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Summary

A monoidal category is called a convolution monoidal category if it arises from linearizing
a 2-Segal space. The goal of this thesis is to study for which 2-Segal spaces the induced
convolution monoidal category is a multi-fusion category.
With this aim, we show that multi-fusion categories admit an intrinsic description as rigid
algebras in the symmetric monoidal 2-category of ℂ-linear additive categories. We use this
observation to define, by analogy, a derived version of a multi-fusion category as a rigid
algebra in the symmetric monoidal (∞, 2)-category of stable ∞-categories. We show that
examples of these arise as derived categories of multi-fusion categories and as categories of
modules over smooth and proper 𝔼2-algebras.
Afterward, we show that rigid algebras in the (∞, 2)-category of spans are precisely given by
those 2-Segal objects that are Čech-nerves. Together with our previous result, we use this to
provide an answer to our initial question. To prove this result, we provide a description of
bimodules in the∞-category of spans as birelative 2-Segal objects. Furthermore, we introduce
a notion of morphism between birelative 2-Segal objects that extends this classification to an
equivalence of ∞-categories.
We use this classification to construct examples of convolution monoidal structures that form
derived multi-fusion categories and discuss some aspects of the associated fully extended
TFTs. We finish by studying Grothendieck–Verdier-structures on convolution monoidal
∞-categories and by comparing them with rigid dualities.
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Zusammenfassung

Wir nennen eine monoidale Kategorie ein Konvolutions monoidale Kategorie, wenn sie durch
die Linearisierung eines 2-Segal Objekts entsteht. Das Ziel dieser Dissertation ist es zu
verstehen für welche Klasse von 2-Segal Objekten die induzierte Konvolutions monoidale
Kategorie eine Multi-Fusionskategorie ist.
Dafür zeigen wir, dass Multi-Fusionskategorie eine intrinsische Beschreibung als rigide Al-
gebren in der symmetrisch monoidalen 2-Kategorie von ℂ-linearen additiven Kategorien
besitzen. Wir verwenden diese Beobachtung, um analog eine derivierte Version einer Multi-
Fusionskategorie als rigide Algebra in der symmetrischen monoidalen (∞, 2)-Kategorie von
stabilen ∞-Kategorien zu definieren. Wir zeigen, dass Beispiele solcher Kategorien sowohl
als derivierte Kategorien von Multi-Fusionskategorien, und als Kategorien von Moduln über
eigentlichen und glatten 𝔼2-algebren.
Danach zeigen wir, dass rigide Algebren in der (∞, 2)-Kategorie von Korrespondenzen genau
durch die 2-Segal Objekte gegeben sind die ein Čech-Nerve sind. Wir benutzen dieses Resultat,
um unsere Ausgangsfrage zu beantworten. Um diese Klassifizierung zu beweisen, führen wir
eine Beschreibung von Bimodulen in ∞-Kategorien von Korrespondezen mittels birelativen
Segal Objekten ein. Außerdem führen wir einen Begriff von Morphismen zwischen birelativen
2-Segal Objekten ein, der die zuvor beschriebene Korrespondenz zu einer Äquivalenz von
Kategorien erweitert.
Wir benutzen unsere vorherigen Resultate um Beispiele von Konvolutions monoidalen ∞-
Kategorien zu definieren, die derivierten Multi-Fusionskategorien sind, und diskutieren deren
Beziehung zu vollerweiterten TFTs. Zum Abschluss, betrachten wir Grothendieck–Verdier
Strukturen auf konvolutions monoidalen Kategorien und vergleichen diese mit rigiden Dual-
itäten.
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1 Introduction
A fundamental conjecture in the area of Topological Field Theories (TFTs) is the Cobordism Hypothesis
[BD95, Lur08]. This conjecture provides a classification of n-dimensional fully extended TFTs with target
a symmetric monoidal (∞, n)-category C⊗, in terms of objects in C satisfying certain finiteness conditions.
The most basic example of this conjecture involves the classification of 1-dimensional TFTs with values in
Vect⊗

ℂ (the symmetric monoidal category of ℂ-vector spaces) in terms of finite-dimensional vector spaces
[Har12]. More interesting classes of examples arise in dimension 3 as so-called Turaev–Viro style TFTs
[DSPS20, TV92]. These TFTs take values in a symmetric monoidal Morita 3-category of finite monoidal
ℂ-linear abelian categories, and it has been shown in [DSPS20] that in this case sufficient finiteness conditions
on such a monoidal category A⊗ are given by rigidity and semisimplicity. Monoidal categories satisfying
these conditions are known as multi-fusion categories [ENO05].
In recent years, there has been growing interest in constructing examples of (fully extended) 3d-TFTs from
non-semisimple monoidal categories. One approach is to construct these directly without using the cobordism
hypothesis [CGPMV23]. This often leads to TFTs that are only partially defined, so-called non-compact
TFTs [Lur08]. A different approach to this problem is through so-called derived TFTs. In this approach, one
changes the target of the TFT and replaces its 1-categorical input by an ∞-category.
The latter approach has been successfully applied in dimension 2 for TFTs that take values in the 2-category of
ℂ-linear abelian categories [Cos07]. In this case, the 1-categorical input is given by a ℂ-linear abelian category
A, which needs to be semisimple to induce a 2-dimensional fully extended TFT [Til98]. However, every
abelian category A also has a natural ∞-category associated with it, called its bounded derived ∞-category
D♭(A). This ∞-category naturally forms an object in the symmetric monoidal (∞, 2)-category of ℂ-linear
stable ∞-categories, and it has been shown in [Lur08, Cos07] that these only need to be smooth and proper
to induce a fully extended TFT. These conditions are strictly weaker than being semisimple.
It therefore seems promising to apply this approach also in the case of Turaev–Viro style TFTs in dimension
3. However, this would require a derived version of a multi-fusion category as its input, a concept that has not
been defined so far. To pursue the approach via derived TFTs, we first need to understand what a suitable
definition of a derived multi-fusion category should be. For this, it is essential to systematically understand
how examples of multi-fusion categories can be constructed. to be able to apply these techniques to the
construction of derived multi-fusion categories. Let us hence look at some examples.

Multi-fusion categories from convolution

The simplest examples of multi-fusion categories arise from finite groups. For instance, for any finite group G
the category VectG of G-graded ℂ-vector spaces and the category Repℂ(G) of ℂ-linear G-representations are
examples of multi-fusion categories [EGNO16]. A slight generalization of these examples is given by Repℂ(G),
the category of representations of a finite groupoid G. These examples have in common that they all arise
from the same underlying principle: all of them arise from the same linearization construction applied to a
simplicial groupoid called the Čech-nerve. More precisely, the linearization construction is an assignment
that associates to every finite groupoid G the category of functors Fun(G,Vectℂ) and to every span of finite
groupoids

G0 G01 G1

a functor Fun(G0,Vectℂ) → Fun(G1,Vectℂ), compatible with product and composition. In other words, it
is a symmetric monoidal functor from the category of spans of finite groupoids to the category of ℂ-linear
categories. The Čech-nerve then describes a specific algebra object in the category of spans, and the monoidal
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structure arises as the image of this algebra structure under the symmetric monoidal functor.
Although the construction of these multi-fusion categories is of conceptional elegance, the associated TFTs
are often of minor interest. The associated invariants can often be more easily calculated using a different
TFT, known as Dijkgraaf–Witten theory [Pet06]. To describe more interesting invariants from knot theory,
like the Jones polynomial of a knot [Wit89], we need to consider more elaborate examples like categories of
representations of quantum groups [TV92, Wit89]. It would therefore be interesting to understand whether
such multi-fusion categories could also arise from linearization constructions.
More generally, the above linearization construction associates a monoidal category to any simplicial groupoid
X• : ∆op → Grpdf satisfying the so-called 2-Segal conditions [DK19]. These are 2-dimensional generalizations
of the famous Segal conditions introduced in [Seg74]. These 2-Segal conditions capture the higher coherent
associativity and unitality of the monoidal structure induced by linearization. More precisely, a 2-Segal
groupoid can be viewed as an A∞-algebra in the category of spans of groupoids [Ste21]. In the following, we
will call the monoidal structures induced by a 2-Segal object convolution monoidal structures.
The class of 2-Segal groupoids contains the previously mentioned Čech-nerves, but also more general examples.
The most interesting example is the so-called Waldhausen S•-construction of an abelian category [DK19]. The
monoidal structures induced via linearization have been introduced by Walde [Wal16] under the name Hall
monoidal structures [Wal16], since they categorify the algebra structures of Hall algebras [Sch06]. Moreover,
these Hall algebras have a direct connection to the theory of quantum groups. Indeed, it is a famous result of
Ringel [Rin90] that the Hall algebra of the An quiver is equivalent to the upper half of the quantum group
of the corresponding Lie algebra sln. Therefore, it seems plausible that certain more interesting classes of
multi-fusion categories might arise from linearizations of more general 2-Segal groupoids.
To investigate this, we restrict ourselves for simplicity to fusion categories and use their inherent combinatorial
nature. Since these categories are semi-simple, each object is fully determined by its simple subobjects and
their multiplicities. This data entirely characterizes the underlying abelian category in terms of combinatorial
data. Moreover, the monoidal product can also be described in terms of the combinatorics of simple objects.
Using these insights, we construct for every fusion category a candidate simplicial set. The 2-Segal conditions
for this simplicial set then hold if a specific equation that we call the parameterized set-theoretic pentagon
equation [KR01] is satisfied. By applying this approach, we can explicitly test for fusion categories with
a small number of simple objects whether this equation admits a solution, and hence if our simplicial set
is 2-Segal. A particularly simple and interesting example of a fusion category is the Ising category, as it
describes the representation category of a quantum group [EGNO16]. We explicitly check the set-theoretic
parameterized pentagon equation in this case and show that our construction fails. Surprisingly, it fails for
every fusion category that is not equivalent to VectG:

Theorem 1 (2.12). Let (C,⊗, α) be a fusion category. Then C arises as the linearization of a 2-Segal set
X• : ∆op → Set if and only if C is monoidally equivalent to VectG, i.e. it arises as the linearization of the
nerve N(G) of G.

The proof of this theorem relies on an explicit combinatorial argument. The requirement that the monoidal
structure induced by a 2-Segal set is rigid imposes further conditions on the components of the associator.
We show that the only simplicial set that satisfies the 2-Segal conditions and these extra conditions is the
nerve of a group. Therefore, rigidity turns out to be the main obstacle preventing convolution monoidal
categories from being a fusion category.
This explicit argument is unfortunately limited to 2-Segal sets. Already for 2-Segal groupoids, the calculations
become significantly more complex, requiring to understand the interplay of convolution with character theory.
Consequently, a more conceptual explanation of Theorem 1 appears to be more appropriate. The main goal
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of this thesis is to provide such a conceptual explanation using the theory of (∞, 2)-categories.

The Main Strategy

Following the previous discussion, a question arises: are there 2-Segal objects, with values in other categories
than sets, that can induce rigid convolution monoidal structures? However, proving that a specific monoidal
structure is rigid can be quite challenging. Typically, no general principle for constructing the dual object
exists, so in general one has to come up with an educated guess. Consequently, classifying all 2-Segal objects
that induce rigid convolution monoidal structure appears to be a complicated task.
In his work [Gai15], Gaitsgory introduced a new perspective on rigidity while studying ℂ-linear rigid monoidal
∞-categories of sheaves in the context of derived algebraic geometry. His key insight can be summarized as
follows:

Rigidity is a property of an algebra in a symmetric monoidal 2-category.

To unpack this, recall that every symmetric monoidal 2-category (𝔻,⊗) comes with a notion of algebra objects.
For example, if 𝔻 is the 2-category of categories, algebras are given by monoidal categories. Informally,
the datum of such an algebra consists of an underlying object A ∈ 𝔻, a unit morphism η : 1𝔻 → A, a
multiplication µ : A⊗A→ A, an associativity 2-morphism α, and higher coherences. Gaitsgory defined that
such an algebra is rigid if A is dualizable, the unit admits a right adjoint, and the multiplication µ has a
right adjoint µR : A→ A⊗A that satisfies the categorified Frobenius relations

(µ⊗ idA) ◦ (idA ⊗ µR) ≃ µR ◦ µ ≃ (idA ⊗ µ) ◦ (µR ⊗ idA),

where the isomorphisms are induced by the mates of α. Therefore, we can think of a rigid algebra as a
categorified Frobenius algebra. A different way to interpret the last condition is that it describes the lowest
instance of the structure of an A-A-bimodule morphism on µR.
The main advantages of this 2-categorical notion of rigid algebras for us are that they can be studied in any
symmetric monoidal 2-category and are preserved by any symmetric monoidal 2-functor. An example of
such a symmetric monoidal 2-functor has been constructed by Morton in [Mor11]. Morton proves that the
linearization construction described in the previous section admits an extension to a symmetric monoidal
2-functor, with its source a 2-category of spans, and target a 2-category of ℂ-linear categories. When combined
with Gaitsgory’s observation, this implies that Mortons 2-functor constructs a convolution monoidal structure,
satisfying Gaitsgory’s rigidity, from every 2-Segal object that describes a rigid algebra in the 2-category spans.
We call these 2-Segal objects rigid. Using this observation, we can formulate the leading question of this
thesis:

Question. Which rigid convolution monoidal structures arise from this construction?

To answer this question, we will follow the following strategy:

1. Relate rigid algebras to the traditional notion of rigidity.

2. Classify rigid 2-Segal objects.

3. Construct rigid algebras through 2-categorical linearization constructions.

In the following sections, we will elaborate on these steps in more detail and present our main results.
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Step 1: Rigid Categories

To ensure that Gaitsgory’s 2-categorical notion of a rigid algebra is useful for the study of TFTs, it has to
satisfy two main conditions:

1. It should recover the classical definition of rigidity.

2. It should be connected to fully extended TFTs.

For the symmetric monoidal (∞, 2)-category ℙrL,⊗
ℂ of ℂ-linear presentable∞-categories, Gaitsgory has proven

that a compactly generated monoidal ℂ-linear presentable ∞-category is a rigid algebra in ℙrL,⊗
ℂ if the

compact objects admit duals [Gai15]. In particular, its subcategory of compact objects is a rigid category in
the original sense.
A similar result has been obtained for the symmetric monoidal 2-category 𝕡rL,⊗

ℂ of ℂ-linear presentable
1-categories in [BZBJ18]. In this case, a monoidal ℂ-linear presentable 1-category is a rigid algebra if and
only if every compact-projective object admits a dual. This definition of rigidity is more general than the one
used in for Turaev–Viro style TFTs in [DSPS20] but is nevertheless a reasonable definition of rigidity. For
instance, in the category rmodR of modules over a commutative ℂ-algebra R, an R-module is dualizable if
and only if it is finitely generated and projective, i.e. compact-projective. Therefore, rmodR is a rigid algebra
in the 2-categorical sense but not in the sense of [DSPS20].
In Section 4, we generalize the above approaches and study rigid algebras in the symmetric monoidal
(∞, 2)-category ℙrL,⊗

V , where V⊗ is an arbitrary presentably symmetric monoidal ∞-category. The right
generalizations of compact (resp. compact-projective) objects in this context are given by so-called V-atomic
objects introduced in [BMS24]. An object a in A is V-atomic, if the internal Hom functor homA(a,−) : A→ V

for the V-action on A commutes with colimits and is compatible with the V-action. For V-linear presentable
∞-categories, we then prove the following:

Theorem 2 (4.19). Let A⊗ be an atomically generated V-linear presentably monoidal ∞-category. Then
A⊗ is rigid in ℙrL,⊗

V if and only if every V-atomic object admits a dual.

When V⊗ is the derived∞-category of ℂ-vector space D(ℂ)⊗, the internal Hom recovers the mapping complex,
and V-atomic objects are precisely the compact objects. This recovers the result of [Gai15]. Similarly, by
setting V⊗ to be Vect⊗

ℂ (the category of ℂ-vector spaces), the classical case of [BZBJ18] can be recovered. A
similar result has also been proven in [Ram24b].
The second requirement imposed on the 2-categorical notion of rigidity is that it has to be related to fully
extended TFTs, in particular to those of Turaev–Viro style. For the symmetric monoidal (∞, 2)-categories
ℙrL,⊗

ℂ and 𝕡rL,⊗
ℂ such relations have been obtained in [BZGN19], and [BJS21] respectively. More precisely, the

authors show that every rigid algebra defines a fully dualizable object in the respective Morita (∞, 2)-category
introduced in [Hau17]. We provide the following generalization:

Theorem 3 (4.26). Let V⊗ be a presentably symmetric monoidal ∞-category. Every rigid algebra in ℙrL,⊗
V

is fully dualizable in the Morita (∞, 2)-category 𝕄or(PrL
V)⊗ of V-linear presentable ∞-categories.

In this more general setting, the proof of this theorem becomes particularly simple. The definition of a rigid
algebra naturally allows us to express the rigid category A⊗ as a module over the so-called canonical algebra
FA of A. This algebra already appears prominently in various contexts in the TFT literature [SW21, KS22].
On the other hand, it is not true that any fully dualizable object in 𝕄or(PrL

V)⊗ is given by a rigid algebra. A
counterexample has been constructed in [BZGN19], using the theory of D-modules. Therefore, the above
result does not provide a classification of rigid algebras in terms of fully extended TFTs. However, we argue
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that one can obtain such a classification in terms of relative TFTs.
Formally this means that we replace the (∞, 2)-category 𝕄or(PrL

V)⊗ by its (∞, 2)-category of oplax arrows
𝕄or(ℙrL

V)→,⊗ [JFS17]. The objects of the latter are given by 1-morphisms in 𝕄or(PrL
V). In particular, for

every algebra A⊗ ∈ PrL
V, the regular left A-module AA yields an object of 𝕄or(ℙrL

V)→. We claim that we can
characterize rigid algebras in terms of this module:

Claim (4.30). Let A⊗ be a V-linear presentably monoidal ∞-category. Then A⊗ is rigid in ℙrL,⊗
V if and only

if the regular left A-module AA is fully dualizable in the (∞, 2)-category 𝕄or(ℙrL
V)→,⊗.

We prove this claim using two unproven structural properties of the even higher Morita category [JFS17] that
we explicitly state in Claim 4.1. We have no doubt that these categories have these properties. The proof
would either require a careful ∞-categorical analysis of the construction of the even higher Morita categories
in [JFS17], that is currently missing in the literature, or a different more intrinsic construction of these. We
plan to follow the latter approach in future work. A similar result has been proven in the case of monoidal
1-categories in [Haï23].

Fusion Categories

Recall that our initial motivation was not just to construct rigid ℂ-linear categories, but specifically to
construct ℂ-linear multi-fusion categories. Interestingly, when we apply the definition of a rigid algebra to the
2-category of small idempotent-complete ℂ-linear additive categories instead of large presentable categories,
we arrive at the following extension of Gaitsgory’s observation:

Theorem 4 (2.9). A ℂ-linear idempotent-complete additive monoidal category is rigid in the symmetric
monoidal 2-category of small idempotent-complete ℂ-linear additive categories 𝕒dd⊗

ℂ if and only if it is a
ℂ-linear multi-fusion category.

Note that, although it was not a requirement initially, it follows that a rigid algebra in 𝕒dd⊗
ℂ has to be an

abelian category. The key difference from the presentable case considered above is the following. Using the
non-abelian derived category [Lur09a, Sect.5.5.8] We can associate to every additive category A a presentable
category PΣ

1 (A), that contains A as its full subcategory of compact-projective objects. While this presentable
category is always dualizable as a presentable category, the underlying small additive category A is only
dualizable as a ℂ-linear additive category if it is semi-simple and has finite-dimensional Hom-spaces. Thus it
has to be a multi-fusion category.
Since the above characterization of a multi-fusion is 2-categorical, we can study this condition within other
2-categories as well to obtain potential generalizations of multi-fusion categories. As mentioned earlier in this
introduction, we are particularly interested in derived versions of multi-fusion categories. As these would arise
for example as bounded derived categories, they naturally form algebras in the (∞, 2)-category of ℂ-linear
stable ∞-category 𝕊tℂ. Therefore, it is interesting to study these examples of rigid algebras, which we call by
analogy with the additive case derived multi-fusion categories.
This terminology is purely motivated by analogy. In particular, we will not show that these satisfy any higher
dualizability conditions. Nevertheless, we expect derived multi-fusion categories, in our sense, to induce
non-compact fully extended 3-dimensional TFTs. This expectation arises from our analogy with multi-fusion
categories, that in general, also only induce non-compact TFTs, as they satisfy all but one of the finiteness
conditions required to define a fully dualizable object. Indeed over a general field, multi-fusion categories
have to satisfy an extra condition called separability to be a fully dualizable object [DSPS20]. We anticipate
that also in the derived setting a similar separability condition will be necessary to obtain a fully dualizable
object in the Morita category of ℂ-linear stable ∞-categories generalizing Theorem 3 above.
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To further motivate our definition of a derived multi-fusion category, we introduce two classes of examples of
derived multi-fusion categories. As our first example, we show that this terminology is compatible with the
1-categorical case:

Proposition 1. Let A⊗ be ℂ-linear multi-fusion category. Then its bounded derived ∞-category D♭(A)⊗ is
a ℂ-linear derived multi-fusion category.

As our second class of examples, we consider the ∞-category of modules over an ℂ-linear 𝔼2-algebra. This
∞-category naturally is an example of a ℂ-linear monoidal stable ∞-category. On the other hand, the
𝔼2-algebra itself can give rise to a TFT. Indeed, in [Lur08, Rem.4.1.27] Lurie sketches a criterion for such a
𝔼2-algebra to define a non-compact 3d-TFT in terms of factorization homology. As a consistency check, we
show that this criterion is compatible with our notion of derived multi-fusion category

Proposition 2. Let A be an ℂ-linear 𝔼2-algebra. Then A satisfies the assumptions of [Lur08, Rem.4.1.27]
in the non-compact case if and only if its category of modules is a derived multi-fusion category.

In more elementary terms, the assumptions of [Lur08, Rem.4.1.2.17] demand the 𝔼2-algebra to be smooth
and proper. Smooth and proper 𝔼1-algebras are ubiquitous in the study of homological mirror symmetry
[HKK17]. Unfortunately, we are not aware of any example of a smooth and proper 𝔼2-algebra that does
not satisfy the weaker assumption of being separable. Therefore, instead of giving explicit examples, we will
discuss some possible construction methods.

Step 2: Rigid 2-Segal Spaces

For the second step, we investigate rigid algebras within symmetric monoidal (∞, 2)-categories of spans of
spaces. This requires first to understand algebras in these monoidal (∞, 2)-categories that can be described
using 2-Segal or decomposition spaces [DK19, GCKT18].

Higher Algebra in Spans

A 2-Segal space, also called a decomposition space [GCKT18], is a simplicial space X• : ∆op → S that satisfies
a 2-dimensional analog of the famous Segal conditions introduced in [Seg68]. These concepts were initially
introduced independently by Dyckerhoff and Kapranov [DK19] to describe the underlying structure of different
Hall algebra constructions, and by Gálvez-Carrillo, Kock, and Tonks to describe various coalgebra structures
appearing in combinatorics [GCKT18]. Since then, the subject has undergone substantial developments,
including the introduction of n-Segal conditions for n > 2 [Pog17] and applications in different areas of
mathematics like the theory of TFTs [DK18], Auslander–Reiten theory [DJW19], and Donaldson–Thomas
theory [PS23].
The connection between 2-Segal spaces and Hall algebras arises from interpreting 2-Segal spaces as associative
algebras in categories of spans. More precisely, for every n ≥ 0, we think of the span

X1 × · · · ×X1 Xn X1
{0,1},...,{n−1,n} {0,n}

as an n-ary multiplication and taking pullbacks as composition. The lowest dimensional 2-Segal conditions

X3 X2

X2 X1

∂3

∂1 ∂1

∂2

X3 X2

X2 X1

∂0

∂2 ∂1

∂0
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that demand the following squares to be pullback, then encode that, up to equivalence, different composites
of the 2-ary multiplication coincide with the same 3-ary multiplication. In other words, this describes a
coherent operadic version of associativity. This idea has been made precise by Stern [Ste21]. He has proven
that the space of 2-Segal spaces is equivalent to the space of associative algebra objects in the ∞-category of
spans of spaces.
But as the definition of a rigid algebra also uses more general algebraic structures, it does not suffice to only
understand algebras. We also need to understand the Frobenius relations that require a good understanding
of bimodules and bimodule maps.

Bimodules

Analogous to algebras, we introduce a similar description of bimodules using a 3-colored version (in the sense
of operads) of the 2-Segal condition imposed on a birelative simplicial space X• : ∆op

/[1] → S. The objects
corresponding to the 3-colors are given by X{0,0}, X{0,1}, and X{1,1}, where the outer ones represent the
underlying objects of the algebra, while the middle one corresponds to the underlying object of the bimodule.
Similar to the case of 2-Segal objects, every object f : [n]→ [1] ∈ ∆/[1] represents a span:

Xf |0,1 × · · · ×Xf |n−1,n
Xf Xf |0,n

which we view as a multicolored n-ary operation, where two of them are again composed by taking pullbacks.
Then the lowest birelative 2-Segal conditions demand the following square to be pullbacks

Xf Xf |0,1,2

Xf |0,2,3 Xf |0,2

Xf Xf |1,2,3

Xf |0,1,3 Xf |1,3

These conditions simultaneously encode the associativity of the multiplications and module actions. Using
this definition we can extend the result of [Ste21] to the case of bimodules:

Theorem 5 (8.2). Let C be an ∞-category with finite limits. There exists an equivalence of spaces

BiSeg∆(C)≃ ≃ BMod(Span(C))≃

between the subspace of Fun(∆op
/[1],C)≃ generated by birelative 2-Segal objects and the space of bimodules in

Span(C)⊗ the ∞-category of spans in C.

Similar conditions have been previously introduced for left modules in the context of 1-categories by Walde
[Wal16] and Young [You18]. For bimodules the same conditions have been introduced independently by
Carlier [Car20] in terms of augmented stable double Segal spaces. Carlier further shows that these conditions
gives rise to non-coherent bicomodules. Our result generalizes these works into the context of ∞-categories.

Bimodule Maps

To use the formalism of 2-Segal spaces for the description of rigid algebras, we also need a description of
bimodule maps in terms of morphisms between birelative Segal spaces. A natural first guess might be to
define the corresponding notion of morphism between birelative 2-Segal spaces as a natural transformation
between birelative simplicial spaces. Although this yields an interesting notion of morphism between birelative
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2-Segal spaces, it does not correspond to that of a bimodule morphism. This fails for two reasons. On the
one hand, a general morphism of birelative simplicial spaces only corresponds to a lax bimodule morphism
[Wal16, Sect.4.2]. On the other hand, since the algebraic structure itself lives in an ∞-category of spans, a
bimodule morphism should also be formalized in this context. These considerations lead to the following
extension of Theorem 5:

Theorem 6 (9.1). Let C be an ∞-category with finite limits. There exists an equivalence of ∞-categories

BiSeg↔
∆ (C) ≃−→ BMod(Span(C))

between the subcategory of Span(Fun(∆op
/[1],C)) with objects birelative 2-Segal objects and morphisms birelative

2-Segal spans on the left and the ∞-category of bimodule objects in the symmetric monoidal ∞-category
Span(C)⊗ on the right.

A span between birelative 2-Segal objects is called a birelative 2-Segal span if the legs of the span satisfy
certain pullback conditions. Similar conditions have been previously introduced in the context of Segal spaces
under the names CULF and IKEO in [GCKT18], where the authors show that such morphisms induce algebra
morphisms. Restricted to the underlying simplicial objects these spans indeed recover the CULF and IKEO
conditions and we can see the above theorem as a converse to their observation.

Rigidity for 2-Segal Spaces

The description of algebraic structures in ∞-categories of spans described in the last sections, allows us
to finally systematically study rigid 2-Segal objects. For this end, we first need a suitable candidate for
the (∞, 2)-category of spans. The symmetric monoidal ∞-category Span(S)⊗ admits two natural (∞, 2)-
categorical extensions. The first, 𝕊pan2(S)⊗ has morphisms between spans as its 2-morphisms, whereas the
second, 2𝕊pan(C)⊗, has spans between spans as its 2-morphisms. For our purposes, the main difference
between those choices lies in the existence of adjoints. In 𝕊pan2(C), a morphism admits a right adjoint only
if the left leg of the span is an equivalence. By contrast, in 2𝕊pan(C) every morphism admits a left and right
adjoint [Hau18].
Since for a 2-Segal object, the left leg of the multiplication span is only an equivalence if the simplicial object
is already 1-Segal, we focus, to increase generality, on studying rigid 2-Segal objects in 2𝕊pan(C)⊗. In this
context, the right adjoint of the multiplication span is given by the reversed span. Therefore, to understand
rigid algebras it remains to understand the Frobenius relation. These force the diagrams

X3 X2

X2 X1

∂0

∂3 ∂2

∂0

X3 X2

X2 X1

∂1

∂2 ∂1

∂1

to be pullbacks. A detailed analysis shows that the left-hand diagram can be interpreted as an extended
1-Segal condition, while the right-hand diagram corresponds to an invertibility condition. This observation
leads to the main theorem of this thesis:

Theorem 7 (10.12). Let X• : ∆op → S be a 2-Segal space. X• is rigid in 2𝕊pan(S)⊗ if and only if it is
equivalent to a Čech-nerve.

This Theorem provides an explanation for our earlier observation that all known examples of convolution
monoidal structures that form multi-fusion categories are induced from Čech-nerves. Namely, these are the
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only examples of 2-Segal objects, that are rigid before linearization and therefore their linearizations are
the generic examples of rigid convolution monoidal categories. We can summarize our discussion with the
following slogan:

All rigid convolution monoidal structures arise from Čech-nerves.

However, it is important to recognize that this is only a slogan. Except for the case of 2-Segal sets, we have
not proven that all rigid convolution structures arise from Čech-nerves. Indeed, the linearization functor does
invert morphisms. So it is still possible, in principle, for rigid convolution monoidal structures to exist that
are induced by 2-Segal spaces which are not Čech-nerves. This result should instead be interpreted as an
indication that it is unlikely for a 2-Segal space to induce a rigid convolution monoidal structure unless it is a
Čech-nerve.
This observation is further reinforced by examples. We are unaware of any example of a rigid convolution
monoidal structure that does not originate from a Čech-nerve. Moreover, we can rule out certain classes of
examples of convolution structures, such as those that originate from 1-Segal spaces that are not Čech-nerves,
and those that originate from Waldhausen S•-construction of abelian categories. A more intriguing example
is the Waldhausen S•-construction of a stable ∞-category, which appears to exhibit certain characteristics of
rigid 2-Segal objects. These similarities arise from the interpretation of rigid algebras as Frobenius algebras.
In Section 12 we show that the Waldhausen S•-construction admits a Frobenius algebra structure that differs
from the rigid Frobenius algebra structure.

Step 3: Convolution Structures

In the final step, we connect our two examples of rigid algebras studied in the previous steps by linearization
constructions. Although this approach does not lead to new examples of multi-fusion categories, it allows
us to construct more general examples of rigid monoidal ∞-categories and derived multi-fusion categories,
generalizing VectG and Repℂ(G). Since the general theory of linearization functors with source 2𝕊pan(C) has
not been developed so far, we restrict our discussion to linearizations of functors with source 𝕊pan2(C).
A prototypical example of such a linearization construction has been constructed in [Mor11], where the author
constructs a symmetric monoidal 2-functor from the 2-category 𝕊pan2(Grpdf ) to the category of 𝕡rL

ℂ. This
functor assigns to any finite groupoid G the category Fun(G,Vectℂ) and, to any morphism of finite groupoids,
the functor of left Kan extension. It is a consequence of our characterization of rigid 2-Segal objects that
rigid 2-Segal objects in 𝕊pan2(Grpdf ) are precisely group objects. In particular, when applied to the nerve of
a finite group G, we can use this functor to recover the convolution monoidal structures on VectG.
A similar construction can be carried out for every presentably symmetric monoidal ∞-category V. For every
such V, the assignment that associates the V-linear ∞-category Fun(X,V) to a space X and the functor
of left Kan extension to a morphism f : X → Y of spaces admits an extension to a symmetric monoidal
(∞, 2)-functor from 𝕊pan2(S) to ℙrL

V. Applying this to a rigid algebra in 𝕊pan2(S)⊗ that arises from an
∞-group, we obtain:

Theorem 8 (11.7). Let G• : ∆op → S be an ∞-group. Then the categorified V-linear group algebra V[G] is
rigid in ℙrL

V.

Furthermore, using our 2-categorical characterization of multi-fusion categories, we can determine when
the categorified V-linear group algebra is a derived multi-fusion category. To do so, we need to understand
when the underlying ℂ-linear stable ∞-categories are dualizable. The corresponding conditions are known
under the name smooth and proper. For dg categories of quasi-coherent sheaves, these conditions have
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already been studied by Orlov [Orl16]. Since the approach of Orlov [Orl16] only uses the formal properties of
quasi-coherent sheaves, a similar criterion should apply for every linearization construction, and we provide
an analogous criterion here.
According to this criterion, it remains to understand when certain right Kan extension functors preserve
colimits. An interesting class of examples arises from the theory of ambidexterity, as developed in [HL13]. A
space X is called π-finite if its homotopy groups are finite and πn(X,x) = 0 for n large enough. Under this
condition, one can construct for maps between π-finite spaces a natural transformation between the functor
of left and right Kan extension called the Norm map. This Norm map generalizes the Norm map between
group homology and cohomology [Lur17]. Those ∞-categories E for which the norm map is an equivalence
for every π-finite space are called ∞-semi-additive. One example of such an ∞-semi-additive ∞-category is
D♭(ℂ). This leads us to the following result generalizing our initial observation:

Theorem 9 (11.23). Let G be a π-finite ∞-group. Then the categorified ℂ-linear group algebra D♭(ℂ)[G] is
a ℂ-linear derived multi-fusion category.

In case that G is a finite group, the categorified group algebra coincides with the D♭(VectG) the bounded
derived ∞-category of G-graded vector spaces. As this is the derived ∞-category of a multi-fusion category,
this observation is consistent with Prop. 1. However, for a general π-finite∞-group this result is more general.
This theorem similarly applies to all other examples of ∞-semi-additive stable ∞-categories, leading to an
even larger class of examples of derived multi-fusion categories. Additionally, we can further use our results
for the construction of a derived variant of the multi-fusion category Repℂ(G)⊗.

Theorem 10 (11.21). Let X be π-finite space. Then the ℂ-linear stable ∞-category Fun(X,D♭(ℂ))⊗

equipped with the pointwise monoidal structure is a derived multi-fusion category.

In conclusion, while the 2-categorical linearization construction may not directly produce quantum groups, it
provides a useful framework for constructing examples of derived multi-fusion categories.

1.1 Outline

We conclude this introduction with a broad outline of this thesis. We describe in Section 2 how examples of
fusion categories arise from Čech-nerves and describe the relation between fusion categories and 2-Segal sets.
This discussion results in the proof of Theorem 1. In Section 3, we then introduce Gaitsgory’s 2-categorical
formulation of rigidity.

Sections 4 through 5 cover Step 1. We first study in Section 4 rigid algebras in presentable ∞-categories.
In particular, we related these algebras to the classical notion of rigidity and to fully extended TFTs. In
Section 5, we apply these results to the case of ℂ-linear categories and ℂ-linear ∞-categories, focusing on
(derived) multi-fusion categories.

Sections 6 through 10 cover Step 2, where we classify rigid 2-Segal objects. These are the central sections of
this thesis. To set the stage, we review various 2-Segal conditions in Section 6 that are relevant for describing
homotopy coherent algebra in span categories. We then elaborate on these conditions by discussing different
examples of 2-Segal objects in Section 7. In Sections 8 and Section 9, we relate these 2-Segal conditions
to homotopy coherent algebra in the ∞-category of spans, showing an equivalence between the category of
bimodules in spans and the category of birelative 2-Segal objects. In Section 10, we apply these results to
classify rigid 2-Segal objects.
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Finally, Sections 11 and 12 cover Step 3. In Section 11, we construct examples of linearization constructions
and use them to construct rigid monoidal categories, leading to new examples of derived multi-fusion categories.
We further compare the values of the corresponding (relative) TFTs on the circle for different examples of
convolution monoidal categories. In Section 12, we discuss duality structures, that arise from Frobenius
algebras, with a focus on the example of the Waldhausen construction.

The Appendices A to C cover various technical results. In Appendix A, we prove two technical lemmas,
necessary for the proof in Section 8. Appendix 4 sketches the construction of the symmetric monoidal
(∞, 2)-category of V-linear presentable ∞-categories, based on the approach of [GR19]. Additionally, in
Appendix C, we review the construction of the Morita (∞, 2)-category from [Hau23, Lur17] and classify the
fully dualizable objects in this (∞, 2)-category.

1.2 Notation

In this section, we collect some notation that will be used throughout this text. As usual, we pick a nested
sequence 𝕍0 ⊂ 𝕍1 ⊂ 𝕍2 ⊂ 𝕍3 of Grothendieck universes and refer to sets in those as small, large, very large,
and extremely large respectively.

• All statements about fully extended TFTs depend on the still conjectural Cobordism hypothesis
[BD95, Lur08]. We consider all such statements under the additional assumption that the Cobordism
hypothesis holds.

• We denote by Cat the large ∞-category of small ∞-categories, by CAT the very-large ∞-category of
large ∞-categories, and by CAT∞ the extremely large ∞-category of very large ∞-categories.

• We follow the convention to denote categories of ∞-categories by large letters and categories of 1-
categories by small letters. For example, Cat denotes the ∞-category of small ∞-categories, and cat
denotes the category of small 1-categories.

• Let K be a small collection of∞-categories. We call an∞-category K-cocomplete if it admits K-indexed
colimits. Further, we call a functor F : C→ D between K-cocomplete ∞-categories K-cocontinuous if
it preserves K-indexed colimits.

• We follow the convention to denote (∞, 2)-categories by bold capital letters ℂ,𝔻, and 2-categories by
bold small letters 𝕔,𝕕.

• For the opposite ∞-category Cop, we adopt the convention to denote a morphism f with source c0 and
target c1 by c0 ← c1 : f .

• We often abuse notation and denote (symmetric) monoidal ∞-categories just by C⊗ or (C,⊗) instead of
writing the full fibration as defined for example in [Lur17, Chapter 2.].

1.3 Previous Publications, Eigenanteilserklärung

I declare that the results presented in this dissertation are entirely my own research work unless stated
otherwise. Critical ideas proposed by others will be marked or acknowledged. To the best of my knowledge,
results attributed to others in the literature will be attributed to the primary sources or standard references.
If the primary source is unknown to me, they will be attributed to "folklore".

• The text of Section 1 is entirely original. This Section is introductory and contains no new results.
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• The text and results of Section 2 were produced entirely independently.

• The text and results of Section 3 were produced entirely independently. The main Definition 3.2 of this
Section is due to [Gai15].

• The text and results of Section 4 and Section 5 were produced entirely independently.

• The text and results of Section 6, Section 7, Section 8, Section 9, and Appendix A.1 and A.2 were
produced entirely independently by the author. The content of these Sections is available in preprint
form at [Göd24].

• The text and results of Section 10, Section 11, and Section 12 were produced entirely independently by
the author.

• The text and results of Appendix B and Appendix C were produced entirely independently by the
author. The idea for the construction of Appendix B is due to [GR19], and the idea for the construction
of Appendix C is due to [Lur17, Hau23].

2 Fusion Categories and 2-Segal objects
The main ingredient for 3-dimensional topological field theories of Turaev–Viro style are given by fusion
categories [BW96, DSPS20]. Therefore and also for possible derived generalization of Turaev-Viro theories, it
is important to understand how these can be constructed. As a start, let us recall the definition of a fusion
category and look at some examples. Throughout this section, we assume that 𝕂 is an algebraically closed
field of possibly non-zero characteristic p.

Definition 2.1. A 𝕂-linear monoidal abelian category (C,⊗) is called a tensor category if:

(1) the monoidal structure is rigid, i.e. every object admits a left and a right dual

(2) the functor ⊗ : C× C→ C is 𝕂-linear and right exact in each variable

It is called a finite tensor category if the underlying abelian category is finite1 and a multi-fusion category if
the underlying abelian category is furthermore semisimple. A multi-fusion category (C,⊗) is called a fusion
category if the unit 1C is simple.2

Example 2.1. Let G be a finite group. The category Vectfin
G of finite dimensional G-graded 𝕂-vector spaces

equipped with the monoidal product functor ∗ that maps two G-graded vector spaces V•,W• ∈ Vectfin
G to:

(V• ∗W•)• :=
⊕
h∈G

Vh ⊗Wh−1• (1)

is a fusion category [EGNO16, Ex.4.1.2].

Example 2.2. Let G be a finite group. The category Rep(G) of finite dimensional G-representations can be
equipped with a monoidal structure that maps G-representations V,W to the tensor product representation
V ⊗W . This monoidal structure is rigid and the monoidal category (Rep(G),⊗) is fusion if and only if
char(𝕂) does not divide the group order [EGNO16, Ex.4.1.2] .

1See [EGNO16, Def.1.8.6]
2We call an object i ∈ C simple if it admits no non-trivial subobjects. Since 𝕂 is algebraically closed, all simple objects i are

also absolutely simple, i.e. End(i) ≃ 𝕂.
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Example 2.3. Let A be a semisimple finite dimensional 𝕂-algebra. The category of finite dimensional
A-bimodules BModA(Vectfd

𝕂 ) equipped with the relative tensor product is a multi-fusion category. Since 𝕂 is
algebraically closed, it follows that A ≃ ⊕ni=1𝕂 as a 𝕂-algebra and we can identify the monoidal category
(BModA(Vectfin

𝕂 ),⊗A) with the monoidal category of matrices of finite dimensional vector spaces Mat(Vectfin
𝕂 ).

This category has objects given by n× n-matrices of finite dimensional 𝕂-vector spaces and the monoidal
structure is given by matrix multiplication. It follows, that this category is fusion if and only if the algebra A
is simple. [EGNO16, Ex.4.1.3]

Remark 2.1. In the above examples of multi-fusion categories, we always chose the monoidal structure
with the trivial associator, i.e. the one induced by the tensor product of vector spaces. For example the
associators on the category Vectfd

G are parametrized by the group cohomology of H3(G,𝕂∗) of G. We expect
that it is possible to modify the constructions given in this section to describe more interesting choices of
associators using spans with local systems [Hau18]. Since this slight generalization is not relevant to the
following discussion, we decided to keep the discussion simple and leave this generalization for future work.

All of the above examples of multi-fusion categories arise from the same so-called linearization construction,
i.e. they arise from algebraic constructions in the symmetric monoidal 2-category of spans. The advantage
of considering these examples from this perspective is that these are completely formal and therefore easily
generalize to other contexts. The goal of this section is to study this cosntruction method in detail and to
sort out, what kind of examples of fusion categories we can obtain.

2.1 Fusion Categories and Linearizations

To formally describe what we mean by a linearization construction, we first need to introduce some notation.
We denote by (Span(Grpdf ),×) the symmetric monoidal (2, 1)-category of spans of finite groupoids [Mor11]
(see Definition 10.1) and by (abrex

𝕂 ,⊗) the symmetric monoidal (2, 1)-category of finite 𝕂-linear abelian
categories and right exact functors [BDSPV15, Def.A.4] with monoidal structure given by the relative Deligne
tensor product. This (2, 1)-category is a full symmetric monoidal subcategory of the symmetric monoidal
(2, 1)-category catrex

𝕂 of finitely cocomplete 𝕂-linear categories and 𝕂-linear right exact functors equipped
with the Kelly tensor product [Fra13] (see Definition 5.1). The following (2, 1)-functor is what we will call in
this section a linearization construction:

Proposition 2.1. [Mor11] There exists a symmetric monoidal (2, 1)-functor

Locfd𝕂 (−) : Span(Grpdf )→ abrex
𝕂

from the 2-category of spans of finite3 groupoids (see Definition 10.1) to the 2-category of finite 𝕂-linear
abelian categories. This functor maps a finite groupoid G to the category Locfd𝕂 (G) := Fun(G,Vectfd

𝕂 ) and a
span of functors

G1

G0 G2

F1F0

to the composite
Locfd𝕂 (G0) F∗

0−−→ Locfd𝕂 (G1) F1,!−−→ Locfd𝕂 (G2)

where F ∗
0 denotes the pullback functor along F0 and F1,! the functor of left Kan extension along F1.

3A groupoid is called finite if it has finitely many isomorphism classes of objects and each object has finitely many
automorphisms.
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Remark 2.2. The (2, 1)-category of groupoids is equivalent to the (2, 1)-category of 1-truncated spaces
τ≤1S, i.e. those spaces that only admit non-trivial homotopy groups in degrees 0 and 1. For every groupoid
G the category Fun(G,Vectfd

𝕂 ) identifies under this equivalence with the category of local systems of finite
dimensional vector spaces on the space associated with G. This justifies our notation (see Definition 11.2).

In particular, since the (2, 1)-functor Locfd𝕂 (−) is symmetric monoidal, it preserves algebra objects:

Corollary 2.2. Let (X1, µ) be an algebra object in the symmetric monoidal (2, 1)-category Span(Grpdf ) with
multiplication span:

X2

X1 ×X1 X1

∂1(∂2,∂0)

Then, the monoidal functor Locfd𝕂 (−) induces a monoidal structure on Locfd𝕂 (X1), whose underlying monoidal
product functor ∗ maps functors F,G to the functor F ∗G, obtained as the image of F ⊗𝕂G under the functor
obtained by linearizing the span:

X2

X1 ×X1 X1

(∂2,∂0) ∂1

Here F ⊗𝕂 G denotes the pointwise monoidal product of F and G, i.e. the composite

X1 ×X1 Vectfd
𝕂 ×Vectfd

𝕂 Vectfd
𝕂

F×G ⊗

We call the induced monoidal structure on Locfd𝕂 (X1) a convolution monoidal structure.

More precisely, the monoidal product functor maps two functors F,G ∈ Locfd𝕂 (X1) to the functor

∂1,!(∂2, ∂0)∗(F ⊗𝕂 G) ∈ Locfd𝕂 (X1)

The datum of an associative algebra object in the monoidal category Span(Grpdf ) admits a compact description
in terms of certain simplicial groupoids X• : ∆op → Grpdf (see Definition 6.1). In this description, the
groupoid X1 describes the underlying object of the algebra and the groupoid X2 together with its face maps
describes the multiplication span as shown in Diagram (2.2). For such a simplicial groupoid to define an
associative algebra it has to satisfy the so-called 2-Segal conditions (see Definition 6.1). We call a simplicial
groupoid satisfying these conditions a 2-Segal groupoid.
So let us sort out, how we can describe the Examples 2.1-2.3 of multi-fusion categories as linearizations of
2-Segal groupoids. Recall, therefore, that the augmented simplex category ∆+ is the category obtained from
the simplex category ∆ by freely adding an initial object denoted [−1].

Construction 2.1. Let F : G→ H be a functor between finite groupoids. We can describe F as a functor
Č(F )≤0 : ∆op

+,≤0 → Grpdf with source the full subcategory ∆+,≤0 of the augmented simplex category ∆+

generated by the objects [0] and [−1]. We denote by Č(F )• the simplicial groupoid obtained by restricting
the right Kan extension of Č(F )≤0 along the inclusion ∆+,≤0 ⊂ ∆+ to ∆. This simplicial groupoid is called
the Čech-nerve of F . We can explicitly depict its lower dimensional simplices as:
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G G×H G G×H G×H G . . .∆
π1

π2

∆× id
π12

π23

π13

id×∆

where πi,j denotes the projection on the i’th and j’th factor. The Čech-nerve Č(F )• is an example of a
groupoid object (see Definition 10.3) and so in particular 2-Segal.

Example 2.4. Let F : C → D be a functor between finite groupoids. We can apply Corollary 2.2 to the
2-Segal groupoid Č(F )•. This induces a monoidal structure on the category Locfd𝕂 (G×H G). More explicitly,
the monoidal product H ∗G of two functors H and G is defined as the functor

G×H G×H G

(G×H G)× (G×H G) G×H G

Vectfd
𝕂

π1,2×π2,3 π1,3

(2)

obtained by first pulling back H ⊗𝕂 G along π1,2 × π2,3 and then left Kan extending along the projection
π1,3. In formulas:

H ∗G := (π1,3)!(π1,2 × π2,3)∗(H ⊗𝕂 G).

We call the monoidal category (Locfd𝕂 (G×H G), ∗) the categorified 𝕂-linear Hecke algebra of F and denote it
He𝕂(F ).

Remark 2.3. The name categorified Hecke algebra arises from the following example. Let G be a finite group
and H a not necessarily normal subgroup. Consider the functor between classifying groupoids BH → BG
induced by the inclusion and denote by fun𝕂(BH×BG BH) the 𝕂-vector space of 𝕂-valued functions on
BH×BG BH. The span in Diagram 2 induces an algebra structure on fun𝕂(BH×BG BH) that coincides with
the classical Hecke algebra of H and G [DK19, Sect.8.2].

In particular, we can recover our initial Examples 2.1-2.3 as linearizations of Čech-nerves:

Example 2.5. Let G be a finite group and consider the unique functor F : ∗ → BG. The Čech-nerve Č(F )•

of F is equivalent to the nerve N(G)• of the group G. The associated monoidal structure on Locfd𝕂 (G) is
monoidally equivalent to the one on Vectfd

G from Example 2.1.

Example 2.6. Let G be a finite group and consider the identity functor idBG : BG −→ BG. The Čech-nerve
Č(idBG)• of idBG is equivalent to the constant simplicial groupoid BG• with value BG. The associated
monoidal structure on Locfd𝕂 (BG) is monoidally equivalent to the one on Rep(G) from Example 2.2.

Example 2.7. Consider the functor F : {1, ..., n} → ∗ . The Čech-nerve Č(F )• of F has n-simplices
given by the (n + 1)-fold Cartesian product of the set {1, ..., n}. The associated monoidal structure on
Locfd𝕂 ({1, ..., n} × {1, ..., n}) is monoidally equivalent to the one on Mat(Vectfd

𝕂 ) from Example 2.3.

Note that under mild assumptions on the groupoids, all of the above examples are multi-fusion categories.
This is true for all examples of categorified Hecke algebras. For a prime number p, we call a finite groupoid G

p-coprime, if for all g ∈ G the cardinality of the finite group π1(g,G) is coprime to p. We denote by Grpdfp the
full subcategory of Grpdf spanned by the p-coprime groupoids.
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Proposition 2.3. Let X• : ∆op → Grpdf be a finite 2-Segal groupoid. Then the category Locfd𝕂 (X1) is finite
abelian semisimple if and only if X1 is p-coprime.

Proof. It follows from Proposition 2.1 that the category Locfd𝕂 (X1) is finite abelian and that the monoidal
product functor is 𝕂-linear right exact. Hence, it remains to show that the category is semisimple. To do so,
note that there exists an equivalence of groupoids:

X1 ≃
∐

x∈π0(X1)

Bπ1(X1, x)

By functoriality, this induces an equivalence of categories:

Locfd𝕂 (X1) ≃
⊕

x∈π0(X1)

Rep𝕂(π1(X1, x)).

Hence, it follows that the category is semisimple as it is a finite direct sum of semisimple categories if and
only if X1 is p-coprime.

Proposition 2.4. Let F : G→ H be a functor between essentially finite groupoids. The categorified Hecke
algebra He𝕂(F ) of F is a multi-fusion category if and only if G×H G is 𝕂-coprime.

Proof. It follows from the Proposition 2.3, that the category Locfd𝕂 (G×H G) is finite abelian semisimple if and
only if G×H G is p-coprime. Therefore, it remains to show that the monoidal structure on the categorified
Hecke algebra is rigid. To do so, we construct an explicit dual. Denote by

σ : G×H G→ G×H G

the functor between groupoids that swaps the components of G. Further, denote by 𝔻𝕂 : Vectfd,op
𝕂 → Vectfd

𝕂

the duality functor of the category of finite dimensional vector spaces. It is easy to check that the left and
the right dual of a functor F : G×H G→ Vectfd

𝕂 are both given by the composite functor

G×H G G×H G ≃ (G×H G)op Vectfd,op
𝕂 Vectfd

𝕂
σ F op 𝔻𝕂 .

Hence, the categorified Hecke algebra is a multi-fusion category.

Remark 2.4. Note that in case that the groupoid G×H G is not p-coprime, the categorified Hecke algebra is
still rigid. Hence, it defines a finite tensor category.

Example 2.8. Let G be a finite group and denote by F : ∗ → BG the unique morphism. Unraveling the
proof of Proposition 2.4 the dual F∨ of a functor F : G→ Vectfd

𝕂 takes the value F∨(g) := hom𝕂(F (g−1),𝕂)
at g ∈ G. Note that under the identification He𝕂(F ) ≃ Vectfin

G the above formula for the dual coincides with
the standard formula [EGNO16, Ex.2.10.14].

Summarizing the above discussion, categorified Hecke algebras provides us with a class of multi-fusion
categories. Our next goal is to understand its size under an interesting equivalence relation. A necessary
requirement on this equivalence relation is that equivalent multi-fusion categories should induce the same
fully extended TFTs in the sense of [DSPS20]. The loosest equivalence relation that satisfies this assumption
is called Morita equivalence, a notion that we now recall.
Therefore, denote by 𝕄or(catrex

𝕂 ) the Morita 2-category of 𝕂-linear categories (see C.2). This 2-category has
objects given by right exact 𝕂-linear monoidal categories, 1-morphisms by right exact bimodule categories,
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and 2-morphisms by right exact bimodule functors. We need the following subclass of 1-morphisms in
𝕄or(catrex

𝕂 ):

Definition 2.2. Let C and D be finite tensor categories. A C−D-bimodule M in catrex
𝕂 is called exact if

(1) M is locally finite abelian,

(2) the action functors ▷ : C×M→M and ◁ : M×D→M are exact in each variable separately,

(3) for every projective object PC ∈ C (resp. PD ∈ D) and every object M ∈M the object PC ▷ M (resp.
M ▷ PD) is projective in M.

Definition 2.3. Let (C,⊗C) and (D,⊗D) be finite 𝕂-linear tensor categories. Then C and D are called
categorical Morita equivalent if there exist exact bimodule categories CMD and DNC that exhibit C and D as
isomorphic in 𝕄or(catrex

𝕂 ).

To determine the equivalence class of the categorified Hecke algebra under categorical Morita equivalence,
we explicitly construct an exact bimodule category. Consider the category (Grpdf )op equipped with its
Cocartesian monoidal structure, i.e. the monoidal product is given by the coproduct [Lur17, Sect.2.4.3]. It
follows from the universal property of this monoidal structure that every finite groupoid G has a unique
structure of a commutative algebra with multiplication given by the diagonal functor G×G← G : ∆. Moreover,
every functor F : G→ H between finite groupoids uniquely extends to a morphism of commutative algebras
in (Grpdf )op [Lur17, Cor.2.4.3.9]. In particular, the functor F equips G with the structure of a left H-module.
Since the functor Locfd𝕂 (−) is symmetric monoidal, this module structure transports to an Locfd𝕂 (H)-module
structure on Locfd𝕂 (G). The action of H ∈ Locfd𝕂 (H) maps an object G ∈ Locfd𝕂 (G) to the functor

G G× G H × G Vectfd
𝕂 ×Vectfd

𝕂 Vectfd
𝕂

∆ F×idG H×G ⊗

Note that this action functor is exact in each variable separately. If we further assume, that all groupoids are
p-coprime, it follows that all categories involved are semisimple and Locfd𝕂 (G) is an exact left-module category
over Locfd𝕂 (H).4 Further, it also admits an exact right He(F )-module structure with action functor induced
by linearizing the span

G×H G×H G

G× G×H G G

Proposition 2.5. Let F : G → H be an essentially surjective functor between finite p-coprime groupoids.
Then the exact Locfd𝕂 (H)−He𝕂(F )-module category Locfd𝕂 (G) induces a Morita equivalence between Locfd𝕂 (H)
and He(F ).

Proof. By [FGJS22, Prop.4.9] it suffices to show that there exists an equivalence of monoidal categories

FunLocfd
𝕂 (H)(Locfd𝕂 (G), Locfd𝕂 (G)) ≃ He(F ),

where the left-hand side denotes the category of left Locfd𝕂 (H)-module functors with monoidal structure given
by composition. This is a consequence of Corollary 11.4. More precisely, the above equivalence associates to

4Condition (3) in Definition 2.2 is trivially satisfied since all objects are projective.
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an object G in Locfd𝕂 (G×H G) its integral transform IG

IG : Locfd𝕂 (G) Locfd𝕂 (G×H G) Locfd𝕂 (G×H G) Locfd𝕂 (G)π∗
1 −⊗G π2,!

.

It is easy to check that this defines a monoidal functor that it is an equivalence.

Remark 2.5. Let G be a finite group. In the special case ∗ → BG, this result recovers the well-known fact
that Vectfd

𝕂 considered as a Vectfd
G -Rep(G)-bimodule category induces a Morita equivalence between Rep(G)

and VectG [EGNO16, 7.12.19].

This class of fusion category deserves a special name:

Definition 2.4. [EGNO16, Def.9.7.1] A fusion category (C,⊗) is called

• strongly pointed if there exists a finite group G, such that (C,⊗) is monoidally equivalent to the fusion
category Vectfd

G

• strongly group theoretical if there exists a finite group G, such that (C,⊗) is Morita equivalent to the
fusion category Vectfd

G

Remark 2.6. This definition differs from the standard terminology for fusion categories. [EGNO16]. In
general a fusion category is called pointed (resp. group theoretical) if it is monoidally (resp. Morita) equivalent
to the monoidal category VectωG, where G is a finite group and ω ∈ H3(G,𝕂) denotes a non-trivial class in
the group cohomology of G. Since as explained in Remark 2.1, we only consider categories of the form VectG
with the trivial associator ω = 1, we adapted this terminology to our situation.

Corollary 2.6. Let F : G→ H a functor between p-coprime finite groupoids and assume that H is connected.
Then Locfd𝕂 (G×H G) is group theoretical.

Proof. It follows from Proposition 2.5 that there exists a Morita equivalence

Locfd𝕂 (G×H G) ≃Mor Locfd𝕂 (H).

Further, since by assumption H is connected, there exists a monoidal equivalence Locfd𝕂 (H) ≃ Rep(π1(H, h)).
The claim follows from Remark 2.5.

We can therefore conclude that examples of fusion categories that arise as categorified Hecke algebras, and
therefore as linearizations of Čech-nerves, are sums of strongly group theoretical fusion categories.

2.2 Fusion Categories from 2-Segal Sets

While still of interest in their own right, strongly group theoretical fusion categories form the most basic class
of examples of multi-fusion categories. In particular, in the context of TFTs, one is usually more interested in
representation categories of quantum groups that lead to more interesting invariants [TV92, Wit89]. As we
see in the following example, these are usually not (strongly) group theoretical:

Example 2.9. The Ising fusion category I is an example of a Tambara-Yamagami ℂ-linear fusion category
[TS98]. It has 3 isomorphism classes of simple objects {1, ϵ, σ} with fusion rules:

⊗ 1 ϵ σ

1 1 ϵ σ

ϵ ϵ 1 σ

σ σ σ 1⊕ϵ
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The Ising category is known to be the representation category of a quantum group. More precisely, it can
be obtained as the quotient of the category of tilting modules over Lusztig’s quantum group ULq (sl2) at an
eights root of unity by the so-called negligible modules [EGNO16].

Proposition 2.7. The Ising fusion category I is not group theoretical. In particular, I is not the
linearization of a Čech-nerve.

Proof. Every group theoretical fusion category is integral [EGNO16, Rem.9.7.7], i.e. the Frobenius-Perron
dimension of every simple object is an integer. The Frobenius-Perron dimension FPdim(σ) of the simple
object σ is given by the largest eigenvalue of the matrix0 0 1

0 0 1
1 1 0

 .

An easy calculation shows that the Eigenvalues are given by 0 and ±
√

2. It follows that FPdim(σ) =
√

2 and
hence I is not integral.

As a consequence of our discussion in the last section, the Ising category is not a categorified Hecke algebra.
Thus it does not arise from the linearization of a Čech-nerve. The question remains, whether we can construct
the Ising category by linearizing an algebra object in Span(Grpdf ) that is not a Čech-nerve.
Evidence for a positive answer arises from the connection between 2-Segal groupoids and quantum groups.
The most important example of a 2-Segal groupoid is the Waldhausen S•-construction (see Definition 7.1)
of an exact category C. These 2-Segal object describes an interesting class of algebras, known under the
name Hall algebras [DK19, Sect.8]. Ringel [Rin90] has proven that there exists a connection between the
theory of Hall algebras and quantum groups. For instance, he observed that one can recover the upper half of
the quantum group U√

q(sl2) of the complex semisimple Lie algebra sl2(ℂ) at √q as the Hall algebra of the
category of vector spaces Vect𝔽q

over the field with q ∈ ℕ elements 𝔽q. Therefore, it seems promising that one
can recover non-group theoretical fusion categories from linearization constructions as well. Further evidence
is given by the following result:

Proposition 2.8. Let (C,⊗) be a fusion category and denote by I a finite set of isomorphism classes of
simple objects of C. Then there exists an equivalence of categories

ϕ : C→ Locfd𝕂 (I),

and a span
N

I × I I

∂1(∂2,∂0) (3)

s.t. under the equivalence ϕ the functor

Locfd𝕂 (I)× Locfd𝕂 (I) ⊗𝕂−−→ Locfd𝕂 (I × I) (∂2,∂0)∗

−−−−−→ Locfd𝕂 (N) ∂1,!−−→ Locfd𝕂 (I),

obtained by linearizing the Span (3) is naturally isomorphic to the monoidal product functor ⊗ : C× C→ C of
C.
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Proof. Consider the category Locfd𝕂 (I) and denote by δi the functor

δi(j) =

0 i ̸= j

𝕂 i = j
.

Since C is semisimple, there exists a unique right-exact 𝕂-linear functor

Locfd𝕂 (I)→ C

that maps the functor δi to the simple object i ∈ I. It is easy to see that this functor is an equivalence of
categories. For the construction of the span let i, j ∈ I be two simple objects. It follows from semisimplicity
of C that the monoidal product

i⊗ j ≃
⊕
k∈I

Nk
i,jk

decomposes into a weighted sum of simples with finite-dimensional multiplicity vector spaces Nk
i,j ∈ Vectfd

𝕂 .
Given 3-simples i, j, k ∈ I, we define a set

N := {(nki,j)l|i, j, k ∈ I, 1 ≤ l ≤ dimNk
i,j}

together with morphisms ∂i : N→ I that map

∂0((nki,j)l) = j, ∂1((nki,j)l) = k, ∂2((nki,j)l) = i.

These assemble into a span
N

I × I I

∂1(∂2,∂0)

We denote the functor obtained by linearizing this span by ∗ : Locfd𝕂 (I)× Locfd𝕂 (I)→ Locfd𝕂 (I). Unraveling
definitions, it is given by

δi ∗ δj(k) = 𝕂[Nk
i,j ]

where we denote by 𝕂[Nk
i,j ] the free 𝕂-vector space generated by Nk

i,j , the fiber of N over the simple objects
(i, j, k) ∈ I.
It remains to show that this functor is naturally equivalent to the functor obtained from ⊗ : C× C→ C under
ϕ. It follows from [Mor11, Lem.3.2.2] that every right exact ℂ-linear functor

F : Locfd𝕂 (I × I)→ Locfd𝕂 (I)

is determined up to natural isomorphism by the (I × I)-I matrix of vector spaces with ((i, j), k)-entry
F (δ(i,j))(k) ∈ Vectfd

𝕂 . In particular, the functor

⊗̃ : Locfd𝕂 (I × I)→ Locfd𝕂 (I)

induced by ⊗ : C×C→ C under ϕ is uniquely determined by the (I×I)−I-matrix with entries Nk
i,j . Moreover,

it follows from [Mor11, Lem.3.2.3] that any (I × I)− I-matrix of linear isomorphisms {αki,j : Mk
i,j → Lki,j}

induces a natural isomorphism between the ℂ-linear functors represented by the matrices {Mk
i,j} and {Lki,j}.
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Therefore, choose for any triple of simples i, j, k ∈ I a basis of the vector space Nk
i,j . Any such choice determines

a matrix of isomorphisms {αki,j : 𝕂[Nk
i,j ]→ Nk

i,j} and therefore a natural isomorphism as required.

The above proposition implies that certain parts of the data of a fusion category always arise from a
linearization construction. Indeed, the sets I and N constructed in the proof describe the 1- and 2-simplices
of a hypothetical 2-Segal set. To encode the remaining data of a 2-Segal set, we use an alternative description
of those. We denote for every set X the category Fun(X,Setfin) of functors into the category of finite sets by
Locfin

Set(X).

Definition 2.5. [DK19, Def.3.5.5] A monoidal category (C,⊗) is called finite ⨿-semisimple, if:

(1) There exists a finite set X and an equivalence of categories C ≃ Locfin
Set(X).

(2) C admits finite coproducts and the monoidal product functor

⊗ : C× C→ C

preserves finite coproducts separately in each argument.

A finite ⨿-semisimple monoidal category is a non-linear analog of a finite semisimple 𝕂-linear monoidal
category. Indeed, as observed in Proposition 2.8 the underlying category of every finite semisimple 𝕂-linear
monoidal category C is equivalent to the 𝕂-linear category Locfd

𝕂 (I), where I denotes the set of isomorphism
classes of simple objects and we think of finite coproducts as a non-linear analog of direct sums.
Their relation to 2-Segal sets is as follows. Let X• : ∆op → Setfin be a finite 2-Segal set with X0 ≃ ∗.
Analogously to Proposition 2.1, one can construct a symmetric monoidal (2, 1)-functor with source the
category Span(Setfin) that associates to any finite set I the category Locfin

Set(X). In particular, it associates with
any finite 2-Segal set X•, a finite ⨿-semisimple monoidal category Locfin

Set(X1). As described in Corollary 2.2
the underlying category is given by Locfin

Set(X1) and the monoidal product is given the composite functor

⊗ : Locfin
Set(X1)× Locfin

Set(X1)→ Locfin
Set(X1 ×X1) (∂0×∂2)∗

−−−−−−→ Locfin
Set(X2) ∂1,!−−→ Locfin

Set(X1).

The higher simplices of the 2-Segal set encode the higher associativity data of the monoidal category.
Interestingly all examples of finite ⨿-semisimple monoidal categories arise from this construction:

Theorem 2.9. [DK19, Thm. 3.5.8] The functor Locfin
Set(−) : 2Seg∆(Setfin)→ catlax

⨿,⊗ induces an equivalence
between the category of ⨿-semisimple monoidal categories and coproduct preserving lax-monoidal functors
and the category of finite 2-Segal sets with X0 ≃ ∗ and simplicial maps.

In the language of ⨿-semisimple monoidal categories, the construction of Proposition 2.8 associates to any
fusion category C a unique candidate of a ⨿-semisimple category Locfin

Set(I) and a ⨿-preserving functor

⊗ : Locfin
Set(I)× Locfin

Set(I)→ Locfin
Set(I).

The missing data is an associativity isomorphism that satisfies the pentagon condition. Therefore, it remains
to understand how we can construct associators for ⨿-semisimple categories. Thinking about those as
non-linear analogs of semisimple monoidal categories, we take our intuition from the well-known 𝕂-linear
case of fusion categories. For those, it is useful for computations to express everything in terms of simple
objects. In this basis, the associator can be expressed by a family of matrices (called F-matrices or 6j-symbols)
satisfying a system of algebraic equations called the Pentagon equation [FG23, Eq.A.11]. The problem of
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constructing an associator then reduces to the problem of constructing a solution of the Pentagon equation.
We follow the analogous strategy in the non-linear case. Let X be a finite set and (Locfin

Set(X),⊗) a ⨿-
semisimple monoidal category. As in the proof of Proposition 2.8, we denote, for every i ∈ X, by δi the
functor

δi(j) =

0 i ̸= j

∗ i = j

These functors play the role of simple objects. In particular, we can express any functor F : X → Setfin in
terms of these δi as the functor

∐
i∈X F (i)× δi(−). This is in particular true for the monoidal product of

two δi:
(δi ⊗ δj)(−) ≃

∐
k∈I

(δi ⊗ δj)(k)× δk(−).

In analogy with fusion categories, we adopt the notation δi ⊗ δj(k) := Nk
i,j ∈ Setfin. Finally, we can use

this description to understand the associator. Unraveling the definitions, the datum of an associator can be
expressed in terms of δi as a natural isomorphism:

α : (δi ⊗ δj)⊗ δl ≃
∐
n∈I

(
∐
k∈I

Nk
i,j ×Nn

k,l)× δn(−) ≃−→
∐
n∈I

(
∐
m∈I

Nn
i,m ×Nm

j,l)× δn(−) ≃ δi ⊗ (δj ⊗ δl).

By definition of the δi, this morphism is uniquely determined by its components, i.e. the family of isomorphism
of sets:

αni,j,l :
∐
k∈I

Nk
i,j ×Nn

k,l →
∐
m∈I

Nn
i,m ×Nm

j,l.

As α is an associator of a monoidal category, it satisfies the pentagon condition [EGNO16, Def.2.1.1]. As in
the case of fusion categories, this condition can be expressed in terms of the components αni,j,l. More precisely,
the pentagon condition requires the following family of diagrams of sets to commute:

∐
k,m∈I N

k
i,j ×Nm

k,l ×Nb
m,a

∐
k,m∈I N

m
i,k ×Nk

j,l ×N b
m,a

∐
k,m∈I N

k
i,j ×Nb

k,m ×Nm
l,a

∐
m,k∈I N

m
i,k ×Nb

m,a ×Nk
j,l

∐
m,k∈I N

b
i,m ×Nk

j,m ×Nm
l,a

∐
m,k∈I N

b
i,m ×Nm

k,a ×Nk
j,l

αm
i,j,l×id id×αb

k,l,a

≃ αb
i,j,m×id

αb
i,k,a×id id×αm

j,l,a

(4)

We call the family of diagrams in analogy with the case of fusion categories the set-theoretic parametric
pentagon equation. This is a parameter dependent version of the set-theoretic pentagon from [KR01].

Remark 2.7. The difference between the pentagon equation for 𝕂-linear and ⨿-semisimple monoidal
categories is, that in the first case the morphisms αni,j,l are isomorphisms of vector spaces, and in the latter
isomorphisms of sets.

Consequently, the construction of an associator reduces to the construction of a solution of the set-theoretic
parametric pentagon equation and our initial question reduces to the following combinatorial problem:
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Question 2.10. Does the set-theoretic parametric pentagon equation defined by a fusion category C via
Proposition 2.8 admits a solution?

We analyze this question explicitly for the example of the Ising category:

Theorem 2.11. There does not exist a 2-Segal set X• : ∆op → Set, whose linearization is the Ising category
I .

Proof. Let I ≃ {1, ϵ, σ} be a set of isomorphism classes of simple objects of I . By our above considerations,
it suffices to show that there does not exist an associativity 2-isomorphism for the monoidal structure on
Locfin

Set(I) constructed in Proposition 2.8 that satisfies the set-theoretic parametric pentagon equation. To do
so, we explicitly compute for any choice of associativity isomorphism the path of the element

(nϵσ,σ, n1
ϵ,ϵ, n

σ
1,σ) ∈ Nϵ

σ,σ ×N1
ϵ,ϵ ×Nσ

1,σ

in the set-theoretic parametric pentagon equation. For this particular component of the pentagon equation,
all components of the associator are uniquely defined, except:

ασσ,σ,σ : N1
σ,σ ×Nσ

1,σ
∐

Nϵ
σ,σ ×Nσ

ϵ,σ
≃−→ N1

σ,σ ×Nσ
1,σ
∐

Nϵ
σ,σ ×Nσ

ϵ,σ.

Since ασσ,σ,σ has to be an isomorphism of sets, there exist two choices. The first one is uniquely determined by

ασσ,σ,σ((n1
σ,σ, n

σ
1,σ)) = (nϵσ,σ, nσϵ,σ),

and the second by
βσσ,σ,σ((n1

σ,σ, n
σ
1,σ)) = (n1

σ,σ, n
σ
1,σ).

We argue that the α-associator is not compatible with rigidity. Indeed, the zig-zag identity for σ implies that
the composite

σ ≃ σ ⊗ 1 σ ⊗ (σ ⊗ σ) ≃ (σ ⊗ σ)⊗ σ 1⊗ σ ≃ σ,idσ ⊗ coevσ evσ ⊗ idσ

where the middle equivalence is the associator, is the identity functor. Unraveling this identity in terms of
the multiplicity spaces for the choice of the α-associator, this composite reads as:

𝕂 𝕂[N1
σ,σ ×Nσ

1,σ]⊕ 𝕂[Nϵ
σ,σ ×Nσ

ϵ,σ] 𝕂[N1
σ,σ ×Nσ

1,σ]⊕ 𝕂[Nϵ
σ,σ ×Nσ

ϵ,σ] 𝕂(1,0)

(
0 1

1 0

)
(1,0)

But this composite is the 0-map instead of the identity. Hence, it suffices to consider the set-theoretic
parametric pentagon equation for the β-associator. This equation is represented in Diagram 1. Its value on
(nϵσ,σ, n1

ϵ,ϵ, n
σ
1,σ) is given by:

(nσσ,1, n1
σ,σ, n

σ
ϵ,σ) ̸= (nσσ,ϵ, nϵσ,σ, nσϵ,σ)

where the left hand side denotes the value of the counter clockwise direction and the right hand side of the
clockwise. Consequently, all choices for the associator do not satisfy the set-theoretic parametric pentagon
equation. Hence, there does not exist any associator on Locfin

Set(I) for the Ising category.

We invite the reader to do the same construction with their favorite example of a fusion category that is not
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strongly pointed. Surprisingly, the Ising category is not an exception. It is a consequence of the following
theorem that the construction presented in this section fails as soon as you start with a fusion category that
is not pointed:

Theorem 2.12. Let (C,⊗, α) be a fusion category. Then C is monoidally equivalent to the linearization of a
2-Segal set X• : ∆op → Set if and only if C is strongly pointed.

Proof. We have already seen in Example 2.5 that every strongly pointed fusion category arises as the
linearization of a 2-Segal set. For the converse, assume that C is not strongly pointed. The proof we present
here is a generalization of the above proof in Proposition 2.11 for the Ising category. Since C is not pointed
there exists a non-invertible simple object b ∈ C. Hence, there exists a simple object 1 ̸= a ∈ C s.t. the
multiplicity set Na

b,∨b is non-empty. Analogously to the case of the Ising category, we construct a component
of the set-theoretic parametric Pentagon equation that does not admit a solution. Consider to this end the set

Na
b,∨b ×N1

a,∨a ×Nb
1,b ⊂

∐
i,j∈I

Ni
b,∨b ×N

j
i,∨a ×Nb

j,b

By assumption this set is non-empty and we choose an element (nab,∨b, n1
a,∨a, n

b
1,b). Note that the second and

third entry are unique. We claim that this element does not fulfill the set-theoretic parametric Pentagon
equation. For this purpose, we compute the image of this element under the counter clockwise and clockwise
path in diagram (4), starting with the counter clockwise one. The first map is given by

Na
b,∨b ×N1

a,∨a ×Nb
1,b

∐
j∈I N

1
b,j ×N

j
∨b,∨a ×Nb

1,b.
(α1

b,∨b,∨a
)a×id

Note that for two simples i, j ∈ I the set N1
i,j has a unique element if j ≃ ∨i and is empty else. Hence, the

above associator factors as:

Na
b,∨b ×N1

a,∨a ×Nb
1,b N1

b,∨b ×N
∨b
∨b,∨a ×Nb

1,b.
(α1

b,∨b,∨a
)a×id

We denote the image of (nab,∨b, n1
a,∨a, n

b
1,b) under this map by (n1

b,∨b, (n
∨b
∨b,∨a)i, nb1,b). Since the set N

∨b
∨b,∨a

may have more than one element, we have included a further index i in the notation. Note that the entries
n1
b,∨b and nb1,b are uniquely determined.

To analyze the second map, we need the following observation. Consider the zig-zag identity

b ≃ b⊗ 1 b⊗ (∨b⊗ b) (b⊗∨ b)⊗ b b
αb,∨b,b

for the duality of the simple object b. Note, that for this composite to be the identity the component

N1
b,∨b ×Nb

1,b Nb
b,1 ×N1

∨b,b

(αb
b,∨b,,b

)1
1

of the associator has to be an isomorphism. This implies that the second map has to be given by the following
morphism:

N1
b,∨b ×N

∨b
∨b,∨a ×Nb

1,b ≃ N
∨b
∨b,∨a ×N1

b,∨b ×Nb
1,b N

∨b
∨b,∨a ×Nb

b,1 ×N1
∨b,b

id ×(αb
b,∨b,,b

)1
1 (5)

Since (αbb,∨b,,b)1
1 is a morphism between sets with one element it has to be an isomorphism. Therefore the
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image of ((n∨b
∨b,∨a)i, n1

b,∨b, n
b
1,b) is uniquely given by ((n∨b

∨b,∨a)i, nbb,1, nb∨b,b).
By the same reasoning as in the first step, the component of the associator has to factor through the set

N
∨b
∨b,∨a ×Nb

b,1 ×N1
∨b,b ≃ Nb

b,1 ×N
∨b
∨b,∨a ×N1

∨b,b Nb
b,1 ×N1

∨b,b ×Nb
∨a,b.

id ×(α1
∨b,∨a,b

)b
∨b

We can therefore conclude that the image of (nab,∨b, n1
a,∨a, n

b
1,b) under the maps of the left hand side of the

set-theoretic parametric pentagon equation has to be given by (nbb,1, nb∨b,b, (nb∨a,b)l).
Next, we consider the clockwise direction. Note, that the last copy of N does not change under the second
map. Hence, for the set theoretic parametric pentagon equation to be satisfied the first associator has to
factor through

Na
b,∨b ×N1

a,∨a ×Nb
1,b Na

b,∨b ×Nb
a,b ×Nb

∨a,b,
id×(αb

a,∨a,b
)b

1

and the next one has to factor as

Na
b,∨b ×Nb

a,b ×Nb
∨a,b N1

b,∨b ×Nb
1,b ×Nb

∨a,b.
(αb

b,∨b,b
)1

a×id

But recall that the components of the associator have to induce an isomorphism

∐
i∈I N

i
b,∨ ×Nb

i,b

∐
j∈I N

b
b,j ×N

j
∨b,b.

(αb
b,∨b,b

)j
i

Hence, since we already observed in the Diagram 5 that the component

(αbb,∨b,,b)1
1 : N1

b,∨b ×Nb
1,b → Nb

b,1 ×N1
∨b,b

maps isomorphically onto Nb
b,1 ×N1

∨b,b this is not true for the component (αbb,∨b,b)1
a. Therefore the object b

has to be invertible and the fusion category is strongly pointed.

Remark 2.8. The data constructed in Proposition 2.8 is enough to describe the fusion ring K0[C] [EGNO16,
Sect.3], i.e. the Grothendieck ring, of the fusion category C. In particular, fusion rings always arise from
linearizations of spans. One of the major problems in the theory of fusion categories is to determine those
fusion rings that can be extended to fusion categories, by constructing associators [LPR22]. The problem we
have studied in this section is a non-linear avatar of this problem and our main theorem gives a complete
answer for the case of 2-Segal sets.

This is a surprising and subtle result. It is not true that there are no monoidal structures induced from
2-Segal sets. Indeed, there are plenty of 2-Segal sets, for example from rooted trees [BBD+25], that induce
combinatorially tractable monoidal structures. The difference is that none of those will be rigid. As we
have seen in the proof Theorem 2.12, the extra assumption of rigidity induces certain symmetries on the
multiplicity sets of the 2-Segal set, that force it to be the nerve of a group. This behavior is subtle and only
visible, due to the easy combinatorial structure of 2-Segal sets. Already in the case of 2-Segal groupoids the
interplay between the groupoid and 2-Segal structure makes it hard to show similar results by hand. We will
therefore spend the rest of this text to follow a different route and to provide a more abstract explanation of
this result.
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3 Rigidity
We have presented in the last section an explicit combinatorial proof of Theorem 2.12. Our main goal in this
thesis is to provide a more abstract explanation of this result. Phrased more generally, we try to understand,
why all examples of convolution monoidal structures that are multi-fusion categories that are known to us are
induced by Čech-nerves. As we have observed in our proofs of Theorem 2.11 and 2.12, the main obstacle is,
to determine whether the associated convolution monoidal category is rigid. For the case of the categorified
𝕂-linear Hecke algebras, we were able to prove that they are rigid since we were able to construct the duals
by hand. In general, this can be a challenging task, since one has to come up with an educated guess for the
dual object. Especially, since we are only interested in the mere existence of duals and not their precise form,
we would benefit from a more abstract characterization of rigidity.
Therefore, we introduce in this section an (∞, 2)-categorical characterization of rigidity. This perspective
on rigidity has been introduced by Gaitsgory [Gai15, D.1.1] in the context of dg-categories. He classifies
rigid presentable dg-categories in terms of conditions on the adjoint of the monoidal product functor. The
advantage of this perspective is twofold. On the one hand, it provides a criterion for the existence of duals
without explicitly constructing them. On the other hand, this definition is extrinsic and can be formalized
internally to any symmetric monoidal (∞, 2)-category ℂ. As explained in the Introduction 1, we will in
particular benefit from the second advantage and study rigid algebras in the (∞, 2)-categories of spans in
Section 10.3 that we call rigid 2-Segal objects. Let us now start to explain the definition:

Definition 3.1. [Lur17, Def.4.7.4.13] Let 𝔻 be an (∞, 2)-category. We call a diagram commutative diagram

A B

C D

G1

F1 F0

G0

≃α

vertically right adjointable, if the vertical functors F0 and F1 admit right adjoints in 𝔻 (see Definition C.4)
and the vertical right Beck–Chevalley transform of α

BCRv [α] : G1F
R
1 FR0 F0G1F

R
1 ≃α FR0 G1F1F

R
1 FR0 G1

ηF0 ϵF1

is a 2-isomorphism. Here, we denote by ηF0 the counit and by ϵF1 the unit of the respective adjunction.
Analogously, we define horizontally right adjointable as well as horizontally and vertically left adjointable
diagrams.

Definition 3.2. Let 𝔻⊗ be a symmetric monoidal (∞, 2)-category. An algebra (A,µ, α) ∈ Alg(𝔻) with
multiplication 1-morphism µ and associativity 2-isomorphism α is called locally rigid, if it is dualizable, the
multiplication µ : A⊗A→ A admits a right adjoint and the associativity diagram

A⊗A⊗A A⊗A

A⊗A A

id⊗µ

µ⊗id µ

µ

≃α

(6)

is horizontally and vertically right adjointable. A is called rigid if further the unit morphism η : 1C −→ A

admits a right adjoint.

In the following, we will often abuse notation and denote a rigid algebra (A,µ, α) only by its underlying
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object A. One can think of locally rigid algebras as a categorification of the concept of a Frobenius algebra.
More precisely, we can interpret the right adjoint

µR : A→ A⊗A,

as the coproduct of a non-counital coalgebra structure on A. Under this interpretation, Diagram (6) is
horizontally and vertically right adjointable if and only if the Frobenius relations

(µ⊗ id) ◦ (id⊗ µR) ≃ µ ◦ µR ≃ (id⊗ µ) ◦ (µR ⊗ id)

hold up to 2-isomorphism induced by the vertical and horizontal Beck-Chevalley transform of α [Koc04,
Sect.2.2]. So an algebra is locally rigid if and only if the right adjoint of the multiplication canonically equips
it with the structure of a non-counital Frobenius algebra.5 We show next that in case A is rigid, the structure
extends to a full Frobenius algebra structure on A. Therefore, we use the following definition of a Frobenius
algebra:

Definition 3.3. [Lur17, Def.4.6.5.1] Let C⊗ be a symmetric monoidal∞-category and A ∈ Alg(C) an algebra
object in C with multiplication µ : A ⊗ A → A. We call a 1-morphism λ : A → 1C non-degenerate if the
composite map

A⊗A A 1C
µ λ

is the evaluation of a duality on A. We call the pair (A, λ) consisting of an algebra A and a non-degenerate
morphism λ a Frobenius algebra.

Proposition 3.1. Let 𝔻⊗ be a symmetric monoidal (∞, 2)-category and A ∈ Alg(𝔻) a rigid algebra object
in 𝔻. The right adjoint ηR of the unit 1-morphism η : 1𝔻 → A is non-degenerate and equips A with the
structure of a Frobenius algebra.

Proof. We can check this in the underlying homotopy 2-category h2𝔻 of 𝔻. We claim that the coevaluation
for the duality is given by the composite of right adjoints

1𝔻 A A⊗Aη µR

Indeed, it follows from the conditions imposed on a rigid algebra object that the diagram

A ≃ A⊗ 1𝔻 A⊗A A⊗ (A⊗A) ≃ (A⊗A)⊗A A⊗A A

A A

η

idA

µ

idA ⊗µR µ⊗idA ηR⊗idA

idA

µR

idA

commutes. But this is precisely one of the zig-zag identities of the duality. The other follows analogously.

Remark 3.1. Note that in general there may exist different ways to extend an algebra to a Frobenius algebra.
So a Frobenius algebra structure is extra data, whereas being (locally) rigid is a property. We return to this
perspective in Section 12, when we discuss stable Grothendieck-Verdier categories.

Remark 3.2. Let us remark on how the above definition relates to the definition of rigid monoidal categories
in terms of duals. Denote for a rigid algebra A in 𝔻⊗ its dual in 𝔻 by A∨. The above Frobenius algebra

5This relation is described in full detail in [KN24].
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structure on A also exhibits A as a dual of itself. It follows that there exists a unique duality isomorphism
𝔻(−) : A∨ → A (see also Section 12). We will see in the next section that in the case of rigid monoidal
categories this recovers the equivalence that associates to an object its dual.

Remark 3.3. The adjointability conditions in the definition of local rigidity also admit a third interpretation.
Let A ∈ 𝔻⊗ be an algebra object in 𝔻⊗. Note that the objects A⊗A and A admit structures of A−A-bimodule
objects in 𝔻⊗. Let us analyze the left actions. These are given by

▷A,A : A⊗ (A⊗A) ≃ (A⊗A)⊗A µ⊗idA−−−−→ A⊗A, (7)

and
▷A : A⊗A µ−→ A. (8)

The algebra structure on A equips µ with the structure of a left module morphism with respect to these two
actions. Note that by definition of the Beck–Chevalley transform Diagram (6) is vertically right adjointable if
and only if the 2-morphism

(µ⊗ idA) ◦ (idA⊗µR)⇒ µ ◦ µR (9)

is an equivalence. This data can be interpreted as the first instance of the structure of a left A-module
morphism on µR with respect to the above left A-module structures. Similarly, the horizontal adjointability
condition can µR be interpreted with the first instance of the structure of a right A-module morphism. For
the study of locally rigid algebras in the symmetric monoidal (∞, 2)-categories ℙrL,⊗

V and 2𝕊pan(C)⊗ this
perspective plays a central role. We make this more precise in Proposition 4.18 and Proposition 10.9.

We also record for latter use, how rigidity behaves under the inclusion of symmetric monoidal sub-(∞, 2)-
categories.

Definition 3.4. Let F : ℂ→ 𝔻 be a functor of (∞, 2)-categories. F is called a locally full inclusion, if

• the induced functor ℂ(c, c′)→ 𝔻(F (c), F (c′)) is fully faithful for all c, c′ ∈ ℂ

• the induced functor F≃ : ℂ≃ → 𝔻≃ on underlying spaces is a monomorphism

We then say that ℂ is a locally full sub-(∞, 2)-category of 𝔻.

Proposition 3.2. Let ℂ⊗ be a symmetric monoidal (∞, 2)-category and ℂ⊗
0 locally full (see Section B). An

algebra A ∈ ℂ0 is locally rigid in ℂ0 if and only if:

(1) A is a rigid algebra in ℂ⊗,

(2) the evaluation and coevaluation of the duality on A lie in ℂ0,

(3) the right adjoint of the multiplication µR : A→ A⊗A lies in ℂ0.

Proof. This follows from a simple unraveling of definitions.

4 Presentable ∞-Categories

Let V⊗ be a presentably symmetric monoidal ∞-category. In this section, we start to perform the first step
of our strategy to understand rigid convolution structures. To this end, we relate (locally) rigid algebras
in (∞, 2)-categories of V-linear presentable ∞-categories to the classical notion of rigidity, and study their
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relation to fully extended TFTs. We work in this generality since this context simultaneously describes
1-categorical rigidity as explained in Section 2 as well as rigidity for ∞-categories. In particular, we generalize
results from the case of presentable dg-categories [Gai15, BZGN19] and 𝕂-linear presentable 1-categories
[BZBJ18, BJS21] to the case of V-linear presentable ∞-category for an arbitrary presentably symmetric
monoidal ∞-category V⊗. Therefore, we first recall in Section 4.1 basic properties of ∞-categories with a
specified set of colimits. In particular, we consider the ∞-category PrL

V of presentable ∞-categories linear
over a presentably symmetric monoidal ∞-category V. These ∞-categories also admit enhancements to
(∞, 2)-categories, that we explicitly construct in Appendix B following ideas from [GR19, Sect.I.1]. Here, we
only recall the main results.
In Section 4.2, we recall the notion of atomic objects and atomically generated presentable V-linear∞-category
[BM24, BMS24, RZ25] and study basic properties of these. Atomic objects form a generalization of the
notion of a compact (resp. compact-projective) object from the theory of presentable dg-categories (resp.
presentable linear 1-categories). In Section 4.3, we study (locally) rigid algebras in the symmetric monoidal
(∞, 2)-category ℙr⊗

V . Our main goal is to relate for atomically generated V-linear ∞-categories the abstract
notion of local rigidity to the more familiar notion of rigidity in terms of duals for objects. In particular, we
show that an atomically generated ∞-category is locally rigid if and only if all atomic objects are dualizable.
This recovers the results of [Gai15] for compactly generated presentable dg-categories. Similar considerations
and results have also been obtained in [Ram24b] with a view towards applications in algebraic K-theory.
In the final Section 4.4, we connect the definition of a locally rigid algebra to the theory of fully extended
TFTs. More precisely, we show after recalling the main aspects of Morita (∞, 2)-categories, that locally rigid
presentable ∞-categories form fully dualizable objects in the symmetric monoidal Morita (∞, 2)-category
𝕄or(PrL

V)⊗ of V-linear presentable ∞-categories. For completeness, we also recall in Appendix C the full
construction of the Morita (∞, 2)-category following [Hau23]. Finally, we provide in Section 4.5 a conjectural
characterization of rigid algebras in terms of relative fully extended TFTs.

4.1 Basic Definition

Throughout this section, K denotes a set of small simplicial sets. The goal of this section is to recall the main
aspects of the theory of ∞-categories that admit colimits indexed by the elements of K. All constructions
presented here, work completely analogously in the case of 1-categories. Our main source for the material
presented here is [Lur17, Sect.4.8.1].
We call an ∞-category that admits K-indexed colimits K-cocomplete and a functor preserving K-indexed
colimits K-cocontinuous. We denote by CatK the corresponding ∞-category of small K-cocomplete ∞-
categories and K-cocontinuous functors. For K-cocomplete∞-categories C,D, and E we denote by FunK(C,D)
the full subcategory of Fun(C,D) spanned by K-cocontinuous functors, and by FunK,K(C ×D,E) the full
subcategory of functors that are K-cocontinuous in each argument separately.
The ∞-category CatK can further be equipped with a symmetric monoidal structure called the Deligne-Lurie
tensor product ⊗ [Lur17, Sect.4.8.1]. This comes equipped with a universal functor γ : C×D→ C⊗D that
is K-cocontinuous in each argument separately, i.e. it satisfies the universal property that precomposition
with γ induces an equivalence of ∞-categories

FunK,K(C×D,E) ≃ FunK(C⊗D,E).

Analogously, one can construct a symmetric monoidal structure on the very-large ∞-category CATK of
large K-cocomplete ∞-categories. A special example is given by the ∞-category CATcolim of large ∞-
categories that admit all small colimits. We are especially interested in its full subcategory PrL generated by
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presentable ∞-categories. This full subcategory inherits a symmetric monoidal structure from CATcolim,⊗

[Lur17, Prop.4.8.1.15].
We can further relate the symmetric monoidal categories CatK,⊗ and CatK

′,⊗ for nested K ⊂ K′. Indeed, for
every collection of small ∞-categories K ⊂ K′ there exists a symmetric monoidal functor PK′

K (−) : CatK,⊗ →
CatK

′,⊗ that associates to a K-cocomplete ∞-category its K′-cocompletion relative to K [Lur09a, Sect.5.3.6].
For later use, we collect some examples

Example 4.1. Let ind be the collection of all small filtered ∞-categories [Lur09a, Def.5.3.1.7]. We denote
the functor Pind(−) by Ind(−) and call it the Ind-completion.

Example 4.2. Let Σ be the set of all small sifted ∞-categories [Lur09a, Def.5.5.8.1]. We call the functor
PΣ(−) the sifted completion. Analogously, we denote by Σ1 the set of all small sifted 1-categories and call
the functor PΣ1 := PΣ

1 (−) the 1-categorical sifted completion.

Example 4.3. Let fin be the set of all small finite ∞-categories and the walking idempotent [Lur09a,
Sect.4.4.5] and ⨿ consist of all discrete ∞-categories and the walking idempotent. We call the functor Pfin

⨿ (−)
the finite cocompletion. Analogously, we denote by Pfin

1,⨿(−) the 1-categorical finite cocompletion.

We call a (commutative) algebra object in the symmetric monoidal ∞-category CatK,⊗ a K-cocomplete
(symmetric) monoidal ∞-category. Unraveling definitions, such an object consists of a (symmetric) monoidal
∞-category C⊗, s.t. the underlying ∞-category C is K-cocomplete and the monoidal product functor

⊗ : C× C→ C

preserves K-indexed colimits separately in each argument. In the following, we will mainly be interested in
modules in CatK,⊗. We denote for every K-cocomplete monoidal ∞-category V by CatKV the ∞-category
RModV(CatK) of right V-modules. We call a right V-modules C, a K-cocomplete V-linear ∞-category. In
case that V is symmetric monoidal, the ∞-category CatKV admits a symmetric monoidal structure given by
the relative tensor product −⊗V − [Lur17, Thm.4.5.2.1].
Interesting examples of∞-categories of modules arise from the theory of idempotent algebras. A K-cocomplete
symmetric monoidal ∞-category (V, µ) ∈ CAlg(CatK) is called an idempotent algebra if the monoidal product
functor

µ : V⊗ V→ V

is an equivalence [Lur17, Def.4.8.2.8]. The main benefit of idempotent algebras is, that being a module over
it is not a structure but a property. More formally the functor L := −⊗V : CatK,⊗ → CatK,⊗ is a symmetric
monoidal localization functor [Lur17, Prop.4.8.2.10]. It follows that the symmetric monoidal forgetful functor
CatK,⊗V → CatK,⊗ identifies the symmetric monoidal ∞-category of V-modules with the essential image of
the localization functor L. Most known examples of idempotent algebras exist in PrL [CSY21, Sect.5]. Let us
consider some examples that are relevant for the next sections:

Example 4.4. The ∞-category S of spaces is an idempotent algebra since S is the monoidal unit in PrL,⊗.
It follows that there exists an equivalence PrL,⊗

S ≃ PrL,⊗ . More generally the ∞-category S≤n−1 of (n− 1)-
truncated spaces6 forms an idempotent algebra in PrL,⊗. The ∞-category PrL

S≤n−1
is equivalent to the

(n+ 1, 1)-category PrsL(n,1) of presentable (n, 1)-categories [Lur17, Prop.4.8.2.15].

Example 4.5. The symmetric monoidal ∞-category of spectra Sp⊗ forms an idempotent algebra in PrL,⊗

[Lur17, Prop.4.8.2.18]. The corresponding forgetful functor identifies the ∞-category PrL
Sp with the full

6All homotopy groups above level (n − 1)-vanish.
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subcategory PrL
st of PrL of presentable stable ∞-categories.

Also the full symmetric monoidal subcategory Sp⊗
≥0 of Sp generated by connective spectra forms an idempotent

algebra [Lur18, Cor.C.4.1.4]. In this case, the forgetful functor identifies the ∞-category PrL
Sp≥0

with the full
subcategory PrL

add of PrL generated by additive presentable ∞-categories [Lur18, Def.C.1.5.1].

Proposition 4.1. [Lur17, Thm.7.1.3.1] Let K be a collection of small ∞-categories, V⊗ a K-cocomplete
symmetric monoidal ∞-category, and W⊗ a V-linear K-cocomplete symmetric monoidal ∞-category. There
exists an equivalence of symmetric monoidal ∞-categories

RModW(CatKV )⊗ ≃ CatK,⊗W .

Proof. This is a consequence of [Lur17, Thm.7.1.3.1] and [Lur17, Lem.4.8.4.2].

We record some useful consequences of the above proposition:

Example 4.6. It is easy to see that the tensor product of two idempotent algebras is again an idempotent
algebra. We can use this to construct new examples of idempotent algebras. For example, the presentable
∞-category Sp≥0⊗ Set is equivalent to the category small abelian groups τ≤0 Sp≥0 ≃ Ab [Lur17, Ex.1.3.3.5].
Hence, the category of abelian groups is an idempotent algebra. It follows that we can identify the functor
Ab⊗− with the composite

PrL PrL PrL.
Sp≤0 ⊗− Set ⊗−

Using Prop 4.1, we can identify its essential image with the (2, 1)-category prL
add of additive presentable

1-category [BJS21, Def.2.7].

Example 4.7. Let V⊗ be a symmetric monoidal presentable (n, 1)-category. It follows from Example 4.4
that we can view V⊗ as a commutative algebra in PrL,⊗

(n,1) ≃ PrL,⊗
S≤n−1

. In particular, we obtain an equivalence
PrL,⊗

V ≃ RModV(PrL
(n,1))⊗, so that every V-module is automatically a presentable (n, 1)-category.

Example 4.8. For the study of finite tensor categories in Section 5.1, we are especially interested in the case
of V⊗ ≃ Ab⊗. It follows from Example 4.6 that PrL

Ab is equivalent to the (2, 1)-category prL
add of presentable

additive 1-categories. More generally, let R be a commutative ring and denote by rmod⊗
R the symmetric

monoidal category of right R-modules. The ∞-category PrL
rmodR

is equivalent to RModrmodR
(PrL

1) ≃ prL
R the

(2, 1)-category of presentable R-linear 1-categories [BJS21, Def.2.7].

Example 4.9. For R an 𝔼∞-algebra in Sp, we denote by RModR the ∞-category of right R-module
spectra and by PrL

st,R the ∞-category RModRModR
(Prst) of R-linear stable ∞-categories. These are of major

importance for the study of derived multi-fusion categories in Subsection 5.3 .

The symmetric monoidal ∞-category CatK,⊗V introduced above admits a natural enhancement to a symmetric
monoidal (∞, 2)-category with V-linear natural transformations as 2-morphisms. Further, all the results stated
above admit a natural generalization to the level of symmetric monoidal (∞, 2)-categories. A construction of
this is already given in [GR19, Sect.I.1.8.3] and [HSS17, Sect.4.4]. Due to their fundamental importance for
this text, we have included a more detailed construction of these (∞, 2)-categories using complete double
∞-categories in Appendix B. Since these are technical and lengthy and we, at this point, only need their
formal properties here, let us just summarize the main results:

Proposition 4.2 (Proposition B.16). Let K be a collection of small ∞-categories and V⊗ a K-cocomplete
symmetric monoidal ∞-category. There exists a symmetric monoidal (∞, 2)-category ℂatK,⊗V s.t.
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(1) its underlying symmetric monoidal ∞-category coincides with CatK,⊗V

(2) its 2-morphisms are given by V-linear natural transformations.

We call ℂatK,⊗V the symmetric monoidal (∞, 2)-category of V-linear K-cocomplete ∞-categories.

Remark 4.1. Analogous results hold for large ∞-categories. In particular, we obtain for every presentably
symmetric monoidal ∞-category V⊗ a symmetric monoidal (∞, 2)-category ℙrL,⊗

V of V-linear presentable
∞-categories.

Proposition 4.3 (Proposition B.15). Let K ⊂ K′ be collections of small∞-categories and V⊗ a K-cocomplete
symmetric monoidal ∞-category. The K′-cocompletion PK′

K extends to a symmetric monoidal (∞, 2)-functor
P
K′,⊗
K : ℂatK⊗

V → ℂatK
′,⊗

PK′
K

(V)

Proposition 4.4 (Proposition B.16). Let F : V⊗ → W⊗ be a K-cocomplete symmetric monoidal functor
between K-cocomplete symmetric monoidal ∞-categories. The symmetric monoidal relative tensor product
functor −⊗VW : CatKV → CatKW extends to a symmetric monoidal (∞, 2)-functor −⊗VW : ℂatK,⊗V → ℂatK,⊗W

Let 𝔻⊗ be a symmetric monoidal (∞, 2)-category with underlying symmetric monoidal ∞-category D⊗. We
show in Appendix B.1 that for every symmetric monoidal subcategory D⊗

0 of D⊗, there exists a locally full
symmetric monoidal sub-(∞, 2)-category 𝔻⊗

0 of 𝔻⊗ with underlying symmetric monoidal ∞-category D⊗
0 .

Example 4.10. PrL⊗
st forms a symmetric monoidal subcategory of PrL,⊗ and we denote the associated locally

full symmetric monoidal sub-(∞, 2)-category of ℙrL,⊗ by ℙrL,⊗
st .

4.2 Atomic Generation

Let V⊗ be a presentably monoidal ∞-category. In this section, we introduce the basic notions for working
with V-linear ∞-categories. Many of the results presented in this section have already been proven by
different authors [BMS24, BM24, RZ25] and we do not claim originality. The reason we are interested in
V-linear presentable ∞-categories is that we can think of these as being enriched over V without invoking the
formalism of enriched ∞-category theory [GH15, RZ25]. Instead, we use the following construction of an
internal Hom-functor:

Construction 4.1. Let M ∈ PrL
V be a V-linear presentable ∞-category. For every m ∈ M the colimit

preserving functor
m⊗− : V→M

admits, by the adjoint functor theorem a right adjoint homV
M(m,−) : M→ V called the internal Hom-functor.

As the right adjoint of a V-linear functor, the internal Hom-functor is itself lax V-linear [Lur17, Cor.7.3.2.7].
It follows from [Lur17, Rem.7.3.2.9] that this lax V-linear structure is strict if and only if for every v ∈ V the
morphism

αm,v : homV
M(m,−)⊗ v → homV

M(m,−⊗ v)

adjoint to the counit
(m⊗ homV

M(m,−))⊗ v → −⊗ v

is an equivalence. We say m ∈M preserves tensoring by objects in V if for every v ∈ V the morphism αm,v is
an equivalence.

Remark 4.2. Let M ∈ PrL
V be a V-linear presentable ∞-category and m ∈M an object of M. In case that

the presentably monoidal ∞-category V⊗ is clear from the context, we will abuse notation and denote the
internal Hom-functor for the V-action by homM(m,−).
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Remark 4.3. The idea to use a homotopy coherent version of the internal Hom-functor to relate V-linear
presentable ∞-categories to V-linear enriched ∞-categories has been made precise in [Hei23, MGS21, RZ25].
We will recall some aspects of this equivalence in Section 4.3.

Important concepts in the study of presentable stable ∞-categories are compact objects and compactly
generated ∞-categories [Lur09a, Sect.5.5.7]. These notions allow one to reduce many statements about a
large presentable ∞-category to its small subcategory of compact objects. An analogous role is played by
compact-projective objects for additive presentable 1-categories [Lur18, Sect.C.1.5]. The correct V-linear
generalization is the notion of an atomic object:

Definition 4.1. Let V⊗ be a presentably monoidal ∞-category. An object m ∈ M is called V-atomic, if
the internal Hom-functor homM(m,−) preserves colimits and tensoring by objects v ∈ V. We denote the
subcategory of V-atomic objects by Matm.

Definition 4.2. A full subcategory M0 ⊂ M is called V-generating if the smallest full subcategory of M
containing M0 that is closed under colimits and tensoring with V is M. We call M V-atomically generated if
Matm is V-generating. In particular, we call an object Ω ∈M a V-atomic generator, if the full subcategory
generated by Ω is V-atomically generating.

Remark 4.4. Let V⊗ be a presentably monoidal ∞-category and M a V-linear ∞-category. When V⊗ is
clear from the context, we abuse notation and call a V-atomic object of M atomic. Similarly, we call M
atomically generated instead of V-atomically generated.

Proposition 4.5. Let M ∈ PrL
V be a V-linear presentable ∞-category. Then the full subcategory Matm ⊂M

is small.

Proof. We will show that there exists a regular cardinal κ, s.t. every atomic object is κ-compact. Therefore,
note that for every atomic object m ∈Matm, we obtain an equivalence

MapM(m,−) ≃ MapV(1V,homM(m,−)).

Since m is atomic, it therefore suffices to show that 1V is κ-compact for some regular cardinal κ. Since V

is presentable, there exist regular cardinals λ, µ, a µ-small category I, and a λ-filtered diagram F : I → V

consisting of λ-compact objects, s.t. 1V ≃ colimi∈I F (i). Setting κ = max{µ, λ}, it follows that 1V is a
κ-small colimit of κ-compact objects and hence itself κ-compact. It follows that Matm ⊂Mκ, which is small
since M is presentable.

The classification of atomic objects is particularly simple in case that the presentably monoidal ∞-category
V⊗ is an idempotent algebra in PrL. As explained in the last section, in this case, the forgetful functor

PrL
V → PrL

is fully faithful. Hence, any functor that preserves colimits also preserves V-tensorings. Consequently, an
object m ∈M is atomic if and only if the enriched Hom-functor homM(m,−) preserves colimits.

Example 4.11. For M ∈ PrS the action of a space X ∈ S on an object m ∈M is explicitly given by

m⊗X ≃ colimX m

the colimit over the constant X-diagram with value m [Lur09a, Sect.4.4.4]. The internal Hom is given
by the mapping space of the ∞-category M and an object m ∈ M is S-atomic if and only if the functor
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Map(m,−) : M→ S preserves all colimits.7 In particular, M is S-atomically generated if and only if there
exists a small ∞-category C and an equivalence P(C) ≃M [Lur09a, Cor.5.1.6.11]

In Section 5, we will discuss the atomic objects for the idempotent algebras V⊗ ≃ Ab⊗ and V⊗ ≃ Sp⊗. But
in general the examples, we are interested in are not linear over an idempotent algebra. Indeed, for our
applications to tensor categories, we are interested in examples of categories that are linear over a commutative
ring R. To understand the atomic objects in these examples, we have to understand how the atomic objects
behave under changing V⊗. Therefore, recall that every monoidal cocontinous functor F : W⊗ → V⊗ in
Alg(PrL) induces an adjunction on ∞-categories of modules:

F! : PrL
W ←→ PrL

V : F ∗, (10)

where F!(M) ≃ M ⊗W V is given by extension of scalars and F ∗(N) by restriction of scalars along F . In
particular, note that F!(W) ≃ V and that the unit of the adjunction induces a morphism FW : W→ F ∗V in
PrL

W.

Proposition 4.6. Let V⊗ be a presentably symmetric monoidal ∞-category and A ∈ CAlg(V) a commutative
algebra in V. We denote by

F : V ⇌ RModA(V) : U

the corresponding free forgetful adjunction [Lur17, Prop.4.2.4.8]. Let M ∈ PrRModA(V) be RModA(V)-linear.
Then an object m ∈M is RModA(V)-atomic if and only if it is V-atomic in F ∗M. Further, M is RModA(V)-
atomically generated if and only if F ∗M is V-atomically generated.

Proof. Note that by definition the V-action on an object m ∈ F ∗M is given by the composite

V W M
F m⊗−

Passing to right adjoints, we obtain an equivalence

homF∗M(m,−) ≃ U ◦ homM(m,−). (11)

Since V is presentably monoidal it follows from [Lur17, Cor.4.2.3.5] that the functor U preserves and creates
colimits. Hence, we can conclude from (11) that for every m ∈ M the functor homF∗M(m,−) preserves
colimits if and only if the functor homM(m,−) preserves colimits. Further note, that for every m ∈M and
v ∈ V, we have a chain of equivalences:

homF∗M(m,−)⊗ v ≃ U(homM(m,−))⊗ v
≃ U(homM(m,−)⊗A F (v)).

It follows from this chain that for every m ∈M the functor homF∗M(m,−) preserves V-tensors, if and only if
the functor homM(m,−) preserves RModA(V)-tensors. This implies the statement about atomic objects.
It remains to show the claim about atomic generation. By construction, it follows that when F ∗M is
V-atomically generated, also M has to be RModA(V)-atomically generated. On the other hand, the opposite
direction follows from the observation that the ∞-category RModA(V) is generated under small colimits by
the essential image of F , which follows analogously to [Lur17, Cor.7.1.4.14]

7These are called completely compact in [Lur09a, Def.5.1.6.2]
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Example 4.12. Every presentably monoidal ∞-category V is atomically generated over itself. Indeed, since
we have for all v, w ∈ V

MapV(v,homV(1V, w)) ≃ MapV(v ⊗ 1V, w) ≃ MapV(v, w), (12)

it follows that homV(1V,−) ≃ idV. Consequently, 1V is atomic and hence an atomic generator for V.

For the study of locally rigid algebras in Section 4.3, we need to understand adjoints internal to the
(∞, 2)-category ℙrL

V. An explicit description of these is given as follows:

Proposition 4.7. [BM24, Sect.4.2] Let V be a K-cocomplete symmetric monoidal ∞-category. A 1-morphism
F : M→ N in ℂatKV admits an internal right adjoint if and only if F admits a right adjoint FR, s.t. FR is
V-linear and K-cocontinuous. We call F an internally left adjoint functor.

Example 4.13. Let M ∈ PrL
V be a V-linear presentable ∞-category. An object m ∈M is atomic, if and only

if the unique cocontinuous V-linear functor V→M that maps 1V to m is an internally left adjoint functor in
PrL

V.

Thinking about V-linear presentable categories as enriched ∞-categories via the internal Hom-functor, the
following results show that we can think of internally left-adjoint functors in terms of enriched adjoints:

Lemma 4.8. Let N ∈ PrL
V be V-linear. Then a morphism f : n→ n′ is an equivalence in N if and only if for

every n0 ∈ N the morphism

homN(n0, f) : homN(n0, n)→ homN(n0, n
′)

is an equivalence in V.

Proof. The only if direction is obvious. For the converse direction, note we have an adjunction equivalence:

MapN(−,−) ≃ MapV(1V,homN(−,−)).

The claim follows from the Yoneda lemma.

Proposition 4.9. Let F : M→ N be a morphism in PrL
V. Then, there exists an equivalence

homN(F (m), n) ≃ homM(m,FR(n))

naturally in m ∈M and n ∈ N. Further, after applying the functor MapV(1V,−) this equivalence recovers
the underlying adjunction.

Proof. Let v ∈ V be an object. The first claim follows from the chain of adjunctions

MapV(v,homN(F (m), n)) ≃ MapV(F (m)⊗ v, n)
≃ MapV(F (m⊗ v), n)
≃ MapV(m⊗ v, FR(n))
≃ MapV(v,homM(m,FR(n)))

together with the Yoneda lemma. The second claim follows from unraveling the above equivalence for
v ≃ 1V
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It is well known, that a functor between compactly generated presentable stable ∞-categories preserves
compact objects if and only if it admits a cocontinuous right adjoint [BZN09, Lem.3.5]. This gives a useful
criterion to decide, whether a functor F in PrL

st admits an internal left adjoint. The following result can be
seen as a generalization to arbitrary presentably monoidal V:

Proposition 4.10. Let M ∈ PrL
V be atomically generated and F : M→ N a cocontinuous V-linear functor.

Then F preserves atomic objects (i.e F (Matm) ⊂ Natm), if and only if it is internally left adjoint in ℙrL
V.

Proof. First, assume that F is internally left adjoint and let m ∈ Matm be atomic. It follows from Propo-
sition 4.9 that the right adjoint of F (m)⊗− is given by homM(m,FR(−)). Since FR is cocontinuous and
V-linear and m is atomic, the functor homM(m,FR(−)) is a composite of cocontinuous V-linear functors.
Hence FR(m) is atomic as well.
For the converse denote by M0 ⊂M the subcategory generated by those objects m ∈M s.t. the functor

homM(m,FR(−)) : N→ V

is cocontinuous and V-linear. Since F preserves atomic objects, it follows from Proposition 4.9 that M0

contains Matm. But M0 is closed under colimits and V-tensoring and hence M0 ≃M. Hence it follows from
Lemma 4.8 that F is an internally left adjoint functor.

Proposition 4.11. Let M ∈ PrL
V and F⊗ : W⊗ → V⊗ a cocontinous monoidal functor, s.t. the associated

functor FW : W→ F ∗V in ℙrL
W is an internal left adjoint. Then if m is V-atomic in M, m is also W-atomic

in F ∗M.

Proof. Let m be an object of M and consider the chain of functors

W V M.F m⊗−

Passing to right adjoints it follows, that the internal Hom-functor for the induced action of W on F ∗M is given
by FR(homV

M(m,−)). Now let m ∈M be a V-atomic object of M. We need to show that FR(homV
M(m,−))

is cocontinuous and commutes with the V-action. Since F is an internal left adjoint and m is atomic, the
composite functor FR(homV

M(m,−)) preserves colimits. Further, compatibility with the action of W follows
from the chain of equivalences

FR(homV
M(m,−⊗ F (w))) ≃ FR(homV

M(m,−)⊗ F (w)) ≃ FR(homV
M(m,−))⊗ w

where we have used that m is atomic and FW is an internal left adjoint. This finishes the proof.

We finish this section with the following generalization of the famous Schwede-Shipley theorem [SS00]:

Proposition 4.12. [RZ25, Cor.5.13, Generalized Schwede-Shipley] Let M ∈ PrL
V and Ω ∈ M. Then Ω

is an atomic generator of M if and only if there exists an algebra A ∈ Alg(V) as well as an equivalence
RModA(V)→M in PrL

V , carrying A to Ω.

Proof. It is easy to see that for every algebra A ∈ V the category LModA(V) is atomically generated by A.
To show the converse, we check the condition of [Lur17, Prop.4.5.8.5]. Conditions (1) to (3) are obviously
satisfied. The functor homM(Ω,−) satisfies the conditions (4) and (6) since Ω is atomic. It remains to show
that the functor homM(Ω,−) is conservative. By the Yoneda lemma, it suffices to show that the collection of
functors {Map(Ω⊗ v,−)}v∈V is jointly conservative. But this follows since Ω is a generator.
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4.3 Rigidity in PrL
V

Throughout this section, V⊗ denotes a presentably symmetric monoidal ∞-category. Since in this section
our V-linear ∞-categories additionally carry a monoidal structure, we adopt the notation and denote the
monoidal product by ⊗ and the V-action by ◁. After we have introduced the necessary foundations to work
with V-linear presentable ∞-categories, we can now turn to study rigid algebra objects in the symmetric
monoidal (∞, 2)-category ℙrL,⊗

V . By the universal property of the relative tensor product, there exists for all
V-linear ∞-categories M and N a chain of composable functors

M×N→M⊗N→M⊗V N.

We denote objects in M⊗V N that lie in the essential image of this functor by m⊗V n.

Remark 4.5. Many of the results in this section have also been proven by Ramzi [Ram24b]. The main
difference is that the text [Ram24b] only considers commutative locally rigid algebras and applies the results
to the study of algebraic K-theory instead of fully extended TFTs.

Our first goal is to express the external definition of a locally rigid algebra object M⊗ ∈ ℙrL,⊗
V from

Definition 3.2 in terms of the internal structure of the V-linear presentably monoidal category M⊗. In the
case of a presentably monoidal dg-category M⊗ this has been proven by Gaitsgory [Gai15, Appendix D].
More precisely he shows, that if M⊗ is further compactly generated, it is locally rigid if and only if every
compact object admits a dual. As we discussed in the last section, the right generalization of the notion of
compact objects are atomic objects. Therefore, we first introduce the following definition:

Definition 4.3. Let M⊗ ∈ Alg(PrL
V) be an atomically generated monoidal V-linear ∞-category. Then M is

called locally atomically-rigid if M is atomically generated and all atomic objects admit a left and a right dual
(see Definition C.3). We call a locally atomically-rigid presentably monoidal ∞-category M⊗ atomically-rigid
if the unit object 1M is atomic.

Remark 4.6. Let M⊗ ∈ Alg(PrL
V) be a presentably monoidal V-linear ∞-category and m ∈ M be right

dualizable (resp. left dualizable) with right dual m∨ (resp. left dual ∨m). Then the functor m⊗− (resp.
−⊗m) admits a V-linear cocontinuous right adjoint given by m∨ ⊗− (resp. ∨m⊗−).

Remark 4.7. Let M⊗,N⊗ ∈ Alg(PrL
V) be (locally) atomically-rigid. Denote by M⊗- op the monoidal ∞-

category M with the opposite monoidal structure. Then also the ∞-categories M⊗- op and M ⊗V N are
(locally) atomically-rigid.

We denote by Mdbl the full subcategory of M generated by the dualizable objects. By definition, M is
locally atomically-rigid if and only if Matm ⊂Mdbl. This inclusion is in fact an equivalence precisely if M is
atomically-rigid:

Proposition 4.13. Let M⊗ ∈ Alg(PrL
V) be atomically-rigid and m an object of M⊗. Then the following are

equivalent:

(1) m is atomic.

(2) m admits a left dual.

(3) m admits a right dual.

In particular, a locally atomically-rigid monoidal V-linear ∞-category is atomically-rigid if and only if
Matm ≃Mdbl.
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Proof. It suffices to show that (2) implies (1). Therefore, let m ∈ M be left dualizable. We have to show
that it is atomic. To do this, we show first that homM(m,−) commutes with colimits. Consider a small
∞-category I and a diagram F : I →M. Applying Proposition 4.9 to the functor m⊗− we obtain a chain
of equivalences

homM(m, colimi∈I F (i)) ≃ homM(1M,m
∨ ⊗ colimi∈I F (i))

≃ colimi∈I homM(1M,m
∨ ⊗ F (i))

≃ colimi∈I homM(m,F (i)),

where we have used that 1M is atomic. Hence, homM(m,−) commutes with colimits. Compatibility with
V-tensoring follows from the chain of equivalences

homM(m,− ◁ v) ≃ homM(1V,m
∨ ⊗ (− ◁ v))

≃ homM(1V, (m∨ ⊗−) ◁ v)
≃ homM(1V,m

∨ ⊗−)⊗ v
≃ homM(m,−)⊗ v,

where we have used again that 1V is atomic.

To show that atomic-rigidity is equivalent to rigidity, we first have to show that atomically generated
∞-categories are dualizable in PrL,⊗

V . For the proof we need a bit of enriched ∞-category theory. Since we
only need it at this point, we will not recall the theory of enriched ∞-categories here and instead only cite
the results we need. For a complete introduction to enriched ∞-categories consider [GH15, Hei23, Hei24].
For a presentably symmetric monoidal ∞-category V, we denote by Enr(V)⊗ the symmetric monoidal ∞-
category of small V-enriched ∞-categories and V-enriched functors [Hei24]. As shown in [Hei23, Thm.1.9] one
can encode the datum of a V-enriched ∞-category M in terms of a weak V-tensoring on M [Hei23, Def.3.11].
In particular, for M ∈ PrL

V the V-tensoring on M that exists by definition, restricts to a weak V-tensoring on
the small ∞-category Matm and therefore exhibits it as V-enriched. On the other hand, the enriched presheaf
category constructions

PV(−) : Enr(V)⊗ → PrL,⊗
V (13)

gives a symmetric monoidal functor in the opposite direction [Hei24, Cor.5.5]. As the presheaf category does,
the enriched presheaf category satisfies an enriched Yoneda lemma [Hin18, Prop.6.2.7]. It states that the
V-enriched functor YM

V : M → PV(M) that associates to any m ∈ M the representable V-enriched functor
homM(−,m) ∈ PV(M) is fully faithful. This functor is called the V-enriched Yoneda embedding. After this
preliminary discussion, we can now proof the following:

Lemma 4.14. [Ram24b, Obs.1.28] Let M be an atomically generated V-linear ∞-category. There exists an
equivalence of V-linear ∞-categories PV(Matm) ≃M.

Proof. The V tensoring on M restricts to a weak V tensoring on the subcategory Matm of atomic objects.
By [Hei23] the canonical functor Matm → M of weakly V-tensored ∞-categories extends to a V-linear
cocontinuous functor ι : PV(Matm)→M. We claim that ι is an equivalence. It is essentially surjective, since
by construction its essential image contains all atomic objects and is closed under colimits and V-tensors.
It remains to show that the functor is fully faithful. Therefore, it suffices to show that for anym0,m1 ∈ P(Matm)
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the induced morphism in V

ιm0,m1 : homPV(Matm)(m0,m1)→ homM(ι(m0), ι(m1))

is an equivalence. For any m0 ∈ P(Matm), the collection of m1, s.t. ιm0,m1 is an equivalence is closed under
colimits and V-tensors. Therefore, we can restrict to the case that m0 ∈ Matm. For fixed m0 ∈ Matm the
collection of m1 for which ιm0,m1 is an equivalence is also closed under colimits and V-tensors since m0

is V-atomic. Further, by the enriched Yoneda lemma, it also contains Matm. Hence, since PV(Matm) is
V-atomically generated by the essential image of the enriched Yoneda embedding, it follows that ιm0,m1 is an
equivalence for all m0,m1 ∈M and hence that ι is fully faithful.

Proposition 4.15. [Ram24a, Prop.1.40] Let M be an atomically generated V-linear ∞-category. Then M is
dualizable as an object in the symmetric monoidal ∞-category PrL,⊗

V

Proof. It follows from Lemma 4.14 that M is equivalent to the enriched presheaf category PV(Matm) on
the small V-enriched ∞-category of atomic objects. By [Ber20, Thm.1.7] enriched presheaf categories are
dualizable

Proposition 4.16. Let M and N be atomically generated V-linear ∞-categories. Then the relative tensor
product M⊗VN is atomically generated by the full subcategory generated by the objects m⊗Vn with m ∈Matm

and n ∈ Natm.

Proof. Let M and N be atomically generated V-linear presentable ∞-categories. The V-tensoring on M and
N restricts to a V-enrichment on the underlying categories of atomic objects Matm and Natm. Since M and N

are atomically generated, it follows from 4.14 that they are equivalent to the enriched presheaf categories
PV(Matm) and PV(Natm) respectively. Hence, the claim follows from the equivalence

M⊗V N ≃ PV(Matm)⊗V PV(Natm) ≃ PV(Matm ⊗V Natm)

induced by symmetric monoidality of PV(−).

Proposition 4.17. Let M⊗ ∈ Alg(PrL
V) be a locally atomically-rigid V-linear ∞-category and let N,L ∈ PrL

M

be M-linear ∞-categories. Then every lax M-linear functor F : N→ L is M-linear.

Proof. We denote by M0 ⊂M the full subcategory generated by those objects m ∈M, s.t. for every n ∈ N

the morphism
F (n) ◁m→ F (n ◁m)

is an equivalence. Since F is V-linear and commutes with colimits, it follows that the category M0 is closed
under those. It hence suffices to show that every atomic object is in M0. But for m ∈ Matm an explicit
inverse is given by the morphism

F (n ◁m)→ F (n ◁m) ◁(∨m⊗m)→ F (n ◁(m⊗ ∨m)) ◁m→ F (n) ◁m

Therefore F is M-linear.

Before we relate locally rigid algebras in ℙrL,⊗
V to locally-atomically rigid monoidal categories, we provide

a more explicit description of local rigidity in ℙrL,⊗
V . Therefore, recall from the discussion in Remark 3.3

that for every algebra object (M, µ) ∈ Alg(PrL
V) the monoidal product functor µ canonically is a M-bimodule

morphism. Hence, it follows from [Lur17, Ex.7.3.2.8] that its right adjoint µR carries a canonical structure of
a lax M-bimodule functor.
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Proposition 4.18. Let (M, µ) ∈ Alg(PrL
V) be V-linear presentably monoidal ∞-category. Then M is locally-

rigid in ℙrL,⊗
V if and only if

(0) M is dualizable in PrL,⊗
V

(1) the multiplication µ is an internal left adjoint in ℙrL
V

(2) the structure of a lax M-bimodule functor on µR from Remark 3.3 is strict

Further, it is rigid, if and only if the unit object 1M is atomic.

Proof. It follows from [Lur17, Rem.7.3.2.9] that the M-bimodule structure on µR from Remark 3.3 is strict if
and only if the square in Diagram (6) is vertically and horizontally right adjointable. This shows that M is
locally rigid if and only if it satisfies conditions (0) − (2). For the second claim, note that it follows from
Proposition 4.10 that the unit η : V→M is an internal left adjoint if and only if it preserves atomic objects.
Since 1V ∈ V is a V-atomic generator of V this is the case if and only if η(1V) ≃ 1M is atomic.

After these preliminary considerations, we can now show that in case that M⊗ is atomically generated the
two notions of (local) rigidity coincide:

Proposition 4.19. Let M⊗ ∈ Alg(PrL
V) be an atomically generated V-linear presentably monoidal ∞-category.

Then M is locally atomically-rigid if and only it is locally rigid. Moreover, M is atomically-rigid, if and only
if it is rigid.

Proof. First, assume that M is locally rigid. We need to show that every object m ∈Matm admits a left and
right dual. For this, it suffices to show that for every atomic object m ∈Matm the functor

M ≃M⊗V V M⊗V M M
idM ⊗Vm µ

that maps m′ ∈M to m′ ⊗m admits a right adjoint functor that defines a morphism in LModM(PrL
V). Note,

that since m is atomic the composite functor

M
µR

−−→M⊗V M
id ⊗ homM(m,−)−−−−−−−−−−−→M⊗V V ≃M

provides a cocontinuous right adjoint of the above functor. Further, by Proposition 4.18 the right adjoint is a
morphism in LModM(PrL

V). Hence, the right dual is given by (id⊗V homM(m,−)) ◦ µR(1M). The left dual
is constructed analogously.
Conversely assume M is locally atomically-rigid. We check the conditions of Proposition 4.18. By Proposi-
tion 4.15 M is dualizable. It remains to show that the monoidal product functor

µ : M⊗V M→M

admits an internal left adjoint in ℙrL
V. To do so, we show that it preserves atomic objects. It follows from

Proposition 4.16 that the category M⊗V M is atomically generated by objects of the form m⊗V m
′ with

m,m′ ∈Matm. It therefore suffices to show that for every pair of atomic objects m,m′ ∈Matm the object
m⊗m′ ∈M is atomic. To show that, let I be a small category and F : I →M be a diagram in M. It follows
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from the chain of equivalences:

homM(m⊗m′, colimi∈I F (i)) ≃ homM(m,m′∨ ⊗ colimi∈I F (i))
≃ homM(m, colimi∈I(m′∨ ⊗ F (i)))
≃ colimi∈I homM(m, (m′∨ ⊗ F (i)))
≃ colimi∈I homM(m⊗m′, F (i))

that homM(m⊗m′,−) commutes with small colimits. A similar calculation shows that homM(m⊗m′,−)
commutes with the V-action. Hence, it follows from Proposition 4.11 that ⊗ is an internal left adjoint. The
second claim about rigidity follows as in Proposition 4.18.

For our discussion in Section 5, we also record the following characterization of rigid V-linear categories:

Proposition 4.20. Let E⊗ be an atomically generated V-linear presentably symmetric monoidal ∞-category
and consider the functor F := 1E ◁− : V→ E. The following are equivalent:

(1) E⊗ is V-rigid

(2) for every E-linear presentable ∞-category A an object a ∈ A is E-atomic if and only if it is V-atomic in
F ∗A

(3) any object e ∈ E is E-atomic if and only if it is V-atomic in F ∗E

Proof. We first show (1) implies (2). Let a ∈ A be E-atomic. Since 1E is V-atomic, it follows that the
composite

V E A
1E a ◁E −

is an internal left adjoint in PrL
V and hence a is V-atomic. Assume now, that a is V-atomic and denote by

{ei}i∈I a collection of V-atomic generators of E. We show that homE
A(a,−) commutes with small colimits.

The claim for E-tensoring is analogous. Let therefore J be a small ∞-category and F : J → A a J-indexed
diagram in A. Since the ei are generators, the functors {homE(ei,−)}i∈I are jointly conservative. Hence, it
suffices to show that for every i ∈ I, the canonical comparison map

colimj∈J homE(ei,homA(a, F (j)))→ homE(ei,homA(a, colimj∈J F (j)))

is an equivalence in V. But this follows from the chain of equivalences

colimj∈J homE(ei,homA(a, F (j))) ≃ colimj∈J homE(1E, e
∨
i ⊗ homA(a, F (j)))

≃ colimj∈J e
∨
i ◁ homA(a, F (j))

≃ e∨
i ◁ homA(a, colimj∈J F (j))

≃ homE(ei,homA(a, colimj∈J F (j))),

where we have used rigidity in the first step, the fact that 1E is atomic in the second, and that a is V-atomic
in the last step. Afterward, we have applied the same reasoning in the opposite order.
It is clear that (2) implies (3). It remains to show that (3) implies that (1). This follows from the observation
that an object of E is E-atomic if and only if it is dualizable.

We finish this section with the following example of a rigid V-linear presentably monoidal ∞-categories:
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Proposition 4.21. Let V ∈ Alg𝔼2(V) be an 𝔼2-algebra. Then the atomically generated V-linear presentably
monoidal ∞-category LModV (V)⊗ equipped with the relative tensor product monoidal structure is rigid.

Proof. It suffices to show that LModV (V) admits a collection of dualizable atomic generators and that the
unit is atomic. By the generalized Schwede-Shipley theorem 4.12 LModV (V) is indeed atomically generated
by V . Hence, it suffices to show that V is dualizable. But as V is the unit of the monoidal structure, this is
clear.

4.4 Implications for 2-dimensional TFTs

Let 𝕂 be a field. The relevance of rigid 𝕂-linear abelian categories for the study of fully extended TFTs comes
from the result that these form 2-dualizable objects in the Morita 2-category of 𝕂-linear presentable categories
[BJS21]. This observation has been generalized in the ∞-categorical context of presentable dg-categories in
[BZN09]. The goal of this section is to extend these results to the case of V-linear presentable ∞-categories
for an arbitrary presentably symmetric monoidal ∞-category V⊗. This justifies our definition of locally rigid
presentable ∞-categories from the perspective of fully extended TFTs.
To do so, we need an (∞, 2)-categorical version of the Morita 2-category used in [BJS21] that serves as a target
for the respective class of fully extended TFTs. Informally, for every sufficiently nice symmetric monoidal
∞-category C⊗ the Morita (∞, 2)-category has objects given by algebra objects, 1-morphisms by bimodule
objects, and 2-morphisms by bimodule homomorphisms in C⊗. We have already encountered a subcategory
of a Morita category in Definition 2.3, when we discussed Morita equivalences for fusion categories.
An algebraic model of this symmetric monoidal (∞, 2)-category has been constructed in [Hau17, Hau23] using
non-symmetric ∞-operads. A major drawback of this model is that it is too rigid to describe the dualizability
data of a fully dualizable object [Hau17, Conj.1.8]. A non-equivalent model for the Morita (∞, 2)-category
has been constructed in [GS18] using locally constant factorization algebras on stratified intervals. Although
this model is flexible enough to classify the fully dualizable objects, it does not yield the expected result
from [Lur08, Rem.4.1.27]. In fact, the only fully dualizable object is given by the unit [GS18, Thm.6.1]. The
major problem is that a factorization algebra always comes with a canonical pointing. As a consequence, a
locally-constant factorization algebra on a stratified interval encodes the datum of a pointed algebra (resp.
bimodule) and keeping track of this additional pointing rules out any non-trivial examples of fully dualizable
objects.
A way around this problem is to adapt the approach given in [Lur17, Sect.4.4] and to construct the Morita
(∞, 2)-category using symmetric∞-operads. These extra symmetries provide a more flexible framework for the
study of fully dualizable objects. To have a complete description, of this symmetric monoidal (∞, 2)-category
and its fully dualizable objects in this work, we have included a complete discussion in Appendix C. Since
this is merely a reformulation of ideas from [Hau23] and [Lur17], let us here only collect the main results:

Proposition 4.22. [GS18, Hau18, Lur17, Lur08] There exists a symmetric monoidal (∞, 2)-category
𝕄or(PrL

V)⊗ with

(0) objects V-linear presentably monoidal categories

(1) 1-morphism V-linear presentable bimodule categories

(2) 2-morphism V-linear cocontinuous bimodule functors

and symmetric monoidal structure induced by the relative Deligne-Lurie tensor product ⊗V.

Before we can state the conditions for being fully dualizable, we need the following definition
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Definition 4.4. [Lur17, Def.4.6.2.3] Let A⊗,B⊗ ∈ Alg(PrL
V) and M ∈ BModA,B(PrL

V). M is called left
dualizable if there exists an object N ∈ BModB,A(PrL

V) and morphisms

c : B→ N ⊗A M in BModB,B(PrL
V) e : M⊗B N→ A in BModA,A(PrL

V)

such that the composites

M ≃M⊗B B
id ⊗c−−−→M⊗B N ⊗A M

e⊗id−−−→M

N ≃ B⊗B N
c⊗id−−−→ N ⊗A M⊗B N

id ⊗e−−−→ N

are homotopic to the identity.

Definition 4.5. [Lur17, Def.4.6.4.2,4.6.4.13] A V-linear presentably monoidal ∞-category M⊗ ∈ Alg(PrL
V) is

called proper, if its underlying presentable ∞-category is dualizable as an object of PrL,⊗
V . It is called smooth

if the evaluation bimodule M ∈ LModMe(PrL
V) is left-dualizable.

Proposition 4.23 (Thm. C.12). A V-linear presentably monoidal ∞-category M⊗ ∈ Alg(PrL
V) is fully

dualizable in 𝕄or(PrL
V)⊗ if and only if it is smooth and proper.

We show next that locally rigid algebras in PrL,⊗
V form fully dualizable in 𝕄or(PrL

V)⊗. First observe, that by
definition a locally rigid V-linear ∞-category M⊗ is dualizable in PrL,⊗

V and hence is proper. Consequently,
we only need to show that M⊗ is also smooth, i.e. dualizable as an Me-module. To do so, we exhibit M as
an ∞-category of modules over an algebra in Me. As a first step, we show that these ∞-categories are in fact
left-dualizable:

Proposition 4.24. Let M⊗ ∈ Alg(PrL
V) be a presentably monoidal V-linear ∞-category and let A ∈ Alg(M)

be an algebra object. Then RModA(M) is left dualizable with left dual LModA(M) ∈ BModM,V(PrL
V).

Proof. We generalize the proof given in [Lur17, Rem.4.8.4.8]. To show that RModA(M) is left dualizable,
we first need to define a unit morphism c : V → LModA(M) ⊗M RModA(M) in BModV,V(PrL

V). It follows
from [Lur17, Thm.4.8.4.6] that there exists an equivalence of ∞-categories LModA(M) ⊗M RModA(M) ≃
BModA,A(M). By [Lur17, Thm.4.8.4.1] for every A-bimodule AMA ∈ BModA,A(M) there exists a unique
V-bimodule functor FM : V→ BModA,A(M) in PrL

V that maps the unit object 1V ∈ V to the bimodule M .
We denote by c := FA the unique functor associated to the regular bimodule A ∈ BModA,A(M).
To show that this exhibits LModA(M) as the left dual of RModA(M), we have to show that for every C ∈ PrL

V

and N ∈ PrL
M the morphism c induces a homotopy equivalence

MapPrL
M

(C⊗ LModA(M),N)→ MapPrL
V

(C,N ⊗M RModA(M)).

It follows from [Lur17, Thm.4.8.4.6] that we can identify the right hand side with MapPrL
V

(C,RModA(N)).
The claim follows from [Lur17, Thm.4.8.4.1] applied to the left-hand side.

Construction 4.2. Let (M, µ) ∈ Alg(PrL
V) be locally rigid. As discussed in Remark 3.3 M carries a natural

bimodule structure over itself so that the monoidal product µ : M ⊗V M → M naturally extends to a
M-bimodule functor. Under the equivalence

BModM(PrL
V) ≃ RModMe(PrL

V)

these induce the structure of a Me-module on M and of a Me-module morphism on µ. We denote by
homMe

M (−,−) the internal Hom-functor for this Me-action on M. The object homMe

M (1M,1M) is an endo-

51



morphism object of 1M for the Me-action [Lur17, Sect.4.7.1]. Hence, it admits a canonical lift to an algebra
object in Me.
We compute its underlying object. Unraveling definitions, the functor homMe

M (1M,−) is given by the right
adjoint of the monoidal product

µ : M⊗V M→M

Hence, the underlying object of the algebra homMe

M (1M,1M) is given by µR(1M).

Definition 4.6. Let (M, µ) ∈ Alg(PrL
V) be locally rigid. We will denote the algebra µR(1M) ∈ Alg(Me) by

FM and call it the canonical algebra of M.

Remark 4.8. The name canonical algebra is motivated by its relation to the canonical coend as defined in
[SW21]. More precisely, this algebra can be equivalently described by the coend∫ m∈M

m⊗V m
∨ ∈M⊗V M

of the functor ⊗V ◦ (idM×(−)∨) : M×M→M⊗V M. The canonical coend is then defined as the image of
FM under the colimit preserving monoidal product functor µ : M⊗V M→M.

The relevance of this algebra object arises from the following observation:

Proposition 4.25. Let M⊗ ∈ Alg(PrL
V) be a V-linear presentably monoidal ∞-category and consider it as an

object of M ∈ PrL
Me . Then 1M is a Me-atomic generator of M if and only if M is locally rigid.

Proof. Recall, that the multiplication functor µ : M⊗V M→M is Me-linear for the regular Me-bimodule
structure on M⊗V M. Hence the functor µ is uniquely determined by its value on 1Me [Lur17, Thm.4.8.4.1].
It follows from Example 4.13 that µ is an internal left adjoint in PrL

Me if and only if 1M is Me-atomic. This
proves the claim.

Theorem 4.26. Let M⊗ ∈ Alg(PrL
V) be locally rigid. Then M⊗ is smooth. In particular, M is fully dualizable

in 𝕄or(PrV)⊗.

Proof. It follows from Proposition 4.25 that 1M is a Me-atomic generator of M. Hence, by the generalized
Schwede-Shipley theorem 4.12 M is equivalent to RModFM

(Me). The claim follows from Proposition 4.24.

Remark 4.9. This generalizes results from [BJS21, DSPS20] and [BZN09] in multiple directions. On the
one hand, it holds over every presentably symmetric monoidal ∞-category V. On the other hand, it also
holds for locally rigid presentable ∞-categories that are not necessarily atomically-generated.

We use the conjectural Cobordism Hypothesis [Lur08, Thm2.4.6] to interpret this result in the context of
fully extended TFTs. Therefore we denote by 𝔹ordfr,⊗

2 the symmetric monoidal (∞, 2)-category of framed
cobordisms [Lur08, Sect.2.2]8. Under the assumption that the Cobordism Hypothesis holds [Lur08, Thm2.4.6],
we obtain as a Corollary of our above result:

Corollary 4.27. Let M ∈ Alg(PrV) be locally rigid. Then M induces a fully extended framed TFT

ZM : 𝔹ordfr,⊗
2 → 𝕄or(PrL

V)⊗

that maps the unique positively framed point + to M.
8We will discuss this (∞, 2)-category in more detail in Section 11.5
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4.5 Rigidity as a relative Condition

We have shown in the last section that locally rigid V-linear ∞-categories form examples of fully dualizable
objects in 𝕄or(PrL

V)⊗. However, it is not true that all fully dualizable objects are locally rigid V-linear
∞-categories. An example of this phenomenon has been given in [BZGN19, Sect.1.2].

Example 4.14. Let (G,m : G×G→ G) be an affine group scheme of finite type and denote by Dmod(G) :=
Ind(GDR) the presentable stable ∞-category of D-modules on G defined as the ∞-category of Ind-coherent
sheaves on the de-Rham stack of G [BZN09, Sect. 4.1]. The group structures on G induces on Dmod(G) a
monoidal structure via convolution, whose underlying monoidal product functor is given by m∗ : Dmod(G)⊗
Dmod(G)→ Dmod(G).9 The presentably monoidal stable ∞-category is not locally rigid in ℙrL,⊗

st in general.
Indeed, the monoidal product functor m∗ only admits a right adjoint, given by m!, if G is proper, which is
only the case if G is finite.
Instead, Dmod(G) is equivalent in 𝕄or(PrL

st) to the locally rigid stable ∞-category of Harish-Chandra
bimodules [Ber17, Thm.2.3.12]. This is defined as the ∞-category HC := Ind(G\GDR/G) of Ind-coherent
sheaves on the double quotient stack G\GDR/G. This∞-category admits a monoidal structure via convolution.
In fact, this monoidal structure is analogous to the discussion in Section 2 induced by the Čech-nerve of the
morphism BG→ BGDR of stacks.10 This presentably monoidal stable ∞-category is locally rigid in ℙrL,⊗

st
[Ber17, Prop.2.3.11]. The reason is that although G is not proper itself it is proper relative to GDR.

Remark 4.10. There does not exist an analogous example using local systems instead of D-modules as
in Section 2. The main reason is in the case of local systems and a finite group (G,m : G × G → G) the
convolution monoidal product on Fun(G,Vectℂ) is given by left Kan-extension along m, which always admits
a right adjoint.

In fact, it also follows from the above example that local-rigidity is not even a property that is invariant
under Morita equivalence. The reason is that a locally rigid ∞-category M⊗ admits a canonical pointing
as a Me-module, i.e a Me-linear functor Me → M that maps the unit of Me to the canonical algebra FM.
Therefore, to understand the precise relation between local rigidity and fully extended TFTs, one should also
encode this morphism as datum in the target (∞, 2)-category of the fully extended TFT. These classes of
TFTs are known as relative TFTs [JFS17] and we will describe these TFTs in some more detail.
Relative TFTs describe so-called boundary conditions and defects of TFTs. Mathematically, we can think of
these as morphisms between fully extended TFTs. The naive notion of a morphism between fully extended
TFTs would be a symmetric monoidal natural transformation. Interestingly, this notion is too naive as the
dualizability property of the cobordism category forces every such natural transformation to be invertible
[Lur08, Rem.2.4.7]. A way to fix this is to consider lax or oplax natural transformations. This leads to
two different versions of morphisms between fully extended TFTs and hence of relative TFTs. To classify
relative TFTs one can again utilize the cobordism hypothesis by describing relative TFTs as fully dualizable
objects in a symmetric monoidal (∞, 2)-category of lax (resp. oplax transformations) [JFS17]. To use this
approach for our study of locally rigid algebras, we first have to introduce the relevant symmetric monoidal
(∞, 2)-category of lax (resp. oplax) transformations.
For every pair of (∞, 2)-categories ℂ,𝔻, we denote by ℂ⊗Gr𝔻 their Gray tensor product as defined in [AGH24].
This construction assembles into a functor of ∞-categories − ⊗Gr − : Cat2 × Cat2 → Cat2 that preserves
colimits in each argument separately. Hence, since Cat2 is presentable, we obtain for every (∞, 2)-category ℂ
adjunctions −⊗ ℂ ⊣ Funlax(ℂ,−) and ℂ⊗− ⊣ Funoplax(ℂ,−).

9We describe the construction of this monoidal structure in more detail using local systems instead of D-modules in more
detail in Section 11.2. The construction for D-modules is analogous.

10We will consider this construction in more detail in Section 11.3.
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Definition 4.7. Let 𝔻 be an (∞, 2)-categories. We call the (∞, 2)-category 𝔻↓ := Funlax([1],𝔻) (resp.
𝔻→ := Funoplax([1],𝔻)) the (∞, 2)-category of lax arrows (resp. the (∞, 2)-category of oplax arrows)

Unraveling the definitions of the Gray tensor product, the (∞, 2)-category 𝔻→ has

• objects given by morphisms f : d0 → d1 in 𝔻.

• 1-morphisms given by oplax squares η :

d0 d1

d̃0 d̃1

f0

η0 η1

f1

η

• 2-morphisms given by oplax modifications γ : η → µ

d0 d1 d0 d1

d̃0 d̃1 d̃0

f0

η0 η1 µ1

f0

η0 µ0
µ1

f1 f1

γ1η γ0≃ µ

Example 4.15. Let D be a ⊗-Gr-cocomplete symmetric monoidal ∞-category and consider the (∞, 2)-
category 𝕄or(D)→. An object in this (∞, 2)-category is represented by a bimodule M ∈ BModA,B(D) in D.
The datum of a morphism from a bimodule M0 ∈ BModA,B(D) to a bimodule M1 ∈ BModA′,B′(D) consists
of a pair of bimodules N0 ∈ BModA,A′(D) and N1 ∈ BModB,B′(D) together with a morphism

f0 : N0 ⊗A′ M1 →M0 ⊗B N1

in BModA,B′(D). The datum of a 2-morphism from (N0, N1, f0) to (K0,K1, f1) consists of a pair, consisting
of a morphism g0 : N0 → K0 in BModA,A′ and a morphism g1 : N0 → N1 in BModB,B′ , such that the diagram

N0 ⊗A′ M1 M0 ⊗B N1

K0 ⊗A′ M1 M0 ⊗B N1

f0

g0⊗A′M1 M0⊗Bg1

f1

commutes.

As a right adjoint, the functor (−)→ preserves finite limits and hence (−)→ induces for every symmetric
monoidal (∞, 2)-category 𝔻⊗ a symmetric monoidal structure on the (∞, 2)-category (𝔻→)⊗. In particular,
we can study fully dualizable objects in (𝔻→)⊗. To understand these objects, we need the following notation

Definition 4.8. Let D be an (∞, n)-category. A 1-morphism f in C is called 2-times right adjunctible, if
f : d0 → d1 admits a right adjoint fR and the unit and counit transformations η and ϵ admit right adjoints
as morphisms in the (∞, n− 1)-categories MapD(d1, d1) and MapD(d0, d0) respectively.

Proposition 4.28. [JFS17, Thm.7.6] An object in (𝔻→)⊗ represented by a morphism f : d0 → d1 is

• dualizable, if and only if its source and target objects are dualizable in 𝔻 and f is right adjunctible.
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• fully dualizable if and only if its source and target morphisms are fully dualizable in 𝔻 and f is 2-times
right adjunctible.

In particular, we can apply this proposition to the specific case, that 𝔻⊗ is the Morita category of a
⊗-Gr-cocomplete symmetric monoidal ∞-category D⊗.

Proposition 4.29. Let D⊗ be an ⊗-Gr-cocomplete symmetric monoidal ∞-category. An object in 𝕄or(D)↓,⊗

represented by a bimodule M ∈ BModA,B(D) is

(1) dualizable, if and only if M is right dualizable (see Definition C.6)

(2) fully dualizable if and only if M defines an invertible morphism in 𝕄or(D) between smooth and proper
algebra objects

Proof. We apply Proposition 4.28 to the Morita category. It follows from Proposition C.10 that every
object is dualizable in 𝕄or(D)⊗. It is a direct consequence of the definitions that M admits a right adjoint
N ∈ BModB,A(D) in 𝕄or(D) if and only if M is right dualizable. This proves (1). To prove (2), we denote
the corresponding unit and counit morphisms by

c : N ⊗AM → B and u : A→M ⊗B N

Since 𝕄or(D) only has invertible 3-morphisms, the above unit and counit morphisms admit right adjoints if
and only if c and u are invertible and N defines an inverse of M in 𝕄or(C).

Example 4.16. Let D⊗ be a ⊗-Gr-cocomplete symmetric monoidal ∞-category and (A,µ) ∈ Alg(D) an
algebra object. The regular right A-module AA defines a 1-morphism AA : 1D → A in 𝕄or(D). We claim
that A is right dualizable with dual A ∈ LModA(D). Indeed, the multiplication of A µ : A⊗A→ A forms
the counit and the unit of A forms η : 1D → A ≃ A ⊗A A the unit of the corresponding adjunction. The
triangle identities

A ≃ A⊗ 1D A⊗A A
idA ⊗η µ

are then equivalent to the right and left unitality conditions.

Unfortunately, it follows from Prop 4.29 that there exist no interesting 2-dualizable objects in 𝕄or(D)→,⊗.
The reason for that is that the (∞, 2)-category 𝕄or(D) only has invertible 3-morphisms. However, in case
that the symmetric monoidal ∞-category D⊗ admits an extension to a symmetric monoidal (∞, 2)-category
𝔻⊗, we can define a non-trivial notion of 2-morphism between bimodules11. More precisely, if we describe
the symmetric monoidal (∞, 2)-category as a (0, 1)-fibration (see Definition B.10)

𝔻⊗ → Fin∗

then a bimodule transformation can be described as a 2-functor

BM⊗ × [1]([1]) 𝔻⊗

Fin∗

F

11For the case that 𝔻 is an (∞, 2)-category of ∞-categories consider Remark B.5
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over Fin∗ that preserves cocartesian lifts of inert morphisms. Here, [1](1) denotes the (∞, 2)-category
represented by the diagram

0 1 ,

and BM⊗ denotes the symmetric ∞-operad parameterizing bimodule objects [Lur17, Sect.4.3.1]. More
generally, these are the 2-morphisms of an (∞, 2)-category, denoted with underlying ∞-category BMod(D),
that can be defined as the full sub 2-category of

𝔹mod(𝔻) ⊂ FunFin∗(BM⊗,𝔻⊗)

spanned by those (∞, 2)-functors that preserve cocartesian morphisms over inert maps in Fin∗.
Hence, in this case, the morphism ∞-categories of 𝕄or(D) admit a natural 2-categorical structure. Hence,
it should be possible to use this 2-categorical structure to extend the symmetric monoidal (∞, 2)-category
𝕄or(D)⊗ to an (∞, 3)-category denoted 𝕄or(𝔻)⊗. This intuition has been made precise in [JFS17, Sect. 8]
using iterated complete Segal spaces. The (∞, 3)-category obtained via this construction is called the even
higher Morita category. In particular, for every presentably symmetric monoidal ∞-category V, we can apply
this construction to the symmetric monoidal (∞, 2)-category ℙrL

V:

Claim 4.1. For every presentably symmetric monoidal ∞-category V, the construction of [JFS17] yields a
symmetric monoidal (∞, 3)-category 𝕄or(ℙrL

V)⊗ with

• underlying symmetric monoidal (∞, 2)-category 𝕄or(PrV)⊗.

• morphism (∞, 2)-category 𝕄or(ℙrL
V)(V,A) ≃ ℙrL

A for every A ∈ 𝕄or(ℙrL
V).

Remark 4.11. The construction of the even higher Morita category from [JFS17] is technically involved and
the author was not able to come up with a proof of the above claim in their framework. Instead, we suggest
to prove this claim using a construction of the even higher Morita category that is internally 2-categorical.
We plan to develop this framework in future work.

In particular, it follows from Proposition 4.7 that for every presentably monoidal ∞-category A⊗ ∈ Alg(PrL
V)

a 1-morphism F ∈ 𝕄or(ℙrL
V)(V,A) ≃ ℙrL

A represented by a functor F : M→ N of A-modules admits a right
adjoint if and only if the underlying functor admits a right adjoint FR in ℙrL

V and the canonical A-module
structure on FR is strong. We can use this to prove:

Proposition 4.30. Let A⊗ be a V-linear presentably monoidal∞-category. Under the hypothesis of Claim 4.1
the regular A-module A represents a 2-dualizable object in 𝕄or(ℙrL

V)→,⊗ if and only if A⊗ is rigid.

Proof. We check the conditions of Prop 4.28. It follows from Example 4.16 that the morphism represented by
A is always 1-times right adjunctible with unit and counit given by

µ :A A⊗AA →A AA and η : V→ A.

In particular, it follows from Remark 3.3 that these admit right adjoints if and only if A is rigid. The claim
then follows from Proposition 4.26.

Remark 4.12. This Proposition provides a conjectural complete classification of rigid V-linear ∞-categories
in terms of 2-dimensional fully extended relative TFTs. A similar observation appears in the context of
ℂ-linear braided monoidal 1-categories in [Haï23].
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Remark 4.13. For every symmetric monoidal (∞, 2)-category 𝔻⊗ and every algebra object A in 𝔻, it
is possible to define an (∞, 2)-category 𝔻A with underlying ∞-category given by LModA(𝔻). Using this
construction, we expect Claim 4.1 to hold for every ⊗-Gr cocomplete symmetric monoidal (∞, 2)-category.
Since the proof of Proposition 4.30 is completely formal, it would provide a classification of general rigid
algebras in the sense of Definition 3.2 in terms of TFTs.

5 Examples of Presentable ∞-Categories

Let V⊗ be a presentably symmetric monoidal ∞-category. All ∞-categories that we consider in this section
are idempotent-complete. After covering the general theory of locally rigid V-linear presentable ∞-categories
in the section 4, we focus in this section on explicit examples. In particular, we discuss how the notion of
locally rigid algebras connects to more familiar notions from the theory of TFTs like tensor and multi-fusion
categories introduced in Section 2.
As our first example, we study in Section 5.1 the case where V⊗ is the category of modules over a commutative
ring R, and in Section 5.3 the case where V⊗ is the derived ∞-category of R-modules. In this context, we
show that our notion of rigidity recovers the notion of cp-rigid monoidal categories from [BJS21, Def.1.3]
and rigid R-linear dg-category from [Gai15]. The notion of cp-rigidity is more general than rigidity for
tensor categories. Cp-rigid tensor categories include the class of tensor categories via the sifted completion
construction (see Example 4.2), but also allow for more general examples. The main difference to the notion
of rigidity for tensor categories is that cp-rigidity only requires the existence of duals for projective objects
instead of duals for all objects.
Up to now, we have only discussed rigidity for large presentable categories, but our notion of rigidity is
flexible enough to be applied in an arbitrary symmetric monoidal (∞, 2)-category. Especially, since our
objects of interest naturally form small instead of large categories, we will study in Section 5.2 rigidity in a
2-category of small R-linear categories. As these form a faithful sub-2-category of the 2-category of R-linear
presentable categories, rigid algebras will satisfy additional finiteness conditions. The main difference to the
presentable case is that, while a small additive category is always dualizable as a presentable category, it is
only dualizable as an additive category if it is semisimple and the Hom-modules are finite and projective.
Using this insight, we show that for an algebraically closed field 𝕂, this notion of rigid algebra precisely
recovers 𝕂-linear multi-fusion categories.
Building on the above characterization of multi-fusion categories as rigid algebras, we study in Section 5.4
rigid algebras in small 𝕂-linear stable ∞-categories. As in the 1-categorical case, these have to satisfy extra
finiteness conditions. In particular, we see that in the derived context the semisimplicity condition gets
replaced by a weaker condition called smoothness. By analogy, with the 1-categorical case of multi-fusion
categories, we refer to these as derived multi-fusion categories. To justify this terminology, we first show that
derived categories of fusion categories provide examples of these, and further relate our notion to a criterion
for fully dualizable 𝔼2-algebras from [Lur08]. Unfortunately, we were not able to construct any interesting
example of an 𝔼2-algebra that satisfies this criterion. To this end, we finish this section by discussing potential
construction methods for these 𝔼2-algebras.

5.1 Additive Categories

Our goal in this section is to discuss the relation between locally rigid algebras and tensor categories. Therefore,
we need to introduce different symmetric monoidal 2-categories:

• the symmetric monoidal 2-category add⨿,⊗
ic of idempotent-complete additive categories.
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• the symmetric 2-category addrex,⊗ of additive categories with finite colimits.

• the symmetric 2-category 𝕡rL,⊗
add of presentable additive categories.

Although similar categories have partially been described, for example by Brochier–Jordan –Snyder [BJS21]
using explicit constructions, we include a complete discussion here. To highlight the similarities with the
derived approach presented in Section 5.3, we only use properties of idempotent-algebras for our construction.
We denote by catrex the (2, 1)-category of finitely cocomplete small categories and right exact functors.12

Using the machinery of Section 4.1, we can equip this category with a symmetric monoidal structure. The
natural category for the study of abelian categories would be the full subcategory of catrex, whose objects
are abelian categories. We denote this (2, 1)-category by abrex. Unfortunately, this full subcategory is not
symmetric monoidal, since the Deligne-Lurie tensor product of two abelian categories is not necessarily
abelian [Fra13]. To circumvent this issue, we instead consider a slightly larger category.
Let addrex the full subcategory of catrex generated by finitely cocomplete additive categories [Lur17, Def.1.1.2.1].
This (2, 1)-category in particular includes the (2, 1)-category abrex. Moreover, as we will see in Proposition 5.3,
the symmetric monoidal structure on catrex restricts to addrex. To continue our discussion, we recall the
definition of a projective object:

Definition 5.1. Let C be a small 1-category. An object P ∈ C is called projective if the functor

Map(P,−) : C→ Set

preserves reflexive coequalizers (i.e sifted colimits). We say C has enough projectives if the smallest subcategory
of C that contains the projective objects and is closed under finite colimits coincides with C.

Remark 5.1. If A is abelian, this definition agrees with the classical definition of being projective. Indeed,
for every object P ∈ A the functor Map(P,−) preserves epimorphisms if and only if it preserves reflective
coequalizers.

For an additive category A, we denote by Ap its full subcategory of projective objects. It follows from the
definition that this category is itself idempotent-complete and closed under finite coproducts. Hence, it is
additive. We denote by cat⨿,⊗

ic the symmetric monoidal (2, 1)-category of idempotent-complete categories
that admit finite coproducts and coproduct preserving functors, and by add⨿

ic its full subcategory spanned by
additive categories.
Note that an arbitrary right exact functor between right exact additive categories does not preserve projective
objects. We denote by addrex

p the (non-full) subcategory of addrex with objects right exact additive categories
with enough projectives and morphisms right exact functors that preserve projective objects. Taking the full
subcategory generated by projective objects then defines an equivalence

(−)p : addrex
p → add⨿

ic

with inverse Pfin
1,⨿(−) : addic → addrex

p given by the 1-categorical finite colimit completion (see Example 4.3).
For an idempotent-complete additive category, we can describe the category Pfin

1,⨿(A) more explicitly. It is
equivalent to the full subcategory of the category of additive functors Funadd(A,Ab) generated by functors
that are given as coequalizers of representable functors. These are called finitely presented functors in [Kra21,
Sect.2.1].
We further denote by prL

add the (2, 1)-category of additive presentable 1-category. As explained in Example 4.8,
12Note that every category with finite colimits is idempotent-complete. This is different for ∞-categories.
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this category is equivalent to the (2, 1)-category RModAb(PrL) of modules over the idempotent algebra Ab. In
particular, it inherits a symmetric monoidal structure. To understand its relation to addrex and add⨿

ic, we
need the following definitions:

Definition 5.2. Let C be a presentable 1-category. An object C ∈ C is called compact if the functor
MapC(C,−) : C→ Set commutes with filtered colimits. An object P ∈ C is called is called compact-projective
(cp) if it is compact and projective.
We say that C is compactly generated if the smallest subcategory of C that contains all compact objects and is
closed under filtered colimits is C itself. C is called cp-generated if the smallest subcategory of C that contains
the compact-projective objects and is closed under small colimits is C itself.

Note, that for an additive presentable category A, its full subcategories of compact and compact-projective
objects Ac and Acp are themselves additive and idempotent complete. Furthermore, the category Ac is closed
under finite colimits. The sifted completion13

PΣ
1 (−) : cat⨿

ic → prL

identifies cat⨿
ic with the subcategory prL

cp of prL generated by cp-generated presentable categories and compact-
projective preserving cocontinuous functors. Similarly the inductive completion functor14

Ind(−) : catrex → prL

identifies catrex with the category prL
c of compactly generated presentable categories and compact object

preserving cocontinuous functors. The inverse is given by taking compact objects (−)c : prL
c → catrex.

Proposition 5.1. The functors PΣ
1 (−) and Ind(−) restrict to equivalences PΣ

1 (−) : add⨿
ic → prL

cp,add and
Ind(−) : addrex → prL

c,add

Proof. We show the statement for the functor PΣ
1 (−). Given a cp-generated presentable additive category A,

the category Acp is closed under coproducts and idempotent-complete. Hence it is an object of add⨿
ic. On

the other hand, let B be an idempotent complete additive category. It follows from the universal property
of PΣ

1 (B) that there exists an equivalence PΣ
1 (B) ≃ Fun⨿(Bop,Set). It is easy to check that this category is

additive.

So far we have restricted ourselves to additive categories, instead of abelian categories, since the category
of abelian categories, in general, does not admit symmetric monoidal structures. This is different for the
category of presentable abelian categories:

Definition 5.3. A Grothendieck abelian category A is a presentable abelian category such that filtered
colimits are exact in A. We denote by Groth the full subcategory of prL

add consisting of Grothendieck abelian
categories and colimit preserving functors.

Example 5.1. Let A ∈ add⨿
ic be a small additive category. Then PΣ

1 (A) is a Grothendieck abelian category.
Indeed, since PΣ

1 (A) is presentable and additive, we can identify it with the category Funadd(Aop,Ab) of
additive functors. This category is abelian and Grothendieck [Kra21, Sect.11.1, p.345].

We denote by Grothc and Grothcp the full subcategories of prL
c,add respectively prL

cp,add generated by Grothendieck
abelian categories. The above result implies:

13See Example 4.2
14See Example 4.1
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Proposition 5.2. Every cp-generated presentable additive category is Grothendieck abelian. In particular,
the inclusion restricts to an equivalence prL

cp,add ≃ Grothcp.

Remark 5.2. While it is true that the sifted cocompletion PΣ
1 (A) of an idempotent-complete small additive

category is abelian, the analogous statement does not hold for its finite cocompletion Pfin
1,⨿(−) [Kra21,

Lem.2.1.6]

Before we turn to the study of locally rigid algebras in these categories, let us show that the symmetric
monoidal structures on catrex,⊗ and cat⨿,⊗

ic restrict to symmetric monoidal structures on addrex,⊗ and add⊗
ic

respectively. To do so we exhibit them as categories of modules over idempotent algebras. We denote by Abfg

and Abfg,p the symmetric monoidal categories of finitely generated (short f.g.) and f.g. projective abelian
groups respectively. Note, that these arise as the respective categories of compact and compact projective
objects in Ab. Since the tensor product of abelian groups preserves finitely generated (resp. finitely generated
projective) abelian groups, it restricts to a symmetric monoidal structure on Abfg and Abfg,p.

Proposition 5.3. The following holds:

(1) The symmetric monoidal category Abfg,⊗ is an idempotent algebra in catrex,⊗ and its category of modules
coincides with addrex.

(2) The symmetric monoidal category Abfg,p,⊗ is an idempotent algebra in cat⨿,⊗
ic and its category of modules

coincides with add⨿
ic.

Proof. We prove (1). The proof of (2) is analogous. Note that the tensor product of abelian groups preserves
finitely generated abelian groups. Hence, Ab also forms an idempotent algebra in the symmetric monoidal
category prL

c . In particular, since (−)c : prL,⊗
c → catrex,⊗ is a symmetric monoidal equivalence, Abfg also forms

an idempotent algebra in catrex. To determine the reflective subcategory that is classified by Abfg, we consider
the commutative diagram

ModAb(prL
cp) prL

c,add

ModAbfg(catrex) catrex

≃

≃ (−)c

Since the diagram commutes, it follows that the subcategory classified by Abfg coincides with the essential
image of prL

c,add under (−)c. But this category is given by addrex. Hence, the claim follows.

We now turn to the study of locally rigid algebras in 𝕡rL,⊗
add . As a consequence of Proposition 4.19, it suffices

to understand the Ab-atomic objects:

Proposition 5.4. Let A be a presentable additive 1-category. An object A ∈ A is Ab-atomic if and only if it
is compact-projective. Further, A is atomically-generated if and only if it is cp-generated.

Proof. Let A ∈ prL
add be a presentable additive 1-category. Since Ab⊗ is an idempotent algebra, it suffices to

understand for which A ∈ A the internal Hom-functor

homA(A,−) : A→ Ab

preserves small colimits. Since finite products and coproducts coincide in Ab, it follows that for any A ∈ A

the internal Hom-functor preserves finite coproducts. It suffices to show that it preserves filtered colimits and
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coequalizers if and only if A is compact-projective. Note, that the forgetful functor U : Ab→ Set preserves
filtered colimits and coequalizers. Consequently, A is atomic if and only if the composite

U ◦ homA(A,−) ≃ MapA(A,−)

preserves filtered colimits and coequalizers. But this is the definition of being compact-projective.

We can finally conclude from the characterization of (locally) rigid algebras in Proposition 4.19:

Proposition 5.5. A cp-generated presentably monoidal additive category A⊗ is locally rigid in 𝕡rL,⊗
add if and

only if each compact-projective object admits a dual. It is rigid in 𝕡rL,⊗
add if and only if it is locally rigid and

the unit object is compact-projective.

Definition 5.4. [BJS21, Def.1.3] A cp-generated presentably monoidal additive category A is called locally
cp-rigid if every compact-projective object admits a dual. It is called cp-rigid if it is locally cp-rigid and
the unit 1A is compact-projective. We call a small monoidal additive category A rigid, if PΣ

1 (A) is cp-rigid.
Equivalently it is rigid if every object of A admits a dual.

Remark 5.3. Our terminology is different from [BJS21]. Indeed, in their terminology, a locally cp-rigid
presentable additive category would be called cp-rigid.

For a monoidal additive category E, we abuse notation and denote 𝕡rL
PΣ

1 (E) by 𝕡rL
E and call a PΣ

1 (E)-linear
presentable additive category simply E-linear. Similarly, we denote 𝕒ddrex

Pfin
1,⨿(E) by 𝕒ddrex

E and call Pfin
1,⨿(E)-linear

finitely cocomplete additive categories E-linear.

Example 5.2. Let R be a commutative ring. The symmetric monoidal category rmodfg,p,⊗
R of finitely

generated projective R-modules equipped with the relative tensor product is a rigid additive category. We
call rmodfg,p

R -linear presentable (resp. finitely cocomplete) additive categories simply R-linear and denote
𝕡rL

rmodfg,p
R

(resp. 𝕒ddrex
rmodfg,p

R

) by 𝕡rL
R (resp. 𝕒ddrex

R ).

The following is a consequence of Proposition 4.20:

Corollary 5.6. Let E⊗ be a rigid symmetric monoidal additive category. Then a cp-generated E-linear
presentably monoidal additive category A⊗ is (locally) rigid in 𝕡rL,⊗

E if and only if A⊗ is (locally) cp-rigid.

To compare this new notion of (local) cp-rigidity to the familiar one for tensor categories introduced in
Definition 2.1, we need the following large variant of a tensor category:

Definition 5.5. Let A⊗ be a compactly generated presentably monoidal additive category. A⊗ is called a
large tensor category if every compact object admits a dual.15

Example 5.3. (1) Let 𝕂 be a field and A⊗ be a 𝕂-linear finitely cocomplete monoidal abelian category.
The presentably monoidal category Ind(A)⊗ is a tensor category if and only if every object of A admits
a left and right dual. This is the case if A⊗ is a tensor category in the sense of Definition 2.1.

(2) Let A⊗ be an 𝕂-linear finite tensor category in the sense of Definition 2.1. Since A has enough
projectives, it follows that Ind(A)⊗ ≃ PΣ

1 (Ap)⊗ is also locally cp-rigid. It is easy to see that it is
cp-rigid if and only if A⊗ is a multi-fusion category.

15This terminology agrees with our terminology from Section 2.
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Example 5.4. It is shown in [BJS21] that local cp-rigidity is a strictly weaker condition than being a large
tensor category. Indeed, let A = ℂ[x]/(x2) be the algebra of dual numbers. Then the category BModA(Vectk)
of A-bimodules is cp-generated by the bimodule A⊗A, which is also dualizable since A is finite-dimensional.
On the other hand, the trivial bimodule ℂ is compact but not dualizable (since it is not projective). Hence,
BModA(Vectk) is an example of a category that is locally cp-rigid but not a large tensor category.

Remark 5.4. The main benefit of studying finite tensor categories over cp-rigid categories is that the
stronger rigidity assumption forces the monoidal product functor of the finite tensor category to be exact.
The above discussion shows that this is a rather unnatural, restrictive condition from the perspective of fully
extended TFTs. The reason is that, as we discuss in Section 5.3, exact functors arise more naturally at the
level of stable ∞-categories.

5.2 Fusion Categories

Throughout this section, 𝕂 denotes an algebraically closed field. In the last section, we have classified locally
rigid algebras in the symmetric monoidal 2-category of large 𝕂-linear categories. As we are mainly interested
in small 𝕂-linear categories, our goal in this section is to provide a similar classification of rigid algebras
in the symmetric monoidal 2-category of small 𝕂-linear categories. Interestingly, these can be explicitly
described in terms of multi-fusion categories:

Theorem 5.7. Let 𝕂 be an algebraically closed field. Then an additive idempotent complete 𝕂-linear monoidal
category A⊗ is rigid in 𝕒dd⨿,⊗

𝕂 if and only if it is a 𝕂-linear multi-fusion category (see Definition 2.1).

To prove this Corollary, we first need to understand the dualizable objects in add⨿,⊗
𝕂 . These have been

classified for stable ∞-categories [HSS17, Sect.4]. The discussion for additive categories works completely
analogous and we only recall the main steps.
Let E⊗ be a rigid symmetric monoidal additive category and A an E-linear additive category. Consider the
E-linear functor

A→ Funadd
E (E,A) ≃ FunL,cp

E (PΣ
1 (E),PΣ

1 (A))

that associates to every a ∈ A the E-linear action functor −⊗ a : E→ A. After passing to the level of sifted
completions, this functor admits a right adjoint homA(a,−) : A→ PΣ

1 (E). Hence, we obtain a functor

A→ FunL,cp
E (PΣ

1 (E),PΣ
1 (A))→ FunL

E(PΣ
1 (A),PΣ

1 (E))op ≃ Funadd
E (A,PΣ

1 (E))op,

where the second functor is obtained by passing to adjoints objectwise. Unraveling definitions, its opposite
is the E-linear functor Aop → Funadd

E (A,PΣ
1 (E)) that associates to every a ∈ A the E-linear corepresentable

functor a′ 7→ homA(a, a′) ∈ PΣ
1 (E).

Definition 5.6. Let E be a symmetric monoidal rigid additive category and A ∈ add⨿
E an E-linear additive

category. The E-linear Yoneda embedding is the E-linear functor

YE : A→ Funadd
E (Aop,PΣ

1 (E))
a 7→ homA(a,−),

obtained from the above functor by passing through the tensor-hom-adjunction.

Unraveling definitions, the E-linear Yoneda embedding maps a ∈ A to the E-linear representable functor
homA(−, a) : Aop → PΣ

1 (E).
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Definition 5.7. Let E⊗ be a rigid symmetric monoidal additive category and A ∈ add⨿
E an E-linear additive

category. Then A is called

(1) E-proper, if the functor internal Hom functor homA(−,−) : A⊗E Aop → PΣ
1 (E) has its essential image

contained in E.

(2) E-smooth, if the internal Hom functor homA(−,−) ∈ Funadd
E (A⊗E Aop,PΣ

1 (E)) is compact-projective.

Example 5.5. Let E⊗ ≃ Vectfin,⊗
𝕂 . Then a 𝕂-linear category A is Vectfin

𝕂 -proper if and only if for all objects
a, b the Hom-space homA(a, b) is finite-dimensional.

Using this definition, we can now classify dualizable E-linear additive categories:

Proposition 5.8. Let E⊗ be a rigid symmetric monoidal additive category and A an E-linear additive
category. Then A is dualizable in add⨿,⊗

E , if and only if A is E-smooth and E-proper.

Proof. The proof is completely analogous to the proof of Proposition 5.22.

Therefore, to understand locally rigid algebras, it remains to understand adjoints in 𝕒dd⨿
E . It follows from

Proposition 5.1 that the symmetric monoidal (∞, 2)-functor

PΣ
1 (−) : 𝕔at⨿,⊗

E → 𝕡rL,⊗
E

restricts to an equivalence of symmetric monoidal (∞, 2)-categories PΣ
1 (−) : 𝕒dd⨿,⊗

E → 𝕡rL,⊗
cp,E. Therefore,

instead of analyzing (locally) rigid algebras in 𝕒dd⨿,⊗
E , we can analyze them in the symmetric monoidal

(∞, 2)-category 𝕡rL,⊗
cp,E:

Theorem 5.9. Let E⊗ be a rigid symmetric monoidal additive category. An E-linear monoidal additive
category A⊗ is locally rigid in 𝕒dd⨿,⊗

E if and only if

(1) A is E-smooth and E-proper.

(2) every compact-projective object admits a dual.

(3) µR(1A) ∈ PΣ
1 (A⊗E A) is compact-projective.

Moreover, then A⊗ is also a rigid algebra.

Proof. The first part follows directly from Proposition 3.2. It remains to prove the last statement. Therefore,
it suffices to show that the right adjoint of the unit morphism

η : PΣ
1 (E)→ PΣ

1 (A)

preserves compact-projective objects. But the right adjoint functor is given by the internal Hom-functor
homPΣ

1 (A)(1A,−) that preserves compact-projective since A is E-proper.

Our next goal is to understand the relation between conditions (1)− (3) and multi-fusion categories more
explicitly. The condition of E-properness is easy to understand. Indeed, an E-linear additive category A is
E-proper if and only if the E-action on A is closed. The condition of E-smoothness on the other hand is more
subtle and related to separability and hence, semisimplicity.
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Example 5.6. Let E⊗ be a rigid symmetric monoidal additive category and A be a smooth algebra16 in
PΣ

1 (E). It follows as in the proof of Proposition 5.29 that the category RModA(PΣ(E)) is E-smooth if and only
if A is a smooth algebra object in PΣ(E). If A is smooth, then the regular bimodule is compact-projective
and hence, the multiplication map

µ : A⊗E A⇄ A : ∆

admits a section ∆ as a morphism of A-bimodule. As a consequence, in the context of additive categories,
smooth algebras are the same separable algebras. Analogously, it follows that the category is E-proper if and
only if the underlying object of the algebra A is compact-projective in PΣ

1 (E), i.e. an object of E ⊂ PΣ
1 (E).

In case, that E⊗ ≃ rmod⊗
R for a commutative ring R, the category rmodA of modules over a separable

R-algebra A is always semisimple and the algebra A is proper if and only if A is a finite projective R-module.

Proposition 5.10. [Ste23, Lem.4.2.5] Let E⊗ be a rigid symmetric monoidal additive category and let
A ∈ prL

E be an E-smooth cp-generated presentable additive category. Then there exists a smooth algebra object
S ∈ Alg(PΣ

1 (E)) and an equivalence A ≃ LModS(PΣ
1 (E)).

This proposition has already been proven in [Ste23, Lem.4.2.5]. For completeness, we provide a sketch of the
proof here.

Proof Sketch. We will construct a compact-projective generator for A. Since A is cp-generated, we can choose
a collection of generators of compact projective objects {At}t∈T . As T might be infinite, the sum

⊕
t∈T At

may not be projective. So we have to single out a finite collection of generators. Therefore, denote for any
finite subset S ⊂ T by AS the smallest full subcategory containing {As}s∈S that is closed under colimits
and the E-action. Note that A ≃ colimS⊂finT AS can be written as a filtered colimit of the AS . Since A

is E-smooth, it follows that the identity functor idA ∈ Funadd
E (A,A) is compact. Hence, there exists some

finite subset S ⊂ T , s.t. idE factors through AS . Hence, the inclusion of AS admits a section and A ≃ AS .
Therefore,

⊕
s∈S As is a compact-projective generator for A.

Recall that every cp-generated presentable additive category is in particular an abelian category (see
Example 5.1). Since these are large abelian categories, we need a version of semisimplicity for large categories:

Definition 5.8. A cp-generated Grothendieck abelian category A is called semisimple if every short exact
sequence in A splits.

Example 5.7. Let A be a semisimple small abelian category with enough projectives. Then the category
Ind(A) is a semisimple Grothendieck abelian category. In particular, for every fusion category C the category
Ind(C) is semisimple Grothendieck abelian.

Remark 5.5. Let A be a small semisimple abelian category. Then every object of A is projective and we
have a chain of equivalences A ≃ Ap ≃ Pfin

1,⨿(A). The latter makes sense, since every finite colimit in a
semisimple abelian category A can be expressed as a retract of a coproduct. In particular, it follows that
PΣ

1 (A) ≃ Ind(A).

Proposition 5.11. Let E⊗ be a semisimple rigid symmetric monoidal additive category and let A be a
cp-generated E-linear presentable additive category. If A is smooth, then it is semisimple.

Proof. Since every short exact sequence between projective objects splits, it suffices to show that every object
of A is projective. It follows from Proposition 5.10 that there exists a smooth algebra object S ∈ Alg(PΣ

1 (E)),
16In the sense of Definition 4.5
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s.t. A ≃ LModS(PΣ
1 (E)). Since S is smooth, the multiplication map m : S ⊗E S → S admits a section ∆ as a

S-bimodule map. It follows that for every S-module M the composite

M ≃ S ⊗S M → (S ⊗E S)⊗S M) ≃ S ⊗E M →M ⊗S S ≃M

exhibits M as a retract of a free S-module. Since M is projective in the semisimple category PΣ
1 (E) also

M ⊗ S is projective in RModS(PΣ
1 (E)). Hence M is projective in RModS(PΣ

1 (E)) as it is the retract of a free
module.

Corollary 5.12. Let 𝕂 be a perfect field, then a small 𝕂-linear additive category A is dualizable in add⨿,⊗
𝕂 if

and only if it is semisimple and all Hom-spaces are finite-dimensional.

Proof. Since 𝕂 is a perfect field, a 𝕂-algebra is separable if and only if it is semisimple. Hence, it follows
from the proof of Proposition 5.11 that every smooth and proper 𝕂-linear additive category A is equivalent
to the category of finite-dimensional modules rmodfin

A (Vect𝕂) over a finite-dimensional, semisimple algebra
A. On the other hand, it follows from Example 5.6 that for a 𝕂-algebra A the category rmodfin

A (Vect𝕂) is
𝕂-smooth and 𝕂-proper if and only if A is finite-dimensional and semisimple.

Remark 5.6. A similar observation was made by Tillmann in the study of modular functors [Til98].

It remains to understand the underlying object of the canonical algebra µR(1A) ∈ PΣ
1 (A ⊗E A). In case,

that PΣ
1 (A) is semisimple, every object in PΣ

1 (A) can be written as a direct sum of simples indexed by a small
set. In particular, these direct sums could be infinite. Those that arise as finite direct sums of simples admit
the following interpretation:

Proposition 5.13. [Ste23, Prop.2.3.2] Let C be a semisimple Grothendieck abelian category. Then an object
in C is compact if and only if it is equivalent to a finite direct sum of simples.

In case that E is the category of vector spaces over an algebraically closed field 𝕂, we obtain the following
explicit description:

Proposition 5.14. Let 𝕂 be an algebraically closed field and A a cp-rigid semisimple 𝕂-linear additive
category. Then µR(1A) is compact-projective if and only if A has finitely many simples.

Proof. Denote by I the small set of isomorphism classes of simple objects in A. We claim that
⊕

i∈I Si ⊗ S∗
i

satisfies for all compact-projective objects x, y ∈ A the defining property of µR(1A). This follows from the
chain of equivalences:

homA⊗𝕂A(x⊗𝕂 y,
⊕
i∈I

Si ⊗𝕂 S
∗
i ) ≃

⊕
i∈I

homA(x, Si)⊗ homA(y, S∗
i ) ≃

⊕
i∈I

homA(x, Si)⊗ homA(Si, y∗)

≃ homA(x, y∗) ≃ homA(x⊗ y,1A),

where we have used the duality in the third step and semisimplicity in the fourth. The claim then follows
from Proposition 5.13.

Remark 5.7. We have used explicitly in the above calculation that we are working over an algebraically
closed field. In general, the canonical algebra admits a description as a more complicated coend [SW21].

Proof of Theorem 5.7. We need to check that the conditions of Theorem 5.9. The claim then follows from
combining Corollary 5.12 and Proposition 5.14.
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To finish our discussion of multi-fusion categories, we interpret our result in the context of fully extended
TFTs. Let 𝕂 be a field and A a 𝕂-linear fusion category. If the field 𝕂 is of characteristic zero, it has
been shown in [DSPS20, Cor.3.4.8] that fusion categories form the fully dualizable objects in the symmetric
monoidal 3-category Ten⊗

𝕂 [DSPS20, Cor.2.6.8] of finite 𝕂-linear tensor categories, a symmetric monoidal
sub-3-category of the even higher Morita category 𝕄or(𝕡rL

𝕂)⊗ [JFS17] of 𝕂-linear presentable 1-categories.
However, this is only true for specific classes of fields. For a general perfect field 𝕂 a (multi-)fusion category
only defines a so-called non-compact 3-dimensional framed fully extended TFT [Lur08, Def.4.2.10]. Informally
this means, that the corresponding fully extended 3-dimensional TFT is only defined on 3-manifolds that
admit non-trivial boundary. The reason is that multi-fusion categories over a general field, don’t satisfy the
dualizability condition that is described in (∞, 3)-category of framed 3-dimensional cobordisms Bordfr,⊗

3 by
the attachment of 3-handles to a 3-manifold.
To fix this, one needs an extra condition called separability to ensure that A is fully dualizable [DSPS20,
Thm.3.4.10]. A multi-fusion category over a perfect field 𝕂 is called separable if the canonical algebra FA is also
smooth, i.e. dualizable in BModFA

(Ae) [DSPS20, Def.2.5.8]. Equivalently FA has to be a compact-projective
object in BModFA

(Ae). Over a field of characteristic 0, every multi-fusion category is separable. As the
following example shows, this is not necessarily true in characteristic p ̸= 0.

Example 5.8. Let 𝕂 = 𝔽p be a finite field and G = Cp. The category Vectfin
Cp

of Cp-graded vector spaces is
a multi-fusion category, however it is not separable. For this, it suffices to show that BModFA

(Ae) is not
semisimple [DSPS20, Cor.2.5.10].
Therefore, note that BModFA

(Ae) is equivalent to the Drinfeld center Z𝔼1(Vectfin
Cp

). The Drinfeld center
can be equivalently described as the category Fun(Cp/adjCp,Vectfin

𝔽p
), where Cp/adjCp denotes the quotient

groupoid of the adjoint action of Cp on itself. Pulling back along the projection p : Cp/adjCp → ∗/Cp induces
a fully faithful inclusion

p∗ : Rep𝔽p
(Cp) ≃ Fun(∗/Cp.Vectfin

𝔽p
) ↪→ Fun(Cp/adjCp,Vect𝔽p).

But as the category Rep𝔽p
(Cp) is not semisimple, the same is true for BModFA

(Ae), and hence FA is not
smooth.

5.3 Stable ∞-Categories

In the last section, we analyzed locally rigid additive 1-categories to understand rigid abelian categories and
multi-fusion categories. A more refined invariant of an abelian category is its derived ∞-category [Lur17,
Sect.1.3.2]. This ∞-category is most naturally described using the language of stable ∞-category [Lur17,
Sect.1.1].
One big advantage of the theory of derived∞-categories over the one of abelian categories is that all right/left
exact functors between abelian categories induce exact functors between their derived ∞-categories. This
is especially interesting for the study of 3-dimensional TFTs, where many restrictions on the input data
are imposed, to ensure that all constructions are exact [EGNO16]. Therefore, these constructions could
potentially be performed for a broader class of examples at the level of derived ∞-categories. Our goal in
this section is to develop an analogue of the discussion presented in the last section for stable ∞-categories.
Therefore, recall that an object c in a presentable ∞-category C is called compact if the representable functor

MapC(c,−) : C→ S
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preserves filtered colimits. We denote by Cc its full subcategory of compact object, and call C compactly
generated, if the smallest subcategory of C that contains Cc and is closed under colimits is C itself.
We denote by Catrex

ic the ∞-category of small, idempotent complete, finitely cocomplete ∞-categories and
right exact functors and by PrL

c the∞-category of compactly generated presentable∞-categories and compact
object preserving cocontinuous functors. As explained in Section 4.1, these ∞-categories can be equipped
with symmetric monoidal structures induced by the Deligne-Lurie tensor product. We denote by St the
full subcategory of Catrex

ic generated by the idempotent complete, stable ∞-categories. Note that it follows
from the definition of a stable ∞-category, that every right exact functor between stable ∞-categories is
automatically exact [Lur17, Prop.1.4.1].
Our first goal in this section is to show that this subcategory is also closed under the symmetric monoidal
structure by exhibiting it as a category of modules over an idempotent algebra.

Proposition 5.15. The Ind-completion induces an equivalence Ind(−) : Catrex
ic → PrL

c with inverse given by
mapping a compactly generated presentable ∞-category to its full subcategory of compact objects (−)c : PrL

c →
Catrex

ic . Moreover, these functors restrict to an equivalence Ind(−) : St→ PrL
st,c

Proof. The first part is [Lur17, Lem.5.3.2.9]. It follows from [Lur17, Prop.1.1.3.6] that for every stable
∞-category C, the Ind-completion Ind(C) is also a stable ∞-category. The other direction follows from the
observation that the subcategory of compact objects is closed under finite colimits and retracts. Hence, for
every C ∈ PrL

st the subcategory of compact objects Cc itself idempotent complete and stable.

Proposition 5.16. The ∞-category Spfin of finite spectra [Lur17, Sect.1.4] is an idempotent algebra in
Catrex

ic . The forgetful functor RModSpfin(Catrex
ic )→ Catrex

ic is fully faithful with essential image St.

Proof. Recall, that the ∞-category Sp is compactly generated with subcategory of compact objects given by
the ∞-category Spfin and the smash-product monoidal structure on Sp⊗ preserves compact objects. Hence,
Sp⊗ defines an idempotent algebra in PrL,⊗

c and therefore Spfin is an idempotent algebra in Catrex,⊗
ic . We,

therefore, obtain a commutative square of symmetric monoidal functors

RModSp(PrL
c) PrL

c,st

RModSpfin(Catrex
ic ) Catrex

ic

fgt

(−)c (−)c

fgt

All functors are fully faithful and the upper horizontal and left vertical functors are further essentially
surjective. Hence, the functor fgt induces an equivalence on the essential image of the right vertical functor.
But this is given by the ∞-category St.

For later use, let us also record the (∞, 2)-categorical variant of the above equivalence. Let E⊗ be a symmetric
monoidal stable ∞-category. As in the additive case, we adopt the convention and denote the symmetric
monoidal (∞, 2)-category ℙrL,⊗

Ind(E) by ℙrL,⊗
E and call Ind(E)-linear ∞-categories simply E-linear.

We denote by 𝕊t⊗
E the locally full sub-(∞, 2)-category of the symmetric monoidal (∞, 2)-category ℂat⊗,rex

ic,E
generated by the E-linear stable ∞-categories. Similarly, we denote by ℙrL

c,E the locally full sub-(∞, 2)-
category of ℙrL

E generated by compactly generated E-linear presentable ∞-categories and compact object
preserving E-linear functors. We can then proof the following extension of Proposition 5.15:

Proposition 5.17. Let E⊗ be a symmetric monoidal stable ∞-category. The symmetric monoidal (∞, 2)-
functor Ind(−) : 𝕊t⊗

E → ℙrL,⊗
E induces an equivalence of symmetric monoidal (∞, 2)-categories 𝕊t⊗

E ≃ ℙrL,⊗
c,E .
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Proof. It suffices to show that it induces an equivalence on spaces of objects and an equivalence on ∞-
categories of morphisms. It follows from Proposition 5.15 that the functor induces an equivalence on spaces
of objects. For the equivalence on morphism ∞-categories note, that restriction functor

FunL
Ind(E)(Ind(A), Ind(A))→ Funex

E (A, Ind(A))

is an equivalence of ∞-categories. Since Ind(A)c ≃ A, this functor identifies the full subcategory of
FunL

Ind(E)(Ind(A), Ind(A)) generated by compact object preserving functors with those E-linear exact functors
F : A→ Ind(A) whose essential image lies in A.

We now turn to the classification of locally rigid algebras in the (∞, 2)-category ℙrL,⊗
st . Therefore, we need to

determine the atomic objects:

Proposition 5.18. Let C be a presentable stable ∞-category. An object C ∈ C is Sp-atomic if and only if it
is compact. Further, C is atomically generated if and only if C is compactly generated.

Proof. Since the ∞-category of spectra Sp⊗ is an idempotent algebra, it follows that an object is atomic if
and only if the internal Hom-functor homC(c,−) : Cop → Sp preserves small colimits. Since Sp is a stable
∞-category, finite limits, and colimits coincide. Hence, for every c ∈ C the functor homC(c,−) : Cop → Sp
preserves finite colimits. Further, it follows from [BMS24, Prop. 2.8] homC(c,−) preserves filtered colimits if
and only if Map(c,−) preserves filtered colimits. In particular, a stable ∞-category is atomically-generated,
if and only if it is compactly-generated [Lur09a, 5.5.7.1].

We can then conclude from Proposition 4.19:

Proposition 5.19. Let C⊗ be a compactly generated presentably monoidal stable ∞-category. Then, C⊗ is
locally rigid in ℙrL,⊗

st if and only if every compact object is dualizable. It is rigid in ℙrL
st if and only if compact

and dualizable objects coincide.

Definition 5.9. Let E⊗ ∈ CAlg(St) be a symmetric monoidal stable ∞-category. We say E⊗ is rigid if
Ind(E)⊗ is a rigid algebra in ℙrL,⊗

st . Equivalently, E⊗ is rigid if any object of E admits a left and a right dual.

Proposition 5.20. Let E⊗ be a rigid symmetric monoidal stable ∞-category. A compactly generated E-linear
presentable ∞-category C is locally rigid in ℙrL,⊗

E if and only if every compact object admits a dual. Further,
it is rigid if the dualizable and compact objects coincide.

Proof. It follows from Proposition 4.20 that C is Ind(E)-atomically generated and the E-atomic objects
coincide with the compact objects. Hence, it follows that C is locally rigid if every compact object admits a
dual. The statement about rigidity follows analogously.

Remark 5.8. For the rigid symmetric monoidal stable ∞-category D(ℂ)⊗ this recovers the notion of rigidity
for presentable dg-categories from [Gai15].

5.4 Derived Multi-Fusion Categories

Our computations in Section 5.2 have shown that we can characterize multi-fusion categories over an
algebraically closed field 𝕂 as rigid algebras in the (∞, 2)-category of 𝕂-linear small additive categories.
Therefore, it is an interesting question, what the analogue for stable ∞-categories would be. Following our
intuition from the additive case, we adopt the following terminology:
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Definition 5.10. Let E⊗ be a rigid symmetric monoidal stable ∞-category. A rigid algebra in 𝕊t⊗
E is called

an E-linear derived multi-fusion category.

Notation 5.1. If E⊗ is equivalent to the ∞-category of perfect complexes Perf(R)⊗ over R ∈ CAlg(Sp), then
we call a Perf(R)-linear derived multi-fusion category simply R-linear.

Remark 5.9. For the sake of this text, the term derived multi-fusion category is completely motivated
by our results in the additive case. In particular, we will not show that these objects satisfy any higher
dualizability conditions as in the case of multi-fusion categories.

As classical fusion categories do, we expect that also derived multi-fusion categories satisfy dualizability in the
symmetric monoidal (∞, 3)-category 𝕄or(ℙrL

E)⊗. This (∞, 3)-category has objects presentably monoidal E-
linear ∞-categories, 1-morphisms E-linear bimodule categories, 2-morphisms cocontinuous bimodule functors,
and 3-morphisms bimodule transformations. We do not expect derived multi-fusion categories in the sense
of Definition 5.10 to be fully dualizable in this symmetric monoidal (∞, 3)-category. Instead, we expect
them to define, as ordinary multi-fusion categories do, only non-compact 3d-TFTs17. We expect that derived
multi-fusion categories need to satisfy an extra smoothness condition to describe a fully dualizable object.
More precisely, we expect that every derived multi-fusion category A⊗, s.t. the canonical algebra FA ∈ Ae is
a smooth algebra in Ae defines a fully dualizable object in 𝕄or(ℙrL

E)⊗.
After this motivational discussion, we now analyze the conditions imposed on a derived multi-fusion category
in more detail. Using the equivalence 𝕊t⊗

E ≃ ℙrc,E and Proposition 3.2, we can rephrase Definition 5.10 as
follows:

Proposition 5.21. Let E⊗ be a rigid symmetric monoidal stable ∞-category and A⊗ an E-linear monoidal
stable ∞-category. Then A⊗ is an E-linear derived multi-fusion category if and only if

(1) A is dualizable in St⊗
E .

(2) every object of A⊗ has a left and right dual.

(3) the underlying object of the canonical algebra µR(1A) ≃ FA ∈ Ind(A⊗E A) is compact, i.e is an object
of A⊗E A.

The classification of dualizable objects in St⊗
E proceeds analogously to that of dualizable objects in add⨿,⊗

ic ,
as discussed in Section 5.2, with the corresponding arguments carried out in detail in [HSS17, Sect.4]. For
completeness, we sketch their arguments here.
For A an E-linear stable ∞-category, we can consider the E-linear functor

A→ Funex
E (E,A) ≃ FunL,c

E (Ind(E), Ind(A))

that associates to every a ∈ A the E-linear action functor −⊗ a : E→ A. Passing to right adjoints, we obtain
an E-linear functor

Φ : A→ FunL,c
E (Ind(E), Ind(A))→ FunL

E(Ind(A), Ind(E))op ≃ Funex
E (A, Ind(E))op

Note that for every stable ∞-category linear over a rigid symmetric monoidal stable ∞-category E, also the
opposite Aop is E-linear with E-action given by the composite

E⊗Aop (−)∨⊗idAop−−−−−−−−→ Eop ⊗Aop (−⊗−)op

−−−−−−→ Aop

17Compare to the discussion at the end of Section 5.2
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of first taking duals in E and then the opposite of the action functor. Hence, we may consider the opposite
of the E-linear functor Φ. The corresponding E-linear functor Aop → Funex

E (A, Ind(E)) associates to every
a ∈ A the functor a′ 7→ homA(a, a′) ∈ Ind(E).

Definition 5.11. Let E⊗ be a rigid symmetric monoidal stable ∞-category and A ∈ StE an E-linear stable
∞-category. The E-linear Yoneda embedding is the E-linear functor

YE : A→ Funex
E (Aop, Ind(E))

a 7→ homA(a,−)

adjoint to the functor constructed above.

Definition 5.12. Let E⊗ be a rigid symmetric monoidal stable ∞-category and A ∈ StE an E-linear stable
∞-category. The ∞-category A is called

(1) E-proper, if the functor homA(−,−) : A⊗E Aop → Ind(E) has its essential image contained in E.

(2) E-smooth, if the functor homA(−,−) ∈ Funex
E (A⊗E Aop, Ind(E)) is compact

We can then prove:

Proposition 5.22. [HSS17, Prop.4.15] Let E⊗ be a rigid symmetric monoidal stable ∞-category, and let
A ∈ StE an E-linear stable ∞-category. Then A is dualizable in St⊗

E if and only if it is E-smooth and E-proper.
In this case, the dual of A is given by Aop equipped with the E-action described above.

Proof. It follows from [HSS17, Prop.4.10] that Ind(A) is dualizable in PrL,⊗
E with dual Ind(Aop). Unraveling

the construction, the evaluation of this duality

evInd(A) : Ind(A)⊗Ind(E) Ind(Aop) ≃ Ind(A⊗E Aop)→ Ind(E)

is given by the Ind-extension of homA(−,−) : A⊗E Aop → E and the coevaluation

coev : Ind(E)→ Ind(A)⊗Ind(E) Ind(Aop) ≃ FunL
Ind(E)(Ind(A), Ind(A))

is given by the unique Ind(E)-linear functor that maps 1E to idInd(A) ∈ FunL
Ind(E)(Ind(A), Ind(A)). Since

the inductive completion Ind(−) induces an equivalence between the symmetric monoidal ∞-categories St⊗
E

PrL,⊗
c,Ind(E), it follows that A is dualizable in St⊗

E if and only if the above evaluation and coevaluation functors
preserve compact objects. However, the evaluation functor evInd(A) preserves compact objects precisely
when A is E-proper, while the coevaluation functor coevInd(A) preserves compact objects if and only if A is
E-smooth.

Remark 5.10. In case E⊗ ≃ D♭(ℂ)⊗, the notions of smooth and proper prominently appear in the study of
dg-categories of quasi-coherent sheaves in non-commutative algebra geometry. The name originates from the
fact that the category of perfect complexes on a separated scheme of finite type X is smooth and proper in
the above sense if and only if the scheme is smooth and proper [Orl16].

We can then simplify our characterization of Proposition 5.21 to:

Proposition 5.23. Let E be a rigid symmetric monoidal stable ∞-category and A an E-linear monoidal
stable ∞-category. Then A is an E-linear derived multi-fusion category if and only if
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(1) A is E-smooth and E-proper.

(2) every object of A has a dual.

(3) the canonical algebra µR(1A) ∈ Ind(A⊗E A) is compact.

Fusion Categories

Having defined derived multi-fusion categories in the previous section, we now turn to the study of examples.
One possible approach to construct monoidal stable∞-categories is as bounded derived categories of monoidal
abelian categories. In particular, we may consider the bounded derived category of tensor categories or
more specifically, of a multi-fusion category. As a suitable derived generalization of a multi-fusion category
should, in particular, describe bounded derived ∞-categories of multi-fusion categories, verifying the latter
provides a natural first consistency test of our definition. Let us therefore determine, whether this holds for
our definition of derived multi-fusion category.
We denote by Addrex,⊗ the ∞-category of small, finitely cocomplete, idempotent complete, additive ∞-
categories and right exact functors. As a start, we recall the construction of the bounded derived ∞-category:

Definition 5.13. Let A be an idempotent complete, additive category. We call the image K♭(A) of A under
the composite functor

K♭(−) : add⨿
ic Addrex Catrex StPfin −⊗Spfin

the ∞-category of complexes with bounded homology in A.

For an additive category A, denote by Ch♭(A) the dg-category of bounded complexes in A. Its dg-nerve
Ndg(Ch♭(A)) [Lur17, Constr. 1.3.1.6] is a quasi-category, whose homotopy category hNdg(Ch♭(A)) coincides
with the 1-category of complexes with bounded homology in A. To justify our above notation, let us show
that these two ∞-categories are equivalent:

Proposition 5.24. Let A be an additive category. The stable ∞-category K♭(A) is equivalent to Ndg(Ch♭(A)).
In particular, its homotopy category hK♭(A) coincides with the 1-category of complexes with bounded homology
in A.

Proof. Denote by Add the category of idempotent complete, additive ∞-categories, and additive functors. It
follows from [LMGR+24, Cor.3.4.10] that the ∞-category Ndg(Ch♭(A)) arises as the image of A under the
restriction of the left adjoint of the inclusion St ↪→ Add to the subcategory add⨿

ic of idempotent complete
additive 1-categories. Therefore, it suffices to show that K♭(−) also provides such a left adjoint. Let B be an
idempotent complete, stable ∞-category. The claim follows from the chain of equivalences

Funex(K♭(A),B) ≃ Funrex(Pfin
⨿ (A)⊗ Spfin,B) ≃ Funrex(Pfin

⨿ (A),B) ≃ Fun⨿(A,B),

where we have used the universal property of Pfin
⨿ (−) and −⊗ Spfin.

For any abelian category A, we can apply the functor K♭(−) to the full subcategory Ap of projective objects.
This ∞-category provides a model for the bounded derived ∞-category of A if A satisfies the following
finiteness condition:

Definition 5.14. Let A be an abelian category. The homological dimension of an object A ∈ A is the least
number n ∈ ℕ ∪ {∞} s.t. there exists a projective resolution

Pn . . . P1 P0 A
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with n+ 1-terms. The homological dimension of A is the supremum of the homological dimensions of all of
its objects.

In case that A is the category of modules over an algebra A, we call the homological dimension of rmodA the
homological dimension of the algebra A.

Example 5.9. Let A be a semisimple, abelian category. Then every object of A is projective and hence, A
has homological dimension 0.

Definition 5.15. Let A be an abelian category with enough projectives and of finite homological dimension.
We call the ∞-category K♭(Ap) the bounded derived ∞-category D♭(A) of A.

For later use, we also record the Ind-completion of the functor K♭(−). Therefore, we consider the composite
of symmetric monoidal functors

add⨿,⊗
ic PrL,⊗ PrL,⊗

st .
PΣ(−) −⊗Sp

It follows that for any additive category A there exists a chain of equivalences

Ind(K♭(A)) ≃ Ind(Spfin⊗Pfin
⨿ (A)) ≃ Sp⊗ Ind(Pfin(A)) ≃ Sp⊗PΣ(A).

Hence, the above functor associates to A the Ind-completion of K♭(A). In case, that Ap arises as the
subcategory of projective objects in an abelian category A with enough projectives, we can describe the
∞-categories PΣ(Ap) and Sp⊗PΣ(Ap) more explicitly.
For an abelian category A denote by Ch(A) the dg-category of unbounded complexes in A. Its unbounded
derived∞-category D(A) is defined as the localization of the∞-category of unbounded complexes Ndg(Ch(A))
at the collection of quasi-isomorphisms. In particular, it follows from the formal properties of ∞-categorical
localizations, that its homotopy 1-category agrees with the ordinary unbounded derived category h1D(A) of A.
Further, denote by D≥0(A) the full subcategory of D(A) spanned by complexes with homology concentrated
in positive degrees. If A is equivalent to the category of modules over a ring R, we abuse notation and denote
the corresponding derived category by D(R).

Proposition 5.25. [LMGR+24, Prop.3.6.6] Let A be a cp-generated Grothendieck abelian category. Then

(1) the presentable additive ∞-category D≥0(A) is equivalent to PΣ(Acp).

(2) the presentable stable ∞-category D(A) is equivalent to Ind(K♭(Acp)).

After these preliminary observations, we can now prove that derived categories of multi-fusion categories
indeed form derived multi-fusion categories.

Proposition 5.26. Let E⊗ be a rigid, semisimple, symmetric monoidal, additive category, and A⊗ be a rigid
algebra in 𝕒dd⨿,⊗

E . Then its bounded derived category D♭(A) is a D♭(E)-linear derived multi-fusion category.

Proof. As a consequence of Proposition B.15 and Proposition B.16, all functors in Definition 5.13 extend to
symmetric monoidal (∞, 2)-functors. Hence, the (∞, 2)-functor K♭(−) preserves rigid algebras. Since E is
assumed to be semisimple, it follows from Proposition 5.11 that A is semisimple, and hence K♭(A) ≃ D♭(A).

Corollary 5.27. Let 𝕂 be an algebraically closed field and A a 𝕂-linear multi-fusion category. Then D♭(A)
is a 𝕂-linear derived multi-fusion category.
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This serves as a first consistency check for our definition of derived multi-fusion category. In general, we expect
the existence of examples of non-semisimple (finite) tensor categories whose bounded derived ∞-category
forms a derived multi-fusion category. However, since these typically have infinite homological dimension,
constructing their bounded derived ∞-category would require different techniques.
Moreover, it is a subtle question to determine the right notion of a derived category of a finite 𝕂-linear
tensor category A⊗. The most straightforward approach is to consider the unbounded derived ∞-category
D(A)⊗. However, the underlying category of every finite tensor category is equivalent to the category of finite-
dimensional modules over a finite-dimensional 𝕂-algebra A [EGNO16, Def.1.8]. In particular, its unbounded
derived ∞-category D(A) is equivalent to the ∞-category of modules D(A) ≃ D(A) ≃ LModA(D(𝕂)).
However, the latter is only 𝕂-smooth if the algebra A, and hence the category A, has finite homological
dimension [Orl16]. But a finite tensor category with finite homological dimension, necessarily has homological
dimension 0 [EGNO16, Rem.6.1.4], and hence is a fusion category.
This shows that, to construct derived multi-fusion categories from finite tensor categories, that are not fusion
categories, one has to consider a more refined version of the derived ∞-category construction. We intend to
investigate this question systematically in a future work.
We conclude by highlighting an application of derived categories of multi-fusion categories. Let 𝕂 be an
algebraically closed field and A⊗ a 𝕂-linear multi-fusion category. As A⊗ is already fully dualizable in the
symmetric monoidal 3-category Ten⊗

𝕂 , we expect that the fully extended TFT associated to D♭(A)⊗ can be
computed directly from the one associated to A⊗. From the perspective of fully extended TFTs, the category
D♭(A)⊗ is therefore of limited interest.
More intriguing, however, are the TFTs that are relative to D♭(A)⊗ (compare Section 4.5). A TFT relative
to D♭(A)⊗ is determined by an Ind(D♭(A))-linear presentable stable ∞-category C satisfying the conditions
of Proposition 4.28. Even in the special case where A⊗ ≃ Vectfin,⊗

ℂ , one finds many interesting TFTs that are
relative to D(ℂ)⊗ but not relative to Vect⊗

ℂ .
Unraveling the conditions of Proposition 4.28 in these contexts, we see that a TFT relative to Vectℂ is induced
by a finite, semisimple, ℂ-linear category, while a TFT relative to D(ℂ) corresponds to a smooth, and proper
dg-category. Such dg-categories play a central role in homological mirror symmetry [HKK17]. We expect that
TFTs relative to Ind(D♭(A)) provide the appropriate framework for describing fusion categorical symmetries
in the context of homological mirror symmetry [DHL23].

𝔼2-algebras

As a second consistency check, we compare our definition of a derived multi-fusion category with the definition
of a fully dualizable 𝔼2-algebra from [Lur08].
Let V⊗ be a presentably symmetric monoidal ∞-category. In [Lur08, Rem.4.1.27], the author classifies fully
dualizable 𝔼n-algebras in the Morita (∞, n+ 1)-category 𝕄or𝔼n

(V)⊗ of 𝔼n-algebras [Hau17] using the theory
of factorization homology.
To state this classification criterion, we recall the main properties of factorization homology relevant to our
setting and refer the reader to [AF20] for a general introduction.
We denote by Mfldfr

n the ∞-category whose objects are finitary smooth framed n-manifolds and whose
morphisms are smooth framed embeddings [AF20, Def.2.5]. This ∞-category admits a symmetric monoidal
structure given by the disjoint union of smooth manifolds. The monoidal unit is given by the empty manifold
∅, regarded as a framed n-manifold. We denote by Dn the n-dimensional open disk equipped with its standard
framing. We write Diskfr,⊗

n ⊂Mfldfr,⊗
n for the full symmetric monoidal subcategory generated by Dn.
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Given any presentably symmetric monoidal ∞-category V⊗, a symmetric monoidal functor

B : Diskfr,⊗
n → V⊗

is called a Diskfr
n -algebra. It follows from [AF20] that there exists an equivalence of ∞-categories

Alg𝔼n
(V) ≃ Fun⊗(Diskfr,⊗

n ,V⊗).

Hence, any 𝔼n-algebra B ∈ Alg𝔼n
(V) determines an essentially unique Diskfr

n -algebra B. Factorization
homology with values in B is defined as the symmetric monoidal functor

Diskfr,⊗
n V⊗

Mfldfr,⊗
n

B

∫
−
B

obtained via operadic left Kan extension. For any framed n-manifold M , the object
∫
M
B is called the

factorization homology of M with values in B.
We now draw some consequences of this definition. It follows from the definition that∫

∅
B ≃ 1V and

∫
Dn

B ≃ B.

Further, for any 0 ≤ k ≤ n and any framed k-manifold Nk, the manifold Nk×Dn−k equipped with the product
framing defines a framed n-manifold. Further, this construction can be applied to every Diskn−k-algebra

Nk : Diskfr,⊗
n−k Mfldfr,⊗

n
N×−

and hence induces the structure of a 𝔼n−k-algebra on∫
Nk×Dn−k

B ∈ Alg𝔼n−k
(V).

One can analogously construct actions of these algebras by applying factorization on manifolds with boundary.
To this end, we define analogously the symmetric monoidal ∞-category Mfld∂,fr,⊗1 of finitary framed 1-
manifolds with boundary. We further denote by Disk∂,fr,⊗1 the full symmetric monoidal subcategory generated
by ℝ1 and ℝ≤0. Consider the fiber product

(Disk∂,fr1 )⊗
/(−1,1] := Disk∂,fr,⊗1 ×

Mfld∂,fr,⊗
1

(Mfld∂,fr1 )⊗
/(−1,1]

of ∞-operads. According to [AF20, Lem.3.21] the data of an algebra F over the ∞-operad (Disk∂,fr1 )⊗
/(−1,1]

corresponds to the data of

• an algebra given by F(ℝ1)

• and a right F(ℝ)-module given by F(ℝ≤0).

Let M be a framed smooth n-manifold and f : M → (−1, 1] a continuous map, s.t. the restriction
f | : M |(−1,1) → (−1, 1) is a smooth fiber bundle. We call such data a smooth manifold with collar boundary.
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This structure induces a decomposition

M ≃ (ℝ×M01)
∐

M1

with ℝ×M01 = f−1((−1, 1)) and M1 = f−1((−0.5, 1]. In particular, we obtain for any such f : M → (−1, 1]
a morphism of ∞-operads [AF20, Const.2.40]

(Disk∂,fr1 )⊗
/(−1,1] (Mfldfr

n)⊗
/M Mfldfr,⊗

n
f−1

that exhibits M1 as a right module over M01 ×ℝ in Mfldfr,⊗
n . Pictorially, the module action is realized by

embedding the cylinder M01 ×ℝ into the open boundary of M1. Finally, by the functoriality of factorization
homology, this construction shows that for every 𝔼n-algebra B the factorization homology

∫
M1

B inherits the
structure of a module over the factorization homology of

∫
M01

B.
In particular, we can interpret for every 0 ≤ k ≤ n the n-disk Dn as the manifold Dk ×Dn−k with collar
boundary given by

Sk−1 ×D1 ×Dn−k,

and n-framing given by the product of the bounding framing on Sk−1 ×D1 and the trivial framing on Dn−k.
This exhibits for every 0 ≤ k ≤ n and every 𝔼n-algebra B the factorization homology

∫
Dn B ≃ B as a module

over
∫
Sk−1×Dn−k+1 B. We are now in the position to state the criterion of Lurie:

Claim 5.1. [Lur08, Rem.4.1.27] Let V⊗ be a presentably symmetric monoidal ∞-category, and B ∈ Alg𝔼n
(V)

an 𝔼n-algebra in V. Then B is fully dualizable in the Morita category of 𝔼n-algebras 𝕄or𝔼n
(V)⊗ if and only

if, for every 0 ≤ k ≤ n, B is dualizable as an
∫
Sk−1×Dn−k+1 B-module.

Remark 5.11. Moreover, B induces a non-compact fully extended n+ 1-dimensional TFT if and only if it
satisfies the above dualizability criterion for all k ̸= n.

Since our main focus lies on 𝔼2-algebras, let us now discuss this case in detail:

• For k = 0 the factorization homology is given by∫
S−1

B ≃
∫

∅
B ≃ 1E

and B is dualizable as a 1E-module if and only if it is dualizable in V⊗.

• For k = 1, the factorization homology is ∫
S0×D1×D1

B ≃ Be

equivalent to the enveloping algebra of B. As described in [Lur08, Rem.4.1.27], the action on∫
D1×D1

B ≃ B

corresponds, under this identification, to the regular Be-action on B. In particular, B is dualizable as
an
∫
S0×D2 B-module if and only if B is smooth. Pictorially, this action corresponds to gluing rectangles,

as shown in Figure 2.
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• For k = 2, the factorization homology ∫
S1×D1

B

can be interpreted as a twisted version of Hochschild homology [Lur17, Thm.5.5.3.11]. Pictorially,
the action on B can be visualized by gluing a blackboard framed cylinder to the boundary of D2, as
depicted in Figure 3.

In case, that V⊗ ≃ Ind(E)⊗ for some rigid symmetric monoidal stable∞-category E⊗, we can compare Lurie’s
criterion 5.1 to our definition of a derived multi-fusion category. We can associate to any 𝔼2-algebra E in
Ind(E)⊗ its category of modules LModE(Ind(E)). This forms a compactly generated stable ∞-category. As
we have observed in Proposition 4.21, the 𝔼2-algebra structure on E naturally equips LModE(Ind(E)) with a
rigid monoidal structure. In particular, its subcategory of compact objects LModE(Ind(E))c,⊗ forms a rigid
stable ∞-category. To compare our Definition with the criterion of Lurie, we need the following alternative
characterization of the ∞-category LModE(Ind(E))c,⊗:

Proposition 5.28. Denote by PerfE(E) the smallest stable subcategory of LModE(Ind(E)) that contains E,
is idempotent complete, and is closed under the E-action. Then the inclusion PerfE(E)→ LModE(Ind(E))
induces an E-linear equivalence PerfE(E) ≃ LModE(Ind(E))c

Proof. The category LModE(Ind(E))c is by construction stable, idempotent complete, and closed under
the E-action. Hence, it contains PerfE(E), since E is compact in LModE(Ind(E)). It follows from [Lur09a,
Prop.5.3.5.11] that the inclusion PerfE(E)→ LModE(Ind(E)) extends to a fully faithful E-linear functor

F : Ind(PerfE(E))→ LModE(Ind(E))

It suffices to show that F is essentially surjective. If F is not essentially surjective, then there exists a non-zero
E-module M , s.t. for all N ∈ PerfE(E) the internal Hom homE(N,M) ≃ 0 ∈ Ind(E). But for N ≃ E,

homE(E,M) ≃M ≃ 0

which contradicts the assumption that M is not 0.

Proposition 5.29. Let E be a rigid stable symmetric monoidal ∞-category and E ∈ Alg𝔼2(Ind(E)) an
𝔼2-algebra. Then the ∞-category LModE(Ind(E))⊗ is E-proper (resp. E-smooth) if and only E is proper
(resp. smooth)

Proof. We first show the statement about properness. To show that LModE(Ind(E)) is E-proper, it suffices
to show that for all compact object A,B ∈ PerfE(E) the internal Hom homE(A,B) ∈ Ind(E) is compact.
Since A is compact and hence Ind(E)-atomic, the functor homE(A,−) commutes with small colimits and the
action of E. It, therefore, suffices by Proposition 5.28, to show the case that B ≃ E. Doing an analogous
argument for B instead of A, we can also reduce to the case that A ≃ E. It follows that LModE(Ind(E)) is
E-proper if and only if

homE(E,E) ≃ E ∈ Ind(E)

∫
S0 E ⊗

1

2

1

2

1

2

1

2
∫
D1 E

∫
D1 E

Figure 2: A pictorial description of the
∫
S0 E-module structure on

∫
D1 E. Here, the arrows represent the

2-framing.
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∫
S1 E ⊗ ∫

D2 E
∫
D2 E

2

1

1

2

2

1

2

1

2

1

1

2

2

1

2

1

Figure 3: A pictorial description of the
∫
S1 E-module structure on

∫
D2 E. Here, the arrows represent the

framing vectors.

is compact.
For the claim about smoothness, observe that under the equivalence

FunL
E(LModE(E),LModE(E)) ≃ BModE(E)

the identity functor gets identified with the regular bimodule E ∈ BModE(Ind(E)). Hence, LModE(Ind(E))
is E-smooth if and only if the regular bimodule E is compact and consequently E is smooth.

Proposition 5.30. Let E ∈ Alg𝔼2(Ind(E)) be an 𝔼2-algebra. Then PerfE(E)⊗ is an E-linear derived
multi-fusion category if and only if E is smooth and proper.

Proof. It follows from Proposition 4.21 that every object of PerfE(E) is dualizable and from Proposition 5.29
that PerfE(E) is E-smooth and E-proper if and only if E is so. Hence, it suffices to show that the canonical
algebra is compact. Note that the monoidal product of LModE(Ind(E)) identifies under the equivalence

LModE(Ind(E))⊗ LModE(Ind(E)) ≃ LModE⊗E(Ind(E))

with the functor of extension of scalars

µ! : LModE⊗E(Ind(E))→ LModE(Ind(E))

along the multiplication µ : E ⊗ E → E. In particular, the right adjoint is given by the restriction of scalars
µ∗, and the underlying object of the canonical algebra is given by µ∗(E). Observe that under the equivalence

LModE⊗E(Ind(E)) ≃ BModE(Ind(E))

the E ⊗ E-module µ∗E gets identified with the regular bimodule EEσ∗E , with right action twisted by the
braiding automorphism

σ : Eop → E

Consequently, it follows from smoothness of E and [Lur17, Rem.4.6.2.12] that µ∗(E) is compact in BModE(Ind(E)).

Corollary 5.31. Let E⊗ be a rigid symmetric monoidal stable ∞-category and E ∈ Alg𝔼2(Ind(E)) an 𝔼2-
algebra in Ind(E). Then is PerfE(E)⊗ a derived multi-fusion category if and only if E satisfies the criterion 5.1
for k = 0, 1.

Proof. Since E is rigid, it follows that E is dualizable in Ind(E) if and only if it is compact. The claim then
follows from the above discussion.
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Remark 5.12. A more abstract perspective on this result is the following. We expect that the assignment that
assigns to an 𝔼2-algebra E ∈ Alg(Ind(E)) the monoidal ∞-category LModE(Ind(E)) extends to a symmetric
monoidal (∞, 3)-functor

LMod−(Ind(E)) : 𝕄or𝔼2(Ind(E))⊗ → 𝕄or(ℙrL
E)⊗

from the Morita category of 𝔼2-algebras to the even Higher Morita category of presentable E-linear ∞-
categories18. As it is symmetric monoidal, this functor would preserve fully dualizable objects.

After this general discussion, let us consider some examples of smooth and proper 𝔼2-algebras in rigid stable
∞-categories:

Example 5.10. Separable algebras form a well-behaved subclass of smooth algebras. As in the 1-categorical
setting, an algebra (A,µ) in a monoidal stable ∞-category C⊗ is called separable if the multiplication

µ : A⊗A→ A : ∆

admits a section ∆ as a map of A-bimodules. These algebras have been studied extensively in [Ram23].
Let R be a commutative ring. The most basic example of a separable algebra admitting the structure of
an 𝔼2-algebra is a separable commutative R-algebra A, which defines a separable algebra in D(R)⊗. If A is
moreover perfect as an R-module, then it defines a smooth and proper 𝔼2-algebras in D(R)⊗. Interestingly,
every separable 𝔼2-algebra in any symmetric monoidal stable ∞-category is already 𝔼∞ [Ram23, Thm. 3.25].
Other higher categorical examples of proper and separable 𝔼2-algebras arise from the theory of higher group
algebras, as discussed in [Ram23, Thm.5.16]. Let V⊗ be a presentably symmetric monoidal stable ∞-category.
For any ∞-category with finite limits, we denote by Span(C)⊗ the symmetric monoidal ∞-category of spans
in C (see Definition 10.1). Every symmetric monoidal functor

F : Span(C)⊗ → V⊗

associates to any 𝔼2-group object G in C an 𝔼2-algebra F (A) in V⊗. It follows from [Ram23, Thm.5.16] that
the image F (A) is a proper and separable 𝔼∞-algebra in V if and only if F inverts the span

G

∗ ∗

Examples of this phenomenon come from the theory of higher semi-additivity that we discuss in Section 11.3.

However, as described in Section 5.2, separability is a natural finiteness condition for additive categories. It
would therefore be more interesting to single out examples of smooth and proper 𝔼2-algebras that are not
separable.
Smooth and proper 𝔼1-algebras are well-studied and ubiquitous in mathematics as they play a fundamental
role in the field of homological mirror symmetry. They appear in areas ranging from geometry to representation
theory to topology (see [BD21, Sect.5] for some examples). However, it turns out to be a subtle question to
identify a class of examples of smooth and proper 𝔼2-algebras. The author is unaware of a single example of
such a smooth and proper 𝔼2-algebra that is not separable. Therefore, instead of describing an example, we
will describe some possible approaches for the construction of 𝔼2-algebras.

18Compare Section 4.5
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Example 5.11. Let 𝕂 be a field. The historically first examples of 𝔼2-algebra arise in topology, specifically
in the theory of loop spaces. Given a pointed topological space X ∈ S∗, one can form its based loop space,
defined as the pullback

Ω∗X ≃ ∗ ×X ∗.

It is well known that the double loop space Ω2
∗X canonically carries the structure of an 𝔼2-algebra, with

multiplication given by concatenation of loops [Lur17, Thm.5.2.6.15]. In particular, its algebra of singular
chains

C∗(Ω2
∗X,𝕂) ∈ D(𝕂)

naturally carries the structure of an 𝔼2-algebra in D(𝕂)⊗. From the definition, it follows that if

dim(H∗(Ω2
∗X,𝕂)) <∞,

then C∗(Ω2X,𝕂) is proper. Furthermore, it has been shown in [BD19, Prop.5.1] that if Ω∗X is weakly
homotopy equivalent to a finite CW-complex, then C∗(Ω2

∗X) is smooth. Thus, requiring smoothness and
properness induces strong finiteness conditions on X and its loop spaces simultaneously. Already in elementary
examples, it becomes apparent that these conditions are rarely compatible. For example, consider the case

X ≃ B2A, Ω∗X ≃ BA, Ω2
∗X ≃ A

for an abelian group A. Then C∗(A,𝕂) is proper if and only if A is finite, but in this case, BA is never
homotopy equivalent to a finite CW-complex, and so C∗(Ω2

∗X,𝕂) can not be smooth.
Conversely, if A is infinite, BA may be equivalent to a finite CW-complex. For instance, if A ≃ ℤ, then
Bℤ ≃ S1 is a finite CW complex. Hence, in this case, C∗(A,𝕂) is smooth, but not proper.
In general, the homology of X and its loop space are strongly related by the Serre spectral sequence, and we
expect that stronger structural results may be derived from it.

Example 5.12. Let A be a 𝕂-linear monoidal abelian category. Then it’s derived ∞-category

D(A) ∈ PrL
𝕂

is a presentably monoidal stable ∞-category. It is a consequence of the Eckmann-Hilton argument that the
algebra of derived endomorphisms

ℝEndA(1A)

carries the structure of an 𝔼2-algebra [Lur18, Sect.D.1.3]. Furthermore, if D(A) is generated by the monoidal
unit, we obtain a monoidal equivalence

D(A)⊗ ≃ LMod⊗
ℝEndA(1A) .

In particular, if D(A) is smooth and proper, the same would follow for the 𝔼2-algebra ℝEndA(1A). However,
we are not aware of any interesting example where the monoidal unit generates the full derived ∞-category.
One way to circumvent this issue is to consider the monoidal 𝕂-linear stable subcategory

D(1A)⊗ ⊂ D(A)⊗
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generated by the monoidal unit 1A. In this case, we always have an equivalence

D(1A)⊗ ≃ LMod⊗
ℝEndA(1A) .

In particular, if D(A) is proper, the same is true for the full subcategory D(1A). Whether smoothness
descends to subcategories is a subtler issue. A sufficient condition is that D(1A) is an admissible subcategory
of D(A), i.e. the inclusion

i : D(1A) ↪→ D(A)

admits a left and a right adjoint [Orl16]. It is conceivable that this approach yields examples of smooth and
proper 𝔼2-algebras, though we are currently not aware of any such example.

Example 5.13. Given smooth and proper 𝔼1-algebras A,B ∈ Alg(D(𝕂)) and a perfect A−B-bimodule M ,
we can construct new examples of smooth and proper 𝔼1-algebra via gluing. More precisely, if we represent A
and B by dg-algebras and M by a dg-bimodule [Lur17, Prop.7.1.4.6], we can form the dg-algebra of upper
triangular matrices (

A M

0 B

)
.

This dg-algebra has elements given by formal upper triangular matrices(
a m

0 b

)
with a ∈ A,m ∈M, and b ∈ B,

and multiplication defined by matrix multiplication(
a0 m0

0 b0

)(
a1 m1

0 b1

)
:=
(
a0a1 a0m1 +m0b1

0 b0b1

)

It has been shown by Lunts–Schnürer [LS14, Thm.3.24] that under the above conditions, the algebra of upper
triangular matrices is itself smooth and proper. In particular, if A and B are classical separable 𝕂-algebras
and M is a perfect A − B-bimodule, this construction yields non-trivial smooth and proper dg-algebras.
Unfortunately, even if we assume A and B to be commutative, the inherent asymmetry in the formula for
matrix multiplication prevents the associated upper triangular matrix algebra from being commutative or 𝔼2.
A more abstract perspective on upper triangular matrix algebras is the following. The data of dg-algebras A
and B, together with a dg-bimodule M determines a diagram

F : [1]→ 𝕄or(D(ℂ))

in the Morita (∞, 2)-category. The upper triangular matrix algebra can then be interpreted as the lax limit of
this functor. Therefore, it might be fruitful in our context to compute similar lax-limits in the (∞, 3)-category
𝕄or𝔼2(D(ℂ)).

Example 5.14. Let R be a commutative ring spectrum, and let A ∈ Alg(RModR) be an R-algebra. Then
the Hochschild Cohomology

HomA⊗Aop(A,A) ∈ RModR

of A admits the structure of an 𝔼2-algebra [Lur17, Rem.5.1.13], a result commonly referred to as the Deligne-
Conjecture. It is therefore natural to ask under which conditions on A its Hochschild Cohomology is smooth
and proper.
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Properness is easy. If the algebra A is smooth and proper, then its Hochschild Cohomology is also proper.
Thus, it remains to understand when the Hochschild cohomology is smooth. Since the functoriality of
Hochschild cohomology is hard to control, this turns out to be a subtle problem. We therefore focused on
computing explicit examples.
Computable examples arise from the theory of quadratic monomial algebras. Given a quiver

Q = (Q0, Q1)

with quadratic monomial relations
R ⊂ Q1 ×Q0 Q1,

the associated quadratic monomial algebra is given by 𝕂[Q]/⟨R⟩, where 𝕂[Q] denotes the path algebra of
the quiver. If the quiver Q contains, no cyclic paths, then 𝕂[Q]/R is smooth and proper [HKK17, Prop.3.4].
Moreover, one can explicitly resolve the diagonal bimodule and thus obtain an explicit complex that computes
Hochschild Cohomology [HKK17, Prop.3.4]. We computed some simple examples but were not able to find
one where the Hochschild cohomology is smooth and proper.
The hope that this approach might lead to examples arises from the case of separable algebras. In this setting,
it has been shown by Ramzi [Ram23, Thm 6.45] that the Hochschild Cohomology of a large class of separable
algebras is itself separable. We hope that this approach might give rise to interesting new examples.

In conclusion, this discussion suggests that with the current techniques, it is difficult to find examples of
smooth and proper 𝔼2-algebras that are not separable. This does not rule out their existence, but constructing
such an example would likely require an educated guess. As the research on derived phenomena in TFTs in
dimensions higher than two is still in its early stages, we expect such examples to emerge in the future.

6 2-Segal Conditions
Throughout this section, C denotes an ∞-category with finite limits. After studying rigid presentable
∞-categories in the previous sections, we now continue with the second step of our strategy. to this end,
we shift our focus to the study of locally rigid algebras in symmetric monoidal (∞, 2)-categories of spans.
Before we can turn to the discussion of locally rigid algebras, it is necessary to understand how to encode
algebraic structures within this ∞-category. For algebra objects, this has been accomplished in [DK19, Ste21]
in terms of so-called 2-Segal objects. As we will see in this section, more general algebraic structures in this
∞-category can be described in terms of conditions similar to the 2-Segal. Therefore, we introduce in this
section a variety of 2-Segal type conditions generalizing the original 2-Segal conditions. In Section 8, we relate
these conditions to homotopy coherent algebra in span categories. Before stating the formal definitions, let
us motivate them for the example of the 2-Segal condition of [DK19].
There exists an ∞-category of spans Span(C), whose objects are the objects of C and whose 1-morphisms are
spans

W

X Y
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of 1-morphisms in C. Since it is an ∞-category, it also has invertible n-morphisms for all n ≥ 2. For example,
an invertible 2-morphism is given by a diagram in C of the form

W

X Z Y

V

≃

≃

where the middle arrows are equivalences. We read this diagram as a morphism from the upper to the lower
span. The ∞-category Span(C) further inherits a monoidal structure from the Cartesian product × on C. We
can, therefore, study homotopy coherent associative algebras in Span(C)⊗. Informally, the datum of such an
algebra consists of

• an underlying object X1 ∈ C,

• a multiplication span
X2

X1 ×X1 X1

∂1(∂0,∂2)

• a unit span
X0

∗ X1

s0pX0

• and higher morphisms that describe homotopy coherent associativity and unitality.

As the notations suggest, this data organizes into a simplicial object X• : ∆op → C, whose n-simplices, for
n > 2 are encoded in the associativity data. For example, the lowest instance of higher associativity is the
existence of an associativity 2-isomorphism

α : X2 ×X1 X2
≃=⇒ X2 ×X1 X2

in Span(C). This data is given by an object X3 ∈ C, together with 2 invertible morphisms

X3

X2 ×X1 X2 X2 ×X1 X2

(∂3,∂1)(∂0,∂2) (14)
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that fit into a commutative diagram:

X1 ×X1 ×X1 X1 ×X1 X1

X2 ×X1 X2

X2 ×X1 X2

X1 ×X2 X2

X2 ×X1 X2

X3
α

(∂2, ∂0)× idX1 ∂1 × idX1 ∂1

π2

idX1 ×(∂2, ∂0) idX1 ×∂1 (∂2, ∂0) ∂1

(∂3, ∂1)
(∂0, ∂2)

Since the diagram commutes, the components ∂i satisfy the simplicial identities

∂i ◦ ∂j = ∂j−1∂i for i < j.

The lowest dimensional 2-Segal condition is the requirement that the morphisms in Equation (14) are invertible
(see Definition 6.1) and therefore encodes the lowest dimensional instance of associativity. Analogously, the
higher-dimensional 2-Segal conditions encode the higher associativity of the algebra.
We now summarize the content of this section. In Section 6.1, we introduce the definitions of 2-Segal objects
and 2-Segal spans. They assemble into an ∞-category 2Seg↔

∆ (C) that we will show in Corollary 9.3 to be
equivalent to the ∞-category Alg(Span(C)) of algebra objects and algebra morphisms in the ∞-category
Span(C)⊗. Afterward, we extend the discussion in 6.2 and introduce 2-Segal and Segal span conditions for
the indexing categories ∆op

/[1], ∆op
≥ and ∆op

≤ generalizing the ones on ∆. We show in Section 8 that these
admit a similar interpretation in terms of bi-, left, and right module objects in the symmetric monoidal
∞-category Span(C)⊗ respectively. Finally, we provide in Subsection 6.3 a different characterization of these
new 2-Segal conditions in terms of active-inert pullbacks. This generalizes the equivalence between 2-Segal
and decomposition spaces from [GCKT18] to this more general class of indexing categories.

6.1 2-Segal Objects

To simplify the exposition, we frequently abuse notation and identify a simplicial object X• : ∆op → C with
its extension to Finop

≥ the category of all finite non-empty linearly ordered sets. Let us recall, as a start, the
definition of a 2-Segal object.

Definition 6.1. [DK19, Def.2.3.1] Let X• : ∆op −→ C be a simplicial object. X• is called 2-Segal if for every
n ≥ 3 and 0 ≤ i < j ≤ n the map

Xn −→ X{0,1,··· ,i,j,j+1,··· ,n} ×X{i,j} X{i,i+1,...,j}

is an equivalence. We denote by 2-Seg∆(C) the full subcategory of Fun(∆op,C) generated by 2-Segal objects.

The morphisms in the ∞-category 2-Seg∆(C) are morphisms of simplicial objects. Under the equivalence
between 2-Segal objects and algebra objects in Spans [Ste21], a general simplicial map between 2-Segal objects
induces a lax-algebra morphism between the corresponding algebra objects [Wal16, Sect.4.2]. Let us sort out
what a strong algebra morphism looks like in terms of 2-Segal objects:

Definition 6.2. Let σ : ∆1 −→ Span(2-Seg∆(C)) be a 1-morphism in the ∞-category of spans of 2-Segal
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objects.19 The morphism σ can be represented by a span

M•

t

!!

s

}}

X• Y•

with X•, Y• and M• : ∆op → C 2-Segal. The morphism σ is called a 2-Segal span if for every n ≥ 0 the
induced diagrams

Xn

��

Mn
oo

��

X{0,n} M{0,n}oo

and
Yn

��

Mn

��

oo

∏n−1
i=0 Y{i,i+1}

∏n−1
i=0 M{i,i+1}oo

are pullback diagrams. We call s an active equifibered ∆op-morphism and t a relative Segal ∆op-morphism.

Notation 6.1. We introduce in Subsection 6.2 similar notions for other indexing categories than ∆. If the
indexing category is clear from the context, we frequently abuse notation and drop the indexing category in
the notation. E.g, we will call an active equifibered ∆op-morphism simply an active equifibered morphism
when the indexing category is clear from the context.

Remark 6.1. The conditions imposed on the individual legs have previously been studied under the name
CULF [GCKT18, Sect.4] and IKEO in [GCKT18, Sect.8.5]. The authors further demonstrate that these
types of morphisms induce algebra morphisms in the ∞-category of spans. Our terminology is motivated by
the theory of algebraic patterns [BHS22], where similar notions appear.

It is worth noting that in the definition of a 2-Segal span, we explicitly require the tip of the span to be
2-Segal as well. This is not an additional requirement. Indeed, as demonstrated in [GCKT18, Lem.4.6], the
source of an active equifibered morphism f : X• → Y• with target 2-Segal is itself 2-Segal.
In the following, we interpret 2-Segal spans as the morphisms of a category and therefore have to study their
behavior under composition of spans:

Lemma 6.1. Let σ : Λ2
1 −→ Span(2-Seg∆(C)) be given by a composable pair of spans

M•

!!}}

N•

  ~~

X• Y• Z•

19See Construction 8.3
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s.t. each individual span is a 2-Segal span. Then also the composite span

M• ×Y• N•

t

%%
s

yy

X• Z•

is a 2-Segal span.

Proof. First, we show that s is active equifibered. For n ̸= 0, consider the diagram:

N{0,n} ×Y{0,n} M{0,n}

��

Nn ×Yn Mn

��

oo

M{0,n}

��

Mn

��

oo

X{0,n} Xn
oo

We need to prove that the exterior diagram is a pullback diagram. By assumption, the lower square is a
pullback diagram. Additionally, the upper square is a pullback square if and only if the outer rectangle in the
diagram

N{0,n}

��

Nn

��

oo Nn ×Yn
Mn

��

oo

Y{0,n} Ynoo Mn
oo

is a pullback square. But this follows from the pasting law.
On the other hand, we show that t is relative Segal. We need to show that for every n ≥ 0, the exterior
rectangle in the diagram:

Zn

��

Nn

��

oo Mn ×Yn Nnoo

��∏n−1
i=0 Z{i,i+1}

∏n−1
i=0 N{i,i+1}oo

∏n−1
i=0 M{i,i+1} ×Y{i,i+1} N{i,i+1}oo

is a pullback. By assumption, the left square is a pullback square. Further, the right square is a pullback
square if and only if the outer rectangle in the diagram:

∏n−1
i=0 M{i,i+1}

��

Mn

��

oo Nn ×Yn Mn

��

oo

∏n−1
i=0 Y{i,i+1} Ynoo Nnoo

is a pullback square. But this is again a consequence of the pasting law.

Definition 6.3. We define the∞-category of 2-Segal objects 2Seg↔
∆ (C) as the wide subcategory of Span(2-Seg∆(C))

with morphisms given by 2-Segal spans.
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6.2 Birelative 2-Segal Objects

To describe more general algebraic structures in categories of spans, we need to consider more general indexing
categories than ∆. In this subsection, we extend the framework of the previous sections to encompass
categories of functors with source ∆/[1]. We call such a functor M• : ∆op

/[1] −→ C a birelative simplicial object.
The corresponding birelative 2-Segal condition is a multi-coloured version of the 2-Segal condition from
Definition 6.1:

Definition 6.4. Let M• : ∆op
/[1] −→ C be a birelative simplicial object. M• is called birelative 2-Segal, if for

every n ≥ 3, f : [n] −→ [1] and 0 ≤ i < j ≤ n the diagram

Mf
//

��

Mf |i,...,j

��

Mf |0,...,i,j,...,n
// Mf |i,j

is Cartesian. We denote the full subcategory of Fun(∆op
/[1],C) generated by the birelative 2-Segal objects by

Bi2Seg∆(C).

As 2-Segal objects encode algebra objects, we will see in Theorem 9.1 that birelative 2-Segal objects encode
bimodule objects. For completeness, we also introduce a 2-Segal type condition describing left and right
modules. These have already been studied in the case of 1-categories in [Wal16] and [You18]. We denote by
∆≤ (resp. ∆≥) the full subcategory of ∆/[1] generated by the objects f : [n] −→ [1] that take the value 0 (resp.
1) at least and the value 1 (resp. 0) at most ones. We call a functor with source ∆≤ (resp. ∆≥) a left (resp.
right) relative simplicial object. The corresponding 2-Segal condition reads as:

Definition 6.5. Let M• : ∆op
≤ −→ C be a left relative simplicial object. M• is called left relative 2-Segal, if for

every n ≥ 3, f : [n] −→ [1] ∈ ∆≤ and 0 ≤ i < j ≤ n the diagram

Mf
//

��

Mf |i,...,j

��

Mf |0,...,i,j,...,n
// Mf |i,j

is Cartesian. We denote the full subcategory of Fun(∆op
≤ ,C) generated by the left relative 2-Segal objects by

L2Seg∆(C). Similarly, we define right relative 2-Segal objects and the ∞-category of right relative 2-Segal
objects R2Seg∆(C).

Remark 6.2. The categories ∆≤ and ∆≥ defined above are equivalent to the categories, denoted with the
same symbols, defined in [Wal16, Def.3.2.5]. Further, our notions of left and right relative 2-Segal objects
coincide with the notion of a relative 2-Segal object in [Wal21, Def.3.5.1.].

To handle the cases of bi-, left, and right relative 2-Segal conditions at once, we introduce the following
notation:

Notation 6.2. For # ∈ {/[1],≤,≥} we call a functor M• : ∆op
# → C a #-relative simplicial object. Further,

we call a #-relative simplicial object a #-relative 2-Segal object if it satisfies the corresponding 2-Segal
conditions. We denote the full subcategory generated by #-relative 2-Segal objects by #-2Seg∆(C).

Example 6.1. Let X• : ∆op → C be 2-Segal. We can associate to X• a birelative, left and right relative
2-Segal object
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(1) Xb
• : ∆op

/[1] → ∆op → C

(2) X l
• : ∆op

≤ → ∆op → C

(3) Xr
• : ∆op

≥ → ∆op → C

via precomposition with the corresponding forgetful functor. It follows from the 2-Segal conditions for X•

that these objects fulfill the respective (bi)relative Segal conditions. Under the equivalence of Corollary 9.2
and Theorem 9.1, these correspond to the regular bimodule (resp. left, right module) associated to the
algebra object corresponding to X•.

We also introduce, in analogy with Definition 6.2, a notion of morphism between #-relative 2-Segal objects:

Definition 6.6. Let A•, B• and M• be #-relative 2-Segal. A #-relative 2-Segal span from A• to B• is given
by a span

M•

t

!!

s

}}

A• B•

s.t. for every n ≥ 0 and f : [n] −→ [1] ∈ ∆# the diagrams

Af

��

Mf

��

oo

Af |0,n
Mf |0,n

oo

and
Bf

��

Mf

��

oo

∏n−1
i=0 Bf |i,i+1

∏n−1
i=0 Mf |i,i+1

oo

are pullback diagrams. We call s an active equifibered ∆op
# -morphism and t a relative Segal ∆op

# -morphism.

Analogously to Lemma 6.1, one can prove the following:

Lemma 6.2. Let σ : Λ2
1 −→ Span(#-2Seg∆(C)) be given by a composable pair of spans

M•

!!}}

N•

  ~~

X• Y• Z•

s.t. the individual spans are #-relative 2-Segal spans. Then also the composite span

M• ×Y• N•

%%yy

X• Z•

is a #-relative 2-Segal span.
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Proof. Similar to Lemma 6.1.

Definition 6.7. We define the∞-category of birelative 2-Segal objects Bi2Seg↔
∆ (C) to be the wide subcategory

of Span(Bi2Seg∆(C)) with morphisms birelative 2-Segal spans.
Similarly, we define the∞-category of left (resp. right) relative 2-Segal objects L2Seg↔

∆ (C) (resp. R2Seg↔
∆ (C)))

as the wide subcategory of Span(L2Seg∆(C)) (resp. Span(R2Seg∆(C))) with morphisms given by left (resp.
right) relative 2-Segal spans.

It has been shown in [Wal16, Prop.3.5.10] for 1-categories that left and right relative 2-Segal objects admit
a different description in terms of morphisms of simplicial objects, called relative 2-Segal objects. This
description is useful in the study of examples. Let us, therefore, lift this description into the realm of
∞-categories. We do this for left relative 2-Segal objects. The case of right relative 2-Segal objects is
analogous.

Definition 6.8. [You18, Wal16, Def.2.2,Prop.3.5.10] A morphism π : X• −→ Y• of simplicial objects is called
relative 2-Segal, if

1) the source object X• is 1-Segal,

2) the target object Y• is 2-Segal,

3) and for every 0 ≤ i < j ≤ n the following square is Cartesian

Xn Y{i,..j}

X{0,...,i,j,...,n} Y{i,j}

(15)

We denote the full subcategory of Fun(∆1,Fun(∆op,C)) generated by relative 2-Segal morphisms by Rel2Seg∆(C).

Remark 6.3. We can extend the square in Equation (15) to the following diagram

Xn Yn Y{i,...,j}

X{0,...i,j,...,n} Y{0,...,i,j,...,n} Y{i,j}

Since Y• is 2-Segal, the right square is a pullback square. By the pasting law, it follows that the outer square
is a pullback square if and only if the right square is a pullback square. Unraveling the definitions, this means
that a morphism X• → Y• is relative 2-Segal if and only if it is an active equifibered ∆op-morphism from a
1-Segal to a 2-Segal object.

Remark 6.4. Let us unpack the definition of a relative 2-Segal object π : X• → Y•. The 2-Segal object X•

encodes an algebra object, and the object Y0 encodes the underlying object of a left module. The remaining
data encodes the module-action. For example, the module action of X1 onto Y0 is given by the span

X1

Y1 ×X0 X0

∂0(π1,∂1)

The relative 2-Segal conditions again encode the higher coherences of the left module action.
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We also introduce a notion of morphism between relative 2-Segal objects:

Definition 6.9. Let πi• : Xi
• → Y i• for 0 ≤ i ≤ 2 be relative 2-Segal objects. A relative 2-Segal span from π0

•
to π2

• is given by a span

X0
• X1

• X2
•

Y 0
• Y 1

• Y 2
•

π0
• π1

•

sX
• tX•

π2
•

sY
• tY•

of relative 2-Segal objects s.t.

(1) the span Y 0
•

sY
•←−− Y 1

•
tY•−→ Y 2

• is 2-Segal,

(2) for every n ≥ 1 the square

X1
n X0

n

X1
{0} X0

{0}

sX
n

sX
1

is Cartesian,

(3) and for every n ≥ 1 the diagram

X1
n X2

n

Y 1
{0,1} × · · · × Y

1
{n−2,n−1} ×X

1
{n} Y 2

{0,1} × · · · × Y
2

{n−2,n−1} ×X
2
{n}

tXn

is Cartesian.

We call the pair (sX• , sY• ) active equifibered and the pair (tX• , tY• ) relative Segal.

Definition 6.10. We define the ∞-category of relative 2-Segal objects as the wide subcategory Rel2Seg↔
∆ (C)

of the ∞-category Span(Rel2Seg∆(C)) with morphisms given by relative 2-Segal spans.

We now turn to the construction of an equivalence Θ↔
L : L2Seg↔

∆ (C) ≃−→ Rel2Seg↔
∆ . To do so, we construct

an equivalence
ΘL : L2Seg∆(C) ≃−→ Rel2Seg∆(C)

that induces Θ↔
L on ∞-categories of spans.

For the construction of ΘL, we use observation [Wal16, Rem.3.2.8]. First, note that the category ∆≤ contains
two copies of the simplex category as full subcategories. We denote the corresponding fully faithful inclusion
by i≤0 : ∆ −→ ∆≤ and i≤1 : ∆ −→ ∆≤. These are given on objects by

i≤0 ([n])(k) = 0 ∀k ∈ [n],

i≤1 ([n])(k) =

0 ∀k ̸= n+ 1
1 k = n+ 1

.
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Further, we observe that the morphisms dn+1 : i≤0 ([n]) → i≤1 ([n]) assemble into a natural transformation
d•+1 : i≤0 (−)⇒ i≤1 (−). This datum is equivalent to the datum of a lax cocone

∆

∆≤

∆

i
≤
0

id∆

i
≤
1

(16)

and therefore induces a unique map from the lax colimit. It follows from [GHN15, Thm.7.4] that the lax
colimit is given by the total space of the cocartesian Grothendieck construction

∫
∆1 id∆ → ∆, where we

identify the functor id∆ : ∆→ ∆ with a morphism in Cat. The morphism

θL :
∫

∆1
id∆ → ∆≤

induced by Diagram 16 is given on the fiber over 0 by i≤0 : ∆→ ∆≤, on the fiber over 1 by i≤1 : ∆→ ∆≤ and
on morphisms f : ([n], 0)→ ([m], 1) by

i≤0 ([n])
i

≤
0 (f)
−−−→ i≤0 (m) dm+1−−−→ i≤1 (m).

It follows from the explicit description that this functor is an equivalence.

Proposition 6.3. The functor ΘL := θ∗
L : Fun(∆op

≤ ,C) → Fun(
∫

∆1 id
op
∆ ,C) restricts to an equivalence of

∞-categories
ΘL : L2Seg∆(C)→ Rel2Seg∆(C).

Proof. It follows from the universal property of the lax colimit that we have an equivalence of ∞-categories

Fun(
∫

∆1
idop

∆ ,C) ≃ Fun(∆1 ×∆op,C) ≃ Fun(∆1,Fun(∆op,C)).

Under this equivalence, the functor ΘL maps a left relative simplicial object X• : ∆op
≤ → C to the natural

transformation
(i≤1 )∗X•

∂n+1−−−→ (i≤0 )∗X•

between simplicial objects. The claim follows from the observation that the functor ΘL maps left relative
2-Segal objects to relative 2-Segal objects.

It follows from the discussion after Construction 8.3 that the construction of the ∞-category of spans induces
a functor:

Span(−) : Catlex
∞ → Cat∞

with source the ∞-category of small ∞-categories with finite limits and finite limit preserving functors. We
use this functor to conclude our comparison:

Corollary 6.4. The functor Θ↔
L := Span(ΘL) : Span(L2Seg∆(C)) → Span(Rel2Seg∆(C)) restricts to an

equivalence of ∞-categories
Θ↔
L : L2Seg↔

∆ (C)→ Rel2Seg↔
∆ (C)
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Proof. It suffices to show that Θ↔
L maps left relative 2-Segal spans to relative 2-Segal spans. But this follows

from unraveling the definitions.

Remark 6.5. Analogously to the proof of Corollary 6.4 one can construct an equivalence

Θ↔
R : R2Seg↔

∆ (C) ≃−→ Rel2Seg↔
∆ (C)

between the ∞-category of right relative 2-Segal objects and relative 2-Segal objects.

We use Corollary 6.4 to construct examples of left relative 2-Segal objects and spans. This is particularly
fruitful for the example of the hermitian Waldhausen construction that we discuss in Section 7.2.

Example 6.2. Let X• : ∆op → C be a 2-Segal object. We denote by

− ∗ [0] : ∆→ ∆

the endofunctor of ∆ that adds a maximal element. The simplical object P ▷(X)• := (− ∗ [0])∗(X•) is called
the final path space [DK19, Section 6.2]. It comes equipped with a morphism of simplicial sets

p▷ : P ▷(X)• → X•

This morphism is a relative 2-Segal object. Indeed, it follows from [DK19, Thm.6.3.2] that P ▷(X)• is 1-Segal
and it is easy to see that the relative 2-Segal conditions for p▷ reduce to the 2-Segal conditions on X•. This
relative 2-Segal object describes the regular left action of the 2-Segal object X• on itself. Similarly, one
defines the initial path space P ◁(X)• that describes the regular right action of X• on itself.

Example 6.3. Let X• be a 2-Segal object in C. Recall, that the edgewise subdivision functor e : ∆→ ∆ is
defined on objects as [n] 7→ [n] ∗ [n]op. We denote the functor given by precomposition with e by

Tw(−) := e∗ : Fun(∆op,C)→ Fun(∆op,C)

and call it the twisted arrow construction. Further, we call for every simplicial object X• the associated
simplicial object Tw(X)• the twisted arrow simplicial object. It has been shown in [BOO+20, Thm.2.9], that
for every 2-Segal object X•, the simplicial object Tw(X)• is 1-Segal. Moreover, it is easy to check that the
morphism

Tw(X)• → X• ×Xop
•

defines a relative 2-Segal object. This encodes the regular bimodule action of X• on itself.

6.3 Birelative Decomposition Spaces

An alternative, but equivalent, way to formalize the 2-Segal conditions are the decomposition space conditions
of [GCKT18]. For the definition of these recall that the simplex category ∆ admits a factorization system
(∆act,∆int) generated by the active (depicted ↠) and inert morphisms (depicted ↣) [Lur17]. This factorization
system has the special property that ∆ admits active-inert-pushouts, i.e. every cospan

n m

l

f

g
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with f inert and g active admits an extension to a pushout diagram:

n m

l k

in ∆. A simplicial space X• : ∆op → S is then called a decomposition space if it maps active-inert pullbacks
in ∆op to pullback diagrams of spaces. The goal of this section is to extend the definition of a decomposition
space to the category ∆/[1]. Therefore we first recall the definition of the active-inert factorization system on
∆/[1]

Notation 6.3. Given an object f : [n] −→ [1] ∈ ∆/[1], we will frequently denote it by fn to indicate its
dependence on the source. Given i < j in [n] we denote by [i, j] := {i, ..., j} ⊂ [n] the subinterval from i to j
and by f[i,j] the restriction of fn to this subinterval.

Definition 6.11. A morphism f : g0
n → g1

m in ∆/[1] is called

(1) active if the underlying morphism of linearly ordered sets f : [n] → [m] is endpoint preserving. We
depict active morphisms by ↠.

(2) inert if the underlying morphism of linearly ordered sets f : [n]→ [m] is a subinterval inclusion. We
depict inert morphisms by ↣

We denote the wide subcategory of ∆/[1] spanned by the active (resp. inert) morphisms by ∆act
/[1] (resp. ∆int

/[1]).
Similarly, we call a morphism f in ∆op

/[1] active (resp. inert) if it is active (resp. inert) as a morphism in ∆/[1].

Proposition 6.5. Every morphism f : g0
n → g1

m in ∆/[1] admits an unique factorization f = f ′′ ◦ f ′ with
f ′′ inert and f ′ active. In particular the subcategories (∆act

/[1],∆int
/[1]) form a factorization system on ∆/[1]

[Lur09a, Def.5.2.8.8].

Proof. This is a consequence of the dual of [Lur17, Prop.2.1.2.5] applied to the Cartesian fibration ∆/[1] → ∆.
Alternatively, one can see this more directly as follows. The underlying morphism of linearly ordered sets
f : [n]→ [m] admits an active-inert factorization given by the active map f ′ : [n] ↠ [f(0), f(n)] and the inert
map f ′′ : [f(0), f(n)] ↪→ [m]. These morphisms admit unique extensions to morphisms in ∆/[1].

To characterize the active-inert pullback diagrams in ∆op
/[1], we need the following definition:

Definition 6.12. Let g : [n] −→ [1] and f : [m] −→ [1] be two objects in ∆/[1]. We will call g and f composable,
if g(n) = f(0). The concatenation of g with f denoted g ∗ f : [n+m] −→ [1] is defined as the map:

(g ∗ f)(k) =

g(k) k ≤ n

f(k − n) k ≥ n

Similarly, we denote for two linearly ordered sets S, T by S ∗T the partially ordered set S
∐
T/(smax ∼ tmin),

where smax denotes the maximal element of S and tmin denotes the minimal element of T .

Given an active morphism f2 : h0
k ↠ h1

l and an inert morphism e1 : g0
n ↣ h0

k in ∆/[1] we can consider an
active-inert factorization of its composite f2 ◦ e1. This factorization can be organized into a commutative
square

g0
n g1

m

h0
k h1

l

e1

f1

e2

f2
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It follows from the definition of active and inert morphisms that this square is equivalent to the square

g0
n g1

m

h0
a ∗ g0

n ∗ h0
b h1

a ∗ g1
m ∗ h1

b

f1

f2
a ∗ f1 ∗ f2

b

In analogy with [GCKT18, Sect.2.6], we call the squares of the form:

g0
n g1

m

h0
a ∗ g0

n ∗ h0
b h0

a ∗ g1
m ∗ h0

b

f1

id ∗f1 ∗ id

identity extension squares. These are precisely the active-inert pullbacks in ∆op
/[1].

Proposition 6.6. Let σ : ∆1 ×∆1 → ∆/[1] be an identity extension square:

g0
n g1

m

h0
a ∗ g0

n ∗ h0
b h0

a ∗ g1
m ∗ h0

b

f1

id ∗f1 ∗ id

Then σ is a pushout square in ∆/[1].

In analogy with [GCKT18], we introduce the following definition:

Definition 6.13. Let X• : ∆op
/[1] → C be a birelative simplicial object. X• is called a birelative decomposition

space if it sends every active-inert pullback in ∆op
/[1] to a pullback square in C, i.e

g0
n g1

m

h0
k h1

l

Xg0
n

Xg1
m

Xh0
k

Xh1
l

X

f1

e1 e2

f2

Xf1

Xe1 Xe2

Xf2

As in the case of 2-Segal spaces [GCKT18], we show that the birelative decomposition space condition is
equivalent to the birelative 2-Segal condition:

Proposition 6.7. Let X• : ∆op
/[1] → C be a birelative simplicial object. The following are equivalent:

(1) X• is birelative 2-Segal.
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(2) X• is a birelative decomposition space.

Proof. Assume first that X• is a birelative decomposition space. Let f : [n]→ [1] with n ≥ 3 be an object of
∆/[1] and 0 ≤ i < j ≤ n. Consider the square

f |i,j fi,...,j

f0,...,i,j,...,n f

in ∆/[1]. Note that X• satisfies the birelative 2-Segal conditions if and only if it maps each such square to a
pullback square. But this square is an identity extension square in ∆/[1] and hence an active-inert pullback.
Conversely assume that X• is birelative 2-Segal. We need to show that the image under X• of every identity
extension square

g0
n g1

m

h0
a ∗ g0

n ∗ h0
b h0

a ∗ g1
m ∗ h0

b

f1

id ∗f1 ∗ id

is a pullback diagram. We can extend every such to a rectangle:

g0
n g1

m

h0
a ∗ g0

n ∗ h0
b h0

a ∗ g1
m ∗ h0

b

g0
{0,n} = g1

{0,m}

h0
a ∗ g1

{0,m} ∗ h
0
b

f1

id ∗f1 ∗ id

Since X• is birelative 2-Segal it maps the left square and the outer rectangle to pullback diagrams. The claim
follows from the pasting law for pullbacks.

Remark 6.6. The active-inert factorization system on ∆/[1] restricts to an active inert factorization system
on ∆≤ and ∆≥. One can analogously to Definition 6.13 define a notion of left and right relative decomposition
space and show that it is equivalent to the left and right relative 2-Segal conditions.

7 Examples of higher Segal Objects
Our main goal in this section is to provide examples of the various types of 2-Segal conditions introduced
in the last section. The fundamental example of a 2-Segal space is the Waldhausen S•-construction20 of an
exact ∞-category, whose space of n-simplices Sn(C) can be described as the space of length n-flags in C. To
show that this simplicial space satisfies the 2-Segal conditions one has to compare different pasting of flags.
The reason that these are equivalent is a consequence of the third isomorphism theorem that holds in any
exact ∞-category C. It is therefore natural to expect examples of other types of 2-Segal objects to arise from
similar constructions with exact ∞-categories.
Indeed, as our first example, we consider exact functors F : C→ D between exact ∞-categories. Every such

20See Definition 7.1
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induces a morphism of simplicial spaces S•(F ) : S•(C)→ S•(D). We show that under the assumptions of
Proposition 7.2, this morphism gives rise to examples of active equifibered and relative Segal morphisms.
Moreover, we also present a different construction of an active equifibered and relative Segal morphism from
an exact functor F . Instead of a morphism between 2-Segal spaces, we construct from F : C→ D a 2-Segal
space Srel

• (F ) itself, called the relative S•-construction [Wal06]. This 2-Segal space fits into a sequence of
simplicial spaces

D•
ι•−→ Srel

• (F ) π•−→ S•(C) (17)

that is important in algebraic K-theory since it induces the long exact sequence of relative K-theory [Wal06].
After recalling the definition of the Waldhausen and relative Waldhausen construction in the setting of exact
∞-categories [Bar15], we show that the morphisms ι• and π• are examples of a relative Segal and an active
equifibered morphism respectively.
These constructions admit applications to the theory of Hall algebras. Indeed, every such morphism induces
a (co)algebra morphism between the corresponding Hall algebras. In particular, the morphism induced by
the relative S•-construction has been applied for the construction of derived Hecke actions [KV22, Sect.5].
This is especially advantageous in the realm of ∞-categories, where constructing homotopy coherent algebra
morphisms can be challenging.
This discussion admits an analog for birelative simplicial spaces in the setting of hermitian K-theory. For exact
1-categories with exact duality (C,DC) it has been proven by Young [You18, Thm.3.6] that the hermitian
R•-construction of (C,DC) describes a relative 2-Segal space over S•(C). Young uses this observation to
construct representations of Hall algebras and to apply it in orientifold Donaldson–Thomas-theory [You20].
In Section 7.2, we extend Young’s result to the setting of exact ∞-categories with duality. Our proof is
inspired by the construction of the real Waldhausen S•-construction as presented in [HSV19]. For an exact
∞-category C with duality functor DC the relative 2-Segal space from Example 6.3

Tw(S•(C))→ S•(C)× S•(C)rev (18)

admits an extension to a morphism of simplicial spaces with C2-action. For n = 1, we can explicitly describe
the C2-action by the commutative diagram:

C0,1 C0,2

0 C1,2

DC(C1,2) DC(C0,2)

0 DC(C0,1)

(C0,1, C1,2) (DC(C1,2),DC(C0,1))

The hermitian R•-construction then arises as the simplicial space of homotopy fixed points. Furthermore,
the induced morphism R•(C) → S•(C) is a relative 2-Segal space. Using this method we finally construct
examples of active equifibered and relative Segal maps between relative 2-Segal objects from exact duality
preserving functors F : C→ D.
These results can be applied to the construction of ∞-categorical Hall algebra representations and their
morphisms. In particular, these constructions are essential for the construction of representations of categorified
Hall algebras [PS23, DPS22].
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7.1 2-Segal Spans from Exact ∞-Functors

In this subsection, we construct examples of active equifibered and relative Segal morphisms between
Waldhausen S•-construction. For the reader’s convenience, we first recall the construction of the Waldhausen
S•-construction of an exact ∞-categories.
An exact ∞-category consists of a triple (C,Cin,Ceg) of an additive ∞-category C and two wide Waldhausen
subcategories Cin and Ceg satisfying a list of compatibility conditions [Bar15, Def.3.1]. We call the morphism
in Cin ingressive denoted ↣ and the morphism in Ceg egressive denoted ↠. For an exact ∞-category C, a
bicartesian square

C1 C2

0 C3

in C is called an extension square. A functor

F : (C,Cin,Ceg)→ (D,Din,Deg)

between exact∞-categories is called an exact∞-functor [Bar15, Def.4.1] if it preserves ingressive and egressive
morphisms, zero objects, and extension squares. We denote by Exact∞ the subcategory of Fun(Λ2

2,Cat)
spanned by exact ∞-categories and exact functors.
Consider for every n ≥ 0 the poset [n] as an ∞-category and let Ar([n]) := Fun([1], [n]) be the associated
∞-category of arrows. These assemble into a cosimplicial ∞-category Ar([−]) : ∆→ Cat.

Definition 7.1. Let (C,Cin,Ceg) be an exact ∞-category. We denote by Sn(C,Cin,Ceg) ⊂ Map(Ar([n]),C)
the full subspace spanned by those functors F : Ar([n])→ C that satisfy the following conditions:

(1) for every 0 ≤ i ≤ n we have F (i, i) = 0.

(2) for every 0 ≤ i ≤ k ≤ j ≤ n the morphism F (i, j) ↣ F (k, j) is ingressive.

(3) for every 0 ≤ i ≤ j ≤ l ≤ n the morphism F (i, j) ↠ F (i, l) is egressive

(4) for every 0 ≤ i ≤ k ≤ j ≤ l ≤ n the square

F (i, j) F (k, j)

F (i, l) F (k, l)

is bicartesian.

When n varies, the spaces Sn(C,Cin,Ceg) assemble into a simplicial space called the Waldhausen S•-
construction. When the classes of ingressive and egressive morphisms are clear from the context, we
abuse notation and denote the Waldhausen S•-construction by S•(C). For completeness, we include a proof
of the following statement. The original proof in the more general context of proto-exact ∞-categories is
given in [DK19, Thm.7.3.3].

Proposition 7.1. [DK19, Thm.7.3.3] Let (C,Cin,Ceg) be an exact ∞-category. The simplicial space S•(C) is
2-Segal.
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Proof. By the path space criterion [DK19, Thm.6.3.2] it suffices to show that the two path spaces (P ▷S)•

and (P ◁S)• are 1-Segal. It follows from [Lur17, Lem.1.2.2.4.] that for every n ≥ 0 the projection maps

MapCat([n− 1],Ceg) pv

←− Sn(C) ph−→ MapCat([n− 1],Cin)

that are induced by restricting to the subposet

{(0, n) < (1, n) < ... < (n− 1, n)} ↪→ Ar([n])←↩ {(0, 1) < (0, 2) < ... < (0, n)}

are equivalences. Through these equivalences, the 1-Segal conditions for the two path spaces translate into
the conditions that for every n ≥ 2, the morphisms

MapCat([n],Ceg)→ MapCat([1]⨿[0] · · · ⨿[0] [1],Ceg)

and
MapCat([n],Cin)→ MapCat([1]⨿[0] · · · ⨿[0] [1],Cin)

are equivalences. But this condition is satisfied, since the functor [1]⨿[0] · · · ⨿[0] [1]→ [n] is an equivalence of
∞- categories.

Let (C,Cin,Ceg) and (D,Din,Deg) be exact ∞-categories and F : (C,Cin,Ceg) → (D,Din,Deg) be an exact
∞-functor. It follows from the construction of the Waldhausen construction that F induces a functor
S•(F ) : S•(C)→ S•(D) between the corresponding Waldhausen constructions. We analyze the conditions
under which this morphism is active equifibered (resp. relative Segal). To do so, we need to introduce some
definitions:

Definition 7.2. Let (C,Cin,Ceg) be an exact ∞-category and let C0 ⊂ C be a full exact21 subcategory. We
call C0

(1) extension closed if every exact-sequence σ : ∆1 ×∆1 → C

C1 C2

0 C3

in C with C1, C3 ∈ C0, factors through C0.

(2) closed under quotients (resp. subobjects) if for every egressive morphism C2 ↠ C3 (resp. ingressive
morphism C1 ↣ C2) in C with C2 ∈ C0 also C3 ∈ C0 (resp. C1 ∈ C0)

We can then prove the following:

Proposition 7.2. Let (C,Cin,Ceg) and (D,Din,Deg) be exact∞-categories and F : (C,Cin,Ceg)→ (D,Din,Deg)
be a fully faithful exact ∞-functor. The induced morphism S•(F ) of simplicial spaces is

(1) active equifibered if and only if the essential image of F is closed under quotients and subobjects.

(2) relative Segal if and only if the essential image of F is extension closed.
21A subcategory C0 ⊂ C is called exact, if the triple (C0,Cin ∩ C0,Ceg ∩ C0) is an exact ∞-category.
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Proof. To show (1), we need to show that for every n ≥ 1 the morphism

η1 : MapCat([n− 1],Cin)→ MapCat([n− 1],Din)×D≃ C≃

is an equivalence of spaces. It follows from the 2-out-of-3 property for fully faithful functors that η1 is fully
faithful. To prove the claim, it suffices to show that η1 is essentially surjective. But this follows since C ⊂ D

is closed under subobjects.
The proof of (2) is similar. We need to show that for every n ≥ 1 the functor

η2 : MapCat([n− 1],Cin)→ Mapin([n− 1],Din)×D≃×···×D≃ (C≃ × · · · × C≃)

is an equivalence. It follows again from the 2-out-of-3 property for fully faithful functors that this functor is
fully faithful. Moreover, since the essential image is closed under extensions, it is easy to see that the functor
is also essentially surjective.

Remark 7.1. Let (C,Cin,Ceg) be an exact∞-category, and C0 ⊂ C be full exact subcategories. The inclusion
functor

i : C0 → C

induces a 𝕂-linear map between the corresponding vector spaces of groupoid functions

i∗ : HomSet(π0(C≃
0 ),𝕂)→ HomSet(π0(C≃),𝕂)

that maps the constant function [C]C0 for C ∈ C0 to the corresponding constant function [C]C in C. If C0 is
closed under extensions (resp. under quotients and subobjects), then, according to the definition, this map
naturally extends to a morphism between the corresponding Hall algebras [Rin90] (resp. Hall coalgebras).
These classes of morphisms are precisely the ones described by the above class of active equifibered and
relative Segal morphisms.

As explained in the introduction of this section, we can also construct different examples of active equifibered
and relative Segal maps, using the Sequence (17). We therefore first recall all the necessary ingredients
for this construction. Let F : (C,Cin,Ceg)→ (D,Din,Deg) be an exact functor between exact ∞-categories.
Following [DKSS24], we define the relative S•-construction of F as the simplicial space denoted Srel

• (F ) whose
∞-category of n-simplices is defined as the pullback

Srel
n (F ) Sn+1(D)

Sn(C) Sn(D)

∂n+1

F

Alternatively, we can also describe Srel
n (F ) as the full subspace of the space of sections of the Grothendieck

construction of the functor
Fun([n− 1],Cin) evn−1−−−−→ C

F−→ D

generated by the ingressive sections. Since the full subcategory of Fun(∆op,C) generated by 2-Segal objects is
closed under limits, it follows that Srel

• (F ) is itself 2-Segal. The simplicial space Srel
• (F ) sits in a sequence of

simplicial spaces
D•

ι•−→ Srel
• (F ) π•−→ S•(C),
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where the maps ιn : D→ Sn(F ) and πn : Sn(F )→ Sn(C) are given by

d 7→ (0 ↣ ...↣ 0 ↣ b)

and
(a0 ↣ ...↣ ...↣ an−1 ↣ b) 7→ (a0 ↣ ...↣ an−1)

respectively. These maps have the following properties:

Proposition 7.3. Let F : C→ D be an exact functor between exact ∞-categories. Then:

(1) the morphism π• is active equifibered.

(2) the morphism ι• is relative Segal.

Proof. Note that Srel
n (F ) can be written as the pullback

MapCat([1],Din) D≃

Srel
n (F ) MapCat([n− 1],Cin)

Srel1 (F ) C≃

ev0

of the outer rectangle. To show the claim for π•, we need to show that the upper diagram is a pullback as
well. But this follows from the pasting law for pullbacks. For (2) note that the pullback of spaces

D≃ ×Srel
1 (F )×

Srel
0 (F )···×

Srel
0 (F )S

rel
1 (F ) S

rel
n (F )

can be identified with the full subspace of Srel
n (F ) ≃ Sn(C) ×Sn(D) Sn+1(D) generated by those objects

(FC.GD, α), s.t.

(1) the restriction of GD to the subposet {(0, n) < ... < (n− 1, n)} is constant

(2) the restriction of FC to the subposet {(0, 1) < (1, 2) < ... < (n− 1, n)} is constant at 0

It then follows from an iterated Kan extension argument similar to [Lur17, Lem.1.2.2.4] that this subspace is
equivalent to D≃.

As an application, we use the above results for the construction of the so-called derived Hecke actions from
[KV22].

Proposition 7.4. Let C be an ∞-category with finite limits, and let p : Y• → X• be a relative 2-Segal object.
Let further, f : X• → Z• be an active equifibered, and g : W• → X• be a relative Segal morphism. Then

(1) the composite f ◦ p : Y• → Z• is a relative 2-Segal object.

(2) the pullback π : Y• ×X• W• →W• is a relative 2-Segal object.
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Proof. Since Y• is 1-Segal by definition, for the first case we only need to show that the composite f ◦ p is
active equifibered. But this follows since active equifibered morphisms are closed under composition.
For the second case, note that it follows from the proof of Lemma 6.1 that the pullback of an active equifibered
morphism along a relative Segal morphism is active equifibered. We therefore only need to show that
Y• ×X• W• is 1-Segal. Consider the morphisms:

Y• ×X• W• → Y• → ∗•.

Since both of them are relative Segal, their composite is so. In particular, it follows that Y• ×X• W• is
1-Segal.

As a consequence, we obtain:

Corollary 7.5. Let F : (C,Cin,Ceg) → (D,Din,Deg) be an exact fully faithful functor between exact ∞-
categories whose essential image is extension closed. Then the simplicial space S•(F ) is 1-Segal.

Proof. This follows from an application of Proposition 7.4 to the pullback diagram that defines S•(F ).

Example 7.1. Let F : (C,Cin,Ceg) → (D,Din,Deg) be a fully faithful exact functor between exact ∞-
categories whose essential image is closed under extensions. Then the morphism

S•(F ) −→ S•(C)

defines a relative 2-Segal object by Corollary 7.5. Unraveling the definitions, this equips D with the structure
of an S•(C)-module with action given by

S1(F )

C×D D

This module structure is responsible for the so-called derived Heck actions as defined in [KV22, Sect.5.2].
Indeed, the analysis of [DK18, Sect.8] for the theory with transfer given by Borel–Moore homology applied to
the above module structure recovers their derived Hecke actions. Furthermore, it can be used to extend their
derived Hecke action to the categorified Hall algebra of [PS23, DPS22].

7.2 Relative 2-Segal Spans from Duality preserving ∞-Functors

Our goal in this section is to construct examples of relative 2-Segal spaces and relative 2-Segal spans. to this
end, we present a general construction of relative 2-Segal objects from 2-Segal spaces with duality. For this
construction, we first have to recall some facts about ∞-categories with duality. Since we only work with
simplicial objects in S, we drop it from the notation.

Definition 7.3. Let C ∈ C be an object in an ∞-category. A C2-action on C is a functor BC2 → C that
maps the unique point to C.

Recall that the category ∆ admits a canonical C2-action. This action maps an object [n] to [n] and a
morphism f : [n]→ [m] to the composite morphism

[n] ≃ [n]op fop

−−→ [m]op ≃ [m]
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where the equivalence [n] ≃ [n]op is given by i 7→ n− i. By functoriality of taking presheaves, the C2-action
on ∆ induces one on P(∆) that maps a simplicial space X• to Xrev

• . The restriction of this action to the full
subcategory Cat ⊂ P(∆) maps an ∞-category to its opposite.

Definition 7.4. A simplicial space with duality is a homotopy fixed point with respect to the above C2-action
on P(∆). Similarly, an ∞-category with duality is a homotopy fixed point with respect to the C2-action on
Cat given by taking opposites.

More precisely an ∞-category with duality is a section of the cocartesian fibration C̃at∞ → BC2 encoding
the C2-action on Cat. We define the ∞-category CatC2

∞ of ∞-categories with duality and the ∞-category of
simplicial spaces with duality P(∆)C2 as the respective ∞-categories of homotopy fixed points.

Remark 7.2. The ∞-categories ∆, P(∆) and Cat also admit a trivial C2-action. We denote the respective
category of homotopy fixed points with respect to this trivial action by ∆[C2], P(∆)[C2] and Cat[C2].
Unraveling definitions, these are given by the ∞-categories of functors Cat[C2] ≃ Fun(BC2,Cat). Hence, a
homotopy fixed point with respect to this trivial action describes an object with C2-action.

Note that the non-trivial C2-action on P(∆) restricts to a C2-action on 2-Seg∆.

Definition 7.5. A 2-Segal space with duality is a homotopy fixed point with respect to the non-trivial
C2-action on 2-Seg∆.

We denote by 2-SegC2
∆ the ∞-category of homotopy fixed points. By construction, this ∞-category comes

equipped with a forgetful functor to 2-Seg∆. We call a morphism f : X• → Y• in 2-SegC2
∆ active equifibered

(resp. relative Segal) if its image in 2-Seg∆ is active equifibered (resp. relative Segal). Similarly, we call a
span

Y•

X• Z•

t•s•

in 2-SegC2
∆ a 2-Segal span with duality if s• is active equifibered and t• is relative Segal. Since the ∞-category

2-SegC2
∆ admits small limits, it makes sense to define:

Definition 7.6. We define the ∞-category 2-Seg↔,C2
∆ of 2-Segal spaces with duality as the subcategory of

Span(2-SegC2
∆ ) with morphisms 2-Segal spans with duality.

Similarly, note that the trivial C2-action on P(∆) induces the trivial C2-action on Rel2Seg∆.

Definition 7.7. A relative 2-Segal space with C2-action is a homotopy fixed point with respect to the trivial
C2-action on Rel2Seg. We denote by Rel2Seg∆[C2] the ∞-category of homotopy fixed points.

As above the ∞-category Rel2Seg[C2] comes equipped with a forgetful functor to the ∞-category Rel2Seg∆.
We define active equifibered and relative Segal morphisms as for 2-SegC2

∆ . The associated version of 2-Segal
span is called a relative 2-Segal span with C2-action.

Definition 7.8. We define the ∞-category of relative 2-Segal spaces with C2-action Rel2Seg↔
∆ [C2] as the

subcategory of Span(Rel2Seg∆[C2]) with morphisms relative 2-Segal spans with C2-action.

Our first goal in this section is the construction of a functor

Tw↔(-)C2 : 2-Seg↔,C2
∆ → Rel2Seg↔

∆ ,
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extending the functor Tw(−), that associates to every 2-Segal space with duality a relative 2-Segal space.
Recall the definition of the edgewise subdivision functor e : ∆→ ∆ from Example 6.3. We call a morphism
in Cat[C2] a C2-equivariant functor. This functor becomes C2-equivariant if we equip the source with the
trivial and the target with the non-trivial C2-action. By functoriality, this lifts to a C2-equivariant functor

Tw := e∗ : P(∆)→ P(∆)

that induces a functor Tw : P(∆)C2 → P(∆)[C2] on homotopy fixed points. The canonical inclusions
[n] ↪→ [n] ∗ [n]op and [n]op ↪→ [n] ∗ [n]op induce a natural transformation

Tw⇒ id× (−)op : P(∆)→ P(∆)

It follows from [HSV19, Lem.2.23] that the natural transformation is C2-equivariant and hence induces a
natural transformation

Tw⇒ id× (−)op : P(∆)C2 → P(∆)[C2]

on homotopy fixed points. In total, we can interpret this construction as a functor

P(∆)C2 Tw→(-)−−−−−→ Fun(∆1,P(∆)[C2]) (−)C2
−−−−→ Fun(∆1,P(∆))

that associates to a simplicial space with duality X• the morphism

Tw(X)C2
• → (X• ×Xrev

• )C2

Proposition 7.6. Let X• ∈ P(∆)C2 be a simplicial space with duality and let X• × Xrev
• be the induced

simplicial space with C2-action. There exists an equivalence of simplicial spaces

(X• ×Xrev
• )C2 ≃ X•

Proof. For any simplicial space X•, we can construct a C2-action on X• ×X• via right Kan extension

∗ P(∆)

BC2

X•

X•×X•

By adjunction, the projection onto the first factor X• ×Xrev
• → X• induces a morphism of simplicial spaces

with C2-action
κ : X• ×Xrev

• → X• ×X•

It follows from the construction that the functor underlying κ is given by

idX• ×D : X• ×Xrev
• → X• ×X•,

where D denotes the duality on X•. Hence, it is an equivalence. We therefore obtain an equivalence on
homotopy fixed points. The claim follows from the transitivity of right Kan extensions
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Proposition 7.7. The functor Tw→(-) constructed above restricts to a functor

Tw→(-) : 2-SegC2
∆ → Rel2Seg∆[C2]

Furthermore, it preserves active equifibered and relative Segal morphisms.

Proof. It follows from Example 6.3 that the map Tw(X)• → X• × Xrev
• is a relative 2-Segal object with

C2-action. The second claim can be checked directly by looking at the corresponding pullback diagrams.

Proposition 7.8. The functor (−)C2 : Fun(∆1,P(∆)[C2])→ Fun(∆1,P(∆)) restricts to a functor

(−)C2 : Rel2Seg∆[C2]→ Rel2Seg∆

Further, it preserves active equifibered and relative Segal morphisms.

Proof. The claim follows from the fact that the functor limBC2(−) preserves small limits.

Combining Proposition 7.8 and 7.7 we can obtain our first goal of this section

Proposition 7.9. The composite ∞-functor

2-SegC2
∆

Tw→(-)−−−−−→ Rel2Seg∆[C2] (−)C2
−−−−→ Rel2Seg∆

induces an ∞-functor on the level of spans

Tw↔(-)C2 : 2-Seg↔,C2
∆ → Rel2Seg↔

∆ [C2]→ Rel2Seg↔
∆

We use this Proposition for the construction of examples of relative 2-Segal spaces and spans. In the previous
section, we have shown that algebraic K-theory is a rich source of examples of active equifibered and relative
Segal ∆op-morphisms. The analogue for relative 2-Segal spans is hermitian K-theory. The ideas behind
hermitian K-theory originate from the fundamental work of Hesselholt and Madsen [HM15] on real algebraic
K-theory. An ∞-categorical formulation of these ideas is given in [HSV19]. Analogous to algebraic K-theory,
hermitian K-theory is described by a hermitian analogue of the Waldhausen construction. The hermitian
Waldhausen construction associates to every exact ∞-category with duality a simplicial space with duality.
For the construction of the hermitian Waldhausen construction, we follow the presentation from [HSV19,
Sect.8.2]. To do so, we first recall some facts about exact ∞-categories with duality and S[C2]-enriched
∞-categories.
Recall from Subsection 7.1 that the ∞-category Exact∞ of exact ∞-categories is defined as the subcategory
of Exact∞ ⊂ Fun(Λ2

2,Cat) with objects exact ∞-categories and morphisms exact functors. The ∞-category
Λ2

2 carries a natural C2-action. This action combines with the C2-action on Cat to an action on Fun(Λ2
2,Cat)

that is defined on objects as
(C0 → C2 ← C1) 7→ (Cop1 → C

op
2 ← C

op
0 ).

It is easy to see that this action restricts to a C2-action on the subcategory Exact∞.

Definition 7.9. An exact ∞-category with duality is a homotopy fixed point with respect to the above
C2-action on Exact∞. We call the ∞-category of homotopy fixed points ExactC2

∞ the ∞-category of exact
∞-categories with duality. A morphism in this ∞-category is called an exact duality preserving functor.

Informally, an exact ∞-category with duality C is a Waldhausen ∞-category such that the underlying
∞-category admits the structure of an ∞-category with duality and the class of ingressive morphisms Cin
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together with the opposites of the ingressive morphisms form the structure of an exact ∞-category on C.
These serve as an input for the hermitian Waldhausen construction.
In [HSV19], the authors work with real exact ∞-categories and equip the real Waldhausen S•-construction
with the structures of a real simplicial space. Since the ∞-category of exact ∞-categories with duality
forms a full subcategory of the ∞-category of real exact ∞-categories [HSV19, Rem.2.33], we can apply the
construction of [HSV19, Sect 8.2] to our situation.
The key ingredient in the construction [HSV19, Sect.8.2] is enriched ∞-category theory. In our situation, we
are interested in ∞-categories enriched over the ∞-category S[C2] of spaces with C2-action. The amount of
enriched ∞-category theory necessary for this construction is described in [HSV19, App. A].22

Notation 7.1. In the following, we adopt the convention to denote S[C2]-enriched ∞-categories by C to
distinguish them from their underlying ∞-category C.

For an S[C2]-enriched ∞-category C, the underlying ∞-category is obtained by taking homotopy fixed points
on Hom-spaces [HSV19, Sect.3.1]. It follows from [HSV19, Cor.2.8] that the ∞-categories CatC2

∞ and P(∆)C2

are Cartesian closed and are therefore enriched over S[C2]. Informally, the C2-action maps a duality preserving
functor

F : (C,DC)→ (D,DD)

to the duality preserving functor

C Cop Dop D
DC F op Dop

D .

This enrichment restricts along the inclusion ∆C2 ⊂ CatC2
∞ to an enrichment of ∆. We denote the S[C2]-

enriched ∞-category ∆ by ∆. Further, the ∞-category S[C2] is naturally enriched over itself.
It follows from [HSV19, Prop.2.12] that there exists an equivalence P(∆)C2 ≃ FunS[C2](∆

op, S[C2]) of S[C2]-
enriched ∞-categories between the ∞-category of simplicial spaces with duality and the ∞-category of
S[C2]-enriched functors. We will use this equivalence for the construction of the duality structures on the
Waldhausen S•-construction.
The ∞-category ExactC2

∞ naturally admits the structure of a S[C2]-enriched ∞-category ExactC2
∞ [HSV19,

Sect.7.1] that is cotensored over CatC2
∞ [HSV19, Sect.8.2]. This cotensoring induces an S[C2]-enriched functor:

(−)− : ExactC2
∞ × CatC2,op

∞ → ExactC2
∞ .

For an ∞-category with duality I and an exact ∞-category with duality C the underlying exact ∞-category
of the cotensor CI is given by the functor category Fun(I,C). The exact structure is defined objectwise, and
the induced duality structure maps a functor F : I → C to the composite functor

I Iop Cop C.
Dop

I F op DC

As the first step of our construction of the S•-construction, we define an S[C2]-enriched version of the
∞-category of arrows. Analogously to the non-enriched case, we define the S[C2]-enriched functor

Ar(−) : ∆ ⊂ CatC2
∞

hom([1],−)−−−−−−−→ CatC2
∞

where hom(−,−) denotes the S[C2]-enriched internal Hom-functor of CatC2
∞ . For every [n] this induces a

22For a more general discussion of enriched ∞-category theory see [GH15]
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duality structure on the ∞-category of Ar([n]). Note that for every [n] ∈ ∆ the induced duality structure on
C

Ar([n]) restricts to a duality structure on Sn(C). It follows that the S[C2]-enriched functor

(−)− : ExactC2
∞ ×∆op → ExactC2

∞

restricts to an S[C2]-enriched functor

S•(−) : ExactC2
∞ ×∆op → ExactC2

∞ .

Such a functor is transpose to a S[C2]-enriched functor

S≃
• (−) : ExactC2

∞ → FunS[C2](∆op,ExactC2
∞ ) (−)≃

−−−→ FunS[C2](∆op, S[C2]) ≃ P(∆)C2 .

We can finally define:

Definition 7.10. Let C be an exact ∞-category with duality. The 2-Segal space with duality S≃
• (C) is called

the Waldhausen S•-construction with duality.

The underlying simplicial space of S• coincides with the Waldhausen S•-construction of an exact ∞-category
as introduced in Definition 7.1. In particular, the Waldhausen S•-construction with duality is an example of
a 2-Segal space with duality.
We can now apply Proposition 7.9 to the Waldhausen S•-construction with duality.

Definition 7.11. [HS04, Sect.1.8] Let C be an exact ∞-category with duality. We call the simplicial object
Tw(S≃

• (C))C2 the hermitian S•-construction and denote it by R•(C).

Remark 7.3. It is known by the fundamental work of Waldhausen [Wal06] that for every exact ∞-category
Tw(S•(C)) is equivalent to Quillens Q-construction Q(C). The authors constructed a hermitian version of
the Q-construction [CDH+20]. We expect that for every exact ∞-category with duality C, the equivalence
between the Tw(S•(C)) and the Q-construction Q(C) extends to an equivalence of simplicial spaces with
C2-action.

The following result extends [You18, Thm.3.6] into the realm of ∞-categories:

Corollary 7.10. Let C be an exact ∞-category with duality. The morphism

R•(C)→ S•(C)

is a relative 2-Segal object.

Proof. Apply Proposition 7.9 to S≃
• (C).

We can further use Proposition 7.9 for the construction of relative 2-Segal spans. Let F : C→ D ∈ ExactC2
∞

be a duality preserving exact functor. It follows from the construction of S•(−) that it induces a morphism

S•(F ) : S•(C)→ S•(D)

of simplicial spaces with duality.
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Corollary 7.11. Let F : C→ D ∈ ExactC2
∞ be a fully faithful duality preserving exact functor and consider

the induced diagram

R•(C)
R•(F )

//

��

R•(D)

��

S•(C)
S•(F )

// S•(D)

Then the morphism (R•(F ), S•(F )) is

(1) active equifibered if F is closed under extensions and subobjects.

(2) relative Segal if the essential image of F is closed under extensions.

Remark 7.4. The author is not aware of a hermitian analog of the relative S•-construction constructed in
Subsection 7.1. An analog of the construction given in Subsection 7.1 for exact ∞-categories does not exist
for exact ∞-categories with duality. The problem is that the defining pullback diagram does not lift to a
diagram of simplicial spaces with duality.

Remark 7.5. The relative 2-Segal objects described in this section describe representations of Hall algebras,
which have previously studied in the 1-categorical context in [You18, You20]. As in the case of Remark 7.1, the
active equifibered and relative Segal morphisms constructed above, correspond on the level of representations
of Hall algebras, to the inclusion of subrepresentations.

8 Modules in Span Categories
Let C be an ∞-category with finite limits. The Cartesian product on C induces a symmetric monoidal
structure on the ∞-category Span(C). The goal of this section is to provide a characterization of bimodule
objects in the monoidal ∞-category Span(C)⊗ in terms of birelative 2-Segal objects in C (see Definition 6.4).
The proof we present here is a multicolored version of the proof provided in [Ste21, Sect.2], with many ideas
drawn from there. For this, we use an explicit combinatorial model for the monoidal ∞-category Span(C)⊗,
denoted Span∆(C×), constructed in [DK19] using quasi-categories. We recall this construction in Section 8.1.
After this preliminary Section, we prove the claimed equivalence in Section 8.2.
Before we start, we sketch the strategy of the proof here. Since the ∞-category of spans is equivalent to its
opposite, studying bicomodules instead of bimodules suffices. Let the functor

F : ∆/[1] −→ Span∆(C×)

over ∆ represent a bicomodule object. Unraveling the definitions, we identify F in Corollary 8.3 with a
functor

F : Tw(∆/[1])×∆ ∆⨿ −→ C

satisfying a list of conditions. In particular, F inverts a class of morphisms that we will denote by E. To deal
with these conditions, we construct a localization functor

L : Tw(∆/[1])×∆ ∆⨿ → ∆∗
1

along the set of morphisms E. The category ∆∗
1 contains ∆op

/[1] as a full subcategory and the remaining
conditions translate under the restriction Fun(∆∗

1,C) −→ Fun(∆op
/[1],C) to the birelative 2-Segal conditions (see

Definition 6.4).
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More explicitly we can describe this identification as follows. The category Tw(∆/[1]) ×∆ ∆⨿ has objects
(f, {i, j}) represented by diagrams of the form:

[i, j] ⊂ [n0] [n1]

[1]

f

g0 g1

in ∆. Similarly a 1-morphism (e0, e1) : (f0, [i, j]) −→ (f1, [l,m]) in Tw(∆/[1])×∆ ∆⨿ can be represented by a
commutative diagram in ∆ of the form:

[i, j] ⊂ [n0] [n1]

[m1][l,m] ⊂ [m0]

[1]

f0

e1

f1

e0

g1

h1

s.t. e0(i) ≤ l ≤ m ≤ e1(j). We denote by X• : ∆op
/[1] −→ C the birelative simplicial object associated to F

under the equivalence of Theorem 8.2. In terms of X• the value of F on (f, [i, j]) admits an interpretation as:

Xg1
[(f(i),f(i+1)]

× · · · ×Xg1
[(f(j−1),f(j)]

.

Similarly, in terms of X• the value of F on the morphism (e0, e1) translates to the morphism:

Xg1
[(f0(i),f0(i+1)]

× · · · ×Xg1
[(f0(j−1),f0(j)]

−→ Xh1
[(f1(l),f1(l+1)]

× · · · ×Xh1
[(f1(m−1),f1(m)]

,

whose composition with the projection onto Xh1
[(f1(l),f1(l+1)]

is given by:

Xg1
[(f0(i),f0(i+1)]

× · · · ×Xg1
[(f0(j−1),f0(j)]

−→ Xg1
[(f0(i),f0(i+1)]

Xe1
[f1(l),f1(l+1)]−−−−−−−−−−→ Xh1

[(f1(l),f1(l+1)]
.

We unravel this in a specific example.

Example 8.1. Consider the objects g : [3] 0011−−−→ [1] and id[1] : [1] −→ [1] in ∆/[1] and denote by X• the
birelative simplicial object associated to the functor F . We denote by fi,j : [1] −→ [3] the unique morphism with
image {i, j} for i ≤ j. The morphism f0,3 extends to an object (f0,3 : id[1] −→ g, {0, 1}) in Tw(∆/[1])×∆ ∆⨿.
Under the identification of the theorem the value of F on (f0,3, {0, 1}) identifies with

Xg[f(0),f(1)] = Xg =: X(0,0,1,1).
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Next, consider the morphisms
{0, 1} ⊂ [1] [3]

[1]

{0, 1} ⊂ [1] [1]

f0,3

id[1]

id[1]

f0,3

and
{0, 1} ⊂ [1] [3]

[1]

{0, 3} ⊂ [3] [3]

f0,3

f0,3

id[3]

id[3]

in Tw(∆/[1])×∆ ∆⨿. Under the identification with X•, we can interpret the two morphisms F (f0,3, {0, 1}) −→
F (id[3], {0, 3}) and F (f0,3, {0, 1}) −→ F (id[1], {0, 1}) in C as the span

X(0,0,1,1)

X(0,0) ×X(0,1) ×X(1,1) X(0,1)

Xf0,1 ×Xf1,2 ×Xf2,3 Xf

This span describes the simultaneous action of the algebra objects X(0,0) and X(1,1) on the bimodule X(0,1).

8.1 Preliminaries

In this section, we introduce some notation and definitions essential for the combinatorics needed in the next
section. Particularly, we recall an explicit construction of a monoidal structure on the ∞-category of spans in
the model of quasi-categories. We will use this model in the following sections. First, we introduce some
notation:

Notation 8.1. Let f : [n] −→ [1] be an object in ∆/[1]. We will say that f is supported at S ⊂ {0, 1}, if
Im(f) = S. We can uniquely represent a morphism f by a sequence (0, 0, ..., 0, 1, ..., 1) with n+ 1-entries.

Definition 8.1. The interval category ∇ is the subcategory of ∆ with objects given by those [n] with
n ≥ 1, and morphisms are maps that preserve maximal and minimal elements, also called active maps. The
augmented interval category ∇+ is the wide subcategory of ∆ with morphisms being the active maps.

Definition 8.2. Let S be a linearly ordered set. An inner interstice of S is a pair (n, n+ 1) ∈ S × S, where
n+ 1 denotes the successor of n in S. We denote the set of inner interstices of S by 𝕀(S). This set comes
equipped with a canonical linear order induced from S. This construction can be enhanced to a functor

𝕀 : ∇op
+ −→ ∆+

that associates to a morphism f : S −→ T ∈ ∇+ the morphism 𝕀(f) : 𝕀(T ) −→ 𝕀(S)

𝕀(f)(j, j + 1) = (k, k + 1) ; f(k) ≤ j < j + 1 ≤ f(k + 1).
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Definition 8.3. We define ∆⨿ to be the category with objects ([n], i ≤ j) consisting of a linearly ordered set
[n] and a pair of objects i ≤ j ∈ [n]. A morphism f : ([n], i ≤ j) −→ ([m], k ≤ l) is given by a morphism f in
∆, s.t. f(i) ≤ k ≤ l ≤ f(j). We think of an object ([n], i ≤ j) as a subinterval {i, ..., j} ⊂ [n].
We will frequently denote an object ([n], i ≤ j) in ∆⨿ by ([n], [i, j]) It is easy to check that the forgetful
functor

π⨿ : ∆⨿ −→ ∆

is a Cocoartesian fibration. For every morphism f : [n] −→ [m] a π⨿-cocartesian lift is given by the morphism
f : ([n], i ≤ j) −→ ([m], f(i) ≤ f(j)).

Construction 8.1. Given a morphism f : [m] −→ [n] over [1] we can uniquely decompose it as follows. We
can decompose the source into a composite of [m] := {0, 1} ∗ {1, 2} ∗ ... ∗ {m− 1,m}. Restricting f to each
individual interval yields a morphism

fi := f |{i−1,i} : {i− 1, i} := [1i] −→ {f(i− 1) ≤ f(i)} := [ni]

in ∆/[1] that preserves endpoints. We further denote {0 ≤ f(0)} := [nl] and {f(m) ≤ n} := [nr]. Using this
decomposition, we can uniquely reconstruct f as a morphism in ∆/[1]:

f = f1 ∗ ... ∗ fm : [11] ∗ ... ∗ [1m] −→ [n1] ∗ ... ∗ [nm] ↪→ [nl] ∗ [n1] ∗ ... ∗ [nm] ∗ [nr].

We call this process decomposition.

Next, we recall the construction of the Cartesian monoidal structure and the ∞-category of spans in the
quasi-categorical model as presented in [DK19, Chapt.10]. In the following, we implicitly identify every
1-category with its nerve.

Construction 8.2. [Ste21, Constr.1.29] Let C be an ∞-category with finite products. We define a simplicial
set over ∆ via the adjunction formula

Map∆(K, C̄×) ≃ MapSet∆
(K ×∆ ∆⨿,C).

This defines a Cartesian fibration p : C̄× −→ ∆. We define C× ⊂ C̄× to be the full subcategory on those objects
F : ∆0 ×∆ ∆⨿ −→ C, that display F ({i ≤ j}) as a product of F ({k ≤ k + 1}) for i ≤ k < j. The restricted
functor p : C× −→ ∆ is also a Cartesian fibration and exhibits the Cartesian monoidal structure on C.
A morphism Φ̃ : ∆1 −→ C× represented by a map Φ : {[n] −→ [m]} ×∆ ∆⨿ −→ C is Cartesian if and only if Φ
carries all π⨿-cocartesian edges of {[n] f−→ [m]} ×∆ ∆⨿ −→ ∆ to equivalences [Lur09a, Cor.3.2.2.12]. This
happens if and only if Φ maps all maps of the form f : ([i, j] ⊂ [n]) −→ ([f(i), f(j)] ⊂ [m]) induced by a weakly
monotone map f : [n] −→ [m] to equivalences.

Construction 8.3. [Ste21, Constr.1.33] Given X• ∈ Set∆. There exists an adjunction:

TwX : (Set∆)/X ←→ (Set∆)/X : SpanX

by setting TwX(f : S −→ X) = Tw(S) −→ Tw(X) −→ X and SpanX(S −→ X) to be the left vertical arrow of the
pullback:

SpanX(S) //

��

Span(S)

��

X // Span(X)
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Let p : S −→ X be a map of simplicial sets. An n-simplex in SpanX(S) represented by a map ϕ : Tw(∆n) −→ S

is called a Segal simplex if, for every ∆k ⊂ ∆n the composite diagram:

{0, k} ∗ Tw(Sp(∆k)) ⊂ Tw(∆k) ⊂ Tw(∆n) ϕ−→ S

is a p-limit diagram. Here, Sp(∆k) denotes the spine of ∆k and we call the join {0, k} ∗Tw(Sp(∆k)) the Segal
cone. We denote by SpanX(S) ⊂ SpanX(S) the simplicial subset consisting of Segal simplices. In case X ≃ ∗
we adopt the notation Span(C) := Span∗(C).

It follows from [DK19, Thm.10.2.6] that for every ∞-category C the simplicial set Span(C) is itself an
∞-category.

Proposition 8.1. [DK19, Prop.10.2.31] Let C be an ∞-category with finite limits. Then the functor:

Span∆(C×) −→ ∆

is a monoidal ∞-category.

Note that the construction of the ∞-category Span(C) is functorial. Indeed, every finite limit preserving
functor F : C→ D between ∞-categories C and D induces a functor Span(F ) : Span(C)→ Span(D) between
∞-categories of spans. In particular, after passing to homotopy coherent nerves the construction Span(−)
induces an ∞-functor

Span(−) : Catlex
∞ → Cat

where Catlex
∞ denotes the ∞-category of ∞-categories with finite limits and finite limit preserving functors.

8.2 Characterization of Bimodules

Let C be an ∞-category with finite limits and denote by C× the associated Cartesian monoidal structure as
constructed in Construction 8.2. Our main goal in this section is to prove the following:

Theorem 8.2. Let C be an ∞-category with finite limits. There exists an equivalence of spaces:

BMod(Span∆(C×))≃ ≃ BiSeg∆(C)≃.

For better readability of the proof, we have included some technical lemmas in the Appendix A. As a start,
let us unravel the datum of a cobimodule in Span∆(C×). Such an object is given by a commutative triangle:

∆/[1] Span∆(C×)

∆

F ′

s.t F preserves inert morphisms and the adjoint morphism F̃ : Tw(∆/[1]) −→ C× maps every n-simplex
∆n −→ ∆/[1] to a Segal simplex. Unraveling the definitions, F ′ corresponds by adjunction to a morphism

F : Θ1 := Tw(∆/[1])×∆ ∆⨿ → C.

We have included a precise discussion of these conditions in the Appendix A.1 and state here only the main
result.
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Proposition 8.3. A functor F : Θ1 −→ C defines a bicomodule object, if and only if

(1) F sends degenerate23 intervals to terminal objects.

(2) F sends every object (ϕ : g0
[n0] −→ g1

[n1], [i, j]) together with its projection to subintervals to a product
diagram24.

(3) F sends every morphism

σ ≃


[i, j] ⊂ g0

n0

g
//

f

��

g1
n1

[̃i, j̃] ⊂ g0
m0

g̃
// g1
m1

f̃

OO


s.t f restricts to an isomorphism {i, ..., j} −→ {̃i, ..., j̃} and f̃ to an isomorphism {g(i), ..., g(j)} −→
{g̃(̃i), ..., g̃(j̃)} to an equivalence. We denote by E the set of morphisms of the above form.

(4) F maps all Segal cone diagrams from Definition A.1 to limit diagrams.

Definition 8.4. We define several full subcategories of Fun(Θ1,C). We denote by

• BModSp(C) the full subcategory of Fun(Θ1,C) generated by those functors that satisfy the conditions
of Proposition 8.3.

• Fun∗(Θ1,C) the full subcategory generated by those functors that map degenerate intervals to terminal
objects.

• BModπ(C) the full subcategory of Fun(Θ1,C) generated functors that satisfy conditions (1) and (2) of
Proposition 8.3.

Furthermore, we denote by Ω1 the full subcategory of Θ1 with objects those morphisms ([i, j] ⊂ g0
n0
−→ g1

n1
),

s.t. the interval [i, j] is non-degenerate.

We first analyse condition (1):

Proposition 8.4. The restriction functor induces an equivalence of ∞-categories

Fun∗(Θ1,C) ≃−→ Fun(Ω1,C)

Proof. The proof is the same as [Ste21, Cor.2.9].

To handle condition (3) of Proposition 8.3, we explicitly construct a localization of Ω1 along the class of
morphisms E.

Definition 8.5. The category ∆⋆
1 has objects consisting of pairs of a finite ordered set [k] and a [k]-indexed

sequence of composable25 objects (fn0 , ..., fnk
) in ∆/[1]. By definition, these define a morphism

f := fn0 ∗ ... ∗ fnk
: [n0] ∗ [n1] ∗ ... ∗ [nk] −→ [1].

A morphism (g, θ) : ((f1
n0
, ...f1

nk
), [k]) −→ ((f2

m0
, ..., f2

ml
), [l]) consists of a

23An interval [i, j] ⊂ [n] is called degenerate if i = j.
24See Construction 8.2
25See Definition 8.1
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(1) a morphism θ : [l] −→ [k].

(2) a commutative diagram

[m0] ∗ ... ∗ [ml] [n0] ∗ ... ∗ [nk]

[1]

g

f2 f1

s.t. for any i ∈ [k] with θ−1(i) = {j1, ..., jp}, the restriction

gi : [mj1 ] ∗ ... ∗ [mjp
] −→ [n0] ∗ ... ∗ [nk]

has image contained in [ni].

Construction 8.4. We define a functor L : Ω1 −→ ∆∗
1 as follows:

• It maps an object [i, j] ⊂ g0
n0

f−→ g1
n1

to the object (g1
[f(i),f(i+1)], ..., g

1
[f(j−1),f(j)]). The image is indexed

by the inner interstices26 𝕀([i, j]) of the linearly ordered set {i, i+ 1, ..., j}.

• A morphism in Ω1 is given by

σ ≃


[i, j] ⊂ g0

n0

g
//

f

��

g1
n1

[̃i, j̃] ⊂ g0
m0

g̃
// g1
m1

f̃

OO

 .

The functor L maps σ to the map L(σ) = (hσ, 𝕀(f)), whose second component is given by

𝕀(f) : 𝕀([̃i, j̃]) −→ 𝕀([i, j]).

We define hσ componentwise. Consider an inner interstice {p, p+ 1} ∈ 𝕀([i, j]). The restriction of hσ
to the component indexed by 𝕀(f)−1({p, p+ 1}) is given by:

[g̃(f(p)), g̃(f(p) + 1)] ∗ ... ∗ [g̃(f(p+ 1)− 1), g̃(f(p+ 1))] [g(p), g(p+ 1)]

[1]

f̃

g1
[g̃(f(p)),g̃(f(p+1))]

g1
[g(p),g(p+1)]

It follows from the commutativity of σ that this yields a morphism in ∆∗
1.

The technical proof of the following proposition is included in Appendix A.2:

Proposition 8.5. The functor L : Ω1 −→ ∆⋆
1 is an ∞-categorical localization at the morphisms E defined in

Proposition 8.3 (3).

Definition 8.6. Let C be an∞-category with finite limits. We define the category Funbim(∆⋆
1,C) ⊂ Fun(∆⋆

1,C)
as the full subcategory with objects those functors, that

26See Definition 8.2
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(I) send diagrams of the form

(g0, ..., gk)

%% ))zzuu
g0 g1 ... gk−1 gk

to equivalences.

(II) send diagrams of the form

(∗j∈[n1]g
2
j , ..., ∗j∈[nl]g

2
j )

uu ))

(g1
n1
, ..., g1

nl
)

))

(g2
1 , ..., g

2
k)

uu

(g1
1 |{0,1}, ..., g

l
1|{nl−1,nl})

to equivalences.

Proposition 8.6. Restriction along the functor L : Ω1 → ∆∗
1 induces an equivalence of ∞-categories

BModSp(C) ≃ Funbim(∆⋆
1,C).

Proof. It follows from Proposition 8.5 that restriction along L induces an equivalence

FunE−1(Ω1,C) ≃ Fun(∆⋆
1,C),

where we denote by FunE−1(Ω1,C) the full subcategory of Fun(Ω1,C) on those functors, that map all morphisms
in E to equivalences. To conclude, we only have to match the remaining conditions of Proposition 8.3. By
construction, condition (2) on the left matches with condition (I) on the right. For condition (4) let σ be a
3-simplex

g0
n0

ϕ1−→ g1
n1

ϕ2−→ g2
n2

ϕ3−→ g3
n3

in Ω1 and F an object of BModSp(C). Further let [i, j] ⊂ [n0] be a subinterval. The corresponding limit
diagram for condition (4) reads as

F (ψ3, [i, j])

F (ϕ1, [i, j]) F (ϕ2, [ψ1(i), ψ1(j)]) F (ϕ3, [ψ2(i), ψ2(j)])

F (g1
n1
, [ψ1(i), ψ1(j)]) F (g2

n2
, [ψ2(i), ψ2(j)])

It follows from the dual of [Lur09a, Prop.4.4.2.2] that this diagram is a limit diagram, if and only if the

113



diagram
F (ψ3, [i, j])

F (ψ2, [i, j]) F (ϕ3 ◦ ϕ2, [ϕ(i), ϕ(j)])

F (ϕ2, [ϕ1(i), ϕ1(j)])

is a pullback diagram. Combining this with the previous diagram, we obtain the following diagram:

F (ψ3, [i, j])

F (ϕ1, [i, j]) F (ϕ2, [ψ1(i), ψ1(j)]) F (ϕ3, [ψ2(i), ψ2(j)])

F (g1
n1
, [ψ1(i), ψ1(j)]) F (g2

n2
, [ψ2(i), ψ2(j)])

F (ψ2, [i, j]) F (ϕ3 ◦ ϕ2, [ϕ(i), ϕ(j)])

It follows from the pasting property for pullbacks, that the diagram corresponding to any sub 2-simplex is a
limit diagram. Iterating this argument, we see that condition (4) is satisfied if and only if it is satisfied on
2-simplices. The claim follows from the observation that condition (II) is precisely the image of condition (4)
on 2-simplices under L.

Using the above proposition, the problem has shifted to analyzing the conditions of Definition 8.6. To this
end, consider the full subcategory i : ∆op

/[1] −→ ∆⋆
1 generated by objects f : [n] −→ [1] ∈ ∆/[1] with n ≥ 0.

Restriction and right Kan extension induce an adjunction

i∗ : Fun(∆⋆
1,C) ⇄ Fun(∆op

/[1],C) : i∗.

We denote by Fun×(∆⋆
1,C) ⊂ Fun(∆⋆

1,C) the full subcategory on those functors that satisfy condition (I) of
Definition 8.6.

Proposition 8.7. The functor i∗ : Fun(∆op
/[1],C)→ Fun(∆⋆

1,C) factors through the full subcategory Fun×(∆⋆
1,C).

Moreover, the induced functor
i∗ : Fun(∆op

/[1],C)→ Fun(∆⋆
1,C)

is an equivalence of ∞-categories.

Proof. Let F ∈ Fun(∆op
/[1],C) be a functor and let (fm1 , fm2 , ..., fmk

) be an object of ∆⋆
1. The value of i∗F

on (fm1 , fm2 , ..., fmk
) can be computed as the limit of F over the diagram indexed by the category

D := (∆op
/[1])/(fm1 ,fm2 ,...,fmk

).

An object of the category D consists of an element i ∈ {1, ..., k} together with a morphism hl −→ fmi
in ∆/[1].

Note that a morphism from (hl −→ fmi
) to (ep −→ fmj

) in D only exists if i = j. In this case, it is given by a
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commutative diagram
ep hl

fmi

in ∆/[1]. It follows, that the value of i∗F (fm1 , ..., fmk
) is given by the limit

i∗F (fm1 , ..., fmk
)

vv zz %% ))

F (fm1) F (fm2) ... F (fmk−1) F (fmk
)

This proves the first claim. The second claim follows from [Lur09a, Prop.4.3.2.15].

We need the following auxiliary lemma:

Lemma 8.8. Let F ∈ Fun(∆⋆
1,C) be a functor. Then F satisfies condition (II), if and only if it satisfies

condition (II) where all but one of the gi2 have source equal to [1]. We will call this condition (II ′).

Proof. It follows from the assumptions that (II) implies (II ′). We assume that F satisfy condition (II ′). We
consider the diagram in ∆⋆

1 displayed in Figure 4. Since F satisfies (II ′), it follows that F maps the bottom

(g11 , ..., g
1
l ) (g11 |{0,1}, ..., g1l |{nl−1,nl})

(g21 ⋆ g
1
1 |{1,2} ⋆ ...g11 |{n1−1,n1}, g

1
2 |{0,1}, ..., g1l |{nl−1,nl} (g21 , g

1
1 |{1,2}, ..., g1l |{nl−1,nl}) (g21 |{0,1}, ..., g21 |{m1−1,m1}, g

1
1 |{1,2}, ..., g1l |{nl−1,nl})

(g21 ⋆ g
2
2 ⋆ g

1
1 |{2,3} ⋆ ...g11 |{n1−1,n1}, g

1
2 |{0,1}, ..., gl1|{nl−1,nl}) (g21 , g

2
2 , g

1
1 |{2,3}, ..., g1l |{nl−1,nl}) (g21 |{0,1}, ..., g21 |{m1−1,m1}, g

2
2 , g

1
1 |{2,3}, ..., g1l |{nl−1,nl})

... ... ...

Figure 4: Proof of Lemma 8.8

right square and the exterior right rectangle of the diagram to pullback diagrams. By the pasting law, it
follows that the functor F also sends the bottom left square to a pullback square. Hence, it follows from (II ′)
that the upper left square is also a pullback square. Another application of the pasting law implies that the
vertical left square is a pullback square. Iterating this argument yields the claim.

After all these intermediate steps, we can finally prove:

Proposition 8.9. The restriction functor i∗ : Fun(∆∗
1,C) −→ Fun(∆op

/[1],C) descends to an equivalence

Funbim(∆⋆
1,C) ≃ BiSeg∆(C)

where BiSeg∆(C) ⊂ Fun(∆op
/[1],C) denotes the full subcategory generated by birelative 2-Segal objects.

Proof. Let F ∈ Fun×(∆⋆
1,C) be a functor and let

g1

��

∗0≤k<j−1g1|{k,k+1} ∗ g2 ∗ (∗j≤k<ng1|k,k+1)

��

oo

(g1|{0,1}, ..., g1|{n−1,n}) (g1|{0,1}, ..., g1|{j−2,j−1}, g2, g1|{j,j+1}, ..., g1|{n−1,n})oo
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be a diagram of type (II ′). We can expand this diagram

g1

��

∗0≤k<j−1g1|{k,k+1} ∗ g2 ∗ (∗j≤k<ng1|k,k+1)

��

oo

(g1|{0,1}, ..., g1|{n−1,n})

��

(g1|{0,1}, ..., g1|{j−2,j−1}, g2, g1|{j,j+1}, ..., g1|{n−1,n})

��

oo

g1|{j−1,j} g2oo

Since F satisfies condition (I) of Definition 8.6, it follows that F maps the lower square to a pullback diagram.
By the pasting lemma, the upper square is a pullback if and only if the outer rectangle is a pullback. But the
latter can be identified with the opposite of the diagram

[n]

[1]

[1]

[m]

[n+m− 1]
g1|{j−1,j}

g1 g2

which precisely recovers the birelative Segal conditions.

As a corollary, we obtain analogous results for left and right module objects in Span∆(C×):

Corollary 8.10. Let C be an ∞-category with finite limits. There exist equivalences of spaces

LMod(Span∆(C×))≃ ≃ LSeg∆(C)≃,

and
RMod(Span∆(C×))≃ ≃ RSeg∆(C)≃.

9 Module Morphisms in Span Categories
In the last section, we have constructed for every ∞-category with finite limits C an equivalence between the
space of bimodule objects in the monoidal ∞-category Span∆(C×) and the space of birelative 2-Segal objects.
The goal of this section is to extend this to an equivalence of ∞-categories:

Theorem 9.1. Let C be an ∞-category with finite limits. There exists an equivalence of ∞-categories

BiMod(Span∆(C×)) ≃ Bi2Seg↔
∆ (C)

between the ∞-category of bimodule objects in Span∆(C×) and the ∞-category of birelative 2-Segal objects
and birelative 2-Segal spans.

This characterization will play a major role in our discussion of locally rigid algebras in ∞-categories of spans
in the following section. As a corollary of the above characterization, we obtain a similar characterization for
the ∞-category of left (resp. right) module objects and algebra objects in Span∆(C×).
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Corollary 9.2. Let C be an ∞-category with finite limits. There exists an equivalence

LMod(Span∆(C×)) ≃ L2Seg↔
∆ (C)

between the ∞-category of left modules in Span∆(C×) and the ∞-category of left relative 2-Segal objects and
left relative 2-Segal spans.

Corollary 9.3. Let C be an ∞-category with finite limits. There exists an equivalence

Alg(Span∆(C×)) ≃ 2Seg↔
∆ (C)

between the ∞-category of algebras in Span∆(C×) and the ∞-category of 2-Segal objects and 2-Segal spans.

Combining Corollary 9.2 with Corollary 6.4, we obtain

Corollary 9.4. Let C be an ∞-category with finite limits. There exists an equivalence

LMod(Span∆(C×)) ≃ Rel2Seg↔
∆ (C)

between the ∞-category of left modules in Span∆(C×) and the ∞-category of relative 2-Segal objects.

Before we prove these statements, let us explicitly describe the relation between algebra morphisms and
Segal spans at the level of lowest dimensional coherence. To this end, consider two algebra objects (X1, µ

X)
and (Y1, µ

Y ) in Span(C×) with associated 2-Segal objects X• (resp. Y•). To construct the data of an algebra
morphism F : (X1, µ

X) −→ (Y1, µ
Y ) between those, we first have to provide a morphism on underlying objects.

This is given by a span:
F1

X1 Y1

g1f1

with tip denoted F1. For this span to be part of an algebra morphism, we have to provide higher coherence
data. At the lowest level this is given by an invertible 2-morphism

α : F1 ◦ µX ≃ µY ◦ (F1 × F1)

in the ∞-category Span(C), i.e there has to exist an object F2 ∈ C together with two invertible 1-morphisms:

F2

Y2 ×Y1×Y1 F1 × F1 X2 ×X1 F1

(∂F
1 ,f2)(g2,∂

F
2 ,∂

F
0 ) (19)

fitting into a commutative diagram

X1 ×X1 Y1 × Y1 Y1

X2 F1

X2 ×X1 F1

F1 × F1 Y2

Y2 ×Y1×Y1 F1 × F1

F2

X1

α

f1(∂X2 , ∂X0 ) ∂X1 g1

π2

f1 × f1 g1 × g1 (∂Y2 , ∂Y0 ) ∂Y1

(∂F1 , f2)(g2, ∂
F
2 , ∂

F
0 )
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As the notation suggests, these data define the 2-simplices, and the 2-dimensional face maps of the simplicial
object F•, and the 2-dimensional part of the maps f• : F• → X•, and g• : F• → Y•. The equivalences in (19)
form the lowest dimensional instances of the active equifibered and relative Segal conditions, respectively
(see Definition 6.2). Similarly, the higher simplices of the simplicial object F•, as well as the higher active
equifibered and relative Segal conditions, imposed on morphisms f• and g• are encoded in the higher coherence
data.
After these initial considerations, we now turn to the proof of Theorem 9.1. For this, we will need the
following Lemma:

Lemma 9.5. Let C be an ∞-category with finite limits and consider a morphism:

F : Tw(∆n)× (Tw(∆/[1])×∆ ∆⨿) −→ C

such that the associated morphism F̃ : Tw(∆n) −→ Fun((Tw(∆/[1]) ×∆ ∆⨿),C) factors through BModSp(C).
Then F defines a morphism:

F : ∆/[1] ×∆n −→ Span∆(C)

if and only if for every 2-simplex ∆2 −→ ∆n ×∆/[1] of the form

(1) (f0 : [n0] −→ [1], i) ϕ1−→ (f1 : [n1] −→ [1], i) ϕ2−→ (f2 : [n2] −→ [1], i)

(2) (f0 : [n0] −→ [1], i) i<j−−→ (f0 : [n0] −→ [1], j) j<k−−→ (f0 : [n0] −→ [1], k)

(3) (f0 : [n0] −→ [1], i) ϕ1−→ (f1 : [n1] −→ [1], i) i<j−−→ (f2 : [n2] −→ [1], j)

(4) (f0 : [n0] −→ [1], i) i<j−−→ (f0 : [n0] −→ [1], j) ϕ1−→ (f1 : [n1] −→ [1], j)

the restriction F |∆2 is a Segal simplex.

Proof. The only if condition follows from the assumption. For the other direction, we first observe that for
every morphism ϕ : fn0 −→ fn1 in ∆/[1], every i < j < k, and every fixed subinterval [l,m] ⊂ [n0] the diagram

F (ϕ, i < k, [l,m])

F (ϕ, j < k, [l,m])F (ϕ, i < j, [l,m])

F (ϕ, j, [l,m])

is a limit diagram. Indeed, since F̃ factors through BimSp(C), the diagram is equivalent to a product of
diagrams of the form

F (fn1 |ϕ(p),ϕ(p+1), i < k, [ϕ(p), ϕ(p+ 1)])

F (fn1 |ϕ(p),ϕ(p+1), j < k, [ϕ(p), ϕ(p+ 1)])F (fn1 |ϕ(p),ϕ(p+1), i < j, [ϕ(p), ϕ(p+ 1)])

F (fn1 |ϕ(p),ϕ(p+1), j, [ϕ(p), ϕ(p+ 1)])
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F (ψ2, i < k, {l,m})

F (ψ2, i < j, {l,m}) F (ψ2, j < k, {l,m})

F (ϕ1, i < j, {l,m}) F (ψ2, j, {l,m}) F (ϕ2, j < k, {ϕ1(l), ϕ1(m)})

F (f0, i < j, {l,m}) F (ϕ1, j, {l,m}) F (ϕ2, j, {ϕ1(l), ϕ1(m)}) F (f0, i < j, {l,m})

F (f0, i, {l,m}) F (f0, j, {l,m}) F (f1, j, {ϕ1(l), ϕ1(m)}) F (f2, j, {ψ1(l), ψ1(m)}) F (f2, k, {ψ1(l), ψ1(m)})

(I)

(II) (III)

(IV ) (V ) (V I)

Figure 5: Image under F of the decomposition of the 2-simplex σ into a 4-simplex. The original 2-simplex is
colored blue.

These are pullback diagrams due to condition (II). Let σ : ∆2 −→ ∆/[1] ×∆n be a 2-simplex represented by a
composable pair of morphisms:

(f0 : [n0] −→ [1], i) ϕ1−→ (f1 : [n1] −→ [1], j) ϕ2−→ (f2 : [n2] −→ [1], k).

By Proposition A.1 we need to check that for every interval [l,m] ⊂ [n0] the following square is a pullback
diagram:

F (ψ2, i < k, [l,m])

F (ϕ2, j < k, [ϕ1(l), ϕ1(m)])F (ϕ1, i < j, [l,m])

F (f1, j, [ϕ1(l), ϕ1(m)])

To check this, we include this diagram in a fourfold composite of spans shown in Figure 5. The square is
depicted by the blue part in the diagram. We denote the composite rectangles, obtained by pasting two
squares, by the sum of their labels. It follows from (4), that the rectangles (IV ), (IV ) + (II), from (3) that
the rectangles (III) + (V I), (V I), and from (1) that the square (V ) are all pullback squares. Moreover, as
shown above, the square (I) is a pullback diagram. It follows from an iterated application of the pasting
lemma that the blue square is a pullback square.

Proof of Theorem 9.1. We prove the equivalence BicoMod(Span∆(C×)) ≃ Bi2Seg↔
∆ (C)op. The claimed result

then follows from the equivalence BicoMod(Span∆(C×)) ≃ BiMod(Span∆(C×))op.
Unraveling definitions and using Proposition A.1, an n-simplex η ∈ BicoMod(Span∆(C×))n is represented by
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a morphism
η : Tw(∆n)× (Tw(∆/[1])×∆ ∆⨿) −→ C

such that

(1) for every 0 ≤ k ≤ n the restriction η{k} : {idk} × (Tw(∆/[1])×∆ ∆⨿) −→ C preserves inert morphisms,
i.e. defines a bicomodule in Span∆(C×).

(2) for every 2-simplex ∆2 −→ ∆/[1] ×∆n of the form of Lemma A.2 depicted

(f0 : [n0] −→ [1], i) ϕ1−→ (f1 : [n1] −→ [1], j) ϕ2−→ (f2 : [n2] −→ [1], k)

with 0 ≤ i ≤ j ≤ k ≤ n and every subinterval [p, q] ⊂ [n0] the associated Segal cone diagram27 is a limit
diagram:

η(ψ2, [p, q], ik)

η(ϕ2, [ϕ1(p), ϕ1(q)], jk) η(ϕ1, [p, q], ij)

η(f1, [ϕ1(p), ϕ1(q)], j)

(20)

The datum of an n-simplex in BicoMod(Span∆(C×)) corresponds via adjunction to a functor

η : Tw(∆n) −→ Fun(Tw(∆/[1])×∆ ∆⨿,C).

We claim that η factors through the full subcategory

BModSp(C) ⊂ Fun(Tw(∆/[1])×∆ ∆⨿,C)),

as defined in Definition 8.4. For the evaluation of η on objects of the form idk, this follows from condition (1)
and (2). Hence, let i < j be an object of Tw(∆n). We need to check the conditions of Definition 8.4. All
conditions except condition (3) of Definition 8.4 are satisfied by assumption. For this condition to hold it
suffices to check that for every inert morphism ϕ : f0

n0
−→ f1

n1
∈ ∆/[1] and every subinterval [k, l] ⊂ [n0] the

morphisms

(i) η(ϕ, [k, l], i < j) −→ η(f1
n1
, [ϕ(k), ϕ(l)], i < j)

(ii) η(ϕ, [k, l], i < j) −→ η(f0
n0
, [k, l], i < j)

are equivalences. To this end, consider the following 2-simplices:

(i) (f0
n0
, i) ϕ−→ (f1

n1
, i) i<j−−→ (f1

n1
, j)

(ii) (f0
n0
, i) i<j−−→ (f0

n0
, j) ϕ−→ (f1

n1
, j)

in ∆/[1]×∆ ∆n. Since η(−,−, i) ∈ BimSp(C) for all i ∈ [n], the pullback Diagrams 20 associated by η to these
2-simplices exhibit the morphisms in (i) and (ii) as pullbacks of equivalences. Hence, they are themselves
equivalences.

27See Definition A.1
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Consequently, we can apply Lemma 9.5. It therefore, suffices to analyze condition (I)− (IV ) of Lemma 9.5.
Condition (I) and (II) imply that η descends to a morphism

η : ∆n −→ Span(BModSp(C)).

Under the equivalence BModSp(C) ≃ Funbim(∆⋆
1,C) of Proposition 8.6 condition (III) reads as

ηϕ1(p)≤ϕ1(p+1)(ij)× ...× ηϕ1(q−1)≤ϕ1(q)(ij)

ηϕ1(p)≤ϕ1(p+1)(ij)× ...× ηϕ1(q−1)≤ϕ1(q)(j)ηp,p+1(ij)× ...× ηq−1,q(ij)

ηp,p+1(j)× ...× ηq−1,q(j)

where the maps are the image under η of the diagram

f1
{ϕ1(p)≤ϕ1(p+1)}, ..., f

1
{ϕ1(q−1)≤ϕ1(q)}, ij)

(f1
{ϕ1(p)≤ϕ1(p+1)}, ..., f

1
{ϕ1(q−1)≤ϕ1(q)}, j)(f0

{p,p+1}, ..., f
0
{q−1,q}, ij)

(f0
{p,p+1}, ..., f

0
{q−1,q}, j)

in the category ∆∗
1 × Tw(∆). Similarly, condition (IV ) is given by

ηϕ1(p)≤ϕ1(p+1)(ij)× ...× ηϕ1(q−1)≤ϕ1(q)(ij)

ηϕ1(p),ϕ1(p)+1(ij)× ...× ηϕ1(q)−1,...,ϕ1(q)(ij)ηϕ1(p)≤ϕ1(p+1)(i)× ...× ηϕ1(q−1)≤ϕ1(q)(i)

ηϕ1(p),ϕ1(p)+1(i)× ...× ηϕ1(q)−1,ϕ1(q)(i)

Observe that the above diagrams are products of individual square-shaped diagrams. It, therefore, suffices to
show that each such square is a pullback diagram. For condition (III), we therefore need to check that for
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every p ≤ r ≤ q − 1 the diagram

ηϕ1(r)≤ϕ1(r+1)(ij)

ηϕ1(r)≤ϕ1(r+1)(j)η{r,r+1}(ij)

η{r,r+1}(j)

is a pullback square. Similarly, for condition (IV ), we need to check that the diagram:

ηϕ1(r)≤ϕ1(r+1)(ij)

η{ϕ1(r),ϕ1(r)+1}(ij)× ...η{ϕ1(r+1)−1,ϕ1(r+1)}(ij)ηϕ1(r)≤ϕ1(r+1)(i)

η{ϕ1(r),ϕ1(r)+1}(i)× ...η{ϕ1(r+1)−1,ϕ1(r+1)}(i)

is a pullback diagram. Under the equivalence of Proposition 8.9, the map η identifies with a functor
η : Tw(∆n) −→ Fun(∆op

/[1],C). We denote the value of η on an object i ≤ j ∈ Tw(∆n) by M i,j
• , if i < j and by

Xi
•, if i = j.

Under this equivalence condition (III) translates into the condition that for every fl ∈ ∆op
/[1] and 0 ≤ i < j ≤ n

the diagram

M i,j
fl

Xj
fl

M i,j
f{0,l}

Xj
f{0,l}

is a pullback diagram. Similarly, condition (IV ) translates into the condition that for every fl ∈ ∆op
/[1] and

0 ≤ i < j ≤ n the diagram:

M i,j
fl

Xi
fl

M i,j
f{0,1}

× ...×M i,j
f{l−1,l}

Xi
f{0,1}

× ...×Xi
f{l−1,l}
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is pullback diagrams. By Lemma 9.6 and Lemma 9.7, the conditions suffice to hold for j = i+ 1. But these
are precisely the active equifibered and relative Segal conditions. This finishes the proof.

Lemma 9.6. Let η̃ : ∆n −→ Span(Fun(∆op
/[1],C)) be a functor with adjoint η : Tw(∆n) −→ Fun(∆op

/[1],C) and
denote by M i,j

• the value of η on the object i → j ∈ Tw(∆n) if i < j and by Xi
•, if i = j. Further, let

fl : [l]→ [1] be an object of ∆/[1]. Then the following are equivalent:

(1) the diagram

M i,j
fl

Xj
fl

M i,j
f{0,l}

Xj
f{0,l}

is a pullback diagram for all 0 ≤ i < j ≤ n.

(2) the diagram

M i,i+1
fl

Xi+1
fl

M i,i+1
f{0,l}

Xi+1
f{0,l}

is a pullback diagram for all 0 ≤ i < n.

Proof. (1) implies (2) by assumption. To prove the converse, we do induction on the difference p = j − i.
The claim is true for p = 1 by assumption. Assume that the result holds for p − 1. Let 0 ≤ i < j ≤ n be
objects of ∆n with j − i = p. We denote j − 1 by k. Consider the diagram:

Xj
f

��

Mk,j
f

oo

��

M i,j
f

oo

��

Xj
f{0,l}

Mk,j
f{0,l}

oo

��

M i,j
f{0,l}

oo

��

Xk
f{0,l}

M i,k
f{0,l}

oo

The upper left square is a pullback diagram by the induction hypothesis, and the lower square is a pullback
diagram by the definition of η. To show that the big horizontal rectangle is a pullback diagram, it, therefore
suffices to show that the big vertical rectangle is a pullback diagram. To show this, we factor the vertical
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rectangle as
Mk,j
f

��

M i,j
f

��

oo

Xk
f

��

M i,k
f

oo

��

Xk
f{0,l}

M i,k
f{0,l}

oo

The lower square is a pullback square by the induction hypothesis, and the upper square is a pullback square
by the definition of η. It follows that the outer square is a pullback square. This finishes the proof.

Lemma 9.7. Let η̃ : ∆n −→ Span(Fun(∆op
/[1],C)) be a functor with adjoint η : Tw(∆n) −→ Fun(∆op

/[1],C) and
denote the value of η on the object i → j ∈ Tw(∆n) by M i,j

• if i < j and by Xi
• if i = j. Further, let

fl : [l]→ [1] be an object of ∆/[1]. Then the following are equivalent:

(1) the diagram

M i,j
fl

Xi
fl

M i,j
f{0,1}

× ...×M i,j
f{l−1,l}

Xi
f{0,1}

× ...×Xi
f{l−1,l}

is a pullback diagram for all 0 ≤ i < j ≤ n.

(2) the diagram

M i,i+1
fl

Xi
fl

M i,i+1
f{0,1}

× ...×M i,i+1
f{l−1,l}

Xi
f{0,1}

× ...×Xi
f{l−1,l}

is a pullback diagram for all 0 ≤ i < n.

Proof. The proof is analogous to the one of Lemma 9.6. By assumption, (1) implies (2). For the converse, we
do induction on the difference p = j − i. The case p = 1 follows by assumption. Assume therefore the result
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holds for p− 1. Let 0 ≤ i < j ≤ n be objects of ∆n and denote j − 1 by k. Consider the diagram:

∏l
m=1 M

k,j
f{m−1,m}

��

∏l
m=1 M

i,j
f{m−1,m}

oo

��

M i,j
f

oo

��∏l
m=1 X

k
f{m−1,m}

∏l
m=1 M

i,k
f{m−1,m}

oo

��

M i,k
f

oo

��∏l
m=1 X

i
f{m−1,m}

Xi
f

oo

It follows from the inductive hypothesis that the bottom square is a pullback diagram. Further, the upper
left square is a pullback by definition of η. Therefore, to show that the big vertical rectangle is a pullback
diagram, it suffices to show that the big horizontal rectangle is a pullback. The horizontal rectangle factors as

∏l
m=1 M

k,j
f{m−1,m}

��

Mk,j
f

oo

��

M i,j
f

��

oo

∏l
m=1 X

k
f{m−1,m}

Xk
f

oo M i,k
f

oo

The left square is a pullback square by the induction hypothesis and the right square is a pullback square by
definition of η. Consequently, also the big horizontal square is a pullback diagram.

10 Rigid 2-Segal Objects
Throughout this section, let C be an ∞-category with finite limits. Building on our understanding of
homotopy-coherent algebra in ∞-categories of spans from the previous sections, we can now finally perform
the second step of our strategy, and classify locally rigid algebras in symmetric monoidal (∞, 2)-categories of
spans.
Therefore, we need a suitable symmetric monoidal (∞, 2)-category of spans. Interestingly, there are two
canonical choices, the (∞, 2)-category of spans 𝕊pan2(C)⊗, and the (∞, 2)-category of 2-spans 2𝕊pan(C)⊗.
The key difference between these (∞, 2)-categories is that 2𝕊pan(C) contains more 2-morphisms and therefore
potentially allows for a larger class of locally rigid algebras. Indeed, whereas a 2-morphism in 𝕊pan2(C) is
given by a diagram in C of the form

C1

C0 C2

C3
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a 2-morphism in 2𝕊pan(C) is given by a diagram of the form

C1

C0 C4 C2

C3

Nevertheless, it is important to consider both (∞, 2)-categories, as we will see in Section 11 that more
linearization functors are defined on 𝕊pan2(C)⊗ than on 2𝕊pan(C)⊗. Therefore, we begin by analyzing locally
rigid algebra objects in 𝕊pan2(C)⊗ in Subsection 10.1. Afterwards, we turn to the study of locally rigid algebra
objects in 2𝕊pan(C)⊗, where we explicitly calculate mates of 2-morphisms in 2𝕊pan(C). These calculations
yield explicit additional limit conditions that a 2-Segal object has to fulfill to define a locally rigid algebra
object.
In Section 10.3, we finally characterize locally rigid 2-Segal objects in 2𝕊pan(C)⊗. To motivate the conditions
we obtain, recall that locally rigid algebras form special examples of Frobenius algebras. These admit a
graphical calculus, whose basics we recall now [Koc04].
For a Frobenius algebra, we visualize its multiplication and resp. comultiplication by the following graphs:

that we read from bottom to top. Further, composed operations are visualized by vertically stacking these
basic graphs. In this graphical notation, the homotopy coherent Frobenius relation can be represented by the
following pictures:

≃≃

Here, the middle diagram represents a 4-ary operation with two inputs and two outputs, mediating between
the two outer composites. This describes the homotopy coherence in the Frobenius relation. The relation to
simplicial objects becomes more apparent in the Poincaré dual picture:

0 3

2

1

0 3

2

1

0 3

2

1

≃≃

The direction on the red edges is determined by the condition that the red and black arrows, read in this
order, form a right-handed coordinate system. The labels are chosen so that the edges point from the smaller
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to the larger values. When evaluating a 2-Segal object X• on this diagram, we obtain the equation:

X{0,1,2} ×X{1,2} X{1,2,3} ≃ X{0,1,2,3} ≃ X{0,2,3} ×X{0,3} X{0,2,3}

We will reencounter this equation as the condition that classifies locally rigid 2-Segal spaces. Let us now
start with the explicit study of locally rigid 2-Segal objects.

10.1 Rigidity in 𝕊pan2(C)
Let C be an ∞-category with finite limits. Our first goal is to understand locally rigid algebras in the
(∞, 2)-category 𝕊pan2(C)⊗. To begin, we first recall its definition:

Proposition 10.1. [Hau18] Let C be an ∞-category with finite limits. There exists a symmetric monoidal
(∞, 2)-category 𝕊pan2(C)⊗ called the symmetric monoidal (∞, 2)-category of spans, with

• objects given by objects in C,

• 1-morphisms given by spans in C

C1

C0 C2

• 2-morphisms given by morphism between spans in C

C1

C0 C2

C4

and symmetric monoidal product functor ⊗ that maps two objects C0, C1 ∈ C to the Cartesian product in C.

Remark 10.1. This is an (∞, 2)-categorical version of the 2-category from Theorem 2.1. Inserting in
the above definition the (2, 1)-category Grpdf of finite groupoids, one can recover the symmetric monoidal
2-category from Section 2 as the homotopy 2-category of the above symmetric monoidal (∞, 2)-category.

Notation 10.1. Let C be an ∞-category with finite limits, and let

Z

X Y

gf

be a span from X to Y . We often abuse notation and denote a span by a map (f, g) : Z → X × Y . In this
notation, we implicitly assume that the first map is the backward pointing and the second map is the forward
pointing leg of the span.

As a first step to study locally rigid algebras in the above symmetric monoidal (∞, 2)-category, we need to
determine the dualizable objects:
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Proposition 10.2. [Hau18, Cor.12.5] Let C be an ∞-category with finite limits, and let C be an object in the
symmetric monoidal (∞, 2)-category 𝕊pan2(C)⊗. We denote by ∆ : C → C × C the diagonal map. The spans

C

C × C ∗

pC∆ and
C

∗ C × C

∆pC

exhibit C as its own left and right dual.

Proof. A straightforward calculation confirms that these indeed form the evaluation and coevaluation of a
duality on C.

Consequently, the condition of being dualizable does not impose any restriction on our class of locally rigid
algebras. Next, we need to understand adjoints for 1-morphisms.

Proposition 10.3. Let C be an ∞-category with finite limits, and let

Z

X Y

gf

be a span from X to Y . Then (f, g) admits a right adjoint in 𝕊pan2(C) if and only f is an equivalence. In
this case, the right adjoint of (f, g) is given by the reversed span

Z

Y X

g f

Proof. We will prove this claim by an explicit calculation in the homotopy 2-category h2𝕊pan2(C). It is easy
to see that if f is an equivalence, there exists an adjunction

Z

YX

gf
Z

XY

fg
⊣

.

We assume, therefore, that the span (f, g) has an adjoint (h1, h2) : W → Y ×X together with 2-morphisms

Z

YX

W

X

X

Z ×Y W

g

f

h1

h2

idX idX

π1 π2

u

W

XY

Z

Y

Y

W ×X Z

h2

h1

f

g

idY idY

p1 p2

cand

It follows from the first diagram that f has a left inverse given by π1 ◦ u. We need to show that f also has a

128



right inverse. The first of the zig-zag identities of the adjunction is given by the equivalence

Z

X YZ ×Y W ×X Z

Z

f g
(uf, idZ)

π1
f g

Z

X Y

Z

f g

π1uf

f g

Z

X Y

Z

f g

idZ

f g

≃ ≃

This implies that π1u is also a right inverse of f and hence that f is an equivalence.

Consequently, a 2-Segal object X• : ∆op → C can only define a locally rigid algebra in 𝕊pan2(S)⊗ if the
morphism

X2
(∂2,∂0)−−−−→ X1 ×X1

is an equivalence of spaces. In particular, if X• is further assumed to be rigid, X0 must be the final object,
and consequently, the 2-Segal object X• has to be Segal. Unfortunately, this excludes many interesting
examples of 2-Segal spaces like the Waldhausen construction from Example 7.1. Therefore, we will explore in
the next section whether allowing for more general 2-morphisms can yield more interesting examples of rigid
2-Segal spaces.

10.2 Rigidity in 2𝕊pan(C)
As we have discussed in the previous section, the main issue with the (∞, 2)-category 𝕊pan2(C)⊗ for the
study of locally rigid 2-Segal objects is that this (∞, 2)-category lacks sufficient adjoints. Interestingly, there
exists a second variant of a symmetric monoidal (∞, 2)-category of spans in which every 1-morphism has
both adjoints. This (∞, 2)-category is called the (∞, 2)-category of 2-spans:

Proposition 10.4. [Hau18] Let C be an ∞-category with finite limits. There exists a symmetric monoidal
(∞, 2)-category 2𝕊pan(C)⊗ called the symmetric monoidal (∞, 2)-category of 2-spans with

• objects given by objects in C,

• 1-morphisms given by spans in C

C1

C0 C2

• 2-morphisms given by 2-spans in C

C1

C0 C3 C2

C4
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Further, the underlying monoidal product functor of the symmetric monoidal structure maps two objects
C0, C1 to their Cartesian product C0 × C1 in C.

For the study of locally rigid algebra objects in 2𝕊pan(C)⊗, we again need to determine the dualizable objects
and the 1-morphisms with adjoints. Note that the symmetric monoidal (∞, 2)-categories 𝕊pan2(C) and
2𝕊pan(C) have the same underlying symmetric monoidal ∞-category. Hence, it follows from Proposition 10.2
that every object in 2𝕊pan(C) is self-dual. Moreover, we can explicitly determine adjoints of 1-morphisms:

Proposition 10.5. [Hau18, Lem.12.3] Let C be an ∞-category with finite limits, and let σ be a 1-morphism
in 2𝕊pan(C) given by the span

C1

C0 C2

f1f0

Then σ has a right (resp. left) adjoint given by the opposite span

C1

C2 C0

f0f1

Proof. The unit and counit of the adjunction are given by the 2-spans

C1 ×C0 C1

C2 C1 C2

C2

∆C0

and

C0

C0 C1 C0

C1 ×C2 C1

∆C2

respectively, where we denote by ∆C the respective relative diagonal morphisms. It is straightforward to
verify that these indeed satisfy the triangle identities of an adjunction. The fact that it is also a left adjoint
follows from reading all diagrams upside down.

Note that as a consequence, every locally rigid 2-Segal object is automatically rigid. To check that a 2-Segal
object in C is rigid in 2𝕊pan(C)⊗, it remains to understand the adjointability of Diagram 6. More generally,
we follow the spirit of Remark 3.3 and study these conditions for arbitrary module morphisms. To do so, we
need the following variant of Definition 6.9:

Definition 10.1. Let π0
• : X0

• → Y• and π2
• : X2

• → Y• be Y•-relative 2-Segal objects. A Y•-relative 2-Segal
span from π0

• to π2
• is given by a span

X0
• X1

• X2
•

Y• Y• Y•

π0
• π1

•

sX
• tX•

π2
•

sY
• tY•

of Y•-relative 2-Segal objects s.t.:

(1) The morphisms sY• and tY• are equivalences.
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(2) For every n ≥ 1 the square

X1
n X0

n

X1
{0} X0

{0}

sX
n

sX
1

is Cartesian.

(3) For every n ≥ 1 the diagram

X1
n X2

n

X1
{n} X2

{n}

tXn

is Cartesian.

We call the pair (sX• , sY• ) Y•-active equifibered and the pair (tX• , tY• ) Y•-relative Segal. Further, we call the
∞-category Rel2Seg↔

∆,Y•
(C) whose objects are Y•-relative 2-Segal objects and whose morphisms are Y•-relative

2-Segal spans the ∞-category of Y•-relative 2-Segal objects.

This definition can be reformulated using more familiar concepts from the theory of simplicial spaces:

Definition 10.2. A map of simplicial objects π• : X• → Y• is called a right (resp. left) fibration, if for all
n ≥ 1 the diagram

Xn Xn−1

Yn Yn−1

∂0

πn πn−1

∂0

resp.
Xn Xn−1

Yn Yn−1

∂n

πn πn−1

∂n

is Cartesian.

Proposition 10.6. Let πi• : Xi
• → Y• for 0 ≤ i ≤ 2 be Y•-relative 2-Segal objects. A span

X0
• X1

• X2
•

Y• Y• Y•

π0
• π1

•

sX
• tX•

π2
•

≃
≃

is a Y•-relative 2-Segal span if and only if the map sX• is a left fibration and the map tX• is a right fibration.

Proof. We need to show that for every n ≥ 1 all diagrams of the form

X1
n X0

n

X1
{0} X0

{0}

X1
n X2

n

X1
{n} X2

{n}

are Cartesian if and only if all diagrams of the form

X1
n X0

n

X1
n−1 X0

n−1

sX
n

d1
n d0

n

sX
n−1

X1
n X2

n

X1
n−1 X2

n−1

tXn

d1
0 d2

0

tXn−1
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are. But this follows by induction from the pasting lemma applied to the pasted diagrams

X1
n X0

n

X1
n−1 X0

n−1

X1
{0} X0

{0}

sX
n

d1
n d0

n

sX
n−1

sX
0

X1
n X2

n

X1
n−1 X2

n−1

X1
{n} X2

{n}

tXn

d1
0 d2

0

tXn−1

tX0

Whereas Definition 6.9 describes the datum module morphisms between modules over different algebras,
Definition 10.1 describes module morphisms between modules over the same algebra. In particular, we can
derive the following result as a consequence of Corollary 9.4:

Theorem 10.7. Let C be an ∞-category with finite limits and let Y• : ∆op → C be a 2-Segal object. There
exists an equivalence

LModY1(Span∆(C×)) ≃ Rel2Seg↔
∆,Y•

(C) (21)

between the ∞-category of left Y1-modules in the ∞-category of spans Span∆(C×) and the ∞-category of
Y•-relative 2-Segal objects and Y•-relative 2-Segal spans.

Using the above theorem, we can now efficiently describe module morphisms in categories of spans.

Notation 10.2. Let 𝔻 be a symmetric monoidal (∞, 2)-category and let A ∈ Alg(D) be an algebra object
in 𝔻⊗. Furthermore, let F : M → N in LModA(𝔻) be a morphism of left A-modules in 𝔻. We call the
commutative square

A⊗M M

A⊗N N

▷M

idA⊗F F

▷N

α (22)

the A-equivariance square associated to F and the morphism α the A-equivariance 2-isomorphism.

Example 10.1. Let C be an ∞-category with finite limits and let ϕ : M• → X• and ψ : N• → X• be
X•-relative 2-Segal objects representing X1-modules in 2𝕊pan(C)⊗. Furthermore, let

M• F• N•

X• X• X•

ϕ

f• g•

π ψ

idid

be a X•-relative 2-Segal span representing a X1-module homomorphism in 2𝕊pan(C)⊗. The X1-equivariance
square associated to the above relative 2-Segal span is given by the diagram

X1 ×M0 M1 M0

X1 × F0 F1 F0

X1 ×N0 N1 N0

(ϕ1,∂
M
1 ) ∂M

0

id×g0

id×f0 f1

g1

(π,∂F
1 ) ∂F

0

g0

f0

(ψ1,∂
N
1 ) ∂N

0

(23)
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and the X1-equivariance 2-isomorphism α by the span:

F0 ×N0 N1 F1 M1 ×M0 F0
(∂F

1 ,g1) (f1,∂
F
0 ) (24)

Note, that it follows from the conditions imposed on a X•-relative 2-Segal span from Definition 10.1 that the
legs of the span α are indeed equivalences.

Let (A,µ, α) ∈ Alg(𝔻) be an algebra object. If we equip the multiplication 1-morphism

µ : A⊗A→ A

with the structure of a left A-module morphism, as explained in Remark 3.3, then the Diagram

A⊗A⊗A A⊗A

A⊗A A

id⊗µ

µ⊗id µ

µ

≃α

featuring in the definition of a locally rigid algebra is just the A-equivariance square of the left module
structure on µ. To classify locally rigid algebra objects in 2𝕊pan(C)⊗, we therefore need to compute the
Beck–Chevalley transforms of the respective equivariance 2-isomorphism as in Diagram 24:

Proposition 10.8. Let C be an ∞-category with finite limits and let ϕ : M• → X• and ψ : N• → X• be
X•-relative 2-Segal objects representing X1-modules in Span(C)⊗. Furthermore, let

M• F• N•

X• X• X•

ϕ

f• g•

ψ

idid

be a X•-relative 2-Segal span representing a X1-module homomorphism in Span(C)⊗. The vertical and
horizontal Beck–Chevalley transformation of the X1-equivariance 2-isomorphism α are both given by the span

F1

F0 ×M0 M1 N1 ×N0 F0

(g1,∂1)(∂0,f1)

Proof. We explicitly compute the vertical Beck-Chevalley transform. The computation of the horizontal
Beck-Chevalley transform is analogous. Recall that by Definition 3.1 the vertical Beck-Chevalley transform
of the equivariance square (22) is given by the 2-morphism:

▷M ◦(idX1 × FR)⇒ FR ◦ F ◦ ▷M ◦(idX1 × FR) ≃ FR ▷N ◦(idX1 × F ) ◦ (idX1 ◦ FR)⇒ FR ◦ ▷N . (25)

We translate the components into our particular situation. Therefore, we first compute its source and target.
Note, that in the case at hand the source of the Beck-Chevalley transform ▷M ◦(idX1 × FR) is given by the
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span

X1 × F0 ×X1×M0 M1

X1 × F0M1

M0X1 ×M0X1 ×N0

(ϕ1, ∂0)(π1, f0π2)(π1, g0π2)

and the target FR ◦ ▷N is given by the span

N1 ×N0 F0

F0N1

M0N0X1 ×N0

g0∂N1(ψ1, ∂
N
0 )

Observe that the source 1-morphism of the Beck-Chevalley transform is equivalent to

F0 ×M0 M1

M0X1 ×N0

∂M1 p1
2(ϕ1p

1
2, g0p

1
1)

Let us now collect the individual components of the Beck-Chevalley transform. It follows from Proposition 10.5
that the unit of the adjunction u : idM0 → FR ◦ F is given by the span over M0 ×M0

F0

F0 ×N0 F0M0

∆N0f0

and the counit for the adjunction (idX1 ×F ) ◦ (idX1 ×FR)⇒ idX1×N0 is given by the span over X1 ×N0

X1 × F0

X1 ×N0X1 × (F0 ×M0 F0)

idX1 ×g0idX1 ×∆M0

(26)
Hence, the first 2-morphism in the BC-transform is given by the following span in C/(X1×N0)×M0
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(F0 ×M0 M1)×M0 F0

(F0 ×M0 M1)×M0 (F0 ×N0 F0)F0 ×M0 M1

(π1,∆N0π2)π1

Next, we need to identify the equivalence induced by the 2-morphism in the X1-equivariance square of F•. It
follows from Equation (24) that it is given by the span:

F0 ×M0 F1 ×N0 F0

F0 ×M0 (F0 ×N0 N1)×N0 F0F0 ×M0 (M1 ×M0 F0)×N0 F0

idM0 × (∂0, g1)× idF0idF0 × (f1, ∂1)× idF0

in C/(X1×N0)×M0 . Finally, the last 2-morphism in the BC-transform is induced by the counit from Equation 26.
Note, that it is given by the span

F0 ×N0 N1 ×N0 F0

N1 ×N0 F0(F0 ×M0 F0)×N0 N1 ×N0 F0

πN1×N0F0∆M0 × idN1 × idF0

in C/(X1×N0)×M0 . To obtain the BC-transform, we have to compose all these 2-morphisms. We can compute
the composition of the first two 2-morphisms to be given by

(F0 ×M0 M1)× F0 ×(F0×M0M1)×M0 (F0×N0F0 (F0 ×M0 F1 ×N0 F0)

F0 ×M0 M1F0 ×M0 (F0 ×N0 N1)×N0 F0

h2h1

Next, we simplify this span. To this end, note that the tip of the above span is the limit of the following
diagram:

F0 ×M0 F1 ×N0 F0

F0 ×N0 F0F0 ×M0 M1

F0 F0

(π1, f1π2)(∂0π2, π3)idF0×M0M1 ∆N0

It follows from the dual of [Lur09a, Prop.4.4.2.2] that this limit is also given by F0 ×M0 F1, so that the above
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span is equivalent to

F0 ×M0 F1

F0 ×M0 F0 ×N0 N1 ×N0 F0F0 ×M0 ×M1

idF0 ×(∂0, g1, ∂1)(π1, f1π2)

To finish the proof, we have to compute the composite of the above span with the span in Diagram (10.2).
Direct computation yields:

(F0 ×M0 F1)×(F0×M0F0×N0N1×N0F0) (F0 ×N0 N1 ×N0 F0)

N1 ×N0 F0F0 ×M0 M1

To simplify pullback, note that the tip of this span is equivalently given by the limit of the diagram:

F0 ×M0 F1

F0 ×M0 F0N1 ×N0 F0

N1 ×N0 F0 F0

(π1, ∂0π2)(g1, ∂1)π2idN1×N0F0 (g1, ∂1)π2

.

But the limit of this diagram is also equivalent to F1. Hence, we can conclude that the BC-transform is given
by the span in C/(X1×N0)×M0

F1

N1 ×N0 F1F0 ×M0 M1

(g1, ∂1)(∂0, f1)

Note that we can also read every X•-relative 2-Segal span, as described above, in the opposite direction:

N• F• M•

X• X• X•

ψ

g• f•

ϕ

idid

This yields a span of X•-relative 2-Segal objects with source and target given by

N• → X•, and M• → X•
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respectively. However, the conditions imposed on a relative 2-Segal span are not symmetric. As a result, this
reversed diagram does not, in general, represent a relative 2-Segal span itself and hence does not induce a
module morphism. On the other hand, note that the reversed span satisfies the lowest instance of the relative
2-Segal span conditions, if the Beck-Chevalley transform computed above is an equivalence. This observation
admits the following generalization:

Proposition 10.9. Let C be an ∞-category with finite limits and let ϕ : M• → X• and ψ : N• → X• be
relative 2-Segal objects representing X1-modules in 2𝕊pan(C)⊗. Furthermore, let:

M• F• N•

X• X• X•

ϕ

f• g•

ψ

idid

be a relative 2-Segal span representing a X1-module homomorphism in 2𝕊pan(C)⊗. The following are
equivalent:

(1) The vertical (resp. horizontal) BC-transform of the X1-equivariance square associated to F• is an
equivalence.

(2) The reversed diagram:
N• F• M•

X• X• X•

ψ

g• f•

ϕ

idid

(27)

is a relative 2-Segal span.

Proof. By assumption (2)⇒ (1). To show the converse, we have to show that the morphisms in Diagram (27)
satisfy the conditions of Definition 10.1. Let therefore n ≥ 2 and consider the following diagram

Xn Xn

Fn Nn

X{0,n} X{0,n}

F{0,n} N{0,n}

F{0} N{0}

(28)

We need to show that the large front rectangle is a pullback diagram. It follows from the assumption that
the bottom square is a pullback diagram. It therefore suffices to show that the top square is a pullback
diagram. Observe, that since π• : F• → X• and ψ• : N• → X• are relative 2-Segal objects, the side faces of
the cube are pullback squares. Further, the back face of the cube is a pullback square. Consequently, another
application of the pasting lemma implies that the front square is a pullback square as desired.

137



The analogous conditions for f• : F• →M• follow from a similar argument applied to the diagram

Xn

��

// Xn

��

Fn

99

//

��

Mn

99

��

X{0,n} // X{0,n}

F{0,n,}

::

��

// M{0,n,}

::

��

F{n} // M{n}

(29)

Remark 10.2. Let 𝔻⊗ be a symmetric monoidal (∞, 2)-category. As sketched in Section 4.5, one can define
for every algebra object A ∈ Alg(𝔻) an (∞, 2)-category

𝕃ModA(𝔻),

whose objects are left A-modules, 1-morphisms are left A-module morphisms and 2-morphisms are A-module
2-morphisms. In particular, for any∞-category C with finite limits, and any algebra object A ∈ Alg(2𝕊pan(C)),
one can define an (∞, 2)-category

𝕃ModA(2𝕊pan(C)).

We expect that there exists a notion of 2-morphism between relative 2-Segal spans, that extends the equivalence
of Theorem 10.7 to an equivalence of (∞, 2)-categories. We expect that under this equivalence a left A-module
morphism

F : M → N

admits an adjoint internal to 𝕃ModA(2𝕊pan(C)) if and only if the associated relative 2-Segal span satisfies
the hypothesis of 10.9 and that in this case the adjoint is given by the reversed relative 2-Segal span. We
plan to address this question in future work.

For every 2-Segal object X•, we can apply the above results to the X1-equivariance squares that appear in
the definition of rigidity 3.2.

Corollary 10.10. Let C be an ∞-category with finite limits and X• : ∆op → C a 2-Segal object in C. Then
the following are equivalent:

(1) X• defines a rigid algebra object in 2𝕊pan(C)⊗

(2) the span
X{0,1,2} ×X{1,2} X{1,2,3} X3 X{0,1,3} ×X{0,3} X{0,2,3}

is an equivalence in 2𝕊pan(C)
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(3) the diagram

(P ▷X)• ≃ X•+12 P ▷(P ▷(X•)) ≃ X•+11+12 P ▷(X•)×X11+12 ≃ X•+11 ×X11+12

X• X• X•

is a relative 2-Segal span, where we denote by 11 (resp. 12) the first (resp. second) shift by 1.

(4) the diagram

(P ◁X)• ≃ X12+• P ◁(P ◁(X•)) ≃ X12+11+• P ◁(X•)×X12+11 ≃ X11+• ×X12+11

X• X• X•

idX•

is a relative 2-Segal span, where we denote by 11 (resp. 12) the first (resp. second) shift by 1.

Proof. Recall from Example 6.2 that the regular X1 left (resp. right) module structure on X1 is described by
the relative 2-Segal object P ▷X• → X• (resp. P ◁X• → X•). An easy calculation shows that the relative
2-Segal span:

P ▷(X•)×X11+12 ≃ X•+11 ×X11+12 P ▷(P ▷(X•)) ≃ X•+11+12 (P ▷X)• ≃ X•+12

X• X• X•

encodes the left-module structure on the multiplication µ : X1 ×X1 → X1 as described in Remark 3.3. The
equivalence of (1)− (3) then follows from Proposition 10.9 and Proposition 10.8. The equivalence with (4)
follows analogously, when one considers the right module structure on the multiplication (see Remark 3.3).

10.3 Rigid 2-Segal Objects

Corollary 10.10 equips us with a precise criterion for identifying rigid 2-Segal objects. Our main goal in this
section is to explore some of its implications.
Recall from Example 2.4 that for every morphism between finite groupoids F : G → H the convolution
monoidal structure induced by the Čech-nerve Č(F ) on Fun(G×H G,Vect𝕂) from Section 2 is rigid. Thus, it
is reasonable to expect that Čech-nerves form examples of rigid 2-Segal objects. In fact, we show that this
holds for a slightly more general class of simplicial objects:

Definition 10.3. [Lur09a, Def 6.1.2.7] Let C be an ∞-category with finite products and let X• : ∆op −→ C

be a simplicial object. X• is called a groupoid object, if for every [n] ≥ 0 and every partition [n] = S1 ∪ S2

into sets S1, S2, s.t. the intersection S1 ∩ S2 consists of one element s, the diagram

Xn
//

��

XS1

��

XS2
// Xs

(30)

is a pullback diagram.
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Example 10.2. Let C be an ∞-category with finite limits, and let Č(F )• be the Čech-nerve of a morphism
F : C → D a morphism in C. Then, for every [n] ≥ 0 and every partition [n] = S1 ∪ S2, as above, the
commutative diagram

C×Dn C×DS1

C×DS2 D

is a pullback. Hence, Č(F )• is a groupoid object.
Conversely, if C is an ∞-topos, e.g. the ∞-category S, then every groupoid object X• : ∆op → C is equivalent
to the Čech-nerve of

X0 → colim[n]∈∆op Xn

the induced morphism into the colimit of X•.

Proposition 10.11. Let C be an ∞-category with finite limits, and let X• : ∆op → C be a groupoid object in
C. Then X• is locally rigid 2𝕊pan(C)⊗.

Proof. Using Corollary 10.10, it suffices to show that both maps in the span

X{0,1,2} ×X{1,2} X{1,2,3} X3 X{0,1,3} ×X{0,3} X{0,2,3}

are equivalences. For the left morphism, this follows from the pasting lemma applied to the diagram:

X{0,1} X{0,1,2} X3

X{1} X{1,2} X{1,2,3}

The statement for the opposite morphism follows analogously.

Surprisingly, this class turns out to be the only class of rigid 2-Segal objects:

Theorem 10.12. Let C be an ∞-category with finite limits, and let X• : ∆op → C be a 2-Segal object in C.
Then X• is locally rigid in 2𝕊pan(C)⊗ if and only if X• is a groupoid object.

Before we present a proof of this theorem, we first recall some general results about the relation between
groupoids and 2-Segal objects. One of the main ingredients of the proof is the following lemma:

Lemma 10.13. [Lur09b, Prop 1.1.8] Let X• : ∆op → S be a Segal space. The following are equivalent:

(1) X• is a groupoid object

(2) the homotopy category hX• is a groupoid

Proof. It follows from the definition of a groupoid object that (1) implies (2). We now show the converse
direction. Since X• is a Segal space, there exists a pullback diagram

X2 X{0,1} ×X{0} X{0,2}

X{0,1} ×X{1} X{1,2} X{0,1} ×X{2}

p

q
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Since X• is a Segal space by assumption, the map q is an equivalence, and X• is a groupoid object if and
only if the morphism p is an equivalence. It therefore suffices to show that the composite map p ◦ q−1 is an
equivalence in S/X{0,1}×X{2} . This can be checked fiberwise over X{0,1} ×X{2}.
Therefore, it suffices to show that for every pair (f, x) ∈ X{0,1} ×X{2} the induced map on fibers

(X{0,1} ×X{1} X{1,2})×X{0,1}×X{2} {(f, x)} (X{0,1} ×X{0} X{0,2})×X{0,1}×X{2} {(f, x)}

is an equivalence of spaces. Denote by y, z ∈ X0 the images of f under the face maps of X• Unwinding the
definitions, the above map identifies with the morphism

MaphX•
(z, x) MaphX•

(y, x)

given by precomposition with the class of [f ] ∈ hX•. But this map is an equivalence if and only if [f ] is
invertible in hX•. But this is the case, since hX• is a groupoid.

Lemma 10.14. Let X• : ∆op → S be a Segal space. The following are equivalent:

(1) the homotopy category hX• is a groupoid

(2) the diagram
X3 X{0,1,3}

X{0,2,3} X{0,3}

∂2

∂1 ∂1

∂1

is Cartesian

Proof. Using Lemma 10.13 it is easy to see that (1)⇒ (2). Therefore, it remains to prove that (2)⇒ (1).
Let f : x→ y ∈ X1 represent a morphism in hX•. The image of f under the map

X1
(s1,s0)−−−−→ X0 ×X{1,3} X{0,1,3} ×X{0,3} X{0,2,3} ×X{0,2} X0 ≃ X0 ×X{1,3} X3 ×X{0,2} X0 (31)

yields a 3-simplex σf ∈ X3 with the property that

∂0σf =
x

f

��
y

g
??

idy
// y

(32)

and

∂3σf =
y

g

��
x

f
??

idx // x

(33)

Hence g is an inverse of f in hX•. This implies that the homotopy category hX• is a groupoid.

Lemma 10.15. Let X• : ∆op → C be a simplicial object. The following are equivalent:

(1) X• is Segal

(2) X• is 2-Segal and the map X2
(∂2,∂0)−−−−→ X1 ×X0 X1 is an equivalence.
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Proof. It has been shown in [DK19, Prop.2.3.3] that (1) implies (2) . For the other direction, we show by
induction on n ≥ 2 that the Segal maps

Xn → X{0,1} ×X{1} · · · ×X{n−1}X{n−1,n}

are equivalences. The base case is fulfilled by assumption. The inductive step is a consequence of the following
chain of equivalences

Xn ≃ X{0,...,n−2,n} ×X{n−2,n} X{n−2,n−1,n}

≃ X{0,1} ×X{1} ....×X{n−2} X{n−2,n} ×X{n−2,n} X{n−2,n−1} ×X{n−1} X{n−1,n}

≃ X{0,1} ×X{1} X{1,2} ×X{2} ...×X{n−1} X{n−1,n}

where we used the 2-Segal condition in the first step and the inductive hypothesis in the second.

After this preparation, we can now prove our main result:

Proof of Theorem 10.12. We have already seen in Proposition 10.11 that every groupoid object defines a
locally rigid algebra in 2𝕊pan(C)⊗.
For the converse, we use that by Corollary 10.10 the legs of the span

X{0,1,2} ×X{1,2} X{1,2,3} X3 X{0,1,3} ×X{0,3} X{0,2,3} (34)

are equivalences. We first show that X• satisfies the Segal conditions. For this purpose, we consider the
retract diagram:

X{0,1} ×X{1} X{1,2}
(s1,s0)

// X{0,1,2} ×X1,2 X{1,2,3}
(∂1,∂0)

// X{0,1} ×X{1} X{1,2}

X2
s1 //

(∂2,∂0)
OO

X3

(∂3,∂0)

OO

∂1 // X2

(∂2,∂0)
OO

(35)

Since the middle arrow is an equivalence, as it is the left leg of the span in Equation (34), also the outside
arrows are equivalences. It follows from Lemma 10.15 that X• is Segal.
To show that X• is a groupoid object, we use Lemma 10.13 together with Lemma 10.14. To use these results,
we first reduce to the case that X• is a Segal space. Note that since Yoneda reflects and preserves all limits,
it suffices to show that the composite with the Yoneda embeddingょ◦X• : ∆op → Fun(Cop, S) is a groupoid
object. We can therefore reduce to the case that X• is a Segal object in a presheaf category C ≃ Fun(Dop, S).
Further, note that the conditions imposed on a groupoid object can be checked pointwise. Hence, this reduces
to the case C = S and the result follows from Lemma 10.13 together with Lemma 10.14

Remark 10.3. In terms of the interpretation of rigid algebras as Frobenius algebras, the above theorem says
that a 2-Segal object X• with multiplication span

X2

X1 ×X1 X1

∂1(∂2,∂0)
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and comultiplication span given by the reversed span

X2

X1 X1 ×X1

∂1 (∂2,∂0)

defines a Frobenius algebra, if and only if X• is a groupoid object. This interpretation was mentioned to the
author by Joachim Kock in private conversation.

For an ∞-category C in which all groupoid objects are effective [Lur09a, 6.1.2.14], for instance, if C is an
∞-topos, we can even strengthen this result:

Corollary 10.16. Let C be an ∞-category with finite limits in which all groupoid objects are effective and let
X• : ∆op → C be a 2-Segal object. Then X• is locally rigid if and only if it is equivalent to a Čech nerve.

Proof. This follows from Theorem 10.12 together with the definition of an effective groupoid object in [Lur09a,
Def. 6.1.2.14]

Combining this result with our discussion in Section 10.1 we can further classify rigid algebras in 𝕊pan2(C).

Definition 10.4. Let C be an ∞-category with finite limits. A groupoid object G• : ∆op → C in C is called
an ∞-group object if G0 ≃ ∗. If C is the ∞-category S, we call an ∞-group object in S an ∞-group.

Remark 10.4. We will often abuse notation and denote an ∞-group object G• in C by its 1-simplices
G := G1.

Corollary 10.17. Let C be an ∞-category with finite limits, and let X• : ∆op → C be a 2-Segal object s.t.
X0 ≃ ∗. Then the following are equivalent:

(1) X• is rigid in 𝕊pan2(C)⊗

(2) X• is rigid in 2𝕊pan(C)⊗

(3) X• is a ∞-group object in C

Remark 10.5. Let C be an ∞-category with finite limits. The ∞-category Span(C)⊗ does not admit
geometric realizations of simplicial objects. We can, therefore, not use the construction of Appendix C and
define a Morita category of Span(C)⊗.
A way to solve this issue for C ≃ S is the ∞-category of spaces is the following. It is a consequence of
Theorem 11.1 that the presheaf category construction extends to a symmetric monoidal (∞, 2)-functor

P(−) : 𝕊pan2(S)⊗ → ℙrL,⊗

In particular, it follows from the universal property of the presheaf category

FunL(P(X),P(Y )) ≃ Fun(X,P(Y )) ≃ Fun(X × Y, S) ≃ S/X×Y

that the (∞, 2)-functor P(−) is full faithful. The symmetric monoidal (∞, 2)-category 𝕄or(PrL)⊗, therefore,
forms a natural candidate for the Morita category of Span(C)⊗. As we discuss in Section 11.3, we do not
expect that the (∞, 2)-functor P(−) can be extended to an (∞, 2)-functor with source 2𝕊pan(C)⊗.
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The results above explain our results from Section 2 and clarify why, to the author’s knowledge, all known
examples of rigid convolution monoidal structures arise from Čech-nerves. However, it is important to note
that Theorem 10.12 does not imply that all rigid convolution monoidal structures have to originate from
Čech-nerves. Indeed, we have only proven this in the case of 2-Segal sets.
In fact, since the linearization functor from Proposition 2.1 inverts certain 2-morphisms, it remains possible
that rigid convolution monoidal structures could be induced by 2-Segal spaces that are not groupoid objects.
Nevertheless, we can characterize precisely when this occurs:

Corollary 10.18. Let C be an ∞-category with finite limits, and X• : ∆op → C be a 2-Segal object in C. For
every symmetric monoidal (∞, 2)-category 𝔻⊗, and every symmetric monoidal (∞, 2)-functor

D : 2𝕊pan(C)⊗ → 𝔻⊗

the algebra D(X1) ∈ Alg(𝔻) is rigid if and only if D maps the 2-morphism

X{0,1,3} ×X{0,3} X{0,2,3}

X{0,2} ×X{2,3} X3 X{0,1} ×X{1,3}

X{0,1,2} ×X{1,2} X{1,2,3}

to an equivalence.

11 Convolution structures and TFTs
The goal of this thesis is to understand more systematically how examples of fusion categories arise from
linearization functors. As discussed in Section 2, typical examples of fusion categories that arise this way are
of the form VectG and Rep(G) for a finite group G. The goal of this section is to extend these examples to
the realm of ∞-categories and describe the associated derived multi-fusion categories. This chapter forms a
natural∞-categorical enhancement of our discussion in Section 2.1, generalizing many of the results presented
there.
In particular, we will perform the third and final step of our strategy by connecting our results from Section 5
and Section 10 with each other by using linearization (∞, 2)-functors. To do so, we first note that our
reformulation of rigidity in terms of locally rigid algebra objects in an (∞, 2)-category implies that such
objects are preserved by any symmetric monoidal (∞, 2)-functors. Therefore, to construct rigid monoidal
structures (and more generally fusion categories) from 2-Segal objects, we first need to understand symmetric
monoidal (∞, 2)-functors of the form

D(−) : 𝕊pan2(C)⊗ −→ ℙr⊗
V .

Variants of such (∞, 2)-functors are ubiquitous in mathematics. They appear in the theory of quasi-coherent
(and ind-coherent) sheaves in algebraic geometry [GR19, BZN09], the theory of mixed sheaves in geometric
representation theory [HL23], as well as in the context of sheaf theory in topology [Vol21]. The reason for
this is that they encode the 6-functor formalism of a sheaf theory. Consequently, every sheaf theory should
induce a variant of such a functor (see [GR19, Man22]).

144



Let us elaborate on this relation. Such an (∞, 2)-functor D maps every span of the form

C0

C0 C1

f −→ f! : D(C0)→ D(C1)

to a functor that describes the proper pushforward, and every span

C0

C1 C0

f −→ f∗ : D(C1)→ D(C0)

to a functor that describes the pullback. As D takes values in PrL, these functors admit right adjoints

f! ⊣ f ! and f∗ ⊣ f∗

that describe the exceptional pullback and ordinary pushforward. Since D is monoidal and every object in C

admits the unique structure of a commutative algebra object in (Cop)× ⊂ Span(C)⊗, the functor D equips
D(C) with a monoidal product

⊗ : D(C)⊗V D(C) ≃ D(C × C) D(C)∆∗

that describes the pointwise product of sheaves. Again, as D takes values in PrL, we obtain an adjunction

⊗ ⊣ homC(−,−)

and hence, all six functors. Further, many compatibilities between these six functors, such as the base-change
identity, are encoded in the symmetric monoidal (∞, 2)-category 𝕊pan2(C)⊗.
The main example of a linearization construction we are interested in is a generalized version of the linearization
construction from Proposition 2.1 and describes the higher representation theory of groups. This construction
has already been considered in different places in the theory of stable homotopy theory [CSY21, CCRY22].
Indeed, for every presentably symmetric monoidal ∞-category V⊗, we construct following [CCRY22] a
symmetric monoidal (∞, 2)-functor

LocV(−) : 𝕊pan2(S)⊗ → ℙrL,⊗
V

from the (∞, 2)-category of spans of spaces that associates to every space X the ∞-category Fun(X,V).
The corresponding ∞-category describes V-valued representations of the ∞-groupoid X. In particular, for
a connected space X ≃ BG this ∞-category describes V-valued representations of a topological group G.
For the special case V ≃ Vectℂ, this recovers the category of groupoid representations and the linearization
construction is the one from Proposition 2.1. Conversely, by using more general stable ∞-categories as an
input, we obtain interesting derived examples by the same method.
The main examples of rigid monoidal structures that we describe are linearizations of∞-groups in Section 11.2
and Čech-nerves in Section 11.3. These serve as generalizations of the category of G-graded vector spaces
and categorified Hecke algebras from Examples 2.1 and 2.4. Afterwards, in Section 11.4, we analyse the
conditions under which these categories form derived multi-fusion categories and relate them to the classical
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examples of fusion categories studied in Section 2. Finally in Section 11.5, we compare the (relative) fully
extended framed TFTs induced by these rigid convolution structures by computing the value on S1.

11.1 Linearization Functors

In this Section, we generalize our notion of a linearization construction from Proposition 2.1. These concepts
are known under various names in the literature, like a theory with transfer [DK19], or 6-functor formalism
[GR19]. As in Section 2, we use linearization constructions for the construction of rigid convolution monoidal
structures in the next Section. Let us start by defining what we mean by a linearization construction:

Definition 11.1. Let C be an ∞-category with finite limits and let V⊗ be a presentably symmetric monoidal
∞-category. A linearization construction on C is a symmetric monoidal (∞, 2)-functor

D : 𝕊pan2(C)⊗ −→ ℙrL,⊗
V . (36)

Remark 11.1. It is possible to modify the definition of a linearization construction, by restricting the classes
of morphisms that appear as the backward (resp. forward) pointing leg of a span. Using this more general
notion, one could recover the examples from [GR19, BZN09, HL23, Vol21]. Since this modification is not
necessary for the example of local systems, we stick to this less technical notion.

We denote by ιb : (Cop)⊗ −→ 𝕊pan2(C)⊗ and ιf : C⊗ −→ 𝕊pan2(C)⊗ the symmetric monoidal inclusions that
associate to a morphism f : C0 → C1 the span where the forward (resp. backward) pointing leg of the span
is the identity. In particular, D restricts to symmetric monoidal functors

Db : (Cop)⊗ −→ PrL,⊗
V (37)

and
Df : C⊗ −→ PrL,⊗

V (38)

For f a morphism in C, we denote the functor Db(f) by f∗ and the functor Df(f) by f!. It follows from
Proposition 10.3 that f∗ forms a right adjoint of f!. Further, since Df takes values in PrL

V also f∗ itself admits
a right adjoint that we denote by f∗ := f∗,R.

Remark 11.2. For a general sheaf theory, one expects an adjunction f! ⊣ f∗ only for a certain class of
morphisms f called smooth morphisms. One can embed this condition in our framework by considering
linearization functors that are defined on a sub-(∞, 2)-category of 𝕊pan2(C) with fewer 2-morphisms.

Notation 11.1. Let D be a linearization construction with target ℙrL
V and denote by 1V the unit of V⊗. For

an object C ∈ C denote the unique morphism to the terminal object by pC : C → ∗. We denote the object
p∗
C(1V) by 1C and denote for every F ∈ D(X) the object p!(F) by C∗(X,F).

Next, we turn to the construction of our main example of a linearization functor. To do so, we use the
universal property of the symmetric monoidal (∞, 2)-category 𝕊pan2(C)⊗.

Definition 11.2. [Mac22, Def.4.4.3] Let C be an ∞-category with finite limits and let 𝔻⊗ be a symmetric
monoidal (∞, 2)-category. We equip Cop with the cocartesian monoidal structure (Cop)⨿ [Lur17, Def.2.4.3.7].
We call a symmetric monoidal functor F⊗ : (Cop)⨿ → 𝔻⊗ a symmetric monoidal bivariant functor, if

(1) for every morphism f : c→ d the morphism F (f) admits a left adjoint in 𝔻.
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(2) for every pullback square
c0 ×c1 c2 c0

c2 c1

g

in C, its image under F
F (c1) F (c0)

F (c2) F (c0 ×c1 c2)

is vertically left adjointable in the sense of Definition 3.1.

Example 11.1. Let C be an ∞-category with finite limits. The symmetric monoidal functor ιb : (Cop)⨿ →
𝕊pan2(C)⊗, that associates to a morphism f : C0 → C1 in C the span

C1

C0 C1

idC1f

is an example of a symmetric monoidal bivariant functor.

In fact, the above example is the universal example:

Theorem 11.1. [Mac22, Thm.4.4.6] Let C be an ∞-category with finite limits and let 𝔻⊗ be a symmetric
monoidal (∞, 2)-category. The symmetric monoidal functor ι : (Cop)⨿ → 𝕊pan2(C)⊗ induces an equivalence
of ∞-categories

Biv⊗((Cop)⨿,𝔻⊗) ≃ Fun⊗
2 (𝕊pan2(C)⊗,𝔻⊗)

between the ∞-category of symmetric monoidal bivariant functors on the left and the ∞-category of symmetric
monoidal (∞, 2)-functors on the right.

We can now use this theorem to construct our main example of a linearization functor. The following
construction follows [CCRY22, Sect.4.1]:

Example 11.2. We first construct the universal local systems functor. To this end, denote by

LocS(−)⊗ : (Sop)⨿ → PrL,⊗

the symmetric monoidal functor of space valued local systems. This functor associates to a space X the
∞-category Fun(X, S) of S-valued local systems and to a morphism of spaces f : X → Y the pullback functor

f∗ : Fun(Y, S)→ Fun(X, S).

Note that since S is cocomplete, the pullback functor f∗ admits for any morphism of spaces f : X → Y

a left-adjoint given by left Kan extension. Hence, it follows from [HL13, Thm.4.3.3] that this functor is
bivariant. Since S is presentable, for any space X also the ∞-category Fun(X, S) is presentable. Consequently,
it follows from Proposition 11.1 that the functor LocS(−)⊗ extends to a symmetric monoidal (∞, 2)-functor

LocS(−)⊗ : 𝕊pan2(S)⊗ → ℙrL,⊗.
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The above linearization functor is the universal local systems functor in the sense that every other local
system functor factors through it:

Example 11.3. Let V⊗ be a presentably symmetric monoidal ∞-category and consider the symmetric
monoidal (∞, 2)-functor

V⊗S − : ℙrL,⊗ → ℙrL,⊗
V

from Proposition B.16. Since post composition with a symmetric monoidal (∞, 2)-functor preserves symmetric
monoidal bivariant theories, it follows that the composite functor:

V⊗S LocS(−) : (Sop)⨿ → ℙrL
V

is a symmetric monoidal bivariant functor. Hence, by Theorem 11.1 it extends to a linearization functor

LocS(−)⊗ : 𝕊pan2(S)⊗ → ℙrL,⊗
V

We call the value of this functor on a space X the ∞-category of V-valued local systems on X.

Example 11.4. Let V be a presentably symmetric monoidal (∞, 2)-category. There exists a symmetric
monoidal functor

Fun(−,V) : (Sop)⨿ → PrL⊗
V

that associates to a space X the ∞-category Fun(X,V) and to a morphism of spaces f : X → Y the pullback
functor f∗. It follows from [CCRY22, Prop.4.11] that

V⊗S LocS(−) ≃ Fun(−,V).

Hence, the two linearization constructions coincide.

Example 11.5. Let C ≃ Vectℂ be the presentable 1-category of complex vector spaces. Denote by S≤1 the
∞-category of 1-truncated spaces [Lur09a, Def.5.5.6.1]. This category is equivalent to the (2, 1)-category of
groupoids Grpd. Abusing notation, we denote by

Locℂ(−) : 𝕊pan2(Grpd)⊗ → ℙrL,⊗
Vectℂ

the restriction of Locℂ(−)⊗ to the full subcategory of spans of groupoids. On the level of homotopy bicategories,
this symmetric monoidal (∞, 2)-functor induces the 2-functor from Proposition 2.1.

Example 11.6. Let V⊗ be a presentably symmetric monoidal ∞-category. We give an algebraic description
of the data encoded in the functor LocV(−). Consider, therefore, a pair consisting of a group and a subgroup
H ⊂ G. The ∞-category

LocV(BG)

can be interpreted as the ∞-category of representations of G in V. Moreover, the embedding i : BH→ BG
induces functors

LocV(BH) LocV(BG)

i∗=CoIndG
H

i!=IndG
H

i∗=ResG
H
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which may be interpreted as functors of inducing, restricting, and coinducing representations along i. In
particular, for the map p : BG→ ∗, the corresponding functors

i∗ := C∗
V(BG,−) : LocV(BG) V and i! := CV

∗ (BG ,−) : LocV(BG) V

may be interpreted as V-valued versions of the functor of group homology and cohomology of G-representations.
In this example, the monoidal product

⊗ : LocV(BG)⊗V LocV(BG)→ LocV(BG)

describes the product of representations, and the associated internal homV(−,−) describes morphisms of
G-representations.

We also need a relative version of this construction. By the universal property of the Cocartesian monoidal
structure every space X admits an essentially unique structure of a commutative algebra object in (Sop)⨿

with multiplication given by
X ×X ← X : ∆

Moreover, every morphism of spaces f : X → Y uniquely induces a morphism of commutative algebra objects
and hence equips X with the structure of a Y -module. Hence, the symmetric monoidal functor

LocV(−) : (Sop)⨿ → PrL,⊗
V

induces for every space X a V-linear presentably symmetric monoidal structure on the ∞-category LocV(X).
Unraveling definitions the monoidal product is given by the composite

⊗ : LocV(X)⊗V LocV(X) ≃ LocV(X ×X) ∆∗

−−→ LocV(X)

that maps a pair of functors F,G : X → V to the composite

F ⊗G : X X ×X V⊗ V V
∆ F×G

We call this monoidal structure the pointwise monoidal structure on LocV(X). For every morphism of spaces
f : X → Y it equips the ∞-category LocV(X) with the structure of a LocV(Y )-module with action functor
given by

LocV(Y )⊗V LocV(X) ≃ LocV(Y ×X) LocV(X ×X) LocV(X).(f×idX )∗ ∆∗

Hence, it makes sense to consider the following construction:

Proposition 11.2. Let V⊗ be a presentably symmetric monoidal ∞-category and let Y be a space. The
symmetric monoidal bivariant functor

LocV(−)⊗ : (Sop)⨿ → ℙr⊗,L
V

induces a symmetric monoidal bivariant functor

LocV(−)⊗
Y : (Sop

Y/)
⨿ → ℙrL,⊗

LocV(Y )
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that associates to any space X over Y the ∞-category LocV(X) with the above LocV(Y )-module structure.

Proof. It follows from the functoriality of the relative tensor product symmetric monoidal structure that the
colimit preserving symmetric monoidal functor

LocV(−)⊗ : (Sop)⨿ → PrL,⊗
V

induces a symmetric monoidal functor

Mod(LocV(−))⊗ : ModY (Sop)⊗ → ModLocV(Y )(PrL
V)⊗

Since the symmetric monoidal structure on Sop is cocartesian, it follows from [Lur17, Prop.2.4.3.9] that there
exists an equivalence of ∞-categories

ModY (Sop) ≃ (S/Y )op.

We equip (S/Y )op with the Cocartesian monoidal structure. To show that this equivalence extends to a
symmetric monoidal equivalence, it suffices to show that the monoidal structure on ModY (Sop) is Cocartesian
[Lur17, Def.2.4.0.1]. The unit of ModY (Sop) is given by Y as a module over itself. Under the above equivalence,
this module gets mapped to the identity morphism idY : Y → Y , which is the initial object in (S/Y )op.
It therefore suffices to show that for all objects X,Z ∈ ModY (Sop) the relative tensor product X ⊗Y Z is
equivalent to the pullback X ×Y Z. Unraveling definitions, we obtain that the relative tensor product can be
computed as the limit of the diagram

X ⊗Y Z X × Z X × Y × Z ...

It follows from the construction of the Bar-resolution that this limit is obtained as the right Kan extension of
the truncated cosimplicial object

X × Z X × Y × Z
(idX ,fX )×idZ

idX ×(fZ , idZ )

where (fZ , idZ) (resp. (idX , fZ)) describes the action functor of the left (resp. right) action of Y on Z (resp.
X). By transitivity of right Kan extensions it suffices to calculate the limit of the truncated cosimplicial
object, which is given by X ×Y Z.
The symmetric monoidal functor obtained under this equivalence is denoted LocV(−)⊗

Y . It remains to show
that this functor is a symmetric monoidal bivariant functor. We first establish condition (1). For a morphism

X Z

Y

f

gX gZ

over Y , its image under LocV(−)Y is given by the LocV(Y )-module functor f∗ : LocV(X)→ LocV(Z). The
underlying functor has a left adjoint f!. It therefore suffices to show that the canonical lax LocV(Y )-linear
structure on f! is strong [Lur17, Rem.7.3.2.9]. For F ∈ LocV(Y ) and G ∈ LocV(X) this follows from the base
change equivalence

f!(g∗
XF ⊗ G) ≃ f!(f∗g∗

ZF ⊗ G) ≃ g∗
ZF ⊗ f!G

and [Lur17, Rem.7.3.2.9]. We now show that this functor satisfies condition (2) of Definition 11.2. But this
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follows from the corresponding property for the functor LocV(−) and the fact that pullbacks in slice categories
are computed as pullbacks in the underlying category.

Corollary 11.3. Let V⊗ be a presentably symmetric monoidal ∞-category and let Y be a space. There exists
a symmetric monoidal (∞, 2)-functor

LocV(−)⊗ : 𝕊pan2(S/Y )⊗ → ℙrL,⊗
LocV(Y ).

Construction 11.1. Let gX : X → Y and gZ : Z → Y be spaces over Y and let F ∈ LocV(X ×Y Z) be a
local system on X ×Y Z. The integral transform functor associated to F is the LocV(Y )-linear cocontinuous
functor defined as the composite

IF : LocV(X) LocV(X ×Y Z) LocV(X ×Y Z) LocV(Z)π∗
X F⊗− πZ,!

This functor maps to G ∈ LocV(X) the local system πZ,!(F ⊗ π∗
XG) ∈ LocV(Z)

Corollary 11.4. Let V⊗ be a presentably symmetric monoidal ∞-category and let X,Z be spaces over Y .
There exists an equivalence of ∞-categories

LocV(X ×Y Z) ≃ FunLocV(Y )(LocV(X), LocV(Z))

that associates to every local system F ∈ LocV(X ×Y Z) it’s Integral transform IF.

Proof. It follows from Proposition 11.2 that the ∞-category LocV(X) is self dual in PrL,⊗
LocV(Y ). In particular,

we obtain an equivalence

LocV(X ×Y Z) ≃ LocV(X)⊗LocV(Y ) LocV(Z) ≃ FunLocV(Y )(LocV(X), LocV(Z))

Unraveling this equivalence it maps a local system F ∈ LocV(X ×Y Z) to it’s Integral transform IF.

Remark 11.3. This equivalence is a special feature of the linearization functor LocV(−). For a general
linearization functor, there may exist non equivalent integration kernels that induce the same linearization
functor.

The above corollary will be of major importance in Section 11.4 when we try to understand the existence
of adjoints for functors between categories of local systems. Before we move on, let us understand some
examples of ∞-categories of local systems:

Example 11.7. Let G be a group and R a commutative ring. The ∞-category LocrmodR
(BG) is equivalent

to the 1-category Fun(BG, rmodR) of R-linear representations of the group G as studied in Section 2.

Example 11.8. For a commutative ring R the ∞-category LocD(R)(BG) is given by the ∞-category
Fun(BG,D(R)). We call the ∞-category LocD(R)(G) the ∞-category of derived representations of the group
G.

A nice property of ∞-categories of local systems is that they are atomically generated:

Notation 11.2. For every space X, the category LocV(X) is naturally V-linear. We will, in general, abuse
notation and denote the internal Hom for this LocV(X)-action by homX(−,−) instead of homLocV(X)(−,−).

Proposition 11.5. Let V⊗ be a presentably symmetric monoidal ∞-category. For every space X the V-linear
presentable ∞-category LocV(X) is atomically generated.
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Proof. Denote by π0(X) the set of connected components of X and denote by {xi} ⊂ π0(X) a set of
representatives. We denote by ji : ∗ → X the inclusion of the point xi. Note, that for every xi ∈ π0(X) the
functor ji,! is an internal left adjoint in ℙrL

V. Indeed, the right adjoint j∗
i preserves colimits and is V-linear

by the projection formula. Hence, it follows from Proposition 4.10 that for all xi ∈ π0(X) the local system
ji,!(1V) is atomic. We claim that they also generate.
For this, it suffices to show that a morphism α : L0 → L1 of local systems on X is an equivalence if and only
if for every xi ∈ π0(X) the morphism

homX(ji,!(1V),L0)→ homX(ji,!(1V),L1)

in V induced by α is an equivalence. By adjunction, this is the case if and only if for every i the morphism

αxi : L0(xi) ≃ homV(1V, j
∗
i (L0))→ homV(1V, j

∗
i (L1)) ≃ L1(xi)

is an equivalence. But this is the definition of an equivalence of local systems.

In particular, if X is a connected space, the ∞-category LocV(X) admits an atomic generator. Hence, it
follows from the generalized Schwede–Shipley Theorem 4.12:

Corollary 11.6. Let V⊗ be a presentably symmetric monoidal ∞-category and X a connected space. There
exists an algebra A ∈ Alg(V), whose underlying object are the chains on the based loop space of X with values
in the trivial local system,

CV
∗ (Ω∗(X),1V),

such that there exists an equivalence of ∞-categories

LocV(X) ≃ RModA(V).

Proof. It follows from the generalized Schwede–Shipley Theorem 4.12 that the V-linear ∞-category LocV(X)
is equivalent to the ∞-category of right modules in V over homLocV(X)(j!(1V), j!(1V)). To finish the proof, it
therefore suffices to identify the underlying object of the algebra homLocV(X)(j!(1V), j!(1V)). Note that by
adjunction there exists an equivalence

homX(j!(1V), j!(1V)) ≃ j∗j! 1V .

Since the functor LocV(−) is bivariant, it satisfies base-change. Applied to the pullback diagram

Ω(X) ∗

∗ X

pΩ(X)

pΩ(X) j

j

this yields a chain of equivalences

homX(j!(1V), j!(1V)) ≃ j∗j!(1V) ≃ pΩ(X),!p
∗
Ω(X)(1V) ≃ C∗(Ω(X),1V).

identifying the internal Hom with the object of chains on the based loop space of X with values in the trivial
local system.
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Remark 11.4. Using a more elaborate argument, one can further show that the algebra structure on
homX(j!(1V), j!(1V)) coincides with the algebra structure on CV

∗ (Ω(X)) induced by the concatenation of
loops.

Example 11.9. Let G be a group and BG it’s classifying space. The based loop space of BG is given by G
and the equivalence of Corollary 11.6 induces the familiar equivalence

RepR(G) ≃ Fun(BG, rmodR) ≃ rmodR[G]

between G-representations and modules over the group algebra R[G].

Let us also consider the derived analog of the above example:

Example 11.10. Let G be a group and BG its associated one object groupoid. There exists an equivalence
of R-linear presentable ∞-categories

Fun(BG,D(R)) ≃ RModR[G](D(R)) ≃ D(R[G])

where D(R[G]) denotes the derived ∞-category of modules over the group algebra R[G].

11.2 Categorified Group Algebras

Throughout this section, C denotes an ∞-category with finite limits. After we have discussed basic properties
of linearization functors in the last section, we can now use them as in Section 2 for the construction of
convolution monoidal structures:

Definition 11.3. Let X• : ∆op → C be a 2-Segal object and D a linearization functor on C. We call the
induced monoidal structure ∗ on the ∞-category D(X1) obtained by linearizing the 2-Segal object X• along
D the convolution monoidal structure associated to X• and the monoidal category (D(X1), ∗) ∈ Alg(Cat) a
convolution monoidal category.

The convolution monoidal structure on D(X1) arises via transporting the algebra structure on X1 along
the monoidal functor D. For example, the underlying tensor product functor of the convolution monoidal
structure on D(X1) is given by the composite:

∗ : D(X1)⊗ D(X1) ≃ D(X1 ×X1) D(X2) D(X1)(∂2,∂0)∗ ∂1,!

Note that a linearization functor is a symmetric monoidal (∞, 2)-functor. Therefore, it does not only preserve
algebra objects, but also the property of being locally rigid. Hence, as a consequence of Corollary 10.17 we
obtain the following:

Corollary 11.7. Let X• : ∆op → C be a group object in C and

D : 𝕊pan2(C)⊗ → ℙrL,⊗
V

be a linearization functor on C. Then the associated convolution monoidal ∞-category (D(X1), ∗) is rigid in
ℙrL,⊗

V . In particular, (D(X1), ∗) induces a fully extended 2-dimensional framed TFT with values in 𝕄or(PrL
V)⊗.

Proof. This is a consequence of Corollary 11.7 and Corollary 4.27.
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Remark 11.5. This result explains why categories of sheaves on group objects that appear at different
places in mathematics are generally rigid monoidal [HL23][BZN09].

In the rest of this section, we analyse this rigid monoidal structure in more detail for the examples of the
linearization functor LocV(−) introduced in the last section. These ∞-categories form generalizations of the
category of G-graded vector spaces as introduced in Example 2.5 in the context of higher algebra.

Definition 11.4. Let X• : ∆op → S be an ∞-group object in spaces with multiplication µ : G×G→ G. We
call the associated V-linear monoidal ∞-category (LocV(X1), ∗) the categorified V-linear group algebra and
denote it by V[G]. Its monoidal product functor is given by

∗ : LocV(G)⊗V LocV(G) ≃ LocV(G×G) LocV(G)µ!

the functor of left Kan extension along the multiplication functor.

Example 11.11. Let G be a finite group. The nerve N(BG)• defines a group object in spaces. For a
field 𝕂, the categorified Vect𝕂-linear group algebra Vect𝕂[G] is the category of G-graded vector spaces from
Example 2.5

Example 11.12. Let G be a finite group and 𝕂 a field. Since the derived∞-category construction commutes
with finite products, we obtain an equivalence

D(𝕂)[G] ≃
∏
g∈G

D(𝕂) ≃ D(VectG)

between D(𝕂)[G] and the derived ∞-category of the abelian category VectG.

Example 11.13. More generally, we obtain a rigid convolution monoidal structure from every group object
in spaces. This class, for example, includes the class of connective spectra [Seg74].

Let F : V⊗ →W⊗ be a cocontinuous symmetric monoidal functor between presentably symmetric monoidal
∞-categories V⊗ and W⊗. Since the functor

−⊗V W : PrL,⊗
V → PrL,⊗

W

is symmetric monoidal, it maps the categorified V-linear group algebra to the W-linear group algebra

V[G]⊗V W ≃ (S[G]⊗S V)⊗V ⊗W→ S[G]⊗S W ≃W[G]

In particular, since S is the monoidal unit in PrL,⊗, there exists for every presentably symmetric monoidal
∞-category V⊗ a unique cocontinuous symmetric monoidal functor:

U : S⊗ → V⊗

which is determined by its value on a contractible space

U(∗) ≃ 1V .

It follows that for every ∞-group G and every presentably symmetric monoidal ∞-category V, we obtain a
monoidal equivalence

V[G] ≃ S[G]⊗S V.
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In particular, this has the following consequence on the associated fully extended TFT:

Theorem 11.8. Let G be an ∞-group and V⊗ a presentably symmetric monoidal ∞-category. Denote by

ZS[G] : Bordfr,⊗
2 → 𝕄or(PrL

S)⊗

the fully extended 2d-TFT associated to the rigid presentably monoidal ∞-category S[G]. Then the fully
extended 2d-TFT associated to the V-linear categorified group algebra V[G] factors as:

ZV[G](−) : Bordfr,⊗
2

ZS[G]−−−→ 𝕄or(PrL
S)⊗ 𝕄or(V⊗S−)−−−−−−−→ 𝕄or(PrL

V)⊗.

Proof. By the cobordism hypothesis, it suffices to compare the values of the fully extended TFT’s on the
positive framed point +. By our above analysis, there exists an equivalence

ZV[G](+) ≃ V[G] ≃ S[G]⊗S V ≃ (𝕄or(−⊗S V) ◦ ZS[G])(+)

of V-linear monoidal ∞-categories. This implies the claim.

Consequently, to understand the fully extended 2d-TFT associated to the V-linear categorified group algebra
V[G] for general V, it suffices to consider the case V ≃ S. In particular, the TFT is independent of V. As we
will see in the next sections, this no longer holds if we consider categorified Hecke algebras or extensions to
dimension 3. In Section 11.5, we will compute the value of this TFT on S1.

11.3 Categorified Hecke Algebras

As observed in Section 10.3, the class of locally rigid 2-Segal objects in 2𝕊pan(C)⊗ is slightly broader than in
𝕊pan2(C)⊗. These additional objects are precisely the Čech-nerves.
In this section, we study the associated convolution monoidal structures which provide an ∞-categorical
generalization of the categorified Hecke algebras studied in Section 2:

Example 11.14. Let V⊗ be a presentably symmetric monoidal ∞-category, and F : X → Y a morphism of
spaces. We denote by Č(F )• its Čech-nerve.
We call the associated V-linear presentably monoidal ∞-category (LocV(Č(F )1), ∗) the categorified V-linear
Hecke algebra and denote it by He(F ). Its monoidal product functor is given by

He(F )⊗V He(F ) He(X ×Y X ×Y X) He(X ×Y X)(π1,2×π2,3)∗ π1,3,!

first pulling back and then left Kan extension along the appropriate projections.

Since in our notation, linearization functors, like LocV(−), are, in general, only defined on the sub-(∞, 2)-
category 𝕊pan2(C) of 2𝕊pan(C), it does not follow as for categorified group algebras that the convolution
monoidal structure on the categorified Hecke algebra is rigid. Instead, we need an extension of the notion of
a linearization functor that is defined on the symmetric monoidal (∞, 2)-category 2𝕊pan(C)⊗:

Definition 11.5. Let V⊗ be a presentably symmetric monoidal (∞, 2)-category. An extended linearization
functor is a symmetric monoidal (∞, 2)-functor

Dex : 2𝕊pan(C)⊗ → ℙrL,⊗
V
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from the (∞, 2)-category of 2-spans in C. Further, we call Dex an extension of the linearization functor D
defined as the composite

D : 𝕊pan2(C)⊗ 2𝕊pan(C)⊗ ℙrL,⊗
V

Dex

Corollary 11.9. Let V⊗ be a presentably symmetric monoidal ∞-category, and X• : ∆op → C a groupoid
object in C. For every extended linearization functor

Dex : 2𝕊pan(C)⊗ → ℙrL,⊗
V

is the associated convolution monoidal structure (D(X1), ∗) ∈ ℙrL,⊗
V rigid.

Example 11.15. Morton [Mor11] explicitly constructs a symmetric monoidal 2-functor

LocVectℂ(−) : 2𝕊pan(Grpdf )⊗ → 𝕡rL,⊗
Vectℂ

to the 2-category of ℂ-linear presentable 1-categories that extends the symmetric monoidal 2-functor from
Example 11.5. It follows that for every functor between finite groupoids F : G→ H the associated categorified
Hecke algebra Heℂ(F ) from Example 2.4 is rigid in 𝕡rL

ℂ. In this case, we have also shown this by different
methods in Proposition 2.4.

To the author’s knowledge, the construction in [Mor11] is the only example of an extended linearization
functor that is documented in the literature and we will not construct a new example in this text. However,
let us try to understand, at least in principle, how such functors can arise. The main ideas for this discussion
are taken from [HL13].
Recall that for every span

C0

C0 C1

f

viewed as a morphism in the (∞, 2)-category 2𝕊pan(C), the reversed span

C0

C1 C0

f

is an ambidextrous adjoint28. Therefore, an extended linearization functor Dex has to associate to any
morphism f : C0 → C1 in C a natural equivalence

Nmf : f!
≃−→ f∗.

Equivalently, it has to associate to f a natural transformation

µf : idD(C1) ⇒ f!f
∗

that is the unit of an adjunction between f! and f∗. The datum of the natural isomorphism Nmf is called a
28This means it is simultaneously a left and a right adjoint.
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Norm map. Conversely, for every non-extended linearization functor D, we can construct from a 2-morphism

B0

A B2 C

B1

f0g0 u

v g1g1

in 2𝕊pan(C) and a natural transformation

µu : idB0 ⇒ u!u
∗,

a natural transformation:

f0,!g
∗
0 f0,!(u!u

∗)g∗
0 ≃ f1,!(v!v

∗)g∗
1 f1,!g

∗
1

µu

from the image of the upper span under D to the image of the lower span under D. The idea is to view this
natural transformation as the value of an extension of D to 2𝕊pan(C) constructed from the original 2-functor
D and the natural transformation µu.
To understand extended linearization functors, it is therefore essential to understand Norm maps. A canonical
collection of Norm maps for the linearization functor LocV(−) has been constructed [HL13, Har20]. Since we
need it in the following, we recall the basics of the construction here:

Definition 11.6. [HL13, Def.4.4.1] Let X be a space. We say that X is a finite n-type if the following
conditions are satisfied:

(1) The space X is n-truncated.

(2) For every point x ∈ X and every integer m the set πm(X,x) is finite and π0(X) is a finite set.

A space X is called π-finite, if it is a finite n-type for some n. The ∞-category of n-finite types (resp. π-finite
spaces) Sn (resp. Sπ) is the full subcategory of S generated by finite n-types (resp. π-finite spaces). More
generally a morphism of spaces f : X → Y is called n-truncated if all its fibers are n-truncated.

For every presentable ∞-category V, the authors of [HL13, Constr.4.1.8] construct by induction on n a subset
of the set of n-truncated morphisms f : X → Y , called V-ambidextrous morphisms. For these morphisms,
they construct a collection of Norm isomorphisms Nmf : f! → f∗. In particular, we call a finite n-type X
V-ambidextrous if the projection map pX : X → ∗ is V-ambidextrous. Conversely, the following holds:

Proposition 11.10. [HL13, Prop.4.3.5] Let V be a presentable∞-category, and let f : X → Y be a morphism
of spaces. Then f is V-ambidextrous if and only if f is n-truncated and each fiber of f is V-ambidextrous.

As we see in the following examples, the notion of V-ambidexterity highly depends on the presentable
∞-category V. To quantify this behavior, we use the following definition:

Definition 11.7. [HL13, Def.4.4.2] Let V be a presentable ∞-category, and let n ≥ −2 be an integer. We
say that V is n-semiadditive if every finite n-type is V-ambidextrous. It is called ∞-semiadditive if it is
n-semiadditive for all n ∈ ℕ.

Let us study this notion in some examples:
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Example 11.16. By definition a space is (−2)-truncated if it is contractible. Consequently every presentable
∞-category V is (−2)-semiadditive.

Example 11.17. Let V be (−2)-semiadditive. A space X is a finite (−1)-type if it is either empty or
contractible. For the ∅ the norm map is given by the unique map

p∅,!(∗) ≃ ∅ → ∗ ≃ p∅,∗(∗)

from the initial object to the final object of V. It follows that V is (−1)-semiadditive if and only if it is
pointed. For example, the ∞-category S is not pointed, but the ∞-category S∗ of pointed spaces is.

Example 11.18. Let V be (−1)-semiadditive. Note that, since V is pointed, there exists for every pair of
objects C,D ∈ V a zero map between these defined as the composite

C → 0→ D.

A space X is a finite 0-type if it is a finite set. A V-valued local system F : X → V on X is determined by an
X-indexed collection of objects {Vx}x∈X . The Norm map is defined as the map

NmX :
∐
x∈X

Vx →
∏
x∈X

Vx

whose component (NmX)x,y : Vx → Vy are given by idVx
if x = y and the zero map else. An ∞-category

satisfying this condition is called semiadditive. Examples include all presentable additive categories and
stable ∞-categories, but not the ∞-category S∗.

Example 11.19. Let V be 0-semiadditve. A finite 1-type is equivalent to a finite groupoid. In particular, if it
is connected, it is equivalent to BG for a finite group G. The norm map then defines for every G-representation
V : BG→ V in V a map

NmBG : colimBG V := V BG → VBG =: limBGV

from the homotopy coinvariants V BG to the homotopy invariants VBG.

Example 11.20. Let R be a ring and V ≃ rmodR be the category of R-modules. In this case, the homotopy
(co)invariants of a G-representation V coincide with the classical (co)invariants and the norm map is defined
for every finite group G as

nmBG : V BG → VBG, [v] 7→
∑
g∈G

g.v.

This map admits an inverse if and only if multiplication by |G| is invertible. In this case, the inverse is given
by multiplication by |G|−1. It follows that the category rmodR is 1-semiadditive if and only if for every finite
group |G| multiplication by |G| is invertible in R.

Example 11.21. Let R be a ring and let D(R) be its derived ∞-category. In this case, the homotopy
coinvariants are given by group homology, and the homotopy invariants are given by group cohomology. For
an ordinary G-equivariant R-module V , the norm map is given by the composite

NmBG : C∗(V,G)→ V BG nmBG−−−→ VBG → C∗(V,G)

where nmBG denotes the norm map from Example 11.20 [Lur17, Rem.6.1.6.23]. The ∞-category D(R) is
1-semiadditive if for every finite group G multiplication by |G| is invertible in R.
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More generally the following holds for stable ∞-categories:

Proposition 11.11. Let R be an 𝔼1-ring spectrum, s.t. π0(R) is a ℚ-vector space and let V be an R-linear
presentable ∞-category. Then V is ∞-semiadditive.

Proof. Since V is R-linear, it follows for all objects C ∈ V the mapping spectrum homV(C,C) is an R-
algebra. In particular π0 homV(C,C) := ExtV(C,C) is an π0(R)-algebra. The claim then follows from [HL13,
Cor.4.4.2.1].

Example 11.22. It follows that for every ℂ-linear abelian category A, its derived ∞-category D(A) is
∞-semiadditive.

As a consequence of the above discussion, we note that while (−1)-semiadditivity and 0-semiadditivity force us
to work in an algebraic category, 1- and higher semiadditivity impose strong restrictions on the characteristic
of the ring we are considering. Indeed, whereas every ℚ-linear presentable ∞-category is ∞-semiadditive,
this is never the case for 𝔽q-linear ∞-categories. The defects are precisely those finite groups |G|, whose
characteristic divides the group order.

Remark 11.6. The theory of higher semi-additivity has been developed in [HL13] to describe the additivity
phenomena in chromatic homotopy theory. The main example considered in [HL13] is the presentable stable
∞-category SpK(n) of K(n)-local spectra [HL13, Def.2.1.13], where K(n) denotes the n-th Morava K-theory
spectrum.
While this ∞-category admits a symmetric monoidal structure induced from the smash product of spectra, it
is not rigid and thus it is not relevant to our discussion of derived multi-fusion categories in the next Section.

We summarize our discussion in the following conjecture, generalizing our results from Proposition 2.4:

Conjecture 11.12. [HL13, Rem.4.2.5] Let V⊗ be an n-semiadditive presentably symmetric monoidal ∞-
category. Then the linearization functor LocV(−) extends to a symmetric monoidal (∞, 2)-functor

LocV(−) : 2𝕊pan(Sn)⊗ → ℙrL,⊗
V

In particular for every morphism of n-finite spaces F : X → Y the categorified V-linear Hecke algebra HeV(F )
is rigid.

Remark 11.7. In [BZN09] and [HL23], the authors construct Hecke-type convolution monoidal structures
using linearization functors arising in algebraic and mixed geometry, respectively. Furthermore, they show
that these monoidal structures are rigid by explicitly constructing duals, as we did in Proposition 2.4. Since
their argument only uses the properties of the non-extended linearization combined with the ambidexterity of
certain adjunctions, we expect that these examples are also induced from an extended linearization functor.

11.4 Derived Fusion Categories from Convolution

In this section, we analyze under which conditions the rigid monoidal structures on categories of local systems
discussed in the last section form examples of derived multi-fusion categories. This heavily depends on the
notion of semiadditivity discussed in the last Section. As in Section 5.4, we work linearly over an idempotent
complete rigid symmetric monoidal small stable ∞-category E⊗.

Proposition 11.13. Let E⊗ be a m-semiadditive rigid symmetric monoidal stable ∞-category. For every
m-finite space X the pointwise monoidal structure on LocInd(E)(X)⊗ is rigid in ℙrL,⊗

E .
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Proof. It follows from Proposition 11.5 that the∞-category LocInd(E)(X) is dualizable. Under the equivalence
LocInd(E)(X)⊗E LocInd(E)(X) ≃ LocInd(E)(X ×X) the monoidal product functor ⊗ identifies with

∆∗ : LocInd(E)(X ×X)→ LocInd(E)(X)

Its right adjoint is given by right Kan extension ∆∗. Since X is E-ambidextrous by assumption, it follows
that ∆∗ preserves colimits. It remains to show that it is a LocInd(E)(X)-bimodule functor. But this follows
from the projection formula for right Kan extension [CSY21, Lem.3.1.2]

∆∗(F ⊗ G) ≃ ∆∗(∆∗π∗
1F ⊗ G) ≃ π∗

1F ⊗∆∗G

where F,G ∈ LocInd(E)(X). The proof for the right action is analogous. By a similar argument, it follows
that the right adjoint p∗ of the unit p∗ : Ind(E)→ LocInd(E)(X) is cocontinuous and Ind(E)-linear, where p
denotes the unique map p : X → ∗.

Remark 11.8. Since the pointwise monoidal structure on LocInd(E)(X) is closed with internal Hom denoted
HomX(−,−), it follows that for a compact object F ∈ LocInd(E)(X) the dual is given by

HomX(F, p∗
X(1E)).

For X ≃ BG, the local system p∗
BG(1E) corresponds to the trivial G-representation and we recover the formula

for the dual from Example 2.2.

Lemma 11.14. Let E⊗ be a rigid symmetric monoidal stable ∞-category and X a space. Let ix : ∗ → X

be a point in X and denote by pX : X → ∗ the unique morphism. For all F,G ∈ LocInd(E)(X) there exists
equivalences

homX(F,G) ≃ pX,∗HomX(F,G) and homE(F(x),G(x)) ≃ i∗xHomX(F,G)

in V.

Proof. The first claim follows from the chain of equivalences

homE(1E, pX,∗HomX(F,G)) ≃ homX(p∗
X(1E),HomX(F,G))

≃ homX(p∗
X(1E)⊗ F,G)

≃ homE(1E,homX(F,G)),

where we have used that all functors are Ind(E)-linear and the universal property of the internal Hom for the
Ind(E)-action on LocE(X). The second claim follows similarly from the chain of equivalences:

homE(1E, i
∗
xHomX(F,G)) ≃ homX(ix,!(1E),HomX(F,G))

≃ homX(ix,!(1E)⊗ F,G)
≃ homX(ix,!(1E⊗F(x)),G)
≃ homE(1E,homE(F(x),G(x))).
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Corollary 11.15. Let E⊗ be a m-semiadditve, rigid symmetric monoidal stable ∞-category. For every
m-finite space X, there exists an equivalence of ∞-categories

LocInd(E)(X)c ≃ Fun(X,E) := LocE(X)

between the full subcategory of compact objects in LocInd(E)(X)c and the ∞-categories of functors Fun(X,E).

Proof. Since LocInd(E)(X) is atomically rigid, a local system is compact if and only if it is dualizable. Since
for every point ix : ∗ → X the functor

i∗x : LocInd(E)(X)→ Ind(E)

is symmetric monoidal, it follows that every dualizable local system is pointwise dualizable. In particular,
since Ind(E)⊗ is atomically rigid, every compact local system lies in Fun(X,E). This shows that LocE(X)c ⊂
Fun(X,E).
It remains to show that every object in Fun(X,E) is dualizable. For this, it suffices to show that for every
F ∈ Fun(X,E) the canonical map

η : F ⊗HomX(F, p∗
X(1E))→ HomX(F,F)

is an equivalence. This can be checked pointwise. But for every point ix : ∗ → X in X, the map i∗xη identifies
with the canonical evaluation map

ηx : F(x)⊗ homE(F(x),1E)→ homE(F(x),F(x))

in E. This map is an equivalence since F is pointwise dualizable.

As a consequence, under the conditions of the Proposition 11.13, the pointwise monoidal structure on
LocInd(E)(X)⊗ preserves the full subcategory LocE(X). Hence, it restricts to a symmetric monoidal structure
on LocE(X)⊗. It is therefore natural to ask under which conditions the monoidal stable∞-category LocE(X)⊗

forms a derived multi-fusion category.
For this, we need to determine under which conditions on the space X the E-linear ∞-category LocE(X)
of E-valued local systems is further E-smooth and E-proper. A criterion for smoothness and properness for
dg-categories of quasi-coherent sheaves has been presented by Orlov [Orl16]. As his criterion only depends on
the geometry of the underlying scheme, we adopt his approach to our setup:

Proposition 11.16. Let E⊗ be a m-semiadditive rigid symmetric monoidal stable ∞-category. For every
m-finite space X the E-linear stable ∞-category LocE(X) is E-proper.

Proof. To show that LocE(X) is E-proper, we need to show that for all compact objects F,G ∈ LocE(X) the
internal Hom object homE(F,G) is compact in Ind(E). Since LocInd(E)(X) is rigid by Proposition 11.13, it
follows that for every pair of compact objects F,G the object HomX(F,G) is compact. The claim follows
from the equivalence

homE(F,G) ≃ pX,∗HomX(F,G) (39)

and the fact that since X is E-ambidextrous the functor pX,∗ ≃ pX,! preserves compact objects as its right
adjoint p∗

X is cocontinuous.
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Proposition 11.17. Let E be a rigid symmetric monoidal stable ∞-category and X be a space. Then LocE(X)
is smooth if and only if the local system

∆!p
∗
X(1E) ∈ LocInd(E)(X)

is compact.

Proof. By Definition 4.5 the E-linear ∞-category LocE(X) is E-smooth, if and only if the identity functor is
a compact object in

id ∈ FunL
Ind(E)(LocInd(E)(X), LocInd(E)(X)).

By Corollary 11.4 the Integral transform construction induces an equivalence

FunL
Ind(E)(LocInd(E)(X), LocInd(E)(X)) ≃ LocInd(E)(X ×X)

between the ∞-category of functors and the ∞-category of integration kernels. Therefore, it suffices to
show that the Integral transform of ∆!(1X) is naturally equivalent to the identity. But it follows from the
projection formula that we have an equivalence

π2,!(∆! 1X ⊗π∗
1−) ≃ π2,!∆!(p∗

X 1E⊗∆∗π∗
1−) ≃ 1X ⊗− ≃ idLocInd(E)(X) .

Hence, id is compact.

Corollary 11.18. Let E⊗ be a m-semiadditive rigid symmetric monoidal stable ∞-category. For every
m-finite space the E-linear stable ∞-category LocE(X) is E-smooth and E-proper.

Proof. Proposition 11.16 already shows that the ∞-category LocE(X) is E-compact. It remains to establish
E-smooth. Since X is m-finite and E is rigid, it follows that

1X = p∗
X(1E)

is compact in LocInd(E)(X). The claim then follows from the fact that the functor ∆! preserves compact
objects as it admits a cocontinuous right adjoint.

A similar analysis for additive instead of stable ∞-categories yields:

Corollary 11.19. Let E⊗ be a m-semiadditive rigid symmetric monoidal additive 1-category. For every
m-finite space X the E-linear additive category

LocE(X) ≃ LocE(τ≤1X) ∈ add⨿
E

is E-smooth and E-proper.

It remains to understand the canonical algebra FX for the pointwise monoidal structure on LocE(X).

Proposition 11.20. Let E be an m-semiadditive rigid symmetric monoidal stable ∞-category and let X be
an m-finite space. Then, the canonical algebra FX ∈ LocInd(E)(X ×X) is compact.

Proof. Recall that the canonical algebra is defined as µR(1X), where we denote by µ the monoidal product
of LocInd(E)(X). It follows from unraveling the defining equivalence

MapX×X(F ⊗ G,1X) ≃ MapX×X(∆∗(F ⊗E G),1X) ≃ MapX(F ⊗E G,FX)
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that the underlying object of the canonical algebra FX is equivalent to ∆∗(1X). Since X is m-finite, the
functor ∆∗ preserves the compact object 1X , and hence FX is compact.

Corollary 11.21. Let E⊗ be a m-semiadditive rigid symmetric monoidal stable ∞-category and X a π-finite
space. Then the E-linear monoidal stable ∞-category LocE(X)⊗ is an E-linear derived multi-fusion category.

Example 11.23. Let A⊗ be a ℂ-linear symmetric monoidal multi-fusion category and D♭(A) its bounded
derived ∞-category. This ∞-category is ∞-semiadditive and hence, for any π-finite space X, the monoidal
∞-category LocD♭(A)(X)⊗ is a D♭(A)-linear derived multi-fusion category.

In particular, we can recover by an analogous reasoning in the additive case our result from Section 2:

Corollary 11.22. Let 𝕂 an algebraically closed field of characteristic 0 and G a finite groupoid. Then the
category Loc𝕂(G) is a 𝕂-linear multi-fusion category.

As our second example, we consider categorified group algebras. Recall that for every ∞-group G the
associated Ind(E)-linear categorified group algebra Ind(E)[G]⊗ is rigid. If we assume that

G• : ∆op → Sm

takes values in m-finite spaces, it follows from the above discussion that the monoidal structure on LocInd(E)(G),
equips LocE(G) with an E-linear monoidal structure, that is further rigid. We denote the underlying monoidal
category by E[G]⊗ and call it the E-linear group algebra.
We now study under which conditions on the m-finite ∞-group G does E[G] form a derived multi-fusion
category. It follows from Corollary 11.18 that this ∞-category is always E-smooth and E-proper.
Therefore, it remains to determine the canonical algebra FE[G]. Recall that the multiplication on the
categorified group algebra is given by the functor:

LocInd(E)(G×G) LocInd(E)(G).µ!

In particular, this functor admits a right adjoint. It follows that the underlying object of the canonical
algebra is given by

FX• ≃ µ∗e!(1V),

where e : ∗ → G is the inclusion of the unit object of G.

Example 11.24. Let 𝕂 be an algebraically closed field and G be a finite group with categorified group
algebra LocVect𝕂(G) ≃ VectG. Note that there exists a pullback diagram

G G×G G×G

∗ G

id ×τ idG×G

µ

e

where τ denotes the map that associates to a group element its inverse. Under the associated base change
equivalence, the canonical algebra FG ≃ µ∗e!𝕂 identifies with the functor

F : G×G→ Vect𝕂, F (g, h) =

𝕂 if h = g−1

0 else
.
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S1

Figure 6: 1-framed circle. The blue arrow denotes the framing vector

Under the equivalence
Fun(G×G,Vect𝕂) ≃ VectG×G

this object gets mapped to ⊕
g∈G

𝕂(g,g−1) ∈ VectG×G

which is compact-projective if and only if G is finite or equivalently if VectG has finitely many simples. This
coincides with our observation from Proposition 5.14.

The correct ∞-categorical generalization of the Example 11.24 is the following:

Proposition 11.23. Let E⊗ be an m-semiadditive rigid symmetric monoidal stable ∞-category and G• :
∆op → Sm an m-finite ∞-group. Then the categorified E-linear group algebra E[G] is an E-linear derived
multi-fusion category.

Proof. Since G is m-finite by assumption, it follows from Corollary 11.18 that the category LocE(G) is
E-smooth and E-proper. Hence, the claim follows sine the multiplication µ of G is E-ambidextrous if G is
m-finite.

Example 11.25. Let G be a finite group and A⊗ a symmetric monoidal multi-fusion category. It follows
from the above discussion that the ∞-category D♭(A)[G] is an example of a derived D♭(A)-linear multi-fusion
category. This provides a natural ∞-categorical generalization of the fusion category VectG of G-graded
vector spaces.

11.5 TFTs from Convolution Structures

We conclude our discussion of rigid convolution monoidal structures by exploring the associated fully extended
framed TFTs. In the case of convolution structures, some interesting structural properties already become
apparent at the level of 1-manifolds. Therefore, we focus in this section on computing the value of these
TFTs on the framed circle S1 (Figure 6). Similar calculations for other sheaves theories have been described
in [BZFN10, BZGN19].
Let D⊗ be a symmetric monoidal∞-category and D ∈ D⊗ a fully dualizable object. Hence, by the cobordism
hypothesis there exists a fully extended framed 1-dimensional TFT

ZD : Bordfr,⊗
1 → D⊗, + 7→ D.

The framed circle S1 defines a 1-morphism
S1 : ∅ → ∅
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in Bordfr
1 and it is well known that the value ZD(S1) can be computed using the duality data on D as:

Z(S1
0) : 1𝔻 D ⊗D∨ ≃τ D∨ ⊗D 1𝔻 .

coevD evD

Here, we denoted by
evD : D∨ ⊗D → 1𝔻 and coevD : 1𝔻 → D ⊗D∨

the evaluation and coevaluation of the dualizable object D. This formula arises from the decomposition of S1

as a composite of 1-morphisms in Bordfr
1 as represented in Figure 7.

S1 ≃ ◦ ◦

Figure 7: Decomposition of the framed circle as a composite of basic 1-morphisms in Bordfr
1 consisting of

coevaluation, switch, and evaluation (from left to right). The red arrows denote the framing.

Let us evaluate this in the case of Corollary 4.27. For this, let V⊗ be a presentably symmetric monoidal
∞-category and A⊗ a rigid algebra in ℙrL,⊗

V . We denote by

ZA : Bordfr,⊗
1 → 𝕄or(PrL

V)⊗, + 7→ A⊗

the framed fully extended 1-dimensional TFT induced by A. It follows from Proposition C.10 that the
evaluation and coevaluation of A are given by

A : A⊗- op ⊗V A→ V and A : V→ A⊗A⊗- op

the algebra A viewed as an A⊗A⊗- op left (resp. right module). In particular, we can compute

HH(A) := ZA(S1) ≃ A⊗A⊗VA⊗- op A,

where HH(A) denotes the trace of A⊗. This comes together with a universal trace morphism

tr : A ≃ A⊗V V→ A⊗A→ HH(A)

that is given on objects by
tr(A) = A⊗Ae 1A .

Let us evaluate this TFT for the convolution structures constructed in the previous sections:

Proposition 11.24. Let V⊗ be a presentably symmetric monoidal ∞-category, and let X ∈ S be a space.
Then there exists an equivalence of V-linear ∞-categories

HH(LocV(X)) ≃ LocV(Map(S1,V)).

Moreover, the universal trace map identifies with the functor

p∗ : LocV(Map(S1, X))→ LocV(X)

obtained by pulling along p : Map(S1, X) ≃ X ×X×X X → X.
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Proof. It follows from the proof of Proposition 11.2 that for every space Y ∈ S, there exists an equivalence of
symmetric monoidal ∞-categories

ModY (Sop)⊗ ≃ (S/Y )op,⊗,

where the left-hand side is equipped with the monoidal structure given by the relative tensor product and the
right-hand side with the cocartesian monoidal structure. In particular, it follows from the monoidality of the
functor

LocV(−) : (S/Y )op,⊗ → PrL,⊗
LocV(Y )

that we obtain for all X,Z → Y an equivalence

LocV(X)⊗LocV(Y ) LocV(Z) ≃ LocV(X ×Y Z).

Hence, if we apply this to the diagonal map ∆ : X → X ×X, we obtain an equivalence

HH(LocV(X)) ≃ LocV(X)⊗LocV(X×X) LocV(X) ≃ LocV(X ×X×X X) ≃ LocV(Map(S1, X))

as desired. Moreover, in the symmetric monoidal ∞-category (Sop)⊗ the universal trace map is given by the
diagram

p : X ×X×X X ←− X ×X ←− X × ∗ ≃ X.

Hence, we obtain under the above equivalence the claimed form of the trace map:

p∗ : LocV(X)→ LocV(X ×X×X X) ≃ LocV(Map(S1, X))

The trace of the categorified group and Hecke algebra have already been calculated in [BZFN10, Thm.5.3] in
the case of quasi-coherent sheaves and in [HL23, Thm.2.7.2] in the case of constructible sheaves. We claim
that an analogous result holds in our case

Claim 11.1. Let V⊗ be a presentably symmetric monoidal ∞-category, and F : X → Y a morphism of
spaces. Then there exists an equivalence of ∞-categories

HH(He(F )) ≃ LocV(Map(S1, Y )).

Moreover, the universal trace map identifies with the functor π!q
∗ obtained by linearizing the span

X ×X×Y X ≃ Map(S1, Y )×Y X

X ×Y X Map(S1, Y )

πq

where π is the projection map.

In particular, in case F ≃ idX , the convolution monoidal category He(idX) is equivalent to the pointwise
monoidal structure and the above claim recovers our result from Proposition 11.24. As a consequence, we see
that for every morphism of spaces F : X → Y we have an equivalence

ZHe(F )(S1) ≃ ZLocV(Y )(S1).
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We expect that this is not a coincidence. Indeed, we have observed in the 1-categorical case in Proposition 2.5
that under certain conditions the monoidal categories are Morita equivalent, and hence induce equivalent
fully extended TFTs. We expect a similar result to hold in this greater generality. A sketch of a proof in the
context of quasi-coherent sheaves has already been given in [BZFN12], and we expect that this proof can be
extended to our set-up.

Remark 11.9. Let X be a π-finite space and V be ∞-semiadditive. We expect that there exists a different
way to compute the fully extended framed 2d-TFT associated to the rigid V-linear monoidal ∞-category
LocV(X)⊗ as a finite gauge or Dijkgraaf-Witten theory as discussed in [FHLT09].
We have observed in Section 10.2 that every object in the symmetric monoidal (∞, 2)-category 2𝕊pan(S)⊗

admits a dual and every morphism admits both adjoints. In particular, every space X is fully-dualizable in
the symmetric monoidal (∞, 2)-category 2𝕊pan(S)⊗ (see Definition C.5) and therefore, by the Cobordism
Hypothesis induces a fully extended TFT

ZX : Bordfr,⊗
2 → 2𝕊pan2(S)⊗

A computation shows that this (∞, 2)-functor associates to S1 with the product framing the span

Map(S1, X)

∗ ≃ Map(∅, X) Map(∅, X) ≃ ∗

More generally, we can view any framed 1-manifold M with boundary decomposed ∂M = ∂Min

∐
∂Mout as

a cospan
M

∂Min ∂Mout

and the value of the TFT is given by applying Map(−, X) to the diagram:

Map(M,X)

Map(Min, X) Map(Mout, X)

This procedure extends similarly to framed 2-manifolds with corners. In this context, we expect that the
functor LocV(−) can be used to construct a symmetric monoidal (∞, 2)-functor

LocV : 2𝕊pan(S)⊗ → 𝕄or(PrL
V)⊗

so that we obtain a fully extended framed TFT

Bordfr,⊗
2 2𝕊pan2(S)⊗ 𝕄or(PrL

V)⊗ZX (−) LocV(−)

that maps + to LocV(X), and hence is equivalent to the fully extended TFT ZLocV(X) constructed in
Corollary 4.27. The benefit of this construction is that it simplifies the computation of the fully extended
framed TFT.
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It follows from the above discussion, that for a morphism of spaces F : X → Y , to compute the fully extended
framed TFT ZHe(F )(−), one can consider the simpler pointwise monoidal category on LocV(Y )⊗. But as
we have seen in Section 4.5 these V-linear monoidal ∞-categories also define 1-dimensional relative fully
extended framed TFTs

Z→
He(F ) : Bordfr

1 → 𝕄or(PrL
V)⊗, + 7→ (He(F ) : He(F )→ V)

and
Z→

LocV(Y ) : Bordfr
1 → 𝕄or(PrL

V)⊗, + 7→ (LocV(Y ) : LocV(Y )→ V)

So let us also compute the value of these TFTs on S1.

Example 11.26. Let D be an ⊗-Gr-cocomplete symmetric monoidal ∞-category and (A, µ, η) ∈ 𝕄or(D) an
algebra object in D⊗. It follows from Example 4.16 that A viewed as a right module over itself induces a
1-dimensional fully extended TFT with

Z→
D : Bordfr,⊗

1 → 𝕄or(D)→,⊗.

To compute the value on S1, we have to determine the evaluation and coevaluation of the duality of
A : 1D → A. It follows from the discussion in [JFS17, Sect.7] and Example 4.16 that the evaluation is given
by the commutative diagram

1D Ae

1D 1D

A⊗A

A
evA

where the morphism evA : 1D → (A⊗A)⊗Ae A ≃ A is given by the unit of the algebra A and the coevaluation
is given by the commutative diagram

1D 1D

1D Ae

A

A⊗A

coevA

where the morphism coevA : A⊗A→ A is given by the multiplication of A. In particular, we can compute
the value on the circle as the commutative diagram

Z→
D (S1) ≃

1D 1D

1D Ae

1D 1D

A

A⊗A

A

coevA

evA

where the composite 2-morphism is given by

1D
η−→ A

trA−−→ A⊗Ae A ≃ HH(A).
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Example 11.27. We compute the relative TFT corresponding to our examples of convolution monoidal
structures. Let F : X → Y be a morphism of spaces and consider the associated Hecke category He(F ) with
associated TFT

Z→
He(F ) : Bordfr,⊗

1 → 𝕄or(PrL
V)⊗.

It follows from Claim 11.1 that the value of the TFT on S1 is given by the composite

V
p∗

X ∆X,!−−−−−→ He(F ) π!q
∗

−−−→ LocV(Map(S1, Y )).

We analyse this more carefully in the case, where F : BH→ BG is induced by the inclusion of groups H ⊂ G.
In this case, the universal trace map is induced by linearizing the span

G/adjH

H\G/H G/adjG

where we denote by G/adjH the groupoid quotient by the adjoint action. This span is usually called the
Horrocycle correspondence [BZGN19, Sect.6.2]. Further, the unit morphism is induced by the span

BH

∗ H\G/H

Hence, we obtain by linearizing the composite span

H/adjH

BH G/adjH

∗ H\G/H G/adjG

iG/HpH/H

that the value of the fully extended relative TFT on the circle is given by the V-linear functor

Z→
H\G/H(S1) : V LocV(H/adjH) LocV(G/adjG).

p∗
H/H iG/H,!

In particular, this V-linear cocontinuous functor is fully determined by the value of 1V. Since the ∞-category
LocV(G/adjG) categorifies the algebra of class functions on G, we think of objects in this ∞-category as
categorified characters of G. In particular, we call

Ch(G,H) := ZH\G/H(S1)(1V) ≃ iG/H,!p∗
H/H(1V)

the character of G and H.

Remark 11.10. Given a group G and a subgroup H, one obtains a ℂ-linear G-representation on ℂ[G/H]
the space of functions on G/H. In particular, this representation has a character ξG,H , One should think of
Ch(G,H) as a categorified version of this character.
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Let us compare the values for different choices of H.

Example 11.28. We consider the extreme cases. In case H ≃ ∗ is the trivial group, the categorified Hecke
algebra is given by He(F ) ≃ V[G], and the value of the TFT on the circle is induced by the span

∗

∗ G/adjG

iG

The character of G and ∗ is then given by

Ch(G, ∗) ≃ iG,!(1V)

the skyscraper local system supported at the neutral element. On the other hand, if H = G is the whole
group, then the categorified Hecke algebra is given by He(F ) ≃ LocV(BG) with the pointwise monoidal
structures, and the value of the TFT on the circle is induced by the span

G/adjG

∗ G/adjG

pG/G

The character of G and G is then given by

Ch(G,G) ≃ p∗
G/G(1V)

the constant local system on G/adjG. For non-trivial G these two local systems have different support and in
particular

Ch(G,G) ̸≃ Ch(G, ∗).

Therefore, we can conclude that
Z→
V[G] ̸≃ Z→

LocV(BG).

12 Frobenius Algebras in Spans
In the main part of this text, we have classified rigid 2-Segal spaces and have shown that these induce rigid
convolution monoidal structures. Nevertheless, our result does not imply the converse. One example of a
2-Segal space, whose convolution monoidal structure behaves similarly to that of a rigid category, is the
Waldhausen S•-constructions of a stable ∞-category C. The reason is that the Waldhausen construction of a
stable ∞-category naturally carries the structure of a Frobenius algebra in the ∞-category Span(S)⊗ that is
different from that of a rigid algebra. These Frobenius algebra structures induce duality structures that are
more general than rigid dualities. These are known as Grothendieck–Verdier (short GV) dualities [BD13].
Symmetric Frobenius algebras, or more precisely, Calabi–Yau-algebras (CY-algebras) in the monoidal ∞-
categories Span(S)⊗ have already been studied in [Ste21]. As algebra objects in Span(S)⊗ can be described
by 2-Segal simplicial spaces

X• : ∆op → S,
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interestingly, also CY-algebras admit a similar description as 2-Segal cyclic spaces. A cyclic space is a functor

Y• : Λop → S

with source given by Connes cyclic category Λ [Con83], an extension of the simplex category. Informally, the
cyclic category is obtained from the simplex category by adding for every object [n] an extra (n+ 1)-periodic
automorphism. These extra symmetries on the source category encode the dualities of the CY-algebra.
The main difference between the datum of an ordinary and a symmetric Frobenius algebra is that the datum
of a symmetric Frobenius algebra also encodes a homotopy coherent trivialization of the square of the duality
automorphism. On the level of indexing categories, this is reflected by replacing the cyclic Λ category by
the paracyclic category Λ∞ (see Definition 12.3). The main difference between these is that, while the
extra automorphisms in the cyclic category admit a certain periodicity, the duality functor of the paracyclic
category may not be periodic. This reflects the missing coherent trivialization of the duality automorphism.
In the 1-categorical context, the relation between Frobenius algebras and paracyclic 2-Segal objects has been
described [CMS25].
It has been described by Lurie [Lur15] that we can extend the Waldhausen construction of a stable∞-category
C to a paracyclic object. In this case, the corresponding duality automorphism is induced by the shift functor
of the stable ∞-category C. Our main goal in this section is to analyze the duality structures that arise from
linearizing Frobenius algebras in Span(S)⊗ and to apply this analysis to the example of the Waldhausen
S•-construction. As a start, let us therefore first generalize the notion of a GV-duality from [BD13] to the
context of stable ∞-categories and introduce some terminology.
Recall, that the spectral Co-Yoneda embedding YC : Cop → Funex(C, Sp) is the functor that maps C ∈ C

to the mapping spectrum homC(C,−) (See Definition 5.11). We say that a functor F : C → Sp is stably
corepresentable if it lies in the essential image of YC. After this preliminary discussion, we can now define:

Definition 12.1. Let C be a monoidal stable ∞-category. An object K ∈ C is called a weak dualizing object
if for every Y ∈ C the mapping spectrum homC(K,−⊗ Y ) : C→ Sp is stably corepresentable.

For every weak dualizing object K it follows that the exact functor

homC(K,−⊗−) : C→ Funex(C, Sp)

factors through the essential image of the spectral Co-Yoneda embedding. Its composite with the essential
inverse induces an exact duality functor

𝔻 : C→ Cop

that satisfies the universal property homC(K,X ⊗ Y ) ≃ homC(𝔻(X), Y ). We call K a dualizing object if the
duality functor 𝔻 is an equivalence of ∞-categories.

Example 12.1. Let C be a rigid monoidal stable ∞-category. Then the unit object 1C is a dualizing object
for C and the associated duality functor maps X ∈ C to its dual X∗.

Definition 12.2. A stable Grothendieck–Verdier category is a pair consisting of monoidal stable ∞-category
C and a dualizing object K ∈ C.

We often abuse notation and drop the dualizing object from the notation of a stable GV-category (C,K). In
the following, we call a GV duality rigid if the dualizing object is the monoidal unit and the GV structure
coincides with the rigid duality. Our next goal is to provide an alternative characterization of GV-structures
in terms of Frobenius algebras (Definition 3.3) in the ∞-category of presentable stable ∞-categories. The key
for this is to understand the relation between different duality structures on a presentable stable ∞-category.
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Lemma 12.1. Let C⊗ be a monoidal ∞-category and let X be a dualizable object with evaluation evX :
X ⊗ ∨X → 1 and coevaluation coevX : 1→ ∨X ⊗X. Further, let α : X ′ → ∨X be an isomorphism. Then
the twisted evaluation evX ◦ idX ⊗α and twisted coevaluation α−1 ⊗ idX ◦ coevX exhibit X ′ as a dual of X.

Proof. The proof is a simple diagram chase.

Lemma 12.2. Let C⊗ be a monoidal ∞-category and let X be an object. Further, let (ev0, coev0, X0) and
(ev1, coev1, X1) be dualizability data that exhibit X0 and X1 as right duals of X. Then there exists a unique
isomorphism 𝔻 : X0 → X1, such that ev0 ≃ ev1 ◦(idX ⊗𝔻) and coev0 ≃ (𝔻−1 ⊗ idX) ◦ coev1

Proof. One can easily check that the composite map

𝔻 : X0 X1 ⊗X ⊗X0 X1
coev1 ⊗ idX0 idX1 ⊗ ev0

is an isomorphism and satisfies the required hypothesis.

As explained in Section 4.1 there exists for every stable ∞-category C an exact internal Hom functor
homC(−,−) : C⊗ Cop → Sp which is usually called the mapping spectrum. We denote by

HomC(−,−) : Ind(C)⊗ Ind(Cop) ≃ Ind(C⊗ Cop)→ Sp

its unique cocontinuous extension. We call this functor the Hom-bimodule of C. For a compact object C ∈
Ind(C) the functor HomC(C,−) coincides with the mapping spectrum functor of the stable∞-category Ind(C).
To increase readability, we will in the following denote the presentable stable ∞-category Ind(Cc,op) by C⋄.
For every functor F : C→ D we denote by F ⋄ the functor induced functor Ind(F op) : Ind(Cop)→ Ind(Dop).

Proposition 12.3. Let (C,K) be a stable GV-category. Then the cocontinuous functor HomC(K,−) :
Ind(C)→ Sp equips Ind(C) with the structure of a Frobenius algebra in PrL

st.

Proof. We need to show that the composite functor

HomInd(C)(K,−⊗−) : Ind(C)⊗ Ind(C)→ Sp

defines the evaluation of a duality on C. By the universal property of the duality functor 𝔻, it follows that
the cocontinuous functor HomC(K,−⊗−) is equivalent to the composite HomC(−,−) ◦ (idInd(C)⊗ Ind(𝔻)).
Hence, it follows from Lemma 12.1 that HomC(K,−) is non-degenerate.

Proposition 12.4. Let C⊗ be a monoidal stable ∞-category and let λ : Ind(C)→ Sp be a non-degenerate
1-morphism. If λ admits a left adjoint then λL(1Sp) ∈ C is a dualizing object.

Proof. By assumption λ(− ⊗ −) : Ind(C) ⊗ Ind(C) → Sp induces an evaluation of a duality on Ind(C). It
follows from Proposition 12.2 that there exists a duality equivalence 𝔻(−) : Ind(C)→ Ind(Cop) such that for
all objects C,D ∈ Ind(C)

λ(C ⊗D) ≃ HomC(𝔻(C), D).

The claim then follows from the chain of equivalences

homC(𝔻(C), D) ≃ λ(C ⊗D) ≃ homSp(1Sp, λ(C ⊗D)) ≃ homC(λL(1Sp), C ⊗D).
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Remark 12.1. The hypothesis of the above Proposition is always satisfied if C is a smooth stable∞-category.
Indeed, since Sp⊗ is rigid this follows from [BD21, Prop.2.4.(3)].

The above analysis shows that under certain assumptions on a monoidal stable ∞-category C⊗, the datum
of a dualizing object is equivalent to a Frobenius algebra structure on Ind(C). To obtain stable GV -duality
structures on convolution monoidal categories, we therefore need to understand how to extend algebra objects
in Span(S)⊗ to Frobenius algebras. Similar to algebra objects, which can be encoded by 2-Segal spaces,
Frobenius algebra objects can be encoded using so called 2-Segal paracyclic spaces:

Definition 12.3. The paracyclic category Λ∞ is the category with objects the standard linearly ordered sets
[n] for n ≥ 0 and morphisms from [m] to [n] given by weakly monotone maps f : ℤ → ℤ that satisfy the
periodicity condition f(i+m+ 1) = f(i) + n+ 1 for all i ∈ ℤ.

Note that any morphism f ∈ MapΛ∞
([m], [n]) is uniquely determined by its restriction to {0, ...,m} and

conversely every morphism f : {0, ...,m} → ℤ that satisfies f(m) ≤ f(0) + n + 1 uniquely extends to a
morphism in Λ∞. It follows that the simplex category ∆ embeds faithfully in Λ∞ by identifying it with the
wide subcategory on those morphisms f ∈ MapΛ∞

([m], [n]) that map {0, ...,m} into {0, ..., n}. Additionally,
the category Λ∞ admits for each [n] an automorphism

tn : [n]→ [n], i 7→ i+ 1.

This morphism is called the paracyclic shift. For later use, we record its relations with the face and degeneracy
maps:

tnd
n
i =

dni+1tn−1, 0 ≤ i < n;
dn0 , i = n

(40)

tnσ
n
i =

σni+1tn+1, 0 ≤ i < n

σn0 (tn+1)2, i = n
(41)

Definition 12.4. We call a presheaf X• : Λop → S a paracyclic space. X• is called a paracyclic 2-Segal space,
if the restriction X•|∆op is a 2-Segal space

For a paracyclic space X•, we denote the image of the paracyclic shift by X(tn) := τn. This functor will play
the role of a duality equivalence for the corresponding Frobenius algebra in Span(S)⊗. Let us consider some
examples of paracyclic 2-Segal spacea:

Example 12.2. [Ste19, Sect.3.3.2.3] Let H,G be groups and F : BH→ BG be a functor. For every element
z in G, we can extend the Čech-nerve to a paracyclic groupoid Č(F )z• : Λop

∞ → Grpdf . In this case, the
paracyclic shift is given by the functor

BH×BG · · · ×BG BH BH×BG · · · ×BG BHτz
n

that maps an object (g1, ..., gn) ∈ BH×BG · · ·×BG BH to the object (z(
∏n
i=1 gi)−1, g1, . . . , gn−1). In particular,

if BH ≃ ∗ this equips N(G)z• with the structure of a paracyclic 2-Segal set.

Example 12.3. Let C be a stable ∞-category and denote by S• : ∆op → S its Waldhausen S•-construction.
The simplicial space S•(C) admits an extension to a paracyclic object [Lur15, Def.4.3.4]. We describe the
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paracyclic shift in low dimensions. In degree 1, the paracyclic shift is given by the shift functor [1] : C≃ → C≃

of the stable ∞-category C. In degree n an object of Sn(C) is given by a flag:

X1 X2 . . . Xn.
f1 f2 fn

The paracyclic shift maps such a flag to the rotated flag

X2/X1 X3/X1 . . . X1[1].

To relate paracyclic 2-Segal spaces to Frobenius algebras, recall that every space X is dualizable in Span(S)⊗

and the evaluation of the duality is given by the span

X

X ×X ∗

∆ pX (42)

We can then show:

Proposition 12.5. Let X• : Λop
∞ → C be a paracyclic 2-Segal object in C. Then, the span

X0

X1 ∗

pX0τ1s0

equips the associative algebra associated to the 2-Segal object X• with the structure of a Frobenius algebra.
Further, the paracyclic shift τ : X1 → X1 induces the duality equivalence between the evaluation of the
Frobenius algebra and the one from Diagram 42.

Proof. We need to show that the composite span

X2 ×X1 X0

X2 X0

X1 ×X1 X1 ∗

∂1 τ1s0

is the evaluation of a duality on X1. Therefore, we first show that the diagram

X1

X2 X0

X1

∂1τ2s0

∂1 τ1s0
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is a pullback diagram. It follows from the identities of a paracyclic space that the diagram

X1 X0

X1 X0

X2 X1

X2 X1

τ1

τ2s0

∂1

τ1s0

τ1

∂0

τ2s0

s0

τ2

∂1

τ1

∂0

commutes. Note that by the 2-Segal conditions, the front face is a pullback diagram. Since τ is an equivalence,
we can read the cube as an equivalence between the front and the back face. Hence, the back face is also a
pullback diagram. It follows that our initial span is equivalent to the span

X1

X1 ×X1 ∗

pX1
(id ,τ1)

But this is the canonical evaluation span from Diagram 42 twisted by the automorphism τ . The claim follows
from Lemma 12.1.

We can now apply this result to the construction of Frobenius algebra structures on convolution monoidal
categories.

Proposition 12.6. Let R be a commutative ring spectrum and let ev : C⊗RD→ RModR be a duality datum
in PrL,⊗

R , then also the composite

C⊗D C⊗R D RModR Spev

induces a duality datum in PrL,⊗
st .

Proof. The symmetric monoidal ∞-category RMod⊗
R defines rigid algebra in ℙrL,⊗

st and hence a Frobenius
algebra. The claim follows from [Lur17, Cor.4.6.5.14].

Corollary 12.7. Let X• : Λop
∞ → S be a paracyclic 2-Segal space and R a commutative ring spectrum.

Then, the paracyclic structure induces on the convolution monoidal category (LocR(X1), ∗) the structure of a
Frobenius algebra in ℙrL,⊗

st . Moreover, if

(∂2, ∂0)∗ : LocR(X1 ×X1)→ LocR(X2)

preserves compact objects and X0 is R-ambidextrous then

τ1,!s0,!p
∗
X0

(R) ∈ LocR(X1)c

is a dualizing object.
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Proof. It follows from Proposition 12.5 and Proposition 12.6 that the cocontinuous functor

LocR(X1) LocR(X0) RModR Sps∗
0τ

∗
1 pX0,! Fgt

is a non-degenerate 1-morphism in PrL
st. This implies the first claim. For the second claim, note that the

convolution monoidal structure on LocR(X1) restricts to a monoidal structure on LocR(X1)c if and only if
(∂2, ∂0)∗ preserves compact objects. The claim then follows from Proposition 12.4 and the observation that if
X0 is R-ambidextrous then pX0,! admits a left adjoint.

Our next goal is to understand the duality equivalence associated to the above Frobenius structure. To this
end, we need the following construction from [GR19, Sect.II.4]:

Construction 12.1. Let R be a commutative ring spectrum. It follows from Proposition 11.5 that for every
space X the R-linear ∞-category LocR(X) is compactly generated. Hence, the Hom-bimodule

HomX(−,−) : LocR(X)⊗R LocR(X)⋄ → RModR

is an evaluation of a duality on LocR(X) (Proposition 5.22). On the other hand, the image of the canonical
evaluation on X from Diagram (42) in Span(S)⊗ under the symmetric monoidal functor LocR(−) induces a
different evaluation

LocR(X)⊗R LocR(X) ≃ LocR(X ×X) LocR(X) RModR∆∗ p!

on LocR(X). It follows from Lemma 12.1 that there exists a unique R-linear equivalence

𝔻X(−) : LocR(X)⋄ → LocR(X)

that satisfies the universal property HomC(𝔻X(F),G) ≃ p!∆∗(F ⊗R G) ≃ p!(F ⊗ G). In particular, if F is
compact it induces an equivalence

p!(F ⊗ G) ≃ homX(𝔻X(F),G)

in RModR.

Before we apply this to our study of Frobenius algebras, let us record some formal properties of the functor
𝔻X(−):

Proposition 12.8. Let R be a commutative ring spectrum and let f : X → Y be a morphism of spaces, then

(1) there exists a natural equivalence of functors 𝔻Y f⋄
! ≃ f!𝔻X : LocR(X)⋄ → LocR(Y ).

(2) if f is R-ambidextrous, there is a natural equivalence 𝔻Xf∗,⋄ ≃ f∗𝔻Y .

Proof. Since all functors are cocontinuous and preserve compact objects, it suffices to show this equivalence
on compact objects. Consider the chain of equivalences of spectra

homY (𝔻Y (f!F),G)) ≃ homR(R, pY! (f!F ⊗ G))
≃ homR(R, f!p

Y
! (F ⊗ f∗G))

≃ homR(R, pX! (F ⊗ f∗G))
≃ homY (f!𝔻X(F),G)
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where we have used the defining property of the duality and the projection formula. This implies statement
(1) by Lemma 4.8. Statement (2) follows analogously for the chain of equivalences:

homX(𝔻X(f∗G),F) ≃ homR(R, pX! (f∗G⊗ F))
≃ homR(R, f!p

Y
! (f∗G⊗ F))

≃ homR(R, pY! (G⊗ f!(cF ))
≃ homY (𝔻(G), f!F) ≃ homX(f∗𝔻(G),F),

where we have used in the last step that f is ambidextrous.

Example 12.4. Let R be a commutative ring spectrum and V ∈ Perf(R) be a perfect R-module. It follows
from the defining property of 𝔻(−), that

homR(R, V ⊗W ) ≃ homR(𝔻(V ),W ).

Since V is dualizable with dual homR(V,R), it follows that 𝔻(V ) is equivalent to homR(V,R). In particular,
it follows that 𝔻∗(−) is equivalent to Ind(homR(−, R)). More generally if RModR is m-semiadditive and X is
m-finite, it follows from Remark 11.8 that for every compact object F ∈ LocR(X)c there exists an equivalence
𝔻X(F) ≃ HomX(F, p∗

XR) and 𝔻X(−) is naturally equivalent to Ind(HomX(−, p∗
XR))

After these preparations, we can now compute the duality functor of the GV-duality:

Theorem 12.9. Let X• : Λop
∞ → S be a paracyclic 2-Segal object, such that (∂2, ∂0)∗ preserves compact objects

and X0 is R-ambidextrous. Then the composite duality

𝔻 ◦ τ∗
1 : LocR(X1)c,op → LocR(X1)c

is the duality equivalence for the stable GV -category (LocR(X1)c, τ1,!s0,!p
∗
X0

(R)).

Proof. Let F,G be compact objects. Since by assumption pX0 and s1 are R-ambidextrous, we obtain an
equivalence

homR(τ1,!s0,!p
∗
X0

(R),F ∗ G) ≃ homR(R, pX0,!s
∗
0τ

∗
1 (F ∗ G)).

It follows from our considerations in Proposition 12.5 that

pX0,!s
∗
0τ

∗
1 (− ∗ −) ≃ pX1!(τ∗(−)⊗−).

The claim follows from the chain of equivalences

homR(R, pX0,!s
∗
0τ

∗
1 (F ∗ G)) ≃ homR(R, pX1,!(τ∗(F)⊗ G)) ≃ homR(𝔻X(τ∗(F)),G),

where we have used the universal property of 𝔻X(−) in the last step.

Example 12.5. Let F : BH → BG be a functor between finite groupoids and let z ∈ Z(G) be a central
element. We consider the paracyclic 2-Segal object Č(F )z•. For an∞-semiadditive commutative ring spectrum
R, the R-linear categorified Hecke algebra fulfills the assumptions of Theorem 12.9.
It follows that the stable ∞-category HeR(BH×BG BG)c admits a stable GV-duality with duality equivalence

HomBH ×BG BH(τ∗
z−, RBH ×BG BH) : HeR(BH×BG BG)c → HeR(BH×BG BG)c,op.
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Note that in case z = 1 the paracyclic shift

τ1 : BH×BG BH→ BH×BG BH

swaps the components of the fiber product, and the stable GV-duality recovers the rigid duality from
Proposition 2.4.

Example 12.6. Let G be a finite group with multiplication µ and z ∈ G an element. We consider the
paracyclic 2-Segal object N(BG)z•. For an ∞-semiadditive commutative ring spectrum R, the R-linear
categorified group algebra Perf(R)[G] fulfills the assumption of Theorem 12.9. We describe the duality in
more detail.
Consider the morphisms µz : G→ G and ι : G→ G given by multiplication by z and inversion respectively.
By construction the paracyclic shift is given by

τ = µz ◦ ι : G→ G.

Consequently, the dualizing object is given by (z−1)!R ∈ Perf(R)[G], where z : ∗ → G denotes the unique
morphism with image z. Moreover, the duality equivalence is given by

𝔻G ≃ Hom(ι∗µ∗
z(−), RG).

For z = 1 this recovers the rigid duality from Example 2.5.

For a general stable ∞-category C, its Waldhausen S•-construction S•(C) generally does not satisfy the
assumption of Theorem 12.9. The reason for that is that the homotopy groups of the fiber of the multiplication
map ∂1 : S2(C) → S1(C) are given by the Ext-groups of the stable ∞-category C which are for a general
stable ∞-category neither finite groups nor bounded. A similar problem appears in the study of derived Hall
algebras [Toë06]. Töen solved this problem by considering stable ∞-categories that are linear over the finite
field with q-elements 𝔽q and 𝔽q-proper:

Proposition 12.10. Let C be a 𝔽q-linear proper stable ∞-category and S•(C) its Waldhausen S•-construction.
Then for every ∞-semiadditive commutative ring spectrum R the convolution product

∗ : LocR(S1(C))⊗R LocR(S1(C))→ LocR(S1(C))

preserves compact objects.

Proof. It suffices to show that the functor preserves compact generators. Let therefore be C,D : ∗ → C≃

objects and C!R,D!R the corresponding compact generators of LocR(S1(C)). Denote by Ext(C,D) the
mapping space Map(D,C[1]) in C. It follows from base change along the pullback diagram

Ext(C,D) S2(C) S1(C)

{C,D} C≃ × C≃

i

p

∂1

(∂2,∂0)

(C,D)

that we have an equivalence
C!R ∗D!R ≃ (∂1 ◦ i)!p

∗(R).

Hence, it suffices to show that p∗(R) is compact in LocR(Ext(C,D)). We do so by showing that Ext(C,D) is
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R-ambidextrous. Note that the i-th homotopy group of the space Ext(C,D) is given by the abelian group
underlying the finite-dimensional 𝔽q-vector space Ext2−i

C (C,D), i.e the Ext-group of the stable ∞-category C.
Since C is 𝔽q-proper, there exists an i ∈ ℕ such that

Ext2−j(C,D) ≃ 0 for all j > i.

Further, every non-zero homotopy group is the abelian group underlying a finite-dimensional 𝔽q-vector space
and is therefore finite. Since R is ∞-semiadditive, this implies the claim.

Remark 12.2. Let Perf𝔽q
be the∞-category of perfect complexes of 𝔽q-vector spaces. Haiden has established

a geometric interpretation of a monoidal sub-∞-category of LocR(S1(Perf𝔽q
)) using Legendrian tangles in

ℝ3 [Hai21]. In this setup, the GV-duality admits a geometric interpretation in terms of bending Legendrian
tangles.

Example 12.7. Let C be a 𝔽q-linear proper stable∞-category and denote by S•(C) its associated Waldhausen
S•-construction. It follows from Proposition 12.10 that the paracyclic object S•(C) satisfies the assumptions
of Theorem 12.9. We can conclude that 0!(S) is a dualizing object for LocR(S1(C))c and that the dualizing
equivalence is given by [1]∗𝔻C≃(−). In particular, we obtain for every pair of objects C,D ∈ C≃,

homC≃(0!R,C!R ∗D!R) ≃ homC≃(C[1]!R,D!R).

Note that although the dualizing object is the monoidal unit, the monoidal category is not rigid. Indeed, a
rigid monoidal structure would induce for every object B ∈ C≃ an equivalence

homC≃(B!R,C!R ∗D!R) ≃ homC≃(C[1]!R ∗B!R,D!R).

A short calculation shows that this would induce an equivalence

C∗(Ext(C,D)B , R) ≃ homR(C∗(Ext(C[1], B)D, R), R)

where we denote by Ext(C,D)B the fiber over B ∈ C≃ along the map ∂1. These are the spaces classifying
extensions of the form

C B

0 D

and
C[1] D

0 B

,

respectively, which are in general only equivalent if B ≃ 0. The failure of this more general equivalence is
precisely the difference between a GV and a rigid duality.

A Auxiliary Statements
The goal of this section is to present the technical proofs of Proposition 8.3 and 8.5. We have extracted these
technical proofs from Section 8 to maintain the flow of the argument presented there.
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A.1 Proof of Proposition 8.3

The goal of this subsection is to prove Proposition 8.3. As a start, we unravel the datum of a bicomodule in
Span∆(C×). Such an object is given by a commutative triangle:

∆/[1] Span∆(C×)

∆

F

such that F preserves inert morphisms and the adjoint morphism F̃ : Tw(∆/[1]) −→ C× maps every n-simplex
∆n −→ ∆/[1] to a Segal simplex.29

We analyze the second condition first. By the universal property of the Cartesian monoidal structure, F̃ is
equivalent to a functor

F̄ : Tw(∆/[1])×∆ ∆⨿ −→ C.

Similarly, an n-morphism η : ∆n → Fun∆(∆/[1],Span∆(C×)) is equivalent to a functor

η̄ : Tw(∆/[1] ×∆n)×∆ ∆⨿ ≃ Tw(∆n)× (Tw(∆/[1])×∆ ∆⨿) −→ C.

We put Θn+1 := Tw(∆/[1] ×∆n)×∆ ∆⨿ ≃ Tw(∆n)×Θ1. The objects of this category are given by

[i, j] ⊂ (gp : [p] −→ [1], k) f−→ (gq : [q] −→ [1], l),

where 0 ≤ k ≤ l ≤ n, f : gp −→ gq is a morphism in ∆/[n] and [i, j] is a subinterval of [p].

Definition A.1. Let η̄ : Tw(∆n ×∆/[1])×∆ ∆⨿ −→ C be a morphism of simplicial sets, σ : ∆k −→ ∆n ×∆/[1]

a k-simplex
(gn0 , i0) ϕ1 // ...

ϕk // (gnk
, ik) ,

and [i, j] ⊂ [n0] a subinterval. The Segal cone of η̄ associated to σ and [i, j] is the diagram

η̄(ψn, [i, j], i0 < ik)

η̄(ϕ1, [i, j], i0 < i1) η̄(ϕk, [ψk−1(i), ψk−1(j)], ik−1 < ik)

η̄(gnk−1 , [ψk−1(i), ψk−1(j)], ik−1) η̄(gnk
, [ψk(i), ψk(j)], ik)η̄(gn1 , [ψ(i), ψ(j)], i1)η̄(gn0 , [i, j], i0)

· · ·

where we put ψi := ϕi ◦ ϕi−1 ◦ ... ◦ ϕ1.

Proposition A.1. Let η̄ : Tw(∆n×∆/[1])×∆ ∆⨿ −→ C be a morphism of simplicial sets. Its adjoint η defines
an n-morphism in Fun∆(∆/[1],Span∆(C×)) if and only if for every k-simplex

([n0], i0)

##

ϕ1 // ...
ϕk // ([nk], ik)

{{

[1]

in ∆/[1] ×∆n and every interval [i, j] ⊂ [n0] the associated Segal cone of η̄ is a limit diagram in C.
29See Construction 8.3
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Proof. By definition of Span∆(C×), we need to show that for every k-simplex ∆k −→ ∆n ×∆/[1] given by

(gn0 , i0) −→ (gn1 , i1) −→ ... −→ (gnk
, ik), y

the restriction of η̄ to Tw(∆k) ⊂ Tw(∆/[1] ×∆n) is a Segal simplex in C×. According to [DK19, Lem.10.2.13]
there exists a functor

H̃t : (∆1 × Tw(∆k))×∆ ∆⨿ −→ C

adjoint to a homotopy
Ht : (∆1 × Tw(∆k)) −→ C×

such that H1 = η̄, the components of this homotopy are Cartesian morphisms and H0 has image contained in
C×
g0

. Consequently, the restriction of η̄ to the Segal cone30 is a relative limit in C× if and only if the restriction
of H0 to the Segal cone is a limit in C×

g0
[Lur09a, Prop. 4.3.1.9].

We can check the latter for each interval [i, j] ⊂ [n0] individually. The restriction of H̃0 to the Segal cone is
represented in C by the diagram

H̃0(ψn, [i, j], i0 < in)

H̃0(ϕ1, [i, j], i0 < i1) H̃0(ϕk, [i, j], ik−1 < ik)

H̃0(gnk−1 , [ψk−1(i), ψk−1(j)], ik−1)H̃0(gnk
, [ψk(i), ψk(j)], ik)H̃0(gn1 , [ψ1(i), ψ1(j)], i1)H̃0(gn0 , [i, j], i0)

· · ·

Since the components of the homotopy are Cartesian, it restricts to an equivalence between this diagram
and the Segal cone diagram of η̄ associated to σ and [i, j]. Therefore the simplex is a Segal simplex, if for
all simplices σ and all subintervals [i, j], the Segal cone diagram of η̄ associated to σ and [i, j] are limit
diagrams.

In fact, it turns out to be sufficient to check this condition for 2-simplices:

Lemma A.2. Let C be an ∞-category with finite limits. For an n-simplex

F : ∆n −→ Fun∆(∆/[1],Span∆(C×))

the following are equivalent:

(1) F restricts to a functor F : ∆n −→ Fun∆(∆/[1],Span∆(C×)).

(2) for every non-degenerate 2-simplex ∆2 −→ ∆/[1] ×∆n the restriction F |∆2 is a Segal simplex.

Proof. This follows from the iterated application of [Lur09a, Prop.4.2.3.8].

To study the first condition, recall that a morphism ϕ : ∆1 −→ ∆/[1] is called inert if its image in ∆ is inert. If
we depict a morphism in ∆/[1] by a commutative diagram

[n0] [n1]

[1]

f

30See Construction 8.3
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then the morphism is inert when f is the inclusion of a subinterval. Let ϕ : ∆1 −→ ∆/[1] be an inert morphism
and F a bicomodule object in Span∆(C×). By definition F : ∆/[1] −→ Span∆(C×) has to map inert morphisms
to Cartesian morphisms. Unraveling the definition of the Cartesian fibration Span∆(C×), it follows that the
image of ϕ is Cartesian, if and only if the adjoint map F̃ ◦ ϕ : Tw(∆1) −→ C× maps all morphisms in Tw(∆1)
to Cartesian morphisms. In other words for any morphism ϕ : g0

n0
−→ g1

n1
and any interval [i, j] ⊂ [n0]

(1) the morphism F (ϕ, {i, j}) −→ F (g0
n0
, {i, j}) induced by the source map ϕ −→ g0

n0
in Tw(∆/[1]) is an

equivalence.

(2) the morphism F (ϕ, {i, j}) −→ F (g1
n1
, {ϕ(i), ϕ(j)}) induced by the target map ϕ −→ g1

n1
in Tw(∆/[1]) is

an equivalence.

We derive some consequences of this:

Lemma A.3. Suppose F : ∆/[1] −→ Span∆(C×) represents a cobimodule. Let f : g0
n0
−→ g1

n1
be a morphism in

∆/[1] viewed as an object in Tw(∆/[1])

(1) Denote for [i, j] ⊂ [n0] by f |[i,j] the restriction of f to g0
[i,j] ⊂ g

0
n0

. Then the induced morphism

F (f |[i,j], [i, j]) −→ F (f, [i, j])

is an equivalence.

(2) Let f̃ : g0
n0
−→ g1

[l,k] be a morphism with [l, ..., k] ⊂ [n1], such that the composite with the inert morphism
ϕ : g1

[l,k] ↪→ g1
n1

is f . Then the induced morphism

F (f, [l, k]) −→ F (f̃ , [l, k])

is an equivalence.

Proof. The proof is analogous to [Ste21, Prop.2.2]

Lemma A.4. Suppose F : ∆/[1] −→ Span∆(C×) represents a cobimodule. Let σ be a morphism in the
∞-category Tw(∆/[1])×∆ ∆⨿ of the form:

σ =


[i, j] ⊂ g0

n0

g
//

f

��

g1
n1

[̃i, j̃] ⊂ g0
m0 g̃

// g1
m1

f̃

OO


such that f restricts to an isomorphism [i, ..., j] −→ [̃i, ..., j̃] and f̃ restricts to an isomorphism

[g(i), ..., g(j)] −→ [g̃(̃i), ..., g̃(j̃)].

Then F sends σ to an equivalence.

182



Proof. We decompose σ into the diagram
g0

[i,j]

g0
n0

g0
m0

g1
n1

g1
m1

g1
m1

ϕ

f

id

f̄

g[i,j]

g

ḡ

Note that the upper square gets mapped by F to an equivalence and that the composite of the left vertical
maps is inert. So by 2-out-of-3 we can restrict to those σ, such that the morphism f is inert. Such a diagram
σ can be further decomposed as:

g0
[i,j]

g0
[i,j]

g0
m0

g1
n1

g1
m1

g1
m1

id

f

f̄

id

g[i,j]

ḡ ◦ f

ḡ

Using the same argument as above applied to the lower square, we can reduce to the case that f = id. So let
σ be a diagram of the form

g0
n0

g0
n0

g1
n1

g1
m1

id f̄

g[i,j]

ḡ

such that f̄ induces an isomorphism [ḡ(0), ḡ(n0)] −→ [g(0), g(n0)]. In particular, there exists a decomposition

g0
n0

g0
n0

g0
n0

g1
n1

g1
m1

g1
[ḡ(0),ḡ(n0)]

id

id

f̄

ψ

g

ḡ

ḡ

with ψ inert. It follows by assumption that f ◦ ψ is itself inert. Hence the claim follows from 2-out-of-3
again.

Putting these results together, we have proven Proposition 8.3:

Proposition A.5. A functor F : Θ1 −→ C defines a bicomodule object if and only if

(1) F sends degenerate intervals to terminal objects.
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(2) F sends every object (ϕ : g0
[n0] −→ g1

[n1], [i, j]) together with its projection to subintervals to a product
diagram.31

(3) F sends morphisms of the form

σ ≃


[i, j] ⊂ g0

n0

g
//

f

��

g1
n1

[̃i, j̃] ⊂ g0
m0

g̃
// g1
m1

f̃

OO


s.t. the morphism f restricts to an isomorphism {i, ..., j} −→ {̃i, ..., j̃} and the morphism f̃ restricts to
an isomorphism {g(i), ..., g(j)} −→ {g̃(̃i), ..., g̃(j̃)} to equivalences. We denote by E the wide subcategory
of Θ1 with morphisms of the above form.

(4) F maps all Segal cone diagrams from Definition A.1 to limit diagrams.

A.2 Proof of Proposition 8.5

The goal of this subsection is to prove the following:

Proposition A.6. The functor L : Ω1 −→ ∆⋆
1 from Construction 8.4 is an ∞-categorical localization at the

morphisms E, defined in Corollary 8.3 (3).

To prove this, we show that this functor satisfies the assumptions of [Wal21, Lem.3.1.1]. To this end, we need
to consider for any object N = (e0

m0
, ..., ek−1

mk−1
) ∈ ∆⋆

1 the strict fiber of the functor L at N . We denote the
strict fiber by Ω1,N and we denote by ΩE1,N the subcategory of Ω1,N with morphisms in E. To apply [Wal21,
Lem.3.1.1], we first construct an explicit initial object in ΩE1,N :

Construction A.1. For any N = (e0
m0
, ..., ek−1

mk−1
) ∈ ∆⋆

1 as above we define the object IN ∈ Ω1,N as

[0, k] ⊂ [k] [m0] ∗ ... ∗ [mk−1]

[1]

fN

ek e0
m0
∗ ... ∗ ek−1

mk−1

where the morphism fN is defined by

fN (i) =

0 ∈ [mi] i ≤ k

mk−1 ∈ [mk−1] i = k
,

and ek is the unique morphism that makes the triangle commute. If e0
m0
∗ ... ∗ ek−1

mk−1
is supported at {0}, we

denote by IN ∗ id[1] the object

[0, k] ⊂ [k] [m0] ∗ ... ∗ [mk−1] ∗ [1]

[1]

fN

e0
m0 ∗...∗ek−1

mk−1
∗id[1]

Similarly, we denote by id[1] ∗IN the analogously defined object if e0
m0
∗ ... ∗ ek−1

mk−1
is supported at {1}.

31See Construction 8.2
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Lemma A.7. For every N the category ΩE1,N has an initial object given by

(1) IN ∗ id[1] if e0
m0
∗ ... ∗ ek−1

mk−1
is supported at 0.

(2) IN if e0
m0
∗ ... ∗ ek−1

mk−1
is surjective.

(3) id[1] ∗IN if e0
m0
∗ ... ∗ ek−1

mk−1
is supported at 1.

Proof. We will prove that the respective object is initial. Let

[i, j] ⊂ [n] α−→ [l] h−→ [1]

be an object in ΩE1,N . We will construct a unique morphism Φ in ΩE1,N from the claimed initial object. In any
of the above cases, we define the morphism ϕ : [k] −→ [n] as the inert map that includes [k] as the interval
{i, ..., j}. This is uniquely defined since every morphism in E has to induce an isomorphism between the
chosen subintervals. We can decompose32 the object [l] h−→ [1] into

[lleft] ∗ {α(i), ..., α(j)} ∗ [lright]
hleft∗h∗hright−−−−−−−−−→ [1].

Since any morphism in E has to map {α(i), ..., α(j)} isomorphically onto [fN (0), fN (k)] = [n], the restriction
of Φ to {α(i), ..., α(j)} is uniquely determined. We show that our assumptions allow us to extend this arrow
uniquely to the outer part. In case (2), we can uniquely extend. We only discuss case (1), since (3) is
analogous. In case (1), we can uniquely extend Φ to [lleft] by setting it constantly 0. An extension to [lright]
is equivalent to a morphism to id[1] in ∆/[1]. This morphism exists uniquely since id[1] is a final object of
∆/[1].

We furthermore need to show that the inclusion ΩE
1,N ⊂ Ω1

/N of the strict into the lax fiber is cofinal. To
show this, we make the following preliminary considerations. By Quillen’s theorem A [Lur09a, Thm.4.1.3.1]
this amounts to showing, that for every object

{i, j} ⊂ [n] α−→ [l] h−→ [1],

whose image under L is given by (hli+1 , ..., hlj ), and every morphism

g : (hli+1 , ..., hlj ) −→ (em0 , ..., emk−1)

in ∆⋆
1, the category ΩE

N,1 ×(Ω1)/N
((Ω1)/N )g/ is contractible. We do so by constructing an explicit initial

object. By definition, the morphism g amounts to a pair consisting of a morphism γ : [k − 1] −→ {i+ 1, ..., j}
in ∆ and a morphism

ḡ : [m0] ∗ ... ∗ [mk−1] −→ [li+1] ∗ ... ∗ [lj ] in ∆/[1].

We denote by [nc] := {p, ..., q} ⊂ {i, j} ⊂ [n] the unique linearly ordered set such that γ factors as

γ : [k − 1] −→ [nc] ↪→ [nl] ∗ [nc] ∗ [nr].

By construction ḡ has image contained in [lc] := [lp+1] ∗ ... ∗ [lq]. We introduce the following decompositions:

[l] = [ll] ∗ [lc] ∗ [lr],
[m] = [ml] ∗ [mc] ∗ [mr].

32See Construction 8.1
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Lemma A.8. There exists a morphism in Ω1

[p, q] ⊂ d[p,...,q] //

��

hlc

[0, k] ⊂ h{0,l1} ∗ ek ∗ h{0,l2} // hl1 ∗ em ∗ hl2

OO

that extends to a morphism

µZ,N :=


Z = [i, j] ⊂ dnl

∗ dnc
∗ dnr

//

��

hll ∗ hlc ∗ hlr

ZN = [0, k] ⊂ dnl
∗ h{0,l1} ∗ ek ∗ h{0,l2} ∗ dnr

// hll ∗ hl1 ∗ em ∗ hl2 ∗ hlr

OO


covering g, such that µZ,N is an initial object in ΩEN,1 ×(Ω1)/N

((Ω1)/N )g/.

Proof. We define a morphism ν : {p+ 1, ..., q − 1} −→ [k] as 𝕀(γ) and extend it to a morphism

ν : {p, ..., q} −→ [1] ∗ [k] ∗ [1]

by mapping endpoints to endpoints. We decompose [lc] = [l1] ∗ [lmc ] ∗ [l2], where we denote by [lmc ] the
subinterval of [l], that contains the image of ḡ. By construction, the map ḡ : em −→ h[lmc ] hits both endpoints.
Therefore, we can extend it to a morphism

ḡ′ := idhl1 ∗g ∗ idhl2 : hl1 ∗ em ∗ hl2 −→ hlc .

By construction ḡ′ also hits both endpoints and extends uniquely to a morphism over [1]. Similarly, we define

f̄N : h{0,l1} ∗ ek ∗ h{0,l2} −→ hl1 ∗ em ∗ hl2

to be fN on ek and to send endpoints to endpoints. This morphism also extends uniquely to a morphism
over [1]. By decomposing the morphisms ν, h and f̄N ◦ ν, we obtain a not necessarily commuting diagram

[p, q] ⊂ d[1p+1] ∗ ... ∗ d[1p]
α //

ν

��

hlp+1 ∗ ... ∗ hlq

[0, k] ⊂ h{0,l1} ∗ ekp+1 ∗ ... ∗ ekq
∗ h{0,l2}

f̄N

// hl1 ∗ emp+1 ∗ ... ∗ emq
∗ hl2

ḡ′

OO

This diagram commutes in ∆/[1] if and only if it commutes restricted to each individual [1r] with r ∈ {p+1 ≤ q}.
Since all maps preserve endpoints, this is clear for r = p+ 1 and r = q. In the other cases, it suffices to show
that ḡ′ sends the endpoints of [nr] to the endpoints of [mr]. This follows since ḡ′ is induced by a morphism g

in ∆⋆
1.

Since all morphisms preserve endpoints, we can extend the diagram by taking star products with the
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morphisms iddnl
, iddnr

, idhll
, idhlr

, α|dnl
: dnl

−→ dll and α|dnr
: dnr −→ dlr

Z = {i, j} ⊂ dnl
∗ dnc ∗ dnr

//

��

hll ∗ hlc ∗ hlr

ZN = {0, k} ⊂ dnl
∗ h{0,l1} ∗ ek ∗ h{0,l2} ∗ dnr

// hll ∗ hl1 ∗ em ∗ hl2 ∗ hlr

OO

By construction, this diagram defines a morphism in Ω1 covering g. We call this morphism µZ,N .
Let us show that µZ,N is initial. Suppose, we are given another morphism in Ω1

Z = [i, j] ⊂ dn α //

ρ

��

hl

X = [0, k] ⊂ xa
β
// yb

w

OO

covering g. We can decompose it as follows

Z = [i, j] ⊂ dnl
∗ dnc

∗ dnr

α //

ρ

��

hll ∗ hlc ∗ hmr

X = [0, k] ⊂ xal
∗ xac

∗ xar β
// ybl
∗ ybc

∗ ybr

w

OO

(43)

It follows from [Ste21, Lem. A.3] that ρ is uniquely determined except at the endpoints by γ. Therefore, the
restriction of diagram Diagram (43) to dnc looks as follows:

dnc

h //

ρ

��

hlc

xa1
c
∗ ek ∗ xa2

c

β1
c ∗fN ∗β2

c// yb1
c
∗ en ∗ yb2

c

w

OO

Every morphism ZN −→ X in E commuting with the above morphism Z −→ X and µZ,M , must in particular
restrict to a commutative diagram

dnc
//

��

""

hlc

h{0,l1} ∗ ek ∗ h{0,l2} //

))

hl1 ∗ em ∗ hl2

OO

xa1
c
∗ ek ∗ xac

2
// yb1

c
∗ em ∗ yb2

c

hh

``

(44)

Moreover, since the bottom square is in E, it must restrict to a commutative diagram

ek //

��

em

ek // em

OO
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It follows that the component h{0,l1} ∗ ek ∗ h{0,l2} −→ xa1
c
∗ ek ∗ xa2

c
is uniquely determined by the left hand

triangle in Diagram 44. We can further decompose w, since it must restrict to ḡ on em, into

w = w1 ∗ g ∗ w2 : yb1
c
∗ em ∗ yb2

c
−→ hl1 ∗ hlmc ∗ hl2

Hence, the component of the bottom morphism in the right hand triangle is uniquely determined and must
be given by

w1 ∗ id[m] ∗w2 : yb1
c
∗ em ∗ yb2

c
−→ hl1 ∗ em ∗ hl2 .

We can now extend back to the full diagram

dnl
∗ dnc

∗ dnr
//

��

&&

hll ∗ hlc ∗ hlr

dnl
∗ h{0,l1} ∗ ek ∗ h{0,l1} ∗ dnr

//

++

hll ∗ hl1 ∗ em ∗ hl2 ∗ hlr

OO

xal
∗ xa1

c
∗ ek ∗ xac

2
∗ xar

// ybl
∗ yb1

c
∗ em ∗ yb2

c
∗ ybr

jj

ee

Note that the vertical arrows in the back square are given by identities when restricted to hll , hlr , eml
, and

emr
. Hence, the bottom square is uniquely determined by the morphisms hll −→ xal

, hlr −→ xar
, ybl

−→ eml
,

and ybr
−→ emr

. So there is a unique morphism ZN −→ X with the desired properties.

Proof of Proposition 8.5. The result follows from combining Lemma A.8 and Lemma A.7 with [Wal21,
Lem.3.1.1.].

B Presentable ∞-Categories
In Section 4.1, we have recalled basic constructions with ∞-categories that are linear over a fixed symmetric
monoidal ∞-category V. The main goal of this section is to extend these constructions to the context of
(∞, 2)-categories. The constructions that we present here have already been sketched in [GR19, Sect.I.1], and
we provide a more detailed discussion. Therefore, we first construct in Appendix B.1 for every collection of
small ∞-categories K a large (∞, 2)-category of small K-cocomplete ∞-categories. Afterward, we equip in
Appendix B.2 these with symmetric monoidal structures by extending the construction of [Lur17, Sect.4.8.1]
to the context of (∞, 2)-categories. Finally, we use these preliminary constructions to construct symmetric
monoidal (∞, 2)-categories of V-linear ∞-categories. A different construction of this (∞, 2)-category has been
presented using enriched ∞-categories in [RZ25, Sect.2].

B.1 (∞, 2)-Categories of ∞-Categories

The goal of this section is to construct symmetric monoidal (∞, 2)-categories of small and large ∞-categories
using complete Segal objects in Cat. We follow the convention to denote large ∞-categories of small ∞-
categories by small and very large∞-categories of large∞-categories by capital letters. For example, the large
∞-category of small ∞-categories is denoted by Cat, whereas the very large ∞-category of large ∞-categories
is denoted by CAT. We start by recalling the definition of complete Segal ∞-categories:

Definition B.1. Let X• : ∆op → Cat be a simplicial ∞-category. X• is called
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(1) a double ∞-category, if for every n ≥ 2 and every 0 < i ≤ n the inclusions ρi : [1] ≃ {i − 1, i} ↪→ [n]
induce an equivalence of ∞-categories.

Xn X{0,1} ×X1 · · · ×Xn−1 X{n−1,n}.

(2) essentially constant if the ∞-category X0 is an ∞-groupoid.

(3) complete if the map s0 : X0 → X1 induces an equivalence onto the full subcategory X inv
1 of invertible

morphisms.

We denote by Seg(Cat), Segec(Cat), and CSS(Cat) the full sub ∞-categories of Fun(∆op,Cat) spanned by
double ∞-categories, essentially constant double ∞-categories, and essentially constant, complete double
∞-categories respectively.

The ∞-category CSS(Cat) is equivalent to the large ∞-category of small (∞, 2)-categories Cat2 and we
frequently identify these two. In particular, all (∞, 2)-categories that we construct in this text are described
by essentially constant complete double ∞-categories.
To every double ∞-category X• : ∆op → Cat, one can associate a Segal space by composing with the
functor (−)≃ : Cat → S that associates to an ∞-category its underlying ∞-groupoid. In particular, if X•

is an (∞, 2)-category, this functor associates to X• a complete Segal space and hence an ∞-category. This
∞-category is called the underlying ∞-category of X• and is denoted by ι1X.
As shown in [Lur09b], there exists functors I : Seg(Cat)→ Segec(Cat) and L : Segec(Cat)→ CSS(Cat) that
are right (resp. left adjoint) to the corresponding inclusion. For every double ∞-category X• : ∆op → Cat.
we denote the (∞, 2)-category represented by L(I(X•)) by 𝕏 and call it the underlying (∞, 2)-category of
X•. The functor I explicitly sends a double ∞-category to the pullback

I(C)• C•

(C≃
0 )×•+1 C×•+1

0

in Seg(Cat), where we denote by C×•+1
0 the simplicial ∞-category whose n-simplices are given by C×n+1

0 .
For every pair of object x, y ∈ X0 in a double ∞-category X• ∈ Seg(Cat), one can extract an ∞-category of
horizontal morphisms as the pullback of ∞-categories

X(x, y) X1

∗ X0 ×X0
(x,y)

Analogously, we define the ∞-category of morphisms of an (∞, 2)-category. It follows from the construction
of the underlying (∞, 2)-category 𝕏 of the double ∞-category X•, that the morphism ∞-categories are
equivalent. Note that since the functor (−)≃ preserves limits the morphism space of the underlying∞-category
ι1𝕏 of an (∞, 2)-category 𝕏 is the underlying space of the morphism ∞-category of 𝕏.
We also need a notion of full sub-(∞, 2)-category. Let 𝕏 be an (∞, 2)-category represented as an essentially
constant complete double ∞-category, and let Y ⊂ 𝕏0 be a subspace of the space of objects 𝕏0. The full
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sub-(∞, 2)-category 𝕐 with space of object Y0 is defined as the pullback of double ∞-categories:

𝕐• 𝕏•

Y ×•+1
0 X×•+1

0

Further, we need the following local version of a full subcategory. We call an (∞, 2)-functor F : 𝕏→ 𝕐 a
locally full inclusion if it induces a monomorphism 𝕏0 → 𝕐0 on spaces of objects and for every pair of objects
X,X ′ it induces a fully faithful functor 𝕏(X,X ′)→ 𝕐 (F (X), F (X ′)) on mapping categories. We then call
𝕏 a locally full sub-(∞, 2)-category. In particular, for any (∞, 2)-category 𝕏, we can associate to any pair
consisting of a subspace 𝕏′

0 ⊂ 𝕏0 and a full subcategory 𝕏′
1 ⊂ 𝕏1, such that the restriction of the source and

target map to 𝕏′
1 have image in 𝕏′

0 and 𝕏′
1 is closed under composition a locally full (∞, 2)-category 𝕏′ ⊂ 𝕏

[GR19, 10.2.3.6].
After these preliminary discussions, we now turn to the main construction of this section. Let K be a set of
small ∞-categories. Our plan is to construct the (∞, 2)-category of K-cocomplete ∞-categories as a locally
full sub-(∞, 2)-category of the (∞, 2)-category of ∞-categories. For this, we first need the following definition:

Definition B.2. Let K be a collection of ∞-categories and p : C→ D a cocartesian fibration of ∞-categories.
We call the fibration fiberwise K-cocomplete if

(1) for every d ∈ D the fiber Cd admits K-indexed colimits.

(2) for every morphism f : d → d′ the cocartesian transport functor f! : Cd → Cd′ preserves K-indexed
colimits.

For fiberwise K-cocomplete cocartesian fibrations C0 → D and C1 → D, we denote by FunK
D(C0,C1) the full

subcategory of FunD(C0,C1) spanned by those functors F : C0 → C1, such that for every d ∈ D the restriction
Fd : C0

d → C1
d preserves K-indexed colimits. We call such a functor F fiberwise K-cocontinuous.

Let K be a collection of small ∞-categories. For any small ∞-category C, we denote by CocartKC the
subcategory of the large ∞-category CatK/C with objects fiberwise K-cocomplete cocartesian fibrations and
morphisms fiberwise K-cocontinuous functors. Further, we denote by CocartK,≃C the wide subcategory of
CocartKC with morphisms those fiberwise K-cocontinuous functors F : D→ E over C, such that for any c ∈ C

the restriction of F to the fiber over c is an equivalence of ∞-categories.
These constructions assemble into ∞-functors

CocartK− ,CocartK,≃− : Catop → CAT

with target the ∞-category of large ∞-categories. On morphisms this ∞-functor maps a functor F : C→ D

to the functor F ∗ : CocartD → CocartC that pulls back cocartesian fibrations along F .
In particular, we can restrict this functor under the inclusion of the simplex category ∆op ↪→ Cat. This yields
a large simplicial ∞-category CocartK• with ∞-category of n-simplices given by CocartK[n]. It is easy to check
that this simplicial ∞-category defines a large double ∞-category.

Remark B.1. All of the above analogously works for Cartesian fibrations instead of cocartesian fibrations.
As in the case of cocartesian fibrations we define, for every set of small simplicial sets K functors

CartK− ,CartK,≃− : Catop → CAT
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that associate to a small ∞-category C the ∞-category CartCop of Cartesian fibrations over Cop.

We will need the following simple swapping lemma:

Lemma B.1. Let C,D be small ∞-categories. The Straightening-Unstraightening equivalence induces an
equivalence of spaces

MapCAT(C,CocartD) ≃ MapCAT(D,CartCop).

Proposition B.2. The large double ∞-category CocartK,≃• of is essentially constant and complete. Hence, it
defines a large (∞, 2)-category.

Proof. Note that the large ∞-category of 0-simplices CocartK,≃0 is equivalent to the large space CatK,≃ of
small K-cocomplete ∞-categories. Hence, it is essentially constant. To show that it is complete, it suffices to
show that its underlying Segal space is complete. Under the Straightening-Unstraightening equivalence, this
reduces to the statement that the Segal space

ι1CocartK,≃• ≃ MAP([−],CatK)

is complete. But this is the Rezk-nerve of the ∞-category CAT. Hence it is complete.

Definition B.3. We call the (∞, 2)-category ℂatK corresponding to the essentially constant, complete
double category CocartK,≃• the (∞, 2)-category of K-cocomplete ∞-categories.

Remark B.2. Note that under the Straightening-Unstraightening equivalence, the objects identify with
K-cocomplete ∞-categories C and the morphisms with functors K-cocontinuous functors F : C→ D between
∞-categories. The 2-morphisms are given by commutative triangles

C D

∆1

F

such that the restrictions F0 : C0 → D0 and F1 : C1 → D1 are equivalences. Unraveling definitions, this
datum encodes a natural transformation between the K-cocontinuous functors associated to the cocartesian
fibrations C and D.

More concretely, this can be seen as follows:

Proposition B.3. Let C,D ∈ ℂatK be K-cocomplete ∞-categories. The mapping ∞-category ℂatK(C,D) is
equivalent to the ∞-category of K-cocontinuous functors FunK(C,D).

Proof. We need to compute the pullback of large ∞-categories

ℂatK(C,D) CocartK,≃1

∗ CocartK,≃0 × CocartK,≃0
(C,D)

By the Yoneda lemma it suffices to show that for every ∞-category E, there exists a natural equivalence of
∞-categories

Map(E,ℂatK(C,D)) ≃ Map(E,FunK(C,D)).
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In fact, since ∆ is dense in CAT [Lur09b, Ex.4.4.9], it suffices to show this for all [n] ∈ CAT. We obtain a
sequence of natural equivalences:

Map([n],FunK(C,D)) ≃ MapCartK[n]op
([n]op × C, [n]op ×D))

≃ Map([1],CartK[n]op)×ι0CartK[n]op ×ι0CartK[n]op
{[n]op × C, [n]op ×D}

≃ Map([n],Cocart≃,K
[1] )×Map([n],ι0CAT)×Map([n],ι0CAT) {C,D}

≃ Map([n],ℂat(C,D))

as desired.

Remark B.3. Everything we have done so far works analogously for large ∞-categories. For every collection
of small ∞-categories K and any small ∞-category C, we denote by COCARTK

C the ∞-category of large
K-cocomplete cocartesian fibrations over C. Further, we denote by ℂATK

∞ the (∞, 2)-category of large
K-cocomplete ∞-categories.

Let K be the large set of all small ∞-categories. We denote by ℂATcolim
∞ the ∞-category of large ∞-categories

with small colimits. We are particularly interested in the full sub (∞, 2)-category spanned by presentable
∞-categories.

Definition B.4. We call the full sub-(∞, 2)-category ℙrL of the (∞, 2)-category of cocomplete large ∞-
categories ℂATcolim

∞ spanned by presentable ∞-categories the (∞, 2)-category of presentable ∞-categories.

B.2 Symmetric Monoidal Structures on ℂatK∞
In the last subsection, we have constructed for every collection of small ∞-categories K an (∞, 2)-category
ℂatK of K-cocomplete ∞-categories and K-cocontinuous functors. Our goal in this section is to equip
these (∞, 2)-categories with symmetric monoidal structures. To do so, we follow a similar route as in
the (∞, 1)-categorical case [Lur17, Sect.4.8.1]. First, let us recall the definition of a symmetric monoidal
(∞, 2)-category:

Definition B.5. A symmetric monoidal double ∞-category is a Segal object X⊗
• : ∆op → Cat⊗ in the

∞-category of symmetric monoidal ∞-categories. The underlying double ∞-category is the composite

X• : ∆op X⊗
•−−→ Cat⊗ ev⟨1⟩−−−→ Cat

with the functor ev⟨1⟩ that associates to a symmetric monoidal ∞-category C⊗ → Fin the fiber over ⟨1⟩.

Definition B.6. A symmetric monoidal (∞, 2)-category X⊗
• is a commutative monoid object

X⊗
• : Fin∗ → CSS(Cat)

in the ∞-category of essential constant, complete double ∞-categories. Equivalently, a symmetric monoidal
(∞, 2)-category is a symmetric monoidal double (∞, 2)-category X• : ∆op → Cat⊗, whose underlying double
∞-category is essentially constant and complete.

We also need to be able to describe symmetric monoidal structures on sub-(∞, 2)-categories:
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Definition B.7. Let 𝕏⊗
• be a symmetric monoidal (∞, 2)-category and let Y ⊗

0 ⊂ 𝕏⊗
0 be a symmetric

monoidal subspace of the symmetric monoidal space of objects of 𝕏•. The full symmetric sub-(∞, 2)-category
𝕐⊗

• with space of objects Y0 is defined as the pullback of symmetric monoidal (∞, 2)-categories

𝕐• 𝕏•

(ι∗Y ⊗
0 )• (ι∗X0)⊗

•

where i∗ denotes the functor of right Kan extension along the inclusion i : {[0]} ↪→ ∆op.

We now turn to the construction of the symmetric monoidal structure on ℂatK. Therefore, we first extend
the Cartesian symmetric monoidal structure on Cat to the (∞, 2)-category ℂat. Note that for every small
∞-category C, the ∞-category Cat/C admits finite limits, and that for every functor F : C→ D the pullback
functor F ∗ : CatD → CatC preserves finite limits. Further, the full subcategory CocartC ⊂ CatC is closed
under finite limits. Consequently, the functors Cocart−,Cocart≃

− factor:

Cocart−,Cocart≃
− : Catop → CATlex

through the ∞-category CATlex of large ∞-categories with finite limits and finite limit preserving functors.
We use this factorization for the construction of a symmetric monoidal structure on the (∞, 2)-category ℂat.
Indeed, it follows from [Lur17, Cor.2.4.1.9] that there exists a limit preserving functor

Θ : CATlex → CAT⊗

that associates to a large ∞-category with finite limits Ĉ the Cartesian monoidal structure Ĉ× → Fin∗ on Ĉ.
Hence, the composite

Cocart∼,×
• : ∆op Cocart∼

−−−−−−→ Catlex Θ−→ CAT⊗

defines a simplicial symmetric monoidal ∞-category.
We can describe these symmetric monoidal ∞-categories more precisely as follows. An object of Cocart×

[n]
over ⟨m⟩ ∈ Fin consists of tuples (C1, ...,Cm) of cocartesian fibrations over [n]. A morphism of such pairs over
a morphism α : ⟨m⟩ → ⟨k⟩ in Fin∗ consists for every i ∈ ⟨k⟩ of a morphism∏

j∈α−1(i)

Cj → Di

in the ∞-category Cocart[n].
It follows from the construction of Θ that the composite ev⟨1⟩ ◦Θ is homotopic to the identity functor. Hence,
it follows from Proposition B.2 that the functor Cocart≃,×

• : ∆op → Cat⊗ defines a symmetric monoidal
(∞, 2)-category:

Definition B.8. We call the large symmetric monoidal (∞, 2)-category ℂat⊗ associated to Cocart≃,×
• the

symmetric monoidal (∞, 2)-category of small ∞-categories.

Lurie uses in [Lur17, Sect.4.8.1] the theory of cocompletions developed [Lur09a, Sect.5.3.6] to construct
symmetric monoidal structures on the ∞-categories CatK. We now use the same strategy to extend this
structure to the level of (∞, 2)-categories. For this purpose, we need a description of symmetric monoidal
(∞, 2)-categories using fibrations.
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So far, we have described symmetric monoidal (∞, 2)-categories as commutative monoids in the ∞-category
Cat2. As we can describe symmetric monoidal ∞-categories as cocartesian fibrations

C⊗ → Fin∗,

we can equivalently describe symmetric monoidal (∞, 2)-categories as (0, 1)-fibrations [AGH24, Sect.3]

𝔻⊗ → Fin∗ .

Let us recall the Definition of a (0, 1)-fibration over an ∞-category C:

Definition B.9. Let p : 𝔻→ ℂ be an (∞, 2)-functor, A morphism f : d→ d′ in 𝔻⊗ lying over p(f) : p(d)→
p(d′) is called p-cocartesian, if for every e ∈ 𝔻 and c ∈ ℂ the commutative diagram

Map𝔻(d′, e) Map𝔻(d, e)

Mapℂ(p(d′), c) Mapℂ(p(d), c)

f∗

p(f)∗

on morphism ∞-categories is a pullback in Cat.

Since Fin∗ is an ∞-category, the following simplified definition of a (0, 1)-fibration suffices:

Definition B.10. Let C be an ∞-category. An (∞, 2)-functor p : 𝔻 → C is called a (0, 1)-fibration, if for
every object d ∈ 𝔻 and every morphism g : p(d)→ c′ in C, there exists a p-cocartesian morphism f : d→ d′

lying over g.

For our discussion, we also need the following analog of a local fibration:

Definition B.11. Let C be an ∞-category. An (∞, 2)-functor p : 𝔻→ C is called a local (0, 1)-fibration, if
for every morphism f : c→ c′ in C, the induced functor

𝔻×C [1]→ [1]

is a (0, 1)-fibration.

Let p : 𝔻→ C be a (0, 1)-fibration. As in the case of cocartesian fibrations of∞-categories, every (0, 1)-fibration
can be unstraightened [AGH24, Sect.3] to an (∞, 2)-functor

Un(p) : C→ Cat2

with target the ∞-category of (∞, 2)-categories. In particular, we obtain a description of symmetric monoidal
(∞, 2)-categories in terms of (0, 1)-fibrations.

Definition B.12. Let p : 𝔻⊗ → Fin∗ be a (0, 1)-fibration. Then p is called a symmetric monoidal (∞, 2)-
category, if the unstraightening of p

Un(p) : Fin∗ → Cat2

is a commutative monoid object.

Let us now use this approach to define symmetric monoidal structures on the (∞, 2)-categories ℂatK. Following
[Lur17], we consider the power set P(Set∆) of the large set of small simplicial sets. Equipped with the partial
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order given by inclusion, this defines an ∞-category denoted by P. We consider the (∞, 2)-functor

ℂat⊗ × P→ Fin∗×P,

and denote by M the locally full sub-(∞, 2)-category of ℂat⊗ × P such that

(1) an object (C1, . . .Cm,K) belongs to M if each of the Ci admits K-indexed colimits

(2) Let f : (C1, . . .Cm,K) → (D1, . . .Dl,K
′) be a morphism in ℂat× × P covering α : ⟨m⟩ → ⟨l⟩ in Fin∗

and K ⊂ K′. Then f belongs to M if for every j ∈ ⟨l⟩ the induced functor∏
i∈α−1(j)

Ci → Dj

preserves K-indexed colimits separately in each variable.

For every K ∈ P we denote by ℂatK,⊗ the fiber of M over K. We can use the results from [Lur09a, Sect.5.3.6]
to prove:

Proposition B.4. The (∞, 2)-functor q : M→ Fin∗×P is a (0, 1)-fibration. In particular, for every collection
of simplicial sets K, the (∞, 2)-category ℂatK,⊗ is symmetric monoidal.

Proof. We follow the strategy of [Lur17, Prop.4.8.1.3]. We show first that q is a local (0, 1)-fibration. Therefore,
suppose given an object (C1, . . . ,Cn,K) in M and a morphism α : (⟨n⟩,K)→ (⟨m⟩,K′) in Fin∗×P. Supplying
a locally cocartesian lift of α requires to choose a collection of functor

fj :
∏

α(i)=j

Ci → Dj

for 1 ≤ j ≤ m, such that Dj admits K′ indexed colimits, and the fj preserve K-indexed colimits separately
in each variable. For 1 ≤ i ≤ n, we denote by Ri the collection of all colimit diagrams in Ci indexed by
simplicial sets in K. We now set

Dj := PK′

R (
∏

α(i)=j

Ci),

where R is the product of all Ri with i ∈ α−1({j}), as defined in [Lur09a, Sect.5.3.6]. It follows from the
universal property of the K′-cocompletion [Lur09a, Prop.5.3.6.2] that the respective inclusion functors define
a locally cocartesian morphism.
It remains to show that q is also a (0, 1)-fibration. Therefore, it suffices to show by [GR19, Lem.11.3.1.5]
that the induced functor on underlying ∞-categories is a cocartesian fibration of ∞-categories. But this is
precisely the content of [Lur17, Prop.4.8.1.3].

We can summarize this discussion with the following:

Definition B.13. For every collection of small simplicial sets K, the symmetric monoidal (∞, 2)-category

ℂatK,⊗ := MK

obtained as the fiber of q at K, is caled the symmetric monoidal (∞, 2)-category of K-cocomplete ∞-categories.
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Corollary B.5. Let K ⊂ K′ be collections of small simplicial sets. The symmetric monoidal functor
PK′

K (−) : CatK,⊗ → CatK
′,⊗ extends to a symmetric (∞, 2)-functor

PK′

K (−) : ℂatK,⊗ → ℂatK
′,⊗.

Let K be a collection of small ∞-categories. The construction of the symmetric monoidal structure on the
(∞, 2)-category of small K-cocomplete∞-categories ℂatK can be analogously performed on the (∞, 2)-category
of large K-cocomplete ∞-categories ℂATK

∞. In particular, we obtain a symmetric monoidal structure on the
(∞, 2)-category ℂATcolim

∞ . It follows from [Lur17, Prop.4.8.1.15] that the subspace PrL,⊗,≃ ⊂ CATcolim,⊗,≃

of presentable ∞-categories is closed under the symmetric monoidal structure on CATcolim. Hence, we can
define:

Definition B.14. We call the full symmetric monoidal sub (∞, 2)-category ℙrL,⊗ of the symmetric monoidal
∞-category ℂATcolim,⊗

∞ the symmetric monoidal (∞, 2)-category of presentable ∞-categories.

For the discussion in the following section, we also need a description of these symmetric monoidal (∞, 2)-
category in the language of symmetric monoidal double ∞-categories. We denote for every [n] ∈ ∆ by

hn : CocartK,⊗[n] ⊂ Cocart∼,×
[n] → Fin∗

the subcategory such that

• an objects (p1, . . . pm) belongs to CocartK,⊗[n] if the fibrations are fiberwise K-cocomplete.

• A morphism f : (p1, . . . , pm)→ (q1, . . . , ql) in Cocart∼,×
[n] covering α : ⟨m⟩ → ⟨l⟩ belongs to CocartK,⊗[n] ,

if for every j ∈ ⟨l⟩ the induced functor

∏
α(i)=j Ci Dj

[n]

fj

∏
pi

qj

preserves fiberwise K-indexed colimits separately in each variable.

These ∞-categories assemble into a simplicial object

CocartK,⊗• : ∆op → Cat/ Fin∗ .

Unwinding definitions, we see that this simplicial object identifies with the symmetric monoidal double
category associated to the (∞, 2)-category ℂatK,⊗. In particular, for every [n] the functor

hn : CocartK,⊗n → Fin∗

is a cocartesian fibration, and the functor

CocartK,⊗• : ∆op → Cat⊗ ⊂ Cat/ Fin∗

factors through the ∞-category Cat⊗. Hence, the simplicial object defines a symmetric monoidal double
category. We will make use of this description in the following sections.
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Remark B.4. The symmetric monoidal double category underlying the symmetric monoidal (∞, 2)-category
ℂatK,⊗ can be analogously constructed using the double ∞-category CartK• .

B.3 (∞, 2)-Categories of Linear ∞-Categories

The goal of this section is to construct for every set of small simplicial sets K and every K-cocomplete
symmetric monoidal ∞-category V⊗ a symmetric monoidal (∞, 2)-category ℂatK,⊗V , whose underlying
symmetric monoidal ∞-category is given by CatK,⊗V with symmetric monoidal structure induced from the
relative Deligne-Lurie product. The discussion here is an expansion of the argument sketched in [GR19,
Sect.1.1.6]. As a start, we recall the construction of the symmetric monoidal structures on categories of
modules from [Lur17].
Let C be a ⊗-GR-cocomplete symmetric monoidal ∞-category. We denote by RMod(C) the ∞-category of
right module objects in C [Lur17, Sect.4.5]. This ∞-category admits forgetful functor RMod(C) → Alg(C)
to the ∞-category of algebra objects in C. This ∞-functor associates to a pair (A,CA) consisting of an
algebra object A ∈ Alg(C) and a right A-module CA ∈ RModA(C) the algebra object A. It follows from
[Lur17, Prop.3.2.4.3] that the symmetric monoidal structure on C induces the pointwise symmetric monoidal
structure on RMod(C) and Alg(C). More precisely, the monoidal product of (A,CA) and (B,DB) is given by
CA⊗DB considered as a right A⊗B-module. Further, the functor forgetful functor p extends to a symmetric
monoidal functor p : RMod(C)⊗ → Alg(C)⊗.
Since the symmetric monoidal ∞-category C is ⊗-GR-cocomplete, the symmetric monoidal functor p is
also a cocoartesian fibration [Lur17, Thm.4.5.2.1]. The cocoartesian transport along an algebra morphism
f : A→ B associates to (A,CA) the right B-module (B,C ⊗A BB). We use this to construct the monoidal
structure given by the relative tensor product. Let A ∈ CAlg(C) be a commutative algebra object. Then A

defines a commutative algebra A⊗ object in Alg(C)⊗. We consider the pullback diagram

RModA(C)⊗ RMod(C)⊗

Fin∗ CAlg(C)⊗

p

A

in the ∞-category of symmetric ∞-operads OpFin
∞ . Since p is a cocoartesian fibration, it follows that the

left vertical map is a cocartesian fibration as well and hence that RModA(C)⊗ is a symmetric monoidal
∞-category. Unraveling definitions, the monoidal product maps two right A-modules CA, DA to the relative
tensor product

(CA ⊗DA)⊗A⊗A A ≃ C ⊗A D.

This construction recovers the symmetric monoidal structure from [Lur17, Thm.4.5.2.1]. Let us now apply
this to construct the symmetric monoidal (∞, 2)-category ℂatK,⊗V . To do so, we extend the defining pullback
diagram to a pullback diagram of symmetric monoidal double (∞, 2)-categories. For this, we first need to
construct for every symmetric ∞-operad O⊗ a symmetric monoidal double ∞-category of K-cocomplete
O⊗-monoidal ∞-categories. Note that the functor AlgO⊗(−) : Cat⊗ → Cat⊗ preserves finite limits. Hence,
the composite

Algoplax
O⊗ (CatK)⊗

• : ∆op CocartK,⊗
•−−−−−−→ Cat⊗ Alg

O⊗ (−)
−−−−−−→ Cat⊗

defines a symmetric monoidal double ∞-category. Similarly, the composite

Alglax
O⊗(CatK)⊗

• : ∆op CartK,⊗
•−−−−−→ Cat⊗ Alg

O⊗ (−)
−−−−−−→ Cat⊗
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defines a symmetric monoidal double ∞-category.

Proposition B.6. Let K be a collection of small ∞-categories and O⊗ a symmetric monoidal ∞-operad.
The essentially constant symmetric monoidal double ∞-categories Algoplax

O⊗ (CatK)⊗
• and Alglax

O⊗(CatK)⊗
• are

complete.

Proof. We prove the result for Alglax
O⊗(CatK)⊗

• . The other one is analogous. It suffices to show that the
underlying Segal space Alglax

O⊗(CatK)≃
• is complete. It follows from the universal property of the Cartesian

monoidal structure that there exists an equivalence of simplicial spaces

𝔸lglax
O⊗(CatK)≃

• ≃ Mon≃(O⊗,CartK[−]),

where the right hand side denotes the simplicial space of O⊗-monoid objects in CartK[−]. An application of the
swapping lemma yields an equivalence

Mon≃(O⊗,CartK[−]op) ≃ Map([−],AlgO⊗(CatK)).

But the last simplicial space is the Rezk-nerve of the ∞-category AlgO⊗(CatK) and hence is complete.

Definition B.15. Let K be a collection of small ∞-categories and O⊗ a symmetric ∞-operad. We define
the symmetric monoidal (∞, 2)-category of K-cocomplete O⊗-monoidal ∞-categories an oplax O⊗-monoidal
functors 𝔸lgoplax

O⊗ (CatK)⊗ as the symmetric monoidal (∞, 2)-category underlying the symmetric monoidal
double ∞-category Algoplax

O⊗ (CatK)⊗
• .

Similarly, we define the symmetric monoidal (∞, 2)-category of K-cocomplete O⊗-monoidal ∞-categories a lax
O⊗-monoidal functors 𝔸lglax

O⊗(Cat(K))⊗ as the symmetric monoidal (∞, 2)-category underlying the symmetric
monoidal double ∞-category 𝔸lglax

O⊗(CatK)⊗
•

Remark B.5. To justify this definition, let us unravel it for the associative operad Ass⊗. An object of the
(∞, 2)-category 𝔸lgoplax(CatK) consists of a K-cocomplete monoidal ∞-category C⊗. A morphism is given by
an associative algebra object (C⊗, µ) in CocartK,⊗1 . The underlying object consists of a cocartesian fibration
C→ [1] encoding a K-cocontinuous functor F : C0 → C1. The multiplication functor

C⊗ C C

[1]

µ

encodes a monoidal product on the fibers µi : Ci ⊗ Ci → Ci. Moreover, we obtain for every (c0, c1) ∈ C0 a
commutative diagram

(m0,m1) m0 ⊗m1

(F (m0), F (m1)) F (m0)⊗ F (m1) F (m0 ⊗m1)

µ0

F×F ◦
µ1

ηc0,c1

The morphism ηc0,c1 is part of a natural transformation η : F (−⊗−)→ F (−)⊗ F (−) that encodes part of
the coherence data of an oplax monoidal structure on F . This justifies the name oplax. If we instead consider
a morphism in the (∞, 2)-category 𝔸lglax

O⊗(CatK) with underlying object a Cartesian fibration D→ [1]op. The
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analogous diagram is given by

(F (m0), F (m1)) F (m0)⊗ F (m1) F (m0 ⊗m1)

7→

(m0,m1) m0 ⊗m1

F×F

ϕd0,d1

◦

The morphism ϕd0,d1 is part of a natural transformation ϕ : F (−)⊗ F (−)→ F (−⊗−) that encodes part of
the coherence data of a lax monoidal structure on F . This justifies the name lax.
A 2-morphism consists of a map between algebra objects in Cocart[1]. This datum contains a map ψ : C→ D

of cocartesian fibrations over [1], whose restrictions to the fibers ψi are equivalences. The first coherence
datum is given by the commutative diagram

C⊗ C C

D⊗D D

For every (c0, c1) ∈ C0 this encodes the datum of a commutative diagram

F (c0 ⊗ c1) F (c0)⊗ F (c1)

G(c0 ⊗ c1) G(c0)⊗G(c1)

ηc0,c1

ψc0⊗c1 ψc0 ⊗ψc1

ϕc0,c1

This is the lowest instance of the structure of a monoidal natural transformation between lax-monoidal
functors.

Ultimately, we are interested in a version of the above construction, where the 1-morphisms are given by
strongly monoidal functors. For this, note that the discussion above suggests that the lax-monoidal functor
induced by an algebra object in CocartK,⊗[1] is strong monoidal if the algebra action preserves cocartesian
morphisms. Following this intuition, we denote by Algstrg

O⊗ (CocartKn ) the full subcategory of Alglax
O⊗(CocartKn )

spanned by those algebra objects C⊗, s.t. the induced O⊗-monoid object C⊗ : O⊗ → CocartKn factors through
Cocartstrg,K

n . These assemble into a symmetric monoidal double ∞-category

Algstrg
O⊗ (CatK)⊗

• : ∆op → Cat⊗.

To obtain the underlying (∞, 2)-category, we need the following:

Proposition B.7. The essentially constant, symmetric monoidal double ∞-category 𝔸lgstrg
O⊗ (CatK)⊗

• is
complete

Proof. It suffices to show that the underlying Segal space Algstrg
O⊗ (CatK)≃

• is complete. It follows from the
universal property of the Cartesian monoidal structure that there exists an equivalence of simplicial spaces

𝔸lgstrg
O⊗ (Cat(K))≃

• ≃ Mon≃(O⊗,Cartstrg,K
[−]op )

with the simplicial space of O⊗-monoid objects in CartK[−]op . An application of the swapping lemma yields an
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equivalence
Mon≃(O⊗,Cartstrg,K

[−]op ) ≃ Map([−],MonO⊗(CatK)).

But the last simplicial space is the Rezk-nerve of the ∞-category MonO⊗(CatK) of the ∞-category of
K-cocomplete O⊗ monoidal ∞-categories and O⊗ monoidal functors. Hence, it is complete.

We have already computed the underlying symmetric monoidal∞-categories of the above symmetric monoidal
(∞, 2)-categories. For completeness, we also compute their morphism ∞-categories.

Proposition B.8. Let K be a collection of small ∞-categories and O⊗ a symmetric monoidal ∞-operad.
For all O⊗-monoidal ∞-categories C⊗,D⊗, there exists an equivalence of ∞-categories:

Map𝔸lglax
O⊗ (CatK)(C,D) ≃ Funlax,K

O⊗ (C⊗,D⊗).

Proof. It suffices to construct for every [n] ∈ ∆ a natural equivalence

Map([n],Map𝔸lglax
O⊗ (CatK)(C,D)) ≃ Map([n],Funlax,K

O⊗ (C⊗,D⊗)).

To do so, we first note that by definition there exists an equivalence

Map([n],Funlax,K
O⊗ (C⊗,D⊗)) ≃ MapCocartK

O⊗×[n]
(C⊗ × [n],D⊗ × [n]).

Using the definition of the mapping space in CocartKO⊗×[n], we obtain an equivalence

MapCocartK
O⊗×[n]

(C⊗ × [n],D⊗ × [n]) ≃ Map([1],CocartKO⊗×[n])×(CocartK,≃
O⊗×[n]

)×2 {(C⊗ × [n],D⊗ × [n])}.

Using the swapping lemma, we can identify the above space with

Map([n],SegO⊗(CartK[1]))×Seg(CatK)≃,×2 {C⊗,D⊗}.

The claim follows from [Lur17, Thm.2.4.2.5]

Corollary B.9. Let K be a collection of small ∞-categories and O⊗ a symmetric monoidal ∞-operad. For
all C⊗,D⊗ ∈ AlgO⊗(Cat(K)) there exists an equivalence of ∞-categories:

Map𝔸lg
O⊗ (CatK(C,D) ≃ FunK

O⊗(C⊗,D⊗).

We can now use these symmetric monoidal (∞, 2)-categories to finish our construction of the symmetric
monoidal (∞, 2)-category ℂatK,⊗V . Therefore, recall that we can encode a symmetric monoidal ∞-category
V⊗ as a morphism of symmetric ∞-operads

Fin∗ Alg(CatK)⊗

Fin∗

V⊗

The symmetric monoidal ∞-category Alg(CatK)⊗ is the symmetric monoidal category of 0-simplices of the
symmetric monoidal double ∞-category Algstrg(CatK)⊗

• ∈ Cat⊗
∆. We denote by Fin∗,• the constant symmetric

monoidal double ∞-category on Fin∗. By the universal property of the constant simplicial object we can
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uniquely extend the morphism V⊗ : Fin∗ → Alg(CatK)⊗ ∈ Cat⊗ to a morphism of symmetric monoidal double
∞-categories

V⊗ × [−] : Fin∗,• → Algstrg(CocartK)⊗
•

By construction for every n ≥ 0 the underlying object of the algebra V⊗ × [n] ∈ Alg(CocartKn ) is given by the
cocartesian fibration V× [n] pr2−−→ [n] and the action is given by

V× [n]×[n] V× [n] ≃ V× V× [n] V× [n]
µ×id[n]

Remark B.6. In terms of monoidal functors, V× [n] encodes the functor [n]→ Cat that is constant on V

and the action is pointwise.

We further need the following property of constant simplicial objects. Recall that for every ∞-category
and every object C ∈ C there exists an equivalence Fun(∆op,C/C) ≃ Fun(∆op,C)/C• , where C• denotes the
constant simplicial object on C. Hence, under this equivalence, we can identify every simplicial object over a
constant simplicial object with a simplicial object in the slice.

Proposition B.10. Let V⊗ be a K-cocomplete symmetric monoidal ∞-category. We define the simplicial
symmetric ∞-operad RModstrg

V×[−](Cocart(K)⊗
• ) as the pullback

RModV×[−](CatK)⊗
• RModstrg(CatK)⊗

•

Fin• Algstrg(CatK)⊗
•

π•

of simplicial symmetric ∞-operads. The simplicial symmetric ∞-operad

π : RModstrg
V×[−](CatK)⊗

• : ∆op → OpFin∗
∞

associated to the left vertical morphism π• is a symmetric monoidal double ∞-category.

Proof. It suffices to show that for every n ≥ 0 the∞-operad RModstrg
V×[−](CatK)⊗

[n] is a symmetric monoidal∞-
category and the simplicial maps preserve cocartesian morphism. The first claim follows from the observation
that for every n the functor πn : RModstrg

V×[−](CatK)⊗
[n] → Fin is the pullback of a cocartesian fibration and

hence itself cocartesian. The second claim follows from the observation that every morphism

RModstrg
V×[−](CatK)⊗

[n] → RModstrg
V×[−](CatK)⊗

[m]

arises as the pullback of a functor that preserves cocartesian morphism. Hence, it preserves cocartesian
morphisms itself.

Proposition B.11. The double ∞-category RModstrg
V×[−](CatK)• is complete.

Proof. It suffices to show that the underlying Segal space is complete. Since the functor (−)≃ is a right
adjoint, this space can be computed as the pullback

RModV×[−](CatK)≃
• RModstrg(CatK)≃

• ≃ Map([−],RMod(CatK))

∗ Algstrg(CatK)≃
• ≃ Map([−],Alg(CatK))

π•

V
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Hence, it is given by Map([−],RModV(CatK)) and is therefore complete.

Definition B.16. Let K be a collection of ∞-categories and V⊗ a K-cocomplete symmetric monoidal ∞-
category. We define the symmetric monoidal (∞, 2)-category of K-cocomplete V-linear ∞-categories ℂatK,⊗V

as the symmetric monoidal (∞, 2)-category underlying RModV×[−](CatK)⊗
• .

Proposition B.12. Let V⊗ be a K-cocomplete monoidal ∞-category and C,D ∈ CatKV be K-cocomplete
V-linear ∞-categories. Then there exists an equivalence of ∞-categories MapℂatK

V
(C,D) ≃ FunK

V (C,D) between
the ∞-category of morphisms in ℂatKV and the ∞-category of K-cocontinuous V-linear functors.

Proof. Unraveling the definition of morphism ∞-categories, it follows that the morphism ∞-category of ℂatKV
can be computed as the pullback

MapℂatK
V

(C,D) MapℝMod(CatK
V

)((C,V), (D,V))

∗ Map𝔸lg(CatK)(V,V)idV

But this diagram can be identified with the diagram

MapℂatK
V

(C,D) FunK
RMod((C,V), (D,V))

∗ FunK
Ass(V,V)idV

whose pullback is given by FunV(C,D).

Remark B.7. We can describe the homotopy category of the (∞, 2)-category 𝔸lgstrg
O⊗ (CatK) as follows. This

2-category has

• objects: K-cocomplete O⊗-monoidal ∞-category C⊗ → O⊗.

• 1-morphisms: functors over O⊗

C⊗ D⊗

O⊗

F

that preserves cocartesian morphisms and are fiberwise K-cocontinuous.

• 2-morphisms: natural transformations over O⊗ between K-cocontinuous functors, i.e. commutative
diagrams

C⊗ × [1] D⊗

O⊗

F

such that F (−, 0) and F (−, 1) are K-cocontinuous O⊗-monoidal functors.

Analogously to [BM24, Prop.4.7] and [BM24, Prop.4.7] one proves:

Proposition B.13. Let K be a collection of small ∞-categories and O⊗ a symmetric ∞-operad. A 1-
morphism F : C⊗ → D⊗ in 𝔸lgstrg

O⊗ (CatK) is a left adjoint if and only if it admits a relative right adjoint that
is K-cocontinuous and O⊗-monoidal.
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Corollary B.14. Let V be a K-cocomplete monoidal ∞-category. A 1-morphism in ℂatKV represented by a
K-cocontinuous V-linear functor F : C⊗ → D⊗ admits a right adjoint if and only if the underlying functor
F : C→ D admits a K-cocontinuous right adjoint and the associated V-linear structure is strong.

Let F : CocartK,⊗• → CocartK
′,⊗

• be a symmetric monoidal functor between symmetric monoidal double
∞-categories that preserves geometric realizations. It follows, that F induces a commutative cube

RModV×[−](CatK)⊗
• RModstrg(CatK)⊗

•

RModF (V)×[−](CatK
′
)⊗
• RModstrg(CatK

′
)⊗
•

Fin• Algstrg(CatK)⊗
•

Fin• Algstrg(CatK
′
)⊗
•

π•

F

F

where the right face of the cube consists of symmetric monoidal functors between symmetric monoidal double
∞-categories. Hence, also the induced arrow

RModV⊗×[−](CatK)⊗
• → RModF (V)⊗×[−](CatK

′
)⊗
•

is a symmetric monoidal functor between symmetric monoidal double ∞-categories. In particular, we can use
this for the following:

Proposition B.15. Let K ⊂ K′ be collections of small ∞-categories and let V⊗ ∈ CAlg(CatK) be a K-
cocomplete symmetric monoidal ∞-category. The symmetric monoidal ∞-functor PK′

K : CatK,⊗ → CatK
′,⊗

extends to a symmetric monoidal (∞, 2)-functor

PK′

K : ℂatK,⊗V → ℂatK
′,⊗

PK′
K

(V ).

Let us finally construct a base change functor. Let F : V⊗ →W⊗ be a morphism of K-cocomplete symmetric
monoidal ∞-categories. By the universal property of the cocartesian symmetric monoidal structure on
CAlg(CatK), it extends to a symmetric monoidal functor F : Fin∗×∆1 → CAlg(CatK)⊗. By a similar
argument as above, this functor uniquely extends to a morphism

F × [−] : Fin∗,•×∆1
• → CAlgstrg(Cocart(K))⊗

•

of simplicial objects in Cat/ Fin∗ , such that each F × [n] is a morphism of ∞-operads. It follows that the
pullback

RModF×[−](CatK)⊗
• : RModV×[−](CatK)⊗

• → RModW×[−](CatK)⊗
•

induces a morphism of symmetric monoidal double ∞-categories. Passing to underlying (∞, 2)-categories we
obtain:

Proposition B.16. Let F : V⊗ →W⊗ ∈ CAlg(CatK) be a colimit preserving functor between K-cocomplete
symmetric monoidal ∞-categories. The symmetric monoidal ∞-functor −⊗V W : CatKV → CatKW extends to a
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symmetric monoidal (∞, 2)-functor

−⊗V W : ℂatK,⊗V → ℂatK,⊗W .

C Morita Categories

In Section 4.3, we have shown that for every presentably symmetric monoidal∞-category V⊗, rigid algebras in
ℙrL.⊗

V form fully dualizable objects in the corresponding Morita (∞, 2)-category 𝕄or(PrL
V)⊗. Since a complete

description of this (∞, 2)-category, together with a classification of its fully dualizable objects is missing in
the literature, we have included a discussion in this appendix. To this end, let us recall first the construction
of the (∞, 2)-category 𝕄or(−) from [Lur17, Sect.4.4.]. We adopt the model-independent presentation given
in [Hau23, Sect.5] to the setting of symmetric ∞-operads.
We denote by G a set of small ∞-categories that contains ∆op. It follows from [Lur17, Cor.4.8.1.4] that
the inclusion CatG ↪→ Cat lifts to a lax symmetric monoidal functor. Following [JFS17, Def.8.1], we call an
object C⊗ ∈ CAlg(CatG) a ⊗-GR-cocomplete symmetric monoidal ∞-category. These are symmetric monoidal
∞-categories that admit geometric realizations and whose tensor product functor −⊗− : C×C→ C preserves
geometric realizations in each argument separately. These will serve as an input of the construction of the
Morita category.
The main technical ingredient is the generalized ∞-operad Tens⊗ constructed in [Lur17, 4.4.1.1]. It comes
equipped with a functor

Tens⊗ ∆op × Fin∗
ev∆op × evfin

that equips Tens⊗ with the structure of a ∆op-family of∞-operads. In particular, for every [n] ∈ ∆op its fiber
Tens⊗

[n] is an ∞-operad. The colors of this ∞-operad are denoted by ai for i ∈ [n] and mi,i+1 for 0 ≤ i < n.
Unraveling definitions, the datum of an algebra over the ∞-operad Tens⊗

[n] is given by the datum of

(1) an associative algebra Ai for every i ∈ [n],

(2) an Ai −Ai+1-bimodule Mi,i+1 for every 0 ≤ i < n.

Let α be a morphism in ∆op, we denote the fiber of Tens⊗ over α by Tens⊗
α . Of particular importance are the

inner face maps di : [m− 1]→ [m] for 0 < i < m that leave out the i-th element. The prototypical example
of such an inner face map is the morphism d1 : [1] → [2]. Because of its importance for the forthcoming
discussion, we denote the generalized ∞-operad Tens⊗

d1
by Tens⊗

≻.
Let us now start with the construction of the Morita (∞, 2)-category following [Hau23] and [Lur17]. We
therefore need the following property of the generalized ∞-operad Tens⊗:

Proposition C.1. [Lur17, Thm. 4.4.3.1] The forgetful functor Tens⊗ → ∆op is an exponential fibration.

Corollary C.2. For any ∞-category C over ∆op there exists an ∞-category33

𝕄or(C) := ev∆op,∗ ev∗
Fin∗

C

over ∆op, such that
Fun/∆op(K,𝕄or(C)) ≃ Fun/ Fin∗(K ×∆op Tens⊗,C).

33ev∆op,∗ denotes the right adjoint of the functor ev∗
∆op given by pulling back along the functor ev∆op : Tens⊗ → ∆op.
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Proof. Let D be an ∞-category. Observe that there exists a chain of equivalences

Map(D,Fun/∆op(K,𝕄or(C))) ≃ Map/∆op(D×K,𝕄or(C))
≃ Map/ Fin∗

((D×K)×∆op Tens⊗,C)
≃ Map/ Fin∗

(D× (K ×∆op Tens⊗),C))
≃ Map(D,Fun/ Fin∗(K ×∆op Tens⊗,C)).

The claim then follows from the Yoneda lemma.

Note by construction an object in the fiber of 𝕄or(C) over [k] ∈ ∆op is given by an arbitrary functor

Tens⊗
[k] C

Fin∗

evFin∗

over Fin∗. It therefore makes sense to define:

Definition C.1. Let C⊗ be a ⊗-GR-cocomplete symmetric monoidal ∞-category. We define Mor(C) to be
the full subcategory of 𝕄or(C) spanned by the Tens⊗

[k]-algebras.

This ∞-category satisfies the following useful universal property:

Lemma C.3. For any functor K → ∆op there exists an equivalence

Fun/∆op(K,Mor(C)) ≃ AlgK×∆op Tens⊗,op(C).

Proof. The proof is analogous to [Hau23, Prop.4.7]

It follows from the construction of Tens⊗ that every morphism α : [n] → [m] in ∆ induces morphisms of
generalized ∞-operads

Tens⊗
[m] → Tens⊗

α ← Tens⊗
[n].

We denote in the following the colors of Tens⊗
α over [m] (resp. over [n]) by ai and mi,i+1 (resp. bj and nj,j+1).

Our next goal is to show that the functor Mor(C) → ∆op defines a double ∞-category. A morphism
β : [n]→ [m] in ∆ is called convex, if the image of β is convex. We note that every convex map induces a
morphism of ∞-operads

Tens⊗
[n] → Tens⊗

[m],

and hence for every symmetric ∞-operad C⊗ a restriction functor

vβ : AlgTens⊗
[m]

(C)→ AlgTens⊗
[n]

(C).

These restriction functors are fundamental for the proof of the following:

Theorem C.4. [Lur17, Sect.4.4] Let C⊗ be a ⊗-GR-cocomplete symmetric monoidal ∞-category. Then the
functor

p : Mor(C)→ ∆op
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is a double ∞-category. If ᾱ is an edge of Mor(C) over [n]← [m] : α in ∆op, then ᾱ is p-cocartesian if and
only if the corresponding functor

F : Tens⊗
α → C

is an operadic left Kan extension of F |Tens⊗
[n]

.

Proof. The fact that p is a cocartesian fibration and the description of cocartesian morphisms follow from
[Lur17, Cor.4.4.3.2]. It remains to show that 𝕄or(C) satisfies the Segal condition, i.e the functor

Mor(C)[n]
≃−→Mor(C)[1] ×Mor(C)[0] · · · ×Mor(C)[0] Mor(C)[1]

induced by cocartesian transport along the maps ρi : [1] ≃ {i− 1, i} ↪→ [n] for 1 ≤ i ≤ n is an equivalence.
Note that all the ρi are convex. It follows from [Lur17, Prop.4.4.3.5] that for a convex morphism : [n]← [m] : β
in ∆op the cocartesian transport functor β! is given by the corresponding restriction functor

AlgTens⊗
[n]

(C) vβ−→ AlgTens⊗[m](C).

Therefore the Segal condition reduces to the claim that the product of the corresponding restriction functors
induces an equivalence

AlgTens⊗
[n]

(C)→ AlgTens⊗
[1]

(C)×AlgTens⊗[0](C) · · · ×Alg
Tens⊗

[0]
(C) AlgTens⊗[1](C).

But this is a consequence of [Lur17, Prop.4.4.1.11].

For our purposes, we also need to understand the functorial properties of this construction. For this, note
that for any inner face map ∂i : [m− 1]→ [m] in ∆ there exists a commutative diagram

([1]) ≃ {i− 1, i+ 1} ([m− 1])

([2]) ≃ {i− 1, i, i+ 1} ([m])

∂1 ∂i

The functoriality of Tens⊗ induces for each such diagram a map of generalized ∞-operads

ξ : Tens⊗
≻ → Tens⊗

∂i
.

We can then prove:

Proposition C.5. The construction of Mor(−) extends to define an ∞-functor

Mor(−) : CatG → Seg(Cat)

into the ∞-category of double ∞-categories.

Proof. It remains to show that for every functor G : C⊗ → D⊗ in CatG the induced morphism of cocartesian
fibrations

Mor(C) Mor(D)

∆op

Mor(G)
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preserves all cocartesian edges. Since every morphism in ∆op decomposes into a convex morphism and a
composite of inner face maps, it suffices to consider those cases separately. The convex case follows from the
explicit description of the cocartesian transport functor and the assumption that G preserves inert morphisms.
Therefore let ∂i : [m− 1]→ [m] in ∆ be an inner face map. It follows from Theorem C.4 that a functor

F : Tens⊗
∂i
→ C

over Fin∗ representing an arrow in Mor(C) is cocartesian, if and only F is an operadic left Kan extension of
its restriction F |Tens⊗

[m]
:= F0. We depict this in the following diagram:

Ten⊗
[m] C⊗

Ten⊗
∂i

fin

F0

F

Unraveling [Lur17, Lem.4.4.3.8] F is an operadic left Kan extension if and only if

(1) for j ∈ [m− 1] the morphism F (aα(j))→ F (bj) is cocartesian,

(2) for 0 < j < i the morphism F (mj−1,j)→ F (nj−1,j) is cocartesian,

(3) for i < j < m the morphism F (mj,j+1)→ F (nj−1,j) is cocartesian,

(4) the functor F induces an equivalence colim∆op Barai(mi−1,i,mi,i+1) ≃ F (ni−1,i), where Bar−(−,−)
denotes the 2-sided Bar construction [Lur17, 4.4.2.7].

Since G by assumption preserves ∆op-indexed colimits and cocartesian morphisms, it follows that G ◦F is an
operadic left Kan extension of G ◦ F0. Hence Mor(G) preserves cocartesian morphisms.

In the following, we will identify Mor(−) with its composite with the Straithening-Unstraightening equivalence.
More precisely, we consider

Mor(−) : CatG → Seg(Cat)

as a functor to the ∞-category of Segal objects in Cat.

Proposition C.6. The functor Mor(−) preserves products. In particular, it induces a functor

Mor(−)⊗ : CatG,⊗ → CAlg(Seg(Cat)) ≃ Seg(Cat⊗
∞)

to the ∞-category of category objects in Cat⊗
∞

Proof. To see that Mor(−) preserves products, it suffices by Lemma C.3 to note that for any ∞-operad O⊗

the functor AlgO⊗(−) preserves products and that products are computed pointwise in Seg(Cat).

In particular, we can consider the composition

Mor(−) : CatG Seg(Cat) Segec(Cat) Cat(∞,2)
Mor(−) I L

with the product preserving functors I : Seg(Cat)→ Segec(Cat) and L : Segec(Cat)→ Cat(∞,2) that associates
to any Segal object in Cat an essentially constant Segal object and to any essentially constant Segal object its
completion.
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Definition C.2. Let C⊗ ∈ CAlg(CatG) be a ⊗-GR-cocomplete symmetric monoidal ∞-category. We call the
symmetric monoidal (∞, 2)-category 𝕄or(C)⊗ obtained by applying the symmetric monoidal functor 𝕄or(−)
to C⊗ the Morita (∞, 2)-category of C.

Moreover, the next result follows from the functoriality of the construction of the Morita category:

Corollary C.7. Let F : C⊗ → D⊗ be a morphism in CAlg(CatG). Then F induces a symmetric monoidal
(∞, 2)-functor 𝕄or(F ) : 𝕄or(C)⊗ → 𝕄or(D)⊗.

To get a better understanding of this (∞, 2)-category, let us analyze the morphism ∞-categories.

Proposition C.8. Let C⊗ be a ⊗-GR-cocomplete symmetric monoidal∞-category. There exists an equivalence
of ∞-categories

𝕄or(C)(A,B) ≃ BModA,B(C).

Under this equivalence, the composition gets identified with

⊗B : BModA,B(C)× BModB,C(C)→ BModA,C(C)

the relative tensor product functor [Lur17, Sect.4.4.2].

Proof. It follows from [Lur09b, Thm.1.2.13] that for every essentially constant Segal object D• : ∆op → 𝔻
the unit morphism D• → L(D)• of the adjunction

L : Segec(Cat) ⇄ Cat(∞,2) : ι

is a fully faithful and essentially surjective morphism of double categories [Lur09b, 1.2.12]. Hence, it suffices
to calculate the mapping ∞-categories and composition functors for I(Mor(C))•. The mapping ∞-categories
are defined as the pullback of ∞-categories

I(Mor(C))(A,B) I(Mor(C))[1]

∗ AlgTens⊗
[0]

(C)≃ × AlgTens⊗
[0]

(C)≃(A;B)

By definition of the functor I this diagram sits in a larger rectangle

I(Mor(C))(A,B) I(Mor(C))[1] AlgTens⊗
[1]

(C)

∗ AlgTens⊗
[0]

(C)≃ × AlgTens⊗
[0]

(C)≃ AlgTens⊗
[0]

(C)× AlgTens⊗
[0]

(C)(A,B)

where all sub-squares are pullback diagrams. It follows that I(Mor(C)(A,B)) ≃ Mor(C)(A,B) for all
A,B ∈ C0. Using the equivalences AlgTens⊗

[1]
(C) ≃ BMod(C) and AlgTens⊗

[0]
(C) ≃ Alg(C) we can obtain an

equivalence of the pullback with 𝕄or(C)(A,B) ≃ BModA,B(C).
Similarly, the composition functor for the double ∞-category Mor(C) is given by the functor

AlgTens⊗
[1]

(C)×Alg
Tens⊗

[0]
(C) AlgTens⊗

[1]
(C) ≃ AlgTens⊗

[2]
(C) α1,!−−→ AlgTens⊗

[1]
(C).
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After passing to fibers over A,B,C, this functor becomes identified under the equivalence of mapping
∞-categories I(Mor(C)(A,B)) ≃ 𝕄or(C)(A,B) with the relative tensor produce functor [Lur17, Sect. 4.4.2]

−⊗B − : BModA,B(C)×Alg(C) BModB,C(C)→ BModA,C(C).

This proves the claimed description of the composition functor.

After we have now finished the construction of the Morita (∞, 2)-category, let us now explicitly determine
the fully dualizable objects. To formulate the definition of a fully dualizable object, we first need to recall the
definitions of dual objects and adjoint morphisms.

Definition C.3. [Lur17, 4.6.1.1] Let C⊗ ∈ Alg(Cat) be a monoidal ∞-category. An object C ∈ C is called
right dualizable if there exists an object C∨ ∈ C and a pair of morphisms

c : 1C → C ⊗ C∨ e : C∨ ⊗ C → 1C

such that the compositions

C
c⊗id−−−→ C ⊗ C∨ ⊗ C id ⊗e−−−→ C

C∨ id ⊗c−−−→ C∨ ⊗ C ⊗ C∨ e⊗id−−−→ C

are homotopic to the identity. We then call C∨ the right dual of C, and C the left dual of C∨. The object
C∨ is called left dualizable.

Remark C.1. Note that in case that C⊗ is symmetric monoidal, an object C ∈ C has a right dual C∨ if and
only if it has a left dual ∨C and that there exists a canonical equivalence between the left and the right dual.
Therefore, we will in the following abuse notation and call in case that C⊗ is symmetric monoidal the right
(respectively left) dual of an object simply the dual.

Definition C.4. Let 𝔻 be an (∞, 2)-category. A 1-morphism f : C → D in 𝔻 admits a left adjoint if there
exists a 1-morphism fL : D → C, and a 2-morphism u : idD → f ◦ fL that induces for every object E ∈ ℂ
and every pair of 1-morphisms g : E → D and h : E → C an equivalence

Map𝔻(E,C)(fL ◦ g, h)→ Map𝔻(E,D)(f ◦ f l ◦ g, f ◦ h)→ Map𝔻(E,D)(g, f ◦ h)

of mapping ∞-categories.

We can now state the definition of fully dualizability in an (∞, 2)-category:

Definition C.5. Let 𝔻⊗ be a symmetric monoidal (∞, 2)-category. An object C ∈ 𝔻 is called fully dualizable

(1) if C admits a dual C∨,

(2) the evaluation morphism evC : C∨ ⊗ C → 1𝔻 admits both adjoints.

Remark C.2. It follows from [Lur08, Prop.4.2.3] that this definition coincides with the usual definition of a
fully dualizable object as given in [Lur08, Def.2.3.21].

Let us now unpack this definition for the example of the symmetric monoidal (∞, 2)-category 𝕄or(C)⊗. To
classify the dualizable objects, we use the following alternative characterization:

Proposition C.9. [Lur17, Lem.4.6.1.6] Let C⊗ ∈ Alg(Cat) be a monoidal ∞-category. The following are
equivalent:
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(1) A ∈ C admits a right dual A∨.

(2) There exists a map e : A∨ ⊗ A → 1C, s.t. for every objects B,C ∈ C the map e induces a homotopy
equivalence

MapC(B,C ⊗A∨) −→ MapC(D,C ⊗A∨ ⊗A) −→ MapC(D ⊗A,C). (45)

Notation C.1. Let D⊗ ∈ CAlg(Cat) be a symmetric monoidal ∞-category and A ∈ Alg(D) be an algebra
object in D. The ∞-category Alg(D) itself inherits a monoidal structure from D. We denote the monoidal
product of the algebras A and A⊗- op by Ae and call it the enveloping algebra of A.

Proposition C.10. Let C⊗ ∈ CAlg(CatG) be a ⊗-GR-cocomplete symmetric monoidal ∞-category. The
evaluation bimodule A ∈ BModA⊗A⊗- op,1C

(C) considered as a 1-morphism

A⊗A⊗- op A−→ 1C in 𝕄or(C)

exhibits A⊗- op as a dual of A in 𝕄or(C)⊗.

Proof. It follows from [Lur17, Prop.4.6.3.11] that the 1-morphism A⊗A⊗- op Ae

−−→ 1C induces an equivalence
of ∞-categories

BModB,A⊗- op⊗C(C)→ BModB⊗A,A⊗A⊗- op⊗C(C)→ BModB⊗A,C(C)

that is given on objects as
N → (A⊗N)⊗A⊗A⊗- op⊗C (Ae ⊗ C).

The induced equivalence on underlying spaces is the map from Equation (45) and hence the claim follows
from Proposition C.9.

Next, let us study adjoints in the (∞, 2)-category 𝕄or(C):

Definition C.6. [Lur17, Def.4.6.2.3] Let C⊗ be a GR-⊗-cocomplete symmetric monoidal ∞-category, and
let A,B ∈ Alg(C) be algebra objects in C. A bimodule M ∈ BModA,B(C) is called left dualizable if there
exists an object N ∈ BModB,A(C) and morphisms

c : B → N ⊗AM in BModB,B(C) e : M ⊗B N → A in BModA,A(C)

such that the composites

M ≃M ⊗B B
id ⊗c−−−→M ⊗B N ⊗AM

e⊗id−−−→M

N ≃ B ⊗B N
c⊗id−−−→ N ⊗AM ⊗B N

id ⊗e−−−→ N

are homotopic to the identity. In that case, we call N the left dual of M .

Proposition C.11. Let C ∈ CAlg(CatG) be a ⊗-GR-cocomplete symmetric monoidal ∞-category. Let
A,B ∈ Alg(C) be algebra objects of C. Further, let X ∈ BModA,B(C), Y ∈ BModB,A(C) be bimodule objects
and let u : X ⊗B Y → A be a morphism in BModA,A(C). Then the following are equivalent:

(1) u exhibits Y as a left dual of X in the sense of Definition C.6.

(2) u exhibits Y as a left adjoint of X internal to 𝕄or(C).

Proof. This is a reformulation of [Lur17, Prop.4.6.2.1].
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Because of their importance for the study of fully dualizable objects in 𝕄or(C)⊗ the adjoints of the evaluation
bimodules Ae deserve a special name.

Definition C.7. [Lur17, Def.4.6.4.2] An algebra object A ∈ Alg(C) is called proper if it is dualizable as an
object of C.

Definition C.8. An algebra A ∈ Alg(C) is called smooth if the evaluation bimodule A ∈ BModAe,1C
(C) is

left-dualizable.

We can now use all these results to classify the fully dualizable objects as follows:

Theorem C.12 ([Lur08]). Let C⊗ ∈ CAlg(CatG) be a ⊗-GR-cocomplete symmetric monoidal ∞-category.
Then an algebra object A ∈ Alg(C) is fully dualizable in 𝕄or(C)⊗ if and only if it is smooth and proper.
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