all historical data and re-initiating the fine-tuning pro-
cess whenever the training data distribution shifts; however, such a strategy is
computationally prohibitive, memory-intensive, and incompatible with real-time
constraints. Moreover, strict privacy or regulatory restrictions on data storage can
render such a solution entirely impractical, underscoring the need for both versatile
and efficient strategies for downstream continual fine-tuning.

A CL method is considered versatile if it makes minimal assumptions about both
(i) the types of data it learns and (ii) how those data are presented. The first point
highlights the necessity of accommodating unimodal as well as multimodal tasks,
whereas the second addresses assumptions regarding the number of passes over each
task’s data stream, the availability of historical data, the presence of or information
about task boundaries, and other forms of prior knowledge that can simplify the
CL problem. In this context, we define unimodal tasks as those requiring a single
input source (e.g ., text), while multimodal tasks involve the integration of multiple
data sources (e.g ., text and images). Beyond these considerations of versatility, an
efficient CL method should introduce only minimal additional computational and
memory overhead beyond the base cost of the foundation model itself. CL methods
that excel in both versatility and efficiency thus lay the groundwork for scalable,
real-time adaptive systems capable of robust performance in diverse, complex, and
continuously evolving environments.
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Accordingly, the primary goal of this thesis is to develop efficient and versatile
CL methods that enable foundation models to be incrementally fine-
tuned on sequences of diverse and complex unimodal and multimodal
tasks, all while preserving previously acquired capabilities. Guided by this
overarching goal, we define the following research objectives:

• Objective 1: Advance the robustness of downstream continual fine-tuning
on unimodal tasks with respect to both the sequence order in which tasks are
learned and variations in the number of training samples used for fine-tuning.

• Objective 2: Develop a CL approach that integrates seamlessly with any
foundation model pretrained on unimodal tasks, while making minimal as-
sumptions about data presentation and requiring low runtime and memory
overhead.

• Objective 3: Generate diagnostic multimodal CL datasets to analyze the
role of specific components in modality interaction networks and use these
insights to design a resource-efficient CL method that preserves critical model
parameters to prevent forgetting during continual fine-tuning on multimodal
data.

• Objective 4: Enable scalable continual downstream fine-tuning of founda-
tion models on open-domain real-world multimodal data without forgetting,
under minimal assumptions about data presentation and with low computa-
tional and memory costs.

The first two objectives address CL for unimodal tasks while progressively reduc-
ing the assumptions underlying the continual fine-tuning process of a foundation
model. Objective 1 focuses on mitigating the adverse effects of task ordering and
limited training samples, whereas Objective 2 further emphasizes resource effi-
ciency and minimizes reliance on task-specific information or stored data. Building
on these insights, the subsequent objectives extend to multimodal tasks. Objec-
tive 3 is to investigate the behavior of modality interaction networks during CL
and leverage these findings to improve the resource efficiency of methods that pro-
tect key network parameters. Finally, Objective 4 extends these capabilities to
open-domain real-world data, allowing foundation models to learn continuously
with minimal constraints on data diversity, presentation, and resource consump-
tion. Achieving this final objective means that a CL method is truly scalable,
versatile, and efficient. Collectively, these objectives contribute to a robust and
scalable framework for continual downstream fine-tuning of foundation models,
advancing CL methods that effectively tackle a wide range of challenging tasks
and scenarios.
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1.3 Main Approaches and Novel Contributions

In this thesis, we propose novel strategies and design methodologies for CL in the
context of downstream fine-tuning of foundation models. Specifically, we introduce
four innovative CL approaches: two designed to enhance representations in uni-
modal learning settings and two aimed at fusing representations across multiple
modalities. Through comprehensive experiments, we not only evaluate our meth-
ods and their variations but also provide new insights into which CL strategies and
paradigms that were originally developed for models trained from scratch remain
effective in the era of foundation models. In summary, our contributions are as
follows:

Chapter 4 (Unsupervised Representation Modeling via Self-organization): We pre-
sent DRILL, a dual-memory CL method that integrates self-organizing network
principles with foundation models to preserve topological relationships in the latent
feature space and mitigate representational drift. Our approach combats catas-
trophic forgetting by augmenting features extracted from a foundation model with
prototypical class vectors, thereby stabilizing the training process and improving
retention of previously learned tasks. We evaluate DRILL under challenging scenar-
ios that involve imbalanced data and varying task orders, demonstrating reduced
variability in outcomes and strong classification performance—particularly when
underrepresented classes appear early in the learning sequence. By consistently
achieving high classification accuracy regardless of task order or fluctuations in
training sample sizes, DRILL directly addresses Objective 1 of this thesis.

Chapter 5 (Prototyping with Intermediate Features): We introduce LayUP, a
novel prototype-based CL method that leverages first- and second-order feature
statistics extracted from multiple intermediate layers of a foundation model. By
exploiting low- and mid-level representations, LayUP captures richer, more invari-
ant features that enhance classification robustness—especially under significant
domain shifts and in low-data scenarios. Our method is conceptually straightfor-
ward and demonstrates notable improvements in both performance and resource
efficiency compared to strong baselines across diverse image classification bench-
marks and CL settings. Crucially, LayUP realizes Objective 2 by seamlessly in-
tegrating with any unimodal foundation model under minimal data presentation
assumptions, while requiring substantially lower memory and computational over-
head than prior CL methods for pretrained models.

Chapter 6 (Multimodal Fusion with Selective Specialization): We propose SMS, a
novel multimodal CL approach applicable to a wide variety of foundation models.
In SMS, a selected subset of network modules is dedicated to each task, while the re-
maining modality interaction parameters are shared. These task-specific and shared
modules are trained through an alternating adaptation-consolidation scheme in-
spired by principles of cognitive development. To systematically evaluate differ-
ent strategies for module specialization and balance task-specific adaptation with
shared knowledge retention, we introduce two diagnostic LILAC datasets. These
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datasets facilitate controlled experiments aimed at revealing the distinct contri-
butions of various layers and components within modality interaction networks
in a CL setting. Our results demonstrate that dedicating even a small portion
of parameters within the modality interaction network to task-specific specializa-
tion consistently yields superior performance compared to existing baselines. This
clearly highlights the pivotal role that targeted parameter specialization plays in
effectively mitigating catastrophic forgetting. Thus, by offering the LILAC datasets
alongside an efficient SMS method designed to strategically preserve crucial pa-
rameters, this work meets Objective 3 of this thesis.

Chapter 7 (Noise-augmented Multimodal Latent Replay): We introduce NLR,
a novel latent replay method for multimodal CL that augments buffer-stored
features—extracted by a foundation model—with spatially aware noise. NLR dy-
namically identifies regions of interest, such as the location of a target object,
within the latent space and applies minimal perturbations to these salient fore-
ground features, while imposing a higher degree of controlled statistical noise on
the surrounding background features. This mechanism expands the diversity of
the feature space without significantly distorting the encoded representation of the
foreground, thereby alleviating the background bias that is often observed when
regions of interest occupy a limited spatial extent. Our experimental evaluations
on continual referring expression segmentation tasks indicate that this noise aug-
mentation strategy can reduce the dependency on stored latent representations
by up to 80%. Furthermore, NLR imposes minimal assumptions regarding data
presentation, e.g ., by operating effectively without explicit task boundaries and
being both exemplar-free and fully compatible with online learning paradigms. In
summary, NLR successfully addresses Objective 4 and demonstrates a straight-
forward and effective approach to mitigating catastrophic forgetting in multimodal
CL with foundation models.

1.4 Thesis Outline

This thesis is organized into four distinct parts. The introductory and concluding
remarks are presented in Parts I and IV, respectively, while the core research is
detailed in Parts II and III. In each of these core parts, two novel methodologies are
introduced for modeling or integrating data representations encoded by foundation
models within CL frameworks.

Part I (Background and Motivation): Following the introduction in Chapter 1,
Chapter 2 outlines two major paradigm shifts that have propelled recent advances
in deep learning. First, we trace the journey from medium-scale models—originally
trained from scratch on human-annotated datasets—to foundation models that
leverage large-scale, upstream pretraining on unlabeled, web-crawled data. Sec-
ond, we analyze the rapid advancements in multimodal perception and reasoning,
positing that models which integrate heterogeneous signals (e.g ., from vision and
language) yield enhanced contextual representations and superior inferential capa-
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bilities compared to those trained on unimodal inputs. In Chapter 3, we introduce
CL within the context of these paradigm shifts. We contend that large-scale pre-
training, although transformative, is insufficient on its own to mitigate the phe-
nomenon of catastrophic forgetting during downstream fine-tuning on sequences of
tasks or datasets. To establish a robust theoretical foundation, we first review the
emergence of CL as a paradigm in both biological and artificial systems. We then
propose a framework for integrating CL strategies with foundation models and
offer a concise review of related methodologies. This synthesis not only elucidates
the current state of the art but also identifies the open challenges that this thesis
seeks to address.

Part II (Unimodal Representation Augmentation): This part addresses the chal-
lenges of fine-tuning unimodal transformer-based foundation models in non-sta-
tionary environments. In Chapter 4, we show that capturing both short- and long-
range dependencies in latent representations via self-organized topology mapping
stabilizes the fine-tuning trajectory of pretrained transformer encoders. Within this
framework, we introduce DRILL, a novel CL method, and benchmark its perfor-
mance against several baselines using streams from five established text classifica-
tion datasets under two imbalanced sampling strategies. Because DRILL requires
fine-tuning all parameters of the foundation model and historical data storage,
Chapter 5 explores alternative approaches to improve data efficiency in down-
stream continual fine-tuning without full model adaptation or storing historical
data. Specifically, we propose LayUP, a prototype-based CL approach that lever-
ages pretrained representations from multiple intermediate layers of a foundation
model. We rigorously evaluate LayUP on ten diverse image recognition bench-
marks, covering three challenging CL scenarios. Finally, we establish best prac-
tices for selecting the maximum layer depth for direct feature extraction to con-
struct prototypes that align with the characteristics of the downstream fine-tuning
data.

Part III (Multimodal Representation Integration): As a follow-up to the previous
part, we tackle more challenging CL scenarios in which pretrained representations
of multiple sources have to be continuously integrated. We perform a post hoc
analysis in Chapter 6 to investigate which parts of a modality interaction network
learn task-specific, specialized representations and which learn task-agnostic rep-
resentations for knowledge transfer during CL. Based on this analysis, we describe
the conceptually simple SMS method, which we subsequently evaluate on two novel
datasets and for three different model configurations. Since SMS requires explicit
task-specific information during both training and testing—and necessitates stor-
ing full network layers for each task—we explore alternative strategies in Chapter 7
to store only a small set of latent representations for replay during multimodal CL.
This approach improves scalability, reduces storage overhead, relaxes data presen-
tation assumptions, and preserves privacy by storing extracted features rather than
raw data. Initially, we assess how buffer size and replay frequency affect latent re-
play and empirically demonstrate that replay is susceptible to background bias
when only a limited number of latent representations are stored. Building on these
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findings, we propose our multimodal CL method NLR and perform extensive evalu-
ations on three split datasets for continual referring expression segmentation.

Part IV (Closing): In Chapter 8, we provide a summary of the key contributions and
findings presented in this thesis and explore open questions along with potential
avenues for future research.
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Chapter 2

Representation Learning in the
Foundation Model Era

This chapter reviews advancements and methodologies in representation learn-
ing during the foundation model era, a period inaugurated by the advent of the
transformer architecture (Sutskever et al., 2014; Vaswani et al., 2017). The founda-
tion model era is characterized by the development and deployment of large-scale
Pretrained Models (PTMs) that serve as versatile bases for a broad spectrum of
deep learning applications. A defining shift in this era is the transition from train-
ing models entirely from scratch to adopting a two-phase approach: an upstream
pretraining phase followed by downstream adaptation. In the pretraining phase,
models are exposed to extensive datasets using self-supervised objectives—such as
masked language modeling, contrastive learning, or similar techniques—to learn
robust general-purpose representations. Subsequently, these models are fine-tuned
in a supervised manner on considerably smaller, task-specific datasets.1 This train-
ing paradigm has driven significant progress across multiple Artificial Intelligence
(AI) domains, including Natural Language Processing (NLP) and Computer Vision
(CV).

Section 2.1 discusses the architectural paradigm shift introduced by the trans-
former model and provides a brief overview of its applications in NLP and CV.
Section 2.2 outlines transformer architectures for multimodal representation learn-
ing, with a particular focus on methodologies for learning, aligning, and integrating
heterogeneous representations across different modalities.

2.1 Self-supervised Pretraining at Scale

The transformer model (Vaswani et al., 2017) has fundamentally reshaped the
landscape of AI by reducing the dependence on recurrence and convolution mech-

1Throughout this thesis, training from scratch means optimizing a model whose parameters
are randomly initialized, whereas fine-tuning means further training a model that starts from an
existing checkpoint with pretrained weights.
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anisms that were once standard in neural network architectures. In contrast to
Recurrent Neural Networks (RNNs; Rumelhart et al., 1986) and Convolutional
Neural Networks (CNNs; LeCun et al., 1989), which had long been the founda-
tional paradigms in deep learning research, the transformer employs self-attention
mechanisms exclusively to encode arbitrary sequences of inputs. This design en-
ables parallel processing and facilitates the capture of long-range dependencies
more effectively, while also achieving greater computational efficiency.

Although the original transformer model introduced by Vaswani et al. (2017) was
trained from scratch for specific tasks, the subsequent development of Bidirectional
Encoder Representations from Transformers (BERT; Devlin et al., 2019) demon-
strated that self-supervised pretraining on extensive corpora can markedly enhance
a transformer’s ability to generate high-quality context-aware representations. In
self-supervised learning, models automatically derive supervisory signals from un-
labeled data by constructing predictive tasks—e.g ., predicting masked tokens in
the case of BERT—thus eliminating the need for manually annotated datasets.
This approach differs from traditional supervised learning, which relies on external
labels, and from certain unsupervised methods that do not explicitly formulate
predictive tasks. Using self-supervised objectives during pretraining, transformer-
based models acquire dense and informative representations of input sequences,
often outperforming CNNs and RNNs on tasks that require complex contextual
understanding.

2.1.1 Sequence Modeling with Transformers

Prior to the advent of the transformer architecture, sequential encoding in NLP
applications was predominantly achieved using RNNs, including variants such as
Gated Recurrent Unit (GRU; Cho et al., 2014) and Long Short-Term Memory
(LSTM; Hochreiter and Schmidhuber, 1997). These models process input sequences
one step at a time, each step depending on the previous state, which inherently
restricts parallel processing. In contrast, transformers employ self-attention mecha-
nisms that enable the simultaneous processing of entire sequences. This design not
only facilitates parallel computation, but also enhances the model’s ability to cap-
ture and maintain long-range dependencies. As a result, transformers have largely
supplanted RNNs in many deep learning applications, thanks to their reduced
training times and improved scalability.2

The original transformer—often termed vanilla transformer and depicted in Fig-
ure 2.1—was introduced as a sequence-to-sequence (Sutskever et al., 2014) model
for machine translation. Its architecture comprises two main components: an en-
coder and a decoder, each built by stacking L identical layers. The encoder converts
an input sequence of embedded tokens into a set of continuous representations,
while the decoder generates the output sequence in an autoregressive fashion. At

2For a comprehensive overview of transformer architectures and their variants, see Lin et al.
(2022b).
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Figure 2.1: Overview of the transformer encoder-decoder architecture.
The model employs multi-head attention, feed-forward networks, layer normal-
ization, and skip connections as its main operations. Separate attention layers
are used for encoder inputs and decoder outputs. Positional encoding, imple-
mented through a sinusoidal function, enables the model to capture word order.
Masked attention allows the decoder to generate token sequences autoregres-
sively, producing one token at a time. Adapted from Vaswani et al. (2017).

each step, the decoder produces one token by conditioning on both the previously
generated tokens and the encoder’s representations.

Each encoder block in the transformer architecture comprises two primary sub-
layers: a multi-head self-attention mechanism and a position-wise Feed-Forward
Network (FFN). The FFN typically consists of two fully connected layers, with a
nonlinear activation function applied after the first layer. Each sublayer is equipped
with a residual connection (He et al., 2016), and the combined output is normal-
ized using layer normalization (Ba et al., 2016) to stabilize training and promote
efficient gradient flow. In contrast, each decoder block incorporates an additional
cross-attention mechanism—essentially a second multi-head attention sublayer—
situated between the decoder’s masked multi-head self-attention and its FFN. This
cross-attention mechanism allows the decoder to attend to the encoder’s output
representations. Moreover, the self-attention in the decoder is modified via a mask-
ing strategy that prevents any position from accessing information from subsequent
positions, thereby enforcing the autoregressive property during generation. Finally,
the decoder output is projected through a linear transformation and converted to
probability distributions over the vocabulary using a softmax function.
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In order to provide information about the order of tokens in a sequence, positional
encoding adds unique, fixed positional information to the input embeddings using
sinusoidal functions to generate position-dependent vectors. Subsequent work ex-
plores learnable positional embeddings (Gehring et al., 2017; Devlin et al., 2019)
as an alternative to fixed sinusoidal encodings, the former offering greater flexibil-
ity and adaptability to training data, and the latter potentially providing superior
generalization to sequence lengths beyond those encountered during training (Liu
et al., 2020b).

Many early modifications to the vanilla transformer architecture, some of which
will be discussed in this chapter, focused exclusively on the encoder blocks. These
adaptations were devised to showcase the model’s efficacy across a broad spectrum
of downstream tasks in both NLP and CV applications. In contrast, other studies
have employed both the encoder and decoder for sequence generation, as evidenced
by general-purpose Large Language Models (LLMs) such as OpenAI’s GPT series
(Radford et al., 2018, 2019; Brown et al., 2020; OpenAI et al., 2024). Although
encoder-decoder models are highly effective—particularly for sequence-to-sequence
learning—they tend to incur significant computational overhead due to their in-
creased complexity and longer training times. Since this thesis does not address
sequence generation and considering the substantial structural overlap between en-
coder and decoder blocks, we concentrate on encoder-only transformer models to
establish a streamlined framework for CL tasks in downstream applications.

2.1.2 Transformers in Natural Language Processing

Building on the paradigm shift initiated by the vanilla transformer, subsequent
research has harnessed its performance and computational efficiencies to advance
a variety of NLP tasks. This progress has culminated in models that are pretrained
on vast text corpora, with BERT (Devlin et al., 2019) representing a pivotal break-
through. In contrast to earlier pretrained language models—such as the RNN-based
ELMo (Peters et al., 2018) and the unidirectional GPT (Radford et al., 2018)—
BERT utilizes a transformer encoder to capture bidirectional context simultane-
ously. Its self-supervised pretraining on extensive unlabeled data enables the model
to learn deep contextualized representations, where each token embedding incorpo-
rates information from both preceding and succeeding contexts. This paradigm of
large-scale pretraining followed by task-specific fine-tuning yields contextually rich
representations that significantly enhance generalization and performance across
diverse NLP applications.

BERT builds on the encoder architecture of the vanilla transformer, but introduces
a unique input representation constructed by summing token embeddings, segment
embeddings, and learnable positional embeddings, as depicted in Figure 2.2. This
composite embedding enables BERT to capture the semantic meaning of tokens,
their positional information within a sentence, and distinctions between sentences
within the input sequence. Special tokens, specifically the classification ([CLS]) and
separation ([SEP]) tokens, are incorporated to enable the model to handle vari-
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Figure 2.2: Input representations for BERT. Each token is represented
by the sum of three embeddings: token embeddings (representing each word
or special token like [CLS] and [SEP]), position embeddings (indicating word
order), and segment embeddings (distinguishing between sentences). This com-
bined representation enables BERT to capture contextual relationships across
the entire input sequence. Adapted from Devlin et al. (2019).

ous NLP tasks, including sentiment analysis and question answering, by explicitly
marking the input data structure. The [CLS] token is prepended to each input
sequence, with its embedding serving as an aggregate representation of the entire
sequence, which is particularly useful for classification tasks. The [SEP] token is
used to separate sentences or segments within the input, which allows BERT to
model relationships between sentences.

BERT’s self-supervised pretraining is built upon two primary objectives: masked
language modeling and next sentence prediction (e.g ., as used in Logeswaran and
Lee, 2018). In the masked language modeling task, a fraction of tokens within
the input sequence is randomly masked, and the model is trained to predict these
masked tokens based solely on their surrounding context. This process enables the
model to acquire rich, bidirectional contextual representations. The next sentence
prediction task, on the other hand, is designed to capture sentence-level coherence
by training the model to distinguish whether a given pair of sentences are consecu-
tive segments of the original text. Both objectives exploit unlabeled text corpora,
thereby eliminating the need for costly manual annotations. In practice, BERT is
trained on large-scale, diverse datasets, specifically the English Wikipedia (∼2.5
billion words) and the BooksCorpus (∼800 million words; Zhu et al., 2015).

Since its introduction, BERT has inspired a wide array of successor models that
build upon its core architecture to address various aspects of language represen-
tation. Some approaches focus on refining and expanding pretraining objectives
(e.g ., RoBERTa, Liu et al., 2019; XLNet, Yang et al., 2019), while others prior-
itize greater computational efficiency (e.g ., DistilBERT, Sanh et al., 2019; Tiny-
BERT, Jiao et al., 2020). In addition, specialized variants have been developed for
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domain-specific tasks such as biomedical texts (e.g ., BioBERT, Lee et al., 2020)
or scientific literature (e.g ., SciBERT, Beltagy et al., 2019) and for multilingual
contexts (e.g ., mBERT, Devlin et al., 2019; XLM-R, Conneau et al., 2020). De-
spite these advances, the original BERT model continues to serve as a remarkably
robust and widely adopted baseline in contemporary NLP research, and it is used
as the foundation model in Chapter 4 of this thesis.

2.1.3 Transformers in Computer Vision

The transition from transformer architectures in NLP to their application in CV
was relatively rapid. CNNs leverage strong inductive biases—such as local connec-
tivity, spatial hierarchies, and translation invariance—to efficiently process images.
In contrast, transformers inherently lack these biases, instead processing image
patches in parallel as unordered sets, which enables them to capture global rela-
tionships across the entire image. However, deploying transformers in CV applica-
tions has presented significant challenges. Unlike NLP, where transformers handle
sequences of discrete tokens, images are composed of high-dimensional pixel ar-
rays, resulting in greater computational and memory demands. This challenge is
compounded by the quadratic complexity of the self-attention mechanism,3 which
makes processing high-resolution images particularly resource intensive. Moreover,
while the minimal inductive biases of transformers offer flexibility, they also ne-
cessitate substantial architectural modifications and access to large-scale training
datasets to effectively learn spatial hierarchies and capture local patterns in image
data.

The Vision Transformer (ViT; Dosovitskiy et al., 2021) is a seminal work demon-
strating that transformers can fully replace traditional convolutions in deep neural
networks while outperforming large pretrained CNN-based models despite using
significantly fewer computational resources. ViT adapts the transformer architec-
ture to image processing by partitioning images into fixed-size patches and treating
each patch as an individual token, analogous to words in NLP. These patches are
flattened and linearly projected into a sequence of embeddings, allowing the model
to apply self-attention to capture global relationships across the image. This patch-
based tokenization significantly reduces the sequence length compared to a pixel-
wise representation, thereby mitigating the computational challenges associated
with high-resolution inputs.

In addition, ViT is pretrained on large-scale datasets such as ImageNet-21K (∼14
million images; Deng et al., 2009) and JFT-300M (∼300 million images; Sun et al.,
2017). This extensive pretraining enables the model to learn robust, generic rep-
resentations despite the absence of the strong inductive biases inherent in CNNs.
Furthermore, positional embeddings—similar to those used in NLP transformers—
are incorporated to encode spatial information, thereby compensating for the lack
of convolutional structure. Figure 2.3 illustrates the differences between image and

3A per-layer complexity analysis of the vanilla transformer is provided in Vaswani et al. (2017).
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Figure 2.3: Input encoding with transformers for CV and NLP. (a)
ViT divides images into fixed-size patches and embeds them via linear projec-
tion. (b) BERT tokenizes text sequences into words or subwords and embeds
them accordingly. Both models add positional embeddings to their patch or
token embeddings to retain spatial and order information. In BERT, segment
embeddings are also added to differentiate between sentence pairs. For simplic-
ity, we omit special tokens beyond the classification token. PL = Prediction
Layer.

text processing in ViT and BERT, respectively, highlighting how each architecture
adapts the transformer framework to its respective modality.

Hybrid models that combine CNNs and transformers aim to harness the spatial
locality and parameter efficiency of CNNs alongside the global context awareness
and attention mechanisms of transformers. These models typically integrate CNN
layers to extract local features and reduce computational complexity, followed by
transformer layers to capture long-range dependencies and complex interactions.
For example, the Convolutional Vision Transformer (CvT; Wu et al., 2021a) in-
tegrates convolutional layers directly into the transformer’s embedding process to
enhance the quality of extracted features at the input stage. In contrast, the Swin
Transformer (Liu et al., 2021) employs a hierarchical structure in which convo-
lutional operations are incorporated through shifted windows in multiple stages,
allowing efficient and scalable feature extraction in different resolutions. These hy-
brids demonstrate enhanced performance on various vision tasks compared with
convolution-free architectures such as ViT.

Despite the advantages of hybrid models, the original ViT remains a widely recog-
nized baseline in contemporary research due to its simplicity, strong performance,
and its foundational role in inspiring subsequent transformer-based architectures
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in CV. As such, the ViT model will serve as the base model for Chapter 5 in this
thesis.

2.1.4 Parameter-efficient Fine-tuning

As transformer models continue to scale, fully fine-tuning all their parameters
for every new task becomes prohibitively expensive in terms of computation and
memory. Parameter-Efficient Fine-Tuning (PEFT) addresses this challenge by in-
troducing a relatively small set of additional parameters—often only a fraction
of the original model’s size—while keeping the bulk of the pretrained parameters
frozen. This approach significantly reduces resource requirements and can achieve
performance that matches or even exceeds that of full fine-tuning, particularly in
scenarios with limited training data.

This section presents four prominent PEFT strategies: linear probing, intra-layer
adapters, prompt (or prefix) tuning, and linear feature modulation. An overview of
these approaches is depicted in Figure 2.4. Given that (i) pretrained representations
are generally more robust to distributional shifts in input data, and (ii) PEFT
methods can perform on par with or even exceed the effectiveness of full backbone
fine-tuning (Hu et al., 2022), the application of PEFT techniques to pretrained
models has become a cornerstone of CL research.4

Linear probing. A straightforward approach to training task-specific parame-
ters while keeping the pretrained backbone fixed is to introduce a separate Pre-
diction Layer (PL), commonly referred to as a linear probe for classification and
recognition tasks, for each downstream task, as illustrated in Figure 2.4a. This
linear probe typically consists of a fully connected classification layer that lin-
early projects the [CLS] token embedding from the final (Lth) transformer encoder
layer, which has dimensionality dL, onto the set of target classes. As indicated
in Table 2.1, linear probing is the most memory-efficient among PEFT methods
due to its minimal parameter footprint. However, this efficiency is achieved at the
expense of performance, as linear probing generally underperforms compared to
fully fine-tuning the entire pretrained backbone.

Intra-layer adapters. Adapters are lightweight modules that are integrated
within the layers of a foundation model to facilitate task-specific fine-tuning with-
out altering the original model parameters, which remain frozen. Typically, intra-
layer adapters are trained jointly with a task-specific linear probe, allowing for
efficient adaptation to new tasks with a minimal increase in parameter count. The
concept was initially introduced by Rebuffi et al. (2017a) in the context of CNNs
and later refined and popularized by Houlsby et al. (2019) for use in pretrained
transformers, particularly in NLP tasks.

4More details on PEFT methods for CL are provided in Section 3.3.2.
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Figure 2.4: Parameter-efficient fine-tuning methods for foundation
models. (a) Linear probing adjusts only the output head parameters to the
fine-tuning data. (b) Intra-layer adapters are bottleneck-structured multi-layer
perceptrons inserted twice in each transformer encoder layer. (c) Prompt tun-
ing learns p prompt tokens alongside the output head parameters. (d) Linear
feature modulation learns scaling and shifting parameters, γ and β, applied to
the token embeddings after each transformer block. PTM = Pretrained Model,
MHA = Multi-Head Attention, FFN = Feed-Forward Network, LN = Layer
Normalization, LFM = Linear Feature Modulation.

As depicted in Figure 2.4b, adapters in transformer models are implemented as
lightweight, bottleneck-structured multi-layer perceptrons that are typically in-
serted after the multi-head attention mechanism and the FFN within each encoder
block. This design has proven particularly effective for scenarios that involve in-
cremental or sequential task adaptation, as adapters can be easily swapped or
updated to accommodate new tasks. Innovations such as AdapterFusion (Pfeiffer
et al., 2021) extend this paradigm by allowing the model to integrate multiple
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Method Params. (×106) Accuracy (%)

Full 85.88 93.82

Linear probing 0.08 88.70

Adapter (Houlsby et al., 2019) 0.31 93.34

VPT (Jia et al., 2022) 0.54 93.17

SSF (Lian et al., 2022) 0.28 93.99

Table 2.1: Comparison of performance and resource demands of dif-
ferent fine-tuning strategies. The pretrained model is ViT-B/16, and the
fine-tuning dataset is CIFAR-100 (Krizhevsky, 2009). Params. refers to the to-
tal number of parameters updated during the fine-tuning stage. Full refers to the
joint fine-tuning of all ViT model parameters and is, therefore, not considered
a PEFT method. The performance differences between Adapter, VPT, and SSF
are minimal, offering no clear indication of the superiority of any PEFT method
they represent. Reported values are taken from Lian et al. (2022). For further
details, refer to the cited work.

task-specific adapters, thus facilitating cross-task knowledge transfer and improv-
ing parameter efficiency through the reuse of previously acquired task represen-
tations. Additionally, AdaptFormer (Chen et al., 2022) offers a more lightweight
alternative by incorporating a bottleneck-shaped network as a parallel processing
pathway—typically positioned after the FFN within each transformer layer—to
reduce computational overhead while preserving performance.

Prompt or prefix tuning. Another PEFT strategy, illustrated in Figure 2.4c,
involves appending learnable, task-adaptive vectors—commonly known as prompts
or prefixes—to the input data. Unlike methods that modify parameters within the
pretrained backbone, prompt and prefix tuning strategies extend the embedding
sequence processed by the transformer encoder to steer the model’s output toward
task-specific predictions. The key difference between the two lies in the insertion
point of the learnable vectors: prompt tuning appends these vectors only at the
input layer, whereas prefix tuning introduces them at every transformer layer.
Although prefix tuning requires more additional parameters, it has the potential
to yield improved performance over prompt tuning. Similarly to adapter-based
approaches, both methods typically employ a task-specific linear probe to further
refine the model predictions. As demonstrated by Liu et al. (2022) and supported
by the findings in Table 2.1, these techniques can achieve performance comparable
to full backbone fine-tuning.

Originally introduced in the domain of NLP (Lester et al., 2021), prompt and prefix
tuning have since demonstrated their adaptability in various fields. For instance,
Visual Prompt Tuning (VPT; Jia et al., 2022) has been successfully applied to
transformer architectures in CV tasks. Similarly, Context Optimization (CoOp;
Zhou et al., 2022b) and Conditional Context Optimization (CoCoOp; Zhou et al.,
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2022a) have been developed specifically for Vision-Language (VL) tasks, thereby
broadening the scope and applicability of this PEFT strategy.

Linear feature modulation. Another method for achieving task-specific adap-
tation with minimal parameter modifications is through linear feature modulation,
which applies a linear transformation to the extracted features of a deep neural net-
work to induce specific effects in the network’s output, as depicted in Figure 2.4d.
Let d denote the dimensionality of the feature embedding and M the number of in-
put tokens; consider an input x ∈ R(M+1)×d. The transformed output y ∈ R(M+1)×d

is computed as

y = γ ⊙ x+ β, (2.1)

where γ ∈ Rd and β ∈ Rd are learned scale and shift parameters, respectively, and
⊙ denotes the dot product. This strategy is inspired by normalization techniques
such as batch normalization (Ioffe and Szegedy, 2015) and layer normalization (Ba
et al., 2016), which first normalize features and then apply learned scaling and
shifting to modulate the feature distribution. These methods are widely adopted
to stabilize training and enhance generalization.

Feature-wise Linear Modulation (FiLM; Perez et al., 2018) generalizes this concept
to multimodal settings by using one modality (e.g ., text) to modulate another (e.g .,
images). Given a conditioning input x1 and target input x2, FiLM is formulated
as

y = γ(x1)⊗ x2 + β(x1), (2.2)

where γ(x1) and β(x1) are functions that generate scale and shift parameters con-
ditioned on x1 and ⊗ denotes the Hadamard product. This input-dependent mod-
ulation allows the model to adaptively adjust feature representations based on
contextual cues from the conditioning input.

A more recent technique, Scale and Shift deep Features (SSF; Lian et al., 2022),
refines this idea by focusing solely on scaling and shifting the intermediate features
extracted by specific layers of a PTM. SSF incorporates scale and shift parameters
during training to adjust feature distributions, thereby addressing distributional
shifts between upstream and downstream tasks. Unlike normalization strategies
or FiLM, SSF operates independently of individual input features, as its scale
and shift parameters model the distribution of the entire downstream dataset.
This characteristic allows the learned parameters to be reparameterized into the
original model weights, preserving a unified parameter space and obviating the
need for additional input-conditioned computations during inference. The resulting
minimal computational overhead makes SSF especially advantageous in resource-
constrained environments.

21



Chapter 2. Representation Learning in the Foundation Model Era

2.2 Multimodal Representation Learning

In Section 2.1, we reviewed several transformer architectures and PEFT strategies
that have enabled large-scale PTMs to perform exceptionally well on unimodal
tasks, such as text or image classification. Nonetheless, many real-world appli-
cations require a more comprehensive approach, wherein artificial systems must
concurrently process and interpret information from multiple sensory modalities.
For example, a robot navigating in an environment must be capable of processing
verbal instructions while simultaneously analyzing visual cues. Models designed
solely for unimodal processing are inherently limited as they lack the mechanisms
needed to effectively fuse and interpret heterogeneous data sources. This shortcom-
ing underscores the need for multimodal perception systems that can seamlessly
integrate diverse sensory inputs. Consequently, advancing foundation model re-
search towards handling multimodal data is imperative for addressing the complex
challenges posed by real-world tasks.

Multimodal, or crossmodal, representation learning seeks to integrate and process
heterogeneous data sources—such as text, images, and audio—into unified, co-
herent representations. By fusing diverse modalities, models can capture richer
semantic contexts and improve their ability to interpret and interact with complex
data. In the remainder of this thesis, we will focus on Vision-Language Models
(VLMs), a specialized subset of multimodal architectures that jointly learn from
visual and linguistic information. VLMs are designed to bridge the semantic gap
between vision and language by aligning these modalities within a shared feature
space. This alignment has proven crucial for advancing applications such as image
captioning, visual question answering, and crossmodal retrieval. The subsequent
sections will explore various strategies and paradigms for the large-scale pretraining
of VLMs, with a focus on techniques that enhance the effective learning, alignment,
and integration of multimodal information.

2.2.1 Bridging the Gap between Text and Images

A key challenge in pretraining VLMs is devising effective encoding strategies for
heterogeneous modalities—namely, images and text—given their intrinsic differ-
ences. Visual data is characterized by dense, continuous pixel arrays that capture
spatial relationships and context, whereas textual data is discrete and sequential,
conveying semantic meaning through linguistic structure. Although the text en-
coders in VLMs are typically transformer-based, the approaches to image encoding
diverge considerably.

Early attempts to adapt BERT for multimodal pretraining—exemplified by models
such as VilBERT (Lu et al., 2019), LXMERT (Tan and Bansal, 2019), VL-BERT
(Su et al., 2020), and UNITER (Chen et al., 2020)—rely on Faster R-CNN (Ren
et al., 2015) to extract salient visual features. These methods generate sequences of
region-of-interest features using object detection frameworks. In contrast, models
such as Pixel-BERT (Huang et al., 2020) and SOHO (Huang et al., 2021) adopt
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model architectures such as ResNet (He et al., 2016) to process images at the
pixel level. This approach enables the capture of finer-grained visual details and
mitigates some limitations of Faster R-CNN associated with reliance on predefined
region proposals.

More recent strategies, as seen in ALBEF (Li et al., 2021) and SimVLM (Wang
et al., 2022c), eschew convolution-based methods entirely in favor of ViT. As dis-
cussed in Section 2.1.3, ViTs partition images into fixed-size patches and process
them using self-attention mechanisms, thereby establishing a unified, transformer-
based framework that naturally aligns with the text encoding pipeline.

Du et al. (2022) categorize all aforementioned VLMs as fusion encoders, designed
to integrate text embeddings and image features through various fusion strategies
that model the interaction between vision and language. By applying self-attention
or cross-attention operations, the final-layer hidden states provide a unified rep-
resentation of the two modalities. These models mainly differ in (1) their choice
of text and image encoders, (2) whether they adopt a single-stream architecture
(concatenating multimodal inputs at the beginning and processing them jointly
within the same transformer layers, e.g ., UNITER, VL-BERT) or a dual-stream
architecture (separately encoding multimodal signals and merging them later in
the network, e.g ., VilBERT, LXMERT), and (3) the specific image-text datasets
used for pretraining (Bugliarello et al., 2021).

2.2.2 Representation Alignment

A notable limitation of the fusion encoders presented in Section 2.2.1 is their de-
pendence on deep transformer architectures to model complex VL interactions. In
contrast, dual encoder architectures employ separate unimodal encoders for images
and text, projecting their respective embeddings into a shared semantic space. The
similarity between the modalities is then computed using lightweight pooling oper-
ations, such as a shallow attention layer (Lee et al., 2018) or a simple dot product
(Faghri et al., 2018). This shallow modality interaction strategy significantly en-
hances computational efficiency and scalability by reducing the complexity and
overhead associated with deeper fusion networks.

One notable implementation of the dual encoder paradigm is the Contrastive
Language-Image Pretraining (CLIP; Radford et al., 2021) model introduced by
OpenAI, as outlined in Figure 2.5. CLIP’s image encoder is typically either a
ResNet or a ViT, while the text encoder is a variant of the vanilla transformer
encoder. CLIP leverages a large-scale dataset of web-crawled image-caption pairs
to learn a joint embedding space where both modalities are represented. This rep-
resentation alignment is achieved through a contrastive learning objective that
maximizes the cosine similarity between embeddings of matching image-text pairs
and minimizes it for non-matching pairs. Mapping both images and text into a
shared space via CLIP facilitates zero-shot image classification or retrieval through
prompting. Prompting, which was notably advanced by Brown et al. (2020), in-
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Figure 2.5: CLIP pretraining and inference pipelines. CLIP jointly trains
an image encoder and a text encoder by optimizing them to produce similar em-
beddings for paired image-text data. During inference, CLIP uses these embed-
dings to assess the alignment between a given image and multiple text prompts,
typically structured as prompt templates with inserted class labels. This align-
ment is quantified through cosine similarity, allowing CLIP to rank text prompts
by their relevance to the image or, conversely, to rank images by their relevance
to a specific text prompt. Adapted from Radford et al. (2021).

volves using textual descriptions or queries to guide the model in identifying or
retrieving relevant images without prior specific training on those categories.

Despite the robust zero-shot capabilities derived from the alignment of image and
text representations in CLIP, its shallow modality interaction mechanism con-
strains its performance on more complex VL grounding tasks beyond image clas-
sification and retrieval (Kim et al., 2021). To overcome this limitation while main-
taining the advantages of pretrained, aligned image-text representations, several
studies have proposed substituting CLIP’s shallow interaction mechanism with a
trainable, mid-sized modality interaction network (as opposed to the large fusion
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encoders outlined in Section 2.2.1). This modification extends CLIP’s utility to a
broader range of downstream VL tasks. For example, CLIPCap (Mokady et al.,
2021) introduces a transformer-based projection that maps CLIP embeddings to
a pretrained GPT-2 (Radford et al., 2019) decoder for image captioning. Simi-
larly, CLIPSeg (Lüddecke and Ecker, 2022) employs FiLM on CLIP embeddings
and trains a fusion decoder for referring expression segmentation. In the realm of
robotic object manipulation, CLIPort (Shridhar et al., 2022) learns FiLM parame-
ters to modulate CLIP embeddings within a semantic reasoning framework. Finally,
our recently proposed NOVIC model (Allgeuer et al., 2025) trains a decoder-only
transformer that generates open-vocabulary image labels as free-form text from
CLIP embeddings.

Among the studies that augment aligned multimodal encoders with a medium-
sized fusion network, two primary design paradigms for modality fusion emerge:
(1) approaches such as CLIPCap and CLIPort that employ linear modulation of
visual features via textual cues (e.g ., using FiLM), and (2) strategies like CLIPSeg
and NOVIC that leverage a single-stream transformer-based fusion network to
generate a unified joint output from pretrained text and image features. Due to the
fundamental differences between FiLM-based modulation and transformer-based
fusion, their performance in CL settings can differ significantly. Consequently, the
decision on which modality interaction mechanism to prioritize during CL may
depend on the specific performance characteristics and trade-offs of each approach.
To examine these differences, we will conduct a comprehensive evaluation and
analysis of both fusion network architectures in the CL experiments detailed in
Chapter 6.

2.2.3 Taxonomy of Vision-Language Models

Having examined a variety of VLM architectures in earlier sections, we now es-
tablish a systematic framework that categorizes these models according to their
architectural designs and fusion strategies, as illustrated in Figure 2.6. Kim et al.
(2021) introduce a taxonomy of VLMs based on two principal dimensions: (1) the
distribution of expressiveness between the modalities, determined by the alloca-
tion of dedicated parameters and computational resources to each modality; and
(2) the depth of the modality interaction network. Their taxonomy delineates four
distinct VLM types, as depicted in Figures 2.6a to 2.6d. In this thesis, we extend
the taxonomy by introducing a fifth category, which is visualized in Figure 2.6e.
This novel category encapsulates recent advancements in dual encoder models, par-
ticularly the developments that have emerged following CLIP (cf . Section 2.2.2).
Specifically, models in this category train a mid-sized fusion network atop a fixed
dual encoder architecture to effectively address complex downstream tasks that
demand enhanced multimodal reasoning.

Models in the first category, shown in Figure 2.6a, represent the majority of fu-
sion encoders discussed in Section 2.2.1, such as VilBERT, LXMERT, etc. Fusion
encoder VLMs train a deep modality interaction network, which is typically a
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Figure 2.6: Comparison of fusion strategies in VLMs. Categories (a) and
(b) refer to fusion encoders, which use deep fusion networks to capture complex
multimodal interactions. VLMs from categories (c) and (d) use dual encoders
to align representations of each modality via shallow interactions. Models in
category (e) extend dual encoders by incorporating a deep fusion network to
enhance modality interaction. The higher the box, the deeper the network it
represents. IE = Image Encoder, TE = Text Encoder, MI = Modality Interac-
tion. Adapted from Kim et al. (2021).

transformer encoder, to integrate visual and linguistic information. Visual features
are generally extracted at the pixel level via ResNet, as region-of-interest features
via Faster R-CNN, or as sequences of patch embeddings via ViT.

In contrast to first-category models that rely on deep, computationally intensive vi-
sual embedding layers, models in the second category, as illustrated in Figure 2.6b,
employ shallow embedding layers for both raw pixel inputs and text tokens. These
models prioritize early-stage modality fusion and allocate the majority of compu-
tational resources to modeling crossmodal interactions. A notable example of this
approach is ViLT (Kim et al., 2021).

The third VLM category, illustrated in Figure 2.6c, comprises visual semantic em-
bedding models, including VSE++ (Lee et al., 2018) and SCAN (Faghri et al.,
2018). These models represent some of the earliest dual encoder architectures de-
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signed to map text and images into a shared embedding space. They utilize separate
embedding networks for textual and visual inputs, where the visual encoder is typ-
ically a computationally intensive CNN, and the text encoder is generally a more
lightweight RNN. Multimodal interaction in these models is facilitated through
similarity matching between text and image embeddings, achieved by parameter-
free (e.g ., dot product) or lightweight parameterized methods (e.g ., shallow atten-
tion).

The fourth category, depicted in Figure 2.6d, comprises contemporary dual en-
coder models that employ separate, yet equally sized, transformer encoders for each
modality. Notable examples in this category include CLIP and ALIGN (Jia et al.,
2021). Much like the visual semantic embedding models in the third category, these
models implement shallow modality interaction—typically via a dot product—to
align multimodal representations. Although they demonstrate strong performance
in zero-shot image classification and retrieval through prompting, their ability to
tackle more complex VL reasoning tasks remains limited (cf . Section 2.2.2).

Finally, the fifth and last category, as depicted in Figure 2.6e, includes a diverse
array of recent VLMs that extend the capabilities of dual encoders to VL tasks
beyond classification and retrieval. These models typically consist of two distinct,
approximately equal-sized transformer encoders—one for producing textual em-
beddings and the other for visual embeddings—along with an additional multi-layer
modality interaction network. Approaches that build upon the most well-known
dual encoder, CLIP, such as CLIPCap and CLIPSeg, fall within this category.

Given the five different types of VLMs, selecting the appropriate VLM for our CL
experiments in Part III is essential. Since unimodal representations from transfor-
mer-based PTMs are inherently generic and powerful, we will keep the modality-
specific encoders (i.e., IE and TE in Figure 2.6) frozen. Our primary focus will
therefore be on learning the modality fusion parameters to flexibly adapt to down-
stream tasks.

In the context of CL, the selected VLM must produce joint representations that are
both sufficiently expressive to accommodate new tasks and robust enough to retain
knowledge gained from previous ones. Fusion encoder architectures from the first
two categories typically employ shallow text encoders that are fine-tuned alongside
the modality interaction network. This constraint renders them unsuitable for our
experiments, as they tend to lack robustness and conflict with our objective of
maintaining fixed, pretrained visual and textual encoders to fully leverage their
potent feature extraction capabilities. Similarly, under our constraint of frozen
modality-specific encoders, the shallow modality interaction mechanisms in dual
encoder architectures from the third and fourth categories cannot effectively learn
task-specific representations, limiting their adaptability to new tasks.

VLMs in the fifth category integrate state-of-the-art, pretrained text and image
encoders with a moderately deep modality interaction network. This design is the
most effective for the multimodal CL scenarios we will investigate in this the-
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sis, given the aforementioned assumptions and desired VLM properties. However,
models in this category are typically resource intensive—in terms of both runtime
and memory usage—since all three components (the image encoder, text encoder,
and modality interaction network) are deep networks. As we intend to keep the
parameters of the pretrained image and text encoders fixed, it is crucial to de-
sign a modality interaction network that efficiently leverages these high-quality,
modality-specific representations while remaining as shallow or lightweight as pos-
sible. This design constraint is essential for achieving an optimal balance between
the advantageous properties for CL and the associated computational costs.

2.3 Chapter Summary

In this chapter, we examined the evolution of representation learning within the
realm of foundation models, beginning with an in-depth exploration of the trans-
former encoder–decoder architecture. This marked a paradigm shift from train-
ing models from scratch to leveraging self-supervised pretraining on large-scale
datasets, subsequently refined through supervised fine-tuning on task-specific data.
Transformer-based foundation models have streamlined architectural design by ob-
viating the need for computationally intensive mechanisms like recurrence and con-
volution, while also demonstrating remarkable generalization across diverse modal-
ities, tasks, and domains. We underscored the transformative role of the trans-
former in advancing deep learning—most notably in natural language processing
and computer vision—with landmark models such as BERT and ViT epitomizing
this evolution.

Moreover, we reviewed various parameter-efficient fine-tuning strategies that adapt
foundation models to downstream tasks while substantially reducing computa-
tional overhead. These techniques are particularly valuable in low-data or resource-
constrained settings, making them indispensable in efforts to deploy foundation
models in complex and dynamic learning environments.

Motivated by the multisensory nature of human perception in real-world settings,
we also highlighted significant advancements in multimodal learning driven by
foundation models. We discussed key design principles for the integration and
fusion of heterogeneous modalities. Similar to their successful application in uni-
modal applications, large-scale foundation models can capture rich, comprehen-
sive representations across multiple modalities. This capability enables effective
adaptation to a broad spectrum of downstream multimodal tasks, often requiring
minimal fine-tuning data. Building on these insights, we proposed a taxonomy for
vision–language models and provided a rationale for emphasizing deep modality
interaction networks constructed atop pretrained representation alignment models
such as CLIP.

Despite the broad applicability enabled by pretraining on vast, web-derived datasets
followed by fine-tuning on smaller, annotated datasets, foundation models inher-
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ently assume that input samples are independently drawn from a fixed, stationary
distribution. Although self-supervised upstream pretraining confers enhanced ro-
bustness and generalizability, this thesis will demonstrate that such models still
face significant limitations in dynamic, real-world environments where data distri-
butions evolve over time. Thus, maintaining high performance under distributional
shifts remains an open challenge, yet important prerequisite for pretrained models
for successful real-world deployment. In the subsequent chapter, we will develop
the theoretical framework for continual learning, discuss its importance, and review
different methodologies for addressing this challenge.

29



Chapter 2. Representation Learning in the Foundation Model Era

30



Chapter 3

Continual Learning

Continual learning addresses the challenge of learning from a continuous, poten-
tially infinite stream of information, which may involve multiple tasks and be sub-
ject to distributional shifts (Chen and Liu, 2018). The primary objective of CL is
to leverage knowledge acquired over time to improve problem-solving capabilities
and facilitate future learning, while mitigating catastrophic forgetting to retain pre-
viously learned knowledge. In the literature, CL is often discussed using terms like
lifelong learning, sequential learning, and incremental learning, each with nuanced
differences in focus. While lifelong learning emphasizes open-ended knowledge ac-
cumulation and refinement, sequential learning addresses the challenge of ordered
task learning under shifting distributions, and incremental learning focuses on up-
dating models without retraining from scratch. Despite these nuances, the terms
describe largely overlapping concepts and will be treated synonymously throughout
this thesis.

This chapter highlights the importance of CL for both biological and artificial
systems, while identifying the challenges and limitations inherent in strategies de-
signed to address this problem. We begin by discussing the key biological mech-
anisms underpinning CL in Section 3.1. Following this, we provide a concise re-
view of the most relevant desiderata, evaluation metrics, learning scenarios, and
paradigms for CL in artificial neural networks in Section 3.2. To bridge the gap
with the previous chapter and the core focus of this thesis, we explore CL in the
context of foundation models in Section 3.3. Finally, we summarize and conclude
this chapter in Section 3.4, where we also highlight the remaining challenges and
unresolved open questions.

3.1 Biological Aspects of Continual Learning

Learning is defined as the process by which experiences lead to behavioral adapta-
tions (Kandel and Hawkins, 1992). Throughout their lifespans, humans and other
animals demonstrate an exceptional ability to acquire, integrate, refine, and trans-
fer knowledge in response to novel stimuli. This section presents a succinct exam-

31



Chapter 3. Continual Learning

ination of the biological and neurocognitive mechanisms in the mammalian brain
that facilitate continuous learning and adaptation, which have served as inspira-
tion for various computational methods and algorithms for CL, including several
discussed in this thesis.

3.1.1 Stability-Plasticity Dilemma

The stability-plasticity dilemma (Grossberg, 1982) represents a fundamental chal-
lenge in neuroscience, particularly in understanding how the brain balances re-
taining learned knowledge (stability) with integrating novel information from new
experiences or learning events (plasticity). Stability, in biological terms, refers to
the preservation and maintenance of synaptic strengths and neural circuits that
underlie the encoding and storage of long-term memories, while plasticity involves
dynamic remodeling of synaptic connections and neural pathways, encompassing
both structural and functional changes in response to external stimuli. A regulated
balance between these mechanisms is essential for long-term memory retention in
neural circuits (Abraham and Robins, 2005; Takeuchi et al., 2014).

This trade-off between stability and plasticity is deeply rooted in the neural mech-
anisms that underpin learning and memory. For example, Long-Term Potentiation
(LTP) and Long-Term Depression (LTD) are essential mechanisms of synaptic
plasticity that contribute to experience-dependent changes in brain function by
modifying synaptic strength (Malenka and Bear, 2004). LTP, first demonstrated
in rabbits by Bliss and Lømo (1973) and later observed across various brain regions
and species, is defined as a long-lasting increase in synaptic strength following re-
peated high-frequency stimulation. A key mechanism of LTP involves increasing
the sensitivity of the postsynaptic neuron to neurotransmitters, primarily through
the insertion of additional AMPA receptors into the postsynaptic membrane (Abra-
ham, 2003; Shepherd and Huganir, 2007). Conversely, LTD is characterized by a
long-term reduction in synaptic efficacy, typically after low-frequency stimulation.
This reduction is crucial for processes such as synaptic pruning, in which unnec-
essary or redundant synaptic connections are weakened or eliminated to refine
neural circuits (Bear and Abraham, 1996). Furthermore, both LTP and LTD are
intricately linked to the concept of meta-plasticity, a higher-order regulatory mech-
anism in which prior synaptic activity not only adjusts synaptic strength but also
modulates the threshold for future potentiation or depression (Abraham and Bear,
1996; Abraham, 2008).

Striking a balance between stability and plasticity is essential for both immedi-
ate synaptic changes and the broader processes involved in memory consolidation
and reconsolidation. Memory consolidation refers to the process by which newly
acquired information becomes stable and integrated into long-term memory over
time. This process involves not only strengthening specific synapses, i.e., synap-
tic consolidation, but also reorganization of neural networks to support long-term
storage of memories, i.e., systems consolidation (McGaugh, 2000). However, the
acquisition of new information can potentially disrupt existing memories, a phe-
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nomenon known as retroactive interference (Wixted, 2004). Reconsolidation theory
posits that when a consolidated memory is retrieved, it temporarily becomes la-
bile and subject to modification or updating before being re-stabilized (Dudai,
2004).

As the brain ages, the dynamics of stability and plasticity shift significantly, with
critical implications for learning and memory throughout the lifespan (Peters,
2006). During early development, the brain exhibits increased plasticity, particu-
larly during critical periods, when certain experiences can profoundly shape neural
circuits and behavioral outcomes (Knudsen, 2004). This plasticity is crucial for ac-
quiring complex skills such as language and sensory processing, as highlighted by
studies on early developmental stages (Hensch, 2005; Werker and Hensch, 2015).
However, as individuals age, the brain progressively prioritizes stability, focusing on
the retention of existing knowledge over the incorporation of new information. This
transition is associated with a reduction in synaptic plasticity and an increase in
mechanisms that promote stability, including enhanced inhibitory processes and
the strengthening of established synaptic connections (Burke and Barnes, 2006;
Morrison and Baxter, 2012).

Hedden and Gabrieli (2004) highlight that these neural changes result in contrast-
ing patterns of cognitive function, where abilities such as encoding new memories,
working memory, and processing speed decline, while other cognitive functions, in-
cluding autobiographical memory and semantic knowledge, remain relatively sta-
ble. Although increasing stability supports the preservation of long-term memories
and acquired skills, it comes at the cost of reduced behavioral flexibility and adapt-
ability (Lövdén et al., 2010). This shift is further associated with a reduction in
cognitive reserve, diminishing the brain’s ability to buffer against age-related cog-
nitive decline (Stern, 2009).

3.1.2 Hebbian and Homeostatic Plasticity

One of the first and most influential theories on stimulus-driven neural responses
was introduced by Hebb (1949). This theory posits that when a presynaptic neu-
ron, i.e., the signal-sending neuron, consistently triggers the activation of a post-
synaptic neuron, i.e., the signal-receiving neuron, the synaptic connection between
them is strengthened. In essence, frequent activation of the postsynaptic neuron by
the presynaptic neuron reinforces their connection, thus enhancing the efficiency
of future communication. This principle, often encapsulated by the phrase “neu-
rons that fire together wire together,” laid the foundation for understanding how
repeated experiences can induce lasting changes in neural circuitry. A simplified
mathematical formulation of Hebbian plasticity, developed after Hebb’s original
work, updates the synaptic weight wij between neuron i and neuron j according
to the rule:

∆wij = η · xi · yj, (3.1)
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Figure 3.1: Models of learning and memory in the brain. (a) Heb-
bian plasticity strengthens neural connections in response to external stimuli,
while homeostatic plasticity maintains neural stability amidst these changes by
computing and returning a feedback control signal based on the observed sys-
tem state. (b) The CLS theory suggests that the hippocampus rapidly encodes
new memories for short-term storage, while the neocortex gradually consolidates
these memories over time for long-term storage and integration with existing
knowledge. Adapted from Parisi et al. (2019).

where xi and yj represent the activities of the presynaptic and postsynaptic neu-
rons, respectively, and η is a small positive constant representing the learning
rate.

Hebbian plasticity is fundamental for learning and memory formation as it en-
ables the encoding of synaptic associations and the reinforcement of frequently co-
activated neural circuits (Bi and Poo, 1998; Magee and Johnston, 1997). However,
unregulated Hebbian plasticity can lead to runaway synaptic dynamics, where the
most active synapses disproportionately strengthen, potentially causing network
overexcitation and disrupting the balance of neural function (Bienenstock et al.,
1982; Miller, 1996). To prevent such instability, Hebbian plasticity is modulated
by homeostatic plasticity, a set of regulatory mechanisms that stabilize neural ac-
tivity by globally or locally adjusting synaptic strengths to maintain them within
an optimal range (Turrigiano, 1999). This regulation prevents excessive synaptic
potentiation and counteracts the harmful effects of excessive synaptic inhibition,
which can contribute to memory dysfunction (Vogels et al., 2011). Thus, homeo-
static processes maintain the functional integrity of neural circuits, ensuring that
Hebbian modifications allow the brain to remain flexible for new learning while
safeguarding the stability of existing memories (Turrigiano and Nelson, 2004; Pozo
and Goda, 2010). A schematic illustration of Hebbian and homeostatic plasticity
is provided in the left part of Figure 3.1.
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One prominent type of homeostatic plasticity is synaptic scaling, where the strength
of all synapses in a neuron is adjusted uniformly through a multiplicative scaling
factor m. This scaling factor acts as a modulatory signal to stabilize the neu-
ron’s overall firing rate while preserving the relative differences between synaptic
strengths, ensuring that the proportional synaptic weight distribution remains in-
tact (Turrigiano, 2008; Davis, 2006). The change in synaptic weight wij is given
by the following equation:

∆wij = mj · η · xi · yj, (3.2)

where mj is unique to each postsynaptic neuron j. The incorporation of modula-
tory feedback loops in Hebbian neural networks has recently garnered significant
attention, leading to the development of various approaches that utilize biologi-
cally plausible learning mechanisms (Grant et al., 2017; Payeur et al., 2021; Tang
et al., 2023). In particular, the interaction between Hebbian and homeostatic plas-
ticity stabilizes synaptic changes within individual neurons, but additionally plays
a crucial role in the broader organization of neural circuits into functional struc-
tures (Turrigiano, 2012). The foundational work of Mountcastle (1957), and later
of Hubel and Wiesel (1962), demonstrates that neurons in the cat brain are or-
ganized into cortical columns, or brain maps, which are selectively responsive to
specific sensory stimuli. These neurons are spatially arranged to systematically
reflect properties of sensory input, such as the orientation of edges in the visual
field.

Self-organizing maps. The concept of brain maps has been applied effectively
in artificial neural networks, particularly in Kohonen’s Self-Organizing Map (SOM;
Kohonen, 1990). The unsupervised SOM algorithm utilizes principles of topological
mapping and Hebbian plasticity to develop spatially organized representations of
input data through competitive Hebbian learning (Martinetz, 1993). SOMs map
high-dimensional input data onto a lower-dimensional (often two-dimensional) grid
of neurons, where each neuron corresponds to a region in the input space. During
training, input vectors are compared with the neurons’ weight vectors, and the
neuron with the closest match—based on a predefined distance metric, typically
Euclidean distance—is designated as the Best Matching Unit (BMU). Given a set
of SOM nodes N and some input vector x, the BMU b is given by

b = argmin
n∈N

||x− n||, (3.3)

where || · || denotes the L2 norm. The BMU and its neighboring neurons adjust
their weight vectors to better approximate the input vector, with the degree of
adaptation diminishing as a function of distance from the BMU. Through repeated
iterations, neurons self-organize, resulting in similar input patterns being mapped
to neighboring neurons, thereby preserving the topological relationships of the
input space.1

1For an in-depth examination of the theoretical foundations and applications of SOMs, refer
to Kohonen (2013).

35



Chapter 3. Continual Learning

Self-organizing incremental neural networks. The Self-Organizing Incre-
mental Neural Network (SOINN; Shen and Hasegawa, 2010) improves the SOM
algorithm in several key aspects. First, unlike SOM, which requires the entire
dataset to be available before training, SOINN supports online continual learning,
allowing the network to dynamically update its structure with each new input vec-
tor. Second, SOINN incorporates a noise-resistant pruning mechanism that removes
redundant nodes to produce a more compact and storage-efficient representation of
the input space. Third, SOINN dynamically adjusts its network structure by modu-
lating the number of nodes and connections based on the statistical properties and
distribution of the input data. Finally, SOINN accommodates both unsupervised
and semi-supervised learning through an automatic node-labeling process, making
it especially useful for classification tasks. SOINN+ (Wiwatcharakoses and Berrar,
2020) extends the original SOINN algorithm towards a novel node deletion mech-
anism based on idle time, trustworthiness, and inactivity of network units. This
advancement enables SOINN+ to demonstrate increased resilience to noisy data
and to learn high-quality topologies from the input domain, while maintaining a
smaller number of nodes compared with the original SOINN algorithm.

In this thesis, we refrain from an exhaustive examination of the mechanisms for
node creation, adjustment, and deletion inherent to the dynamic self-organization
process, as these are comprehensively detailed in the original SOM, SOINN, and
SOINN+ publications. Instead, our focus is on leveraging the self-supervised node
labeling strategy of the SOINN+ algorithm to augment input features extracted
by foundation models during CL, which will be further detailed in Chapter 4.

3.1.3 Complementary Learning Systems

The Complementary Learning Systems (CLS) theory, initially proposed by Mc-
Clelland et al. (1995), provides a comprehensive framework for understanding how
the brain resolves the stability-plasticity dilemma by delineating the roles of two
interacting memory systems: the hippocampus and the neocortex. According to
this theory, these systems have complementary functions in learning and memory,
with the hippocampus specializing in the rapid acquisition of new episodic or fac-
tual information with a high learning rate, and the neocortex gradually integrating
this information into generalized long-term memory with a slower learning rate.
Hebbian learning mechanisms provide the foundation for the consolidation mech-
anisms in both the hippocampus and the neocortex to strengthen representations
activated within each system and to facilitate coordination between fast and slow
learning processes (O’Reilly and Rudy, 2000). A brief overview of the CLS theory
is shown on the right side of Figure 3.1.

The hippocampus plays a critical role in the rapid acquisition of new experiences,
particularly in the temporary storage of episodic and contextual information. It
underlies synaptic consolidation and rapid plasticity mechanisms such as LTP to
support rapid memory encoding (Bliss and Lømo, 1973; Bliss and Collingridge,
1993). This plasticity is essential for forming detailed and contextually rich repre-
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sentations of recent experiences, significantly contributing to episodic memory and
early stages of learning (Eichenbaum, 2004). However, this same plasticity renders
the hippocampus a transient storage system, susceptible to interference from sub-
sequent learning, and thus unsuitable for stable, long-term retention of knowledge
(Frankland and Bontempi, 2005).

Over time, the hippocampus undergoes reactivation to replay its encoded memo-
ries, promoting their gradual transfer to the neocortex, particularly during periods
of rest and sleep (Wilson and McNaughton, 1994; Rasch and Born, 2013). The
neocortex plays a pivotal role in systems consolidation, a process in which these
memories are gradually reorganized and integrated into existing cortical networks
to support the abstraction of knowledge across multiple experiences (Takashima
et al., 2009). Due to its lower synaptic plasticity and higher structural stability
compared with other brain regions, such as the hippocampus, the neocortex is
particularly well suited for preserving generalized knowledge over extended time
periods (Frankland and Bontempi, 2005; Kandel et al., 2013).

CLS theory offers a framework for tackling CL challenges in artificial neural net-
works, particularly in mitigating catastrophic forgetting. This theory has inspired
dual-memory models that mirror the brain’s division of labor between the hip-
pocampus and the neocortex. Specifically, these models feature a fast-learning
module—akin to the hippocampus—that rapidly encodes new experiences, along-
side a slow-learning module—analogous to the neocortex—that gradually inte-
grates and consolidates these experiences into a stable, long-term knowledge base
(Kumaran et al., 2016). In Chapter 4, we introduce a novel CL methodology that
leverages this dual-memory architecture derived from CLS theory.

3.2 Continual Learning with Artificial Neural Net-
works

Building on our exploration of the biological foundations of CL, we now shift focus
to continual machine learning, where insights from biological systems can inform or
enhance the design of AI systems. The mechanisms by which the mammalian brain
acquires and integrates knowledge across the lifespan serve as a guiding framework
for developing machine learning models capable of learning and evolving over time
without forgetting past knowledge. In this section, we formally define the problem
of continual machine learning and examine its key objectives, methodologies, re-
cent advancements, and persistent challenges that shape this dynamic and rapidly
evolving field.

3.2.1 Problem Formulation

In a traditional supervised machine learning setting, a model observes independent
and identically distributed (i.i.d.) data from a training set D of size N = |D|,
where each sample is drawn from a fixed but unknown joint probability distribution
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p(X ,Y) across the sample space X and label space Y . The number of distinct labels,
corresponding to the number of classes in a classification problem, is denoted by C.
The learning task involves finding a function fθ : X → Y , parameterized by θ, that
best approximates the underlying relationship between inputs and outputs. This
is achieved by minimizing an empirical risk function, which serves as a proxy for
the expected loss over the data distribution. The empirical risk is defined as

N∑
n=1

L (fθ(xn), yn) , (3.4)

where L(·, ·) is a predefined loss function that quantifies the error between the
predicted labels fθ(xn) of the nth input sample xn and the associated ground-
truth label yn. The goal is to determine the optimal parameters θ∗ that minimize
the empirical risk:

θ∗ = argmin
θ
L(θ). (3.5)

This approach, known as empirical risk minimization, critically relies on the i.i.d.
assumption and the stationarity of the data distribution. Under these conditions,
minimizing the empirical risk is expected to result in a model that generalizes well
to new, unseen data drawn from the same distribution. In practice, the i.i.d. as-
sumption requires that the entire training set D is accessible at once, which is often
unrealistic when new data become progressively available during training, e.g ., in
the form of real-time sensory data, or when collected under varying or evolving
environmental conditions. A pragmatic solution to preserve the i.i.d. assumption
in this setting would be to repeatedly retrain a model on the entire historical
dataset each time new data become available or following each distributional shift.
However, frequent retraining is prohibitively expensive due to the growing size of
models and the superlinear increase in computational resources required to train
them (Kaplan et al., 2020). Moreover, this approach may be infeasible when histor-
ical data are inaccessible due to privacy, storage, or regulatory constraints.

Continual learning is a subfield of machine learning that aims to address the chal-
lenge of learning from non-stationary data distributions. Approaches to CL seek
to enhance the robustness2 and applicability of models in dynamic, real-world en-
vironments. Practically, instead of being trained on a single set of i.i.d. data D,
a model in a CL scenario is trained on an ordered sequence of tasks with indices
t ∈ {1, . . . , T}, where a task is defined by its set of Nt annotated training samples
Dt = {(xt,n, yt,n)}Nt

n=1 following the distribution p(Xt,Yt). Depending on the CL
setting, these training samples can arrive one sample at a time, in batches, or all
at once. The objective function in CL is similar to that of multi-task learning (cf .

2We broadly define robustness as a model’s ability to consistently achieve high performance
and generalization across different tasks, irrespective of variations in how training data are pre-
sented to the model.
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Task 2 Task 3 Task 4 Task TTask 5

Boil water Make tea Cook pasta Make pasta
salad

Prepare
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Subtasks:

Identify kettle
Fill with water
Place on stove
Turn on heat

Subtasks:

Boil water
Identify teabag
Place in cup

Pour hot water
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Chop vegetables
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Slice bread
Chop vegetables

Add fillings
Cut sandwich
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Make pasta salad
Make sandwich
Serve on plate

...

Task 1

Figure 3.2: Overview of a continual learning scenario. In a CL setting,
a model is trained on a series of tasks, each potentially comprising explicit or
implicit subtasks. Every task is represented by a training dataset or a series of
training episodes and is governed by its own probability distribution. Because
tasks and subtasks may (re-)appear at any time, previously acquired knowledge
can be leveraged to enhance transfer across the learning process.

Chen and Liu, 2018), given by

T∑
t=1

Nt∑
n=1

L (fθ(xt,n), yt,n) , (3.6)

with the key distinction that CL focuses on developing models capable of effectively
learning from a sequence of tasks (D1,D2, . . . ,DT ) rather than being trained on all
tasks simultaneously. A visual representation of an exemplary CL setting is shown
in Figure 3.2.

The primary challenge in CL is mitigating catastrophic forgetting, a phenomenon
in which a neural network’s performance on previously learned tasks declines as
new tasks are introduced. This degradation arises from shared parameters between
tasks, which lead to interference between old and new knowledge. CL also aims
to facilitate forward transfer, where knowledge acquired from previous tasks en-
hances performance on subsequent tasks, and backward transfer, in which learning
new tasks improves performance on previously learned tasks. For instance, in the
kitchen scenario depicted in Figure 3.2, once the system masters boiling water for
tea, it can reuse core principles (e.g ., managing water temperature) when cooking
pasta, illustrating forward transfer. In contrast, improvements in temperature con-
trol or stovetop usage gained while preparing pasta can refine the original boiling
process, exemplifying backward transfer.
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3.2.2 Key Features and Desiderata

The criteria for evaluating the extent to which a model is capable of CL must
be defined both in terms of the model’s capabilities and the scenario in which it
operates. A sufficiently challenging CL scenario is crucial for demonstrating that
a model performing well within it truly exhibits CL capabilities. Drawing from
the insights of Kudithipudi et al. (2022), Hadsell et al. (2020), and Farquhar and
Gal (2019), we define the following key features and desiderata that emerge in this
context:

1. Learning efficiency: The learning efficiency of a model is largely deter-
mined by its capacity to transfer and adapt knowledge across tasks. When
data availability is inconsistent, such as in scenarios where tasks exhibit sig-
nificant data imbalance, models must often rapidly adapt with minimal in-
formation, using advanced techniques like few-shot learning. Furthermore,
models may operate in single-epoch or online learning settings, allowing only
a single pass over the training data. An effective strategy for improving learn-
ing efficiency involves identifying and reusing shared knowledge across tasks,
which aligns closely with the objectives of systematic or compositional gen-
eralization approaches.

2. Overcoming forgetting: Models must retain previously acquired knowl-
edge during incremental learning, particularly when access to historical data
is restricted. When a model, already trained on certain tasks, is exposed to
a new task, it adjusts (or overwrites) its parameters based on the probabil-
ity distribution of the new task. Without an explicit prevention mechanism,
this adjustment compromises the model’s performance on previously learned
tasks, as prior knowledge is inadequately preserved.

3. Task-agnostic learning: A model should operate without explicit defini-
tions or boundaries between tasks, particularly during testing. The ideal
model should autonomously identify and categorize the task it needs to ad-
dress. This requires the model to possess advanced inference capabilities,
enabling it to interpret and respond to ambiguous or incomplete task sig-
nals.

4. Open-ended learning: Real-world applications often involve learning a po-
tentially unlimited number of diverse tasks. Consequently, a model must be
able to acquire a new task at any time, regardless of how many tasks it has
previously learned.

5. Resource efficiency: A model that requires storing all historical data for
repetitive retraining during incremental learning imposes increasingly unsus-
tainable memory and computational demands, rendering it impractical for
real-world applications. Similarly, introducing a new model for each addi-
tional task is both cost-prohibitive and detrimental to cross-task knowledge
transfer. For effective deployment in realistic, resource-limited environments,
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the model must operate within strict resource constraints—specifically re-
garding memory, time, and computation—without sacrificing overall perfor-
mance.

6. Exemplar-free retention: A model must be capable of knowledge retention
and transfer without revisiting previously seen raw data, or exemplars. This
requirement is critical in scenarios governed by privacy constraints or legal
regulations that prohibit the storage or reuse of historical data, as well as in
cases of real-time processing with high data throughput, where storing past
data is either impractical or impossible due to time or storage constraints.
Potential strategies for exemplar-free retention include (i) storing compact
latent representations for replay, (ii) employing generative models, (iii) using
knowledge distillation, or (iv) prototyping methods. Beyond feature and gen-
erative replay approaches using strategies (i) or (ii), which are commonly re-
ferred to as exemplar-free, knowledge distillation and prototype-based meth-
ods using strategies (iii) or (iv) are additionally considered rehearsal-free.

While these characteristics guide the evaluation of CL methods, they often involve
trade-offs. For instance, achieving high learning efficiency may require storing large
amounts of historical data, which can conflict with goals like resource efficiency and
data-free retention. Therefore, a practical strategy is to prioritize the characteris-
tics most relevant to the specific application. In time-sensitive domains, such as
autonomous driving systems, computational and runtime efficiency are paramount,
often taking precedence over memory constraints. Conversely, in fields like health-
care, efficient data usage becomes critical due to limited access to historical records
and incoming data. Nevertheless, this thesis will present CL methods that achieve
competitive performance in their respective applications without significant com-
promises across these criteria.

3.2.3 Evaluation Metrics

In contrast to traditional machine learning research, which primarily reports a
success metric evaluated on the entire dataset D after training, CL research places
additional emphasis on model performance over time. Consequently, CL evaluation
metrics are typically measured not only at the end of training but also at frequent
intervals during the sequential learning phase, e.g ., after training on each task
D1,D2, . . . ,DT .

Metrics for evaluating CL methods have been proposed in various works with
minor variations (Lopez-Paz and Ranzato, 2017; Chaudhry et al., 2018; Kemker
et al., 2018; Wang et al., 2024). Common to all of them is the measurement of
CL performance along three major dimensions: the ability of a model to retain
knowledge (memory stability), its capacity to learn new tasks (learning plasticity),
and its capability to balance these two objectives (overall performance). In this
thesis, we primarily adopt the CL evaluation metrics introduced by Wang et al.
(2024). Specifically, let at,i ∈ [0, 1] denote some success metric, e.g ., classification
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accuracy, measured on the test set of the ith task after incremental learning of the
tth task, where i ≤ t.

Learning plasticity. To measure the capability of a model to leverage knowledge
from prior tasks to better learn the current task, we formally define the Forward
Transfer (FWT) as

FWTt =
1

t− 1

t∑
i=2

ai−1,i − ãi, (3.7)

where ãi denotes the performance on the ith task at (random) initialization of the
reference model.

Memory stability. The ability of a model to retain knowledge from previous
tasks in an incremental learning setting can be quantified using two different met-
rics: Forgetting Measure (FM) and Backward Transfer (BWT). Both metrics are
inversely related: positive forgetting reflects a decline in performance on a task i
after learning a subsequent task t > i, while positive backward transfer denotes
an improvement in performance on task i following the acquisition of the tth task.
Formally, the forgetting measure is expressed as

FMt =
1

t− 1

t−1∑
i=1

max
j∈{1,...,t−1}

aj,i − at,i, (3.8)

while backward transfer is computed as

BWTt =
1

t− 1

t−1∑
i=1

at,i − ai,i. (3.9)

Although few theoretical studies examine backward transfer (e.g ., Lin et al., 2022a;
Benavides-Prado and Riddle, 2022), they typically restrict their analysis to a single
target task and assume a high degree of similarity between tasks. However, in
practice, such conditions are rarely met. Given the more complex scenarios explored
in this thesis that extend beyond the limited scope of the aforementioned studies,
we will show that forgetting still remains a significant challenge. Thus, in the
remainder of this thesis, we will focus on FM as a representative measure of memory
stability.

Overall performance. The most commonly used metric for evaluating and com-
paring CL methods is Average Accuracy (AA), formally defined as

AAt =
1

t

t∑
i=1

at,i (3.10)

AAt implicitly captures both learning plasticity (the ability to acquire new knowl-
edge) and memory stability (the ability to retain past knowledge), which makes it
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Scenario Training Evaluation

TIL {{Dt, t}Ee=1}Tt=1; p(Xi) ̸= p(Xj) and Yi ∩ Yj = ∅ ∀ i ̸= j {p(Xt), t}Tt=1

DIL {{Dt, t}Ee=1}Tt=1; p(Xi) ̸= p(Xj) and Yi = Yj ∀ i ̸= j {p(Xt)}Tt=1

CIL {{Dt, t}Ee=1}Tt=1; p(Xi) ̸= p(Xj) and Yi ∩ Yj = ∅ ∀ i ̸= j {p(Xt)}Tt=1

OCL {{{Dt,b}b∈Bt}Ee=1}Tt=1, |b| = 1, E = 1; p(Xi) ̸= p(Xj) ∀ i ̸= j {p(Xt)}Tt=1

Table 3.1: Formal comparison of continual learning scenarios. Dt: train-
ing set for task t. Dt,b: training set for task t and batch b. |b|: batch size of batch
b. Bt: space of incremental batches for task t. E: number of training epochs for
task t. Xt: input data space for task t. p(Xt): probability distribution over Xt.
Yt: output label space for task t. Note that E = 1 corresponds to single-epoch
training in any CL scenario. Adapted from Wang et al. (2024).

an effective measure of a model’s ability to balance the stability-plasticity trade-
off, as discussed in Section 3.1.1. Given its comprehensive nature, AA will be
used as the primary evaluation metric for baseline comparisons throughout this
thesis. However, we recognize that the importance of retaining old knowledge ver-
sus acquiring new knowledge may vary depending on the specific application sce-
nario.

3.2.4 Learning Scenarios

CL encompasses a range of scenarios in which models must adapt to new infor-
mation while maintaining knowledge from previous experiences. These scenarios
differ based on various factors, such as the structure and distinctiveness of tasks,
as well as the availability of task-specific information during training and evalua-
tion. The scenarios most commonly studied in CL are Task-Incremental Learning
(TIL), Domain-Incremental Learning (DIL), Class-Incremental Learning (CIL),
and Online Continual Learning (OCL). Each of these approaches presents distinct
characteristics and challenges, as outlined in Table 3.1. In line with previous works
(Van De Ven et al., 2022; Delange et al., 2021), we define each CL scenario in the
context of classification problems. Nevertheless, these definitions can be extended
to other types of learning tasks by substituting X and Y in Table 3.1 with the
corresponding types of inputs and outputs.

Task-incremental learning. TIL involves training a model to learn a series of
distinct tasks sequentially, where both the input data distribution and the output
label sets may vary between tasks. During evaluation, the model is provided with
a task identifier that indicates the relevant set of output classes for the current
task. This means the model only needs to discriminate among classes within the
specified task, rather than across all tasks. Consequently, TIL is considered less
challenging compared with other CL scenarios, as it reduces complexity by limiting
class differentiation to a single task at a time.
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Domain-incremental learning. DIL requires solving the same classification
problem across multiple domains or contexts that are introduced sequentially. Un-
like TIL, the input data distribution changes between domains, while the output
label set remains fixed. The primary challenge in DIL is to enable the model to
generalize across new domains by adapting to shifts in input distributions with-
out sacrificing performance on the shared output classes. Crucially, the model is
not provided with an explicit domain identifier during evaluation, forcing it to au-
tonomously detect and adapt to domain shifts. This lack of direct guidance makes
DIL more difficult than TIL, as the model must maintain consistent performance
despite variations in input conditions.

Class-incremental learning. CIL requires a model to learn new classes sequen-
tially, with both new input data and new sets of output labels introduced with each
incoming task. Unlike TIL, the model is not provided with a task identifier dur-
ing evaluation, which requires it to discriminate between all classes learned so far,
rather than just those within a specific task. CIL is considered more challenging
than TIL due to the model’s need to integrate and retain knowledge across an
ever-growing set of classes without explicit task boundaries or task-specific infor-
mation.

Online continual learning. OCL presents unique challenges that extend be-
yond those in traditional CL settings. It requires models to learn from a single-pass
data stream, where the underlying data distribution gradually shifts or evolves over
time. Unlike in TIL, where task boundaries are clearly defined, or in DIL and CIL,
where data are introduced in discrete phases, OCL necessitates continuous up-
dates as each data point is received. Furthermore, unlike all other scenarios, OCL
is task-free, meaning task identities are entirely unknown or undefined at any point
in time. This real-time learning process demands a model to rapidly acquire new
knowledge from limited examples while simultaneously retaining and consolidat-
ing previously acquired information, all without explicit task demarcation during
training or inference. As a result, OCL is often regarded as the most challenging
CL scenario.

3.2.5 Strategies and Approaches

This section explores three primary strategies to mitigate catastrophic forgetting in
CL: regularization, replay, and dynamic architectures. Each strategy is inspired by
the biological mechanisms of learning and memory discussed in Section 3.1.

Regularization-based methods apply constraints to either model parameters or be-
havior. Parameter regularization mimics synaptic consolidation in the brain, stabi-
lizing memories by selectively reinforcing connections critical to previously learned
information. Behavioral (or functional) regularization extends this idea by ensuring
that the model’s responses to prior tasks remain stable, analogous to the brain’s
preservation of neural activity patterns that are crucial to maintaining functional
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integrity across time and tasks. Replay-based methods periodically reintroduce past
experiences to the model, similar to hippocampal replay in the brain, where neu-
rons reactivating neural patterns associated with prior experiences during rest and
sleep to facilitate memory consolidation and retention. Lastly, architecture-based
methods divide the model into task-specific subnetworks, mirroring the modular
organization of the brain, where distinct regions are specialized for different types
of information processing. This approach effectively reduces interference between
new and old memories by compartmentalizing knowledge.

Several hybrid CL approaches integrate elements from the core strategies of reg-
ularization, replay, and dynamic architectures to take advantage of their comple-
mentary strengths while mitigating individual limitations. For example, certain
methods combine replay and regularization by selectively reintroducing past expe-
riences and simultaneously constraining parameter updates to preserve previously
acquired knowledge. Although this section primarily outlines methods that ap-
ply the core strategies of CL separately, the methods proposed and evaluated in
this thesis also incorporate such hybrid approaches. Moreover, the advent of large-
scale foundation models has led to the development of novel CL strategies that
extend beyond traditional techniques by capitalizing on the enhanced robustness
against catastrophic forgetting achieved through upstream self-supervised pretrain-
ing. This advancement opens up new opportunities for continual fine-tuning and
effective knowledge transfer across downstream tasks, as will be discussed in detail
in Section 3.3.

Regularization-based Approach

Regularization-based approaches have emerged as a natural extension of tradi-
tional machine learning techniques to address the stability-plasticity dilemma in
CL. These methods are grounded in optimization principles and integrate smoothly
with standard training pipelines, making them applicable to a wide range of mod-
els and CL scenarios. In CL, regularization methods primarily ensure that models
retain the ability to solve previously learned tasks by either constraining updates
to parameters considered critical for those tasks or by promoting output consis-
tency across tasks, despite changes in model parameters. An illustrated overview
of regularization-based approaches is provided in Figure 3.3.

Parameter regularization. Parameter regularization, also commonly referred
to as prior-focused regularization, aims to limit the plasticity of neural models
by selectively restricting parameter updates. Elastic Weight Consolidation (EWC;
Kirkpatrick et al., 2017) implements this approach by incorporating a penalty
term into the loss function that discourages substantial alterations to parameters
deemed essential for previous tasks. The loss function during training of task t > 1
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Figure 3.3: Regularization-based methods for continual learning. Pa-
rameter regularization penalizes changes to key parameters identified through
heuristic importance measures. Functional regularization ensures that the out-
puts (logits or features) of the new model remain consistent with those of the
old model for data from previous tasks. Adapted from Wang et al. (2024).

is expressed as

LEWC(θ) = Lt(θ) + λ
t−1∑
i=1

∑
j

F
(i)
j

(
θj − θ̂(i)j

)2

, (3.11)

where Lt is the loss for the current task t based on a predefined loss function, λ is
a regularization coefficient controlling the trade-off between preserving knowledge
from previous tasks and learning the new one, F (i)

j is the Fisher information matrix,
which reflects the importance of parameter j for task i, and θ̂

(i)
j represents the

value of parameter j after training on the ith task. The Fisher information matrix
quantifies the sensitivity of the log-likelihood function (or loss function in practical
applications) with respect to changes in each parameter and is typically computed
using the gradients of the loss function with respect to each parameter, as shown
below:

F
(i)
j =

1

Ni

Ni∑
n=1

(
∂L(xi,n; θ)

∂θj

)2

(3.12)

Here, Ni is the number of samples for the ith task, and L(xi,n; θ) represents the
loss function for sample xi,n given the model parameters θ. The significance of
a parameter in a model’s predictions correlates with its Fisher information, with
higher Fisher information indicating a greater importance of the parameter. EWC
aims to preserve these critical parameters during subsequent learning phases by
adjusting their importance at the end of each task. However, computing a separate
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Fisher information matrix for each task leads to poor scalability as the number
of tasks increases. To address this limitation, two follow-up approaches have been
proposed: Online Elastic Weight Consolidation (O-EWC; Schwarz et al., 2018) and
Synaptic Intelligence (SI; Zenke et al., 2017).

In O-EWC, the Fisher information is no longer accumulated over all past tasks but
is instead updated in an online manner. This is achieved by maintaining a running
estimate of the Fisher information matrix, denoted as F̄ , which is updated after
each task. This yields the following modified loss function during the training of
task t:

LO-EWC(θ) = Lt(θ) + λ
∑
j

F̄
(t−1)
j

(
θj − θ̂(t−1)

j

)2

, (3.13)

where F̄ (t−1)
j represents the accumulated Fisher information estimate for parameter

j with respect to all prior tasks, and θ̂(t−1)
j denotes the value of parameter j after

training on the previous task t− 1. F̄ (t−1)
j is formally expressed as

F̄
(t−1)
j = γF̄

(t−2)
j + F

(t−1)
j , (3.14)

where γ is a decay factor that controls how much the Fisher information from prior
tasks influences the overall estimate F̄j.

Similarly to O-EWC, SI accumulates information on parameter importance in an
online fashion by capturing the sensitivity of the loss function to each parameter
after every training step and penalizing changes accordingly. The modified loss
function during the training of task t in SI is defined as

LSI(θ) = Lt(θ) + λ
∑
j

Ω
(t−1)
j

(
θj − θ̂(t−1)

j

)2

, (3.15)

where the importance score Ω
(t−1)
j of parameter θj is calculated as

Ω
(t−1)
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t−1∑
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ω
(i)
j(

∆θ
(i)
j

)2

+ ξ
, (3.16)

with ∆θ
(i)
j representing the total change in parameter θj after training on the ith

task, and ξ being a small positive constant. The term ω
(i)
j denotes the path integral

of the gradient during training, and it is computed by accumulating the product
of the gradient of the loss with respect to the jth parameter and the change in this
parameter over each training step s:

ω
(i)
j =

∑
s

∂Ls(θ)
∂θ

(i)
j

∆θ
(s)
j , (3.17)

where ∆θ
(s)
j is the change in the jth parameter after performing the sth update

step and Ls is the total loss measured at the sth update step.
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Unlike SI, which tracks the importance of all parameters across the entire sequence
of task trajectories, O-EWC is more memory-efficient by maintaining and updat-
ing only a diagonal Fisher information matrix. The use of the Fisher information
matrix in O-EWC is theoretically grounded in Bayesian principles, where the diag-
onal Fisher matrix approximates the posterior distribution as a Gaussian, with the
mean corresponding to the optimal parameters after learning a previous task. This
approach potentially yields more accurate estimates of parameter importance com-
pared with SI, which derives its measure empirically from the trajectory of weight
changes during training. As a result, O-EWC will be utilized as a representative
baseline for prior-focused regularization in this thesis.

Functional regularization. Functional regularization, also referred to as data-
focused regularization, aims to preserve the model’s output behavior on previ-
ously learned tasks while acquiring new knowledge. Unlike parameter regulariza-
tion methods, which directly restrict updates to model parameters, functional regu-
larization focuses on maintaining consistent predictions across tasks. This approach
is particularly effective when prior tasks’ outputs are meaningful and not overly
noisy. A prominent example is Learning without Forgetting (LwF; Li and Hoiem,
2018), which incorporates a regularization term in the loss function to reduce the
divergence between the model’s current predictions on new tasks and its stored
predictions (soft targets) from earlier tasks. In LwF, the loss function for training
task t > 1 is defined as

LLwF(θ) = Lt(θ)− λ
t−1∑
i=1

∑
y∈Yi

pθ̂(t−1)(y|x) log(pθ(y|x)), (3.18)

where Yi is the set of output classes from the ith task and θ̂(t−1) are the parameters
at the end of training on task t − 1. pθ(y|x) is the output of the temperature-
controlled softmax function (i.e., the probability that sample x belongs to class
y), as predicted by the model parameterized with θ.

Replay-based Approach

Rooted in CLS theory (cf . Section 3.1.3), replay-based, or rehearsal, techniques
address the issue of catastrophic forgetting by approximating the data distribu-
tions of previously learned tasks and periodically retraining the model on these
approximations. Typically, these methods either store a subset of past training ex-
amples in an episodic memory buffer for periodic replay during new task training,
leverage generative models to synthesize data that mimic the statistical proper-
ties of earlier tasks, or reconstruct the distribution of latent features—rather than
raw data—using, e.g ., prototypical methods or latent-space generative models.
Figure 3.4 provides an overview of these replay-based CL strategies.

Experience replay. Experience Replay (ER) is the most straightforward and
widely used replay strategy in CL, as shown in works such as Chaudhry et al.

48



3.2. Continual Learning with Artificial Neural Networks

feature feature

Memory
Buffer

Generative
Model

Replay

Train

Save

Old Model New Model

Figure 3.4: Replay-based methods for continual learning. Experience
replay periodically retrains a model using historical data stored in and sampled
from a memory buffer. In contrast, generative replay retrains the model using
synthetic data instead of real data. Latent (or feature) replay, on the other hand,
reconstructs the distribution of features rather than the raw data. Adapted from
Wang et al. (2024).

(2019), Hayes et al. (2019), and Riemer et al. (2019). ER operates by maintaining
a small, fixed-size memory buffer, M, which stores a subset of examples from
previous tasks. In classification problems, this buffer can be organized into label-
wise replay buffers, denoted as M =

⋃
y∈YMy, where Y represents the set of

possible labels. A more problem-agnostic approach, which requires the availability
of task identifiers during training, is to organizeM into task-specific replay buffers,
resulting in M = {M1, . . . ,Mt} upon completion of task t. This task-specific
organization enables balanced task sampling based on predefined criteria, such as
ensuring equal representation of each prior task during replay. During the training
of each new task, this memory buffer helps mitigate catastrophic forgetting by
mixing current task data with memory samples. Assuming per-task replay buffers,
the learning process for each task t > 1 is guided by a modified loss function:

LER(θ) = Lt(θ) + λ
t−1∑
i=1

L(θ;Mi), (3.19)

where λ is a hyperparameter that controls the contribution of replayed samples to
the overall loss, analogous to its role in regularization terms. In practice, replay
samples are often processed as a (mini-)batch that is interleaved with the current
task’s (batched) data, typically with λ = 1. The objective of minimizing the loss
function by updating θ can be achieved either through joint training on the current
task data and memory samples or by alternating between them.

The memory bufferM is frequently updated with new examples from the current
task. Various strategies have been proposed to effectively manage and populate this
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buffer. One of the most widely used strategies is reservoir sampling (Vitter, 1985),
which was later adopted by Riemer et al. (2019). Reservoir sampling maintains
a random subset of exemplar samples in the buffer, with the probability that a
sample is selected decreasing as more data points are observed. Another approach
is the ring buffer, used by Lopez-Paz and Ranzato (2017), where a fixed buffer
size is allocated to each class, and recent examples are stored in a first-in-first-
out manner. A different method for buffer management is the k-means approach,
where the memory is populated with examples closest to the centroids in the
feature space, calculated using an online k-means clustering algorithm (MacQueen,
1967). Similarly, the mean of features strategy, as demonstrated by Rebuffi et al.
(2017b), retains examples closest to the running average feature vector for each
class, ensuring that the most representative examples are stored. Lastly, Aljundi
et al. (2019) propose a gradient-based sampling method, in which samples are
selected based on maximizing gradient diversity, ensuring that the buffer effectively
captures the diversity of previous tasks.

Generative replay. Generative replay and pseudo-rehearsal techniques address
the limitations associated with storing large amounts of data, especially as the
number of tasks grows large. These methods utilize generative models to synthe-
size samples that mimic the underlying distribution of previous tasks. By gener-
ating representative data from prior tasks, these techniques substantially reduce
memory requirements while preserving task-specific knowledge to a significant ex-
tent. In particular, methods such as Deep Generative Replay (DGR; Shin et al.,
2017) and Reinforcement-Pseudo-Rehearsal (RePR; Atkinson et al., 2021) leverage
Generative Adversarial Networks (GANs; Goodfellow et al., 2014) to produce high-
fidelity synthetic data. These pseudo-realistic samples are then replayed alongside
data from new tasks to preserve knowledge. Alternatively, Lifelong Generative
Model (LGM; Ramapuram et al., 2020) generates synthetic samples in a latent
space, which significantly reduces computational complexity compared to gener-
ating data in the original input space. This approach employs a student-teacher
Variational Autoencoder (VAE; Kingma and Welling, 2013) architecture, which
effectively compresses task data into a lower-dimensional latent space for replay
while balancing compression with knowledge retention.

Although generative models can alleviate memory constraints by synthesizing data
on demand, they frequently produce samples with reduced diversity or fidelity, a
limitation arising from phenomena such as mode collapse and discrepancies be-
tween the generated and true data distributions. Consequently, these models of-
ten require a substantially larger number of synthetic samples and require more
frequent sampling to achieve performance levels comparable to the standard ER
method (Van De Ven et al., 2022; Goodfellow et al., 2014).

Latent replay. In contrast to experience and generative replay, latent replay
(or feature replay) stores hidden features rather than raw data. This approach is
particularly advantageous when dealing with high-dimensional input data, such
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as images or audio, where storing raw data is resource-intensive and poses pri-
vacy concerns due to the sensitive nature of the information. Thus, latent replay
presents a compelling strategy to enhance memory efficiency and preserve privacy.
However, a key challenge in latent replay is representational drift: as the model’s
internal representations evolve over time, the stored latent features may become
misaligned with the updated model, and thus result in performance degradation
on previous tasks. This problem is particularly evident when training models from
scratch, where a high degree of model plasticity is required to accommodate new
information.

To address this issue, Generative Feature Replay (GFR; Liu et al., 2020a) and Fea-
ture Adaptation (FA; Iscen et al., 2020) perform feature distillation using stored
features, whereas Prototype Reminiscence and Asymmetric Knowledge Aggrega-
tion (PRAKA; Shi and Ye, 2023) leverages class prototypes for distillation. Incre-
mental Learning with Dual Memory (IL2M; Belouadah and Popescu, 2019) em-
ploys a dual-memory strategy that combines experience replay with latent replay
based on recovered class statistics. Revived Evanescent Representations (RER;
Toldo and Ozay, 2022) estimates the representational drift to update stored fea-
tures. Replay using Memory Indexing (REMIND; Hayes et al., 2020) and Feature
Translation for Incremental Learning (FeTrIL; Petit et al., 2023) freeze specific
parts of the feature extractor: REMIND freezes early layers and replays compressed
intermediate representations to adjust later layers, while FeTrIL freezes the entire
feature extractor after the first incremental learning stage and subsequently uses
latent replay to refine the prediction layer.

Traditional latent replay methods for CL typically rely on feature extractors or
encoders that are either trained from scratch or require additional fine-tuning
due to their limited capacity (e.g ., ResNet-18). In contrast, foundation models
function as generic feature extractors that deliver stable yet expressive compressed
representations of inputs. By keeping the encoder parameters of a foundation model
fixed during incremental learning, we naturally mitigate representational drift. This
approach not only overcomes the inherent limitations of latent replay but also
preserves its efficiency and privacy advantages. This principle forms the core of the
CL methodology presented in Chapter 7.

Architecture-based Approach

One significant limitation of regularization-based and replay-based strategies for
CL is their reliance on a fixed set of model parameters that are fully shared across
all tasks. This shared parameter space makes them vulnerable to interference be-
tween sequentially learned tasks, as optimizing parameters for one task may neg-
atively impact the performance of others. To address this challenge, architecture-
based methods for CL allocate separate resources for different tasks to prevent
competition for structural resources within the model. As illustrated in Figure 3.5,
these approaches aim to minimize interference by either expanding the model, se-
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Figure 3.5: Architecture-based methods for continual learning. The pri-
mary goal of corresponding approaches is to construct task-specific parameters
that minimize interference across tasks. Parameter allocation approaches learn
task-specific parameters within either a fixed or dynamically expanding model
architecture. Modular network approaches take a more coarse-grained perspec-
tive by creating task-specific parallel subnetworks or modules. Finally, model
decomposition techniques explicitly partition the network into shared and task-
specific components, typically allowing the latter to expand. In the illustrated
example, a distinct subset of model parameters is buffered for each task. Adapted
from Wang et al. (2024).

lectively activating distinct subsets of parameters, or utilizing a modular network
structure that assigns dedicated components to individual tasks.

Parameter allocation. In parameter allocation, each task is assigned a dedi-
cated subspace of parameters within a dynamically expanded or fixed-size network.
Approaches that dynamically expand the network offer flexibility by adjusting the
model structure as new tasks emerge. For instance, Dynamically Expandable Net-
work (DEN; Yoon et al., 2018) adds or duplicates neurons when the current net-
work configuration cannot adequately learn a new task. Expanding on this idea,

52



3.2. Continual Learning with Artificial Neural Networks

Compacting, Picking, and Growing (CPG; Hung et al., 2019) enhances scalability
by enabling both network expansion and compression through operations such as
compacting, splitting, and merging. While these structural adaptations help man-
age the increasing complexity of tasks, they require careful oversight to prevent
excessive resource consumption. Consequently, achieving sublinear model growth
with respect to the number of tasks is a desirable goal for CL methods involving
network expansion.

Methods that maintain a fixed network structure provide a direct solution to the
problem of excessive consumption of computational and memory resources, which
arises from the unbounded growth of model parameters. A widely adopted cate-
gory within this framework is masking methods, exemplified by Piggyback (Mallya
et al., 2018), Hard Attention to the Task (HAT; Serra et al., 2018), and Winning
SubNetworks (WSN; Kang et al., 2022). These methods allocate task-specific re-
sources by applying binary or soft masks over the trainable parameters. After
training each task, they freeze critical (masked) parameters to prevent interference
with subsequent tasks.

Other methods within this framework focus on explicitly identifying and reallocat-
ing parameters to enable more dynamic and flexible parameter management. To
achieve this, they employ strategies such as iterative pruning (Mallya and Lazebnik,
2018), node-based uncertainty estimation (Ahn et al., 2019), and activation-based
parameter selection (Jung et al., 2020). An inherent limitation of fixed-capacity
models is parameter saturation, where all parameters are fully allocated to learned
tasks, leaving no capacity for the model to effectively learn new tasks. To address
this issue, strategies for optimizing parameter reuse, such as sharing parameters
across tasks to minimize interference, or implementing structural sparsification, like
pruning less important parameters to free up capacity, are necessary to maintain
model plasticity.

Model decomposition. Model decomposition methods for CL involve the ex-
plicit partitioning of a model into task-sharing and task-specific components. This
strategy offers high interpretability because explicit partitioning into task-sharing
and task-specific components allows practitioners to directly observe and analyze
how the model allocates and utilizes knowledge for different tasks. The task-specific
components may include elements such as network layers (Loo et al., 2021), par-
allel networks (Wu et al., 2021c), or intermediate features (Hurtado et al., 2021;
Abati et al., 2020). Additive Parameter Decomposition (APD; Yoon et al., 2020)
partitions a trainable network into task-shared and sparse task-specific parameters
by using small mask vectors to delineate these partitions. This approach ensures
that task-specific parameters from previous tasks remain largely unchanged, with
updates concentrated primarily on shared parameters to accommodate new tasks.
In contrast, Reparameterized Convolutions for Multi-task learning (RCM; Kanakis
et al., 2020) decompose convolution parameters into a shared, non-trainable filter
bank and task-specific modulators. Unlike APD, which allows for repeated up-
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dates to shared parameters, RCM eliminates task interference by design, allowing
each task to optimize only its modulators while preventing any updates to shared
filters.

A common challenge with model decomposition approaches in CL is the linear
increase in the number of task-specific components with the number of tasks. Con-
sequently, as with parameter allocation methods involving network expansion, op-
timizing the memory and computational demands of these components is essential
for maintaining the scalability of such approaches.

Modular networks. Modular network approaches selectively activate or com-
bine parallel modules or subnetworks to handle a sequence of tasks. Unlike param-
eter allocation methods, which operate at the parameter level, these approaches
function at a higher, modular level. Additionally, in contrast to model decompo-
sition techniques, which impose predefined task-specific and task-sharing param-
eters, modular networks dynamically select parameters during training, allowing
for more flexible adaptation to different tasks. However, this flexibility may come
at the cost of interpretability, as it becomes difficult to trace how specific parame-
ter selections impact the model’s learning dynamics or correspond to the inherent
characteristics of the tasks.

One of the pioneering methods in this domain is Progressive Neural Network (PNN;
Rusu et al., 2016), which introduces a framework where a new subnetwork is added
for each task, allowing previously learned representations to be reused through lat-
eral connections to promote knowledge transfer. Building on this concept, Expert
Gate (Aljundi et al., 2017) similarly adds a new expert subnetwork for each task
during training, but incorporates a dynamic gating mechanism to select the most
relevant expert module during inference. PathNet (Fernando et al., 2017) takes a
different approach, employing evolutionary algorithms to select the optimal path-
way through a fixed-size network of parallel modules for each task, with the path-
ways evolving over multiple generations to improve task performance. In contrast,
Local Module Composition (LMC; Ostapenko et al., 2021) dynamically creates,
composes, and reuses a set of local modules for each new task without freezing
specific pathways to maintain the model’s structural flexibility.

3.2.6 Related Machine Learning Paradigms

CL shares commonalities with several machine learning paradigms, each offering
distinct approaches to managing dynamic, evolving, or multimodal data streams.
These paradigms provide valuable information on strategies to improve model
performance and address challenges such as knowledge transfer and adaptation.
In this section, we examine four major paradigms—curriculum learning, transfer
learning, meta-learning, and multimodal learning—detailing their contributions,
distinctions, and relevance to CL. By analyzing how these paradigms influence
and enhance CL methodologies, we aim to highlight their impact on advancing the
field.
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Figure 3.6: Machine learning paradigms related to continual learning.
(a) Curriculum learning structures tasks in an increasingly complex sequence
to achieve competence in the final, most challenging task. (b) Transfer learning
leverages knowledge from a source task to enhance performance on a target task.
(c) Meta-learning utilizes nested optimization loops to learn implicit inductive
biases across tasks for improved future learning. (d) Multimodal learning in-
tegrates multiple modalities to improve a model’s ability to learn from diverse
input types.

Curriculum learning. In Section 3.1.1, we discussed developmental learning,
the ability of humans to rapidly acquire foundational skills during critical periods
of increased plasticity and stabilize the circuits needed for future learning during
synaptic stabilization (Hensch, 2005; Knudsen, 2004). Once stabilized, these cir-
cuits offer a scaffold for cumulative skill acquisition and efficient integration of new
knowledge with existing cognitive structures (Huttenlocher, 2009).

Curriculum learning (Bengio et al., 2009; Wang et al., 2022a) mimics human devel-
opmental processes in machine learning by organizing training tasks from simpler
to more complex, thus simulating the skill acquisition process in humans. The most
challenging task is typically the last, and solving it requires synthesizing knowledge
from earlier, simpler tasks. This approach is especially effective under constraints
such as limited training time or noisy data (Wu et al., 2021b), both of which
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are common in real-world curriculum learning scenarios. In addition, curriculum
learning can enable the mastery of challenging tasks that might be unsolvable
with traditional methods (Lee et al., 2022; Florensa et al., 2017) and is beneficial
in learning scenarios involving significant shifts in task or data distributions (Wang
et al., 2019; Shu et al., 2019).

Despite these similarities, two key differences set curriculum learning apart from
CL. First, in CL, the sequence of input data is typically unpredictable, whereas in
curriculum learning, the sequence is intentionally structured. Second, curriculum
learning usually focuses on optimizing performance on the final, most complex
task rather than achieving balanced performance across all tasks. Nonetheless,
incorporating an automated curriculum—in which the model self-selects the task
at each learning stage—may improve knowledge transfer and data efficiency in a
CL setting (Say and Oztop, 2023; Mendez-Mendez et al., 2023).

Transfer learning. Transfer learning (Zhuang et al., 2021) involves leveraging
knowledge acquired from one task (the source) and applying it to another, related
task (the target). The main objective is to exploit similarities between the source
and target tasks to enhance performance on the target task, especially when the
training data for the target is limited. An important subfield of transfer learning is
domain adaptation, where the source and target tasks are similar but originate from
different domains (Farahani et al., 2021). Similarly to transfer learning, domain
adaptation is unidirectional, generally involving a one-way transition from source
to target.

Although transfer learning and CL both aim to leverage prior knowledge to improve
performance on new tasks, they differ fundamentally in their approaches. Transfer
learning typically addresses a single distributional shift and often does not involve
further model adaptation beyond the initial transfer. It is primarily focused on
optimizing performance on the target task, with less concern for the source task’s
performance. In contrast, CL is designed for sequential learning of multiple tasks in
an open-ended manner while balancing knowledge transfer and retention. Farquhar
and Gal (2019) elaborate in detail why excelling in a two-task transfer does not
guarantee that a model can effectively learn a long sequence of tasks without
forgetting.

Meta-learning. The CL strategies discussed in Section Section 3.2.5 generally
rely on manually designed mechanisms or model architectures to introduce induc-
tive biases that facilitate learning. In contrast, meta-learning (Thrun and Pratt,
1998; Vilalta and Drissi, 2002) aims to automatically learn these inductive bi-
ases, with the primary goal of enhancing forward transfer and adaptation across
tasks. Often referred to as “learning to learn,” this approach seeks to enable mod-
els to quickly acquire new tasks with minimal examples by exploiting structural
similarities with previously learned tasks, akin to transfer learning. Intuitively,
meta-learning operates on two distinct time scales within a two-loop optimization
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process: the inner loop and the outer loop. The inner loop focuses on adapting
the model to one or more specific tasks using a limited number of data points,
effectively simulating the initial learning experience. In contrast, the outer loop
optimizes the model’s parameter initialization and learning strategy by evaluating
performance across multiple inner-loop adaptations. This dual-loop optimization
framework fine-tunes the model’s learning process, ensuring that it can general-
ize more effectively and adapt more quickly to new tasks by leveraging previous
experience.

In the context of CL, outer loops can be configured to optimize performance in non-
stationary learning environments (Banayeeanzade et al., 2021). However, meta-
learning alone has limited ability to fully mitigate catastrophic forgetting, as it is
not inherently designed to maintain high performance on previously learned tasks.
Therefore, it is typically combined with additional CL strategies, such as memory
replay (Cetin et al., 2023; Ho et al., 2024) or parameter regularization (Wu et al.,
2024b).

Multimodal learning. Multimodal learning refers to the process by which a
model integrates and leverages information from multiple sensory modalities—such
as vision, sound, and touch—to enhance learning and decision-making (Baltrušaitis
et al., 2019). This paradigm is inspired by the human ability to naturally combine
information from different sensory stimuli to form a coherent understanding of
the world (Stein and Stanford, 2008; Calvert et al., 2004). By compensating for
the limitations of one modality with the strengths of another, multimodal learn-
ing enables models to discover latent correlations among various sensory inputs.
Furthermore, it broadens the applicability and generalizability of models across
various tasks and environmental conditions (Ngiam et al., 2011).

Unlike CL, which is inherently sequential, multimodal learning emphasizes the
integration of multiple modalities over managing the temporal sequence of task
learning. Nevertheless, in the context of CL, incorporating multimodal learning
can harness the diverse and complementary nature of multimodal data, opening
avenues for deploying CL methods in real-world environments. By simultaneously
training on and integrating information from multiple sensory streams, models
can develop more robust and reusable representations that are less likely to de-
grade when encountering distributional shifts or novel tasks (Baltrušaitis et al.,
2019). For instance, when visual information is unavailable, changes over time, or
is ambiguous, a model trained with multimodal learning might still perform well by
relying on other modalities such as textual input to retain task-relevant knowledge.
This flexibility not only improves the performance of the model on new tasks, but
also helps to retain previously learned tasks by reinforcing representations through
multiple channels (Srivastava and Salakhutdinov, 2012; Parisi et al., 2019).

Among the various applications of multimodal learning, VL grounding is particu-
larly prominent (cf . Section 2.2). Extensive research has explored the intersection
of CL and visually grounded language learning, utilizing both diagnostic (Skantze
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and Willemsen, 2022; Greco et al., 2019; Liu et al., 2023) and real-world datasets
(Srinivasan et al., 2022; Jin et al., 2020, 2024). These studies consistently demon-
strate that traditional CL methods, originally designed for unimodal learning, of-
ten struggle to balance the trade-off between mitigating forgetting and enabling
effective cross-task knowledge transfer in multimodal contexts.

While some of these studies propose novel multimodal CL methods that enhance
performance compared with traditional CL baselines, they generally fail to provide
a comprehensive understanding of how insights into learning dynamics or the ar-
chitectural design of modality integration networks can be leveraged to maximize
the reusability and robustness of learned representations. As we will demonstrate
in Chapter 6, identifying and safeguarding components of a modality interaction
network—whether at the level of individual parameters, neurons, or layers—that
are specialized in learning visuo-linguistic concepts frequently recurring in subse-
quent tasks, such as the colors and shapes of objects, could significantly contribute
to producing more reusable knowledge in a multimodal CL setting.

3.3 From Upstream Pretraining to Downstream
Continual Learning

The advent of the foundation model era has significantly transformed the land-
scape of CL, leading to the development of numerous novel approaches specifically
designed for PTMs. Unlike models trained from scratch, PTMs possess exten-
sive foundational knowledge acquired through large-scale pretraining on diverse
datasets. This broad understanding enables them to adapt more efficiently to
downstream tasks, often requiring significantly fewer labeled examples for fine-
tuning. Consequently, CL in the context of PTMs presents unique challenges that
differ from traditional CL settings. The primary focus shifts from building new
capabilities from the ground up to preserving and efficiently repurposing existing
knowledge, ensuring that the models retain their broad understanding while incre-
mentally specializing in downstream tasks. Approaches to CL in PTMs (cf . Fig-
ure 3.7) vary based on which parameters are updated during training and whether
pretrained representations are kept fixed or adapted as new tasks are learned.

3.3.1 Backbone Adaptation Methods

Most CL methods introduced during the early stages of the foundation model era
involved updating all the parameters of a pretrained backbone, a practice known
as full-body adaptation. This trend can be attributed to the relatively modest size
and capacity of pioneering transformer models like BERT and GPT-2, released
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Figure 3.7: Strategies for downstream continual learning with foun-
dation models. (a) Backbone fine-tuning adapts to each new task by updat-
ing all PTM parameters. (b) Parameter-efficient fine-tuning selectively freezes
the PTM parameters and updates only task-specific PEFT parameters (e.g .,
prompts or intra-layer adapters). Task-specific parameters from previous tasks
are stored in memory and inserted into the model as needed during inference.
(c) Prototype-based methods maintain and update class prototypes and statis-
tics to represent features extracted from a fixed PTM. During inference, class
assignment is achieved by comparing new input features with all class prototypes
via similarity matching.

in 2018 and 2019. These models were significantly smaller than the much larger
foundation models that were introduced just a few years later.3

3For example, the medium-sized version of LLaMA 3 (Dubey et al., 2024) has 70 billion
trainable parameters, approximately 636 times more than the 110 million parameters in the
BERTBASE model.
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Early CL methods in NLP that modify the parameters of pretrained backbone
models typically incorporate replay strategies. The CL version of Memory-based
Parameter Adaptation (MbPA++; de Masson d’ Autume et al., 2019) employs
experience replay and test-time adaptation to maintain BERT’s high performance
across a sequence of downstream NLP tasks. To mitigate the memory overhead of
handling an ever-growing set of tasks, Language Modeling for Lifelong Language
Learning (LAMOL; Sun et al., 2020a) introduces pseudo-sample generation for
rehearsal by providing GPT-2 with special input prompts containing task identi-
fiers and task-specific instructions, guiding it to generate appropriate data for each
task. Distill and Replay (DnR; Sun et al., 2020b) builds on LAMOL by further
reducing model complexity through knowledge distillation in a teacher-student
framework.

Meta-learning, which aims at sample-efficient adaptation to new tasks within an
inner optimization loop (cf . Section 3.2.6), is particularly well suited for integration
with PTM adaptation in the context of CL, where rapid adaptation is crucial. Holla
et al. (2021) combine the experience replay strategy of MbPA++ with two meta-
learning algorithms, i.e., Online aware Meta-learning (OML; Javed and White,
2019) and A Neuromodulated Meta-Learning Algorithm (ANML; Beaulieu et al.,
2020), to introduce the two methods OML-ER and ANML-ER. Unlike LAMOL and
DnR, their approach supports single-epoch training and is task-agnostic, although
it requires storing historical data in a memory buffer.

The emergence of transformer-based architectures in CV has led to the devel-
opment of several full-body adaptation CL methods tailored for pretrained im-
age recognition models. Slow Learner with Classifier Alignment (SLCA; Zhang
et al., 2023) proposes a dual learning rate strategy, using a smaller learning rate
to update the pretrained ViT backbone while applying a larger learning rate to
update the linear probing layer. Additionally, SLCA accumulates class distribu-
tions and performs pseudo-rehearsal on synthesized class-wise features to rectify
the linear probe. In contrast, L2 (Smith et al., 2023b) introduces regularization of
self-attention parameters in a ViT during downstream continual fine-tuning.

3.3.2 Parameter-efficient Adaptation Methods

In Section 2.1.4, we discussed various PEFT strategies, emphasizing their compu-
tational and data efficiency compared with full-body adaptation. These methods
have garnered increasing attention for their application in downstream CL with
PTMs. The key motivation behind using PEFT lies in its ability to preserve the
knowledge encoded within the pretrained backbone by limiting the training process
to a small subset of parameters. This selective adaptation significantly reduces the
computational overhead associated with full-model fine-tuning while retaining the
core knowledge of the PTM. Additionally, since PEFT parameters operate as mod-
ular plug-ins that can be easily removed or exchanged, this modularity provides
inherent resilience to catastrophic forgetting.
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One line of research involves utilizing prompt or prefix tuning for CL with PTMs.
Learning to Prompt (L2P; Wang et al., 2022f) maintains a pool of key-value
prompts, where task-relevant prompts are dynamically selected by querying based
on input instance features. DualPrompt (Wang et al., 2022e) extends L2P by in-
troducing two types of prompts that encode task-specific and task-invariant knowl-
edge in the adaptation process. S-Prompt (Wang et al., 2022b) learns task-specific
prompts in a separate space for each task and explicitly infers task identity via
k-NN during inference. Domain-Adaptive Prompt (DAP; Jung et al., 2023) pro-
poses an adaptive prompt generator that provides instance-specific prompts as
an alternative to the prompt pool used in previous methods. Progressive Prompt
(Razdaibiedina et al., 2023) gradually expands prompts with each new task to
be learned. Finally, Continual Decomposed Attention-Based Prompting (CODA-
Prompt; Smith et al., 2023a) learns a combination of prompt components through
input-conditioned attention weights.

As a parallel line of research to prompt learning for CL, which focuses on task-
specific parameters at the input level, several methods have been proposed to
enhance CL capabilities by integrating task-specific modules into PTMs at a struc-
tural level. Ke et al. (2021a,b) integrate a capsule network (Hinton et al., 2011)
into a PTM, comprising a knowledge-sharing module and a task-specific module.
Zhang et al. (2020) train a task-specific side-network whose outputs are fused with
the PTM’s outputs via summation. Zhao et al. (2022) employ intra-layer adapters
and teacher-student training to perform CL in semi-supervised learning settings.
Ermis et al. (2022) utilize a distillation mechanism to merge adapter parameters
while controlling memory growth as the number of tasks increases. More recently,
Yu et al. (2024) employ adapters within a mixture-of-experts framework to collab-
oratively address tasks in an incremental setting.

Overall, PEFT methods offer promising rehearsal-free alternatives to the full-body
adaptation approaches to CL discussed in Section 3.3.1, which typically rely on re-
play mechanisms to mitigate forgetting caused by substantial parameter updates.
However, integrating task-specific parameters into a PTM for each new task re-
quires knowledge of the task identity during inference to select the appropriate
parameter set. Consequently, many of these methods are restricted to TIL set-
tings, where task information is available at test time. Leveraging PEFT methods
in more challenging CL scenarios without task information during inference re-
mains an active area of research, which will be addressed later in Chapter 5 of this
thesis.

3.3.3 Prototype-based Methods

Both full-body adaptation and PEFT methods adjust the feature space by updat-
ing fully connected linear probes, which are optimized via softmax functions and
iterative gradient steps. In scenarios with imbalanced or limited data, these up-
dates disproportionately emphasize the most recent tasks, leading to task-recency
bias. Specifically, the model tends to prioritize newly introduced classes or data
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at the expense of previously learned tasks (Mai et al., 2021; Rymarczyk et al.,
2023; Wang et al., 2023). Moreover, because a linear probe can be viewed as a
shallow prediction network—essentially a single fully connected layer—it is inher-
ently more brittle and prone to catastrophic forgetting compared to deeper train-
able networks, which requires additional mechanisms to mitigate this vulnerability
(Ramasesh et al., 2021; Zhang et al., 2023).

As an alternative to the aforementioned methods, constructing prototypes directly
from pretrained features has emerged as a cost-effective approach to mitigate for-
getting in CL while leveraging the powerful representations from large-scale pre-
training. Prototypes are representative vectors that capture the key characteristics
of the instances they summarize. They are commonly used in classification tasks,
where they are referred to as class prototypes, and the corresponding approaches
that use class prototypes are referred to as class-prototype methods.

Class-prototype methods extract features from the last layer of a PTM encoder
h and aggregate them to construct a representative prototype for each class. The
most straightforward of these methods is the Nearest Mean Classifier (NMC),
which computes the class prototype cy for each class y ∈ Y by averaging the
features of its training samples extracted at the last (Lth) encoder layer, defined
as

cy =
1

K

T∑
t=1

Nt∑
n=1

Jy = yt,nK hL(xt,n), (3.20)

with J·K denoting the Iverson bracket (Iverson, 1962), (xt,n, yt,n) representing the
nth sample-label pair of the tth task, and K =

∑T
t=1

∑Nt

n=1Jy = yt,nK.

In the inference phase, the NMC assigns each test sample to the class for which
the prototype most closely aligns with its feature vector. This is achieved by either
minimizing the Euclidean distance (Janson et al., 2022) or maximizing the cosine
similarity (Zhou et al., 2024). When employing cosine similarity and given a test
sample x ∈ Dtest, the class label prediction is determined by

ŷ = argmax
y∈{1,...,C}

sy, sy :=
hL(x)

T cy
∥hL(x)∥ · ∥cy∥

, (3.21)

where ∥·∥ denotes the L2 norm. Both Janson et al. (2022) and Zhou et al. (2024)
find that the conceptually simple NMC outperforms prompt learning methods like
L2P and DualPrompt, while being entirely training-free. However, Panos et al.
(2023) observe that the assumption of isotropic feature covariance, i.e., features
being mutually uncorrelated, made under Equation (3.21) does not hold for PTMs.
To account for correlations between features and to better “calibrate” similarity
measures, they propose using class-prototype methods that leverage second-order
statistics to capture the covariance information of instance features.

McDonnell et al. (2023) propose a method based on the closed-form ordinary least
squares solution to ridge regression (Murphy, 2012) to decorrelate class prototypes
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during CL. This method computes the Gram matrix G as summation over outer
products as

G =
T∑
t=1

Nt∑
n=1

hL(xt,n)⊗ hL(xt,n) (3.22)

and aggregates the class prototypes (or regressands) cy via summation—rather
than averaging to obtain cy as in Equation (3.20) (with the 1

K
term omitted)—to

yield:
ŷ = argmax

y∈{1,...,C}
sy, sy := hL(x)

T (G+ λI)−1 cy (3.23)

for a regression parameter λ ≥ 0 and dL-dimensional identity matrix I. Although
Equation (3.21) and Equation (3.23) are defined with respect to the maximum
number of classes C after observing all T tasks, they can be applied after seeing
any training sample xt,n with any t ≤ T and any n ≤ Nt, as class prototypes and
Gram matrices can be updated online. When denoting the extracted features of
some input datum xt,n ∈ Dt as ht,n = hL(xt,n) and considering H ∈ RN×dL as
concatenated row-vector features ht,n of all N training samples, Equation (3.22)
is reduced to G = HTH , which corresponds to the original definition of a Gram
matrix used in the closed-form ridge estimator (Hoerl and Kennard, 1970).

The use of first- or second-order feature statistics has recently inspired several
class-prototype methods for CL with PTMs. For example, Janson et al. (2022)
employ the straightforward NMC without any updates to the PTM parameters.
In contrast, Panos et al. (2023) propose First Session Adaptation (FSA) combined
with an incremental variant of linear discriminant analysis. FSA addresses the
limitations of prototype-based methods that rely on static representations for pro-
totype extraction by (i) fine-tuning the model parameters during training on the
first task, D1, to bridge the domain gap between pretraining and fine-tuning data,
and (ii) extracting prototypes only afterward, when no further optimization steps
are performed.

APER (Zhou et al., 2024) combines FSA with NMC as the class-prototype method.
RanPAC (McDonnell et al., 2023) extends this approach by incorporating high-
dimensional random feature projections, aiming to decorrelate the class prototypes
of a PTM, thereby enhancing their separability. Notably, while Panos et al. (2023)
modify all backbone parameters during FSA, both APER and RanPAC keep the
backbone frozen, instead updating PEFT parameters using different strategies (cf .
Section 2.1.4).

Prototype-based methods have shown promise in CL with PTMs, especially in
rehearsal-free settings. However, they face two major drawbacks. First, they uni-
versally assume that class-specific information is fully captured in the founda-
tion model’s final-layer representations (obtained by applying hL(·), e.g ., in Equa-
tion (3.20), where L denotes the last layer of encoder h). Whether these final-layer
features provide sufficient information for a prototype-based classifier to optimally
distinguish between classes remains unclear—a question we address in detail in
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Chapter 5. Second, prototype-based methods inherently rely on measuring simi-
larity between data points and prototypes within a feature space, making them
naturally suited for classification tasks where the objective is to assign discrete
labels based on proximity. However, they lack mechanisms to model complex re-
lationships, contextual nuances, and structural dependencies within the data. As
a result, they are not well equipped to handle tasks that require a deeper under-
standing, such as contextual interpretation or reasoning about the relationships
between different elements in the input.

To address these shortcomings, we outline in Chapter 7 a novel CL method that
synergistically combines replay-based and prototype-based paradigms. Our ap-
proach maintains a compact set of latent representations for each class—effectively
serving as prototypes—and incorporates targeted noise into these stored latents.
This strategy preserves essential ground-truth information, which is challenging
to reproduce synthetically in non-classification contexts, while also leveraging the
statistical properties of the prototypes to generate pseudo-latent representations.
The resulting method enhances generalization in CL tasks that involve complex
multimodal reasoning.

3.4 Chapter Summary

In this chapter, we formally introduced the CL problem and explored key meth-
ods and paradigms that enable models to learn from a continuous, non-stationary
stream of information. Inspired by biological principles of the mammalian brain,
CL has guided the development of several computational approaches. Traditional
strategies such as regularization, replay, and dynamic architectures have proven
effective in small neural networks trained from scratch. However, applying these
strategies to large, parameter-heavy foundation models demands more thoughtful
consideration, given the increased resource constraints these models impose.

While there has been progress in adapting CL to PTMs, many challenges remain.
A central issue is deciding when and how extensively backbone parameters should
be updated during sequential fine-tuning. Over-updating the backbone risks catas-
trophic forgetting, while insufficient updates can cause poor adaptation to new
tasks. PEFT methods offer a promising solution that circumvents this trade-off
by allowing for efficient task-specific adaptation without altering the backbone.
However, further research is needed to evaluate their effectiveness, especially in
task-agnostic CL scenarios, where task boundaries are unknown or undefined, es-
pecially during inference.

CL also faces inherent challenges due to often conflicting goals. The primary ob-
jective of CL is to balance the retention of prior knowledge with the integration
of new information. However, the performance of various CL methods can vary
significantly across different application areas. For instance, techniques optimized
for image recognition may struggle in complex, multimodal reasoning scenarios.

64



3.4. Chapter Summary

Moreover, certain application domains may impose constraints on the storage of
historical data due to privacy or regulatory concerns, or limit the resource con-
sumption of CL methods. These challenges persist regardless of whether models
are pretrained or randomly initialized. Thus, there is a need for carefully designed
CL approaches that are versatile and scalable to apply across a broad range of
application areas, while acknowledging that there is no one-size-fits-all solution to
CL, a point that we will consistently demonstrate throughout this thesis.

We identify two promising yet underexplored research avenues that could greatly
enhance the downstream continual adaptation of PTMs. First, in Chapters 4 and 5,
we will explore whether PTMs inherently generate task-agnostic knowledge that
can be systematically utilized to enhance CL. By identifying and leveraging this
knowledge to augment pretrained representations, we introduce a form of “inherent
resilience” into the PTM that relies less on task-specific modifications and more
on generalized, reusable knowledge. Second, in Chapters 6 and 7, we investigate
the underutilized potential of multimodal learning within CL. Our efforts focus on
identifying network structures capable of retaining transferable knowledge when
integrating features from multimodal foundation models, as well as on maximizing
and refining knowledge gained from a limited set of extracted multimodal features
to recover old data distributions. By advancing these research directions, we seek
to develop more robust CL strategies that increase the practical impact of PTMs
across diverse, real-world environments.
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Chapter 4

Unsupervised Representation
Modeling via Self-organization

Pretrained foundation models are susceptible to catastrophic forgetting when fine-
tuned sequentially on multiple downstream tasks, as optimizing for new tasks can
overwrite previously acquired knowledge. To address this limitation, we propose a
dual-memory framework for CL that minimizes disruptive shifts in the latent rep-
resentations of PTMs. Our approach is designed to maintain robust classification
performance regardless of (i) the sequence in which tasks are introduced and (ii)
the variability in dataset sizes across tasks. A central component of our method is
the unsupervised modeling of latent representations via topological mapping. We
hypothesize that this technique intrinsically stabilizes the learning dynamics by
preserving the underlying manifold structure of pretrained representations during
continual fine-tuning, thereby enhancing robustness against forgetting. We validate
our method by comparing it with state-of-the-art replay-based CL baselines and
demonstrate its efficacy in maintaining high performance, particularly in scenarios
where data from earlier training phases become underrepresented.1

4.1 Motivation

In Section 2.1.2, we described how pioneering models like BERT have become
fundamental in advancing NLP following the advent of the transformer architec-
ture. These transformer-based models, pretrained on massive text corpora, capture
complex linguistic structures and yield rich, transferable representations for a wide
array of downstream tasks. Conventional fine-tuning procedures for these models
typically assume that the training data are drawn from a stationary distribution
and are independently and identically distributed, mirroring the assumptions made
in traditional supervised learning for models trained from scratch. However, as de-
tailed in Chapter 3, these assumptions often do not hold in real-world scenarios,

1The source code is made available at https://github.com/knowledgetechnologyuhh/
drill.
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where models are exposed to continuously evolving data streams reflecting changes
in context, user preferences, or domains. Consequently, when a PTM is sequentially
fine-tuned on new tasks or datasets, the optimization process can overwrite previ-
ously acquired knowledge, leading to catastrophic forgetting.

One avenue to address these challenges and bridge the gap between the strengths of
PTMs and the demands posed by CL is exploring innovative approaches to leverage
the innate knowledge representations within PTMs to enhance robustness against
forgetting in CL settings. In this chapter, we aim at answering the questions (i)
whether integrating self-organizing network architectures with PTMs to maintain
topological relationships in the feature space can preserve learned knowledge and
(ii) how such architectures impact the learning of underrepresented or minority
classes in imbalanced datasets.

As for the first research question, our central hypothesis is that integrating self-
organizing network mechanisms with PTMs can significantly mitigate catastrophic
forgetting by maintaining the structural integrity of learned representations. Self-
organizing networks, such as SOINN (cf . Section 3.1.2), construct prototypes as
weight vectors representing clusters or patterns in the input data. These prototypes
effectively summarize the data characteristics and are updated during training to
align with the input space while maintaining topological relationships. In NLP,
texts belonging to the same category or class often cluster around prototypical
examples due to shared semantic or syntactic features. As for the second research
question, we additionally hypothesize that self-organizing network architectures
inherently favor smaller or underrepresented classes, as these may occupy distinct
regions in the feature space, which prompts the network to allocate dedicated
nodes or prototypes to them and encourages the long-term preservation of these
nodes.

Building on this, we present Dynamic Representations for Imbalanced Lifelong
Learning (DRILL), a novel CL method that integrates self-organizing network
principles with PTMs. Drawing on the success of replay strategies in PTM-based
CL and grounded in CLS theory (cf . Section 3.1.3), DRILL employs a dual-memory
design: an episodic memory buffer periodically replays prior examples, while a
self-organizing network acts as semantic memory, which enriches PTM-derived
features with prototypical representations. This network incrementally adapts to
new inputs while preserving the latent topology (i.e., the structural arrangement
and relationships among features). This dual-memory framework provides three
key advantages: (i) it controls representational drift by maintaining stable feature
mappings and thus reducing abrupt changes in representations that typically result
in forgetting, (ii) it mitigates task-recency bias by recalibrating the PL to prevent
it from overly predicting classes from the most recent task, and (iii) it favors
underrepresented classes by allocating resources to sparsely populated regions of
the feature space.
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PTM
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replay
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PL/HeadPL/Head

query

Figure 4.1: Overview of DRILL. For each input sample (xt,n, yt,n), drawn
either from the continual data stream or the episodic memory ME, the PTM
extracts features ht,n from xt,n. These features are used to train the semantic
memory MS. Simultaneously, the ground truth label yt,n is used to retrieve
two class-prototype vectors w

(1)
t,n and w

(2)
t,n from MS. Each prototype vector is

concatenated with the extracted features ht,n to yield two separate input vectors
to the prediction layer and finally two label predictions which are each compared
with yt,n for loss calculation.

Our contributions made in this chapter are twofold:

(1) We introduce two imbalanced sampling strategies for CIL where underrepre-
sented classes appear early or late in the training data stream, respectively,
and show that existing baseline CL methods show high task order sensitivity
and low overall performance in either scenario.

(2) We additionally propose DRILL as a novel dual-memory CL method and
empirically demonstrate that DRILL achieves strong performance against
baseline methods in CL settings with class imbalances. We find that DRILL
depicts lower sensitivity to task ordering and random initialization and is
particularly effective in settings where underrepresented classes appear early
during training.

This chapter is organized as follows: we lay the theoretical foundation for our
DRILL method in Section 4.2. Subsequently, we describe our training details and
conduct an experimental evaluation in Section 4.3. We discuss our findings in
Section 4.4 and summarize this chapter in Section 4.5.
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4.2 Proposed Method: DRILL

An overview of our DRILL training pipeline is provided in Figure 4.1. The model
architecture comprises four main elements: (1) an episodic memory module ME,
(2) a semantic memory moduleMS, (3) a PTM hϕ, and (4) a PL gψ. Components
(1) and (2) together form the dual-memory system, while components (3) and
(4) constitute the base model f = g ◦ h. We adopt the CL problem formulation
introduced in Section 3.2.1.

Upon receiving the nth input sample xt,n from the tth task in the data stream, the
PTM processes the input through its encoder to extract a d-dimensional feature
representation, denoted as ht,n = hϕ(xt,n). In transformer-based architectures, this
representation is typically derived from the [CLS] token embedding of the final en-
coder layer. However, depending on the specific encoder architecture, the extracted
feature can be any intermediate hidden representation, such as the flattened feature
maps from a CNN encoder.

Using the ground-truth label yt,n, the semantic memoryMS is queried to retrieve
two d-dimensional prototypical weight vectors, w(1)

t,n and w
(2)
t,n (see Section 4.2.2 for

additional details). The extracted sample features ht,n are then concatenated with
each of the prototype vectors to produce two distinct input vectors, [w

(1)
t,n ;ht,n]

and [w
(2)
t,n ;ht,n]. Each concatenated vector is then passed through the PL for loss

computation and gradient calculation.

Therefore, during training, we optimize the combined set of all trainable parameters
θ = ϕ ∪ ψ of the base model fθ, which is defined by:

fθ(xt,n) = ŷ
(i)
t,n = gψ

( [
w

(i)
t,n ; hϕ(xt,n)

] )
(4.1)

where [·; ·] denotes the concatenation operator, and i ∈ {1, 2}.

4.2.1 Meta-learning with Experience Replay

Building upon the work of Holla et al. (2021), who demonstrated the efficacy of
meta-learning in conjunction with experience replay, we integrate a meta-learning
strategy within the DRILL framework and adopt their experimental protocol for
constructing training episodes and managing experience replay. The pseudocode
outlining the meta-training and meta-testing procedures for DRILL is provided
in Algorithms 1 and 2, respectively. Let Bt denote the set of incremental batches
associated with the tth task, where each batch b ∈ Bt has a uniform size |b|. Each
batch is stored in the episodic memory ME, which has a maximum capacity B,
using reservoir sampling as described in Section 3.2.5. In contrast to conventional
sequential task training, our approach processes data in a streaming fashion by
organizing it into episodes. Specifically, each episode i comprises s + 1 batches,
with the first s batches forming the support set Si and the final batch serving as
the query set Qi.
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Algorithm 1: DRILL (Meta-)Training
Input: model parameters θ = ϕ ∪ ψ, replay interval RI , replay frequency

RF , replay ratio r, episodic memory capacity B, support set buffer
size s, inner-loop learning rate α, outer-loop learning rate β, pull
factor η

# Initialization
ME ← ∅
MS ← three d-dimensional random vectors
# Continual Learning with DRILL
for episode i = 1, 2, ... do
Si ← s batches from the stream
if i mod RF = 0 then
Qi ← sample(ME, ⌊r ·RI⌋)

end
else
Qi ← next batch from the stream
write(ME,Qi, B)

end
write(ME,Si, B)
for every sample (xj, yj) ∈ Si ∪Qi do

hj ← hϕ(xj)
train(MS,hj, η)

w
(1)
j ,w

(2)
j ← sample(MS, yj)

predict ŷ(1)j , ŷ
(2)
j using Equation (4.1)

end
update ψ′ using SGD (cf . Equation (4.3))
update θ using Adam (cf . Equation (4.4))

end

Let RI denote the replay interval. After observingRI samples from the data stream,
we randomly draw ⌊r ·RI⌋ samples fromME for rehearsal, where r ∈ [0, 1] is the
replay ratio. Using the replay interval and ratio, we calculate the replay frequency
as

RF =

⌈
RI/|b|+ 1

s+ 1

⌉
(4.2)

Therefore, every RF
th episode can be considered a replay episode, in which the

query set is not composed of data from the stream, but from the episodic memory
moduleME.

During inner-loop meta-optimization of the ith episode, the PTM parameters ϕ are
fixed while the PL parameters ψ are updated using Stochastic Gradient Descent
(SGD) with an inner-loop learning rate α. This update is performed as

ψ′ ← SGD(Li(ϕ, ψ),Si, α) (4.3)
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Algorithm 2: DRILL (Meta-)Testing
Input: trained model parameters θ = ϕ ∪ ψ, support set buffer size s,

inner-loop learning rate α
S ← sample(ME, s · |b|)
Q ← Dtest

update ψ′ using Equation (4.3)
for xj ∈ Q do

hj ← hϕ(xj)
wj ← 0
predict ŷj using Equation (4.1)

end

Subsequently, during the outer-loop optimization for the ith episode, both the PTM
parameters ϕ and the meta-updated PL parameters ψ′ are fine-tuned on the query
set Qi. All model parameters θ are updated using the Adam optimizer (Kingma
and Ba, 2015) with an outer-loop learning rate β, resulting in:

θ′ ← Adam(Li(ϕ, ψ′),Qi, β) (4.4)

Li denotes the cross-entropy loss on all batches of Si in Equation (4.3) and Qi in
Equation (4.4), respectively.

4.2.2 Representation Sampling from Semantic Memory

Unlike the episodic memoryME, which is used exclusively for experience replay, we
utilize the semantic memoryMS to retrieve class-prototype features that augment
the features of the current input sample. We hypothesize that these class prototypes
serve as regularizers for PL fine-tuning by mitigating its bias towards the most
recent data.

In the semantic memory MS, we store the set of all nodes of the underlying self-
organizing network, denoted as N , along with a lookup table that tracks the fre-
quency with which each node has served as BMU for each label y ∈ Y . We assume
that the more often a node has been a BMU for input samples belonging to some
class y, the better it represents samples of this class. The table has dimensions
|N | × |

⋃t
i=1 Yi|, where |

⋃t
i=1 Yi| denotes the total number of classes encountered

up to the training of the tth task. As new classes are introduced, the table can be
dynamically expanded by adding new columns initialized to zero.

During training, for each input feature vector ht,n, we retrieve its BMU using
Equation (3.3) and nodes in MS are updated according to the algorithm of the
underlying topology-mapping network. Additionally, utilizing the ground-truth la-
bel yt,n and the lookup table, we identify the two neurons with neural weights
w

(1)
t,n ∈ Rd and w

(2)
t,n ∈ Rd that have most frequently served as BMUs for class yt,n.

We choose to retrieve two neurons from MS rather than just one to enhance the
diversity of prototypical augmentation features.
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These two winning nodes are then concatenated with the latent features ht,n ex-
tracted by the PTM, resulting in two inputs to the PL derived from a single PTM
output. During inference, since the ground-truth label yt,n is unknown, we cannot
query MS for class-specific prototypical features. Therefore, ht,n is concatenated
with a zero vector 0 ∈ Rd before being fed into the PL.

For the experimental evaluation in Section 4.3, the semantic memory MS will be
updated using the SOINN+ algorithm (Wiwatcharakoses and Berrar, 2020). Un-
like the original SOINN (cf . Section 3.1.2), which deletes nodes based solely on
elapsed time, SOINN+ additionally evaluates nodes by their trustworthiness and
utility within the topology mapping network. Nodes in sparsely populated regions
often represent edge cases, minor clusters, or transient concepts that might reoccur.
Prematurely deleting these nodes risks losing the ability to recognize recurring pat-
terns. SOINN+ mitigates this risk by conservatively retaining low-density nodes
until clear evidence of irrelevance or noise emerges through failed trustworthiness
and utility evaluations. This ensures the model robustly preserves relevant struc-
tures, even under sudden or recurring concept drifts.

4.3 Experiments

In the following, we present experiments comparing DRILL with baseline CL meth-
ods. Our analysis includes detailed descriptions of the benchmarks employed, the
training protocols implemented, and an extended experimental investigation into
the variability and the effects of feature integration strategies on overall CL per-
formance.

4.3.1 Benchmarks

To comprehensively assess the CL capabilities of our method, we sequentially train
it on five text classification datasets introduced by Zhang et al. (2015). These
datasets encompass four distinct tasks: sentiment analysis, news topic classifica-
tion, question-answer classification, and ontology categorization. A summary of all
datasets is provided in Table 4.1 and examples can be found in Table 4.2. Recog-
nizing the significant influence of task order on CL performance, as highlighted by
de Masson d’ Autume et al. (2019), we arrange the datasets into four randomized
permutations. The incremental learning process across these datasets is treated as
CIL, where new classes are introduced with each task, with the only exception of
the sentiment analysis datasets, where label spaces are unified due to overlapping
classes.

Previous studies on CL for text classification with PTMs (Holla et al., 2021;
de Masson d’ Autume et al., 2019; Sun et al., 2020a,b) have typically employed
balanced sampling, where an equal amount of training data is sampled from each
of the five original datasets. However, equally balancing data across datasets may
not accurately reflect the efficacy of a CL method in more realistic scenarios, where
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Order PositionClassification
Domain Dataset Classes (C) I II III IV

Amazon Reviews 4 4 3 3Sentiment Yelp Reviews
5

(merged) 1 5 1 2

News Topic AGNews 4 2 3 5 1

Question Topic Yahoo! Answers 10 5 2 2 4

Ontology DBPedia 14 3 1 4 5

Total: 33

Table 4.1: Summary of the text classification datasets. All five text clas-
sification datasets were originally published by Zhang et al. (2015). Each dataset
contains 7 600 test samples, with the number of training samples determined by
the respective order and sampling strategy. Classes in the Amazon and Yelp
Reviews datasets are merged, given their shared five-star rating scale. Examples
for each dataset are provided in Table 4.2. In the CIL setting, a model is trained
sequentially on all five datasets (i.e., tasks) for each of the four task orders (I–
IV).

tasks often vary in training duration and the number of steps. To better simulate
practical conditions, we introduce two novel sampling techniques: Progressive Over-
sampling (PO) and Progressive Undersampling (PU). These methods exponentially
increase or decrease the number of samples for each successive task, respectively,
defined as follows.

For the PO setting
N

(PO)
t+1 ← 2 ·N (PO)

t , (4.5)

and for the PU setting:

N
(PU)
t+1 ←

⌊
N

(PU)
t

2

⌋
, (4.6)

where Nt denotes the number of samples for task t. Both sampling techniques
enable the simulation of two contrasting CL scenarios, where data from either
earlier or later stages are markedly underrepresented.

For evaluation, we adhere to the methodology of previous studies by randomly
selecting 7 600 samples from each of the five datasets, resulting in a total of 38 000
instances in the test dataset. However, differing from prior works—which utilize
115 000 training samples per dataset, totaling 575 000 training samples—we adopt
the aforementioned PO and PU sampling strategies for training dataset construc-
tion. We set 115 000 as the maximum number of training samples for the most
overrepresented dataset and apply the progressive imbalancing techniques, initial-
izing with N (PU)

0 = 115 000 for PU and N (PO)
0 = 7187 for PO. This strategy yields

a total training set size of 222 812 samples for each sampling method.
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Dataset Input Example Label

Amazon Reviews These are great blocks but they are definitely not
worth the listed $79.99. They can be purchased
for about $20 many other places.

Yelp Reviews The only thing worse than the food is the service.

AGNews South Africa won the gold medal Sunday in the
men’s 400-meter freestyle relay with a world-
record time of 3 minutes 13.17 seconds.

Sports

Yahoo! Answers When is Thanksgiving celebrated in Canada? Society & Cul-
ture

DBPedia Witches Brew is an underground European
record label which mainly sells music via online
distribution.

Company

Table 4.2: Examples of the five text classification datasets. Amazon
and Yelp reviews require assigning each text input to one of five star ratings.
AGNews classifies texts into different news topics. Yahoo! Answers categorizes
texts by question domains. DBPedia assigns texts to specific encyclopedia article
topics.

4.3.2 Training Details

We employ BERTBASE (Devlin et al., 2019) as the PTM hϕ(·), which consists
of 12 transformer encoder layers with a token embedding dimensionality of d =
768. The PL gψ(·) is implemented as a fully-connected linear layer followed by
a softmax activation function to generate class probabilities. SOINN+ (i.e., the
semantic memory MS) is governed by a hyperparameter called the pull factor η,
which determines the influence of new observations on neighboring nodes within the
network. Given that Wiwatcharakoses and Berrar (2020) demonstrate the relative
insensitivity of the network to the specific value of η, we fix it at a constant value of
η = 50, as used in the original SOINN+ paper, throughout our experiments.

To evaluate the effectiveness of DRILL, we compare it with several baseline meth-
ods: Sequential Fine-Tuning (SFT) updates both the PTM and the PL without
incorporating any CL mechanisms. It is typically regarded as the lower bound for
CL performance as a result of its susceptibility to catastrophic forgetting. ER (cf .
Equation (3.19)) extends SFT by introducing experience rehearsal, where histor-
ical exemplars are stored in the episodic memory ME. ANML-ER and OML-
ER (Holla et al., 2021) integrate meta-learning algorithms with experience replay.
For a fair comparison, we standardize the memory writing and rehearsal policies
across ER, ANML-ER, OML-ER, and our proposed DRILL method. Additionally,
to assess the upper performance limit achievable through full-body adaptation in
a traditional batch learning setting, we include Joint Fine-Tuning (JFT) in our
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evaluation. In JFT, the PTM and PL parameters are jointly optimized over all
tasks simultaneously.

All baseline methods are trained with a batch size of |b| = 8. We apply batch nor-
malization (Ioffe and Szegedy, 2015) and truncate the input sequences of the PTM
BERTBASE to a maximum length of 448 tokens. The reported performance metric
is average accuracy after training on the last task (AAT , cf . Equation (3.10)),
with the success metric aT,t denoting the macro F1 score on task t after incremen-
tal training on the T th (i.e., last) task. Each model configuration is trained using
three random seeds. Learning rate settings are obtained through hyperparameter
tuning, performed on OML-ER as the representative of the meta-learning-based ap-
proaches and on SFT for the other methods. The optimal hyperparameters, found
based on training on the full dataset without imbalanced sampling, using task or-
der I (cf . Table 4.1) and a fixed random seed of 42, were subsequently applied to all
models within each respective group. Thus, for the three meta-learning-based CL
methods—DRILL, OML-ER, and ANML-ER—we set the inner-loop learning rate
to α = 8× 10−3 and the outer-loop learning rate to β = 1.5× 10−5. The remaining
baselines—SFT, ER, and JFT—are trained with a learning rate of 1× 10−5.

Each model is trained for a single epoch (E = 1), except for JFT, which is trained
for two epochs (E = 2). We set the support set size per episode uniformly to
s = 5. Following the rehearsal and evaluation protocol of Holla et al. (2021),
we define the rehearsal interval as RI = 9600 and the replay ratio as r = 1%.
Accordingly, after processing every 9 600 samples from the data stream, we sample
96 instances (i.e., 1% of RI) from the episodic memory ME for rehearsal. The
maximum capacity of the episodic memory buffer is fixed at B = 2000 for all
baselines that use experience replay. In accordance with standard meta-learning
evaluation practices, we construct five evaluation episodes, each employing the test
datasets as query sets.

4.3.3 Baseline Comparison

The main results for the single-epoch CIL setting are summarized in Table 4.3. The
persistently poor performance of SFT illustrates the susceptibility of full-body
adaptation strategies to catastrophic forgetting when no additional CL mecha-
nisms are used. This finding emphasizes the need to integrate such mechanisms to
preserve high performance across tasks.

In the PO setting, which is characterized by a significant underrepresentation of
early tasks, DRILL outperforms all baseline methods by an absolute margin of at
least 1.5%, with ANML-ER emerging as the second-best performer. Similarly, in
the PU setting, where the number of samples per task is reduced by half at each
training stage, DRILL achieves an improvement in average model performance of
at least 0.7% compared to OML-ER, the next best baseline.

Although the relatively high standard errors warrant cautious interpretation, these
performance differences underscore the effectiveness of DRILL in mitigating catas-
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Method PO PU

JFT 77.4 ± 0.3 77.7 ± 0.2

SFT 23.2 ± 0.7 27.6 ± 1.4

ER 61.9 ± 1.9 48.1 ± 1.8

ANML-ER 63.8 ± 1.9 55.9 ± 3.3

OML-ER 62.9 ± 1.5 58.3 ± 2.8

DRILL 65.3 ± 1.1 59.0 ± 1.8

Table 4.3: Performance comparison of experience replay methods in
the single-epoch CIL setting. Reported scores are averaged macro F1 scores
after incremental training across four permutations of task orders and three ran-
dom seeds. Standard errors after±. PO = Progressive Oversampling, PU = Pro-
gressive Undersampling.

trophic forgetting and suggest its potential to narrow the gap toward the upper
performance bound, as demonstrated by the JFT baseline. Notably, DRILL is par-
ticularly beneficial in the PO setting, where early tasks are learned from only a
few examples. This scenario exacerbates the inherent recency bias in the PL to
disproportionately favor recently learned classes. The observation of an absolute
4.4% performance drop for SFT in the PO setting relative to the PU setting fur-
ther highlights the importance of CL mechanisms that counteract the forgetting of
early, underrepresented data in the face of substantial subsequent representational
drifts.

4.3.4 Variability Analysis

We investigate the sensitivity of the baseline methods to random parameter ini-
tialization and task ordering within the context of CL. To analyze the effect of
random initialization, we present in Figure 4.2 the distribution and skewness of
performance scores under consistent conditions across all baselines. The results in-
dicate that DRILL achieves a higher median performance and exhibits lower vari-
ability compared with all other replay-based baselines. Evidently, the ER method
shows particularly higher variability in the PU setting than meta-learning meth-
ods. This observation suggests that meta-learning, which is explicitly designed for
rapid task-specific adaptation, enables models to robustly learn new tasks with
limited samples regardless of specific experimental conditions.

To gain deeper insights into the impact of task ordering on model performance
in the single-epoch CIL setting, we present the performance metrics of all base-
lines for each imbalanced sampling setting and task order configuration (averaged
across three random seeds) in Table 4.4. While DRILL outperforms all replay-
based CL methods in only three of the eight configurations, it significantly reduces
variability—as indicated by the standard error across all experimental setups—by
between 24% and 41% compared with ER, ANML-ER, and OML-ER, respectively.
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Figure 4.2: Variability comparison of DRILL with other baselines in
the single-epoch CIL setting. Performance scores of all comparison models
are averaged across four task orderings and three random seeds. Median perfor-
mance is highlighted in red.

Order (PO) Order (PU)

Method I II III IV I II III IV ∅

JFT 77.9 78.7 76.2 76.7 77.7 76.4 78.3 78.2 77.5 ± 0.4

SFT 17.4 27.6 26.6 21.0 23.7 32.7 28.8 25.0 25.4 ± 1.7

ER 55.3 67.9 58.6 65.7 44.2 57.7 53.5 37.0 55.0 ± 3.7

ANML-ER 66.7 70.5 55.0 62.9 57.0 58.6 62.7 45.2 59.8 ± 3.1

OML-ER 70.2 64.9 52.2 64.4 56.0 62.0 66.5 48.7 60.6 ± 2.9

DRILL 68.4 68.1 59.1 65.5 61.8 61.6 62.9 49.5 62.1 ± 2.2

Table 4.4: Variability of DRILL and other CL baselines across task
orders. Each performance score AAT (%) is reported separately for each of
the four task orders and two sampling strategies. ∅ represents the mean perfor-
mance and standard error across all task orderings, random seeds, and sampling
strategies. Standard errors for individual scores are omitted for clarity.

This reduction is particularly critical, as high variability can undermine the relia-
bility of model performance in practical applications. In real-world scenarios, where
models often have only a single opportunity to learn from streaming data without
the possibility of repeated retraining, consistent performance is essential. Conse-
quently, lower variability provides a more reliable estimate of model performance
in an open CL setting.

4.3.5 Impact of Feature Integration Strategies

Given that the original ANML algorithm (Beaulieu et al., 2020), which underpins
the ANML-ER method, fuses latent features from two PTMs via multiplication—
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Order (PO) Order (PU)

Fusion Strategy I II III IV I II III IV ∅

Multiplication 23.2 36.5 37.1 37.6 58.0 51.7 41.0 50.4 41.9 ± 6.1

Concatenation 68.4 68.1 59.1 65.5 61.8 61.6 62.9 49.5 62.1 ± 2.2

Table 4.5: Comparison of representation fusion strategies. Average per-
formance of DRILL after training is reported for every task order and sampling
strategy. ∅ represents the mean performance and standard error across all task
orderings, random seeds, and sampling strategies. Standard errors for individual
scores are omitted for clarity.

in contrast to the concatenation used with DRILL—we aim to investigate how
the integration strategy of latent features affects the performance of our DRILL
method. To this end, we compare the average performance after training across var-
ious imbalanced sampling strategies and task orderings for integrating features via
multiplication and concatenation, as presented in Table 4.5. Specifically, Multipli-
cation involves replacing the concatenation [w

(i)
t,n ; hϕ(xt,n)] in Equation (4.1) with

an element-wise multiplication w
(i)
t,n ⊗ hϕ(xt,n), while Concatenation corresponds

to the original DRILL method described in Section 4.2.

The results show that the use of multiplicative fusion between the prototypical
features retrieved from the semantic memory MS and the features extracted by
the PTM results in a significant absolute performance reduction of 20.2%, as well as
a doubling of performance variability, compared with the original DRILL method.
Across all task orders and sampling strategies, multiplicative integration proves
inferior to feature concatenation in all configurations except one.

One potential explanation for this performance degradation is rooted in the design
of ANML, where gating layers preceding the fusion operation are learned in a
supervised manner. This supervised learning of gating parameters helps stabilize
the multiplicative interactions between features. In contrast, our method utilizes
SOINN+, an unsupervised algorithm for semantic memory, which does not allow
for the optimization of parameters to stabilize the multiplicative gating and thus
the overall learning trajectory. As a result, the multiplicative fusion mechanism
adversely affects CL performance by introducing instability and divergence to the
training process. Therefore, concatenation proves to be a more suitable strategy
for feature integration when utilizing unsupervised self-organizing networks for
prototype sampling.

4.4 Discussion

The results in the single-epoch CIL setting demonstrate that DRILL, as a dual-
memory strategy employing a self-organizing network architecture for prototype
augmentation, has the potential to enhance performance and reduce sensitivity to
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model parameter initialization and task ordering. DRILL exhibits particular ef-
fectiveness in preserving task-specific knowledge when early classes (or tasks) are
significantly underrepresented. This underscores its strength in long-term reten-
tion under low-data conditions. We attribute this effectiveness to the conservative
approach of the SOINN+ algorithm to deleting nodes that, although significantly
different from others, possess high trustworthiness in accurately representing spe-
cific data subsets. Consequently, a small set of nodes representing heavily under-
represented classes are more likely to be maintained and frequently retrieved from
the SOINN+ network, thereby being used to guiding the PL towards confidently
predicting these classes.

A well-recognized limitation in combining self-organizing neural networks with
feed-forward networks for supervised learning is their tendency to capture the en-
tire evolution of hidden representations in the feature space, including obsolete
knowledge. This can lead to a deterioration in the quality of nodes representing
subsets of the training data when updates are made to the PTM. The DRILL
architecture largely mitigates this issue by freezing the PTM parameters during
inner-loop optimization and by retrieving the most frequently activated SOINN+
nodes instead of the BMUs directly, a strategy that is less sensitive to represen-
tational drift. Freezing the PTM parameters ensures a more stable latent data
distribution over time and preserves the integrity of the learned features. Addi-
tionally, selecting the most frequently activated nodes increases the likelihood that
neural units aligned with the current input distribution are considered high-quality
class representatives, thereby improving the model’s predictive accuracy.

An important consideration is the computational overhead introduced by integrat-
ing self-organizing networks into the DRILL framework. While SOINN+ effectively
preserves the topological structure of the feature space and aids in mitigating catas-
trophic forgetting, it adds complexity in terms of memory usage and processing
time. This issue becomes particularly evident when dealing with high-dimensional
data or a great diversity of input feature vectors, as the topology mapping net-
work may grow substantially to accommodate new patterns. Moreover, unsuper-
vised self-organizing networks do not support batched learning and must compute
pairwise distances between each newly observed input feature vector and all ex-
isting network nodes. In our experiments, this resulted in the SOINN+ compris-
ing approximately between 10% and 15% of the number of input samples, which
amounts to several thousand nodes. Addressing this challenge is therefore critical
for the practical deployment of DRILL in real-world scenarios where computational
resources are often constrained.

To mitigate these issues, future work could explore strategies to optimize the effi-
ciency of the semantic memory module. Potential solutions include implementing
more aggressive node pruning techniques to remove redundant or less informa-
tive nodes, employing approximate nearest neighbor search algorithms to expedite
BMU retrieval and neighborhood adjustment, or incorporating parallel processing
to handle the increased computational load. Balancing the benefits of topological
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mapping for CL performance with the practical constraints of computational re-
sources is essential not only for scaling DRILL to more extensive and diverse CL
scenarios, but also for its practical applicability in resource-constrained environ-
ments.

4.5 Chapter Summary

In this chapter, we introduced DRILL, a novel dual-memory strategy that inte-
grates unsupervised self-organizing networks with PTMs to mitigate catastrophic
forgetting in CL settings. DRILL preserves topological relationships within the
feature space and augments latent features with representative class prototypes
to stabilize the training of the prediction layer and increase the model’s robust-
ness against forgetting old classes. We conducted experiments in imbalanced data
settings, a common challenge in real-world applications, and demonstrated that
DRILL is particularly effective when underrepresented classes appear early in the
training stream. DRILL considerably reduces the sensitivity to task order and
random initialization, thereby providing more reliable performance estimates in
real-world CL scenarios compared with prior CL methods.

Recognizing the computational overhead associated with extracting prototypes
from a topological mapping network for feature augmentation, the subsequent
chapter investigates leveraging the rich intra-layer features of PTMs for proto-
type construction. This approach aims to achieve similar benefits in mitigating
forgetting while enhancing scalability and efficiency.
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Chapter 5

Prototyping with Intermediate
Features

CL with foundation models necessitates robust methodologies that capitalize on
the rich and versatile representations derived from large-scale pretraining. These
methods must also exhibit the flexibility to sequentially learn novel tasks that
extend beyond the original pretraining distribution. Existing approaches, including
our DRILL method (cf . Chapter 4), predominantly focus on disentangling high-
level instance- or class-specific features at the final representation layer, thereby
overlooking the potential of intermediate representations to capture low- and mid-
level features. Such features are more invariant to domain shifts and can enhance
generalization across tasks.

In this chapter, we introduce LayUP, a novel prototype-based approach to CL
that leverages second-order feature statistics from multiple intermediate layers of
a PTM. By harnessing the hierarchical representations within PTMs, LayUP cap-
tures richer and more discriminative features that improve learning efficiency and
robustness. Our method is conceptually simple, does not require access to prior
data, and operates seamlessly with any foundation model, making it both adapt-
able and practical for a wide range of applications. We conduct extensive empirical
evaluations, in which we demonstrate that LayUP exceeds state-of-the-art perfor-
mance on four out of seven CIL benchmarks, all three DIL benchmarks, and six
out of seven OCL benchmarks. Notably, it achieves these results while significantly
reducing memory and computational requirements compared with existing meth-
ods. These findings underscore that fully exploiting the representational capacities
of PTMs in CL settings extends well beyond their final embeddings.1

5.1 Motivation

The advent of foundation models has sparked significant interest in developing
CL methods that leverage the powerful representations obtained through large-

1The source code is made available at https://github.com/ky-ah/LayUP.
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scale self-supervised pretraining. CL with PTMs operates under the premise that
a comprehensive all-purpose feature extractor not only facilitates robust knowledge
transfer but also offers enhanced resilience against catastrophic forgetting during
incremental adaptation to downstream tasks. This shift aligns with the broader
trend in machine learning toward utilizing PTMs to improve performance and
efficiency across a variety of tasks (cf . Section 2.1).

In Section 3.3, we outlined three principal strategies adopted by recent CL ap-
proaches with PTMs: (i) carefully fine-tuning the parameters of the PTM (full-
body adaptation methods), (ii) keeping the PTM parameters fixed while learning
a small set of additional parameters (PEFT methods), or (iii) extracting proto-
typical vectors from PTMs without further fine-tuning (class-prototype methods).
Notably, all three strategies—except for early CL methods with PTMs employ-
ing full-body adaptation (cf . Section 3.3.1)—share the beneficial property of not
relying on rehearsal from historical data to perform well, unlike many of the top-
performing CL strategies used for models trained from scratch. As described in
Section 3.2.2, exemplar-free retention is a desirable characteristic of CL methods,
as it circumvents issues related to data privacy, regulatory compliance, and memory
overhead.

Despite these advancements, determining the optimal strategy to balance the
trade-offs among effectively utilizing pretrained features, ensuring resource effi-
ciency, and maintaining robustness to domain shifts in CL settings remains an
open question. As discussed in Section 3.3.3, both full-body adaptation methods
and PEFT methods update a linear probe through iterative gradient descent dur-
ing training, making them susceptible to catastrophic forgetting and task-recency
bias. DRILL (cf . Chapter 4), although prototype-based, preserves this gradient-
driven probing strategy and therefore inherits the same weaknesses. Conversely,
class-prototype methods that classify by directly comparing extracted features with
stored prototypes entirely bypass extra fine-tuning. This property makes them in-
trinsically more robust to forgetting and markedly more resource-efficient than the
previous strategies.

However, existing class-prototype methods for CL typically rely solely on features
extracted from the last layer of the PTM for prototype construction. This approach
may be insufficient, especially as the divergence between the pretraining and fine-
tuning domains increases. High-level features from the final layer are often tailored
to the pretraining tasks and may not generalize well to new domains, leading to re-
duced class separability in the target domain (Yosinski et al., 2014). Consequently,
a key challenge is to develop a prototype-based classifier that holistically leverages
representations from multiple layers of the pretrained feature extractor, thereby
capturing a richer set of features while maintaining low memory and computational
overhead. In this chapter, we seek to answer the question of whether augmenting
last-layer features with intermediate features extracted from a PTM can enhance
class separability and improve performance in prototype-based CL.
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In this context, we hypothesize that aggregating features from multiple layers
to construct a classifier based on first-order (class prototypes) and second-order
(Gram matrix) feature statistics allows for a more effective utilization of represen-
tations by leveraging information from multiple levels of abstraction. More specifi-
cally, this multi-layer approach captures both high-level semantic information and
lower-level features that are crucial for generalization across domains. Our strat-
egy is inspired by prior research in Neural Style Transfer (Gatys et al., 2016; Jing
et al., 2020), which involves applying the artistic style of one image to the content of
another—a problem that can be interpreted through the lens of domain adaptation
(Li et al., 2017). Neural Style Transfer requires the disentanglement of image infor-
mation into content and style components (e.g ., textures, patterns, colors). In this
context, content information is captured through feature activations at different
layers (analogous to computing multi-layer class prototypes), while style informa-
tion is encapsulated by the correlations between features across layers (equivalent
to computing multi-layer Gram matrices).

To this end, we propose Multi-Layer Universal Prototypes (LayUP), a novel
class-prototype method for CL grounded in the strategy of disentangling style and
content information across multiple encoder layers of a PTM. By leveraging both
first-order and second-order statistics from multiple layers, LayUP captures rich
and fine-grained information about images to perform a more informed classifica-
tion that is less sensitive to domain shifts. We also explore various PEFT strategies
to further refine the intermediate representations obtained by LayUP and allow it
to bridge the gap between source and target domains. Across multiple CL bench-
marks and learning settings, our method improves performance and narrows the
gap to the upper bound by as much as 80% (Stanford Cars-196 in the CIL set-
ting; cf . Section 5.3.3) compared with the next best baseline, while also reducing
its memory and compute requirements by up to 81% and 90%, respectively (cf .
Section 5.2.3). Beyond these improvements, LayUP serves as a versatile plug-in to
enhance existing class-prototype methods, consistently delivering absolute perfor-
mance gains of up to 31.1% (cf . Section 5.3.8).

Our contributions are threefold:

(1) We examine in detail the CL strategy using PTMs and demonstrate why it
benefits from directly extracting intermediate representations for classifica-
tion. We further demonstrate the advantages of leveraging cross-correlations
of features within and between multiple layers to decorrelate class prototypes.

(2) Building upon our insights, we introduce LayUP, a novel class-prototype
approach to CL that capitalizes on second-order statistics of features from
multiple layers of a PTM. Drawing inspiration from prior works, we experi-
ment with various PEFT strategies and extend our approach towards FSA.
LayUP is conceptually straightforward, resource-efficient in terms of memory
and computation, and integrates seamlessly with any PTM.
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Figure 5.1: Overview of LayUP. (a) LayUP incorporates adaptation of
PEFT parameters during training on the first task to bridge the domain gap
from pretraining to fine-tuning domains. (b) It enhances the last-layer represen-
tations of PTMs by incorporating features from intermediate layers, resulting in
more accurately calibrated similarity measures for prototype-based classification
and greater robustness to domain gaps in the CL setting. (c) Prior works on
CL with PTMs, on the other hand, use only final representation layer features
for classification. Stars (⋆) denote extracted features and circles (•) denote class
prototypes.

(3) We report performance improvements with two pretrained ViT-B/16 models
on the majority of benchmarks for the CIL and DIL settings, as well as in
the challenging OCL setting. We demonstrate that LayUP is particularly
effective under significant distributional shifts and in low-data regimes.

This chapter is organized as follows: we establish the theoretical foundation for our
LayUP method in Section 5.2. Subsequently, we detail our training procedures and
present an extensive experimental evaluation in Section 5.3. We discuss our findings
and their implications in Section 5.4, and conclude the chapter in Section 5.5.

5.2 Proposed Method: LayUP

An overview of our proposed LayUP method is depicted in Figure 5.1. The model
architecture integrates a PTM h, PEFT parameters φ, and a PL gψ parame-
terized by ψ. We adopt the formulation of the CL problem introduced in Sec-
tion 3.2.1 and employ the definitions of prototype-based classifiers as described in
Section 3.3.3.
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We argue that combining (i) the augmentation of last-layer representations with
hierarchical multi-layer features and (ii) the decorrelation of these multi-layer
features—which capture diverse image properties such as content and style—via
a Gram matrix transformation enhances robustness to domain shifts and thereby
improves generalizability to downstream continual tasks. To operationalize this,
we integrate embeddings from multiple layers through concatenation into a ridge
regression estimator, as defined in Equation (3.23). Let

h−k:(x) = [hL−k+1(x); . . . ;hL−1(x);hL(x)] (5.1)

denote the concatenated input features of some input sample x ∈ Dtest, extracted
from the last k layers of the PTM h(·). Such features can be, e.g ., [CLS] token
embeddings of a transformer encoder or flattened feature maps of a CNN or ResNet
encoder. This leads to a modified estimator for the predicted label:

ŷ = argmax
y∈{1,...,C}

sy, sy := h−k:(x)
T (G+ λI)−1 cy, (5.2)

where I is the d(k) × d(k)-dimensional identity matrix with d(k) = (dL−k+1 + · · · +
dL−1 + dL), λ ≥ 0 is the regression parameter, and G is the multi-layer Gram
matrix, defined as

G =
T∑
t=1

Nt∑
n=1

h−k:(xt,n)⊗ h−k:(xt,n) (5.3)

Similarly to the ridge classifier defined in Equation (3.23), the LayUP estimator
in Equation (5.2) corresponds to the closed-form solution to the regularized ridge
regression problem when considering H ∈ RN×d(k) as the matrix of concatenated
row vector features and expressing G as H⊤H . In other words, when not employ-
ing CL, optimizing a linear probe with weight matrix W using SGD with mean
squared error loss and weight decay equal to λ yields a loss lower bounded by that
achieved by directly computing the closed-form solution

W = (H⊤H + λI)−1H⊤Y , (5.4)

where Y is the target label matrix of the training dataset D.

5.2.1 Prototyping from Second-order Intermediate Features

To motivate our approach, we show that intermediate representations encode rich
class-specific statistics that can be exploited for prototype-based classification.
Using the split CIFAR-100 dataset (Krizhevsky, 2009) and ImageNet-R (Hendrycks
et al., 2021a), we construct prototype-based classifiers at each intermediate layer
l ∈ {1, . . . , L−1} of two ViT models by applying Equation (3.23). We then quantify
the percentage of classes for which the classifier at layer l outperforms the classifier
at the final layer L (with L = 12 for ViT-B/16).

As shown in Figure 5.2, prototype-based classifiers derived from the last five in-
termediate layers outperform the final-layer classifier for up to 32% of the classes
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Figure 5.2: Classification performance of intermediate layers. Com-
parison for two different ViT-B/16 models and split ImageNet-R (left) and
CIFAR-100 (right) datasets. For each intermediate layer l ∈ {1, . . . , L − 1}
(where L = 12 denotes the final representation layer), the bars represent the
percentage of classes for which a classifier, utilizing Equation (3.23) at layer l,
surpasses the accuracy of the classifier at the Lth layer.

across both datasets. Notably, this advantage is more pronounced for the ViT-
B/16-IN1K model—which is initially pretrained on ImageNet-21K (21 000 classes)
and subsequently fine-tuned on ImageNet-1K (1 000 classes)—than for the ViT-
B/16-IN21K model, which is solely trained on ImageNet-21K. This is likely be-
cause fine-tuning on ImageNet-1K further sharpens and aligns intermediate fea-
tures around the 1 000 natural object categories that also underlie ImageNet-R
and many CIFAR-100 classes, yielding more compact, class-discriminative clus-
ters that a prototype-based rule can exploit more effectively than the broader,
less specialized features of the model trained only on ImageNet-21K. The results
given suggest that intermediate representations capture hierarchical and comple-
mentary features that allow for effective class discrimination across varying levels
of abstraction.

We identify two intuitive methods to integrate intermediate representations into
the class-prototype classifier: (1) averaging over k separate classifiers according to
Equation (3.23), and (2) concatenating representations from the last k layers to
obtain shared class prototypes according to Equation (5.2). Figure 5.3 presents
average accuracies for two split datasets across different values of k. Notably, for
each k, transforming concatenated features via Gram matrix inversion, as defined
by strategy (2), consistently outperforms the averaging of separate classifiers, as per
strategy (1). This finding suggests that the correlations across layers, encapsulated
in the shared Gram matrix (cf . Equation (5.3)), provide significant additional in-
formation that enhances class separability. These results highlight the importance
of capturing inter-layer dependencies to improve classification performance, indi-
cating that jointly integrating representations is more effective than treating each
layer independently.
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Figure 5.3: Comparison of strategies to integrate intermediate rep-
resentations. LayUP implementations for different values of k using a shared
representation and Gram matrix as in Equation (5.2) versus averaging over sep-
arate ridge (or Gram) classifiers for each layer using Equation (3.23). Results
are reported as average accuracy scores over CL training on split ImageNet-R
(left) and CIFAR-100 (right) datasets following phase B of Algorithm 3.

Figure 5.3 demonstrates that increasing k, i.e., the number of layers from which
representations are concatenated, generally enhances the performance of a proto-
type-based classifier. In particular, the performance improvement when increasing
k from k = 4 to k = 6 is considerably more pronounced than the improvement from
k = 6 to k = 12, suggesting diminishing returns beyond a certain depth. Given
that larger k values incur higher computational and memory costs—owing to the
expanded dimensions of the Gram matrix G and class prototypes cy—choosing k =
6 strikes a practical balance between performance and resource efficiency. Although
concatenating features from multiple consecutive layers inherently consumes more
memory than using a final-layer classifier or averaging over layer-wise classifiers, we
will demonstrate in Section 5.2.3 that our method nevertheless remains significantly
more memory- and computation-efficient than other competitive class-prototype
methods for CL.

Interestingly, the performance of the final-layer classifier (k = 1) is approxi-
mately equivalent to that achieved by averaging over separate classifiers for k = 4
and k = 6. This finding challenges the notion that combining class embeddings
from multiple consecutive layers—each individually proficient at predicting specific
classes (cf . Figure 5.2)—introduces noise that degrades performance when aver-
aged. Instead, it suggests that the final layer encapsulates the most discriminative
features, while averaging over multiple layers may not yield additional performance
gains, potentially due to redundancy or the incorporation of less discriminative fea-
tures from earlier layers.
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5.2.2 Combination with Parameter-efficient Model Adapta-
tion

A notable advantage of class-prototype methods for CL is their inherent compat-
ibility with PEFT and full-body adaptation techniques. However, updating the
feature extractor parameters typically induces shifts in the latent representations,
which can misalign the stored class prototypes. Therefore, any strategy aimed at
adapting the latent representations must be meticulously designed to suit the spe-
cific class-prototype method in use. Recent studies (Panos et al., 2023; Zhou et al.,
2024) have demonstrated that applying FSA on the initial dataset D1 effectively
bridges the domain gap between PTM pretraining and downstream fine-tuning
data. They further recommend accumulating the class prototypes after the FSA
phase, thereby preserving the integrity of the prototypes while enabling the model
to assimilate new information and maintaining full compatibility with established
CL paradigms.

To preserve the robust general-purpose features of the PTM and reduce computa-
tional complexity, we apply FSA to an additional set of learnable PEFT parameters
while keeping the PTM parameters fixed throughout the training process. To up-
date these PEFT parameters during FSA, we train a linear PL with the number
of output neurons equal to the number of unique labels in D1 using the Adam
optimizer (Kingma and Ba, 2015) and cross-entropy loss. After completing this
initial training phase on D1, the PL is discarded. In the subsequent CL phase,
both the PTM and PEFT parameters remain frozen; only G and cy are updated.
Consistent with previous studies (Zhou et al., 2024; McDonnell et al., 2023), we
experiment with VPT (Jia et al., 2022), SSF (Lian et al., 2022), and AdaptFormer
(Chen et al., 2022) as PEFT methods.2

Algorithm 3 details the pseudocode for LayUP training within the CIL setting, and
Algorithm 4 outlines the corresponding testing procedure. A primary advantage
of our method is that both the Gram matrix G and the class prototypes cy are
updated incrementally on a per-sample basis. Consequently, Equation (5.2) can be
recomputed after processing each new data point, thereby ensuring compatibility
with online or streaming learning scenarios.

To determine the optimal value for the regression parameter λ, we employ a cross-
validation approach as follows: for each task t, we stratify the training data by
their ground truth labels and conduct a four-fold cross-validation. In each fold,
we temporarily update G and cy for all labels y ∈ Yt and evaluate the classifier’s
performance on the validation fold across a range of λ values.3 After aggregating
the accuracies across all folds for each λ, we select the parameter that yields the
highest mean accuracy. This selected λ is then used to update G and cy for all
y ∈ Yt using the complete training dataset for task t. We then proceed to task

2More details of the PEFT methods used in this chapter can be found in Section 2.1.4.
3The search space for the regression parameter λ is defined as follows: λ = 10x, x ∈

{−8,−4,−2,−1,−0.5, 0, 0.5, 1, 2, 4, 8}.
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Algorithm 3: LayUP Training
Input: PEFT parameters φ, PL parameters ψ, maximum layer depth k
# Initialization
G← 0 ∈ Rd(k)×d(k)

cy ← 0 ∈ Rd(k) ∀ y ∈ Y
# Phase A: First Session Adaptation
for every sample (x, y) ∈ D1 do

collect hL(x)
update φ and ψ using Adam

end
# Phase B: Continual Learning with LayUP
for task t = 1, . . . , T do

for every sample (x, y) ∈ Dt do
collect h−k:(x) using Equation (5.1)
G← G+ h−k:(x)⊗ h−k:(x)
cy ← cy + h−k:(x)

end
optimize λ and compute (G+ λI)−1

end

Algorithm 4: LayUP Testing
Input: trained PEFT parameters φ (if FSA applied), maximum layer

depth k, Gram matrix G, class prototypes cy ∀ y ∈ Y
for every sample x ∈ Dtest do

collect h−k:(x) using Equation (5.1)
predict ŷ using Equation (5.2)

end

t + 1 to repeat the optimization process. Importantly, this procedure adheres to
the constraints of rehearsal-free CL, as it does not require access to data from
previous tasks at time t.

As the cross-validation procedure for selecting λ involves repeated passes over the
data of the current task t, it is not compatible with strict OCL scenarios, where
only a single pass over the data is permissible. Thus, for the OCL comparison, we
omit the FSA stage (phase A in Algorithm 3) and utilize a fixed regularization
parameter λ. This way, we maintain adherence to the online learning paradigm
while enabling a fair and consistent comparison across all baseline methods.

5.2.3 Memory and Runtime Complexity Comparisons

We assess the memory and runtime overhead of our LayUP method relative to three
competitive CL approaches for PTMs: APER (Zhou et al., 2024), SLCA (Zhang
et al., 2023), and RanPAC (McDonnell et al., 2023). We assume a typical number
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of classes, C = 200, and AdaptFormer as the representative PEFT method. We
exclude the memory footprint of the ViT backbone and the PL parameters from
our comparison, as these components are common across all methods. Additionally,
we do not consider the memory requirements of the class prototypes, since they
are utilized by every approach and contribute negligibly to the overall storage
demands.

LayUP stores approximately one million PEFT parameters and an additional
multi-layer Gram matrix in memory. The size of this matrix depends on the choice
of k and is calculated as d2(k) = (dL−k+1+· · ·+dL−1+dL)

2. In typical transformer en-
coders, including ViT-B/16, each layer outputs tokens of the same dimensionality;
specifically, dl = 768 for every layer l. With k = 6, as used in the main experi-
ments in this chapter, the Gram matrix stores approximately 21 million values. In
comparison, RanPAC, using a random projection dimension of M = 10 000 as in
the original paper, updates a Gram matrix of size M2 = 100 million entries and
requires approximately 11 million additional parameters for the random projection
layer and PEFT parameters. SLCA stores C additional covariance matrices of size
d2L, resulting in a total of approximately 118 million entries. Finally, APER stores
a second copy of the feature extractor (i.e., the ViT-B/16 model), necessitating
84 million additional parameters. Assuming comparable memory costs for model
parameters and matrix entries, our method reduces the additional memory require-
ments by approximately 81%, 82%, and 75% compared with RanPAC, SLCA, and
APER, respectively.

Considering runtime complexity during training, APER updates all parameters of
a ViT-B/16 model during the first task adaptation phase, resulting in significant
computational overhead due to full fine-tuning of approximately 84 million pa-
rameters. SLCA conducts full-body adaptation of the ViT-B/16 backbone during
slow learning and performs Cholesky decomposition (Cholesky, 1924) on class-
wise covariance matrices for pseudo-rehearsal, which requires C · d3L ≈ 1011 op-
erations. In contrast, RanPAC and LayUP update only PEFT parameters dur-
ing training and perform matrix inversion during inference, albeit with differently
constructed and sized Gram matrices. For k = 6, the matrix inversion requires
(dL−k+1 + · · · + dL−1 + dL)

3 ≈ 1011 operations for LayUP and 10 0003 = 1012 for
RanPAC. Thus, LayUP reduces RanPAC’s runtime complexity during inference by
up to 90%.

5.3 Experiments

In the following, we conduct a series of experiments to evaluate the performance
of our LayUP method across various CL settings. We start with an overview of
the benchmarks and training details, followed by empirical comparisons of our
approach against recent strong baselines in CIL, DIL, and OCL settings. Sub-
sequently, we perform ablation studies to investigate the key components of our
method and analyze how different configurations of the last k layers affect classifier
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Setting Dataset T Ntrain Ntest C

CIL/OCL

CIFAR 10 50 000 10 000 100
IN-R 10 24 000 6 000 200
IN-A 10 6 056 1 419 200
CUB 10 9 465 2 323 200
OB 10 89 668 5 983 300
VTAB 5 1 796 8 619 50
Cars 10 8 144 8 041 196

DIL
CDDB-H 5 16 068 10 706 2
S-DomainNet 6 20 624 176 743 345
IN-R (D) 15 24 000 6 000 200

Table 5.1: Summary of the image classification datasets. For the baseline
comparisons in Section 5.3.3, we report the CL settings and the number of
tasks (T ), along with the number of training samples (Ntrain), validation/test
samples (Ntest), and classes (C). In the CIL and OCL settings, the datasets
are partitioned by classes. Although IN-R was originally proposed for domain
generalization tasks, to the best of our knowledge, it has not been previously
utilized in the DIL setting.

performance. Furthermore, we examine the range of classes that benefit from hid-
den features and conclude our empirical analysis by assessing LayUP as a plug-in
for other class-prototype CL methods.

5.3.1 Benchmarks

For the CIL and OCL settings, we employ seven representative split datasets:
CIFAR-100 (CIFAR; Krizhevsky, 2009), ImageNet-R (IN-R; Hendrycks et al.,
2021a), ImageNet-A (IN-A; Hendrycks et al., 2021b), CUB-200 (CUB; Wah et al.,
2011), OmniBenchmark (OB; Zhang et al., 2022), Visual Task Adaptation Bench-
mark (VTAB; Zhai et al., 2020), and Stanford Cars-196 (Cars; Krause et al., 2013).
Consistent with established practices, we partition all datasets into T = 10 tasks
for baseline comparisons in the CIL and OCL settings, except for VTAB, which
is conventionally divided into T = 5 tasks. Additionally, we report results for
task counts of T = 5 and T = 20 in the variability analysis in Section 5.3.5.
For the DIL comparisons, baselines are trained on the Continual Deepfake De-
tection Benchmark Hard (CDDB-H; Li et al., 2023a) with T = 5, a subsampled
version of DomainNet (S-DomainNet; Peng et al., 2019) with T = 6, and a domain-
incremental formulation of ImageNet-R (IN-R (D)) with T = 15. A summary of
the datasets used in the baseline comparisons is shown in Table 5.1.

Datasets for the CIL and OCL settings. CIFAR comprises 100 classes of
natural images across various domains and topics, closely aligning with the distri-
bution of pretraining datasets like ImageNet-1K and ImageNet-21K. IN-R includes
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image categories overlapping with ImageNet-1K but features out-of-distribution
samples, such as challenging examples or newly collected data in various styles.
Similarly, IN-A shares categories with ImageNet-1K, but contains real-world ad-
versarially filtered images designed to mislead classifiers pretrained on ImageNet.
The CUB dataset is a specialized collection of labeled images of 200 bird species,
capturing a wide range of poses and backgrounds. OB serves as a compact bench-
mark intended to assess the generalization capabilities of PTMs across semantic
super-concepts or realms, including images from 300 categories representing dis-
tinct concepts. The VTAB benchmark, as utilized in our work, consists of five
datasets—Resisc45 (Cheng et al., 2017), DTD (Cimpoi et al., 2014), Pets (Parkhi
et al., 2012), EuroSAT (Helber et al., 2019), and Flowers (Nilsback and Zisser-
man, 2006)—and is commonly split into T = 5 tasks in the CL setting. The Cars
dataset comprises images of cars belonging to 196 distinct combinations of make
and model.

Datasets for the DIL setting. The CDDB-H benchmark is designed to eval-
uate deepfake detection models under continuously evolving attack scenarios, in-
cluding methods such as GauGAN, BigGAN, Wild, WhichFaceIsReal, and SAN.
DomainNet is a multi-source domain adaptation benchmark encompassing six im-
age style domains: real, quickdraw, painting, sketch, infograph, and clipart. Due to
the extensive size of the original DomainNet training set (exceeding 400 000 sam-
ples), we employ S-DomainNet, a subsampled version that restricts the number of
training samples to ten per each of the 345 classes across the six domains while
preserving the original validation set. Finally, IN-R (D) encompasses a sequence
of fifteen image style domains: sketch, art, cartoon, deviantart, embroidery, graffiti,
graphic, misc, origami, painting, sculpture, sticker, tattoo, toy, and videogame.

5.3.2 Training Details

Consistent with prior studies (Wang et al., 2022e,f; Zhou et al., 2024; Zhang et al.,
2023; McDonnell et al., 2023), we conduct experiments using two ViT-B/16 models
as PTM h, both consisting of 12 transformer encoder layers with a token embedding
dimensionality of d1 = d2 = · · · = dL = 768. The first ViT model (ViT-B/16-
IN21K) is pretrained in a supervised manner on the full ImageNet-21K dataset
(Deng et al., 2009). The second ViT model (ViT-B/16-IN1K) is additionally
fine-tuned on the ImageNet-1K dataset (Krizhevsky et al., 2012). During FSA in
both CIL and DIL settings, the PEFT parameters φ are trained for E = 20 epochs
using a batch size of |b| = 48. The PL gψ, which is used only during the FSA stage,
is implemented as a fully-connected linear layer followed by a softmax activation
function to generate class probabilities. We utilize the Adam optimizer (Kingma
and Ba, 2015) with default parameters and employ a cosine annealing learning
rate schedule starting from an initial learning rate of 3× 10−2. For VPT, we train
five prompt tokens, and for AdaptFormer, we use a bottleneck dimension of 16.
All baseline methods are rehearsal-free and trained on the same ViT backbones as
described above.
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Data augmentation is uniformly applied to all training datasets. Specifically, during
training, images are randomly cropped and resized to 224×224 pixels. The cropping
scale is randomly selected between 70% and 100% of the original dimensions, with
the aspect ratio constrained between 3:4 and 4:3. Additionally, horizontal flipping
is performed with a probability of 0.5, and brightness, contrast, saturation, and hue
are each randomly adjusted within a 10% range. For the CIFAR-100 dataset, due to
its original resolution of 32×32 pixels, images are directly resized to 224×224 pixels
without cropping. During inference, images across all datasets are simply resized
to 224× 224 pixels without any further augmentation or preprocessing.

Based on the observations detailed in Section 5.2.1, we found that utilizing fea-
tures from the latter half of the network layers for prototype construction offers a
balance between performance and computational efficiency. Therefore, all experi-
ments are conducted with k = 6, unless specified otherwise. For a comprehensive
comparison of performance across different values of k for all datasets, refer to
Section 5.3.6.

Throughout this chapter and unless otherwise specified, all tabulated results report
the average accuracy after learning the final task (AAT ; cf . Equation (3.10)) using
a fixed random seed of 1993 and the optimal combination of PEFT method and
ViT backbone. This experiment design and the choice of random seed are consistent
with previous studies (McDonnell et al., 2023; Zhou et al., 2024). Furthermore, we
present the average accuracy and forgetting after each task t in Section 5.3.5.

We compare LayUP with L2P (Wang et al., 2022f), DualPrompt (Wang et al.,
2022e), and CODA-Prompt (Smith et al., 2023a) as representative prompt learn-
ing methods, SLCA (Zhang et al., 2023) as full-body adaptation method, and
APER (Zhou et al., 2024), NMC+FSA (Panos et al., 2023), and RanPAC
(McDonnell et al., 2023) as class-prototype methods for CL. For more information
about the prompt learning, full-body adaptation, and class-prototype baselines
used in this chapter, refer to Sections 3.3.1 to 3.3.3.

5.3.3 Baseline Comparison

In the CIL setting, we compare LayUP with several prompt learning methods, fine-
tuning approaches, and class-prototype methods for CL. We also report results for
Joint Fine-Tuning (JFT) of the full backbone (PTM+PL) as well as of the PL only.
It is noteworthy that both JFT baselines do not necessarily serve as upper bound
for CL model performance in this case, as LayUP is a class-prototype method
and does not update the backbone nor uses the linear probe for prediction during
inference. As shown in Table 5.2, LayUP surpasses all baselines on four out of the
seven split datasets.

The four datasets in which LayUP consistently outperforms all baseline models—
IN-R, IN-A, VTAB, and Cars—exhibit two distinct characteristics. First, they
have a high domain gap relative to the pretraining ImageNet domain, as detailed
in Section 5.3.6. Second, with the exception of IN-R, they contain significantly less
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Method CIFAR IN-R IN-A CUB OB VTAB Cars

JFT (PTM+PL) 93.6 86.6 71.0 91.1 80.3 92.5 83.7
JFT (PL) 87.9 71.2 56.4 89.1 78.8 90.4 66.4

L2P 84.6 72.5 42.5 65.2 64.7 77.1 38.2
DualPrompt 81.3 71.0 45.4 68.5 65.5 81.2 40.1
CODA-Prompt 86.3 75.5 74.5 79.5 68.7 87.4 43.2
NMC+FSA 87.8 70.1 49.7 85.4 73.4 88.2 40.5
APER 87.6 72.3 52.6 87.1 74.3 84.3 41.4
SLCA 91.5 77.0 59.8∗ 84.7 73.1∗ 89.2∗ 67.7
RanPAC 92.2 78.1 61.8 90.3 79.9 92.6 77.7
LayUP 92.0 81.4 62.2 88.1 77.6 93.3 82.5

Ablations

k = 1 90.8 78.8 60.4 86.7 72.0 92.4 74.9
w/o FSA 88.7 73.1 57.7 86.2 77.0 92.6 78.6
k = 1, w/o FSA 86.5 69.4 55.4 85.4 70.7 91.6 69.1
LayNMC 88.1 59.3 50.0 82.5 68.9 86.5 40.0
NMC 83.4 61.2 49.3 85.1 73.1 88.4 37.7

Table 5.2: Performance comparison of prompt learning, backbone fine-
tuning, and class-prototype methods in the CIL setting. Results are
taken from McDonnell et al. (2023) except results for SLCA marked with (∗),
which are reproduced using the officially released code.

training data compared with CIFAR, OB, and CUB (cf . Section 5.3.1). The first
characteristic confirms our initial hypothesis that intermediate representations are
more domain-invariant and consequently more robust to large distributional shifts
from the source to the target domain. The second indicates that, especially in the
low-data regime, LayUP constructs class prototypes and decision boundaries that
generalize well, even when the amount of training data is scarce compared with
the data used for ViT pretraining. It should be noted that RanPAC, which is the
only baseline that LayUP does not consistently outperform, is considerably more
expensive in terms of both memory and computation (cf . Section 5.2.3).

The results for the DIL setting are reported in Table 5.3. We compare our method
with several strong class-prototype methods for CL and, similar to the CIL compar-
ison, we also report results for the joint fine-tuning of the full backbone or only the
linear probe. LayUP consistently outperforms all baselines. These results confirm
that our method effectively utilizes the domain-invariant information contained in
the low- and mid-level intermediate features of the PTM, thereby enhancing its
robustness to domain shifts.

Additionally, we are interested in evaluating the performance of our method in the
challenging OCL setting, where only a single pass over the continual data stream
is allowed (E = 1) and updates have to be performed on a per-sample basis,
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Method CDDB-H S-DomainNet IN-R (D)

JFT (PTM+PL) 92.9 62.8 86.6
JFT (PL) 74.0 57.2 71.2

NMC+FSA 49.8 44.0 76.3
APER 70.7 – –
RanPAC 86.2 58.8 77.2
LayUP 88.1 59.4 80.0

Ablations

k = 1 84.0 54.2 77.8
w/o FSA 86.7 58.3 73.3
k = 1, w/o FSA 77.7 53.7 69.0
LayNMC 61.4 34.4 59.1
NMC 57.6 43.5 64.1

Table 5.3: Performance comparison of class-prototype methods in the
DIL setting. Results for APER and RanPAC on CDDB-H are taken from
McDonnell et al. (2023).

thus |b| = 1. All baselines are class-prototype methods for CL on a frozen PTM
(thus we omit FSA stages for NMC, RanPAC, and LayUP), except for Sequential
Fine-Tuning (SFT), where we update the parameters of the pretrained ViT via
cross-entropy loss and the Adam optimizer during a single epoch. Note that NMC
exhibits identical behavior in both the CIL and OCL settings, as it uses each
training sample only once for running-mean calculation, consequently producing
the same outcomes as the ablation baseline in Table 5.2.

Given that the choice of the ridge regression parameter λ, as utilized in RanPAC
and our method, necessitates prior knowledge about the downstream continual
data—a requirement unmet in realistic streaming learning settings—we opt for
comparison with two simplified versions of Gram matrix inversion (G+λI)−1 (cf .
Equations (3.23) and (5.2)). In the first variant, we completely omit λ-based reg-
ularization, setting λ = 0, so the Gram matrix is inverted without regulariza-
tion (i.e., G−1). In the second variant, as used in Panos et al. (2023), we set
λ = 1, resulting in the inversion of the identity-regularized Gram matrix (i.e.,
(G+ I)−1).

As indicated in Table 5.4, unrestricted fine-tuning of the backbone in the OCL set-
ting is detrimental to the generalizability of the pretrained embeddings and leads to
forgetting and low performance. Consequently, the SFT baseline is outperformed
by class-prototype methods for most benchmarks. With the exception of VTAB,
LayUP is largely robust to missing regularization (λ = 0) and maintains high
performance on all benchmarks when regularization is set to λ = 1. In contrast,
RanPAC exhibits high variability in performance across benchmarks, occasionally
resulting in near-zero accuracy. This outcome is likely due to the high-dimensional
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Method CIFAR IN-R IN-A CUB OB VTAB Cars

SFT 12.8 5.3 6.9 5.1 3.3 7.3 10.9

NMC 83.4 61.2 49.3 85.1 73.1 88.4 37.7
RanPACλ=0 88.7 70.6 1.4 0.9 76.9 9.3 0.6
RanPACλ=1 88.7 70.6 0.9 0.7 76.9 9.0 0.6
LayUPλ=0 88.7 73.4 40.9 86.4 77.0 10.4 66.3
LayUPλ=1 88.7 73.4 51.6 86.9 77.0 92.9 77.5

Ablations

k = 1, λ = 0 86.5 69.6 55.6 85.4 72.8 92.2 69.2
k = 1, λ = 1 86.5 69.6 55.6 85.4 76.3 92.3 69.2

Table 5.4: Performance comparison of class-prototype methods in the
OCL setting. Results for RanPAC and NMC are reproduced according to the
officially released code in McDonnell et al. (2023).

prototypes and Gram matrix in RanPAC, obtained after random projections, over-
fitting the training data, which consequently hampers their ability to generalize.
LayUP’s superior robustness in the online learning setting makes it a more fa-
vorable approach for CL scenarios where the length of the input stream and the
nature of the data might not be known in advance.

5.3.4 Ablation Study

The purpose of the following ablation study is to demonstrate the advantages
of leveraging multi-layer representations over solely utilizing features from the fi-
nal representation layer (i.e., choosing k = 1) for class-prototype construction
in CL. As LayUP integrates multi-layer representations with second-order statis-
tics via Gram matrix inversion as well as FSA in the CIL and DIL settings, we
consider three configurations for ablating multi-layer representations: (i) in the
standard setting with both FSA and second-order statistics (LayUP vs. k = 1),
(ii) excluding the FSA stage, i.e., omitting phase A in Algorithm 3 (w/o FSA vs.
k = 1, w/o FSA), and (iii) excluding FSA and second-order statistics, which cor-
responds to traditional nearest-mean classifiers (LayNMC vs. NMC). Results for
the baselines constructed for settings (i)-(iii) can be found in the bottom sections
of Tables 5.2 and 5.3. For (i), enriching the final layer with intermediate features
consistently results in absolute performance gains ranging from 1.2% to 7.6% (CIL)
and 2.2% to 5.2% (DIL). For (ii), leveraging multi-layer features yields absolute
accuracy improvements of between 0.8% and 9.5% (CIL) and between 4.3% and
9.0% (DIL).

In contrast, configuration (iii) fails to provide consistent evidence that LayNMC—
conceptually analogous to averaging predictions from individual per-layer classifi-
ers—outperforms the NMC baseline. These findings corroborate our preliminary
results in Section 5.2.1 and likely stem from the fact that intermediate representa-
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tions exhibit reduced discriminative capacity compared to the final-layer features
while receiving equivalent weighting in the final prediction due to the lack of a
decorrelation mechanism. Consequently, incorporating intermediate features yields
minimal benefit when Gram matrix inversion—designed to decorrelate the feature
representations—is omitted.

In the lower section of Table 5.4, additional comparisons are presented between
ablated versions of LayUP and prototypes that use only final-layer representations
(k = 1) in the OCL setting, evaluated at two selected values of the regulariza-
tion parameter λ. In general, LayUP outperforms its ablated variants; however, it
exhibits reduced performance on low-data benchmarks such as IN-A and VTAB,
particularly when regularization is omitted (i.e., λ = 0). This decline likely re-
sults from the increased dimensionality of both the class prototypes and the Gram
matrix—resulting from the incorporation of intermediate representations—which
elevates the risk of overfitting. Consequently, in the absence of regularization and
with limited training data, the inclusion of multi-layer features may prove coun-
terproductive, whereas in all other cases, they enhance classification accuracy by
between 0.6% and 8.3%.

5.3.5 Variability Analysis

In the following, we perform a comprehensive sensitivity analysis of LayUP within
the context of CL. Specifically, we examine the impact of stochastic variability in
parameter initialization and task ordering, the selection of PEFT strategies and
PTMs, the number of intermediate layers utilized for feature extraction during
prototype construction, and the influence of varying task counts.

Effect of random initialization. Since the choice of random seed influences
both the task order and the initialization of the PEFT and PL parameters, we
compute the average accuracy and forgetting, along with the standard error, for
all seven datasets in the CIL setting, using seeds 1993 to 1997. The results are
shown in Figure 5.4. We observe negligible differences in final performance after
the last task across different seeds, indicating that LayUP is robust to variations in
task order and PEFT parameter initialization. The greatest variability is observed
in the VTAB benchmark, which comprises T = 5 tasks from five different datasets
with high domain variability. Consequently, the task order—and hence the specific
set of classes to which the representations are adapted during the initial session—
has a more pronounced effect on the model’s generalization capabilities during
CL. As anticipated, the average forgetting increases with the introduction of more
tasks, since the model must discriminate among a larger number of classes during
inference.

Effect of PEFT methods and PTMs. Building upon previous studies (Zhou
et al., 2024; McDonnell et al., 2023), we investigate various PEFT methods and
ViT-B/16 models as PTMs within the LayUP framework. Since the benefits of

101



Chapter 5. Prototyping with Intermediate Features

1 2 3 4 5 6 7 8 9 10
90

95

100

C
IF
A
R

A
A
t
(%

)

2 3 4 5 6 7 8 9 10
0

2

4

6

F
M

t
(%

)

1 2 3 4 5 6 7 8 9 10
75
80
85
90
95

100

IN
-R

A
A
t
(%

)

2 3 4 5 6 7 8 9 10
0

2

4

6

F
M

t
(%

)

1 2 3 4 5 6 7 8 9 10
50
60
70
80
90

100

IN
-A

A
A
t
(%

)

2 3 4 5 6 7 8 9 10
0
2
4
6
8

10
12

F
M

t
(%

)

1 2 3 4 5 6 7 8 9 10
85

90

95

100

C
U
B

A
A
t
(%

)

2 3 4 5 6 7 8 9 10
0

2

4

6

F
M

t
(%

)

1 2 3 4 5 6 7 8 9 10
75
80
85
90
95

100

O
B

A
A
t
(%

)

2 3 4 5 6 7 8 9 10
0
2
4
6
8

10

F
M

t
(%

)

1 2 3 4 5
90

95

100

V
T
A
B

A
A
t
(%

)

2 3 4 5
0

2

4

F
M

t
(%

)

1 2 3 4 5 6 7 8 9 10
t

75
80
85
90
95

100

C
ar
s

A
A
t
(%

)

2 3 4 5 6 7 8 9 10
t

0
2
4
6
8

F
M

t
(%

)

ViT-IN1K ViT-IN21K

Figure 5.4: Variability of LayUP across random seeds. Average accuracy
(left) and forgetting measure (right) in the CIL setting are reported for each
ViT-B/16 model after FSA with AdaptFormer as the PEFT method. Results
are reported for seeds 1993 to 1997 to ensure reproducibility, with the resulting
standard error indicated by the shaded area.

additional fine-tuning can vary depending on the characteristics of the downstream
domain (Panos et al., 2023), our experiments aim to elucidate these effects. The
results are presented in Figure 5.5.
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Figure 5.5: Variability of LayUP across parameter-efficient fine-tuning
methods. Performance comparison of different PEFT methods in the CIL set-
ting (AdaptFormer, SSF, and VPT) and ViT-B/16 models.

Our findings indicate that LayUP performance shows overall high robustness to-
wards different PEFT methods and ViT models, expect for LayUP with SSF as
PEFT method fine-tuned on VTAB, which depicts a relatively steep drop in per-
formance and high forgetting rates during CL with both ViT models. Moreover,
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we observe that AdaptFormer consistently demonstrates stable performance re-
gardless of the pretraining strategy and generally outperforms both VPT and SSF
across all datasets, except for the split OB dataset. No clear pattern emerges re-
garding whether VPT is superior to SSF or vice versa. Furthermore, the choice of
the ViT pretraining strategy does not significantly influence the effectiveness of any
PEFT method. Finally, there is no single combination of PEFT method and ViT
model that universally outperforms all other variants. These results corroborate
the findings of Panos et al. (2023) and underscore the importance of considering a
broad range of pretraining schemes for PTMs and fine-tuning strategies to develop
high-performing class-prototype methods for CL.

Effect of representation depth k. To analyze the learning behavior over time
in the CIL setting among different choices of k for prototype construction, we
plot average accuracy and forgetting for k = 1, k = 6, and k = 12. Specifically,
k = 1 corresponds to classification based solely on the final layer (here, layer 12)
representations of the PTM, as done in prior work, k = 6 involves concatenating
multi-layer features from the latter half of the network layers (layers 7 through
12), and k = 12 uses concatenated features from all layers (layers 1 through 12) of
the pretrained ViT model for classification.

As shown in Figure 5.6, classification performance based solely on the last layer
representations (k = 1) is inferior to that based on multi-layer representations
utilized in LayUP, resulting in both lower accuracy and higher forgetting rates.
Notably, there is no significant performance difference between k = 6 and k = 12,
suggesting that the early layers (layers 1 through 6) of the model do not contribute
substantial information to the classification process, nor do they adversely affect it.
Considering the trade-off between performance gains and the associated memory
and computational costs, these results corroborate the findings of the preliminary
analysis in Section 5.2.1 and support the selection of k = 6—as used in our baseline
comparison in Section 5.3.3—as an effective and efficient choice.4

Effect of task count T . To evaluate whether the benefits of multi-layer rep-
resentations remain consistent across different numbers of tasks, we compare the
average accuracy after training (AAT ) across six datasets. We use three different
task counts, T ∈ {5, 10, 20}, and three different choices for the number of last
layers used in class prototype generation, k ∈ {1, 6, 12}. The results are presented
in Table 5.5.

We hypothesize that increasing the number of tasks leads to decreased performance
because fewer data points and classes can be learned during FSA and thus be used
to bridge the gap between the source and target domain. This trend is evident in
our results: for nearly all datasets and values of k, performance improves as the
task count decreases (e.g ., a 4.4% improvement when reducing the number of tasks
from T = 20 to T = 5 on IN-A with k = 6). Furthermore, across all task counts

4We further deepen the analysis of the choice of k on LayUP performance in Section 5.3.6.
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Figure 5.6: Variability of LayUP across maximum representation
depths. Comparison of different choices of k last layers for prototype construc-
tion (k ∈ {1, 6, 12}) and ViT-B/16 models in the CIL setting after first session
training with AdaptFormer as PEFT method.

and datasets, using multi-layer representations (k = 6 and k = 12) yields higher
performance than using only the final-layer representations (k = 1), underscoring
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k T CIFAR IN-R IN-A CUB OB Cars

1
5 89.5 80.4 61.9 85.0 72.4 75.1
10 89.2 79.2 60.8 85.3 71.6 75.5
20 88.4 77.3 57.1 83.6 72.2 75.6

6
5 91.8 82.8 64.0 87.1 77.4 81.7
10 91.0 81.2 62.2 87.3 77.5 82.5
20 88.8 79.9 59.6 85.9 77.4 82.2

12
5 91.6 83.2 64.0 87.4 78.3 82.1
10 90.8 80.8 62.8 88.0 77.8 82.3
20 88.9 80.2 60.0 86.0 78.1 82.8

Table 5.5: Variability of LayUP across task counts. Performance com-
parison of different task counts T for k = 1 (prototype construction from last
layer only), k = 6 (prototype construction from the second half of the network
layers, as utilized in Section 5.3), and k = 12 (prototype construction from all
network layers). Reported scores are for the CIL setting, FSA with AdaptFormer
as PEFT method, and ViT-B/16-IN1K as PTM. The VTAB benchmark is omit-
ted from the comparison due to its fixed number of datasets from which tasks
are constructed (T = 5).

the efficacy of incorporating multi-layer representations in prototype construction
with LayUP.

5.3.6 Analysis of Multi-layer Representation Depth

To provide more detailed insights into the impact of multi-layer representation
depth on LayUP performance, we plot in Table 5.6 the average accuracy after
training for all possible choices of k using a ViT-B/16-IN1K backbone and Adapt-
Former as PEFT method. The final-layer classifier (k = 1) exhibits the lowest
performance compared to all other k values across all datasets, except for the split
VTAB dataset. Conversely, LayUP configurations with medium or large k val-
ues almost consistently outperform those with small k values, demonstrating the
broad advantages of leveraging representations from multiple intermediate layers
for class-prototype construction.

While the optimal choice of k varies between datasets, performance gains generally
diminish with increasing k values. For instance, the average absolute accuracy gain
from choosing k = 6 over k = 1 is 2.7%, whereas it is only 0.4% when choosing k =
12 over k = 6. This confirms the findings made in Section 5.2.1 and Section 5.3.5,
suggesting that a value of k = 6 generally suffices to obtain substantial performance
gains over conventional last-layer class-prototype methods, while simultaneously
incurring considerably lower computational and memory overhead compared with
k = 12.

106



5.3. Experiments

k CIFAR IN-R IN-A CUB OB VTAB Cars

1 89.2 79.2 60.8 85.3 71.6 92.7 75.5
2 90.1 79.9 62.2 86.9 73.9 90.7 78.7
3 90.2 80.7 62.5 87.3 74.5 93.2 81.4
4 90.4 81.1 62.0 87.6 76.7 93.1 81.7
5 90.7 81.5 62.8 87.3 77.0 93.0 82.4
6 91.0 81.2 62.2 87.3 77.5 92.2 82.5
7 90.9 81.6 63.4 87.5 77.7 93.4 82.6
8 90.8 81.4 62.8 87.7 77.2 92.1 82.3
9 91.0 81.5 62.1 87.4 78.3 92.0 82.6
10 90.9 81.4 63.4 87.9 77.4 94.0 81.5
11 91.1 81.5 62.0 87.6 78.1 93.7 81.4
12 90.8 80.8 62.8 88.0 77.8 93.9 82.3

Table 5.6: Comparison of maximum representation depths. LayUP per-
formance for different values of k for a pretrained ViT-B/16-IN1K and FSA with
AdaptFormer. The 1st , 2nd , and 3rd highest scores and the 1st , 2nd , and
3rd lowest scores are highlighted.

We further aim to determine whether prior knowledge about the characteristics
of downstream CL data can inform the optimal choice of maximum multi-layer
representation depth with respect to overall performance. Specifically, we identify
the value of k that maximizes accuracy on the test set after running Algorithm 3
with AdaptFormer as PEFT method for each split dataset used in Section 5.3.3
and for each pretrained ViT model. We plot the highest performing k per dataset
against three measures: (i) the degree of domain gap to the pretraining ImageNet
domain, measured by Maximum Mean Discrepancy (MMD); (ii) the intra-class
similarity, measured by the average pairwise cosine similarity between training
image feature vectors of the same class; and (iii) the inter-class similarity, measured
by the average pairwise cosine similarity between image feature vectors of disjoint
classes.

For (i), we follow Panos et al. (2023) and use the miniImageNet dataset (60 000
images) as a proxy for the ImageNet-1K (1.3 million images) and ImageNet-21K
(14 million images) pretraining datasets to reduce computational overhead when
calculating pairwise distances. A large MMD value indicates that two datasets
have significantly different statistical properties, thus signifying a large domain
gap between the source and target domains.

As shown in Figure 5.7, there is no clear relationship between MMD and the op-
timal choice of k. This suggests that the degree of domain gap from the source
domain of a pretrained model is not a reliable indicator for determining the multi-
layer representation depth that maximizes performance. However, a positive trend
is observed between the optimal k and both intra-class and inter-class similar-
ity.
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Figure 5.7: Choice of maximum representation depth for different
dataset characteristics. Choice of k that yields highest accuracy vs. nor-
malized MMD between each dataset and the ImageNet pretraining domain,
represented by miniImageNet dataset (left), intra-class similarity (center), and
inter-class similarity (right).

Firstly, datasets with high intra-class and inter-class similarity (e.g ., Cars or CUB)
tend to benefit from employing higher values of k. In these fine-grained classifica-
tion tasks, instances within the same class and those across different classes share
substantial visual similarity. As a result, integrating features from a larger number
of layers allows the model to capture the subtle distinctions necessary for accurate
discrimination.

Secondly, datasets characterized by medium intra-class similarity and low inter-
class similarity (e.g ., VTAB, OB, or CIFAR) benefit from medium to high values
of k. These datasets often comprise multiple specialized natural image datasets
from distinct domains. The low inter-class similarity arises because classes are
drawn from diverse domains, making them inherently different from one another,
while the intra-class similarity is moderate due to variability within classes. In-
corporating features from several layers can enhance performance, although the
marginal benefit diminishes compared with fine-grained datasets.

Lastly, datasets with low intra-class and inter-class similarity (e.g ., IN-A or IN-R)
benefit from medium values of k. These datasets frequently consist of atypical or
stylized images that deviate significantly from standard natural images, resulting
in an unsystematic distribution in the feature space. The low intra-class similarity
indicates considerable variability among instances within the same class, while the
low inter-class similarity suggests that distinct classes lack shared, salient features.
In such scenarios, aggregating features from a high number of layers—including
those capturing low-level information—can introduce redundant or noisy informa-
tion, potentially degrading the discriminative quality of the representation. There-
fore, a moderate value of k strikes an optimal balance between capturing sufficient
information for class separation and mitigating noise.
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Although Figure 5.7 demonstrates that the highest performance in most configura-
tions is attained by concatenating features from the majority of layers in the PTM,
performance disparities between different k values can occasionally be minor (cf .
Table 5.6) and may fluctuate with varying random initializations. Moreover, as
previously noted, performance improvements tend to plateau with larger k. At the
same time, increasing k incurs higher memory consumption and greater runtime
complexity during inference. Consequently, selecting an optimal k demands a care-
ful trade-off analysis, taking into account the specific requirements and constraints
of the application.

5.3.7 Versatility of Multi-layer Prototypes

We aim to assess the versatility of multi-layer prototypes for classification, specif-
ically, the breadth of classes benefiting from LayUP. To this end, we report the
proportion of classes for each dataset whose test accuracy scores are higher, equal,
or lower with LayUP compared with the final-layer ridge classifier (cf . Equa-
tion (3.23)). Beyond merely counting the classes that are better predicted by either
method, we also examine the extent of the benefit one method has over the other
per improved class. Consequently, we calculate the average difference in accuracy
scores between LayUP and the final-layer classifier (k = 1), and vice versa, for
each class that shows improvement.

Figure 5.8 illustrates that a higher percentage of classes (between 18% and 73%) is
more effectively classified upon introducing intermediate representations to class-
prototype construction. Although the difference in the number of improved classes
is not as pronounced for IN-A and CUB compared with all other benchmarks, the
relative difference in accuracy per improved class between LayUP and the final
representation layer classifier reaches as high as 39% for IN-A and 21% for CUB.
This indicates that for these two datasets, the introduction of intermediate repre-
sentations significantly benefits a few classes rather than slightly benefiting a large
number of classes, as observed with the other benchmarks. Despite the variability
with respect to the number of classes per dataset that benefit from LayUP and the
extent of the benefit, our results demonstrate the universal applicability of multi-
layer prototypes across a broad spectrum of tasks, classes, and domains.

5.3.8 Combination with Other Prototyping Methods

We aim to investigate the effectiveness of using intermediate representations, as em-
ployed in LayUP, as a plug-in to enhance other prototype-based methods for CL.
Specifically, we incorporate multi-layer representations into two class-prototype
methods: APER and RanPAC. Details on these methods can be found in Zhou
et al. (2024) and McDonnell et al. (2023). For LayUP combined with APER, we
aggregate concatenated features from the last k layers of both the pretrained ViT
and the “first session adapted” ViT to construct prototypes. During inference, in-
stead of using cosine similarity matching as done in APER (cf . Equation (3.21)),
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Figure 5.8: LayUP vs. classification from the final representation layer.
Left: Percentage of classes per dataset that are better classified with LayUP
(with k = 6) compared with the last layer ridge classifier (equivalent to LayUP
with k = 1). Right: Difference of absolute accuracy per improved class between
LayUP and the final-layer classifier (k = 1), and vice versa.

we apply Gram matrix inversion following the approach in LayUP (cf . Equa-
tion (5.2)). This decision is informed by the results from Section 5.3.4, which
suggest that multi-layer representations are insufficiently effective for prototype
matching when relying solely on first-order feature statistics. For LayUP combined
with RanPAC, concatenated features from the last k layers of the first session
adapted ViT are fed to the random projection layer, which has an output dimen-
sionality of M = 10 000.

The results for the combinations with APER and RanPAC are depicted in Ta-
bles 5.7a and 5.7b, respectively. Integrating LayUP with other class-prototype
methods for CL consistently improves performance across all datasets. However,
the magnitude of these improvements varies, with the CUB and CIFAR datasets
showing the least pronounced enhancements (↑ 0.4% for LayUP integrated with
RanPAC) and the Cars dataset exhibiting the most substantial gains (↑ 31.1% for
LayUP integrated with APER). Although the optimal value of k for maximizing
performance differs between datasets, overall performance does not vary signifi-
cantly with different values of k. This suggests that a small, resource-efficient choice
of k is sufficient to enhance existing class-prototype methods when integrated with
LayUP.

5.4 Discussion

Our empirical results across CIL, DIL, and OCL settings consistently demonstrate
that LayUP, our novel class-prototype method that augments last-layer features
with first- and second-order intermediate features extracted from a PTM, sig-
nificantly improves performance in prototype-based CL across diverse datasets.
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Method CIFAR IN-R IN-A CUB OB VTAB Cars

APER 87.6 72.3 50.5 87.1 74.3 84.3 51.3
w/ LayUP (k = 4) 91.0 81.8 63.3 87.5 78.1 93.9 82.4

w/ LayUP (k = 6) 91.4 81.7 63.8 87.8 79.0 94.7 82.2
w/ LayUP (k = 12) 91.3 82.0 63.8 87.5 78.1 94.6 81.7

(a) LayUP + APER (Zhou et al., 2024)

Method CIFAR IN-R IN-A CUB OB VTAB Cars

RanPAC 90.7 78.0 58.2 88.5 76.9 92.6 67.5
w/ LayUP (k = 4) 91.1 82.4 61.5 88.7 79.0 94.0 81.9
w/ LayUP (k = 6) 91.1 82.8 63.4 88.6 78.3 93.4 82.3

w/ LayUP (k = 12) 91.1 82.4 64.1 88.9 78.3 94.1 81.7

(b) LayUP + RanPAC (McDonnell et al., 2023)

Table 5.7: Combination of LayUP with other class-prototype meth-
ods. The reported average accuracy scores (%) pertain to the CIL setting as
detailed in Section 5.3.2. All baselines were trained using ViT-B/16-IN1K as the
PTM and AdaptFormer as the PEFT method for FSA. Results for RanPAC and
APER, which were not reported for this specific configuration, have been repro-
duced using their officially released code repositories. Note that the results for
RanPAC and APER may differ from those presented in Table 5.2, as the latter
reports the best among all configurations of PEFT methods and ViT models.

Incorporating intermediate representations into prototype construction offers mul-
tifaceted benefits; by aggregating features from multiple layers, LayUP captures
a richer hierarchy of representations that encompass both low-level and high-level
features. This holistic approach enhances class separability, particularly in scenar-
ios involving significant domain shifts between pretraining and fine-tuning tasks.
Our findings indicate that LayUP consistently outperforms methods relying ex-
clusively on last-layer features, especially on datasets characterized by substantial
distributional gaps and in low-data regimes. This suggests that intermediate fea-
tures are more invariant to domain shifts and contribute to better generalization
across tasks.

Furthermore, our analysis reveals that LayUP is universally beneficial across a
wide spectrum of classes and datasets. The method effectively improves classifi-
cation performance for a significant proportion of classes. Its ability to integrate
intermediate features into existing class-prototype methods underscores LayUP’s
versatility. When combined with methods such as APER and RanPAC, LayUP
yields substantial performance gains without incurring significant computational
overhead, highlighting its potential as a plug-in enhancement for various CL ap-
proaches.

111



Chapter 5. Prototyping with Intermediate Features

However, LayUP is not without limitations. One of the primary challenges lies in
determining the optimal number of layers (denoted by k) to include in the proto-
type construction. Although increasing k generally leads to performance improve-
ments, it also results in higher memory consumption and computational complex-
ity during inference. This trade-off necessitates a careful balance between resource
efficiency and performance gains. Moreover, in the OCL setting, the absence of
regularization when using multi-layer features can lead to overfitting, particularly
when training data are limited. This underscores the need for appropriate regular-
ization strategies to mitigate the risks associated with higher-dimensional feature
spaces.

Furthermore, the optimal choice of k may depend on the specific characteristics
of the dataset, such as intra-class and inter-class similarity. Our analysis suggests
that while higher values of k are beneficial for datasets with high intra-class sim-
ilarity, they may not confer the same advantages for datasets with low intra-class
similarity. This variability indicates that a one-size-fits-all approach may not be
optimal, and adaptive strategies for selecting k based on dataset properties could
enhance LayUP’s effectiveness.

Finally, LayUP is currently tailored for classification problems where tasks involve
comparing inputs to class prototypes. In multimodal learning tasks, which require
the integration of data from different modalities such as text, images, and audio,
the challenges extend beyond comparative classification. These tasks often involve
implicit reasoning, complex associations, and the fusion of heterogeneous infor-
mation sources. The direct application of LayUP’s prototype-based approach may
not suffice in scenarios where understanding context, semantics, and multimodal
interactions is crucial.

This limitation points to an important avenue for future research: adapting the
principles of LayUP to multimodal CL settings by developing methods that can
effectively leverage intermediate representations across different modalities while
addressing the unique challenges posed by multimodal data fusion. For example, ex-
tending LayUP to handle multimodal integration problems would involve creating
mechanisms to align and combine multi-layer features from disparate modalities,
accounting for their varying statistical properties and representation spaces. This
aligns with the broader goal of CL to handle more complex real-world tasks that
require advanced reasoning capabilities.

5.5 Chapter Summary

In this chapter, we introduced LayUP, a conceptually straightforward yet highly
effective class-prototype method for CL that exploits multi-layer representations
from unimodal foundation models. By computing second-order feature statistics
across multiple intermediate layers, LayUP enhances class separability and ro-
bustness, especially in scenarios marked by significant domain shifts and limited
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training data. Extensive evaluations on diverse image classification datasets and
in various CL settings reveal that LayUP consistently surpasses state-of-the-art
baselines while demanding considerably less memory and computational resources.
Moreover, LayUP can be seamlessly integrated as a complementary plug-in with
existing class-prototype methods, underscoring the rich, hierarchical information
encoded in PTMs that can be leveraged when “reading between the layers.”

Despite these promising results, the current design of LayUP does not explic-
itly address the complexities inherent in multimodal learning tasks, which involve
implicit reasoning and the integration of heterogeneous data sources. Overcom-
ing these challenges will require the development of novel approaches that extend
beyond conventional comparative classification frameworks to advance the capabil-
ities of CL methods. Accordingly, the next chapter will investigate the layer-wise
learning dynamics within a modality interaction network to inform the design of
robust and well-informed multimodal CL strategies.
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Chapter 6

Vision-Language Feature Fusion
with Selective Specialization

An effective artificial agent should continually learn language-informed visual tasks
while balancing task-specific assimilation with the development of transferable
general knowledge. Selective specialization, in other words, carefully determin-
ing which components of the underlying model to adapt for each task, emerges
as a key strategy to achieve this balance. In multimodal CL with PTMs, where
modality-specific encoders are pretrained and modality fusion parameters must be
trained on a sequence of multimodal tasks, these components may include layers
or sublayers within the modality interaction network. However, designing effective
selection strategies requires a deep understanding of how each model component
contributes to specialized or generalizable representations, a challenge that remains
inadequately addressed in current research.

In this chapter, we rigorously analyze selective specialization strategies for multi-
modal CL. To facilitate this analysis, we introduce two diagnostic datasets that
offer sufficient control and flexibility for a detailed examination of model behavior.
We then evaluate a range of heuristics as well as quantified measures to inform mod-
ule specialization strategies and measure their effects using three different model
architectures. Building on our findings, we propose SMS, a conceptually simple se-
lective specialization approach that surpasses common CL baselines. Overall, our
results highlight the necessity of more nuanced multimodal CL algorithms that
account for the distinct learning patterns of individual model components.1

6.1 Motivation

Grounding language in visual perception represents a critical step toward enabling
agents to effectively understand and interact with the physical world (Bisk et al.,
2020). This objective lies at the core of multimodal (or crossmodal) learning (cf .

1The source code is made available at https://github.com/ky-ah/SMS.
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Buffer

(a) SMS (t = 1 and t = 2) (b) Adaptation (c) Consolidation

Figure 6.1: Overview of SMS. (a) From a set of modules (i.e., self-contained
parametric functions) M = {m1,m2, . . . }, a subset is chosen for each new
task (selection strategy), while the remainder of modules is shared across tasks.
For every new task, a new set of specialized modules’ parameters is initialized,
while specialized modules’ parameters from previous tasks remain stored in a
buffer. Ideally, the randomly initialized task-specific parameters capture only the
unique aspects of each task, while broader knowledge transfer occurs through
the shared parameters. (b)+(c) SMS alternates between multiple adaptation
steps, in which only task-specific parameters are updated, and a single consoli-
dation step, in which shared parameters are refined.

Section 2.2). Under realistic conditions, such an agent must continuously integrate
new experiences and acquired skills with pre-existing knowledge in an open-ended
manner. Multimodal CL thus seeks to achieve this capability. Ideally, the underly-
ing neural model would excel in solving each individual task (i.e., specialization)
while simultaneously leveraging common structures and subproblems across tasks
to build generalized representations that support knowledge transfer (i.e., gen-
eralization). One strategy to manage this trade-off is to introduce task-specific
parameters into a judiciously selected subset of model components, as illustrated
in Figure 6.1a.

To address this challenge, we propose Selective Module Specialization (SMS),
a conceptually simple approach for CL with PTMs that partitions the compo-
nents of a modality interaction (or multimodal fusion) network into those that are
task-specific and those that are task-agnostic. Inspired by the intellectual devel-
opment processes described by Piaget (1976), SMS divides training into two inter-
leaved stages, which are presented in Figures 6.1b and 6.1c: task adaptation, during
which only task-specific parameters are updated, and knowledge consolidation, dur-
ing which only task-agnostic parameters are refined based on the representations
learned in the task-specific components. The purpose of the adaptation stage is to
allow the model to learn the unique aspects of new tasks by specializing a subset of
parameters without overwriting shared knowledge, while the consolidation stage
integrates these newly acquired representations into the common parameters to
maintain a robust and generalized understanding across tasks.
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Move the blue
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Put the big green
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Figure 6.2: Examples of the LILAC datasets. Based on the instruction
and the visual premise, a model learns to separate the two visual hypotheses
(true target image, false target image) corresponding to a right and a wrong
understanding of the instruction, respectively.

Determining which model components (henceforth, modules) benefit from task spe-
cialization requires information on their role in solving particular tasks, an aspect
that prior multimodal CL research has largely overlooked. Nevertheless, current CL
benchmarks for VL grounding remain limited. Those relying on synthetic images
are intentionally simplistic, such as including only a single type of distributional
shift (Greco et al., 2019) or restricting language to trivial phrases over single-object
scenes (Skantze and Willemsen, 2022). Others employ real-world imagery, yet al-
low models to exploit shortcut strategies rather than engage in genuine multimodal
reasoning (e.g ., Srinivasan et al., 2022; Jin et al., 2020). Such limitations challenge
the generalizability of findings from model analyses.2

In response, we present the Lifelong Language Compositions (LILAC) bench-
mark suite, comprising two diagnostic VL datasets. LILAC-2D and LILAC-3D are
specifically designed to enable fine-grained evaluations of continual VL learning.
These datasets balance flexibility, control, and complexity and necessitate the ac-
quisition of a broad range of skills such as object localization, spatial reasoning,
concept learning, and language grounding. Illustrative examples of these datasets
are provided in Figure 6.2.

Building on the proposed SMS method and the LILAC benchmark, we conduct
a fine-grained analysis of SMS across three key steps: (i) we derive and evaluate
heuristics, inspired by the literature, for introducing task-specific parameters at
different network depths and in distinct modality interaction network modules,
(ii) we assess the suitability of parameter importance measures, originating from
pruning research, as indicators for effective module selection strategies, and (iii)
we demonstrate that module selection strategies within our SMS framework that

2Nevertheless, bridging the gap to real-world images remains an important direction, which
we address in Chapter 7.
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we identified through this analysis outperform established CL baselines and even
can make the difference between learning or not learning the VL tasks.

Our contributions can be summarized as follows:

(1) We propose SMS, a conceptually simple CL method for multimodal fusion of
PTM-derived features, which combines selective module specialization with
an iterative adaptation-consolidation training schedule.

(2) We introduce two VL datasets, LILAC-2D and LILAC-3D, each with a well-
defined shared structure across tasks. This inherent structure supports a
principled examination of module specialization strategies.

(3) We present a comprehensive analysis of diverse selective specialization strate-
gies within the SMS framework, evaluating their efficacy across two different
representative modality interaction architectures and two different PTMs.

(4) Finally, we show that SMS, by balancing the trade-off between generalization
and specialization, outperforms established CL baselines in the multimodal
TIL setting. Our findings underscore the importance of aligning CL tech-
niques with the intrinsic learning dynamics of individual model components.

This chapter is organized as follows: in Section 6.2, we introduce the foundational
principles of the SMS approach and present details of the two newly proposed
LILAC datasets. In Section 6.3, we describe the experimental setup and provide a
comprehensive analysis of the heuristic- and measure-based strategies for module
specialization. In Section 6.4, we discuss the implications of our findings and their
relevance within the broader landscape of multimodal CL. Finally, in Section 6.5,
we summarize the key insights and contributions made in this chapter.

6.2 Proposed Method: SMS

Figure 6.3 provides an overview of the proposed SMS learning setup. We consider
a pretrained VLM (referred to as a PTM h for consistency with previous chap-
ters), which comprises a text encoder h(L) and a visual feature extractor h(V ), a
modality interaction network dφ, and a PL gψ. The CL problem is formulated as
described in Section 3.2.1, and the model architecture follows category (e) in the
VLM taxonomy described in Section 2.2.3. Consequently, the PTM employs a dual
encoder architecture, such as CLIP, trained to align multimodal representations,
as detailed in Section 2.2.2. Following the common definition of a TIL setting (cf .
Table 3.1), we assume the task identifier t to be available during training and in-
ference. In the TIL setting, models are trained in a multi-headed fashion, where
PL parameters ψ are task-specific, thus ψ = {ψ1, . . . , ψT} and ψi ∩ ψj = ∅ for all
i ̸= j (Van De Ven et al., 2022).

The nth input of the tth task, denoted as (xt,n,y
+
t,n,y

−
t,n, t) ∈ Dt, includes textual

instructions and visual observations xt,n = (lt,n,ot,n), y+
t,n = o+

t,n, and y−
t,n = o−

t,n,
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Figure 6.3: Training pipeline on a LILAC-3D example. The training
objective is to minimize the distance between encoded instruction-image pair
(l,o) and encoded positive goal image o+ while maximizing the distance to the
negative goal image o−. Each of the L modality interaction network layers—
either transformer encoder layers or FiLM layers—contains modules that are
candidates for specialization. Each attention head and each of the two feed-
forward layers are considered separate modules. δ is a distance measure to
quantify the (dis-)similarity between encoded representations of the image-text
premise and each visual hypothesis. LN = Layer Normalization, FFN = Feed-
Forward Network, MHA = Multi-Head Attention, BN = Batch Normalization,
CNN = Convolutional Neural Network, ReLU = Rectified Linear Unit.

where o+
t,n and o−

t,n denote visual scenes corresponding to correct and incorrect
executions of the instruction lt,n given the observed scene ot,n. This setup can
be viewed as an extension of natural language inference (Bowman et al., 2015)
into a VL grounding context. Here, (ot,n, lt,n) serves as an image-text premise,
and (o+

t,n,o
−
t,n) are visual hypotheses. This formulation can be approached through

contrastive learning (Li et al., 2023b), where the model must distinguish correct
from incorrect visual outcomes conditioned on textual instructions.

For the modality interaction network dφ, we employ two well-established archi-
tectures in visual language grounding research: (i) a transformer encoder and (ii)
a FiLM encoder. These architectures have shown effectiveness in both supervised
and imitation learning settings (e.g ., Tan and Bansal, 2019; Chen et al., 2020;
Panos et al., 2023; Chevalier-Boisvert et al., 2019; Lee et al., 2022; Perez et al.,
2018). The left portion of Figure 6.3 outlines these two architectures, highlighting
the individual modules within each modality interaction network.

Transformer-based modality interaction. Each transformer encoder layer
adopts the original design proposed by Vaswani et al. (2017), as elaborated in Sec-
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tion 2.1. A single encoder layer includes a multi-head attention operation with two
attention heads (modules head1 and head2 ), two normalization layers (norm1 and
norm2 ), and two feed-forward sublayers (ffn1 and ffn2 ). Text embeddings and vi-
sual features are concatenated and fed into the multi-head attention layer, followed
by a residual connection and layer normalization. The resulting multimodal latent
features are then passed through two fully connected layers, followed by another
residual connection and layer normalization. These outputs are then propagated
to the next transformer encoder layer.

FiLM-based modality interaction. The FiLM fusion architecture largely fol-
lows Chevalier-Boisvert et al. (2019). Each FiLM layer consists of two convolutional
layers (modules conv1 and conv2 ), two batch normalization operations (bn1 and
bn2 ), and two fully connected γ and β layers (weight and bias) for modulation. The
layers γ and β reweight and shift convolutional feature maps based on textual infor-
mation, following the FiLM paradigm (cf . Perez et al., 2018, and Section 2.1.4).
Specifically, we first process the visual features of the input image through the
first CNN block, followed by batch normalization, a ReLU activation, and then
the second CNN block. The sequence embedding of the input instruction is passed
through the fully connected layers β and γ, whose output modulates the visual fea-
tures of the second CNN block via element-wise multiplication and addition. The
resulting modulated features are then subjected to a second batch normalization
and ReLU activation and subsequently fed to the next encoder layer.

6.2.1 Addressing the Specialization-Generalization Trade-
off

Let φt denote the set of parameters for the modality interaction network dφ when
processing inputs from task t. Our objective is to determine parameter values
φ1, . . . , φT that maximize the average test set accuracy across tasks. This objective
induces a trade-off between designating parameters for certain tasks for specializa-
tion and allowing them to be shared across tasks for generalization, which can be
addressed through various design choices for dφ (Ostapenko et al., 2021).

A straightforward approach is to employ a monolithic network, using the same
parameters for all tasks, i.e., φ = φt for all t ∈ {1, . . . , T} (e.g ., Kirkpatrick
et al., 2017; Chaudhry et al., 2019). This strategy promotes intertask knowledge
transfer, but increases the risk of catastrophic forgetting. At the opposite extreme,
one can train task-specific expert networks, ensuring that the parameter sets are
disjoint (φi ∩ φj = ∅ for all i ̸= j) (e.g ., Aljundi et al., 2017; Rusu et al., 2016).
This method effectively mitigates forgetting, but requires substantial additional
memory, and forgoes opportunities for transfer.

Drawing inspiration from modular network approaches to CL (Ostapenko et al.,
2021; Mendez and Eaton, 2021; Mendez et al., 2022), we model d as a collection
of modules M. Here, a module m ∈ M represents any self-contained parametric
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function (e.g ., a convolutional layer or a batch normalization layer), a definition
that is broader than that of a module in neural module networks (Andreas et al.,
2016). Our goal is to devise a strategy that, for each task t, selects a subset of
modules S ⊂ M whose parameters are dedicated to that task, indicated by φS

t ,
while the parameters of the remaining modules, φM\S , are shared between tasks.
The resulting set of parameters for the task t is therefore φt = φS

t ∪ φM\S . In
particular, choosing S = ∅ recovers the monolithic setting of full parameter sharing,
while choosing S = M resorts to the aforementioned expert networks with no
parameter sharing. In this sense, SMS operates as a model decomposition method
situated within the broader category of architecture-based CL approaches (cf .
Section 3.2.5).

Given a test sample (l,o,o+,o−, t) ∈ Dtest, let the pretrained Language (L) and
Vision (V) encoders produce representations h(L)(l) and h(V )(o), respectively. The
joint multimodal representation extracted by the PL is

h = gψt

(
dφt

(
h(L) (l) , h(V ) (o)

))
(6.1)

The representations of the positive and negative visual hypotheses o+ and o− are
similarly defined:

h+ = gψt

(
h(V )

(
o+

))
h− = gψt

(
h(V )

(
o−)) (6.2)

Based on these latent representations, the model predicts the correct visual hy-
pothesis by choosing:

ŷ+ = argmin
o+,o−

{δ(h,h+), δ(h,h−)}, (6.3)

where δ is a distance measure used to determine which visual hypothesis is more (or
less) closely aligned with the given instruction and visual premise. It is important to
note that during inference the model does not know which of the visual hypotheses
presented is correct; it must rely solely on the learned representations and distance
measures.

6.2.2 Interplay Between Adaptation and Consolidation

In Section 3.1, we introduced adaptation and consolidation as integral processes
that govern how individuals continually adjust to their environments and stabilize
newly acquired knowledge over time. Adaptation in human development involves
adjusting behaviors, cognitive strategies, and thinking patterns in response to ex-
ternal feedback or environmental demands—an idea central to Piaget’s theory of
cognitive development (Piaget, 1976). In contrast, consolidation, which is detailed
in Section 3.1.3, refers to the process through which recently acquired skills or
information are integrated into preexisting cognitive frameworks, a process which
is reinforced during states of reduced external interference such as sleep.

Building on these concepts, we implement a simplified variant of the lifelong com-
positional learning approach proposed by Mendez and Eaton (2021), which has
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Algorithm 5: SMS Training
Input: modality interaction parameters

⋃T
t=1 φt, PL parameters

⋃T
t=1 ψt,

adaptation step count s, selection strategy S
# Continual Learning with SMS
for task t = 1, . . . , T do

for iteration i = 1, . . . , |Bt| do
bi ← next batch from Bt
for every sample (l,o,o+,o−, t) ∈ bi do

get φt = φS
t ∪ φM\S and ψt

collect h using Equation (6.1)
collect h+ and h− using Equation (6.2)
if i mod s = 0 then

# Consolidation Step
update φM\S and ψt using AdamW

end
else

# Adaptation Step
update φS

t and ψt using AdamW
end

end
end

end

demonstrated effectiveness in modular CL. Rather than updating all parameters
φt concurrently during training of each task t, we adopt an alternating procedure
consisting of s adaptation steps (fast learning or task assimilation) for the task-
specific parameters φS

t , followed by a single consolidation step (slow learning or
knowledge accommodation) for shared parameters φM\S . We refer to this process
as Adaptation-and-Consolidation (A&C). The pseudocode for the SMS training
procedure is provided in Algorithm 5, and the corresponding testing procedure is
detailed in Algorithm 6.

6.3 Experiments

In this section, we present a comprehensive series of experiments to evaluate the
effectiveness of the SMS framework across a wide range of specialization strategies
and model configurations. We begin by introducing the two newly proposed LILAC
datasets, detailing the corresponding training protocols and model configuration
specifics. Subsequently, we analyze various heuristic-based selection strategies, in-
corporating insights from parameter importance measures commonly studied in
model pruning research. Based on this analysis, we establish baseline selection
strategies for comparison with both rehearsal-based and regularization-based CL
approaches in the TIL setting. Furthermore, we perform an in-depth variability
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Algorithm 6: SMS Testing
Input: trained parameters

⋃T
t=1 φt ∪ ψt

for every sample (l,o,o+,o−, t) ∈ Dtest do
collect h using Equation (6.1)
collect h+ and h− using Equation (6.2)
predict ŷ+ using Equation (6.3)

end

analysis and conclude this section by assessing the impact of combining SMS or-
thogonally with replay-based and regularization-based CL baselines.

6.3.1 Benchmarks

In what follows, we introduce two benchmark datasets—LILAC-2D and LILAC-
3D—that are designed to explicitly capture the compositional nature of the under-
lying tasks. By maintaining a high degree of overlap across tasks, these datasets
encourage models to minimize the use of task-specific parameters and facilitate the
development of effective module selection strategies. During training, each model
instance receives three input images that depict objects in a simulated environ-
ment, coupled with a template-based language instruction. A summary of both
LILAC datasets is provided in Table 6.1.

LILAC-2D tasks. The LILAC-2D dataset is derived from the minigrid envi-
ronments (Chevalier-Boisvert et al., 2023). Each sample consists of a 7 × 7 grid
containing between three and nine objects placed at random positions. Each in-
struction specifies the desired interaction with a target object and follows the
template: “move the <attribute1> <attribute2> <attribute3>”. To generate an in-
struction from the given template, attribute1 is chosen from six possible colors,
attribute2 from three object types, and attribute3 from four directions, yielding
6 × 3 × 4 = 72 unique instructions. To generate negative (false target) examples,
one of the three specified attributes is deliberately violated. For instance, when
the correct instruction is “move the green key down,” a false target might depict
a scenario where a blue key is moved down instead. The dataset comprises 500
training, 100 validation, and 100 test samples per instruction, resulting in a total
of 36 000 training, 7 200 validation, and 7 200 test samples.

LILAC-3D tasks. To approximate real-world complexity while preserving the
ability to control and analyze the scenario, we also propose LILAC-3D. This dataset
is built on the simulated Ravens environment (Zeng et al., 2021) and its language-
based extension (Shridhar et al., 2022). Scenes depict a tabletop setting where a
robotic arm can manipulate objects. Each image contains between five and eight
blocks and between three and four bowls placed at random. Instructions specify
a pick-and-place action using the template: “put the <attribute1> <attribute2>
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Attribute
Dataset

I II III
T Ntrain Ntest

LILAC-2D

blue ball up

12 36 000 7 200

green box down
gray key to the left

purple to the right
red

yellow

LILAC-3D

big blue brown

12 36 000 7 200

small green cyan
gray orange

purple petrol
red pink

yellow white

Table 6.1: Summary of the LILAC datasets. Provided is the range of all
three attributes used in the goal instructions, the number of tasks (T ) employed
in the TIL setting for the main experiments, and the number of training samples
(Ntrain) and test samples (Ntest). Each validation set, used for hyperparameter
optimization, is the same size as its corresponding test set.

block in the <attribute3> bowl”. Here, attribute1 indicates size (two possibilities),
attribute2 denotes block color (six possibilities), and attribute3 specifies bowl color
(six possibilities), totaling 2×6×6 = 72 unique instructions. The sets of block and
bowl colors do not overlap to facilitate a clear visual distinction between objects.
To create false targets, either the incorrect block or the incorrect bowl is selected.
LILAC-3D follows similar data statistics as LILAC-2D, providing an equally large
compositional testbed for model evaluation.

6.3.2 Training Details

We conduct our experiments using two variants of a dual-encoder CLIP model as
the PTM h, namely CLIP-RN and CLIP-ViT. The former employs a ResNet-50 as
image encoder h(V ), the latter a ViT-B/16. In accordance with the original CLIP
configurations, both models incorporate a 12-layer transformer text encoder h(L)
with a 512-dimensional token embedding space. Although the two text encoders
share the same architectural design, their parameters differ due to the contrastive
pretraining process that aligns each text encoder with its respective image encoder.
The PL gψ is implemented as a fully connected linear layer that maps the fused
multimodal representations to the same target dimensionality. The distance metric,
δ, is the cosine distance.

We integrate two distinct modality interaction networks dφ (as detailed in Sec-
tion 6.2) with the two aforementioned PTM variants to form three model configu-

126



6.3. Experiments

rations. The first configuration, denoted as CLIP-RN/FiLM, uses the ResNet-50
vision backbone alongside a FiLM-based modality interaction network. The second,
CLIP-RN/TE, employs the same ResNet-50 vision backbone, but uses a trans-
former encoder as interaction network. The third configuration, CLIP-ViT/TE,
leverages the ViT-B/16 vision backbone in conjunction with the transformer en-
coder interaction network. We do not explore a ViT-based vision encoder with
FiLM because FiLM relies on modulating 2D convolutional feature maps, mak-
ing it less suitable for the 1D patch embeddings produced by a ViT. Throughout
all experiments, we fix the depth of the modality interaction network at L = 4,
which yields a compact yet sufficiently expressive architecture that facilitates de-
tailed model evaluation. We set the adaptation step count to s = 10 for all model
configurations, guided by preliminary empirical results indicating that these set-
tings consistently support robust performance across various specialization strate-
gies.3

In the CLIP-RN/FiLM and CLIP-RN/TE configurations, the ResNet-50 encoder
h(V ) generates a spatial feature map of size 14 × 14 with 512 channels. In CLIP-
RN/FiLM, the 512-dimensional textual instruction embedding produced by h(L) is
used to provide FiLM-specific weight and bias parameters that modulate the visual
features. By contrast, in CLIP-RN/TE, the feature maps of the (14 × 14 × 512)-
dimensional image features are first flattened into 196× 512 dimensions and then
concatenated with the 512-dimensional textual instruction embedding from h(L)

along the channel dimension. For the CLIP-ViT/TE variant, the ViT-B/16 encoder
outputs a sequence of 197 token embeddings (196 patch tokens plus a [CLS] token),
each 768-dimensional. Here, the original 512-dimensional textual embedding from
h(L) is zero-padded to 768 dimensions before being concatenated with the ViT
token embeddings. In both CLIP-RN/FiLM and CLIP-RN/TE, the combined VL
features undergo max pooling across the spatial dimension prior to entering the
PL. In the CLIP-ViT/TE configuration, only the fused [CLS] token embedding is
passed to the PL.

The parameters of the modality interaction network, dφ, are optimized over ten
epochs (E = 10) using batches of size |b| = 128. We utilize the InfoNCE loss func-
tion (Oord et al., 2019) in conjunction with the AdamW optimizer (Loshchilov
and Hutter, 2019) configured with default hyperparameters. For all baselines that
employ a monolithic network architecture, the learning rate was determined via
hyperparameter tuning on the SFT baseline under the TIL setting, resulting in a
value of 2.5×10−3 that consistently yielded robust performance across the evaluated
datasets and configurations. In contrast, for all SMS baselines, a higher learning
rate of 2.5 × 10−2 was selected. This value was identified through hyperparame-
ter optimization using the CLIP-ViT/TE model with task-specific self-attention
parameters as representative configuration and trained under the TIL setting on
the LILAC-3D dataset. This learning rate was uniformly applied in all SMS base-

3An empirical evaluation of alternative step counts is provided in Section 6.3.7.
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lines, regardless of the model configuration, CL benchmarks, and specialization
strategies.

We report the average accuracy after training on the final task, denoted by AAT

(cf . Equation (3.10)), as the primary evaluation metric, where aT,t represents the
accuracy of correctly identifying the true visual hypothesis of a sample from the
tth task following training on the T th (i.e., last) task. To ensure reproducibility,
we repeat all experiments conducted in this chapter using five fixed random seeds
(1993–1997), which influence both the task order and the random initialization
of trainable parameters. In our analysis, we measure the accuracy improvement
provided by a specialization strategy S relative to a monolithic network as

∆AAT (S) = AA(φ1:T )
T − AA(φ)

T , (6.4)

where the total set of shared and specialized modality interaction parameters after
training on the last task is defined as

φ1:T =
T⋃
t=1

φt = φM\S︸ ︷︷ ︸
task-sharing

∪
T⋃
t=1

φS
t︸ ︷︷ ︸

task-specific

(6.5)

We compare our proposed approach with the following baseline methods. Sequen-
tial Fine-Tuning (SFT) performs unrestricted updates to a single monolithic model
in a sequential learning setting. Experience Replay (ER; cf . Equation (3.19)) mit-
igates catastrophic forgetting by maintaining a fixed-size memory buffer to store a
subset of previously observed data samples using reservoir sampling. In our exper-
iments, we use a buffer size of 3 000 and draw a mini-batch from the replay buffer
for rehearsal after every training epoch, which corresponds to a replay frequency
of 24. Online Elastic Weight Consolidation (O-EWC; cf . Equation (3.13)) builds
upon EWC by continuously updating a running Fisher information matrix ap-
proximation, thereby regularizing parameter changes deemed important for earlier
tasks. We employ O-EWC with regularization strength λO-EWC = 10 and decay
factor γO-EWC = 0.5.4 Joint Fine-Tuning (JFT) trains a single model on all tasks
simultaneously under an i.i.d. data distribution. Finally, the Expert baseline in-
volves training a separate model for each task independently, each starting from a
randomly initialized set of modules, which ensures no interference among tasks at
the expense of increased model complexity and lack of knowledge transfer.

6.3.3 Evaluation of Alternating Adaptation and Consolida-
tion

We hypothesize that the biologically inspired A&C optimization scheme can en-
hance SMS training by mitigating catastrophic forgetting in a CL context. Specifi-

4The search spaces for the hyperparameters were defined as follows: λO-EWC = 10x, x ∈
{−4,−3,−2,−1, 0, 1, 2, 3, 4} and γO-EWC ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Hyperparameter configura-
tions were determined through Bayesian optimization.
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Figure 6.4: A&C vs. joint training of all shared and task-specific mod-
ules. Each cell corresponds to a separate experiment defined by a particular
selection strategy S = {m} for each model configuration and CL benchmark.
The values shown indicate the difference in accuracy gains, ∆AAT (S) (cf . Equa-
tion (6.4)), achieved by SMS using the A&C strategy relative to the baseline that
jointly trains both shared (M\S) and task-specific (S) modules. Positive (green
and blue) entries highlight scenarios where A&C surpasses the joint training
approach.

cally, by updating the shared modules less frequently, we anticipate that the param-
eters responsible for foundational cross-task representations remain more stable.
Concurrently, each task’s distinct features are captured by a small set of task-
specific parameters, thereby reducing interference across tasks.

To examine whether A&C surpasses the joint optimization of φt, we measure the
difference in accuracy gains for each module m ∈ M using SMS with the se-
lection strategy S = {m}, both with and without A&C optimization. As illus-
trated in Figure 6.4, A&C training consistently yields accuracy improvements for
transformer-based modality interaction when CLIP-ViT-B/16 is used as the PTM,
and predominantly provides favorable gains for transformer-based modality inter-
action with CLIP-ResNet-50 as the PTM. Notably, the impact of A&C appears
especially pronounced for SMS training on LILAC-3D compared with LILAC-2D.
In contrast, for FiLM-based modality interaction, the improvements are generally
positive for LILAC-2D but predominantly negative for LILAC-3D.

Overall, these findings indicate that A&C proves particularly advantageous for
transformer-based modality interaction, yet it also yields benefits across various
model configurations and datasets. Despite the shared modules receiving fewer
updates, they still learn robust representations of common subproblems across
tasks. Thus, ultimately A&C can improve the overall performance while reducing
the risk of forgetting.
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6.3.4 Heuristics for Specialization Strategies

In real-world CL scenarios, exhaustive experimentation to identify the optimal
module selection strategy for SMS is typically infeasible. Consequently, it is crit-
ical to develop robust heuristics that, for a given multimodal CL task, can guide
decisions about which types of modality interaction network modules—and at
which layer depths—should be shared across tasks versus specialized for individual
tasks.

Specialization at different layer depths. To investigate how isolating task-
specific parameters at varying layer depths influences specialization, we conduct a
separate experiment for each model configuration, dataset, and layer of the modal-
ity interaction network. We then quantify the resulting accuracy gain (∆AAT ; cf .
Equation (6.4)) over a sequential fine-tuning procedure on a monolithic network
(i.e., SFT baseline), forward transfer (FWTT ; cf . Equation (3.7)), and forgetting
measure (FMT ; cf . Equation (3.8)). These results, summarized in Figure 6.5, reveal
notable performance differences across layers, which underscores the importance
of identifying the optimal depth at which to specialize.

Previous research on transformers in NLP (Hao et al., 2019; Tenney et al., 2019)
generally concludes that earlier layers capture local syntactic information, whereas
later layers tend to encode higher-level semantic or conceptual representations.
Likewise, in their investigation of FiLMed networks, Perez et al. (2018) report
that early layers facilitate low-level operations (e.g ., querying attributes of an
object), while later layers handle more abstract reasoning (e.g ., comparing objects).
In the LILAC tasks, solving 2D or 3D problems requires not only object object
identification, but local spatial reasoning, and—in the 3D setting—placing multiple
objects within a shared context. Furthermore, these tasks differ in the frequency
with which high-level concepts must be recombined (e.g ., learning to move a blue
key downward in one scenario versus upward in another).

Building on these observations, we hypothesize that isolating later layers in the
modality interaction network, which are more likely to capture complex concep-
tual information, will yield superior performance when learning tasks sequentially.
Our empirical findings support this hypothesis. In configurations employing FiLM
for modality interaction, specializing the final layer of the modality interaction
network (i.e., the last reasoning layer prior to the PL) yields the largest accuracy
improvements. By contrast, in transformer-based configurations, specializing the
penultimate layer typically provides the greatest gains, with one exception (CLIP-
RN/TE on LILAC-2D) in which the final layer also proves optimal. This outcome
underscores that the later stages of the network are especially critical for mitigating
catastrophic forgetting and improve overall CL performance.

Interestingly, while the degree of forgetting increases when later layers are progres-
sively specialized, the penultimate or final layer still typically yields the highest
overall accuracy gain. Moreover, in nearly all configurations, specializing the last

130



6.3. Experiments

0
2
4
6
8

10
12
14

LI
LA

C
-2
D

∆
A
A
T

(%
)

CLIP-RN/FiLM CLIP-RN/TE CLIP-ViT/TE

-4

-2

0

2

4

LI
LA

C
-2
D

F
W

T
T

(%
)

0
2
4
6
8

10
12
14

LI
LA

C
-2
D

F
M

T
(%

)

0
5

10
15
20
25
30

LI
LA

C
-3
D

∆
A
A
T

(%
)

-10

-5

0

5

10

LI
LA

C
-3
D

F
W

T
T

(%
)

1 2 3 4
Layer

0
5

10
15
20
25
30

LI
LA

C
-3
D

F
M

T
(%

)

1 2 3 4
Layer

1 2 3 4
Layer

Figure 6.5: Effect of specialization at different layer depths. For each
model configuration, dataset, and designated layer in the modality interaction
network, we report the accuracy gain (∆AAT ) compared with the SFT baseline,
average forward transfer (FWTT ), and average forgetting (FMT ) measured after
training on the final task. Each bar represents an experiment in which all mod-
ules within a single layer of the modality interaction network are specialized.

layer leads to moderately to strongly positive forward transfer, suggesting that spe-
cializing late layers not only retains performance on previously encountered tasks
but also enhances zero-shot adaptation to new tasks, which are in our setting new
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compositional variations of familiar concepts. These observations underscore that
prioritizing forward transfer or forgetting alone is not suitable as the sole metric
to assess a model’s CL competence, as argued in Section 3.2.3.

Transformer feed-forward and linear modulation parameters. Following
Geva et al. (2021), we interpret the feed-forward networks in transformer archi-
tectures as key-value memories. Their analysis shows that early-layer feed-forward
blocks encode salient semantic patterns, whereas late-layer feed-forward blocks
capture more surface-level patterns. In our LILAC tasks, the language instruc-
tions are templated and combine various concepts, so they share the same overall
semantics. However, these instructions are grounded in diverse visual scenes. Ac-
cordingly, we investigate whether specialized feed-forward modules (i.e., distinct
key-value memories) might serve as strong candidates for CL with SMS.

Figure 6.6 (blue bars) indicates that task-specific adaptation of both feed-forward
modules (ffn1+ffn2) in a transformer-based modality interaction layer does not
surpass the performance achieved by specializing only one of the two modules.
Moreover, restricting specialization to a single feed-forward module cuts in half
the number of task-specific parameters to store, suggesting a promising strategy
for balancing performance and memory demands. We also observe that dedicating
both feed-forward blocks to specialization yields the greatest improvements when
it occurs in either the penultimate or final layer, although the trend is slightly
less pronounced when only one feed-forward block is specialized. This pattern
implies that the model primarily needs to distinguish shallow task differences in
order to succeed in LILAC tasks, where “late specialization” of feed-forward blocks
tends to be most helpful. Nevertheless, as the linguistic and visual variety of inputs
grows with more complex VL problems or datasets, specializing earlier feed-forward
modules may offer increasing benefits. Despite that possibility, our overall analysis
shows that later layers deliver the largest performance gains under specialization.
Consequently, focusing on late-layer specialization—either for both feed-forward
blocks or for a feed-forward block—emerges as an effective approach for CL.

Because LILAC’s textual instructions direct the modulation of visual representa-
tions, and because new tasks can recombine these same instructions in novel ways,
we also examine whether and which FiLM parameters (γ for weights and β for
biases) merit task-specific specialization. As shown in Figure 6.6 (yellow bars), the
accuracy gains and forward-transfer from late-layer specialization of FiLM parame-
ters decrease, while forgetting increases, particularly when both FiLM weights and
biases are specialized. At the same time, dedicating a single layer for task-specific
FiLM parameters outperforms specialization across all layers, while substantially
reducing parameter storage. Furthermore, specializing the FiLM bias (which shifts
visual features) generally surpasses specializing the weight (which scales visual
features).

A plausible explanation for these divergent findings is that FiLM’s γ and β param-
eters exert direct control over the modulation of visual feature representations by
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Figure 6.6: Effect of specializing feed-forward and modulation param-
eters. In the FiLM-based fusion setting, each bar represents an experiment
where the weight, the bias, or both (weight+bias) modules are specialized. In
the transformer-based fusion setting, each bar indicates specialization of the
first feed-forward layer (ffn1), the second feed-forward layer (ffn2), or both
(ffn1+ffn2) within a transformer encoder layer.
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textual cues. This process yields more pronounced feature enhancement in early
and intermediate network layers, where robust multimodal integration is critical. In
this context, the bias term (β) is particularly pivotal for adapting to novel visuo-
linguistic compositions in new tasks, likely by systematically shifting the latent
feature space. As these modulated features propagate to the final layers—where
the model more effectively captures task-specific nuances—continued refinement
of FiLM parameters may introduce computational overhead and increase the risk
of overfitting or cross-task interference. Therefore, prioritizing the specialization of
FiLM modulation parameters in the early layers, especially the bias components
responsible for shifting visual features, appears to be the most effective strat-
egy.

Multi-head attention and convolution parameters. In their study on PEFT
methods (cf . Section 3.3.2), Smith et al. (2023b) demonstrate the efficacy of adapt-
ing self-attention blocks in a ViT for downstream image classification tasks, while
keeping the remaining transformer parameters shared across tasks. To determine
whether this insight holds under our multimodal setting, we experiment with spe-
cializing individual heads in the multi-head attention mechanism of the transformer
modality interaction layers. As shown in Figure 6.7 (blue bars), this approach
yields considerable accuracy improvements of up to 14% for LILAC-2D and 27%
for LILAC-3D compared with the SFT baseline.

Despite these improvements, self-attention parameters in both the CLIP-RN/TE
and CLIP-ViT/TE configurations make up approximately 98% of the total modal-
ity interaction network parameters—largely due to the high dimensionality of the
multimodal inputs. Consequently, fully specializing these self-attention parameters
for each task demands a memory footprint approaching that of expert-based CL
methods. Meanwhile, other fine-tuning strategies (e.g ., specializing certain feed-
forward blocks; cf . Figure 6.6) can achieve comparable accuracy gains with far
fewer task-specific parameters. Notably, a more conservative (though still memory-
intensive) approach that specializes only one attention head in each layer out-
performs a strategy that includes all attention parameters in three out of four
model–dataset configurations. Thus, a strategy requiring roughly half the param-
eter budget of the one proposed by Smith et al. (2023b) can match or exceed their
reported results.

We also examine the convolutional blocks within the FiLM layers of the CLIP-
RN/FiLM configuration and hypothesize that task-specific adaptation of convolu-
tional blocks may be less critical for boosting overall task performance, since they
primarily handle visual processing and the difference between tasks lies predomi-
nantly in different textual instructions. Indeed, Figure 6.7 (yellow bars) confirms
that specializing convolutional parameters yields smaller overall accuracy gains
than specializing other types of modules. Nonetheless, it is noteworthy that convo-
lutional modules account for only about 8% of all modality interaction parameters
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Figure 6.7: Effect of specializing multi-head attention and convolu-
tional neural network parameters. In the FiLM-based fusion setting, each
bar represents an experiment where the first CNN block (conv1), the second
CNN block (conv2), or both (conv1+conv2) modules are specialized. In the
transformer-based fusion setting, each bar indicates specialization of the first at-
tention head (head1), the second attention head (head2), or both (head1+head2)
within a transformer encoder layer.
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in the model configuration used in our experiments, which makes corresponding
specialization strategies highly memory-efficient and thus more scalable.

We further observe that task-specific convolutional parameters in the first FiLM
layer confer substantially smaller accuracy gains than in deeper layers. This di-
minished impact likely reflects the first layer’s focus on low-level features (e.g .,
edges, color gradients), which are less task-specific. As a result, adapting the first
convolutional block provides limited benefit for downstream tasks. Instead, we find
that specializing the second convolutional block (conv2) in an intermediate layer
(either the second or third layer overall) yields stronger improvements. By spe-
cializing these mid-level parameters, the model learns a richer set of task-specific
abstractions while retaining the more general, low-level representations in the ear-
liest layers. This balance between general and specialized information is consistent
with our analysis of specialization at different layer depths.

Normalization scaling parameters. Bilen and Vedaldi (2017) propose lever-
aging specialized instance-, layer-, or batch-normalization scaling factors to address
task-specific biases with minimal additional memory overhead. We investigate how
specialization of Batch Normalization (BN) parameters influences performance
within the SMS framework. As illustrated in Figure 6.8 (yellow bars), special-
izing BN scaling factors—especially in the final layers—consistently surpasses the
standard SFT baseline. In particular, specializing the second BN block, i.e., the
one positioned directly after the linear modulation of language inputs and imme-
diately before the fusion of multimodal features, yields greater improvements than
specializing the BN block situated between CNN layers. A plausible explanation is
that task-specific nuances are strongly encoded in the language instructions, which
often recombine complex concepts in domain-specific ways. Because the second BN
block is the first set of trainable parameters following multimodal fusion, it is well-
placed to capture these subtle distinctions, thus preserving more of the underlying
task-driven variability.

We extend this analysis to Layer Normalization (LN) in a transformer-based modal-
ity interaction network, where LN is applied before and after key sublayers, such
as multi-head attention and feed-forward modules, to stabilize training and pro-
mote more robust feature representations. As depicted in Figure 6.8 (blue bars),
specializing LN generally leads to larger accuracy gains than BN under comparable
configurations, particularly when CLIP with a ResNet-50 backbone is used as the
PTM. There is no clear pattern favoring early-layer over late-layer specialization.
However, dedicating task-specific parameters to one of the LN modules in all layers
appears especially beneficial. For instance, in the CLIP-RN/TE architecture, spe-
cializing only the first LN operation in every layer results in a marked performance
improvement over the SFT baseline. In contrast, in the CLIP-ViT/TE architec-
ture, the most substantial gains arise when the second LN operation in each layer
is specialized.
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Figure 6.8: Effect of specializing normalization scaling parameters. In
FiLM-based fusion, each bar shows an experiment where the first batch nor-
malization (bn1), the second batch normalization (bn2), or both operations
(bn1+bn2) are task-specific. In transformer-based fusion, each bar indicates the
first layer normalization (ln1), the second layer normalization (ln2), or both op-
erations (ln1+ln2) being specialized within a transformer encoder layer.
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These findings can be partially attributed to the integration of residual connections
and the manner in which LN normalizes activations across feature dimensions in
the standard transformer encoder. The LN layers, which operate on a per-feature
basis, appear to capture salient domain- or task-specific information by adjusting
normalized activations immediately before or after major transformations (e.g .,
multi-head attention or feed-forward modules). Consequently, small modifications
to LN scaling parameters can yield disproportionately large impacts on model per-
formance. By specializing LN parameters in multiple layers, the network can better
adapt residual pathways to task-specific or domain-specific distributions.

6.3.5 Importance Metrics for Specialization Strategies

Measuring the importance of individual neural connections is commonplace in
research on neural pruning for CL (Molchanov et al., 2019), as surveyed in Sec-
tion 3.2.5. We build upon this concept to assess the importance of entire network
modules, rather than individual parameters, aiming to determine whether these im-
portance measures can guide module-level specialization. Specifically, we employ
two widely adopted importance scoring techniques—gradient-based (e.g ., Wang
et al., 2022d; Gurbuz and Dovrolis, 2022) and activation-based methods (e.g .,
Jung et al., 2020)—and evaluate their suitability for identifying modules that are
beneficial to specialize.

Let φm be the parameters of module m during the training of the SFT baseline
with modality interaction network dφ, and let φt,m denote the parameters of the
same module m after training on the tth task. Note that φm and φt,m should not
be confused with φ{m}

t , which refers to the parameters of module m specialized to
the tth task when it is trained in the SMS framework under the selection strategy
S = {m}.

Gradient-based importance score. The gradient-based module importance
score Ωgrad(m) is derived by combining the magnitudes of parameters with the
magnitudes of their gradients during training. Formally, we define

Ωgrad(m) := α

T∑
t=1

∑
w∈φt,m

|w|+ 1

2

∣∣∣∣∂L(Dt;φ)∂w

∣∣∣∣ , (6.6)

where L(Dt;φ) represents the cumulative loss on task t, and

α =
1

T ·
√
|φm|

(6.7)

is a normalization constant designed to mitigate bias toward selecting modules
with more parameters for task-specialization.

Activation-based importance score. The activation-based module impor-
tance score Ωact(m) quantifies how strongly a module responds to input data across
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Figure 6.9: Effectiveness of per-module specialization and module
importance measures. 1st row: Accuracy gain of each specialized module
m ∈ M over fine-tuning a monolithic network. Each field represents an experi-
ment with S = {m}. 2nd row: Min-max normalized gradient-based importance
score Ωgrad(m). 3rd row: Min-max normalized activation-based importance score
Ωact(m).

tasks. Employing the same normalization constant α defined in Equation (6.7), we
compute

Ωact(m) := α
T∑
t=1

∑
(lt,ot)∈Dt

∣∣dφt,m

(
h(L)(lt), h

(V )(ot)
)∣∣ , (6.8)

where dφt,m(·, ·) denotes the activation produced by module m of the modality
interaction network d after training on task t, and h(L)(·) and h(V )(·) represent the
outputs of the text and image encoders, respectively.

To evaluate whether these importance scores reliably predict the effectiveness
of specializing a single module, we calculate the Pearson Correlation Coefficient
(PCC; Pearson, 1895) between each module’s gradient-based and activation-based
importance scores (Ωgrad(m) and Ωact(m); second and third row in Figure 6.9) and
its corresponding accuracy gain from specialization (∆AAT ({m}); first row in Fig-
ure 6.9). The resulting PCC values, provided in Table 6.2, illuminate the degree to
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Importance Score Model LILAC-2D LILAC-3D

Ωgrad

CLIP-RN/FiLM +0.36 +0.41
CLIP-RN/TE −0.17 −0.32
CLIP-ViT/TE −0.10 −0.11

Ωact

CLIP-RN/FiLM −0.31 −0.41
CLIP-RN/TE −0.05 −0.30
CLIP-ViT/TE −0.03 −0.14

Table 6.2: Correlation between importance measures and module
specialization efficacy. Reported values are Pearson correlation coefficients
PCC(Ω(m), ∆AAT ({m})) between each module’s importance score and the cor-
responding accuracy improvement (cf . Equation (6.4)) obtained by specializing
that module individually (i.e., S = {m}) during SMS training. All coefficients
are computed separately for each dataset and each modality interaction network
configuration.

which each module’s importance score aligns with the performance improvements
obtained by making that module task-specific.

For FiLM-based modality interaction, the gradient-based importance score shows
a moderate positive correlation with accuracy gains, suggesting that modules with
higher parameter and gradient magnitudes are more likely to benefit from special-
ization in FiLM-based architectures. In contrast, for transformer-based modality
interaction, the same gradient-based measure exhibits weak negative correlations,
indicating that it does not reliably predict performance improvements from task-
specialization.

Similarly, the activation-based importance score consistently yields negative cor-
relation coefficients. Although the magnitudes of these correlations are relatively
small in some cases, this overall negative trend suggests an inverse relationship
between the typical activation level of a module and the performance gain from
making it task-specific. In other words, modules that exhibit lower average activa-
tion magnitudes across tasks may, somewhat counterintuitively, offer greater spe-
cialization benefits. These findings deviate from the results reported by Jung et al.
(2020), who observe a positive association between activation strength and mod-
ule significance when training from scratch. A plausible explanation is that SMS
trains modality interaction networks built on top of large-scale PTMs, whereas
Jung et al. (2020) investigate a unimodal setup with small-scale models trained
from scratch. In our scenario, certain modules may already be highly optimized
and less adaptable under the influence of pretraining. Consequently, modules with
lower activations—which have more “capacity to adapt”—may demonstrate greater
improvements when specialized.
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6.3.6 Baseline Comparison

Drawing on the analyses in Sections 6.3.4 and 6.3.5, we investigate whether the
proposed SMS method can surpass common CL baselines on the LILAC datasets.
Because the space of all possible module selection strategies grows exponentially
with the number of modules in a network, we restrict our comparison to the follow-
ing representative baselines: in alignment with our findings on layer-depth special-
ization, we compare to (i) specialization of the penultimate layer (Sthird-layer) for
transformer-based modality interaction encoders (i.e., CLIP-RN/TE and CLIP-
ViT/TE) and (ii) specialization of the last layer (Slast-layer) for FiLM-based and
transformer-based modality interaction with ResNet-50 as vision encoder (i.e.,
CLIP-RN/FiLM and CLIP-RN/TE). Since we found in Section 6.3.4 that spe-
cializing the second convolutional block of the FiLM-based modality interaction
encoder is especially beneficial while being cheap in additional memory, we also
compare to specialization of that intermediate block (Sconv2-second-layer). Finally, we
include two memory-efficient strategies for transformer-based modality interaction:
specializing the first feed-forward block in the third layer of the transformer en-
coder (Sffn1-third-layer) and specializing one of the two layer normalization operations
in each layer (Sln1-all-layers for CLIP-RN/TE and Sln2-all-layers for CLIP-ViT/TE), fol-
lowing the heuristics in Section 6.3.4.

Table 6.3 reports the average accuracies on both LILAC datasets, alongside the
memory requirements for each chosen module selection strategy. We derive several
key observations from these experiments. First, regularization- and replay-based
baselines, exemplified by O-EWC and ER, often fail to outperform the vanilla SFT
baseline. In some cases, the SFT accuracy hovers around 50%, which is equivalent
to not learning the tasks, as this performance is equivalent to random guessing
when choosing between two potential visual hypotheses. Even in scenarios where
some learning takes place (e.g ., with CLIP-RN/FiLM), the additional performance
gains from replay or regularization remain mostly modest.

In contrast, SMS consistently outperforms both regularization-based and replay-
based methods, regardless of the specific module selection strategy used. Notably,
although specializing an entire layer of the modality interaction network frequently
proves as the strongest baseline, experiments involving transformer-based modality
interactions reveal that less memory-intensive specialization strategies yield com-
parable or even superior performance. This phenomenon may be explained by the
transformer’s intrinsic ability to capture long-range dependencies across modal-
ities, thereby facilitating effective task-specific adaptation with minimal module
specialization.

Interestingly, we observe that for configurations employing a transformer-based
modality interaction, the expert strategy outperforms the JFT baseline. Although
JFT trains on all tasks simultaneously and can thus exploit task-sharing features,
the specialized modules in the expert strategy appear to offer more targeted capac-
ity for each task, ultimately leading to higher accuracy. This highlights a poten-
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Model Method |φS |
|φM| (%) LILAC-2D LILAC-3D

C
L
IP

-R
N

/F
iL

M
JFT – 66.5 ± 0.7 96.3 ± 0.4

Expert 100 67.8 ± 0.2 92.6 ± 0.0

SFT – 52.7 ± 0.1 74.2 ± 1.8

ER – 56.7 ± 0.1 87.3 ± 0.2

O-EWC – 53.0 ± 0.2 77.5 ± 2.1

SMS (Slast-layer) 25 61.8 ± 0.1 93.5 ± 0.1

SMS (Sbias-first-layer) 11 61.7 ± 0.2 87.5 ± 0.3

SMS (Sconv2-second-layer) 1 57.8 ± 0.2 85.8 ± 0.2

C
L
IP

-R
N

/T
E

JFT – 53.1 ± 0.5 65.5 ± 0.6

Expert 100 63.1 ± 0.1 77.6 ± 0.1

SFT – 51.6 ± 0.3 53.6 ± 1.0

ER – 50.2 ± 0.1 54.3 ± 0.3

O-EWC – 51.3 ± 0.5 55.1 ± 0.9

SMS (Sthird-layer) 25 57.7 ± 0.3 80.1 ± 0.3

SMS (Slast-layer) 25 63.6 ± 0.2 75.2 ± 0.6

SMS (Sffn1-third-layer) 1 60.8 ± 0.3 81.0 ± 0.2

SMS (Sln1-all-layers) 0.04 64.4 ± 0.2 80.7 ± 0.2

C
L
IP

-V
iT

/T
E

JFT – 50.0 ± 0.2 54.2 ± 1.8

Expert 100 55.5 ± 0.2 77.0 ± 0.1

SFT – 50.3 ± 0.1 52.0 ± 1.5

ER – 49.9 ± 0.1 50.0 ± 0.1

O-EWC – 50.1 ± 0.2 52.9 ± 2.0

SMS (Sthird-layer) 25 58.8 ± 0.2 69.8 ± 0.4

SMS (Sffn1-third-layer) 1 55.0 ± 0.3 72.7 ± 0.4

SMS (Sln2-all-layers) 0.04 54.7 ± 0.3 70.9 ± 0.6

Table 6.3: Performance comparison of replay-based, regularization,
and model decomposition methods in the TIL setting. Scores are re-
ported for all three model configurations of CLIP as pretrained VLM with
ResNet-50 (RN) or ViT-B/16 (ViT) as image encoder and with FiLM layers
(FiLM) or transformer encoder layers (TE) as trainable modality interaction
mechansisms. The reported evaluation metric is average accuracy after training
AAT (%). |φS |/|φM| is the fraction of parameters in the modality interaction
network that is task-specific. SMS baselines with TE are trained with A&C
and adaptation step count s = 10. Best scores for each model and dataset are
highlighted in bold. Standard errors after ±.

tial advantage of model decomposition strategies for CL: by isolating task-specific
parameters, they reduce the negative effects of over-parameterization and interfer-
ence, while allocating representational power where it is most needed.

Finally, across four of the six evaluated model-dataset configurations, SMS out-
performs the expert strategy by specializing as few as 0.04% (for CLIP-RN/TE on

142



6.3. Experiments

LILAC-2D) or 1% (for CLIP-RN/TE on LILAC-3D) of the total parameters. In
some cases, such as with the CLIP-ViT/TE architecture, SMS effectively enables
learning the multimodal LILAC tasks in the first place, whereas other baselines fail
to do so. In summary, these results illustrate that by identifying and fine-tuning
a small subset of parameters most critical for the target tasks, SMS avoids catas-
trophic interference, substantially reduces memory overhead, and can make the
difference between learning and not learning at all.

6.3.7 Variability Analysis

In this section, we examine (i) the sensitivity of the proposed SMS method to vari-
ations in consolidation frequency within the A&C optimization framework, and
(ii) the performance of SMS under different numbers of tasks to assess its robust-
ness across varied CL contexts. This investigation is motivated by the inherent
uncertainty in practical CL scenarios, where both the total number of tasks and
the optimal number of adaptation steps are typically unknown beforehand.

Effect of consolidation frequency s. We seek to determine how often A&C
training should alternate between task-specific adaptation and cross-task knowl-
edge consolidation, and how this alternation impacts final performance. To this
end, we measure the SMS performance with five different values of s in the TIL
setting for all three model configurations, using the two LILAC datasets and the
last-layer module selection strategy (Slast-layer) as a representative SMS baseline.
The results are provided in Table 6.4.

Among s = 6, s = 8, and s = 10—which correspond to a consolidation step every
6, 8, or 10 training iterations—no single setting emerges as consistently superior in
all conditions. However, as s approaches its smallest possible value of 2 (i.e., alter-
nating one adaptation step with one consolidation step), the performance starts to
decline. Despite this slight drop, SMS still outperforms many standard CL base-
lines (cf . Section 6.3.6). These findings suggest that overly frequent consolidation
may lead to repeated overwriting of shared parameters, thereby inducing mild but
noticeable forgetting. Overall, while performance remains relatively robust for a
range of s values, setting s at a moderately higher value appears to provide more
stable results.

Effect of task count T . We also aim to evaluate how sensitive SMS perfor-
mance is when varying the number of tasks learned sequentially. In principle, as T
grows, a CL model encounters more distributional shifts, which can pose additional
challenges for knowledge retention and transfer. Similarly to our previous analysis
of adaptation step counts, we measure SMS performance in the TIL setting—using
T ∈ {6, 12, 24}—for all three model configurations, with the two LILAC datasets
and the last-layer module selection strategy (Slast-layer) serving as our representative
SMS baseline. The results are presented in Table 6.5.
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Model Method s LILAC-2D LILAC-3D

CLIP-RN/FiLM SMS (Slast-layer)

10 61.8 ± 0.1 93.5 ± 0.1

8 61.3 ± 0.8 93.5 ± 0.1

6 61.3 ± 0.4 93.2 ± 0.4

4 59.8 ± 0.5 93.3 ± 0.2

2 57.7 ± 0.4 93.0 ± 0.3

CLIP-RN/TE SMS (Slast-layer)

10 63.6 ± 0.2 75.2 ± 0.6

8 61.6 ± 1.2 81.2 ± 0.1

6 65.3 ± 1.0 81.4 ± 0.4

4 64.3 ± 1.1 79.5 ± 1.5

2 58.5 ± 1.1 77.5 ± 1.3

CLIP-ViT/TE SMS (Slast-layer)

10 56.2 ± 0.2 68.0 ± 0.9

8 57.5 ± 1.3 73.8 ± 0.6

6 55.5 ± 1.6 69.6 ± 4.1

4 51.9 ± 1.2 68.5 ± 2.5

2 52.1 ± 1.7 73.0 ± 0.3

Table 6.4: Variability of SMS across consolidation frequencies. Average
accuracy after training AAT (%) is reported for model configurations that have
transformer layers as trainable modality interaction mechanisms. For each PTM
configuration, two specialization strategies S and five different adaptation step
counts s are reported. Best scores for each model, specialization strategy, and
dataset are highlighted in bold. The primary configuration used in the main
experiments is shaded in gray.

For LILAC-2D, the overall final accuracies show relatively minor fluctuations across
different task counts, whereas for LILAC-3D, the accuracies exhibit more substan-
tial variation. Counterintuitively, performance may decline when training on fewer
tasks. A plausible explanation is that a smaller number of tasks can lead to each
task encompassing a broader and more heterogeneous distribution. In such cases,
the model must address a wide range of subtasks or data clusters simultaneously,
increasing the risk of internal interference and exposing the limitations of the
small set of task-specific parameters. Conversely, distributing the same data across
a larger number of tasks results in narrower, more homogeneous task distributions.
This allows the model to specialize incrementally and consolidate knowledge more
effectively. Consequently, more frequent but subtler distributional shifts, as ob-
served with larger T , provide the model with additional opportunities to adapt and
refine its learned representations, thus mitigating severe performance drops.

6.3.8 Combination with Other Continual Learning Meth-
ods

An advantage of SMS is that it can be orthogonally combined with CL methods
relying on replay or regularization. Because the shared parameters updated dur-
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Model Method T LILAC-2D LILAC-3D

CLIP-RN/FiLM SMS (Slast-layer)
24 63.2 ± 0.4 92.0 ± 0.6

12 61.8 ± 0.1 93.5 ± 0.1

6 59.6 ± 0.4 93.2 ± 0.2

CLIP-RN/TE SMS (Slast-layer)
24 66.0 ± 1.0 86.4 ± 0.4

12 63.6 ± 0.2 75.2 ± 0.6

6 59.6 ± 1.4 71.8 ± 1.9

CLIP-ViT/TE SMS (Slast-layer)
24 60.9 ± 0.3 79.0 ± 0.7

12 56.2 ± 0.2 68.0 ± 0.9

6 52.2 ± 0.7 67.1 ± 0.6

Table 6.5: Variability of SMS across task counts. Average accuracy af-
ter training AAT (%) is shown for all model configurations trained with SMS
with the final (fourth) layer of the modality interaction network specialized as
representative module selection strategy. Results are reported for three different
numbers of tasks. The primary configuration used in the main experiments is
shaded in gray.

ing the consolidation phase in SMS remain susceptible to forgetting, we explore
whether regularizing those parameters via O-EWC or performing replay during
consolidation can further boost overall performance. In particular, we evaluate
SMS in combination with ER or O-EWC in the TIL setting, using three model
configurations, two LILAC datasets, and Slast-layer as a representative selection
strategy. All parameter choices for ER and EWC match those in the main baseline
comparisons.

As shown in Table 6.6, integrating SMS with ER or EWC enhances performance ex-
clusively for transformer-based modality interaction configurations on LILAC-3D.
In all other scenarios, performance remains unchanged or slightly declines. In com-
plex multimodal settings—such as those in LILAC-3D—supplementing SMS with
replay or regularization helps mitigate forgetting more effectively by reinforcing
shared parameters during consolidation. Transformer-based modality interaction
networks, with their reliance on fine-grained multimodal representations, profit
most from these additional constraints because replay buffers or regularizers more
effectively preserve feature alignments across sequential tasks.

By contrast, for simpler datasets or architectures (e.g ., LILAC-2D, FiLM-based
fusion), SMS alone appears sufficient to consolidate knowledge both within and
across tasks, making additional replay or regularization mechanisms less necessary
or even counterproductive. Consequently, while combining SMS with replay or
regularization can yield performance improvements under specific conditions, its
effectiveness is highly sensitive to the complexity of the underlying data and model
architecture. Nonetheless, as models continue to grow in size and VL datasets
become increasingly diverse and complex, integrating SMS with other CL methods
represents a promising direction for future research.
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Model Method LILAC-2D LILAC-3D

CLIP-RN/FiLM
SMS (Slast-layer) 61.8 ± 0.1 93.5 ± 0.1

w/ ER 61.8 ± 0.5 92.6 ± 0.5

w/ O-EWC 62.0 ± 0.5 93.2 ± 0.4

CLIP-RN/TE
SMS (Slast-layer) 63.6 ± 0.2 75.2 ± 0.6

w/ ER 61.3 ± 1.9 80.0 ± 0.8

w/ O-EWC 59.1 ± 1.6 80.2 ± 0.8

CLIP-ViT/TE
SMS (Slast-layer) 56.2 ± 0.2 68.0 ± 0.9

w/ ER 53.8 ± 1.2 74.8 ± 0.8

w/ O-EWC 55.7 ± 1.3 74.9 ± 0.8

Table 6.6: Combination of SMS with other continual learning meth-
ods. Average accuracy after training AAT (%) is reported for the two model
configurations that are optimized using the A&C scheme. The SMS baselines are
combined so that either rehearsal (ER) or parameter regularization (O-EWC)
are applied during the consolidation phase of A&C. The final modality interac-
tion network layer is employed as representative specialization strategies. The
primary configuration used in the main experiments is shaded in gray.

6.4 Discussion

Our findings demonstrate that SMS is a powerful and flexible method for ad-
dressing the challenges of multimodal CL with foundation models. By selectively
allocating task-specific parameters in only a small subset of the network, SMS
strikes a balance between leveraging pretrained knowledge and accommodating
novel task demands. Notably, this approach significantly outperforms standard
CL baselines, including replay- and regularization-based methods, in a variety of
experimental settings. Our results thus underscore the importance of carefully de-
signing how and where to specialize parameters within a VL interaction network
that integrates pretrained unimodal features from different sources.

A critical insight is that late-layer specialization tends to yield the greatest perfor-
mance gains for most of the tested architectures and datasets. These observations
align with prior research highlighting that late-stage representations capture more
contextual and semantic details, making them most suited for task-specific adap-
tation. Moreover, we found that certain module types—such as biases in FiLM-
based architectures—play disproportionately large roles in bridging the gap be-
tween general and task-specific representations, suggesting that a focus on task-
specific shifting parameters and task-agnostic scaling parameters can be highly
advantageous.

Our analyses further revealed that module importance metrics, commonly em-
ployed in pruning-based CL strategies for models trained from scratch, do not
consistently exhibit strong correlations with the benefits of specialization in large
PTMs. While gradient-based metrics demonstrated moderate predictive power for
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FiLM-based configurations, activation-based scores generally showed negative cor-
relations with actual performance gains. These findings suggest that pretraining
alters the distribution and scale of layer activations, potentially obscuring the con-
ventional signals used to guide parameter pruning or module reallocation. As a re-
sult, direct adaptation of pruning-based techniques may be inadequate to identify
optimal specialization strategies in multimodal CL settings that leverage large-
scale pretraining.

Despite its broad applicability, SMS exhibits several limitations. One key challenge
is that, as the number of tasks increases, the risk of parameter fragmentation be-
comes more pronounced if too many modules are exclusively allocated to individual
tasks, thereby limiting opportunities for effective parameter sharing. Although our
experiments demonstrate that memory overhead remains manageable for a mod-
erate number of tasks, scaling to dozens or even hundreds of tasks will require
more sophisticated strategies for dynamic module reallocation and fine-grained
resource sharing. Additionally, SMS currently assumes that task-specific informa-
tion is available at inference time, a requirement that may not be feasible in many
real-world CL scenarios.

6.5 Chapter Summary

Achieving an optimal balance between specialization and generalization remains
a significant challenge when training agents on sequential language-conditioned
tasks within visual environments. In this chapter, we addressed this challenge by
reconceptualizing VL interaction networks as modular compositions to process and
integrate modality-specific features extracted from foundation models. To facilitate
a systematic evaluation, we introduced two diagnostic datasets which we used to
assess various strategies for selectively specializing module types and layer depths
across sequentially learned tasks. Our experiments revealed the limitations of re-
lying solely on pruning-based importance metrics to integrate unimodal represen-
tations from diverse pretrained models, while demonstrating that even a small set
of task-specific parameters from lightweight modules can significantly enhance CL
performance—sometimes marking the difference between learning and not learning
at all. These findings underscore the efficacy of selective specialization in preserving
and extending task-specific knowledge.

Looking ahead, it is imperative to balance task-specific adaptation and cross-task
generalization while minimizing memory overhead and relaxing the dependence
on explicit task boundaries. There remains a critical need for more computation-
ally efficient methods that achieve similarly promising results without relying on
large-scale parameter storage. Therefore, in the next chapter, we introduce a task-
agnostic, exemplar-free CL method based on noise augmentation in the latent fea-
ture space. By injecting carefully calibrated noise into pretrained representations,
our method consolidates knowledge from previous tasks and adapts to new ones
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in real time, thereby meeting the practical requirements for scalable and effective
multimodal CL in increasingly complex VL problems.
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Noise-augmented Multimodal
Latent Replay

An artificial agent operating in a visual environment must flexibly identify and
locate an ever-growing set of objects based on natural language instructions—a ca-
pability essential for many human-agent interaction applications. However, current
CL research on object localization and segmentation is predominantly confined to
vision-only inputs, limiting its effectiveness in multimodal contexts. At the same
time, methods that integrate language grounding into a CL framework, such as
the SMS method introduced in Chapter 6, often assume prior knowledge of task
identities or rely on memory-intensive strategies, limiting their scalability.

In this chapter, we explore latent replay with targeted noise injection and introduce
NLR, a novel replay-based multimodal CL method that augments latent represen-
tations with spatially aware statistical noise. By storing only a minimal set of
feature vectors for each newly encountered object class, NLR preserves concep-
tual and object-specific knowledge without incurring prohibitive memory costs. In
contrast to many existing baselines, NLR is exemplar-free, fully task-agnostic, sup-
ports online learning, and accommodates open-world free-form language and image
inputs. Extensive experiments demonstrate that NLR outperforms architecture-
based, regularization-based, and latent replay-based approaches across various CL
scenarios while making less strict assumptions. Ultimately, NLR lays the ground-
work for robust, scalable CL in open-world multimodal settings.1

7.1 Motivation

Integrating linguistic processing with visual perception challenges agents to harmo-
nize multiple sensory modalities for effective real-world interaction. By combining
language cues with visual data, agents can form robust adaptive representations
that evolve as new observations arise. There is a growing consensus that CL must

1The source code is made available at https://github.com/ky-ah/NLR.
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advance beyond simple label prediction problems, such as incremental classifica-
tion, to address more intricate multimodal tasks and structured prediction prob-
lems that integrate diverse input sources (Mitchell et al., 2025). In this chapter, we
therefore focus on Continual Referring Expression Segmentation (CRES), which
segments image regions based on natural language descriptions and requires con-
tinual adaptation to diverse visual scenes and arbitrary text inputs referencing an
ever-growing set of objects and attributes.2

As discussed in Section 3.2.2, effective operation in dynamic, unpredictable en-
vironments often means that the agent lacks explicit information about the cur-
rent task, rendering task-agnostic learning indispensable for CRES. In addition,
exemplar-free approaches are highly relevant in household and other sensitive con-
texts, where storing past exemplars is either infeasible or poses privacy concerns.
Our SMS approach (cf . Chapter 6) circumvents the need to store historical data by
isolating critical parameters, albeit under the strong assumption that explicit task
information is available at all times. Parameter allocation methods such as WSN
(cf . Section 3.2.5) and its soft-masking, regularization-based variant SPG (Kon-
ishi et al., 2023) refrain from storing complete parameter sets for every task but
still require predefined task boundaries and task-specific information. Moreover, as
the task count increases, these methods must protect an expanding portion of the
parameter space, which can lead to model saturation. Similarly, prompt learning
methods for foundation models (cf . Section 3.3.2), including approaches to mul-
timodal CL (Jin et al., 2024), show promise yet typically need separate prompts
per task, thereby precluding a fully task-agnostic approach.

We outlined in Section 3.2.5 two replay-based strategies to mitigate catastrophic
forgetting in CL without storing raw data or exemplars: generative replay and la-
tent replay. Generative replay (e.g ., Shin et al., 2017; Sun et al., 2020a) typically
operates in a task-aware manner by using an auxiliary generative model that de-
mands considerable computational and memory resources. Moreover, this approach
is prone to adversarial attacks (Kang et al., 2023). In contrast, latent replay meth-
ods can be designed to be both exemplar-free and task-agnostic. However, existing
latent replay approaches in CL often rely on statistical summaries of past data, and
were originally developed for classification tasks (e.g ., Zhang et al., 2023). Their
adaptation to continual image segmentation, as proposed by Chen et al. (2023),
involves a simplification of the target by employing all-zero segmentation masks.
This strategy leads to an underestimation of object boundaries and causes mod-
els to generate minimal or empty masks, a phenomenon commonly referred to as
background bias.

Drawing on insights from Chapter 5 regarding the effectiveness of learned proto-
types in pretrained latent spaces, we introduce Noise-augmented Latent Replay
(NLR), a versatile and efficient multimodal CL method that extends beyond stan-

2In the continual multi-task setup of CRES, each task features a different set of target object
classes.
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dard classification tasks.3 Our method leverages prototypical, pretrained multi-
modal features (e.g ., from CLIP) enhanced by controlled noise injection. We apply
spatially aware noise that minimally perturbs features critical to the target ob-
ject or region of interest while more heavily perturbing background features. This
dual-purpose strategy both mitigates overfitting to the limited set of features in
the replay buffer and counteracts the model’s background bias, i.e., its tendency
to underestimate salient target regions. Consequently, NLR expands latent space
coverage and enables more precise segmentation while preserving its ability to
recognize and segment previously encountered object categories.

The contributions made in this chapter are threefold:

(1) We introduce NLR, a versatile and efficient method for multimodal CL that
uses a novel spatially aware noise injection mechanism to combat background
bias in latent replay.

(2) We provide a detailed investigation of how replay frequency, buffer size, and
background bias influence model performance in CRES, demonstrating that
targeted noise boosts segmentation accuracy by guiding the model to more
confidently predict foreground areas.

(3) We demonstrate that NLR achieves state-of-the-art performance on diverse
CRES benchmarks in both CIL and OCL settings, all while being exemplar-
free, resource-efficient, and fully task-agnostic.

The remainder of this chapter is structured as follows: in Section 7.2, we describe
the theoretical foundation and implementation details of NLR. Section 7.3 outlines
our training protocols, experimental results, and analyses that underscore the ef-
fectiveness of targeted noise in latent replay. We discuss broader implications in
Section 7.4 and conclude the chapter in Section 7.5.

7.2 Proposed Method: NLR

An overview of our proposed NLR method is provided in Figure 7.1. The train-
ing pipeline comprises a pretrained VLM (denoted as PTM h), which contains
both a text encoder h(L) and a visual feature extractor h(V ), alongside a modality
interaction network dφ with trainable parameters φ and a PL gψ with trainable
parameters ψ. We adopt the CL problem formulation outlined in Section 3.2.1.
Consistent with Chapter 6, the VLM model architecture follows category (e) of

3It is noteworthy that while we demonstrate the effectiveness of NLR on the CRES prob-
lem, it is to a certain extent applicable to any unimodal or multimodal CL problem, including
classification and regression, since it only requires a strong foundation model for latent feature
extraction. More details on this are provided in Section 7.2.2.
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Figure 7.1: Overview of NLR. Given a textual referring expression l and an
image o, the objective in CRES is to produce a binary pixel mask ŷ that localizes
the referenced object(s). The binary feature map mask m is derived via mean
pooling over non-overlapping subregions in the ground-truth segmentation map
y. During the replay phase (dotted arrows), a batch is randomly sampled from
M, and statistical noise (indicated by z(V ) and z(L)) is applied to image and text
features h(V ) and h(L) to yield h̃(V ) and h̃(L), respectively. To avoid excessive
distortion of target object features, higher noise is assigned to the background
and lower noise to the object/foreground, guided by the binary feature map
mask m.

the VLM taxonomy described in Section 2.2.3 in a way that h is a dual encoder
and dφ is a multi-layer modality interaction network.4

The nth training input of the tth task, denoted as (xt,n,yt,n) ∈ Dt, consists of
a textual referring expression and a visual scene xt,n = (lt,n,ot,n) with ot,n ∈
RH×W×3, as well as a binary segmentation mask yt,n ∈ {0, 1}H×W as ground truth
label. Here, H × W indicates the height and width of the image in pixels. For
some test sample (l,o) ∈ Dtest, the text encoder h(L) processes l to produce latent
textual features h(L) ∈ Rd(L) , and the visual feature extractor h(V ) processes o to
yield latent visual features h(V ) ∈ Rd(V ) :

h(L) = h(L)(l), h(V ) = h(V )(o). (7.1)

4Unlike in Chapter 6, we assume that all parameters, particularly those trained in the CL
setting, are shared across tasks and therefore omit any task-specific subscript or superscript
notation.
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Subsequently, the modality interaction network fuses the language and vision la-
tents into a joint multimodal representation h, calculated as

h = dφ
(
h(L),h(V )

)
. (7.2)

Finally, the predicted segmentation mask containing the object referred to in the
textual input is expressed as

ŷ = gψ(h) (7.3)

with ŷ ∈ RH×W . This output is then used to compute a loss function that updates
the trainable parameters φ and ψ. Although the dual encoders operate in a unified
VL feature space and produce dense embeddings of the same dimensionality, we do
not assume that d(V ) is equal to d(L). In practice, when training modality interaction
networks on multimodal features extracted from dual encoders (e.g ., Lüddecke and
Ecker, 2022; Shridhar et al., 2022), image features passed to the interaction network
are extracted prior to the final projection layer of the image encoder to preserve
spatial information. Consequently, d(V ) is typically larger than d(L).

7.2.1 Latent Replay for Continual Learning

Latent replay is not a novel technique for mitigating catastrophic forgetting in CL.
However, its application has been predominantly investigated within generative
networks or in the context of classification problems, the limitations of which we
discussed in Section 7.1.

Essentially, methods for latent replay maintain a per-class bufferMc for each class
c ∈ {1, . . . , C}, each with a fixed capacity B. Collectively, these form the overall
memory buffer M = {M1, . . . ,MC}, containing a maximum of B · C samples.
Since the object class identifier is directly derivable from the input text or referring
expression—or, in classification problems, from the label itself—additional class
labels are not necessary. Maintaining distinct buffers for each class facilitates a
more balanced replay, which is essential given the common class imbalances in
real-world VL datasets (e.g ., the class person often appears more frequently than
others).

Each per-class buffer Mc is populated using reservoir sampling, as detailed in
Section 3.2.5. Furthermore, a replay frequency RF is defined in a way that every
RF iterations (or update steps), a batch bR of size |bR| is randomly sampled fromM
for replay. In the case of our NLR method, bR consists of tuples (h(V ),h(L),m) that
contain image and text features rather than the original input, along with the mask
indicating the target region in the feature space (cf . Section 7.2.2). Importantly,
by storing m as a binary mask instead of raw image data, we minimize privacy
risks by retaining only essential segmentation details without exposing sensitive
visual content, thereby complying with privacy storage restrictions.5

5In object localization/detection tasks, m may also be derived from a bounding box instead
of a pixel mask.
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7.2.2 Spatially Aware Noise Augmentation

We propose a principled procedure for injecting spatially aware noise into image
features extracted by both CNN-based and transformer-based PTMs, the prevail-
ing backbones for contemporary foundation models in CV and VL grounding (cf .
Sections 2.1.3 and 2.2.1). This procedure requires a consistent mapping between
pixels in the ground-truth segmentation mask y and their associated regions in
feature space.

Notably, when such mapping is unavailable—e.g ., in image classification or re-
gression problems, where labels convey no spatial information—we consider two
adaptations. First, we dispense with spatially aware noise and instead inject a
small, feature-wise uniform noise. In the ablation study (cf . Section 7.3.7), we
will demonstrate that even this naive variant improves the performance of latent
replay in multimodal CL settings. Second, to retain spatially aware noise as a
central contribution of NLR, we employ an auxiliary image segmentation network
that partitions the input image o into foreground and background.6 Denoting the
resulting segmentation mask by ô, we compute the binary feature map mask m
via Equations (7.8) and (7.9), substituting ô for y. This strategy makes NLR
fully compatible with standard image classification or regression pipelines, albeit
at the cost of the computational and memory overhead introduced by the auxiliary
model.

Incorporating noise directly into the feature space counteracts overfitting by pre-
venting the model from memorizing specific latent representations. Conceptually,
this is akin to established augmentation techniques such as color jittering applied
in the original input space. However, applying too much noise to the “foreground
pixels” in the latent space—those encoding the target object—can degrade perfor-
mance by obscuring critical information.

Consequently, our aim is twofold: (i) introduce minimal perturbations to the tar-
get object’s latent features in order to preserve their discriminative power, and
(ii) add stronger noise to background pixels, which are less crucial for localizing
the target object. To realize this, we propose a spatially aware noise augmentation
strategy that relies on the ground-truth segmentation mask stored in the mem-
ory buffer. Using this mask, we selectively target background features for noise
injection, thereby preserving the integrity of the target object representation and
promoting improved generalization.

Spatial alignment and mask computation. For CNN-based feature extrac-
tors, we benefit from the inductive bias that preserves approximate spatial align-
ment between an input image and its feature maps. Let the feature map have
dimensions d(V ) = h× w × c, where h and w denote the spatial dimensions, and c

6The network operates in a zero-shot manner and thus requires neither fine-tuning nor domain
adaptation; it merely needs to distinguish foreground objects from background.
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is the number of channels. Suppose

y : {0, . . . , H − 1} × {0, . . . ,W − 1} → {0, 1} (7.4)

is the binary segmentation map associated with a replay sample of features h(V )

and h(L). We construct a binary feature map mask

m : {0, . . . , h− 1} × {0, . . . , w − 1} × {0, . . . , c− 1} → {0, 1} (7.5)

by performing mean pooling over non-overlapping subregions of y that correspond
to positions (i, j) in the downsampled feature space. Concretely, let

sH =
H

h
and sW =

W

w
. (7.6)

and define the region

Ri,j =
{
(p, q)

∣∣ p ∈ [
⌊sH · i⌋, ⌊sH · (i+ 1)⌋

]
, q ∈

[
⌊sW · j⌋, ⌊sW · (j + 1)⌋

]}
(7.7)

within y. The mean value of y over Ri,j is

mean
(
y,Ri,j

)
=

1∣∣Ri,j

∣∣ ∑
(p,q)∈Ri,j

y(p, q). (7.8)

and the mask m at position (i, j, k) is defined by

mi,j,k =

{
1 if mean

(
y,Ri,j

)
≥ ϵ,

0 otherwise.
(7.9)

Notably, the mask remains consistent across all channels so that mi,j,k = mi,j,l for
k ̸= l. The threshold parameter ϵ regulates how cautiously subregions of the feature
map are classified as belonging to the target object. Throughout our experiments,
we set ϵ = 0.5, as preliminary analyses showed that performance remains robust
for moderate variations in this parameter and that ϵ = 0.5 strikes a useful balance
between sensitivity and specificity.

In a transformer-based image encoder, the original image of size H ×W is divided
into M patches (for a typical ViT, via a non-overlapping grid of patch size, e.g .,
16× 16), and each patch is linearly projected to a flattened embedding vector. Let
M be the total number of patch embeddings extracted from a ViT encoder for
an input image of size H ×W , arranged in an h × w grid such that M = h × w.
We assume these patch embeddings maintain approximate spatial correspondence.
Consequently, we can apply Equations (7.6) to (7.8) in the same way as for CNN-
extracted feature maps. Then, for a threshold ϵ ∈ [0, 1], the mask value for each
patch is set to

mi,j =

{
1 if mean

(
y,Ri,j

)
≥ ϵ,

0 otherwise.
(7.10)

Rewriting this as a single index l ∈ {0, . . . ,M − 1}, l = i · w + j, we obtain a
length-M binary mask m over image patches:

m = (m0,m1, . . . ,mM−1) (7.11)
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Feature variability and noise scaling. A key consideration is the appropriate
level of noise to inject along each feature dimension. To achieve this, we scale
the noise magnitude by the empirical standard deviation of each feature, which
reflects the overall variability across the dataset. This strategy preserves essential
information by ensuring that features with high variability are perturbed more
significantly, while more stable features experience only slight perturbations.

At each iteration i, we sample a batch bR,i ∼M consisting of tuples (h(V ),h(L),m).
From this batch, we compute the mean image and text feature vectors, µ(V )

i ∈ Rd(V )

and µ
(L)
i ∈ Rd(L) , as

µ
(V )
i =

1

|bR|
∑

h(V )∈bR,i

h(V ),

µ
(L)
i =

1

|bR|
∑

h(L)∈bR,i

h(L).

(7.12)

Using these mean vectors, we then compute the standard deviations for the image
and text features, σ(V )

i ∈ Rd(V ) and σ
(L)
i ∈ Rd(L) , as follows:

σ
(V )
i =

√√√√ 1

|bR| − 1

∑
h(V )∈bR,i

(
h(V ) − µ

(V )
i

)2

,

σ
(L)
i =

√√√√ 1

|bR| − 1

∑
h(L)∈bR,i

(
h(L) − µ

(L)
i

)2

.

(7.13)

Larger replay batch sizes |bR| yield more accurate estimates of these statistics. In
practice, we observed that using |bR| = 16 or more provides sufficiently accurate
estimates. When batch sizes are too small, the mean and standard deviation can
be computed over the entire observed dataset—omitting the iteration subscript.
In this case, the statistics µ(V ), µ(L), σ(V ), and σ(L) are calculated as

µ(V ) =
1

N

T∑
t=1

Nt∑
n=1

h
(V )
t,n ,

µ(L) =
1

N

T∑
t=1

Nt∑
n=1

h
(L)
t,n ,

σ(V ) =

√√√√ 1

N − 1

T∑
t=1

Nt∑
n=1

(
h

(V )
t,n − µ(V )

)2

,

σ(L) =

√√√√ 1

N − 1

T∑
t=1

Nt∑
n=1

(
h

(L)
t,n − µ(L)

)2

,

(7.14)
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where N =
∑T

t=1Nt denotes the total number of training instances up to task T .
These statistics can be updated incrementally on a per-sample basis. In particular,
Welford’s method (Welford, 1962) is commonly used to compute the standard devi-
ation in a numerically stable manner without retaining all previous samples.7

Noise injection mechanism. To introduce noise into the latent representation,
let z(V ) ∈ Rd(V ) and z(L) ∈ Rd(L) be vectors whose individual components are
independently sampled from a standard normal distribution:

z
(V )
i ∼ N (0, 1) and z

(L)
j ∼ N (0, 1) (7.15)

for i ∈ {1, . . . , d(V )} and j ∈ {1, . . . , d(L)}. For some tuple (h(V ),h(L),m) of a
replay batch bR,i, both spatially aware and global noise are then added to the
image features:

h̃(V ) = h(V ) + α σ
(V )
i

(
z(V ) ⊗ (1−m)

)
+ β σ

(V )
i z(V ), (7.16)

where α and β respectively control the magnitude of the spatially aware and global
noise components. The term z(V )⊗ (1−m) ensures that stronger noise is predom-
inantly injected into background regions. By contrast, text features do not encode
explicit spatial structure, so we only apply global noise, yielding

h̃(L) = h(L) + γ σ
(L)
i z(L), (7.17)

with γ specifying the overall noise level.8 Ultimately, rather than repeatedly re-
trieving the same stored features (h(V ),h(L)) from the memory buffer, we introduce
a stochastic augmentation step in each replay iteration by sampling statistical noise
vectors to produce new pseudo-realistic features (h̃(V ), h̃(L)). As demonstrated later
in this chapter, this augmentation strategy enhances the model’s robustness to
variations in the feature space, thereby reducing the likelihood of overfitting to
the limited replay samples. In addition, it mitigates the background bias inherent
in localizing only a small region within an image, as the model is encouraged to
expand the predicted foreground region. The training and testing procedures for
the NLR method are summarized in Algorithms 7 and 8, respectively.

7.3 Experiments

In this section, we present a series of experiments evaluating the performance of our
NLR method for CRES. We begin by describing the benchmarks and training de-
tails, followed by an investigation of how memory buffer size and replay frequency

7For our experiments in Section 7.3, we employ the per-batch computation of feature statistics
as described in Equation (7.12) and Equation (7.13).

8Although it is conceivable to apply targeted noise to text features that takes into account
tokens that do or do not include a reference to the target object, we leave this investigation for
future work.
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Algorithm 7: NLR Training
Input: modality interaction parameters φ, PL parameters ψ, per-class

buffer capacity B, replay frequency RF , noise parameters α, β, γ
# Initialization
M← ∅
# Continual Learning with NLR
for iteration i = 1, 2, . . . do

if i mod RF = 0 then
bR,i ← sample(M)
compute µ

(V )
i and µ

(L)
i using Equation (7.12)

compute σ
(V )
i and σ

(L)
i using Equation (7.13)

for every sample (h(V ),h(L),m) ∈ bR,i do
collect h̃(V ) and h̃(L) using Equations (7.16) and (7.17)
compute L(h̃(V ), h̃(L),y)

end
update φ and ψt using Adam

end
else

bi ← next batch from the stream
for every sample (l,o,y) ∈ bi do

collect h(V ) and h(L) using Equation (7.1)
compute L(h(V ),h(L),y)
compute m using Equation (7.9)/Equation (7.10)
write(M,h(V ),h(L),m, B)

end
update φ and ψt using Adam

end
end

Algorithm 8: NLR Testing
Input: trained parameters φ ∪ ψ
for every sample (l,o) ∈ Dtest do

collect h(x) using Equation (7.2)
predict ŷ using Equation (7.3)

end

affect the latent replay strategy. Next, we assess how much spatially aware and
global noise to inject in image features and demonstrate how noise augmentation
alleviates background bias, a common challenge in sequentially learned segmenta-
tion tasks. Building on these findings, we compare NLR with recent state-of-the-art
baselines in both CIL and OCL settings. Finally, we conduct ablation studies and
analyze the robustness of our method to varying replay frequencies and numbers
of tasks.
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Dataset T Ntrain Ntest C

PhraseCut100 20 170 095 10 884 100
ADE20K 20 89 406 9 307 150
RefCOCO 12 120 624 10 834 80

Table 7.1: Summary of referring expression segmentation datasets.
Reported is the number of tasks (T ) used in the all experiments in this chapter
unless otherwise specified, along with the number of training samples (Ntrain),
validation/test samples (Ntest), and distinct object classes (C). The datasets are
partitioned by object classes.

7.3.1 Benchmarks

In this chapter, we evaluate CL methods using three distinct split datasets for
CRES. In each of the datasets, an example includes an input image and an ac-
companying text referring to one or more objects. The goal is to produce a binary
pixel mask that delineates the location(s) of the referenced object(s) within the
image. Since these datasets include only training and test sets, we reserve a ran-
domly sampled 10% subset of the training data for validation. An overview of
the key statistics for all datasets used in our baseline comparisons is provided in
Table 7.1.

The first dataset, PhraseCut100, is a subsampled version of the original VGPhrase-
Cut dataset (Wu et al., 2020), a large-scale benchmark for referring expression
segmentation in natural scenes featuring more than 3 000 distinct object classes.
For our experiments, we focus on the 100 most frequent classes, resulting in 66 034
unique training images and 2 775 testing images. The second dataset is a referring
expression segmentation variant of the ADE20K image segmentation benchmark
(Zhou et al., 2017). In this version, referring expression prompts are generated from
CLIP inference templates combined with the corresponding object class names.
ADE20K contains 17 277 training images and 1 743 testing images covering 150
object classes. The third dataset, RefCOCO (Kazemzadeh et al., 2014), is widely
used in VL grounding for object detection and segmentation tasks. Derived from
MSCOCO (Lin et al., 2014), it comprises images spanning 80 object classes paired
with free-form natural language referring expressions, with 16 994 training images
and 1 500 testing images.

7.3.2 Training Details

Experiments are conducted using a model configuration that employs CLIP with
a pretrained ResNet-50 feature extractor as dual encoder VLM and a FiLM-based
modality interaction network closely following the semantic stream of the CLIPort
architecture (Shridhar et al., 2022). The semantic stream in CLIPort is specifically
designed for predicting object affordances, i.e., how objects can be manipulated or
interacted with in a scene. By leveraging FiLM, the visual features are modulated
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according to textual cues, which allows the model to highlight salient regions and
effectively capture object-specific properties critical for affordance prediction. This
process is closely related to semantic segmentation, since language-based inputs
are aligned with the spatial understanding and localization of objects.9

The parameters φ of the modality interaction network dφ are trained for ten epochs
(E = 10) in the CIL setting and for one epoch (E = 1) in the OCL setting. The
batch size is |b| = 32 for CIL and |b| = 1 for OCL (cf . Table 3.1). Training on
PhraseCut100 and ADE20K is performed using the Tversky loss (Salehi et al.,
2017) with αT = 0.2 and βT = 0.9, while training on RefCOCO is performed using
Dice loss (Sudre et al., 2017). Both loss functions are well suited for referring ex-
pression segmentation tasks that typically feature a significant imbalance between
few foreground pixels and many background pixels. Optimization is performed with
Adam (momentum of 0.9) and a cosine annealing scheduler. Additionally, replay
batches are drawn with sizes of |bR| = 32 in CIL and |bR| = 16 in OCL.

During training, each input image undergoes a series of preprocessing steps. Specif-
ically, images are randomly flipped horizontally with a probability of 0.5. Sub-
sequently, a random photometric distortion is applied, independently adjusting
brightness, contrast, saturation, and hue within a 10% range. Next, each image
is randomly rotated by an angle within 10 degrees. After these augmentations,
the images undergo normalization to standardize pixel intensity values. Finally, all
processed images are uniformly resized to a resolution of 224 × 224 pixels. Dur-
ing testing, images only undergo normalization and resizing to the standard input
dimension of 224× 224 pixels, without applying any augmentation steps.

For performance comparisons across all split CRES datasets, we first tuned the
hyperparameters on the SFT baseline trained on PhraseCut100 to determine the
optimal learning rates for each CL setting, and then applied these rates to the
other baselines. The final learning rate is 3× 10−3 for both OCL and CIL settings.
We set the spatial noise coefficient α = 1.5 and the global noise coefficient β = 0.25
(cf . Section 7.3.4) for the noise applied to image features, and use γ = 0.05 for the
noise applied to the text features.

Similarly to Chapters 4 to 6, we compare our method with Sequential Fine-Tuning
(SFT) and Joint Fine-Tuning (JFT), which represent monolithic network training
without CL mechanisms in the sequential and i.i.d. training settings, respectively.
We also compare with WSN (Kang et al., 2022) as representative parameter al-
location approach, and with SPG (Konishi et al., 2023) and O-EWC (cf . Sec-
tion 3.2.5) as regularization-based methods. For O-EWC, we set λO-EWC = 1000
and γO-EWC = 0.9.10 Furthermore, we include in our comparison three methods

9The model configuration used in this chapter is specifically tailored for segmentation tasks;
as a result, its modality interaction network architecture differs from the CLIP-RN/FiLM variant
described in Chapter 6. For additional details on the the chosen model configuration, refer to
Shridhar et al. (2022).

10The search spaces for O-EWC hyperparameters defined as follows: λO-EWC = 10x, x ∈
{−4,−3,−2,−1, 0, 1, 2, 3, 4} and γO-EWC ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
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employing latent replay: the standard LR method, which follows the procedure
described in Section 7.2.1, as well as modified versions of DER and DER++
(Buzzega et al., 2020) that replay latent features instead of exemplars, which how-
ever have similar behavior to the original methods due to frozen encoder net-
works. The DER/DER++ hyperparameters are set to αDER = αDER++ = 0.1 and
βDER++ = 0.9.11 Both DER and DER++ incorporate a distillation loss, controlled
by α, to align the network’s output logits with those stored in the replay buffer.
Given our observation that a very small value of α yields the best performance,
we suspect that strong knowledge distillation—which forces the model to recover
older logits—may not be well-suited for CRES tasks.

We report average accuracy after training on the final task as the primary eval-
uation metric, denoted by AAT (cf . Equation (3.10)), where aT,t represents the
accuracy of correctly identifying the object(s) referred to in the textual input of a
sample from the tth task following training on the T th (i.e., last) task. An object
is considered correctly located if the mean Intersection-over-Union (IoU) between
the predicted pixel mask and the ground-truth mask—computed over both back-
ground and foreground pixels—exceeds 0.5. We additionally report the forgetting
rate FMT (cf . Equation (3.8)) measured after CL training. For reproducibility, un-
less stated otherwise, all experiments in this chapter are conducted using five fixed
random seeds (1993–1997), which affect both task order and random initialization
of trainable parameters.

7.3.3 Memory Buffer Size in Latent Replay

Our primary objective is to systematically investigate how the performance of
latent replay methods for CL depends on (i) the number of representative latent
features per object class stored in the memory buffer and (ii) the replay frequency,
i.e., how often a batch of latents is retrieved to retrain the modality interaction
network. To this end, we measure average accuracy after training on T = 20 tasks,
experimenting with seven different memory buffer sizes (powers of two from 1 to
64) and five replay frequencies. Notably, when RF = 2, a batch is drawn from
memory after every batch from the data stream, mirroring the sampling rate used
in DER and DER++.

As illustrated in Figure 7.2, performance consistently improves with larger memory
buffers, likely because additional stored latent representations per class provide
a more comprehensive coverage of the feature distribution. In the case of OCL
training on PhraseCut100, performance converges at a buffer size of B = 16,
beyond which further expansion yields only marginal gains. A similar observation
can be made for OCL training on ADE20K, where the convergence for most replay
frequency settings occurs already at a buffer size of B = 8.

11The DER/DER++ hyperparameters were searched over the interval {0, 0.1, . . . , 0.9, 1}. Note
that β is only defined for DER++.
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Figure 7.2: Effect of replay frequency and buffer size on the efficacy
of latent replay. The plot shows the effects of varying buffer sizes (powers of
two) and replay frequencies RF on two CRES datasets in both the CIL setting
(E = 10, |b| = 32) and the OCL setting (single-epoch, E = 1, and per-sample
updates, |b| = 1). In the OCL setting, latent replay uses |bR| = 16, which
explains the superior performance of the LR baseline over JFT, suggesting that
the benefits of larger batch sizes can outweigh strict i.i.d. assumptions in online
learning. Vertical lines indicate standard error bars.

Furthermore, in the CIL setting, replay frequency exerts limited influence on per-
formance unless it becomes excessively sparse (as at RF = 128 or RF = 512).
By contrast, replay frequency has a pronounced effect in the OCL setting, where
more frequent replay steps are favorable. Consequently, unless otherwise stated, we
adopt RF = 2 for the OCL setting and RF = 32 for the CIL setting in subsequent
experiments.

7.3.4 Balancing Spatially Aware and Global Noise

In Section 7.2.2, we propose to augment image features by combining spatially
aware noise augmentation with a mild degree of noise applied across all feature
dimensions. The primary objective is to prevent overfitting to the relatively limited
latent representations stored in M, while still preserving crucial information. By
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Figure 7.3: Effect of spatially aware vs. global noise on performance.
The heatmaps illustrate the effects of the spatially aware noise level α and the
global noise level β of NLR without noise applied to the text features (i.e.,
γ = 0). Results are shown under both the CIL and OCL settings, using two
distinct per-class buffer capacity values B and a random seed of 1993. The LR
baseline, which does not incorporate noise, is highlighted with a black box; the
highest, lowest, and LR baseline scores are displayed as text.

introducing small perturbations even to those features representing the region of
interest, we aim to achieve a broader coverage of the PTM’s latent space and
ultimately promote better generalization. To this end, our objective is to determine
the appropriate levels of both spatially aware and global noise to achieve this
enhanced generalization.

Figure 7.3 depicts the average performance of latent replay with noise augmenta-
tion applied to image features in both OCL and CIL settings, varying the levels of
spatially aware and global noise. Each block of the figure displays configurations
where points below the diagonal correspond to a larger spatially aware noise coef-
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ficient α relative to the global noise coefficient β. The bottom left corner of each
block denotes the LR baseline without noise.

The results indicate that excessive global noise undermines performance, often
falling below the LR baseline. In contrast, combining a stronger spatially aware
noise coefficient with a small global noise component (as shown in the bottom-
right region of each block) yields performance improvements between up to 0.9%
and 1.7%, depending on the particular values of α and β. These results suggest
that moderate perturbations applied to all image features, together with more
pronounced noise on background image features, enhance the effectiveness of stored
latents in the buffer. Notably, these gains persist even when the per-class buffer
size is very small (B = 4), highlighting the robustness of noise-augmented latent
replay in data-scarce conditions.

7.3.5 Addressing the Background Bias with Targeted Noise

In referring expression segmentation, the model is tasked with isolating the specific
object or region described by a textual query within an image. Because only a small
number of pixels typically belong to the target object, with most pixels constituting
the background, a model that is not well trained to recognize that object—whether
due to distribution imbalances or inadequate examples—may over-rely on predict-
ing background pixels as a “safe” default. This phenomenon is commonly known as
background bias. In a CL scenario with only a small memory buffer to store latents
of past samples for replay, we hypothesize this bias to become more pronounced,
since the model gains access to fewer examples from previous tasks as it encounters
new ones. As a result, it becomes increasingly difficult for the model to retain or
reinforce its capability to distinguish the target from the background, thereby am-
plifying the tendency to label infrequently seen or more challenging image regions
as background.

Consequently, our objective is to determine whether background bias persists under
latent replay and whether introducing a targeted combination of spatially aware
and global noise into the image features encourages the model to predict a larger
foreground area. Figure 7.4 illustrates, for different pairs of noise coefficients α and
β (cf . Equation (7.16)), the ratio between the average number of pixels classified
as foreground (i.e., the number of ones in the predicted segmentation mask) and
the ground-truth foreground pixels, computed over all validation samples. A value
of one implies that the size of the predicted foreground area exactly matches the
size of the ground-truth foreground area.

As shown in Figure 7.4, the ratio of predicted-to-true foreground areas for the LR
baseline, depicted in the bottom-left field of each heatmap, spans from 0.4 to 0.7,
with lower values when fewer buffer samples per class are available. This range
indicates that the model frequently mislabels too many pixels as background and
therefore suffers from background bias, which gets more pronounced the fewer la-
tent representations are available for replay to the modality interaction network. In
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Figure 7.4: Impact of spatially aware vs. global noise on predicted-
to-true foreground area ratio. The heatmaps display the average ratio of
predicted to ground-truth foreground pixels over the validation set under vary-
ing levels of spatially aware noise (α) and global noise (β), while text features
remain noise-free (γ = 0). Ratios exceeding one would indicate a bias toward
overestimating the foreground area, although no such bias was observed experi-
mentally.

contrast, for a moderate to high spatially aware noise coefficient α in combination
with a low-to-medium global noise coefficient β, this ratio tends to be substantially
higher, suggesting that our noise augmentation strategy reduces background bias
perturbing background features and prompting the model to focus more on salient
foreground regions. Examples that showcase this effect are provided in Figure 7.5.
Notably, in none of the configurations shown in Figure 7.4 does the predicted
foreground area exceed the true foreground area.

Although applying a high degree of spatially aware noise to background features
while using a moderate degree of global noise on all image features brings the
ratio of predicted-to-true foreground areas closer to one, this alone does not guar-
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the girl in white

all doughnuts
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the kids arm

black open part
of umbrella

Figure 7.5: Illustration of background bias in latent replay methods
for continual referring expression segmentation. Shown are failure and
edge cases from the RefCOCO dataset. Across every example, the models (some-
what) correctly locate the target object, yet their predicted foreground masks
(blue) encompass considerably fewer pixels than the ground-truth masks (red),
which can lead to the mIoU evaluation metric judging them as incorrect. Both
latent replay baselines exhibit this limitation; however, NLR consistently pro-
duces denser masks, indicating that it partially mitigates the background bias.
Both models were trained with B = 4 and seed 1993.

antee that the predicted and ground-truth foreground regions overlap sufficiently
to identify the target object accurately. The question remains whether the noise
augmentation approach not only leads the model to predict a larger foreground
region but also ensures that this region corresponds to the actual target object.
To investigate this, we compute the Pearson correlation coefficient between the
predicted-to-true foreground area ratio (cf . Figure 7.4) and the average accuracy
of each noise coefficient configuration (cf . Figure 7.3), evaluated separately for each
block in the heatmaps, i.e., per combination of dataset, CL setting, and memory
buffer size.
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PhraseCut100 ADE20K ADE20K
OCL OCL CIL

B = 4 0.95 0.88 0.83
B = 16 0.84 0.85 0.77

Table 7.2: Correlation between model performance and predicted-to-
true foreground area ratio. Reported values are Pearson correlation coeffi-
cients between the overall accuracy and the ratio between predicted and ground-
truth foreground area. All coefficients are computed separately for each buffer
size per class, dataset, and CL setting. The consistently large positive linear
correlation indicates the importance of strategies to address the background
bias problem for performance improvement in CRES scenarios, which can be
effectively done with targeted noise injection.

As shown in Table 7.2, the Pearson correlation coefficients range from 0.77 to 0.95
across all configurations, demonstrating a strong positive linear association be-
tween the predicted-to-true foreground area ratio and overall model performance.
This high correlation indicates that the additional pixels included in the predicted
foreground following noise augmentation accurately represent components of the
target object, rather than spurious background elements, which in turn enhances
accuracy. In summary, these results demonstrate that our proposed noise augmen-
tation technique effectively mitigates the background bias typically observed in
conventional latent replay approaches, thereby improving performance in CRES
problems.

7.3.6 Baseline Comparison

In the CIL setting, we compare NLR against a variety of regularization-based,
parameter allocation, and latent replay methods for CL. With SFT and JFT,
we additionally report results for sequential and joint fine-tuning of the modality
interaction network, respectively.

Table 7.3 demonstrates that NLR attains the highest post-training accuracy across
all datasets. It outperforms DER and DER++ while relying on smaller per-class
memories. Although WSN, a parameter allocation method, appears more effective
than regularization methods O-EWC and SPG, we observed its pool of free pa-
rameters rapidly diminish after only a few tasks, showcasing its scalability issues
for a large or potentially unbounded number of tasks.

Remarkably, the distillation-based methods DER and DER++ perform only on
par with the vanilla SFT baseline and even lag behind it on the split RefCOCO
benchmark. These findings indicate that distilling knowledge from few latent rep-
resentations is not only less effective than periodically replaying them directly, but
also inferior to naively fine-tuning model parameters without explicit protection
against catastrophic forgetting. This discrepancy can be attributed to the fact that
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Method B PhraseCut100 ADE20K RefCOCO

JFT – 64.6 ± 0.2 63.1 ± 0.4 68.5 ± 0.3

SFT – 52.3 ± 1.2 50.1 ± 0.5 56.2 ± 0.5

WSN0.3 – 58.8 ± 0.1 52.6 ± 0.3 55.2 ± 0.3

WSN0.5 – 57.9 ± 0.2 52.1 ± 0.3 53.3 ± 0.7

WSN0.7 – 57.0 ± 0.2 51.2 ± 0.2 53.2 ± 0.8

O-EWC – 53.1 ± 0.7 50.7 ± 0.6 56.4 ± 0.4

SPG – 34.0 ± 3.4 35.1 ± 1.6 40.0 ± 4.1

LR 4 57.5 ± 0.4 54.6 ± 0.2 58.2 ± 0.3

LR 20 59.1 ± 0.2 57.1 ± 0.1 59.5 ± 0.4

DER∗ 20 53.8 ± 0.7 50.2 ± 0.3 48.3 ± 0.4

DER++∗ 20 52.8 ± 0.8 50.3 ± 0.3 48.7 ± 0.4

NLR 4 59.6 ± 0.2 56.6 ± 0.3 60.6 ± 0.4

NLR 20 60.5 ± 0.3 57.5 ± 0.3 61.0 ± 0.4

Ablations

w/o Image Noise (α = β = 0) 4 58.4 ± 0.1 55.3 ± 0.3 58.9 ± 0.3

w/o Spatial Noise (α = 0) 4 59.0 ± 0.3 56.0 ± 0.4 59.3 ± 0.2

w/o Text Noise (γ = 0) 4 58.6 ± 0.3 55.7 ± 0.3 59.8 ± 0.1

Table 7.3: Performance comparison of parameter allocation, regular-
ization, and latent replay methods in the CIL setting. Average accuracy
scores after training on the last task are reported for parameter-allocation, reg-
ularization, and replay-based CL approaches. The subscript of WSN indicates
the percentage of masked (i.e., task-specific) parameters. It is noteworthy that
both WSN and SPG require task-specific information during training and infer-
ence, thus operating in a TIL rather than CIL setting, which poses a simpler
challenge.

knowledge distillation from memory regularizes the network only within the local
neighborhood of the few replayed activations, leaving the broader feature manifold
susceptible to drift when optimized for new tasks. In contrast, latent replay repeat-
edly injects representative anchor points that preserve the global geometry of the
shared representation space. Injected noise, as done with NLR, further expands
this manifold, which can additionally boost robustness against representational
drift.

Unsurprisingly, the performance of latent replay methods increases with larger
memory buffer size B, as more latents enable a model to better capture the distri-
bution of features for each object class. At the same time, the noise augmentation
mechanism in NLR surpasses conventional latent replay (i.e., LR baseline) while
storing 80% fewer latents in memory or delivering even higher performance with the
same memory size. This suggests that noise helps the model generalize more effec-
tively by successfully addressing the background bias common in CRES tasks (cf .
Section 7.3.5), even when as few as four sets of features are stored per observed
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Method B PhraseCut100 ADE20K RefCOCO

JFT – 58.8 ± 0.6 54.2 ± 0.8 59.8 ± 0.6

SFT – 48.4 ± 0.8 50.0 ± 0.5 48.9 ± 0.7

O-EWC – 48.7 ± 1.0 49.4 ± 0.7 50.6 ± 1.7

LR 4 55.7 ± 0.6 54.1 ± 0.3 54.5 ± 0.5

LR 20 57.9 ± 0.4 56.3 ± 0.5 56.7 ± 0.3

DER∗ 20 49.5 ± 0.3 48.8 ± 0.3 47.2 ± 0.7

DER++∗ 20 50.2 ± 0.7 48.9 ± 0.4 46.9 ± 0.8

NLR 4 57.0 ± 0.3 56.0 ± 0.2 57.5 ± 0.3

NLR 20 58.2 ± 0.2 57.2 ± 0.2 58.2 ± 0.1

Ablations

w/o Image Noise (α = β = 0) 4 56.3 ± 0.4 55.0 ± 0.1 55.7 ± 0.2

w/o Spatial Noise (α = 0) 4 56.5 ± 0.1 55.3 ± 0.3 56.1 ± 0.2

w/o Text Noise (γ = 0) 4 56.2 ± 0.2 55.3 ± 0.2 56.8 ± 0.1

Table 7.4: Performance comparison of regularization and latent replay
methods in the OCL setting. Average accuracy after continual training on
the final task achieved by methods that strictly satisfy the OCL protocol. All
baselines are trained for a single epoch (E = 1) with online, single-sample pa-
rameter updates (|b| = 1).

object class. Despite concerns about potential variability arising from sampling
these four latents, NLR still exhibits relatively low variability in practice.

We additionally compare NLR with regularization-based and latent replay ap-
proaches in the OCL setting, while also reporting SFT and JFT performance.
Notably, the JFT baseline does not necessarily serve as an upper bound for CL
model performance under OCL constraints. Although the i.i.d. assumption holds
and no distributional shift is present, updates in the OCL setting for every baseline
including JFT are performed one sample at a time in a single-epoch process, which
aligns with the common definition of OCL. In contrast, replay-based methods can
draw larger batches from memory while still satisfying OCL assumptions.

In Table 7.4, we present the comparative results for OCL. Consistent with the
findings from the CIL setting, NLR outperforms all other CL methods and yields
an absolute improvement of 3.0% over the JFT baseline on ADE20K. These results
indicate that the use of larger replay batches in combination with noise augmen-
tation not only mitigates the adverse effects of non-stationary data distributions
but also enhances the model’s overall generalization capabilities.

Consistent with our observations in the CIL setting, knowledge distillation em-
ployed by DER and DER++ fails to match the performance achieved by periodic
latent replay and fails to outperform the vanilla SFT baseline. In the OCL setting,
features of every individual training sample are concatenated with one replayed
set of features drawn from a constrained memory buffer and a distillation loss is
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computed over this composite input. This behavior exacerbates the aforementioned
problem of overly local regularization, which cannot adequately mitigate overall
representational drift. This shortcoming is particularly pronouned in segmenta-
tion problems: operating within a shared, pixel-wise output space, the distilla-
tion loss frequently degenerates—as confirmed by our preliminary hyperparameter
searches—preventing the network from converging to precise object boundaries
and locations.

By contrast, NLR yields absolute performance gains of 6.8–10.6% over these knowl-
edge distillation baselines while using only 20% of their memory buffer size (B = 4
vs. B = 20) at a comparable replay frequency. These results demonstrate that
NLR effectively makes multimodal integration networks robustly generalize in low-
resource, low-data conditions, where new data arrive one instance at a time and
the underlying distribution shifts gradually.

7.3.7 Ablation Study

The primary goal of our ablation study is to showcase the effectiveness of injecting
noise into both text and image features during latent replay. In particular, we in-
vestigate the impact of adding image feature noise in general, as well as applying
spatially aware noise. For all ablation experiments, we set B = 4. The correspond-
ing results can be found in the lower sections of Tables 7.3 and 7.4.

Across all datasets and CL settings, removing either image or text noise consis-
tently reduces performance, a result that highlights the importance of injecting
noise into features from both modalities during replay. Moreover, we observe that
omitting the spatially aware image noise described in detail in Section 7.2.2 con-
sistently yields a performance drop of up to 1.4%. In addition, although the global
text feature noise coefficient γ introduces slight perturbations to the target ob-
ject’s description, eliminating them altogether decreases performance. This result
corroborates our argument that even small amounts of noise, when applied to all
features, help the modality interaction network better generalize from the limited
set of stored latent representations.

7.3.8 Variability Analysis

In this section, we investigate how sensitive NLR is to (i) the replay frequency, i.e.,
how often during CL training a batch is sampled from memory for replay, and (ii)
different task counts, i.e., how many distributional shifts occur during CL training.
The analysis is conducted using the default noise parameter configuration that
was used in the main experiments (cf . Section 7.3.6), as we found that the trends
reported in the following are not greatly affected by varying the noise parameters
of NLR within the range examined in Section 7.3.4.

Effect of replay frequency RF . As demonstrated in Section 7.3.3, the effec-
tiveness of latent replay methods is sensitive to the choice of replay frequency, with

170



7.3. Experiments

2 8 32 128
34
38
42
46
50
54
58
62

P
hr
as
eC

ut
10
0

C
IL

A
A
T

(%
)

2 8 32 128
0
4
8

12
16
20
24

F
M

T
(%

)

2 8 32 128
34
38
42
46
50
54
58
62

P
hr
as
eC

ut
10
0

O
C
L

A
A
T

(%
)

2 8 32 128
0
4
8

12
16
20
24

F
M

T
(%

)
2 8 32 128

34
38
42
46
50
54
58
62

A
D
E
20
K

C
IL

A
A
T

(%
)

2 8 32 128
0
4
8

12
16
20
24

F
M

T
(%

)

2 8 32 128
RF

34
38
42
46
50
54
58
62

A
D
E
20
K

O
C
L

A
A
T

(%
)

2 8 32 128
RF

0
4
8

12
16
20
24

F
M

T
(%

)

Figure 7.6: Variability of NLR across replay frequencies. Average ac-
curacy (left) and forgetting (right) after training are reported for two different
datasets and CL settings using NLR with per-class buffer size B = 4. Vertical
lines indicate standard error bars.

higher values typically yielding improved performance. Since these experiments
were conducted using the standard LR baseline, we now assess how robust noise
augmentation implemented in NLR responds to variations in the replay frequency
parameter RF . Figure 7.6 reports the average accuracy and forgetting metric af-
ter continual training on the split datasets PhraseCut100 and ADE20K, evaluated
under both CIL and OCL settings for four distinct replay frequencies.12

We observe that replay frequencies between 2 and 32 yield relatively similar overall
performance and forgetting. However, at RF = 128, performance drops substan-
tially, accompanied by a marked increase in forgetting, an effect which is partic-
ularly visible for the OCL setting. In the case of OCL training on PhaseCut100,
such a sparse replay can even lead to performance that is worse than sequential

12RF = 32 is the default configuration for CIL baseline comparisons, whereas RF = 2 is used
as the standard in OCL baseline experiments (cf . Section 7.3.6).
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online updates without forgetting prevention mechanisms (as with the SFT base-
line, cf . Table 7.4). A plausible explanation is that excessively infrequent replay,
especially when noise is added, fails to stabilize feature representations and may in-
stead degrade their quality. Without consistent reinforcement, the model struggles
to differentiate meaningful variations from noise, leading to discrepancies between
the pre-output representations of current and previous tasks. This exacerbates
the vulnerability to representational drift in the modality interaction network and
impairs the recovery of accurate features from earlier tasks.

Effect of task count T . To examine whether the advantages of spatially aware
multimodal noise augmentation remain consistent under various task counts, we
measure the average accuracy and forgetting metrics after CL training using four
different task counts, T ∈ {10, 20, 50, 100}. Although T = 10 is a common choice
in the CL research literature, it can be too low to reveal how methods scale under
frequent distributional shifts or how effectively they handle open-ended scenarios.
At the other extreme, T = 100 constitutes the most demanding setting: in the
PhraseCut100 split dataset, it involves learning one object class at a time.13

As shown in Figure 7.7, each larger value of T causes the performance of NLR
to drop by about 1–3%, while the forgetting metric and its associated standard
error consistently increase. This behavior likely arises because learning only one or
a few object classes per task increases the model sensitivity to the task sequence
in the data stream, an effect that is amplified by the class imbalance in many
CRES datasets, as mentioned in Section 7.2.1. Nonetheless, the overall performance
reduction from T = 10 to T = 100 is limited to roughly 2.5–5%, underscoring the
robustness of NLR to multiple distributional shifts.

7.4 Discussion

Our results demonstrate that NLR effectively addresses the CRES challenge by se-
lectively replaying latent representations augmented with spatially aware statistical
noise. By periodically replaying these augmented multimodal representations, NLR
consistently mitigates catastrophic forgetting and enhances generalization across
a variety of experimental conditions, including both CIL and the more challenging
OCL setting.

A key insight we gained from our experiments is that maintaining a minimal per-
class memory—storing as few as four latent representations per object class—
outperforms most established CL baselines. This finding suggests that NLR can
operate under strict memory and privacy constraints without sacrificing perfor-
mance. Notably, the strategic application of noise—injecting stronger perturba-
tions into background features while applying milder perturbations to target ob-
ject features—reduces background bias. Improved alignment between predicted

13For baseline comparisons on PhraseCut100 and ADE20K (cf . Section 7.3.6), T = 20 is the
default configuration.
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Figure 7.7: Variability of NLR across task counts. This figure compares
the performance of NLR for different values of T . In our experiments, T = 10
represents the simplest scenario, whereas T = 100 corresponds to the most
challenging setting—particularly for PhraseCut100, where each object class is
learned sequentially. The memory buffer is fixed at B = 4 per class.

and ground-truth foreground areas confirms that the model learns to avoid over-
reliance on default background labeling, thereby enhancing segmentation accuracy
for both new and previously encountered classes. Our ablation study further reveals
that the observed performance gains are attributable to the combined application
of a small degree of global noise to both text and image features and a larger degree
of spatially aware noise to image features.

It is crucial to delineate the scope within which NLR is most effective. Our method
is purposely tailored for non-comparative tasks in which all predictions inhabit
a shared spatial output space, e.g ., as in object localization and semantic seg-
mentation. Its spatially aware noise augmentation presupposes an image-like in-
put modality whose two-dimensional topology guides location-dependent pertur-
bations. When NLR is transposed to simpler classification or regression problems,
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this spatial prior disappears: either the spatially aware noise component must be
omitted and replaced by globally uniform noise injected into the stored latents,
or an auxiliary generic image segmentation model must be used to derive pseudo-
spatial masks by separating foreground from background pixels in raw images.
Although both adaptations are theoretically viable, they have not yet been empir-
ically validated. Therefore, a systematic assessment of these variants constitutes
an open avenue for future research.

Nevertheless, from a broader perspective, the strong performance of NLR under-
scores the potential of further investigation into latent replay-based methods for
open-world multimodal tasks, with particular attention to maximizing the utility of
stored latents for recovering old data distributions. In contrast to earlier approaches
that rely on extensive exemplar sets or task-specific parameter expansion, NLR re-
mains task-agnostic and operates with only a minimal buffer of latent features—so
compact that these features effectively serve as prototypes. By combining this effi-
cient memory design with noise-driven, spatially aware feature augmentation, NLR
mitigates the drawbacks of excessive storage requirements and rigid task bound-
aries. Notably, it supports open-ended learning to the extent that only one object
class or concept is learned at a time, marking it as a promising strategy for scalable
and privacy-preserving CL in real-world multimodal applications.

7.5 Chapter Summary

In this chapter, we introduced NLR, a novel latent replay framework for continual
referring expression segmentation. By selectively retaining a small set of multi-
modal features per object class and augmenting them with targeted noise, NLR
mitigates catastrophic forgetting and delivers consistently high performance across
diverse experimental settings. Our analysis demonstrates that incorporating spa-
tially aware noise into background features while applying moderate perturbations
to foreground and textual features effectively counteracts background bias and
enhances segmentation accuracy. Empirical results reveal that NLR consistently
outperforms competitive baselines for continual learning, including conventional la-
tent replay and knowledge distillation methods, even when allocated fewer memory
resources.

Beyond its empirical merits, NLR operates in a fully task-agnostic manner and mit-
igates privacy concerns typically associated with storing raw images. Our approach
minimizes memory overhead, scales efficiently with an increasing number of tasks,
and maintains robust generalization without relying on explicit task delineations.
These results highlight the broad potential of targeted augmentation of stored
and periodically replayed latent representations—essentially, maximizing the in-
formation extracted from prototypical features—for privacy-sensitive real-world
applications and the advancement of open-world, multimodal continual learning
research.
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Chapter 8

Conclusion

8.1 Thesis Summary

In this thesis, we presented a comprehensive investigation and evaluation of multi-
ple approaches for downstream CL with foundation models. To improve real-world
applicability, we progressively relaxed the restrictive assumptions that typically
constrain models operating on non-stationary data streams. In doing so, we tran-
sitioned from reliance on single-source inputs to the integration of multimodal
information from diverse sources, thereby taking a critical step toward developing
models that are more robust to and capable of CL in challenging open-domain
scenarios.

We began by reviewing the rapid emergence of foundation models over recent years
and the paradigm shift they have driven in both unimodal and multimodal learning.
Afterwards, we highlighted the current progress in CL research, positioned it within
this evolving paradigm, and outlined the remaining research gaps.

Subsequently, in the second part of the thesis, we proposed novel methods for
CL using foundation models pretrained on unimodal tasks. In particular, we in-
troduced two innovative approaches: DRILL and LayUP. Each method leverages
prototypical representations in a distinct fashion. DRILL constructs class proto-
types via a topological mapping of the feature space, while LayUP exploits multi-
layer features that combine high-level with low-level statistical characteristics to
enhance class separability. Remarkably, LayUP achieves performance that exceeds
that of fully fine-tuning the foundation model, which shows how it successfully
maximizes the utility of unimodal foundation models. Additionally, we provided
best practices—tailored to the characteristics of specific datasets—for extracting
deep, multi-layer features with minimal memory and computational overhead yet
maximum performance.

In the third part of the thesis, our focus shifted to multimodal CL with founda-
tion models, with an emphasis on VL grounding tasks. In light of the relatively
sparse research at the intersection of foundation models and multimodal CL, we
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commenced with a detailed analysis of how various components within modality in-
teraction networks impact task-sequential learning. Based on these findings, we de-
veloped straightforward CL baselines, denoted as SMS, which designate only select
components of the modality interaction network as task-specific while sharing the
remaining components across tasks. Furthermore, we enhanced SMS by integrating
a neurocognitively inspired adaptation and consolidation scheme, demonstrating
its high efficacy for preserving learned knowledge over sequential tasks.

Recognizing that SMS necessitates task-specific knowledge during inference, we
subsequently introduced a successor method that relaxes these requirements while
maintaining efficiency and effectiveness. Specifically, we identified latent replay
as a promising strategy for downstream CL with multimodal foundation models
and proposed our novel noise augmentation approach, NLR, which substantially
reduces assumptions used to derive CL desiderata we established in the first part
of this thesis. NLR offers a highly efficient and versatile solution for a wide range
of real-world multimodal CL applications, as exemplified by in-the-wild continual
referring expression segmentation.

8.2 Discussion

Within the scope of this work, we sought to address the research challenge of
developing efficient and versatile CL methods that enable foundation
models to be incrementally fine-tuned on sequences of diverse and com-
plex unimodal and multimodal tasks, all while preserving previously
acquired capabilities. We pursued this overarching objective by devising four
distinct methodologies for CL, two tailored to unimodal and two designed for
multimodal foundation models. A high-level comparison of these methodologies
with respect to efficiency and versatility criteria is provided in Table 8.1. These
methodologies underpin four primary research objectives detailed in Section 1.2,
each of which directly contributes to the achieving of the overarching goal of this
thesis.

Integrating topology-aware prototypical feature replay from a self-orga-
nizing network within a dual-memory architecture diminishes sensitiv-
ity to task order and enhances predictive accuracy in CL scenarios with
imbalanced data (Objective 1 ). We have shown in Chapter 4 that sequen-
tial fine-tuning of unimodal foundation models on class-imbalanced data—without
mechanisms to counteract forgetting—drastically undermines performance, par-
ticularly when underrepresented classes occur early in the data stream. Based on
these findings, we have demonstrated that integrating a topology mapping of the
feature space of the foundation model within a self-organizing network architecture,
together with a frequency-based prototype sampling mechanism, provides better
control of the representation shift by stabilizing the learning trajectory of the foun-
dation model, preserves the integrity of features particularly for heavily underrep-
resented classes, and recalibrates the prediction head to mitigate task-recency bias.
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8.2. Discussion

CL Desiderata
DRILL LayUP SMS NLR

Chapter 4 Chapter 5 Chapter 6 Chapter 7

Learning Efficiency ✓ ✓ ✓ ✓

Overcoming Forgetting ✓ ✓ ✓ ✓

Task-agnostic Learning ✓ ✓ ✗ ✓

Open-ended Learning ✓ ✓ ✓ ✓

Resource Efficiency ✗ ✓ ✓ ✓

Exemplar-free Retention ✗ ✓ ✓ ✓

Unimodal Label Prediction ✓ ✓ ✓ ✓

Multimodal Reasoning ✗ ✗ ✓ ✓

Table 8.1: Comparison of the proposed CL methods with respect to
versatility and efficiency criteria. Most properties related to efficiency and
versatility derive from the established CL desiderata (cf . Section 3.2.2). Orange
checkmarks denote partial compliance—e.g ., leveraging task-specific signals dur-
ing training but not inference (task-agnostic learning) or satisfying efficiency
goals that hinge on the split between shared and task-specific parameters (re-
source and learning efficiency). Although unimodal label prediction and multi-
modal reasoning are not canonical desiderata, they capture practical challenges
that arise as CL moves beyond traditional classification (Mitchell et al., 2025).
While the core ideas behind SMS and NLR—selective specialization of trainable
parameters and noise augmentation to stored latent features—are, in principle,
applicable to label prediction problems such as classification and regression, they
were originally conceived and empirically validated for dense, structured-output
problems like object localization and semantic segmentation.

When integrated with meta-learning and episodic exemplar replay, this methodol-
ogy substantially reduces performance variability in single-epoch class-incremental
learning settings, irrespective of task order and heavy data imbalances.

Aggregating first- and second-order feature statistics across multiple
layers of a unimodal foundation model greatly enhances class separabil-
ity, domain invariance, resource and learning efficiency in exemplar-free
prototype-based CL (Objective 2 ). We have demonstrated in Chapter 5 that
explicitly capturing multiple abstraction levels in foundation models enhances the
robustness of prototype-based classifiers against domain shifts, leading to signif-
icant improvements in classification performance, particularly when pretraining
and fine-tuning domains diverge greatly or labeled data are scarce. Although the
computational and memory demands increase with the number of layers used for
feature extraction, we have found that selecting features from the latter half of the
foundation model offers an optimal balance between accuracy and resource effi-
ciency. Additionally, we have established best practices for layer depth choice tai-
lored to the characteristics of the fine-tuning tasks. Ultimately, integrating multi-
layer features of a unimodal foundation model for prototype construction serves
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as a versatile plug-in applicable to any CL scenario, independent of specific data
presentation assumptions.

Selecting a targeted subset of network components for task-specific
adaptation and alternating their updates with shared components is
a resource-efficient and effective strategy to balance the trade-off be-
tween specialization and generalization in multimodal CL with founda-
tion models (Objective 3 ). We have introduced in Chapter 6 two diagnostic
datasets with a clearly defined shared task structure, enabling a comprehensive
analysis of modality interaction networks to pinpoint components that distinguish
subtle task differences. Drawing on these insights, we have devised heuristics as
well as importance-based metrics for selective specialization strategies that store a
subset of component parameters in a buffer, which can be flexibly integrated into
the model during inference. Moreover, we have demonstrated that a developmental
psychology-inspired learning scheme—alternating multiple task adaptation steps
of task-specific components with a single consolidation step updating task-sharing
components—improves performance in task-incremental learning settings by pro-
tecting parameters critical for cross-task generalization against frequent disruptive
updates. In particular, we have shown that, with a well-designed model decom-
position strategy, making less than 1% of the modality interaction parameters
task-specific can achieve strong performance and, in some cases, enable learning
where previous baselines have failed.

Spatially aware statistical noise on latent features effectively mitigates
background bias in latent replay for multimodal CL, substantially re-
duces storage requirements, and remains exemplar-free, task-agnostic,
and universally compatible with any CL setting (Objective 4 ). In Chap-
ter 7, we have demonstrated that latent replay is a promising, privacy-preserving
strategy for multimodal CL under minimal assumptions about data presentation.
However, our empirical results revealed that storing a too small set of latents leads
to overfitting and background bias, causing the model to predict overly large back-
ground regions that obscure the region of interest. We have proposed a strategy
to automatically delineate language-informed foreground from background image
features using ground-truth information about the region of interest in the original
image space. Based on this, we have shown that injecting modest noise into text
features and foreground image features, while adding stronger noise to background
image features, allows a vision-language interaction network to more accurately
identify the target object in continual referring expression segmentation tasks.
Our approach is applicable to a wide variety of foundation model and modality
interaction network architectures, allowing up to 80% reduction in stored latents
without sacrificing performance, while meeting the CL desiderata described in this
thesis.
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8.3 Future Work

In this thesis, we have successfully developed and evaluated methods for down-
stream continual learning with foundation models, such as BERT, ViT, or CLIP.
Although we believe that our proposed approaches are widely applicable across
various CL scenarios and challenges, significant hurdles remain in achieving gen-
uinely open-ended and unconstrained continual learning, which we discuss in the
following.

Continual upstream pretraining. One central research challenge is how to
continuously update the pretrained weights of foundation models, as opposed to
continually fine-tuning them for specific downstream tasks, which is the focus of
this thesis. Typically, such updates employ unsupervised or self-supervised learn-
ing schemes. Cossu et al. (2024) select a subset of pretraining data within a fixed
budget using a median-loss alignment criterion, although they assume full access
to historical data. Gupta et al. (2023) examine “rewarming” language models, i.e.,
re-increasing the learning rate on new data, but do not show compelling results. In
contrast, the adaptation and consolidation scheme in SMS could improve simple
rewarming by splitting training into multiple adaptation and stabilization phases,
adjusting the learning rates accordingly. Another promising direction is layer-wise
adaptation: while early layers remain relatively fixed to preserve cross-domain
knowledge from initial pretraining, later layers adapt to new data from recently
introduced corpora. This principle underlies LayUP, which leverages representa-
tions at different layer depths. In a similar vein, extending the NLR method could
involve storing latents extracted from layers designated to remain fixed, then using
noise-augmented replay to retrain subsequent layers.

Continual training of generative LLMs. Generative LLMs such as GPT-4
(OpenAI et al., 2024) and Llama (Dubey et al., 2024) are trained via multi-stage
pipelines—pretraining, instruction tuning, and alignment—each of which can ben-
efit from tailored CL strategies (Wu et al., 2024a). For example, while updating
factual knowledge, regularization may be used to preserve instruction-following
skills. The immense scale of these models demands parameter-efficient approaches
and architectures that integrate external memory (e.g ., through retrieval-based
methods). Such external memory supports dynamic access to previously acquired
knowledge, complementing techniques that update only the model weights. How-
ever, both retrieval-based and model adaptation methods largely address narrow
updates to specific facts or domains. CL, in contrast, could provide a holistic
framework to concurrently refine language fluency, multi-step reasoning, and world
knowledge. One promising direction involves leveraging LLMs within the CL loop,
e.g ., by generating pseudo-data or explanations for past tasks, or by maintain-
ing an LLM-based memory module that evolves with experience. Methods like
DRILL, which preserves topology-aware feature representations, could be adapted
to safeguard critical latent features in LLM hidden states, while noise augmentation
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methods such as NLR may help rehearse diverse linguistic patterns by replaying
noise-augmented pseudo-text sequences resembling prior knowledge.

Leveraging compositionality for continual learning. Real-world tasks of-
ten decompose into reusable components, yet standard CL methods typically treat
each task independently. Benchmarks such as LILAC-2D (cf . Section 6.3.1) sys-
tematically recombine concepts like color, object, and direction and thus reveal
whether a model truly learns core abstractions or simply memorizes instances.
Our multi-layer representation method LayUP could be extended to capture these
compositional factors. For example, prototypes at different layers can encode dis-
tinct concepts (ranging from low-level attributes to high-level features) and be
recombined for rapid adaptation to novel combinations of known concepts. Simi-
larly, specialized intra-layer adapters aligned with specific conceptual dimensions
could be reused and recombined when familiar concepts recur, a strategy taking
inspiration from both our SMS method and mixture-of-expert approaches for CL
(e.g ., Yu et al., 2024; Zhu et al., 2024). Alternatively, future directions leveraging
compositionality for generation, instruction following, and program synthesis may
integrate generative or latent replay—potentially augmented by targeted noise as
in NLR—with compositional reasoning to produce synthesized samples that com-
bine learned primitives.

Embodied continual learning. When CL shifts from static datasets to em-
bodied agents, challenges related to partial observability, real-time adaptation,
and tight resource constraints emerge. Agents must not only learn incrementally,
but also strategically decide how to gather experience—for example, by revisiting
tasks or querying a teacher LLM if performance declines (Yoo et al., 2024). The
interplay of perception, action, and memory necessitates innovative approaches
that take advantage of the agent’s ability to interact and probe its environment
(Mendez-Mendez et al., 2023). Building on the methodologies put forth in this
thesis, an agent could maintain compact latent prototypes or noise-augmented
features to rehearse previously acquired skills. DRILL’s topological replay, for in-
stance, preserves robust perceptual maps, while SMS-like selective specialization
controls which motor or sensor parameters are updated with each new task. Pe-
riodic consolidation phases further ensure that older behaviors remain accessible.
In robotics, where multiple tasks draw on shared subroutines (grasping, pushing,
etc.), skill compositionality is crucial. Mechanisms that encode such subskills as
recomposable modules can reduce forgetting by refining existing building blocks
or generating new ones when needed (Mendez et al., 2022). By integrating these
strategies with the resource-efficient, prototype-based techniques presented in this
thesis, embodied CL agents could systematically broaden their skill repertoires in
complex, ever-evolving real-world settings.
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8.4 Final Remarks

In summary, this thesis pushes the boundaries of foundation models by deploy-
ing a spectrum of downstream fine-tuning techniques to enable effective sequen-
tial learning across both unimodal and multimodal tasks. We have demonstrated
that applying unsupervised topology mapping to the feature space effectively sta-
bilizes the learning trajectory of foundation models during continual learning,
and extracting features from multiple intermediate layers for prototyping helps
bridge distributional gaps between the pretraining and downstream continual fine-
tuning domains, while simultaneously improving class separability even in low-data
regimes. We have further shown that decomposing modality interaction networks
into task-sharing and task-specific components and optimizing them via an inter-
mittent adaptation-consolidation strategy protects critical model parameters from
frequent disruptive updates when learning multimodal tasks sequentially. Finally,
augmenting a minimal set of prototypical features extracted from a foundation
model with spatially aware noise provides a highly efficient and versatile approach
to acquiring sequences of challenging multimodal reasoning tasks without impos-
ing restrictive assumptions about data type or presentation. Although open-ended
continual learning in real-world scenarios remains challenging, this thesis repre-
sents a significant leap toward agents capable of operating in dynamic, real-world
environments where information becomes progressively available over time.
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Appendix A

Nomenclature

Acronyms

AI Artificial Intelligence
BMU Best-Matching Unit
BN Batch Normalization
CIL Class-Incremental Learning
CL Continual Learning
CLS Complementary Learning Systems
CNN Convolutional Neural Network
CRES Continual Referring Expression Segmentation
CV Computer Vision
DIL Domain-Incremental Learning
ER Experience Replay
FFN Feed-Forward Network
FSA First Session Adaptation
JFT Joint Fine-Tuning
LLM Large Language Model
LN Layer Normalization
MHA Multi-Head Attention
NLP Natural Language Processing
NMC Nearest-Mean Classifier
OCL Online Continual Learning
PEFT Parameter-Efficient Fine-Tuning
PL Prediction Layer
PTM Pretrained Model
RNN Recurrent Neural Network
SFT Sequential Fine-Tuning
SGD Stochastic Gradient Descent
TIL Task-Incremental Learning
VL Vision-Language
VLM Vision-Language Model

187



Appendix A. Nomenclature

Notations

v Scalar
v Vector
M Matrix
fθ(x) Function of x parameterized by θ
hl Hidden/intermediate representation at the lth network layer
dl Dimensionality of hl
T The space of all tasks
t Task index
Xt The space of input samples of the tth task
xt,n nth input sample associated with the tth task
Yt The space of output labels of the tth task
yt,n Output label of input sample xt,n
Dt Training dataset of the tth task
Bt Space of batches of the tth task
Dtest Test dataset
Nt Number of training samples of the tth task
θ Trainable neural network parameters
Ω Importance score of neural network parameters

Symbols and Operations

(x1, . . . , xn) Sequence of n elements
[a; b] Concatenation of vectors a and b
⊙ Dot product
⊗ Hadamard product (element-wise multiplication)
||v|| L2 norm of v

JP K Iverson bracket: JP K =

{
1 if P is true
0 otherwise

Measurements and Metrics

AA Average Accuracy
BWT Backward Transfer
FM Forgetting Measure
FWT Forward Transfer
IoU Intersection over Union
MMD Maximum Mean Discrepancy
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Publications Originating from this
Thesis

Journal Articles

• Ahrens, K., Lehmann, H. H., Lee, J. H., Wermter, S. (2024). Read Be-
tween the Layers: Leveraging Multi-Layer Representations for Rehearsal-Free
Continual Learning with Pre-Trained Models. In Transactions on Machine
Learning Research (TMLR).

• Becker, D., Braach, L., Clasmeier, L., Kaufmann, T., Ong, O., Ahrens, K.,
Gäde, C., Strahl, E., Fu, D., Wermter, S. (2024) Influence of Robots’ Voice
Naturalness on Trust and Compliance. In ACM Transactions on Human-
Robot Interaction (THRI), 14(2):1–25.

Conference Papers

• Ahrens, K., Abawi, F., Wermter, S. (2021) DRILL: Dynamic Represen-
tations for Imbalanced Lifelong Learning. In International Conference on
Artificial Neural Networks (ICANN), pages 409–420.
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Directions via Multi-Task Learning. In International Joint Conference on
Artificial Intelligence (IJCAI), pages 1039–1045.
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International Conference on Robot and Human Interactive Communication
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• Ahrens, K., Bengtson, L., Lee, J. H., Wermter, S. (2023) Visually Grounded
Continual Language Learning with Selective Specialization. In Findings of
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ulary Image Classification: Zero-Shot Transfer from Text to Image via CLIP
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