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Introduction 1 

1 Introduction 

Risk management has become a crucial aspect of modern organizations (Aven, 2012; 

Power, 2004). Managing risks effectively enables organizations to navigate uncertainty, 

capitalize on opportunities, and protect their financial stability and reputation. As organ-

izations face a multitude of potential threats, ranging from financial and operational to 

legal and reputational, adopting a proactive risk management strategy is essential to en-

sure their long-term success and sustainability (Hopkin and Thompson, 2022). 

To aid organizations in their risk management efforts, numerous techniques, recommen-

dations, and standards have been developed. These resources provide businesses with 

valuable guidance and best practices for identifying, assessing, and mitigating risks asso-

ciated with their operations. By leveraging these tools, organizations can create tailored 

risk management frameworks that address their specific needs and challenges, thus en-

hancing their decision-making processes, optimizing resource allocation, and bolstering 

their resilience to external shocks (Hunziker, 2019; Kewell and Linsley, 2017; Ostrom 

and Wilhelmsen, 2019). 

Organizations aim to employ best practices for risk management to ensure their success 

in a competitive landscape. By adhering to established standards and recommendations, 

businesses can demonstrate a commitment to responsible management and strengthen 

stakeholder confidence. Furthermore, implementing effective risk management practices 

can help organizations maintain regulatory compliance, minimize legal liabilities, and 

foster a culture of risk awareness throughout the organization. 

As organizations rely on best practices and recommendations for risk management, it is 

crucial that sound, up-to-date advice is available to facilitate effective decision-making 

(Bromiley et al., 2014). Reputable sources, such as industry experts, regulatory bodies, 

and professional associations, play a vital role in developing and updating guidelines to 

ensure that organizations have access to the latest knowledge and best practices (e.g. 

Aven and Renn, 2010; COSO, 2004; ISO, 2009; Rausand, 2011). Academic research can 

contribute by testing the actual effectiveness of advice and best practices in risk manage-

ment. By, for example, conducting empirical studies or analyzing real-world scenarios, 

researchers can validate the effectiveness of existing guidelines, identify potential gaps, 

and contribute to the development of more robust and comprehensive risk management 
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advice (e.g. Lucas, 2001). This, in turn, enables organizations to make informed decisions 

regarding the risks they face. 

Despite the importance of risk management for organizations, there is still a notable lack 

of knowledge regarding the actual effectiveness of various risk management practices and 

how they should be implemented (Aven, 2012; Bromiley et al., 2014; Fraser et al., 2009; 

Schmit and Roth, 1990).1 This lack of knowledge can hinder organizations in their quest 

for effective risk management, as they may struggle to determine which practices are 

most suitable for their unique context and needs (Fraser et al., 2009). Consequently, it is 

crucial to bridge this knowledge gap. Academic research can contribute to the develop-

ment of more effective risk management practices by evaluating the proposed practices. 

Researching the effectiveness of risk management practices, however, presents many 

challenges. One of the primary obstacles is the inherent difficulty in differentiating be-

tween effective and ineffective practices (McGrew and Bilotta, 2000). The effectiveness 

of the entirety of the risk management of an organization can be evaluated through a 

number of measures, each with its own strengths and limitations. For example, one can 

scrutinize the alignment between the risk management strategies employed and the or-

ganization's overall objectives (Beasley and Frigo, 2007; Sobel and Reding, 2004). An 

effective risk management practice should demonstrably contribute to the achievement 

of these objectives. Additionally, the frequency and severity of unexpected events or 

losses can be used as indicators of risk management effectiveness (Zwikael and Ahn, 

2011). A lower incidence rate may signify a more robust risk management system. Fur-

thermore, the responsiveness to and recovery time from adverse events can serve as met-

rics for risk management effectiveness. The quicker an organization can return to its nor-

mal operations after a disruption, the more effective its risk management practices may 

be considered (Kumar and Park, 2019; Sodhi and Tang, 2009). Finally, an organization's 

level of compliance with industry standards and regulations can also provide insights into 

the effectiveness of its risk management practices (Lundqvist, 2014; Tamimi, 2021). 

 
1 Bromiley et al. (2014, p. 273) find that “[t]o contribute to the ongoing ERM discussion, management 

scholars need to take a more prescriptive stance and pay more attention to the effectiveness of different 

practices and activities.” Fraser et al. (2009, p. 399) see a “critical need for more detailed ‘real-world’ 

applications on ERM”. Furthermore, they provide the assessment of a practitioner (Fraser et al., 2009, 

p. 399) that “[t]he impact of corporate culture on ERM implementation and practices is not well ad-

dressed in the literature.”   
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However, since risk management is often deeply integrated into an organization's opera-

tions, isolating the effect of individual practices for scrutiny can be a difficult task. This 

is further complicated by the fact that the impacts of risk management decisions often 

materialize over long periods, making it difficult to establish causal links (Schmit and 

Roth, 1990). Consequently, it becomes difficult to determine whether a successful out-

come is a product of effective risk management practice, luck, or other organizational 

processes. 

In previous research, especially laboratory experiments have been used to investigate in-

dividual risk management practices. For example, Lee et al. (2019) investigate the impact 

of mental construal on risk management activities in a web-based experiment with IT 

project managers. Keil et al. (2000) use a laboratory experiment to measure how risk-

related information affects the risk assessment of software development projects. O’Don-

nell and Prather-Kinsey (2010) compare the risk assessment of auditors in standardized 

tasks to identify the impact of the auditors’ nationality. Beyond the investigation of risk 

management practice, laboratory experiments have been conducted extensively to inves-

tigate individuals’ risk perception and risk attitude and their associated behavior (e.g., 

Arbis et al., 2016; Bajtelsmit et al., 2015; Mear and Firth, 1988; Weber and Hsee, 1998). 

While the previously mentioned experiments focus on the decision-making of individu-

als, some studies have also performed laboratory experiments with groups that collabo-

rate in risk management-related tasks. For example, Valacich et al. (2009) compare the 

decision-making of groups depending on the risk preference of the firm they work in, the 

information distribution within the team, and the mode of communication (computer-

mediated or face-to-face). Vriezekolk et al. (2015) assess the reliability of a specific risk 

assessment method (the RASTER method) by asking teams of participants in a laboratory 

experiment to collaboratively assess risks. 

Laboratory experiments allow researchers to control the environment and context in 

which participants make decisions. As much of risk management practice can be de-

scribed as information processing and decision-making (Fenton and Neil, 2019), a main 

benefit of laboratory experiments to research risk management practices is the possibility 

to control the information available to the experiments’ participants and to record the 

decisions made by the participants based on the information provided to them in a struc-

tured format (e.g., the experiment can provide specific information regarding a risk and 

ask for a risk assessment within a fixed framework). 
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While laboratory experiments have been successfully used to investigate risk manage-

ment practices, they share some limitations that are difficult to overcome in laboratory 

experiments with human participants. First, experiments that involve human participants 

are limited with respect to the number of participants and experimental treatments that 

can be included in a study, due to the financial costs associated with the method (Fried-

man and Sunder, 1994, p. 5).2 This makes it difficult to detect small effects that require a 

high number of repetitions to become evident. And second, while the information pro-

vided to the participants can be controlled and the participants can be surveyed to reveal 

their thoughts, it is still difficult to know what the participants are thinking at each point 

of the experiment, e.g., at the moment they change their mind regarding a risk assessment 

(Nisbett and Wilson, 1977). 

One possible method to evaluate the effectiveness of risk management practices that is 

not limited in this regard is the use of simulation experiments. Simulation experiments 

provide a controlled environment in which the effects of different interventions can be 

closely observed and evaluated (Axelrod, 1997). This method provides a way to under-

stand and quantify the effectiveness of different risk management practices by systemat-

ically applying them in a controlled environment with a potentially unlimited number of 

repetitions. 

So far, there is a lack of research that capitalizes on the benefits of simulation studies to 

further expand our understanding of how to effectively manage risks. One of the core 

benefits of simulation experiments is the possibility to control complex systems with 

many potential variables and interactions (Axelrod, 1997), like a face-to-face group dis-

cussion. Because simulation experiments do not experiment with the subject itself but a 

model of the subject (Gilbert and Troitzsch, 2005, p. 15), they provide full control of the 

experiment, which makes them well suited especially for complex systems like organiza-

tions (Harrison et al., 2007). Simulation experiments can be used for theory development 

(Davis et al., 2007), to reveal relationships between variables (prediction), to test possible 

mechanisms that lead to observed relationships (explanation), or to suggest improvements 

for organizational procedures (prescription) (Harrison et al., 2007). 

 
2 Sometimes, laboratory experiments are highlighted to have low costs, compared with other methods (Falk 

and Heckman, 2009). We compare costs of conducting laboratory experiments to those of simulation 

experiments, where costs of raising the number of repetitions are neglectable, compared to laboratory 

experiments. 
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In the context of researching risk management practices, simulation experiments are es-

pecially interesting because the cognition of the involved participants (e.g., how they 

weigh specific information regarding a risk) plays a crucial role in the risk management 

process. In simulation experiments, a cognitive architecture is implemented to represent 

the actual cognition. The cognitive architecture allows a detailed understanding of how 

information is processed and how it influences the decision-making of the (simulated) 

individual (Sun and Naveh, 2004). 

Conducting a simulation experiment requires a well-specified setting in order to build a 

model that is sufficiently similar to reality (Gilbert and Troitzsch, 2005, p. 15). For the 

purposes of this study, we choose a setting that is a typical component of risk management 

in organizations: The assessment of risks by a group of experts during a risk workshop. 

Risk workshops are a method to gather perspectives and information from multiple stake-

holders to inform a risk assessment (COSO, 2017). They are commonly used in practice 

and play a key role in the risk management process (Quail, 2011). However, while some 

guidance has been published on how to facilitate a risk workshop (Hunziker, 2019; Quail, 

2011), little research is available that evaluates the effectiveness and impact of the advice 

provided. 

Simulation experiments are potentially well-suited to investigate risk workshops, as they 

allow us to monitor and control in detail the characteristics of participants, their cognition 

and behavior, as well as their interaction with each other. Modeling a risk workshop re-

quires choices regarding the implementation of two critical systems: The individual cog-

nition of the participants and the interaction of the participants with each other: 

• Model of interaction: The model of interaction concerns the exchange between 

the participants of a risk workshop. In a typical face-to-face workshop, partici-

pants will talk to each other regarding a particular risk and share their individual 

risk assessments. A well-established method to model the interaction of (human) 

actors for simulation experiments is agent-based modelling (Gilbert and 

Troitzsch, 2005; Railsback and Grimm, 2011). It has already been applied to sim-

ulate group work (e.g., Lorscheid and Meyer, 2021; Son and Rojas, 2011), but not 

risk workshops specifically. 

• Model of cognition: Each agent in an agent-based model needs at least some rules 

that determine its behavior and that model its cognition. The complexity of the 
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model of cognition depends on the requirements of the simulation experiment 

(Gilbert, 2005). A cognitive architecture is needed when both the social and the 

cognitive levels are important to the modeled setting (Gilbert, 2005).  Choosing a 

cognitive architecture for agents in an agent-based model can be challenging. 

However, we can build upon work from the field of risk management that is con-

cerned with the modeling of risks (e.g., Fenton and Neil, 2019) to build a model 

of how agents process information about risks. 

Using the model we build from these two components – the model of interaction within 

a risk workshop and the model of the participants’ cognition –we aim to answer the fol-

lowing research question: How to facilitate an effective risk workshop3? The model al-

lows us to perform simulation experiments on risk workshops where we measure the im-

pact of group characteristics, individual behavior, decision-making rules, and choices of 

the workshop facilitator on the effectiveness of the workshop. 

Another factor that impacts risk management practice, but which is not covered explicitly 

by the first simulation study, is culture (Ring et al., 2016). The impact of culture on risk 

management practice has been identified as a question in need of further research (Bro-

miley et al., 2014; Fraser et al., 2009). While ‘culture’ can refer to different concepts in 

the context of risk management (Ashby et al., 2012; Bromiley et al., 2014), we focus on 

the calculative culture (Mikes, 2009; Power, 2007) of the organization that performs the 

workshop, which can be modeled by adapting the cognitive architecture of the workshop 

participants. Therefore, we perform two simulation experiments using two distinct mod-

els that correspond to the two calculative cultures that Mikes (2009) calls ‘quantitative 

skepticism’ and ‘quantitative enthusiasm.’ This allows us to answer a second research 

question: How should a risk workshop account for the predominant calculative culture in 

order to be effective?  

Chapter 4 describes the results of the simulation experiment under quantitative enthusi-

asm. Chapter 5 describes the results of the simulation experiment under quantitative skep-

ticism and compares the results of both experiments. 

 
3 We understand effectiveness of a risk workshop as the workshop’s ability to reach a correct risk assess-

ment within limited time. 
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In the following Chapter 2, I provide the theoretical background of this study, which 

builds upon previous research on risk and risk management, before I discuss the method-

ology used for the study in Chapter 3. Chapter 4 and Chapter 5 will present the results of 

the two simulation studies that were conducted for this thesis.4 

 

  

 
4 Additionally, Appendix 1 provides a glossary of important terms used throughout the thesis. Appendix 6 

contains a brief summary of the thesis in German and English. Appendix 7 provides a list of publications 

that are associated with the thesis project.   
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2 Theoretical Background 

2.1 Risks and uncertainty 

Risks are omnipresent in modern society, so much so that sociologist Ulrich Beck has 

described our contemporary society as a "risk society," the successor of the "industrial 

society" (Beck, 1992). Beck (1992) argues that modern society's production of wealth 

comes with a production of risks. These risks need to be distributed within society, and 

discussion and negotiation related to the distribution of risks have become a fundamental 

aspect of public discourse, which results in a high risk awareness for both individuals and 

institutions. 

Giddens (1999) highlights that the concept of risk is a relatively recent one. While people 

throughout human history have always faced dangers and hazards, risk is more than that. 

It is an inherently future-oriented concept and links future hazards to current decisions 

that potentially affect them (Giddens, 1999). Thus, uncertainty about the future and the 

possibility of influencing the future are cornerstones of the idea of risk. For example, a 

gambler must decide whether to take a bet without knowing the outcome. However, the 

gambler might reason about the probability of specific outcomes and can use that to assess 

the risk associated with the bet. 

Luhmann (1993) describes that technological progress transforms hazards into risks by 

providing means to avoid the hazard: The existence of umbrellas makes 'getting wet' a 

risk one takes by not carrying an umbrella (Luhmann, 1993). 

While there is no universally accepted definition of the term 'risk' (Aven, 2012; Luhmann, 

1993), and even the origin of the modern meaning is disputed (Beck and Kewell, 2014), 

there is a common understanding that risks are related to decisions that impact future 

events. This directly leads to the question of how to make good decisions in the presence 

of risks. In the following, I will discuss how risks have been conceptualized to make them 

accessible to a systematic approach towards managing risks.  

2.1.1 Types of risks 

Several classifications of risks have been proposed over time, focusing on different as-

pects of risks. In the following, I discuss the classification of risks regarding the 
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knowledge associated with them, the threats they are linked to, and their origin. Under-

standing the different types of risks is necessary to build a model of a risk that matches 

the risks an organization actually faces.  

One possibility is to classify risks based on knowledge and understanding of the under-

lying problem. For example, the Society for Risk Analysis (Aven et al., 2023) distin-

guishes between simple and complex, uncertain and ambiguous risk problems (Aven and 

Renn, 2010).  

The distinction between simple and complex risk problems concerns the difficulty of pre-

dicting the outcome of events, which is based on the quality of understanding the under-

lying mechanisms governing the relationship between actions or events and their results. 

Aven and Renn (2020) give smoking as an example of a simple risk problem (it is well-

understood that smoking will lead to lung cancer with a certain probability). Their exam-

ple for complex risk problems is critical infrastructure systems (for example, events in an 

electrical grid might have surprising and unforeseen consequences because of unknown 

or poorly understood interdependencies). 

Uncertainty of risk problems refers to the difficulty associated with correctly predicting 

both the occurrence and the outcome of events or actions (Aven and Renn, 2020). For 

example, while smoking is a simple risk problem, it might be highly uncertain whether a 

specific individual will develop lung cancer due to smoking (uncertainty of occurrence). 

Likewise, in the case of a malfunctioning component of an electrical grid, it might be 

uncertain how the malfunction will influence the remainder of the grid (uncertainty of 

consequences). 

Uncertainties are often further classified as epistemic or aleatory uncertainty, depending 

on the source of uncertainty. While aleatory uncertainty is based on true randomness (the 

uncertainty can be described statistically but not reduced), epistemic uncertainty is based 

on a lack of knowledge (the uncertainty can be reduced by improving the understanding 

of the problem) (Hora, 1996).   

If a risk problem is ambiguous, there is more than one possible view of the available 

information. Aven and Renn (2010) distinguish interpretative ambiguity, concerning the 

"relevance, meaning and implications" of information, and normative ambiguity, con-

cerning the "values to be protected and the priorities to be made." For example, while a 

company might know that customers oppose raised prices, it can still be unclear if that 
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translates into customers changing their purchase decisions (interpretative ambiguity) or 

if alienating the most price-sensitive customers is actually harmful (normative ambigu-

ity). 

The classification of risk problems mentioned above focuses on the understanding of the 

relevant information. Another approach to classifying risks is to distinguish the type of 

threat (or opportunity) associated with the risk. Hopkin and Thompson (2022) distinguish 

compliance risks, hazard risks, control risks, and opportunity risks. Compliance risks are 

derived from the laws a company has to adhere to and the associated penalties. Hazard 

risks are strictly negative events an organization is exposed to due to its activities, e.g., 

health risks to employees or consumers. Control risks arise from uncertainty about future 

events. Their outcome is hard to quantify, predict and control. Finally, opportunity risks 

are associated with potentially positive outcomes of taking risks, e.g., entering new mar-

kets. Hopkin and Thompson (2022) highlight that each of these risk types is usually met 

by organizations with different actions, as compliance risks need to be minimized, hazard 

risks need to be mitigated, and control risks managed. Opportunity risks, however, should 

be embraced (Hopkin and Thompson, 2022). 

A third dimension of risks is their origin from the perspective of an organization. For 

example, the PMBOK (Project Management Body of Knowledge) distinguishes "tech-

nical, quality and performance" risks related to the product, project management risks, 

and organizational risks focused on processes within the organization and external risks 

that originate from outside the organization, like lawsuits or extreme weather events 

(Pritchard, 2015). 

The diversity of risk classifications highlights the importance for practitioners to think 

about risks in a structured manner. The classifications help with identifying relevant risks 

(e.g., by actively searching for exposure to compliance risks), identifying the measures 

needed to improve the organization's understanding of risks (e.g., by differentiating un-

certainty and ambiguity), and guiding how to best address the risk (e.g., by improving 

internal processes). 

2.1.2 Risk, uncertainty, and knowledge 

There have also been attempts to identify the underlying structure of any individual risk. 

Aven (2019, p. 58) describes risk as a triplet of a possible future event (A), the conse-
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quences of that event (C), and the uncertainty regarding the consequences (U). For exam-

ple, a new product introduced into the market (A) might prove unsafe for consumers, 

harming the producer's reputation and requiring a product recall (C). The probability of 

releasing a hazardous product is unknown (U). Thus, the risk is defined as (A, C, U). 

Figure 1 provides an overview of concepts and their relationships. 

The consequences of an event (C) and the uncertainty (U) must be specified to assess a 

risk. The specification is built upon knowledge about the risk under assessment (K). The 

specification of the consequences happens by defining concrete measures of interest (C'). 

The uncertainty is expressed by a judgment of both the likelihood of C' and the reliability 

of the knowledge K, codified as Q (Aven, 2019, p. 61). Thus, the full description of the 

risk is the triplet (C', Q, K). In the previous example, one specific consequence would be 

the necessity of a recall (C'), the probability of which (Q) could be quantified by consult-

ing the engineers responsible for product development, safety experts, or certification 

agencies (K).  
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Figure 1 Relationship of risk, uncertainty, knowledge, and consequences.5 

 

This framework leads to another interest regarding risks besides understanding their con-

text: the interest in measuring them. This is necessary to make well-informed decisions 

regarding potential actions related to the risk.  

2.1.3 Measuring risks 

Many risk management activities require that the risks are measured and ranked accord-

ing to their severity. Several measures of risk severity are in use, depending on the type 

of risks under investigation. Most risk severity measures measure either the likelihood or 

impact of risks. Regarding the measure of likelihood, the COSO framework (2017) dis-

tinguishes qualitative descriptions (e.g., "a remote possibility"), quantitative descriptions 

(e.g., a probability of 80%), and frequency descriptions (e.g., "once a year"). For example, 

an organization might want to reduce the frequency of workplace accidents and lower the 

probability of a strategic risk. 

Regarding the measure of risk impacts, the COSO framework (2017) gives the example 

of distinguishing financial impact (e.g., the expected growth is not met) from an impact 

on operations (e.g., not enough staff is hired to operate at full capacity). 

 
5 Figure adapted from Aven (2019). 
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Often, the severity of risks is evaluated using several measures, e.g., one for the likelihood 

and one for the impact of the risk. These measures allow to judge risks on their own and 

relative to other risks, as well as providing a measure for potential actions taken by the 

organization (e.g., reducing the frequency of accidents by investing in appropriate train-

ing) (COSO framework, 2017). 

Some risks (foremost financial and operational risks) can be quantified regarding an as-

sociated financial gain or loss. These risks are often measured regarding their value at 

risk (VaR), that is, the "maximum expected loss, given some time horizon and within a 

given confidence interval" (Olson and Wu, 2020, p. 79). The VaR combines a risk's im-

pact and likelihood into one measure that allows the direct comparison of portfolios of 

(financial) risks (Olson and Wu, 2020). 

These risk measures define the output of the risk assessment and are therefore important 

for measuring risk management practice effectiveness: An effective risk workshop, for 

example, is able to determine the severity of risks correctly.  

2.2 Enterprise risk management 

Organizations constantly face risks, with consequences ranging from minor to cata-

strophic. In order to react appropriately to these risks, standard practices have been de-

veloped over the past decades (Bromiley et al., 2014; COSO, 2004; Hunziker, 2019). This 

provides a certain amount of consistency in the risk work (Power, 2016) performed by 

the organizations. In the following, the common processes and tools in enterprise risk 

management will be presented as they inform the simulation models created for this the-

sis. 

2.2.1 The risk management process 

The task of understanding and managing risks is central to a successful organization. The 

field of enterprise risk management has emerged to investigate and propagate best prac-

tices for risk management in organizations. Several standards and frameworks have been 

developed in the past decades to identify the relevant risks, correctly assess them, and 

derive appropriate actions, most prominently the COSO framework (2004) and ISO 

31000 (2009). 
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Both frameworks provide similar concepts for the risk management process. The follow-

ing provides a short description of the risk management process according to ISO 31000 

(2009) (Figure 2). 

Before any individual risk is investigated, the organization needs to establish the context 

in which risk management takes place. The internal and external context is considered 

along the context of the risk management process. Examples of the internal context are 

the objectives of the organization or its governance, policies, and culture. The external 

context contains, among others, the organization's social, legal, and economic environ-

ment. The context of the risk management process includes the process's goals, method-

ology, and scope. Finally, the risk criteria used during risk assessment need to be defined. 

Individual risks can be assessed upon this common understanding of the context. The risk 

assessment is split into risk identification, risk analysis, and risk evaluation. 

During risk identification, a comprehensive list of risks is created. ISO 31000 (2009) 

stresses that a broad scope should be used in this process step, including opportunity risks 

and risks outside of the organization's control. Risk identification also includes the iden-

tification of consequences tied to the risk.  

In risk analysis, a more detailed understanding of the risk is developed. This entails the 

collection of information about the risk, the measurement of its severity, and an analysis 

of potential actions.  

Based on the risk analysis, the risk can be evaluated by comparing it to the context of the 

organization, e.g., its risk appetite. This might result in the decision that the risk is ac-

ceptable, that further analysis is necessary, or that measures should be taken to modify 

the risk. 

During risk treatment, measures are implemented to adjust the risk to the goals of the 

organization. For example, this could happen by removing risk sources, changing the 

likelihood of the risk, or sharing the risk with other parties. 

The risk management process is cyclical and requires active monitoring and reviewing. 

Each risk should be reevaluated periodically in order to update the risk assessment and 

adjust the risk treatment. 
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Figure 2 The ISO 31000 risk management process.6  

 

2.2.2 The ERM tools 

For all steps of the risk management process, formalized techniques have been developed 

and are widely adopted. Reviewing these tools of practitioners allows an insight into the 

underlying concepts that govern cognition regarding risks in organizations. All of these 

techniques translate knowledge from individuals within or outside the organizations into 

manageable items, representations of actual risks that are accessible for documentation 

and discussion: They provide an embodiment of the actual risks. 

Two types of techniques can be distinguished: Those that focus on representing a whole 

set of risks and those that provide detailed representations of individual risks. 

 
6 The figure is based on a figure by ISO (2009). 
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Techniques that focus on a set of risks usually reduce the description of individual risks 

to a few key attributes. They allow for identifying interactions between risks and priori-

tizing among the risks. Among the most common approaches from this set of techniques 

are risk registers and risk maps. 

Risk registers (also: risk tables or risk databases) are lists of all identified risks, along 

with selected relevant attributes. The risk register is often in the form of a spreadsheet or 

a database maintained by dedicated software (Hopkin and Thompson, 2022; Pritchard, 

2015).   

Risk maps (also: risk matrices) depict a collection of risks in a diagram, providing an 

overview of a whole risk portfolio (cf. Figure 3). The diagram usually places the risks 

along two dimensions representing measures of risk severity, for example, the likelihood 

of the risk event and the associated impact (Bao et al., 2017; Goerlandt and Reniers, 

2016). 

 

Figure 3 A simplified example of a risk map for a production plant. 

 

Tools that provide detailed representations of individual risks are used to assist risk anal-

ysis by providing a structure to gather and organize relevant information. Information is 

relevant to the risk assessment if it helps to understand the severity of a risk or allows to 

identify actions to reduce the risk. The tools used to model individual risks provide not 

only a representation of the individual information and their relationship to the risk (e.g., 
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as a "trigger" or a "consequence" of the risk under analysis) but also of the relationship 

between information, e.g., causal or probabilistic relationships.  

A widespread tool to gather and organize information on individual risks is the bow-tie 

diagram (Ferdous et al., 2012; de Ruijter and Guldenmund, 2016). A bow-tie diagram 

provides a graphical representation of two main aspects of risk management: preventing 

the risk event from happening and mitigating potential consequences of the risk events 

(cf. Figure 4). First, potential triggers of a risk event are collected. For each potential 

trigger, preventive actions are identified. For example, a development project of an in-

dustrial company might fail (risk event) because a crucial supplier goes bankrupt (trig-

ger), leading to a breach of contract towards the customer of the company (consequences). 

Once triggers and consequences are established, preventive barriers (e.g., using additional 

suppliers) and mitigative barriers (e.g., modifying the contract with the customer) can be 

identified. 

 

 

Figure 4 Example of a bow-tie diagram.7 

 

A less structured visual representation of information related to risks is provided by 

causal maps (Ackermann et al., 2014; Nadkarni and Narayanan, 2007). Causal maps 

organize information by their causal relationships to each other (cf. Figure 5). While bow-

tie diagrams are fundamentally based on causal relationships as well (the risk event is 

 
7 The figure is based on the bow-tie diagram in Rausand (2011). 
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caused by triggers and causes consequences), causal maps allow for a more detailed ex-

ploration of causal relationships. For example, one potential trigger might be caused by 

another one, or the trigger might directly cause consequences, even if the risk event at the 

focus of the risk analysis is prevented from happening. Causal maps have been used to 

assist risk managers in developing and documenting a comprehensive understanding of 

risks and to identify preventive or mitigative actions (Ackermann et al., 2014). 

 

Figure 5 Example of a causal map 

 

The causal relationships documented in a causal map can be interpreted as simple logical 

statements (Jensen and Nielsen, 2007; Pearl and Mackenzie, 2018): "if A, then B." In 

reality, relationships between events are usually less deterministic. A more reasonable 

interpretation would be, "if A, then B is likely." Bayesian networks are a tool to enrich 

causal maps (usually called causal models in this context) by providing probabilistic re-

lationships instead of logical relationships: "If A is true, the probability of B being true is 

x percent." The probabilities that describe the relationships can either be derived from 

expert judgment, similar to the construction of the causal map itself, or can be computed 

from actual data, if available (Fenton and Neil, 2019; Jensen and Nielsen, 2007).  

Once a Bayesian network is constructed, it is accessible for quantitative analysis. Given 

some information about the risk described by the Bayesian network, the probability of 

other parts of the causal map (e.g., the risk event) can be calculated. The Bayesian net-

work becomes a quantifiable causal map (Nadkarni and Shenoy, 2001, 2004). Bayesian 
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networks are frequently used in risk analysis and risk-related decision-making (Fenton 

and Neil, 2019; Weber et al., 2012).8 

The tools mentioned above for modeling risks provide structures for thinking about and 

discussing risks. They highlight the relationship between risks and the relationship be-

tween information about risks. Uncovering these relationships and information is usually 

a task that is not done by a single individual but by a group of people with diverse infor-

mation and expertise to utilize all available knowledge (Surowiecki, 2004). The group 

can use these tools to provide a structure for a common understanding of risks. However, 

gathering information and knowledge distributed in a group is no trivial task (Surowiecki, 

2004).  

There are several well-established examples of methods that aim to facilitate the task of 

gathering distributed information and knowledge while avoiding introducing biases from 

effects within the group (Pritchard, 2015). Some of these methods aim to eliminate any 

direct, unfiltered interaction of the group members, as it would happen in a face-to-face 

discussion. Instead, the expertise of the group members is queried in a structured format.  

For example, in structured expert judgment (Cooke and Goossens, 2008; French et al., 

2021), experts provide their subjective probability distributions regarding questions from 

their field of expertise. Subjective probability distributions from several experts can be 

combined to identify potential consensus in the expert group while providing a measure 

of uncertainty regarding the consensus. This method, therefore, provides quantifications 

for the probability of uncertain events without any direct interaction of the experts. The 

experts provide their expertise anonymously by default. However, the problem owner 

who requested the expert judgment elicitation usually knows the identity of the experts. 

The problem owner can, therefore, give different weights to their judgments, e.g., based 

on the problem owners' assessment of the experts' qualifications or the relevance of the 

domains or groups they represent (Cooke and Goossens, 2008).  

While structured expert judgment minimizes the interaction of experts, there are also ap-

proaches to provide structured, controlled interaction between experts without resorting 

 

8 The second approach to model risks used in this study, constraint satisfaction networks, are not 

explicitly used in ERM practice. While they are able to model how individuals might think 

about a risk, there are, by comparison, more complex to construct and use in practice than 

causal maps or Bayesian networks. 
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to direct discussions. One such technique is the Delphi method (Linstone and Turoff, 

1975), which assesses problems that cannot be precisely analyzed because the assessment 

needs to build upon diverse subject judgments. The Delphi method uses multiple consec-

utive questionnaires provided to the experts in multiple stages. Each questionnaire builds 

upon the answers provided by the experts in the previous stage. For example, the first 

questionnaire can be used to build a consensus on the scope of the problem itself and the 

definition of critical terms. The second questionnaire will then provide feedback on the 

answers of all experts to all participants. It will either build upon a consensus in the group 

or ask for further clarification (Linstone and Turoff, 1975). Thus, the Delphi process al-

lows experts to exchange knowledge and revise their assessments based on the input of 

other experts while preserving anonymity and avoiding potential biases from direct inter-

action with the group. The Delphi method requires a facilitator that provides the ques-

tionnaires and that aggregates and moderates the experts' answers (Linstone and Turoff, 

1975). Compared to structured expert judgment, the facilitator plays a more active part in 

the Delphi method, as the facilitators' decisions impact all interactions of the experts. 

Of course, the use of structured communication of experts is not limited to risk manage-

ment, as they apply to a wide array of fields and problems (Goossens et al., 2008; Gupta 

and Clarke, 1996). However, the methods mentioned above are well tailored for problems 

arising in organizations' risk analysis, like combining expertise from diverse backgrounds 

and quantifying probabilities that rely on subjective judgment (Otway and von Winter-

feldt, 1992). They are, therefore, standard tools in ERM (Pritchard, 2015). The Delphi 

method is especially beneficial for risk identification. Structured expert judgment is 

mainly used for risk quantification (Pritchard, 2015). 

Using tools for structured communication in risk analysis highlights the importance of 

aggregating the knowledge of experts from diverse backgrounds without introducing bi-

ases in the process. However, it is not always possible to rely on a fully structured process, 

e.g., because of time and budget constraints or because more direct interaction with the 

experts is needed to build a shared understanding of a risk. In these cases, risk workshops 

are an option to combine direct interaction with a structured approach toward gathering 

and aggregating knowledge.  
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2.2.3 Risk workshops 

Risk workshops are face-to-face meetings of individuals from diverse backgrounds (e.g., 

from different departments, levels, or functions) that aim to use the knowledge of the 

individual participants for a risk analysis task (COSO, 2017). Especially if a large group 

of participants ("more than seven or eight," Quail, 2011) is needed for the risk analysis, a 

structured risk workshop helps deliver results effectively (Quail, 2011).  

According to Quail (2011), risk workshops are not only valuable for effectively aggre-

gating the knowledge of a large group of experts, but they also provide a learning oppor-

tunity (as the participants themselves gain a better understanding of the risk and perspec-

tives of experts from other backgrounds), team building (as participants get to know each 

other in a discussion with equal rights and opportunities to share ideas and knowledge) 

and education in risk management (as a structured approach to risk management is 

demonstrated for a specific case). Further, risk analysis often requires input from many 

participants, and risk workshops bring these participants together for a targeted discussion 

of specific problems. Finally, repeated risk workshops allow for continuous improvement 

in the usage of risk management tools (Quail, 2011). 

There is not one definite protocol for how a risk workshop should be organized. While 

risk workshops are often mentioned as appropriate tools in risk analysis (cf. COSO, 2017; 

Fraser and Simkins, 2016; Hunziker, 2019; ISO, 2009; Tommaso, 2017), most descrip-

tions only provide a vague outline. In the following, the procedures during a risk work-

shop are provided as described by Quail (2011), one of the most comprehensive guides 

for risk workshop facilitators. 

Usually, a risk workshop will assess several risks, one after another. A risk workshop will 

take several hours to multiple days, with at least 40 minutes spent on any individual risk 

(Quail, 2011). The potential risks discussed in the risk workshop need to be defined in 

advance. This choice can be made before the workshop either by the sponsor of the risk 

workshop individually or by all participants collectively, e.g., by conducting polls or in-

terviews. The second option reduces the probability that important or emerging risks are 

excluded from the workshop. Also, including the participants in the selection of risks 

promotes a sense of ownership toward the workshop within the group. Also, a combina-

tion of both approaches is possible, where the participants choose the risks to discuss 

from a pre-compiled list provided by the sponsor (Quail, 2011).  
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The choice of participants for the risk workshop is dependent on both the risks that are 

analyzed (i.e., all relevant perspectives on the risk need to be covered by the participants) 

and the goals of the workshop: If a decision should be made on the spot, the relevant 

decision maker needs to be present. If the risk workshop should serve team building, extra 

care is called for so that no team member feels left out. The sponsor can also include 

external participants if their perspective on risks would otherwise be missing (Quail, 

2011). 

Each discussion of a risk during the risk workshop starts with building a shared under-

standing of the risks within the group. To that end, the group is tasked to gather scenarios 

regarding the risk, like possible triggers or consequences. All participants contribute to a 

list of the most important scenarios regarding the risk, which is recorded and displayed 

during the ongoing discussion (Quail, 2011). Afterward, the magnitude of the risk is as-

sessed by the group. This is done by an iterative process of votes and discussions, where 

participants record their individual assessment of the risk's magnitude and afterward ex-

plain their thoughts to the group, followed by the next vote. The process might result in 

a consensus within the group regarding the risk magnitude. If no consensus is found, the 

records of the discussions and votes at least provide an understanding of the scale of 

disagreement within the group and the reasons for these different perspectives (Quail, 

2011). 

Next, the participants are tasked with evaluating the strength of mitigants regarding the 

risk that is already in place or planned. Again, a vote on this question can be followed by 

a discussion of the reasoning of the individual participants, followed by another vote. In 

a similar fashion, the participants vote and discuss the probability of the risk event – con-

sidering everything learned in the discussion – and finally tolerability of risk to the or-

ganization (Quail, 2011).  

The risk workshop produces specific results for every risk discussed (e.g., a consensus on 

the risk magnitude and probability) and a record of discussion points, information, and 

judgments that lead to these results. Based on these results, decision-makers can make 

informed decisions on how the organization should address the risks discussed in the risk 

workshop (Quail, 2011). 
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2.2.4 Biases in risk workshops 

As mentioned earlier, the direct interaction of experts during the discussions of a risk 

workshop could harm the quality of the resulting risk assessment if potential group-in-

duced biases are not adequately addressed. Hunziker (2019) overviews group-specific 

biases which are relevant to risk workshops and guides how they can be addressed. He 

explicitly highlights authority bias, conformity bias, groupthink, hidden profiles, and so-

cial loafing (Hunziker, 2019). 

Authority bias is the tendency to give greater weight to the opinions of those perceived 

to have authority regarding an issue (Milgram, 1963). In the context of a risk workshop 

within an organization, this is especially concerning because the source of authority of a 

participant might not be the level of expertise but the participant's level within the organ-

ization's hierarchy. Risk workshops benefit from an atmosphere of mutual trust, where all 

participants feel free to offer their perspectives (Hunziker, 2019; Quail, 2011). 

Conformity bias is introduced when participants adapt their assessments to comply with 

perceived norms within the group (Kelman, 1958). Compliance can be the conscious de-

cision of the participants because they want positive reactions from the group ("compli-

ance," Kelman, 1958) or they want to improve or maintain a positive relationship with 

the group  ("identification," Kelman, 1958), or the induced behavior itself is intrinsically 

rewarding ("internalization," Kelman, 1958). The lack of anonymity in risk workshops is 

the primary source of conformity biases (Hunziker, 2019). Hunziker (2019) suggests in-

corporating anonymous surveys into the process or introducing outsiders into the group 

to address conformity bias.  

Groupthink is a group's tendency to aspire to a consensus at the cost of suppressing dissent 

and alternative lines of reasoning (Janis, 1972). This can lead to self-reinforcing effects 

like polarization in the risk workshop when participants move towards more extreme po-

sitions of being either extraordinarily risk-averse or having an extreme risk appetite, as 

the group reinforces the more extreme positions within the group, as information that 

does not fit the prevalent opinions in the group is not shared (Hunziker, 2019; Shefrin, 

2016). Groupthink can be mitigated by assigning explicit roles to the group participants 

(e.g., acting as a devil's advocate) or by changing the structure of the discussion (e.g., 

encouraging participants with diverging assessments to talk first) (Shefrin, 2016). 
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Hidden profiles refer to information that is only available to some members of the group 

and that is not shared with the group during the discussion (Stasser and Titus, 1985). Such 

information cannot, therefore, be used by the other participants for the risk assessment. 

Furthermore, the hidden profile is biased toward information contrary to the participants' 

preferences (i.e., the participants do not share information that would negatively impact 

their position), which excludes crucial information from the discussion (Stasser and Titus, 

1985). 

Finally, social loafing describes the effect that people exert less effort if they work in a 

group rather than individually (Simms and Nichols, 2014). A common way to mitigate 

social loafing is to highlight the importance of each individual's contribution (Simms and 

Nichols, 2014). 

In conclusion, risk workshops are a standard tool in ERM to analyze risks. They are well 

suited to aggregate diverse perspectives on risks into a risk assessment. However, they 

expose the risk analysis process to group-related biases that need to be adequately under-

stood and accounted for by the risk workshop facilitator. 

2.3 Risk and organizations 

Organizations are not neutral in their interaction with risks. Similar to individuals, who 

have a unique perception of and relationship to the risks they face, each organization has 

its own way of understanding and working with risks. This relationship with risks can be 

described in terms of culture and maturity. In the following, I provide a short introduction 

to the concepts of risk culture (2.3.1), ERM maturity (2.3.2), and calculative culture 

(2.3.3). 

2.3.1 Risk culture  

The previous subchapter outlined how organizations manage risks. However, the practice 

of risk management in an organization is insufficiently described by the techniques used 

for risk management. An organization also has a risk culture, which is a shared attitude 

towards risks, the entirety of "individual and group values and of attitudes and patterns 

of behavior" (Hopkin and Thompson, 2022, p. 290). COSO (2017) highlights the im-

portance of establishing a risk culture that is universally accepted within the organization 

to steer the organization towards decisions that achieve the stated objectives while mini-

mizing risks. Risk culture goes beyond a set of tools used for risk management. It includes 
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standards and rules for behavior, compensation schemes, and norms of interaction within 

the organization. The totality of these characteristics places the organization on a spec-

trum from "risk averse" to "risk aggressive" (COSO, 2017, p. 33). Every organization 

needs to define its right spot within this cultural spectrum. For example, a nuclear power 

plant is most likely to embrace a risk-averse culture, while a hedge fund can be risk-

aggressive (COSO, 2017). 

No matter where an organization positions itself within the cultural spectrum, it needs to 

implement risk awareness (COSO, 2017; Hopkin and Thompson, 2022; Lam, 2013; 

Moeller, 2011). A risk-aware culture aligns the behavior of employees and the manage-

ment with the organization's risk appetite. The leadership team has to make a conscious 

effort to achieve a risk-aware culture: Besides providing clear leadership regarding the 

organization's strategy and operations, it must ensure that all stakeholders are involved 

throughout the risk management process and provide training. Furthermore, it must avoid 

a blame culture, maintain clear accountability, and communicate openly about risk man-

agement issues (Hopkin and Thompson, 2022). Beyond this guidance, embedded in sev-

eral risk management frameworks, Power (2020) argues for the importance of an organ-

ization's information infrastructure to sustainably impact risk culture. He determines that 

the appetite for knowledge of an organization, i.e., the degree to which it systematically 

produces information regarding itself and its environment, is a critical part of risk culture. 

2.3.2 ERM maturity 

A well-established risk-aware culture is a significant steppingstone toward a mature 

ERM. There is no agreed-upon measurement of ERM maturity, but it is often used as a 

proxy for the quality of an organi ation’s risk management practice (Callahan and 

Soileau, 2017; Farrell and Gallagher, 2015). Academic studies that include analysis of 

ERM maturity have used the appointment of a chief risk officer (C.R.O.), details from 

SEC filings, or simple one-dimensional scales to assess the ERM maturity of organiza-

tions (Mikes and Kaplan, 2013). Hopkin and Thompson (2022) propose a scale of four 

levels to classify an organization's risk maturity. The scale reaches from Naïve (unaware 

of the need for ERM, fragmented risk management activity focused on compliance), over 

Novice and Normalized to Natural (risk-aware culture, proactive ERM, risk as a compet-

itive advantage, risk is considered in all business decisions). 
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2.3.3 Calculative culture 

As mentioned earlier, some scholars caution that the maturity of formalized risk manage-

ment practice (part of which is an explicitly stated risk culture) is not the only cultural 

dimension that needs to be considered when assessing the risk management of an organ-

ization: The attitude towards knowledge, its collection, and usage might be more chal-

lenging to measure but are essential aspects of how risks are managed (Aven, 2012; 

Power, 2020). This introduces a distinction between the explicitly expressed risk culture 

(e.g., “we encourage a transparent risk culture, providing opportunities for discussing un-

certainties and challenges, fostering shared responsibility across all departments”) and 

the actual practice within the organization. 

Power (2007) describes two prototypical practitioner identities that employ two different 

logics of calculation regarding operational risks: calculative idealists and calculative 

pragmatists. Calculative idealists aim to interpret all risks within the computational 

framework of Value at Risk. They assume that every risk can be calculated by assessing 

its probability and economic costs. All risk-related decisions can be based on these cal-

culations. They are concerned about risks for which no reliable data is available and are 

skeptical of risk management methods that are not sufficiently robust (Power, 2007). 

In contrast, calculative pragmatists do not take numbers in risk analysis at face value (c.f. 

Porter, 1995). They believe that numbers can only insufficiently capture the complex re-

ality of risks. They are satisfied with relying on approximations and scoring systems in-

stead of aiming for precise calculations. Risk management is understood as a craft rather 

than a science (Power, 2007). 

Both types of practitioners engage in risk quantification. Still, while calculative idealists 

regard a fully quantified risk assessment as the ultimate (even if potentially unattainable) 

goal, calculative pragmatists emphasize the importance of processes and internal controls. 

Power (2007) notes that these two types correspond to the different approaches towards 

uncertainty prevalent in auditing (which is more pragmatic) and finance (that relies in-

tensely on mathematical models). 

Building upon these logics of calculation, Mikes (2009) proposes two calculative cul-

tures. She emphasizes that many risk management tools are data-driven and analytical. 

Thus the culture within the organization needs to be considered in the choice and usage 

of these tools. Mikes (2009) distinguishes between quantitative enthusiasts, that adhere 
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to calculative idealism and prefer quantification over judgment in risk assessment, and 

quantitative skeptics, that adhere to calculative pragmatism and focus on experience and 

judgment in risk assessment. The prevalent calculative culture leads to different practices 

of ERM. On the one hand, quantitative enthusiasm is consistent with an approach of 

"ERM by the numbers" that exclusively focuses on quantifiable risks and views ERM as 

a computational tool. On the other hand, quantitative skepticism is consistent with "ho-

listic ERM" that includes non-quantifiable risks and views ERM as a "learning machine" 

(Mikes, 2009). 

The theoretical background on the topics of risk, risk management, and the relationship 

between risk and organizations informs our approach to investigating risk workshop ef-

fectiveness with simulation experiments. In order to build a model that allows us to better 

understand risk management practice, we develop the model along with the concepts pre-

sented in this chapter. This study investigates the impact of workshop design and calcu-

lative cultures on risk workshops using agent-based simulations. In the following chapter, 

the methodology used for the simulation experiments is introduced. A special emphasis 

is given to the two modeling approaches for cognition that correspond to the two different 

calculative cultures. 
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3 Methodology 

In this chapter, I explain the methodological background of this thesis. The thesis aims to 

answer questions regarding the effectiveness of risk management practices, specifically 

the effectiveness of risk workshops. To this end, we want to model discussions, as they 

typically happen during risk workshops, for a computer simulation experiment. In the 

previous chapter, I have outlined how risk workshops are used to inform decision-making 

regarding risks. At their core, risk workshops bring together experts that communicate 

with each other in a face-to-face situation regarding a risk in order to make a risk assess-

ment that makes use of the expertise distributed among the participants. In order to sim-

ulate such an exchange in a computer simulation, two fundamental design decisions have 

to be made: How to model the interaction between the participants and how to model the 

cognition of the participants (i.e., the representation of their mental model of the risk). 

The overall framework for the simulation experiment with the two-layered model (with a 

group layer and an individual layer) is explained in subchapter 3.1. The group interaction 

is modeled with an agent-based model, as explained in subchapters 3.2 and 3.3. While 

any agent-based model of humans requires some model of cognition, the models used in 

this thesis provide the agents with a complex cognition that allows them to make risk 

assessments based on the information available to them. For this reason, the models of 

cognition that are used in this thesis are explained in separate subchapters (3.4 and 3.5). 

3.1 Experimental framework 

This subchapter develops the experimental framework for the simulation experiment. In 

the simulation modeling cycle, the formulation of a research question is followed by the 

identification of relevant elements of the target system, the choice of a model structure, 

and finally, the model implementation (Barth et al., 2011). 

 First, I define the scope of the simulation experiment with regard to actual risk workshops 

(3.1.1), i.e., what elements of the target system the model should include. Second, I de-

scribe the overall structure of the simulation (3.1.2), i.e., how the scope is translated into 

a model. Finally, I describe how the interaction of the workshop participants is imple-

mented (3.1.3). 
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3.1.1 Scope of the simulation experiment 

As discussed in the previous chapter, risk workshops differ regarding their specific task 

and regarding the precise method used to address the task. In order to model a risk work-

shop for a simulation experiment, a specific setting has to be decided upon. The criteria 

for these modeling choices are twofold: On the one hand, the simulated risk workshop 

should reflect a typical setting that is common in real-world risk workshops. On the other 

hand, the choices must be coherent with the limitations imposed on the model by the 

available methods. 

This thesis uses an agent-based simulation approach for its simulation experiments. For 

an agent-based model (see 3.2), it needs to be defined who the agents are, in which envi-

ronment they operate, and which objectives they follow (Railsback and Grimm, 2011). 

In the context of a risk workshop, these requirements translate into the following dimen-

sions: 

Agents. Participants of risk workshops differ both regarding their number and roles. Typ-

ical roles are facilitators, that organize the risk workshops and lead the discussion; the 

risk owner, who is responsible for the decisions made regarding the risk (hereafter called 

‘leader’); and the discussion participants, who are invited because of their expertise re-

garding the risks that are discussed or because their responsibilities within the organiza-

tion are affected by the risks (Quail, 2011).  

For this study, the three main roles considered in the experiment are the facilitator, who 

leads the workshop and controls how the exchange of the participants unfolds, the leader, 

who is responsible for the final result, and the discussion participants, who exchange their 

knowledge and form an opinion regarding the risks. As these roles have different tasks in 

the modeled risk workshop, their behavior has to be modeled separately. All simulation 

experiments in this study have nine participants in the risk workshop (excluding the fa-

cilitator).9   

Objective. Risk workshops are used at several stages of the risk management process. 

They can be used to identify risks, assess risks and decide on actions to be taken to address 

the risks (COSO, 2017).  

 
9 See Appendix 3 for a discussion of the appropriate number of participants and a sensitivity 

analysis. 
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A simulation experiment requires a task that can be solved following pre-defined instruc-

tions. Risk assessment is an appropriate task in this regard, assuming that the information 

about the risk that has to be processed for a risk assessment can be described in quantita-

tive terms. Therefore, this study focuses on the assessment of risks as the task of the 

simulated risk workshops. We assume that all participants share the objective of achiev-

ing the best possible risk assessment. 

Environment. The environment of a risk workshop is usually determined by a facilita-

tor(Quail, 2011). Facilitators of risk workshops can choose how the participants share 

information and collaborate, e.g., discussion groups, brainstorming, roleplay, or scenario 

analysis (Chapman, 1998; Yoe, 2019). 

The most common form of groupwork during risk workshops is face-to-face discussion 

(Quail, 2011). Therefore, we choose this mode of collaboration for the simulation exper-

iment.10 In this open-form discussion, everyone can potentially speak, and everyone can 

listen to everything that is said. 

The previously mentioned methods for group work differ in the degree of structure that 

the facilitator or moderator must provide to assist the participants. For example, while 

brainstorming is often moderated only lightly, a scenario analysis requires preparation 

and guidance for the participants to adhere to the method. For discussion groups, the level 

of structure provided by the moderator might vary depending on the needs of the group 

and the style of the moderator. 

For this study, we choose to have the facilitator as the moderator of the discussion. The 

facilitator can decide who gets to talk and when to end the discussion. This role is im-

portant to identify possibilities for the facilitator to positively impact the effectiveness of 

the risk workshop. 

Not only does the risk workshop need to be modeled, but also the task that is performed 

by the workshop participants. 

 
10 Other methods of groupwork, however, provide a more structured exchange of knowledge, 

e.g., the Delphi method (Linstone and Turoff, 1975). From a modelling perspective, these 

methods are well suited for simulation experiments as well and could be addressed by fur-

ther research. 
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The task of the agents. The previously mentioned dimensions of risk workshops are 

relevant not only for a model of a risk workshop but also to design an actual risk work-

shop. In contrast, the structure of the risk, that is, the actual cognitive task that the group 

is working on, is usually not known in a real risk workshop.11 For a simulated risk work-

shop, however, the cognitive task must be clearly defined. Thus, a decision must be made 

regarding an appropriate model that derives a risk assessment from knowledge about the 

risk. 

Having established that we model a group discussion that has to make a risk assessment, 

the cognitive task of the individual participants can be described as deducting a risk as-

sessment from their prior knowledge and the knowledge they gain during the discussion. 

Furthermore, the deduction of the risk assessment needs to follow specified rules in order 

to simulate the cognitive process within the simulation. Both Bayesian networks and con-

straint satisfaction networks are well suited for these requirements (see 3.5.3). Therefore, 

the participants in the simulation are tasked with making a risk assessment by calculating 

a Bayesian network (study in Chapter 4) or a constraint satisfaction network (study in 

Chapter 5). The task is operationalized into correctly determining whether a risk is high 

or low. 

 

3.1.2 Structure of the simulation experiment 

With the scope of the experiment, the overall structure of the simulation experiment needs 

to be developed. In order to evaluate the effectiveness of the simulated risk workshops, 

the outcome of the risk workshop needs to be measured against a benchmark, which in 

this case means the ideal outcome the risk workshop could have reached (i.e., a correct 

risk assessment). As discussed earlier, such an objective benchmark is often missing when 

real-world risk assessment practice is evaluated. Within a simulation experiment, how-

 
11 For example, a typical task for a risk workshop is to assess a specific risk regarding its impact 

and likelihood. The participants of the risk workshop will communicate, based on their 

prior knowledge, and try to reach a full understanding of the risk under discussion. Even 

though the participants share knowledge and discuss the risk, each of them can still have a 

different way to translate their knowledge into a risk assessment, that can only be approxi-

mated with formal rules. 
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ever, it is possible to define an objective truth. For the purpose of the simulation experi-

ment, we assume that an individual with full knowledge regarding a risk, that is, full 

access to all relevant information and their relationship to each other and to the overall 

risk, would reach the ideal risk assessment.12 If we adopt this understanding of correct-

ness, i.e., the risk assessment that is reached with ideal usage of all available information, 

this ideally achievable risk assessment can serve as a benchmark for the risk assessment 

produced by the risk workshop. 

Figure 6 depicts the overall setup for a simulation of the discussion of one risk during a 

risk workshop, using a constraint satisfaction network as the cognitive architecture. 

First, a risk13 is generated, either as a Bayesian network or a constraint satisfaction net-

work (1). The generated risk is composed of information and hypotheses about the risk 

and their relationships with each other. From this full risk network, an ideal benchmark 

risk assessment is calculated (2). Afterward, the participants are provided with a subset 

of information, hypotheses, and relationships. Everything from the full risk network is 

known by at least one participant, but (usually) no participant knows everything from the 

full risk network (3). 

Now, the actual discussion is simulated. Participants can share their knowledge and up-

date their individual risk network with the knowledge they receive (4). Finally, the facil-

itator ends the discussion, a risk assessment is decided on, and the risk assessment made 

by the risk workshop can be measured against the benchmark risk assessment (5). 

 
12 Such a risk assessment might still be ‘correct’ or ‘incorrect’ ex-post, depending on the defini-

tion of correctness for a risk assessment. For example, such a well-informed risk manager 

might have assessed the immediate threat of a major business disruption due to a global 

pandemic to be low in 2019. However, even though such a disruption in fact materialized, 

the risk manager’s risk assessment could still be considered correct, as it was the best as-

sessment possible based on all available information. 

13 Hereafter, we use the term ‘risk’ in the context of the simulation to refer to the task of the workshop 

participants, i.e., network that has to be calculated.  
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FIGURE 6 Flowchart of a simulation experiment using CSN as a cognitive architecture.14 

3.1.3 Interaction in the risk workshops 

Within the structure of the simulation experiment outlined in 3.1.2, the simulated discus-

sion takes a central part. Here, all actors – the facilitator, the participants, and the leader 

– directly interact with each other in order to make use of the knowledge distributed be-

tween the participants to reach a correct risk assessment. The order of interactions is 

shown in Figure 7. 

Each risk is discussed repeatedly and assessed by the group in several discussion rounds. 

Specifically, all participants initially share their assessment of the risk (4.1); then (4.2), 

when certain conditions are met (e.g., the group has reached a consensus), the decision 

maker terminates the discussion and decides on the risk assessment. If the discussion 

continues, (4.3) the facilitator chooses the next participant to share information (i.e., the 

sender). The sender shares the information (4.4). Afterward, the other participants (i.e., 

the receivers) update their risk assessment based on this new information (4.5). 

The facilitator and the decision maker can choose different strategies for their decisions 

(i.e., who gets to speak and how and when to aggregate the assessments of the participants 

to the final risk assessment. The experimental setup allows us to measure the impact of 

the different strategies on the risk workshop’s effectiveness. 

 
14 The depicted figure shows the information flow from a simulation experiment used as a preliminary study 

for the two studies presented in this thesis. The figure is taken from Harten (2019). 

(1) generate ECHO network as the risk as-

sessment task 

(4) simulate the risk workshop 

(2) calculate benchmark risk assessment 

(5) compare assessment against benchmark 

(3) initialize agents with limited infor-

mation 
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Figure 7 Flowchart of a simulated discussion during a risk workshop. 

  

As this simulation experiment has independent actors with individual cognition and in-

teraction between the actors, agent-based modeling is a good fit for the implementation 

of the simulation. In the following section, I outline how agent-based modeling has been 

used for similar experiments. Afterward, I discuss how individual cognition can be mod-

eled with complex cognitive architectures. 

  

(4) simulate the risk workshop. 

(4.1) participants share their assess-

ment. 

(4.2) leader decides if discussion 

should continue, or a decision be made. 

(4.3) facilitator chooses sender from 

participants. 

(4.4) sender decides what to share and 

shares the information accordingly. 

(4.5) receivers update their risk assess-

ment. 
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3.2 Agent-based simulation for experiments 

The simulation of systems that are characterized by interactions of independent actors is 

predestined for an agent-based simulation (Gilbert and Troitzsch, 2005; Railsback and 

Grimm, 2011). This thesis employs agent-based simulation to conduct experiments re-

lated to social interactions. Simulation experiments15, in general, are comparatively new 

in this field of research. More established methods are, for example, laboratory experi-

ments (e.g., He et al., 2012; Stasser and Titus, 1985) or observational field studies. How-

ever, agent-based simulations provide significant advantages compared to other method-

ologies by providing a virtual testbed of reality (Hauke et al., 2018; Wall, 2016). In the 

following, I will outline the main advantages and disadvantages of agent-based simula-

tions compared to other methodologies and why agent-based modeling was chosen for 

this thesis. Afterward, I will discuss the best practices that have been proposed and em-

ployed to counter the main drawbacks of agent-based modeling. 

Agent-based simulation (and simulation experiments in general) provide some valuable 

possibilities to researchers. First and foremost, simulation experiments provide full trans-

parency and control to the researcher. For example, the researcher can fully control how 

agents behave and can also understand why agents make certain decisions. This is a solid 

contrast to experimental settings that observe interactions of humans, like laboratory ex-

periments. In these cases, the researcher is limited to providing instructions to the partic-

ipants of the experiments, measuring their actual behavior, and surveying ex-post the par-

ticipants to gain insights into their decision-making. Using agent-based simulation, the 

researcher can investigate the state of each agent at any point during the simulation, e.g., 

to find out why a specific decision was made by the agent. Furthermore, the characteris-

tics of the agents are known precisely. This allows for very tight control of the processes 

under investigation and a detailed understanding of the results (Lorscheid et al., 2012). 

A second strength of agent-based simulations is the possible scale of experiments. Once 

the model is translated into programming code, the number of experiment runs is only 

limited by the available computational resources. Depending on the needs of the experi-

ment (e.g., the size of the effect under investigation), a large number of repetitions of the 

experiment is possible without a significant rise in costs (Lee et al., 2015). This is in 

 
15 While simulation can have a wider meaning, this thesis uses the term to describe computer simulations, 

that is, using programming code to describe the underlying model and executing the program to produce 

simulation results. For a discussion of the term simulation, see e.g. []. 
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contrast to in-person experiments, where each repetition of the experiment usually comes 

with significant costs. 

Third, agent-based simulations provide a high degree of transparency to the research com-

munity. All simulation results can be replicated with limited effort by running the simu-

lation code. Any deviation between the reported model and the programming code can be 

identified ex-post by an external review of both the model description and the program-

ming code if they are shared publicly16. 

Simulation experiments are also easily accessible for further research, building on the 

original experiment. If documented and published in an accessible manner, it is possible 

to add to the existing model, e.g., by changing the decision-making rules of the agents or 

providing agents with additional characteristics and immediately compare the results to 

the original experiment with everything else remaining unchanged. 

The main challenge for agent-based simulations of social interactions, compared to other 

research approaches, is the need to find a satisfactory model of human action that is sim-

ple enough to model but descriptive enough to provide results that can be transferred to 

real social interactions (Barth et al., 2011; Edmonds and Moss, 2005).  

Therefore, agent-based simulations should follow best practices regarding the design of 

experiments (Barth et al., 2011; Lorscheid et al., 2012) and the transparent documentation 

and communication of experiments (Grimm et al., 2013, 2020; Müller et al., 2013) in 

order to avoid experiments that produce results that cannot be applied to actual social 

interactions or that cannot be independently verified. 

 

 

 

  

 

16 This transparency requires that both the model description and the simulation code is made 

available for external review. Within the agent-based modelling community, it is estab-

lished best practice to publish both a standardized model description (Grimm et al., 2010, 

2020; Müller et al., 2013) and the simulation code in a public repository, like CoMSES. 
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3.3 Agent-based simulation for group work and risk 

In the previous section, we discussed how agent-based models can be used for simulation 

experiments. In this section, we review how agent-based models have been used on topics 

related to the subject of this thesis, risk workshops. 

3.3.1 ABM for group work 

This study aims to improve understanding of risk workshops, which are a form of group 

work. Agent-based models are a useful method to study group work: The agent-based 

model can be used to simulate interactions between the individuals in the group, repre-

sented as individual agents, as well as the environment in which the group work takes 

place. Agent-based models have been used to study many different aspects of group work 

(Fioretti, 2013; Secchi, 2015), such as the impact of individual characteristics on effi-

ciency (e.g., Bardone and Secchi, 2017), the impact of collaboration on organizational 

identification (Ekmekci and Casey, 2011) or as a testbed for team processes (Lorscheid 

and Meyer, 2021). 

Usually, the agent-based model provides the individual agents with specific characteris-

tics or behaviors, as well as a framework for their interaction with the simulated environ-

ment. The agents’ characteristics, behavior, and interactions influence the performance 

of the group, such as its efficiency or effectiveness, which might serve as the dependent 

variable in the simulation experiments (Secchi, 2015).  

 

3.3.2 ABM for risk studies 

Risk studies have used agent-based modeling for a wide array of research questions. Of-

ten, an agent-based model is used to understand a specific risk. In these studies, a system 

is modeled from which the risk might arise. For example, agent-based models have been 

used to identify effective responses to flooding events by modeling individual risk expo-

sure (Dawson et al., 2011), to model the spread of illnesses in facilities (Cuevas, 2020), 

or to model supply chain risks (Wu et al., 2013). 

However, the risk management process itself is not the focus of these agent-based models. 

The previous examples have shown that agent-based models are well suited to simulate 

group work. The two studies that are part of this thesis (Bellora-Bienengräber et al., 2023; 

Harten et al., 2022) build upon these examples by focusing on risk workshops as specific 
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instances of group work. In order to cover the specific problems that arise when a group 

of individuals is tasked with assessing risks, these models need a representation of cog-

nition that takes into account the specific characteristics of the risk assessment task. For 

that reason, we propose to provide the agents with complex cognitive architectures that 

describe cognition about risks in sufficient detail. 

 

3.4 Bayesian networks as a cognitive architecture 

To study the decision-making of individuals with agent-based networks, one needs a rep-

resentation of how the individual makes decisions based on the available information. 

This model of the individual's cognition can take many forms. For example, a simple 

calculation or if-then rule might be sufficient to model an individual's cognition that 

chooses between well-defined alternatives. In fact, most agent-based models of social 

systems use highly simplified models of individual cognition (Sun and Naveh, 2004). 

However, while the field of simulated social sciences mainly relies on simple models of 

cognition, there has been ample research on how cognition can be modeled more realis-

tically in the field of cognitive science17 (e.g., Anderson, 1983; Thagard, 2012). 

Such models of cognition are called cognitive architectures. Thagard (2012, p. 50) defines 

cognitive architectures as “general proposal[s] about the representations and processes 

that produce intelligent thought.” Cognitive architectures can be understood as analogous 

to computer architectures, which describe a computer with regard to its fundamental 

structure rather than its actual physical realization (Thagard, 2012). They provide build-

ing blocks that mimic components of cognition like memory, learning, and perception in 

order to build models that mimic cognitive tasks such as problem-solving, language ac-

quisition, or vision (Thagard, 2012).  

 

 

  

 
17 Originally, the research on artificial intelligence was tightly linked to research on cognition (Langley et 

al., 2009). However, recent advances in artificial intelligence research come from approaches that do 

not aim to mimic human cognition, but instead optimize models independently from any similarity to 

human cognition (Lake et al., 2017). 
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3.4.1 Using Bayesian networks for ABM 

This study uses Bayesian networks as the cognitive architecture of the agents in an agent-

based model. It is still uncommon for agent-based models to use complex cognitive ar-

chitectures for the cognition of the agents. Most agent-based models with human agents 

rely on a set of specific rules that the agents follow. This is in line with the general advice 

to keep models as simple as possible (see Edmonds and Moss (2005) for a discussion of 

the conflicting needs to build a model simple but also descriptive). Therefore, it is im-

portant to consider how Bayesian networks and agent-based models can be integrated into 

one model. 

There has been some interest in the combination of Bayesian networks and agent-based 

models. Marcot and Penman (2019) highlight the fusion of agent-based modeling and 

Bayesian networks as an important approach to advance the usage of Bayesian networks. 

There are two main ways in which Bayesian networks can be used as components of 

agent-based models: 

First, Bayesian networks can be used to model aspects of the environment that agents 

populate or the agent population itself. For example, Bayesian networks have been used 

for population synthesis, that is, the generation of agents that adhere to specific charac-

teristics like demographic distributions or behavioral patterns (Borysov et al., 2019; Dam 

et al., 2011; Sun and Erath, 2015). 

Second, the Bayesian network can model the agents' cognition in the agent-based model. 

For example, Sun and Müller (2013) use Bayesian networks to model households' deci-

sion-making regarding land-use. By modeling cognition with Bayesian networks, they 

can incorporate expert knowledge and quantitative data as a basis for the agent’s deci-

sions. Kocabas and Dragicevic (2013) use Bayesian networks to model how households 

decide on a place to live. They provide three different Bayesian networks to represent 

different types of households (low, medium, and high income). The Bayesian networks 

allow agents to make decisions about places with only limited information as evidence. 

Nielsen and Parsons (2007) propose a framework for formal argumentation where agents 

each have a Bayesian network representing their knowledge of a domain. Within the 

framework, agents are communicating to learn about each other’s beliefs and identify a 

potential consensus. 
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The second approach mentioned is the one used for this study. By providing agents with 

a complex cognitive architecture, we can be more descriptive regarding the actual cogni-

tion of individuals regarding a complex decision problem. In the following, I will outline 

how Bayesian networks work and how they can be used to describe cognition regarding 

a risk assessment. 

3.4.2 How Bayesian networks work 

In the previous section, I have introduced how Bayesian networks have been used in 

agent-based models. This section provides an introduction to Bayesian networks, with a 

focus on how they can be used to derive probabilities of risks. To that end, I outline the 

fundamentals of Bayesian probability theory, how Bayesian networks are represented, 

and how inference can be applied to these networks. 

Bayesian18 probability theory provides a framework for making decisions based on data, 

with a focus on updating beliefs and decisions when new data becomes available. Before 

(new) data is available, a prior probability is assigned to a hypothesis or parameter. The 

prior probability represents the initial knowledge regarding the hypothesis or parameter. 

When new data becomes available, the probability of the data with a given hypothesis or 

parameter is calculated using a likelihood function. Using Bayes’ theorem19, the posterior 

probability of the hypothesis or parameter  - an updated knowledge about the hypothesis 

or parameter - is calculated form the prior probability and the likelihood of the new data 

(Jensen and Nielsen, 2007, p. 5). For example, a doctor who assessed the probability of a 

patient having lung cancer might know the general probability of a patient with a cough 

having lung cancer. Once the doctor learns new data about the patient, e.g., if the patient 

is a smoker, the doctor can include this information and reach a new (posterior) probabil-

ity of the patient having lung cancer (given a cough). 

Bayesian networks (also called Bayes networks or Bayesian belief networks) build upon 

Bayesian probability theory to allow for intuitive representations of complex relation-

ships between variables. By combining Bayesian probability theory with directed acyclic 

 
18 It is named after Thomas Bayes, who worked on conditional probabilities and after whom also the Bayes' 

theorem is named. 

 
19 Bayes’ theorem is usually stated as 𝑃(𝐴|𝐵) =  

𝑃(𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)
, where 𝑃(𝐴) and 𝑃(𝐵) are the prior probabili-

ties of A and B, 𝑃(𝐵|𝐴)the likelihood of B (given A) and 𝑃(𝐴|𝐵) the posterior probability of A (given 

B). 
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graphs, they provide probabilistic graphical models that can be used to deduct probability 

distributions for hypotheses or variables that depend on many other variables (Pearl and 

Russell, 2000). The directed acyclic graph encodes causal relationships between varia-

bles. That is, the graph has a directed edge from node A to node B when the probability 

of A depends on the state of B. For example, in the previous example of a doctor assessing 

the cough of a patient, there would be a directed edge from [patient is a smoker] to [patient 

has cancer].20 Each node of the graph represents one hypothesis or variable. Bayesian 

probability theory is used to calculate a probability for each possible state of each node, 

dependent on the state of the nodes that are considered to be causal for the state. 

For example, in the simple Bayesian network provided in Figure 8, the hypothesis [Patient 

has cancer] is either true or false. The same is applicable for the variables [Patient presents 

with dyspnea] and [Patient is a smoker]. For the two variables, the Bayesian network 

needs a prior probability independent of the other nodes, e.g., the general share of the 

population that smokes or the share of patients that seek treatment with dyspnea. The 

probability of the hypothesis being true depends on the state of the other two nodes, e.g., 

it would be reasonable to assume that the hypothesis is more likely to be true when both 

variables are also true. The Bayesian network is fully specified with the combination of 

the causal graph and the probabilistic relationships between the nodes. 

In the previous example, the probabilistic relationships between the hypothesis and vari-

ables are constructed from expert knowledge that relies on external information (like the 

share of the population that smokes). When a sufficiently large dataset is available for the 

variables and hypothesis under investigation (e.g., medical records for many patients that 

seek treatment), the probabilities can be derived from the dataset directly without any 

further external knowledge (cf. Kabir et al. (2015) for such an approach in a risk man-

agement context). 

Once the Bayesian network is constructed, it can be used to infer the posterior probability 

of a hypothesis or variable and provide partial knowledge regarding the state of the other 

hypotheses and variables (Koski and Noble, 2009). For example, the Bayesian network 

in Figure 8 can be used to calculate the most probable diagnosis for a patient that has a 

cough and has recently been to Asia but has no abnormal x-ray results. 

 
20 Note that this uses a weak interpretation of the term ‘causality’ that only means to identify the most 

plausible direction of influence between two variables. In the example, not every lung cancer needs to 

be caused by the patient being a smoker. 
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As we have seen, Bayesian networks provide a framework to model problems that require 

a probability distribution for a hypothesis that builds upon partial knowledge about 

(many) other variables and hypotheses that are causally related to the hypothesis under 

investigation. This is a common problem in risk assessment: The risk analysis aims to 

provide a probability of some risk event using relevant knowledge related to the risk. In 

the following, I will discuss what a generic risk Bayesian network can look like that serves 

as a prototypical Bayesian network for the purpose of this study. 

 

Figure 8 Example of a Bayesian network DAG: the ‘Asia model.’21 

 

 

3.4.3 A generic risk Bayesian network 

In the previous section, the possibility of constructing Bayesian networks to model deci-

sion-making for problems that ask for a probability of the possible states of a hypothesis 

(such as true or false) was demonstrated. As discussed earlier, the task of a risk workshop 

can be described as such a problem: When the risk workshop is tasked to assess a risk, it 

must decide on the probability of the risk having certain characteristics, especially re-

garding its severity. In order to simulate risk workshops using Bayesian networks as the 

cognitive architecture of the participants, a generic Bayesian network representing a risk 

must be defined. In the following, I will discuss how the characteristics of the generic 

Bayesian network were chosen. 

 
21 The ‘Asia model’ is a popular introductory example of Bayesian networks. It was first published and 

discussed by Lauritzen and Spiegelhalter (1988). 
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In (Harten, 2019), I propose to describe the cognition of an agent regarding a risk in three 

layers (Figure 9).  

• At the top layer, the layer of assessment, the risk is thought of within categories 

of assessment, such as “high risk” or “low risk.” These assessments are the output 

of the risk assessment process in the risk workshops we study.  

• Below the layer of assessments, there is a layer of hypotheses. The assessment of 

the risk depends on the assessment of diverse hypotheses. For example, the as-

sessment of the strategic risk that a new competitor might enter the market de-

pends on the assessment of hypotheses like [our market is going to grow] or [our 

product is easy to copy].  

• These hypotheses are assessed based on the knowledge that forms the layer of 

knowledge. For example, the existence of a patent might influence the assessment 

of the hypothesis [our product is easy to copy]. 

 

Figure 9 The three layers of the agent’s cognitive model for assessing a risk.22 

 

Kabir et al. (2015) provide an example of a Bayesian network that is used for risk assess-

ment in an engineering context that follows this general structure (Figure 10). It is used 

to assess the risk of water mains failure. In their network, the node [Aggregate Failure 

Risk Index] provides the overall risk assessment, it is the sole element of the layer of 

assessment. The risk assessment is derived from nodes that describe specific sources of 

failure, for example, the risk of failure because of lacking structural integrity or insuffi-

cient hydraulic capacity. In the proposed structure, these nodes are part of the layer of 

hypotheses, as they themselves are not representations of actual data. Rather, they them-

selves are derived from other nodes that represent the actual knowledge that informs the 

 
22 The figure is taken from Harten (2019). 
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risk assessment, like the water pressure, the age of the pipe, or the pH level of the soil. 

These nodes, finally, correspond to the layer of knowledge.23 

 

Figure 10 Bayesian network to assess the risk of a water mains failure.24 

 

Generalizing this structure, we arrive at the Bayesian network shown in Figure 11. At the 

layer of assessment, only a single node is chosen to represent the overall risk assessment. 

While risk workshops often assess at least two dimensions of a risk (like the probability 

of the risk event and its impact), only one risk dimension is chosen for the generic risk 

network in the simulation study to simplify the discussion of the simulation results. As 

the assessment of different risk dimensions might rely on entirely distinct sets of hypoth-

eses and knowledge, they can be described as separate problems that can be modeled 

using a separate Bayesian network. 

Similar to the structure in (Kabir et al., 2015), we generalize the layer of hypotheses into 

two sublayers: the overall risk assessment depends on domain nodes, which themselves 

depend on issue nodes. Finally, the issue nodes depend directly on knowledge, repre-

sented by ‘information nodes’ in the model. 

 
23 It should be noted that the hypotheses nodes in the Bayesian network from Kabir et al. (2015) are not 

only dependent on knowledge nodes, but also on other hypotheses.  
24 Figure taken from Kabir et al.(2015). 
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Figure 11 Generic Bayesian network of a risk.25 

 

This generic Bayesian network of a risk is used in the study to represent and model the 

risks that are discussed by the participants in the risk workshops. The participants use the 

Bayesian network to reach a risk assessment based on the information provided to them: 

The Bayesian network serves as the cognitive architecture of the participants. 

 

3.5 Constraint satisfaction networks as a cognitive architecture 

In the previous subchapter, I have described how Bayesian networks can be used as cog-

nitive architectures for agent-based models. Bayesian networks were chosen as cognitive 

architectures for this thesis because of their proximity to established approaches to model 

risks, as the focus of this study are risk workshops. However, there are alternative ap-

proaches to model cognition. One significant branch of research regarding cognitive ar-

chitectures uses constraint satisfaction networks. They represent an alternative approach 

to reasoning. While Bayesian networks are built on probabilistic reasoning, constraint 

satisfaction networks are built on deterministic or constraint reasoning (Dechter, 2013). 

In the following, I will outline how constraint satisfaction networks are used in the context 

of cognitive architectures. There are several implementations of constraint satisfaction 

networks that have been used as cognitive architectures. I will focus the discussion on 

ECHO, a model proposed by Thagard (1989), as this model has been used for the simu-

lation experiments in this thesis.26 

 
25 Figure taken from Harten et al. (2022). 
26 A discussion of several implementations of constraint satisfaction networks was published by Thagard 

(2000). 
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3.5.1 Development of constraint satisfaction networks 

Constraint satisfaction networks were developed to address (partial) constraint satisfac-

tion problems. Constraint satisfaction problems are characterized by variables for which 

values have to be found and constraints regarding possible combinations of values for 

these variables (Freuder and Wallace, 1992). For example, the variables could each rep-

resent a decision (e.g., “Which project should we prioriti e?” and “Which department 

should get a budget increase?”). In this example, a possible constraint would be “If we 

prioritize project A, we must increase the budget of department X.” Possible solutions for 

constraint satisfaction problems are values for the variables that satisfy all constraints. 

Constraint satisfaction problems are often used for artificial intelligence tasks, like ma-

chine vision (Freuder and Wallace, 1992). Partial constraint satisfaction problems allow 

for solutions that do not fully satisfy all constraints. Instead, one tries to maximize the 

degree to which constraints are satisfied. There are two main reasons to settle for partial 

solutions to constraint satisfaction problems: Either the problem is over-constrained so 

that no complete solution is possible, or the complexity of the problem requires excessive 

resources for a complete solution (Freuder and Wallace, 1992).  

The general concept of constraint satisfaction networks has been implemented multiple 

times as different frameworks (cf. Thagard, 2000) to fit specific use cases. A prominent 

framework that was developed with a focus on modeling decision-making based on ar-

guments and observations is ECHO (Explanatory Coherence by Harmany27 Optimiza-

tion), which was developed by Thagard (1989, 1992). ECHO provides a framework for 

constraint satisfaction networks that describe cognitive processes as the alignment of con-

flicting or reinforcing units. These units represent ideas or observations of reality. It has, 

for example, been successfully applied to describe the reasoning about conflicting con-

cepts or interpretations in science and judiciary (e.g., Nowak and Thagard, 1992; 

Thagard, 2004). While initially developed to describe the cognitive negotiation of con-

flicting explanations for given observations of reality, the model can and has been used 

to describe decision-making tasks (e.g., Frigotto and Rossi, 2015; Thagard, 2004). 

 

 

 
27 According to Haig (2009), the spelling “Harmany” is a deliberate tribute to Gilbert Harman, an American 

philosopher who coined the term “inference”. 
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3.5.2 Using constraint satisfaction networks for ABM 

 

While constraint satisfaction networks are often described as a cognitive architecture 

(Thagard, 2012), there are only a few studies that have used constraint satisfaction net-

works as the cognitive architecture in agent-based models (e.g., Thagard, 2008; Wolf et 

al., 2015).  

When a constraint satisfaction network is used as the cognitive architecture in an agent-

based model, that implies that the constraint satisfaction network represents the cognition 

of a single individual, as individuals cannot limitless access and change the beliefs of 

other individuals, when multiple individuals are supposed to cooperate to perform a (dis-

tributed) cognitive task within the agent-based model, that requires a model for the ex-

change between the individuals. This can either be done by connecting all individual net-

works to one shared network (as done by Hutchins (2000), using a constraint satisfaction 

network similar to ECHO) or by allowing the actors to communicate with each other 

using a separate protocol, based on their individual cognition, and updating their individ-

ual networks afterward (e.g., Thagard 2000; Frigotto and Rossi 2012).  

For this study, we have chosen the latter approach (i.e., each participant has a separate 

constraint satisfaction network as a cognitive architecture, and communication with other 

participants happens in a separate layer of the model outside the constraint satisfaction 

network), as it is also applicable to a modeling approach using Bayesian networks. Fur-

thermore, it allows for better control of communication between the agents, as an ap-

proach with one large, interconnected constraint satisfaction network does not provide 

any means to guide how individuals behave during the risk workshop. The communica-

tion framework chosen for this study is explained in Chapter 4. 

 

3.5.3 On Bayesian networks and CSN 

Bayesian networks and constraint satisfaction networks have many similarities. Both are 

used in the field of artificial intelligence to encode knowledge and provide mechanisms 

to derive decisions from that knowledge. Both have an underlying network of nodes and 
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edges, with nodes representing variables and edges relationships. Their respective net-

works can serve as a graphical representation, a property that is used throughout this the-

sis. Finally, both can be used for reasoning under uncertainty – with incomplete 

knowledge about the true value of all variables, they provide algorisms that find values 

for the unknown variables that are consistent with what is known. For example, in the 

Bayesian networks and constraint satisfaction networks that represent the risk assessment 

task, the true value of the ‘overall risk assessment’ is always unknown but can be de-

ducted from what is known using the mechanisms provided by the networks.  

The core different between Bayesian networks and constraint satisfaction networks lies 

within the algorisms that represent fundamentally different kinds of reasoning. Bayesian 

networks are probabilistic. The key mechanism they provide to learn about the state of an 

unknown variable is probabilistic inference. Based on probabilistic relationships between 

variables (either learned from previous data or expert judgment), the probabilities of pos-

sible states of the unknown variables can be deducted. In contrast, constraint satisfaction 

networks solve constraint satisfaction problems. They provide values for uncertain vari-

ables that are consistent with the constraints imposed by the network on the relationship: 

the values they provide for uncertain variables are not to be interpreted as the most prob-

able but as the most consistent.  

As mentioned before, Bayesian networks are regularly used in fields like engineering or 

risk management (Fenton and Neil, 2019) as they can be used as reliable calculators for 

specific problems. Constraint satisfaction networks are rarely used in these fields, as they 

are not predictable calculators: They are designed with human cognition in mind and, 

therefore, best used to understand human decision-making, which is often not aligned 

with probabilistic inference (Nowak and Thagard, 1992; Thagard, 2004; Thagard and 

Verbeurgt, 1998). 

3.5.4 How ECHO works 

In the following, I will provide a short overview of the ECHO framework and contrast it 

to Bayesian networks. While the full framework is provided in (Thagard, 1989), this sec-

tion will only describe features of the framework that were used for the simulation 

study.28 

 
28 This section is in parts taken from Harten (2019). 
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 Similar to a Bayesian network, an ECHO network combines a graph with computational 

rules. The nodes of the graph, like in Bayesian networks, describe hypotheses or variables 

relevant to the problem under investigation. Each node has an activation similar to the 

state of a node in a Bayesian network. 

While a Bayesian network requires a directed acyclic graph, the graph (i.e., the network) 

of an ECHO network is undirected. The edges of the graph do not represent causal rela-

tionships but instead encode the explanatory coherence of the connected nodes. There are 

three different possible relationships between nodes: Explanation, Contradiction, and 

Data.  

Explanation. Explanations express positive relationships between units. If hypothesis A 

is logically consistent with hypothesis B, this is represented by an explanatory connec-

tion. For an ECHO network, a causal relationship between both hypotheses is not neces-

sary—only consistency is.  

Contradiction. Contradictions express negative relationships between units. If a belief in 

hypothesis A is not logically consistent with a belief in hypothesis B, both units are con-

nected by a contradiction connection.  

Data. A “data” relationship is established between all nodes that represent knowledge in 

the network and a special purpose node that is always fully activated. This relationship is 

supposed to make sure that stable networks must be consistent with any factual 

knowledge regarding the problem, as the knowledge nodes are (other than hypotheses) 

constantly reinforced by the factual evidence supporting them.  

The ECHO network is fully described by its nodes and the connections between them. 

Once a network is described, all units in the network are given an initial activation. Now, 

the activation a of each unit is adjusted according to formula (1), until a stable state is 

reached (Thagard 1992): 

 

The formula uses the decay parameter θ to reduce the current activation of the unit (see 

Table 1 for the default parameter of the ECHO network). max and min are the maximum 

and minimum activation of a unit (−1 and +1), netj is the net input from connected units 

to unit j: 
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Here, w(i,j) is the strength of the connection between unit i and j. 

As the network, over time, settles into a stable state, the activation of nodes can be inter-

preted as a degree of belief: A high activation of a node indicates that the node is coherent 

with the constraints specified in the ECHO network and the available knowledge regard-

ing the problem under investigation. This interpretation of the network allows us to use it 

similarly to a Bayesian network as a cognitive architecture for a risk assessment problem. 

In the following section, I will describe how we construct an ECHO network for a generic 

risk that is comparable to the generic Bayesian network described in the previous sub-

chapter. 

Table 1 Default parameters of the ECHO framework. 

 

 

3.5.5 Building a generic risk CSN in ECHO 

In a previous subchapter, I describe a generic risk Bayesian network that can be used as 

a representation of a risk for the purpose of studying risk workshops. In order to contrast 

two different calculative cultures, we need a generic ECHO network that is comparable 

to the Bayesian network discussed earlier. In the following, I describe the generic ECHO 

network and compare it to the generic Bayesian network (both depicted in Figure 12). 

The generic ECHO network follows the same three-layered structure described in 

(Harten, 2019) with a layer of assessment, a layer of hypotheses, and a layer of infor-

mation. As both generic networks should represent a similar problem complexity, the 

number of information nodes is kept constant at 27. This allows for a direct comparison 

of the number of information available to the participants during the workshop. While the 

directed acyclic graph of a Bayesian network requires a separation of the hypotheses layer 
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into two sublayers in order to allow for connections between hypotheses nodes, these 

constraints on the network structure are not present in the ECHO network. Connections 

between hypotheses can arbitrarily be added, allowing for relationships within the group 

of issue nodes. 

 
Figure 12 Comparison of the generic Bayesian network (left) and the generic ECHO network 

(right). 

 

To keep the ECHO network comparable to the Bayesian network, again, only a single 

risk dimension is modeled. The assessment is represented by two nodes, one for the as-

sessment ‘likelihood-low’ and one for the assessment ‘likelihood-high.’ Both nodes are 

modeled as contradictory to each other in order to ensure that a stable state of the ECHO 

network has a high activation for only one of the two possible assessments. 

For a detailed description of the parametrization of the generic ECHO network, see Chap-

ter 5 and Appendix 5. The two generic risk networks are used as the cognitive architec-

tures of the participants, with each architecture describing a different calculative culture. 

While the networks provide us with a model for the cognition of the individual partici-

pants, we also need a model for the interaction between the participants during the risk 

workshop. The following chapter describes how the workshop as a whole is modeled for 

the purpose of the simulation study. 
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4 Effectiveness of risk workshops under quantitative 

enthusiasm 

In this chapter, we present the results of the first study, which focuses on deriving a sim-

ulation model of a risk workshop from the idea of an ideal speech situation.29  

4.1 Introduction 

This study investigates conditions affecting the effectiveness of risk assessments in risk 

workshops.[30] Firms constantly adapt and transform themselves to respond to potential 

risks that may threaten their existence. This entails the need to correctly assess risks—a 

crucial task in firms’ enterprise risk management (ERM) (COSO, 2017). A failure to dis-

tinguish between severe and less severe risks can generate serious detrimental conse-

quences, up to threatening the continuation of operations. However, this assessment is 

not a trivial task, as decision-makers have to rely on their judgment (Mikes, 2009), and 

this judgment is based on information[31] that is often scattered within and beyond the 

organization (Neef, 2005).  

 

29 This chapter has been published in the Journal of Accounting & Organizational Change as: 

Harten, C., Meyer, M. and Bellora-Bienengräber, L. (2022), “Talking about the likelihood 

of risks: an agent-based simulation of discussion processes in risk workshops”, Journal of 

Accounting & Organizational Change, Vol. 18 No. 1, pp. 153–173, doi: 10.1108/JAOC-

11-2020-0197. 

30 Risk means the uncertainty about how the organization may be affected by potential events. 

These events may result both in positive and negative outcomes (COSO, 2017). In this 

chapter, for better legibility, we restrict our focus on the common focus of organizations, 

i.e., the focus on those risks that may result in negative outcomes (COSO, 2017). How-

ever, our modelling is applicable both for threats and opportunities. For example, when 

looking at interaction patterns in risk workshops, we talk about “concerned” participants; 

in a threats and opportunities language, a better label would be “concerned or enthusiastic” 

participants. 

31 We use the term “information” to refer to the participant’s organi ed data in the context of the 

risk assessment task, while “knowledge” refers to the information cognitively processed 

and aggregated by the participants to reach an understanding of the assessed risk. 
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An often-used technique to facilitate the aggregation of this information is risk workshops 

(COSO, 2017), in which stakeholders discuss and assess both the impact and the likeli-

hood of risks (Boholm and Corvellec, 2016). Risk assessment captures the entire process 

required to determine the severity of a risk after it has been identified (COSO, 2017). The 

severity of risk encompasses its potential impact and the likelihood of its occurrence. Risk 

management literature (van Asselt and Renn, 2011; Quail, 2011) suggests that the risk 

assessment’s effectiveness, in terms of both correctly assessing the risks and the time 

invested to reach a decision, depends on the design and implementation of this dialogue. 

We investigate the design and implementation of risk workshops from that point in which 

the worst credible impact of a certain risk has already been established; thus, the focus is 

on the assessment of the likelihood of the worst credible impact of this risk. In the fol-

lowing, for better legibility, “high risks” and “low risks” refer to “high likelihood risks” 

and “low likelihood risks,” respectively, and “risk assessment” refers to the “assessment 

of the likelihood of a risk.”  

Because of the difficulty of observing organizational and individual cognitive conditions 

in discussions (instead of merely noting its outcome) and the fact that a benchmark (i.e., 

the correct risk assessment and the time required to achieve it) is ex-ante absent in most 

risk assessments (McNamara and Bromiley, 1997), prior research has been unable to sys-

tematically disentangle different sources of (in)effective risk assessments and to describe 

the unfolding of the discussion over time. We address these challenges by theoretically 

drawing on the idea of transactive memory and Habermas’ (1983) notion of the ideal 

speech situation. We start by suggesting that risk workshops can be conceptualized as 

transactive memory systems. Such a system is based on the knowledge stored in each 

individual’s memory, the knowledge about the domain of expertise of the other individ-

uals, and the communication about this knowledge. Transactive memory systems repre-

sent an attempt to use individuals’ information by combining their expertise through a 

discursive process (Wegner, 1987). We then draw on Habermas’ (1983) characteristics 

of an ideal discourse, which include free and full access to the discourse, equal opportu-

nities to express attitudes, desires, and needs, and the absence of coercion, to define the 

conditions that are theoretically likely to be the most suitable to achieve the correct as-

sessment with the least effort. Subsequently, we investigate deviations from this ideal 

speech situation to determine the unfolding of the risk assessment in real-world condi-

tions.  



Effectiveness of risk workshops under quantitative enthusiasm 55 

We use agent-based modeling (ABM), which allows simulation experiments in which 

agents follow predefined rules to interact with other agents and with their environment 

(Wall and Leitner, 2021). In this study, the agents are workshop participants who com-

municate to assess a specific risk. ABM allows modeling the development of individual 

knowledge as well as its combination at the group level and related risk assessment out-

comes (Secchi, 2015; Wall and Leitner, 2021). Moreover, our simulation experiments 

provide a correct assessment against which to evaluate the risk assessment outcome 

(Labro and Vanhoucke, 2007); we label this correct assessment “benchmark assessment.” 

To define the “benchmark process,” i.e., the time required to achieve the benchmark as-

sessment, we start by simulating an ideal speech situation in which all relevant infor-

mation about a risk is shared by the participants. Thereafter, we introduce more realistic 

scenarios representing deviations from the ideal speech situation. Specifically, we con-

sider the effects of limits to the information transfer among participants (i.e., the receiver 

does only partially accept the argument of the sender because of reasons like cognitive 

load, time pressure, or different backgrounds), incomplete discussions (i.e., the introduc-

tion of a decision and termination approach, like voting on the risk assessment after a 

number of discussion rounds, instead of allowing an unlimited sharing of all information), 

group characteristics (i.e., unequally distributed information, hierarchical differences, and 

the non-recognition of the owners of expert knowledge), and specificities of the interac-

tion patterns (e.g., prioritizing higher hierarchical positions in the discussion instead of 

randomly allowing an introduction of assertions). 

We find that, under realistic discussion conditions, attaining the benchmark assessment 

is difficult, and we generate fine-grained insights on the effects of deviations from the 

ideal speech situation. (1) Even though the risk assessment gets stable with an increasing 

number of discussion rounds, limits to information transfer still can make a correct con-

sensus unattainable. (2) In incomplete discussions, the discussion conditions are suitable 

either to correctly assess low or high risks.32 An increase in the number of stable discus-

sion rounds that are required before the leader decides about the risk assessment worsens 

the correct assessment of low risks’ correctness. (3) Deviations from theoretically detri-

 
32 We model a risk workshop that deals with a single risk. Investigating potential interdependen-

cies in the risk assessment when discussing several heterogeneous risks in one risk work-

shop is beyond the scope of this study.  



Effectiveness of risk workshops under quantitative enthusiasm 56 

mental group characteristics lead potentially to higher, instead of lower levels of correct-

ness. (4) Prioritizing participants concerned about a certain risk leads to the highest level 

of risk assessment correctness.  

This study contributes to research and practice in three ways. First, whereas prior risk 

assessment research has focused on overall risks (Aven and Zio, 2014), we raise aware-

ness of the fact that, along with an increase in duration, on average, over all risk work-

shops, the assessments move from an under- to an overestimation of risks. Thus, an in-

crease in correctness in the assessment of high risks over the discussion time comes at the 

cost of a slight decrease in the correct assessment of low risks. Future researchers are 

encouraged to refine their research questions by distinguishing between the likelihood of 

the risks they are targeting, while firms are encouraged to allow for longer discussions if 

their goal is to avoid misidentifying high risks. 

Second, contrary to the intuitive understanding advocated by previous risk management 

and group discussion literature, we show that—in the context of risk workshops—the 

individual characteristics of the theoretically ideal speech situation are not as ideal as 

presumed (Johnson and Pajares, 1996; Sheffield, 2004). For example, in terms of correct-

ness, a decision made by the leader following the majority assessment or his/her own 

assessment outperforms the one made after waiting for a consensus to emerge. Firms can 

learn that the effectiveness of the workshop is not likely to increase after simply improv-

ing a single design component. Future research should be cautious in using the notion of 

ideality in discursive settings. 

Finally, to the best of our knowledge, this study is the first to systematically introduce a 

benchmark assessment and process in risk assessment investigations. Generally, there is 

seldom an objectively correct assessment that serves as a benchmark (Bromiley et al., 

2014; McNamara and Bromiley, 1997). We overcome this limitation and avoid the com-

monly used singular focus on the effort required to achieve a risk assessment, instead 

focusing also on the decisions’ correctness (Chapman, 1998; Heemstra et al., 2003). 

Moreover, we allow to disentangle the effects of distinct deviations from the ideal speech 

situation; effects that are otherwise only collectively evident in the risk assessment deci-

sion (He et al., 2012). While prior studies were able to account for organizational effects, 

like the order in which participants speak (e.g., Hiltz et al. (1986)), they were generally 

unable to capture individual information processing, like the importance an individual 

assigns to a received information. We model both types of effects. 
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4.2 Theoretical background 

In the following, we provide the theoretical background on which the simulation study is 

built. First, we discuss how risk workshops contribute to risk assessment. Afterward, we 

investigate what an ideal risk workshop would look like, and which deviations are to be 

expected in real risk workshops. 

4.2.1 Risk assessment in risk workshops 

Risk workshops are instances of group discussions that form the basis for a decision made 

by a leader and are usually moderated by a facilitator. Relying on a group requires more 

effort than, for example, directly soliciting a leader’s decision. However, collectively, the 

group is expected to make better use of the information of its individual members than 

the individuals alone, as the group has the chance to profit from the diversity of its mem-

bers by aggregating their information on different domains (LiCalzi and Surucu, 2012; 

Lu et al., 2012; Stasser and Birchmeier, 2003). 

However, risk workshops (and, more generally, group discussions) often fail to provide 

reliable (risk) assessments (Hunziker, 2019; Stasser and Titus, 1985). Literature provides 

scattered possible explanations for these outcomes. Examples are detrimental effects be-

cause of limited information transfer due to, e.g., information overload (Paul and Naza-

reth, 2010) or the diversity in the participant’s background (LiCalzi and Surucu, 2012). 

Other arguments point to incomplete discussions due to time constraints (van Knippen-

berg et al., 2004) or group characteristics like the lack of familiarity with each other’s 

expertise (Moreland and Myaskovsky (2000)). Moreover, the interaction patterns within 

the group have been found relevant (Katzenbach and Smith (2015)). For example, homo-

geneity and concurrence-seeking, a concept called “groupthink” (Janis, 1972), are related 

to suboptimal group assessment (Schulz-Hardt et al., 2006). A similar effect might arise 

from participants being unengaged or dominating the discussion (Hunziker, 2019; Quail, 

2011). While prior studies based on laboratory experiments provide clear results about 

individual drivers of the quality of the outcome of the discussion, they are generally un-

able to capture the (change of) perceptions of the individual participants and the group 

during discussions simultaneously affected by multiple conditions (Schulz-Hardt et al., 
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2006).33 However, it is this process perspective that explains at what specific stage of the 

discussion process which particular decision will be made, in turn unraveling the discus-

sion effectiveness that can be achieved under which conditions (e.g., terminating the dis-

cussion after a certain period of time, or focusing on specific participants during the dis-

cussion). This study helps to close this gap. 

 

4.2.2 Risk assessment process: ideal conditions and deviations 

We integrate a cognitive and a discursive perspective. From a cognitive perspective, we 

frame risk workshops as an example of distributed cognition. Distributed cognition means 

that groups make use of individuals’ knowledge by combining their expertise (Lorscheid 

and Meyer, 2020). Specifically, we rely on transactive memory,  a mechanism in which 

participants at a risk workshop learn about each other’s expertise (i.e., participants build 

transactive memory) and then identify and combine knowledge in a discursive process. 

In a risk workshop, a partially differentiated transactive memory system progresses to-

ward an integrated system. In a differentiated transactive memory, participants have fully 

disjunct areas of expertise (i.e., expertise is maximally unevenly distributed), while in an 

integrated transactive memory, all participants have the same knowledge (Wegner, 

1987). Transactive memory systems have a positive impact on group performance. This 

impact is more likely to emerge when group members are familiar with each other’s ex-

pertise and have initially distributed expertise (Lewis, 2004).  

While this cognitive perspective of risk assessments focuses on the accessibility of indi-

vidual knowledge to the group through discussion, a more discursive perspective com-

plements the cognitive perspective and focuses on the design of this discussion. Habermas 

(1983), referring to Alexy (1978), describes the conditions of an ideal speech situation 

that is theoretically suited to reach a true consensus34. In an ideal speech situation, (1) all 

participants competent at speaking about the relevant topic are allowed to participate in 

 
33 Usually, laboratory experiment participants are surveyed before and after the discussion, 

while the discussion itself is simply recorded and coded. The capturing (of change) of per-

ceptions during the discussion would disrupt the process and is generally avoided during 

the laboratory experiments. 

34 A consensus can be considered to be true when every competent person would agree to it 

(Habermas, 1971). 
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the discourse;35 (2) all participants have the same chance of participating by speaking, 

disagreeing, and asking and answering questions, and every aspect can be discussed and 

criticized; and (3) all participants engage in the discussion without differences in power 

or other forms of coercion. The ideal speech situation is understood as a normative stand-

ard for the discussion of risks (Horlick-Jones et al., 2001) that ensures that individual 

knowledge is properly shared and used in the group. 

Real-world discussions are limited by constraints that constitute deviations from charac-

teristics of the aforesaid ideal speech situation. Starting from Habermas (1983) and based 

on Handy (1986) and our summary of the literature on group discussions, we focus on 

four deviations: 

1. Limits to information transfer: To reach true consensus, the speaker and listener 

need “[…] shared propositional knowledge, and mutual trust in subjective sincer-

ity” (Habermas, 1982, p. 413). If these requirements are not fulfilled, a speech act 

might not completely convince the receiver, and, as a result, the individual’s ex-

pertise on a certain risk is not fully incorporated into the assessment. 

2. Incomplete discussion: The ideal speech situation is not limited by temporal con-

straints, as “no preliminary opinion [should remain] permanently withdrawn from 

discussion and criticism” (Habermas, 1989, p. 177). By contrast, leaders must set 

time limits on each risk in a workshop (Quail, 2011) and will thus enforce a ter-

mination rule, after which a leader will decide about the risk assessment.  

3. Specific group characteristics: As there is no limit to a discussion’s length in the 

ideal speech situation, initial differences in information access between the par-

ticipants can be overcome by successively sharing information. However, if the 

discussion remains incomplete (i.e., it ends before arriving at a true consensus), 

an unequal distribution of information among participants may influence its out-

come. Moreover, expertise might not be recognized as such (i.e., receivers have 

no transactive memory). Finally, while equal consideration of each one’s argu-

ments forms a core of the ideal speech situation, in real-world situations, hierar-

chical differences may change the acceptance of arguments. 

 
35 We use the term ‘discourse,’ which is common in Habermas’ work, synonymous with ‘dis-

cussion,’ as used in the rest of this chapter. 
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4. Specific interaction patterns: Habermas (1989, p. 177) calls for participants to 

“have an equal chance to use representative speech acts” and to “have the same 

opportunity to use regulative speech acts, i.e., to give orders and to resist, to allow 

and prohibit, to make and take promises.” However, in a real-world discussion, it 

is unlikely that participants will be equally prioritized to speak (Quail, 2011). 

In line with the cognitive and discursive components of our theory, we expect that devi-

ations from the ideal speech conditions will, ceteris paribus, reduce the risk assessments’ 

correctness and increase the number of discussion rounds needed.  

 

4.3 Methods 

This section describes the implementation of the simulation experiment. It provides an 

overview of the design of the simulation and explains how the deviations from an ideal 

discussion are modeled for the simulation experiments. 

4.3.1 Overall design 

We use a simulation experiment approach, i.e., we model the reality of interest with its 

related processes and outcomes and combine it with an experimental design (Harrison et 

al., 2007).[36] First, we simulate the benchmark process in line with Habermas’ ideal 

speech situation. Second, we run four simulation experiments that model the deviations 

from the ideal speech situation—as described in the previous section—to disentangle the 

extent to which they change the effectiveness of the risk assessment. Given the im-

portance of gaining a better understanding of the role of actors in risk management and 

governance (Hiebl et al., 2018), we model the interaction of participants in risk work-

shops as the exchange of information between agents in an ABM (Lorscheid and Meyer, 

2021; Wall and Leitner, 2021).  

 
36 The simulation code as well as the ODD+D (Overview, Design Concepts and Details + Deci-

sion) protocol are available online at www.comses.net. The protocol provides a standard 

for describing ABMs that include human decisions (Grimm et al., 2006; Müller et al., 

2013). We use it for detailing the information provided in this section. The ODD+D proto-

col is also provided in Appendix 4. 
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The risk itself is modeled as a Bayesian network (Fenton and Neil, 2019; Kabir and Pa-

padopoulos, 2019), representing both risk to be discussed and the mental model of the 

participants.[37] Bayesian networks are probabilistic models that describe the conditional 

probabilities of an event (González-Brenes et al., 2016; Pearl, 2008). Combining ABM 

and Bayesian networks provides the two components of a transactive memory system, 

namely the transactive processes—reflected in the discursive interaction of the ABM’s 

agents—and the individual memory systems—reflected in the likelihood of states repre-

sented with Bayesian networks. 

 

4.3.2 Discussion process and risk assessment model 

Each simulation experiment consists of a number of simulation runs. Each simulation run 

is an entire discussion of a single risk within a risk workshop and comprises five stages, 

as described in Figure 13. The risk structure, which is the basis for each discussion, is 

shown in Figure 14. The overall risk assessment (e.g., the likelihood that the introduction 

of a new product in the market can fail) derives from the assessment of domain-specific 

risks (e.g., the likelihood that competitors introduce a similar product; the likelihood that 

the costs are higher than the customers’ willingness to pay). In turn, the domain-specific 

risk assessment is derived from the assessment of issue-specific risks (e.g., the likelihood 

that productions costs are higher than expected), and this, in turn, is rooted in the assess-

ment of specific risk information (e.g., the likelihood that existing machines cannot be 

adapted to the new product). The participants’ mental model is constructed analogically. 

The full risk structure contains 40 nodes, comprising 27 information nodes, nine issue 

nodes, three domain nodes, as well as one node for the overall risk assessment. The indi-

vidual participants, however, due to their diversity in backgrounds or priorities, have dif-

ferent risk perceptions (Sjöberg, 2000) and are initially only aware of the existence of the 

domains and issues related to the information they are provided with in the initialization. 

Before they can receive information about a certain domain or issue, they have to gain 

 
37 A mental model is an internal representation of a human’s understanding of a system (Rouse 

and Morris, 1986). 
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knowledge of the existence of this same domain or issue through discussion with the other 

participants.38  

During the discussion, information about the 27 information nodes is exchanged. The 

other nodes are derived from the state of the information nodes. All nodes are discrete 

variables in a “low,” “medium,” or “high” state. Each of these states is assigned a proba-

bility that represents the degree of belief that the variable is in a particular state.39 To 

reflect a situation where the risk workshop needs to correctly account for a small share of 

critical information, we postulate in our Bayesian network that information nodes indi-

vidually are ten times more likely to indicate a low than a medium likelihood and ten 

times more likely to indicate a medium than a high likelihood. If a participant believes 

that a certain information node has a “high” state (i.e., the state represented by the infor-

mation node has a high likelihood), the Bayesian network will reflect this with a higher 

probability of the corresponding issue-, domain- and overall risk assessment nodes being 

in a “high”-risk state. Thus, for the same risk, participants can arrive at different risk 

assessments depending on the information available to them. 

 
38 Gaining knowledge about the existence of a new domain or issue node and getting infor-

mation about the likelihood of this same node happens in different discussion rounds. 

When knowledge about the structure of an issue node is acquired, agents simultaneously 

learn about the existence of the underlying information nodes. 

39 For example, a likelihood of 100% for the “low” state signifies that the participant is abso-

lutely certain about that assessment. A likelihood of 80% for the “low” state and, e.g., 14% 

to the “medium” and 6% to the “high” states indicate some uncertainty regarding the ac-

tual state of the node. 
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Figure 13 Flowchart of the different stages of each simulation run. 

 

Figure 13 describes the five stages of each simulation run. (1) A risk assessment task is 

randomly generated according to the Bayesian network risk structure depicted in Figure 

14. The task is to assess the likelihood of the risk, which is unknown to the workshop 

participants. (2) The benchmark assessment is calculated using the complete information 

from the risk assessment task. (3) Each of the participants is provided with some, but not 
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all, information (i.e., with limited information) in such a way that each information is 

initially known to at least one participant. (4) Then, simulation experiments are run in 

line with the conditions delineated in Table 2. The risk is discussed repeatedly and as-

sessed by the group in several discussion rounds. Specifically, (4.1) all participants share 

their assessment of the likelihood of the risk; then (4.2), when certain conditions are met 

(e.g., the group has reached a consensus), the leader terminates the discussion and decides 

on the risk assessment. If the discussion continues, (4.3) the next participant to share in-

formation (i.e., the sender) is chosen, and (4.4) shares the information, (4.5) followed by 

the other participants (i.e., the receivers) updating their risk assessment based on this new 

information. (5) The assessment reached by the workshop is compared to the benchmark 

assessment. For example, if a high risk (benchmark assessment) is assessed to be low, it 

is a misidentified high risk.  

 

 

 

Figure 14 Graph representing the risk assessment, both as a discussion process and as an individ-

ual mental model.40 

 

4.3.3 Model of the discussion 

Nine participants41 exchange information about the risk at hand. The discussion is divided 

into rounds. Each round consists of a sequence of actions performed by the participants 

 
40 The figure represents the risk structure that is the basis both for the discussion process and for 

each participant’s individual mental model.  

41 Risk workshops can differ substantially in the number of their participants. We choose nine 

participants for our simulation experiment, a group size within the common range for risk 

workshops (e.g., Ackermann et al., 2014). 

overall risk assessment 

domain nodes 

issue nodes 

information nodes 
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(see stage 4 in Figure 13). The outcome of the discussion is influenced by how it deviates 

from an ideal speech situation. 

4.3.3.1 Limits to information transfer 

Arguments from the sender may not fully convince the receiver. In our model, when par-

ticipants receive information from the sender, they will not necessarily fully discard their 

prior beliefs about the corresponding information node when updating their risk assess-

ment. Instead, a receiver’s new assessment of the information node is a weighted average 

of their prior assessment and the sender’s assessment.42 The weight that the receiver at-

tributes to the sender’s input differs across receivers and is an aggregate that, in practice, 

may account for factors like cognitive load, time pressure, or participant’s background. 

4.3.3.2 Incomplete discussions 

In real-world conditions, leaders will have to determine on what basis they will make 

their assessment decision and when the risk workshop should end. They might choose to 

rely on their individual risk assessment, follow the group consensus, or rely on the ma-

jority’s assessment. In terms of timing, the discussion could be stopped when a consensus 

emerges if the leader wants to follow a consensual assessment. Otherwise, the leader 

might stop the discussion when the discussion is not progressing, i.e., when the average 

(numerical) group assessment has been stable over a certain number of rounds (one, five, 

or ten). 

4.3.3.3 Specific group characteristic 

We focus on the impact of three group characteristics. 

• Unequal distribution of information: Participants might not have access to the 

same amount of information; then, a larger share of information is provided to 

some participants. 

 
42 For example, in the ideal speech situation, the non-expert receiver will weight an expert opin-

ion with 100%. With limited information transfer, a non-expert will weight an expert opin-

ion with 90% and the prior belief with 10% (e.g., a prior belief of 1% in the high state of 

an information will turn into a 91% = 90% ∗ 100% + 10% ∗ 1% belief after talking to 

an expert who assigns 100% to the likelihood of the high state). 
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• Differences in hierarchy: Information from higher-ranked participants might re-

ceive more consideration than information from other participants. Thus, the 

weight of the information is higher. 

• Information about each other’s expertise (transactive memory): Participants 

may not know about each other’s expertise (i.e., receivers lack transactive 

memory); thus, they cannot differentiate between expert and non-expert senders 

and will not weigh the information accordingly. 

4.3.3.4 Specific interaction patterns 

Risk workshop facilitators decide who is allowed to speak in what order, determining the 

interaction patterns. Using a random order as a baseline, we investigate the following 

interaction patterns giving priority to:  

• Concern: The probability of being the next sender is higher if the participant’s 

risk assessment is “high.” 

• Dissent: The probability of being the next sender is higher if the participant’s 

assessment differs largely from the average (numerical) group risk assessment. 

• Hierarchy: The probability of being the next sender is higher if the participant is 

assigned a higher hierarchical position. 

• Homogeneity: The probability of being the next sender is higher if the partici-

pant’s risk assessment is close to the average group risk assessment. 

 

4.4 Results 

Table 2 provides an overview of our simulation experiments. Figure 15 depicts the results 

of the simulation experiment for the ideal speech situation conditions. Specifically, it 

shows, per discussion round, which proportion of the simulated discussions has reached 

a particular type of consensus and which has not reached a consensus.43 Before the dis-

cussion (i.e., in discussion round zero), no consensus is reached on the risk assessment in 

 
43 It is important to note that the Bayesian network is calibrated in a way that always results in a 

“low risk” or “high risk” assessment for the overall risk. This simplifies the interpretation 

of the simulation results. In our Bayesian network, nodes aggregate the input from three 

other nodes. As almost always at least some input nodes have assigned high likelihoods to 
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38% of the simulated discussions. The reason is that participants, at the start of the dis-

cussion, can base their risk assessment only on their limited set of information. Achieving 

a (correct) consensus before the discussion is driven by chance.  

Moreover, we observed a tendency to initially underestimate risks (i.e., reaching a con-

sensus but misclassifying high risks). This is due to the lack of knowledge about the ex-

istence of certain information nodes. Initially, participants are often missing information 

about the risk structure and therefore do not account for uncertainty regarding the proba-

bilities of corresponding nodes (i.e., they do not yet know what they do not know). In our 

model, corresponding to the real-world distribution of risks, most information nodes are 

in the “low” likelihood state. So, participants underestimate the risk until, by learning 

something new about the risk structure, they become aware of their—so far uncon-

scious—uncertainty. Therefore, in the early discussion rounds, the low risks are over-

proportionally correctly identified compared to the high risks. 

While, until discussion round seven, the driven-by-chance consensus drops over all sim-

ulated discussions, after this round, an increasing proportion of the discussions results in 

a consensus—stemming from the increased number of information shared (and, thus, a 

better knowledge of the risk structure and corresponding information). After at most 39 

discussion rounds, all information is shared and adopted by all participants, resulting in a 

correct consensus for nearly all discussions.44 The maximum of 39 discussion rounds 

needed is determined by the sum of the 27 information nodes, the nine issue nodes, and 

the three domain nodes that have to be shared to come to the overall risk assessment.  

Overall, even under ideal speech conditions, it is apparent that correctly assessing a risk 

as a group involves many discussion rounds and is error-prone. Moreover, even if the 

participants reach a consensus, this consensus could be premature and wrong. Hence, the 

presence of a consensus is only a reliable indicator of a correct assessment after a large 

share of information has been shared.  

  

 
the “low” or “high” states, the likelihoods assigned to the “medium” state decrease with 

each level of aggregation. As a result, the participants are presented de facto a binary as-

sessment task. 

44 Due to the inherent slight imprecision of the computational framework, 100% correctness is 

never achieved.  
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Table 2 Overview of the simulation experiments  
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4.4.1 Simulation experiment 1: limits to information transfer 

Figure 15 shows that when introducing limits to the information transfer, even after 78 

discussion rounds—twice as many rounds as in the benchmark process—only 84% of the 

discussions have reached a correct consensus. As new information is not fully integrated 

by the receivers in their beliefs updating, senders might have to talk repeatedly about the 

same information to gradually increase the impact of their information on the receivers’ 

risk assessment. At the same time, as discussion rounds continue, the classification of the 

group assessments becomes stable, in some cases without attaining a correct consensus. 

Thus, even after many discussion rounds, the unwillingness or inability to fully incorpo-

rate the sender’s information impedes the achievement of the benchmark assessment. 

At the top of Figure 15, the results from the first experiment representing the ideal speech 

situation condition are depicted (n=1,000 simulated discussions; high risks: 575 [57.5%]; 

low risks: 425 [42.5%]), while in the middle the results from the second simulation ex-

periment for the limited information transfer condition are portrayed (n=3,768 simulated 

discussions; high risks: 2,045 [54%]; low risks: 1,723 [46%]).  

The graphs in Figure 15 show, for each discussion round, which proportion of the simu-

lated discussions has reached a particular type of consensus and which proportion has not 

reached a consensus to this point. At the bottom, the figure depicts the change of 

knowledge of the participants during the second simulation experiment. Participants are 

said to have knowledge about an information node if they have included the node in their 

mental model, and they are said to have information about the node when they have re-

ceived specific information, either during the initialization or during the discussion. 
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Figure 15 Development of types of group consensus after each discussion round under ideal 

speech situation conditions and with limited information transfer. 

 

4.4.2 Simulation experiment 2: incomplete discussions 

Table 3 aggregates the effects of three decision approaches for the leader, i.e., relying on 

his or her individual risk assessment, following the group’s consensus, or following the 

majority’s opinion. Leaders following their own opinion or the majority outperform a 

consensus requirement. For all decision approaches, we investigate what happens when 

the discussion is terminated after one, five, or ten stable rounds. We find that this has a 

clear impact on the percentage of correct assessments. Over all risks, a continuation of 

the discussion generally improves correctness (e.g., deciding to follow the consensus after 

ten stable rounds instead of five stable rounds, improves the overall percentage of correct 

risk assessments from 39.6% to 59.8%).  

Intriguingly, correct assessments are different for high and low risks. For example, a com-

parison of the decision approach with the same number of required stable rounds indicates 
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that the leader will make better decisions by following the majority if the risk is low but 

otherwise will improve the decision by relying on his or her individual risk assessment. 

Terminating the discussion as soon as a first consensus is achieved only leads to a correct 

assessment in 57.7% of the discussions with an actual high risk, while the same termina-

tion approach leads to a correct assessment in 97.2% of the discussions with an actual 

low risk.  

Moreover, an increase in correctness in the assessment of high risks over discussion time 

comes at the cost of a slow decrease in the correct assessment of low risks. Given that 

firms will want to reduce the severity of the risks that they are facing, and that this severity 

is the product of the risk’s impact and likelihood, c.p., firms will likely want to at least 

correctly identify the high likelihood risks and then mitigate these risks. If this holds, 

based on our findings, firms are encouraged to allow for longer discussions to avoid mis-

identifying high risks. 

 

Table 3 Outcomes of the risk assessment under different deviations 

 The proportion of correct assessments  

 

 

All risks 

 

High risks 

 

Low risks 

Avg. num-

ber of dis-

cussion 

rounds 

Deviation 2: Incomplete discussion     

Stop at the first group consensus 75.8% 57.7% 97.2% 8.1 

One stable round     
   Leader follows their own opinion 52.5% 14.2% 98.0% 

2.1    Leader follows consensus  39.5% 0.7% 85.5% 

   Leader follows majority opinion 46.4% 1.3% 99.9% 

Five stable rounds     
   Leader follows their own opinion  70.1% 65.3% 75.9% 

17.8    Leader follows consensus  39.6% 41.0% 38.1% 

   Leader follows majority  70.2% 61.2% 80.8% 

Ten stable rounds     
   Leader follows their own opinion 77.9% 82.6% 72.3% 

33.5    Leader follows consensus 59.8% 68.3% 49.7% 

   Leader follows majority  78.3% 80.9% 75.3% 

Deviation 3: Group characteristics     

Unequal distribution of information with, 

   consideration of hierarchical differences, 

   no transactive memory 
75.2% 

 

91.6% 

 

55.0% 

 

34.5 

 

   consideration of hierarchical differences, 

   transactive memory 73.4% 83.4% 61.8% 35.5 

   no consideration of hierarchical differences, 

   no transactive memory 73.1% 80.7% 63.2% 34.6 
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   no consideration of hierarchical differences, 

   transactive memory 75.8% 84.4% 65.1% 36.1 

Equal distribution of information with, 

   consideration of hierarchical differences, 

   no transactive memory 
75.2% 

 

82.0% 

 

66.3% 

 

31.3 

 

   consideration of hierarchical differences, 

   transactive memory 77.1% 82.8% 70.3% 31.9 

   no consideration of hierarchical differences, 

   no transactive memory 73.8% 78.2% 67.8% 31.7 

   no consideration of hierarchical differences, 

   transactive memory 
78.2% 80.9% 75.0% 33.5 

Deviation 4: Interaction pattern     

Random choice of participants 78.3% 80.9% 75.3% 33.5 

Priority given to concerned participants 88.9% 88.9% 89.0% 33.8 

Priority given to participants with dissenting opinions 79.5% 91.2% 64.1% 33.3 

Priority given to participants with higher hierarchical position 75.2% 76.0% 74.1% 32.2 

Priority given to participants close to the group opinion 75.9% 70.9% 82.7% 31.3 

Note: The table depicts the results of the third, fourth, and fifth simulation experiments and shows the percentage of risks 

that were correctly assessed and the average number of discussion rounds before the decision was made. For each experi-

ment, bold values highlight the highest percentage of correct assessments per type of risk and the lowest average number 

of discussion rounds needed.  

Deviation 2: n=3,768 simulated discussions (high risks: 2,045 [54%]; low risks: 1,723 [46%]). A stable round is defined 

as a discussion round in which the risk assessment does not change from the previous discussion round. A discussion is 

said to have a number of stable rounds (i.e., the participants have the perception that they do not learn any more from the 

discussion) if the average (numerical) group assessment does not differ more than 2% for the same number of consecu-

tive rounds. If the leader follows the consensus, but no consensus is reached, the assessment is counted as incorrect.  

Deviation 3: n=7,024 simulated discussions (high risks: 3,858 [55%]; low risks: 3,166 [45%]). If the information is not 

equally distributed, the information is distributed to the participants so that the best-informed participant knows twice as 

much as the second-best-informed participant, who knows twice as much as the least-informed participant. If receivers 

consider hierarchical differences, they weigh the sender's input according to their difference in hierarchy values: hlow = 

0.25, hmedium = 0.5, hhigh = 0.75. If receivers have no transactive memory, they do not distinguish between the input 

from an expert and a non-expert sender.  

Deviation 4: n=3,200 simulated discussions (640 simulated discussions per interaction pattern; high risks: 1,776 [55.5%]; 

low risks: 1,424 [44.5%]). Compared to the ideal speech situation conditions of the first simulation experiment, in this 

experiment, receivers keep a part of their prior beliefs, and the leader follows the majority after ten stable rounds. When 

concerned participants are prioritized, the probability of being the next sender is proportional to the probability that they 

assign to the "high risk" state in the overall risk assessment. In a deviation from the standard sequence of actions in the 

simulation, in this setting, participants select the information to share with a likelihood proportional to the probability 

they assigned to the "high" state of the respective information node. When dissenting participants are prioritized, the 

probability of being the next sender is proportional to the difference between their risk assessment and the group's risk 

assessment. When participants are prioritized based on their hierarchical position, the probability of being the next sender 

is proportional to a hierarchy factor they are assigned: hlow = 0.25, hmedium = 0.5, hhigh = 0.75. When participants close 

to the group opinion are prioritized, the probability of being the next sender is proportional to the inverse of the differ-

ence between their risk assessment and the group risk assessment. 

 

This trade-off (Figure 15) is partially the result of the already discussed initial tendency 

to underestimate risks, as participants, at this time, lack knowledge of the full risk struc-

ture, resulting in objectively unjustified certainty (“unknown unknowns”). Hence, partic-

ipants, at this time, are right with their “low” assessment, but for the wrong reason. How-

ever, as participants subsequently learn about their lack of knowledge without getting 

information about the likelihood of nodes, they start to overestimate the actual risk as 

they assign likelihoods to the new nodes. Here, participants also assign small non-zero 
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probabilities to the “medium” and “high” states of the node for the corresponding infor-

mation node. Consequently, until the participants learn the actual state of an increasing 

number of nodes, many participants assess the overall risk to be high and only switch to 

a low risk assessment as they learn about the true state of “low” information nodes. 

An increase in the stability requirements is accompanied by an increase in the average 

number of discussion rounds required. This increase may appear trivial, but it should be 

noted that it is over-proportional to the number of stable rounds (2.1 for one stable round 

vs. 17.8 for five stable rounds vs. 33.5 for ten stable rounds). While the overall correct 

risk assessment only improves in a somehow linear manner, the costs of these improve-

ments in terms of time show a steeper non-linear increase.  

 

4.4.3 Simulation experiment 3: group characteristics 

Table 3 reports the effects of a variation in group characteristics. As expected, for all 

risks, we observe the highest correctness (78.2%) when there are no deviations from the 

ideal speech for all three group characteristics; moreover, we find in the same setting the 

highest proportion of correctly identified low risks (75.0%). Notably, the highest share of 

high risks is correctly assessed when there are deviations in all three investigated group 

characteristics. In this condition, after the ten stable rounds required by default in this 

simulation experiment, the risk structure has already been learned (i.e., knowledge of the 

existence of the nodes has been gained); thus, the discussion focuses on the information 

embedded in the nodes. Here, a less optimal discussion generates noise, as the experts are 

not able to lower the uncertainty of other participants–as not all information is equally 

discussed, the hierarchically higher participants prevail over the expert, and the expertise 

of the experts is not recognized as such. Overall, this does not eliminate the small non-

 ero probabilities to the “medium” and “high” states of the nodes and leads to overesti-

mating all risks. This is the situation in which agents are right with their “high” assess-

ment but for the wrong reasons. 

 

4.4.4 Simulation experiment 4: interaction patterns 

Table 3 indicates that the highest correctness for all risks (88.9%) is observed when con-

cerned participants are prioritized. Prioritizing participants that are close to the group’s 
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opinion leads to the quickest agreement (31.3 discussion rounds) but at the cost of lower 

correctness. This is in line with the findings of previous literature that cautions against 

the concurrence-seeking inherent in the groupthink effect, specifically in risk assessments 

(Hunziker, 2019; Janis, 1972). Interestingly, we observe improvements when deviating 

from the condition of equal participation suggested by the ideal speech.  

 

4.5 Conclusion 

Risk workshops are a common technique of risk assessment and, if effectively employed, 

constitute a powerful instrument for risk management. However, difficulties such as de-

fining benchmarks, disentangling different effects on the risk assessment, and capturing 

individual cognitive processes in discussion processes pose serious challenges to a better 

understanding of the design and implementation of discussion processes in risk work-

shops. This study responds to these challenges. It theoretically draws on the notion of 

transactive memory, links it to the ideal speech conditions, and investigates how devia-

tions from this situation, likely to occur in real-world risk workshops, change the risk 

assessment outcomes (both in terms of risk assessment correctness and the time needed). 

We run five simulation experiments rooted in ABM to disentangle the effects of different 

deviations. 

Our results provide fine-grained insights into the processes and outcomes of risk work-

shops. First, even though the risk assessment gets stable with an increasing number of 

discussion rounds, limits to information transfer still can make a correct consensus unat-

tainable. Second, contrary to our theory and the intuition of group discussions literature, 

we find that increasing the number of stable discussion rounds required before conducting 

the risk assessment worsens the correctness for low risk. Third, we show that, for high 

risks, after ten stable discussion rounds, the co-occurrence of seemingly detrimental 

group characteristics (unequal distribution of information, hierarchical differences, and 

no transactive memory) leads to the highest, instead of the lowest, level of risk assessment 

correctness. Finally, prioritizing certain participants (namely, the ones concerned) instead 

of ascertaining an equal chance to speak leads to the highest level of risk assessment 

correctness.  

Of course, this study has several limitations that could be addressed by future research. 

First, our analysis simulates a risk workshop that discusses one risk. While this choice 
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was consciously made to avoid obfuscating the results with the likely effect of interde-

pendencies across risks, we encourage future studies to use our single risk model as a 

baseline to investigate the effect of these interdependencies. Second, we focus on a clas-

sification task that ultimately binarily distinguishes between high and low risks. While 

future research might be interested in investigating the outcomes of a ternary task, we 

believe that our approach, at this stage, enhances the clarity of the results’ communica-

tion. Third, our analysis models nine participants in the discussion. While nine is within 

the range of participants common in risk workshops (Ackermann et al., 2014) and 

untabulated results qualitatively support our findings, any related choice is somehow ar-

bitrary; future research may want to investigate the sensitivity of our findings to change 

in group size. Fourth, since we do not address all conceivable deviations from the ideal 

speech situation, future research may want to incorporate a broad range of conditions to 

account for factors like an increase of the limits to information transfer over time due to 

increasing, instead of constant, cognitive load, participants’ heterogeneous motivation, or 

potential hidden agendas, as suggested by Bromiley et al. (2014). 

Notwithstanding these limitations, we make three contributions to research and practice. 

First, we demonstrate that increasing the discussion rounds during a risk workshop may 

reduce, rather than increase, the rate of correct assessments for certain risks. Specifically, 

we identify a potential trade-off between the correct assessment of high and low risks. 

Along with an increase in duration, on average, over all risk workshops, the assessments 

move from an under- to an overestimation of risks. Since any improvement of the cor-

rectness of one type of risk reduces the correctness for the other, risk workshop facilitators 

may choose their approach for the discussion termination on this basis; for example, if 

the priority is on correctly assessing high risks, emphasis should be given on the longest 

possible continuation of the discussion (under the existing resource constraints). We con-

tribute to research by highlighting the peculiarities in the identification of low and high 

risks over the duration of the group discussions. Future studies may want to include this 

distinction in their analyses. For example, would the results by Moreland and Myaskov-

sky (2000), who find a positive effect of a group member’s familiarity with the others’ 

expertise on group performance, still hold in a risk assessment setting addressing specif-

ically high or low risks? 

Second, we go beyond the idea of an ideal speech situation, as we show that this theoret-

ical ideal might provide misleading guidance in practice:  
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(1) A lengthy discussion that terminates only after a high number of stable rounds does 

not necessarily lead to better outcomes for all types of risks. While Stasser and Stewart 

(1992) already concluded for their simulation of political caucuses that lengthy discus-

sions do not necessarily lead to better decisions, we transfer their finding to a firm-based 

risk assessment setting, thus indicating that the specific context of discussions is not a 

boundary condition of this finding.  

(2) A decision not based on consensual agreement does not prevent good decisions. Thus, 

we substantiate the conceptual claim that the final risk assessment should be based on the 

leader’s own assessment (Quail, 2011).  

(3) Rather than allowing everyone to participate in an equal way, we see that facilitators 

can improve the group’s risk assessment more by encouraging the participation of those 

with concerned views. Herewith, we provide evidence for the effectiveness of an ap-

proach to countervail the concurrence-seeking of the groupthink effect in risk workshops.  

Overall, risk workshop facilitators can learn from our study that an increase in the effec-

tiveness of the workshop is likely to not be achieved by simply improving a single design 

component but rather requires a complete overhaul towards the theoretically ideal condi-

tions, as shown in our benchmark process. Research can profit from our findings by using 

the identified conditions as a new baseline for further investigations into risk assessments. 

For example, we complement the work by Katzenbach and Smith (2015), who argue in 

favor of determining rules of interactions by providing evidence of the need to prioritize 

concerned participants. 

Third, we contribute methodologically to the risk assessment literature by introducing a 

novel approach that uses ABM in combination with a simulation experiment. Herewith, 

we responded to the call made by Bromiley et al. (2014), who argue that studies with a 

known, objective risk facilitate an understanding of why and how risk assessments fail to 

meet expectations. While such a benchmark is usually unavailable in case studies or sur-

veys of the risk assessment practice (McNamara and Bromiley, 1997), it can be generated 

by using a simulation experiment approach. Moreover, with this approach, we are able to 

disentangle a multitude of effects on the risk assessment in a single study, while prior 

studies often focus either on the aggregate effect or on a single effect (e.g., Kim and Park, 

2010). Finally, it is important to note that our ABM enables us to model individual cog-

nitive processes, including the individual’s weighting of the received information and the 

existence of transactive memory, and the related group-level outcomes. To the best of our 
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knowledge, this is the first risk assessment study that investigates individual cognitive 

processes in conjunction with organizational variables. Our modeling might serve as a 

steppingstone for future risk assessment investigations. 
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5 Effectiveness of risk workshops under quantitative 

skepticism  

This chapter investigates drivers of the effectiveness of risk assessments in risk work-

shops dominated by a calculative culture of ‘quantitative skepticism.’ Moreover, it con-

trasts our findings with those of previous research that assumed the dominance of ‘quan-

titative enthusiasm45.’ 

A calculative culture captures ‘attitudes towards the use and limitations of highly analyt-

ical calculative practices in an organi ation’ (Mikes, 2009, p. 21). Mikes (2009) distin-

guishes between two calculative cultures, i.e., quantitative enthusiasm and quantitative 

skepticism. Quantitative enthusiasm considers the risk assessments made in the organi-

zation as representations of a measurable economic reality (Mikes, 2009, p. 35). Quanti-

tative skepticism, by contrast, entails a calculative culture that regards risk assessments 

as learning tools supporting the holistic formation of judgments incorporating difficult-

to-quantify information (Burchell et al., 1980; Mikes, 2009; Power, 2007). The resulting 

risk numbers are seen as trend indicators, rather than a full account of reality (Mikes, 

2009).46 

We expect that an organi ation’s predominant calculative culture47 affects the unfolding 

of discussion processes for risk assessments and, thus, their outcomes. At present, the 

scant literature investigating the effectiveness of risk assessments in an organi ation’s 

risk workshops does not explicitly address the effects of different calculative cultures and 

implicitly assumes a calculative culture of quantitative enthusiasm. To the best of our 

knowledge, this is the first study that contrasts the drivers of the effectiveness of risk 

 
45 This chapter has been published in the Journal of Risk Research as: Bellora-Bienengräber, L., 

Harten, C. and Meyer, M. (2023), “The effectiveness of risk assessments in risk work-

shops: the role of calculative cultures”, Journal of Risk Research, Routledge, Vol. 26 No. 

2, pp. 163–183. 

46 These calculative cultures are embedded in broader enterprise risk management (ERM) prac-

tices. While quantitative enthusiasm is a cornerstone of an ‘ERM by the numbers,’ quanti-

tative skepticism is a descriptive component of a ‘holistic ERM’ (Mikes, 2009, p. 35). 

47 We consider these two calculative cultures as two extreme points of a continuum, similar to 

Mikes' (2009) suggestion that the related ERM models might be ‘different stages in the 

evolution of risk management’ (Mikes, 2009, p. 37).  
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assessments depending on the predominant calculative culture. Specifically, we expect 

that the design and implementation of risk workshops—intended to enhance their effec-

tiveness—should be different depending on the predominant calculative culture. 

A risk workshop is effective when it correctly assesses the considered risk, ideally mini-

mizing the time needed to do so (van Asselt and Renn, 2011; Harten et al., 2022; Quail, 

2011). The correct assessment of risks48 is a non-trivial task for organizations. The ability 

to distinguish between high and low risks is vital for any business. Nevertheless, such an 

assessment can be challenging as related information49 is often distributed inside and out-

side the organization (Neef, 2005). Risk workshops are a common tool for aggregating 

information about risks (COSO, 2017). During risk workshops, participants discuss risks 

and derive an assessment of their impact and likelihood (Boholm and Corvellec, 2016). 

To improve comparability with prior research (Harten et al., 2022), we focus this study 

on the assessment of a risk’s likelihood.50  

Previous research has struggled to systematically disentangle different drivers of effec-

tiveness in risk workshops. A notable exception is Harten et al. (2022), who conceptualize 

risk workshops as transactive memory systems. Transactive memory systems combine 

the expertise of individuals by accessing their individual information in a discursive pro-

cess (Wegner, 1987). Thus, transactive memory systems include individual knowledge, 

knowledge about who knows what, and communication to access each other’s 

knowledge. Within such a theoretical framework, a calculative culture determines how 

individuals process information to form risk assessments.  

In Harten et al. (2022), although not explicitly stated, the underlying conceptualization of 

information processing and formation of assessments is akin to what has been described 

 
48 ‘Risk’ means uncertainty about how certain events, when they occur, may affect the organi a-

tion. These events can have positive and negative outcomes (COSO, 2017). In this chapter, 

similar to Harten et al. (2022), we restrict ourselves to those risks that may result in nega-

tive outcomes (COSO, 2017). However, our modeling applies to both threats and opportu-

nities. 

49 In the following, ‘information’ refers to the participant’s organi ed data in the context of the 

risk assessment task, while ‘knowledge’ refers to cognitively processed and aggregated in-

formation that enables participants to reach an understanding of the assessed risk. 

50 Our modeling can be also used in future research to incorporate the impact dimension of risk 

assessments. 
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above as quantitative enthusiasm. Indeed, in their model, risk workshop participants ex-

change information and gradually update their probabilistic beliefs about risks. This re-

sults in an overall quantitative risk assessment, which measures the overall likelihood of 

the risk discussed. This raises the question of the extent to which their results can be 

generalized when considering the boundary condition of the predominant calculative cul-

ture. In other words, would Harten et al.’s (2022) results also hold under a calculative 

culture of quantitative skepticism? In the latter case, risk workshops provide an oppor-

tunity to exchange risk-relevant facts and their effects concerning an organi ation’s risks, 

thereby improving the understanding of the overall risk environment. We expect that the 

difference in the predominant calculative culture is crucial for a better understanding of 

the effectiveness of risk assessments in risk workshops. For example, Harten et al.’s 

(2022) observation that longer stagnation phases in discussions may indicate a correct 

assessment of risks might no longer be justified. In a calculative culture of quantitative 

skepticism, risk assessments might remain stable for a longer time, even when new infor-

mation is presented. New information that is largely consistent with the participants’ pre-

vious beliefs is absorbed instead of slightly changing the overall risk assessment. 

To investigate our research question, we use agent-based modeling (ABM). We simulate 

how risks are assessed in risk workshops. The simulated agents are the participants who—

without any hidden agenda (i.e., without own undisclosed objectives)—exchange infor-

mation to reach a risk assessment for one specific risk. ABM provides a computational 

laboratory for controlled experiments where agents act according to predefined rules in a 

clearly defined environment (Wall and Leitner, 2021). Harten et al. (2022) already lever-

age this method to address the challenge of investigating cognitive processes and the ab-

sence of an objective benchmark for actual risk assessments (McNamara and Bromiley, 

1997). ABM allows to model the development of an individual’s knowledge during the 

discussion and the group’s utili ation of individual knowledge to reach a risk assessment 

(Secchi, 2015; Wall and Leitner, 2021). Specifically, ABM permits the representation of 

diverse types of information processing and judgment formation of individuals, thereby 

incorporating different calculative cultures.  

While Harten et al. (2022) model agents’ information processing and the formation of 

risk assessments using a Bayesian network, we use ECHO, a constraint satisfaction net-

work (CSN) (Thagard, 2012). Harten et al.’s (2022) cognitive architecture of agents rep-
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resents a calculative culture of quantitative enthusiasm, as Bayesian networks use proba-

bilities as input and provide a probabilistic risk assessment as output, which can be inter-

preted as the measurement of the underlying overall risk. ECHO models, by contrast, 

represent a calculative culture of quantitative skepticism as they encode individual risk 

assessments as coherence-based relationships typifying qualitative mental models in the 

cognitive architecture of agents. Their output can be interpreted as a holistic judgment 

(vs. a probabilistic measurement of economic reality) that incorporates difficult-to-quan-

tify information. To enable a direct comparison of the results, we follow Harten et al. 

(2022) in our basic experimental design.51  

Compared to a numerically generated benchmark, we investigate scenarios that are more 

realistic. We simulate the effects of (1) limits to information transfer within the group, 

(2) incomplete discussions involving various approaches to terminate the discussion and 

to make a decision, (3) group characteristics like information distribution and hierarchical 

relationships, and (4) rules specifying interaction patterns (e.g., prioritizing participants 

who are concerned about a specific risk). As we conduct these experiments with agents 

who have a calculative culture of quantitative skepticism, we can assess which of Harten 

et al.’s (2022) results, rooted in a calculative culture of quantitative enthusiasm, still hold 

and which, in turn, are associated with the change of the calculative culture. 

We find that the type of calculative culture predominant in an organization matters for 

the effectiveness of risk assessments in risk workshops. Indeed, some of the drivers of a 

risk assessment’s effectiveness in risk workshops are different from those found by 

Harten et al. (2022). Concerning the development of the discussion over time, we docu-

ment an overall improvement of risk assessments for both high and low likelihood risks. 

However, we regularly observe sudden and seemingly unpredictable changes in partici-

pants’ and groups’ risk assessments when new information overturns the previously sta-

 
51 Like Harten et al. (2022), we also investigate the design and implementation of workshops 

from the point of view where the worst credible impact of a particular risk is clear. So, the 

assessment focuses on the likelihood of the risk’s worst credible impact. Subsequently, to 

ensure clarity, ‘high risks’ and ‘low risks’ refer to ‘high likelihood risks’ and ‘low likeli-

hood risks,’ respectively, and ‘risk assessment’ refers to the ‘assessment of the likelihood 

of a risk.’ 
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ble beliefs of the participants. The exchange of critical information can rapidly shift as-

sessments, questioning the stagnation of a discussion as a criterion for ending it. At the 

same time, consensus serves as a good indicator of the risk assessment’s correctness. We 

find that path dependencies, given quantitative skepticism, are characteristic of discussion 

processes, i.e., what matters for the risk assessment is not only what information is ex-

changed but also when it is exchanged. Initially, new information has the potential to 

overturn the participant’s mental model, which contains little information at this early 

stage. Finally, the prioritization of concerned participants only results in the highest level 

of risk assessment correctness for high risks, while hierarchical differences among par-

ticipants do not negatively affect the correct assessment of risks. 

This study makes at least three contributions to theory and practice. First, to the best of 

our knowledge, our study is the first to show that different calculative cultures result in 

different drivers of risk assessments’ effectiveness. The identification of the distinction 

between the calculative cultures of quantitative enthusiasm and quantitative skepticism, 

respectively, is important as a boundary condition when designing and implementing risk 

workshops aimed at the highest possible risk assessment correctness. The reason for this, 

among others, is that risk workshops in different organizations require different durations, 

different termination rules, and different treatments of hierarchical differences and dis-

senting participants.  

Second, despite these differences, we also conclude that a few drivers of the effectiveness 

of risk assessments are resistant to changes in the dominant calculative culture. For ex-

ample, the trade-off between correctly identifying low and high risks as well as the neg-

ative effect of unequal information distribution within the group is independent of the 

calculative culture being quantitatively enthusiastic or skeptical. This points to the ubiq-

uitous importance of considering these process characteristics and drivers when facilitat-

ing a risk workshop.  

Third, we introduce a novel methodological and conceptual approach to risk literature 

that incorporates the way in which (i.e., how) risk information is processed and used for 

risk assessments in ECHO networks. 
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5.1 Theoretical background  

In the following, we outline the theoretical background of the study. First, we provide an 

overview of the role of risk workshops in risk assessment. Afterward, we discuss the 

concept of calculative cultures in the context of risk management. We link the concept of 

calculative cultures to specific cognitive architectures and introduce constraint satisfac-

tion networks as an alternative to Bayesian networks. 

5.1.1 Risk assessments in risk workshops 

Risk workshops are used to assess the impact and likelihood of risks (Boholm and 

Corvellec, 2016; COSO, 2017). The workshops are discussions moderated by a facilita-

tor, and they enable a leader to decide to use the outcome of a workshop. The group can 

use its participants’ diverse backgrounds by aggregating their individual knowledge and 

thereby reach better decisions than the participants would have reached on their own 

(LiCalzi and Surucu, 2012; Lu et al., 2012; Stasser and Birchmeier, 2003). 

Therefore, risk workshops can be framed as distributed cognition (Harten et al., 2022). 

That is, the cognitive task is not performed by individuals in isolation but by a group as 

a whole, using the cognition and knowledge of all participants (Hauke et al., 2018). Our 

model implements transactive memory, as it allows participants to learn about and after-

ward use the knowledge of other participants. 

Merging this cognitive perspective with a discursive perspective, Harten et al. (2022) 

identify several potential drivers of discussions’ effectiveness in risk workshops from the 

literature. These drivers encompass (1) the effects of limits to information transfer within 

the group (i.e., knowledge of other participants’ knowledge when integrating new infor-

mation instead of discarding previously held beliefs), (2) incomplete discussions (i.e., the 

rules by which it is decided to end the risk workshop instead of continuing the discussion), 

(3) group characteristics (i.e., information distribution, consideration of hierarchical rela-

tionships, and knowledge about each other’s fields of expertise), and (4) the interaction 

patterns applied in the group (i.e., the order in which participants are allowed to talk).  

 

5.1.2 Calculative cultures in risk management 

Recently, corporate culture has received increasing attention as a key factor influencing 

risk management and its effectiveness. The term risk culture is used in different ways, 
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among others, as ‘the shared preferences towards risk and uncertainty’ (Pan et al., 2017, 

p. 2328) or, more specifically, as a subset of organi ational culture, specifying how ‘or-

ganizations think about, know, process and act upon risks and uncertainties’ (Power, 

2020, p. 45). In this study, we specifically focus on the latter and address the effects of 

different calculative cultures (Mikes, 2009) that respectively represent different attitudes 

towards calculative practices. 

Previous research identified two different calculative cultures in the context of two dis-

tinct approaches to enterprise risk management (ERM) in organizations.52 Mikes (2009) 

studied ERM practices at two banking organizations and contrasted their ERM models as 

‘ERM by the numbers’ and ‘holistic ERM.’ These different practices stem from different 

corporate governance pressures (Power, 2007).  

First, the ERM-by-the-numbers approach to managing risks aims at measuring the impact 

thereof on shareholder value. This leads to an emphasis on quantifiable risks, the impact 

of which on shareholder value is calculable. The overall risk portfolio is described as an 

aggregate and can be compared to the organi ation’s risk appetite. In this manner, ERM 

contributes to the overall performance measurement. According to this perspective of 

risks, the calculated values for risks are the decisive output of the risk management pro-

cess. The focus is on improving the quality of these calculated values by improving risk 

models. Obviously, this approach is ill-suited when dealing with hard-to-quantify risks. 

Mikes (2009) labels the calculative culture embedded in this type of ERM as ‘quantitative 

enthusiasm.’ 

Second, the holistic ERM is not directly aimed at shareholder value but at achiev-

ing the organization's strategic objectives. So, ERM focuses on the identification of what 

it is that puts the achievement of those objectives at risk. While quantifiable risks are still 

relevant from this perspective, it also takes hard-to-quantify risks into account. ERM is 

not used to calculate overall risk exposure but to learn about the conditions under which 

the organization runs. The focus is less on precision and more on inclusiveness when 

understanding the overall risk environment. Mikes (2009) labels the calculative culture 

embedded in this ERM type as ‘quantitative skepticism.’ 

 
52 See also Arena et al. (2011) for empirical data on the interplay between ERM implementation 

and risk culture. 
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The scope of the two ERM models obviously overlaps. The same risk can poten-

tially be addressed by using either approach to ERM. Nevertheless, as both calculative 

cultures derive from different objectives, the reasoning about the risk will be different. 

We, therefore, discuss how different approaches to cognition represent these different 

calculative cultures in risk assessments. 

 

5.1.3 Cognitive architectures of different calculative cultures 

When simulating processes that, like risk workshops, involve human cognition, one must 

choose the most appropriate model of the cognition of the people involved. This requires 

the choice of cognitive architecture. A cognitive architecture is a description of how in-

formation (including knowledge or beliefs) is stored in memory, how this memory is 

structured (i.e., the relationship between elements within the memory), and how the 

memory is processed (i.e., how it is utilized to learn or to reach conclusions) (Langley et 

al., 2009; Thagard, 2012). Two architectures used to investigate how humans make causal 

inferences are explanatory coherence and Bayesian networks (Thagard, 2004). 

 

5.1.4 Bayesian networks as a cognitive architecture 

The ABM presented by Harten et al. (2022) to model risk workshops uses Bayesian net-

works as the cognitive architecture of the agents. Bayesian networks model causal rela-

tionships between nodes that represent variables of interest (Pearl and Russell, 2000). 

Each node is associated with a probability value, which represents the degree of belief 

regarding the corresponding variable’s state (Thagard, 2004). The connections between 

the nodes represent causal links. Each node’s probability value is linked to connected 

nodes by dependent probabilities (e.g., ‘if new competitors enter the market, how likely 

is it that they will target the same client segment’). The probability values can either be 

deduced by logical reasoning or by inference from observations of reality.  

Given information about the true state of some of the nodes allows deducing the proba-

bility of all remaining nodes. The possibility of calculating specific probability values 

from causal relationships and limited information has made Bayesian networks a popular 
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tool in risk assessment in particular and in artificial intelligence systems in general (Fen-

ton and Neil, 2019). Therefore, Bayesian networks are often used as a calculative tool to 

process information. 

 

5.1.5 Explanatory coherence as a cognitive architecture 

The theory of explanatory coherence was explicitly developed to explain why and how 

humans acquire certain beliefs. Among others, the theory has been implemented in the 

computational model ECHO (Thagard, 1989). Like Bayesian networks, ECHO networks 

are built from interconnected nodes. The connections describe symmetrical relationships 

between the nodes (e.g., ‘our product has a high profit margin’ is coherent with ‘new 

competitors are attracted to our market’). Where Bayesian networks rely on specific prob-

ability values and allow precise calculations, ECHO is derived from basic principles53 

and is usually employed without adjusting concrete weights or otherwise providing nu-

meric parameters to the network. An ECHO network can, therefore, usually be fully doc-

umented by a graph depicting the nodes and the relationships between them. Relation-

ships between nodes are either explanatory (i.e., a ‘high profit margin’ is coherent with 

the ‘market is attractive for competitors’) or contradictory (i.e., ‘our main competitor 

failed to introduce a competing product’ is incoherent with ‘new competitors might 

emerge in our field’). Nodes represent either hypotheses or facts. The activation of each 

node has a numeric value. Like a system of interconnected springs, the network adjusts 

the activation of the nodes until it reaches a stable state, satisfying the constraints imposed 

by the explanatory and contradictory links (see Thagard (1989)). 

 

5.1.6 Calculative cultures: underlying cognitive architectures 

Decision-making in risk assessment involves the gathering of information and the identi-

fication of causal relationships, thereby deducing a risk assessment from available infor-

mation (e.g., Fenton et al. (2020)). While both Bayesian networks and explanatory co-

herence have been proposed as the appropriate cognitive architectures to model causal 

 
53 For a definition of the seven basic principles of ECHO (i.e., symmetry, explanation, analogy, 

data priority, contradiction, competition, and acceptance) see Thagard (1989). 
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inference (Thagard, 2004), both are, in principle, suited for this risk assessment task. We 

argue that the choice depends on the predominant calculative culture to be represented.  

Bayesian networks require accurate probabilistic information and calculate a precise out-

put (e.g., a specific value for a risk probability or impact). Such a model is akin to quan-

titative enthusiasm: every piece of information is quantifiable, and the outcome can be 

used for further calculations.54 

ECHO networks, by contrast, cannot incorporate precise values for probabilities. Instead, 

they rely on qualitative descriptions of relationships. They model how individuals make 

sense of information and account for the limited capability of individuals to make precise 

calculations or complex logical deductions. Thus, ECHO networks are well suited to 

model discussions in a quantitative skepticism setting. In line with this conceptual dis-

tinction, we compare the results of the simulation of risk workshops generated by Harten 

et al. (2022) using Bayesian networks to model a quantitative enthusiasm setting with the 

results of the simulation of risk workshops using ECHO networks to model a quantitative 

skepticism setting. 

 

5.2 Methods  

This section describes the method used for the simulation study. We recap the design of 

the previous study and highlight the necessary changes needed to compare the impact of 

different calculative cultures. 

5.2.1 Overall design 

Like Harten et al. (2022), this study uses a simulation experiment approach which com-

bines a model of the processes we want to investigate with an appropriate experimental 

design (Harrison et al., 2007). The code of the simulation and the ODD+D (Overview, 

Design Concepts and Details + Decision) protocol, containing a standardized description 

of the technical implementation of the simulation (Grimm et al., 2006, 2020; Müller et 

al., 2013) is reported on CoMSES  (Bellora-Bienengräber et al., 2022).  

 
54 See Neil et al. (2019) for an example of how Bayesian networks can assist communication in 

a quantitative enthusiasm context. 



Effectiveness of risk workshops under quantitative skepticism 89 

To better understand the impact of calculative culture on the outcome of risk workshops, 

we compare the results produced by Harten et al. (2022) with those of an implementation 

using a different cognitive architecture. While we change the cognitive architecture used, 

we employ the same approach to modeling the interaction of the participants in the risk 

workshops. The interaction is modeled as an ABM with information exchange between 

agents (Harten et al., 2022; Lorscheid and Meyer, 2021; Wall and Leitner, 2021).55 

 

5.2.2 Model of the discussion process and risk assessment 

The discussion process used for this study is identical to the one used by Harten et al. 

(2022). For each simulation experiment, we conduct multiple simulation runs. Each run 

is a discussion of a single risk in a risk workshop. The simulation run consists of five 

stages (Figure 16).  

 

 
55 See Davies et al. (2010) for a discussion of possible applications of ABM to model risk regu-

lation . 
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Figure 16 Stages of the simulation before, during, and after the risk workshop.56 

 

 

In the ECHO networks used for this study, we adapt the structure of the Bayesian net-

works used by Harten et al. (2022). Figure 17 compares the structure of the Bayesian 

network used by Harten et al. (2022) with the ECHO networks used in this study. For 

each discussion, a new risk is generated. The network representing full knowledge of a 

risk contains 38 nodes, comprising 27 information nodes, nine issue nodes, and two nodes 

from which the overall risk assessment regarding the likelihood of the risk is derived (see 

Davies et al. (2010) for a similar conceptualization in the context of decision making in 

risk regulation). Due to differences in their backgrounds or priorities, individual partici-

pants start with diverse risk perceptions (Sjöberg, 2000). Initially, they are only aware of 

 
56 Adapted from Harten et al. (2022). 
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the information and issues they are provided with before the start of the discussion. In-

formation on the 36 information and issue nodes is exchanged during the discussion. If 

participants hear about a node that they have previously been unaware of, they include it 

in their mental model. All nodes have an activation between -1 and 1, representing their 

degree of belief in the underlying information or issue. Depending on their knowledge, 

participants can reach different risk assessments for the same risk. 

 

Figure 17 The structure of the Bayesian network used by Harten et al. (2022) (left) and the styl-

ized ECHO network used to model quantitative skepticism (right).57 

 

 

 

5.2.3 Model of the discussion 

Like Harten et al. (2022), nine participants exchange information in the risk workshop. 

These participants make their best effort to gain a correct understanding of the risk, i.e., 

they do not follow their own and potentially hidden agendas. For example, there are no 

agency conflicts between participants at different hierarchical levels. The discussion con-

sists of discussion rounds, each following a set sequence of participant activities (see 

 
57 Note: For the ECHO network, full lines indicate explanatory relationships and dotted lines 

contradictory relationships. For visual clarity, only a selection of the existing relationships 

is depicted. Relationships can exist between information and issue nodes, among the issue 

nodes, and between issue nodes and the likelihood nodes used for deriving the risk assess-

ment. 
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stage 4 in Figure 16). The impact of the distinctive design characteristics of the risk work-

shop is analyzed in four simulation experiments. 
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Table 4 Overview of the simulation experiments.58

 
58 Adapted from Harten et al. (2022). 
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5.2.4 Simulation experiment 1: limits to information transfer 

Receivers of information do not simply adopt the view of the sender of the information 

as to their own but make sense of the information and integrate it into their respective 

mental models. Therefore, even if all information is shared during the risk workshop, 

participants will not necessarily have identical mental models at the end of the workshop. 

Simulating the information exchange in the risk workshop always allows us to investigate 

the mental state of all participants and thereby investigate the evolution of the risk assess-

ment of the individuals and, accordingly, of the group.  

 

5.2.5 Simulation experiment 2: incomplete discussions 

Every discussion must stop after the elapse of a certain amount of time. In the simulated 

risk workshop, the decision to end the discussion and decide on a risk assessment is made 

by the leader (i.e., a designated participant). The leader uses heuristics to determine 

whether the discussion should end. Harten et al. (2022) investigate two heuristics: either 

the leader requires a consensus of all participants to end the discussion, or the discussion 

ends after it has stagnated for some time. Here, stagnation is defined as no change in the 

average (numerical) risk assessment over several rounds.  

While Harten et al. (2022) use stagnation in the discussion as an indicator to terminate it, 

this is not suitably applicable to the quantitative skepticism model. In the quantitative 

enthusiasm model, the assessments tend to converge on the final risk assessment, and a 

slow rate of change denotes reaching the final stage of the discussion. The same does not 

apply to the quantitative skepticism model. Here assessment changes happen suddenly, 

even after long periods of unchanged risk assessments. We, therefore, also simulate an-

other heuristic, i.e., the continuation of the discussion until each piece of information has 

been mentioned at least once. 
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5.2.6 Simulation experiment 3: specific group characteristics 

We model the effect of the same three group characteristics analyzed by Harten et al. 

(2022), thus accounting for the following group characteristics:  

– Differences in the distribution of information. Information is distributed uniformly 

among the participants before the start of the discussion, or some participants are in-

itially provided with more information than others. 

– Differences in hierarchy. In the baseline scenario, participants disregard information 

shared by someone higher up or lower down in the hierarchy. Alternatively, they can 

weigh the provided information to reflect the higher belief attached to the information 

by someone higher up in the hierarchy. 

– Information about each other’s field of expertise (transactive memory). When partic-

ipants have a transactive memory, they can give greater weight to information pro-

vided by experts. Otherwise, they can dismiss the expertise when processing the in-

formation provided. 

 

5.2.7 Simulation experiment 4: specific interaction patterns 

Like Harten et al. (2022), we simulated five patterns according to which the risk work-

shop facilitator arranges the order of speakers during the workshop. The baseline scenario 

assumes that the next speaker is chosen at random. In the remaining patterns, the facili-

tator selects participants who are concerned about the risk (i.e., participants who assess 

the risk higher than other participants); participants whose assessment differs the most 

from the average assessment of the other participants (i.e., dissenters);  participants whose 

assessment is often close to the average assessment of the other participants (i.e., when 

homogeneity prevails); and, lastly, the facilitator prioritizes participants based on their 

higher hierarchical position. 

 

5.2.8 Benchmarking the risk workshop 

As a baseline for evaluating the effectiveness of a risk assessment workshop, it is neces-

sary to define a benchmark risk assessment. Harten et al. (2022) propose a simulated risk 

workshop under ideal conditions as the benchmark risk assessment. This choice rests on 

the assumption that performing a discussion using settings of an ideal speech situation—
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where experts share only correct information, and all other participants integrate the cor-

rect information into their mental model—leads each participant to the correct risk as-

sessment. Indeed, for their quantitative enthusiasm model, Harten et al. (2022) show this 

effect in their benchmark simulation.  

In the quantitative skepticism model, we find that the order in which participants learn 

new information strongly influences the risk assessment they reach, both individually and 

collectively. Furthermore, depending on their current mental model (i.e., their individual 

ECHO model when they learn new information), the participants react differently to new 

information. As there is no clear-cut, ideal order of receiving new information, there is 

also no mechanism that always grants all participants the collective ability to reach an 

identical assessment that could serve as a benchmark. Consciously deviating from Harten 

et al. (2022), we, therefore, use the assessment of a hypothetical agent that has all infor-

mation (i.e., the complete ECHO network representing the risk) from the outset, without 

any stepwise learning through the risk workshop discussion, as a benchmark risk assess-

ment. This state is analogous to the consensus assessment reached under ideal conditions 

in the quantitative enthusiasm model of Harten et al. (2022) as, for our model, having all 

information at the outset is conceptually equivalent to the result of learning all infor-

mation under ideal discourse conditions. 

5.3 Results and discussion 

The simulation study allows us to investigate the dynamics of the discussion on the indi-

vidual level and on the collective level. In the following, we present and discuss the re-

sults.  

5.3.1 Individual dynamics of the discussion 

Figure 15 depicts two examples of the evolution of the individual risk assessment of the 

nine participants during a simulated risk workshop. Although, in both examples, the par-

ticipants simultaneously receive the same information during the discussion, they reach 

different conclusions. These assessments are based on the previous state of their respec-

tive mental models and can differ accordingly (e.g., information might shift the assess-

ment of one participant but be absorbed by another participant’s mental model that is 

consistent with the new information). During certain risk workshops like the one depicted 
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on the left-hand side of Figure 18, all participants will reach the same overall risk assess-

ment. In other workshops, like the one depicted on the right-hand side of Figure 18, par-

ticipants split into distinct groups, even after sharing all information.59  

Given this strong dependency of the risk assessment on the risk workshop participant’s 

previous mental model (and thus on the timing of receiving the information), we cannot 

expect all participants to reach a consensual risk assessment under these conditions. Thus, 

to define a benchmark risk assessment, we use the risk assessment made by an agent 

having all information from the outset (see the Methods section).  

 

Figure 18 Two examples of individual risk assessments of all nine participants during the risk 

workshop. 60 

 

5.3.2 Collective dynamics of the discussion 

In the following, we discuss the results of the four simulation experiments concerning the 

collective dynamics of the simulated risk workshops. The simulation experiments follow 

the same structure as the experiments presented in Chapter 4. 

 

 

59 This pattern is frequently observed in models of opinion dynamics, e.g., Hegselmann and 

Krause (2002). 

60 The dotted line marks the benchmark risk assessment. The left-hand panel shows a risk work-

shop where participants reach an assessment close to the benchmark, early in the discus-

sion. The right-hand panel shows a risk workshop where participants change their assess-

ment late in the discussion. 
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5.3.2.1 Simulation experiment 1: limits to information transfer 

As shown in the previous section, under a quantitative skepticism culture, changes in 

individual risk workshops occur as dramatic shifts in single opinions (see the upward and 

downward movements in the risk assessment in Figure 18). However, in the aggregate, 

over many risk workshops, we find that correctness increases continuously. This is clear 

in Figure 19, which depicts the share of risk workshops that would achieve a correct risk 

assessment after a certain number of discussion rounds when the leaders follow either 

their own opinion or the assessment of the majority of the participants. Accordingly, we 

find that both the leader’s own assessment and the majority assessment, on average, con-

tinuously improve the correctness of all simulated risk workshops until reaching an upper 

limit.61 In comparison, under the condition of quantitative enthusiasm (Harten et al., 

2022), individual discussions evolve more gradually. As a result, the aggregated correct-

ness over many risk workshops nevertheless increases faster at the beginning of the risk 

workshop, with diminishing correctness returns over time. Hence, when a quantitative 

skepticism culture prevails, it is reasonable—from the viewpoint of improving the cor-

rectness of the resulting risk assessment—to continue the discussion until all information 

has been shared (i.e., after 118 ± 30 discussion rounds; not tabulated). Still, even after 

such a lengthy discussion, a correct risk assessment is not always achieved. However, 

when quantitative enthusiasm culture dominates and the participants' risk assessment 

evolves more gradually, a few stable rounds (after which all information has not yet been 

shared) may be sufficient to correctly classify a large number of risks. 

 
61 Before the start of the risk workshop, participants can only rely on the information they are 

initially provided with. Without any information, a correct assessment—as a purely ran-

dom choice between two assessments, i.e., ‘high’ and ‘low’—is expected for 50% of the 

risks. However, the pieces of information provided before the start of the discussion (i.e., 

in discussion round 0) allow participants to make a correct risk assessment for about 69% 

of all risks. 
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Figure 19 Development of the correctness of the risk assessment over discussion rounds.62 

. 

 

 

5.3.2.2 Simulation experiment 2: incomplete discussions 

In our model, we find that 60% of discussions (not tabulated) reach a consensus and that 

this happens on average after 33.4 discussion rounds (Table 5). In these cases, the con-

sensus is correct for 98.1% of all risks. If the discussion is ended based on its stagnation, 

we find that following the group majority has a slight but consistent advantage across all 

risks, compared to merely following the leader’s individual assessment, independent from 

the required length of stagnation (either one, five, or ten discussion rounds without a 

change in the average risk assessment). 

If the discussion is only terminated when every piece of information has been discussed 

at least once, 87% of all risks are correctly assessed, though on average, only after 118 

discussion rounds.63 When comparing the results after one stable round with the results 

 
62 Note: The figure depicts the share of risk workshops that would reach a correct risk assess-

ment if ended after the current discussion round, following either the majority opinion or 

the leader’s own 

63 The number of discussion rounds is very high compared to the numbers reported by Harten et 

al. (2022), because we focus our investigation on risk workshops that only finish after all 
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after ten stable rounds, it again becomes apparent that, in a quantitative skepticism cul-

ture, a temporarily stagnant discussion is not a good indicator that the risk workshop has 

reached its best achievable result (see the results above). Due to the comparatively dra-

matic shifts in opinions particular to this calculative culture, it is necessary to continue 

the discussion through these phases of (apparent) stagnation to reach the best possible 

results.  

Harten et al. (2022) identify a pattern where initially learning about the risk structure 

increases uncertainty. This mechanism is not present in the quantitative skepticism model, 

as learning about new information does not introduce uncertainty.64 New information will 

be processed and at once converted into a state of coherence with previously available 

information. What is important in this model is the integration of the information into the 

mental model and not so much the extent to which the information is believable. For 

example, the idea that a new competitor might enter the market has a greater impact than 

the actual probability thereof. However, like Harten et al. (2022), we find that participants 

can also be ‘right for the wrong reason,’ as they also have a slight tendency to initially 

overestimate risks. Participants with too little information to inform their risk assessment 

will default to a ‘high’ assessment. Subsequently, they will adjust their risk assessment 

downwards as they learn more, thereby reducing the rate of correctly assessed high risks 

and increasing the rate of correctly assessed low risks. Herein lies a trade-off between not 

identifying high risks and overestimating too many low risks. 

  

 
information has been shared and not, as Harten et al. (2022), on risk workshops that finish 

after ten stable rounds. 

64 In a quantitative enthusiasm model, learning the latest information occurs at two levels. At the 

first level, participants learn about the existence of a certain node, but not yet about its re-

lated probability (i.e., they learn what they do not know). At the second level, they assign 

a non- ero probability to the possibility that the node is in a ‘high risk’ state and their un-

certainty increases. In later steps, participants attach a probability to the node. The learning 

at two levels does not occur in a quantitative skepticism model, where learning about the 

latest information does not introduce uncertainty. 
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Table 5 Effects of incomplete discussions on risk assessment effectiveness. 

     
  The proportion of correct assessments   

Decision-making rule All risks (%) High risks (%) Low risks (%) 

Avg. number of 

discussion 

rounds 

    Stop at first group consensus 98.1% 98.0% 98.2% 33.4 

One stable round 
    

    Leader follows own opinion 68.8% 87.1% 49.7% 
2.1 

    Leader follows majority 70.5% 95.8% 43.9% 

Five stable rounds 
    

    Leader follows own opinion 71.8% 84.4% 58.6% 
7.6 

    Leader follows majority 74.7% 91.6% 57.1% 

Ten stable rounds 
    

    Leader follows own opinion 73.2% 83.3% 62.7% 
15.5 

    Leader follows majority 78.3% 88.5% 67.6% 

Full discussion 
    

    Leader follows own opinion 83.0% 85.3% 80.6% 
117.8 

    Leader follows majority 87.0% 86.3% 87.7% 

Note: The table shows the percentage of risks that are correctly assessed and the average number of rounds before 

the decision is made, depending on the mechanism used to end the discussion. A discussion is said to have n stable 

rounds if the average (numerical) risk assessment does not change more than 2% over n consecutive rounds. 

 

5.3.2.3 Simulation experiment 3: group characteristics 

Concerning group characteristics, we observe the highest effectiveness of risk assess-

ments when information is equally distributed among the participants (Table 6).65 This is 

in line with the results obtained by Harten et al. (2022) in a quantitative enthusiasm set-

ting. We do not find a significant impact (not tabulated) of the presence of transactional 

memory or of taking hierarchical differences into account. In the quantitative skepticism 

model, compared to the quantitative enthusiasm model, it is less important how strong 

the first belief in any particular piece of information is (which could be impacted by the 

hierarchical position or expertise of the sender), as the belief will immediately be adjusted 

to a coherent state regarding other information already available to the participant. For 

example, as soon as the issue that ‘a competitor might enter our market’ is introduced to 

the mental model, it might affect the participant’s risk assessment, even if the activation—

 
65 A table that presents simulation results after 10 stable discussion rounds is provided in appen-

dix A.2. 
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i.e., the degree of belief—is low because, for instance, the information stems from a peer 

instead of from a superior. 

 

Table 6 Effects of group characteristics on risk assessment effectiveness. 
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The proportion of correct assessments 

Avg. number 

of discussion 

rounds All risks (%) 

High risks 

(%) 

Low risks 

(%) 

+ + + 83.7% 85.4% 81.9% 136.9 

+ + - 80.2% 80.3% 80.1% 136.1 

+ - + 81.3% 80.7% 81.9% 136.3 

+ - - 81.6% 80.3% 83.0% 135.7 

- + + 85.7% 85.2% 86.2% 117.3 

- + - 87.4% 87.2% 87.6% 118.7 

- - + 86.2% 83.3% 89.2% 118.2 

- - - 87.4% 87.5% 87.3% 118.1 

Note: The table shows the percentage of correctly assessed risks after a full discussion when 

the leader follows the majority vote and the average number of rounds before the decision 

is made, depending on group characteristics that might influence the risk workshop’s effec-

tiveness. A "+" indicates the presence of the corresponding deviation from an ideal discus-

sion situation. Differences in the distribution of information are implemented by giving 

some participants a higher probability of receiving information during the initialization. If 

receivers consider hierarchical differences, they weigh input according to the sender’s hier-

archical position compared to their own. With no transactive memory, participants do not 

distinguish between senders who are experts on the information and those who are not. 

 

5.3.2.4 Simulation experiment 4: interaction patterns 

Only the interaction pattern favoring concerned participants differs remarkably from the 

baseline interaction scenario following a random order of participants (Table 7).66 Favor-

ing concerned participants will improve the assessment of high risks but will decrease the 

rate of correctly identified low risks. Thus, this interaction pattern introduces a bias to-

ward assessing risks as high. Our results differ from Harten et al. (2022) regarding the 

assessment of low risks with prioritized, concerned participants, as they find an improve-

ment in the assessment of all risks, as opposed to the better assessment of high risks only. 

 
66 A table that presents simulation results after 10 stable discussion rounds is provided in appen-

dix A.3. 
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Therefore, prioritizing concerned participants comes at the cost of correctly assessing low 

risks in a quantitative skepticism model. Given such a rule, this results from the focus on 

high-risk assessments during the early discussion rounds of the risk workshops. 

For rules prioritizing hierarchy and homogeneity, Harten et al. (2022) also identify sig-

nificant changes compared to the baseline scenario. These are less pronounced or even 

absent in the quantitative skepticism model, as it is less important who first introduces a 

new piece of information as long as it is introduced. Participants will at once assess the 

information’s consistency with their previous mental model. It is also noteworthy that 

prioritizing participants close to the group opinion will dramatically increase the number 

of discussion rounds needed to introduce all information, while in Harten et al. (2022), 

the discussions are ended earlier due to the termination criteria based on sensible stagna-

tion in this quantitative enthusiasm culture. 

Table 7 Effects of interaction patterns on risk assessment effectiveness. 

     

  Proportion of correct assessments   

Who talks next during the discussion? All risks (%) High risks (%) Low risks (%) 

Avg. number of 

discussion 

rounds 

Random choice of participants 87.4% 87.5% 87.3% 118.1 

Priority to concerned participants 81.6% 95.1% 69.0% 155.7 

Priority to participants with dissenting 

opinions 83.8% 82.1% 85.5% 
128.8 

Priority to participants with higher hier-

archical position 87.8% 87.5% 88.2% 
127.1 

Priority to participants close to group 

opinion 86.7% 84.9% 88.5% 737.9 

Note: Percentage of risks that are correctly assessed after a full discussion when the leader follows the majority vote 

and the average number of rounds before the decision is made, depending on the interaction pattern. Concerned par-

ticipants are those who assess the risk as particularly high. Dissenting participants and those close to the group opinion 

are determined by measuring the distance between their risk assessment and the average risk assessment of the group. 

     
 

5.3.2.5 Summary and comparison of calculative cultures 

By repeating the simulation experiments performed by Harten et al. (2022) and using a 

model representing a different calculative culture, we find that the drivers of the effec-

tiveness of risk assessments are partially sensitive to the dominant calculative culture. 

Table 8 summarizes the results of both simulation studies and thereby highlights similar-

ities and differences. We learn from simulation experiment 1 that, notably for both cal-
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culative cultures, risk assessment improves during the discussion. Still, path-dependen-

cies are characteristic of discussion processes given quantitative skepticism, i.e., it does 

not only matter what information is exchanged but also when. Moreover, there is a po-

tential trade-off between correctly identifying high and low risks in both calculative cul-

tures, as the rate of correct assessments of certain risks decreases during the workshop.  

Simulation experiment 2 shows that, with quantitative skepticism, it is more difficult to 

find the correct time to end the discussion, as the rate of correct risk assessments contin-

uously improves until all information has been shared; stagnation is not a good indicator 

that the discussion is over. Simulation experiment 3 shows that, while both calculative 

cultures show better results with an equal distribution of information within the group, 

quantitative enthusiasm is not negatively affected by a lack of transactive memory or the 

presence of hierarchical differences. It only matters that all information is made available. 

The credibility or hierarchical position of the participant introducing the information is 

less important than the compatibility of the information with the mental model of the 

receivers. 

Regarding the interaction patterns, simulation experiment 4 provides evidence that prior-

itizing concerned participants will improve the assessment of high risks for both calcula-

tive cultures. However, when quantitative skepticism dominates, there is a trade-off with 

correctly assessing low risks. Otherwise, settings with quantitative skepticism are less 

impacted by interaction patterns than settings with quantitative enthusiasm.  
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Table 8 Comparison of results for the simulation experiments with quantitative enthusiasm and 

quantitative skepticism. 

 Calculative culture 

 Quantitative enthusiasm  Quantitative skepticism 

Process Overall improvement of risk assessments 

over time 

Improvement of risk assessments over time 

 A trade-off between the identification of 

high and low risks 

A trade-off between the identification of high 

and low risks 

 Gradual changes in individual and col-

lective assessments 

Sudden and unpredictable shifts in individual 

and collective assessments 

Design   

Incomplete  

discussions 

Stagnation in assessments as an indicator 

to end the discussion 

Changes in assessment happen suddenly. Con-

tinue discussions even after lengthy periods of 

stagnation until all information has been 

shared. 

  Following the group majority always has a 

slight but significant advantage across all risks 

Group  

characteristics 

Differences in the distribution of infor-

mation have negative effects 

Differences in the distribution of information 

have significant negative effects 

 The absence of transactive memory has 

negative effects 

The absence of transactive memory has no sig-

nificant negative effects 

 Hierarchical differences have negative 

effects 

Hierarchical differences have no significant ef-

fects 

Interaction  

patterns 

Prioritizing concerned participants im-

proves the assessment of all risks 

Prioritizing concerned participants improves 

the assessment of high risks but lowers the rate 

of correctly identified low risks 

 Prioritizing dissenting participants im-

proves the assessment of high risks but 

lowers the rate of correctly identified low 

risks 

Prioritizing dissenting participants lowers the 

rate of correctly assessed risks 

 Significant changes compared to the 

baseline scenario for prioritizing dissent, 

hierarchy, and homogeneity 

No observed effects for prioritizing hierarchy 

and homogeneity 

Note: The results for quantitative enthusiasm are based on Harten et al. (2022), while the results for quantitative skep-

ticism are based on this study. Our simulation experiments were designed to allow a comparison.
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5.4 Conclusion on the impact of culture 

Calculative cultures affect how risk-related information is processed by individuals and 

translated into risk assessments. This makes it a critical boundary condition for the effec-

tiveness of the design and implementation choices in risk workshops—a common risk 

assessment technique in organizations. This study explored drivers of the effectiveness of 

risk assessments in risk workshops, given a calculative culture of quantitative skepticism, 

and compared them with the findings of previous research that implicitly assumed a cal-

culative culture of quantitative enthusiasm. Using ABM, we modeled individuals’ infor-

mation processing and judgment formation and represented this calculative culture using 

ECHO models capturing agents’ cognition. This allowed us to extend previous simulation 

experiments of ABM-rooted risk workshops by consciously incorporating the role of the 

predominant calculative culture in the modeling. 

Our results make three contributions to research and practice. First, given the calculative 

nature of quantitative skepticism, some distinct effects must be considered when design-

ing and implementing risk workshops. Notwithstanding Mikes’ (2009) early recognition 

of the importance of distinguishing between different calculative cultures, our study is, to 

the best of our knowledge, the first to show the considerable impact that differences in 

calculative cultures have on the outcome of risk assessments. We show that the predom-

inant calculative culture of an organization is a critical boundary condition when consid-

ering the process of risk workshops over time.  

Compared to Harten et al.'s (2022) findings in a quantitative skepticism culture, the im-

provement of the correctness of the risk assessment is anything but a gradual process; we 

rather document sudden shifts in individual and collective assessments. This result ques-

tions whether, given this boundary condition, a stagnating discourse is a good indicator 

to end a discussion. Instead, risk workshop facilitators should create a setting in which 

everyone is encouraged to share all their information as soon as possible. 

We also follow the call of Katzenbach and Smith (2015) to specify rules of interaction. 

Unlike Harten et al. (2022), we do not observe positive effects when prioritizing dissent 

or negative effects of hierarchy or homogeneity. Additionally, we are the first to docu-

ment a possible bias when applying the common rule of thumb to prioritize concerned 

participants during the risk workshop, as supported by Harten et al. (2022). We find that 
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favoring concerned participants improves the assessment of high risks but that it lowers 

the rate of correctly identified low risks. This result indicates the possible existence of a 

focusing illusion or an anchoring bias (Kahneman, 2011), also for risk workshops. In 

contrast to Moreland and Myaskovsky (2000) and what is found in Harten et al. (2022), 

we observe no positive effect of a group member’s familiarity with the other members’ 

expertise on group performance. Facilitators should be aware of the predominant calcu-

lative culture in the organization when deciding whether they need to limit the involve-

ment of dissenters and superiors. Overall, risk workshop facilitators should gain expertise 

in recognizing the predominant calculative culture in an organization. 

Second, we show that some recommendations by Harten et al. (2022) are robust and, 

therefore, resistant to different calculative cultures. Previous research, assuming quanti-

tative enthusiasm, documented a trade-off between the correct assessment of high and 

low risks (Harten et al., 2022). This trade-off is also present in a predominant quantitative 

skepticism culture. Facilitators need to be aware that any decision on the design and im-

plementation of risk workshops must take the organi ation’s risk appetite into account. 

Increasing the correctness of detecting high risks will come at the cost of overestimating 

low risks, independent of the organi ation’s positioning along the calculative culture con-

tinuum. Moreover, we also find that an equal distribution of information within the group 

leads to the most effective risk workshops in both calculative cultures. 

Third, we contribute conceptually and methodologically to the risk literature by introduc-

ing a novel approach that allows a model-based investigation of two distinctive ways risk 

information is processed and used for risk assessments. So far, the literature has mainly 

used case studies to identify related models (Mikes, 2009). In addition, literature used 

surveys to quantify the antecedents and consequences of related types of information us-

age, such as the diagnostic vs. interactive use of information (Simons, 1990) or the use of 

accounting practices as a computation tool instead of a learning tool (Burchell et al., 

1980). While the fine-grained study of the actual usage of information and related cogni-

tive processes is particularly challenging in case studies and even more so in surveys, it 

can be made amenable for a detailed analysis through ABM. Our ABM made replicable 

by our in-depth description in the ODD+D, enables future researchers to model the com-

plex interplay between calculative culture, individual cognitive processes, and the related 

group-level outcomes. Moreover, the scant prior ABM modeling approaches of risk as-

sessments (Harten et al., 2022) do implement but do not conceptualize the modeling of a 



Effectiveness of risk workshops under quantitative skepticism 108 

specific calculative culture. Therefore, to the best of our knowledge, this is the first study 

on risk assessment that conceptualizes and investigates the role of calculative cultures for 

individual cognitive processes in combination with other organizational variables. 

Like other studies, this study has limitations that future research could address. First, cul-

ture is a complex and rich phenomenon. Although we believe that our model represents 

key facets, a formal representation of calculative cultures via different cognitive architec-

tures cannot capture all nuances of reality. Future research should draw on the rich qual-

itative work of Mikes (2009) and others to capture facets not included in our study, like 

the maturity of the risk function. Second, to allow a comparison of the two calculative 

cultures identified by Mikes (2009), we followed the experimental design of Harten et al. 

(2022) by focusing on the assessment of a single risk and by making a binary distinction 

between high and low risks. In addition, this also includes their choice of manipulated 

variables. Future research should search for additional factors that explain differences in 

the effectiveness of risk assessments in risk workshops. For example, as suggested by 

Bromiley et al. (2014), this could include participants’ motivation, hidden agendas, or 

changes in the groups’ ability to transfer the information as the discussion progresses. As 

ABM allows the incorporation of different personality types (Davies et al., 2010), re-

searchers should also investigate the effects of different portions of extroverted vs. intro-

verted workshop participants and how this interacts with calculative culture and the other 

risk workshop design characteristics considered in this study. Third, our model is limited 

to the context of risk workshops taking place with participants participating synchro-

nously in the discussion. Thus, it does not include risk assessments that happen with dis-

persed participants interacting asynchronously with each other (e.g., via e-mail). While it 

is likely that many effects identified in this study would manifest also when considering 

the latter type of risk assessments, future research is called to broaden the applicability of 

our model by incorporating, for example the effect of time delays in the communication 

or of selective attention to certain pieces of information. Fourth, the external validity of 

our results could be strengthened by future research through empirical tests in the form 

of field and case studies. It might, for example, be interesting to study a potential clash of 

different calculative cultures in the same risk workshop or organization. Finally, the use 

of the approach developed in this study to investigate the effects of different calculative 

practices in other contexts beyond risk workshops and even beyond risk management, 

appears to be promising. 
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6 Conclusion 

The previous two chapters present the results of two simulation experiments that aimed 

to answer two research questions: How to facilitate an effective risk workshop? And how 

should a risk workshop account for the predominant calculative culture in order to be 

effective? By modeling risk workshops both on the level of interaction and the level of 

cognition, we provide a testbed for interaction patterns, group characteristics, and deci-

sion-making rules in the context of a risk workshop. By comparing the workshop results 

to an ideal benchmark, we are able to judge the effectiveness of risk workshops under 

certain conditions. Furthermore, by implementing two different cognitive architectures 

that correspond to two calculative cultures, we are able to identify how the impact of these 

factors depends on the predominant culture. We find that workshop facilitators need to 

consider the predominant culture as well as the risk appetite of the organization when 

deciding on how to conduct the workshop. Beyond the design decisions under the direct 

control of the workshop facilitator, we highlight the impact of the predominant interaction 

pattern within the group, an effect that a workshop facilitator should be aware of. 

Of course, a simulation experiment can usually just contribute one part of answering a 

research question about a system as complex as a risk workshop, a challenging task per-

formed by a group of experts in face-to-face interaction. As stated earlier, a simulation 

experiment can just perform experiments on a model of a subject, not the subject itself  

(Gilbert and Troitzsch, 2005). Thus, the question arises whether the results of the simu-

lation experiment are applicable to actual risk workshops. We have followed best prac-

tices in building the model and interpreting the results to ensure that a high degree of 

internal validity is attained (cf. Davis et al., 2007). Still, it would be worthwhile to chal-

lenge our findings, for example with a qualitative observational study of actual risk work-

shops or by interviewing risk workshop facilitators. 

Apart from the question of internal validity, our study only investigates a limited number 

of risk workshop characteristics that can impact risk workshop effectiveness. In order to 

determine the importance of culture for all experiments in the first study, we used the 

same set of risk workshop characteristics in the second study. However, there are other 

characteristics than those considered that might influence the effectiveness of risk work-

shops. For example, we only simulate discussions of isolated risks, while actual risk 

workshops usually discuss several risks, one after another (Quail, 2011). A facilitator 
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needs to decide on the order of risks discussed and allocate a limited time budget for those 

risks. Investigating this effect would require accounting for the effects of the discussion 

of a single risk on the overall workshop. Also, we have only considered risks of the same 

complexity. In actual risk management practice, some risks will need more deliberation 

and expertise in order to be assessed than others. Again, it would be worthwhile investi-

gating how risk complexity should inform the design of risk workshops. When investi-

gating the importance of culture, we assume that all participants subscribe to the dominant 

culture within the organization. It would be interesting to investigate the effects of having 

a group of participants that do not share one calculative culture. Finally, while we use a 

complex model for the cognition of the participants, we use a comparatively simple model 

for the interaction of participants. We do not account for deviations regarding the moti-

vation of the participants (e.g., a hidden agenda to force a specific risk assessment or to 

hide specific information). 

One main benefit of simulation experiments is the potential to provide full transparency 

on how the study was conducted, as well as allow other researchers to build upon the 

actual simulation models used for the experiments. The code for both simulation studies, 

written in Python and R, has been published along with documentation under the free 

GNU General Public License 3 on the public CoMSES repository (Bellora-Bienengräber 

et al., 2022; Harten et al., 2021). This way, we provide a testbed for risk workshops that 

can be used to conduct further studies on this topic, including addressing the limitations 

mentioned above. Also, parts of the code can be reused for simulation studies on other 

subjects that require complex cognitive architectures for agents in an agent-based simu-

lation. For example, to the best of our knowledge, we provide the first implementation of 

ECHO written in Python.  

The two studies conducted for this thesis simulate a very specific part of the risk manage-

ment process. This raises the question of what we can learn from these studies for, on the 

one hand, the broader context of risk management and, on the other hand, for similar 

group work on other topics. In the following, I discuss the external validity of the study 

in those two directions. 

Within the risk management process, we limit the scope of the risk workshop to a very 

limited task: The assessment of an already identified risk on a one-dimensional categori-

cal scale. However, risk workshops are often also used for risk identification, and risk 

assessment often happens in more than one dimension. A model that accounts for both 
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these aspects would be possible with a very similar setup to the one we chose for our 

studies. Risk identification relies on gathering information distributed among different 

stakeholders that might indicate that a non-trivial risk is present in a certain area. This 

information-gathering task is structurally similar to how agents in our model combine 

their expertise to gain a full understanding of a risk. The approach to dissent within the 

group regarding a risk would be different, however. During risk identification, an organ-

ization can generally err on the side of caution to avoid missing critical risks. During risk 

assessment, a final judgment is needed for each risk, because risk assessment provides 

the basis for further actions taken by the organization to address the risks. Thus, when 

facilitating a risk workshop aimed at risk identification, it would be advisable to follow a 

process that has a high rate of correctly assessed high risk (at the cost of incorrectly as-

sessed low risks).  

While the model only accounts for a one-dimensional risk assessment, the results are 

equally applicable to a multi-dimensional risk assessment. The same model could be used 

to assess several dimensions of the same risk, only the model of the risk itself would need 

to be appended to include information regarding all dimensions under investigation. The 

choice to limit the model to a single dimension was made to reduce the complexity of the 

result analysis. 

While many parts of the risk management process happen in collaboration with multiple 

stakeholders, this collaboration is not always conducted in a face-to-face setting. Often, 

risk management processes happen asynchronously, using digital tools. Because our mod-

els are built upon the idea of a free exchange of information during an open discussion, 

the results have only limited validity for practices that happen outside of a workshop set-

ting. For example, if multiple stakeholders asynchronously collaborate by filling in a risk 

register, they might not share their reasoning to the same degree as during an open dis-

cussion. While distributed cognition does not require direct exchange and can happen 

over a medium (cf. Hutchins, 2000), the model would need to reflect the different patterns 

of exchange. 

The model also has some validity for group work outside the domain of risk management. 

The model of interaction we use is derived from the idea of an ideal speech situation as 

described by Habermas (1982). Habermas’ ideal speech situation is meant to describe 

ideal conditions for each discussion where participants are interested in finding a consen-
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sus, as needed, for example, to define public policies. The model of interaction is, there-

fore, applicable to any setting where participants work together with an open mind to find 

the best possible solution for a problem. In the context of an organization, this could also 

be a strategy workshop or a creative workshop to make product or marketing decisions. 

In those cases, however, a different model of the subject of the discussion would be re-

quired. Both the Bayesian network and the constraint satisfaction network used to model 

cognition regarding a risk are specific to the typical structure of information informing a 

risk-related decision. While Bayesian networks and constraint satisfaction networks 

might still be valid cognitive architectures for these settings (Darwiche, 2009; Thagard, 

2000), the decision problem would be structured differently.  

Overall, this thesis addresses the need for research into the effectiveness of risk manage-

ment practices (Aven, 2012; Bromiley et al., 2014). It provides practical guidance for risk 

management practitioners on how to conduct effective risk workshops, depending on the 

risk appetite of the organization and the predominant calculative culture. Furthermore, it 

provides an experimental testbed that can be used for further research on risk management 

practices as well as group work in general. It also contributes to the research field of 

agent-based modeling of social systems by advancing the use of complex cognitive ar-

chitectures to model agent cognition.  
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Appendix 1 Glossary 

Bayesian network A probabilistic model that uses directed acyclic graphs 

(DAGs) to model the probabilities of events and their depend-

encies, based on the Bayesian theorem. 

Benchmark Here used as the best possible solution to the risk assessment 

task, i.e., the assessment an all-knowing individual would 

make. 

Cognitive architecture A framework that models the structure and functioning of 

cognitive processes in the human mind and explains how in-

formation is processed, stored, and retrieved. 

CoMSES A platform to share computer-based models and simulations. 

Constraint satisfaction net-

work 

A model used to solve complex constraint problems by mod-

elling variables and their dependencies and defining con-

straints that must be satisfied in order to find a solution. 

ECHO computational model proposed by Paul Thagard to explain the 

cognitive processes involved in analogical reasoning and 

problem solving. 

Effectiveness In the context of the simulation model: Ability of a risk work-

shop to provide correct risk assessments. 

Facilitator Here used as the person who organizes and moderates a risk 

workshop. 

Information Here used as a description of a fact that can be learned and 

shared. 

Knowledge Here used as the accumulation of facts and information that 

determine an individual’s understanding. 

Leader Here used as the person who is responsible for the final deci-

sion on how severe a risk is. 

Quantitative enthusiasm Culture of passion and interest towards working with and an-

alyzing numerical data and applying quantitative methods to 

gain insights and solve problems. 
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Quantitative skepticism A culture with a critical attitude towards quantitative data, 

models and analyses and caution in drawing conclusions 

based solely on numerical information. 

Risk assessment The process of identifying, evaluating, and assessing potential 

risks in order to develop appropriate risk mitigation and con-

trol measures. Here used in the narrow sense of assessing risk 

severity. 

Risk workshop A structured discussion involving relevant stakeholders to 

identify, assess, and prioritize risks. Here used with a focus 

on risk assessment. 

Participant In the context of the simulation model: The individual stake-

holders who participate in the risk workshop by sharing their 

knowledge and assessing the risk. 

Transactive memory A collective memory in which people use each other’s 

knowledge together through knowing how information is dis-

tributed within a group. 
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Appendix 2 Additional results quantitative enthusiasm 

Table 9 Results for simulation experiment 3 (group characteristics) after ten stable rounds. 
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Proportion of correct assessments 

Avg. number 

of discussion 

rounds 

All risks 

(%) 

High risks 

(%) 

Low risks 

(%) 

+ + + 65.7% 87.7% 43.3% 14.6 

+ + - 62.4% 81.3% 44.0% 14.9 

+ - + 63.7% 83.7% 44.3% 15.0 

+ - - 64.6% 82.8% 45.3% 14.5 

- + + 75.1% 86.1% 64.7% 15.7 

- + - 76.4% 87.2% 65.9% 15.7 

- - + 75.7% 83.8% 67.4% 15.7 

- - - 76.4% 87.2% 65.4% 15.7 

Note: The table shows the percentage of risks that are correctly assessed after ten stable 

discussion rounds when the leader follows the majority vote and the average number of 

rounds before the decision is made, depending on group characteristics that might influence 

the risk workshop’s effectiveness. A "+" indicates the presence of the corresponding devi-

ation from an ideal discussion situation. Differences in the distribution of information are 

implemented by giving some participants a higher probability of receiving information dur-

ing the initialization. If receivers consider hierarchical differences, they weigh input accord-

ing to the sender’s hierarchical position compared to their own. With no transactive 

memory, participants do not distinguish between senders who are experts on the information 

and those who are not. 
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Table 10 Results for simulation experiment 4 (interaction pattern) after ten stable rounds. 

     

  Proportion of correct assessments   

Who talks next during the discussion? All risks (%) High risks (%) Low risks (%) 

Avg. number 

of discussion 

rounds 

Random choice of participants 76.4% 87.2% 65.4% 15.7 

Priority to concerned participants 69.9% 93.9% 47.6% 15.3 

Priority to participants with dissenting 

opinions 74.2% 77.8% 70.4% 
16.3 

Priority to participants with higher hier-

archical position 76.0% 86.4% 66.2% 
15.6 

Priority to participants close to group 

opinion 73.8% 93.2% 54.8% 14.9 

Note: Percentage of risks that are correctly assessed after ten stable discussion rounds when the leader follows the 

majority vote and the average number of rounds before the decision is made, depending on the interaction pattern. 

Concerned participants are those who assess the risk as particularly high. Dissenting participants and those close to 

the group opinion are determined by measuring the distance between their risk assessment and the average risk as-

sessment of the group. 
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Appendix 3 Sensitivity analysis on the number of participants  

We have conducted a sensitivity analysis for the first study, focused on quantitative enthusiasm, 

regarding the number of participants for the workshop. Figure 20 depicts results of the sensi-

tivity analysis that we conducted concerning the number of agents in a risk workshop.  

 

Figure 20 Comparison of model behavior using different numbers of participants and information den-

sity. 

    

The experimental conditions and the analysis depicted in Figure 20 are analogous to the results 

for the first deviation reported in the study (limited information transfer). It shows the classifi-

cation of the group assessment during the discussion. 

Conducting a sensitivity analysis concerning the number of participants is not a straightforward 

exercise, as additional assumptions (1) about the density of information have to be made and 

(2) this also affects the knowledge of the agents about the risk structure. First, when the number 

of participants is changed, it has to be decided how much information is provided to each par-

ticipant – is the same amount of information shared among a smaller or larger group, or is the 

amount of information per participant kept constant? Second, when information is only shared 
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between 3 participants, they will have more knowledge about the risk structure from the begin-

ning, so that the initial phase of learning about the structure is less pronounced. 

In panel (b) and (c), the amount of information provided to the group as a whole is the same as 

in the paper. For 18 agents this results in a lower information density (panel (b)) while for three 

agents this implies a higher information density (panel (c)). These are qualitatively new settings 

compared to the study as for the lower information density (panel (b)) the learning task gets 

more challenging (because of less initially shared information due to low information density 

and less knowledge about the risk structure) while it is easier for the higher information density 

setting (panel (c)) (because of more initially shared information due to high information density 

and more knowledge about the risk structure). The graphs in panel (b) and (c) support this. 

However, that key qualitative patterns of the learning process remain still the same as in the 

paper, in the sense that participants already classify a substantial proportion of the low risk 

correctly and that the main proportion of the high risks is learned along the process. We also 

see for both settings, that in a later phase of the discussion the learning of high risks is at the 

cost of low risks, although this is less pronounced for the “easier” setting (panel (c)). 

In panel (a), we depict results for a situation with three participants and a low information den-

sity, in panel (d) for 18 participants and a high information density. Key qualitative patterns of 

the process can again be identified. In both panels participants already classify a substantial 

proportion of the low risk correctly at the beginning and that the main share of the high risks is 

learned from the discussion. Again, for both settings the learning of high risks is at the cost of 

low risks in a later phase of the discussion, although less pronounced when the risk structure is 

better known from the beginning. 

Overall, we see in these results support for our modelling choices concerning what problem the 

group is presented (e.g., in the sense that panel (c) would be too easy). More importantly, we 

observe still similar qualitative learning patterns across the variations we consider here with 

respect to key patterns. This collectively supports the assumption that the qualitative model 

behavior is relatively robust to the number of participants.
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Appendix 4 ODD+D protocol quantitative enthusiasm 

The model description follows the ODD+D protocol (Müller et al., 2013), based on the ODD (Overview, Design concepts, Details) protocol for 

describing individual- and agent-based models (Grimm et al., 2006, 2020).67 

ODD+D for the study on quantitative enthusiasm 

Outline Guiding questions ODD+D Model description 

I) Over-

view 

I.i Purpose I.i.a What is the purpose of 

the study? 

The study explores the drivers of the effectiveness of risk assessments in risk workshops, with 

reference to correctness and required time. Specifically, we model the limits to information trans-

fer, incomplete discussions, group characteristics, and interaction patterns and investigate their ef-

fect on risk assessment in risk workshops. 

I.ii.b For whom is the 

model designed? 

The model aims to guide facilitators of risk workshops in understanding the design choices and 

tradeoffs they face. The model also provides a way to use ABM for simulating complex individual 

cognition, which is valuable for scholars who simulate collaboration in organizations. 

I.ii Entities, state 

variables, and 

scales 

I.ii.a What kinds of entities 

are in the model? 

• Risk workshop participants, that discuss a risk in order to enable a correct risk assessment. 

• A leader, who is one of the participants in the risk workshop but makes the final decision. 

• A facilitator, who makes decisions regarding the proceedings of the workshop. 

• A risk, represented as a Bayesian network, that gets assessed in the risk workshop. 

I.ii.b By what attributes 

(i.e. state variables and pa-

rameters) are these entities 

characterized? 

• Risk workshop participants (including leader): 

o Initial information on risk 

▪ Participants are provided with some information about the risk during 

the initialization. Participants are considered experts regarding the in-

formation they are initially provided. 

o Knowledge of the risk structure 

 
67 This ODD+D protocol has been published along with the simulation code on CoMSES (Harten et al., 2021). 
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▪ Participants have a Bayesian network (Pearl, 2008) as their mental 

model of the risk. The Bayesian network of participants is initially lim-

ited to structures related to their expertise, (c.f. II.vi.c) 

o Level of hierarchy 

▪ Participants are randomly assigned one of three levels of hierarchy: low, 

medium, or high. 

• Risk:  

o Risk structure 

▪ A risk is a Bayesian network with an overall risk assessment node and 

nodes representing 3 domains, 9 issues (3 per domain) and 27 infor-

mation (3 per issue). 

▪ Each node has three states (low, medium, high) with an associated like-

lihood for each state (see e.g. Kabir et al., 2015 for a similarly structured 

risk network).  

o information about the risk 

▪ Each of the 27 information nodes has a true state (low, medium, or 

high). The true states of the information nodes are used to calculate the 

benchmark risk assessment.  

See the following two sections after the ODD+D protocol for an explanation of how the Bayesian 

network is calibrated and for examples of how the overall risk assessment is derived from the states 

of the information nodes. 
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I.ii.c What are the exoge-

nous factors / drivers of the 

model? 

Several experiments are conducted with the model. Depending on the experiment, the following 

attributes are systematically varied: 

• Initial distribution of information among the risk workshop participants 

o Either all participants get the same amount of information initially, or infor-

mation is assigned unequally initially. 

• Consideration of hierarchy by the participants 

• Presence of transactive memory within the group 

• Decision rules used by the leader to make decisions 

• Interaction pattern within the group  

I.ii.d If applicable, how is 

space included in the 

model? 

Space is not included in the model. 

I.ii.e What are the temporal 

and spatial resolutions and 

extents of the model? 

One time step is one discussion round, meaning that a participant is chosen to speak, the speaker 

provides an information, and all other participants process the information provided to them. See 

I.iii.a for the steps that happen during one discussion round. 

The discussion is simulated for 140 rounds of discussion. 

I.iii Process over-

view and sched-

uling 

I.iii.a What entity does 

what, and in what order? 

The participants repeatedly share information with each other about the risk. The facilitator chooses 

one participant as a sender. All other participants become receivers. The discussion continues until 

the decision-making rule is activated. 
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II)  De-

sign 

II.i.a Which general con-

cepts, theories or hypothe-

ses are underlying the 

The model has been developed to investigate the impact of choices made during the facilitation of 

a risk workshop. While some results are specific to decision-making regarding risk assessment, the 
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Con-

cepts 

II.i Theoretical 

and Empirical 

Background 

model’s design at the sys-

tem level or at the level(s) 

of the submodel(s) (apart 

from the decision model)? 

What is the link to com-

plexity and the purpose of 

the model? 

general concept can be transferred to other settings where a group shares distributed knowledge in 

a discussion to make a decision. 

The experiments concern deviations from an ideal speech situation (Habermas, 1982) which serves 

as a baseline for the effectiveness of the decision-making process. See Chapter  4.2.2 for a discus-

sion of the deviations included in the model. 

The interaction of the participants is built upon the idea of participants forming a transactive 

memory system (Wegner, 1987): All information is available to the group, but the group needs to 

correctly make use of the available information. For this, it is essential to assess the reliability of 

information provided by other participants, e.g., based on knowledge about their expertise. 

II.i.b On what assumptions 

is/are the agents’ decision 

model(s) based? 

The participants are either following simple mathematical formulas for their decisions, or make 

random choices, where the probability of each option is defined by model parameters. 

II.i.c Why is a/are certain 

decision model(s) chosen? 

The participants face decisions with a limited set of options (e.g., which participant should be the 

next sender). As there is no clear correct decision, we assume that each decision should be possible 

within the model, however the probability of each choice should be influenced by reasonable heu-

ristics (e.g., when the group is aware of hierarchy, the facilitator should be more likely to choose 

agents with a high position in the hierarchy as the next senders). 

II.i.d If the model / a sub-

model (e.g., the decision 

model) is based on empiri-

cal data, where does the 

data come from? 

The model is not based on empirical data. 
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II.i.e At which level of ag-

gregation were the data 

available? 

Not applicable. 

 

II.ii Individual 

Decision Making 

II.ii.a What are the subjects 

and objects of decision-

making? On which level of 

aggregation is decision-

making modeled? Are mul-

tiple levels of decision 

making included? 

 

The facilitator makes one decision: 

• Each round, one participant is chosen by the facilitator to be the next sender. 

The leader makes two decisions: 

• After each round, the leader decides if the conditions for a decision rule are met and there-

fore a decision can be made. 

• The leader also makes the final decision on how to assess the risk. 

Participants make two types of decisions: 

• What information to talk about when they are chosen to be senders for a discussion round. 

• How to weigh the input they receive from the sender if they are chosen to be receivers for 

a discussion round. 

II.ii.b What is the basic ra-

tionality behind agents’ de-

cision-making in the 

model? Do agents pursue 

an explicit objective or 

have other success criteria? 

Participants make their best effort to gain a correct understanding of the risk, in order to reach an 

accurate risk assessment. 

The objective of the leader is to reach an accurate risk assessment in the shortest possible time. 

II.ii.c How do agents make 

their decisions? 

Participants make their decisions by random choice; however, the probability of each decision 

might not be equal. E.g., participants are more likely to talk about information they are experts on. 
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II.ii.d Do the agents adapt 

their behavior to changing 

endogenous and exogenous 

state variables? And if yes, 

how? 

They do not. 

II.ii.e Do social norms or 

cultural values play a role 

in the decision-making 

process? 

The selection of the next sender is influenced by social norms (e.g., prioritize participants based on 

hierarchy) in some experimental settings. 

II.ii.f Do spatial aspects 

play a role in the decision 

process? 

No. 

II.ii.g Do temporal aspects 

play a role in the decision 

process? 

The leader might decide to end the discussion and make a decision if the group has not progressed 

for some time. 

II.ii.h To which extent and 

how is uncertainty in-

cluded in the agents’ deci-

sion rules? 

The participants can take uncertainty regarding the correct risk assessment into account, e.g. when 

the facilitator chooses the next sender. 

II.iii Learning  

II.iii.a Is individual learn-

ing included in the decision 

process? How do individu-

als change their decision 

The agents understanding of the risk under assessment is modelled as Bayesian network. Partici-

pants update their understanding of the risk, both concerning the risk structure and information 

about the risk, based on the input they receive during the discussion from other participants. Their 

understanding of the risk determines their individual risk assessment. They do not learn beyond the 

discussion of an individual risk, i.e. there is no interaction over several runs of the simulation. 
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rules over time as conse-

quence of their experience? 

II.iii.b Is collective learn-

ing implemented in the 

model? 

By exchanging their individual knowledge, the participants’ understandings of the risk move to-

wards a common understanding of the risk. 

II.iv Individual 

Sensing 

II.iv.a What endogenous 

and exogenous state varia-

bles are individuals as-

sumed to sense and con-

sider in their decisions? Is 

the sensing process errone-

ous? 

None. 

II.iv.b What state variables 

of which other individuals 

can an individual perceive? 

Is the sensing process erro-

neous? 

Depending on experimental conditions, participants know other participants’ relative position in 

the hierarchy and other participants’ expertise regarding topics. This knowledge, if available, is not 

erroneous.  

The facilitator and the leader know the overall risk assessment of all participants and can chose the 

next sender and decide when to end the discussion based on this knowledge (see also the flowchart 

in I.iii.a). 

Knowledge and information about the risk is explicitly exchanged in a simulated discussion. 

II.iv.c What is the spatial 

scale of sensing? 

Not applicable. 
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II.iv.d Are the mechanisms 

by which agents obtain in-

formation modeled explic-

itly, or are individuals 

simply assumed to know 

these variables? 

Participants are assumed to know variables like the expertise of other participants (if the corre-

sponding experimental condition is present). 

Participants learn about other participants’ understanding of the risk via the simulated discussion. 

II.iv.e Are costs for cogni-

tion and costs for gathering 

information included in the 

model? 

The cost of cognition and information gathering is accounted for by making a decision as soon as 

specific decision criteria are met, instead of continuing the discussion potentially infinitely.  

However, the participants make no conscious decision on whether to invest cognitive resources: 

whenever they get new input, they update their knowledge about the risk and their risk assessment. 

II.v Individual 

Prediction 

  

II.v.a Which data uses the 

agent to predict future con-

ditions? 

Participants do not predict future conditions. 

II.v.b What internal models 

are agents assumed to use 

to estimate future condi-

tions or consequences of 

their decisions? 

Not applicable. 

II.v.c Might agents be erro-

neous in the prediction pro-

cess, and how is it imple-

mented? 

Not applicable. 
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II.vi Interaction 

II.vi.a Are interactions 

among agents and entities 

assumed as direct or indi-

rect? 

The participants directly interact with each other by exchanging information about the risk during 

the discussion. 

II.vi.b On what do the in-

teractions depend? 

In each discussion round, one participant is chosen to talk to all other participants. 

II.vi.c If the interactions in-

volve communication, how 

are such communications 

represented? 

Participants communicate by exchanging information about their individual knowledge about the 

risk. Usually, they will share the activation of each state of the information node they have decided 

to share.  

However, initially participants do not know the full structure of the risk Bayesian network. They 

are only aware of information nodes provided to them, direct siblings of these information nodes, 

and all issue and domain nodes that are (grand)parents of these information nodes. 

Therefore, if not all receivers are aware of the existence of an information node the sender wants 

to talk about, the sender will use the discussion round to communicate information about the risk 

structure instead: 
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II.vi.d If a coordination 

network exists, how does it 

affect the agent behaviour? 

Is the structure of the net-

work imposed or emer-

gent? 

The setting for the simulation is one discussion by all participants. Therefore, each participant can 

send information to all other participants, if chosen to be the sender. 
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II.vii Collectives 

II.vii.a Do the individuals 

form or belong to aggrega-

tions that affect, and are af-

fected by, the individuals? 

Are these aggregations im-

posed by the modeller or do 

they emerge during the 

simulation? 

The individual participants form a group. The risk assessments of the individuals can be aggregated 

to a group opinion, like a consensus, a majority vote, or an average vote (used to determine if the 

group opinion is moving over time). The leader makes the decision to end the discussion based on 

such aggregates. 

II.vii.b How are collectives 

represented? 

The collective has no agency by itself and is only a conceptual component of the model. 

II.viii Heteroge-

neity 

II.viii.a Are the agents het-

erogeneous? If yes, which 

state variables and/or pro-

cesses differ between the 

agents? 

The group participants differ in their initial knowledge and expertise. They might differ regarding 

their position in a hierarchy if the corresponding experimental condition is present. 

Notably, the participants initially have heterogeneous mental models, as the risk structure of their 

mental models depends on the information provided to them. 

II.viii.b Are the agents het-

erogeneous in their deci-

sion-making? If yes, which 

decision models or deci-

sion objects differ between 

the agents? 

They are not heterogeneous in their decision-making. 

II.ix Stochastic-

ity 

II.ix.a What processes (in-

cluding initialization) are 

modeled by assuming they 

• For each run, a randomly generated risk is chosen for the group to assess. 

• The decision by the facilitator of who is the next sender in a discussion round is (partly) 

random. 

• The decision by the sender what to share is (partly) randomly. 
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 are random or partly ran-

dom? 

II.x Observation 

II.x.a What data are col-

lected from the ABM for 

testing, understanding, and 

analyzing it, and how and 

when are they collected? 

At the beginning of each run, the independent variables are recorded. After each discussion round, 

the activation of all states of the ‘overall assessment’ node is recorded for each participant. Fur-

thermore, it is checked and recorded if a decision rule (see Chapter 4.3.2) has been activated during 

the most recent discussion round, and what decision by the leader it would result in. 

II.x.b What key results, 

outputs or characteristics 

of the model are emerging 

from the individuals? 

(Emergence) 

We can observe how limitations to the ideal speech situation impact the effectiveness of risk work-

shops, measured as the share of high and low risks that get assessed correctly, as well as the time 

it takes to make a decision. 

III) Details 

II.i Implementa-

tion Details 

III.i.a How has the model 

been implemented? 

The simulation is written in Python. The pgmpy library is used to create risks by sampling from the 

reference Bayesian network. The Bayesian networks are calculated in R using the bnlearn library. 

III.i.b Is the model accessi-

ble and if so where? 

The model will be published on the OpenABM platform. 

 

III.ii Initializa-

tion 

III.ii.a What is the initial 

state of the model world, 

i.e., at time t=0 of a simula-

tion run? 

The benchmark assessment 

The simulation requires a benchmark assessment that assessments reached by the workshop can be 

compared against. The benchmark assessment is determined by calculating a Bayesian network 

with full information about the true risk. This is the assessment that a group would reach given an 

ideal speech situation (the benchmark process). 

Initial information distribution 
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In the beginning, information on the risk is provided to the participants. After this initial seeding 

of (true) information, participants only get new input from other participants. All participants are 

able to assess the overall risk based on the limited knowledge they are provided initially. Each 

information about the risk is available to at least one participant so that, in an ideal speech situation, 

a correct risk assessment is achievable. initial_distr_info bits of information are distributed among 

the participants, either equally or unequally (see III.ii.b). 

Knowledge about each other’s’ hierarchical position 

Each participant is assigned one of three hierarchical statuses (low, medium, high). If the corre-

sponding experimental condition is present, participants are aware of the hierarchical status of the 

other participants and consider it when including sender input into their mental model. 

Knowledge about each other’s expertise 

The information provided to the participants initially constitutes their expertise regarding the risk. 

Depending on the experimental condition, participants might be informed about each other’s ex-

pertise, i.e., who is an expert on which information. 

 

III.ii.b Is initialization al-

ways the same, or is it al-

lowed to vary among simu-

lations? 

Risk task provided to the participants 

A new risk is generated for each simulation run and information is assigned to the participants in a 

randomized process. 

Initial information distribution 
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Depending on the experimental condition, information is provided equally or unequally to the par-

ticipants. If the information is provided equally, each participant has the same probability of re-

ceiving any bit of information. If the information is provided unequally, the probability of partici-

pant i (out of n participants) to be provided with information j is: 

𝑃(𝑖, 𝑗, 𝑛) =
2𝑖

2𝑛 − 1
 

Knowledge about each other’s hierarchical position 

Depending on the experimental condition, participants are provided with information about each 

other’s position in the hierarchy, allowing the participants to consider it during the inclusion of new 

information. 

Knowledge about each other’s expertise 

Depending on the experimental condition, participants are provided with information about each 

other’s expertise, allowing the participants to consider it during the inclusion of new information. 

III.ii.c Are the initial values 

chosen arbitrarily or based 

on data? 

The initial values are chosen arbitrarily, within the constraints set by the model parameter. 

III.iii Input Data 

III.iii.a Does the model use 

input from external sources 

such as data files or other 

models to represent pro-

cesses that change over 

time? 

The model does not use external sources for input. 
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III.iv Submodels 

 

III.iv.a What, in detail, are 

the submodels that repre-

sent the processes listed in 

‘Process overview and 

scheduling’? 

Sender selection 

The sender is chosen by the facilitator in a random draw that depends on the experimental condi-

tion. Only agents who have any expertise in any node are eligible to become senders, for technical 

reasons. See chapter 3.3.4 for the different interaction pattern investigated. 

Random: In the baseline mode, the next participant to speak is chosen at random, with an equal 

probability for each participant. 

Priority given to concern: The probability of each participant to be chosen is weighted by the value 

a participant assigns to the ‘high’ state of the overall risk assessment node. 

Priority given to dissent: The probability of each participant to be chosen is weighted by the dis-

tance of their individual risk assessment from the average group risk assessment. This distance is 

calculated as the sum of the absolute differences between the low-, medium-, and high states of the 

overall risk assessments by the individual participants and the average group risk assessment. 

Priority given to hierarchy: Participants are more likely to be the sender if they are assigned a higher 

hierarchical position. The probability of each participant to be chosen is weighted by weight_h_low, 

weight_h_medium, or weight_h_high. 

Priority given to homogeneity: The probability to be the next sender is higher if the participant’s 

risk assessment is close to the average group risk assessment. The distance is calculated in the same 

way as when priority is given to dissent, however the probability of each participant to be chosen 

is weighted by the reciprocal of the distance to the group assessment. 

 

Selection of sender output 

The senders chose one of the information nodes available to them. The chance of choosing a spe-

cific node is weighted by the expertise the sender has regarding the information node. The expertise 
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is weight_e_expert for nodes initially assigned to the sender, and weight_e_nonexpert for all other 

nodes. The sender will provide the detailed state of the information node to all other participants, 

who are the receivers in the given round.  

Furthermore, participants prioritize talking about nodes that have not been talked about often be-

fore. The previously determined weight for each node (𝑛𝑜𝑑𝑒𝑖) based on the participant’s expertise 

regarding the node is multiplied by a weight reflecting how much it has been talked about by the 

group already, relative to the node that was talked about most often (𝑛𝑜𝑑𝑒𝑚𝑎𝑥): 

𝑤𝑒𝑖𝑔ℎ𝑡(𝑛𝑜𝑑𝑒𝑖) = 𝑤𝑒𝑖𝑔ℎ𝑡𝐸𝑥𝑝(𝑛𝑜𝑑𝑒𝑖) ∗ 2𝑑𝑖𝑠𝑐𝑢𝑠𝑠𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡𝑒𝑟(𝑛𝑜𝑑𝑒𝑚𝑎𝑥)− 𝑑𝑖𝑠𝑐𝑢𝑠𝑠𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡𝑒𝑟(𝑛𝑜𝑑𝑒𝑖)  

If the sender wants to transmit an information node that is not part of the network of all receivers, 

the sender will instead send information on the first parent node that is not available to all receivers 

(see II.vi.c). 

 

Inclusion of sender input 

All receivers update their believes about the node the sender talks about by assigning the input a 

weight relative to their own, prior believe. Depending on the experimental condition, the weight 

assigned to the input reflects the following aspects: 

• difference in expertise regarding the specific node between sender and receiver 

• difference in hierarchy between sender and receiver 

–  

E.g., the receiver will weigh the input higher if the sender is an expert and the receiver is not, or if 

the sender has a higher position in the hierarchy compared to the receiver.  
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For example, if a non-expert assesses the likelihood of an information node to be high as 0% and 

received the information of an expert that assesses the likelihood to be 23%, the updated belief of 

the non-expert will be 

– 23% ∗ (weight_e_expert − weight_e_nonexpert)  −  0% ∗ (1 − (weight_e_expert −

weight_e_nonexpert)) 

 

The model also allows to weight the input based on the trust the receiver has in the sender. For this 

study, however, the trust is not varied and identical between all participants. 

III.iv.b What are the model 

parameters, their dimen-

sions and reference values? 

See A.2 

III.iv.c How were submod-

els designed or chosen, and 

how were they parameter-

ized and then tested? 

The submodels where designed to reflect a prototypical implementation of the processes that hap-

pen during a risk workshop. The experimental conditions were derived as deviations from an ideal 

speech situation and implemented as simple as possible. All decisions made by agents are either 

random or influenced by simple heuristics.  
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Parameters of the model 

Parameter Explanation Default value(s) 

nr_agents Number of participants 9 

rounds_max Maximum number of simulated rounds 140 

theshold_change continue Maximum deviation in the group risk assessment for the discussion to be considered stagnant. 0.01 

 

Risk model 

  

BN_nr_children Number of children each parent-node has in the reference risk network 3 

BN_factor_lmr Factor for how much more likely the true state of an information is to be low rather than medium or 

medium rather than high 

10 

 

Participants 

  

weight_h_low 

weight_h_medium 

weight_h_high 

Weight used for weighting the input from senders if hierarchy is to be considered 0.25 

0.50 

0.75 

weight_e_expert 

weight_e_nonexpert 

Weight used for weighting the input from sender if transactive memory is present 1.0 

0.1 

initial_trust The model allows to vary the trust participants have in each other. 

(Note: for the experiments included in the study, trust is kept constant at the default value) 

1 

 



ODD+D protocol quantitative enthusiasm 161 

initial_distr_info Number of information to be distributed initially 45 

 

Experimental conditions 

  

information_distribution Determines whether all agents have the same probability to receive an information in the initial distri-

bution 

equal / unequal 

weight_hierarchy Participants consider the difference in hierarchy when weighting sender input yes/no 

weight_trans_mem Participants consider the difference in expertise when weighting sender input yes/no 

mode_limited_trans Participants consider their prior belief when integrating new information yes/no 

decision_rule Decision-making rule used by the leader See chapter 3.3.2 

Interaction_pattern Interaction pattern used in the group See chapter 3.3.4 

   

 



ODD+D protocol quantitative enthusiasm 162 

Calibration of the Bayesian network 

The Bayesian network that is used to model the risk needs to be calibrated to provide a plausible 

risk assessment from the information that constitute the risk assessment task.  

The overall risk assessment is derived from the state of the overall risk assessment node (see 

Figure 21) based on the highest associated probability. We have consciously chosen a calibra-

tion for the Bayesian network that will always result in a “high” or “low” overall risk assess-

ment. In the Bayesian network used in this study, from aggregation level to aggregation level 

the likelihood of “medium” states decreased strongly making it de facto a binary overall risk. 

Overall, this makes it possible to clearly identify the assessments made as a result of the risk 

workshop as correct or incorrect, streamlining the communication and discussion of the simu-

lation results.  

When Bayesian networks are used for real-world applications, the calibration of the network 

can be derived using machine learning algorithms on a real-world dataset. Lacking such real-

world data, we make plausible assumptions on how the network should aggregate information 

provided at the information nodes. Technically, the aggregation nodes (the topic nodes, the 

domain nodes, and the overall assessment node) can be thought of as a lookup table that pro-

vides a probability value for the ‘low’, ‘medium,’ and ‘high’ state based on the probabilities of 

states that feed into the aggregation node.  
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Figure 21 Example of how the BN calculates the overall risk assessment as a benchmark. 

 

Figure 21 provides an overview of how a benchmark assessment is calculated. It is also an 
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example of how, even with some ‘medium’ information provided, the ‘low’ and ‘high’ states 

of the overall assessment nodes have higher probabilities than the ‘medium’ state. While for 

one topic node (the last one at the bottom of Figure 21), the ‘medium’ state has the highest 

probability, at each further level, more information is aggregated, and the ‘low’ and/or ‘high’ 

states become more dominant. 

The aggregation of the nine values that feed into each aggregation node (three for each con-

nected node, with one likelihood for the low state, one for the medium, and one for the high) is 

implemented in a two-step process: 

First, the input is aggregated into a “risk score” in the range 0 to 1. Here is an example from 

nodes in Figure A.3.1: This example is the case in which all three nodes to be aggregated carry 

a “low risk” information (e.g., the aggregation of the first three information nodes at the top of 

Figure A.3.1). A large probability in the ‘low’ states will result in a low risk score.  

[
1 0 0
1 0 0
1 0 0

] ∗ [0.01 0.09 0.90] ∗

[
 
 
 
1

3⁄

1
3⁄

1
3⁄ ]
 
 
 

= [0.01] 

Second, this aggregate risk score (0.01) is now passed to a lookup table that translates each risk 

score into probability values for all three states. Figure A.3.2 shows how the aggregate risk 

score translates into state probabilities. The values were chosen to reach plausible aggregates 

for some plausible inputs. For example, an input of ‘medium’ on all input nodes will provide 

the highest value for ‘medium’ at the aggregate node. However, it was important to calibrate 

the network so that even a single high probability for a ‘high’ state translates into a high prob-

ability of the ‘high’ state of the aggregate node, as we assume that most information nodes are 

always in the ‘low’ state, and the task of the risk workshop is to correctly handle a low number 

of ‘high risk’ or ‘medium risk’ information. 

The configuration of the aggregate node that is derived this way for the topic nodes is equally 

applied for all aggregate nodes. 
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Figure 22 Graph on the translation of the aggregate risk score into state probabilities  

 

 

 

Information processing in the Bayesian network 

The mental model of the participants, implemented as a Bayesian network, allows to derive an 

overall risk assessment from a set of beliefs about information relevant to the risk. If all infor-

mation is provided without any noise (as in the end of a discussion with ideal speech situation), 

the assessment of a participant is identical to the benchmark assessment. The participant is right 

for the right reasons (Figure 23).  

The participant can also reach a correct assessment with much more limited information (Figure 

24). However, in this case the assessment is correct only due to uncertainty about information: 

The ‘high’ information is not available to the participant – the participant is right for the wrong 

reason.  

As the participant gains access to more information (again, assuming a unhindered discussion 

as in the ideal speech situation), the overall assessment of the participant switches to ‘low’ 

(Figure 25). By learning more (correct) information, the assessment becomes wrong.  
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Figure 23 Correct assessment with all information 
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Figure 24 Correct assessment with few information 
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Figure 25 Wrong assessment with more information 
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Appendix 5 ODD+D protocol quantitative skepticism 

The model description follows the ODD+D protocol (Müller et al., 2013), based on the ODD (Overview, Design concepts, Details) protocol for 

describing individual- and agent-based models (Grimm et al., 2006, 2020). 68 

ODD+D for the study on quantitative skepticism 

Outline Guiding questions ODD+D Model description 

IV) Overview I.i Purpose I.i.a What is the purpose of 

the study? 
The study builds upon Harten et al. (2022), which is a theoretical exploration 

of the drivers of the effectiveness of risk assessments in risk workshops regard-

ing the correctness and required time. Harten et al. (2022) model agent’s cog-

nition using Bayesian networks. We argue that their modeling choice corre-

sponds well to an organizational environment where a calculative culture of 

quantitative enthusiasm is prevalent. The purpose of our study is to investigate 

the impact of calculative cultures on risk workshops. More specifically, we ex-

plore drivers of the effectiveness of risk assessments in risk workshops domi-

nated by ‘quantitative skepticism’ and contrast our findings with previous re-

search that assumed the dominance of ‘quantitative enthusiasm.’ To this end, 

we adapt their model to a setting that better corresponds to an environment 

where quantitative skepticism is prevalent. We, therefore, chose constraint sat-

isfaction networks. Specifically, we use ECHO networks (Thagard, 1989) with 

 
68 This ODD+D protocol has been published along with the simulation code on CoMSES (see Bellora-Bienengräber et al., 2022). 
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a similar structure to the Bayesian networks used by Harten et al. (2022) to 

model agents’ cognitive processes. In order to be able to compare results with 

Harten et al. (2022), we perform the same experiments as described in the orig-

inal paper and the corresponding ODD (available at Harten et al., 2021). Spe-

cifically, we model the limits to information transfer, incomplete discussions, 

group characteristics, and interaction patterns and investigate their effect on risk 

assessment in risk workshops. 

I.ii.b For whom is the 

model designed? 
The model ideally guides facilitators of risk workshops in understanding the 

design choices and trade-offs they face, especially the importance of the prev-

alent calculative culture for accounting and design-related decisions. The model 

also provides a blueprint to use ABM to simulate organization discussion pro-

cesses. 

I.ii Entities, state 

variables, and 

scales 

I.ii.a What kinds of entities 

are in the model? 
This ABM has nine agents, all of whom are participants in a risk workshop. In 

each simulation run, one risk task is generated in the form of a constraint satis-

faction network. The participants perform a discussion, during which they ex-

change information about the risk. During the discussion, one agent (chosen at 

random) takes a special role as a leader, in addition to the role as a participant. 

Additionally, a facilitator's role is needed during the discussion process. How-

ever, - as we detail later - the role of the facilitator only requires information 
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available to all participants or any external observer; the role of the facilitator 

is not implemented as an agent entity itself but only as a function.  

Overall, the following entities are present in the model:  

Risk workshop participants who discuss a risk in order to reach a correct risk 

assessment;  

a leader who is one of the participants in the risk workshop but is responsible 

for making the final decision; 

a facilitator, who makes decisions regarding the proceeding of the workshop 

(Should the discussion continue, or a decision be made? Who is the next par-

ticipant to speak?); 

a risk, modeled as a constraint satisfaction network that is assessed in the risk 

workshop.  

I.ii.b By what attributes 

(i.e. state variables and pa-

rameters) are these entities 

characterized? 

Risk workshop participants (including the leader) are characterized by three attrib-

utes: 

Initial information concerning the risk: Participants are provided with some infor-

mation about the risk during the initialization. The pool of information that is as-

signed to the participants corresponds to the information nodes in the figure below. 
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If participants are provided information, they integrate the corresponding infor-

mation node into their constraint satisfaction network. Participants are considered 

experts regarding the information they are initially provided.  

Knowledge of the risk structure: Participants have a constraint satisfaction network 

as their mental model of the risk. The constraint satisfaction network (Thagard, 

1989) of the participants is initially limited, as some information nodes and their 

relationship to other nodes are missing. After participants receive new information, 

they update their individual constraint satisfaction network by adding new nodes 

and their relationships with the nodes already in their network (either explanatory 

or contradictory). 

Level of hierarchy: Participants are randomly assigned to one of three levels of 

hierarchy: low, medium, or high. There are always three participants for each level 

of the hierarchy. The leader is randomly chosen from the participants with a high 

level of hierarchy.  

The risk under assessment is characterized by the relationships between the nodes 

of the full constraint satisfaction network. A risk is a constraint satisfaction net-

work with two nodes representing the risk assessments “low likelihood risk” and 

“high likelihood risks” and nodes representing nine issues and 27 information. 

Each node has an activation in the range between -1 and 1, representing the 

strength of belief in the corresponding node. The activation changes depending on 
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the relationship of the nodes with each other. This (symmetric) relationship is ei-

ther explanatory or contradictory (or there is no direct relationship at all). For ex-

ample, a piece of specific information (“a new competitor enters the market with 

a similar product”) might have an explanatory relationship with one issue (“the 

market we operate in is attractive”) node and a contradictory relationship with an-

other issue node (“we have a technological lead in the market”).  

 

The structure of the Bayesian network used by Harten et al. (2022) (left) and the 

stylized ECHO network used to model quantitative skepticism (right). 

The benchmark risk assessment is derived from the activation of the two risk as-

sessment nodes depicted at the top when all information nodes are provided in-

stantly (e.g., the risk assessment of an agent with access to the whole constraint 

satisfaction network from the beginning).  
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I.ii.c What are the exoge-

nous factors / drivers of the 

model? 

Several simulation experiments are conducted with the model. Depending on 

the experiment, the following attributes are systematically varied:  

• Initial distribution of information among the risk workshop participants: Either 

all participants get the same amount of information, or information is assigned 

unequally. Specifically, each information from the pool of information that is ini-

tially assigned to the group is distributed one after another. For each information, 

each participant has a specific probability of receiving this information. If infor-

mation is distributed equally, each agent's probability of receiving a piece of spe-

cific information is 11.1% (i.e., 100%/9). Otherwise, the probabilities are chosen 

so that the best-informed participant has twice the chance of receiving any infor-

mation as the second-best informed participant (factor 2), and so on. Participants 

are chosen at random regarding their place in the knowledge distribution (i.e., if 

they are more or less well informed). 

• Decision rules used by the leader to make decisions 

• Consideration of hierarchy by the participants: Participants can weigh deci-

sions higher or lower, depending on the position of the sender in the hierarchy 

relative to their own.  

• Presence of transactive memory within the group: If transactive memory is 

present, participants know if the sender is an expert in the information being 

sent and can weigh the input higher or lower (depending on their expertise).  
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• Interaction pattern within the group 

I.ii.d If applicable, how is 

space included in the 

model? 

Space is not included in the model. 

I.ii.e What are the temporal 

and spatial resolutions and 

extents of the model? 

One time step is one discussion round, meaning that a participant is chosen to 

speak, the speaker provides a piece of information, and all other participants 

process it. See I.iii.a for the steps that happen during one simulated risk work-

shop. 
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I.iii Process over-

view and sched-

uling 

I.iii.a What entity does 

what, and in what order? 

 

Stages of the simulation before, during, and after the risk workshop (adapted from 

Harten et al., 2022). 
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V)  Design Con-

cepts 

II.i Theoretical 

and Empirical 

Background 

II.i.a Which general con-

cepts, theories or hypothe-

ses are underlying the 

model’s design at the sys-

tem level or at the level(s) 

of the submodel(s) (apart 

from the decision model)? 

What is the link to com-

plexity and the purpose of 

the model? 

The model has been developed to investigate the impact of choices made during 

the facilitation of a risk workshop, given a calculative culture of quantitative 

skepticism (Mikes, 2009). While some results are specific to decision-making 

regarding risk assessment, the general concept can be transferred to other set-

tings where a group shares distributed knowledge in a discussion to make a 

decision. 

The interaction of the participants is built upon the idea of participants forming 

a transactive memory system (Wegner, 1987); all relevant information for a 

decision is available to the group, but the group needs to make use of the avail-

able information correctly. 

The experiments investigate deviations from an ideal speech situation (Haber-

mas, 1982), as discussed in Harten et al. (2022).  

II.i.b On what assumptions 

is/are the agents’ decision 

model(s) based? 

The participants’ decisions are based on heuristics that aim to reasonably ac-

count for all available information relevant to the respective decision. The par-

ticipants are either following simple mathematical formulas for their decisions 

(e.g., when the leader determines if the discussion should continue), or make 

random choices, where model parameters determine the probability of each op-

tion to be chosen (e.g., when participants decide what information to share with 

the others). 
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II.i.c Why is a/are certain 

decision model(s) chosen? 

For some settings, there are no clear-cut rules available for how our participants 

will decide to act during the discussion. Thus, when participants need to make 

decisions, we allow participants to choose randomly between all possible op-

tions (e.g., when they decide who should be the next sender). However, the 

probability of each choice is influenced by reasonable heuristics (e.g., when the 

group is aware of the hierarchy, the facilitator should be more likely to choose 

agents with a high position in the hierarchy as the following senders). 

II.i.d If the model / a sub-

model (e.g., the decision 

model) is based on empiri-

cal data, where does the 

data come from? 

The model is not based on empirical data. 

II.i.e At which level of ag-

gregation were the data 

available? 

Not applicable. 

 

II.ii Individual 

Decision Making 

II.ii.a What are the subjects 

and objects of decision-

making? On which level of 

aggregation is decision-

making modeled? Are mul-

tiple levels of decision 

making included? 

Participants make two types of decisions: If they are chosen to be senders in a 

given discussion round. They choose what information to talk about. If they are 

chosen to be receivers, they decide how to weigh the input they receive from 

the sender. 

The facilitator makes one specific decision: In each round, one participant is 

chosen by the facilitator to be the next sender. 
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 The leader makes two specific decisions: After each round, the leader decides 

if the conditions for the decision and termination approaches are met, and there-

fore, a decision can be made. The leader also makes the final decision on how 

to assess the risk. The objective of the leader is to reach an accurate risk assess-

ment in the shortest possible time. However, the criteria to end the discussion 

is not determined by the leader but is a model parameter. The leader might de-

cide to end the discussion and make a decision if the group has not progressed 

for some time. 

II.ii.b What is the basic ra-

tionality behind agents’ de-

cision-making in the 

model? Do agents pursue 

an explicit objective or 

have other success criteria? 

Participants make their best effort to gain a correct understanding of the risk in 

order to reach an accurate risk assessment. They have no hidden agendas or 

other individual objectives. 

II.ii.c How do agents make 

their decisions? 

Participants make their decisions by random choice; however, the probability 

of each decision might not be equal. For example, participants are more likely 

to talk about information they are experts on. 

II.ii.d Do the agents adapt 

their behavior to changing 

endogenous and exogenous 

state variables? And if yes, 

how? 

Agents do not adapt their behavior. 
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II.ii.e Do social norms or 

cultural values play a role 

in the decision-making 

process? 

The selection of the next sender is influenced by social norms (e.g., prioritize 

participants based on hierarchy) in some experimental settings. 

II.ii.f Do spatial aspects 

play a role in the decision 

process? 

Not applicable. 

II.ii.g Do temporal aspects 

play a role in the decision 

process? 

The leader might decide to end the discussion and make a decision if the group 

has not progressed for some time. 

II.ii.h To which extent and 

how is uncertainty in-

cluded in the agents’ deci-

sion rules? 

The participants can take uncertainty regarding the correct risk assessment into 

account, e.g., when the facilitator chooses the next sender. 

II.iii Learning  

II.iii.a Is individual learn-

ing included in the decision 

process? How do individu-

als change their decision 

rules over time as conse-

quence of their experience? 

The agents’ understanding of the risk under assessment is modeled as an indi-

vidual constraint satisfaction network for each agent. Participants update their 

understanding of the risk, based on the input they receive during the discussion 

from other participants. Their understanding of the risk determines their indi-

vidual risk assessment. They do not learn beyond the discussion of an individual 

risk, i.e., there is no interaction spanning several simulated discussions. 
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II.iii.b Is collective learn-

ing implemented in the 

model? 

By exchanging their individual knowledge, the participants' understandings of 

the risk may move towards a more common understanding. 

II.iv Individual 

Sensing 

II.iv.a What endogenous 

and exogenous state varia-

bles are individuals as-

sumed to sense and con-

sider in their decisions? Is 

the sensing process errone-

ous? 

Not applicable. 

II.iv.b What state variables 

of which other individuals 

can an individual perceive? 

Is the sensing process erro-

neous? 

In some experimental conditions, participants know other participants’ relative 

position in the hierarchy and other participants’ expertise. This knowledge, if 

available, is free of errors. The facilitator and the leader know the overall risk 

assessment of all participants and can choose the next sender and decide when 

to end the discussion based on this knowledge. 

II.iv.c What is the spatial 

scale of sensing? 
Not applicable. 

II.iv.d Are the mechanisms 

by which agents obtain in-

formation modeled explic-

itly, or are individuals 

simply assumed to know 

these variables? 

Participants are assumed to know variables like the expertise of other partici-

pants (if the corresponding experimental condition is present). 

Participants learn about other participant’s understanding of the risk via the 

simulated discussion. 
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II.iv.e Are costs for cogni-

tion and costs for gathering 

information included in the 

model? 

The cost of cognition and information gathering is accounted for by the fact that 

the leader makes a decision as soon as specific decision and termination criteria 

are met, instead of continuing the discussion potentially infinitely. However, 

the participants make no conscious decision on whether to invest cognitive re-

sources: whenever they get new input, they update their knowledge about the 

risk and their risk assessment. 

II.v Individual 

Prediction 

  

II.v.a Which data uses the 

agent to predict future con-

ditions? 

Participants do not predict future conditions. 

II.v.b What internal models 

are agents assumed to use 

to estimate future condi-

tions or consequences of 

their decisions? 

Not applicable. 

II.v.c Might agents be erro-

neous in the prediction pro-

cess, and how is it imple-

mented? 

Not applicable. 

II.vi Interaction 

II.vi.a Are interactions 

among agents and entities 

assumed as direct or indi-

rect? 

The participants directly interact with each other by exchanging information 

about the risk during the discussion. 



ODD+D protocol quantitative skepticism 183 

II.vi.b On what do the in-

teractions depend? 

In each discussion round, one participant is chosen to talk to all other partici-

pants. The other participants are only receivers in that discussion round but can 

become senders themselves in subsequent rounds. 

II.vi.c If the interactions in-

volve communication, how 

are such communications 

represented? 

Participants communicate by exchanging information about their individual 

knowledge about the risk. Usually, they will share the activation of their infor-

mation node (“their knowledge”) they have decided to share. The agents will 

deduce themselves how the new information relates to nodes already in their 

network. This process is assumed to be objective, i.e., all agents will agree if 

two nodes are in an explanatory or contradictory relationship. 

II.vi.d If a coordination 

network exists, how does it 

affect the agent behaviour? 

Is the structure of the net-

work imposed or emer-

gent? 

The setting for the simulation is one discussion by all participants. Therefore, 

each participant can send information to all other participants, if chosen to be 

the sender. 

II.vii Collectives 

II.vii.a Do the individuals 

form or belong to aggrega-

tions that affect, and are af-

fected by, the individuals? 

Are these aggregations im-

posed by the modeller or do 

The individual participants form a group. The risk assessments of the individu-

als can be aggregated to a decision, like a consensus, a majority vote, or an 

average vote (used to determine if the group opinion is moving over time). The 

leader decides to end the discussion based on such aggregates. 
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they emerge during the 

simulation? 

II.vii.b How are collectives 

represented? 

The collective (that is, the group of all participants) has no agency by itself and 

is only a conceptual component of the model. All decisions are made by indi-

vidual participants. 

II.viii Heteroge-

neity 

II.viii.a Are the agents het-

erogeneous? If yes, which 

state variables and/or pro-

cesses differ between the 

agents? 

The group participants differ in their initial knowledge and expertise. They 

might differ regarding their position in a hierarchy if the corresponding exper-

imental condition is present. 

The participants have heterogeneous mental models initially, as the risk struc-

ture of their mental models depends on the information provided to them. 

 

II.viii.b Are the agents het-

erogeneous in their deci-

sion-making? If yes, which 

decision models or deci-

sion objects differ between 

the agents? 

Agents are not heterogeneous in their decision-making. 

II.ix Stochastic-

ity 

 

II.ix.a What processes (in-

cluding initialization) are 

modeled by assuming they 

For each run, a randomly generated risk is chosen for the group to assess.  
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are random or partly ran-

dom? 

The decision by the facilitator of who is the next sender in a discussion round 

is random. Depending on experimental settings, the probability of each partici-

pant becoming the next sender can be unequal (e.g., when priority is given to 

some participants based on their risk assessment).  

The decision by the sender on what to share is random. The probability of each 

node being chosen for sharing can be unequal, depending on experimental set-

tings. 

II.x Observation 

II.x.a What data are col-

lected from the ABM for 

testing, understanding, and 

analyzing it, and how and 

when are they collected? 

At the beginning of each run, the independent variables are recorded. After each 

discussion round, the activation of all states of the ‘overall assessment’ node is 

recorded for each participant. Furthermore, it is checked and recorded if a de-

cision and termination rule has been activated during the most recent discussion 

round and what decision by the leader it would result in. 

II.x.b What key results, 

outputs or characteristics 

of the model are emerging 

from the individuals? 

(Emergence) 

We can observe how limitations to the ideal speech situation impact the effec-

tiveness of risk workshops, measured as the share of high and low risks that get 

assessed correctly, as well as the time it takes to make a decision. 

VI) Details 
II.i Implementa-

tion Details 

III.i.a How has the model 

been implemented? 

The simulation is entirely written in Python. The original ECHO code was re-

implemented in Python for this study. 
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III.i.b Is the model accessi-

ble and if so where? 
The model is available at CoMSES. 

 

III.ii Initializa-

tion 

III.ii.a What is the initial 

state of the model world, 

i.e., at time t=0 of a simula-

tion run? 

The benchmark assessment and the benchmark process  

The simulation requires a benchmark assessment that the assessments reached 

in the risk workshop can be compared against. The benchmark assessment is 

determined by calculating a constraint satisfaction network with full infor-

mation about the true risk. This is the assessment that an agent would reach if 

all information relevant to the risk assessment were available from the begin-

ning. 

Initial information distribution  

In the beginning, information concerning the risk is distributed to the partici-

pants. After this initial seeding of (true) information, participants only get new 

input from other participants. All participants are able to assess the overall risk 

based on the limited knowledge they are pro-vided initially. Each information 

about the risk is available to at least one participant, so a correct risk assessment 

would be achieved if all participants could ideally share their information. The 

27 pieces of information are distributed among the participants, either equally 

or unequally. 

Knowledge about each other’s hierarchical position 
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Each participant is assigned a specific hierarchical status (low, medium, high). 

If the corresponding experimental condition is present, participants are aware 

of the hierarchical status of the other participants and consider it when including 

sender input into their individual constraint satisfaction network.  

Knowledge about each other’s expertise 

Information provided to the participants initially constitutes their expertise re-

garding the risk. Depending on the experimental condition, participants might 

be informed about each other’s expertise, i.e., who is an expert concerning 

which information. 

III.ii.b Is initialization al-

ways the same, or is it al-

lowed to vary among simu-

lations? 

Several simulation experiments are conducted with the model. Depending on the 

experiment, the following attributes are systematically varied:  

Initial distribution of information among the risk workshop participants: Either all 

participants get the same amount of information, or information is assigned une-

qually. Each information from the pool of information that is initially assigned to 

the group is distributed one after another. For each information, each participant 

has a specific probability of receiving this information. If information is distributed 

equally, each agent's probability of receiving a piece of specific information is 

11.1% (i.e., 100%/9). Otherwise, the probabilities are chosen so that the best-in-

formed participant has twice the chance of receiving any information as the sec-
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ond-best informed participant (factor 2), and so on. Participants are chosen at ran-

dom regarding their place in the knowledge distribution (i.e., if they are more or 

less well informed). 

Consideration of hierarchy by the participants: Participants can weigh decisions 

higher or lower, depending on the position of the sender in the hierarchy relative 

to their own.  

Presence of transactive memory within the group: If transactive memory is present, 

participants know if the sender is an expert in the information being sent and can 

weigh the input higher or lower (depending on their expertise).  

III.ii.c Are the initial values 

chosen arbitrarily or based 

on data? 

The initial values are chosen arbitrarily within the constraints set by the model 

parameter. 

III.iii Input Data 

III.iii.a Does the model use 

input from external sources 

such as data files or other 

models to represent pro-

cesses that change over 

time? 

Not applicable. 

III.iv Submodels 

 

III.iv.a What, in detail, are 

the submodels that repre-

sent the processes listed in 

Sender selection  

The facilitator chooses the sender in a random draw that depends on the exper-

imental condition. Only agents who have any expertise in any node are eligible 
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‘Process overview and 

scheduling’? 

to become senders, as otherwise, the sender has no information to share. The 

following interaction pattern are investigated:  

Random: In the baseline model, the next participant to speak is chosen at ran-

dom, with an equal probability for each participant. 

Priority is given to concern: The probability of each participant to be chosen is 

weighted by their overall risk assessment.  

Priority is given to dissent: The probability of each participant to be chosen is 

weighted by the distance of their individual risk assessment from the average 

group risk assessment.  

Priority is given to hierarchy: Participants are more likely to be the sender if 

they are assigned a higher hierarchical position. The probability of each partic-

ipant to be chosen is weighted by weight_h_low, weight_h_medium, or 

weight_h_high.  

Priority is given to homogeneity: The probability of being the next sender is 

higher if the participant’s risk assessment is close to the average group risk as-

sessment.  

Selection of sender output  

The senders chose one of the information nodes available to them. The chance 

of choosing a specific node is weighted by the sender's expertise regarding the 
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information node. The expertise is weight_e_expert for nodes initially assigned 

to the sender and weight_e_nonexpert for all other nodes. The sender will pro-

vide the detailed state of the information node to all other participants, who are 

the receivers in the given round. Furthermore, participants prioritize talking 

about nodes that have not been discussed often. The previously determined 

weight for each node (𝑛𝑜𝑑𝑒𝑖) based on the participant’s expertise regarding the 

node is multiplied by a weight reflecting how much it has been talked about by 

the group already, relative to the node that was talked about most often 

(𝑛𝑜𝑑𝑒𝑚𝑎𝑥): 

𝑤𝑒𝑖𝑔ℎ𝑡(𝑛𝑜𝑑𝑒𝑖) = 𝑤𝑒𝑖𝑔ℎ𝑡𝐸𝑥𝑝(𝑛𝑜𝑑𝑒𝑖) ∗ 2𝑑𝑖𝑠𝑐𝑢𝑠𝑠𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡𝑒𝑟(𝑛𝑜𝑑𝑒𝑚𝑎𝑥)− 𝑑𝑖𝑠𝑐𝑢𝑠𝑠𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡𝑒𝑟(𝑛𝑜𝑑𝑒𝑖)  

Here, weightExp(𝑛𝑜𝑑𝑒𝑖) is either weight_e_expert if the sender is an expert on 

𝑛𝑜𝑑𝑒𝑖or weight_e_nonexpert otherwise. 𝑑𝑖𝑠𝑐𝑢𝑠𝑠𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡𝑒𝑟(𝑛𝑜𝑑𝑒𝑖) gives the 

number of times 𝑛𝑜𝑑𝑒𝑖 has already been discussed in this simulation run. 

Inclusion of sender input  

All receivers update their beliefs about the node the sender talks about by as-

signing the input a weight relative to their prior belief. Depending on the exper-

imental condition, the weight assigned to the input reflects the following as-

pects:  

• difference in expertise regarding the specific node between sender and re-

ceiver;  
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• difference in hierarchy between sender and receiver. For example, the receiver 

will weigh the input higher if the sender is an expert and the receiver is not, or 

if the sender has a higher position in the hierarchy than the receiver. 

For example, if a non-expert assessed the activation of an information node to 

as 0 and received the information of an expert that assesses the activation to be 

0.23, the updated belief of the non-expert will be  

– 0.23 ∗ (weight_e_expert − weight_e_nonexpert)  −  0.0 ∗ (1 − (weight_e_expert −

weight_e_nonexpert)) 

III.iv.b What are the model 

parameters, their dimen-

sions and reference values? 

See Table 1. 

III.iv.c How were submod-

els designed or chosen, and 

how were they parameter-

ized and then tested? 

The submodels were designed to reflect a prototypical implementation of the 

processes during a risk workshop. The experimental conditions were derived 

by Harten et al. (2022) as deviations from an ideal speech situation and imple-

mented as simply as possible. All decisions made by agents are either random 

or influenced by simple heuristics. 
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Parameters of the model 

Parameter Explanation Default value(s) 

nr_agents Number of participants 9 

threshold_change_continue The maximum deviation in the group risk assessment for the discussion to be considered stagnant. 0.01 

Risk model 

  

nr_issue_nodes Number of children each parent-node has in the reference risk network 3 

connectedness_issues The probability that two issue nodes are connected by a constraint to each other 0.2 

connectedness_information The probability that an information node and an issue node are connected by a constraint to each other 0.2 

connectedness_assessment The probability that an issue node and a risk assessment node are connected by a constraint to each other 0.4 

connections_rate_explanatory The probability that a constraint is explanatory rather than contradictory 0.6 

Experimental conditions   

information_distribution Determines whether all agents have the same probability to receive an information in the initial distri-

bution 

equal/unequal 

weight_hierarchy Participants consider the difference in the hierarchy when weighting sender input yes/no 

weight_trans_mem Participants consider the difference in expertise when weighting sender input yes/no 

mode_limited_trans Participants consider their prior beliefs when integrating new information yes/no 

decision_rule Decision-making rule used by the leader  

Interaction_pattern Interaction pattern used in the group  
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Appendix 6 Summaries 

English summary 

Due to the universally recognized importance of risk management for organizations, there 

are many guidelines and recommendations for good risk management practices. How-

ever, there is insufficient research on the actual impact of how risk management is imple-

mented by the organization. This is especially true for the individual tools used for risk 

management, like risk workshops. 

This thesis provides two studies that investigate how the design of risk workshops impacts 

the workshops’ effectiveness. The first study uses an ideal speech situation as a starting 

point to derive deviations from the ideal that are commonly found in actual discussions. 

The impact of the deviations is evaluated by conducting agent-based simulation experi-

ments using a computational model of a risk workshop. The results of the study provide 

recommendations for risk workshop facilitators on how their choices impact the work-

shop's effectiveness and identify trade-offs that have to be made based on the organiza-

tion’s risk attitude. 

The second study investigates the importance of the calculative culture prevalent in an 

organization for the design of effective risk workshops. It builds upon the first study by 

using the same experimental framework but using a different cognitive architecture for 

the agents to reflect a different calculative culture. The study finds that the risk workshop 

facilitator needs to take the prevalent calculative culture into account when conducting a 

workshop, as the calculative culture changes the dynamics of the workshop and the effect 

of some deviations from an ideal discussion on the effectiveness of the workshop. 

Besides providing guidance for workshop facilitators and a research framework to further 

investigate drivers of the effectiveness of risk workshops, the thesis contributes a novel 

approach to combine agent-based modeling of group work with complex cognitive archi-

tectures. 
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Deutsche Zusammenfassung 

Da die Bedeutung des Risikomanagements für Unternehmen allgemein anerkannt ist, gibt 

es zahlreiche Leitlinien und Empfehlungen für gutes Risikomanagement. Es gibt jedoch 

noch zu wenige Erkenntnisse darüber, wie sich die Umsetzung des Risikomanagements 

in der Organisation tatsächlich auswirkt. Dies gilt insbesondere für die einzelnen Instru-

mente, die für das Risikomanagement eingesetzt werden, wie z. B. Risikoworkshops. 

Für diese Arbeit werden zwei Studien durchgeführt, die untersuchen, wie sich die Gestal-

tung von Risikoworkshops auf die Effektivität der Workshops auswirkt. In der ersten Stu-

die wird eine ideale Gesprächssituation als Ausgangspunkt genommen, um Abweichun-

gen vom Ideal abzuleiten, die in realen Gesprächen häufig vorkommen. Die Auswirkun-

gen dieser Abweichungen werden durch agentenbasierte Simulationsexperimente mit ei-

nem computergestützten Modell eines Risikoworkshops erhoben. Die Studie liefert Hin-

weise für die Moderatoren von Risikoworkshops, wie sich ihre Entscheidungen auf die 

Effektivität des Workshops auswirken, und zeigen auf, welche Kompromisse bei der 

Workshopgestaltung auf Basis der Risikoeinstellung des Unternehmens eingegangen 

werden müssen. 

Die zweite Studie untersucht die Bedeutung der in einer Organisation vorherrschenden 

Calculative Culture für die Gestaltung effektiver Risikoworkshops. Sie baut auf der ers-

ten Studie auf, indem sie denselben experimentellen Rahmen verwendet, aber eine andere 

kognitive Architektur für die Agenten nutzt, die einer anderen Calculative Culture ent-

spricht. Die Studie zeigt, dass der Moderator eines Risikoworkshops die vorherrschende 

Calculative Culture bei der Durchführung eines Workshops berücksichtigen muss, da die 

Calculative Culture die Dynamik des Workshops und die Auswirkungen einiger Abwei-

chungen von einer idealen Diskussion auf die Effektivität des Workshops beeinflusst. 

Neben der Bereitstellung eines Leitfadens für Workshop-Moderatoren und eines For-

schungsrahmens für die weitere Untersuchung der Faktoren, die die Effektivität von Ri-

sikoworkshops beeinflussen, liefert die Arbeit einen neuartigen Ansatz, der die agenten-

basierte Modellierung von Gruppenarbeit mit komplexen kognitiven Architekturen kom-

biniert. 
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