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Abstract

Over the past decades, there has been a notable development in research of robot grasp-
ing and manipulation, seeking to leverage the growing accessibility of custom-built
robot arms and grippers to elevate robot autonomy. However, it remains challenging
for the new robot to operate in our everyday environments due to the variability and un-
certainty of the real world. With the emergence of embodied artificial intelligence, the
capability of robots to effectively perceive and act in their environments through their
physical structures is becoming more important. Additionally, numerous approaches
about robot learning are proposed to equip robots with the ability to learn from and adapt
to new and unforeseen circumstances, as it is impractical to pre-program them with a
detailed model of their environment, the objects within it, or the complex skills needed
for manipulation. This dissertation explores the interplay between perception and action
in robotics. It examines how robots’ passive perception aids in gaining a contextual un-
derstanding of their environment and how interactive perception, integrated with action,
enhances decision-making. Akin to human logic in manipulation, we further investigate
the imagination potential of robotic manipulation outcomes after processing all percep-
tual information, hopefully boosting the efficiency of manipulation.

Especially for passive perception from visual understanding, several interesting ideas
to improve grasping performance and enhance robot manipulability, i.e., point cloud
completion and 3D affordance, are introduced into the grasp pose detection algorithm.
Moreover, a point cloud completion dataset based on the YCB Videos and a context-
aware grasping dataset is constructed, separately. In parallel, we propose a transformer-
based sparse shape completion framework and an affordance-based grasping detection
framework to facilitate robots’ interaction with objects or context-aware parts.

As the interactive perception, we explore more modality information from the hand-
object and object-object interactions. To address the recognition challenges in dynamic
hand-object actions, we employ event camera to gather data for an event-based hand-
object dataset, named EHoA, and we have developed an attention-based spiking neural
network that delivers benchmark results. The inference model is also effectively vali-
dated from real experiments of robot hand-object interaction. Furthermore, we study the
strategy of multimodal learning in the challenged task setting of multiple peg-in-hole
assembly, incorporating modalities like vision, proprioception, force, and torque. These
are learned as compact representations within a sim2real transfer learning framework,
with domain randomization and impedance control integrated into the policy training to
better bridge the simulation-reality gap. Our real-world tests validate the effectiveness of
our methods, demonstrating successful peg-in-hole assembly and adaptability to various
object shapes.

Furthermore, this thesis explores the role of language in human-robot collabora-
tion. We explore the robots’ imagination ability on the tabletop rearrangement scenario
after receiving perceptual information and human language instructions. A compre-
hensive 2D tabletop rearrangement dataset is first constructed, where a physical sim-
ulator is used to capture inter-object relationships and semantic configurations. Con-
currently, we present DreamArrangement, a novel language-conditioned object rear-
rangement scheme, consisting of two primary processes: employing a transformer-based
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multi-modal denoising diffusion model to envisage the desired arrangement of objects,
and leveraging a vision-language foundational model to derive actionable policies from
text, alongside initial and target visual information. To reduce the average motion dis-
tance of objects, an efficiency-oriented rearrangement approach is also implemented.
Our methods have been proven effective in real-world robotic trials, showing profi-
ciency in handling complex, language-conditioned, and long-horizon tasks using a sin-
gle model.

Overall, this dissertation proposes various robot learning methodologies to tackle
challenges in robot perception and manipulation. Our findings cover different abstrac-
tions of the perception-action loop, from the low-level robot controller to the high-level
contextual understanding and goal-oriented imagination. Although achieving fully gen-
eralizable embodied intelligence remains a distant goal, we hope our efforts represent
significant steps forward in this challenging field.
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Zusammenfassung

In den letzten Jahrzehnten gab es eine bemerkenswerte Entwicklung in der Forschung

im Bereich des Robotergreifens und der Manipulation. Diese Forschung zielt darauf ab,

die zunehmende Verfiigbarkeit von maflgeschneiderten Roboterarmen und Greifern zu

nutzen, um die Autonomie von Robotern auf ein bisher unerreichtes Niveau zu heben.

Dennoch bleibt es eine Herausforderung, dass neue Roboter in unseren alltiglichen

Umgebungen aufgrund der Variabilitdt und Unsicherheit der realen Welt operieren kon-

nen. Mit dem Aufkommen der Embodied Intelligence ist die Fahigkeit von Robotern,

thre Umgebungen durch ihre physischen Strukturen effektiv wahrzunehmen und in ih-

nen zu agieren, viel wichtiger. Dariiber hinaus werden zahlreiche Ansitze zum Robot

Learning vorgeschlagen, um Robotern die Fiahigkeit zu vermitteln, aus neuen und un-

vorhergesehenen Umstidnden zu lernen und sich daran anzupassen, da es unpraktisch ist,

sie im Voraus mit einem detaillierten Modell ihrer Umgebung, der darin befindlichen

Objekte oder der komplexen Fihigkeiten, die fiir die Manipulation erforderlich sind,

zu programmieren. Diese Dissertation erforscht das Zusammenspiel von Wahrnehmung

und Aktion in der Robotik. Sie untersucht, wie die passive Wahrnehmung von Robotern

hilft, ein kontextuelles Verstindnis ihrer Umgebung zu gewinnen und wie interaktive

Wahrnehmung, integriert mit Aktion, die Entscheidungsfindung verbessert. Ahnlich der

menschlichen Logik in der Manipulation untersuchen wir weiterhin das Imaginationspot-
enzial robotischer Manipulationsergebnisse nach der Verarbeitung aller Wahrnehmungen,
in der Hoffnung, die Effizienz der Manipulation zu steigern.

Insbesondere werden aus der visuellen Wahrnehmung mehrere interessante Ideen
zur Verbesserung der Greifleistung und zur Erh6hung der Manipulierbarkeit von Robote-
rn, wie z.B. die Vervollstindigung von Punktwolken und 3D-Affordanzen, in den Al-
gorithmus zur Erkennung von Greifposen eingefiihrt. Dariiber hinaus wird ein Daten-
satz zur Vervollstindigung von Punktwolken basierend auf den YCB-Videos und ein
kontextbewusster Greifdatensatz separat erstellt. Parallel dazu prisentieren wir einen
transformer-basierten Rahmen fiir die Sparse Shape Completion und einen affordanzbasi-
erten Rahmen fiir die Greiferkennung, um die Interaktion von Robotern mit Objekten
oder kontextbewussten Teilen zu erleichtern.

Als interaktive Wahrnehmung erforschen wir mehr Modalitdtsinformationen aus den
Interaktionen zwischen Hand und Objekt sowie zwischen Objekten. Um die Erken-
nungsprobleme bei dynamischen Hand-Objekt-Aktionen zu l6sen, verwenden wir die
Event-Vision, um Daten fiir einen ereignisbasierten Hand-Objekt-Datensatz namens EH-
0A zu sammeln, und wir haben ein Attention-Based Spiking Neural Network entwickelt,
das Benchmark-Ergebnisse liefert. Das Inferenzmodell wird auch effektiv aus realen
Experimenten der Interaktion zwischen Roboterhand und Objekt validiert. Wir unter-
suchen auch die Strategie des multimodalen Lernens in der herausfordernden Aufgabe-
numgebung der mehrfachen Peg-in-Hole-Montage, wobei Modalititen wie Vision, Pro-
priozeption, Kraft und Drehmoment eingebunden werden. Diese werden als kompakte
Darstellungen innerhalb eines Sim2Real Transfer Learning Frameworks gelernt, wobei
Randomisierung und Impedanzsteuerung in den Policy-Trainingsprozess integriert sind,
um die Liicke zwischen Simulation und Realitét besser zu iiberbriicken. Unsere Tests in
der realen Welt bestétigen die Wirksamkeit unserer Methoden und zeigen erfolgreiche
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Abstract

mehrfache Peg-in-Hole-Montagen und Anpassungsfihigkeit an verschiedene Objektfor-
men.

Dartiber hinaus erforscht diese Dissertation die Rolle der Sprache in der Zusamme-
narbeit zwischen Mensch und Roboter. Wir erforschen die Imaginationsfahigkeit der
Roboter im Szenario der Objektneuanordnung nach dem Erhalt von Wahrnehmungsin-
formationen und menschlichen Sprachanweisungen. Wir erstellen zunichst einen um-
fassenden 2D-Datensatz fiir die Objektneuanordnung, bei dem ein physikalischer Simu-
lator verwendet wird, um die Beziehungen zwischen den Objekten und die semantischen
Konfigurationen zu erfassen. Parallel dazu prédsentieren wir DreamArrangement, ein
neuartiges sprachgesteuertes Objektneuanordnungsschema, das aus zwei Hauptprozess-
en besteht: dem Einsatz eines transformer-basierten multimodalen Denoising-Diffusion-
smodells, um die gewiinschte Anordnung der Objekte zu erahnen, und der Nutzung eines
Vision-Language Foundational Models, um aus Texten neben den anfidnglichen und ziel-
spezifischen visuellen Informationen handlungsorientierte Policies abzuleiten. Wir im-
plementieren auch einen effizienzorientierten Umordnungsansatz, um die durchschnit-
tliche Bewegungsdistanz der Objekte zu reduzieren. Unsere Methoden haben sich in
realen Roboterversuchen als wirksam erwiesen und zeigen Erfolge bei der Bewiltigung
komplexer, sprachgesteuerter und langfristiger Aufgaben mit einem einzigen Modell.

Insgesamt schlidgt diese Dissertation verschiedene Robot Learning Methoden vor,
um Herausforderungen in der Robotikwahrnehmung und -manipulation zu bewiltigen.
Unsere Ergebnisse decken verschiedene Abstraktionen der Wahrnehmungs-Aktions-Sch
l-eife ab, von der niedrigen Ebene der Robotersteuerung bis zum hohen Niveau des kon-
textuellen Verstindnisses und der zielorientierten Imagination. Obwohl das Erreichen
einer vollstindig generalisierbaren verkorperten Intelligenz noch ein fernes Ziel ist, hof-
fen wir, dass unsere Bemiihungen bedeutende Fortschritte in diesem anspruchsvollen
Bereich darstellen.
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Chapter 1

Introduction

1.1 Motivation

Throughout history, humans have continuously developed and refined tools and ma-
chines, from simple hoes to complex looms, to minimize physical labor and streamline
manual tasks. This tradition of innovation has propelled us into an era where afford-
able, lightweight, and flexible robots are built and adopted to increase productivity in
our homes, offices and industry. As robots increasingly become part of everyday life,
the need for them to operate autonomously and effectively in complex, unstructured en-
vironments is becoming paramount. Traditional robotic systems, which rely heavily on
pre-programmed behaviors and responses, are limited in their ability to adapt to new
or changing conditions. Recently, a concept of embodied intelligence is proposed where
cognitive intelligence is not just brain-based but arises from the dynamic interactions be-
tween an agent’s physical body and its environment. This idea is deeply inspired by the
learning processes observed in human children, reflecting the integration of perception,
cognition, and action, allowing a robot to adapt its behaviors based on sensory feedback
and its physical capabilities. Just as a child learns to recognize objects by watching,
touching, and manipulating them, a robot equipped with embodied intelligence uses its
sensors and actuators in a coordinated manner to gain a deeper understanding of its
operational context.

As arobotic researcher, how can we endow the physical robot with embodied intelli-
gence? The famous psychology professor Lin Smith proposes six lessons on the embod-
ied agent after observing babies’ learning experiences [1]. Here, we summarize it as four
points: (1) Be Multimodal. Just as humans use vision, sound, touch, and other senses
to navigate and understand their environment, a multimodal approach in robotics allows
machines to gather a broader range of data. This diversity in sensory information helps
robots to create a more complete and accurate model of their surroundings, enhancing
their ability to make informed decisions. Moreover, multiple sensory modalities provide
redundancy, which is critical for reliability and robustness in dynamic or unpredictable
environments. For instance, if visual information is compromised due to poor lighting
conditions, a robot might rely on tactile feedback or auditory cues to continue func-
tioning effectively. (2) Be Incremental. Children will progress to finish more complex



Chapter 1. Introduction

tasks through incrementally mastering simple skills. For instance, a child learning to
walk adjusts their balance and gait in response to the physical characteristics of the floor
or the presence of obstacles. As the robots, grasping is the fundamental of all complex
manipulation tasks. By implementing grasping and motion planning algorithms that al-
low robots to learn from sensor perception, robots can master different action skills to
meet different requirements from human beings. (3) Explore in a physical world. In
the early stage, babies usually move and act in highly variable and playful ways that are
seemingly random. Physiologists think it is important for humans to find new problems
and solutions by exploring an open-ended world intensively. For instance, a robot learns
about object properties (like weight and texture) more effectively by manipulating the
objects rather than by passive observation. Moreover, exploring the physical world also
provides immediate and impactful feedback. This feedback is crucial for learning and
adjusting behaviors in embodied agents. For example, a robot navigating a cluttered
environment learns to modify its path-planning strategies based on obstacles encoun-
tered. (4) Use language and be social. Human babies acquire knowledge and skills
through social interactions and communication with others. They learn language, social
cues, and complex behaviors by observing and interacting with their parents and peers.
For robots equipped with embodied intelligence, engaging in similar social interactions
and language use enables them to learn in ways that are analogous to human learning,
promoting more natural and intuitive behaviors. Furthermore, many tasks that robots
might be expected to perform in human environments require understanding and acting
upon complex instructions that involve multiple steps or conditions. Language compre-
hension and social interaction skills can greatly enhance a robot’s ability to understand
and execute such instructions accurately and efficiently. Especially, a robot with strong
contextual understanding skills can function and generalize across a wider range of envi-
ronments and tasks—from households and educational settings to more complex social
situations.

These characteristics mentioned above of embodied intelligence are still hard for a
physical robot to achieve simultaneously, and each characteristic can be an individual
research topic in the robotic community. Figure 1.1 illustrates 36 kitchen actions in the
English vocabulary. As human beings, a twelve-year-old child can do all these kitchen
tasks, while today no robot can do that. To address these challenges and advance towards
more capable embodied agents, several concrete strategies and research directions can
be pursued from the perspective of robot learning:

* Context-Aware Perception: Robots must be able to perceive and understand their
environment in a context-aware manner, recognizing not only objects but also their
functionalities and task requirements. This involves sophisticated vision systems
and the integration of deeper semantic understanding.

* Multimodal Learning: Integrating multiple types of sensory data (visual, audi-
tory, tactile, etc.) can provide robots with a richer understanding of their envi-
ronment. This approach mimics human sensory processing and can significantly
improve the robot’s ability to perform complex tasks that require the integration
of different sensory inputs.
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Figure 1.1: 36 kitchen verbs in the English vocabulary. Retrieved from https://www.
pinterest.com/pin/611082243195984573/. Reprinted image: ©2024, Henrique
Maldito.

* Incremental and Lifelong Learning: Robots need algorithms that enable them to
learn incrementally and adaptively, much like a human child does. This includes
developing capabilities for lifelong learning, where robots can continuously ac-
quire new skills and refine existing ones over time without forgetting previously
learned information.

Social Interaction and Communication: Enhancing robots’ abilities to under-
stand and engage in human communication and social cues will improve their
functionality in human environments. This includes understanding verbal instruc-
tions, non-verbal cues, and being able to execute tasks cooperatively with humans.

Task Planning and Execution: Robots should be capable of complex planning
and decision-making that involves sequencing tasks, timing, and adapting actions
based on dynamic environmental changes. Cognitive architectures that support
planning and reasoning will be crucial.

These proposed robot learning strategies can hopefully allow robots to adapt to the com-
plexities of real-world environments. Unlike traditional programming, which requires
explicit instructions for every possible scenario, robot learning enables robots to adjust
their behaviors based on the data they gather through interactions. This is particularly
important for tasks in unstructured environments like homes, offices, or outdoors, where
predictability is low, and situations are highly variable. Moreover, it can also help robots
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(c) Transfer multi-modal learning (d) Embrace imagination learning

Figure 1.2: Robotic task examples solved by four kinds of robot learning strategies in the thesis.
(a) The URS robot is grasping the target bottle cleanser using improved geometric shape features
from shape completion. (b) Based on the context-ware learning, the KUKA robot is grasping
the handle part of a knife to execute the cut action potentially. (c¢) Using multiple modalities
and an impedance controller trained from simulation, the KUKA robot is putting an unseen
triangle pegs object into the holes object on the table. (d) After endowing the imaginative and
planning ability from diffusion algorithms and Large Language Models (LLMs), the KUKA
robot rearranges different small boxes into a big box container instructed by human languages.

to generalize learned skills across different tasks and environments. By extracting pat-
terns and principles from past experiences, robots can apply this knowledge to new
situations.

1.2 Aim of this Thesis

By using different robot learning algorithms, this thesis aims to address the following
research questions.
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Research Questions

* For a service robot, how to improve 6-DoF grasp performance to satisfy human
requirements in our daily lives?

* How to leverage multiple modality information when the service robot interacts
with objects?

* How to endow the imaginative ability to the service robot when collaborating with
humans?

In summary, we hope to endow a physical robot with the ability to take human lan-
guage and multisensory perception as input, then interact with the physical world as
feedback, and finally achieve everyday tasks such as context-aware stable grasping and
more complicated long-horizon manipulation tasks such as peg-in-hole assembly and
tabletop rearrangement. As shown in Figure 1.2, a series of challenging robotic task
examples are achieved using different robot learning strategies from raw perception to
intuitive imagination. Specifically, the proposed research questions that this thesis tries
to solve are:

* Currently, robotic grasping methods based on sparse partial point clouds often
generate wrong grasping candidates due to the lack of geometric information on
the object. Moreover, traditional voxel-based shape completion solutions in grasp-
ing mainly concentrate on recovering a single object, while they hardly consider
the occlusion from other objects. To improve the grasping performance, a point
cloud completion dataset in the robotic field and a corresponding advanced sparse
point cloud completion method should be proposed to improve the perception
ability of a robot.

* Recently, context-aware learning methods in robotic grasping are mostly based
on pixel-level surfaces. These pixel-level approaches heavily rely on the accuracy
of a 2D affordance mask, and the generated grasp candidates are restricted to
a small workspace. To mitigate the limitation, it’s necessary to construct a novel
affordance-based grasp dataset and propose a 6-DoF task-oriented grasp detection
framework based on the 3D point cloud.

* Now, there is little work exploring context-aware hand-object interaction from
a dynamic perspective which actually exists in our daily lives. To fill the blank
research field, a hand-object action dataset based on the dynamic interactions
should be collected, which regular Complementary Metal-oxide—semiconductor
(CMOS) cameras cannot handle. A supervised learning method should also be
proposed to achieve such context-aware action recognition.

» Existing Reinforcement Learning (RL) methods are difficult to apply to multiple
peg-in-hole issues due to more complicated geometric and physical constraints.
In addition, previously limited solutions for multiple peg-in-hole assembly are
hard to transfer into real industrial scenarios flexibly. To effectively address these

5



Chapter 1. Introduction

issues, a novel and more challenging multiple peg-in-hole assembly setup should
be designed. An incremental learning scheme should be proposed to solve the
challenged task, achieving a generalization across different object shapes in real-
world scenarios.

* Prior solutions for robotic rearrangement have overlooked the significance of in-
tegrating human preferences and optimizing for rearrangement efficiency. Ad-
ditionally, traditional prompt-based approaches struggle with complex, seman-
tically meaningful rearrangement tasks without pre-defined target states for ob-
jects. Thus, it’s necessary to construct an object rearrangement dataset, cover-
ing different inter-object relationships and semantic configurations. Moreover, a
novel language-conditioned rearrangement scheme should be proposed to gener-
ate robot policies after receiving observation and human instructions.

1.3 Contribution of this Thesis

The main contributions of this thesis can be described as follows:

* Improve Robotic Grasping Performance using Sparse Point Cloud Comple-
tion: We construct a large-scale non-synthetic partial point cloud dataset based
on YCB Video dataset [2]. As the dataset is captured by a real RGB-D cam-
era, the natural noise will facilitate the generalization of our work, especially in
real robot environments. Moreover, we propose a novel shape completion model
(TransSC) [3]. This model has a transformer-based encoder to explore more point-
wise features and a manifold-based decoder to exploit more object details using a
segmented partial point cloud as input. Quantitative experiments verify the effec-
tiveness of the proposed shape completion network and demonstrate that our net-
work outperforms existing methods. Besides, TransSC is integrated into a grasp
evaluation network [4] to generate a set of grasp candidates. The simulation ex-
periment shows that TransSC improves the grasping generation result compared
to the existing shape completion baselines. Furthermore, our robotic experiment
shows that with TransSC, the robot is more successful in grasping objects of un-
known numbers randomly placed on a support surface.

* Learn 6-DoF Task-oriented Grasping Detection via Implicit Estimation and
Visual Affordance: We first construct a novel affordance-based grasp dataset and
propose a 6-DoF task-oriented grasp detection framework [5], which takes the
observed object point cloud as input and predicts diverse 6-DoF grasp poses for
different tasks. Specifically, our implicit estimation network and visual affordance
network in this framework could directly predict coarse grasp candidates, and cor-
responding 3D affordance heatmap for each potential task, respectively. Further-
more, the grasping scores from coarse grasps are combined with heatmap values
to generate more accurate and finer candidates. Our proposed framework shows
significant improvements compared to baselines for existing and novel objects on
our simulation dataset. Although our framework is trained based on the simulated
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objects and environment, the final generated grasp candidates can be accurately
and stably executed in real robot experiments when the object is randomly placed
on a support surface.

Propose a Benchmark for Task-oriented Hand-Object Action Recognition
using Event Vision: We present a richly annotated task-oriented hand-object
action dataset consisting of asynchronous event streams, captured by the event-
based camera system on different application scenarios [6]. In addition, we de-
sign an Attention-based Residual Spiking Neural Network (ARSNN) by learning
temporal-wise and spatial-wise attention simultaneously and introducing a partic-
ular residual connection structure to achieve dynamic hand-object action recog-
nition. Extensive experiments are validated by comparing with existing baseline
methods to form a vision benchmark. We also show that the learned recognition
model can be transferred to classify real robot hand-object actions.

Transfer Robotic Multiple Peg-in-hole Assembly Skills from Simulation and
Multi-sensory Signals: We design a novel and more challenging multiple peg-
in-hole assembly setup by using the advantage of transfer learning. We propose
a detailed solution scheme to solve this task [7]. Specifically, multiple modalities
including vision, proprioception, and force/torque are learned as compact repre-
sentations to account for the complexity and uncertainties and improve the sample
efficiency. Furthermore, RL is used in the simulation to train the policy, and the
learned policy is transferred to the real world without extra exploration. Domain
randomization and impedance control are embedded into the policy to narrow the
gap between simulation and reality. Evaluation results demonstrate the effective-
ness of the proposed solution, showcasing successful multiple peg-in-hole assem-
bly and generalization across different object shapes in real-world scenarios.

Learn Language-conditioned Robotic Rearrangement of Objects via Denois-
ing Diffusion and VLM Planner: We first introduce a comprehensive 2D table-
top rearrangement dataset, utilizing a physical simulator to capture inter-object
relationships and semantic configurations. Then we present DreamArrangement,
a novel language-conditioned object rearrangement scheme, consisting of two pri-
mary processes: employing a transformer-based multi-modal denoising diffusion
model to envisage the desired arrangement of objects, and leveraging a vision-
language foundational model to derive actionable policies from text, alongside
initial and target visual information. In particular, we introduce an efficiency-
oriented learning strategy to minimize the average motion distance of objects.
Given few-shot instruction examples, the learned policy from our synthetic dataset
can be transferred to the real world without extra human intervention. Extensive
simulations validate DreamArrangement’s superior rearrangement quality and ef-
ficiency. Moreover, real-world robotic experiments confirm that our method can
adeptly execute a range of challenging, language-conditioned, and long-horizon
tasks with a singular model.
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Figure 1.3: Overview of this thesis. It represents the research direction from single-modal learn-
ing to multi-modal learning. In single-modal learning diagram, it consists of three chapters that
describe the main contributions of point cloud-based and event-based robotic tasks. In multi-
modal learning diagram, it includes extra two chapters that describe the main contributions of
robotic tasks combining proprioception, force/torque, image and language. Chapter 3 [3], Chap-
ter 4 [5], Chapter 5 [6], Chapter 6 [7], and Chapter 7 [8] are organized from five separate papers
of the author.
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1.4 Structure of this Thesis

Inspired by the lessons about embodied intelligence, our thesis mainly conducts four
kinds of research topics of robot learning, shown in Figure 1.2. It covers from single
modality of vision to multiple modalities such as proprioception, force/torque and lan-
guage. The structure of this thesis is shown in Figure 1.3. The rest of this section will
introduce and give an abstract of each chapter.

Related Work

* Chapter 2: Related Work. This chapter describes some basic concepts and re-
cent works related to our four kinds of robot learning strategies. To improve the
perception learning on robotic grasping, we introduce basic work about robotic
grasping based on the point cloud, dense point cloud completion and traditional
shape completion methods in robotic grasping. To achieve context-aware learning
in robotic tasks, we introduce the concept of affordance, traditional task-oriented
grasping methods and hand-object action recognition methods. To transfer multi-
modal learning, we introduce the robotic manipulation work about sim2real, rein-
forcement learning and similar work with our setting. Finally, we introduce recent
works about foundation models based on vision and language to embrace imagi-
nation learning in our tabletop rearrangement task.

Single Modality

* Chapter 3: Shape Completion Grasping. This chapter describes a novel transformer-
based shape completion framework. Input by a partial point cloud in an arbitrary
camera view, the reconstructed object shape can help us improve the robotic grasp-
ing performance significantly, especially in the occluded conditions. This chapter
is organized from the paper [3].

* Chapter 4: Task-oriented Grasping Generation. This chapter describes a novel 6-
DOF context-aware grasping generation framework. A course-fine pose genera-
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tion scheme is achieved using an implicit estimation network and a 3D affordance
prediction network. This chapter is organized from the paper [5].

* Chapter 5: Task-oriented Action Recognition. This chapter describes a novel bench-
mark about hand-object action recognition captured by the event camera. An
attention-based spiking neural network is also proposed to achieve state-of-the-
art (SOTA) recognition accuracy. This chapter is organized from the paper [6].

Multiple Modality

* Chapter 6: Multiple Peg-in-hole Assembly. This chapter describes a challenging
multiple peg-in-hole assembly setup. We propose a sim2real transfer learning ar-
chitecture where the trained policy in the simulation can be transferred into real
robot experiments directly. This chapter is organized from the paper [7].

* Chapter 7: Language-based Robotic Rearrangement. This chapter describes a chal-
lenged tabletop rearrangement task considering human preference and motion ef-
ficiency. Based on the setup, we design a novel language-conditioned object re-
arrangement scheme using a diffusion model and VLM planner. This chapter is
organized from the paper [8].

Conclusion

* Chapter 8: Conclusion and Future Work. This chapter summarizes all research
work and presents the findings and outcomes of my doctoral study. Ultimately, it
also suggests potential future directions to address existing limitations and expand
upon the current scope of my work.
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Chapter 2

Related Work

When embodied agents interact with and manipulate their surroundings, it’s crucial to
equip them with the capability to initially comprehend the context of the environment.
Similar to the function of all kinds of feeling organs from human beings, robotic per-
ception is the cornerstone for robots to learn a series of complicated manipulation skills.
Robotic perception can be divided into two kinds of types: passive perception and inter-
active perception. Passive perception involves observing and understanding the environ-
ment without any physical contact, such as human vision, smelling and listening. Take
the vision sensor as an example, the robot can use camera images to recognize and lo-
calize the target objects intended to manipulate in a messy scene. Interactive perception,
on the other hand, relies on the robot actively engaging with and altering its surround-
ings to gain a deeper or altered understanding such as haptic and tactile. For instance,
a robot gripper can lift or push an object to estimate its weight. After using passive and
interactive perception, each complicated environment that the robot interacts with can
be regarded as a considerable structure. It consists of a collection of movable objects like
apples, mugs, knives and plates, and stationary objects like walls and tables. By breaking
down the high-dimensional 3D environment into individual objects and extracting their
attributes, the robot can develop a feature representation of them. This approach facili-
tated the object feature and manipulation skill learning, enabling the robot to effectively
apply its knowledge of similar objects across a variety of tasks.

As the object feature learning, it can be represented in a hierarchical structure, en-
compassing levels that range from point-wise, part-wise and object-wise representa-
tions. This hierarchy transitions from finer detail to greater abstraction, reflecting the
inherent geometric structure and components of the object. Geometric attributes capture
the features of points, parts, and objects, while non-geometric attributes often define the
nature or category of these elements. Beyond extracting individual object features, the
robot is also capable of capturing the interactions among objects at various levels within
this hierarchical framework, such as object-object, hand-object and hand-object-hand
interaction. To accomplish a manipulation task effectively, the robot needs to further
develop a policy based on the observation features, which usually involves a series of
observation-action pairs with unknown numbers. For the simplest manipulation type
grasp, the number of observation-action pairs is 1. It means that the gripper action is de-
termined once the target object feature is well extracted and learned. However, for some
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challenged manipulation tasks like peg-in-hole assembly, many researchers will use re-
inforcement learning (RL) to learn a policy controller, where a fixed number of timesteps
or a set of terminal states are defined to address the task. Recently, large foundation
models based on language and vision have become a dominant paradigm in solving
long-horizon robotic manipulation tasks, which indicates the potential that long-horizon
manipulation tasks in our house life can also defined into discrete observation-action
planning pairs in the prompt instructions to accomplish.

For reference, Section 2.1 introduces the drawbacks of robotic grasping of point-
wise object feature learning from the raw partial point cloud, the recent progress of
point cloud completion in the computer vision field and recent works in robot grasping
using shape completion methods. Point-level representations provide the robot with the
most flexible representations for capturing important details of objects and manipula-
tion tasks. Section 2.2 further describes the concept of affordance based on the object’s
part-wise features and introduces state-of-the-art works in the fields of task-oriented
grasping. Corresponding to sets of multiple contiguous points from the lower level of
the hierarchy, part-level representations typically focus on parts associated with certain
types of manipulations. For example, a mug can be seen as having an opening for pour-
ing, a bowl for containing, a handle for grasping, and a bottom for placing. Section
2.3 emphasises the interactions or relations between the hand and the parts of differ-
ent objects, where event vision is used to recognize the types of interactions. It mainly
describes the traditional event-based dataset, the recent spiking neural network algo-
rithms that are used to process event datasets, and some works about hand-object inter-
action recognition in traditional CMOS vision. Furthermore, for the manipulation skill
learning, we first designed a novel but challenged multiple peg-in-hole assembly setup.
Section 2.4 introduces the state-of-the-art work from RL-based robotic manipulation,
sim2real transfer in robotic assembly, control strategies for RL-based manipulation, and
previous robotic multiple peg-in-hole assembly. Finally, we leverage the diffusion mod-
els to endow the robot with an imaginative ability and utilize the vision-language model
to assist the robot in accomplishing language-conditioned long-horizon rearrangement
tasks. As a result, Section 2.5 discusses recent work from language-based manipulation,
large foundation models, diffusion models and tabletop robotic rearrangement.

2.1 Shape Completion for Point Cloud Grasping

2.1.1 Grasping Basics from 2D to 3D

In most earlier works, grasps were represented as 2D points on images of actual scenes.
Researchers used probabilistic models over possible grasping points to infer the grasp
region, as shown in Figure 2.1(a). However, a significant drawback of such point-based
grasps was that it only indicated where to grasp an object, without determining how
wide the gripper should open or the required orientation. With the development of deep
learning, many methods for deep visual grasping have been proposed. To overcome the
drawback of 2D point representation, a new grasping configuration based on the rect-
angular shape is proposed, consisting of a Grasping center, Grasping orientation, Grip-
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Figure 2.1: The evolution of different grasp representations for robotic grasping. (a) 2D points.
(b) 2D rectangular shape [9]. Reprinted image: ©2015, IEEE. (c¢) 3D point clouds [14]. Reprinted
image: ©2017, IEEE.

per width and height (See Figure 2.1(b)). Similar to 2D object recognition, rectangular
representation from images was used to predict the grasp probability successfully [9].
In [10] and [11], a single RGB-D image of the target object was used to generate a 6D-
pose grasp and effective end-effector trajectories by projecting the 2D rectangle to the
3D space. However, their works are not suitable for dealing with sparse 3D object infor-
mation and spatial grasp. Compared with the 2D feature representations from images,
3D voxel or point cloud data could provide robotic grasping with more semantic and
spatial information (See Figure 2.1(c)).

Given a synthetic grasp dataset, Breyer et al. [12] transformed scanning 3D object in-
formation into Truncated Signed Distance Function (TSDF) representations and passed
them into a Volumetric Grasping Network (VGN) to directly output grasp quality, grip-
per orientation and gripper width at each voxel. [13] designed a special grasp proposal
module that defines anchors of grasp centers and related 3D grid corners to predict a set
of 6D grasps from a partial point cloud. Based on the scaled point cloud, Ten et al. [14]
used hand-crafted outline features and a CNN-based method to build a grasp quality
evaluation model and they also proposed a Grasp Pose Detection (GPD) algorithm to
generate grasps using a sampling strategy. Based on the GPD algorithm, Liang et al. [4]
used PointNet [15] to process point cloud for grasping evaluation, achieving to produce
diverse grasp candidates of high quality. However, many generated grasps from GPD
lack understanding of the surface and contours of objects on a physical interaction level,
and it will cause lots of failures on larger and clearly outlined objects [16]. To address
this problem, Mousavian et al. [17] introduced Variational Autoencoder (VAE) to gener-
ate grasp samples from point cloud, where generated successful grasps embody a certain
understanding of the target object. However, due to the lack of complete geometric in-
formation on the object, we found that some grasp candidates are still infeasible and
cause a collision with the object.

2.1.2 Dense Point Cloud Completion

The task of point cloud completion has been attracting more and more attention in the
field of computer vision. Yuan et al. [18] firstly used Multi-Layer Perception (MLP) to
extract the local geometric features of point clouds to accomplish the reconstruction.
Groueix et al. [19] introduced a morphing learning strategy to generate different shapes
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of 3D surfaces, which shows great potential for point cloud and voxel reconstruction. Liu
et al. [20] combined the above work and proposed a morphing and sampling network,
which shows a higher fidelity and quality for the dense point cloud. Furthermore, Xie
et al. [21] proposed a Gridding Residual Network to restore more structural details,
especially for the dense point cloud. To summarise, most existing methods follow the
encoder-decoder to reconstruct the complete point cloud from the learned contribution
of shape prior, as shown in Figure 2.2. However, these methods cannot be applied to
robotic research directly because all trained objects in their datasets are in a fixed pose
and status. It’s also much more challenging to restore the geometric details of the dense
point clouds in real robotic tasks.

2.1.3 Shape Completion for Robotic Grasping

For robotic grasping, the critical challenge is recognizing objects in 3D space and avoid-
ing potential perception uncertainty. When the RGB-D camera captures an object from
a particular viewpoint, the 3D information on the object is incomplete, which means
a lot of semantic and spatial information is missing. The missing complete 3D object
information will lead to the grasp generation process generating wrong grasping poses.

Recently, researchers have proposed to use shape completion to enable robotic grasp-
ing. In [22], the observed object from 2.5D range sensors was firstly converted to oc-
cupancy voxel grid data. Then the voxelized data were input into a CNN and formed a
high-resolution voxel output. Furthermore, the completion result was transformed into
mesh and then loaded into Graspit! [23] to generate a grasp. Lundell et al. [24] used
dropout layers to modify the network, which enabled the prediction of shape samples
at run-time. Meanwhile, Monte Carlo Sampling and probabilistic grasp planning were
used to generate grasp candidates. As traditional analytic grasping methods are com-
putationally expensive, Lundell ef al. [25] combined the shape completion of a voxel
grid and a data-driven Grasping Quality Convolutional Neural Network (GQCNN) [26]
to propose a structure called FC-GQCNN, where synthetic object shapes were obtained
from a top-down physics simulator and grasps were generated from depth images. Tra-
ditional grasp-based shape completion solutions mainly concentrate on completing a
single object from different camera views, while they hardly consider the lack of geo-
metric information caused by occlusion from other objects.
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Figure 2.2: The encoder-decoder framework for dense point cloud completion.
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2.2 Task-oriented 6-DoF Robotic Grasping

2.2.1 Affordance Basics

Gibson et al. [27] first introduced the concept of affordance, a term deeply ingrained
in the interaction between agents and their environment, which signifies the potential
actions an agent can execute within its surroundings. This concept, while abstract, plays
a pivotal role in robotics, particularly in the identification and interaction with target
objects. In essence, affordance in robotics involves perceiving an object, discerning the
feasible actions associated with it, and understanding the consequences of these actions
to determine if a task can be replicated. The application of affordances in robotics ex-
tends to visual and grasp affordances, each vital for the development of autonomous
systems, shown in Figure 2.3.

In the realm of visual affordance, the concept has been integrated into semantic seg-
mentation tasks as a type of labelling process [28]. Here, objects are identified not just by
their physical characteristics but by the actions they enable—affordances. For instance,
a cup may afford actions like "pouring’, while a bed may be ’sittable’ and ’layable’. This
perspective of affordance is crucial for autonomous systems to understand and interact
with their environment effectively.

As the grasp affordance, it highlights the importance of context and previous experi-
ences in establishing these affordance relations [29,30]. Humans excel at this, intuitively
knowing that grasping a pair of scissors by the tip may be suitable for handing it over’
but not for "cutting’. This principle has found new significance in robotics, where agents
must manipulate novel objects for various tasks, each requiring a unique understand-
ing of grasp affordances. In real-world applications, the multifaceted nature of objects
means they afford multiple actions, with the success of a task hinging on the correct
recognition and execution of the appropriate grasping region. By integrating affordance
theory into robotics, we lay the foundation for creating more adaptable and intuitive
autonomous systems. These systems, capable of complex decision-making and interac-
tion with their environment, mark a significant step forward in the field of robotics and
autonomous system development.

2.2.2 Task-oriented Grasping Detection

Widely accepted by the robotics community, the goal of affordance learning is to reason
different physical and contextual meanings of objects [31]. The prediction of these con-
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Figure 2.3: The difference between visual affordance and grasp affordance.
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textual affordances is thus a critical component in the complex problem of Task-oriented
Grasping (TOG). It’s very challenging to achieve affordance learning on the robotic
scene, researchers proposed many approaches to learn different object parts through
pixel-wise or point-wise features and corresponding semantic information [32-34].

For the robotic grasping based on pixel-wise affordance, Vahrenkamp et al. [35] la-
belled different object parts as semantic information to guide the robot to grasp though it
can only be applied to similar objects. To obtain a better generalization ability, Rezapour
et al. [36] proposed to use data-driven approach to accomplish part-based affordance de-
tection, which demonstrates robot could execute successfully after detecting the pixel-
wise affordance. Furthermore, Liu et al. [37] proposed a context-aware grasping engine
(database), which combines part affordance, part material, and tasks to train a semantic
grasp network. That improves the relationship between grasping and objects though it
cannot generate diverse grasp candidates automatically. On the basis of traditional pixel-
wise part segmentation, Xu et al. [38] introduced an extra keypoint detection module,
whose predictions consist of position, direction, and extent, guiding a more stable grasp
pose. However, the problem with these pixel-based part affordance methods is that 6-
DoF grasp detection is hard to embed in it, causing generated robotic grasp candidates
in a very restricted workspace.

Only recently, some works started to study affordance-based learning on observed
point clouds by extending semantic segmentation methods to the point-wise level. Hjelm
et al. [39] used a demonstration method to learn tasks, specifically grasping based on
visual point cloud. Ardon et al. [40] proposed a grasp affordance patch mapping method
to generate optimal grasping region and then execute grasp while the whole execution
process is cumbersome. Jiang et al. [41] proposed a GIGA framework to use implicit
representation, jointly learning grasp affordance and 3D reconstruction. It achieves a
great state-of-the-art grasping performance, while the weakness is that each object is
related to a single affordance. Furthermore, Murali et al. [42] collected a TaskGrasp
dataset by scanning real object point cloud and divided each object into diverse tasks,
which also introduced graph knowledge to help task-oriented grasping generation. How-
ever, the grasps in this dataset are annotated purely through the geometric shape of the
object, and assume that each affordance is true manually without considering the true
context of object.

2.3 [Event-based Action Recognition

2.3.1 Event Vision Basics and Related Datasets

Compared with a large amount of CMOS-based RGB datasets, few event camera-based
datasets have been proposed to solve different challenging spatial-temporal recognition
and estimation tasks [43—49], such as gesture classification, face recognition, pose esti-
mation and driving recognition. Each pixel in an event-based camera independently and
continuously monitors the intensity of light. When a change in light intensity surpasses
a predefined threshold, the pixel generates an “event”. The event camera is particularly
advantageous in applications requiring high-speed motion detection, low latency, effi-
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Figure 2.4: The imaging difference between the frame-based camera and the event-based camera
[51]. Reprinted image: ©2020, IEEE.

cient data handling, and operation in challenging lighting conditions. The visualization
of the captured data format of the frame-based camera and the event-based camera is
described in Figure 2.4.

DVS-CIFARI10 [43] is a classic neuromorphic dataset converted from the static
CIFAR-10 format. Based on the transforming method of Repeated Closed-loop Smooth
(RCLS) movement, it consists of 10000 event streams captured by an event camera
with a resolution of 128 <128 and contains 10 different spiking labels. Amir et al. [44]
collected different moving hand gestures using a DVS128 event camera under differ-
ent lighting conditions, where 29 volunteers were involved in the data collection, and
11 gesture classes were annotated. For human and hand pose estimation, Scarpellini et
al. [45] and Rudnev et al. [50] developed a 3D human pose and hand pose dataset by
utilizing the simulated events, respectively, which both enrich the human waking and
hand moving scenarios. Event-based face recognition is another event-related research
topic. Berlincioni et al. [46] and Lenz et al. [47] collected a rich annotation dataset based
on different eye blinks and facial emotions, respectively. Moreover, Chen et al. [48] ex-
plored various datasets and algorithms of different autonomous driving tasks based on
the neuromorphic vision sensor, which demonstrated that the event camera is becoming
a valuable addition to conventional autonomous sensing modalities.

2.3.2 Learning from Spiking Neural Networks

Based on the gradient descent method, many Spiking Neural Network (SNN) models are
developed to achieve high performance on event-based datasets. Among them, Huns-
berger et al. [52] proposed the Leaky Integrate-and-fire (LIF) neuron model to make it
easier to achieve ANN-based network architecture. Fang et al. [53] improved the LIF
model by optimizing the membrane time constant and synaptic weight. Moreover, the
attention mechanism was introduced to enrich the representation by focusing on the
most informative elements of the input events. Cannici et al. [54] proposed two kinds of
methods to utilize spatial-wise visual attention and demonstrate that they both can im-
prove the effectiveness of Convolutional SNN to solve object recognition problems. Yao
et al. [55] integrated the temporal-wise attention into SNN and found that the attention-
score-based approach is beneficial to discard irrelevant features, yielding a notable re-
duction in computational cost. Yao et al. [56] further discussed the representation po-
tential of different attention types and demonstrated that temporal-based, spatial-based,
and channel-based attention can all facilitate the vanilla SNN backbone to achieve better
performance.
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Figure 2.5: The illustration of different task-oriented hand-object relations [57]. Reprinted im-
age: ©2023, IEEE.

2.3.3 Task-oriented Hand-object Action

Research on hand-object action tasks is parallel conducted in the robotics and computer
vision fields. As robotics researchers, they pay attention to generating different object-
grasping poses based on various tasks. Chen et al. [5] introduced a 3D affordance map to
embed in the task-oriented 6-DOF grasp network, which greatly improves over a direct
variational autoencoder (VAE) generation. Based on the event vision, [58,59] innovative
collected a NeuroGrasp dataset and proposes a multimodal neural network to achieve
grasp pose estimation successfully, showing a potential robotic application in the low
latency environment. Researchers in the area of computer vision concentrate more on the
3D mesh and image relationship between the hand and the object. Hu et al. [60] adopted
the MANO hand model and different objects to generate, reconstruct, and estimate hand-
object action. Furthermore, [61-64] proposed different datasets to discuss hand-object
action pose by capturing hand and object appearance. Taking AffordPose [57] as an
example, the different hand-object relations are illustrated in Figure 2.5.

2.4 Transfer Learning in Robotic Assembly

2.4.1 RL Basics and Contact-rich Robotic Manipulation

Reinforcement Learning (RL) is a type of machine learning where an agent learns to
make decisions by performing actions in an environment to maximize cumulative re-
wards. As shown in Figure 2.6, each control task can be assumed as the robot (agent)
interacting with the environment. During the interaction process, the robot generates a
series of actions according to its states. To make the robot accomplish the task, RL in-
troduces a concept of reward. It represents a scalar feedback signal given to the robot
after acting, guiding the learning process. When the robot finishes the learning process,
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state reward
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Figure 2.6: Basic concepts about reinforcement learning.

it will get a policy, which represents a strategy that the robot follows to determine its
actions based on the current state.

Many RL-based methods have been developed and applied to solve different contact-
rich robotic manipulation tasks, such as grasping, door opening, stacking, polishing, and
assembly [65-72]. Liang et al. [65] used multi-modal perception to solve the compli-
cated multi-finger grasping problem. Nemec et al. [66] used structure research com-
bined with reinforcement learning to solve the physical constraint of the door opening
problem. Furthermore, Englert et al. [67] combined constrained optimization, Bayesian
optimization, and inverse optimal control to produce a high-dimensional policy using
a few demonstration trials. To improve the stability and reliability of stacking prob-
lems, Lin et al. [73] introduced the extra force and torque perception to improve the
policy performance. To avoid the polishing force signal suffering overshoot during the
manufacturing process, Zhang et al. [74] proposed a press-release model to compen-
sate for the robot deformation, and a model-based reinforcement learning algorithm was
used to optimize the processing parameters. Automatic high-precision assembly is the
most challenging case within RL for smart manufacturing, which is divided into two
types: peg-in-hole insertion and electric connector bonding. Inoue et al. [70] firstly re-
alized single peg-in-hole precision insertion skills through the recurrent neural network
with reinforcement learning, showing great robustness against position and angle errors.
Schoettler ef al. [71] combined off-policy reinforcement learning with visual images
to solve the industrial connector bonding task. These results have shown that RL is a
feasible technique for handling contact-rich robotic manipulation tasks.

2.4.2 Sim2real Transfer in Robotic Assembly

For robotic assembly problems, obtaining real-world data for learning-based approaches
is expensive. Especially, the RL algorithms need a large amount of data to sample and
explore. Thus, learning from the simulation environment is a more efficient way. Cheb-
otar et al. [75] changed the distribution of simulation using a few real-world roll-outs,
demonstrating the trained policy can be reliably transferred to the real peg-in-hole as-
sembly task. Beltran er al. [76] also used sim2real, domain randomization, and RL
to bootstrap the training speed for position-controlled peg-in-hole tasks. Hebecker et
al. [77] learned the compliant assembly representation in simulation and achieved a
90% success rate over the limited variations of goal position. Furthermore, Thomas et
al. [78] leveraged the prior knowledge about geometric motion learning from the CAD
model data with guiding RL, demonstrating a high precision, even without accurate state

19



Chapter 2. Related Work

estimation. Multimodal learning was also proposed to combine with the Sim2real tech-
nique for the robotics assembly task. Wu et al. [79] proposed to learn dense rewards for
multimodal observations to execute USB insertion, demonstrating better performance
than sparse reward baselines. Lee et al. [80] combined the visual and haptic feedback
to learn a multimodal representation in simulation. Real-world experiments showed that
it could generalize over varying geometries, configurations, and clearances. However,
sim2real transfer in multiple peg-in-hole assembly has not been fully considered.

2.4.3 Control Strategies for RL-based Contact-rich Tasks

Since simultaneous position and force control in the same axis for robot manipulation
is quite challenging, an impedance strategy is developed to achieve a trade-off between
compliance and precision for contact-rich manipulation tasks. It also has been suffi-
ciently validated that impedance control is suitable for solving different robotic contact-
rich tasks [81-87]. Luo et al. [88] incorporated force/torque information into RL and
proposed a simple neural network to generalize the trained policy for the assembly gear
task. Not randomly tuning the impedance parameters, Bogdanovic et al. [89] proposed
to use RL to learn the optimal impedance parameters, which was validated successfully
by assembling an HDMI connector in the simulation. For the single peg-in-hole assem-
bly, Kulkarni ef al. [90] proposed to use output action from the recurrent RL method
as the reference of the operational impedance controller, where over 80% success rate
was achieved under various object characteristics. Furthermore, Bogdanovic et al. [89]
compared the policy performance by combining it with different position and force con-
trollers, such as PD controller from fixed and variable gain, and torque controller from
force signal directly, and finally facilitated them from real to reality. Based on that,
Yang et al. [91] used a few real demonstration trajectories to train the RL framework
with the variable impedance controller and showed that the learned variable impedance
action could be deployed in real-world experiments. Similar to the impedance control,
Spector et al. [92] proposed an admittance policy based on a residual strategy to correct
the movements from baseline policy, which also achieved a good generalization perfor-
mance over object side, shape, and space for the single peg-in-hole assembly. Inspired
by these works, we implement impedance control for the multiple peg-in-hole assembly
task in this work. Furthermore, we also aim to verify the performances of the RL policy
under different control strategies.

2.4.4 Robotic Multiple Peg-in-hole Assembly

Since traditional single peg-in-hole assembly tasks have been extensively researched
and validated based on RL, robotic multiple peg-in-hole assembly seems to be a more
challenging problem. Because the increase in the number of pegs and holes will de-
crease the stability and reliability of the position and force from the output policy. Espe-
cially considering the dimension of rotation, when one peg is aligned exactly, other pegs
may fail to enter the hole due to the change of angle. [93-95] described the geomet-
ric and force/torque characteristics for 3D Multi-peg-assembly (MPA) problem based
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on detailed theory and mechanical experiments, which demonstrates it has more com-
plicated and dynamic contact states than single peg-in-hole assembly. Recently, some
researchers have begun to use RL to solve this task. Hou et al. [96] firstly proposed a
hybrid exploration strategy based on Deep Deterministic Policy Gradien (DDPG) with
PD force controller, where simulation and real experiments both verified the methods.
To improve learning efficiency, Xu et al. [97] utilized a feedback exploration and fuzzy
reward to process the learning, demonstrating the improvement of performance. Based
on the same setup, Li et al. [98] proposed a LADDPG approach to accelerate the learn-
ing process, where a safety assurance mechanism and adaptive impedance control were
used to improve the performance. The latest work is that [99] modified their previous
method [96] and introduced the time-scale prediction to reduce unnecessary policy ex-
ploration, and a fuzzy logic system (FLS) was introduced to map impedance parameter
tuning.

Though these RL-based works on multiple peg-in-hole assembly work well in sim-
ulation and the real world, their experimental setup does not fit well with the accurate
mechanical definition of multiple peg-in-hole assembly [93-95]. Lacking of visual feed-
back, their setup is also difficult to develop and apply to the real manufacturing industry.

2.5 Language-conditioned Robotic Arrangement

2.5.1 Language-based Manipulation Basics

Language is a flexible and instinctive medium, enabling humans to specify tasks, com-
municate contextual details, and express their intentions. Much work about language-
conditioned robot manipulations has been proposed to control a robot by generating
low-level policies via RL or Imitation learning (IL) [100-103]. Jiang et al. [104] pro-
posed to use language as abstract representations of hierarchical RL framework, demon-
strating that the agent can learn compositional tasks like object sorting and multi-object
arrangement in a simulation environment. Furthermore, Misra et al. [105] designed a
novel RL agent that directly mapped language instructions and raw visual input to gen-
erate a sequence of actions without requiring intermediate representations and planning
procedures. However, language-conditioned RL methods are difficult to deploy into real
physical robots due to the challenge of learning the relationship between language and
multimodal sensor data in the unstructured robot environment. To further improve learn-
ing efficiency, other researchers adopt the language-conditioned IL approaches, where
agents are trained to perform tasks by mimicking the actions demonstrated by a human
expert. Focusing on the containing task, Lynch et al. [106] first proposed a language-
conditioned visuomotor policy utilizing unstructured and unlabeled data collected from
a teleoperated robot in a physics simulator. Stepputtis et al. [107] further integrated the
low-level motion controller into the language-conditioned learning framework. Both test
results indicated that the robot can hopefully accomplish long-horizon tasks in the sim-
ulation environment. However, these IL.-based methods require a large and diverse set
of high-quality demonstration data. Acquiring such data on actual robots is a process
that demands considerable time and resources. Contrary to prior efforts in language-
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conditioned research, our work emphasizes the utilization of language instructions to
steer the denoising diffusion process, where the target states of objects will be estimated
and used for the subsequent robot planning.

2.5.2 Large Foundation Models in Robotics

Recently, large foundation models based on language and vision have become a dom-
inant paradigm in solving long-horizon robotic manipulation tasks [109-113]. They
demonstrate strong few-shot or zero-shot reasoning ability to any text or vision in-
put through just prompting by human instructions [7]. SayCan [110] used a large lan-
guage model (LLM) to perform various tasks, where language objectives were destruc-
ted into a hierarchical sequence of instructions. These instructions were subsequently
fed into skill-oriented value functions and search heuristics to obtain optimal action se-
quences. Informed by multimodal prompting, Socratic Models [111] exhibited a modu-
lar framework to capture multimodal information and leveraged LLMs to achieve zero-
shot robotic perception and planning. Furthermore, Code-as-Policies [112] adopted the
LLMs to generate a policy code of robot action, showing LLMs have a strong pro-
gramming ability in controlling robots by recomposing perception and controller API
functions. Utilizing the capability to generate codes, Huang et al. [113] used LLMs to
integrate 3D value maps into the robotic observation space after inferring affordances
and constraints from language instructions, which produced low-level control on the
contact-rich manipulation tasks successfully. Nevertheless, the final goal states of each
robot task from previous work on LLMs remain predominantly predefined, relying on
human expertise or demonstrative guidance encapsulated within the prompt instructions.
An example of multi-step robot arrangement using language language models is shown
in Figure 2.7.

( )

Can you put things | like in the blue plate,
and things | don't like in the green plate?

Do you like mustard or not?

‘ Action: Put sunny-side-up in the blue plate.

I don't like it.

Action: Put mustard in the green plate.

| Action: Put lettuce in the blue plate.

Figure 2.7: Multi-step robot arrangement via language language models [108]. Reprinted image:
©2023, IEEE.
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2.5.3 Diffusion Models

In the computer vision field, diffusion models have risen to prominence as leading gen-
erators of data, distinguished by their ability to accurately model complex distributions
and generate a diverse array of high-quality samples [114,115]. The concept draws inspi-
ration from the physical phenomenon of diffusion, where particles migrate from regions
of higher concentration to lower concentration until a state of balance is achieved. Many
applications from diverse domains, such as text, image, audio, and video, demonstrate
that diffusion models can significantly improve the quality, realism, and creativity over
previous generative models [116, 117]. Especially for text-to-image diffusion models,
their groundbreaking synthesis capabilities using textual descriptions can significantly
enhance creation efficiency [118,119]. However, these models offer limited control over
the content they generate, primarily achieved through a single text-based input modality.
Some techniques have been developed to enhance performance and gain more precise
control using various input types, such as contextual layouts and class labels. These
techniques strive to finely tune the creation of content by adjusting the generation pro-
cess based on pre-trained models [120-122]. Taking an example of the inpainting task,
Avrahami et al. [122] proposed a solution to achieve image inpainting successfully by
leveraging a pre-trained vision-language model like CLIP [114], where the inpainting
process was guided from a text description along with an ROI mask. Figure 2.8 de-
scribes a robotic example using diffusion models. Kapelyukh et al. [123] proposed to
utilize DALL-E, a web-scale artificial intelligence-generated content (AIGC) model, to
generate a target image that implicitly incorporates various objects the robot observes.
Nevertheless, the exclusive reliance on textual input for image generation has proven to
be notably unstable and inefficient in real-world robot manipulation, primarily due to
the neglect of crucial observational cues.

A fork, a knife, a plate, JEEEE]
and a spoon, top-down image

Initial scene

Final scene DALL-E image

Figure 2.8: The overview of DALL-E Bot system. DALL-E is used to generate an image of a
human-like arrangement of those objects [123]. Reprinted image: ©2023, IEEE.
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2.5.4 Tabletop Robot Rearrangement

The objective of an intelligent robotic rearrangement system is to equip robots with
the ability to understand their surroundings and interact with humans, thereby achiev-
ing precise and efficient object repositioning according to different structures or cri-
teria that reflect human preferences [124]. Various approaches have been explored to
tackle this challenge. Typically, Tang er al. [125] proposed to utilize an RL strategy
based on the Proximal Policy Optimization (PPO) algorithm to push irregular objects
on the table inside a crate, which was hard to generalize to other rearrangement tasks
because of the fixed position of the crate on the table. To improve the generalizability,
VIMA [126] introduced prompt-based learning to train a multimodal generalist agent,
achieving a simple zero-shot robot arrangement setting in the simulation environment.
Nevertheless, it was still difficult to deploy in real robot experiments due to the lack of
human-designed visual prompts. Moreover, Liu et al. [124] first introduced the concept
of semantic structure in the robot arrangement task, which necessitated a robot’s abil-
ity to understand the relationships between scattered objects and subsequently rearrange
them into a spatial structure instructed by human languages. However, the efficiency was
compromised by its sequential processing, where the goal state of the current object was
estimated only after finishing the arrangement of the previous object. To address this
inefficiency, StructDiffusion [127] implemented a 3D diffusion-based approach based
on the same dataset, achieving a better rearrangement performance. However, we found
that the predicted object states for a given structure demonstrate negligible layout adapt-
ability on the table when the initial messy observation and motion distance of objects
between the messy scene and the rearranged scene are not taken into account. This issue
largely results from all target object states being derived from predetermined Gaussian
noise throughout the denoising diffusion process. Moreover, the inherent design of the
dataset presents challenges in enabling scattered objects to form varied structures upon
completion of the rearrangement process.
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Transformer-based Shape Completion
for Robotic Grasping

Currently, robotic grasping methods based on sparse partial point clouds have attained
excellent grasping performance on various objects. However, they often generate wrong-
grasping candidates due to the lack of complete geometric information on the object. In
this chapter, we propose a novel and robust sparse shape completion model (TransSC).
This model has a transformer-based encoder to explore more point-wise features and a
manifold-based decoder to exploit more object details using a segmented partial point
cloud as input. Quantitative experiments verify the effectiveness of the proposed shape
completion network and demonstrate that our network outperforms existing methods.
Besides, TransSC is integrated into a grasp evaluation network to generate a set of grasp
candidates. The simulation experiment shows that TransSC improves the grasping gen-
eration result compared to the existing shape completion baselines. Furthermore, our
robotic experiment shows that with TransSC, the robot is more successful in grasping
objects of unknown numbers randomly placed on a support surface.

3.1 Introduction

Robotic grasping evaluation is a challenging task due to incomplete geometric informa-
tion from single-view visual sensor data [128]. Many probabilistic grasp planning mod-
els have been proposed to address this problem, such as Motel Carlo, Gaussian Process
and uncertainty analysis [11,24,129]. However, these analytic methods are always com-
putationally expensive. With the development of deep learning techniques, data-driven
grasp detection methods have shown great potential [4, 12—-14] to solve this problem.
They generate lots of grasp candidates and estimate the corresponding grasp quality,
resulting in better grasp performance and generalization. However, as most of these
methods still rely on original sensor inputs like 2D (image) and 2.5D (depth map), there
exists a physical grasping defect when the gripper interacts with real object surfaces or
edges because of the incomplete pixel-wise and point-wise representations. Otherwise,
traditional data-driven grasping algorithms [4, 14, 17] are mostly based on the partial
point clouds. Due to the object’s missing geometric and semantic information, these
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algorithms easily generate wrong grasp candidates and cause a research gap.

YCB-Video
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Figure 3.1: Overview of our shape completion-based grasp pipeline. The top row shows the
shape completion module. In this module, a segmented partial point cloud ¢, with n points
is first input into a transformer-based encoder to extract point-wise and self-attention features,
which outputs a latent vector with m dimensions. Then, the latent vector is concatenated with
another latent feature from a flat/spatial point seed generator to predict multiple spatial surfaces
in the manifold-based decoder. Finally, these surfaces are assembled into a complete point cloud
(.. The bottom row is the grasp evaluation module, and the complete point cloud (. is the input
of our grasp detection pipeline PointNetGPD to compute the grasp quality Q;. The grasp with
the highest score Gp.s; Will be sent to the Movelt task constructor to calculate a collision-free
trajectory and will be executed in a real robot experiment.

To improve grasp performance, the sparse point cloud is necessary to be restored
or repaired to generate a better grasping interaction. Additional sensor input such as a
tactile sensor can be regarded as a supplement of original vision sensing [130]. However,
object uncertainty still exists and extra sensor interference with the object will directly
affect the final grasping result. Another strategy is to use shape completion to infer
the original object shape while traditional grasping-based shape completion methods
use a high-resolution voxelized grid as object representation [22,24,25], causing a high
memory cost and information loss due to the sparsity of the sensory input. To avoid extra
sensor costs and obtain complete object information, a novel transformer-based shape
completion module is proposed in this chapter based on an original sparse point cloud.
Compared with the traditional convolutional network layer, the transformer has achieved
state-of-the-art results in visual recognition and segmentation [131, 132], which enables
our shape completion module to achieve better performance.

As illustrated in Fig. 3.1, we present a novel grasping pipeline that uses a sparse point
cloud to execute the grasp directly, without converting it into discrete voxel grids during
the shape completion process and then transforming it into a mesh in the grasp planning
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process. The pipeline consists of two sub-modules: The transformer-based shape com-
pletion module and the grasp evaluation module. In the first module, a non-synthetic seg-
mented partial point cloud dataset based on YCB objects was constructed. Not cropping
the object randomly or viewing the object in a physical simulator, our dataset contains
many real cameras and environmental noise, which guarantees an improved grasping
interaction in a real robot environment. Based on this dataset, we propose a novel point
cloud completion network (TransSC), where the segmented partial point cloud of an
object is input, and the complete point cloud is output. In the second module, our pre-
vious work [4] is involved. We use PointNet [15] to obtain feature representations of
the repaired point cloud, and build a grasp detection network to generate and evaluate
a set of grasp candidates. The grasp with the highest score will be executed in a real
robot experiment. The proposed pipeline is validated in a simulation experiment and
robotic experiments, which both demonstrate that our shape completion pipeline can
significantly improve grasping performance.
Our contributions in this chapter can be listed as:

* A large-scale non-synthetic partial point cloud dataset is constructed based on the
YCB-Video dataset. As the dataset is based on 3D point cloud data captured by a
real RGB-D camera, the noise that comes from it will facilitate the generalization
of our work, especially in real robot environments.

* A novel point cloud completion network TransSC is proposed. The transformer-
based encoder and manifold-based decoder are introduced into the shape comple-
tion task to improve its performance.

* Combining our previous work PointNetGPD for grasp evaluation and the Movelt
Task Constructor for motion planning, we demonstrate that a robust grasp plan-
ning pipeline using the shape completion result as input can achieve a higher grasp
success rate compared to the single view work without shape completion.

3.2 Problem Formulation

We consider a setup consisting of a robotic arm with parallel-jaw grippers, an RGB-D
camera, and objects of unknown number that are set on a flat support surface while we
define a target object via user’s input. Meanwhile, we assume that the RGB-D camera
captures the depth map of objects, where a semantic segmentation network is used to
extract the mask of the target object and convert it into a 2.5D partial point cloud P €
RN*3_ For simplicity, all spatial quantities are in camera coordinates.

Given a gripper configuration C and camera observation O, our goal is firstly to
extract the target object point cloud P using semantic segmentation. Then a point cloud
completion network is used to repair the segmented 2.5D partial point cloud P € R >3,
turning it into a complete 3D point cloud P. € RY*3. After that, a grasp evaluation
network based on P, is used to predict a set of grasp candidates G; and compute the
relative grasp quality Q;. The grasp with the highest score G,.s; and highest kinematic
possibility, i.e., a collision-free grasp, will be executed in the real robot experiment.

27



Chapter 3. Transformer-based Shape Completion for Robotic Grasping

3.3 Shape Completion Dataset

3.3.1 Dataset Construction

Traditional shape completion models use synthetic CAD models from the ShapeNet [133]
or ModelNet [134] datasets to generate partial and corresponding complete point cloud
data, while these synthetic data contain no real-world noise. As a result, synthetic data
often do not work well in the real world. To tackle this problem, we summarize a shape
completion dataset from the YCB-Video Dataset [2]. Non-synthetic RGB-D video im-
ages (~ 133,827 frames) in the YCB-Video Dataset are first chosen, while most of them
vary insignificantly. Thus, a preprocessed image dataset is obtained by reducing every
five frames. Meanwhile, to cover distinguishable shapes with different levels of detail,
18 objects are also chosen from the YCB-Video dataset. In this work, the ground-truth
point cloud of 18 objects is created by the farthest point sampling (FPS) of 2048 points
on each object model. Not randomly sampling or cropping complete point clouds on the
unit sphere to get partial point clouds, RGB-D images and related object label images
in the preprocessed dataset are loaded to compute the matching partial point clouds us-
ing related camera intrinsic parameters. To approximate the distribution of point cloud
data of real objects and retain the semantic information, a large number of cameras and
environmental noise data are kept on, though a small radius filter is used to remove par-
tial outliers. For the convenience of network training, the partial point clouds are also
unified into the size of 2048 points by FPS or replicating points. To enable an accu-
rate comparison with existing baselines, the canonical center of the partial point cloud
of each object is also transformed into the same center of the ground-truth point cloud
using pose information. Finally, more than 70,000 partial point clouds are collected in
our dataset. Compared to other synthetic point cloud datasets, our dataset does well at
preserving the real point cloud distribution of occluded objects.

3.3.2 Semantic Segmentation

As shown in Fig. 3.1, the scene of our grasping task is that objects of unknown number
are set on a flat support surface. To obtain the target object point cloud, we first build
a semantic segmentation network branch, where different YCB objects are assigned a
particular semantic label value. It can be seen that the performance of the segmentation
network is good enough that it can also be deployed in a grasping task of multi-object
occlusion.

Our segmentation network [135] takes an RGB image as input and outputs a bi-
nary mask of the expected object. The network has an encoder-decoder architecture
based on CNN, where the encoder consists of 13 convolutional layers with ReLU acti-
vation followed by max-pooling layers. At the same time, the decoder utilizes upsam-
pling operations whereby the pooling indices from the corresponding encoder layers
are recalled. Moreover, several data augmentation strategies like adjusting brightness,
contrast and saturation are used to make the network generalize well. After getting the
expected object mask, the sparse 2.5D point cloud P € RY*3 of the target object could
be extracted through the corresponding depth image. Meanwhile, we also remove the
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Figure 3.2: Illustration of various encoder structures for point cloud completion. (a) is a sim-
ple multiple-layer perception (MLP) structure. (b) is a multi-scale fusion (MSF) module, which
can fuse features from different layers directly. (c) is concatenated multiple layer perception
(CMLP), which can also concatenate multi-dimensional latent features while the max pooling
operation is used to extract latent features further. (d) shows our Transformer-based multiple
layer perception (TMLP) module, which integrates the Multi-head Self-attention (MHSA) mod-
ule into the MLP structure. (e) depicts the architecture of the MHSA module.

redundant background (support surface) point cloud by setting a threshold value of the
z-axis (support surface height).

3.4 TSC-Net Architecture

3.4.1 Transformer-based Encoder Module

As shown in Fig. 3.2, we compare our proposed encoder module with several common
competitive methods. Multi-layer Perception (MLP) is a simple baseline architecture
to extract point features. This method maps each point into different dimensions and
extracts the maximum value from the final K dimensions to formulate a latent vec-
tor. A simple generalization for MLP is to combine semantic features from a low-level
dimension with those of a high-level dimension. The MSF (Multi-scale Fusion) [136]
module inflates the dimension of the latent vector from 1024 to 1408 to obtain seman-
tic features from different dimensions.To enhance the performance of the feature ex-
tractor, L-GAN [137] introduced the use of a Maxpooling layer effectively. Similarly,
Concatenated Multiple Layer Perception (CMLP) [138] applied multiple Maxpooling
operations to the outputs of the last k layers, ensuring that multi-scale feature vectors
are concatenated directly. An overview of our proposed Transformer-based multi-layer
perception (TMLP) module is shown in Fig. 3.2(d). Without an extra skip connec-
tion structure and a Maxpooling operation from different layers, the Multi-head Self-
attention (MHSA) [139] module is introduced to replace the traditional convolutional
layer [128 x 256 x 1].

MHSA aims to transform (encode) the input point feature into a new feature space,
which contains point-wise and self-attention features. Fig. 3.2(e) shows a simple MHSA
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architecture used in TMLP, which includes two sub-layers. In our first layer, the multi-
head number is set to 8 and the input feature dimension for each point is 128. Un-
like natural language processing (NLP) problems, the 128-dimensional feature vector
A, € R2048%128 il enter into the multi-head attention module directly without posi-
tional encoding. This is because each point in the point cloud has its unique * — y — 2
coordinates. The output feature Z is formed by concatenating the attention of each at-
tention head. A residual structure is also used to add and normalize the output feature Z
with A;,,. This process can be formulated as follows:

Ai = SA(Ain) i=1,2,...,8 (3.1)
Z = concat( Ay, As, ..., Ag) * Wy (3.2)
Aot = Norm(A;, + 2) (3.3)

where S'A; represents the i-th self-attention layer, each has the same output dimension
size with input feature vector A;,, and W} is the weight of the linear layer. A,,; repre-
sents the output point-wise features of the first sub-layer.

The second sub-layer is called the Feed-forward module, which is a fully connected
network. Point-wise features .4,,; are processed through two linear transformations and
one ReLU activation. Furthermore, a residual network is also used to fuse and normalize

the output features. Finally, we can get the MHSA module output F.F,,, € R2048x128
as:

FF = RGLU(Aout * W1 + bl) * W2 + bQ (34)

FFout = Norm( Aoy + FF) (3.5)

where Wy, W5 and by, by represent the weight and bias value of the corresponding linear
transformation, respectively.

3.4.2 Manifold-based Decoder Module

Inspired by the AtlasNet [19], a manifold-based decoder module is designed to predict
a complete point cloud from partial point cloud features. As shown in Fig. 3.3, a com-
plete point cloud can be assumed to consist of multiple sub-surfaces. Therefore, we only
concentrate on generating each sub-surface, then we gather them and make an appro-
priate montage to form the final complete point cloud. To obtain each sub-surface, a
point seed generator is used to concatenate with global feature vector P, € R?048x1024
output from the encoder, where point initialization values are computed from a flat (f)
or spatial (g) sampler. As the coordinate values of the ground-truth point cloud are lim-
ited to between [-1, 1], point initialization values are also limited in this range. After
that, the concatenated feature vector Peyueqr € R2*E*M (M = 1026 or 1027) is input
into K convolutional layers, where all sampled 2D or 3D points will be mapped to 3D
points on each sub-surface. In our decoder, the sub-surface number is set to 16. Unlike
other voxel-based shape completion methods, our decoder module achieves an arbitrary
resolution for the completion results.

30



3.4. TSC-Net Architecture

IX(@/MW*N
[X(H/N)X(T/N)
1Xx(5/IN)

@ @ Complete
Point Cloud

@ : Concatenating

@ : Gathering and Montaging

Figure 3.3: Illustration of the decoder structure for point cloud completion. The feature vector
with m dimensions from the encoder is firstly concatenated with a latent feature from a spe-
cial point seed generator f or g. Then three convolutional layers as the backbone are used to
extract features and form different manifold-based surfaces, respectively. Finally, these surfaces
are gathered and montaged into a complete point cloud.
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Evaluation Metrics To evaluate our shape completion results, we used two permutation-
invariant metrics called Chamfer Distance (CD) and Earth Mover’s Distance (EMD) as
our evaluation goal [140]. Given two arbitrary point clouds .S; and S5, CD measures the
average distance from each point in one point cloud to its nearest point coordinates in
the other point cloud.

: 2
dep (1, 82) = meHx—yHQ 3 ;ggglllly—ﬂ:llz (3.6)
yco2

While Earth Mover’s Distance considers two equal point sets S; and S and is de-
fined as:

dirp (S1, 55) = min Slznx— )| (3.7)
1 r€eST

The CD has been widely used in most shape completion tasks because it is efficient
to compute. However, EMD is chosen as our completion loss because CD is blind to
some visual inferiority and ignores details easily [137]. With () : S; — S, being bijec-
tive, EMD could solve the assignment and transformation problem in which one point
cloud is mapped into another.

3.4.3 Grasping Detection Module

Given the complete point cloud from the previous steps, we put the point cloud into
a geometric-based grasp pose generation algorithm (GPG) [141], which outputs a set
of grasp proposals G;. We then transform G; into a gripper coordinate system and use
points inside the gripper as the input of PointNetGPD [4], a data-driven grasp evaluation
framework. The output grasp will then be sent to the Movelt Task Constructor [142] to
plan a feasible trajectory for a pick-and-place task.

PointNetGPD [4] is trained on a grasp dataset generated using a reconstructed YCB
object mesh and evaluates the input grasp quality. The grasp candidates in the grasp
dataset all proceeded collision-free to the target object. As a result, the grasp evaluation
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(@ (b) ©

Figure 3.4: Comparison of grasp candidates generated using GPG. (a) RGB image to show the
example environment, (b) grasp generated with the partial point cloud, (c) grasp generated with
the complete point cloud.

network assumes that all the input grasp candidates are not colliding with the object. If
the object has occlusion due to the camera viewpoint, the current geometric-based grasp
proposal algorithm will generate grasp candidates that collide with the object. Thus,
using a complete point cloud can ensure that the grasp candidate generation algorithm
generates grasp sets that do not collide with the graspable objects. Fig. 3.4 shows the
comparison of the grasp generation result using GPG [141] with and without point cloud
completion, where Fig. 3.4(b) shows a candidate generated using a partial point cloud
and Fig. 3.4(c) shows a grasp candidate generated using a complete point cloud. We can
see that the grasp in Fig. 3.4(b) collides with the real object while Fig. 3.4(c) avoids
generating that kind of grasp.

3.5 Simulation Experiments

Training and Implementation details To evaluate model performance and reduce train-
ing time, eight categories of different objects in our dataset are chosen to train the shape
completion model. The training set and validation set are split into 0.8:0.2. We imple-
ment our network on PyTorch. All the building modules are trained using the Adam
optimizer with an initial learning rate of 0.0001 and a batch size of 16. All the parame-
ters of the network are initialized using a Gaussian sampler. Batch Normalization (BN)
and ReLl.U activation units are all employed at the encoder and decoder module except
the final tanh layer producing point coordinates, and Dropout operation is used in the
MHSA module to suppress model overfitting.

3.5.1 Quantitative Evaluation

In this subsection, we compare our method against several representative baselines that
are also used for point cloud completion, including AtlasNet [19], MSN [20] and GR-
Net [21]. The Oracle method means that we randomly resample 2048 points from the
original surface of different YCB objects. Corresponding EMD and CD distances be-
tween the resampled point cloud and the ground-truth point cloud provide an upper
bound for the performance. Relative comparison results are shown in Table 3.1 and Ta-
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Table 3.1: Comparison of Earth Mover’s Distance with different sparse point cloud completion
models for 2048 points and multiplied by 103

Model cracker banana pitcher  bleach bowl mug po.wer scissors | average
box base cleanser drill

Oracle 34 1.7 4.6 2.9 19 20 38 1.5 2.7
AtlasNet [19] 9.7 49 10.5 10.0 8.8 53 150 52 8.7
MSN (fusion) [20] 10.7 4.6 12.4 14.0 11,5 129 234 53 11.8
MSN (vanilla) [20] | 11.0 3.8 9.3 8.3 102 39 59 34 7.0
GRNet (sparse) [21] | 8.4 43 8.8 6.0 60 43 58 4.5 53
Our (flat) 8.5 39 9.4 6.7 60 3.7 52 4.1 4.9
Our (spatial) 10.1 44 84 58 56 37 170 3.9 6.1

Table 3.2: Comparison of Chamfer Distance in different sparse point cloud completion models
for 2048 points and multiplied by 103

Model cracker banana pitcher - bleach bowl mug po.wer scissors | average
box base cleanser drill
Oracle 0.24 0.52 0.28 0.12 0.10 0.09 0.13 0.38 0.23
AtlasNet [19] 4.51 0.87 4.97 5.61 421 137 6.18 0.92 3.58
MSN (fusion) [20] 5.59 1.25 5.71 2.77 10.81 1.77 8.34 1.58 4.73
MSN (vanilla) [20] | 6.01 0.71 4.01 4.68 751 076 1.28 0.38 3.17
GRNet (sparse) [21] | 2.28 0.97 3.78 1.67 285 076 148 0.88 1.90
Our (flat) 3.28 0.92 4.09 1.50 255  0.66 1.25 0.82 1.88
Our (spatial) 5.81 0.87 3.19 1.20 279  0.69 254 0.66 222

ble 3.2. Since the point clouds are normalized within this [-1, 1] range, the distance
values indicate the relative differences in position within the normalized space. Our
method is developed into two models based on the different point seed generators (f/g)
in the decoder module. It can be seen that our method outperforms other methods in
most objects on both EMD and CD distances. Though for some objects like banana and
cracker box, the evaluation metrics of Earth Mover’s Distance and Chamfer Distance
from our both models are bigger than other baselines. However, for other objects in
our datatset, our flat/spatial models both achieve a better performance than other base-
lines. More importantly, the final average evaluation metrics of EMD and CD of Our
(flat) model are both the best evaluation results. For the same completion loss function,
our (flat) model achieves an average of about 9% improvement in terms of the EMD
distance to the latest GRNet model. Since our dataset contains much noise from the
camera and the environment, we found that fusing the output completion result with
the original point cloud makes the performance significantly worse, which can be seen
from the comparison of MSN (fusion) and MSN (vanilla). It also implies that our model
is robust enough, which is conducive to rapid deployment in real robot experiments.
Furthermore, compared with ideal results from the Oracle method, it demonstrates that
point cloud completion remains an arduous task to solve.

To understand the computational complexity of the proposed transformer-based model,
we analyse the Floating-point Operations (FLOPs) and the number of network param-
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Table 3.3: Number of FLOPs and network Parameters

Method AtlasNet | MSN | MSN(fusion) | GRNet | Ours
# Params (M) 29.46 30.32 33.65 76.71 | 30.02
# FLOPs (GMac) 14.36 21.46 _— 2590 | 9.87

Table 3.4: Comparison of EMD and CD from different encoder structures

Earth Mover’s Distance (EMD) | MLP | CMLP | MSF | TMLP Chamfer Distance (CD) | MLP | CMLP | MSF | TMLP
Mug 6.01 | 3.69 945 | 3.69 Mug 2.15 | 0.65 13.80 | 0.66
Bleach cleanser 10.51 | 8.10 11.70 | 6.70 Bleach cleanser 6.88 | 2.63 13.89 | 1.50

Table 3.5: Comparison of average EMD and CD from different point generators

Similarity | Uniform Distribution: | Gaussian Distribution:
Metrics | 0:1 -0.5:0.5 -1:1 |0.5,05/3 005 0,1
Avg EMD | 594  7.09 6.50 6.34 6.15 6.14 | 9.88
AvgCD | 1.89 3.25 2.42 2.39 238 212 | 6.17

ZERO

Table 3.6: Influence of different surface numbers in the decoder

Earth Mover’s Distance (EMD) | n=4 n=8 | n=16 | n=32 Chamfer Distance (CD) | n=4 | n=8 | n=16 | n=32
Mug 471 |394|370 |3.61 Mug 9.01 | 6.70 | 6.61 | 6.69
Bleach cleanser 10.10 | 7.82 | 6.69 | 5.94  Bleach cleanser 3.69 | 1.70 | 1.51 | 1.53

eters and summarize them in Table 3.3. It can be seen that the self-attention module
introduced in our transformer-based encoder is lighter than the traditional convolution
layer, reducing the computational complexity. Moreover, after removing a large num-
ber of redundant convolution layers existing in traditional dense shape completion, our
FLOPs value is also decreased significantly.

3.5.2 Ablation Studies

This section provides a series of ablation studies on our YCB-based dataset to evaluate
our proposed shape completion model comprehensively. Accordingly, the effectiveness
of each particular module in our model is analyzed as follows: We first evaluate our
transformer-based encoder module with other representative encoder modules under the
same setting of convolutional/transformer layer number and object inputs. As shown in
Table 3.4, our encoder has a better result overall, though CMLP gets a great result on
Mug’s completion. When the point seed in the decoder is flat, we further analyze the
influence of different point seed distributions and surface numbers in Table 3.5 and Ta-
ble 3.6. We can see that both Uniform and Gaussian sample methods can achieve a better
result at (0, 1). We choose Uni form(0, 1) in our model to achieve the best results. Like
the weight parameters in the neural network, the initialization value of points cannot
be close to zero, which predicts the worst result. As illustrated in Table 3.6, when the
sub-surface number increases, the overall model performance improves. However, the
improvement of completion results is limited when the number is above 16.
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Figure 3.5: Shape completion result using TransSC. The canonical pose result is trained under
a fixed point cloud coordinate system while the arbitrary pose result is trained under the camera
perspective. In the robot experiment, the arbitrary pose training result is used to generate grasps.

3.5.3 Visualization Analysis

Fig. 3.5 shows the visualized shape completion results using our TransSC. In the visual
analysis, each object’s input partial point cloud is first preprocessed to remove noisy
data from the camera and the environment. It can be seen that the geometric loss of
the input point cloud in our dataset comes from the change of the camera viewpoint
and the occlusion by other objects, which causes a big challenge for our model. The
output results of the canonical pose show that our model works well on all simple and
complex objects. Moreover, our model can generate realistic structures and details like
the mug handle, bowl edge and bottle mouth. In robotic grasping, as the target object
pose is randomly put on the support surface, another shape completion model based on
the arbitrary ground-truth pose is retrained. This is done by transforming the ground
truth pose to the original pose of the input partial point cloud. The completion results
are also shown in Fig. 3.5. Arbitrary output is not as good as the canonical output but
it still restores the overall shape of each object well. It also demonstrates that achieving
object completion of arbitrary poses in a real environment is still a formidable task.

3.5.4 Simulation Grasp Experiments

Experimental Setup of Simulation Experiments We use Graspit! [23] to evaluate the
quality of shape completion similar to [22]. First, the Alpha shapes algorithm [143] is
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Table 3.7: Comparison of the average difference between grasp joints from different completion
types

Error Partial | Mirror | Voxel-based Our.s Qurs
(canonical) | (arbitrary)
Grasp Joint (degree) | 10.07 442 2.17 1.15 2.02

used to implement surface reconstruction of the completion object. The output 3D mesh
is then imported into Grasplt! Simulator to calculate grasps. To have a fair comparison,
we also use a Barrett Hand to generate grasps. After finishing the grasp generation, we
remove the completion object and import the ground-truth object into the same place.
Meanwhile, the Barrett Hand is moved back 20 cm along the approach direction and
then approaches the object until the gripper detects a collision or reaches the calculated
grasp pose. Furthermore, we adjust the gripper to the calculated grasp joint angles and
perform the auto-grasp function in Grasplt! to ensure the gripper makes contact with the
object surface or reaches the joint limit. The different values of joint angles at different
positions are then recorded. We use four objects (bleach cleanser, cracker box, pitcher
base and power drill) from the YCB objects set and calculate 100 grasps for each object
in our experiment.

Assuming the grasp pose is the same, we compare the average difference of the
joint angle from our shape completion model to that of Laplacian smoothing in Meshlab
(Partial), mirroring completion [144] (Mirror) and voxel-based completion [22]. Note
that we use two different models, canonical and arbitrary. The canonical model means
the training process is based on the same object coordinate system and the arbitrary
model means all the training data are transformed into the camera’s coordinate sys-
tem. Although we can see from Fig. 3.5 that the canonical model has a better shape
completion result, it requires an accurate 6D pose of the target object if we want to de-
ploy the complete point cloud into the real world. To avoid this complication of adding
a 6D pose estimation module and real robot experiments can be achieved, the arbi-
trary model is also trained. The simulation result is shown in Table 3.7. It can be seen
that Ours (canonical) gets the best simulation grasping performance, which outperforms
other completion types. Ours (arbitrary) also obtains a great simulation result though its
average joint angle is slightly smaller than voxel-based methods. Moreover, the average
difference between the two models also demonstrates that a perfect shape completion in
an arbitrary pose is much harder than in a canonical pose.

3.6 Robot Experiments

3.6.1 Robotic Experiments on Single Objects

Experimental Setup of Single Objects To evaluate the performance improvement us-
ing a complete point cloud for robotic grasping, we choose six YCB objects to test
the grasping success rate. The robot for evaluation is a URS robot arm equipped with
a Robotiq 3-finger gripper. The vision sensor is an Industrial 3D camera from Mech-
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Table 3.8: Robotic grasping performance on a single object

cracker meat pitcher bleach power

Method mug . average
box can base cleanser drill

WOSC 70% 70%  80% 80% 90% 40%  71.67%

WSC 80% 100% 100%  80% 90% 50%  83.33%

Figure 3.6: The target object and segmentation results with different occlusion settings.

mind ! to acquire a high-quality partial point cloud. The selected six objects are listed in
Table 3.8. We select these objects because they are typical objects that may fail to gen-
erate good grasp candidates without shape completion. Other objects such as a banana
or a marker are quite simple and small, so that improvement of shape completion on the
grasping result is minor. In our robotic experiments, each YCB object is firstly placed
on the center of flat table and then moves randomly as long as it can appear in the field
of the vision sensor and within the executable range of our UR5 robot arm.

For the selected six objects, we perform grasp evaluation based on PointNetGPD [4]
on two different methods: Without our shape completion (WOSC) and with our shape
completion (WSC). We run the robot experiment by randomly putting the object on the
table and grasping it ten times, then calculating the success rate. The experiment result
i1s shown in Table 3.8. We can see that all six objects’ grasp success rates from our
grasp pipeline outperform or are even with the original method. The low success rate
of the power drill for both methods is due to the contact area of the power drill head
being too slippery for the robot to grasp. The failures of WOSC with the observed point
cloud input are mainly due to the limit of the camera viewpoint, and GPG generates
grasp candidates that sink into the object. An explanation of this situation is illustrated
in Fig. 3.4, which demonstrates that our shape completion model can improve the grasp
success rate in some particular objects.

Thttps://en.mech-mind.net/
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3.6.2 Robotic Experiments on Object Occlusion

Experimental Setup of Object Occlusion When there are different objects on the flat
table, the occlusions from other objects will cause a lack of geometric information on
the target object. To simulate this scene, we choose bleach cleanser as the target object
and other YCB objects are picked as a potential occluder where the occluder as the
foreground is placed directly in front of the target object. All objects are placed in a
natural vertical position while the horizontal distance between the two types of objects
is set to 8 cm. The experimental objects and segmentation result of the target object can
be seen in Fig. 3.6. The robot arm and camera are the same as in the robotic experiment
on the single object. Furthermore, in real experiments, the target object is placed near
the center of the table to ensure that the vision camera can capture it accurately and then
we randomly change the 6D pose of the target object to grasp ten times.

As shown in Fig. 3.7, we compare the grasping performance of WOSC and WSC
when five different YCB objects occlude the target object (bleach cleanser). The average
successful grasping rate of WSC is 88% while WOSC is 50%. It demonstrates that our
shape completion method can significantly increase the successful grasping rate up to
32% comparing the original grasping strategy. However, we found that some irregularly
shaped objects like the Mustard bottle and Power drill will divide the original partial
point cloud of the target object into multiple surface parts. Because PointNetGPD [4]
cannot understand that these separated point clouds are from the same object, WOSC
generates more wrong grasp candidates without our shape completion.

Furthermore, we explored the effect of the occlusion ratio on the grasp performance
by stacking different blocks in front of the target object as an occlusion. Because the
target object and stacking blocks are all placed on the table vertically and the horizontal
length of each block is bigger than the maximum horizontal width of the target object,
the occlusion ratio is calculated by measuring the vertical height of stacking blocks (H;)
and the target object (H;). As seen from Fig. 3.8, we conducted six additional experi-

10}

Successful Grasping Number

0 Cracker box Sugar box Coffee canMustard bottlePower drill

Different Occluder

Figure 3.7: Grasping performance comparison when the target object is behind different occlud-
ers.
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Figure 3.8: Grasping performance comparison when the target object is in a different occlusion
ratio.

ments with an occlusion rate between 0.2 and 0.9 to compare the two methods. When
the occlusion ratio is less than 0.6, the grasping success rate of WSC is significantly im-
proved over that of WOSC. However, because there are few high occlusion scenes in the
YCB video dataset, it is still difficult for TransSC to repair the partial point cloud, espe-
cially when the occlusion ratio is higher than 0.8. Furthermore, when the occlusion ratio
is between 0.8 and 1.0, it means that the target object has been completely obscured.
The vision information of the target object is too little, so it’s also much more difficult
to use shape completion to restore complete object information. According to our ob-
servation in daily life, we found 0.2-0.6 is the most common object occlusion ratio and
our experiments showed that our shape completion method can effectively improve the
successful rate within this range.

3.7 Discussion and Summary

In this chapter, we present a novel transformer-based sparse shape completion network
(TransSC). This network includes a transformer-based encoder and manifold-based de-
coder that we designed, enabling our model to achieve a great completion result and
outperform other representative methods. The experiments show that our network is ro-
bust to sparse and noisy point cloud input. Besides, simulation grasping experiments
show our model could achieve a smaller grasp joint error than traditional robotic com-
pletion methods. Finally, when executing real robotic experiments of single objects and
object occlusion, we demonstrate that our TransSC can be easily embedded into an ex-
isting grasp evaluation module and improve grasping performance significantly in both
scenes.

The lack of object geometric information in our dataset is due to the change in the
camera viewpoint and the occlusion by different objects. Thus, our grasp pipeline can
solve both situations occurring in the grasping task successfully. However, similar to the
research issue of 6 DoF pose estimation, it is still challenging to achieve shape com-
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pletion of an arbitrary object at an arbitrary pose due to the limited object categories
in our dataset. So the main limitation in this chapter is that the object categories in our
constructed dataset are still small and they are only limited to the YCB objects, which
causes our shape completion model not to be generalized into other novel objects. In fu-
ture work, our goal is to collect more object categories to achieve a better generalization
for unseen but similarly shaped objects. Furthermore, we will also consider more data
augmentation strategies like adding more data representations, different object 6 DoF
poses and different point cloud missing ratios as our experiments have shown, which
can hopefully achieve a better grasp performance from our shape completion model in
the real robotic experiments.
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Chapter 4

Task-oriented Grasping Generation
Based on 3D Visual Affordance

Currently, task-oriented grasp detection approaches are mostly based on pixel-level af-
fordance detection and semantic segmentation. These pixel-level approaches heavily
rely on the accuracy of a 2D affordance mask, and the generated grasp candidates are re-
stricted to a small workspace. In this chapter, we first construct a novel affordance-based
grasp dataset and propose a 6-DoF task-oriented grasp detection framework, which takes
the observed object point cloud as input and predicts diverse 6-DoF grasp poses for dif-
ferent tasks. Specifically, our implicit estimation network and visual affordance network
in this framework could directly predict coarse grasp candidates, and corresponding
3D affordance heatmap for each potential task, respectively. Furthermore, the grasping
scores from coarse grasps are combined with heatmap values to generate more accurate
and finer candidates. Our proposed framework shows significant improvements com-
pared to baselines for existing and novel objects on our simulation dataset. Although
our framework is trained based on the simulated objects and environment, the final gen-
erated grasp candidates can be accurately and stably executed in real robot experiments
when the object is randomly placed on a support surface.

4.1 Introduction

Recently, task-oriented robotic grasping and manipulation have received more and more
attention from the robotics community [34, 145, 146], which aims to generate different
robotic actions and interactions for the same object representing of a potential scenario.
The outcome of task-oriented robotic motion can benefit a robot’s ability to understand
the semantic context of objects better. For example, traditional robotic grasping detec-
tion methods (pixel-based and point cloud-based) all generate random grasp candidates
around the target object. However, these methods lack the understanding of object con-
text (such as global and local texture).

To cope with this limitation, some researchers introduce the concept of affordance
into the robotic field, which plays a key role as a mediator, organising the diversity of
possible perceptions into tractable presentations that can support reasoning processes to
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Figure 4.1: Overview of our 6-DoF task-oriented grasp detection framework for affordance-
based robotic grasping. The observed point cloud from the RGB-D camera is sampled as input
P € RY*3 Tt will pass into two parallel modules, the grasping affordance module and the visual
affordance detection module. The first module finally outputs coarse grasp candidates G¢ in the
form of SE(3) and corresponding confidence scores; the other module outputs a 3D heatmap
HY where the values of each affordance label are predicted. Finally, the visual affordance map
values combine with confidence scores to guide the coarse grasp candidates G¢ in becoming more
accurate and fine. And fine grasp candidates G will be executed in the real robotic experiments.

improve the generalization of tasks [147,148]. However, most of the current mainstream
affordance-based robot grasping methods require prior pixel-level target detection and
semantic segmentation [32,38, 149-151], where grasping candidates are generated after
obtaining the target object part. Nonetheless, this kind of grasp detection strategy cannot
essentially couple with the contextual information of objects, and the pose of pixel-based
grasp is at a limited dimension. To combine 6-DoF grasp detection with affordance
knowledge, some works are also proposed to use the observed point cloud as the model
input recently [37,41,42,152]. These methods either rely solely on a generative model to
generate target region grasping, or use masks to assist grasping detection, which cannot
achieve a great trade-off between grasp quality and generalization ability.

As illustrated in Fig. 4.1, we present a novel 6-DoF task-oriented grasp detection
framework for affordance-based robotic grasping tasks. Specifically, the input of our
framework is the partial object point cloud captured by the RGB-D camera. Our frame-
work consists of two modules: the grasping affordance detection module and the visual
affordance prediction module. Motivated by the grasp generation approach based on
the generative model (VAEs) [17], it achieves great grasp generation results for some
clearly outlined objects like a mug, a scissor and a bottle. Due to the complex data dis-
tribution and geometry structures of points, we postulate that the uni-modal distribution
assumption can be violated in multi-affordance grasping generation tasks. Especially
the generated grasp poses from point-wise features can vary vastly within different af-
fordances. Thus, we design each task with an implicit representation to better represent
the complex distribution. Otherwise, a grasp evaluation network is designed to evaluate
the generated coarse grasp candidates. Both networks are trained in our self-constructed
affordance grasp dataset. For the visual affordance prediction module, inspired by the
work of 3D affordanceNet benchmark [28], we designed an attention-aware bilinear fea-
ture learning network to capture the geometric dependencies and semantic correlations
by learning point features and edge features, simultaneously. Sequentially, the predicted
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affordance map guides coarse grasp candidates to centrally distribute around the spatial
region of the maximum map value, which could significantly improve the accuracy and
stability of the generated grasps.

The main contributions of this chapter can be summarized as:

* Based on the work of ACRONYM [153], we introduce an affordance-based grasp
dataset where each successful grasp of each object is annotated as a task-oriented
label. Each grasp is evaluated by the simulated engine.

* An implicit multi-stream network is proposed to generate diverse affordance-
based grasp candidates directly, showing a better performance than the VAEs
model.

* To use the spatial context of objects, we design an attention-aware bilinear feature
learning network and first introduce 3D visual affordance to real robotic grasp-
ing, which effectively guides coarse grasp candidates to become more affordance-
centric and finer. We also demonstrate that these grasps generated from simulated
objects can be transferred to the real world.

4.2 Problem Formulation

We consider a setup consisting of a robotic arm with parallel-jaw grippers, an RGB-D
camera and an object on a planar tabletop to be grasped. A single-view depth map is
captured by the RGB-D camera to convert into a 2.5D partial point cloud P € RN*3
and then passes into the pipeline. For simplicity, all spatial quantities are in camera
coordinate frames.

Our pipeline consists of two models: the Grasping Affordance Detection Model and
the Visual Affordance Prediction Model. The first model aims to learn a posterior dis-
tribution D((G(T)*)|P), where P is the input partial point cloud and G(7)* represents
successful grasps of different mini-task actions 7~ € (0, M), such as wrap, grasp, pour,
and cut, where M is the total number of mini-task categories. This model outputs coarse
6-DoF grasp detection candidates G and associated confidence scores Sp. Furthermore,
the function of the second model is to predict a 3D visual affordance map Sy € [0, 1]V
for different mini-task actions 7, which are combined with original grasp confidence
scores Sp to obtain fine grasp candidates Gz. Each generated grasp G; € (Ge, Gr) is
denoted as (R, T') € SE(3). We trained our grasp framework by randomly rotating the
objects with different affordance in a simulated rendering environment, where final gen-
erated grasps Gr are defined according to the object reference frame whose axes are
parallel to the camera. Finally, the G, representing fine successful grasps of a certain
task affordance, will be transformed into the camera coordinate frame to be executed in
real robot experiments.
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Table 4.1: Statistic of object number and corresponding affordance categories in the affordance
grasp dataset

Object Mug Bottle Knife Hat Bowl Scissor

grasp, wrap, | grasp, wrap,

Affordance grasp, cut/stab | grasp, wear | grasp, wrap | grasp, cut

pour, contain contain
Number 60 33 42 8 52 8

Figure 4.2: Visualization of our partial affordance grasp dataset. (Left) 3D model of ShapeNet
objects. (Right) All markers represent successful grasps and different colors of markers indicate
different grasp tasks.

4.3 Affordance-based Grasping Dataset

Inspired by the 3D AffordanceNet [28] and ACRONYM dataset [153], we focus on con-
structing a new dataset for task-oriented grasping based on simulated ShapeNet [154]
objects. We chose the ACRONYM dataset as our grasp prototype because it is a large
and well-established dataset for robot grasp planning, which in total contains more than
17M parallel grasps and diverse objects from different categories. Moreover, each grasp
in this dataset is evaluated and then judged as a successful or failed one through a physics
simulator. As shown in Table 4.1, we exclude many object categories because they lack
affordance meaning and could not be applied to household robotic scenarios.

Rather than using different object parts as different affordance representations [28,
37,38], we annotate all successful grasps of selected objects with different affordance
labels. For example, grasp affordance in the mug instance means all successful grasps
around the mug handle while pour affordance means all successful grasps around the
upper mug rim. During our annotating process, the affordance label number for different
objects of the same categories are assumed to be the same though we find the distribution
of successful grasps of a few objects is not similar. Taking the mug as an example, all
successful grasps of some mugs with special shape can only be divided into two kinds of
affordance types. As a result, we use a constant grasp pose value to indicate successful
grasp for the other two kinds of affordance types. All failed grasp candidates of selected
objects existing in [153] are also reserved in our dataset as negative grasp samples.
Otherwise, we transform all objects and corresponding grasps into a uniform coordinate
frame, which is conducive to the training of two subsequent modules. Fig. 4.2 visualizes
different affordance results of selected objects in our dataset. Finally, our affordance
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Figure 4.3: The architecture of the proposed implicit multi-stream estimation model.

grasps dataset consists of 203 household objects from 6 categories, and more than 100K
successful grasps are selected and annotated into 6 common tasks in our daily lives.

4.4 Grasp-Affordance Framework

In Fig. 4.1, our grasping affordance detection framework consists of two sub-networks:
an implicit estimation network and a grasping evaluation network. Firstly, based on the
proposed dataset, the object point cloud is captured by the camera by rotating the ob-
ject at a random pose in the rendering environment, and each point cloud is sampled
to 2048 points through Farthest Point Sampling (FPS). Then the implicit estimation
network takes the partial point cloud as input and outputs diverse grasp candidates cor-
responding to its affordance label. On the other side, the grasping evaluation network
takes different grasps as input and learns a classifier to recognize success and failure.
Finally, coarse grasp candidates of each affordance label will be obtained when the gen-
erated grasps from the implicit estimation network are input into the trained grasping
evaluation network. Below, we present details of these two sub-networks.

4.4.1 Implicit Estimation Network

Generative modelling is a cornerstone for machine learning, which has been widely
used in the 2D vision field, like image tampering and image compositing. In previous
3D point cloud-based robotic research [17, 42], variational autoencoders (VAEs) are
commonly chosen for numerous grasp candidates. However, an accurate VAEs model
usually needs a prior partition function to predict the distribution of ground truth, like a
mixture of Gaussian, hidden Markov or Boltzmann machines. Especially when we need
to predict S E'(3) grasps of different affordance tasks simultaneously, it is challenging to
sample from these models. On the other hand, using an implicit model is a more natural
way in terms of the sampling strategy [155—-157], which can be simply expressed by the
following sampling procedure:

1. Sample ¢ ~ M(0,1)

2. Return y := N (¢)
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Where M is a latent distribution and N is a highly expressive function approximator,
usually replaced by a neural network.

To encode both affordance and geometry from the partial point cloud, we use the
implicit maximum likelihood estimation method [156] to predict grasp poses. As shown
in Fig. 4.3, we propose a multi-stream neural network architecture for jointly predicting
SE(3) grasps of different affordance tasks. Each stream represents a different affor-
dance label of certain object. At each network stream, the sampled point cloud P2048x3
is concatenated with a latent indicator £ and then is input into the PointNet++ [158]
architecture to extract spatial information between the point cloud and the potential
grasp pose. After that, a 1024-d generalized feature vector (GFV) can be obtained. We
parametrize each GFV with separated small full-connected layers. The output rotation
and translation values of the target grasp pose are expressed as:

R; — [quaty, quaty, quats, quat,] 4.1)

T — [X,Y, 7] (4.2)

where 7 and P separately represent the affordance label and the object point cloud, and
rotation values are predicted as a form of quaternion.

4.4.2 Grasping Evaluation Network

Similar to the evaluation method of [17], we choose to combine all grasp poses (Gs, Gr)
with object point cloud P as the input of the network, where a gripper point cloud
corresponding to each grasp pose is used to approximate the real gripper. An extra binary
value is also used to judge whether the point from the combined point cloud belongs to
the object or gripper. Furthermore, like the implicit estimation network, we still use
PointNet++ [158] to explore the spatial relationship between object point cloud and
gripper point cloud. The output module consists of three full-connected layers [1024,
512, 256] and a final sigmoid layer. Finally, according to the binary ground truth label
(success or failure), it is easy to train a classifier to predict the successful probability of
each input grasp. After finishing the evaluator training, this model is used to deal with
output results from the implicit estimation network, which can guarantee final grasp
candidates are all successful.

4.4.3 Visual Affordance Prediction Module

Fig. 4.4 illustrates our attention-aware visual affordance network architecture, which
consists of two main components: embedding network and metric decoder. The embed-
ding network is the most important part of our network since the performance of the
metric decoder relies on learned embedding space. We expect this embedding work to
realize two critical functions: 1) to encode the geometric relationship of the local region,
especially for different affordance parts. 2) to encode global semantic information based
on global context.
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Figure 4.4: The architecture of our proposed visual affordance network, where EConv is the
EdgeConv layer and MHSA is the multi-head self-attention module.

Based on this idea, we design an attention-aware bilinear learning framework that
incorporates point features and edge features to extract local and global semantic in-
formation. In particular, we adopt the PointNet [15] and DGCNN [159] as our back-
bone to extract different semantic features respectively. Based on the PointNet, three
sequential convolutional layers (Conv(64, 128, 256)) are used to produce global seman-
tic features. [159] proposed a dynamic graph network architecture, which can effectively
output local geometry features from the first EdgeConv layer (EConv(64)) and global
spatial features from the final multi-layer perceptrons layer (MLP(512)). To further ob-
tain local correlations for each affordance part, the multi-head self-attention (MHSA (64,
128)) module is applied to generate more semantic features, encouraging point-wise
features to aggregate with global context for the affordance-meaning point cloud. Af-
ter obtaining the point feature and edge feature, they are concatenated together to input
into the metric decoder, which consists of a stack of multi-layer perceptron layers. It
finally predicts a probability distribution based on the partial point cloud corresponding
to different affordance tasks:

HY = {H,...,Hy|H" = map;(P)} (4.3)

qY ={hd, .. kY1) nl € [0,1] (4.4)

where HY is the predicted point cloud map values of affordance label i. In our
network model, the parameters of N and M represent the sampled point cloud number
and the affordance task number, respectively.

4.4.4 Fine Grasp Candidate Generation

For each affordance label 4, all coarse grasp candidates G¢* output by the grasping de-
tection module are sorted in descending order according to their confidence scores S¢'.
Then, the predicted values of the affordance heatmap from the visual affordance module
can be also obtained and sorted descending as H.". To reduce the computational cost
for the sampling sparse point cloud, we can define Uf; C P; as the subset of points cor-
responding to the top 100 maximum values in H; after filtering noisy outliers. Then the
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reduced point cloud and its associated values can be represented as our affordance label
(P H1 where:

P — (p e P, | Hi(p) € Ui} (4.5)

H' = {H;(p) | p € P} (4.6)

Note that most of the values of H}Y are approximately 0 because they do not belong to
label 7. After that, each point from P! is selected to compute the L2 distance with the
middle control point PF™ of each coarse candidate, the minimal distance is regarded as
the vision-guided score for each grasp:

Sy’ = min(||P} — P™|]), for j € [0,100) (4.7)

‘The final fine grasp candidates can be obtained by combining the value of Sc¢' and

S]:Z = (1 * SCZ + i * sz (48)

where Sr' represents the score of fine grasp candidates for affordance label i and the
hyperparameters of o, o, are both set to 0.5.

4.5 Simulation Experiments

4.5.1 Implementation Details

Data Augmentation: The object point cloud was captured through rotating at a random
Euler angle (x, y, 0), where the range of rotation is x € [0, 27|,y € [—7/2,7/2]. The ro-
tation number of each object is 900 times, where jitter and dropout operations are added
in each rotation. After that, the observed partial point cloud is sampled to 2048 points
through the farthest point sampling (FPS) algorithm during training. And they are also
processed through a mean-centred and unit-scaled trick. For the visual affordance pre-
diction, where we followed [28], the point cloud needs to be further normalized during
the training.

Training Details: The grasp affordance module is trained based on our proposed
grasp affordance dataset, and the visual affordance prediction module is trained on the
3D AffordanceNet dataset [28], which causes two kinds of training loss. For the grasp
affordance loss, we firstly compute minimum L1 loss between any predicted grasp pose
Ge = [quaty, quats, quats, quaty, X, Y, Z] with the ground-truth grasp poses G(7)* for
each affordance task 7. To simplify the computational complexity, each grasp pose is
transformed to 7 control points representing a gripper to make training simpler. Thus,
the loss function of the implicit estimation network is denoted as £;:

1 1
=373 (e = o071 “@9)

Moreover, for the loss function of the grasping evaluation network, we adopt the
standard binary cross-entropy loss between the predicted grasp status o€ [0, 1] and the
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ground-truth grasp label o € {0,1} (O for failure, 1 for success). Thus, the loss of the
grasp evaluator is denoted as L.:

L. = —(olog(0) + (1 — 0)log(1 — o) (4.10)

As visual affordance loss, the same training target in benchmark [28] is adopted:

*

Lo(m,m) = Wy % Leo(m, m) + Wa  Lyice(m, m) (4.11)

Where m € [0, 1] denotes predicted affordance map values and m € [0, 1] denotes the
ground-truth propagation score (0 is the minimum value of correlation for each affor-
dance label, 1 is the maximum value of correlation). L., is the cross-entropy loss and
dice loss Lg;.e 1s also introduced to mitigate the imbalance issue caused by the dataset.
In our training process, hyperparameters W, and W, are set as 0.4 and 0.6, separately.

4.5.2 Ablation Study

We design two baselines for comparison with our method. 1) Baselinel: this is from a
similar work [42], which takes the scanned point cloud as input to train a framework to
generate different task-oriented grasps. The grasp detection benchmark from this work
is adapted from [17] and a knowledge graph is introduced to connect diverse tasks and
objects. However, we find that the effect of the knowledge graph is limited in our dataset
due to fewer tasks and object categories. 2) Baseline2: this can be considered as a de-
graded version of our method, where the multi-stream implicit estimation method is

Table 4.2: Comparison of different generators: IEN and VAEs

ESM | Mug | Bottle | Bowl | Hat | Scissors | Knife | Average
IEN | 0.062 | 0.058 | 0.081 | 0.122 | 0.157 | 0.071 | 0.092
VAEs | 0.106 | 0.112 | 0.142 | 0.186 | 0.211 | 0.147 | 0.151
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Figure 4.5: The effect of length of a latent vector in our implicit estimation network.
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Table 4.3: Ablation study for the visual affordance module

Point feature | Edge feature | MHSA module | average AP | average AUC | average IOU
X v v 0.4201 0.8325 0.1098
v X 4 0.3737 0.7982 0.1473
4 v X 0.4241 0.8249 0.1618
v v 4 0.4281 0.8360 0.1628

Table 4.4: Evaluated similarity metric from different existing objects for different-oriented tasks

Grasp Wrap/Cut
Mugl | Mug2 | Mug3 | Bottlel | Knifel | Scissorl | Mugl | Mug2 | Mug3 | Bowl | Knifel | Scissorl
Baselinel | 0.167 | 0.147 | 0.107 | 0.149 | 0.151 0.321 | 0.141 | 0.088 | 0.096 | 0.203 | 0.185 0.185
Baseline2 | 0.061 | 0.051 | 0.048 | 0.092 | 0.138 0.248 | 0.097 | 0.094 | 0.084 | 0.133 | 0.133 0.139
Our 0.046 | 0.032 | 0.033 | 0.110 | 0.083 0.179 — 0.121 | 0.117 0.144

Task

employed to detect grasp without the guiding of the 3D visual affordance. To demon-
strate the effectiveness of our method, we also design an evaluation metric to compare
the grasp similarity between predicted grasp and ground truths in our dataset. Similar
to the loss function of the implicit estimation network, we sample 100 predicted grasps
and ground truth grasps randomly and then we will compare the L1 distance of each pre-
dicted grasp G with G(7)*, the minimum value is assumed as its similarity value. The
mean value of the sum of 100 minimum values can be computed as the evaluated simi-
larity metric (ESM). A smaller ESM value means a better similarity between predicted
grasps and ground truths.

We study the effects of the grasp detection model from our implicit estimation net-
work (IEN) and widely used VAEs model [17], and the comparison results of ESM are
listed in Table 4.2. It shows that our network can achieve a better prediction result than
the VAEs model. Moreover, we illustrate the effect of the length of the latent vector in
our implicit estimation network. As can be seen from Fig. 4.5, when the length of the
latent vector equals 2, the network achieves the best performance in the test set because
a slightly bigger latent vector can cause an over-fitting problem.

As the vision-guiding module, the visual affordance network is also the most im-
portant component of our framework. Thus, we continue to study the effects of vari-
ous designs existing in visual affordance network. Though point-level (PointNet [15]
and PointNet++ [158]) and edge-level (DGCCN [159]) methods are used in the bench-
mark [28], we denote the levels of new features, i.e. point feature, edge feature, and
MHSA module, respectively. The results of three variants are listed in Table 4.3. Even-
tually, the integration features of the three levels give us the best performance on the
visual affordance prediction.

4.5.3 Comparison with Baselines

Table 4.4 and 4.5 summarize the ESM results of comparing our method to the baselines
on existing objects and novel objects, respectively. It is not surprising that the use of im-
plicit representation leads to improvements in task-oriented grasp prediction. Moreover,
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Table 4.5: Evaluated similarity metric from different novel objects for different-oriented tasks

Grasp Wrap/Cut
Mug4 | Mug5 | Scissor2 | Knife2 | Knife3 | Mug4 | Mug5 | Scissor2 | Knife2 | Knife3
Baselinel | 0.130 | 0.136 | 0.192 0.156 | 0.178 | 0.082 | 0.109 | 0.234 0.185 | 0.195
Baseline2 | 0.117 | 0.056 | 0.161 0.091 | 0.122 | 0.076 | 0.101 | 0.187 0.131 | 0.162
Our 0.059 | 0.037 | 0.161 0.052 | 0.104 — 0.162 0.104 | 0.134

Task

/

Khnifel Knife2 Khnife3 Khnifel Knife2 Knife3

Figure 4.6: Visualization results of our proposed method for task-oriented grasp prediction. For
each affordance label, green means the generated grasp without visual guidance, purple means
grasp candidates from our method, and red means the ground truth from our dataset. (Tasks:
grasp of the mug, cut of the knife and grasp of the knife.)

for most object point clouds, the 3D affordance map in our method could effectively im-
prove the final prediction result. We also observe a phenomenon that the coarse version
of our approach (Baseline2) sometimes is better than our method. This is probably be-
cause the input partial point cloud sometimes lacks the affordance context. For example,
grasp of mug corresponds to the mug handle. If the captured mug point cloud misses the
handle completely, that will cause a bad affordance heatmap. Our method also shows
the best performance for novel objects, demonstrating a great ability for generalization.

4.5.4 Visualization Analysis

Fig. 4.6 and 4.7 show the visualization results of our proposed method for task-oriented
grasp prediction, respectively. The results of affordance-based grasp candidates from
our method are compared with the predictions from the degraded version and ground
truths. As seen from Fig. 4.6, it is very challenging to predict the grasps restricted in
a small affordance region. The coarse grasp candidates from a degraded version of our
method are not ideal because many predicted grasps are not centric-around the affor-
dance context (like grasp around the handle of a mug, and cut around the handle of a
knife). However, the predictions from our method could be more concentrated on the
affordance area, and the fine grasp candidates are more accurate. Fig. 4.7 also shows the
visualization results of the 3D affordance map and corresponding grasp candidates. We
find an interesting result when the affordance region is evenly distributed over the con-
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Figure 4.7: Visualization results of the 3D affordance map and corresponding grasp candidates
(wrap of the bowl and cut of the knife). The different colours of the right bar are just used for
the affordance map.

Figure 4.8: All novel objects that are tested in our real robot experiment.

tour of the object (like wrap of the bowl and mug), where the predictions of our method
will be similar to the coarse candidates. That is because the groundtruths are uniformly
distributed around the whole point cloud, causing the vision-guided score Sy, cannot
effectively improve the original grasping score Sc'.

4.6 Robot Experiments

To evaluate the performance using our task-oriented grasping detection framework for
robotic grasping, we run real robot experiments to demonstrate that our model trained
from simulation transfers well to the real robot environment. In the experiment setup,
we put a single object on a flat table at an arbitrary pose without any clutter. As shown
in Fig. 4.8, all the objects we test are unknown to the system. To avoid causing damage
to real objects and gripper, some objects like mugs and knives are obtained through 3D-
print technology. Near the target object, a KUKA LWR robot is fixed on the table with
a 2-fingered WSG-50 gripper. And about 1.2 m in front of the robot and target object, a
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\
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Figure 4.9: Evaluation results based on different tasks and objects from real robot grasping.

Mechmind RGB-D camera is suspended on a bracket to capture the object point cloud.
The obtained point cloud is input into the trained framework. For each task, over 3000
successful coarse grasp candidates are output first. Then a 3D visual affordance map
for this affordance label is predicted to couple with the original grasp score. Finally,
20 fine-sampled grasp candidates are sent to the robot for execution according to their
final evaluated grasping scores in descending order, where the first grasp (highest score)
will be executed if there is no problem with its planning in Movelt. The whole frame-
work 1is trained and inferenced on the desktop PC with NVIDIA GTX 2080Ti GPU.
Fig. 4.9 shows the evaluation examples based on different tasks and objects from real
robot grasping. It demonstrates that our approach trained in simulation can be validated
successfully in a real environment. During the process of experiments, we found that if
more affordance features like the handle of the mug and knife can be captured by the
camera, the final execution grasp is more stable and accurate. The gap between the sim-
ulation and the real environment also exists when the texture of the real object is very
smooth and irregular though the generated grasp looks good. Nonetheless, for almost
every experiment, our fine grasp poses mainly focus on the corresponding affordance
areas, showing our framework can well reason the relationship between grasp detection
and task-oriented affordance.

4.7 Discussion and Summary

This chapter investigates the challenging problem of task-oriented robotic grasping. Fo-
cusing on 6-DoF grasp detection, we proposed a novel solution by designing three mod-
ules: an implicit estimation network, a grasp evaluation network, and an attention-aware
visual affordance network, which achieves consistent and clear improvements over base-
lines for existing and novel objects in our self-constructed affordance grasp dataset. This
work provides several key insights into task-oriented grasping: 1) the learning of im-
plicit representations from objects and grasp poses from each affordance label is the
core of 6-DoF grasping affordance detection. 2) the exploitation of point-based, edge-
based features and the attention mechanism are necessary to achieve a better affordance
map prediction. 3) the generated 3D affordance map could effectively guide coarse grasp
candidates to become more accurate and finer for a specific affordance task. For future
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work, we hope to use the advantage of the simulation environment to rapidly extend the
number of object categories and affordance labels, improving the generalization abil-
ity of our framework. Moreover, we also want to explore the possibility of combining
the trained framework with hand-over tasks, which is beneficial to increase the use of
affordance learning in the robotic field.
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Chapter 5

Task-oriented Hand-Object Grasping
Recognition Using Event Vision

In the last chapter, we discussed the grasping generation based on the context-aware
object parts. Continually, we will discuss the different hand-object grasping types when
they are in dynamic motion conditions, especially involving another vision modality.
The event-based camera is a novel neuromorphic vision sensor that can perceive differ-
ent dynamic behaviors due to its low latency, asynchronous data stream, and high dy-
namic range characteristics. There has been much work based on event cameras to solve
problems such as object tracking, visual odometry, and gesture recognition. However,
the adoption of event vision to analyze hand-object action in a dynamic environment, a
problem that regular CMOS cameras cannot handle, is still lacking in relevant research.
This work presents a richly annotated task-oriented hand-object action dataset consist-
ing of asynchronous event streams, captured by the event-based camera system on dif-
ferent application scenarios. In addition, we design an attention-based residual spiking
neural network (ARSNN) by learning temporal-wise and spatial-wise attention simul-
taneously and introducing a particular residual connection structure to achieve dynamic
hand-object action recognition. Extensive experiments are validated by comparing with
existing baseline methods to form a vision benchmark. We also show that the learned
recognition model can be transferred to classify a real robot hand-object action.

5.1 Introduction

In many situations, including augmented reality (AR), the Metaverse, and human-computer
interaction (HCI), accurate motion recognition for the scene of a hand interacting dy-
namically with an object is very basic but essential. The computer vision and robotics
communities have made a great effort to study different hand-object interaction behav-
iors from visual perception, pose estimation, and grasp prediction. However, there is
little work exploring hand-object interaction from a dynamic perspective which is actu-
ally existing in our daily life. The interaction behavior between hand and object is not
time-static grasping but is accompanied by moving manipulation. For example, if you
want to drink a cola, you will first pick up a cola bottle, then unscrew the bottle cap,
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(a) mug

(b) spatula

Figure 5.1: The visual difference captured by the CMOS camera and event camera when a hand
interacts with (a) mug and (b) spatula with a dynamic motion.

and finally put it near your mouth to drink it. This sequence of dynamic motions in-
cluding handover, unscrew, and drink changes drastically over time. Currently, most
hand-object grasping datasets [62, 63] are based on a simulated environment, making
it challenging to obtain dynamic action data. A few naturally situated datasets [61, 64]
capture the real visual information of the hand-object action to analyze while the dy-
namic characteristics of actions are barely considered. Therefore, it is challenging but
necessary to collect a dynamic hand-object action dataset containing spatial-temporal
information and then visually analyze different grasping behaviors within the dataset.

In this chapter, we define our task as recognizing the action that is being performed as
a person manipulates an object, by observing solely the hand and object. Based on that,
we propose a rich-annotated event-based hand-object action dataset, namely EHoA, to
solve the task-oriented action recognition problem. Unlike traditional CMOS cameras,
the event-based vision sensor can capture extensive visual information both in temporal
and spatial channels. Primarily, it can well perceive motion change under different light-
ing conditions due to a high dynamic range and lighting sensitivity. In most high-level
vision tasks like object tracking, recognition, and detection, insufficient illumination,
and limited exposure time poses a great challenge for model evaluation. To construct
the EHoA dataset from different light conditions, we devise a set of task commands
and invite participants to interact with various objects in our daily scenarios to achieve
these tasks. Finally, we hope not only that this dataset can apply to human beings’ action
recognition but also that the learning experience can be transferred to the robot.

Recently, lots of works [55, 160, 161] from the spiking neural networks (SNNs)
field demonstrate that this kind of spike-based model can achieve a better performance
than ANNs and CNNgs, especially for the event-based recognition tasks, such as gesture
recognition, image classification, and audio recognition. It has unique event-triggered
computation characteristics that endow them a better inherent temporal dynamics and
efficiency in processing spatiotemporal data [162]. To demonstrate that our proposed
EHoA dataset can be applied to hand-object action recognition, we also propose an
attention-based residual spiking neural network (ARSNN) to predict recognition re-
sults. Inspired by the development of residual architecture and attention mechanism,
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Different object categories Event camera Raw event stream
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Figure 5.2: The data collection system: (a) objects from different application scenarios (b)
DAVIS346 Red Event Camera. The computer is hidden for recording data and better illustra-
tion of the system. (c) The output event stream data when the participant interacts with a mug,
where tpcq and t.,q are determined as Os and Ss, separately.

ARSNN will embed and stack multiple mixed attention modules into the deep residual
structure where the main residual blocks are used to generate trunk features and mixed
attention modules are adopted to fuse temporal-wise and spatial-wise attention to gen-
erate mask features. The features of both branches will be further concatenated to form
an attention-based residual block. After successively stacking multiple attention-based
residual blocks, the encoded high-dimensional vector with rich semantic information is
propagated forward to predict the label of the interaction task. The primary contributions
and novelties of this chapter are as follows:

1) Considering the dynamic motion, we propose a novel dataset of hand-object ac-
tion represented by the event streams. For vision researchers, it complements previous
work [44] well and provides a new neuromorphic dataset from real scenes for the re-
searchers to develop their recognition algorithm. For robotic researchers, it also provides
an inference benchmark to promote human-robot interaction in dynamic scenes.

2) We propose a novel attention-based residual spiking neural network (ARSNN) to
address the challenging dynamic hand-object action recognition problem. The ARSNN
can fuse spatial-wise and temporal-wise attention into the residual spiking blocks and
achieve an excellent recognition performance.

3) We make a benchmark based on this dataset by evaluating it with the state-of-
art baseline methods. Moreover, we also demonstrate that the learned model can be
transferred to recognize the robot manipulation task in a dynamic environment.

5.2 [Event-based Hand-object Grasping Dataset

5.2.1 Data Acquisition from Dynamic Interaction

Object Selection Inspired by the work [5], we select three categories of objects that
achieve different hand-object action behaviors. The categories are defined as office,
kitchen, and grocery store. These categories come from real interactive scenes of daily
life, such as pouring water from a mug, unscrewing a bottle cap to drink, using a spoon
to enjoy dessert, etc. Displayed in Fig. 5.2(a), each participant will interact with 30 ob-
jects during the collection process, where objects can be transparent, translucent, and
opaque.
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Capture Device and Recording Setup The data capturing system is shown in
Fig. 5.2. We invite able-bodied volunteers to our laboratory to collect data in the fol-
lowing process: First, an object from the repository is randomly put on a flat table. Next,
the participants stand in the data collection area and hold out their right hand to wait
for commands to interact with the objects. Since we designed 8 different action types
between hand and object, we tell participants the difference between different action
commands and demonstrate each action type before they begin the data collection ex-
periments. After they get familiar with different action commands while adhering to
their daily habits in interacting with objects like grasping and moving, they are further
instructed to move the object for around 5 seconds for each command. In order to ensure
that the recording device fully captures the motion information both of the hand and the
object, we suggest that participants move their hands in translation or rotation along one
direction in space instead of moving randomly. It can be found that each participant will
exhibit variations in the action direction and grasping posture for the same action type.

To capture the dynamic interaction process, we adopt DAVIS346 Red as the event
camera module to record it. Unlike the conventional CMOS camera, which records the
entire image at a fixed frame rate (e.g., 20fps), the event camera captures motion changes
at a microsecond level. As shown in Fig. 5.1, when the interaction motion between hand
and object is fast under natural light, the object appears deformed and blurred in the
RGB image. At this time, it is not easy to distinguish the object type and analyze mo-
tion action through the traditional deep convolutional neural network, especially when
the existing transparent objects will increase the challenge. In contrast, by observing
the frame-based representation converted from the event stream captured by the event
camera, the dynamic features of the hand and the object are well preserved.

Since the event camera also has a good dynamic range even though the lighting con-
ditions change drastically [51], similar to the work of [44], we designed three different
illumination conditions for each experiment to simulate the lighting background in our
daily lives. They are divided into Low(nightfall), Normal(morning), and High(afternoon)
intensity. Normal means the experiment is conducted in the laboratory with all windows
open, High means all LED lights on the ceiling are further turned on, and Low means
all windows and curtains are closed and the lights are turned off.

5.2.2 Data Process and Analysis

Task-oriented Annotation To ensure adequate signal-to-noise ratios (SNR) conducive
to task performance, aggregating events over a certain temporal window is the most effi-
cient approach, which provides a more comprehensive view of the scene and is easier to
annotate, label, and analyze for supervised machine learning [163]. Therefore, we con-
vert the original event stream data F; consisting of a sequence of e; into a frame-based
representation £’ € R¥*W>2 ip an accumulated aggregation method [53], which can
be simply expressed as:

By = {ejlej =[x, 5,15, p5]} (5.1)
F™ = G(E,) (5.2)
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Drink Contain

Handover Tooluse

Figure 5.3: Eight hand-object action tasks are presented. Each sample is visualized by capturing
high-rate event frames, which are transformed from continuous event streams. Many black areas
indicate that the event intensity value of each pixel is zero.
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Figure 5.4: Distribution of different application scenarios (left) and corresponding objects from
different tasks (right).

Where x;, y;, p; means the spatial coordinates and polarity of event stream-based data at
timestamp ¢, respectively. 7 € {1,2,3, ..., T} is the time-step index of the frame-based
data and G is the aggregation function that splits the event’s number into 7" slices with
nearly the same number of events in each slice and integrates events into frames. Specif-
ically, if assuming a two-channel frame as F'(j) and a pixel at (p, z,y) as F(j, p, z,y),
the pixel value p can be integrated from the events data as follows:

Jindex2—1

F(]) = Z Ip,x,y (p’ia'riayi) (53)

1=Jindexl

Where index1 and index?2 represent the split indices from event data, respectively. The
function Z, . ,, (p;, z;, y;) is an indicator function that equals 1 only if (p, z,y) matches
(ps, x4, y;). Without the need to iterate over the entire sample explicitly, we further use
the ”bincount” operation to efficiently accumulate the information on event polarity to
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Figure 5.5: Visualization of the t-SNE embedding distribution of our 8 hand-object action tasks.

obtain the final pixel value p. Fig. 5.3 shows samples for each action task in a frame-
based representation. The mug object at the office can be interacted with four kinds
of task-oriented hand poses. While the bottle in the grocery store and the spoon in the
kitchen can be manipulated with two kinds of hand poses. Thus, each data sample is
annotated as a label from a task subset (Drink, Contain, Pour, Wrap, Handover, Screw,
Tool-use, and Grasp). To ensure that the time length of each raw event stream sample
is approximate, we trim all data samples into a similar length. In addition, we removed
some data because some participants moved the object considerably, causing the object
or hand to move out of the field-of-view (FOV) of the event camera.

Statistics Analysis Our dataset consists of 2144 event stream samples. Fig. 5.4
shows the proportion of each application scenario in the dataset and displays the exact
number of each task-oriented type. Moreover, we employ the t-SNE method to inves-
tigate the distribution of 8 hand-object action types after converting raw event streams
into event frames. As the accumulated event frames encompass information from both
temporal and spatial dimensions, their dimensionality exceeds a single RGB image. To
reduce the computational complexity of embedding, we amalgamate the dimensions
of the temporal and spatial channels as a feature vector H x W x 2 to do the TSNE
operation. Based on the TSNE method, we transform the data into lower dimensions

Table 5.1: Comparison with different datasets based on different features

Feature DVSGesture [44] | FPHA [61] | ContactDB [62] | ContactPose [63] | H20 [64] | Ours
Natural hand shape v X X v v v
Natural object shape X X X X v v
Natural action v v X X v v
Task-oriented v X v v v v
Event streams v X X X X v
#Subjects 29 6 50 50 15 10
#Objects 0 4 50 25 15 30




5.3. ARSNN Architecture

using a perplexity value of 40 to get the lowest KL Divergence. The final segmented
2D visualization results are described in Fig. 5.5. Seeing the distribution of blue points
(class 6) and purple points (class 7) from the kitchen scene, they cluster closely together
due to their similar task and the distribution exhibits a discernible separation when the
scenes of application differ. Furthermore, we compare our EHoA dataset with related
datasets captured using an event or CMOS camera based on the number of subjects and
objects, whether it is built from real scenes, and whether it involves hands, objects, and
task-oriented intentions. Table. 5.1 shows a comparison of our EHoA dataset with other
hand-object related datasets, where natural hand, object, and action represent that all
data are collected from real human-object motion processes rather than through virtual
environments or simulated action engines. We first compare the DVSGesture [44] that
captures data based on the event camera while it does not consider the interaction with
objects. Next, we compare recent hand-object datasets like FPHA [61], ContactDB [62],
ContactPose [63], and H20 [64] that do not consider the dynamic interaction scenario.

5.3 ARSNN Architecture

5.3.1 Spiking Neuron Model

The spiking neuron is the fundamental computing unit of SNNs, where the LIF model
and the Parametric Leaky Integrate-and-Fire (PLIF) model are commonly used to study
the behavior of individual neurons. In the field of neurocomputing, both models capture
the basic behavior of individual neurons and generate insights into how neural activity
contributes to complex behaviors and functions.

The LIF model initially achieves a trade-off between capturing the intricate spa-
tiotemporal dynamics exhibited by biological neurons and maintaining a simplified
mathematical representation. In this model, the membrane potential of a neuron is mod-
elled as a capacitor with a leaky current. When a neuron receives an input signal, its
membrane potential increases until it reaches a threshold, at which point it fires and
sends an output signal. The basic mechanism can be expressed as a differential func-
tion [164]:

AV —gL(V — Ep) + I(t)
dt Chm
Where V' represents the neuron’s membrane potential, g represents the leak conduc-
tance, F/;, represents the leak reversal potential, /(t) represents the input current at time
t, and C'm represents the membrane capacitance. To facilitate neural network training
and inference, a simple iterative representation of LIF neuron can be expressed as:

(54)

Xt,n =g (W”, Ft,n—l)

Ut,n — Ht—l,n + Xt,n

St = Hea (U™ — wuy,)

Ht,n — ‘/resetstm + (5Ut’n) ® (1 . St,n)

(5.5)
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Figure 5.6: The fundamental spiking neuron unit (LIF or PLIF) in the Conv-based SNN layer.

where ¢ and n denote the time step and layer. As stated in Section 5.2.2, we first
transform the raw event streams from our EHoA dataset into frame-based representa-
tions. Frame-based representation F'"~1 is naturally compatible with traditional image
and signal processing techniques, making it easier for researchers to develop different
SNN algorithms, especially leveraging well-established convolutional neural network
(CNN) frameworks. Therefore, g is a convolutional operation that converts the frame-
based input F'%"~! into spatial features X"

X' = AvgPool(BN(Conv(W™, Ft"~1))) (5.6)

Within the integration phase, U*" represents the membrane potential formed through the
integration of the temporal input /'~ and the spatial feature X*". In the spiking gen-
eration (fire) phase, uy, serves as the threshold for determining whether to activate the
output spiking tensor S*" or maintain it at zero. Hea(.) is a Heaviside step function that
outputs 1 when the input is 0, otherwise, it outputs 0. Subsequent to the release of output
spiking, V,...; denotes the reset potential, 5 = e <1 represents the decay factor, and
© signifies element-wise multiplication. And the decayed value of membrane potential
H"™ will serve as the temporal input for the subsequent timestep. The PLIF model is an
extension of the LIF model that introduces a learnable membrane time constant to better
simulate human neurons’ behavior, which changes over time and affects the neuron’s
sensitivity for firing, which is proposed in [53] and can be described as follows:

1
Ugbn = gt-tn 4 ;(Xt’n - (Htil’n — Vieset)) (5.7)

where 7 denotes the membrane time constant. Fig. 5.6 shows the basic mechanism
of spiking neuron unit from the LIF and PLIF models and visualizes the process of
temporal-spatial-based forward propagation. The LIF-based and PLIF-based neuron mod-
els are both evaluated in our baseline methods to compare the performance based on our
EHoA dataset.
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Figure 5.7: The upper row describes the overall architecture of the attention-based residual
spiking neural network (ARSNN). The bottom row illustrates network details about the resid-
ual spiking block and temporal-spatial attention modules, Where conv2d, BN, and SN denote
convolution operation, batch normalization, and spiking neurons, respectively. The final spiking
output of each neuron is limited in [0, 1] and the heatmap also visualizes the difference in their
membrane potentials.

63



Chapter 5. Task-oriented Hand-Object Grasping Recognition Using Event Vision

5.3.2 Temporal-wise and Spatial-wise Attention

As seen in Fig. 5.7, we first use a convolutional spiking encoder consisting of the Conv
and spiking neuron to process the input event frames. The kind of conv-based spiking
encoder is capable of feature extraction from input data and subsequent transformation
into firing spikes occurring at various time steps. Furthermore, we introduce a novel
attention-residual module designed for integration within deep spiking neural networks
(SNNs). Our approach departs from the conventional practice of consecutively stacking
attention modules. Instead, we introduce a trunk branch and a mask branch, facilitating
the concatenation of the residual unit.

Temporal-wise and Spatial-wise Attention Instead of substituting the convolution
layer with self-attention within the contemporary transformer structure, our aim is not
to alter the fundamental meta-operator of established SNNs. Instead, we seek to intro-
duce attention as a saliency component, making it seamlessly compatible with existing
SNN architectures to enhance their representation capabilities. Temporal-wise attention
(TA) in SNNs is a mechanism that allows the network to focus selectively on impor-
tant temporal features of the input frames. It consists of two operations, the squeeze
operation and the excitation operation [165]. The squeeze operation is a process where
temporal information from all channels is consolidated into a singular vector through
techniques like global average pooling or global max pooling. The subsequent excita-
tion operation involves selectively amplifying or suppressing the informative temporal
features obtained from the squeeze operation. This is achieved by applying a collection
of learnable parameters or weights to the squeezed tensor and translating the compressed
features into a set of input scores. Notably, the spatial-wise attention (SA) module fol-
lows a similar squeeze-and-excitation procedure while concentrating on the frame pixel
information, much akin to the extraction of saliency from RGB images. If the average-
pooling operation is chosen to aggregate the channel information, the output TA and SA
scores vector can be expressed as:

S; = o(Wi(ReLU (W;o(AvgPool(X™))))) (5.8)

S, = o(Wip(Conv(AvgPool (X")))) (5.9)

where AvgPool(X") € RT*1*1X1 means the output temporal attention feature and
AvgPool(X!) € R>OHXW means the output spatial attention feature. Wjo, Wy, W;
are the weights of shared MLP layers and convolutional layers, and o means the sigmoid
function. After obtaining the temporal-wise and spatial-wise scores, we use a maximum
function to merge the two attention score vectors based on input feature X to obtain the
output mask feature Maz(S;, Ss|X) of the attention module.

5.3.3 Attention-based Residual Learning

Similar to the idea of attention-based residual learning solving the image classification
problem, it demonstrates that mask attention can well assist its counterpart without at-
tention to improve performance [166]. In this work, we adopt the residual spiking block
as the basic feature learning module, which is modified from the ResNet18 backbone
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Algorithm 1 Feedforward of attention-based residual module
1: Input: X - Input tensor with dimensions [T', N, C, H, W]
2: Output: Output tensor of the single module
3: procedure SKIPCONNECTION(X)

4: identity <— ResidualSpikingBlock(X)

S = o(W;1(ReLU(W;o(AvgPool(X™)))))

Ss = o(W;2(Conv(AvgPool (X*))))

X* + Max(S;, Sq| X)

X < ResidualSpikingBlock(X*) + identity

9: return X

10: end procedure

model. The output of the stacked residual attention module is defined as:
H(X) = Res(X) + Res(Max(S;, Ss| X)) (5.10)

Where X is the input feature of the stacking module. The mask branch feature in spiking
neural networks is designed to selectively amplify informative features while suppress-
ing noise and irrelevant features from the trunk features. As shown in Fig. 5.7, we stack
three attention-based residual modules sequentially to refine the feature maps, hopefully
improving the recognition performance consistently. Furthermore, the architecture inte-
grates an additional residual spiking block, culminating in a fully connected (FC) layer
tasked with the generation of a predictive action class. The details of the forward process
for a single attention-based residual module are summarized in Algorithm 1.
Throughout the training procedure, we incorporate both the neuron models of LIF
and PLIF, along with the newly introduced ARSNN network (as illustrated in Fig. 5.7),
to facilitate both forward learning and backpropagation. Given an input data, our objec-
tive is to activate the neuron corresponding to the class exhibiting the highest response
intensity while ensuring the rest of the neurons remain in an inactive state. To quantify
the training progress, we employ the Mean Squared Error (MSE) as the chosen loss

function:
T-1 M-1

1= 1 , 2
Loss = = P2 <ym _ yt> (5.11)

t=0

where T is the time steps of frame-based data and M is the class number. y;Z and v ;
are the predicted output and target output.

5.4 Network Evaluation

5.4.1 Implemention Details

The EHoA dataset was partitioned into training and testing subsets, maintaining a dis-
tribution ratio of approximately 8:2. To account for the diversity in subjects and ob-
jects originating from our raw dataset, we split two distinct types of training and testing
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Captured event frame Spiking response features at t=1 Spiking response features at t=15

Figure 5.8: Visualization of spiking response of action ”Contain”. From left to right: a captured
event frame of the ”Contain” action sample, and visual representations of the spike response
features derived from 64 channels from the first spiking neuron layer at ¢ = 1 and 15.

sets to evaluate model generalization. These two types are categorized as subject-based
and object-based, implying that the test set comprises previously unseen hand shapes
and unseen objects, respectively. Detailed specifications are available in our publicly
released dataset. The details of the proposed network parameters are clarified as fol-
lows: The input data is represented using tunable frames. In our work, its tensor shape
is described as [N, T, C, H, W], where N is the number of batch size, channel C' is
2, H is 260, and W is 346. To effectively evaluate the effect of other parameters, the
frame number 7" of each data sample is set as 16. As seen in Fig. 5.7, we first use
a convolutional spiking encoder to extract the basic temporal-spatial features, which
could be expressed as {c64k7s2p3-BN-LIP/PLIF-MPk3s2}. ¢64k7s2p3 represents the
output channels = 64, kernel_size = 7, stride = 1, and padding = 3 from the 2D
convolutional layer. And M Pk3s2 means kernel_size = 3, stride = 2 from the 2D
max-pooling layer. For more hyper-parameter details, we use the Adam optimizer with
a learning rate of 0.001 to optimize the gradient-descent process. The NVIDIA 2080Ti
is used to train the proposed network, and the batch size NV is set as 2 due to limited
GPU memory. The method of automatic mixed precision is also adopted to improve the
training speed and reduce memory consumption.

5.4.2 Visualization of Spiking Encoder

To more intuitively explain the temporal-spatial features learned by the spiking encoder
on our EHOA dataset, we input an event frames sample of action ”Contain” in the test
set to evaluate the trained ARSNN model. And the output spike responses S" from
different c-th channels, n-th spiking layers and timestep ¢ € [1,2, .., 16] can be inferred
as a visualized feature map. As shown in Fig. 5.8, we choose the first spiking neuron
layer (n = 1) to visualize spikes from all output channels (¢ = 1,2, 3, ..., 64) because a
deeper neuron layer may generate richer semantic information while visualized feature
maps are harder to understand. If we further select the number of output channels as
1, then the obtained dimension of single feature map Sf’l is computed as (130, 173),
retaining the same dimension from the output of the convolutional layer (c64k7s2p3).
Each pixel in the feature map Sf’l corresponds to the spiking activity rate of an
individual neuron, where the yellow pixel indicates a high spiking activity rate, while the
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Figure 5.9: Accuracy comparison from different RTSA positions based on the EHoA dataset,
split by the objects. Left: LIF neuron model. Right: PLIF neuron model.
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Figure 5.10: Accuracy comparison from different RTSA positions based on the EHoA dataset,
split by the subjects. Left: LIF neuron model. Right: PLIF neuron model.

purple pixel indicates a spiking activity rate approaching zero. It can be seen that spiking
response features vary across different time steps. Specifically, at time step ¢ = 1, the
network appears to prioritize the separated details from hand and object, while att = 15,
it seems to focus on detecting a distinct edge from hand-object motion. The overall spike
responses at different timesteps show that the spiking neuron encoder can effectively
perceive both spatial-variant and temporal-variant input data from dynamic hand-object
motion.

5.4.3 Ablation Study of Attention Position

When training our proposed ARSNN, it is necessary to evaluate the effect of different
positions of the residual temporal-spatial attention (RTSA) module. we define four dif-
ferent RTSA positions: S1: pure residual spiking block without residual attention; S2:
insert RTSA in the first residual block; S3: insert RTSA in the last residual block; S4:
insert RTSA in the whole residual block illustrated in Fig. 5.7. Through the four set-
tings, we evaluate the accuracy of LIF vs. PLIF neuron units based on the EHoA dataset
split by the variety of objects and subjects. When the max training epoch is set as 100,
Fig. 5.9 and Fig. 5.10 demonstrate that the introduction of an attention-based residual
module can improve performance in most cases. In addition, the S4 setting can achieve
the best average accuracy. We can also observe that the recognition performance from
the PLIF neuron model is better than the LIF neuron model overall after adding the
RTSA module.
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Figure 5.11: Confusion matrix for the EHoA dataset, split by objects using the proposed AR-
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Figure 5.12: Confusion matrix for the EHoA dataset, split by subjects using the proposed AR-
SNN framework.

5.4.4 Evaluation of Action Recognition

In our evaluation experiments, we first use the PLIF neuron model to embed in our AR-
SNN network framework and different train sets splitting by subjects and objects are
adopted to train the inference models. After that, the inference models are used in dif-
ferent test sets to obtain recognition accuracy. Fig. 5.11 and Fig. 5.12 represent the con-
fusion matrix maps split from objects and subjects, respectively. Overall, the accuracy of
the objects-based dataset is higher than that of the subjects-based dataset. For example,
the performances of tasks for Handover, Tool-use, and Grasp actions are 98%, while the
performances of subjects for these action labels are about 92%. It demonstrates that the
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Table 5.2: Accuracy and computational cost of models for the EHoA dataset using the LIF and
PLIF neuron

LIF PLIF

Method Features Object Acc. Subject Acc. Object Acc. Subject Acc. Param Flops

(%) (%) (%) (%) ™M@

RSNN-FB [167] Recurrent Feedback 88.36 87.56 89.94 86.41 1.24 1.59

RSNN-SF [167] Stateful Synapse 91.12 89.84 92.11 89.86 1.24 1.59

CSNN [53] ANN-SNN 93.29 89.86 94.28 91.71 0.71 1.58
Resnet18-SNN [161] ANN-SNN 94.87 94.70 95.01 94.93 11.17  53.76

Resnet34-SNN [168] Hybrid training 94.67 89.86 92.31 90.53 21.28 110
TASNN [55] Temporal attention  94.01 91.01 94.93 93.12 11.17  62.01
ARSNN Residual attention ~ 95.66 94.24 95.86 95.16 11.18  78.53

Table 5.3: Comparison results for other frame-wise representations and pure CNN frameworks
based on our EHoA dataset

EHoA Frame-wise representaion 3D CNN ARSNN
TBR [169] Polarity [170] SAE [171] ResNet[172] X3D[173] Our
Object-based 95.38 94.21 93.49 87.56 93.08 95.66
Subject-based  94.65 93.10 92.52 85.33 92.11 94.24

variation of the human hand and hand pose during the interaction process makes it more
difficult to generalize compared to the variation of objects. Otherwise, we also report
the recognition accuracy in Table. 5.2 using LIF and PLIF neuron models by compar-
ing with the state-of-art SNNs-based baseline methods. The results demonstrate that the
PLIF neuron model has a better out-spiking accuracy than the LIF model. And introduc-
ing a residual temporal-spatial attention module can also improve the final performance,
especially compared with temporal attention-based SNNs [55]. In the context of evalu-
ating model complexities, it can be seen that the comprehensive number of parameters
and the flops of our model are bigger than the simple RSNN and CSNN models be-
cause our proposed ARSNN framework employs the ResNet18 architecture as its foun-
dational backbone. However, compared with a more sophisticated SNN model, such
as Resnet34-SNN, our proposed model demonstrates that the introduction of spatial-
temporal attention can effectively mitigate complexity without necessitating an increase
in the network’s depth, while better performance can also be obtained. Furthermore,
compared with the TASNN model, the number of parameters changes little while our
model for all four kinds of evaluation methods can achieve a better performance. We
recognize that it’s still challenging to achieve a trade-off between advanced model per-
formance and simplified model complexity

In this work, we refer to the work [53] to accumulate events to frames by setting
the frame number. we also compare three baselines from other aggregation approaches
by accumulating time: TBR [169], Polarity [170] and SAE [171]. Table. 5.3 shows that
TBR representations can achieve similar performance with our method (LIF-ARSNN)
because they both preserve polarity features and temporal information. Furthermore, we
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Figure 5.13: Visualization of the raw event streams and corresponding average response inten-
sities output by our learned model. Two action tasks: Drink (top) and Handover(down).

also try to use recent 3D CNN methods modified from ResNet [172] and X3D [173] to
process our event frames by regarding them as two-channel high-rate video and compare
their performance with our LIF-ARSNN framework. It can be seen that the evaluation
results of pure CNN methods are worse than spike-based SNN methods, indicating that
the SNNs have a better performance to naturally handle sparse data by generating spikes
in response to events, making them more efficient for processing such information com-
pared to dense CNNSs.

5.5 Robot Hand-object Grasping Recognition

Since our ARSNN framework demonstrates proficiency in recognizing various hand-
object actions from actual human hand interactions, we are also keen to extend this capa-
bility to mechanical dexterous hands and virtual hands. This expansion holds significant
promise for a wide range of applications, particularly in the context of humanoid robots
and the burgeoning Metaverse. In this work, we design a robotic experiment to apply
the learned model for the recognition of dexterous hand-object actions performed by the
PR2 humanoid robot, which has been retrofitted with ShadowHands within our labora-
tory. We collected 8 extra event stream data by controlling the robot hand to manipulate
a variety of objects across different action types. Fig. 5.13 illustrates two samples of
raw event stream data alongside their corresponding average spiking response intensi-
ties output by our model. Specifically, the Drink label means the hand will only grasp
the “handle” part of the "mug” category, and the Handover label means the hand will
only grasp the "body” of the bottle or can” category. It’s noted that the original spiking
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neuron’s output is binary, and its reliability can be affected by inherent noise stemming
from the encoding process. Consequently, to derive our model’s output, we consider the
average response intensity across the final output over a specified time period 7'. Vali-
dated by the results from Drink and Handover actions, our ARSNN model can also rec-
ognize actions for robot-object manipulation successfully. It can also observed that the
Handover action is pretty challenging to recognize because it is similar to the Wrap and
Contain actions. Otherwise, we also found in real deployment experiments, it will take
a response time of 250-350ms to achieve smooth recognition for all eight robot hand-
object action samples. However, the entire inference time from our original ARSNN
model is about Sms, we speculate that this discrepancy can be attributed to hardware
and motion limitations that affect the robots’ ability to perform certain actions smoothly
compared to human hands.

5.6 Discussion and Summary

In this chapter, we propose a novel event-based dataset, EHoA, for visual analysis of dy-
namic human-object action recognition. Eight types of annotations for action behaviors
with 10 subjects and 30 objects under three light conditions are involved in providing
comprehensive labelled tasks. We also propose a novel ARSNN and benchmark the
state-of-the-art baseline methods to complete the visual analysis and achieve challeng-
ing dynamic action recognition tasks. To our knowledge, EHOA is the first dataset using
event vision for human-object action tasks, which has been extensively studied in the
computer vision field and robotics community. Ultimately, we also show the potential
for a trained recognition model to be transferred to real robot manipulation tasks.

In the future, we want to combine the IMU and other motion sensors to collect real-
time pose information when hands interact dynamically with objects. Furthermore, we
will fuse multi-modal data and design better visual analysis algorithms to explore po-
tential hand-object pose estimation tasks. We view this as an initial step toward building
a more extensive dataset in the domain of event vision, specifically for human-object
interaction tasks.
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Chapter 6

Multimodal Transfer Learning for
Robotic Multiple Peg-in-Hole Assembly

Apart from investigating hand-object interactions, we further examine object-object ma-
nipulations from the perspective of interactive perception. Robotic rigid contact-rich
manipulation in an unstructured dynamic environment requires an effective resolution
for smart manufacturing. As the most common use case for the intelligence industry, a
lot of studies based on reinforcement learning (RL) algorithms have been conducted to
improve the performances of single peg-in-hole assembly. However, existing RL meth-
ods are difficult to apply to multiple peg-in-hole issues due to more complicated geo-
metric and physical constraints. In addition, previously limited solutions for multiple
peg-in-hole assembly are hard to transfer into real industrial scenarios flexibly. To ef-
fectively address these issues, this chapter designs a novel and more challenging multi-
ple peg-in-hole assembly setup by using the advantage of the industrial Metaverse. We
propose a detailed solution scheme to solve this task. Specifically, multiple modalities
including vision, proprioception, and force/torque are learned as compact representa-
tions to account for the complexity and uncertainties and improve the sample efficiency.
Furthermore, RL is used in the simulation to train the policy, and the learned policy
is transferred to the real world without extra exploration. Domain randomization and
impedance control are embedded into the policy to narrow the gap between simulation
and reality. Evaluation results demonstrate the effectiveness of the proposed solution,
showcasing successful multiple peg-in-hole assembly and generalization across differ-
ent object shapes in real-world scenarios.

6.1 Introduction

To prompt the high-quality development of the industry, intelligent robots have become
indispensable in realizing many manufacturing processes [174, 175]. Taking the assem-
bly task as an example, the global intelligent assembly market is expected to grow by
30% over the next four years [176]. The most obvious characteristic of an assembly task
is that it involves mechanical interaction and fits between two or more objects, such as
clearance fits, transition fits, and interference fits. Therefore, in order to achieve a high-
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Robot System Assembly Scenes

Figure 6.1: Examples of multiple peg-in-hole assembly scenes from smart manufacturing pro-
cesses. From top to bottom: mechanical fits, furniture assembly, semi-conductor insertion, and
multiple-channel pipette.

precision assembly, research in multiple dimensions should be considered, such as the
redundancy and clearance of the robot’s own mechanical precision, pose uncertainties
between peg and hole objects, and the complex physical models involved in each assem-
bly scene, consisting of geometry, contact force, and kinematics [70, 177-179]. To im-
prove assembly performance, reinforcement learning (RL) has been recently introduced
to learn assembly skills through interaction with environments. The most significant
benefit of using RL algorithms to learn assembly skills is that they enable the continual
solution of the search and insertion processes to generalize previously unknown as-
sembly challenges, such as various clearance and shape requirements [180]. Especially
for the single peg-in-hole assembly, many studies are conducted to achieve promising
results [70,75,77,181]. However, there exist few studies on multiple peg-in-hole manip-
ulation because of a more complicated geometric and physical interaction model [93].
Fig. 6.1 shows different applications related to multiple peg-in-hole assembly tasks in
the intelligent industry, e.g., mechanical fits, furniture assembly, semi-conductor inser-
tion, and multi-channel pipette. Despite this, the experimental setup of previous multiple
peg-in-hole has many flaws, like the peg is fixed on the end-effector, the 6-DOF pose
of the holes object stays constant, the shape of the holes object and pegs object is im-
mutable, and lacking the visual feedback. Practically, their setup with these limitations
is not in line with the actual multiple peg-in-hole assembly scenes [96-98].

On the other hand, the industrial Metaverse as an important branch of Metaverse
has attracted more and more attention from robotics researchers, which hopefully im-
proves the safety and efficiency of applications in each phase of manufacturing. The
concept of the industrial Metaverse can be defined as a new digital twin system of the
real industry, consisting of large-scale industrial data processing, industrial process sim-
ulation, and natural human-machine or human-robot interaction [182]. Previous work
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also demonstrates that industrial Metaverse is highly related to Digital Twin and Sim-
ulation, and transferability is the key technology for the deployment of the industrial
Metaverse [183, 184].

In this chapter, we design a new multiple peg-in-hole assembly setup to solve the
flaws mentioned above from previous work and maximize the transferability which
means a successful policy learned from our setup can be easier to deploy in real man-
ufacturing scenarios. Based on this more challenging task, we also propose an end-
to-end multimodal learning architecture using reinforcement learning, where features
of multiple modalities are compacted into latent representations at a high level via a
tokenization-based model. It enables robotic agents to leverage the complementary na-
ture of these sensing modalities for policy learning. By exploring the previously men-
tioned concept of the Industrial Metaverse, a simulation environment with the setup
is constructed to train the policy with a Soft Actor-Critic (SAC) algorithm [185]. The
learned policy can be transferred to the real world directly. In addition, domain random-
ization is used in simulation to narrow the gap between the simulation and the real exper-
imental setup. Furthermore, impedance control is designed and embedded into the pro-
posed architecture, which helps the policy deal with our physical contact-rich task. More
specifically, we aim to enable the RL agent to learn impedance control strategies, as it
has been widely demonstrated that impedance control can improve system compliance,
which is quite essential for contact-rich tasks [186, 187]. Finally, the proposed assem-
bly task is evaluated both in the simulation and real robot experiments, demonstrating
that the proposed multiple modality-driven impedance-based policy trained with domain
randomization achieves successful dynamic assembly. To the best of our knowledge, this
is the first work to learn such a challenging assembly skill for multiple peg-in-hole on a
real robot. The primary contributions and novelties of this chapter are:

1) We define a novel and more challenging experimental setup for multiple peg-in-
hole assembly task, which is easier to apply to the real application scenario than previous
work [96-98].

2) To achieve the trade-off between excellent visual representation and fast visual
training, we sample a visual dataset with different object shapes based on our setup and
then construct a special module to learn a visual feature representation.

3) A tokenization method based on the transformer architecture is proposed to ex-
tract features from robot proprioception and force/torque signals and the extracted fea-
tures are further fused into a compact multimodal representation.

4) With domain randomization and impedance control, the policy for dynamic as-
sembly can be learned successfully in simulation and then transferred to reality without
extra exploration.

5) Experimental results show the trained policy could achieve generalization to tasks
with different peg shapes under object uncertainties.

6.2 Problem Formulation

We consider a scenario, where a robot manipulator consisting of a robot arm and a
parallel-jaw gripper interacts in finite episodes over discrete steps with a multi-peg ob-
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Figure 6.2: The geometric and contact difference between single peg assembly (left) and multi-
peg assembly (right) with parallel-jaw gripper, p; means the center of each object element.

ject that needs to be inserted in a multi-hole object on a flat table. As seen from Fig. 6.2,
the parallel-jaw gripper is movable and used to grasp the top connector from multi-
ple pegs, instead of directly grasping the backbone part of the peg as the single-peg-
assembly (SPA) problem. In addition, the contact points of the gripper and the connec-
tor are not fixed. So unlike the previously defined multiple-peg-assembly (MPA) prob-
lem [98,99], the state information of the peg cannot be implicitly represented through
the pose of the end-effector. Furthermore, the position and orientation of the multi-hole
object vary in a limited range.

Since full states of the peg and object can not be obtained directly from the real
world, an extra RGB camera is set up to provide their state information. To address this
challenging problem, multiple modalities like visual image, proprioception, and force/-
torque, observed from the manipulator and camera, are used to learn an impedance-
based control policy. Finally, we formulate the dynamic multiple peg-in-hole assembly
task as a Partially Observable Markov Decision Process (POMDP). The optimal policy
7* is finally obtained by maximizing the expected cumulative reward value:

N
ZVR(Staatag)] (61)

7" = argmaxE
™
n=1

where S = {s1,59,...,5:} is a set of states, A = {aj,as,...,a;} is a set of actions,
S:SxA— Rand~y € [0,1] is the discount factor. The goal g is used to determine
whether the problem is solved successfully or the current training step is at the end of the
episode. Although the policy 7* is trained in simulation, it can be directly transferred
to the real world. Furthermore, both simulation and real setup embed an impedance
controller to generate torque commands to drive the manipulator executing assembly.
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Figure 6.3: Overview of the proposed architecture. The left part represents policy training in the
simulation environment, where domain randomization is used to sample the interaction of the
assembly task like color, lighting, camera, and robotic dynamics (left). During the training pro-
cess, multiple modalities including visual image, proprioception, and force/torque signals are all
tokenized and fused into a perceived transformer module. Each predicted policy 7 is embedded
into an impedance controller to execute torque commands to control the manipulator. Finally,
the trained policy 7* is transferred to the real world without additional exploration (right).
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Figure 6.4: Visualization of different multi-peg object shapes (1) circle (2) ellipse (3) square (4)
triangle during the collecting process of the visual assembly dataset.

6.2.1 Latent Representation Learning Framework

In this section, we focus on utilizing the multiple modalities in the simulated robotic en-
vironment to learn a robust policy and then transfer it to the challenging assembly task.
An overview of our proposed architecture for multiple peg-in-hole assembly is depicted
in Fig. 6.3. First, we propose a pretraining-training approach to learn the latent repre-
sentation from the visual frames where domain randomization is used to collect a robust
assembly dataset. Seeing the simulation part in Fig. 6.3, the image observation is input
into the pre-trained encoder during the policy training process to obtain a latent feature
embedding. Second, a self-attention-based transformer module is applied to learn the
dependencies between robot proprioception states, force-torque signals in the Cartesian
space, and the extracted visual embedding, where position embedding and linear projec-
tion are used to get the token features of proprioception and force/torque values. Next,
the robot actions are predicted and mapped to the impedance controller after the com-
pact multimodal features pass through a Multilayer Perceptron (MLP) decoder, and the
SAC-based RL algorithm is adopted to obtain each predicted policy 7 during the whole
training process. After obtaining the optimal policy 7* in simulation, the policy is trans-
ferred to control the manipulator and finish real assembly tasks directly by capturing
real visual images, robot proprioception, and force/torque signals.

6.2.2 Pretraining-training from Visual Input

We first collect an image dataset with different peg and hole shapes. As shown in
Fig. 6.4, different object shapes like circle, ellipse, square, and triangle are used for
the due-hole assembly. To collect the dataset, we use the ShuffleNet-v2 [188] as the
visual model to extract visual features and execute policy learning using our proposed
architecture. When the robot moves 5 steps, the camera in the simulation environment
captures an image and saves it into the dataset. In order to prevent insufficient memory
during RL learning, the original image is further cropped. Finally, the height and width
of each image are set to 64, the amount of each object shape in the dataset is set to 4000,
and the interaction details about the peg and hole should be retained.

After finishing the dataset construction, our visual representation module is firstly
used to pretrain all data, shown in Fig. 6.5. With the pretraining of the encoder-decoder
architecture, a prior of the visual image for each standard peg and hole shape can be
learned. The latent space vector Z is learned from the encoder FCN layers E,(m). At
this stage, we aim to learn a function that maps the image pixel m € RT*W>! to its
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Figure 6.5: Overview of the visual representation module. 1) pretraining: We first pre-train the
feature encoder and decoder. After that, the latent space Z* to recognize different object shapes
is obtained. where ¢ and 6 means different weights, E4 and Dy means the encoder network
loaded with weights ¢ and the decoder network loaded with weights 6, respectively. 2) training:
The decoder and most encoder layers are frozen, and we train the encoder during the policy
learning process.

probability distribution function (PDF) p € R:
Dy(Z,m) = PDF(m) (6.2)

In this work, the probability distribution of PDF follows a Gaussian distribution.
In addition, we use the reparameterization trick to sample the PDF and pass it through
the decoder D to get a distribution p(Z) for the predicted image f(Z). As sampling
details, the mean and covariance functions g and h are separately used to minimize
the Kullback-Leibler (KL) divergence between the approximation p(Z) and the target
¢m(Z). Finally, the loss function L, that regresses the distribution value for each image
pixel m is defined as:

gm(Z) = N(g(m), h(m)) (6.3)

Ly = angmax (B, (08D(2,m)) = KL (4n(2), p(2)) (6.4)
)95

where A is a gaussian-based sampling distribution with mean g(m) and covariance
h(m). A potential dilemma for our visual representation module is to align the latent
vectors produced by the encoder to significant latent vectors for the decoder with slightly
different correspondence due to the restricted amount of our image data. As a result, only
the weights ¢ of the encoder E(m) are optimized during the training phase, whereas
the weights 0 of the decoder Dy remain frozen. To speed up the whole policy learning,
we further freeze all encoder feature layers except the output layer. Although in the
pretraining process, we need multiple images of the different hole and peg shapes. Our
final pipeline only needs a single image captured by the camera at inference time during
RL training.
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Our encoder architecture consists of five hidden blocks where each block includes
a Conv2D layer, batch norm layer, and Leaky ReLL.U activation function. The hidden
dimension of each block is expressed as [32, 64, 128, 256, 512]. After that, the output
feature map f € R°12*512x1 g flattened into a feature vector Z. The latent mean and
covariance features are split by concatenating the feature vector with the bi-stream FC
layer. In our experiments, we only choose the latent mean feature as the potential visual
embedding. As the decoder, it first uses a fully connected layer to reduce the feature Z
to a dimension of 2048. Then, it is reshaped into a feature map F' € R5!2%2%2 and put
into five reverse blocks in the encoder. After that, two Conv2d layers are concatenated
to restore the feature map into the same shape with visual input v € RF*Wx1,

6.2.3 Tokenization Model Based on Multiple Modalities

The proposed architecture for multiple peg-in-hole assembly tasks is presented in Fig. 6.3.
The modalities will be tokenized consisting of vision, proprioception, and force/torque
values.

First, the latent mean feature vector (from Section 6.2.2) is regarded as the visual
embedding of our transformer encoder architecture. The force/torque signals are ob-
tained from the end-effector, represented by states in three directions, which could be
expressed as [, Iy, F.] and [T}, T,, T .]. The force and torque values will change
sharply when the peg grasped in the gripper moves down to the target hole especially if
there exists touch and friction force between pegs and holes. That demonstrates that the
force and torque values are important modality features to learn in our assembly task.
The proprioception consists of 38-dimensional states. Concretely, [pj;, s1n;, 0OSj;, Vj;]
indicates 7-DOF robot joint states where ¢ means the joint index number, v means the
joint velocity value, and sin, cos means the different mathematical operation to the joint
position state. [pos.e, quace, vel..] indicates the robot end-effector states, representing
the position, quaternion, and velocity values, separately.

In the traditional NLP and computer vision field, the transformer-based module has
been widely used to learn common dependencies between word embeddings and image
batch embeddings [139, 189]. In this chapter, we try to learn the dependencies between
different states from multiple modalities because all modalities are necessary for the
challenging multiple peg-in-hole assembly task. For example, the visual modality could
help the robot detect the peg’s relative position and orientation to the hole. Propriocep-
tion and force/torque can well reflect the motion states of the robot when performing
tasks. However, some recent work stitches them together uniformly and then uses a
large transformer framework to process them [190, 191]. This big framework often in-
cludes three submodules, like encoder, process, and decoder, each of which introduces a
complex attention mechanism. This will undoubtedly cause the system to require huge
computing and memory resources.

As seen from Fig. 6.3, our method attempts to reduce the complexity of the big
model. To achieve successful dependency learning between each modality, the propri-
oception and force/torque states are first separated into scalar values. Then, we use a
one-hot vector of 44 dimensions to distinguish each scalar value. This vector is added
to the concatenation of proprioception and force/torque states as the positional embed-
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Figure 6.6: The attention module for perceived transformer block. X is the input array € RV*D,

X ok is the attention scores, visualized as red and green colors, and X iy is the output array
c RN ><D.

ding. Furthermore, these encoded robot states are fed into a linear projection block,
expanding the representation features of the concatenated robot states into 64 dimen-
sions. After that, the expanded representations are concatenated with the latent mean
embedding from visual input into a 128-dimensional feature embedding. Finally, it is
fed into three consecutive blocks from the perceived transformer architecture.

Following the structure of Perceiver [190] and our previous work [3,5], the attention
module of our transformer block is shown in Fig. 6.6. This block processes the input
latent array using a global query-key-value (QKV) attention operation (N=1, D=128).
Following this, the multi-layer perceptrons (MLP) are used to independently process
each element of the index dimension. The linear projection layers alone with MLP and
QKYV operation ensure the output latent array of the block has the same index dimension
as the input. The QKYV operation in this block could be formulated as:

Q= fo(X); K = fr(X);V = fv(X) (6.5)
Xox = softmax (Q/CT/\/S_F) (6.6)
Xoxy = fo (XoxV) (6.7)

As shown in Fig. 6.6, X is the input array € RY*P X« is the attention scores,
visualized as red and green colors, and X gy is the output array € RY*?_ The functions
fo, fic, and f, are linear layers that map each input to a common feature dimension
SF, representing as Q (blue feature blocks), C (Tan features blocks), V' (violet feature
blocks). The output attention dimension is further projected from another linear layer
fo. After the QKV operation, a two-layer MLP with a GELUs activation function is
concatenated. Finally, the output feature vector stays the same size with 128 dimensions.
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Figure 6.7: Elementary movement in 6 directions from our trained policy, consisting of moving
of position, and orientation from the end-effector.

6.3 Assembly Policy Learning

6.3.1 Impedance-based Action Control

The encoded feature vector from perceived transformer is input into an MLP decoder
with three hidden layers to predict the gripper and end-effector actions. Seen from
Fig. 6.7, the action space in our task is 7-dimensional, consisting of moving of position,
orientation from the end-effector, and the open/close state of the gripper. The action a, is
defined as the difference between the current kinematic state and the desired kinematic
state:

a;” = sy — 577, aP € [Ax, Ay, Az] (6.8)
al” = s7 xinv(sy), a”" € [Aa, AB, Ay (6.9)
al" = s{ — 57 a € [0, 1] (6.10)

where ¢ is the timestamp of the current action, and sP°%, s°, and s9"?* represent the

scalar value for position, orientation, and gripper. ¢nv means the inverse operation for
the orientation matrix. The orientation of the action is represented by the differences in a
three-dimensional axis angle. The gripper scalar value is a binary signal. When it equals
1, the gripper will open and it will close when there exists a reverse signal. This will
work at the beginning and end of the task.

For the robot action control part, let us first consider a rigid robot manipulator with
the following dynamics in the joint space,

H(q)G+C(q,q) +G(q) = T + Tear (6.11)

where ¢ € RM*1 4 ¢ RMx1 G ¢ RM*! are the joint angle, velocity, and acceleration
vectors, respectively, and M is the number of Degree of Freedom (DoF). H(q) € RM*M
is the mass matrix; C(q,q)) € RM*M are the Coriolis and centrifugal forces; G(q) €
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RM>! represents the gravity term. 7,,; € R¥*! is the torque vector due to the external
force during the interaction, and 7 € R™*! represents the torque control input vector.
Here, we aim to validate the performances of the RL policy embedded with different
control strategies. To do so, three commonly used torque control strategies are selected
below.:

Controller I: velocity-based joint impedance control. In this case, the output of the
RL agent at each step is the desired joint velocity ¢,, the command control torque input
T is calculated by,

7 = Kq(ds — ¢) + Glg) (6.12)

where K € RM*M ig a gain matrix.
Controller 2: the widely used PD-like impedance controller. The control force in the
Cartesian space is computed by,

FCpOS — K]]))OSAP _ K(]i)OSp

: A , (6.13)
FCOT"L — KZ())T’ZAR _ Kg’r"bw

where FPo8 € R3*! and F"" € R**! are the control force vectors for the 3-D position
and 3-D orientation, respectively. Ap is the position error between the desired robot
endpoint position p; € R3*! and the current one p € R3*! ie., Ap = p; — p. AR is
the orientation error between the desired orientation matrix R; € SO(3) and the current
one R € SO(3), i.e., AR = R; © R, where © means the subtraction operation in
SO(3). Note that the desired control variables are obtained according to the output of
the RL agent at each time step, i.e., a?*® and a°"". p € R**! and w € R3*! represent the
translation velocity and orientation velocity, respectively. K € R** and K € R**?
are the gain matrices, and K; = ¢ \/F; , where ( is a positive constant.
Then, the joint torque control input 7 is calculated by,

+ NEH+ Gq) (6.14)

where J € R%*M represents the Jacobian matrix. N € RM*M js the null space operation
matrix, and ¢ € R™*! is a joint force vector.

Controller 3: the dynamical decoupling impedance controller (see, e.g., [192]). In
this case, the joint torque control input 7 is given by,

= HJ(%, — J§) + NE+ Glq) (6.15)
where J is the inertia-weighted pseudo-inverse Jacobian matrix, computed by
J=H'J(JH I ! (6.16)

and J is the change rate of the Jacobian matrix with respect to time. 2, is the auxiliary
control variable, given by

i [] (6.17)
Wy
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Figure 6.8: A successful policy exploration process for our multiple peg-in-hole assembly task,
which consists of four transition states: from the initial position to approaching goal, from ap-
proaching goal to pose adjustment, from pose adjustment to search depth, and from search depth
to reach the goal.

with

Pr = Pa+ K2 (pa — p) + K} (pa — p)

, 6.18
wT = ’Lbd + K;”(Rd S, R) + Kgos(wd — w) ( )

where (), represent the desired control variables, similar to that in Controller 2.

After obtaining action a, during each simulation step, the impedance controller
framework computes the necessary joint torques to minimize the error between the
desired and the current pose according to specified impedance parameters and torque
limitations. Furthermore, SAC is used to train the multi-modality impedance-based as-
sembly policy. The hindsight experience replay (HER) is also used to improve sample
efficiency and speed up the training process. To facilitate transferring the policy into the
real robot experiments, the policy and ()-functions of SAC are both fed by the obser-
vations of the visual images and scalar proprioception and force/torque values, which
could be directly obtained through the RGB camera and robot control system. The spe-
cific details on policy learning in the physical simulator are shown in the Experiments
Section.

6.3.2 Sim2Real Dynamic Assembly

Seeing from Fig. 6.8, our task involves a set of policy exploration processes and a
challenging configuration space that cannot be reached with quasistatic manipulation
to execute assembly, which performs a dynamic primitive. To achieve Sim2Real trans-
fer learning for the robotic multiple peg-in-hole assembly task, two methods are used to
prompt the dynamic learning process: 1) an impedance-based controller is embedded for
the policy learning 2) domain randomization is facilitated to simulate the noise of the
real environment, including background color, camera parameters, lighting condition,
and robot dynamic parameters.

Sampling from the policy, the impedance-based controller will map the desired end-
effector positions and orientations into real joint torque values for the real robotic ma-
nipulator, aiding the RL agent’s implicit learning of the dynamic impedance parameters.
Based on the cascaded structure, we couple the low-frequency policy during simulation
training with an impedance-based controller working at the high frequencies necessary
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Algorithm 2 Multimodal RL for dynamic assembly control

1: Initialize domain randomization parameters M = [u, u¢, u', 1%
2: Select impedance controller parameters K, 17

3: Initialize policy and @)-function network; replay buffer D

4: repeat
5: Initialize hole object randomly in a limited range
6: Observe state s; = Env(M ), select action a;

7: Calculate joint torque 7} = I(s| K}, Tiimit)

8 Execute 73, observe next state and reward s;,1, 1,
9 Store (s¢, ag, ¢, S¢11, Succ) in D

10: If s, is terminal, reset simulator and resample M
11: for j in range(training steps) do

12: Randomly sample a batch of transitions from D
13: Compute targets for ()-functions

14: Update all network parameters using gradient
15: Update target network

16: end for
17: until convergence

for actual robot experiments. The learned multimodal policy is executed at a lower fre-
quency because there exist real-world time constraints for camera and force/torque sig-
nal observing and extracting. For the coupling process, we use interpolation operation to
achieve high-frequency reference between different policy steps. For example, the cur-
rent and desired end-effector state is sy, s;+1. The low-frequency action can be expressed
as a; = S441 — S¢. If we interpolate K times between this time interval, then the sub-step
action could be expressed as :

At+1/k = St+1/k — St

a(t,i) : At12/k = St42/k — St+1/ks (6.19)

Aiti/k = Si+i/k — St+(i—1)/k

The second important element for dynamic assembly is domain randomization. Firstly
for the image background, there only exist a robot and table rendered in the physics sim-
ulator while the actual robot working environment is full of various background objects
and colors. This is pretty difficult to match in the simulation. Thus, we randomize the
color and texture of the manipulator and the table with the holes object, which is interpo-
lated from the adjacent colors and sampled from texture collections. As for the camera
parameters, we sample some noise from the uniform distribution to the position, orienta-
tion, and field-of-view (FOV) after obtaining them through real camera calibration. The
lighting condition is very important because we use a grey image as the visual modal-
ity input. Different lighting conditions between simulation and the real world can have
a significant impact on visual characteristics. We incorporate Gaussian noise into the
lighting position, direction, and diffusion, ensuring the range of illumination changes in
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simulation can cover as much as possible of the natural light and artificial lights in the
real assembly scene. Finally, small random errors from robot dynamic parameters like
friction, inertia, and stiffness are considered for potential changes in robot mechanics.
The details of training multimodal RL for dynamic assembly control are summarized in
Algorithm 2.

6.4 Simulation Experiments

In this section, we first construct the multiple peg-in-hole assembly environment in the
simulation. Secondly, to evaluate the proposed architecture for learning multi-modality-
driven policies via impedance-based manipulation, we conduct a set of comparison ex-
periments. Finally, to evaluate the performance of the policies trained in the simulation
matching the real world, the real experimental system is set up and a set of experiments
are performed with a real robot.

6.4.1 Simulation Setup and Training

The simulation environment of the multiple peg-in-hole assembly task is implemented in
MuJoCo where a model of the KUKA LWR arm and Schank WSG Gripper is included
along with a white table similar to the real world. To satisty the needs of robot assembly
in different application scenarios as much as possible, the peg objects and hole objects
we test are not fixed. They both can move on the table and slip along the gripper surface.
Otherwise, to evaluate the generalization of the assembly task, we use four different test
Shapes Sreal = {Scircley Sellipse; Ssquare; Stm'cmgle} (See Flg 64)

Each episode consists of 60 training steps, where the controller runs in the simulator
at 60 Hz while the policy runs at 10 Hz. The interpolation operation following equation
(6.19) 1s applied to mimic the real system. An episode is terminated when the episode
steps end or the peg grasped in the gripper is within the distance threshold 6 = 2.0cm
from its goal. Fig. 6.8 shows an ideal dynamic assembly process for the trained RL robot
to finish the challenging task, which consists of position initialization, approaching goal,
pose adjustment, searching depth, and reaching goal. During the approaching process, a
handy-shaped reward is designed by computing the L2 distance between the key point
p; (¢ = 0,1, 2) in the peg to the target location p; in the hole object (See Fig. 6.2). The
reward is expressed as:

P { 1= tanh (32 |lp: = #11)/3) 6.20)

|t (= tanh(llpo — ppll)), i, llpi = Pl < 6y

where py and p; represent the center points of two peg bases from the peg object.
And p- represents the top center point of the top connector from the peg object. The
height difference between p, and pg, p; is 0.09m. And ¢; = 0.6 indicates the transition
between pose adjustment and searching depth in the dynamic assembly process while
the pegs enter the holes. This rewards the agent for searching the depth until reaching
the goal and improving the learning process.

85



Chapter 6. Multimodal Transfer Learning for Robotic Multiple Peg-in-Hole Assembly

The number of training epochs is set as 250, where 6000 simulated time steps are
contained in each epoch. The object shapes are trained during the policy learning process
consisting of circle, ellipse, and square. The replay buffer collects the states, actions,
and rewards at the end of each cycle. As the state-of-the-art off-policy RL algorithm,
SAC has achieved the best performance based on its high sample efficiency on many
simulation-based RL tasks [185]. Inspired by the previous work [193,194], SAC also
shows great potential to solve challenging robotic manipulation tasks, especially con-
sidering a combination of proprioceptive and object-specific observations, robots, and
controllers. Thus, we choose the SAC algorithm for the whole policy optimization in
our robotic multiple peg-in-hole assembly task. The evaluation episodes are conducted
parallel to measure the success rate during the training process. Except for the gripper
action, the position and orientation actions of the end-effector output from each policy
step are uniformly scaled to the range of [-0.005, 0.005]. For the object initialization,
the pegs object is initialized at a fixed position, then the gripper will be closed to grasp it
immediately. However, the position and orientation of the holes object on the table will
change at a limited variation range = € [—1.5, 1.5]cm, 6§ € [—5°, 5°]. Furthermore, spe-
cific hyperparameters of the MPA-SAC network and domain randomization are shown
in Table. 6.1 and Table. 6.2, respectively. We also employ the method of controlling
variables to fine-tune and determine each hyperparameter. Take the position parameter
of the camera in domain randomization as an example, we first set the camera position
perturbation as O after calibrating and obtaining the camera parameters in the real robot
environment. Then, we capture and observe the related visualized images consisting of
robot gripper and pegs/holes objects when doing our assembly task in the simulation.

Table 6.1: Selected MPA-SAC hyperparameter

Parameter Value
original captured image 540 x 960 x 3
visual image 64 x 64 x 1

proprioception and force/toque 44

batch size 256
replay buffer size le6
policy network learning rate le-3
@-functions learning rate Se-4
reward scaling 0.1

Table 6.2: Selected domain randomization hyperparameter from our assembly task in the simu-
lation

Perturbation Parameter Value

color and texture interpolation 0.3

camera position and orientation 0.02

lighting position and diffusion 0.2

robot stiffness and friction 0.1
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Table 6.3: Ablation study of assembly success rate from proposed architecture in the simulation

baselines | unfrozen encoder | perceive transformer | success rate
1 X X 0.72
2 v X 0.80
3 X 4 0.75
Ours 4 4 0.85
—— Ours
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Figure 6.9: Ablation study for the proposed architecture considering the effect of the unfrozen
encoder and transformer module.

After that, we will increase the value of position perturbation to 0.01 gradually and re-
lated images will be captured. We must ensure that robot gripper and pegs/holes objects
are seen in the images when executing assembly. If the perturbation value is set to 0.03
and the information of robot gripper and pegs/holes objects during some simulation
steps is lost, then we set the final value of position perturbation as 0.02.

6.4.2 Ablation Study

First, to evaluate the proposed architecture, ablation studies about the unfrozen encoder
module from visual representation and the perceived transformer module from multi-
modal tokenization are analyzed. The mean rewards value and success rate during the
policy training are used as different indicators, shown in Table. 6.3 and Fig. 6.9. Note
that without an unfrozen encoder module means, the weights of both the encoder and de-
coder are all fixed during the policy training process and without perceived transformer
means the concatenation of latent visual feature, proprioception, and force/torque fea-
ture is processed by full-connected layers. The ablation studies show that the proposed
architecture could achieve better performance. However, the success rate of the pro-
posed approach is not so high because we find the peg grasped by the gripper cannot
be reliably fixed at the same position in the MuJoCo simulator especially when the
pegs collide with the holes object, causing some failing cases during pose adjustment
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Figure 6.10: Comparison of multimodal training (Ours) and various single-modal training (Pure
vision and Proprioception+F/T) runs for multiple peg-in-hole assembly experiments.
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Figure 6.11: The learning curves of our RL agent for representation are trained from three
different controllers described in Section 6.3.1.

and search depth periods. Moreover, compared with baseline2 without perceived trans-
former, the improvement of success rate from our method is only 5%. It also implies
that the modality features existing in our assembly task are not so complicated. Except
for the visual features, the force/torque features and proprioception features are rela-
tively simple, causing the improvement from perceived transformer is not so obvious
compared to some language-based robotic tasks [126, 190].

Furthermore, we discuss the effect of different modalities on our challenged assem-
bly task. Unlike the previous multiple peg-in-hole assembly work [99], the position and
orientation values of the holes object on the table are constant, and the pose of the peg
can be implicitly represented by the pose of the end-effector. Our task introduces flex-
ible grippers and a movable pose of the holes object, so vision is necessary to obtain
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the relative position between pegs and holes. Based on this, we use pure visual features
and pure state information inside the robot to compare the performance of multi-modal
fusion. As shown in Fig. 6.10, the training curves demonstrate that the fusion of mul-
tiple modalities can significantly improve the reward performance of this task. And the
absence of vision, or force/torque modality negatively affects our assembly task.

6.4.3 Comparison Analysis of The Robot Controllers

First, we compare the performances of these three robot action controllers presented in
Sec. 6.3.1. The RL reward performances under these controllers are given in Fig. 6.11.
It clearly shows that Controller 3, Controller 2, and Controller 1 obtain the best, middle,
and worst performances, respectively. Specifically, during the first 100 epochs, they do
not show large differences. But after 100 epochs, the mean reward under Controller 3
increases obviously faster than the other two. And at the 250th epoch, the mean reward
under Controller 3 finally reaches 1.5 times that under Controller 1. This comparison
result indicates that the choice of the low-level robot action controller largely affects
the RL performance in a physical contact-rich task like assembly in this work. entropy
regularization existing in SAC and TD3 provide a better exploration than DDPG.

Then, we discuss the effect of the different settings of the gain matrix K** after
choosing the Controller 3 as our impedance controller. To do so, we set Kg"s = 8001,
KP® = 16001, K2** = 25001, K}** = 36001, respectively, where I € R3*3 is an
identity matrix. As seen in Fig. 6.12, in the first 150 episodes, as the value of K7
increases, the upward trend of the training curve is significantly accelerated, which in-
dicates that the increase of K”* ensures the accuracy of performing actions to a certain
extent. However, comparing the changing trend of K?°* = 25007 and K}** = 3600/
after 150 episodes, it can be observed that the upward trend with K7?° = 3600/ grad-
ually slows down. This may imply that an excessive K7°° will increase the instability

— 800/

1600/
— 2500/
— 3600/

Reward Mean

0 50 100 150 200 250 300
Epochs

Figure 6.12: The learning curves of our RL agent for representation are trained from different
gain matrices in the impedance controller.

&9



Chapter 6. Multimodal Transfer Learning for Robotic Multiple Peg-in-Hole Assembly

—— O3
TD3
— DDPG

o
5,
>

o
=
N

o
et
o

v W

o
o
&

SN

Rewards Mean

0.06
0.04
0.02

0.00
0 50 100 150 200 250

Epochs

Figure 6.13: The learning curves of our RL agent for representation are trained from different
off-policy RL algorithms.

of action execution, which leads to a decrease in the performance of the final learned
policy. This result demonstrates that a careful choice of the parameters in the impedance
controller is also crucial for the RL performance.

Furthermore, we discuss the effect of different off-policy RL algorithms for our sim-
ulated task. Since on-policy methods like PPO and TRPO are more suited to domains
with real data, we decided to compare the SAC algorithm in our proposed methods with
two off-policy methods (TD3 and DDPG) that are more efficient for sim2real learning.
Seeing the learning curves from Fig. 6.13, it shows that the SAC can achieve the best
reward performance than other algorithms in our assembly task though TD3 can also
achieve a high reward. That indicates the stochastic nature and

6.5 Robot Experiments

To verify the trained MPA-SAC policy in the real world, we also set up an experimental
system shown in Fig. 6.14. The 7-DOF KUKA LWR arm and Schank WSG50 grip-
per are connected as the robot manipulator, fixed on the table. The center position of
the fixed point between the robot arm and the table can be formulated as [z,y, z] =
[0.0,0.0,0.8] in the real-world coordinate system. The F/T signals and robot states can
be accessed through the KUKA robot control interface. The pegs object and holes object
of different shapes are obtained through 3D printing technology, and 1.8mm clearance
in all directions is measured for the printed model. The vision system we use is the Ki-
netic V2 and ¢ghd mode is set to get the same height and width of the RGB image with
the simulation environment. The AprilTag on the table is used to calibrate the camera
and get the camera position, orientation, and FOV values. To obtain the image observa-
tion at a valid frequency and avoid the effect of latency, we use the maximum frequency
setting for camera frames. It guarantees that the latest camera observation can be input
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Kinect V2

B

Figure 6.14: Experimental setup for robotic multiple peg-in-hole assembly in the real world,
consisting of the robotic arm, gripper, vision system, and assembly objects.
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Figure 6.15: Comparison of the success rate of our task for different transition states described
in Fig. 6.8 from Circle, Ellipse, and Square object shapes in the real robot experiments.

into the policy at inference time though the output policy acts at 10 Hz. The whole ex-
perimental system is operated by a ROS interface and the policy is implemented using
PyTorch. Prior to running one testing experiment, the pegs object is put in the center of
the gripper, and the arm with the gripper is initialized to the same joint angle gpos =
[0.0, 0.445, 0.0, -1.867, 0.0, 0.830, 0.0, -0.001, 0.001] for each episode, where the last
two values represent the gripper being closed to grasp the pegs object. In addition, the
lighting conditions and camera configurations are all kept fixed when doing the testing
experiments.

By randomly adjusting the position and orientation of the holes object in a limited
range, we run 22 evaluations for each object. Firstly, in order to compare against the
transition states described in Fig. 6.8, we evaluate the success rate from different object
shapes in the real robot experiments. Looking at Fig. 6.15, our solution can achieve this
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(c) square

Figure 6.16: Example of the proposed solution on multiple peg-in-hole assembly for different
trained object shapes (a) circle (b) ellipse (c) square. Take the circle shape as an example, the
robot gripper first grasps the peg and approaches the goal hole (~6.0s), adjusts its 6-DOF pose to
prepare to put it into the hole (~8.0s), searches the depth when moving along the hole (~10.0s),
and finally reaches the goal (~15.0s).

challenging task at a high success rate. Especially, for the circle object, the final trained
policy could achieve a success rate of over 90%. Otherwise, the transition period from
pose adjustment to search depth is the main period causing failure cases. Referring to the
single peg-in-hole work from [80], we guess that there exists an inevitable gap between
reality and simulation, especially on the visual level, which poses significant challenges
to high-precision and high-stability assembly. Fig. 6.16 shows the real-world example
of the proposed solution on multiple peg-in-hole assembly for different object shapes.
It can be seen that it takes quite a short time to adjust the 6-DOF posture of the pegs
and then insert them into the holes, which indicates the policy needs to perceive little
changes in the high-dimensional representation features of the entire system. In addition,
we also observe that the assembly performance will be affected by the initial position
and pose of the object on the table though we have considered a limited variation range
of them in the policy training process. We found that a large orientation change will
affect the assembly performance significantly while the effect of position is pretty small,
demonstrating the learning of 6-DOF pose during the dynamic assembly process is still
pretty challenging.
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Table 6.4: The comparison of average success rate for different environmental perturbations in
the real robot experiments

Lighting condition (%) Camera position (%)
Low Normal High | X(£0.01) Y(£0.01) Z(%0.01)

Circle | 68.2 90.9 90.9 95.4 90.9 90.9
Ellipse | 63.4 71.3 81.8 86.4 71.3 81.8
Square | 68.2 81.8 90.9 86.4 81.8 81.8
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Figure 6.17: Comparison of the success rate of different transition states from triangle object
in the real assembly experiments. After/Before adaption refers to whether the triangle object is
added to the policy training or not.

When we train the policy in the simulation, the strategy of domain randomization is
adopted to increase the robustness of the learned policy for different perturbations. To
discuss the effect of perturbations on real robot experiments, we select two important en-
vironmental factors: lighting condition and camera position. As the lighting condition,
it consists of low, normal, and high modes, where low lighting means natural light in
our laboratory room, normal lighting means we will turn on the fluorescent lights above
the robotic manipulator, and high lighting means all fluorescent lights in our laboratory
room are turned on. As for the camera position, we add a noise value to the position value
from different axes as we set the perturbation parameter as 0.01 in the simulation. The
experimental results are shown in Table. 6.4. For the camera position, it can be seen that
the perturbations have little effect on the average success rate because of the same per-
turbation setting between the simulation and the real world. For the lighting conditions,
the assembly performances are both great for the normal and high lighting conditions
because we also set two lights above the robot manipulator in the simulation. However,
for low lighting conditions, the performance suffers a significant decline. We guess it is
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Table 6.5: The comparison of final success rate and assembly time for different object shapes in
the real robot experiments

Object shape  Circle Ellipse Square Triangle*  Triangle
Time (s) 15.0 18.0 18.0 242 17.6
Success rate %

90.9 (9.09) 77.3(13.6) 81.8(9.09) 54.5(9.09) 81.8(9.09)
avg (std)

Note: the untrained object shape is represented with *.

Table 6.6: The comparison of final success rate considering the effect of domain randomization
and impedance controller in the real robotic experiments

Object shape Circle Ellipse Square Triangle*  Triangle

Jo domain randomization %
Wio domamn randomization % 5 6.9 09y 9.09 (9.09) 0.0(0.0)  0.0(0.0) 0.0 (0.0)
avg (std)

w/o impedance controller %

63.6 (13.6) 54.5(9.09) 50.0(9.09) 22.7(9.09) 45.5(13.6)
avg (std)

Note: the untrained object shape is represented with *.

caused by the fewer low-light images existing on our collected image dataset and the
trained visual representation module can not well perceive the low-lighting condition.

To validate the generalization ability for the trained policy, we chose the triangle
shape as the test object since it’s not used in the policy training. As seen from Fig. 6.17
and Table. 6.5, the trained policy from the circle, ellipse, and square could be general-
ized to the new triangle shape. The mean assembly time of each object shape is also
computed to justify the relationship between task difficulty and assembly performance.
We find that the assembly time of a visual circle shape from pegs/holes is shorter than
the ellipse and square shapes while the triangle shape takes the longest time duration.
It can be explained that a smaller visual perception field from a triangle shape makes it
more difficult to learn a good visual representation. Finally, after adapting to the sim-
ulation environment again, the test on the triangle object shape achieves a significant
improvement of over 25% in the success rate and a reduction of over 6.5s in the as-
sembly time, which demonstrates that our model has a good generalization ability over
uncertainties and object shapes.

As seen in Table. 6.6, we further retrain the policy without adding domain ran-
domization for all kinds of object shapes. We found that the success rate for circle,
ellipse, square, and triangle shapes are 13.6%, 9.09%, 0, and 0, respectively. And the
final trained model cannot be generalized to a new object shape. When we randomize
our simulation domain, we consider all kinds of permutations from camera setting, en-
vironment setting, lighting setting, etc., which exist indeed in real robotic experiments.
Especially for the lighting conditions, domain randomization can satisfy all kinds of
lighting conditions in our laboratory. Without it, the visual representation learned from
the simulation is significantly different from the real environment, which causes the vi-
sual perception to fail in our assembly task. Furthermore, we retrain the policy without
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adding impedance control and introduce basic position control to execute the output ac-
tion. It can be seen that the success rates for all object shapes are significantly lower than
our method, demonstrating the embedding of impedance skills is necessary to improve
the assembly performance.

6.6 Discussion and Summary

We present a solution for the multiple peg-in-hole assembly (MPA) task using a multi-
modal representation by transferring the trained policy in simulation to the real world
without extra exploration. A special visual representation module and tokenization-
based transformer module are separately proposed to compact the feature as the back-
bone of reinforcement learning. Furthermore, our policy learning process incorporates
domain randomization and an impedance controller, which expedites the transfer pro-
cess and narrows the gap between simulation and reality. We extensively evaluate the
performance of our solution in a simulation environment, demonstrating a high success
rate in a more challenging multiple peg-in-hole assembly setup. Moreover, our solution’s
generalization ability is validated across different object shapes.

This chapter sets the number of pegs and holes as two, with the experimental objects
comprising four different shapes. Moving forward, it is important to extend our research
to include more complex object interactions, accounting for factors such as the number,
size, and shape of the objects. Additionally, the current input modality features in our
assembly task are relatively simple, leading to less noticeable improvements in perfor-
mance from our perceived transformer fusion module. To address this, we aim to incor-
porate additional modalities such as point cloud, tactile feedback, and language to en-
hance and diversify our work. Furthermore, certain limitations in our proposed method
need to be addressed. Currently, some parameters related to domain randomization and
impedance control are manually fine-tuned, and it would be beneficial to introduce op-
timization algorithms or learning-based approaches to optimize these parameters. We
firmly believe that further research on robotic multiple peg-in-hole assembly, specif-
ically through the application of multimodal reinforcement learning, can significantly
enhance the efficiency of related manufacturing processes.
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Chapter 7

Language-conditioned Diffusion
Learning for Robotic Rearrangement

In the preceding chapters, we addressed robotic manipulation challenges using both
passive and interactive perception. However, how can we enable robots to think and act
more like humans, particularly when faced with novel task conditions? In this chapter,
we explore potential solutions through diffusion learning and vision-language models
to achieve intensive imagination '. The capability for robotic systems to rearrange ob-
jects based on human instructions represents a critical step towards realizing embodied
intelligence. Recently, diffusion-based learning has shown significant advancements in
the field of data generation while prompt-based learning has proven effective in for-
mulating robot manipulation strategies. However, prior solutions for robotic rearrange-
ment have overlooked the significance of integrating human preferences and optimizing
for rearrangement efficiency. Additionally, traditional prompt-based approaches struggle
with complex, semantically meaningful rearrangement tasks without pre-defined target
states for objects. To address these challenges, this chapter first introduces a comprehen-
sive 2D tabletop rearrangement dataset, utilizing a physical simulator to capture inter-
object relationships and semantic configurations. Then we present DreamArrangement,
a novel language-conditioned object rearrangement scheme, consisting of two primary
processes: employing a transformer-based multi-modal denoising diffusion model to
envisage the desired arrangement of objects, and leveraging a vision-language founda-
tional model to derive actionable policies from text, alongside initial and target visual
information. In particular, we introduce an efficiency-oriented learning strategy to min-
imize the average motion distance of objects. Given few-shot instruction examples, the
learned policy from our synthetic dataset can be transferred to the real world without
extra human intervention. Extensive simulations validate DreamArrangement’s superior
rearrangement quality and efficiency. Moreover, real-world robotic experiments con-
firm that our method can adeptly execute a range of challenging, language-conditioned,
and long-horizon tasks with a singular model. The demonstration video can be found
at https://youtu.be/fq25-DjrbQE.

I'This chapter has been submitted to the IEEE for possible publication. Copyright may be transferred
without notice, after which this version may no longer be accessible.
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7.1. Introduction

7.1 Introduction

From the perspective of embodied intelligence, how can we empower the household
robots with the capability to discern how and where they should rearrange messy table-
top objects especially involving ambiguous human instructions? Comprehensive reason-
ing and planning across diverse constraints from object geometry, language-conditioned
tasks, collision physics, and human preference, pose a significant challenge for au-
tonomous robots operating within varied and unstructured household scenarios, such
as automated packaging and sorting in warehouses, kitchen cleaning, and complex as-
sembly tasks in manufacturing. In this work, we study this challenge by introducing
human-like imagination and planning ability to the robots in the context of human in-
structions and prior observations.

Robotic rearrangement can be defined as a canonical task: given a previously un-
seen environment, the robot needs to rearrange each object into an appropriate pose to
form a specified structure following human preference. This paradigm can also encom-
pass a diverse array of activities, such as making a bed, ironing clothes, and cleaning
a room. However, we specifically concentrate on investigating tabletop object arrange-
ments, considering this challenging but tractable [195]. Recently, some approaches that
leverage large language models (LLMs) have demonstrated a strong generalization for
robots to understand complex semantic contexts and generate long-horizon planning for
tabletop arrangement task [112, 196, 197]. However, the goal states of different objects
still need to be manually specified in the prompt instructions. Furthermore, to estimate
the target states of objects intelligently, some generative work based on VAE [198] and
diffusion models [123, 127] has been proposed to endow the robot with human-like
imagination, hopefully generating and refining the distribution of object poses. For in-
stance, [123] proposes to utilize DALL-E, a web-scale artificial intelligence-generated
content (AIGC) model, to generate a target image that implicitly incorporates various
objects the robot observes. Nevertheless, the exclusive reliance on textual input for im-
age generation has proven to be notably unstable and inefficient in real-world robot
manipulation, primarily due to the neglect of crucial observational cues. Inspired by this
prior work, building a model that conducts observation reasoning first and then imag-
ines goal states intuitively via language is a crucial step towards autonomous robotic
rearrangement.

On the other hand, considering functional and stylistic inter-object relationships
emerges as a critical dimension for real-world robotic rearrangement [199]. For a given
“messy” scenario, a “clean” arrangement should not be deterministic because there ex-
ists a plurality of desirable layouts from different human preferences. Thus, beyond the
initial phase of estimating the goal poses of objects, the subsequent phase involves reor-
ganizing the global layout of rearranged objects to align with human preferences, often
communicated through language instructions. Moreover, to improve the real-world re-
arrangement efficiency, we also need to reduce the duration cost of the long-horizon
manipulation by considering the motion distance of each object as much as possible.
Despite notable advancements in learning-based scene synthesis and robotic rearrange-
ment methods [124,127,199,200], there remains a challenge to meet diverse desiderata
in real human-robot cooperation environments.
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In this chapter, we design a novel robotic arrangement scheme to solve the afore-
mentioned flaws and maximize versatility and adaptivity, where the robot can rearrange
objects in different goal poses and structures via language instructions without extra
manual intervention. Specifically, we first construct a kitchen-based tabletop arrange-
ment dataset consisting of four different global structures - horizontal, vertical, circle,
and containing, and two local regularities - symmetry and uniform, where 22-class ob-
jects with different shape scales and texture materials are selected. Given that the input is
a messy scene with human language instructions, we propose a transformer-based multi-
modal denoising diffusion framework to estimate the goal states of objects by implicitly
reasoning multi-object semantic relations.

Furthermore, we treat the planning problem of robotic rearrangement as a long-
horizon estimation task by utilizing a frozen vision-language model (VLM) like GPT-
4 to bridge connections between language text, visual perception, and robotic action.
When prompted with several examples followed by the corresponding rearrangement
policy, VLM planners can take in new language instructions and semantic contexts from
initial “messy” scenes and predicted “clean” scenes, autonomously generating a new
robotic arrangement policy. An example of the whole human-robot arrangement process
of the containing structure can be visualized in Fig. 7.1. It describes a task scene in
which a household robot needs to place all objects on the table into a container like
a plate or box without causing objects collision and penetration. Finally, the proposed
scheme is evaluated in both simulation and real robot experiments and compared with
several state-of-the-art baselines, demonstrating that it can achieve better rearrangement
quality and efficiency for different structure-based rearrangement tasks. The primary
contributions of this chapter are described as follows:

1) Considering the differentiated requirements of inter-object relationships and hu-
man preference in the robotic rearrangement task, we construct a 2D kitchen rearrange-
ment dataset consisting of a variety of household object scenes with different global
structures and local regularities.

2) To generate a high-quality rearranged scene, we propose a transformer-based
multi-modal denoising diffusion model, which can effectively reason semantic and ge-
ometric relations from diverse objects, and explicitly predict the goal states of objects
instructed by contextualized language representation.

3) To obtain the optimal layout in the real world, we propose an efficiency-oriented
rearrangement learning strategy, which pursues a minimal average motion distance of
objects.

4) Inspired by prompt-based learning, we integrate the generative model with VLMs
to formulate a VLM planner, which outputs robot action policies in different arrange-
ment tasks and can be directly deployed into a physical robot.

7.2 Problem Formulation

We introduce DreamArrangemnt, a novel robotic arrangement scheme designed to com-
prehend diverse human language instructions and the distribution of 2D object scenes
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including variations in attributes like semantic classes, geometric shapes, and place-
ments of multiple objects, which shows the ability to perform a long-horizon manipula-
tion task autonomously.

We consider the initial tabletop scenes where all objects are scattered in an image
coordinate system, starting from the top left corner as the origin. In each messy scene
S, we depict a combination of of a table 7" and objects {o, ..., on }. To achieve seman-
tic rearrangement based on human preference, a structure-based language instruction £
(e.g., “rearrange all objects into a circle shape”) is also given. To enhance contextual un-
derstanding, we further employ approaches from text summarizing (e.g., prompt-based
LLM parsing or search-based word dictionary) to decompose the abstract language into
specified word tokens £ — (h, b, ..., I,). This study primarily explores the challenge of
generating a language-conditioned clean object scene S* for a robot r. S* can be directly
used in the planning phase as a visual prompt module in the VLM planner, finally gen-
erating a manipulation policy P. We formulate this as an optimization problem to use
the robot r to rearrange a “messy”’ scene S under a language instruction £ via learning
a bijection f of paired objects and minimizing their motion distance, referring to the
ground truth “clean” scene S:

f* - arg}{mn ]:arrangement(sa ‘C) + /\fmotion(sy ﬁ),

s.t. .Fam«angement(sa ﬁ)
«/T_‘motion(Sa E)

f(57 ‘C) - Sa

where A is the weight hyperparameter of the F,,,5ti0n (.S, £) term. Then the policy can be
expressed as:

P = VLM(S, f(S, £), L), (12)

More specifically, each object o in the input scene .S is defined by its semantic class
c € RY, 2D oriented bounding box size s € R2, object translation ¢ € R, and object
rotation r € SO(2)?, respectively. Since the containing structure is a special semantic
scene, we define an additional ‘mask’ object class m to represent containers like plates
and tables. Besides, we use type tp € RT instead of ¢ to differentiate different containers.
In summary, we denote each scene S as follows:

S = {mi, .eey Og, },mz = (ti,n,si,tpi),oi = (ti,Ti, Si,Ci). (73)

The object semantic class label ¢; and container type label ¢p; are represented as one-hot
vectors of C' and 7' classes, respectively, and the 2D bounding box size s; is obtained by
performing the principal component analysis (PCA) and then computing the positional
relation of 4 corners. The values of translation ¢; and rotation r; are characterized by cal-
culating the center position and the orientation angle of the bounding box. To facilitate
a stable training process, we further use the normalization operation to transform ¢; and
s; into the same range of [—1, 1] as 7;.

2The first column of the rotation matrix is used.
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"Rearrange the
apple, lemon,
(] orange and ® 00 o

e peach into a

° horizontal shape.” ® 000

Messy scene Language prompt Clean scene1 Clean scene2

Figure 7.2: Comparison of different generation results for clean scenes based on the same messy
scene and language prompt.

7.3 Physics-based Object Rearrangement Dataset

To facilitate tabletop robotic rearrangement, it’s necessary to collect a large object re-
arrangement dataset which includes different object categories and spatial structures.
However, collecting such a dataset involving complex physical interactions in the real
world can be time-consuming, labor-intensive, and costly. In this work, we collect a 2D
synthetic dataset based on the Mujoco physics simulator, consisting of 2223 clean object
scenes. A physics simulator can help us precisely control the position, orientation, scale,
and texture of each object and keep each object in the rearrangement scene collision-
free and penetration-free. Additionally, it is convenient for us to describe each clean
rearrangement structure with high-level language instruction. Specifically, we adopt 22
household object models from the YCB objects and ShapeNet objects as our object
database. For each valid clean scene in the dataset, we preprocess it using instance seg-
mentation and extract the oriented bounding box of each object as its explicit representa-
tion. The obtained scene S will be regarded as our target output of the generation model.
To simulate different messy scenes in our daily lives, we further perturb the target scene
on the fly to generate clean-messy pairs and re-associate objects within each category,
where the generated messy scenes will serve as the input data.

More importantly, high-level language instruction corresponding to a structure usu-
ally conveys different object layouts in the real world. As seen in Fig. 7.2, when we
tell the household robot: “Based on the current messy scene, please rearrange the apple,
lemon, orange, and peach into a horizontal shape”, the mainstream solutions [123, 127,
198] will make the robot arrange objects into a centred layout as in clean scenel, which
is a common pattern in their training data. However, according to our human experi-
ence, we prefer to arrange the unordered objects into clean scene2, because it can save a
large amount of time and effort. Therefore, to avoid the drawback in previous works that
diverse initial scenes are arranged into the identical layout given the same instruction,
we adopt the technique of data augmentation to enrich layout variations of target scenes
with the same structure in our dataset.

Another rearrangement setting is that we want to arrange the same configuration
on the table into different structures given different language prompts. We further de-
sign four kinds of physically meaningful spatial structures to pair with text descriptions.

101



Chapter 7. Language-conditioned Diffusion Learning for Robotic Rearrangement

Table 7.1: Object attributes and spatial structures in our dataset

Entity Type Name
apple, bear, banana, bowl, box, can, cracker_box,
class (22) ) )
. . cup, fork, knife, lemon, milk...
Object attributes )
material (3) YCB texture, metal, wood

scale ratio (3) 0.8,1.0,1.2

global structure horizontal, vertical, circle, containing

Spatial structures ] ] ]
local regularity symmetry, uniformity

LQ& ‘” X

@os .

@
'@

[
o | @ 4
(1) Horizontal (2) Vertical (3) Circle (4) Containing

Figure 7.3: The four kinds of global structures in our dataset: horizontal, vertical, circle, and
containing.

As shown in Fig. 7.3, the structures of horizontal, vertical, and circle represent all ob-
jects forming a horizontal, vertical, and circle shape globally, respectively. Since the
containing structure involves the additional ‘mask’ object class m;, we describe it as
placing different objects in different containers, including plate-like containers and box-
like containers. The semantic and geometric parameters of these containers will also be
employed in the containing rearrangement task.

Moreover, to distinguish the difference of local distribution in real-world table set-
tings, we introduce the concept of symmetry and uniformity in language instruction.
Taking forks, knives, and plates as an example, symmetry represents that a pair of knives
and forks are placed on varied sides of the plate while uniformity denotes that knives
and forks are positioned on the same side of the plate. Finally, all object attributes and
spatial structures in our dataset are shown in Tab. 7.1.

7.4 Rearrangement Diffusion Framework

7.4.1 Score-based Denoising Diffusion Model

Denoising Diffusion Models [114,201] are a class of generative models that learn data
distribution by progressively denoising from a tractable noise distribution. Below, we
provide a brief preliminary introduction from a score-based perspective. For more de-
tails, please refer to [201]. Given various samples from an unknown data distribution
o (), our goal is to train a model capable of generating new samples that mimic the
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original distribution ¢o (). A critical mechanism employed in this endeavor is Langevin
dynamics, a concept borrowed from the domain of physics. This approach can produce
samples from a distribution pg., () When its score, defined as its gradient V, 10g pgata (),
is known. Starting from x7 of any prior distribution, the Langevin method recursively
denoises the data as follows:

Ti—1 = Tt + Vg, log qo (fft) + fye, (7.4)

where «o; and [3; are pre-defined step sizes associated with the time step ¢ and ¢ ~
N(0,1) is a stochastic term. As T becomes sufficiently large, the final obtained x, will
converge to a sample drawn from go(x).

We aim to train a neural network sy to approximate the score of the target distribu-
tion. The denoising score matching technique [202] is adopted to make the estimation of
score tractable, with the key insight being to utilize conditional distribution settings. This
involves perturbing xy ~ ¢o(x) with various noise kernels ¢; (z;|zo) across a spectrum
of step parameters ¢ ~ U[1, T]. The original score matching objective of the perturbed
distribution ¢;(x) can be expressed as Eg, (2, (z)q0(x0) ||S0(2t) — Va, log q; (z¢|0) 1%, As
demonstrated in [201], the final optimal network parameter 6* for this objective should
ensure sg«(x) ~ V, log ¢, (z). Moreover, when employing Gaussian kernels ¢; (x;|zo) =
N (z¢, 0?) with pre-defined noise levels o;, the score of the conditional probability den-

To—Tt

sity can be analytically derived as V, log ¢; (z¢|7¢) = *25*. Consequently, the unified

objective amalgamating all procedural steps is formulated as:

2

: (7.5)

To — Ty

se(xy) — g~
i

Lscore(‘g) - ]EtNZ/{[l,T},qt(z’t|x0)q0($0)/\t

where )\; denotes the objective weight, pragmatically set to 2.

In summary, we need to first optimize the score network sy to minimize objective
Eq. 7.5. After that, we use the trained model sgy- () to incrementally refine the approxi-
mation of V, log qo (z;) as per the Langevin dynamics, facilitating an update along the
Markov chain with Eq. 7.4 to generate new samples ultimately.

7.4.2 Vision and Language Parsing

Based on our collected synthetic dataset, we further propose a scheme for solving the
tabletop rearrangement task as shown in Fig. 7.4. A messy scene S and a high-level text
description £ from human language are taken as the input.

Object Detection and Parameterization: In order to obtain the geometric and se-
mantic attributes of all objects, including o; and m;, in the messy scene S, we first adopt
the latest Grounded Segment Anything Model (GSAM) [203], which has shown a strong
zero-shot ability for object recognition and instance segmentation. Then the segmented
results are subjected to Principle Component Analysis (PCA) to get the oriented bound-
ing box of each object. Specifically, the values of object translation ¢; and rotation r; are
derived by averaging all pixel points p,, of the object and establishing the covariance
matrix:

1 M
ti: 4 ms 76
Mmzlp (7.6)

103



Chapter 7. Language-conditioned Diffusion Learning for Robotic Rearrangement
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Figure 7.4: An overview of the proposed conditional rearrangement diffusion network. (a) We
sample the combinations of text descriptions from the humans with the messy observation as
input. (b) The parsing process is to obtain explicit object attributes and word tokens from input.
(c) We build a denoising diffusion framework with transformer architecture that separately en-
codes object attributes and word tokens into latent space. (d) To achieve the rearrangement task,
the direction of translation and rotation of each instance are iteratively refined during the limited
denoising steps 7.

é Example of GPT-4 Prompts B

Task Info:

Based on the background Information, please map the language instructions about object rearrangement to appropriate object
name, available label of global structure and local regularity.

Available label of global structure: horizontal, vertical, circle and containing

Available label of local regularity: symmetry and uniformity

Background Info1: Background Info2:
Here are the instance segmentation results of all objects: Here are the instance segmentation results of all objects :
There is an apple, a bottle, a banana and a plate on the table. There is a knife, a fork, a spoon and a plate on the table.
Prompt Info1: Prompt Info2:
Example: Rearrange all objects into the container. Example: Rearrange all objects into a circle shape with symmetry.
Output: {objects: [“apple”, “bottle”, "banana", "plate”], Output: {objects: [“knife”, ” fork”, ” spoon ", "plate”],
g structure: containing, regularity: none} structure: circle, regularity: symmetry} )

Figure 7.5: Example of GPT-4 prompts that map human language instruction and segmentation
results from vision parsing to concise word tokens.

M
1
T T
r; = argmax v |——— g (P — ti)(Pm — ;)" | v, (7.7)
o, [oll,=1 M—1:=

where M is the number of pixel points in the segmented object and the vector v indicates
the projection direction to be searched for. Next, we employ separate neural network
layers to encode the geometric and categorical features to obtain the instance embedding
for the regular object o; and the mask embedding for the container object m;.

Text Summarization: To encode the natural language instruction into implicit rep-
resentation, we need to distill the most important information and convert it into a con-
densed form. In this work, we adopt the concept of text summarization to capture the key
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essence from the text description and visual clues and then stitch them together. For most
language-conditioned robotic works [103, 124], they generally need to retrain an extra
language model based on a pre-trained CLIP or MiniLM model on their self-deigned
task-oriented sentence dataset to achieve text summarization.

To enhance the efficiency and multimodal adaptability of the summarization pro-
cess, we use prompt-based learning via GPT-4 to achieve contextual understanding and
generate word tokens. As the most advanced language model, GPT-4 has a vast knowl-
edge base and linguistic proficiency, allowing it to produce the concise summaries that
humans want. An example of prompts in Fig. 7.5 shows that GPT-4 can learn to produce
outputs tailored to our specific mapping tasks by providing prompts that are representa-
tive of the summarization task. To enable word embedding, we further use the strategy
of label encoding to assign a unique integer to each class of labels in the generated word
tokens.

7.4.3 Conditional Rearrangement Diffusion Network

The architecture of the proposed conditional rearrangement diffusion network is illus-
trated in Fig. 7.4. The transformer structure is employed as it is adept at fusing the
information from different modalities. We first encode various scene object attributes
and parsed word tokens into latent tokens, which are then processed by the multi-modal
transformer. The network outputs translation and rotation predictions for each instance,
and a diffusion scheme is adopted to successively refine the pose of each object. Below,
we elaborate on each component of our network.

Token Encoder: The input tokens of the transformer include word embedding, mask
embedding, and instance embedding. The word embedding represents the language in-
struction used to specify the target configuration. We map the parsed global structure
and local regularity types to learned embeddings, which is conducive to identifying the
commonalities of instructions faster during training compared to encoding the whole
sentence with language models. Next, as defined in Section. 7.2, the attributes of con-
tainer objects and regular objects contain continuous variables such as translation, ro-
tation, and size, as well as discrete variables like type and class. Similar to [199], we
employ positional encodings of certain frequencies and subsequent linear layers to con-
vert t;, r;, and s; into vectors. As for discrete properties, a multilayer perceptron (MLP)
is adopted to map one-hot vectors to high-dimensional latent. The above features are
concatenated and then processed through an MLP to form the mask embedding and the
instance embedding. This object-centric representation encodes each object separately,
and 2 sets of specific MLPs are applied for mask and instance, respectively. Furthermore,
a learned type embedding 77, which is utilized to distinguish different types of tokens
(Word, Mask, and Znstance), is concatenated to the aforementioned embeddings as
follows:

Twmz = Tz ® TP, (7.8)

where 7 and 7 represent the embedding of each modality and the final input token for
the transformer, respectively.
Multi-Modal Transformer: We adopt the conventional encoder-only transformer
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architecture as the backbone. Our multi-modal transformer is a stack of several stan-
dard transformer blocks [139], consisting of the multi-head self-attention module and
the position-wise feed-forward module. The self-attention mechanism helps the model
enact the interactions between multiple objects, which allows it to be regarded as a
fully connected graph structure. Besides, the language token and the mask token serve
as conditional constraints and affect posture prediction through attention calculation.
In the end, we build our network decoder as a two-layer MLP to output the denoised
direction of ¢; and r; for each instance.

Efficiency-oriented Rearrangement Learning: To improve the interpretability of
the network in our rearrangement task, we reparameterize the original score-based model
Sg to €9 = 07 as our multi-modal denoising diffusion model, indicating that the opti-
mization objective evolves into a noise prediction problem. For the forward process dur-
ing model training, we add sampled Gaussian noise with a specific standard deviation
to the translation and rotation parameters of each object in the clean scene to formulate
noisy S;, which allows for the generation of various perturbed scenes with different lev-
els of noise for one clean scene. After that, a reversed denoising process is learned by
projecting S; to the clean scene manifold via noise prediction.

As formulated in Eq. 7.1, we also want to minimize the motion distance between
the initial messy scene and the rearranged clean scene. For most denoising diffusion
works based on high-dimensional image space, it is typically presumed that the original
image constitutes the nearest projection to its version perturbed by noise. However, each
object instance’s pose information in our task is low-dimensional data. This discrepancy
suggests that with the introduction of different noise levels, the optimal projection target
for a messy scene might not necessarily be consistent with the initially intended clean
scene. Especially when applied to practical applications, such as food preparation or
tabletop arrangement, the efficiency cost is enormous if persistently converting diverse
messy scenes into the same specific layout.

Thus, we propose several techniques to ensure that the rearranged scene shares more
similarities with the initial messy scene. First, we re-associate instances within the same
class. Taking a language instruction as an example: “Please rearrange all small boxes
into a circle shape”, we re-establish the pairing relationship p among all boxes between
the current messy scene S and the target clean scene S by computing their Earth Mover’s
Distance [204]:

1 -
EMD = min — 3 [t: = £y (7.9)
1=1

where n is the number of instances in the scene, ¢ and ¢ represent translation parame-
ters of S and S, respectively. During training, we choose fp*(:) with the optimal pairing
relationship p* instead of #, to construct S, which hopefully encourages a more efficient
movement during rearrangement.

Second, as shown in Fig. 7.2, horizontal and vertical structures possess a certain
degree of ambiguity. Drawing on the principles of least squares approximation from sta-
tistical analysis, we further propose to pan the clean scene along the relevant axis. This
is to ensure that the average position of all instances in the optimal target scene S* aligns
with the average position of all instances in the messy scene .S. Through this procedure,
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import numpy as np

from vision_utils import get_obj masks, PCA

from language utils import LLM parsing

from diffusion utils import diffusion pipeline
from robot_utils import pixel2pos, pick_and_place

Figure 7.6: Statements of python APIs in our rearrangement task.

we analytically guarantee minimal movement during the arrangement process, which
can be formalized as:

~ % o 1 " v - ~ ~ 1 " ~
fi :ti—i—E;(zﬁi—ti) or th :t?+E;(t?—tg), (7.10)

where ¢ and ¢! represent the coordinates of the vertical and the horizontal axis, respec-
tively. We operate on the vertical axis for the horizontal structure and on the horizontal
axis for the vertical structure.

Inference: During inference, we pursue the typical diffusion scheme shown in Eq. 7.4,
where the learned €+ (S;) is asymptotically proportional to Vg, log ¢o (.S;) as ¢t declines.
Given a messy scene S with attributes extracted, we treat it as S with a specific time
step 1" and recursively predict the layout of the “cleaner” scene. We update the trans-
lation and rotation parameters of each instance and iterate continuously. «; and f; in
Eq. 7.4 are designed to decrease as denoising progresses. The final attained .S is our
rearrangement of the messy scene.

7.5 VLM Programming as Planner

Recently, much work [112, 205] from LLM-based robotic manipulation has demon-
strated that language models have the potential to directly generate code snippets by
parametrizing object states and the robot controller API. However, they all have to de-
fine the goal object states manually to finish different manipulation tasks. In this work,
we use the conditional diffusion model to imagine different goal object states and in-
tegrate them as prompts into a multimodal vision-language model (VLM) to generate
programming policy. In practice, we use the OpenAl GPT-4 model as our VLM cor-
nerstone. Moreover, the generated output from the GPT model is expected to be valid
Python code that covers programs from visual perception, language parsing, and denois-
ing diffusion to robotic control.

Specifically, we first need to define our own Python function libraries that can in-
form the GPT model of which APIs are available and provide type hints on how to use
these APIs. Fig. 7.6 shows all statements that can be imported into our rearrangement
task. Furthermore, a few demonstration examples are used as prompts to instruct the
GPT model to present contextual understanding and few-shot learning ability. Fig. 7.7
gives an example that directly outputs executable planning code comprising the capa-
bility to perform arithmetic, call API functions, and implement other Python language
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f Robot Planning Example of GPT-4 Prompts \

Scene Info:

You are an autonomous household robot activated in a domestic kitchen environment.
Your primary location is by a table typically used for object arrangement and food
preparation.

Now | give you the scene information called ‘messy.png’ and related task instructions.
Please hierarchically utilize known API functions to compose robot planning process.

Prompt Info:
Example:

Output:

obj_names, obj_masks = get_obj_masks(‘messy.png’)

obj_bboxes = PCA(obj_masks)

word_token, specified objects = LLM_parsing( ‘Rearrange .. container.’)
target_boxes = diffusion_pipeline(obj_bboxes, word_token)

For j in range(len(specified_objects)-1):
pick_pose = pixel2pos(obj_bboxes[specified_objects[j]])
place_pose = pixel2pos(target_bboxes[specified_objects[j]])
k pick_and_place(pick_pose, place_pose) /

Figure 7.7: An example of GPT-4 prompts that generate a planning policy based on human
language instruction and visual information of the messy scene when the robot executes the
object rearrangement task.

features. It can be seen that the GPT-4 model can well process multimodal inputs as
instructions, then convert them into high-level perception features programmatically via
vision, language, and denoising diffusion APIs, and finally call the low-level robot con-
troller APIs to generate rearrangement actions. Owing to our denoising diffusion model
being trained on a self-constructed synthetic dataset, it is usually challenging for tradi-
tional work to overcome the sim2real gap to implement our robotic arrangement task.
However, by combining the open-vocabulary Grounded SAM model as a vision module,
our GPT-based prompt-learning method can generalize to new objects and environments
in real experimental scenarios well.

7.6 Simulation Experiments

7.6.1 Implementation Details

The token encoder produces 512-dimensional features as the input for the transformer,
which has 2 layers with 8 heads of attention. The hidden layers of the transformer have
512 dimensions. We optimize our model on the proposed object rearrangement dataset,
which contains 1640 clean scenes for training and 583 clean scenes for testing. We adopt
the Adam optimizer with a base learning rate of 10~%. The batch size is selected as 64
and the denoising model is trained on an A800 GPU for 30, 000 iterations, which takes
about 3 hours. During inference, we choose to iterate 35 steps after considering both
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rearrangement efficiency and generative effectiveness, which takes seconds to rearrange
a messy scene.

7.6.2 Evaluation Metrics & Baselines

To thoroughly estimate the performance of our proposed model in the simulated object
rearrangement task, we utilize the following quantitative metrics:

Discrepancy between Results and the Ground Truth (Dist2GT)): To measure the
rearrangement quality, we compare the difference between the rearrangement result and
the pre-perturbed scene. We compute the Earth Mover’s Distance (EMD) between our
rearranged configuration and the ground truth. We further calculate the cosine distance
between the orientation of instances in the scene before and after rearranging consult-
ing the new assignment from EMD. We report the average difference in position and
orientation of scenes in the test dataset separately.

Distance Moved (M ovement): To measure the rearrangement efficiency, we com-
pute the average movement distance required for the scene to clean up. More specifi-
cally, we calculate the average Euclidean distance between the paired instances in the
messy and rearranged layout for each scene. Then we report the mean value of all scenes
in the test dataset. It is essential to consider the initial messy configuration and provide
a solution that moves instances as little as possible to save time and energy for the robot.

Intersection over Union Threshold (/OUyp,esnoiq): In our work, we take the 2D
oriented bounding box to represent the geometric attribute of the object. To quantita-
tively evaluate the arrangement accuracy, we compute the Intersection over Union (IoU)
values between the predicted-target bounding box pairs for each instance. If the loU
value of arbitrary bounding box pairs is larger than a threshold § (e.g. 6 = 0.25,0.5), it
is regarded as a success. Then we report the mean success rate of all rearranged objects
in the test dataset.

In summary, Dist2G'T represents quality and alignment, M ovement shows the effi-
ciency, and IOU,p,csho1q indicates success. For Dist2GT and M ovement, a lower value
denotes a better performance of the generated results while a higher IOU,,;csnoiq indi-
cates a higher success rate. The metrics for real-world experiments will be introduced
later.

Baselines: We reproduce 2 state-of-the-art baselines about object rearrangement on
our dataset for comparison: 1) StructDiffusion [127], an object-centric and language-
based iterative method that utilizes point clouds and instructions to learn global struc-
tures of object rearrangement. Unlike our approach, it introduces an extra time embed-
ding in its diffusion framework to iterate from pure Gaussian noise without consid-
ering the initial messy configuration that the robot encounters. 2) LEGO-Net [199], a
transformer-based data-driven method that learns to rearrange objects in messy rooms,
where the concept of the moving distance of each object is first introduced. However,
it lacks specialized designs for rich language conditions and semantic structures, and it
cannot be directly applied to robot manipulation tasks. We reproduce these methods on
our 2D rearrangement dataset, where training and evaluation splits remain the same as
our method.
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Table 7.2: Quantitative comparisons on the task of rearranging into three kinds of global structures in the simulation experiments.

Horizonal Vertical Circle

Method
Dist2GTr | Dist2GTr | Movement | IoUyas T ToUys 1 Dist2GTr | Dist2GTr | Movement | IoUyos; T LoUys T Dist2GTr | Dist2GTr | Movement | IoUyass T ToUys T

StructDiffusion [127] 0.308+0.004 0.071+0.010 0.481+£0.004 13.54+0.7 3.34+0.5 0.24940.004 0.0164+0.003 0.448+0.006 21.0£1.0 6.2+0.6 0.2484+0.003 0.01140.002 0.4294+0.013 23.8+0.8 10.3+£0.4
LEGO-Net [199] 0.192+0.014 0.0774£0.014 0.404+0.016 42.2+2.0 23.0+£0.9 0.190£0.016 0.087£0.020 0.394+0.009 39.94+2.4 23.4+1.5 0.205+0.003 0.079+0.006 0.375+0.008 33.1+1.2 17.94+0.9
Ours 0.103+0.002 0.005+0.002 0.397+0.012 51.8+0.7 28.5+1.2 0.109+0.002 0.001+0.000 0.415+0.006 53.0+£0.9 27.6+1.8 0.153+0.002 0.001+0.000 0.383+0.007 43.4+0.7 21.6+0.5
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Table 7.3: Quantitative comparisons on the task of placing into containers in the simulation
experiments.

Method Dist2GTr | Dist2GTr | Movement | IoUyos T ToUys 1

StructDiffusion [127] 0.106£0.001 0.002£0.000 0.479+0.011 19.7£1.0 7.4£0.4
LEGO-Net [199] 0.095+0.001 0.00140.000 0.482+0.005 26.2£1.0 11.4+£1.0
Ours 0.085+£0.001 0.001+0.000 0.458+0.024 37.1+2.4 17.8+1.4

7.6.3 Quantitative & Qualitative Analysis

Quantitative Results:

We compare our method against the baselines mentioned above. We perturb clean
scenes in the test set and rearrange these messy scenes with various methods. We con-
duct 5 replication experiments for each algorithm and report the average and confi-
dence interval values on several metrics. The main results are presented in Tab. 7.2 and
Tab. 7.3, with the best results shown in bold and the inferior results within the con-
fidence interval underlined. Our method is shown to outperform previous methods in
most aspects. Due to StructDiffusion [127] starting denoising from pure noise, it ig-
nores the initial configuration. Therefore, the rearrangement results obtained require a
longer movement distance. As for LEGO-Net [199], it does not consider language con-
ditions, thus causing uncertainty about achieving which kinds of structure. Our multi-
modal transformer network increases the controllability of the rearrangement process,
allowing for more precise implementation of various regularities. Moreover, the “con-
tainer” object serves a distinct function compared to the regular objects being arranged.
By introducing an extra “mask” object class and applying dedicated models to handle it,
we achieve a better performance in the containing task, as evidenced in Table 7.3.

Qualitative Results: Considering different human preferences from the same messy
scene, we visualize some rearranged results of our model in Fig. 7.8. We use oriented
bounding boxes to represent instances on the table, with different colors conveying dif-
ferent classes, whereas containers are depicted by directionless bounding boxes. For
the same messy scene of each task, our method can rearrange it into different layouts
according to different conditions. For instance, the final placements of forks (red) and
knives (blue) for food preparation conform to the local regularities of symmetry and
uniformity while the horizontal structure is also achieved. In addition, for the object
containing task, our model can rearrange the objects from different categories into cor-
responding containers regardless of their location variations. One noteworthy point is
that the misalignment of containers in column 4 has not appeared in the training split.
To sum up, our model can learn how to leverage multi-modal conditional constraints
for rearrangement, which makes our method applicable and generalizable to practical
scenarios.

111



Chapter 7. Language-conditioned Diffusion Learning for Robotic Rearrangement

0

()

H \\ \\
[]

v}
w0

y

0| | ——— ——
()

)

x

=

g — —
-9

°

()

o

c

[

- —_——
£ N —
© p————

[]

-9

Horizontal, Uniformity Horizontal, Symmetry Containing, None Containing, None

Figure 7.8: Qualitative results from different rearrangement tasks: Food preparation (column
1 and column 2): knives, forks, and plates; Object containing (column 3 and column 4): cans
and a banana. Our model can rearrange the same messy scene of both tasks following different
instructions.
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Figure 7.9: Rearrangement results on different global structures. We compare our method with
several variants under 2 metrics.

7.6.4 Ablation Study

As one of our contributions is to propose an efficiency-oriented rearrangement method,
we further compare our method with “W/O Efficiency” that does not employ the oper-
ations in Eq. 7.10, “W/O Augment” that does not adopt data augmentation, and “W/O
E. + A.” that utilizes neither. These variants are evaluated on the test split across various
global structures. As shown in the results of “Total” in Fig. 7.9, our method achieves
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Figure 7.10: Rearrangement results under different noise spans. Various baselines and inference
strategies are compared. The black dashed line represents the noise span we adopted for training.

a better overall performance than other variants in terms of both quality and efficiency
of rearrangement. Especially for the horizontal and vertical structures, a significant im-
provement in the Dist2GTr metric can be seen owing to mitigating the ambiguity of the
projection target. Besides, due to obtaining the optimal target on the clean scene mani-
fold, we achieve a smaller motion distance in the M ovement metric. Moreover, the data
augmentation operation can slightly improve the performance on various structures in
both metrics, especially for the containing structure.

Since we can perturb the clean scene with different noise levels, we further investi-
gate the model’s denoising ability in dealing with different perturbing noises. Follow-
ing [199], we use a noise span hyper-parameter o to characterize the spectrum of oy,
which originates from the positive half of N'(0,5%). When we disturb scenes with o,
derived from o, the larger the o value, the more likely the mess becomes severe. Mean-
while, as the trained denoising network ey« approximates the added noise Sy — S, we
can set « = 1 and S = 0 in Eq. 7.4 to directly obtain Sy and denote it as the Direct
denoising strategy, distinguished from the standard Gradual denoising strategy.

Based on the Dist2GTr metric, we evaluate StructDiffusion [127], LEGO-Net [199],
and our method combined with these inference strategies on the test split. For Struct-
Diffusion, we further adopt its original inference process starting from pure noises and
name it Noise. As shown in Fig. 7.10, our Gradual recipe demonstrates the best denois-
ing performance as the increment of noise spans, indicating that the proposed multi-
modal transformer architecture can stably reconstruct a regular scene, even though the
perturbation added to the scene is quite significant. Moreover, it can be seen that the
Direct strategy exhibits a worse denoising ability than the Gradual strategy in handling
high-noise scenes among all methods, possibly due to inaccurately estimated scores in
low-density regions. The comparison results prove that iterative denoising is crucial for
rearrangement, as it can gradually update data to high-density regions that possess more
accurate estimates.
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7.6.5 Visualization Comparison

In Fig. 7.11, we further visualize several comparison results of rearranged scenes in the
physical simulator, where the dynamics of object collisions are accounted for. Given the
special language command and the messy scene, it can be seen that among all scenes,
our method can achieve the most precise arrangement of objects that conforms to human
intentions while meeting the demand for efficiency. For example, in the second scene,
the rearranged result from StrcutDiffusion [127] appears satisfactory, yet a more sub-
stantial movement for each object is needed compared to our rearranged result. In the
case of LEGO-Net [199], a physical collision occurred between the mug and the meat
can, leading to their dispersion across the table’s surface.
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Figure 7.11: Visualization results in simulation. We compare our method with state-of-the-art
methods StructDiffusion [127] and LEGO-Net [199].

7.7 Robot Experiments

7.7.1 Experimental Setup

To verify the proposed scheme in the real world, we also deploy a robotic experimental
system shown in Fig. 7.12. The robotic manipulator selected for our setup consists of
a 7-DOF KUKA LWR arm paired with a Schunk WSG50 gripper, which is mounted
on the side of a table. The fixed point where the robot arm connects to the table is
considered the base, with its centre position in the real-world coordinate system for-
mulated as [z, y, z] = [0.0,0.0,0.8]. Our vision system incorporates the Kinect V2 in
ghd mode to capture raw images. The ghd mode, while offering a wide field of view
(FOV), also introduces the challenge of potentially detecting extraneous objects, such
as camera fixtures and robotic equipment, as noise for the open-vocabulary Grounded
SAM model. To mitigate this, we trim the raw image data to a uniform size of 448 pix-
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Figure 7.12: Experimental setup for tabletop robotic rearrangement in the real world, consisting
of the robotic arm, gripper, vision system, and messy scene.
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Figure 7.13: The process of grasp generation for each object in the real robot experiments.

els for both height and width. An AprilTag located on the table is used to calibrate the
vision system, which will further facilitate the transformation of object pose from pixel
coordinates to world coordinates. Finally, the process of generating grasps for the real
robot experiment is illustrated in Fig. 7.13. To calculate the grasp on each object, we
employ the antipodal method on its oriented bounding box. This involves determining
the grasp point (x,y) and orientation # based on the bounding box’s average position
and rotation value. The whole experimental system is operated by a ROS interface and
the pick_and_place API of the robot in our VLM planner is achieved based on Movelt!.

7.7.2 Robotic Rearrangement results

We conduct 12 evaluations for each task by altering the position and orientation of ob-
jects within a messy scene and arranging them according to a language-conditioned
structure. For the structures defined as horizontal, vertical, and circle, the categories
of objects in the messy scene include small boxes, toothpaste boxes, knives, forks, and
spoons. As for the containing structure, the scene’s objects consist of small boxes, box
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Figure 7.14: All testing objects for robotic table rearrangement in the real world.

Table 7.4: Quantitative comparisons on the task of rearranging into different structures in the
real robot experiments.

Object structure Horizontal  Vertical Circle Containing
Duration (s) 75.5 87.0 69.0 79.5
Collision-free rate (%
ollision-free rate (%) .5\ 167 833(8.33) 75.0(8.3) 917 (8.33)
avg (std)
S te (%
uecessrate (%) 002 (167) 75.0(83) 58.3(8.3) 833 (8.33)
avg (std)

containers, plate containers, and various fruits. All objects utilized in our robotic exper-
iments are displayed in Fig. 7.14.

In Tab. 7.4, we first compare the average rearrangement duration, collision-free
rate, and final successful rate for different structures in the real robot experiment. The
collision-free rate is calculated by observing whether all objects in the rearrangement
scene predicted by our denoising diffusion model are collision-free. Additionally, the
success rate is assessed after the robot finishes each rearrangement task. Unlike the
abstract estimation metrics in simulation, a real-world rearrangement is considered suc-
cessful only if the objects are positioned without any collisions and the overall structure
adheres to the semantic constraints set forth by the provided language instructions. It
can be seen that the horizontal, vertical, and circle configurations present significant
challenges due to the entirely novel nature of various boxes in our dataset and the lim-
ited tolerant positions for sequential placement. The requirement to rearrange the same
categories of objects into these three distinct structures simultaneously further compli-
cates the task for our inference model. Additionally, we encounter failures when the
vision system struggles to accurately perceive the depth of particular objects, such as
spoons, knives, forks, and bananas, due to their reflective surfaces. This incorrect depth
data prevents the robot’s gripper from achieving a stable grasp.

Furthermore, we compare the average success rate with baselines on four kinds of
language-conditioned structures, shown in Fig. 7.15. Our method outperforms other
baselines for all global structures, with an average improvement of 15% on the suc-
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Figure 7.15: Comparisons of the average success rate on various rearrangement structures for
different methods in the real robot experiments.

cess rate compared to LEGO-Net [199]. We also find that the real-world rearrangement
becomes more challenging when more objects are added to the initial messy scene. This
may be attributed to the struggle of diffusion models to learn a more complicated inter-
object relationship, along with the increase in robot planning and execution horizons.

7.8 Discussion and Summary

In this chapter, we present a solution for the language-conditioned robotic rearrange-
ment task with different global structures and local regularities. Firstly, we collect and
process a 2D synthetic arrangement dataset based on the physical simulator. To capture
long-range dependencies between visual and textural inputs, we build our conditional
diffusion model based on the multi-modal transformer architecture, which endows the
robot with the ability to imagine the target pose information of different objects from
the observation scene. In particular, we introduce an efficient-oriented rearrangement
learning strategy to reduce object motion distance and create a more appropriate layout.
Inspired by the recent prompt-based learning, we further integrate the generative model
into the most advanced VLM module (GPT-4) to generate robot planning and action
policy. Finally, we carefully design three kinds of quantitative metrics to evaluate our
model in the simulation experiments, showing that our generative model outperforms
related state-of-the-art methods. Extensive experiments on the real robot further demon-
strate that our proposed scheme can satisfy the human language-based requirements and
finish different rearrangement tasks successfully on diverse unseen objects.

Concerning limitations, this work simplifies the inter-object relationship in a clean
rearrangement scene based on human preference, with the global structure and the local
regularity limited to 4 and 2, respectively. In addition, when dealing with more complex
object interactions, our approach tends to rearrange objects into a simpler layout com-
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posed of fewer objects by overlapping some instances. Therefore, extending our research
to include and comprehend the inter-object relationship on a larger scale is important.
Moreover, since we use prompt-based learning to achieve language instruction parsing
and robot action policy generation, we still need to pre-define a series of examples to
instruct the VLM module to interpret the prompt. As for future work, the introduction
of explicit collision avoidance mechanisms in the denoising process can be explored,
which may make the generated layout more plausible. Besides, we currently use the
same number of inference steps, and we wonder whether it is possible to determine a
more accurate number of denoising steps by assessing the level of mess in the present
scene, which may enhance efficiency. Finally, designing an end-to-end VLM model to
estimate robot actions directly rather than separating the dreaming and planning process
may further improve the effectiveness of robot manipulation.
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Chapter 8

Conclusions and Future Work

To achieve embodied intelligence, we have discussed four kinds of robot learning strate-
gies that enable physical robots to interact with unstructured environments through dif-
ferent perception modalities. We hope to endow the robots with the ability to flexibly
perform a wide range of tasks and to adaptively generalize new tasks. In detail, the the-
sis aim outlined in Section 1.2 is broken down into five sub-achievements, which are
illustrated in Section 8.1. Section 8.2 details the limitations of this thesis, while Section
8.3 outlines the future efforts the author intends to undertake to achieve a general robot
learning toward embodied intelligence.

8.1 Achievements

As stated in Section 1.2, we introduced our work that analyzes perception-action robot
learning at four levels of abstraction:

* Improve perception learning: A pioneering transformer-based sparse shape com-
pletion network (TransSC) is proposed to reconstruct the raw partial point cloud.
It comprises a transformer-based encoder and a manifold-based decoder. This
design enables our model to achieve superior completion results, outperforming
other baseline methods. Our experiments demonstrate that our network is resilient
to sparse and noisy point cloud inputs. Additionally, simulation grasping exper-
iments indicate that our model can achieve lower grasp joint errors compared to
traditional robotic completion methods. Furthermore, in real robotic experiments
involving single objects and object occlusion, we show that our TransSC can be
seamlessly integrated into an existing grasp evaluation module, significantly en-
hancing grasping performance in both scenarios.

* Pursue Context-aware Learning: Inspired by the concept of affordance, we ex-
plore the issue of task-oriented 6-DoF robotic grasping and hand-object action
recognition. As the grasping detection, we introduce an implicit estimation net-
work, a grasp evaluation network, and an attention-aware visual affordance net-
work. Our solution demonstrates significant improvements over existing baselines
for both familiar and novel objects within our specially constructed affordance
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grasp dataset. For action recognition, we benchmark the first dataset using event
vision for hand-object action tasks and demonstrate the potential for transferring
to real robot manipulation tasks.

* Transfer multi-modal learning: We further study a solution for the multiple peg-
in-hole assembly (MPA) problem using a multimodal representation, allowing the
transfer of a trained policy from simulation to the real world without the need for
additional exploration. We propose a specialized visual representation module and
a tokenization-based transformer module to effectively compact features as the
core of the reinforcement learning framework. We conduct extensive evaluations
of our solution in a simulation environment, where it achieves a high success
rate in the more demanding multiple peg-in-hole assembly scenario. Finally, the
generalization capability of our solution is also confirmed across various object
shapes.

* Embrace imaginative learning: Beside the ability of perception learning, we
also want to the robot have the ability of imagination to generate an appropriate
target for his next action similar to human kinds. Therefore, we present a solution
for the language-conditioned robotic rearrangement task, where a conditional dif-
fusion model based on the multi-modal transformer architecture and cutting-edge
VLM module (GPT-4) to formulate robotic planning and action policies. Further
extensive experiments with a real robot show that our proposed approach can ef-
fectively meet language-based requirements and successfully complete various
rearrangement tasks involving diverse, unseen objects.

8.2 Limitations

While this thesis has advanced our understanding of robot manipulation learning, it is
important to recognize the inherent limitations associated with our research methods and
scope. Addressing these limitations is crucial for interpreting the findings and guiding
future research for the robotic community.

Our work focuses on different robotic manipulation tasks using a parallel gripper,
extending these capabilities to a service robot equipped with a multi-fingered hand intro-
duces complexities in learning dexterous manipulation skills. Moreover, the task settings
we have used are relatively simple compared to the multifaceted daily tasks performed
by humans, such as folding clothes or washing dishes.

Our current robot learning methods achieve limited generalization across different
task settings. For example, in the multiple peg-in-hole assembly task, real robot experi-
ments show that the assembly policy has limited generalization to different object shapes
and positions. This limitation highlights the difficulty in transferring policies trained
on one robot task to different tasks in the real world. Achieving broad generalizability
across various tasks and robots is essential for realizing embodied intelligence.

Our research also underscores the critical role of datasets in different learning strate-
gies. Although we have developed specific datasets for certain manipulation tasks, these
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are not without limitations. For instance, in the work on affordance grasping, the va-
riety of object categories and the corresponding affordance annotations are restricted,
which limits the applicability of the inference model to unseen object categories. With
the rapid advancements in deep learning, particularly with the emergence of technolo-
gies like transformers and diffusion models, robotic researchers can more effectively
process multisensory information to learn diverse latent manipulation skills. However,
the creation of a comprehensive vision-language-action (VLA) dataset is crucial for
the robotics community. Such a dataset would be akin to the ImageNet dataset in the
computer vision field and could significantly advance the development of embodied in-
telligence.

8.3 Future Work

There is a lot that can be done to guide the future work of the thesis topic:

* Introducing language into context-aware manipulation: Language serves as
a bridge between human instructions and robotic actions, facilitating a more in-
tuitive interaction. By understanding context-aware commands such as "cut the
carrot” and "open the door”, robots can interpret the context and intentions be-
hind tasks, allowing for more accurate and appropriate interaction with objects.

* Exploring better algorithms for transfer across substantially different fami-
lies of tasks: The goal of an intelligent system is to not only perform well on tasks
similar to those they have encountered during training but also adapt seamlessly
to entirely new, related or unrelated tasks. We have explored the use of deep learn-
ing architectures that can abstract higher-level features across tasks, and domain
randomization techniques that minimize the gap between simulation and reality
domains. The discrepancies in the complexity and type of data available across
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Figure 8.1: Examples of recent work about data collection platforms for embodied intelligence.
(a) GELLO [206]. Reprinted image: ©2023, IEEE. (b) ALOHA [207]. Reprinted image: ©2024,
IEEE.
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robotic tasks can significantly hinder the effectiveness of transfer learning in real-
world experiments.

Optimizing the diffusion learning into the robot tabletop rearrangement:
Current robot rearrangement work does not consider explicit collision avoidance
mechanisms in the denoising process. We can integrate it with a collision-checking
network to make the generated layout more plausible. Besides, we currently use
the same number of inference steps, and we wonder whether it is possible to de-
termine a more accurate number of denoising steps by assessing the level of mess
in the present scene, which may enhance efficiency.

Employing multi-fingered hand to do dexterous manipulation tasks: Multi-
fingered hands are typically equipped with multiple degrees of freedom per fin-
ger, allowing for fine-motor control akin to that of a human hand. This capability
is critical for tasks that involve complex object manipulation such as assembly
in manufacturing, surgical operations in healthcare, or domestic tasks in personal
robotics. Therefore, to adapt robot learning strategies for use in humanoid service
robots, we can utilize deep learning and reinforcement learning models to acquire
dexterous manipulation skills such as playing the piano, which is beyond the ca-
pabilities of a parallel gripper. More importantly, Fig. 8.1 shows some recent work
of data collection platforms for the training of embodied intelligence. To construct
a big VLA dataset of dexterous manipulation, we also devote ourselves to design-
ing a teleoperation hardware platform to collect human demonstration data for the
robotic community. Finally, we aim to develop a foundation model to process all
kinds of modality information and achieve general dexterous manipulation skills
for different robotic embodiments, described in Fig. 8.2.
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List of Abbreviations

AIGC artificial intelligence-generated content

ARSNN Attention-based Residual Spiking Neural Network
CMOS Complementary Metal-oxide—semiconductor

CD Chamfer Distance

DDPG Deep Deterministic Policy Gradien

EMD Earth Mover’s Distance

FLOPs Floating-point Operations

FPS Farthest Point Sampling

GSAM Grounded Segment Anything Model

GPD Grasp Pose Detection

GQCNN Grasping Quality Convolutional Neural Network

IL Imitation learning
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LIF Leaky Integrate-and-fire

LLMs Large Language Models

MSE Mean Squared Error

MLP Multi-Layer Perception

MPA Multi-peg-assembly

PLIF Parametric Leaky Integrate-and-Fire

POMDP Partially Observable Markov Decision Process

PPO Proximal Policy Optimization

PCA Principle Component Analysis

RL Reinforcement Learning

RCLS Repeated Closed-loop Smooth

SNN Spiking Neural Network

SAC Soft Actor-Critic

TSDF Truncated Signed Distance Function

TOG Task-oriented Grasping

VGN Volumetric Grasping Network

VAE Variational Autoencoder
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Publications

The following first-author publications constitute a significant part of my PhD thesis.
The list is organized chronologically.

Wenkai Chen, Changming Xiao, Ge Gao, Fuchun Sun, Changshui Zhang, and
Jianwei Zhang. DreamArrangement: Learning Language-conditioned Robotic Re-
arrangement of Objects via Denoising Diffusion and VLM Planner. IEEE Trans-
actions on Systems, Man and Cybernetics: Systems, 2024. (Minor Revision)

Wenkai Chen, Shang-Ching Liu, and Jianwei Zhang. EHoA: A Benchmark for
Task-oriented Hand-Object Action Recognition via Event Vision. IEEE Transac-
tions on Industrial Informatics, 2024.

Wenkai Chen, Chao Zeng, Hongzhuo Liang, Fuchun Sun, and Jianwei Zhang.
Multimodality driven impedance-based sim2real transfer learning for robotic mul-
tiple peg-in-hole assembly. IEEE Transactions on Cybernetics, 2023.

Wenkai Chen, Chao Zeng, Fuchun Sun, and Jianwei Zhang. Learning Multiple
Peg-in-hole Assembly Skills Using Multimodal Representations and Impedance
Control. International Conference on Robotics and Automation Workshop (ICRA
Workshop), 2023.

Hongzhuo Liang*, Wenkai Chen*, Shang-Ching Liu, Fuchun Sun, and Jianwei
Zhang. Learning Multimodal Multifingered Dexterous Manipulation Skills from
Human Demonstration. Science China Information Sciences, 2023. (Revision)

Wenkai Chen, Hongzhuo Liang, Zhaopeng Chen, Fuchun Sun, and Jianwei Zhang.
Improving object grasp performance via transformer-based sparse shape comple-
tion. Journal of Intelligent & Robotic Systems, 104(3):1-14, 2022.

Wenkai Chen, Hongzhuo Liang, Zhaopeng Chen, Fuchun Sun, and Jianwei Zhang.
Learning 6-dof task-oriented grasp detection via implicit estimation and visual af-
fordance. In 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 762—-769. IEEE, 2022.
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