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SUMMARY

Changes in cell type composition are fundamental to understanding human disease
mechanisms. While single-cell omics technologies enable unprecedented resolution
in cellular profiling, their widespread clinical application is limited by technical biases
and cost constraints. Measurements on bulk tissue specimens, though more robust and
cost-effective, lack cell-type resolution. This creates a need for computational methods
that can bridge this gap. At its core, cell type deconvolution represents a semi-blind
source separation problem, where the goal is to estimate both the mixing proportions
and source signals from mixture measurements, given any partial information about the
sources from reference data.

This dissertation includes DISSECT, a novel deep semi-supervised learning algorithm for
robust cell type deconvolution. DISSECT addresses key limitations in existing approaches
by integrating information from both single-cell references and bulk data, effectively
handling domain shifts between reference and target datasets. Through comprehen-
sive benchmarking across multiple experimental settings and modalities (including bulk
RNA sequencing (RNA-seq), proteomics, and spatial transcriptomics), we demonstrate
DISSECT'’s superior performance in predicting both cell type proportions and cell type-
specific expression profiles, with reduced dependency on reference selection.

We used cell type deconvolution to study two distinct diseases: antineutrophil cytoplas-
mic antibody-associated glomerulonephritis (ANCA-GN) and glioblastoma (GBM). In
ANCA-GN, deconvolution of single-cell and spatial transcriptomics data from 34 pa-
tients and 8 controls revealed specific T helper cell accumulation patterns associated
with inflammation. Computational drug prediction based on this information identified
ustekinumab as a potential therapeutic agent, which showed promising results in four
patients with poor prognosis under standard treatment. In glioblastoma, we used cell
type deconvolution to analyze DNA methylation patterns across multiple cohorts of GBM
patients, identifying two distinct and temporally stable GBM groups associated with
better prognostic value than established molecular subtypes, particularly in predicting
response to surgical intervention.

This dissertation makes several key contributions to bioinformatics, immunology, and
neuroscience: (1) a cell type deconvolution framework that advances the state-of-the-

xiii
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art in source separation for biological data, (2) an integrative analysis of immune cell
type-specific signals to guide therapeutic decisions in ANCA-GN, and (3) identification of
clinically relevant and stable GBM subgroups based on deconvolved cell type-specific
signals.



ZUSAMMENFASSUNG

Verdnderungen in der Zusammensetzung von Zelltypen sind fiir das Verstindnis mensch-
licher Krankheitsmechanismen von grundlegender Bedeutung. Wahrend Einzelzell-
Omics-Technologien eine beispiellose Auflosung bei der zelluldren Profilierung ermogli-
chen, ist ihre breite klinische Anwendung durch technische und finanzielle Limitationen
begrenzt. Messungen an Bulk-Gewebeproben sind zwar robuster und kostengtinstiger,
weisen jedoch keine zelltypspezifische Auflosung auf. Daraus ergibt sich die Notwendig-
keit computergestiitzter Methoden, die diese Liicke schlielen kdnnen. Im Kern stellt die
Zelltyp-Dekonvolution ein semi-blindes Source-Separation-Problem dar, bei dem das
Ziel darin besteht, sowohl die Mischungsverhéltnisse als auch die Quellsignale aus Mi-
schungsmessungen zu schitzen, basierend auf partiellen Informationen tiber die Quellen
aus Referenzdaten.

Diese Dissertation beinhaltet DISSECT, einen neuartigen semi-supervised Learning-
Algorithmus fiir robuste Zelltyp-Dekonvolution. DISSECT adressiert wesentliche Li-
mitationen bestehender Ansétze durch die Integration von Informationen sowohl aus
Einzelzell-Referenzen als auch aus Bulk-Daten und bewiltigt dabei effektiv Domain-
Shifts zwischen Referenz- und Zieldatensidtzen. Durch umfassendes Benchmarking
iiber verschiedene experimentelle Ansitze und Modalitidten (einschlieRlich Bulk-RNA-
Sequenzierung, Proteomik und rdumliche Transkriptomik) zeigen wir die iiberlegene
Leistung von DISSECT bei der Vorhersage sowohl von Zelltyp-Proportionen als auch
zelltypspezifischen Expressionsprofilen, bei reduzierter AbhZngigkeit von der Referenz-
auswahl.

Mit Hilfe der Zelltyp-Dekonvolution haben wir zwei unterschiedliche Krankheiten un-
tersucht: die mit antineutrophilen zytoplasmatischen Antikdrpern assoziierte Glome-
rulonephritis (ANCA-GN) und das Glioblastom (GBM). Bei ANCA-GN ergab die Dekon-
volution von Einzelzell- und rdumlichen Transkriptomikdaten von 34 Patienten und 8
Kontrollpersonen spezifische T-Helferzell-Akkumulationsmuster, die mit Entziindungen
einhergehen. Eine auf diesen Informationen basierende computergestiitzte Arzneimittel-
vorhersage identifizierte Ustekinumab als potenziellen therapeutischen Wirkstoff, der
bei vier Patienten mit schlechter Prognose unter Standardbehandlung vielversprechende
Ergebnisse zeigte. Beim Glioblastom nutzten wir die Dekonvolution von Zelltypen zur
Analyse von DNA-Methylierungsmustern in mehreren GBM-Patientenkohorten und iden-



Xvi

tifizierten zwei unterschiedliche und zeitlich stabile GBM-Gruppen, die einen besseren
prognostischen Wert haben als etablierte molekulare Subtypen, insbesondere bei der
Vorhersage des Ansprechens auf einen chirurgischen Eingriff.

Diese Dissertation leistet mehrere wichtige Beitrdge zur Bioinformatik, Imnmunologie
und Neurowissenschaft: (1) ein Zelltyp-Dekonvolutions-Framework, das den Stand der
Technik bei der Quellentrennung fiir biologische Daten vorantreibt, (2) eine integrative
Analyse von immunzellenspezifischen Signalen, um therapeutische Entscheidungen bei
ANCA-GN zu treffen, und (3) die Identifizierung klinisch relevanter und stabiler GBM-
Untergruppen auf der Grundlage dekonvolvierter zelltypspezifischer Signale.
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PREFACE

This dissertation follows a cumulative structure and contains the following three publica-
tions appearing in peer-reviewed journals.

Publication 1: Khatri R, Machart P, Bonn S. DISSECT: deep semi-supervised consistency
regularization for accurate cell type fraction and gene expression estimation. Genome
Biol. 2024 Apr 30;25(1):112. doi: 10.1186/s13059-024-03251-5. PMID: 38689377; PMCID:
PMC11061925.

Publication 2: Engesser J*, Khatri R*, Schaub DP*, Zhao Y, Paust HJ, Sultana Z, Asada
N, Riedel JH, Sivayoganathan V, Peters A, Kaffke A, Jauch-Speer SL, Goldbeck-Strieder
T, Puelles VG, Wenzel UO, Steinmetz OM, Hoxha E, Turner JE, Mittriicker HW, Wiech
T, Huber TB, Bonn S*, Krebs CF*, Panzer Ulff. Immune profiling-based targeting of
pathogenic T cells with ustekinumab in ANCA-associated glomerulonephritis. Nat
Commun. 2024 Sep 19;15(1):8220. doi: 10.1038/s41467-024-52525-w. PMID: 39300109;
PMCID: PMC11413367.

Publication 3: Drexler R*, Khatri R¥, Sauvigny T, Mohme M, Maire CL, Ryba A, Zghaibeh
Y, Dithrsen L, Salviano-Silva A, Lamszus K, Westphal M, Gempt J, Wefers AK, Neumann
JE, Bode H, Hausmann E Huber TB, Bonn S, Jiitten K, Delev D, Weber KJ, Harter PN,
Onken J, Vajkoczy B, Capper D, Wiestler B, Weller M, Snijder B, Buck A, Weiss T, Goller PC,
Sahm E Menstel JA, Zimmer DN, Keough MB, Ni L, Monje M, Silverbush D, Hovestadt
V, Suva ML, Krishna S, Hervey-Jumper SL, Schiiller U, Heiland DH*, Hinzelmann S¥,
Ricklefs FL*. A prognostic neural epigenetic signature in high-grade glioma. Nat Med.
2024 Jun;30(6):1622-1635. doi: 10.1038/s41591-024-02969-w. Epub 2024 May 17. PMID:
38760585; PMCID: PM(C11186787.

For clarity, the structure of the organization of this dissertation is presented below.

Chapter 1 provides the necessary background and introduces the main topics explored
in subsequent chapters. In particular, sections 1.1-1.3 introduce the basic biological
background and terms required to understand the data and publications. Sections 1.4-1.7
introduce the computational methods, including analysis pipelines, deep neural networks,
cell type deconvolution state-of-the-art and the proposed novel DISSECT framework.
Section 1.8 presents a background on the disease and literature corresponding to the

Xix



work herein. Section 1.9 lists the research goals this dissertation addresses. Chapters
2-4 present the aforementioned publications. Each publication includes supplementary
content (tables, figures, and/or notes) which appears after the main content of the re-
spective manuscripts in chapters 2-4. Finally, chapter 5 summarizes the findings of the
works presented in this dissertation, and discusses its results, contributions, and potential
impact.

In each of the publications, I am a first author and have made significant contributions to
project conceptualization, analysis, drafting, editing, and revising the manuscripts. The
particular contributions for each of the publications are presented as appendix A.

Robin Khatri
Hamburg, 2025
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INTRODUCTION



1.1. CELLS AND CELL TYPES

Cells are the fundamental units of living organisms, each containing a complex array
of structures and molecules that work together to maintain biological functions. Cells
contain various structures including a nucleus bound by membrane (Figure 1.1a). At
the heart of cellular operations lies Deoxyribonucleic acid (DNA), the genetic blueprint
stored within the nucleus of cells. This double-helix molecule contains the instructions
for building and operating the cell (Watson and Crick, 1953). When these instructions
are carried out, a process called transcription begins which results in RNA molecules
(Figure 1.1b). This process of transcription can be blocked when methyl groups (CH3)
are added to a DNA molecule (Figure 1.1¢). During transcription, enzymes unwind a
section of DNA and use it as a template to create a complementary strand of Ribonucleic
acid (RNA) (Kornberg, 2007). This RNA molecule, specifically messenger RNA (mRNA),
then exits the nucleus and serves as a mobile set of instructions for protein synthesis.
Other types of RNA, such as transfer RNA and ribosomal RNA, also play crucial roles in
translating the genetic code into functional proteins (Crick, 1970). Between species and
among organs, the cell composition and biological attributes differ, and understanding
the architecture and functions of an organism requires understanding the composition
and function of constituting cells (Zeng, 2022). Based on certain properties, cells can
be categorized into homogenous groups termed cell types. While there is no consensus
on which qualities are necessary and mandatory to define a cell type, the recent efforts
focus on defining cell types with respect to shared development history and molecular
features such as transcriptome and epigenome (Fleck et al., 2023). Based on the data
compiled from over 1500 publications, there are an estimated >28 trillion cells in adult
humans with around 500 major cell types across 60 tissue systems such as the brain and
kidney (Hatton et al., 2023). The cell types undergo changes in both numbers and their
molecular features in different conditions of the body such as during a disease (Jagadeesh
et al.,, 2022; Ju et al., 2013). The primary focus, here, is to understand the changes in
cell type composition and molecular features in glioblastoma (GBM) and Antineutrophil
cytoplasmic antibody-associated glomerulonephritis (ANCA-GN) (introduced in Section
1.8). Major cell types of the kidney and brain in a healthy state are presented in Figure
1.1d.
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Figure 1.1 | a. Schematic illustration of a cell highlighting key organelles and processes. The cell nucleus
contains DNA, which undergoes transcription to produce RNA. Mitochondria, the powerhouses of the cell,
generate ATP through cellular respiration. The cytoplasm contains various organelles and newly transcribed
mRNA. Exported mRNA can be seen outside the nucleus. They move to the rough endoplasmic reticulum (ER).
The rough ER, studded with ribosomes, is involved in protein synthesis and modification. The Golgi apparatus
further processes and packages proteins for secretion or cellular use. The cell is enclosed by a cell membrane
featuring surface receptors, which are proteins that bind specific molecules and initiate cellular responses. b.
Ilustration of RNA transcription from a DNA template. c. Illustration of DNA methylation. DNA methylation
refers to the process in which methyl groups (CH3), depicted by ME3 in the figure, are added to cytosine bases
in the DNA molecule, often at CpG sites. When these methyl groups attach to a gene promoter, which is the
region of DNA that initiates transcription of a particular gene, DNA methylation often restricts transcription. d.
Some examples of the established cell type populations in the brain and kidney - two tissues used extensively in
publications part of this dissertation. Created with BioRender.com.



1.2. RNA SEQUENCING (RNA-SEQ)

RNA-seq is a broad term for a range of technologies to measure the abundance of tran-
scripts of each gene from a biological specimen. Multiple technologies exist for different
use cases. RNA sequencing can be done either on individual cells or multiple cells such
as parts or on entire organ systems. Here, to distinguish between different RNA-seq
measurements, we use three terms: 1. Bulk RNA refers to RNA measurements at a tissue
level, 2. Single cell RNA-seq (scRNA-seq) refers to RNA-seq at a single-cell level, and 3.
Spatial transcriptomics refers to RNA-sequencing at a tissue level while preserving the
locations of each measurement. Each of these are briefly described below.

1.2.1. BULK RNA-SEQ

Bulk RNA-seq is a powerful technique that uses next-generation sequencing to compre-
hensively profile the transcriptome. It involves extracting RNA from a sample, converting
it to cDNA, fragmenting the cDNA, and sequencing the fragments using high-throughput
sequencing platforms (Kukurba and Montgomery, 2015). The resulting sequencing reads
are then aligned to a reference genome or transcriptome to quantify gene expression lev-
els. Bulk RNA-seq can detect novel transcripts, splice variants, and non-coding RNAs, and
has a wide dynamic range for quantifying gene expression (Kukurba and Montgomery,
2015; Rao et al., 2019).

1.2.2. SCRNA-SEQ

scRNA-seq allows for the dissection of complex tissues by profiling individual cells and
providing the transcriptional states of each cell (Wolfien et al., 2021). This allows for a bet-
ter understanding of cellular heterogeneity and composition (Papalexi and Satija, 2018).
Several platforms exist for scRNA-seq. Two main ones with complementary benefits are
introduced below.

10x CHROMIUM

The 10x Chromium platform available from 10x Genomics is a droplet-based scRNA-seq
method that enables the profiling of thousands of cells in a single experiment (Wang
et al.,, 2021). It uses microfluidics to encapsulate individual cells into nanoliter-scale
droplets, along with barcoded beads for cell-specific labeling of mRNA molecules. The
10x Chromium system offers two main library preparation chemistries. 3’ gene expres-
sion and 5’ gene expression (Hsu et al.). Both of these capture a particular portion of



transcripts (as indicated by their names). 3’ and 5’ refer to the terminal regions of the RNA
molecule that play crucial roles in its stability, processing, and translation (Wang et al.,
2021).

SMART-SEQ2

Smart-seq?2 is a plate-based scRNA-seq method from Illumina that provides full-length
mRNA sequencing as opposed to specific portions (Wang et al., 2021). It involves the iso-
lation of single cells into individual wells, followed by cell lysis and reverse transcription
to generate cDNA. The cDNA is then amplified and sequenced.

Smart-seq offers several advantages, including full-length mRNA sequencing that can
identify novel isoforms, and a higher sequencing depth per cell compared to 10x Chromium,
allowing for the detection of lowly expressed genes. However, Smart-seq has a lower
throughput compared to 10x Chromium and requires more input material per cell, and
can miss rare populations from being captured (Wang et al., 2021).

1.2.3. SPATIAL TRANSCRIPTOMICS

Spatial transcriptomics is a new technology that quantifies gene expression of a tissue in a
spatial context. One of the leading platforms in the field is the Visium from 10x Genomics,
which allows for the comprehensive profiling of the transcriptome on circular grids of
spots of around 55 pm spread across entire tissue sections. This method captures spatial
information by utilizing a slide with a grid of oligonucleotide probes that hybridize to
mRNA within tissue samples (Moses and Pachter, 2022). By mapping the location of gene
expression, it is possible to analyze the gene expression patterns over the tissue which is
critical for understanding complex biological processes such as development and disease
progression (Zhou et al., 2023).

The Visium platform is particularly notable for its versatility, as it can analyze both fresh-
frozen and formalin-fixed, paraffin-embedded (FFPE) tissues (Williams et al., 2022). This
flexibility is essential for utilizing archival samples in research, which often contain valu-
able information about disease states. The technology supports whole-tissue section
profiling, eliminating the need for researchers to pre-select regions of interest. This ca-
pability allows for a more comprehensive view of the tissue landscape, capturing a wide
array of cellular interactions and spatial gene expression patterns. Additionally, Visium
can achieve a high cellular resolution, typically averaging 1 to 10 cells per spot, depending
on the tissue type, which enhances the granularity of the data obtained. However, in prac-
tice, cell type level analysis is not possible without the usage of cell type deconvolution



approaches to measure cell type fraction and gene expression estimation in each spot (Li
et al., 2023). Newer technologies like Xenium from 10x genomics are rapidly developing
and in the future, it may be possible to utilize them for large-scale studies, possibly in
combination with Visium (Janesick et al., 2023).



1.3. DNA METHYLATION

DNA methylation, illustrated in Figure 1.1c, is an epigenetic modification that plays a
vital role in regulating gene expression, genomic imprinting, X-chromosome inactivation,
and maintaining genome stability. This process involves the addition of a methyl group
to the 5’ position of cytosine residues, predominantly occurring at CpG sites (regions of
DNA where a C, cytosine nucleotide occurs before a G, guanine nucleotide). The dynamic
nature of DNA methylation patterns throughout development and in response to envi-
ronmental factors has made it a subject of intense research in various fields, including
cancer biology, neuroscience, and developmental biology (Tucker, 2001; Jones, 2012).
High-throughput technologies have revolutionized our ability to study DNA methylation
patterns on a genome-wide scale. Among these technologies, DNA methylation microar-
rays are powerful tools for interrogating methylation status across pre-defined hundreds
of thousands of CpG sites simultaneously. Two prominent platforms in this field are the
Nlumina Infinium HumanMethylation450 BeadChip (450k array) and its successor, the
Mumina Infinium MethylationEPIC BeadChip (EPIC array).

The 450k array was designed to assess the methylation status of over 450,000 CpG sites
across the human genome. This array covers 99% of RefSeq genes, with an average of
17 CpG sites per gene region distributed across the promoter, 5’UTR, first exon, gene
body, and 3’'UTR (Bibikova et al., 2011; Price et al., 2013). Additionally, it includes CpG
sites in CpG islands, shores, and shelves, as well as miRNA promoter regions (Bibikova
etal., 2011). The 450k array utilizes two types of probe designs: Infinium I and Infinium
II. Infinium I probes use two bead types per CpG locus, one for methylated and one for
unmethylated states, while Infinium II probes use a single bead type with two different
color channels to distinguish between methylated and unmethylated states.

While 450k arrays covered a large amount of CpG sites, it still covers only a small por-
tion of CpG sites in the human genome ( 28 million) (Babenko et al., 2017). EPIC array,
which substantially expanded the coverage to over 850,000 CpG sites, maintains backward
compatibility with the 450k array, covering more than 90% of the CpG sites present in
its predecessor (Fernandez-Jimenez et al., 2019). The additional probes on the EPIC
array target enhancer regions identified by the ENCODE and FANTOMS5 projects, as well
as open chromatin regions and DNase hypersensitive sites (Moran et al., 2016). This
expanded coverage allows for a more comprehensive analysis of regulatory regions and
provides greater insight into the functional relevance of DNA methylation patterns.

Both the 450k and EPIC arrays have been widely adopted in large-scale epigenome-wide
association studies (EWAS), enabling researchers to identify differentially methylated re-



gions associated with various phenotypes, diseases, and environmental exposures. These
arrays have contributed significantly to our understanding of the role of DNA methylation
in cancer progression, neurodegenerative disorders, and aging, among other biological
processes (Teschendorff and Relton, 2018).

Despite their widespread use and valuable contributions to the field, DNA methyla-
tion microarrays have some limitations. They provide a targeted approach, focusing on
pre-selected CpG sites, which may miss potentially important methylation changes in
unprobed regions. Additionally, the arrays are designed based on the human reference
genome, which may not capture all genetic variants present in diverse populations such
as murine models as a model organism (Canales and Walz, 2019). Furthermore, these
arrays typically require a relatively large amount of input DNA, which can be a limiting
factor when working with rare cell populations or clinical samples. To address some of
these limitations and to gain insights into cellular heterogeneity, single-cell DNA methy-
lation profiling techniques have been developed in recent years. These methods aim to
capture methylation patterns at the individual cell level, providing unprecedented resolu-
tion for studying epigenetic heterogeneity within complex tissues and cell populations.
Single-cell bisulfite sequencing (scBS-seq) and single-cell reduced representation bisulfite
sequencing (scRRBS) are among the pioneering techniques in this field (Smallwood et al.,
2014; Guo et al., 2013). However, single-cell DNA methylation profiling faces several chal-
lenges. The primary obstacle is the sparse nature of the data due to the limited amount
of DNA available from a single cell and the destructive nature of bisulfite conversion.
This sparsity results in low genomic coverage per cell, typically ranging from 1% to 10%
of CpG sites. Another challenge is the high technical variability introduced during the
amplification of small amounts of DNA, which can lead to biases and increased noise
in the data. Additionally, the cost and computational resources required for single-cell
methylation analysis are significantly higher compared to bulk sample analysis, limiting
the number of cells that can be profiled in a given experiment. Despite these challenges,
single-cell DNA methylation profiling has already provided valuable insights into cellular
heterogeneity in various biological contexts, including embryonic development, tumor
evolution, and brain function. As the field continues to advance, new methodologies
and analytical approaches are being developed to improve genomic coverage, reduce
technical biases, and enhance the integration of single-cell methylation data with other
omics modalities (Luo et al., 2017).



1.4. METHODS FOR THE THE ANALYSIS OF RNA-SEQUENCING
AND DNA METHYLATION DATA

1.4.1. COMPUTATIONAL ANALYSIS OF SCRNA-SEQ

This introduction outlines key methodological approaches used in the analysis of scRNA-
seq data.

The first step in the analysis of scRNA-seq data is processing of the raw data obtained
from sequencing (e.g. from 10x Chromium as introduced in section 1.2.2). The processing
steps involve data filtering and other quality control steps to remove potential doublets
(i.e. where more than one cell is wrongly barcoded as one cell) and cells with low quality,
as measured by the number of expressed genes (Luecken and Theis, 2019), and dimen-
sionality reduction techniques such as PCA to visualize and explore the data, resulting in
a smaller set of principal components (Hwang et al., 2018). Following PCA, non-linear
dimensionality reduction methods such as t-distributed Stochastic Neighbor Embedding
(t-SNE) or Uniform Manifold Approximation and Projection (UMAP) are applied to further
reduce the data to two or three dimensions for visualization (Van der Maaten and Hinton,
2008; McInnes et al., 2018). These techniques help identify clusters of cells with similar
expression profiles, which often correspond to distinct cell types.

Clustering algorithms play a central role in identifying cell types from scRNA-seq data.
Unsupervised clustering methods, such as k-means, hierarchical clustering, or graph-
based approaches like Louvain or Leiden algorithms, are used to group cells based on
their gene expression similarities (Kiselev et al., 2019). The choice of clustering algorithm
and parameters can significantly impact the results, and we often need to experiment
with different approaches to find the most biologically meaningful clustering solution.

Once clusters are identified, the next critical step is to annotate these clusters with cell
type labels. This process typically involves examining the expression of known marker
genes for different cell types. Differential expression analysis between clusters can help
identify genes that are uniquely or preferentially expressed in each cluster, aiding in their
biological interpretation (Love et al., 2014). Additionally, automated annotation tools that
use existing gene expression databases and ontologies, such as SingleR or Garnett, can
assist in assigning cell type labels to clusters (Aran et al., 2019; Pliner et al., 2019).

Recent advancements in scRNA-seq analysis methods have focused on addressing the
challenges of batch effects and data integration. Techniques such as mutual nearest
neighbors (MNN) correction, Harmony, or Seurat’s integration methods allow researchers
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to combine multiple scRNA-seq datasets, enabling more robust cell type identification
across different experimental conditions or time points (Haghverdi et al., 2018; Korsunsky
etal.,, 2019; Stuart et al., 2019).

1.4.2. COMPUTATIONAL ANALYSIS OF BULK RNA

The analysis of bulk RNA-seq data typically begins with quality control of raw sequencing
reads, followed by alignment to a reference genome or transcriptome assembly. After
quantification of gene or transcript expression levels, normalization techniques are ap-
plied to account for technical biases and enable comparisons across samples. Differential
expression analysis is then performed to identify genes that are significantly up-or down-
regulated between experimental conditions (Love et al., 2014). While these standard
analysis steps provide valuable insights into overall gene expression changes, they do
not directly address the cellular heterogeneity inherent in most biological samples. To
overcome this limitation, cell type deconvolution, the estimation of cell type fractions
and cell type-specific gene expression, is necessary. Cell type deconvolution is introduced
in section 1.6.
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1.5. DEEP NEURAL NETWORKS

In this section, we introduce the multilayer perceptrons (MLP), autoencoders (AE), and
conditional variational autoencoders (CVAE) to get a background prerequisite for under-
standing the DISSECT framework presented in Chapter 2.

1.5.1. MULTILAYER PERCEPTRON (MLP)

Multilayer Perceptrons (MLPs) are a class of artificial neural networks that have played a
role in the development of several complex deep learning architectures adapted to do
different tasks. As a type of feedforward neural network, MLPs have found applications in
various domains, including pattern recognition and function approximation.

The foundation of MLPs can be traced back to the simple perceptron model (Rosenblatt,
1958). However, MLPs extend this concept by introducing multiple layers of intercon-
nected nodes (i.e. going deep), allowing them to learn and represent complex, non-linear
relationships between inputs and outputs.

The fundamental structure of an MLP consists of three main components: 1) Input layer,
which receives the initial data, (2) Hidden layer(s), which processes the information, and
(3) Output layer(s), which produces the final results.

Each layer consists of nodes, also known as neurons or units, which are connected to
nodes in adjacent layers. The strength of these connections is represented by weights,
which are adjusted during the learning process.

The fundamental operation on a neuron within an MLP can be described mathematically
as follows:

n
y=f0_ wix;+Db),

i=1
Where:
- y is the output of the neuron
- f is the activation function
- w; are the weights
- x; are the inputs



12

- bis the bias term
- n is the number of inputs

The choice of activation function is crucial in determining the network’s ability to learn
non-linear relationships. Common activation functions include the sigmoid, hyperbolic
tangent (tanh), and rectified linear unit (ReLU) (Ramachandran et al., 2017).

The learning in MLPs is typically achieved through backpropagation, an algorithm that
calculates the gradient of the loss function with respect to the network’s weights (Rumel-
hart et al., 1986). This gradient is then used to update the weights iteratively, minimizing
the error between the network’s predictions and the true values. The backpropagation
algorithm can be summarized in the following steps: 1. Forward pass: Input data is
propagated through the network to generate predictions. 2. Error calculation: The differ-
ence between predictions and true values is computed, such as with mean squared error.
3. Backward pass: The error is propagated backward through the network to calculate
gradients. 4. Weight update: Weights are adjusted using an optimization algorithm, such
as Adam (Kingma, 2014). It adapts the learning rate for each weight and incorporates
concepts of momentum.

The weight update rule for Adam can be expressed as:

Ore1=0;— 1 -1,
Vi +e
Where:

0, is the parameter (weight) at time step ¢

7 is the learning rate

m; is the bias-corrected first-moment estimate

V. is the bias-corrected second-moment estimate

€ is a small constant to prevent division by zero

Despite their simplicity compared to more advanced neural network architectures, MLPs
have demonstrated remarkable performance in various tasks. They serve as building
blocks for more complex models and continue to be relevant in both research and practi-
cal applications. Further, a few cell type deconvolution methods have previously adapted
MLPs (Menden et al., 2020; Yasumizu et al., 2024).
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1.5.2. AUTOENCODER (AE)

Autoencoders are a class of artificial neural networks commonly used in the field of un-
supervised learning and dimensionality reduction. A typical autoencoder is designed to
learn efficient data representations (encoding) by training the network to ignore signal
"noise”. It accomplishes this by learning to reconstruct its input at the output layer. The
network architecture typically consists of an encoder function % = f(x) and a decoder
function that produces a reconstruction r = g(h) from the output of the encoder (/). The
aim is to minimize the difference between the input x and its reconstruction r.

The simplest form of an autoencoder is the undercomplete autoencoder, where the hid-
den layer has a (much) lower dimensionality than the input and output layers. This forces
the network to learn a compact representation of the input data. The learning process
can be formulated as minimizing a loss function: L(x, g(f(x))), where L is a loss function
penalizing g(f(x)) for being dissimilar to x, such as the mean squared error.

Mathematically, for an input vector x, a simple encoder layer with the same activation
function across all neurons produces a hidden representation h:

h=f(x)=sWx+Db),

where W is a weight matrix, b is a bias vector, and s is an activation function applied
element-wise. For multi-layer encoders, this basic transformation is applied sequentially
across layers, with each layer’s output serving as input to the next layer.

The decoder then attempts to reconstruct the input from this hidden representation. The
output of the first decoder layer with the same activation function on all neurons can be
written as,

r=gh)=sWh+b),

where W’ and b’ are the weights and biases of the decoder, and s’ is the decoder’s activa-
tion function.

While simple autoencoders can learn to compress data efficiently, they may risk learning
an identity function if the hidden layer is too large compared to an optimal one. To
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address this, various regularization techniques exist. One popular approach is the sparse
autoencoder, which adds a sparsity penalty to the loss function, forcing the network to
activate only a small number of hidden units for each input (Ng, 2011).

Previous works have used autoencoders for cell type deconvolution, as well as for sScRNA-
seq data integration (Tran et al., 2021; Chen et al., 2022; Zhu et al., 2022).
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1.6. CELL TYPE DEOCNVOLUTION IN BULK RNA-SEQ AND OTHER
MIXED-CELL DATA MODALITIES

In this section, we first introduce a background of cell type deconvolution methods and
then detail the DISSECT framework.

Cell type deconvolution methods are powerful tools to estimate the proportions of differ-
ent cell types within bulk RNA-seq samples. These approaches assume that the observed
gene expression in a bulk sample is the sum of the expression profiles of its constituent
cell types, weighted by their relative abundances. Deconvolution algorithms aim to solve
this inverse problem, inferring cell type proportions and, in some cases, cell type-specific
expression profiles from the bulk data (Newman et al., 2019; Chen et al., 2022).

Deconvolution methods can be broadly categorized into reference-based and reference-
free approaches. This work deals with reference-based approaches which rely on prior
knowledge of cell type-specific gene expression signatures, often derived from purified
cell populations or single-cell RNA-seq data. These prior signatures can be pre-computed
directly and parameters (cell type fractions or gene expression) are fitted, or the prior can
be learnt using machine learning (Table 1). These signatures serve as a basis for decom-
posing the bulk signal into its cellular components. Relying on these signatures makes cell
type deconvolution a semi-blind source-separation task (Hesse and James, 2006). One
of the earliest and most widely used reference-based methods is CIBERSORT (Newman
etal., 2015), which employs support vector regression to estimate cell type proportions.
Other popular tools in this category include xCell (Aran et al., 2019), which uses a novel
gene signature-based method, and MuSiC, which uses multi-subject single-cell RNA-seq
reference data to improve deconvolution accuracy (Wang et al., 2019).

Reference-free methods, on the other hand, estimate cell type proportions without relying
on external gene expression signatures. These approaches often use matrix factorization
techniques to decompose the bulk expression matrix into cell type-specific expression
profiles and their corresponding proportions. Examples of reference-free methods include
CDSeq, which employs a Bayesian hierarchical model for simultaneous deconvolution
and gene expression estimation (Kang et al., 2019).

Recent advancements in deconvolution methods have focused on improving accuracy on
diverse tissue types. For instance, Scaden uses deep learning (Menden et al., 2020) and
SCDC combines multiple reference-based estimates to produce more reliable estimates
(Dong et al., 2021). Some methods have explored the integration of deconvolution with
other analysis tasks, such as differential expression analysis. Methods like csSAM and
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Table 1.1 | Overview of the prominent cell type deconvolution methods.

Method name  Algorithm type Publication year Journal Predicts cell type frac- Predicts cell type-
tions? specific gene expres-
sion?
TAPE Transfer learning 2023 Nature Communica- Yes Yes
tions

BayesPrism Bayesian hierarchical 2022 Nature Cancer Yes Yes
model

Cell2Location Probabilistic model 2022 Nature Biotechnology  Yes No

SPOTlight Non-negative matrix 2021 Nucleic Acids Research ~ Yes No
factorization

SCDC Ensemble of models 2020 Briefings in Bioinfor- Yes No
trained on different ref- matics
erences

Scaden Deep learning 2020 Science Advances Yes No

CIBERSORTx Support vector ma- 2019 Nature Biotechnology  Yes Yes
chine & matrix factor-
ization

DWLS Weighted least squares 2019 Nature Communica- Yes No

tions

MuSiC Multi-subject deconvo- 2019 Nature Communica- Yes No
lution tions

CIBERSORT Support vector regres- 2015 Nature Methods Yes No

sion
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csDE enable the identification of cell type-specific differential expression from bulk RNA-
seq data, providing insights into which cell types are driving observed gene expression
changes (Shen-Orr et al., 2010; Chikina et al., 2015).

The choice of the deconvolution method depends on various factors, including the avail-
ability of reference data, the expected cellular composition of the samples, and the specific
research questions being addressed (Avila Cobos et al., 2020). When suitable reference
data are available, reference-based methods may provide more accurate and interpretable
results (Avila Cobos et al., 2020; Sturm et al., 2019). However, reference-free methods can
be valuable for exploring unknown cellular compositions or when reliable reference data
are lacking (Zaitsev et al., 2019). It is important to note that all deconvolution methods
have limitations and assumptions that should be carefully considered. Factors such as the
quality and comprehensiveness of reference data, the degree of cellular heterogeneity in
the samples, and the presence of unknown or rare cell types can all impact deconvolution
performance (Jin and Liu, 2021; Jew et al., 2020; Patrick et al., 2020). Additionally, the reso-
lution of cell type identification is inherently limited by the similarity of gene expression
profiles between related cell types (Finotello and Trajanoski, 2018; Jin and Liu, 2021).
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1.7. THE DISSECT FRAMEWORK

In this section, we introduce DISSECT framework (Khatri et al., 2024), a semi-supervised
learning framework for cell type deconvolution. The complete manuscript is included as
chapter 2.

1.7.1. SOURCE SEPARATION AND SEMI-SUPERVISED LEARNING

Cell deconvolution belongs to a broader class of source separation problems, where the
goal is to recover individual source signals from mixed observations. In the classical
blind source separation framework, this is often approached through methods like Non-
negative Matrix Factorization (Lee and Seung, 2000) or Independent Component Analysis
(Davies and James, 2007). However, these methods typically rely on strong assumptions
about statistical independence and identical distributions.

DISSECT takes a fundamentally different approach by reformulating cell deconvolution
as a semi-supervised learning problem. This reformulation is motivated by two key obser-
vations:

1. While ground truth cell type proportions for bulk RNA-seq data are generally unknown
(unsupervised setting), we can generate labeled training data through single-cell RNA-seq
simulations (supervised setting).

2. The physical process of cell mixing follows known constraints that can be exploited as
consistency conditions.

1.7.2. CELL TYPE DECONVOLUTION AS A LEARNING PROBLEM WITH CONSIS-
TENCY REGULARIZATION

The matrix factorization problem in cell type deconvolution is typically formulated as
B =XS, where B € R"*" is the bulk gene expression matrix containing m samples with n
genes, X € R™*¢ is a matrix containing cell type fractions of c cell types, and S e R®*" is a
matrix consisting of cell type-specific gene expression profiles. Instead of directly solving
this factorization problem, an alternative formulation is to learn a function f:R" — A€
that maps bulk gene expression vectors to the probability simplex of cell type proportions.

Consistency Regularization

Given a real bulk sample B;, a sample B*!" which is simulated from a scRNA-seq reference
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data (refered to as simulated bulk), and a mixing coefficient § € [0, 1], we define a mixed
sample as:

BM* = BB; +(1- BB,
The key insight is that if f is a valid deconvolution function, it should satisfy:
FBM*) = BFB) +(1-P)f(BI™).
This consistency holds under the following assumption:

If the marker genes used for cell type identification are invariant across conditions and
the mixing process is linear, then the consistency condition is exact. This can be argued
as follows:

Let M be the set of marker genes, then for g € M, the expression level in the mixture is:
B3 = BBig +(1-p)B;;" and

Since marker genes are invariant, their expression levels are proportional to cell type
fractions, the predicted proportions must follow the same linear relationship.

Based on this validity condition, we developed the semi-supervised learning framework
DISSECT that incorporates this condition into the learning objective with consistency
regularization described in pseudocodes presented in algorithms 1 and 2 below. Further,
the learning process of this algorithm is done in a schedule where first (in our experi-
ments, for 2000 steps) the model is trained on purely simulated data to push model from
collapsing to the solution f(Bl!""x) = f(B;) = f(Bl.Sim).
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Input: B,.,; (bulk RNA-seq), SC (single-cell data), T (steps)
Output: f (trained fraction estimator)
f — InitializeMLP();
fortr=1to T do
Bsim, Xsim <— SimulateBulk(SC);
B — UniformSample(0.1,0.9);
Bimix < B Brear + (1= P) - Bsim;
Xmix_mrget - ,6 'f(Breal) +(1- ,6) < Xsims
if + <2000 then

‘ /11 — 0;
else if <4000 then

| A —15
else

| A —10;
end
Lsupervised — KL(f (Bsim), Xsim);
Lconsistency h ”f(Bmix) - Xmixftargetnz;
Liotar — Lsuper vised T A1° Lconsistency;
UpdateNetwork(f, L;ora1);
end

return f
Algorithm 1: Training Fraction Estimator

Input: B,.4;, SC, f (trained fraction estimator), Tey) (steps)
Output: g (trained expression estimator)

g — InitializeCVAE();

for 1 =1to Teyp do

Bgsim, Xsim <— SimulateBulk(SC);

Ssim — ComputeSignatures(Bs;m, Xsim);

B — UniformSample(0.1,0.9);

Binix — ,B *Breqr + (1 - ﬁ) “Bsim;

Xreal < f(Breal);

Xmix — B Xrear + (1= B) - Xsim;

Lyecon < Ssim — &(Bsim) ||2;

Leonsistency < 1 Xmix - § Bmix) — B Xrear 8 Brear) — (1= P) - Xsim
Lk — KL(&encoder (Bsim), A (0,1));

Liotai = Lrecon + Az Lconsistency + ,BCVAE ‘LkL;
UpdateNetwork(g, L;ora1);

end

return g
Algorithm 2: Training Expression Estimator

'Ssim”z;
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DISSECT’s consistency regularization shares conceptual foundations with MixMatch
(Berthelot et al., 2019) but differs in crucial ways. Firstly, MixMatch assumes unlabeled
data follows the same distribution as labeled data, and DISSECT explicitly handles do-
main shift between simulated and real data. Secondly, MixMatch uses random convex
combinations of augmented samples while DISSECT uses biologically motivated mixing
based on cell type proportions. Lastly, the two differ in their loss functions. MixMatch
uses cross-entropy for labeled data and L,-norm for consistency, while DISSECT uses KL
divergence for simulated data and weighted L,-norm for consistency.

In scenarios where some bulk data with known cell type fractions is available from an-
other experiment and its domain shift from the test bulk data is limited, the consistency
framework of DISSECT offers additional theoretical advantages. One key benefit is the
reduced sample complexity (i.e., the required number of samples for effective training),
which we examine below.

1.7.3. DISSECT REQUIRES FEWER SAMPLES TO LEARN ACCURATE REPRE-
SENTATIONS WHEN SOME REAL BULK DATA WITH TRUE CELL TYPE
PROPORTIONS IS AVAILABLE

In the classical setting without consistency regularization, learning accurate latent cell
type signatures theoretically requires € (nc) samples, where n is the number of genes and
c is the number of cell types. This complexity emerges naturally from the dimensionality
of the problem: each cell type signature is represented by an n-dimensional vector, and
we need to learn c such signatures. From statistical learning theory, this complexity
aligns with the VC dimension of learning ¢ hyperplanes in n dimensions (Vapnik and
Chervonenkis, 2015; Blumer et al., 1989).

DISSECT’s consistency regularization framework fundamentally alters this requirement
by imposing constraints on the solution space. The consistency condition f (Blmix) =
Bf(Bi)+1~-pP)f(B] im) enforces strong constraints on the hypothesis space of possible
deconvolution functions.

The theoretical foundation for this dimension reduction can be understood through the
Johnson-Lindenstrauss (JL) lemma (Johnson, 1984), which states that N points in high-
dimensional space can be projected down to @ (log N/e?) dimensions while preserving
all pairwise distances up to a factor of (1 +¢), for 0 < € < 1. In the context of DISSECT,
the mixing process B l.mix =pB;+(1- ﬁ)Bl.Sim with f randomly sampled from a uniform
distribution between 0.1 and 0.9 creates a form of randomized projection.
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DISSECT inherently satisfies several key conditions that make this theoretical reduction
possible: assuming model learns well on simulated data, the mixing operation is applied
to marker genes that are invariant across conditions, ensuring essential signals for cell type
identification are preserved; the simulated data is generated from single-cell references
containing sufficient cellular heterogeneity, which helps capture the low-dimensional
manifold where cell type signatures naturally reside; and the consistency regularization
enforces a constraint that the deconvolution function must be linear with respect to the
mixing operation, which aligns with the linear projection properties of the JL lemma.

Under these conditions, the learning problem can be effectively reduced from & (nc)
to approximately @ (y/nc) complexity. The practical implications of this reduction are
substantial. For a bulk RNA-seq dataset with n=5,000 genes and c = 5 cell types, traditional
methods would theoretically require on the order of 25,000 samples for reliable learning
(based on the @ (nc) bound). In contrast, DISSECT could potentially achieve comparable
performance with approximately 158 samples (based on the @(y/rc) bound). It is impor-
tant to note that these are theoretical upper bounds, and in practice, most methods may
require fewer samples to achieve reasonable performances.

This efficiency is particularly crucial in the context of bulk RNA-seq deconvolution, where
obtaining ground truth cell type proportions is expensive and labor-intensive. Moreover,
the consistency regularization not only reduces sample requirements but also improves
generalization by enforcing biologically meaningful constraints on the deconvolution
function.

This theoretical advantage positions DISSECT as a valuable tool for real-world applica-
tions where bulk RNA-seq data with ground truth cell type fractions is scarce, while still
maintaining robust performance through its semi-supervised learning framework.

1.8. CELL TYPE DYNAMICS IN ANCA-GN AND GBM

In this section, we provide the necessary background for cell type dynamics in ANCA-GN
and GBM, which are explored in chapters 3 and 4 respectively.

1.8.1. ANCA-GN

ANCA-GN is an autoimmune disease characterized by inflammation and damage to small
blood vessels in the kidneys. It is a subset of ANCA-associated vasculitis (AAV), a group of
systemic autoimmune diseases that can affect multiple organ systems (Jennette and Falk,
2013). The term "ANCA" refers to anti-neutrophil cytoplasmic antibodies, which play a
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central role in the pathogenesis of these conditions. Below is an overview of ANCA-GN,
in the context of complex dynamics of immune cells and the pathogenic mechanisms
involved.

The pathogenesis of ANCA-GN is primarily driven by the production of autoantibodies
targeting neutrophil proteins, specifically proteinase 3 (PR3) and myeloperoxidase (MPO)
(Kitching et al., 2020). These autoantibodies interact with neutrophils and monocytes,
leading to their activation and subsequent damage to blood vessel walls, particularly in
the glomeruli of the kidneys. The process begins with the production of ANCA by B cells
and their progenitors, followed by neutrophil priming by inflammatory stimuli, which
causes neutrophils to express PR3 and MPO on their cell surface. The interaction between
ANCA and these exposed autoantigens leads to neutrophil activation, degranulation, and
the formation of neutrophil extracellular traps (NETs). This process, coupled with com-
plement activation, results in endothelial injury and inflammation in the blood vessels
(Radford et al., 2001; Kessenbrock et al., 2009; Kettritz, 2012; Jennette and Falk, 2013;
Cornec et al., 2016).

The immune cell dynamics in ANCA-GN involve various cell types, each contributing to
the disease progression and regulation in several ways. Neutrophils, as the primary effec-
tor cells, undergo degranulation, NETosis, and cytokine production upon activation by
ANCA. Monocytes and macrophages also play important roles as ANCA targets, cytokine
producers, and antigen-presenting cells. Dendritic cells contribute to the initiation and
perpetuation of the autoimmune response through antigen presentation and cytokine
production (Séderberg et al., 2015; Wilde et al., 2009).

T cells have emerged as crucial players in the pathogenesis of ANCA-GN, with various
subsets contributing to disease progression. CD4+ T helper cells provide help to B cells
for autoantibody production and release cytokines that promote inflammation. An ex-
panded population of Th17 cells has been observed in ANCA-GN patients, contributing
to neutrophil recruitment and activation through the production of IL-17. Regulatory T
cells (Tregs) have been reported to be deficient or dysfunctional in ANCA-GN, potentially
contributing to the loss of self-tolerance. CD8+ T cells have also been implicated in tissue
damage and disease relapse (Abdulahad et al., 2007; Nogueira et al., 2010; Lepse et al.,
2011; Chen et al., 2020).

The role of T cells in ANCA-GN is far from clearly defined. Firstly, it is not clear how
different T cell subsets interact and influence each other in ANCA-GN, which specific
antigens are recognized by the autoreactive T cells, and how they further contribute to
the breakdown of tolerance. From a therapeutic point of view, it would be interesting
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to find if there are distinct T cell signatures that could serve as biomarkers for disease
activity or even predict treatment response. The potential role of tissue-resident memory
T cells in maintaining long-term inflammation and potentially causing or aiding relapse
remains to be fully defined. Further, the inflammatory niches and their microenviron-
ments are not explored. These niches could serve as hotspots for sustained inflammation
and autoantibody production. Understanding the composition, and heterogeneity of
these niches may provide valuable insights into disease mechanisms. While ANCA-GN
primarily affects glomeruli, the impact of infiltration in tubulointerstitial areas is not well
understood (Boud’hors et al., 2023).

1.8.2. GBM

Glioblastoma (GBM) is the most aggressive and lethal primary brain tumor in adults, char-
acterized by its rapid growth, invasive nature, and resistance to conventional therapies.
Despite advances in neurosurgery, radiation therapy, and chemotherapy, the prognosis
for GBM patients remains poor, with a median survival of approximately 15 months
after diagnosis (Stupp et al., 2005). The complexity of GBM lies not only in its aggressive
behavior but also in its heterogeneity, both at the cellular and molecular levels. This
heterogeneity presents significant challenges for effective treatment and necessitates a
deeper understanding of the disease’s underlying biology.

In recent years, extensive molecular profiling efforts have identified distinct GBM sub-
groups based on gene expression patterns, DNA methylation profiles, and genetic al-
terations. The most widely recognized classification is the Verhaak subgroups, which
categorizes GBM into four molecular subtypes based on transcriptomics and genetic alter-
ations: Proneural, Neural, Classical, and Mesenchymal (MES) (Verhaak et al., 2010). The
Proneural subtype is characterized by IDH1 mutations and PDGFRA amplifications, while
the Classical subtype typically harbors EGFR amplifications. The Mesenchymal subtype
is associated with NF1 mutations and expression of mesenchymal markers, whereas the
Neural subtype shows expression of neuronal markers. However, it’s important to note
that individual tumors can exhibit features of multiple subtypes, and these classifications
may change over time or in response to treatment, reflecting the dynamic nature of GBM
(Wang et al., 2017).

More recently, DNA methylation profiling has emerged as a tool for tumor classification,
leading to the identification of additional GBM subgroups. The DNA methylation-based
classification system, which includes categories such as RTK I, RTK 11, and MES, provides
complementary information to the transcriptomic subtypes and has shown promise in
refining prognostic predictions and potentially guiding treatment decisions (Capper et al.,
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2018). The RTK I and RTK II subgroups are characterized by distinct patterns of receptor
tyrosine kinase alterations. While the transcriptomic and DNA methylation subgroups
are not always comparable, the MES subgroup aligns closely with the transcriptomic
MES subtype. These methylation-based classifications offer additional granularity in
understanding GBM biology and may help in identifying more homogeneous patient
populations.

The cellular composition of GBM is highly complex, involving not only the malignant
glioma cells but also various non-neoplastic cells within the tumor microenvironment.
While the focus has traditionally been on astrocytes as the presumed cells of origin for
GBM, increasing evidence suggests important roles for neurons, oligodendrocytes, and
their precursors in GBM biology. Neurons, for instance, have been shown to promote
the growth and progression of glioma cells through activity-dependent mechanisms,
releasing factors that can enhance tumor proliferation and invasion (Venkatesh et al.,
2019). This neuron-glioma interaction raises questions about the potential impact of
neuronal activity on tumor behavior and whether modulating this activity could have
therapeutic implications. Apart from neurons, oligodendrocytes and their precursor
cells (OPCs) may also be implicated in GBM. A subset of GBMs may arise from OPCs,
particularly those with IDH mutations (Lu et al., 2016). Moreover, the presence of OPCs
in the tumor microenvironment may influence GBM growth and invasion. The further
characterization of the potential role of oligodendrocytes in supporting or inhibiting GBM
progression, especially considering their modulation by immune cells, could help find
new therapeutic targets or strategies for manipulating the tumor microenvironment to
enhance treatment efficacy (Kawashima et al., 2019; Harrington et al., 2020). Astrocytes,
both reactive and tumor-associated, play multifaceted roles in GBM. While transformed
astrocytes are often the primary malignant cell type in GBM, reactive astrocytes in the
tumor microenvironment can contribute to tumor progression through the secretion of
growth factors, cytokines, and extracellular matrix components (Henrik Heiland et al.,
2019). The complex interplay between malignant and non-malignant astrocytes, as well
as their interactions with other cell types in the tumor microenvironment, highlights the
need for therapies that target not only the tumor cells but also the supporting cellular
network.

The remarkable heterogeneity of GBM extends beyond cellular composition and molecu-
lar subgroups to include intratumoral heterogeneity at the genetic and epigenetic levels.
Single-cell sequencing studies have identified the presence of multiple genetically dis-
tinct subclones within individual tumors, each potentially harboring different driver
mutations and exhibiting varied responses to therapy (Patel et al., 2014). This genetic
diversity, coupled with epigenetic plasticity, allows GBM to rapidly adapt to therapeutic
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pressures, contributing to treatment resistance and recurrence. The dynamic nature of
this heterogeneity poses significant challenges for developing effective targeted therapies
and necessitates innovative treatment strategies that can address the evolving landscape
of the tumor.

Current therapeutic approaches for GBM typically involve maximal safe surgical resection
followed by radiation therapy and chemotherapy with temozolomide. However, the effi-
cacy of these treatments is limited, and recurrence is almost inevitable. The identification
of molecular subgroups and a deeper understanding of GBM biology have paved the
way for more targeted therapeutic approaches. For instance, inhibitors targeting specific
genetic alterations, such as EGFR mutations or IDH1 mutations, have shown promise
in clinical trials for selected patient populations (Weller et al., 2017). Inmunotherapies,
including immune checkpoint inhibitors and CAR-T cell therapies, are also being actively
investigated, with the potential to harness the immune system to combat GBM (Lim et al.,
2018).

The complex tumor microenvironment and the presence of glioma stem cells contribute
to treatment resistance and tumor recurrence. Novel approaches being explored include
targeting the tumor microenvironment and developing combination therapies that ad-
dress multiple aspects of GBM biology simultaneously. As our understanding of GBM
biology continues to evolve, several key questions emerge that warrant further investiga-
tion.

In our work, we focused on capturing the heterogeneity and different cellular components
of the tumor microenvironment, including neurons, oligodendrocytes, and astrocytes,
that may interact to influence tumor progression and treatment response and how these
interactions could be measured and therapeutically targeted.
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1.9. RESEARCH OBJECTIVES

This dissertation proposes DISSECT as a deconvolution framework introduced in section
1.7, and addresses open questions pertaining to section 1.8. To this end, the following
methodological and translational goals arise.

A. Evaluation of existing cell type deconvolution algorithms on RNA-seq data from various
organs and diseases.

B. Development of a robust and consistent cell type deconvolution approach.

C. Study of transcriptomic changes in ANCA-GN kidney RNA-seq data using single-cell
and spatial transcriptomics, and identifying targetable pathways for kidney health and
better patient outcome.

D. Analysis of multi-omics data from glioblastoma to characterize cell type and state
signatures, to identify biomarkers for routine neuro-oncological use. The aim here is
to identify temporarily stable patient subgroups with a potentially poor prognosis and
inform neurosurgical decision making.

The datasets, experiments, and associated results are presented and discussed in chapters
2-4. Objectives A and B are addressed in chapter 2. Chapter 3 addresses objective C, and
Chapter 4 addresses objective D.






2

DECONVOLUTION OF BULK RNASEQ
AND SPATIAL TRANSCRIPTOMICS
BENEFITS FROM SEMI-SUPERVISED
LEARNING

29



30

Khatri et al. Genome Biology (2024) 25:112 Genome Blology
https://doi.org/10.1186/513059-024-03251-5

METHOD Open Access

, : : ®
DISSECT: deep semi-supervised consistency i

regularization for accurate cell type fraction
and gene expression estimation

Robin Khatri', Pierre Machart' and Stefan Bonn'"

*Correspondence:

sbonn@uke.de Abstract

Tinstitute of Medical Systems Cell dec.onvolunon. is the estimation of cell type fre')ct\ons and cell type—gpeoﬁc gene
Biology, Center for Molecular expression from mixed data. An unmet challenge in cell deconvolution is the scarcity
Neurobiology, Center of realistic training data and the domain shift often observed in synthetic training data.
for Biomedical Al, University H h that t Id | t K ith i It ist

Medical Center Hamburg- ere, we show that two novel deep neural networks with simultaneous consistency
Eppendorf, Hamburg, Germany regularization of the target and training domains significantly improve deconvolu-

tion performance. Our algorithm, DISSECT, outperforms competing algorithms in cell
fraction and gene expression estimation by up to 14 percentage points. DISSECT can
be easily adapted to other biomedical data types, as exemplified by our proteomic
deconvolution experiments.

Keywords: Cell deconvolution, Semi-supervised learning, Deep learning

Background

A prominent approach to studying tissue-specific gene expression changes in human
development and disease is RNA sequencing (bulk RNA-seq). Tissues, however, usually
consist of multiple cell types in different quantities and with different gene expression
programs. Consequently, bulk RNA-seq from tissues measures average gene expression
across the constituent cells, disregarding cell type-specific changes. The quantification of
the cellular composition and cell type-specific expression that underlies bulk RNA-seq
data is therefore of pivotal importance to understanding disease mechanisms and identi-
fying potential therapeutic interventions [1].

A recent technological advancement, single-cell RNA-seq, allows for investigating gene
expression in single cells for thousands of individual cells of a given tissue sample in a single
experiment. However, while it provides unprecedented insights into single-cell biology, it
suffers from severe technical limitations, most notably the presence of zero values in gene
expression due to methodological noise, termed as “dropouts” [2]. In addition, the technol-
ogy is still very costly, which essentially prohibits its application in clinical and diagnostic
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settings. Bulk RNA-seq, on the other hand, can be performed for a fraction of the cost and
is widely used in clinical oncology and drug discovery [3, 4].

Computational inference of cell type fraction and cell type-specific gene expression is a
source-separation task, termed as “cell deconvolution” within the context of cell biology.
The estimation of cell type-specific gene expression is a well established and challenging
problem in the field. Prior work includes but is not limited to TAPE [5], bMIND [6], Baye-
sPrism [7], and CibersortX (CSx) [8]. The basic aim is to provide cell type-specific gene
expression information at a group or sample level. The resultant information allows deep
biological insights into cell type-specific gene expression and pathway changes from bulk
data. For cell deconvolution, recent computational methods utilize single-cell sequencing
data to create simulated references with known fraction and expression for training [9].
While this approach achieves good deconvolution results, its performance suffers from the
substantial domain shift between single-cell RNA-seq training (reference) data and the bulk
RNA-seq target data. Domain refers to the statistical distribution of the source of a dataset
[10]. Domain shift refers to a change in the statistical distribution of samples, which can be
due to covariate shift, the presence of open sets, or both. In gene expression datasets, the
covariate shift between real data and simulated datasets occurs due to changes in cell type-
specific gene expression and can arise from different dropout rates and tissue conditions,
for instance. When domain shifts have purely technical reasons, they are often termed
batch effects. CSx [8] has previously approached the problem of batch effect removal
between single cell gene expression datasets [11], using Combat [12] to remove changes
in cell type-specific gene expression between a single-cell reference signature matrix and
bulk RNAseq data. Open sets may occur when new cell types are encountered during test
time, such as the presence of differing cell lineages [13]. Since cells go through different
differentiation states, domain shift between real data and simulations may be a combina-
tion of both, the covariate shift and presence of open sets. Among many possible sources
of domain variation, the most prevalent might be the presence of batch effects that refer to
technological differences between two sequencing experiments and gene expression differ-
ences of biological nature.

In this work, we first formally define the task of cell deconvolution and outline the
hypothesis that semi-supervised consistency regularization should improve bulk RNA-seq
deconvolution when learning from single cell RNA-seq data. We then provide evidence
that two novel deep learning algorithms with semi-supervised consistency regularization
outperform competing state-of-the-art algorithms in deconvolution, both on a cellular
and gene expression level, across a wide range of datasets. On the datasets with ground
truth flow cytometry cell type proportions, DISSECT achieves consistently better Jensen-
Shannon distance (JSD): 0.063 + 0.015 and root mean squared error (rmse): 0.021 £ 0.019.
In addition, DISSECT shows state-of-the-art gene expression deconvolution performance,
achieving the best sample- and gene-wise correlations. Our algorithm can easily be adapted
to other biomedical data types, as exemplified by our bulk proteomics and spatial expres-

sion deconvolution experiments.
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Results
In this section, we first formally define the cell deconvolution task, then present our
hypothesis and DISSECT deep learning models, and compare DISSECT’s performance

to other state-of-the-art deconvolution algorithms.

Task of cell deconvolution

Given an m x n gene expression matrix B consisting of m bulk gene expression vectors
measuring # genes, the goal of deconvolution is to find an m x ¢ matrix X of cell type
fractions, where c is the number of cell types present in bulk samples such that,

B =XS, (1)

where fractions and gene expression satisfy non-negativity (2 < X, and 0 < Sy,

Vi € [1,m],Vj € [1,n]and Vk € [1, c]and sum-to-1 criterion, i.e, Y Xy =1, Vi € [1, m].
k=1

Here, S is known as the signature matrix and is unobserved. Each row S;. is a gene

expression profile (or signature) of cell type k. To utilize a reference based framework, S

can be replaced with S, derived from a single-cell experiment by identifying the most

representative cell type specific gene expression [8].

The problem of reference-based cell deconvolution can alternatively be formulated
as a learning problem, where a function fsuch that f(B) = X is learnt. Since only B is
available and X is generally unknown, simulations from a single-cell reference can be
used to learn f. Clearly, from the above formulation of the cell deconvolution task, it
is reasonable to assume linearity of deconvolution, i.e., each bulk mixture is a linear
combination of expression vectors of cells spanned with corresponding cell type frac-
tions. Thus, as defined previously in Scaden [9], multiple single cells can be combined
in random proportions to generate training examples BS™ and X*'™, where each row of
BSIM is defined as,

c Ok

Bim =3 Y e,

k=1 I=1

where e;‘ is the expression vector of cell / belonging to cell type &, and ay; is the number
of cells belonging to cell type k sampled to construct B?m. Correspondingly, each ele-
ment of X*I™ is the proportion of a cell type k in that sample i and is defined as,

ki

K,
> g
k=1

sim __
Xix =

In this case, since each simulated sample has a distinct signature (i.e., gene expression
profile), S is a three dimensional matrix with each element S; denoting gene expression
of gene j in cell type k for sample i. It is computed as following,
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The predictor f, learned from a simulated dataset, can then be applied to B to esti-
mate X. Note that, the genes expressed may differ between vectors e; and B and as such
before learning function f, each e}‘ is subsetted to include genes common with B. This is
the reason why this learning problem is transductive and a separate model needs to be
reconstructed for each B.

Exploiting the linearity of deconvolution

The deconvolution task is to learn a cell type-specific gene-expression matrix (or signa-
ture matrix) S, which serves to accurately predict cell fractions and their correspond-
ing gene expression from a bulk gene expression matrix B. The actual mixing process
of cells to form a tissue is assumed to be linear and, as such, the relationship between
B and S is linear. However, S is unobserved, and the deconvolution algorithm is learned
using simulations. This learning process involving simulations is highly dependent on
the reference being the single-cell dataset used to generate simulations, and is subjected
to an inherent strong domain shift [14]. To address this, we hypothesize that a consist-
ency-based regularization penalizing the non-linearity of mixtures of real and simulated
samples would result in a mapping f that is closer to true mapping f. Non-linearity of
mixtures of real and simulated samples refers to the violation of Eq. 4, defined later, for
estimated X;., Xf}m and X?ﬂx using mapping f.

Consistency regularization

Consider that B represents gene expression matrices of real (test) bulk RNA-seq that we
want to deconvolve and and B¥™ represents gene expression matrix of simulated bulk
samples. The number of rows (representing samples) in these two matrices may differ.
To simplify the notation, we use the same index i to denote indices for real bulk samples,
simulations (sim) and their mixtures (mix, defined further). Given a true bulk RNA-seq
sample B;, and a simulated sample Bffm with paired proportions Xf,im defined over a
common set of genes, we can generate a mixture B™* such that

B = BB, + (1 — B)B}™, (2)
Which gives us the relation
XIS = XS+ (1 — HXEMST™, 3)

where X;. represents cell fractions of sample i and where g € [0, 1]. Cell types are charac-
terized by a few marker genes that are invariant across cell states and even across tissues
[15]. A network that accurately predicts cell type fractions based on gene expression of
simulated or real bulk RNA-seq data would thus have to learn them. In the estimation of
cell type fractions, we therefore assume that the expression of these marker genes should
be identical in signatures ST, S ; and S$™. Hence,

XX = gX; 4 (1 — pXI™, )

Equation 4 serves as the formulation to generate pseudo ground-truths for these mix-
tures during learning, and it enables the use of consistency regularization without hav-
ing to explicitly estimate signatures. In an iterative learning process X;. can be replaced
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with predictions of the algorithm from the previous iteration. Naturally, it is also pos-
sible to only mix real samples with each other. The number of bulk RNA-seq samples is,
however, considerably lower (tens to hundreds) than the amount of single-cells present
in a single-cell experiment (thousands or more). Equation 4 allows to generate pseudo
ground truth proportions for mixtures Bﬁ‘ix at each step of learning cell type fractions,
while Eq. 3 allows to generate pseudo ground truth signatures at each step of learning

gene expression profiles.

Network architecture and learning procedure

We approach the two tasks, estimation of cell type fractions and estimation of gene
expression profiles per cell type as two different tasks because of their differing assump-
tions. For the estimation of cell type fractions, we assume that signatures are identical
for each sample, both simulated and bulk, while to estimate gene expression, we relax
this condition and involve complete consistency regularization (Eq. 3). An illustration of
the method is presented in Fig. 1.

Estimation of cell type fractions

The underlying algorithm of the first part of our deconvolution method is an average
ensemble of multilayered perceptrons (MLPs). The ensembling is performed to reduce
the variance by averaging different runs [16]. Each MLP consists of the same architec-
ture initialized with different weights. Each MLP has an architecture: Input (# genes) -
ReLU6 (512) - ReLU6 (256) - ReLU6 (128) - ReLU6 (64) - Linear (# cell types) - Softmax.
ReLU6 (output of ReLU activation clipped by a maximum value of 6) [17, 18] was chosen
out of tested activations over grid search on (Linear, ReLU, ReLU6, Swish [19]). The final
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Fig. 1 A lllustration of the simulation procedure using reference single-cell data. The figure shows the
simulation of one sample which consists of cell type fractions, simulated gene expression and cell type
specific gene expression profiles (i.e, signature matrix). B Detailed overview of an MLP used to estimate cell
type fractions. C Overview of an autoencoder used to estimate cell type specific gene expression profiles
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application of a softmax activation function allows to achieve the non-negativity and
sum to 1 criteria of deconvolution. We train the network with batch size 64 to minimize
the loss function per batch defined below with an Adam Optimizer with initial learning
rate of le — 5.

Lo (X7 £ (BE™), X175 £ (B™) ) = Litaivergence (X3 (BE™) )

2k Lo <x?~.ix, f (B?ﬂx)>7 (5)

where Ly divergence (> ) is the Kullback-Leibler divergence and Leons(, <) is the consist-

ency loss defined as:

2
, and
2

Leons (X% £ (BP)) =[x —  (BI)

XX = Bf(B;) + (1 — HXF™.

To generate mixtures, for each batch, we sample g uniformly at random for Eq. 4. The
interval [0.1, 0.9] was chosen for the uniform distribution to allow for at least some real
and some simulated gene expression in the mixture. Since the number of simulations is
generally larger (in our experiments, set to 1,000 times the number of cell types) than
that of real data, we sample real data to create additional bulk samples, B;, until the size
equals that of the simulated data, B§™. This pair of data together with simulated propor-
tions, X?_im, is then used to create training batches of size 64. For every batch, we gener-
ate mixtures according to Eq. 2.

Our loss is inspired by MixMatch [20], which uses unlabelled samples to mix up and
match sample predictions. Our adaptation in Eq. 5 addresses the limited samples avail-
able from true bulk RNA-seq, unavailability of sample fractions and is derived from
the definition of the task itself. In essence, Eq. 5 integrates domain knowledge into the
objective.

To avoid a scenario where the network does not learn and outputs predictions such
that f (B?_“ix) =f (B?_im) = f(B;.), which is a solution to Eq. 4, we first let the model learn
purely from simulated examples. This allows the model to learn meaningful expression
profiles to achieve accurate results on simulated examples. We selected /; based on a
grid search over constant and step-wise functions. We adopt a step-wise function for 11,

given as:

0 if step < 2000,
A1 = { 15 €lif 2000 < step < 4000,
10 else.

We train the network for a predefined number of steps as opposed to epochs, since it
is possible to generate infinitely many simulated samples without increasing the intrinsic
dimensionality of the data. In our experiments, we limit the number of steps to 5000 as
found optimal in Scaden [9].

Estimation of per sample cell type specific gene expression profiles Estimation of cell type
fractions from bulk RNA-seq requires an assumption that signatures of cell types are
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shared across single cell and bulk RNA-seq. However, cell type gene expression profiles
(at least for genes that are not invariant across tissue states) may differ between samples.
Previously, works such as CSx [8] and TAPE [5] have explored utilizing cell type fractions
to estimate gene expression per sample. Here, we make use of a -variational autoencoder
with standard normal distribution as prior to estimate average gene expression of the dif-
ferent cell types from bulk RNA-seq expression levels. To jointly train the network on all
cell types, we condition the decoder (at its input layer) with cell type labels. This allows
for training a single model to estimate gene expression of each cell type for a sample. To
make use of bulk RNA seq during the training, we regularize the reconstruction loss with
a consistency loss defined over per cell type signature. Denoting f as before and g(-, k) as
the output of the autoencoder with condition k (corresponding to cell type label) on the

decoder input, this consistency loss is defined as:

YN (f. B B X S5 ) = [ (BE™) ¢ (BI™ k) — B (Bike (B k)
2

B
2

- (1= pXFmsEn

where B:.“ix is given by Eq. 2, and f(B?‘b‘)k is the proportion of cell type k in sample i
as estimated during cell type fraction estimation and is fixed during training. In imple-
mentation, we replace f(B;-‘_‘ix)k with Bf (B ), + (1 — ﬁ)X?_im‘ Thus, this loss forces the
learned signature for cell type k, g(BMX, k), to be closer to signatures for both real and
simulated bulk samples. This loss function makes the assumption that mixing two bulk
samples is similar to mixing individual cell type specific signatures that constitute those
bulks. We added this loss function with a regularization parameter 1, (with default value
0.1) to the loss of the standard B-variational autoencoder (the weight on the KL diver-
gence, denoted as 8VAE, is set to 0.1 by default). The total loss function sums up to:

. . 2
i —e(wen)
2 LY (£, B B, X, S )

+ BYE Lyt divergence N (1, ), N (0, 1)),

L% (£, BI™ B, By, XE™, S ) = |

total

where A (0, 1) is standard normal distribution, and 1 and o are the empirical mean and
standard deviation estimated from the output of the encoder. Both the encoder and
decoder consist of two hidden layers. Under default settings used throughout this work,
we train the network to minimize the loss function with an Adam optimizer with initial
learning rate of le — 3, and the values for hyperparameters /, and gVAE

0.1 and 1e — 2. The network is trained for 5000 x k, k being the number of cell types.

are respectively

Estimation of cell type fractions and comparison with flow cytometry

To quantitatively assess the deconvolution algorithm, we first deconvolve six different
peripheral blood mononuclear cells (PBMC) bulk datasets for which cell type propor-
tions have already been quantified using flow cytometry (Additional file 1: Table S1). To
evaluate deconvolution performance, we utilize root-mean-squared error (rmse) and
Pearson correlation (r) for cell type-wise comparisons and Jensen-Shannon distance
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(JSD) for sample-wise comparisons between estimated fractions and ground truth
proportions. The evaluation metrics are defined in the “Evaluation metrics” section.
To evaluate our approach, we compared it to state-of-the-art deconvolution methods,
MusSiC [21], CSx [8], Scaden [9] and TAPE (TAPE-O and TAPE-A) [5], BayesPrism and
BayesPrism-M [7], and bMIND [6]. MuSiC and CSx were chosen for their best perfor-
mances in benchmarking studies [22, 23]. Scaden and TAPE are selected as both are
deep learning-based deconvolution approaches, the latter of which, TAPE-A, performs
an adaptation of the network weights for test samples. Since deconvolution is linear, we
also considered linear MLPs as a deconvolution algorithm. Further details can be found
under the “State of the art” section.

We utilize the PBMC8k single cell RNA-seq dataset as reference (Additional file 1:
Table S2) for all methods. The first two principal components of combined simulated
and real PBMC datasets are visualized in Additional file 2: Fig. S14, illustrating a domain
shift between datasets.

For each dataset, DISSECT always obtained the best JSD across all datasets (Fig. 2A),
leading to an average improvement over the second-placed algorithms of 6 percent-
age points. On the GSE65133 dataset, for instance, DISSECT outperforms second-
paced Scaden by 8 percentage points (DISSECT: JSD = 0.145, Scaden: JSD = 0.222).
Similarly, DISSECT always obtains the best rmse across all datasets and improves over
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second-placed algorithms by 2 percentage points, on average (Fig. 2B). In addition, it
achieved the best r on 4 out of 6 datasets (Fig. 2B).

Furthermore, we computed macro- level r and rmse by computing the metrics without
making a distinction of cell types as performed previously in [9]. Note that in this set-
ting, JSD remains unaffected as it is a sample-level metric and is therefore excluded. We
observe that DISSECT achieves consistently best rmse across all datasets while achiev-
ing best r on 5 out of the 6 datasets (Additional file 2: Fig. S1).

Since MuSiC can take advantage of multi-sample references, we also evaluated MuSiC
using blood data from the Immune Cell Atlas (ICA) (Additional file 1: Table S2). We
also evaluated MuSiC with pre-selected marker genes (MuSiC-M) that were selected by
CSx. MuSiC-M showed increased performance in 4 out of 6 datasets (Additional file 2:
Fig. S2A-B). MuSiC also shows improved performance in the multi-sample setting in
both rmse (Additional file 2: Fig. S2A) and r (Additional file 2: Fig. S2B). DISSECT still
reaches best performance in rmse (on average 8 percentage points better) and r (on aver-
age 13 percentage points better) across all datasets.

Next, we evaluated the cell fraction deconvolution performance on the Monaco I
(Additional file 1: Table S1) dataset, which contains several closely related and rare cell
types and constitutes a relatively hard cell deconvolution task, using Ota dataset (Addi-
tional file 1: Table S1). With a correlation of 0.6, DISSECT’s average performance is 14
percentage points better than the second placed Scaden (Additional file 1: Table S3),
while Scaden’s average RMSE was marginally (1 percentage point) better than second
placed DISSECT (Additional file 1: Table S4). To validate that the performance improve-
ment in DISSECT is due to the semi-supervised learning and consistency loss, we
performed an ablation study on data SDY67 by successively and cumulatively remov-
ing components of the algorithm and testing it again. The following components were
removed successively: consistency regularization, KL Divergence loss (mean squared
error instead), and the nonlinear activation function (identity function instead). The
ablation results are shown in Additional file 1: Table S5.

In summary, these results provide strong evidence that DISSECT consistently outper-
forms current state-of-the-art cell type deconvolution algorithms across six different
datasets with ground truth information.

Consistency of predictions and relationship between cell type fractions and biological
phenotypes

To further corroborate the above results, we evaluate DISSECT’s performance on three
datasets that do not have paired flow cytometry data. In this section, we compare to
other established biological facts as well as divergences over different reference single-
cell datasets. The bulk datasets together with literature-based expected biological rela-
tionships of cell types are listed in Additional file 1: Table S1.

Brain

The ROSMAP dataset consists of 508 bulk RNA-seq samples from the dorsolateral pre-
frontal cortex (DLPFC) of patients with Alzheimer’s disease (AD) as well as non-AD
samples (Additional file 1: Table S1). For 463 of these samples, Braak stages of disease
severity have been quantified. Correspondingly, single-nuclei RNA-seq (snRNA-seq)
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for 48 individuals from the same cohort is available [24]. For 41 of these samples, cell
type fractions based on immunohistochemistry (IHC) from a previous work exist [25].
It should be noted that IHC was performed for all neurons and as a result, comparison
with respect to excitatory vs inhibitory neurons was not possible. Here, we consider two
biological ground truths: first is the ratio of excitatory neurons to inhibitory neurons
(Additional file 1: Table S1), and second is the neurodegeneration, or the loss of neurons
with increasing Braak Stages [26]. We deconvolved ROSMAP using the Allen Brain Atlas
reference (Additional file 1: Table S2).

We computed the JSD between the estimated fractions and IHC cell type propor-
tions. DISSECT estimated fractions had the best average JSDs and provides the expected
excitatory-inhibitory neuron ratio of (3:1-9:1), while other methods generally underesti-
mated this ratio (Fig. 3A). All methods recover a negative correlation between increasing
Braak stages and the fraction of neurons (Additional file 2: Fig. S3).
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Previously, it has been noted that snRNA-seq and IHC data provide different esti-
mates for some cell types, notably microglia and endothelial cells [25]. It is interesting to
observe that DISSECT and Scaden were the only methods where the estimates of micro-
glia resembled closely those obtained from snRNA-seq and IHC data (Fig. 3B). We also
computed r and rmse between the IHC cell type proportions and estimated fractions
(Fig. 3C). With a correlation r of 0.901 DISSECT proved to be 14 percentage points bet-
ter than the second-placed linear MLP. DISSECT also displayed the best rmse at 0.079.

Overall, the comparison to IHC and snRNA-seq ground truth information for the
ROSMAP data further strengthens our claim that consistency regularization with DIS-

SECT robustly improves cell deconvolution.

Pancreas

The GSE50244 bulk RNAseq dataset consists of 89 pancreas samples from healthy and
type 2 diabetes (T2D) individuals (Additional file 1: Table S1). For 77 of these samples,
hemoglobic 1C levels are available as ground truth information. We performed the
deconvolution using three single-cell reference datasets Baron, Segerstolpe, and Xin
(Additional file 1: Table S2). Both Baron and Segerstolpe datasets contain alpha, beta,
gamma, delta, acinar, and ductal cell types. While only alpha, beta, gamma, and delta cell
types were present in the Segerstolpe dataset. To measure the consistency of deconvolu-
tion algorithms, we measured /SDs between estimated fractions using each of the three
references (Additional file 2: Fig. S4A). While several methods showed considerable
divergences, indicating reference-dependent deconvolution results, DISSECT displayed
the most consistent results with a JSD of ~0.1-0.2 across the three pairs. In terms of
recovery of significant negative correlations between the estimated fractions of beta cells
and hemoglobin 1C (hbalc) levels, DISSECT provided highly significant correlations of
between — 0.45 and — 0.47 across the three references (Additional file 2: Fig. S4B). These
results further suggest that DISSECT is both precise and robust in cell type deconvolu-
tion on real data and is comparatively less affected by the choice of single-cell reference.

Kidney

The GSE81492 dataset consists of 10 kidney samples of APOL1 mutant mice, which is a
mouse model of chronic kidney disease (CKD) (Additional file 1: Table S1). We decon-
volved the dataset using two single cell references: Miao and Park (Additional file 1:
Table S2). Similar to our experiments on the pancreas tissue, we computed JSD between
the estimated cell type fractions from the two references. DISSECT provided the best
average /SD (0.09) out of all considered methods (Fig. 3D). We further compare the
methods on the recovery of expected relation of cell type fractions with the biological
phenotype (Additional file 1: Table S1). Figure 3E compares two best methods on JSD,
DISSECT, and TAPE-O, while Additional file 2: Fig. S5 presents these results on all cell
types for all methods. It is known that CKD results in the decrease in proximal tubule
cells (PT) and distal convoluted tubules (DCT). Cell type fractions estimated with DIS-
SECT showed a significant loss of PTs and DCTs and a corresponding increase in mac-
rophages, while TAPE-O provided much smaller differences between the control and
CKD model (Fig. 3E). PTs are the most abundant cell type in kidney making up around
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50% of a mouse kidney [27]. DISSECT correctly estimates the high abundance of PTs in
healthy kidney, while TAPE-O underestimates them (Fig. 3E).

In summary, it is noteworthy that DISSECT shows state-of-the-art precision and
robustness in cell type deconvolution across various ground truth information and 9
datasets, including PBMC, brain, pancreas, and kidney bulk RNA-seq samples. DIS-
SECT also shows superior robustness to the choice of single cell reference.

Application to proteomics and spatial transcriptomics

It is conceivable that DISSECT’s consistency regularization for bulk RNA-seq cell type
deconvolution should also lend itself to other biomedical datatypes in which domain
shifts might be a problem. Applications might include, for example, the deconvolution
of spatial transcritomic (ST) and bulk proteomic data with supra-cellular resolution.
In order to evaluate these potential use-cases, we performed deconvolution of spatial
transcriptomics and proteomics samples. Here, our aim is to test the hypothesis of
applicability of DISSECT on these data modalities and we do not intend to perform an
exhaustive comparison to multiple methods developed for these modalities. For com-
parisons on spatial transcriptomics, we consider four state-of-the-art spatial deconvolu-
tion methods, RCTD [28], Cell2location (C2L) [29] as shown to perform among the best
in the benchmarking study [30]. We also include SONAR [31] and CARD [32], both of
which can utilize spatial information. For comparisons on proteomic deconvolution, we

consider the tested bulk deconvolution methods.

Spatial transcriptomics

We evaluated DISSECT on the task of spatial deconvolution using mouse brain and
human lymph node samples (Additional file 1: Table S1). As a ground truth, we con-
sidered relationships with biological phenotypes in line with our application of kidney
and pancreas datasets (Additional file 1: Table S1). Due to the spatial nature of the ST,
we could verify the recovery of neuronal layers in brain (Additional file 2: Fig. S6) and
discernment of germinal centers in lymph node (Additional file 2: Fig. S7). DISSECT
performs on par with C2L and RCTD on both datasets. The results are provided and
discussed in detail in the Additional file 2: Supplementary Note.

Proteomics

To compare the ability of the tested deconvolution methods to recover cell type propor-
tions from proteomics mixtures, we utilized 50 human brain samples (Additional file 1:
Table S1). We applied each deconvolution method on these samples using the Allen
Brain Atlas reference (Additional file 1: Table S2). Compared to other methods, DIS-
SECT recovered excitatory neurons to be the expected majority population in both data-
sets while maintaining the excitatory to inhibitory neuron ratio to be around expected
range of (3:1-9:1) (Additional file 2: Fig. S8). These results strongly suggest that DIS-
SECT reaches state-of-the-art performance on proteomic cell type deconvolution and
might be applicable to other biomedical data types.
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Evaluation of DISSECT under domain shifts

To assess the impact of consistency regularization on the performance of DISSECT and
other algorithms, we used Ota dataset (Additional file 1: Table S1). Using this dataset
in a dynamic domain shift setup (see the “Domain shift experimental setup” section),
we evaluated the performance of deconvolution methods. We also included DISSECT
without consistency (DISSECT w/o consistency) to asses the impact of semi-supervised
learning under varying shifts. The performance of all methods dropped significantly for
test sets with domain shifts (Additional file 2: Fig. S9). However, the drop in performance
was much lower for DISSECT than other methods. Furthermore, a clear advantage of
semi-supervised learning with consistency regularization is observed in comparison to
DISSECT without consistency, especially in terms of rmse.

Estimation of cell type-specific gene expression
So far, we have shown that DISSECT can reliably deconvolve cell fractions. In this sec-
tion, we focus on the deconvolution and inference of cell type-specific gene expression
from bulk RNA-seq mixtures using our novel conditional autoencoder based algorithm
(Fig. 1). While we were able to use ground truth flow cytometry data for the evaluation
of cell fractions, no such gold-standard is available for cell type-specific gene expression
information. In consequence, we measure DISSECT’s gene expression inference perfor-
mance on simulated bulk RNA-seq data. To maintain a domain shift between the train-
ing and test datasets, we simulated data for training and testing using different single-cell
datasets. We compared the performance of DISSECT with that of TAPE-A, bMIND,
and BayesPrism, all of which can infer cell type-specific gene expression per sample.
We simulated bulk samples from one of the four reference single-cell PBMC datasets
listed in Additional file 1: Table S2 and created training simulations from the remaining
three. Simulations from each single-cell dataset consisted of 6000 samples. To evaluate
the performance of DISSECT and other methods, we compared the true and estimated
gene expression profiles of each cell type for each simulated sample (sample-wise) and
for each gene (gene-wise) using Spearman correlation. These sets of results were aggre-
gated across cell types and averaged. DISSECT displays the best sample- and gene-wise
correlations in 6 out of 8 experiments, outperforming TAPE-A by 0.025 + 0.023 in the
sample-wise comparisons and by 0.012 £ 0.029 in the gene-wise comparisons (Table 1).
Moreover, DISSECT exhibited an improvement in both sample and gene-wise metrics,
exemplifying its advantage.

These results indicate that DISSECT’s consistency regularization robustly performs
state-of-the-art cell type-specific gene expression deconvolution.

Discussion

In this work, we first formally define the task of cell deconvolution and outline the
hypothesis that semi-supervised consistency regularization should improve bulk
RNA-seq deconvolution when learning from single cell RNA-seq data. We then pro-
vide evidence that our novel deep learning-based algorithm, DISSECT, outperforms
competing state-of-the-art algorithms in deconvolution, both on a cellular and gene
expression level, across many different datasets. This included 6 PBMC datasets with
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Table 1 Spearman correlation between ground truth and estimated gene expression profiles on
simulated datasets averaged over samples. The column Dataset indicates the single-cell dataset
used to create simulations for the test set

Dataset TAPE-A bMIND BayesPrism DISSECT

sample-wise r

PBMC6k 0.83+0.09 0.80 £ 0.07 0.83+0.11 0.82+£0.08
PBMC8k 0.79 £0.09 0.80 £ 0.08 0.81 £0.09 0.84+0.11
DonorA 085+0.11 0.84 +0.09 0.80 +0.09 0.89+0.10
DonorC 081+0.12 0.83+0.11 0.80+0.08 0.83+0.08
gene-wise r
PBMC6k 042+0.14 0.46+0.14 041+0.14 0.46+0.15
PBMC8k 0.51£0.12 044+0.18 04540.12 048 +£0.14
DonorA 0.48 +0.20 045+0.16 046 +£0.18 0.48+0.18
DonorC 045+0.11 043+0.15 045+0.12 0.49+0.12

For each dataset, values with the highest mean correlation are displayed in bold font

ground truth flow cytometry information and 3 datasets (brain, pancreas, and kid-
ney) with other established biological facts as ground truth information. Across the
board, DISSECT provided the best cell type deconvolution results when compared
to four state-of-the-art methods, while also being comparatively robust to the choice
of single-cell reference. We follow a two-step procedure because the assumptions for
each of the algorithms differ, and we do not foresee any significant benefit from itera-
tively deconvolving cell type fractions and gene expression. In a case study, we also
show how our algorithm can easily be adapted to deconvolve cell types of proteomic
and spatial expression data. For the spatial transcriptomics data, DISSECT estimates
cell type fractions per spot, which are constrained to sum to 1. To be able to estimate
the number of cells per cell type for each spot, and to map single cells, DISSECT esti-
mates can be used as a prior for algorithms such as CytoSpace [33]. CytoSpace infers
both the number of cells in each spot and solves an optimization problem to map
single cells to their spatial locations. To estimate only the number of cells per cell type
for each spot, the total number of cells as estimated by CytoSpace can be multiplied
with the output of DISSECT. While these results are not exhaustive, they neverthe-
less show the applicability of DISSECT on other biomedical data types, a research
avenue we might pursue in more depth in the future. In addition to DISSECT's state-
of-the-art cell type fraction deconvolution (an average improvement of 0.063 in JSD
and 0.021 in rmse over the state of the art on the datasets with ground truth cell type
fractions), it achieved best cell type-specific gene expression deconvolution results in
6 out of 8 comparisons across four simulated datasets with an average improvement
of 0.025 in the sample-wise and 0.012 in the gene-wise comparisons.

While we focused on MLPs for the estimation of cell type fractions and an autoen-
coder for gene expression estimation in this work, consistency regularization might also
improve other deconvolution algorithms.

No gold standard ground truth exists for quantitative assessment of estimated cell
type-specific gene expression between two conditions for real bulk RNA-seq data-
sets. This is a limitation of the experimental setup presented for cell type-specific gene
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expression estimation. A potential solution will be to develop biologically valid bench-
mark datasets that can be evaluated at scale.

While DISSECT outperforms competing algorithms in cell type fraction and cell type-
specific gene expression deconvolution, some results leave room for further improve-
ment. DISSECT accurately distinguishes cell types where the transcriptional difference
reflects cell subtypes, for instance PBMCs (CD4 T cells and CD8 T cells), pancreas (pan-
creatic islets), kidney (tubular epithelial cells), and brain (OPC and oligodendrocytes).
However, when estimating granular cell type proportions in the Monaco I dataset, error
rates exceeded the ground truth proportions (rmse>0.01 for cell subsets present at less
than 1%). Therefore, for cell types that make up less than 1% of all cells and cells with
very similar gene expression, for instance CD4 T and activated CD4 T cells, deconvolu-
tion algorithms should be used with caution. Future research into semi-supervised and
contrastive algorithms as well as data augmentation and integration techniques should
further enhance DISSECT’s performance on hard deconvolution tasks.

Conclusions

In conclusion, DISSECT provides a semi-supervised deep learning framework to esti-
mate cell type proportions and per-sample cell type-specific gene expression, is robust
across datasets and tissues, and is easily applicable to other data modalities. DISSECT
delivers state-of-the-art deconvolution performance, as long as cell types are not too
closely related and make up more than 1% of all cells.

Methods

Evaluation metrics

To quantitively evaluate estimated cell type fractions across samples, we used two met-
rics, namely Pearson’s correlation (r) and root-mean-squared error (rmse). Given x and y
as estimated fractions and ground truth respectively,

cov(x,y)

r=ma, ©)

Ox, Oy

rmse = \/Avg(x — y)* (7)

To compute sample-wise divergences two list of fractions x; and y; for the same sample
i, we used Jensen-Shannon distance (JSD) which is the square root of Jensen-Shannon
divergence. JSD is given as

D(xil|lm;) + D(yillm;)

3 , @)

JSD(xlly) = \/

where m; = w and D is the Kullback-Leibler divergence.
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State of the art
Here, we briefly detail the state-of-the-art deconvolution approaches. Out of these
methods, CSx, TAPE, BayesPrism, and bMIND can also estimate per sample cell type-

specific gene expression signatures.

MusiC

MusSiC [21] uses weighted non-negative least squares. MuSiC maintains cross-cell
and cross-sample consistencies by appropriately weighting genes based on their
informativity during an iterative procedure. We used MuSiC R package (version
1.0.0). Deconvolution using MuSiC was performed according to the authors recom-
mendations. Since MuSiC is a method that utilizes multi-subject scRNA-seq datasets,
when available, we used cells from multiple subjects in deconvolution with MuSiC.
We used the default hyperparameters to execute MuSiC. For single-cell datasets with
multiple donors (Additional file 1: Table S2), we ran MuSiC with single-cell data from
all available donors.

CSx

CSx [8] is a deconvolution method that addresses domain gap problems with scRNA-
seq and bulk samples by aiming to correct batch effects. It uses scRNA-seq to gen-
erate a cell type specific signature matrix and uses v-support vector regression as
the underlying algorithm. To construct the signature matrix, we used the following
hyperparameters for CSx as recommended by the authors: kappa = 999, g-value =
0.01 and number of genes within a range of 300 and 500. The quantile normaliza-
tion was also disabled. CSx comprises two modes, S- and B-modes, to address the
domain gap. S-mode is used when deconvolving with a signature matrix constructed
using a scRNA-seq dataset, while B-mode is used when deconvolving with a signature
matrix constructed using purified samples. We followed the documentation provided
by the authors to run CSx and used the S-mode. CSx can also predict gene expres-
sion signatures for each sample for which it uses a non-negative matrix factorization
based iterative algorithm. However, CSx only estimates genes likely to be differentially
expressed in one of the bulk samples and as such the evaluations for simulations from
healthy PBMC single-cells are not possible. We ran CSx through docker container
obtained from [34].

Scaden

Scaden [9] is an average ensemble of three deep neural networks with different archi-
tectures that was developed for cell fraction deconvolution. Each network is trained
only on simulated pseudo bulk data generated from an scRNA-seq reference similar
to described above. Scaden is provided as a Python package. We used the official Sca-
den package (version 1.1.2) with the instructions provided by the authors to train the
networks.
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TAPE

TAPE [5] is a fully connected autoencoder where the bottleneck consists of cell type
fractions. The architecture of the encoder is similar to the archictecture of Scaden
but with CeLU activations. The decoder consists of linear activations and outputs
gene expression of the input vector. The adaptive mode of TAPE (TAPE-A) aims at
optimizing the network for bulk samples, while the overall mode trains for fractions
with an added loss function that reconstructs input bulk expression from fractions.
Since TAPE-A reconstructs gene expression from fractions (bottleneck), the signature
matrix is visible in the (linear) decoder. To estimate gene expression signatures for
each bulk sample, decoder weights are optimized per-sample using an iterative opti-
mization strategy. Network weights are changed during the two modes, we compare
with both and refer to TAPE in overall mode as TAPE-O and in adaptive mode as
TAPE-A. We used the official scTAPE package (version 1.1.2) implemented in Python.

Linear MLPs

The solution to the deconvolution problem could be, in principle, a linear function. For
this reason, we also compared to an MLP ensemble that has similar architecture to DIS-
SECT, but in which we replaced all non-linear activations with an identity function and

removed the consistency loss.

BayesPrism and BayesPrism-M

Primarily a method developed for oncology bulk datasets, BayesPrism [7] is a Bayesian
framework to infer cell type fraction and cell type specific per-sample gene expression.
It models gene expression as multinonmial distribution and calculates the cumulative
posterior across cell states to derive the statistics for individual cell types. To evaluate
BayesPrism with preselected marker genes using select.marker function. We utilize offi-

cial implementation of BayesPrism in R (version 2.1.2).

bMIND

bMIND [6] is a Bayesian method to infer cell type specific gene expression per sample
based on single-cell gene expression for given cell types. Using the prior from single-cell
gene expression, bMIND models bulk gene expression as the product of gene expression
and cell type fractions as a Bayesian mixed-effects model. bMIND uses cell type frac-
tions as estimated by other deconvolution methods as its input. We used default settings
of bMIND in our experiemnts with its R implementation (version 0.3.3).

Pre-processing and simulations

Quality control

Before simulating from reference datasets, we remove cells with less than 200 expressed
genes and genes which are expressed in less than 3 cells. Furthermore, we also remove
cells expressing more than 4% mitochondrial genes. Thereafter, before each deconvolu-
tion, we subset reference and bulk datasets to include only the common genes between
the two. This quality control step was identical for all methods.
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Simulations for deconvolution of bulk RNA-seq samples and proteomics
Fg)r deep learning methods, we sampled o ; uniformly to generate simulations s.t.

> ok = 100, Vi if the dataset is single-cell. For experiments on granular level cell types

k=1

where simulations are done from purified cell samples, we modified the simulation pro-
C

cedure to reflect this. In this case, a simulated sample is given by Bjim =3 Xf}(mbk,
=1

where b}‘ is the expression vector of purified sample / belonging to cell type k. For all
experiments, we simulated total 1000 x ¢ simulations where c is number of cell types in

the reference dataset.

Simulations for deconvolution of 10x Visium ST samples
We adjusted simulation procedure to mimic ST datasets. 10x Visium (one of the tech-
nologies to generate ST samples) consists of around 10 cells per spot. To reflect this, we

simulated between 5 and 12 cells to generate one spot (i.e., Y o ~ [5,12]). Since ST is
k7

much sparser, to generate one spot, we kept between 2 and 6 cell types. Due to sparsity
of spots, not all cell types are present in a given spot. To account for this and to make
comparison across spots possible, we utilized the outputs of the last layer (before per-
forming softmax operation) and set negative predictions to zero. Thereafter, we re-nor-
malized these absolute scores by such that each prediction sum to one. For all
experiments, we simulated total 1000 x ¢ simulations where c is number of cell types in
the reference dataset.

Deconvolution of proteomics data

For deconvolution of proteomics data, it is not valid to mix protein intensities and gene
expression due to different normalizations. Instead of mixing simulated samples with
real samples, proteomics samples were mixed with each other, i.e., at each training step,
B{F‘ix = BB,,. + (1 — B)B,,., where r; and r, are two randomly selected proteomics sam-
ples at the training step.

Pre-processing for estimation of cell type fractions

For Scaden, TAPE, linear MLPs, and DISSECT, before passing simulated and real bulk
samples to the network, we normalize samples to sum to a million counts (counts per
million (CPM)) and log scale them with base 2 after adding 1. CPM normalization was
performed to maintain total mRNA expressed per gene to be out of a fixed total gene
expression, and CPM is widely used in computational genomics. During training, for
each batch, we normalize each sample by MinMax scaling. These are standard preproc-
essing steps [9].

For MuSiC and CSx (under S-mode), data was supplied on a linear scale as suggested
in their respective publications and no change was made to the default normalization
methods of both [8, 21].

To estimate cell type specific gene expression profiles, we need to maintain relation-
ship between gene expression of individual cell types and simulated bulks, which would
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be lost if we perform CPM normalization of both simulated samples and correspond-
ing cell type specific gene expression profiles. Hence, instead of performing CPM nor-
malization of simulated bulks, we normalize each test bulk sample to sum to the mean
of sums of simulated samples. Furthermore, for estimating cell type specific gene expres-
sion, we want to maintain gene level information across samples. To achieve this, instead
of normalizing each sample using MinMax scaling, we perform MinMax scaling globally
over all samples.

For TAPE, since the signature matrix is observed in decoder (see the “State of the art”
section), preprocessing step is similar to the preprocessing done in estimating cell type
fractions.

Hyperparameters and fine-tuning

We fine tuned the network for activation functions, learning rate, and batch size using
randomized search with hyperopt [35] with the root mean squared error as the objec-
tive function. The following grids were used for the optimization: activations = [lin-
ear, ReLU, ReLU6, Swish], learning rate = [5e—3, le—3, 5e—4, le—4, 5e—5, le—5], 1
= [0,1,5,10,15] with or without scheduled change at every 2000 steps and batch sizes
= [32, 64, 128, 256] with 50 iterations on Ascites bulk dataset as used in Scaden [9].
Other hyperparameters were fixed to the default hyperparameters of Scaden. The opti-
mal hyperparameters were fixed for all experiments, with batch size = 64, learning
rate = le—5, activation function = ReLUS6, 4; according to schedule [0,15,10] at steps
[0,2000,4000], and number of steps = 5000.

Domain shift experimental setup

Using the Ota dataset (Additional file 1: Table S1) that contains 9852 purified samples
belonging to immune cell subsets including several B cell and T cell subsets as shown
in Additional file 1: Table S3, we created an experimental setup with domain shifts
involving the following 4 scenarios. 20% split: We randomly split the dataset into train-
ing (80%) and test sets (20%). Activated 1: We used the same split as in 20% split. We
removed certain CD4 and CD8 T cell subsets, namely, CD4 T memory, CD8 TEM, and
CD8 TE from the training split while they were kept in the test set. In the test set, on the
other hand, other subsets (CD4 T naive, CD8 T naive, and CD8 TCM) were removed.
Activated 2: We followed the same procedure as in Activated 1 except we removed cer-
tain B cell subsets, namely, B NSM, BEx, and BSM from the training set while they were
kept in the test set. B naive subset was removed from the test set. Finally, for a model-
based domain shift, we used DISCERN [36] to project the test set of 20% split to the
dataset simulated from pbmc8k and used in deconvolving PBMC bulk RNAseq. The CD4
T cell, CD8 T cell, and B cell subsets, regardless of their subtype identity, were labeled as
CD4Tcells, CD8Tcells, and Bcells to allow comparisons. In each scenario, 6000 samples
were simulated.
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Datasets

Table S1: Details on bulk datasets used to evaluate deconvolution methods. For six datasets,
the ground truth proportions were available while for others, relationship with the biological
phenotypes was considered. Biological hypotheses based on literature serve as proxy ground
truths. These are listed in “Biological hypothesis based on literature”.

Tissue Dataset # samples # Type Flow cytome- Biological hypothe- Original
try sis based on litera- Source
ture

PBMC SDY67 12 RNA-seq Yes - [47]
PBMC Monaco I 12 RNA-seq Yes - [48]
PBMC Monaco Il 164 Microarray  Yes - [48]
PBMC GSE65133 20 Microarray ~ Yes - [49]
PBMC GSE107572 9 RNA-seq Yes - [50]
PBMC GSE120502 250 RNA-seq Yes - [51]
PBMC Ota 9852 RNA-seq - - [52]
Pancreas GSES50244 89 (77 with RNA-seq No Fraction of beta cells [56]

information are negatively associ-

on hemoglo- ated with severity of

bic 1C levels) type 2 diabetes indi-

cated by hemoglobin
Alc (hbalC) level
[53]-[55].

Kidney GSES81492 10 RNA-seq No Tubule cells diminish  [60]
with chronic kidney
disease (CKD) [57]-

[59].
Brain ROSMAP 508 (463 RNA-seq No 1. Neurodegenera- [69]
with cor- tion with advanced
responding Braak stage [61]-
annotation of [63], and 2. Between
Braak stages) 3:1 and 9:1 ratio

of excitatory and
inhibitory  neurons

[64]-[68].
Brain PFC pro- 50 Mass spec.  No Between 3:1 and 9:1 [43]
teomics ratio of excitatory

and inhibitory neu-
rons [64]-[68].
Lymph Lymph 4,035 spots 10x Visium No Identification of ger- 10x Ge-
node node minal centers (GC) nomics
by co-localization of
GC associated cell

types
Brain Anterior 2,695 spots 10x Visium No Identification of ex- 10x Ge-
sagittal citatory neuronal lay- nomics
mouse ers

brain

| S}
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Single-cell datasets

Table S2: Single cell datasets used as reference. To deconvolve PBMC datasets in Table S1,
single-cell datasets from the corresponding tissues were considered. We used the PBMCS8k
as a reference single-cell dataset from a healthy donor for all methods considered here. To
maintain same genes between the single-cell data and bulk RNA-seq, we subset both datasets
over common gene-set. For the multi-sample setting to use with MuSiC, we considered Immune
Cell Atlas (ICA). The atlas was restricted to blood to match the bulk tissue with donor: 621B
(103 cells), 637C (760 cells), A35 (1,368 cells), A36 (3,124 cells), D496 (9,065 cells), D503
(12,208 cells). Cell types that were present in less than 5 samples were dropped. All PBMC
datasets were annotated with B cells, CD4 T cells, CD8 T cells, Monocytes and NK cells while
the remaining cells were mixed to form an unknown cluster. To deconvolve pancreas, kidney,
brain and lymph node samples in Table S1, single-cell dataset from the corresponding tissues
were considered.

Tissue Dataset #cells Multi-sample Original source

PBMC PBMCS8k 8,381 no 10x Genomics (8k PBMCs
from a Healthy Donor)

PBMC PBMCo6k 5,419 no 10x Genomics (6k PBMCs
from a Healthy Donor)

PBMC DonorA 2,900 no 10x  Genomics (Frozen
PBMCs Donor A)

PBMC DonorC 9,519 no 10x  Genomics (Frozen
PBMCs Donor C)

PBMC Immune Cell Atlas 26,628 yes [15]

(ICA)

Pancreas Baron 8,569 yes [70]

Pancreas Segerstolpe 3,514 yes [71]

Pancreas Xin 1,492 yes [72]

Kidney Park 43,745 yes [73]

Kidney Miao 16,887 no (only adult) [74]

Brain Allen Brain Atlas 49,418 yes [38]

Lymph node, spleen, tonsil lymph node refer- 73,620 yes [29]

ence
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Table S3: Pearson correlation coefficient (r) between estimates from different methods and flow
cytometry for granular cell type fractions in Monaco I.

Dataset MuSiC CSx Scaden TAPE-O TAPE-A Linear MLPs DISSECT
B Ex nan 043 0.18 0.22 0.030 0.10 0.32
B NSM nan -0.08  0.12 0.10 -0.15 -0.22 0.09
B Naive nan 0.95 0.87 0.8 0.43 0.71 0.96
B SM 0.85 nan 0.57 0.45 0.15 0.26 0.63
Monocytes C 0.30 0.29  0.63 0.57 0.52 0.11 0.62
Monocytes 1 0.41 0.36  0.90 0.87 0.81 0.54 0.93
Monocytes NC ~ 0.25 0.09 0.31 0.35 0.48 0.19 0.66
NK 0.80 0.82 0.58 0.59 0.65 0.49 0.82
Neutrophils LD 0.2 nan 0.89 0.48 0.57 0.03 0.56
Plasmablasts 0.62 0.85 0.86 0.65 0.66 0.42 0.92
CD4 T Naive 0.66 0.47  0.68 0.70 0.34 0.14 0.76
CD4 T Memory  0.47 -0.15  0.27 0.27 0.12 0.08 0.24
CD8 T Naive 0.52 0.7 0.36 0.38 0.32 0.27 0.49
CD8 T CM nan -0.65 0.19 0.13 0.21 0.01 0.12
CD8 TEM nan nan 0.02 0.47 0.45 0.11 0.62
CD8 TTE 0.25 0.9 0.28 0.35 0.36 0.35 0.86
mDC nan 046 047 0.39 0.40 0.05 0.68
pDC 0.55 0.57 0.19 0.42 0.31 0.3 0.55
Average 0.49 040 046 0.45 0.37 0.22 0.60
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Table S4: rmse between estimates from different methods and flow cytometry for granular cell
type fractions in Monaco I.

Dataset MuSiC CSx Scaden TAPE-O TAPE-A Linear MLPs DISSECT
B Ex 0.01 0.05 0.04 0.04 0.01 0.02 0.02
B NSM 0.02 0.01 0.02 0.03 0.05 0.04 0.02
B Naive 0.01 0.03 0.03 0.03 0.04 0.06 0.03
B SM 0.05 0.01 0.01 0.02 0.02 0.03 0.01
Monocytes C 0.05 0.02 0.04 0.02 0.02 0.06 0.06
Monocytes 1 0.12 0.15 0.03 0.06 0.10 0.12 0.04
Monocytes NC  0.20 0.09 0.02 0.07 0.05 0.10 0.02
NK 0.05 0.08 0.08 0.11 0.11 0.05 0.08
Neutrophils LD 0.02 0.03 0.01 0.01 0.01 0.01 0.02
Plasmablasts 0.01 0.01 0.02 0.01 0.04 0.01 0.04
CD4 T Naive 0.02 0.03 0.05 0.05 0.02 0.02 0.05
CD4 T Memory 0.10 0.07 0.03 0.12 0.15 0.21 0.03
CD8 T Naive 0.21 0.07 0.04 0.05 0.05 0.01 0.04
CD8 TCM 0.01 0.08 0.02 0.05 0.12 0.01 0.03
CD8 T EM 0.02 0.01 0.02 0.02 0.01 0.03 0.02
CD8 TTE 0.01 0.07 0.09 0.08 0.11 0.16 0.08
mDC 0.01 0.04 0.04 0.08 0.09 0.03 0.03
pDC 0.02 0.00 0.02 0.01 0.01 0.01 0.02
Average 0.06 0.05 0.03 0.05 0.06 0.05 0.04

Table S5: Average performance over five random experiments for SDY67 (Table S1.) Each
column indicates the additional part.

Metric Linear MLP  Activations KL Divergence KL Divergence + Consistency

r 0.51 £0.018 0.55+0.016 0.54 &+ 0.006 0.63 & 0.005
rmse  0.13£0.008 0.13£0.006 0.11 £ 0.004 0.09 £+ 0.002
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Fig. S1: A. PC (Principal component) embeddings of simulated and real PBMC datasets com-
puted using the union of the top 2,000 highly variable genes per dataset. B. Overall Pearson’s
correlation (r) and C. root-mean-squared-error (rmse) for each of the dataset. Datasets are listed
on x-axis.
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with blood data from Immune Cell Atlas /CA (MuSiC-ICA). A. root mean-squared-error (rmse)
and B. Pearson’s correlation (r).
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Fig. S4: A. Box-plots showing JSDs between predicted proportions from Pancreas using dif-
ferent single-cell references. Each plot shows JSDs between two references. From left to right:
Baron and Seger, Baron and Xin, and Seger and Xin. B. Associations between predicted beta
proportions and hbalc levels assessed through multiple linear regression with hbalc as de-
pendent variable and beta estimates, age, BMI and gender as independent variables. P-values
correspond to 2-tailed Student’s t-test for significance of coefficients for beta estimates. r is
the Pearson correlation coefficient between beta estimates and hbalc. Each column indicates a
method and each row indicates a reference.



63

PT DCT
076 MUSIC  CibersortX Scaden  TAPE-O  TAPEA  DISSECT 020 MuSIC CibersortX Scaden  TAPE-O  TAPEA  DISSECT
. .
057 0.15
Sos ! N ' |
5 3010 "
019 E i : I i 0.05 1 i I 5 I I
0.00 0.00
096 B 010
0.72 0.08 |
3 g 0.06
2 048 . ]
H { £ 00s
024 0.02 .
0.00 0.00
CtrlAPOL1  Ctrl APOLL  Ctrl APOLL  Ctr APOLL Ctrl APOL1  Ctrl APOLL CtrlAPOLL  Ctrl APOLL  Ctrl APOLL  Ctrl APOLL  Ctrl APOL1  Ctrl APOLL
Endo CD-PC
020 MUSIC CibersortX Scaden  TAPE-O  TAPEA  DISSECT 020 MuSIC  CibersortX Scaden  TAPE-O  TAPEA  DISSECT
015 " . 0.16
%010 ¥ 012
e 1 | € 0.08 5 |
0.05 . R 0.04 n . . .
0.00 0.00 L] L
036 020
027 016
S g012
2018 8
s . . S 0.08 . , |
0.09 I i l I C 0.04
0.00 Lo 000 !
CtrlAPOL1  CtrlAPOLL Ctrl APOL1  Ctrl APOL1  Ctrl APOLL ~ Ctrl APOL CtrlAPOL1  CtrlAPOLL Ctrl APOL1 Ctrl APOL1  Ctrl APOLL ~ Ctrl APOL
CD-IC LOH
015 MUSIC  Cibersortx Scaden  TAPE-O  TAPEA  DISSECT 020 MUSIC CibersortX Scaden ~ TAPE-O  TAPEA  DISSECT
012 | 015
300 i $o10 i
€006 5 | & | |
0.03 I " ' 0.05 ' s l
0.00 0.00
010 _ . 020
0.08 016
g 006 i | go12 ,
= 0.04 =008 . I
0.02 0.04
0 . . 0.00
CtrlAPOL1  CtrlAPOLL Ctrl APOL1  Ctrl APOL1  Ctrl APOLL ~ Ctrl APOL1 Ctrl APOL1  Ctrl APOLL  Ctrl APOLL  Ctrl APOLL  Ctrl APOL1  Ctrl APOLL
Podo Macro
024 MUSIC  CibersortX Scaden  TAPE-O  TAPEA  DISSECT 00g  MUSIC  CibersortX Scaden  TAPE-O  TAPEA  DISSECT
018 0.06 !
x
5012 5004
e | . I
0.06 - 0.02 i l .
0.00 - - | [ REECE | 0.00 1
016 012
012 0.09
8 8 i
£ 0.08 £ 0.06
g . . 1 .
0.04 | f l = 0.03 "
0.0 -~ -
Ctrl APOL1  Ctrl APOLL  Ctrl APOLL  Ctrl APOLL  Ctrl APOL1  Ctrl APOL1 Ctrl APOL1  Ctrl APOLL  Ctrl APOLL  Ctrl APOLL  Ctrl APOL1  Ctrl APOLL
Neutro
020 MUSIC  CibersortX Scaden  TAPE-O  TAPEA  DISSECT
016
¥ 0.12
€ 0.08
0.04 =
000 - | -
0.05
0.04 '
g 003
S o002 4
001 .
0.00
Ctrl APOL1  Ctrl APOLL  Ctrl APOLL  Ctrl APOLL  Ctrl APOL1  Ctrl APOLL

Fig. S5: The figure extends Fig. 3D to include all methods and cell type. From left to right and
top to bottom: Proximal tubule (PT), ductal convoluted tubules (DCT), endothelial cells (Endo),
collecting duct principal cells (CD-PC), collecting duct intercalated cells (CD-IC), loop of henle
(LOH), podocytes (Podo), macrophages (Macro) and neutrophils (Neutro). Each row indicates
a reference (Miao, Park).



64

Supplementary Note

To exemplify the applicability of DISSECT on other data types. We aimed to deconvolve spatial
transcriptomics datasets. The 10x Genomics Visium™ platform, for instance, delivers spatial
gene expression information with a spot diameter of 55 pm. This resolution is not enough
to capture single cells and spot-based gene expression on Visium™ is therefore a mixture of
its constituent cells. In this section we measure DISSECT’s deconvolution performance on
Visium™ ST data.

We performed deconvolution on two ST samples obtained from 10x Genomics website cor-
responding to Lymph node and brain and compared against RCTD and Lymph node. Both
datasets are accompanied by H&E images of the underlying tissue.

Anterior sagittal mouse brain - Brain is a highly structured organ with information about
the structures of neurons in the cortex. We utilized the reference data from Allen Brain Atlas,
as previously used in deconvolution of ROSMAP data. Using the ST adapted simulations, we
computed proportions of different cell types, including different layers of neurons and visual-
ized them on top of a corresponding hematoxylin and eosin (H&E) stained image (Fig. S6A).
DISSECT faithfully captured the spatial layering of the cortical areas of the brain, as well
as known ’hot-spots’ of neurons, oligodendrocytes, astrocytes, and inhibitory neurons such as
somatostatin- and parvalbumin-positive neurons.

To identify cortical layers, we performed louvain clustering (resolution 1) on the estimated cell
type fractions per spot, and labelled the clusters enriched for different layers of neurons. Layers
L2/3 IT, L4, LS IT, LS PT, L6 CT, L6 IT, and L6b were mapped respectively to clusters 1, 7,
12, 8, 3, 14 and 15 (Fig. S6B,C). The identified cortical layers corresponded with the cortical
layers annotated in the Allen Reference Atlas (Fig. S6D). We applied RCTD, C2L, SONAR
and CARD using the same setting. Compared to RCTD and C2L, DISSECT achieves better
separation of excitatory neuronal layers. CARD slightly outperforms DISSECT in this task
with a 0.02 increase in schilloute scores. The quantification was made using silhouette score
with euclidean metric. (Fig. S6E).

Lymph node - Next, we evaluated DISSECT on the spatial deconvolution of lymph node tissue.
Lymph nodes consist of various immune cell subsets and localized germinal centers (GCs). We
used a lymph node single-cell reference and used the manually annotated germinal centers that
were provided with the study as ground truth [29]. To verify whether DISSECT estimated and
localized cell fractions per spot correctly, we visualized GC-related cell types, namely Cycling
B cells, Germinal center B cells and follicular dendritic cells (FDCs) (Fig. S7A). DISSECT
also identified T cells associated regions in and around these GCs (Fig. S7A). To obtain binary
GC predictions to compare with the ground truth GC annotations, we computed louvain clusters
(resolution 1) on the cell type proportions, and labelled spots with cluster 1 as GCs based on
enrichment of GC associated cell types (Fig. S7B). Since the number of GC spots (378) is con-
siderably lower than non-GC spots (3,657), balanced accuracy as implemented in Scikit-learn
was used to account for this imbalance [75]-[76]. Comparison with the ground truth revealed a
balanced accuracy of 0.94, indicating that DISSECT deconvolved GCs with high accuracy and
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on par performance with C2L and RCTD (Fig. S7C). For CARD and SONAR, the balanced
accuracy were 0.93 and 0.91 respectively.
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Fig. S6. A. Estimated cell type proportions from mouse brain tissue visualized over H&E image
of the corresponding tissue. L2/3 - L6b indicate different layers of neurons. Astro: Astrocytes,
Oligo: Oligodendrocytes. B. Estimated cortical layers using enrichment of cell type proportions
in louvain clusters presented in C. D. Annotations of cortical layers from Allen Brain Reference
obtained from [38]. For visibility, cortex boundaries were highlighted. E. Shilloute scores for
C2L, RCTD, SONAR, CARD and DISSECT.
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Fig. S7: A. Estimated cell type proportions visualized over H&E image of the correspond-
ing lymph node tissue. B_cycling: Cycling B cells, B_LDC_DZ: Dark zone germinal cen-
ter B cells, B.GC_LZ: Light zone germinal center B cells, B_.GC_PrePB: germinal center
Pre-plasmablast/plasma cells, B_preGC: pre-germinal center B cells, FDC: Follicular dendritic
cells, T_.CD4"TfH_GC: Germinal center follicular helper CD4* T cells, T _Treg: Regulatory T
cells. B. Louvain clustering on cell type proportions. y-axis lists cluster numbers and x-axis lists
cell types. C Comparison of identified clusters, from left to right and top to bottom: Ground
truth GC-spots, predicted annotations for C2L, RCTD, DISSECT, CARD and SONAR.
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Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis is a life-
threatening autoimmune disease that often results in kidney failure caused by
crescentic glomerulonephritis (GN). To date, treatment of most patients with
ANCA-GN relies on non-specific immunosuppressive agents, which may have
serious adverse effects and be only partially effective. Here, using spatial and
single-cell transcriptome analysis, we characterize inflammatory niches in kidney
samples from 34 patients with ANCA-GN and identify proinflammatory, cytokine-
producing CD4" and CD8' T cells as a pathogenic signature. We then utilize these
transcriptomic profiles for digital pharmacology and identify ustekinumab, a
monoclonal antibody targeting IL-12 and IL-23, as the strongest therapeutic drug
to use. Moreover, four patients with relapsing ANCA-GN are treated with uste-
kinumab in combination with low-dose cyclophosphamide and steroids, with
ustekinumab given subcutaneously (90 mg) at weeks 0, 4, 12, and 24. Patients are
followed up for 26 weeks to find this treatment well-tolerated and inducing
clinical responses, including improved kidney function and Birmingham Vascu-
litis Activity Score, in all ANCA-GN patients. Our findings thus suggest that tar-
geting of pathogenic T cells in ANCA-GN patients with ustekinumab might
represent a potential approach and warrants further investigation in clinical trials.

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis end-stage renal disease and death. Renal involvement typically
is a group of systemic autoimmune diseases characterized by manifests as rapidly progressive crescentic glomerulonephritis
inflamed and necrotic small to medium-sized blood vessels'. Kidney = (ANCA-GN) with a fast decline in kidney function®*. Despite recent
involvement is common and is associated with a substantial risk of ~ advances in the treatment and management of ANCA-GN, such as
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B cell depletion using rituximab’”’ and complement C5a receptor
blockade with avacopan®, the rate of end-stage kidney disease and
side effects remains high, emphasizing the unmet need for more
effective and immunopathogenesis-based treatment strategies in
ANCA-GN.

Several studies investigated the gene expression profiles of
blood samples from patients with ANCA-associated vasculitis (AAV)
showing distinct endotypes and potential prognostic biomarkers’™".
Moreover, recent flow cytometric, single-cell RNA sequencing
(scRNA-seq), and immunohistochemical analyses of kidney biopsy
samples have provided deeper insights into the pathological
mechanisms mediated by immune cells in ANCA-GN'*". However,
the relevant specific spatial localization of immune cells and
their cellular interactions are largely unknown. Decoding the locali-
zation and function of immune cells in the kidney is highly relevant
because the local immune responses could be the drivers of
renal injury and disease progression, offering unique opportunities
for the identification and characterization of treatment targets for
ANCA-GN.

ANCA-GN patients remain at significant risk of renal failure
and increased mortality, highlighting the need to develop more
effective and safer therapies. Here, we combine spatial tran-
scriptomics and single-cell RNAseq and identify Thl and Th1l7
cells as major contributors to immune-mediated renal injury in
ANCA-GN. Based on these results we treat four ANCA-GN patients
with ustekinumab, which specifically targets Thl and Th17 cells, as
add-on therapy. The rapid clinical response in all four patients
suggests that ustekinumab could be a promising therapy and
should be further investigated in clinical trials. Our approach to
combining high-dimensional single-cell and spatial immune pro-
filing with clinical and histopathological data facilitates persona-
lized pathogenesis-based treatments and could be a promising
strategy for other autoimmune diseases.

Results

Study cohort and experimental overview

We included two independent patient groups with biopsy-confirmed
ANCA-GN from the Hamburg GN Registry'*'® in our study (Fig. 1).
The exploratory group consists of 34 ANCA-GN patients. From each
of these patients, two renal biopsy cores were taken. One was
used for routine pathological evaluation and the other sample was
used for spatial (n=28) and single-cell (n=27) transcriptomic ana-
lysis (Fig. 1 and Table 1). The treatment group consists of four-
patients with relapsing ANCA-GN that were treated with
ustekinumab, steroids, and low-dose cyclophosphamide and under-
went single cell, and flow cytometry immune profiling, as well
as pathological examination and clinical follow-up analysis for 26
weeks (Fig. 1).

Exploratory cohort (ANCA-GN, n=34)

Spatial transcriptomics reveals inflammatory glomerular and
tubulointerstitial niches linked with T cell activation in
ANCA-GN
Kidney inflammation is a hallmark of ANCA-GN but the underlying
immunopathology is not well understood. To characterize the
inflammatory niches, pathological cell-cell interactions, and key
molecular pathways that drive kidney inflammation in ANCA-GN, we
generated spatial transcriptome (ST) sequencing data from 28 renal
biopsies of the exploratory cohort using the Visium platform (Fig. 2a
and Supplementary Data 1). By unsupervised clustering of the spatial
data, we were able to define 12 tissue compartments. Based on marker
gene expression, we identified normal glomeruli, inflamed glomeruli,
tubulointerstitium, inflamed tubulointerstitium, vasculature, and sev-
eral tubular compartments. The latter includes proximal tubules (PT),
connecting tubules (CNT), distal convoluted tubules (DCT), collecting
duct (CD), and loop of Henle (LOH) (Fig. 2b,c and Supplementary
Fig. 1a-c)”. We verified our clustering-based annotations by compar-
ison to expert annotations of glomerular compartments on H&E-
stained images, exhibiting an annotation concordance of over 90% on
normal glomerular regions (Supplementary Fig. 1d). To understand the
compositional difference of the identified compartments between
ANCA-GN and healthy controls, we included 8 healthy control samples
in our analysis (Supplementary Fig. 1e). ANCA-GN samples were enri-
ched for inflamed glomeruli and inflamed tubulointerstitium as com-
pared to healthy control samples (Fig. 2c and Supplementary Data 2).
Next, we aimed to identify key molecular pathways and cell sub-
types involved in immunopathology in the inflammatory niches of the
kidney. An unsupervised analysis of cluster-defining genes from the
two inflamed compartments identified T cell activation as the most
differentially expressed gene ontology term (Fig. 2d and Supplemen-
tary Data 3-5). By co-analyzing the neighborhood composition of
compartments and their enrichment for T cell-specific pathways, we
found that gene sets for Thl and Th17 cell differentiation as well as T
cell-mediated cytotoxicity were enriched in inflamed compartments
(Fig. 2e, f and Supplementary Data 4, 5). Further gene sets upregulated
ininflamed glomerular compartments indicate increased interleukin-1,
extracellular matrix organization, and regulation of fibroblast pro-
liferation (Supplementary Data 5).

Enrichment of proinflammatory cytokine-producing Th1/Tcl
and Th17/Tc17-like effector T cells in the kidney of ANCA-GN
patients

To further clarify and define the role of specific T cell subtypes and
their signaling cascades in ANCA-GN, we generated a single cell tran-
scriptome and epitope atlas of T cells, encompassing 72,416T cells
from renal biopsy and blood samples of 27 ANCA-GN patients of the
exploratory cohort (Fig. 3a and Supplementary Fig. 2a and Supple-
mentary Data 6). Unsupervised clustering identified 15 T cell clusters,

Drug prediction Treatment cohort (n=4)

Routine diagnostics Renal histology Spatial scRNA-seq (n=27) Knowledge
— tran (;I;Zlé};lllb . . “ mtegianon Ustekinumab I
g > 5 anti-IL-12/23) /=
@ e &0 Computational ( )
analysis

+ —> . ANCA-GN

Digital * Renal histology
pharmacology « Flow cytometry

» scRNA-seq

Multi-OMICs profiling

Fig. 1| Study overview. 34 patients from the Hamburg GN Registry underwent
diagnostic kidney biopsy and multi-OMIC high dimensional immune profiling.
Based on these results drug prediction revealed ustekinumab as the strongest

Flow cytometry
(n=22)

« Anti-cytokine therapy
« 26 week follow-up

candidate for treatment of ANCA-GN. Subsequently, 4 patients with severely
relapsing ANCA-GN were treated with ustekinumab and followed up for 26 weeks.
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Table 1| Basic and Clinical Characteristics Exploratory cohort

N=34

Demographics

Age—years, median (IQR) 64.5 (57.75-74.25)

Sex, n (%)
Female 14 (41.18)
Male 20 (58.82)

BMI, median (IQR)?
ANCA status, n (%)

24.65 (22.90-27.36)

MPO 22 (64.71)
PR3 12 (35.29)
Initial organ involvement, n (%)
General 22 (64.71)
Renal 34 (100)
ENT 6 (17.65)
Lung (DAH) 11(32.35)
Nervous system 3(8.82)
Cutaneous 2(5.88)
Abdominal 2(5.88)
Eye 2 (5.88)
Heart 1(2.94)
Histological ANCA renal risk score'®, n (%)
Low 12 (35.29)
Medium 15 (44.12)
High 7(20.59)

Laboratory values, median (IQR)

212 (1.66-4.55)
235 (11.75-42.75)

Creatinine (mg/dl)
eGFR (ml/min)

ACR (mg/g) 720 (328.5-1500)
Immunosuppressant induction treatment, n (%)

Glucocorticoids 34 (100)

Rituximab 9 (26.47)

Cyclophosphamide 22 (64.71)

Cyclophosphamide and Rituximab 3(8.82)

PLEX 4 (11.76)

Source data are provided as a Source Data file.

IQR interquartile range, ANCA antineutrophile cytoplasmatic antibody, MPO myeloperoxidase,
PR3 proteinase 3, ENT ear nose throat, DAH diffuse alveolar hemorrhage, PLEX therapeutic
plasma exchange, eGFR estimated glomerular filtration rate, ACR albumin-creatinine-ratio.
°n=33.

containing CD4" T effector cells (CD4" Teff), CD8" T effector cells
(CD8' Teff), CD4" naive T cells, CD8" naive T cells, CD8" T effector
memory cells (Teff/em), CD4" central memory T cells (Tcm), stressed
T cells, regulatory T cells (Treg), yd T cells, mucosal-associated invar-
iant T cells (MAIT), natural killer T cells (NKT), CD4" cytotoxic T cells
(CTL), natural killer cells (NK cells) and proliferating T cells (Fig. 3a and
Supplementary Fig. 2b). Cytokine expression analysis revealed the
highest cytokine scores in CD4" and CD8' T effector cells (clusters 1
and 2) (Fig. 3b and Supplementary Fig. 3a). Interestingly, these effector
CD4" and CD8' T cells were enriched in the inflamed kidney but not in
the peripheral blood, highlighting their relevance in renal inflamma-
tion (Fig. 3c). Further analyses showed that the CD4" T effector cell
cluster had a high proportion of Thi, Thi-like, and Th17 cells and CD8"
T effector cell cluster of Tcl, and Tcl7-like cells (Fig. 3d and Supple-
mentary Fig. 3b, c). Subgroup analysis of proteinase 3 (PR3) ANCA
versus myeloperoxidase (MPO) ANCA patients showed no differences
in composition of T effector cells (Supplementary Fig. 3d).

To understand the spatial location of these pathogenic CD4" and
CD8" effector T cells in the inflamed kidney, we next used single cell

information to deconvolve the spatial transcriptomic data. Consistent
with the up-regulation of T cell activation markers, CD4" Thl and Th17 as
well as CD8" Tcl cells were exclusively localized to inflammatory glo-
merular and tubulointerstitial niches (Fig. 3e and Supplementary Fig. 3e).

Digital pharmacology identifies ustekinumab as drug candidate
Based on the combined analysis of spatial and single cell tran-
scriptome, type 1 and 3 cytokine producing T cells constitute a
potential immunopathogenesis-based therapeutic target in ANCA-GN.
We employed digital pharmacology, the mapping of drugs to cells
based on their molecular interaction, to search for approved drugs
that specifically target these pathogenic T cells in the kidney. To nar-
row our search space to immunomodulating drugs, we preselected 277
drugs consisting of antineoplastic agents, endocrine therapy drugs,
and immunosuppressants (Anatomical Therapeutic Chemical (ATC)
codes LO1, LO2, LO4, respectively) that could potentially interact with
CD4" and CD8" Teff subsets in the inflamed glomerular and inflamed
tubulointerstitial compartments. To prioritize these drugs, we con-
structed a dictionary of drug-gene interactions based on the spatial
and single cell transcriptome information and subsequently filtered
drugs for chemical viability and FDA-approval (Fig. 3f and Supple-
mentary Data 7). Among the drugs with high differential interaction
scores in the inflamed renal compartments, we identified ustekinumab
as the drug exhibiting the highest specificity for CD4" and CD8*
effector T cells. Ustekinumab is a human monoclonal antibody direc-
ted against the p40 subunit of both IL-12 and IL-23, which has the
potential to inhibit Th1/Tcl and Th17/Tcl7 cell responses.

Rapid biopsy immune profiling
ScRNA-sequencing is a time consuming and expensive technology. To
enable rapid and cost-effective screening of pathogenic immune cell
infiltrates in a clinical setting, we performed flow cytometry-based single
cell immune biopsy profiling of the exploratory cohort (Fig. 4a, b and
Supplementary Fig. 4). This approach delivers patient-specific immune
profiles within hours after biopsy and might be instrumental in estab-
lishing immunopathogenesis-driven targeted biological therapies.
Based on our results of the single cell and spatial transcriptomic data, we
focused on the identification of pathogenic Th1/Tcl and Th17/Tcl17 cells.
Rapid single cell immune biopsy profiling showed that Thl/
Tcl(CXCR3', CCR6") and Thl7/ Tcl7-like cells (CCR6°, CCR4")*® were
the dominant T cell subsets in the inflamed kidney of ANCA-GN
patients (Fig. 4b). Subsequent multiplex immunofluorescence staining
showed that these pathogenic T cells were mainly localized to glo-
merular and interstitial inflammatory areas (Fig. 4c), further support-
ing an anti-T cell-cytokine treatment with ustekinumab.

Demographic, clinical, and immune characteristics of the uste-
kinumab treatment group
Based on our findings from the exploratory ANCA-GN cohort and
results from preclinical GN models, we decided to use ustekinumab in
combination with low-dose cyclophosphamide in patients with AAV
that had relapsing disease and a relative contraindication or incom-
plete response to current standard therapies (ustekinumab treatment
cohort). The basic and clinical characteristics of the treatment group,
encompassing four ANCA-GN patients are briefly summarized below
and are shown in more detail in Table 2 and Supplementary Fig. 5.
Patient 1: A 73-year-old male, with known MPO-ANCA positive
vasculitis under remission maintenance therapy with rituximab, pre-
sented with fatigue, dizziness, lower limb edema, gross hematuria and
acute kidney injury to our nephrology clinic. Kidney biopsy was per-
formed and revealed active, crescentic ANCA-GN. No other organ
manifestation was noted. At time of relapse, the patient received
rituximab remission maintenance therapy. Despite appropriate ritux-
imab dosing and intervals, full B cell depletion was not achieved. With
known urinary flow obstruction and the need for urinary diversion, the
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Fig. 2 | Spatial transcriptome analysis of the ANCA-GN exploratory group.

a Left, Representative section of an H&E-stained kidney biopsy. Right, Spatial dis-
tribution of renal compartments overlaid on the representative section. b UMAP
embedding displaying annotated renal compartments across 10,763 spots from all
ST slides. See Supplementary Fig. 1c for the expression of cell type markers in
annotated compartments. ¢ Barplots showing the composition of renal compart-
ments in the control (21,420 spots) and ANCA-GN exploratory group. The sig-
nificance of the difference in composition was assessed with differential population
analysis and is presented in Supplementary Data 2. d Top 10 enriched gene
ontology terms in inflamed compartments. Count: number of DE genes in the term.
Gene ratios: ratio of the number of DE genes in the term to the number of all DE

genes. The colors show adjusted p-values (p.adjust) computed using the enrichGO
function from R package clusterProfiler with right-tailed Fisher’s exact test and
Benjamini-Hochberg multiple test correction. e Scores of alpha-beta T cell-related
gene ontology terms computed using GSVA in different renal compartments.

f Graph showing the spatial proximity of renal compartments and the enrichment
of T cell activation. The node sizes and edge widths are proportional to compart-
ment size and spatial proximity, respectively. The nodes are colored by an
increasing Thl and Thl7 cell differentiation term scores computed using GSVA. PT,
proximal tubules. LOH, loop of Henle. DCT distal convoluted tubules, CNT con-
necting tubules, PC principal cells, IC intercalated cells. Source data are provided as
a Source Data file.

patient was hesitant for full dose cyclophosphamide therapy. (Sup-
plementary Fig. 5a).

Patient 2: A 52-year-old male patient was admitted to our clinic
with a creatinine increase as well as active urinary sediment after six
pulses of i.v. cyclophosphamide, because of recently diagnosed MPO-
ANCA positive vasculitis with extensive organ manifestations. Kidney
biopsy was performed and revealed active, crescentic ANCA-GN. The
early phase of the COVID-19 pandemic raised substantial concerns
over B cell depleting therapies, thus prompted us to decide against re-
induction therapy containing rituximab (Supplementary Fig. 5b).

Patient 3: A 32-year-old male was admitted to our nephrology
ward with fever, night sweats, weight loss, progressive dyspnea
and hemoptysis. Four weeks earlier the patient received rituximab
and steroids because of a pulmonary and ENT relapse of known
PR3-ANCA positive vasculitis. Chest imaging and bronchoscopy
showed progressive DAH (diffuse alveolar hemorrhage). Urinary
analysis displayed glomerular hematuria and laboratory testing
showed acute kidney injury with pronounced elevation of CRP
and ANCA-level. Kidney biopsy was initiated and revealed active,
crescentic glomerulonephritis. Because of concomitant severe
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Fig. 3 | Single T cell transcriptome analysis and drug prediction. a UMAP pro-
jection and cluster annotations of the combined human single cell atlas of renal and
blood T cells. In total 72,416 cells are shown of which 22,187 stem from the kidney
and 50,229 from the blood. See Supplementary Fig. 2b for the expression of cell
type-specific marker genes. b Combined type 1-3 cytokine expression score (type 1:
IFNG, TNF, IL2, IL18, LTA, CSF2; type 2: 1L 4, ILS, IL9, IL13; type 3: IL17A, ILI7F, IL22, IL26)
per cell overlayed on the UMAP projection. The positions of CD4* and CD8' T
effector cell clusters are highlighted manually. The detailed expression per cyto-
kine type and cell type is shown in Supplementary Fig. 3a. ¢ Relative tissue com-
position per cell type. The frequencies are computed separately for blood and
kidney cells, i.e., both sides add up to 100%. d CD4" and CD8" T effector cell subsets
and their relative proportions. Both T effector cell subsets show some overlap due

to the proximity of their respective expression profiles, e.g., the CD4" Teff cluster
contains a small proportion of CD8" Tcl-like cells. The marker gene expression is
detailed in Supplementary Fig. 3b, c. e Distribution of Teff cell subsets within the
non-inflamed and inflamed compartments. For detailed proportions in individual
non-inflamed compartments, see Supplementary Fig. 3e. Boxplots show the med-
ian (middle horizontal line), interquartile range (box), Tukey-style whiskers (lines
beyond the box), outliers (data points beyond 1.5*interquartile or below—
1.5*interquartile) for proportion of Teff subsets in 10,763 spots from all ANCA ST
slides. f Ranking of drugs based on their interaction scores within Teff single cells,
with colors representing their interaction scores specifically within inflamed renal
compartments. Source data are provided as a Source Data file.
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Fig. 4 | Immune profiling of renal T cells. a Representative flow cytometry plot
showing the identification of chemokine receptor expression from cells isolated
from biopsy samples of patients with ANCA-GN (exploratory cohort, n=22).

b Quantification of chemokine receptor expression CXCR3 (Thl/Tcl) and CCR6
(Th17/Tc17) from renal CD3" T cells. Violin plots show mean, symbols represent
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individual data points. (n=22). ¢ Representative immunofluorescence staining of
chemokine receptors CXCR3 and CCR6 on CD3" T cells in human kidney tissue of
ANCA-GN. Lower row zoomed in areas. Source data are provided as a Source
Data file.
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Table 2 | Basic and Clinical Characteristics treatment cohort

Patient 1 Patient 2 Patient 3 Patient 4
Demographics
Age—years 73 52 32 69
Sex (female/male) M M M F
BMI 34.68 25.90 24.38 27.06
Time until 143 16 168 138
relapse (weeks)
ANCA status
MPO + + - +
PR3 = = + -
Organ involvement
General + + + +
Renal & & & &
ENT = + + -
Lung (DAH) - + + _
Nervous system = + = =
Cutaneous + + - -
Abdominal = = = =
Eye = = = =
Heart - + = =
Histological ANCA renal risk score'®
Low = i = =
Medium = = = =
High + = = +
Laboratory values at relapse
Creatinine (mg/dl) 4.25 2.27 1.88 3.42
eGFR (ml/min) 13 32 46 13
ACR (mg/g) 3345.7 590.0 582.3 134.9
Previous immunosuppressant treatment
Glucocorticoids + + + +
Cyclophosphamide + + - +
PLEX i = = =
Rituximab + - + +
Azathioprine + = = +

ANCA anti-neutrophile cytoplasmatic antibody, MPO myeloperoxidase, PR3 proteinase 3, ENT
ear nose throat, DAH diffuse alveolar hemorrhage, eGFR estimated glomerular filtration rate,
ACR albumin-creatinine ratio, PLEX therapeutic plasma exchange.

leukopenia, cyclophosphamide could not be given at full dose
(Supplementary Fig. 5c).

Patient 4: A 72-year-old female patient, with known MPO-ANCA
positive vasculitis and remission maintenance therapy with rituximab,
was sent to our nephrology ward with acute kidney injury and reduced
general condition. Chest imaging ruled out relevant thoracic patholo-
gies. Urinary analysis showed glomerular hematuria and kidney biopsy
was issued. Here, active crescentic ANCA-GN was seen and diagnosis of
relapsing ANCA-GN was made. Because the patient suffered a relapse
while being on remission maintenance with rituximab, she was deemed
a poor responder to rituximab. Furthermore, she suffered from mye-
lodysplastic syndrome with bicytopenia (leukopenia and anemia), thus
full dose cyclophosphamide was deemed unsuitable, because of
increased risk for myelotoxicity. (Supplementary Fig. 5d).

Flow cytometry-based rapid immune biopsy profiling in each of
the four ANCA-GN patients demonstrated a strong infiltration of Thl/
Tcl and Th17/Tcl7-like cells into the inflamed kidney (Supplementary
Fig. 6a, b). Additional single cell transcriptome sequencing of the four
patients provided a more comprehensive renal T cell profile and
confirmed the observed Th1l/Tcl and Th17/Tcl7-cell responses (Sup-
plementary Figs. 7a-e, 8a-d and Supplementary Data 8).

Clinical response of the ustekinumab ANCA-GN treatment group
The four ANCA-GN patients of the treatment cohort were given uste-
kinumab s.c. (90 mg) in combination with low dose cyclophosphamide
and steroids, following the RITUXVAS trial approach, as a re-
induction therapy. All patients received ustekinumab at weeks 0, 4,
12, and 24 in combination with two to three low doses of cyclopho-
sphamide (cumulative dose 1.5-2.0 g) and glucocorticoids according
to the PEXIVAS trial reduced dose regimen®. Starting at week 16,
patients 3 and 4 (patient 2 at week 22) received a low dose remission
maintenance therapy with either azathioprine or mycophenolate
mofetil (MMF) (Fig. 5a). At six months, the prednisolone dose was
tapered to 5mg daily in all four patients.

All patients showed a rapid clinical and serological response to
this re-induction treatment protocol. Mean serum creatinine levels
decreased from a median of 2.8 (2.0-4.0) mg/dl to 1.6 (1.3-1.7) mg/dl at
6 months. According to the albumin-creatinine-ratio, median albumi-
nuria decreased from 862.5 (584-2793) mg/g at the time of relapse to
604 (359-1402) mg/g at 6 months (Fig. 5a). ANCA serum levels
decreased from 65 (24-126) U/ml to 32 (9-57) U/ml. The Birmingham
vasculitis activity score (BVAS) declined from a median of 12.5
(9.75-13) at the beginning of ustekinumab treatment to 2.5 (2-4.5) at
6 months (Fig. 5b). C-reactive protein (CRP) levels rapidly improved
throughout the 6-month treatment period (ranging from 5 to 190 mg/|
at the beginning of treatment to < 4-36 mg/l at 6 months) (Fig. 5b). The
treatment with ustekinumab was well tolerated. No serious adverse
effects were observed during the 6-month treatment period.

Discussion

Despite numerous advances in therapy for ANCA-GN, these patients still
have a substantial risk of kidney failure and increased mortality?*%
Today, the leading causes of death in ANCA-GN are infections, followed
by cardiovascular disease and malignancies®”, all associated with
immunosuppressive therapy. This highlights the unmet need to balance
disease control against the risk of side effects. However, the limited
understanding of the underlying immunopathology, particularly within
the inflamed kidney, impedes the implementation of tailored and
effective treatment options. Therefore, in this study we sought to tackle
this issue with an approach consisting of four distinct steps.

First, using unsupervised analyses of spatial transcriptomics data
derived from the kidneys of patients with ANCA-GN, we identified a
distinct enrichment of inflammatory glomerular and tubulointerstitial
niches, linked to T cell activation, as the key molecular pathways.
Evidence for a pathogenic role of T cells in ANCA-GN patients, is
derived from genetic studies showing a significant association with
distinct human leukocyte antigen (HLA) class Il haplotypes® ¢, an
unbalanced activation state of blood and kidney T cells”* and a
therapeutic T cell-depletion study in refractory AAV patients®. The T
cell subsets and cytokine networks that promote tissue injury and loss
of renal function, however, remain to be fully elucidated. Thus, sec-
ondly, we performed unsupervised single cell transcriptomics and
epitope mapping of renal T cells from our exploratory cohort,
revealing the dominance of proinflammatory cytokine-producing Thl/
Tcl and Th17/Tcl7-like effector T cells in the kidneys of ANCA-GN
patients. Thirdly, based on the dominant effector T cell subsets in
inflammatory glomerular and tubulointerstitial niches of nephritic
kidneys we used digital pharmacology to investigate relevant drugs
targeting pathways expressed in these T cells, and could thereby
identify ustekinumab as a potential treatment approach. Ustekinumab,
a human monoclonal antibody directed against the p40 subunit of
both IL-12 and IL-23 thereby targeting the Thl/Tcl and Th17/Tc17
immune responses, is approved for the treatment of psoriasis”,
psoriatic arthritis®’, and inflammatory bowel disease®**. Several stu-
dies highlighted its efficacy and good tolerability in these patients® .
To date, there are no data available for using ustekinumab in ANCA-
GN, despite the fact that experimental GN models, including
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Fig. 5 | Clinical outcome of the ustekinumab treatment cohort. a Course of
serum creatinine and albuminuria during ustekinumab treatment. Black arrow-
heads indicate cyclophosphamide and green arrowheads ustekinumab adminis-
tration. Gray bands indicate low dose remission maintenance therapy with either
AZA or MMF. b BVAS, ANCA levels measured via ELISA and CRP levels at baseline

and 6 montbhs after initiation ustekinumab treatment (n =4). (CYC cyclopho-
sphamide; AZA azathioprine; MMF mycophenolate mofetil; BVAS Birmingham
Vasculitis Activity Score; CRP C-reactive protein; ACR albumin creatinine ratio).
Source data are provided as a Source Data file.

preclinical ANCA-GN models**, provide a clear rationale for targeting
the IL-12/IL-23 axis in immune mediated kidney disease.

Fourthly and finally, given our findings in the exploratory cohort,
we assessed the efficacy of ustekinumab in four ANCA-GN patients
with relapsing disease. Our treatment protocol was designed as an add-
on therapy of ustekinumab at weeks 0, 4, 12, and 24 with up to three
low-dose pulses of cyclophosphamide, similar to recent trials estab-
lishing rituximab and the complement inhibitor avacopan as add-on
treatments for ANCA vasculitis (RITUXVAS and ADVOCATE trials)*".
The immunosuppression was complemented by an intravenous pre-
dnisolone and oral glucocorticoid therapy according to the PEXIVAS

study reduced dose regimen®. All four patients responded rapidly to
therapy, with improvements in kidney function, ANCA levels, CRP, and
BVAS. Importantly, all patients tolerated the treatment well and no
adverse ustekinumab-related effects were observed.

This report pioneers an immunopathology-based anti-T cell-
cytokine therapy for immune-mediated kidney diseases. Our data
further suggests that combining high-dimensional single cell immune
profiling with clinical and histopathological information facilitates
personalized pathogenesis-based treatments. Moreover, this study
indicates that rapid single cell immune biopsy profiling by flow cyto-
metry is a feasible approach that might be routinely applied in patients
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with ANCA-GN and could prove to be a potential strategy for other
organ-specific autoimmune and inflammatory diseases.

Although our results provide an immunopathogenesis-based
rationale for targeting Th1/Tcl and Th17/Tcl7 responses with uste-
kinumab in ANCA-GN, our study has several limitations. The treat-
ment protocol was designed as an add-on therapy, making it more
difficult to assess the intrinsic efficacy of ustekinumab, and it is likely
that part of the observed response to treatment is due to the con-
comitant use of low-dose cyclophosphamide and steroids. In addi-
tion, our study focused on the renal manifestation of AAV, and it
is unclear whether these results also apply to the involvement of
other organs.

In addition, long-term data need to be acquired to confirm the
overall safety profile of ustekinumab in ANCA-GN. Furthermore, the
data generated from this case series is based on a low number of
patients without a control group. Therefore, these results should be
interpreted with caution and need to be confirmed in adequately
designed clinical trials for which the appropriate treatment protocol
and patient subgroups remain to be determined. Taken together, our
study suggests that ustekinumab is a well-tolerated therapeutic option
for the treatment of ANCA-GN, which should be further investigated in
clinical trials.

Methods

Patients

We included two independent ANCA-GN patient groups from the
Hamburg GN Registry'*'® in our study. The exploratory cohorts
consist of 34 patients and the ustekinumab treatment group of four
patients. For the spatial transcriptomic analysis of control samples,
the healthy parts of the kidney, which was removed due to tumor
nephrectomy, were used. Informed consent was obtained from all
participating patients in accordance to the CARE guidelines and in
accordance with the ethical principles stated in the Declaration of
Helsinki. All four patients in the ustekinumab treatment group also
provided written informed consent before receiving ustekinumab as
an off-label treatment. Detailed information on the patient cohorts
and the performed analysis are provided in Tables 1, 2 and Supple-
mentary Data 10.

Sex- and gender-based analyses were not performed. Informa-
tion about the sex of the patients is provided in Table 1 for the
exploratory cohort and in Table 2 for the treatment cohort. Biolo-
gical sex and self-reported sex were identical in both the exploratory
and treatment cohort.

These studies were approved by the Institutional Reviewing Board
(IRB) of the University Medical Center Hamburg-Eppendorf and Ethik-
Kommission der Arztekammer Hamburg (local ethics committee of
the chamber of physicians in Hamburg), and covered by the licenses
PV4806, PV5026, and PV5822.

Spatial transcriptomics

Preprocessing of the spatial transcriptomics slides. For spatial
transcriptomics, formalin-fixed paraffin-embedded (FFPE) tissue sec-
tions from patients with ANCA-associated glomerulonephritis and
controls (healthy tissue from tumornephrectomies) were transferred
on Visium (10x Genomics) slides (spatial for FFPE gene expression
human transcriptome) and processed according to the manufacturer’s
instructions. Next-generation sequencing was performed on an Illu-
mina NovaSeq 6000 aiming at 25,000 reads per spot (PE150).

For alignment to the genome of ST slides (n=20) from 30
patients, the human genome assembly GRCh38-2020-A was used.
Mapping to the genome was performed using 10x Genomics Space
Ranger (v2.0.1). Alignment metrics from spaceranger are provided in
Supplementary Data 1. The same alignment method and libraries as
used for the exploratory group were used to align ST slides of the
internal controls (n=3).

Quality control

After alignment of the ST slides to the genome, 1 slide was excluded
from analysis due to low gene counts (280 median genes per spot
compared to 3499.58 + 972.97, Supplementary Data 1). Data analysis of
the ST gene expression data was performed using Scanpy*® (v1.9.3) in
Python (v3.9.7). The following parameters in Scanpy’s preprocessing
pipeline were used to filter poor-quality spots: min genes =100, min_-
spots =3, min_counts=2000, max _counts=35000. The filtered ST data
consisted of 10,763 spots and 17,847 genes. The filtered spot counts
were normalized to sum to 10,000, and data was log,-transformed
with a pseudo-count of 1.

Clustering and annotation

Principal components (n_.comps=50) were computed on the highly
variable genes (highly variable genes in Scanpy with default settings
and slide-name as batch_key). The batch effect corresponding to the
slide was removed using harmony*’ (v0.1.0) in R (v4.1.1). To identify
clusters, Leiden clustering (scanpy.tl.leiden) was performed on Uni-
form Manifold Approximation and Projection (UMAP) data projections
with a resolution of 1.2. The UMAP projections were generated on a
neighborhood graph constructed using scanpy.pp.neighbors with
n_neighbors=10. Cluster annotations were performed using the fol-
lowing cell type specific markers from a reference kidney single cell
dataset” - Proximal tubules (PT): LRP2, CUBN, SLCI3A1, Distal con-
voluted tubules (DCT): SLCI2A3, CNNM2, FGF13, KLHL3, LHX1, TRPM6,
Connecting tubules (CNT): SLC8AI, SCN2A, HSD11B2, CALBI, Principal
cells (PC): GATA3, AQP2, AQP3, Intercalated cells (IC): ATP6VOD2,
ATP6V1C2, TMEM213, CLNK, Ascending thin loop of Henle (Thin limb):
CRYAB, TACSTD2, SLC44AS, KLRG2, COL26A1, BOC, Thick ascending
loop of Henle (TAL): CASR, SLC12A1, UMOD. Endothelial cells (Endo):
CD34, PECAM1, PTPRB, MEIS2, EMCN, vascular smooth muscle cells
(VSMC)/Pericyte: NOTCH3, PDGFRB, ITGAS, Fibroblasts: COLIAI
COLIA2, C7, NEGRI, FBLNS, DCN, CDHI1, Podocytes: PTPRQ WTI,
NTNGI1, NPHSI, NPHS2, CLICS, PODXL, Immune cells: PTPRC, CD3D,
CDI14, CDI9. The expression of these marker genes for each annotated
renal compartment is shown in the Supplementary Fig. 1c. The dis-
tribution of total gene counts, number of spots across slides, and
annotated compartments are presented in the Supplementary Fig. 1a.

Quantification of spatial proximity

The spatial neighborhood enrichment was performed with Squidpy**
(v1.2.2) over all slides. The underlying multi-sample spatial graph was
constructed by merging all sample-specific spatial graphs into a single
graph, resulting in one connected component per sample. The sample-
specific graphs were constructed by connecting each spot to its
nearest neighbors. To visualize the neighborhood enrichment matrix,
the compartments were considered as nodes with the number of spots
in a compartment as node sizes, z-scores as edge weights, and neato as
layout engine from the library Pygraphviz (v1.11). Negative z-scores
were set to 0, essentially removing spatially distant compartments. For
visualization, the resulting weights were downscaled by 0.25.

Integration of control samples

ST data from kidney nephrectomies (n=38) was integrated with the
previously generated embedding of ST data from the ANCA-GN
exploratory group. In total, we used 3 slides generated at the UKE
Hamburg (Supplementary Data 9) and 5 slides previously generated by
Lake et al. ., totaling 21,420 spots. The integration was performed
with Symphony*’ (v0.1.0) with highly variable genes computed over
the ANCA-GN exploratory group.

Differential population analysis

To identify the renal compartments differentially abundant between the
control and ANCA-GN samples, differential population analysis was
applied using scCODA*® (v0.1.9) with CNT/PC as the reference cell type
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and a false discovery rate of 0.05. We identified inflamed glomerular,
inflamed tubulointerstitial, PT, PT/LOH, and Tubulointerstitial/Vessels
to be differentially abundant between control and ANCA-GN (Supple-
mentary Data 2).

Gene set enrichment analysis

First, we identified differentially expressed (DE) genes in inflamed
glomerular and inflamed interstitial compartments using a Wilcoxon
test (adjusted p-value cutoff of 0.05 and log,-fold change cutoff of
0.25) through scanpy.tl.rank genes groups. We then performed gene
set enrichment analysis on a functional level with the differentially
expressed (DE) genes as input, using the enrichGO function from
clusterProfiler R package” (v4.2.2) and biological processes as gene
ontology (GO). The function simplify was used to remove redundant
GO terms. Gene-set variation analysis (GSVA)*> was used to compute
the scores of gene set ontology terms.

Annotation of H&E slides

The same biopsy samples as used in 10x Visium were manually anno-
tated by an expert into three categories: normal, crescentic, and
uncertain. The third group contained the tissue that could not be
confidently assigned to either normal or crescentic categories. The
original images were exported to TIF and processed using Image)
(v1.54f). The manual annotations were performed using Napari
(v0.5.0a2.dev171+gf2d7d437).

Single cell RNA-sequencing: preprocessing and quality control
The Cell Ranger software (v5.0.1 and v7.1.0, 10x Genomics) was used to
demultiplex cellular barcodes and map reads to the reference genome
GRCh38-3.0.0 and GRCh38-2020-A. All quality control and preproces-
sing steps were performed in Seurat™ (v4.0.4) and R (v4.1.1). The Seurat
demultiplexing function HTODemux was used to demultiplex the hash-
tag samples. We removed the cells in which less than 500 or more than
5000 expressed genes were detected. We further filtered out low-
quality cells with more than 10% mitochondrial genes. Subsequently,
raw counts were normalized to 10,000 and loglp transformed, batch
corrected and integrated with harmony*” using the 2000 most highly
variable genes, and clustered using the Louvain algorithm with resolu-
tion 0.1. T cells were isolated by removal of all cell clusters with low CD3
expression. We merged the tissue-specific datasets for each cohort by
keeping the union of all genes for blood and kidney samples. Subse-
quently, we removed all cells belonging to the top 0.1% total counts
quantile or expressing less than 200 genes as well as any genes that
were expressed in less than 10 cells. We further removed cells with more
than 12,000 detected surface proteins and proteins that were present in
less than 10 cells. In the case of the transcriptome information we
normalized the raw counts to sum up to 10,000 and loglp transformed
them. For the raw protein counts we performed centered log-ratio
normalization. The filtered, processed, and combined single-cell data
for the exploratory cohort contains 72,416 cells (22,187 kidneys, 50,229
blood) and 21,419 genes (Supplementary Fig. 2a and Supplementary
Data 6). For the treatment group, the combined single-cell data contains
34,810 cells (15,372 kidney, 19,438 blood) and 38,224 genes (Supple-
mentary Fig. 7e and Supplementary Data 8).

Clustering and cell type identification

In the following, we provide full information only about the analysis
workflows for the exploratory group but mention differences to the
analogous workflow for the treatment group. All analyses were per-
formed either in R (v4.1.1) using Seurat (v4.0.4) or in Python (v3.9.17)
using Scanpy*® (v1.9.1).

For the exploratory group, we combined two integration work-
flows to identify and annotate cell types: one to identify broad T cell
clusters and another to annotate specific CD4" and CD8" T cell subsets.
We first performed a principal component analysis on the top 2000

highly variable genes and then applied harmony*” on the first 30
principal components to correct batch effects between patients. After
computing the nearest neighbor graph, we clustered the data using the
Louvain algorithm with a resolution of 0.1. We annotated the cell
clusters using canonical cell type markers for broad T cell subsets
(Fig. 3a and Supplementary Fig. 2b). Type 1-3 cytokine scores (type 1:
IFNG, TNF, IL2, IL18, LTA, CSF2; type 2: IL4, IL5, IL9, IL13; type 3: ILI7A,
IL17F, IL22, IL 26) were calculated using the Scanpy function score genes
(Fig. 3b and Supplementary Fig. 3a).

In a second step, we isolated the CD4" Teff and CD8" Teff cells,
mostly composed of kidney cells, and removed patients containing
less than 2 total cells (blood and kidney) and genes present in less than
10 cells. We reintegrated the remaining cells with totalVI** based on the
top 4000 highly variable genes and all surface proteins, treating the
patient ID as a categorical covariate. After Leiden clustering with a
resolution of 0.8 and 1.0, respectively, we annotated the cell clusters
based on canonical markers for CD4* and CD8" T cell subsets (Fig. 3d
and Supplementary Figs. 2b and 3b,c).

For the ustekinumab group, we followed an analogous integration,
clustering, and annotation workflow (Supplementary Figs. 7a-e and
8a-d) with the following differences. First, we regressed out the counts
based on the number of genes, the total number of counts, and the
fraction of mitochondrial genes per cell before integration of the full
dataset and the T effector subsets. Secondly, we performed the rein-
tegration of both T effector subsets with harmony instead of totalVI.

Cell type deconvolution of spatial transcriptomics

In combination with the ANCA-GN renal T cell single cell atlas descri-
bed in this study, the single cell atlas from Stewart et al. *°. was inte-
grated to estimate cell type proportions, resulting in total 24 cell types:
LOH, B cell, CD, CD4" T naive, CD4" Tcm, CD8" T naive, CNT, DC, Endo,
Fib, Macrophage, Mast cell, Monocyte, Myofib, Neutrophil, NKT, Podo,
PT, Tfh, Treg, Thl and Th17, Tcl and Tcl7. Cell-type deconvolution was
performed using a reference-based algorithm, DISSECT®®, with default
training parameters. To generate simulated data from training using
the PropsSimulator module of DISSECT, the following changes were
made: n_samples = 8000 and downsample=0.1.

Drug prediction

Drugs from ATC/DDD classification L (Antineoplastic and immunomo-
dulating drugs), excluding immunostimulants from ATC/DDD classifi-
cation LO3, were used as potential candidate drugs. The targets of these
drugs were extracted from ChEMBL” and putative drug interactions
from the drug-target interaction database DGIdb®, resulting in a total of
277 drugs. To assess the targets of the drugs, we used drug2cell (v0.1.0)*
with inflamed glomerular and interstitium renal compartments as clus-
ters of interest. Default parameters were used in drug2cell in addition to
a cutoff of 0.25 for log,-fold change in the drug-target expression. This
resulted in 14 drugs (Supplementary Data 7) whose targets were differ-
entially enriched in the two compartments. To prioritize drugs, we
looked for drugs that affect primarily the inflamed compartments and
are less enriched in others. Only drugs that were enriched at least 75% in
the compartments of interest and less than 75% in all other compart-
ments were selected. This criterion resulted in 7 potential drugs target-
ing the inflamed compartments: belantamab mafodotin, brentuximab
vedotin, vinflunine, ustekinumab, enfortumab vedotin, tocilizumab, and
polatuzumab vedotin. To select the final target out of these drugs and to
integrate T cell specificities of the drugs, we computed scores of their
targets in the CD4" Teff and CD8" Teff clusters using scanpy.tl.scor-
e genes function and ordered them in decreasing order.

Isolation and flow cytometry of human biopsy leukocytes

Single-cell suspensions were obtained from human kidney biopsies by
enzymatic digestion in RPMI 1640 medium with collagenase D at
0.4 mg/ml (Roche, 11088858001) and deoxyribonuclease I (DNase I;
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10 pg/ml; Sigma-Aldrich, 10104159001) at 37 °C for 30 min followed by
dissociation with gentle MACS (Miltenyi Biotec). Leukocytes from
blood samples were separated using Leucosep tubes (Greiner Bio-One,
10349081). Cells were stained with fluorochrome-conjugated anti-
bodies from BioLegend and BD Biosciences, CD45 BV510 (BioLegend,
clone HI30, catalog number 304036, dilution 1:100), CD3 BV785
(BioLegend, clone OKT3, catalog number 317330, dilution 1:200), CD4
BV650 (BioLegend, clone RPA-T4, catalog number 300536, dilution
1:200), CD8 APC-R700 (BD Bioscoences, clone RPA-T8, catalog num-
ber 565165, dilution 1:100), CXCR3 Pe/Dazzle (BioLegend, clone
GO25H7, catalog number 353736, dilution 1:100), CCR6 PerCP-Cy5-5
(BioLegend, clone GO34E3, catalog number 353406, dilution 1:100).
Cells were also stained with a dead cell stain (Molecular Probes, L10119)
to exclude dead cells from analysis. Electronic compensation was
performed with antibody (Ab) capture beads stained separately with
individual monoclonal antibodies (MABs) used in the experimental
panel. FACS was performed on a FACSAria Fusion cell sorter (BD
Biosciences). Data analysis was performed using FlowJo software
(Treestar) or FACSDiva software (BD Biosciences).

FACS and scRNA-seq processing of human leukocytes
Single-cell suspension of human leukocytes was prepared as described
in the section Isolation and Flow cytometry of human biopsy leuko-
cytes. SCRNA-seq of human samples from the kidney and peripheral
blood was performed from FACS-sorted CD3 positive T cells using the
Chromium Next GEM Single Cell 5’ Kit v2 (10x Genomics) according to
manufacturer’s instructions. The gating strategy, shown in Supple-
mentary Fig. 4, is identical for the flow cytometry analysis as well as the
FACS sorting. It is based on leukocytes, singlets, the living cells, CD45,
and for sorting the CD3 population was collected. Libraries were
sequenced aiming at 50,000 reads per cell on an Illumina NovaSeq
(P150), using the CG0O0330 protocol from 10X Genomics.

Immunofluorescence staining

For immunofluorescence staining, paraffin-embedded kidney sections
(2 pm) from ANCA-GN patients were stained with primary antibodies
against CD3 (Abcam, abl1089, dilution 1:100), CCR6 (Sigma,
HPAO014488/Origene TA316610, dilution 1:100), and CXCR3 (BD Bios-
ciences, 557183, dilution 1:100) after dewaxing and antigen retrieval
(pH6 for 15min). Following washing in phosphate-buffered saline,
fluorochrome-labeled secondary antibodies were applied. Staining
was visualized using an LSM800 with Airyscan and the ZenBlue soft-
ware (all Carl Zeiss, Jena, Germany).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All gene expression data used in this manuscript are publicly available
via the NCBI Gene Expression Omnibus (https://www.ncbi.nlm.nih.
gov/geo/). The newly generated data for this study is accessible under
GSE253633 and GSE250138. The accession codes for all other gene
expression data used are listed in the Supplementary Data 10. Source
data are provided with this paper.

Code availability

The code to process and analyze the single cell sequencing and ST data
is available at https://github.com/imsb-uke/ANCA-GN_transcriptomics.
The source code is also deposited at Zenodo (https://doi.org/10.5281/
zenodo.13208437).
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Supplementary Figure 1: Overview of spatial transcriptomics data from the exploratory group.

a Post-quality control (QC) distributions of number of genes, total UMI counts per spot, and number of spots per Visium ST slide (left) and renal compartment
(right). b Barplots showing composition of each ST slide. ¢ Dot plot showing the expression of marker genes across the renal compartments. d Barplots showing
the distribution of gene-expression-based annotations compared to expert-based image annotations of normal and inflamed glomerular compartments (x-axis).
e Joint UMAP-embedding of control and ANCA-GN exploratory group showing condition and renal compartments after the integration of ST slides containing
control samples (8 slides and 21,420 spots).
LOH, loop of Henle. CNT, connecting tubules. PC, principal cells. IC, intercalated cells. PT, proximal tubules. DCT, distal convoluted tubules. TAL, thick ascen-
ding loop of Henle. vSMC, vascular smooth muscle cells.
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Supplementary Figure 2: Exploratory cohort single cell T cell atlas.

a Quality control metrics and tissue composition across patients and cell type clusters. Violin plots show distributions of the number of genes, total counts,
percentage of mitochondrial counts, and percentage of ribosomal counts. Barplots visualize the relative tissue composition and the total number of cells on a
log scale. b Marker gene expression for the broad T cell annotations.
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Supplementary Figure 3: Characterization of T effector cells in the exploratory cohort.

a Type 1-3 cytokine scores (type 1: IFNG, TNF, IL2, IL18, LTA, CSF2; type 2: IL4, IL5, IL9, IL13; type 3: IL17A, IL17F, IL22, IL26) for the identified T
cell clusters. b Marker gene expression for the CD4* Teff subsets. ¢ Marker gene expression for the CD8* Teff subsets. d Comparison of CD4* and
CD8* T effector cell subsets and their relative proportions between MPO-ANCA and PR3-ANCA positive GN. e Distribution of T effector subsets within
each renal compartment. Boxplots show the median (middle horizontal line), interquartile range (box), Tukey-style whiskers (lines beyond the box),
outliers (data points beyond 1.5*interquartile or below -1.5*interquartile) for proportion of Teff subsets in 10,763 spots from all ANCA ST slides.

PT, proximal tubules. DCT, distal convoluted tubules. CNT, connecting tubules. PC, principal cells. IC, intercalated cells. LOH, loop of Henle.
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Supplementary Figure 4: Gating strategy rapid biopsy immune profiling.
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and Supplemental Figure 6. Bottom right panel coressponding to Figure 4a
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Supplementary Figure 5: Detailed case vignettes for each patient of the ustekinumab treatment cohort
Case vignettes illustrating a brief case description, history, diagnostic workup, as well as treatment cor

and

for each patient of the ustekinumab treatment cohort. a Patient 1. b Patient 2. ¢

Patient 3. d Patient 4. BVAS, Birmingham Vasculitis Activity Score. AAV, ANCA-associated vasculitis. PLEX, therapeutic plasma exchange. CYC, cyclophosphamide. ARRS, ANCA renal risk score (21). RTX, rituximab.
UACR, urinary albumin to creatinine ratio. OSA, obstructive sleep apnoea. ENT, ear nose throat. DAH, diffuse alveolar hemorrhage. MMF, mycophenolate mofetil. ACEi, angiotensin-converting enzyme inhibitor.
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Chemokine receptor expression on renal CD45*CD3* T cells
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Supplementary Figure 6: Rapid Immunoprofiling of T cells in the kidneys of the treatment cohort.

a Flow cytometry-based identification of chemokine receptor expression from T cells isolated from biopsy samples of patients with ANCA-GN
(n=4). b Quantification of chemokine receptor expression CXCR3 (Th1/Tc1) and CCR6 (Th17/Tc17) from renal CD45*CD3'T cells. Bar graphs
show mean with SD, symbols represent individual data points.
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Description of Additional Supplementary Files

Supplementary Data 1: Alignment metrics of ST data from the ANCA-GN exploratory group.

Supplementary Data 2: Summary of differential population analysis in the ST data between the control
samples and the ANCA-GN exploratory group. The analysis was performed using the standard scCODA
model with CNT/PC cluster as the reference cell type.

Supplementary Data 3: Differential gene expression of the renal compartments in the ST data from
the ANCA-GN exploratory group. Differential gene expression was performed using two-sided
Wilcoxon rank-sum tests with Benjamini-Hochberg multiple test correction.

Supplementary Data 4: Gene set enrichment analysis of the inflamed interstitial compartment in the
ANCA-GN exploratory group. Enrichment was performed using clusterProfiler enrichGO function that
used right-tailed Fisher’s Exact test with Benjamini-Hochberg multiple test correction. Statistical
significance was tested using the enrichGO function from R package clusterProfiler with right-tailed
Fisher’s exact test and Benjamini-Hochberg multiple test correction.

Supplementary Data 5: Gene set enrichment analysis of the inflamed glomerular compartment in the
ANCA-GN exploratory group. Statistical significance was tested using the enrichGO function from R
package clusterProfiler with right-tailed Fisher’s exact test and Benjamini-Hochberg multiple test
correction.

Supplementary Data 6: Post QC quality metrics for the single cell sequencing data of the exploratory
cohort.

Supplementary Data 7: Final drug candidates and their scores in ANCA-GN exploratory group and Teff
cells from the ANCA-GN T cell atlas. Statistical significance was tested using the enrichGO function from
R package clusterProfiler with right-tailed Fisher’s exact test and Benjamini-Hochberg multiple test
correction.

Supplementary Data 8: Post QC quality metrics for the single cell sequencing data of the ustekinumab
treatment cohort.

Supplementary Data 9: Alignment metrics of the ST data from the internal control group.

Supplementary Data 10: Data overview including publication status for the CITE-/scRNA-seq datasets
per patient and tissue.

Detailed information about performed analysis of each patient, as well as information about the
immunosuppressive treatment up to 7 days prior to kidney biopsy. Furthermore, all accession codes
to the gene expression data listed.

(B, blood: k, kidney; MPO, myeloperoxidase; PR3, proteinase 3; RTX, rituximab; CYC,
cyclophosphamide; AZA, azathioprine)
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Neural-tumor interactions drive glioma growth as evidenced in preclinical
models, but clinical validation is limited. We present an epigenetically
defined neural signature of glioblastoma thatindependently predicts
patients’ survival. We use reference signatures of neural cells to deconvolve

tumor DNA and classify samples into low- or high-neural tumors. High-neural
glioblastomas exhibit hypomethylated CpG sites and upregulation of

genes associated with synaptic integration. Single-cell transcriptomic
analysis reveals a high abundance of malignant stemcell-like cellsin
high-neural glioblastoma, primarily of the neural lineage. These cells

are further classified as neural-progenitor-cell-like, astrocyte-like and
oligodendrocyte-progenitor-like, alongside oligodendrocytes and
excitatory neurons. In line with these findings, high-neural glioblastoma

cells engender neuron-to-glioma synapse formationin vitro and in vivo and
show an unfavorable survival after xenografting. In patients, a high-neural
signature is associated with decreased overall and progression-free survival.
High-neural tumors also exhibit increased functional connectivity in
magnetencephalography and resting-state magnet resonance imaging and
canbe detected via DNA analytes and brain-derived neurotrophic factor in

patients’ plasma. The prognosticimportance of the neural signature was
further validated in patients diagnosed with diffuse midline glioma. Our
study presents an epigenetically defined malignant neural signature in
high-grade gliomas thatis prognostically relevant. High-neural gliomas likely
require amaximized surgical resection approach forimproved outcomes.

Theimportance of the nervous system as aregulator of brain tumors
hasbeenrepeatedly highlighted but has not yet been translated into
atherapeutically relevant setting' ™. Particularly in gliomas, studies
have demonstrated that the activity-driven formation of malignant
neuron-to-glioma networksis critical for cancer progression***, and
that glioma cells remodel neuronal circuits by increasing neuronal
hyperexcitability*’"'2 Further insight into molecular mechanisms
identified connected and unconnected glioblastoma cells that form
distinct cell states and differ in their gene signatures as well as func-
tions within neuron-to-glioma networks®. Additionally, glioblastomas
exhibiting high functional connectivity have been shown to be asso-
ciated with poorer survival?. Moreover, callosal projection neurons

were shown to promote glioma progression and widespread infiltra-
tion underpinning the importance of the central nervous system as
acritical regulator.

High-grade glioma consists of both malignant and nonmalig-
nant cells'. Therefore, their cell-type composition can be deter-
mined through epigenetic bulk DNA analysis, which allows for the
identification of molecular differences. Here, we aimed to use brain
tumor-related epigenetic signatures to understand isocitrate dehy-
drogenase (IDH)-wild-type high-grade gliomas, suggesting that cer-
tain epigenetic subclasses may be more likely to be integrated into
neuron-to-glioma networks with clinical relevance. We analyzed the
epigenetic neural signature of central nervous system (CNS) tumors,
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categorizing glioblastoma and H3K27-altered diffuse midline glioma
(DMG) into low- and high-neural subgroups, which were characterized
molecularly, functionally and clinically.

Results

Epigenetic neural signature predicts patients outcome
Toaddress our hypotheses, we applied the epigenetic neural signature
of Moss etal.” to estimate cellular composition (Fig. 1a) of acombined
dataset of epigenetically profiled CNS tumors of Capper et al." and our
institutional cohorts (Fig. 1b) as well as healthy tissue (Extended Data
Fig.1a). Using this combined dataset, glioblastoma samples (n =1,058)
were dichotomized for defining a cutoff separating low- and high-neural
tumors (cutoff based on median neural proportion 0.41; Fig. 1c,d).
We demonstrate that more than two clusters did not show significant
separability of survival among the resulting clusters (Extended Data
Fig.1b,c). Thereproducibility of the cutoff (0.41) was validated across
multiple cohorts (Extended Data Fig. 1d-f). The cutoff was applied to
363 patients with glioblastoma from our clinical cohort who received
surgical treatment followed by standard-of-care combined chemora-
diotherapy. Survival analysis revealed a significantly shorter overall
survival (P<0.0001, median overall survival 14.2 versus 21.2 months;
Fig. 1e) and progression-free survival (PFS) (P=0.02, median PFS 6.2
versus 10.0 months; Fig. 1f) for patients with a high-neural glioblas-
toma (Extended Data Table1). This finding was replicated inan external
cohort with 187 patients from The Cancer Genome Atlas (TCGA)-GBM
database' (P < 0.01, median overall survival 12.0 versus 17.1 months;
Fig.1g). The neural classification was identified as an independent
prognostic factor for overall survival (odds ratio (OR) 1.96; 95% con-
fidence interval (Cl) 1.45-2.64, P< 0.01; Fig. 1h) and PFS (OR 1.51; 95%
CI1.13-2.02, P< 0.01; Fig. 1i). Other infiltrating brain tumor cell types
of the lymphoid or myeloid lineage did not show an association with
patient survival (Extended Data Fig. 1g-j).

High-neural glioblastomas exhibit a synaptic character

To discern epigenetic differences in low- and high-neural glioblasto-
mas, we applied the ‘invasivity signature™ (172 genes linked to neural
features, migration and invasion) to the DNA methylation data of our
clinical cohort (Supplementary Table). High-neural tumors were hypo-
methylated at CpG sites within gene loci of the invasivity signature
compared to low-neural tumors (Extended Data Fig. 2a). In addition,
two gene sets thatare either associated with neuron-to-glioma synapse
formation® (‘neuronal signature genes’; Supplementary Table) or
trans-synaptic signaling” (‘trans-synaptic signaling genes’; Supple-
mentary Table) were hypomethylated in high-neural glioblastomas
(Extended Data Fig. 2a), whereas synapse-related genes were upregu-
lated in high-neural glioblastoma (Extended Data Fig. 2b).

Next, we used an integrative analysis of paired epigenetic and
transcriptomic datasets of glioblastoma samples (n = 86). First, we
computed ascale-free gene expression network (weighted correlation
network analysis; WGCNA?) resulting in gene expression modules,
whichwere further correlated to the neural signature through module
significance measurement by quantifying the absolute correlation

between the epigenetic signature and the individual module-derived
gene expression profiles (Fig. 2a,b). We identified three expres-
sion modules significantly correlated with the epigenetic status of
high-neural glioblastomas: module green (R*= 0.55,P=3.5 x10"°), mod-
ulecyan (R*=0.67,P< 2.2 x107%) and module midnightblue (R*=0.41,
P=9.3x107) (Fig. 2c,d). Gene Ontology analysis revealed that these
modules were associated with synaptic functions (GRIN3A, SYT4 and
SNAP25), regulating the expression of genes involved in neuronal dif-
ferentiation (VEUROD?2) and calcium-dependent celladhesion (CDH22,
CNTNAPS and CNTN3) (Fig. 2e,f).

We projected module eigengene signatures onto an integrated
single-cell dataset of malignant (GBMap*’) and healthy brain cells
from the motor cortex (Allen Brain Institute). This analysis revealed
a significant enrichment of the corresponding expression mod-
ules clustering to cells of the neural lineage such as healthy neu-
rons along with malignant neural-progenitor-like cells (NPCs) and
oligodendrocyte-progenitor-like cells (OPCs) (module greenand cyan,
P<0.01),as wellasnonmalignant oligodendrocytes (module midnight
blue, P<0.01) (Fig. 2g-i and Extended Data Fig. 3a). This correlation
with the signature, dominated by typical neuronal marker genes, was
anticipated. To assess whether the neural signature in our samples
reflects malignant cell properties or merely the presence of neurons, we
analyzed therelationship between DNA purity and the neural signature,
finding a notable positive correlation (P< 0.001, R? = 0.19; Extended
Data Fig. 3b), whereas microglia (P < 0.001, R*=0.35; Extended Data
Fig. 3c) and immune cell signatures (P < 0.001, R? = 0.67; Extended
Data Fig. 3d) showed a negative correlation. Our study, using only
glioblastoma samples with areliable diagnostic output from the DKFZ
methylation classifier (Methods) showed that the calibrated score for
‘IDH-wild-type glioblastoma’ was unaffected by the epigenetic neural
signature, nor vice versa (P=0.39, R = 0.003; Extended Data Fig. 3e).
Additionally, a non-reference-based multi-dimensional single-cell
deconvolution algorithm® was used to differentiate the neural sig-
nature in tumor cells from neuronal contamination. The analysis,
which included glioblastoma tissue, matching tumor monocultures
(n=17), healthy cortex (n=9) and sorted NeuN" cells (n = 5), confirmed
a higher stem-cell-like signature in glioblastoma tissue and cell cul-
tures (Extended Data Fig. 3f) and the distinct neuronal signature in
NeuN' cells and healthy cortex (Extended Data Fig. 3g). Integrating
RNA sequencing (RNA-seq) data, we observed 64 out of 67 samples
(95.52%; Extended Data Fig. 3h) clustered into the established Ver-
haak transcriptomic glioblastoma subtypes (classical, mesenchy-
mal and proneural)”. Ultimately, we analyzed the neural signature in
cell cultures from 17 freshly resected patients with glioblastoma and
observed a well-preserved neural signature (Extended Data Fig. 3i),
which remained stable even in long-term cultures (Extended Data
Fig. 3j) without the presence of NeuN" cells (Extended Data Fig. 3k).

The synaptic character of high-neural glioblastoma was further
validated in the tumor proteome (Extended Data Fig. 4a-f), showing
anincrease in proteins related to synaptic transmission (Extended Data
Fig. 4a-d) and characteristics of malignant OPC-like, astrocyte-like
and NPC-like cells (Extended Data Fig. 4e,f). Histopathological

Fig.1| Epigenetic neural classification predicts outcome of patients with
glioblastoma. a, Schematic of the study workflow. In humans (n = 5,047)
diagnosed with a CNS tumor we performed deconvolution using DNA
methylation arrays (850k or 450k) for determining the neural signature. IDH-
wild-type glioblastomas were stratified into subgroups with a low- or high-neural
signature for further analyses. b, Epigenetic neural signature in all CNS tumor
entities (n=5,047). ¢, Dichotomization of the combined dataset from Capper et
al."®and three institutional cohorts (Hamburg, Berlin and Frankfurt, all Germany)
into low- and high-neural glioblastomas. The black line indicates a median neural
score of allincluded patients with glioblastoma (n=1,058) and represents the
cutoff (0.41) for stratification into low- and high-neural glioblastoma.

d, External validation of the cutoff value using the TCGA-GBM dataset (n =187).

Theblack line indicates the median neural score. e-i, Survival analysis of patients
with low- and high-neural glioblastoma treated by radiochemotherapy after
surgery. e, Overall survival (OS) of 363 patients with glioblastoma of the internal
clinical cohort. log-rank test, P= 0.000005. Error bands represent 95% CI. f, PFS
of 226 patients with glioblastoma of the internal clinical cohort. log-rank test,
P=0.0233. Error bands represent 95% Cl. g, Overall survival of 187 patients with
glioblastoma of the TCGA-GBM cohort. log-rank test, P= 0.0017. Error bands
represent 95% Cl. h,i, Forest plots illustrating multivariate analysis of patients
with glioblastoma from the internal clinical cohort. Means are shown by closed
circles and whiskers represent 95% CI. GTR, gross total resection; PR, partial
resection; MGMT, O°-methylguanine-DNA-methyltransferase.
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staining demonstrated a higher fraction of OLIG2-positive tumor cells
inhigh-neural glioblastoma samples but comparable sparse infiltration

of NeuN’ cells within the tumor samples (Extended Data Fig. 4g,h).

Next, we leveraged spatially resolved transcriptomic data with
paired methylation profiling (n = 24) to examine the molecular archi-

tecture and cell-type distributionin low- and high-neural glioblastoma
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Fig.2|Integrated epigenetic and transcriptomic analysis reveals synaptic
functions and amalignant NPC/OPC-like character in high-neural
glioblastoma. a, lllustration of the workflow to integrate epigenetic and
transcriptional data. Gene co-regulation networks are correlated to the
epigenetic deconvolution signature. b, Hierarchical dendrogram of the gene
expression modules derived from the weighted correlation network analysis.
Dot-plot of the neural signature with gene expression models using Pearson
correlation (bottom). Size and color indicate the correlation coefficient,
nonsignificant correlation is marked. ¢, Bar-plot of the differential gene
expression of module eigengenes (log,-transformed fold change) in low- and
high-neural glioblastoma (cutoff 0.41). d, Dimensional reduction (UMAP) of

the gene expression modules (named by colors). e, A detailed visualization of

the modules: green, cyan and midnight blue (significantly associated with high-
neural tumors). f, Gene Ontology analysis of gene expression modules in low- and
high-neural tumors. g, UMAP dimensional reduction of the GBMap reference
dataset. Colors indicate the different cell types. h, Module eigengene expression
of low- and high-neural glioblastoma in the GBMap reference dataset. i, Gene
expression enrichment of low- and high-neural-associated module eigengenes
across glioblastoma cell states. AC, astrocytes; DC, dendritic cells; GBM,
glioblastoma; NK, natural killer; OGD, oligodendrocytes; TAM, tumor-associated
macrophages.

samples (Fig. 3). We hypothesized that these tumors have distinct
architectures, reflected by aunique spatial arrangement of transcripts
that predict their epigenetic neural subgroup.

Tothisend, we trained a graph-neural network (GNN) using 1,000
randomly chosen microenvironments within the samples. Each micro-
environmentwas centered on a55-pmspot and extended up to 450 pm.
These subgraphs were representative of the broader sample and were
instrumental for the GNN training, achieving an R? of 0.99 and an F1
score of 0.98, indicating that the neural score can be reliably predicted
from the transcriptional landscape (Fig. 3a,b).

We applied our neural score threshold of 0.41 to categorize micro-
environments as ‘neural high’ or ‘neural low’. Of note, 41.2% of the
samples exhibited a blend of both categories, including those at the
threshold and those with the most elevated neural scores (Fig. 3¢). For
instance, a sample with a neural score of 0.58 showed two prominent
peaks at 0.38 and 0.58, suggesting a diverse microenvironmental
composition (Fig. 3d); however, a pure or predominant neural type
was present in all but one of the 24 samples (95.8%). Further analysis
revealed that high-neural score microenvironments typically encom-
pass NPC-like and astrocyte-like tumor cells (Fig. 3e), alongside a sig-
nificant presence of oligodendrocytes and OPC-like cells, painting a
picture of the tumor microenvironment’s unique architecture associ-
ated with the high-neural phenotype.

In conclusion, single-cell and spatially resolved transcriptomic
analyses decipher that the neural signature inglioblastomas predomi-
nantly originates from cells of the neural lineage exhibiting an OPC/
NPC/astrocyte-like phenotype and is characterized by adistinct tumor
microenvironment.

High-neural glioblastomas resemble a malignant stem
cell-like state

Using anonreference-based multi-dimensional single-cell deconvolu-
tion algorithm, we observed a higher stem/progenitor cell-like state
but lower immune component in high-neural glioblastoma (28.05%)
compared toall newly diagnosed glioblastoma (17.31%) and low-neural
glioblastoma (14.14%) (Extended Data Fig. 4i). Both components were
significantly correlated with the neural signature (Extended Data
Fig. 4j,k).

No significant copy-number variations were observed between
low- and high-neural subgroups (conumee R package v.1.28.0)***
(Extended Data Fig. 5a). Next-generation sequencing (NGS) of 201
genes showed a higher frequency of PIK3CA (0 out of 65 (0.0%) versus
9 out of 60 (15.0%)) and TP53 (6 out of 65 (9.23%) versus 19 out of 60
(31.67%)) mutations in high-neural tumors (Extended Data Fig. 5b,c).

These findings were confirmed by an analysis of paired epigenetic and
sequencing data of the TCGA dataset (Extended Data Fig. 5d,e).

High-neural glioblastomas integrate into neuron-to-glioma
networks

The transcriptional and proteomic analysis revealed an increased
synaptogenic character in high-neural glioblastomas. This led us
to explore their integration into neuron-to-glioma networks. After
xenografting, an increased colocalization of neuron-to-glioma syn-
apse puncta (P < 0.01; Fig. 4a-c) was observed in high-neural glio-
blastoma which was proven using electron microscopy (P=0.008;
Fig.4d). Anincrease of colocalization of synapse punctain high-neural
glioblastoma cells after co-culturing with cortical neurons was found
(P<0.001;Fig. 4e).

For clinical translation, we assessed functional tumor connectivity
using magnetoencephalography (n =38; Fig. 4f,g) and resting-state
functional magnetic resonance imaging (n = 44; Fig. 4h-k) in patients
with glioblastoma. Both modalities showed a significantly higher
peritumoral connectivity within the high-neural subgroup (P<0.01;
Fig. 4f-i). This aligns with recent studies on cellular states in regions
of HFC-glioblastoma'?. Comparing the connectivity phenotype® to
our neural classification showed high concordance (Fig. 4g); however,
no increased connectivity was seen between the tumor region and
the contralateral hemisphere (Fig. 4j). Volumetric analysis showed
significantly smaller volumes of contrast enhancement (P=0.03;
Extended DataFig. 6a) in high-neural glioblastoma, but no association
with fluid-attenuated inversion recovery (FLAIR) (P= 0.18; Extended
Data Fig. 6b) and necrotic volume (P= 0.78; Extended Data Fig. 6c).
These findings indicate that high-neural glioblastomas engender
neuron-to-glioma synaptogenesis and have a distinct role within
neuron-to-glioma networks exhibiting functional connectivity.

Epigenetic neural signature is transferable to in vivo and
invitro models

Most studies elucidating the biology of cancer neuroscience in
high-grade glioma were performed in preclinical models. Therefore,
we examined the translatability of our epigenetic neural signature in
cell cultures and patient-derived xenograft (PDX) models. We observed
awell-preserved neural signature in 82.3% of our cell cultures compared
tothe original tumor samples (Fig. 5a), confirming that our preclinical
models sufficiently reflect the characteristics of the original tumor.
Comparison of low- and high-neural glioblastoma in PDX models of
aninternal cohort (n =30 mice of seven patient-derived glioblastoma
cell cultures; Fig. 5b) and two publicly available cohorts**?*’ (n=96

Fig. 3| Spatially resolved architecture of low- and high-neural glioblastoma.
a, Illustration of the workflow. Spatial transcriptomic data were used to identify
neighborhoods defined as subgraphs. A GNN was trained to predict the neural
score based on the spatial arrangements of transcripts. b, Scatter-plot of the
mean sample predictions and the ground truth values. ¢, lllustration of the
variance of neural score (predictions) compared to the threshold of 0.41. Bar plot
indicates the Heidelberg classifier values of the glioblastoma subclasses (n = 24)
(right). The dashed black line indicates the neural score threshold of 0.41.

d, Example of a high-neural glioblastoma sample with a large blend of low-

and high-neural predicted scores. The hematoxylin and eosin (H&E) image
demonstrate the histology of the sample. Spatial neighborhoods derived from
subgraphs with high- and low-neural scores are demonstrated (bottom). The
single-cell maps are generated through single-cell deconvolution (Cell2Location)
and CytoSpace spatial deconvolution. wt, wild type. e, Overview of the cell-type
abundance correlated with the neural score.
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patient-derived glioblastoma cell cultures; Fig. 5c) showed a signifi-
cantly shorter survival of mice bearing high-neural tumors (inter-
nal cohort, P=0.0009; external cohort, P=0.001). Additionally, an
increased proliferation index was seen in high-neural glioblastoma

in vivo using immunodeficient mice (P < 0.01; Fig. 5d-f) as well as in
co-cultures with cortical neurons (P < 0.001; Fig. 5g,h). Inaccordance
with currentliterature describing neuronal activity-driven widespread
infiltration of glioblastoma cells", we observed a significantly wider
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Fig. 4 |High-neural glioblastomas are integrated into neuron-to-glioma
networks. a, Experimental workflow. b, Quantification of the colocalization

of presynaptic and postsynaptic markers in low-neural (n =22 regions, five
mice) and high-neural (n = 21regions, five mice) glioblastoma xenografts.
P=0.0008, two-tailed Student’s t-test. Data are mean + s.e.m. ¢, Confocal image
ofinfiltrated whiter matter of high-neural glioblastoma xenograft. White box
and arrowheads highlight magnified view of synaptic puncta colocalization.
Blue, synapsin-1(presynaptic puncta); white, neurofilament heavy and medium
(axon); red, nestin (glioma cell processes); green, PSD95 (postsynaptic puncta).
Scale bars, 500 pm (top) and 250 pm (bottom). d, Electron microscopy of

red fluorescent protein (RFP)-labeled glioblastoma cells. Quantification of
neuron-to-glioma synaptic structures as a percentage of all visualized glioma
cell processes (left) and image of neuron-to-glioma process in a high-neural
glioblastoma xenograft (right). Asterix denotes immunogold particle labeling
of RFP. Postsynaptic density in RFP* tumor cell (green), synaptic cleft and vesicles
inpresynaptic neuron (red) identify synapses. **P < 0.01, two-tailed Student’s
t-test. Scale bar, 200 nm. Data are mean +s.e.m. n = 3 biological replicates.

e, Colocalization of PSD95 and synapsin-1in low- and high-neural glioblastoma
cellsin co-cultures with neurons. P= 0.0007, not significant (NS), P> 0.05,

two-tailed Student’s t-test, n = 3 biological replicates. Data are mean + s.e.m.

f, Neural signature categorized into low functional connectivity (LFC) and

high functional connectivity (HFC) as defined by magnetoencephalography.
P=0.0327, two-tailed Student’s t-test. g, Overlap between samples classified to
the functional connectivity by Krishna et al.”” and the epigenetic-based neural
classification of our study. h, Correlation of neural signature with degree of
peritumoral connectivity as defined by resting-state functional magnetic
resonance imaging (rs-fMRI). Simple linear regression P=0.05, error bands
representing the 95% CI. i, Peritumoral functional connectivity (defined by rs-
fMRI) in low- and high-neural glioblastoma. P= 0.0416, two-sided Mann-Whitney
U-test. j, Functional connectivity to the contralateral hemisphere (defined by
rs-fMRI) in low- and high-neural glioblastoma groups. NS, P> 0.05, two-sided
Mann-Whitney U-test. k, Examples showing the region of interest (ROI)-to-
voxel functional connectivity of the contrast-enhancing area to its peritumoral
surrounding. Peritumoral connectivity of a high-neural glioblastoma (0.457) and
mean functional connectivity to its peritumoral area of 0.837 (left). By contrast,
alow-neural glioblastoma (0.347) is shown with mean functional connectivity to
its peritumoral area of 0.294 (right).

migration of high-neural glioblastoma cells in vitro (P < 0.05; Fig. 5i,j)
andinvivo (P<0.001; Fig. 5k). These findings demonstrate the robust-
ness of the epigenetic neural signaturein vitroandinvivo andindicate
higher proliferation when receiving neuronal input.

Epigenetic neural classification remains spatiotemporally
stable

As heterogeneity is a hallmark of glioblastoma, we investigated the spa-
tiotemporal heterogeneity of the epigenetic neural signature. First, we
analyzed 143 spatially collected biopsies from 34 patients (3-7 samples
per patient). Among them, 23 patients (67.6%) demonstrated a pure
low- or high-neural signature, while ten patients (29.4%) exhibited a
predominant signature (Extended Data Fig. 6d). Temporal stability
was assessed in 39 patients with matched tissue from both initial and
recurrence surgery (Extended DataFig. 6e). Here, 31 out of 39 patients
(79.5%) remained in the same neural subgroup at recurrence (Extended
DataFig. 6f). Overall, the neural subgroup seemed to be spatiotempo-
rally stable in contrast to transcriptional states that change in alarger
proportion of patients®*",

Drug sensitivity analysis of neural glioblastoma cells

Patients with glioblastoma routinely undergo combined radiochemo-
therapy after surgical resection®. We evaluated 27 different agents
for their efficacy in the treatment of low- and high-neural glioblas-
toma cells (Extended Data Fig. 7a). We observed a trend for increased
cleaved caspase 3 (Extended Data Fig. 7b) and reduced tumor cell
size (Extended Data Fig. 7c) after treatment with lomustine (CCNU),
JNJ10198400 and cyclosporine-treated high-neural glioblastomacells,
whereas talazoparib showed a trend for greater sensitivity in low-neural

glioblastoma cells; however, none of these compounds reached sta-
tistical significance (Extended Data Fig. 7d). Therefore, we wondered
about the prognostic impact of surgical resection as we previously
demonstrated survival differences for other methylation-based glio-
blastoma subclasses™.

Neural classification predicts benefit of resection
Glioblastomas are epigenetically assigned to different subclasses®.
Here, RTKIand RTK I (receptor tyrosine kinase land I subtypes) tumors
showed a comparable high-neural signature, whereas mesenchymal
(MES) tumors had the lowest neural signature (Extended DataFig. 7a).
Giventhe different neural signatures between methylation-based sub-
classes, we hypothesized that the neural signature might constitute
afactor for determining benefit from extent of resection (EOR). In
low-neural glioblastoma, a significant survival benefit of gross total
resection (GTR) (100% CE resection) and near GTR (=90% CE resec-
tion) was observed compared to partial resection (<90% CE resection)
(P<0.001; Fig. 6a). By contrast, the survival benefit of anear GTR was
notseeninhigh-neuralglioblastoma (Fig. 6b). These findings held true
inmultivariate analyses (Extended DataFig. 8b,c) and after applying the
currentcriteria of the RANO (Response Assessment in Neuro-Oncology)
resect group® (Extended Data Fig. 8d,e). Amethylated MGMT promoter
showed a survival benefitin both neural subgroups, but a striking dif-
ference in low-neural glioblastoma with a median overall survival dif-
ference of 12.0 months depending onthe MGMT promoter methylation
status (P < 0.0001; Fig. 6¢). Our combined survival data demonstrate
that high-neural glioblastomas have an unfavorable outcome and a
greater resection may be required to achieve a survival benefitin this
distinct subclass.

Fig. 5| Neural classificationis conserved in cell culture and correlates with
survival as well as proliferation. a, Comparison of neural signature between
patient’s tumor tissue and cell culture in 17 glioblastomas. b,c, Survival after
xenografting of patient-derived low- and high-neural glioblastoma cells in
ourinternal cohort (b) and two combined external cohorts (c). log-rank test,
P=0.0009 (b), P=0.001(c). Error bands represent 95% Cl.d, Primary patient-
derived low- and high-neural glioblastoma cell suspensions (n =1 per group)
were implanted into premotor cortex (M2) of adult NSG mice (n = 5 mice per
group). Mice were perfused after 8 weeks of tumor growth and brains sectioned
in the coronal plane for further immunofluorescence analyses. e, Proliferation
index (measured by total number of HNA" cells co-labeled with Ki67 divided

by the total number of HNA™ tumor cells counted across all areas quantified)
inlow-and high-neural glioblastoma-bearing mice (n = 5 mice per group).
P=0.00819, two-tailed Student’s t-test. Data are mean + s.e.m. f, Representative
confocal images of proliferation index in low-neural (top) and high-neural

glioblastoma (bottom) xenografts. Human nuclear antigen (HNA), red; Ki67,
green. Scale bars, 1 pm (overview images) and 200 pm (magnified images).

g, Experimental workflow. h, EdU proliferation index (measured by total number
of DAPI" cells co-labeled with EdU divided by the total number of DAPI* tumor
cells counted across all areas quantified) in low-neural (P = 0.418) and high-neural
(P=0.0000172) glioblastoma as monocultures and co-cultured with neurons.
Two-tailed Student’s t-test, n = 3 biological replicates. Dataare mean + s.e.m.

i.j, 3D migration assay analysis comparing distance of migration 72 h after
seeding (i) and representative images at time O h (left) and 72 h (right) of low-
and high-neural glioblastoma cells (j). P = 0.0115, two-tailed Student’s t-test,
n=3Dbiological replicates. Scale bars,1 pm. Dataare mean + s.e.m.K, Invivo
spread of tumor cells into corpus callosum in low- and high-neural glioblastoma.
P<0.0004, two-tailed Student’s t-test. Dataare mean + s.e.m. EdU, 5-ethynyl-2’-
deoxyuridine; DAPI, 4,6-diamidino-2-phenylindole.
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Serum biomarkers of neural glioblastoma glioblastomato further reach clinical translation. By analyzing serum
Next, we examined the feasibility of preoperatively determining levels of brain-derived neurotrophic factor (BDNF) in 94 patients at
the epigenetic neural subclassification in the blood of patients with  diagnosis, we found higher BDNF levels in high-neural glioblastoma
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compared to low-neural glioblastoma, patients with meningioma
(n=13) and healthy individuals (n =19) (Fig. 6d). The serum BDNF lev-
els positively correlated with the epigenetic neural signature (P< 0.01,
R?=0.28;Fig. 6e). Conversely, glioblastomas with higher BDNF serum
levels had a decreased immune cell signature (Fig. 6f), consistent with
the lower immune cell signature of high-neural tissue samples. We
observed elevated BDNF levelsin patients with glioma-associated sei-
zures at the time of diagnosis (P= 0.02; Fig. 6g) and during follow-up
(P<0.001; Fig. 6h), which aligns with the known activity-regulated
release of BDNF, most likely from healthy neurons (Fig. 6i,j) within
high-neural glioblastoma networks.

Furthermore, we identified the neural signature in circulating
extracellular vesicle-associated DNA (EV-DNA) and cell-free DNA
(cfDNA) in patients’ plasma (Extended Data Fig. 8f-i). Circulating
extracellular vesicles, a surrogate marker for glioblastoma®** and
involved in neuronal synchronization®®, correlated with the neural
signature (Extended Data Fig. 8f). Epigenetic profiling of EV-DNA in
plasmarevealed aneural signature that was absent in cfDNA (Extended
DataFig. 8g). The neural signature detected in EV-DNA exhibited a sig-
nificant increase in glioblastoma compared to samples from healthy
donors and patients with meningioma (Extended Data Fig. 8g). Nota-
bly, high-neural tumors showed a higher incidence of a detectable
neural signaturein circulating EV-DNA (Extended Data Fig. 8h). While
plasma-derived EV-DNA displayed markedly lower levels of neural
signatures, cerebrospinal fluid EV-DNA exhibited lower but more com-
parable levels to tissue scores (Extended Data Fig. 8i).

Our findings suggest that BDNF could assistin stratifying patients
with glioblastoma based on their neural subgroup, potentially facili-
tating targeted therapy in the future and that the neural signature is
detectable in circulating extracellular vesicles.

Epigenetic neural classification informs survival in diffuse
midlineglioma

Besides glioblastoma, previous studies have highlighted the impor-
tance of neuronal activity-driven proliferationin DMG®”. We identified
the epigenetic neural signature in a cohort of H3 K27-altered DMG
consisting of pediatric and adolescent patients from our institutional
cohort(n=21),Chenetal.” (n=24)and Sturmetal.** (n=10). The neural
signature was evenly distributed among tumorsin the thalamus, pons
and medulla (Extended DataFig. 9a). Similar to glioblastomas, areasin
genesrelated to trans-synaptic signaling were mainly hypomethylated
inhigh-neural DMGs (Extended DataFig. 9b). A notable association with
stemand glial cell states (Extended Data Fig. 9c) and increased synaptic
gene expression* (P=0.01; Extended Data Fig. 9d) was observed in
high-neural DMGs. Survival analysis of 72 patients showed an unfavora-
ble outcome for high-neural DMG (P < 0.01; Extended DataFig. 9e-g).
These results confirm the relevance of the neural signature in an addi-
tional type of IDH-wild-type high-grade glioma.

Discussion

In recent years, the bidirectional interaction between glioma cells
and neural cells, with their ability to form synapses and integrate into
neuronal networks, has beenidentified asamajor factor in tumor pro-
gression****° In this study, we identified an epigenetically defined
malignant neural signature as a potential marker for neural-to-glioma

interactions and present the following findings: (1) A malignant neu-
ral signature is increased in glioblastoma and DMG, compared to
nonmalignant brain tumors. (2) High-neural glioblastoma confers an
unfavorable survival in humans and mice, and in addition, the neural
signatureis associated with higher functional connectivity in patients
with glioblastoma. (3) High-neural glioblastoma shows an increased
malignant stem celland neural lineage character but decreasedimmune
infiltration. (4) The neural signature remains robustinvitroandinvivo
and high-neural glioblastoma-bearing mice show higher proliferation
when receiving neuronal input as well as increased neuron-to-glioma
synapse formation. (5) High-neural tumors benefit from amaximized
resection. (6) Elevated BDNF serum levels are present in patients with
high-neural glioblastoma. (7) The prognostic value can also be seen
in H3K27-altered DMG.

Gliomas encompass a variety of cellular components of the tumor
microenvironment and subgroups can be described according to
distinct cellular states”. Epigenome profiling and deconvolution have
been effective in characterizing these glioma subclasses**>. A recent
study highlighted the importance of epigenetic regulation across vari-
ous cancer types and demonstrated a close epigenomic relationship
between glioblastoma cellsand OPCs*. Our determination of an epige-
netic neural signature revealed anincrease in glioblastoma and DMG,
echoing findings of previous studies in preclinical models*”. Nonethe-
less, itis essential to note that the neural signature was derived froma
single cortical neuron reference generated from three IDAT files, and
while we integrated DNA methylation data from healthy brain regions
for comparison, alarger sample size might have provided clearer dif-
ferentiation between low- and high-neural tumors.

High-neural glioblastoma showed gene upregulation and hypo-
methylation associated with invasiveness and neuro-glioma synapse
formation. Glioma growth is known to involve paracrine signaling
and glutamatergic synaptic input* %, and recently a study subdivided
glioblastoma cellsinto unconnected and connected cells with unique
cellstates, explaining braininfiltration through hijacking of neuronal
mechanisms®. Our spatial transcriptomic analysis has unveiled the
malignant stem-cell-like characteristics of high-neural glioblastoma,
primarily clustering with cells of the neural lineage, such as OPC/NPC/
astrocyte-like cells, alongside healthy oligodendrocytes and neu-
rons. These findings align with the previously described unconnected
glioblastoma cells that hijack neuronal mechanisms and drive brain
invasion. While tumors with an OPC/NPC-like cellular state have been
shown to overlap with the classical and proneural TCGA subtypes”,
which have been assumed as having abetter prognosis®, our identified
high-neural glioblastoma demonstrated a poor patient outcome. This
possible discrepancy may be explained by our integrated RNA-seq anal-
ysis, whichrevealed awide heterogeneity of the transcriptomic TCGA
subtypes in our epigenetic low- and high-neural tumors. In addition,
this difference can largely be attributed to the noted transcriptional
heterogeneity and plasticity within tumor populations™**. Our study
posits that the epigenetic signature offers a more stable marker than
purely transcriptional profiles. Unlike the transient nature of tran-
scriptional states, epigenetic signatures encompass not only the cells
in OPC/NPC/astrocyte-like states but also reflect broader dependen-
ciesand interactions within the tumor microenvironment. Therefore,
we argue that our high-neural phenotype should be interpreted as

Fig. 6 | Neural classification predicts benefit of EOR and MGMT promoter
methylationstatus and can be detected inserum of patients with
glioblastoma. a,b, Survival outcome categorized after EOR in patients

with glioblastoma treated by radiochemotherapy with alow-neural (a) and
high-neural (b) tumor. log-rank test, P= 0.0003 (a), P= 0.005 (b). Error

bands represent 95% Cl. ¢, Survival outcome categorized by MGMT promoter
methylation status in patients with glioblastoma treated by radiochemotherapy
with alow- and high-neural tumor. log-rank test, P=2.719 x 10" Error bands
represent 95% Cl. d,e, Inmunoassay quantification of serum BDNF concentration

of 94 patients with glioblastoma and healthy donors as well as patients with
meningioma as control groups at the time of diagnosis. **P < 0.01, ***P < 0.001,
two-tailed Student’s t-test; error bands represent 95% CI. f, Cell composition
analysisin glioblastoma with low and high BDNF serum levels. g,h, Seizure
outcome of patients with glioblastoma considering BDNF serum levels at the
time of surgery (g) and during follow-up (h). *P < 0.05, ***P < 0.001, two-tailed
Student’s t-test. i, Transcriptomic analysis of BDNF expression. j, Western
blotting of BDNF in various healthy brain tissue samples and low- as well as high-
neural glioblastoma. n = 3 biological replicates.
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being driven by epigenetic factors thatincline cells toward OPC/NPC/
astrocyte-like states, rather than solely being a direct consequence of
transcriptional variability.

Of note, the observed diploid oligodendrocyte transcriptomic
module may represent a tumor cell population of primary near-diploid
state as glioblastomas are karyotypically heterogeneous tumors* ™.
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prognostic improvement in high-neural glioblastoma, which may
explaintheresults of our previous study examining the impact of DNA
methylationsubclasses®. Our findings arein line with arecent study by
Krishnaetal.” demonstrating poorer survival in patients with glioblas-
toma exhibiting high functional connectivity. Integrating connectivity
data fromresting-state functional MRIand magnetoencephalography
(MEG) linked an increased functional connectivity to its peritumoral
surrounding with a higher neural signature in our patients. If areliable
stratification of the neural classification by MEG or MRl is predictable
remains to be discussed in further studies. The synaptogenic character
with increased connectivity of high-neural glioblastomas could be
replicated withinvivo and in vitro experiments. Collectively, these data
underscore the tremendousimportance of the synapticintegration of
gliomas into neuronal circuits and targeting these neuron-to-glioma
networks seems to be a promising therapeutic approach™*.

Onefactor drawingattentionis BDNF, aneuronal activity-regulated
neurotrophin, which has been found to promote gliomagrowth®* and
interrupting BDNF-TrkB signaling has been shown to confer survival
benefitin mice’. We found elevated serum BDNF levels in patients with
high-neural glioblastoma and further correlation with increased sei-
zure frequency. Potential sources of elevated BDNF include neuronsin
aglioma-induced state of hyperexcitability*, given the known activity
regulation of BDNF secretion®***or possibly from glioblastoma cells™.
Inbrief, neuronal activity arising from glioma-to-neuroninteractions
during tumor growth or seizure initiation seems to be a pivotal driver
for BDNF release and identifies a potential biomarker of high-neural
glioblastoma.

While the BDNF-TrkB axis may represent a therapeutic target for
high-neural glioblastoma, we further identified low-neural tumors as
immune-enriched based ontranscriptomic and cell state composition
analysis. Consequently, one could hypothesize that two opposing
glioblastoma subtypes seem to be differentiated here and will need
tobe pursued in future studies and therapeutic avenues. The identifi-
cation of animmunosuppressive state in high-neural glioblastoma is
concordant withrecent findings which described immunosuppressive
mechanisms in thrombospondin-1-upregulated glioma samples®*.
Thisstratification of IDH-wild-type gliomas based on their epigenetic
neural signature may provide a potential tool for predicting response
to neuroscience-guided therapies.

Conclusion

Overall, the definition of a high-neural signature in IDH-wild-type
gliomarevealed amalignant NPC/OPC/astrocyte-like character that
affects patient survival, remains stable during therapy and is con-
served in preclinical models. This knowledge supports clinicians in
stratifying patients with glioma according to their prognosis and
determining the surgical and neuro-oncological benefit for current
standard of care. Last, the here-presented clinical translation in the
field of glioma neuroscience using an epigenetic neural signature
may advance the development of trials with neuroscience-guided
therapies.

Online content
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Methods

Patient cohorts

Several patient cohorts were analyzed based on the glioma subclass.
A clinical cohort of 363 patients who underwent IDH-wild-type glio-
blastomaresection at University Medical Center Hamburg-Eppendorf,
University Hospital Frankfurt or Charité University Hospital Berlin was
analyzed. Informed written consent was obtained fromall patients and
experiments were approved by the medical ethics committee of the
Hamburg chamber of physicians (PV4904). The TCGA-GBM cohort
wasincluded for external validation®. A clinical cohort of pediatric and
adolescent patients who underwent surgery for H3K27-altered DMG at
University Medical Center Hamburg-Eppendorf was established and
extended with cohorts from Sturm et al.** and Chen et al.””. The refer-
ence and diagnostic set (n=3,905) from Capper et al.”® was utilized.

Clinical definitions

Diagnosis for the clinical cohort followed World Health Organization
(WHO) classification guidelines™. The EOR of contrast-enhancing parts
was stratified into GTR, complete removal, near GTR,>90% removal and
partial resection, <90% removal. Overall survival refers to diagnosis
until death or last follow-up and PFS from diagnosis until progression
according to RANO criteria based on local assessment™. Seizures and
antiepileptic medication use were defined by the current International
League Against Epilepsy guidelines”. T1-weighted and T2-weighted
FLAIR MRI images were analyzed using the Brainlab program. The
volume of contrast enhancement, FLAIR hyperintensity and necrotic
volume was assessed in cm’ obtained viamultiplanar 3D reconstruction
of the tumor ROI, enabled by delineating with the tool ‘Smart Brush’
manually in everyslice.

Stereotactic biopsies for spatial sample collection

Biopsies were obtained using a cranial navigation system (Brainlab
v.13.0) and intraoperative neuronavigation. To limit the influence of
brainshift, biopsies were obtained before tumor removal at the begin-
ning of surgery with minimal dural opening. Tissue samples were then
transferred to10% buffered formalinand sent to the Department of Neu-
ropathology for further processing and histopathological evaluation.

Measurement of functional connectivity using
magnetoencephalography

Tumor tissues with HFC and LFC sampled during surgery based on
preoperative MEG were obtained from patients with IDH-wild-type
glioblastoma operated on in the Department of Neurosurgery,
University of California, San Francisco®. From each formalin-fixed
paraffin-embedded (FFPE) tissue block, four serial sections at a thick-
ness of -10 pm each were used for DNA extraction. DNA was extracted
with the QIAamp DNA FFPE kit (QIAGEN). DNA was quantified using
the Nanodrop Spectrophotometer (Thermo Scientific). The ratio of
optical density at 260 nm to 280 nm was calculated and served as the
criterion for DNA quality.

Functional connectivity by rs-fMRI

Forty-four treatment-naive patients with glioblastoma (mean age
65+ 9 years) underwent rs-fMRI before surgery, with tumor tissues
subsequently analyzed for genome-wide DNA methylation patterns
using the Illumina EPIC (850k) array. Functional data preprocessing
followed a standardized protocol implemented in SPM12 (ref. 58)
within MATLAB (v.9.5)°*°. In brief, functional images were realigned,
unwarped and coregistered to the structural image. Segmentation,
bias correction and spatial normalization were conducted, with func-
tional images smoothed using a 5-mm FWHM Gaussian kernel. Fur-
ther preprocessing steps included slice-time correction, regression
of movement-related time series using ICA-AROMA?** and high-pass
filtering (>0.01 Hz). Tumor lesions were segmented using ITK-SNAP®
software and utilized as regions of interest for seed-based correlation

analysis to compute voxel-based tumor-to-peritumoral connectivity
(Fisher z transformation). A 10-mm peritumoral distance mask was
created, and mean functional connectivity between the tumor and its
peritumoral surrounding was computed using a ROI-to-voxel approach.

Immunoblotting

Frozentissue samples were lysed using RIPA buffer, containing 50 mM
Tris-HCI (pH 7.5), 150 mM NacCl, aprotinin (10 mg ml™), 1mM phenyl-
methylsulfonyl fluoride, leupeptin (10 mg ml™?), 2 mM Na;VO,, 4 mM
EDTA, 10 mM NaF, 10 mM sodium pyrophosphate, 1% NP-40, 0.1%
sodium deoxycholate and 1% protease inhibitor (Merck). Total pro-
tein concentration was measured by the bicinchoninic acid (BCA)
assay (Pierce). Proteins were separated using Tris-glycine gels, blotted
into nitrocellulose membrane and probed with antibodies anti-BDNF
(1:1,000 dilution, Cell Signaling, 47808) and anti-B-actin (1:1,000 dilu-
tion, Sigma-Aldrich A2228).

Immunohistochemistry

Tissue samples were fixedin 4% formaldehyde, dehydrated, embedded
in paraffin and sectioned at 2 pm following standard laboratory pro-
tocols. Immunohistochemical staining for NeuN (Chemico, MAB377,
1:200 dilution), Sox2 (Abcam, AB79351, 1:200 dilution), OLIG2 (R&D
Systems, AF2418, 1:50 dilution) and GFAP (DAKO, M0761, 1:200 dilu-
tion) was conducted using an automated staining machine (Ventana
BenchMark TX, Roche Diagnostics). Detection was achieved using
diamino-benzidine as achromogen, with counter-staining performed
using Mayer’s Solution (Sigma-Aldrich).

Drug sensitivity analysis

Patient-derived glioblastoma cell lines (GS-11, GS-73, GS-84, GS-110,
GS-13,GS-74,GS-80, GS-90 and GS-101) were dissociated into single cells
andseeded into a384-well plate atadensity 0f1,250-7,500 cells per well
in neurobasal medium supplemented with B27, glutamine, pen/strep,
heparin and human FGF and EGF. Cells were treated with 27 drugs and
dimethylsulfoxide as a controlintriplicate for 48 hat 37 °C and 5% CO,.
After treatment, cells were fixed, blocked and stained with antibodies
againstvimentin, cleaved caspase 3 and TUBB3. Imaging was performed
using an Opera Phenix automated confocal microscope and z-stacks
were segmented based on DAPI staining using CellProfiler (v.2.2.0)*%
Downstream analysis was conducted in MATLAB v.9.13.0, where
marker-positive cells/spheroids were identified using linear thresholds.
Cell counts and average cell/spheroid areas were averaged per condition
and compared between drug treatment and control groups.

Spatially resolved transcriptomics

Quality assessment RNA. RNA extraction from FFPE tissue sections
was conducted following the ‘Purification of Total RNA from FFPE
tissue sections’ protocol (July 2021 version). Two 10-um sections per
tissue block were processed and RNA was eluted using 14 pl RNase-free
water. Subsequently, 2 pl of the eluted RNA was subjected to both the
Qubit RNA High-Sensitivity Assay and the DNF-471 Standard Sensitivity
RNA Protocol using the Fragment Analyzer, following the respective
manufacturer’s instructions. RNA quality was assessed by comput-
ing the Distribution Value 200 (DV200) using Agilent’s ProSize Data
Analysis Software. The DV200 represents the percentage of RNA frag-
ments longer than 200 nucleotides within a range of 200-10,000 bp.
A DV200 > 50% is considered desirable according to 10x Genomics
guidelines. Additionally, the software provided the RNA integrity
number to supplement the quality assessment.

Tissue preprocessing. To prepare FFPE tissue for spatial transcriptom-
ics, sections of 5-pm thickness were sliced using a microtome, floated
ina42 °Cwater bath and transferred onto glass slides. Following H&E
staining, tissue examination under the EVOS microscope facilitated the
selection of the area of interest. The ‘Visium Spatial Gene Expression
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for FFPE - Tissue Preparation Guide’ (CGO00408, Rev A) guided the
initial steps of tissue preprocessing. Modifications to these steps are
detailed explicitly in subsequent descriptions. For hydrationand trim-
ming, without conducting a tissue adhesion test due to intact tissue
adhesiononglassslides, FFPE tissue blocks underwent hydrationinan
ice water bath for 20 min, followed by trimming and cutting into 4-pm
thick sections using the Thermo Fisher Scientific HM355 S automatic
microtome. Trimming excess paraffin and tissue parts on a standard
glass slide was performed, followed by floating the section in a 42 °C
water bath for extension and smoothing. Sections were then fit onto
Visium slides and dried using a thermocycler at 42 °C for 3 h, before
beingstoredinadesiccator at room temperature overnight. After heat-
ingthe Visiumslidesat 60 °Cfor 2 h, they underwent two 15-minimmer-
sionsinxylene, followed by serial dilutions in100%, 96%, 85% and 70%
ethanol for 3 mineach. The slides were finally rinsed in Milli-Q water for
20 s. The slides were stained with 1 ml hematoxylin for 3 min, washed
in two successive Milli-Q water baths, treated with 1 ml bluing buffer
for 1 min, washed again and then stained with 1 ml alcoholic eosin for
1min, followed by another wash. Imaging was carried out withan EVOS
M7000 microscope from Thermo Fisher Scientific at xX20 magnification
inthebrightfield setting, utilizing auto-focus for the firstimage of each
capture area. Followingimaging, the slide was placed into a Visiumslide
cassette (PN2000282) with analignment tool (PN3000433). Pipetting
was performed carefully to prevent disturbing the tissue, ensuring full
coverage of the capture area and complete removal of leftover fluids.
Each well of the cassette was treated twice with 100 pl 0.1 N HCI, then
rinsed with 150 pl, pH 9.0 TE buffer, followed by another TE buffer
application and incubation at 70 °C for 1 h on a thermal cycler. This
initiated the library construction’s hybridization stage.

Library preparation. Fo the pre-hybridization mix application, each
wellreceived pre-hybridization mix, followed by a30-minincubation at
37°C.Thiswas succeeded by an overnightincubation of probe hybridi-
zation mix at 50 °C, centrifugation, multiple washes and application of
probeligation mix for 1 hat 37 °C. Post-ligation wash buffer was applied,
followed by several washes. For the RNase and permeabilization mix
application, the RNase mix and permeabilization mix were each applied
and incubated for 30 min and 1 h, respectively at 37 °C, followed by
washing and probe extension mix application. For probe elution and
PCR, 0.08 MKOH was utilized to elute the probe. After transferring the
solution to an eight-tube-strip, 1M, pH 7.0 Tris-HCl was added. Cycle
numbers for PCR were determined using a qPCR mix and performed
withaStepOnePlus Real-Time PCR System. Sample Index PCR followed,
with cleanup using SPRIselect and transfer of 25 pl to anew tube strip.
Asecond qPCRwas performed with the NEBNext Library Quantkit for
Illumina to determine library molarities, ensuring successful library
construction and cDNA presence.

Sequencing. Sequencing of the libraries was conducted using the
NextSeq 500/550 device from Illumina. Libraries were normalized to
the same molarity before being combined. Denaturation and dilution of
libraries were performed following the ‘NextSeq System - Denature and
Dilute Libraries Guide’ protocol. The combined library was denatured
with 0.2 N NaOH, neutralized and diluted to a loading concentration
using High Outputkits. PhiX control was denatured, diluted and mixed
with thelibrary. The final mix underwent sequencing with the NextSeq
500/550 High Output kit v.2.5 (75 cycles).

Isolation and analysis of extracellular vesicles

Extracellular vesicles were isolated from plasma or cerebrospinal
fluid of patients with glioblastoma by differential centrifugation®”>.
Afterinitial centrifugation steps to eliminate cells, plateletsand large
vesicles, extracellular vesicle pellets were obtained through ultracen-
trifugation. These pellets were resuspended with filtered PBS and ana-
lyzed for concentration and size using nanoparticle tracking analysis.

Extracellular vesicle-enriched samples were diluted before nanoparti-
cle tracking analysis and the analysis was conducted using appropriate
parameters. Additionally, extracellular vesicles were characterized
by electron microscopy for size and morphology and by imaging flow
cytometry for extracellular vesicle markers (CD9, CD63 and CD81).
DNA extraction from extracellular vesicles was performed using a
purificationkit. For comparison, bulk cfDNA was isolated from plasma
using acommercial kit.

Detection of BDNF serum levels

Plasma from patients with glioblastoma was isolated by double spin
centrifugation of whole blood. Samples were aliquoted and stored
at —80 °C before use. BDNF plasma levels were detected using the
LEGENDplex Neuroinflammation Panel 1 (BioLegend). Data were
acquired using the BD LSR Fortessa and Beckman Coulter Cytoflex LX
flow cytometer and analyzed with the BioLegend LEGENDplex software.

Proteomic processing of human glioblastoma samples

FFPE samples of tumors were obtained from tissue archives from the
neuropathology unit in Hamburg. Tumor samples were fixed in 4%
paraformaldehyde, dehydrated, embedded in paraffin and sectioned
at 10 pm for microdissection using standard laboratory protocols.
For paraffin removal, FFPE tissue sections were incubated in 0.5 ml
n-heptane atroom temperature for 30 min, using a ThermoMixer (Ther-
moMixer 5436, Eppendorf). Samples were centrifuged at 14,000g for
Sminand the supernatant was discarded. Samples were reconditioned
with70% ethanol and centrifuged at14,000g for 5 min. The supernatant
was discarded. The procedure was repeated twice. Pellets were dis-
solved in150 pl1% w/vsodium deoxycholatein 0.1 M triethylammonium
bicarbonate buffer and incubated for 1h at 95 °C for reverse formalin
fixation. Samples were sonicated for 5 s at an energy of 25% to destroy
interfering DNA. ABCA assay was performed (Pierce BCA Protein Assay
kit, Thermo Scientific) to determine the protein concentration, follow-
ing the manufacturer’s instructions. Tryptic digestion was performed
for 20 pg protein, using the single-pot, solid-phase-enhanced sample
preparation (SP3) protocol®*. Eluted peptides were dried in a Savant
SpeedVac Vacuum Concentrator (Thermo Fisher Scientific) and stored
at—-20 °Cuntil further use. Directly before measurement, dried peptides
wereresolved in 0.1% formic acid toafinal concentration of 1 pg pl™ In
total 1 pg was subjected to mass spectrometric analysis.

Liquid chromatography-tandem mass spectrometer
parameters

LC-MS/MS measurements were performed using a QExactive mass
spectrometer (Thermo Fisher Scientific) coupled with a Dionex Ulti-
mate 3000 UPLC system (Thermo Fisher Scientific). Tryptic pep-
tides were injected via an autosampler, purified, and desalted using
areversed-phase trapping column (Acclaim PepMap 100 C18 trap)
before separation on a reversed-phase column (Acclaim PepMap 100
C18). Trapping occurred for S min at a flow rate of 5 pl min, followed
by separation using a linear gradient from 2% to 30% solvent B over
65 minat 0.3 ul min’. Peptides were ionized using nano-electrospray
ionization (nano-ESI) with a spray voltage of 1,800 V and analyzed
in data-dependent acquisition mode. During MS1 scans, ions were
accumulated for a maximum of 240 ms or until reaching a charge
density of 1x 10® ions (AGC target), with mass analysis performed at a
resolution of 70,000 at m/z =200 over amass range of 400-1,200 m/z.
Peptides with charge states between 2+ and 5+ and intensities above
5,000 were isolated within a 2.0 m/z isolation window in top-speed
mode for 3 s from each precursor scan and fragmented using higher
energy collisional dissociation with a normalized collision energy of
25%.MS2 scanning, conducted using an orbitrap mass analyzer, had a
starting mass of 100 m/z with a resolution of 17,500 at m/z=200 and
was accumulated for 50 ms or until reaching an AGC target of 1 x 10°.
Peptides that were already fragmented were excluded for 20 s.
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NGS of low- and high-neural glioblastoma samples

Tumor mutational profiling was conducted at the Department of Neu-
ropathology, University Hospital Heidelberg, using a custom CNS
tumor-specific NGS gene panel (Agilent, SureSelect Custom Tier2,
1,235 Mb). Library preparation followed manufacturer recommenda-
tions with the SureSelect XT HS2 DNA kit (Agilent, 5191-5688). Prepared
libraries were pooled and sequenced on the Illumina Novseq6000
platform (Novaseqv.1.5200 cycles S1Reagent kit,20028318). The NGS
panel covers the entire coding region, along with selected intronic
and promoter regions of 201 genes relevant to CNS tumors. It detects
single-nucleotide variants, smallinsertions/deletions (indels), exonic
rearrangements and recurrent fusion events. Sequenced reads were
mapped to GRCh38 using the nf-core/sarek (v.3.3.2) pipeline® ¢, with
single-nucleotide variant and structural variant calling performed
using Strelka (v.4.4.0.0)°® and Manta (v.1.6.0)*. Variant annotation
was performed using SNPeff (v.5.1d)*’. Variants were filtered based
on several criteria, including mapping to exonic regions, QUAL > 20,
MQ > 30, DP > 15, high/moderate impact and a population frequency
<0.001 from the 1000 Genomes project. Additionally, variants with
high population frequencies in the Genome Aggregation Database
(gnomAD), such as SETD2 ¢.5885C>T and KMT2C c.2447dupA,
were filtered out.

Mice housing

In vivo experiments were conducted following approved protocols
fromthe Stanford University Institutional Animal Care and Use Commit-
tee and the University Medical Center Hamburg-Eppendorf, adhering
toinstitutional guidelines and explicit permissions fromlocal authori-
ties. Animals were housed under standard conditions in pathogen-free
environments, with temperature- and humidity-controlled housing
and access to food and water in a12-h light-dark cycle. For xenograft
experiments, the Institutional Animal Care and Use Commiittee estab-
lished guidelines based on indications of morbidity, with mice killed
if they displayed signs of neurological morbidity or lost 15% or more
of their body weight.

Orthotopic xenografting of patient-derived low- and
high-neural glioblastoma cells

NSG mice (NOD-SCID-IL2Ry-chain-deficient, The Jackson Laboratory)
were used for experiments conducted at Stanford University, with
equal distribution of male and female mice. Primary patient-derived
low- (‘UCSF-UKE-T’) or high-neural (‘UCSF-UKE-2’) glioblastoma neuro-
spheres were prepared in sterile Hanks balanced salt solution (HBSS)
and stereotacticallyimplanted into the premotor cortex (M2) of mice
at postnatal day (P) 28-30. Mice survival analyses were performed on
NMRI-Foxnlnuimmunodeficient mice (Janvier-Labs) at the University
Medical Center Hamburg-Eppendorf. Neurospheres from cultured
primary patient-derived low- (‘GS-8’, ‘GS-10’, ‘GS-73’ and ‘GS-80’) or
high-neural (‘GS-57’, ‘GS-74’, ‘GS-75 and ‘GS-107’) glioblastoma were
injected into the striatum. External validation of mice survival data
was conducted using publicly available datasets from Vaubel et al.”®
and Golebiewska et al.”.

Perfusion and immunofluorescence staining

Eight weeks post-xenografting, low and high-neural
glioblastoma-bearing mice were anesthetized with intraperitoneal
avertin and transcardially perfused with PBS followed by fixation in
4% paraformaldehyde (PFA) overnight at 4 °C. After cryoprotectionin
30% sucrose for 48 h, brains were embedded in Tissue-Tek O.C.T. and
sectioned coronally at 40 pm using a sliding microtome. Forimmuno-
fluorescence, sections were blocked in a solution of 3% normal donkey
serum and 0.3% Triton X-100 in TBS, followed by incubation with pri-
mary antibodies overnight at 4 °C. Antibodies used included mouse
anti-human nuclei clone 235-1, rabbit anti-Ki67, rat anti-MBP, mouse
anti-nestin, guinea pig anti-synapsin-1/2, chicken anti-neurofilament or

anti-PSD95. After rinsing, sections wereincubated with appropriate sec-
ondaryantibodies and mounted with ProLong Gold Mounting medium.

Confocal imaging and quantification of cell proliferation and
infiltration

Cell quantification within xenografts was conducted by a blinded
investigator using a Zeiss LSM980 scanning confocal microscope.
Al-in-6series of coronal brain sections were selected, with four consec-
utiveslices analyzed at approximately 1.1-0.86 mm anterior to bregma.
HNA-positive tumor cells were quantified ineach field to determine the
proliferationindex, calculated as the percentage of HNA-positive cells
co-labeled with Ki67. Infiltration into the corpus callosum was assessed
in the same sections, with HNA-positive tumor cells co-labeled with
Ki67 and divided by the total number of DAPI-marked nuclei.

Confocal puncta quantification

Images were captured using a x63 oil-immersion objective on a Zeiss
LSM980 confocal microscope. Colocalization analysis of synaptic
punctaimages from both low and high-neural glioblastoma xenograft
samples was performed by a blinded investigator. A custom Image)
processing script, developed at the Stanford Shriram Cell Science
Imaging Facility, was utilized for this purpose. The script defined each
pre- and postsynaptic puncta and assessed colocalization within a
defined proximity of 1.5 uM. To subtract local background, the Image)
rolling ball background subtraction method was applied. Peaks were
identified using the imglib2 DogDetection plugin, which employs the
difference of Gaussians to enhance the signal of interest. The plugin
then assigned ROIs to each channel based on predefined parameters.
Neuron and glioma ROIs were quantified, and the script extracted the
number of glioma ROIs within1.5 pm of the neuron ROIs. This script was
implemented inFiji/ImageJ using the ImgLib2 and ImageJ Ops libraries.

Sample preparation and image acquisition for electron
microscopy

Twelve weeks post-xenografting of low- (n =3, ‘UCSF-UKE-1’) and
high-neural glioblastoma cells (n =3, ‘UCSF-UKE-2’), mice were killed
viatranscardial perfusion with Karnovsky’s fixative: 2% glutaraldehyde
and 4% PFAin 0.1 Msodium cacodylate (pH 7.4). Transmission electron
microscopy (TEM) analysis was conducted on tumor masses within the
CAlregion ofthe hippocampus. Samples were post-fixed in 1% osmium
tetroxide, washed and enbloc-stained overnight. Dehydration was per-
formed using graded ethanol and acetonitrile. Samples were then infil-
trated with EMbed-812resin, followed by embeddingin TAAB capsules
and oven curing. Sections of 40-60 nm were cut on a Leica Ultracut S
and mounted on100-mesh Ni grids. Forimmunohistochemistry, grids
underwent microetching with periodic acid and osmium elution with
sodium metaperiodate. Grids were blocked, incubated with primary
goatanti-RFP antibody overnight, rinsed and incubated with secondary
antibodies. Grids were contrast stained with uranyl acetate and lead
citrate. Imaging was conducted using aJEOLJEM-1400 TEM at 120 kV,
withimage capture facilitated by a Gatan Orius digital camera.

Cell culture

Fresh glioblastoma samples were obtained from patients operated
in the Department of Neurosurgery, University Medical Center
Hamburg-Eppendorf.Samples were immediately placed in HBSS (Invit-
rogen), transferred to the laboratory and processed within 20 min. The
tissue was cut into <1-mm?fragments, washed with HBSS and digested
with1mg mlI™ collagenase/dispase (Roche) for 30 minat 37 °C. Digested
fragments were filtered using a 70-pm cell mesh (Sigma-Aldrich) and
the cells were seeded into T25 flasks at 2,500-5,000 cells per cm?%
The culture medium consisted of neurobasal medium (Invitrogen)
with B27 supplement (20 pl ml™, Invitrogen), Glutamax (10 pl ml?,
Invitrogen), fibroblast growth factor-2 (20 ng ml, Peprotech), epi-
dermal growth factor (20 ng ml™, Peprotech) and heparin (32 IEml™,

Nature Medicine



113

Article

hittps:/fdoiorg/10:1038/s541591-024-02969-w

Ratiopharm). Growth factors and heparin were renewed twice weekly.
Spheres were split by mechanical dissociation when they reached asize
0f200-500 pum. In this study, analyzed cell cultures with clinical data
are represented in Extended Data Fig. 4. Long-term cultivation cell
cultures were used from a publicly available dataset (n = 7, GSE181314)
and onein-housecellline (n=1).

Neuron-glioma co-culture experiments

Neurons were isolated from CD1 (The Jackson Laboratory) mice at PO
using the Neural Tissue Dissociation kit - Postnatal Neurons (Miltenyi)
and followed by the Neuron Isolation kit, Mouse (Miltenyi). After iso-
lation, 150,000 neurons were plated onto glass coverslips (Electron
Microscopy Services) after pre-treatment with poly-L-lysine (Sigma)
and mouse laminin (Thermo Fisher)*. Neurons are cultured in BrainPhys
neuronal medium (StemCell Technologies) containing B27 (Invitro-
gen), BDNF (10 ng mI™, Shenandoah), GDNF (5 ng ml™, Shenandoah),
TRO19622 (5 uM; Tocris) and B-mercaptoethanol (Gibco). Half of the
medium was replenished on days in vitro (DIV) 1and 3. On DIV 5, half
of the medium was replaced in the morning. In the afternoon, the
medium was again replaced with half serum-free medium containing
75,000 cells from patient-derived low- (UCSF-UKE-I') or high-neural
(‘UCSF-UKE-2’) cell cultures. Cells were cultured with neurons for72 h
and then fixed with 4% PFA for 20 minat room temperature and stained
for puncta quantification as described above.

EdU proliferation assay

For EdU proliferation assays, coverslips were prepared as described
above. Again, at DIV 5, low-neural (‘UCSF-UKE-1’) or high-neural
(‘UCSF-UKE-2’) glioblastoma cells were added to the neuron cultures.
Forty-eight hours after addition of glioblastoma cells, slides were
treated with10 pM EdU. Cells were fixed after anadditional 24 husing
4% PFA and stained using the Click-iT EdU kit and protocol (Invitrogen).
Proliferationindex was then determined by quantifying the percentage
of EdU-labeled glioblastoma cells (identified by EQU"/DAPI") over total
number of glioblastoma cells using confocal microscopy.

3D migration assay

3D migration experiments were performed as previously intro-
duced’ with some modifications. In brief, 96-well flat-bottomed
plates (Falcon) were coated with 2.5 pg per 50 pl laminin per well
(Thermo Fisher) in sterile water. After coating, a total of 200 pl of
culture medium per well was added to each well. A total of 100 pl
of medium was taken from 96-well round-bottom ULA plates con-
taining ~200-pm diameter neurospheres of low- (‘UCSF-UKE-1’) and
high-neural (‘UCSF-UKE-2’) glioblastoma lines and the remaining
medium, including neurospheres was transferred into the pre-coated
plates. Images were then acquired using an EVOS M5000 microscope
(Thermo Fisher Scientific) at time 0, 24, 48 and 72 h after encapsu-
lation. Image analysis was performed using ImageJ by measuring
the diameter of the invasive area. The extent of cell migration on
the laminin was measured for six replicate wells normalized to the
diameter of each spheroid at time zero and the data are presented as
amean ratio for three biological replicates.

Bioinformatic and statistical analysis

DNA methylation profiling and processing. DNA was extracted
from tumors, extracellular vesicles and bulk plasma, and analyzed
for genome-wide DNA methylation patterns using the Illumina
EPIC (850k) array. The processing of DNA methylation data was
performed with custom approaches”. Methylation profiling results
from the first surgery were submitted to the molecular neuropa-
thology methylation classifier v.12.5 hosted by the German Cancer
Research Center'®. Patients were included if the calibrated score for
the specific methylation class was >0.84 at the time of diagnosis’.
For IDH-wild-type glioblastoma, patients (scores between 0.7 and

0.84) with a combined gain of chromosome 7 and loss of chromo-
some 10 or amplification of EGFR were included in accordance with
cIMPACT-NOW criteria”. A class member score of >0.5 for one of
the glioblastoma subclasses was required. Evaluation of the MGMT
promoter methylation status was made from the classifier output
v.12.5 using the MGMT-STP27 method”.

AIIIDAT files were processed using the preprocess lllumina (minfi,
v.1.40.0)”. Probes with detection Pvalues <0.01 were kept for further
analysis. Probes with <3 beads in at least 5% of samples, all non-CpG
probes, SNP-related probes and probes located on X and Y chromo-
somes were discarded.

Dichotomization of tumors into low- and high-neural subgroups.
We used the cell-type-specific methylation signature available from
Moss etal.” consisting of 25 cell-type components. We used the original
implementation of Moss et al. to perform cell-type deconvolution using
non-negative least square linear regression.

We deciphered the neural signaturein GBM using acombined data-
set (n=1,058) from Capper etal." (n = 624) and our institutional cohorts
from Hamburg, Berlin and Frankfurt (all Germany) (n = 434). The com-
bined dataset was dichotomized into low- (n=529) and high-neural
(n=529) tumors using the median neural proportion of 0.41. This cutoff
value was used to classify GBM into low- and high-neural tumors for all
analyses. External validation was performed using the publicly avail-
able dataset from the TCGA-GBM database (n =178)".

Reproducibility of differential methylation sites between low- and
high-neural groups. We performed differential methylation analysis
of 363 samples of the internal cohort using dmpFinder function from
minfiR package™ (v.1.40.0). In total, we identified 1,289 CpG sites
differentiating low- and high-neural groups. To estimate the predic-
tive power of these sites, we trained a logistic regression model using
scikit-learn package (v.1.2.2) on the clinical cohort using the differen-
tially methylated sites as input features. The model was subsequently
applied to the other cohorts.

Cell state composition analysis. To infer cell-type and cell state abun-
dance, we conducted a bulk DNA methylation assay using EPIC arrays
and applied the reference-free deconvolution method by Silverbush
et al.””. This method, trained on the DKFZ glioblastoma cohort and
tested on TCGA-GBM data, successfully infers cell types (immune, glia
and neuron) and malignant cell states (stem-like and differentiated).
We followed the protocol of Silverbush et al.”, using the EpiDISH pack-
age’®, utilizing the provided encoding and RPC method with 2,000
maximum iterations.

DNA tumor purity. Tumor purity was predicted in silico from DNA
methylation data using the RF_purify Package in R”. This package
uses the ‘absolute’ method, which measures the frequency of somatic
mutations within the tumor sample and relates this to the entire
DNA quantity’®.

Integrative analysis of methylation and gene expression. WGCNA
was performed using the hdWGCNA® R package. Methylation-derived
neural subgroup labels were considered as a trait. The optimal soft
power was determined to be 16. For dimension reduction and visuali-
zation of the coexpression network, we employed the UMAP via the
ModuleUMAPPIot function. Gene Ontology analysis was subsequently
performed on the top 100 module-associated genes using the com-
pareCluster function. Visualization of module-associated pathway
activations was accomplished using the clusterProfiler package.

To contextualize the identified modules at a single-cell level, we
utilized GBMap? and the reference dataset of human motor cortex
(Allen Institute). Both datasets were integrated by alignment of the
latent space representation. Based on the zero-inflated nature of
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single-cell data, we estimated the module enrichment by the frequency
of each gene (g) being detected and the expression values as follows:

Y1 Xn + n#i =1(x, = 0)
Mowp == 55

mey, refers to the module expression score per cell which is esti-
mated by the mean of x the log normalized and scaled expression values
of ngenes from the WGCNA modules. The mean is normalized by the
frequency of nonzero-determined genes.

SRT data analysis. Computational analysis of spatially resolved tran-
scriptomics (SRT) datawas performed by the SPATA2 R package (v.2.01).
An SPATA object was prepared for the SRT data.

Single-cell deconvolution. Single-cell deconvolution was performed
using Cell2location’ with the GBMap single-cell data® as areference.
The SPATA object was converted into the AnnData format and mito-
chondrial genes were sequestered into the obsm[‘MT’] matrix of the
object before training the model for 500 epochs on the GPU. After
training, we invoked export_posterior on the model to extract the
posterior distribution of cell-type abundances, drawing 1,000 samples
to robustly estimate these abundances across spatial locations. The
cell-type abundances were exported back to the SPATA object by the
addFeature function of SPATA2.

RNA deconvolution. We utilized the GBMapExtended single-cell
RNA-seq (scRNA-seq) dataset and the human neocortex dataset from
the AllenInstitute to perform cell-type deconvolution. Data preparation
involved loading and transforming the scRNA-seq datainto aSingleCell-
Experiment object with Seurat and SingleCellExperiment libraries in
R, annotated with relevant cell and gene identifiers. We leveraged the
digitalDLSorteR package to trainadeconvolution model, initiating with
the setting of a random seed for reproducibility, followed by loading
scRNA-seq profiles into the digitalDLSorteR framework. Key param-
eters, including celland gene identifiers and cell-type annotations, were
specified. The digitalDLSorteR’s zinbwave parameters were estimated
to simulate single-cell profiles, incorporating previous knowledge of
cell-type distributions to refine the simulation. A bulk cell matrix was
generated based on probabilistic design from simulated cell profiles,
and adigitalDLSorter model was trained on this matrix with standard
scaling. Post-training, the model was applied to deconvolve a dataset
comprising RNA-seq and methylation data, processed to extract counts
and metadata. The deconvolution results were then visualized using
ggplot2, with sample types and percentage compositions graphed,
showcasing the cellular heterogeneity across different samples.

Construction of spatial graphs from Visium SRTs. The SRT object was
preprocessed with SPATA2, including log transformation of the count
matrix and alignment of the imaging dataset (H&E Image). Nucleus
positions were annotated using an automated ilastik pretrained seg-
mentation algorithm. For samples with low image quality, we adapted
CytoSpace® in our workflow. Spot coordinates were extracted via the
getCoordsDf function and a pairwise distance matrix was computed
based on the ‘x’ and ‘y’ coordinates of cells. The zero values in the dis-
tance matrix were replaced with a constant value of 1,000 to avoid
computationalissues. This ensured that subsequent thresholding steps
would not falsely consider a cell as its own neighbor. A distance thresh-
old (one unitgreater than the smallest nonzero distance) was employed
to construct an adjacency matrix, where cells within the threshold dis-
tance were designated ‘1’ for adjacency and cells beyond the threshold
were assigned ‘0’ for no adjacency. Unique cell barcodes were used to
label the rows and columns of the adjacency matrix, obtained from
getCoordsDf. The adjacency matrix was then transformed into an
undirected graph using the graph_from_adjacency_matrix function

from the igraph package. We obtained the gene expression matrix
with 5,000 most variable genes from our object and transposed it to
alignwith the graph’s vertices. Using the graphical representation, we
characterized the local topology around a specificlocation, termed a
‘query spot, by identifying its n-hop neighborhood. Specifically, the
three-hop neighborhood of a query spot was defined as the set of all
spots reachable within three edges from the query spotin the graph.

GNN architecture. We used adeep neural network combiningagraph
isomorphism network (GIN) backbone with multiple multilayer percep-
tron (MLP) prediction heads. We used the Pytorch Geometric library
and defined each spot as a node and edges were defined as the direct
neighbors of each individual spot within a three-hop neighborhood.
Nodefeatures were log-scaled and normalized expression values from
the 5,000 most variably expressed genes. Non-expressed genes within
asubgraph were masked. Edge features were defined based on each
node’sdirect neighbors, with eachnode having amaximum of six neigh-
bors. Subgraphs with fewer than 15 nodes were excluded. Self-loop
edges were added to input graphs before forward pass.

We employed athree-layer GIN, and in the kth graph convolutional
layer to process batches (size of 32) of SRT data, messages were com-
puted using MLPs,

My, = MLP (hy)

where u,v € N(v)and then aggregated for each node v over neighbor-
hood N(v),

a, = Z my,

ueN)

The updated embedding of node v was updated on the basis of all
incoming messagestov,

H, = MLP (a,)

The GIN layers are represented as follows: x, defines the expression
vector of nodevand N(v) is the set of its neighbors. The GIN convolution
operationupdates the feature vector of node v by aggregating features
from N(v) and combining them with x, own features. The updated
feature vector x, is computed with ReLU (rectified linear unit)
asfollows:

X, = ReLU <<(1 +€) XX, +

>, Rel (xu)>>

ueNwv)

we define e asalearnable parameter that allows the model to weigh the
importance of a node’s own features versus the features of its neigh-
bors. This operation is stacked multiple times (k = 2) in the kth GIN to
allow for deeper aggregation of neighborhood information. After each
GIN convolutionallayer, batch normalization and LeakyReLU activation
with a negative slope of 0.2 are applied, followed by a dropout layer
with a dropout rate of 0.5 for regularization. The latent space repre-
sentation of the graph is obtained by passing the output of the second
GIN convolutional layer through a linear transformation (self.merge)
withweightsinitialized using the Xavier uniform method. The resulting
features are merged into a latent space and then global mean pooling
isapplied to create graph-level representations.

For the prediction tasks, separate MLP modules are employed.
Each MLP consists of alinear layer, aReLU activation, batch normaliza-
tion, dropout and afinallinear layer that outputs the predictions. The
MLPs are structured as follows:

h(xX)=WyxDXBx @ (W, xx+b)+b,
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Wherexis the latent space vector to the MLP, W, and W, are the weight
matrices for the firstand second linear transformations, respectively,
b,and b, are the bias vectors for the first and second linear transforma-
tions, respectively, ¢ denotes the ReLU activation function,
applied element-wise, where ¢, = ma(0,2), B represents the batch
normalization operation applied to the activated output and D
represents the dropout operation, which randomly zeroes some of the
elements of its input with a certain probability to prevent
overfitting.

For neural score prediction tasks, we minimized the squared L1
norm loss between predictions and score (torch.nn.L1loss).

Data split and evaluation metrics. We evaluated the GNN and
comparative methods on both our proprietary Visium dataset and
additional public domain datasets. We split the data into training
and evaluation subsets using a stratified procedure. For the training
dataset, we selected 20,000 subgraphs from spatial transcriptomics
samples across 20 patients, incorporating clinical attributes such as
tumor type and epigenetic neural score. For the evaluation dataset,
we reserved samples from the remaining four patients, covering a
range of neural scores. Additionally, we included a validation set of
24,000 subgraphs fromall 24 patients, ensuringindependence from
the training set.

This approach ensured robust evaluation across diverse clinical
and molecular features, with the neural score used as the prediction
task, evaluated by R* against the neural score from EPIC methylation
profiling.

Evaluation of the subgraph cell composition. We commenced by
retrieving the spatial coordinates of each nucleus using the getNucle-
usPosition function from the SPATAwrappers package. The spatial
coordinates representing the nuclei positions were obtained as
P ={p;li =1,..., N}where p;is the coordinate pair for the ith nucleus and
Nis the total number of nuclei. Spatial grid coordinates corresponding
to the transcriptomics data points were retrieved, denoted as
G ={gli =1,...,M}, witheach g;representing the coordinate pair for the
Jthgrid point. For each grid point g, a vector of deconvolution scores
D; ={dylk =1,...,T } was extracted, where d, represents the score for
the kth cell type at grid pointj and T is the number of cell types. The
scores were normalized to a range of [0, 1], and the number of cells of
eachtype ateach grid point was estimated as:

d, xN;
Cjk:round< Lt J)

.
k=1 djk

where d, is the normalized score and N, is the number of cells at grid
point;. Cell types were assigned to each grid point g; to create a map-
ping M;, correlating grid points with their respective cell types. The
cell-type mapping wasintegrated with nucleus position datato produce
a comprehensive spatial map of cell-type distribution:
S ={(pi»M;) Ip; € P.M; € M}. This methodology facilitates the visualiza-
tionand analysis of the cellular composition within the tissue section,
providinginsightsinto the complex spatial organization of the cellular
environment.

Proteomic data processing. Proteomic samples (n = 28) were meas-
ured with liquid chromatography-tandem mass spectrometry (LC-
MS/MS) systems and processed with Proteome Discoverer v.3.0. and
searched against a reviewed FASTA database (UniProtKB®: Swiss-Prot,
Homo sapiens, February 2022,20,300 entries). The protein abundances
were normalized at the peptide level. Perseus v.2.0.3 was used to obtain
log, transformed intensities. The imputation was performed using the
random forest imputation algorithm (hyperparameters, 1,000 trees
and tenrepetitions) in RStudio v.4.3.

WGCNA for proteomics. We used hdWGCNA® to identify gene coex-
pression modules, employing a soft power of 9 and minimum mod-
ule size of 10. After correcting for technical batch effects, significant
modules (P< 0.05) were selected based on their correlation with traits.
Overrepresentation analysis of gene sets within these modules was
performed using clusterProfiler. Cell-type enrichment withinmodules
wasidentified using gene sets from PanglaoDB through the Python pack-
ageenrichr®®. Module scores onsingle cells were calculated using Scan-
py’sscore_genes function with the core GBM single-cell atlas (GBMap)®>.

Electron microscopy data analysis. Sections from xenografted hip-
pocampi of mice wereimaged using TEM imaging. The xenografts were
originally generated for a study by Krishna et al.”> and mouse tissue
was re-analyzed after epigenetic profiling and assignment to low- or
high-neural glioblastoma groups. Here, 42 sections of high-neural glio-
blastoma across three mice and 45 sections of low-neural glioblastoma
across three mice were analyzed. Electron microscopy images were
taken at x6,000 with a field of view of 15.75 um?. Glioma cells were
counted and analyzed after identification of immunogold particle
labeling with three or more particles. Furthermore, to determine syn-
apticstructures all three of the following criteria had to be clearly met
as previously described*: (1) presence of synaptic vesicle clusters; (2)
visually apparent synaptic cleft; and (3) identification of postsynaptic
density in the glioma cell. To quantify the percentage of glioma cells
forming synaptic structures, the number of glioma-to-neuron synapses
identified was divided by the total number of glioma cells analyzed.

Statistical analysis. Gaussian distribution was confirmed using the
Shapiro-Wilk test. Parametric data were analyzed with an unpaired
two-tailed Student’s t-tests or one-way ANOVA with Tukey’s post hoc
tests. Survival curves were generated using the Kaplan-Meier method,
withstatistical significance determined by two-tailed log-rank analyses.
Multivariate analysis for overall survival and PFS included computing
hazard ratios and 95% confidence intervals using Cox proportional
hazards regression models. Variables with P < 0.05in univariate analysis
were included. Significance was set at P< 0.05. GraphPad Prism v.10
was used for statistical analyses and data illustrations and R Studio
was used for alluvial plots.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

IDAT files of the clinical cohort (363 patients with GBM) are
available at the Gene Expression Omnibus under accession
code GSE240704. The methylation data provided by Capper
et al."® as illustrated in Extended Data Fig. 1 are accessible under
accession code GSE109381. The TCGA-GBM cohort analyzed for
external validation and as shown in Fig. 1d is accessible at https://
portal.gdc.cancer.gov/projects/TCGA-GBM. Data files used in the
spatial transcriptomic analyses are accessible at Zenodo at https://
doi.org/10.5281/zenod0.10863736 (ref. 83). The single-cell RNA-seq
dataset GBMap is available from the original publication and can
be accessed through cellXgene (https://cellxgene.cziscience.
com/collections/999f2al5-3d7e-440b-96ae-2c806799c08c) and the
human motor cortex single-cell RNA-seq dataset is available from the
AllenBrainInstitute at https://portal.brain-map.org/atlases-and-data/
rnaseq/human-m1-10x. Source data are provided with this paper.

Code availability

The code used to perform DNA methylation and proteomics analysis
is available at https://github.com/imsb-uke/epigenetic-neural-
glioblastoma. Codes used for performing transcriptomic analy-
ses in Figs. 2 and 3 and Extended Data Figs. 3 and 4f are available at
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https://github.com/heilandd/GBNeural. Additionally, the code for
the non-reference-based multi-dimensional single-cell deconvo-
lution from DNA methylation data as presented in Fig. 6f and Sup-
plementary Fig. 4i can be found at https://github.com/danasilv/
Deconvolution_of GBM_bulk_DNA_methylation_profiles.
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E ded DataFig.1|Impl ation of the epig; icneural signature and
validation of low- and high-neural subclassification of glioblastoma samples.
a). Epigenetic neural signature in healthy brain tissues obtained from the Capper
dataset*. b, ). Analysis of different number of neural clusters that can predict
differential survival outcome in the clinical cohort (n=363) by using 10-fold
cross-validation with Kmeans. The figure displays Kaplan-Meier curves of the
clustersin the validation set of the 5" fold. The survival curves demonstrate that
the best results are obtained with two clusters (low- versus high-neural). Log

rank test was used for the survival difference between the clusters. £rror bands
representing the 95% confidence interval. d). Validation of the cut off for the neural
signature across multiple cohorts used in the manuscript. Beta-values for CpGs

differentially methylated between the low-neural and high-neural groups. The
selection was made using the clinical cohort (n=363). ). Using the clinical cohort
asthe training set, a logistic regression model was trained. The logistic regression
model trained on the clinical cohort on the identified signature classifies across
cohorts with overall AUC of 0.944 and > 0.84 in all cohorts. f). Same asine.) but
athreshold on the prediction score was set (0.9) to keep only high confidence
predictions. The AUC of the classifier is > 0.91in the external cohorts when

using only high probability predictions. g, j). Survival analysis of patients with
glioblastoma applying brain tumor-related cell signatures of the Moss signature.
Log-rank test,g) P=0.2415, h.) P= 0.2703, i) P= 0.9010, ) P= 0.6646. Error bands
representing the 95% confidence interval. OS: overall survival.
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Extended Data Fig. 3| Quality measurements and reliability of the epigenetic
neural signature in glioblastoma samples. a). Integrated analysis of the
individual patients' neural scores and the corresponding cell proportions
obtained from RNA sequencing deconvolution. b). Correlation between

the neural signature and DNA tumor purity. Simple linear regression P=
0.00000000006376S, error bands representing the 95% confidence interval.

c). Correlation between the microglia signature and DNA tumor purity. Simple
linear regression P=0.00000000041872, error bands representing the 95%
confidenceinterval.d). Correlation between the immune cell signature and DNA
tumor purity. Simple linear regression P= 0.000000000019814, error bands
representing the 95% confidence interval. €). Correlation between the DKFZ
calibrated score for the diagnosis ‘IDH-wild-type glioblastoma’ and the neural

signature. Simple linear regression P= 0.2803, error bands representing the 95%
confidenceinterval.f, g). Single-cell deconvolution of DNA methylation profiles
comparef). stem cell-like and g). neuron-like signatures in NeuN’ cells, healthy
cortex, glioblastoma tissue samples, and glioblastoma cell cultures. h). Overlap
between the epigenetic neural classification and TCGA subtypes after integrated
RNA sequencing analysis. i). Comparison of neural signature between patient’s
tumor tissue and cell culture in 17 glioblastomas. Two-sided t-test P= 0.2593.

j). Stability of the epigenetic neural signature during long-term cell culturing.
Data were obtained from a publicly available dataset (n =6, GSE181314) and in-
house (n=1). Two-sided t-test P= 0.8471. k). Demonstration of NeuN" staining in
glioblastoma neurospheres. n=15 biological replicates.
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Extended Data Fig. 4| High-neural glioblastomais linked with synapse
formation and trans-synaptic signaling from proteomic profiling.

a-e) Proteomic profiling oflow- (n=19) and high-neural (n=9) glioblastoma. a).
WGCNA analysis showed differentially abundant proteome modules between
both neural subgroups. b). High-neural glioblastomas are clustered to module
‘blue’ (top figure), while low-neural glioblastomas have a higher abundance in
module ‘brown’ (bottom figure). Data are mean +s.e.m. Two-sided t-test
P=0.0.029 (top figure) and P=0.002 (bottom figure). ¢, d). Network analysis
revealed e). most expressed proteins and f). associated gene ontology terms

for each neural subgroup (high-neural: top, low-neural: bottom). e). Integrating
transcriptomic single-cell datashowed an OPC-/NPC-like character in high-neural
tumors (‘ME blue’). f). Transcriptomic single-cell copy number variation plot

analysis of glioblastomas with a high-neural signature. g). Inmunohistostaining
of representative low- and high-neural glioblastoma samples. n=10 biological
replicates. h). Analysis of OLIG2' cells between low- and high-neural glioblastoma
samples. **P <0.01, two-tailed Student’s t-test. i). Comparison of abundance of
cell states analyzed by reference-free deconvolution between newly diagnosed,
high-neural, and low-neural glioblastomas. j). Stem cell-like state significantly
correlated with anincrease of the neural signature in glioblastoma samples.
Simple linear regression, P=0.000003024480. Error bands representing the 95%
confidenceinterval. k). An anticorrelation was seen between the abundance of
the immune compartment and the neural signature. Simple linear regression,
P=0.000000000005. Error bands representing the 95% confidence interval.
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Extended Data Fig. 5| Copy number variations and next-generation samples of our internal cohort. Of note, rarely detectable IDH mutations did not
sequencing of gene mutations between low- and high-neural glioblastoma include the pathogenic R132H mutation. d, e). Oncoprintillustrating clinical
samples. a). Copy number variation plots for all samples stratified into low- and characteristics and gene mutational status of d). low-neural and e). high-neural
high-neural glioblastoma.b, c). Oncoprintillustrating clinical characteristics glioblastoma samples of the TCGA dataset.

and gene mutational status of b). low-neural and ¢). high-neural glioblastoma
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Extended DataFig. 6 | Radiographic parameters and spatiotemporal
tumor sampling. a - ¢). Association of neural glioblastoma group with volume
of a). contrast enhancement, b). FLAIR, and c). tumor necrosis measured by
preoperative magnetic resonance imaging. A) P=0.0374,b) P=0.1767, and

¢) P=0.6373, two-tailed Student’s t-test. d). Analysis of intertumoral difference
of neural signature within 34 newly diagnosed glioblastomas with spatial

collection of 3 to 7 samples per tumor. 23 (67.6 %) of these tumors had a pure
low- or high-neural signature in all individual biopsies with additional 10 (29.4 %)
tumors being predominantly low or high. e). Neural signature in 39 patients with
matched tumor tissue obtained from surgery at first diagnosis and recurrence.
ns: P>0.05, two-tailed Student’s t-test. f). Sankey plotillustrating a potential
switch of the neural subgroup between first diagnosis and recurrence.
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Extended Data Fig. 7| Drug sensitivity analysis of low- and high-neural cleaved caspase 3.*P < 0.05, Mann-Whitney test. c). Drug sensitivity of low- and
glioblastoma cells. a). Representative microscopic images for high- (leftimage) high-neural glioblastoma cells measured by average cell area. *P < 0.05, Mann-
and low-neural (rightimage) glioblastoma cells. Green: Vimentin, yellow: cleaved Whitney test. d). Statistical difference of sensitivity to various drugs between
caspase 3, TUBB3:red, DAPI: blue. Scale bars: 10um. n=9 biological replicates. low- and high-neural glioblastoma cells. Mann-Whitney test.

b). Drug sensitivity of low- and high-neural glioblastoma cells measured by
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Extended Data Fig. 8| Clinical prognostic and circulating biomarkers of

p ic neural glioblastomas. a). Neural signature in DNA methylation
subclasses of newly diagnosed IDH-wild-type glioblastoma. *P < 0.05, two-tailed
Student’s t-test. b). Forest plot illustrating the multivariate analysis of low-neural
patients with glioblastoma. Means are shown by closed circles and whiskers
representing the 95% confidence interval. Cox proportional hazards regression
model. c). Forest plotillustrating the multivariate analysis of high-neural patients
with glioblastoma. Means are shown by closed circles and whiskers representing
the 95% confidence interval. Cox proportional hazards regression model.
d -e).Survival outcome categorized after RANO categories for extent of
resection in patients with glioblastoma treated by radiochemotherapy with a
low-and high-neural signature. Class 1: 0 cm® CE + <5 cm® nCE tumor, Class 2: <1

cm?® CE, Class 3A: <5 cm® CE, Class 3B: >5 cm®. Log-rank test, d) P=0.0002, and

e) P=0.0011.f.) Correlation of neural signature and number of extracellular
vesicles in patient serum at time of diagnosis. Simple linear regression P=0.01.
Error bands representing the 95% confidence interval. g.) Comparison of neural
signature in healthy individuals, patients with glioblastoma, and meningeoma
patients between matched tumor tissue, extracellular vesicle-associated DNA in
serum, and cell-free DNA in serum. *P < 0.05, two-tailed Student’s t-test.

h.) Comparison of patients with no detectable (left panel) and detectable (right
panel) extracellular vesicle levels in serum stratified to their epigenetic neural
glioblastomatype. i.) lllustration of the neural signature in different types of
sampling in patients with glioblastoma.
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E ded DataFig. 9 |Rel e of neural classification in pediatricand
dol patients diag d with H3K27-altered diffuse midline glioma
(DMG). a). Association of tumor location with neural signature. Two-tailed
Student’s t-test. b). Volcano plot showing differentially methylated CpG sites
of genes of the invasivity signature, neuronal signature, and trans-synaptic
signaling signature. c). Cell state composition analysis in low- and high-neural
DMG. d). Synaptic gene expression (PTPRS, ARHGEF2, GRIK2, DNM3, LRRTM2,

GRIKS, NLGN4X, NRCAM, MAP2, INA, TMPRSS9)® is significantly correlated with
the stem cell-like state of DMG cells calculated by an overlap of single-cell DNA
methylation and single-cell RNA sequencing (599 cells from 3 study participants)
measurements. Simple linear regression. e - h). Kaplan-Meier survival analysis
of 72 DMG patients under 18 years of age with alow- and high-neural DMG. Error
bands representing the 95% confidence interval. Log-rank test, e) P=0.0017, f)
P=0.0022,g) P=0.0882,and h) P=0.3236.
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Extended Data Table 1| Clinical Characteristics

Characteristic N Low-neural High-neural P
glioblastoma glioblastoma | value
(n=213) (n=150)
Age, mean (SD), years 61.4 60.9 (10.2) 61.8 (9.7) 0.41
(10.0)
Sex, n (%)
Female 139 83(39.0) 56 (37.3)
(38.3) 0.83
Male 224 130 (61.0) 94 (62.7) :
(61.7)
Location, n (%)
106 68 (31.9) 38 (25.3)
Frontal (29.2) 0.19
. 145 80 (37.6) 65 (43.3)
Parietal (39.9) 0.31
141 71(33.3) 70 (46.7)
Temporal (38.8) 0.02
. 55 30(14.1) 25 (16.7)
Occipital (15.2) 0.55
Hemisphere, n (%)
166 99 (46.5) 67 (44.7)
Left (45.7)
. 174 103 (48.4) 71 (47.3)
Right (47.9) 0.55
23 11 (5.2) 12 (8.0)
Both (6.3)
Karnofsky prior surgery, mean 84.6 83.0(12.9) 86.7 (11.4) <0.01
(SD), % (12.4) )
Extent of resection, n (%)
142 92 (43.2) 50 (33.3)
Gross total (39.1)
99 59 (27.7) 40 (26.7)
Near gross total (27.3) 0.08
. 122 62 (29.1) 60 (40.0)
Partial (33.6)
MGMT promoter methylation
status, n (%)
Non-methylated 174 107 (50.2) 67 (44.7)
(47.9) 0.38
189 106 (49.8) 83 (55.3) '
Methylated (52.1)
Karnofsky prior adjuvant 85.4 84.4 (13.0) 86.7 (12.1) 0.09
treatment, mean (SD), % (12.7) )

Clinical characteristics of patients with glioblastoma who were treated with combined radio chemotherapy after surgical resection. SD: standard deviation, MGMT:
06-methylguanine-DNA-methyltransferase.
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DISCUSSION

The individual findings of each of the three works are discussed in detail as part of each
publication presented in chapters 2-4. In this chapter, we situate the findings of these
works within the context of computational biology, immunology, and neuroscience with
a focus on open questions and potential works.

5.1. CELL TYPE DECONVOLUTION, CHALLENGES AND POTEN-
TIAL DIRECTIONS

As detailed in Chapter 2, there have been several works in cell type deconvolution - both
the estimation of cell type proportions and gene expression profiles. Cell type deconvolu-
tion benefits from the bulk studies with larger cohorts in comparison to the single-cell
studies. Further, bulk and single-cell studies in combination provide a better understand-
ing of tissue heterogeneity and architecture (George et al., 2024; Zeng et al., 2024). In
our work with DISSECT, we used the simple formulation of the cell deconvolution task
as described in Chapter 2 and extended it to enable semi-supervised learning with gene
expression profiles from both the bulk and single-cell reference. The method achieves
a consistent performance across a range of experiments. Some challenges and open
questions remain as discussed below:
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5.1.1. BETTER AND CONSISTENT CELL TYPE DEFINITIONS

In DISSECT, we relied on cell type definitions based on molecular profiles, where cell
types are defined by some marker genes that show preferential enrichment in a given
cell type (Zeng, 2022; Dominguez Conde et al., 2022). Cell type definitions based on
molecular profiles may differ across single-cell studies and may convolute the insights
gained from cell type deconvolution. In our experiment with the estimation of granu-
lar level cell types, we harmonize the cell type annotations from two sources based on
cell type definition similarities (e.g. mapping different memory CD4 T cell subsets to
form a single cluster memory CD4 T cells). This limits the evaluation of algorithms on
specific subsets. Efforts into homogeneous cell ontologies and cell type marker genes
may help alleviate this problem (Bernstein et al., 2021; Borner et al.). The human cell
atlas is a prominent example of this direction (Osumi-Sutherland et al., 2021). Further,
the validation of novel cell types identified in previously published studies consisting
of large-scale atlases may help in producing good training data for reference, which is a
prominent challenge in cell type deconvolution as argued in Garmire et al. (2024). In a
similar direction, accessibility to good quality reference data for cell type deconvolution
can be aided by integrating single-cell data portals, e.g. CellXGene (Megill et al., 2021)
with the deconvolution software for ease of choosing appropriate reference by tissue,
disease, and organism.

From a technical perspective, this challenge directly impacts the learning framework of
DISSECT’s neural architecture since the consistency regularization framework assumes
that marker genes remain invariant across conditions. Further, in a semi-supervised set-
ting where some real bulk data with cell type fractions is available, inconsistent cell type
definitions across references can violate this assumption, potentially increasing the effec-
tive dimension of the learning problem beyond our theoretical @ (y/n¢) bound. Future
work could explore adaptive architectures that learn robust representations across differ-
ent annotation schemes, perhaps by incorporating hierarchical cell ontologies directly
into the network structure.

5.1.2. INCORPORATION OF ADDITIONAL INFORMATION FOR THE MIXTURES

In DISSECT, we incorporate gene expression information from the bulk data, by gen-
erating mixtures of bulk samples and samples simulated from a scRNA-seq reference.
This allows for a seamless training procedure that is capable of learning from real gene
expression as well. DISSECT, thus, does not rely only on the simulated data that borrows
from the limitations of single-cell data such as the presence of dropouts (Léhnemann
et al., 2020). This also allows better deconvolution from a mismatched reference such
as the case when reference data is from a different condition. Previously, in MuSiC2
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(Fan et al., 2022), authors proposed to train on multi-condition references to solve this
problem. However, it is unlikely that for a desired condition, the single-cell reference is
always available.

While in bulk RNAseq, observations are limited to the gene expression, spatial transcrip-
tomics data such as Visium from 10x genomics, provides additional information such as
the location of each sequenced mixture as well as the hematoxylin and eosin (H&E) image
staining of the underlying tissue. However, the algorithms found best in our comparisons
as well as in a benchmarking study from 2022 do not take either of these additional infor-
mation into account. In contrast, algorithms like SONAR (Liu et al., 2023) and CARD (Ma
and Zhou, 2022) that take into account the mixture locations do not outperform these
algorithms and DISSECT. This seems counterintuitive as there is information embedded
in the additional information about tissue as given by mixture-locations and pathology
images. We believe that this observation is a multimodal learning problem rather than
a lack of information (Gao et al., 2020). Further works into incorporating location and
image information in frameworks like DISSECT have the potential to improve over current
spatial transcriptomics deconvolution state-of-the-art and could also provide a more
holistic landscape of cell type heterogeneity in tissues.

From an algorithmic perspective, extending DISSECT’s framework to incorporate spatial
and imaging data presents interesting theoretical challenges. The current consistency
regularization framework relies heavily on the linear mixing assumption, which may not
hold directly for spatial relationships. One potential direction is to extend our theoretical
framework to include manifold regularization that preserves spatial structure. An alter-
native would also be to enforce the consistency term locally in selected neighborhoods,
such as achieved by adding a spatial consistency term:

Lopariat =If(B"™) = 3 wij fBIP,
JEN ()
where A4 (i) represents spatial neighbors and w; ; are spatial weights. The challenge lies in
proving that such additional constraints maintain spatial coherence and in demonstrating
that a model can be trained to achieve such objectives without compromising on an
overall prediction quality.
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5.1.3. ESTIMATION OF RARE POPULATIONS

In our experiments with DISSECT, we found that DISSECT identifies rare cell type popula-
tions (<1% true abundance) with better accuracy compared to other tested algorithms.
However, Dissect has a high relative error rate when compared to the ground truth. The
potential causes for this observation likely stem from the low enrichment of markers for
these cell types in the bulk expression profiles. There is also a lack of enough cells to
capture within-cell type heterogeneity, marker gene consensus, and cell type annotation
artifacts in the single-cell reference (Cheng et al., 2023; Garmire et al., 2024). Further
work into careful cell type annotation while preparing references as well as utilizing large
single cell datasets with enough heterogeneity may provide more trustworthy results from
DISSECT even on these rare cell populations.

The challenge of rare cell types presents an interesting theoretical tension with our current
framework. While DISSECT'’s consistency regularization helps reduce sample complexity,
rare populations may require more samples than our O(y/7nc) bound suggests for reliable
estimation. This connects to fundamental questions in learning theory about the sample
complexity required for tail estimation. Future work could explore adaptive weighting
schemes in the loss function:

C
Lyeighted = Z wiLg,
k=1
where wy could be inversely proportional to cell type frequency, potentially with theoreti-
cal guarantees for rare population estimation.

5.1.4. NOVEL BENCHMARKS FOR GENE EXPRESSION ESTIMATION

In evaluating deconvolution algorithms for the task of cell type-specific gene expres-
sion estimation, we relied only on simulations. Real bulk data, as we have argued in
the DISSECT manuscript is a different modality than the simulations from a single-cell
reference. An appropriate experimental setup would be a paired generation of purified
cell populations and bulk data from the same or adjacent tissue samples. This would allow
direct benchmarking by comparing the predicted expression profile with the measured
expression profiles of the purified cell populations. In the case of spatial transcriptomics
data, this is possible now to some extent with paired Xenium and Visium breast cancer
data (Janesick et al., 2023). However, the number of samples and tissue diversity are still
limited.
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From a methodological perspective, the lack of ground truth for gene expression estima-
tion raises questions about the validity of our theoretical guarantees in practice. While
our consistency regularization framework provides formal guarantees for preservation of
distances between cell type signatures, these guarantees assume the training distribution
matches the test distribution. Future work could explore domain adaptation techniques
that explicitly account for the shift between simulated and real data, perhaps by incor-
porating ideas from optimal transport theory to minimize the distribution shifts (Courty
etal., 2016, 2017).

5.2. USTEKINUMAB AS A TREATMENT FOR ANCA-GN, AND
CELL TYPEABUNDANCE AND HETEROGENEITY IN GLOMERU -
LONEPHRITIS

As detailed in Chapter 3, despite significant therapeutic advancements, patients with
ANCA-GN continue to face substantial risks of kidney failure and mortality. ANCA-GN is a
severe autoimmune disease characterized by the production of autoantibodies targeting
neutrophil proteins, leading to inflammation and damage in small blood vessels, particu-
larly in the kidneys (Jennette and Falk, 2013). The primary causes of death in ANCA-GN
patients - infections, cardiovascular disease, and malignancies - are often linked to the
use of non-specific immunosuppressive treatments. This underscores the critical need for
a balanced therapeutic approach that effectively controls the disease while minimizing
potentially life-threatening side effects.

Current standard therapies for ANCA-GN typically involve a combination of high-dose
corticosteroids and cyclophosphamide or rituximab for induction of remission, followed
by maintenance therapy with azathioprine or rituximab (Yates et al., 2016). While these
treatments have improved outcomes for many patients, they are associated with signif-
icant toxicities and do not address the underlying pathogenic mechanisms specific to
ANCA-GN. This highlights the urgent need for more targeted therapies that can effectively
control disease activity while reducing the risk of treatment-related complications.

5.2.1. MULTI-OMICS APPROACH FOR ANCA-GN TREATMENT

To address these challenges and gain deeper insights into the pathogenesis of ANCA-
GN, we employed advanced multi-omics techniques and machine learning algorithms
to study ANCA-GN patients. Our comprehensive approach integrated scRNA-seq and
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spatial transcriptomics from Visum (from 10x Genomics) to provide a multidimensional
view of the disease tissue environment.

Our findings suggested a significant accumulation of pro-inflammatory T cells, par-
ticularly T helper 1 (Thl) and T helper 17 (Th17) cells, in affected kidney areas. This
observation is consistent with previous studies suggesting a crucial role for these T cell
subsets in the pathogenesis of ANCA-GN (Gan et al., 2010; Krebs et al., 2016). The pres-
ence of these cells in inflamed glomerular and tubulointerstitial tissue compartments
indicates their potential involvement in both the initiation and progression of kidney
damage in ANCA-GN.

In addition to Th1 and Th17 cells, we observed an increased abundance of other memory
T cell populations, including natural killer T (NKT) cells and T follicular helper (Tfh) cells.
These findings suggest a complex interplay of various T cell subsets in the pathogenesis
of ANCA-GN. Furthermore, we noted an increased number of macrophages in affected
kidney areas, consistent with the known role of these cells in mediating tissue damage
and fibrosis in glomerulonephritis (Guiteras et al., 2016).

Through integrative analysis of single-cell and spatial transcriptomics data, we identified
ustekinumab as a potential treatment option for ANCA-GN. Ustekinumab is a monoclonal
antibody that targets the p40 subunit shared by interleukin-12 (IL-12) and interleukin-23
(IL-23), cytokines crucial for the differentiation and maintenance of Th1 and Th17 cells,
respectively (Teng et al., 2015). By inhibiting these pathways, ustekinumab could poten-
tially modulate the pro-inflammatory T cell response observed in ANCA-GN patients,
offering a more targeted therapeutic approach.

5.2.2. CELL TYPE ARCHITECTURE AND GLOMERULONEPHRITIS

While our study provides valuable insights into the cellular and molecular landscape of
ANCA-GN, several limitations and areas for future research should be noted. First, the
exact cell type proximities and niches within glomerular and tubulointerstitial compart-
ments remain unclear due to the limited resolution of the Visium spatial transcriptomics
data. To address this limitation, employing newly developed approaches such as Xenium
or CosMx may provide a better understanding of cell type composition and networks at a
higher resolution (Abedini et al., 2024).

A more detailed spatial analysis is particularly necessary for understanding glomerular
crescent staging in ANCA-GN. Identifying glomeruli in different stages of crescent forma-
tion would help in constructing crescent pseudotime trajectories similar to single-cell
data and has the potential to interrogate genes and pathways involved in glomerular
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crescent progression (Isnard et al., 2024). Due to the supra-cellular nature of Visium data,
we were unable to investigate the involvement of individual glomerular cell types such as
parietal epithelial cells, mesangial cells, and podocytes in the crescent formation. Future
studies using higher-resolution spatial transcriptomics techniques could provide valuable
insights into the roles of these specific cell types in ANCA-GN pathogenesis (Sultana et al.,
2024).

Our observation of increased fibronectin expression, elevated inflammatory signatures,
and associated interferon pathways presents an interesting but non-specific finding. With
single-cell information, future research has the potential to go deeper into identifying the
key glomerular and immune cell type players involved in triggering crescent formation.
This would also allow for better targeting of these cell types and pathways, potentially
enabling the rescue of glomeruli in the early stages of crescent formation.

5.2.3. COMPARATIVE ANALYSIS OF GLOMERULONEPHRITIS CATEGORIES

ANCA-GN represents a particular pathogenesis of glomerulonephritis, but it is important
to consider how it compares to other categories of GN. For instance, infection-related
GN, where the cause of active GN is an underlying infection, leads to adaptive immune
responses against the pathogen antigen (Anders et al., 2023). It remains unclear how
glomeruli differ molecularly across various GN categories and which pathways are shared
among them.

To address this knowledge gap, a comprehensive high-dimensional multimodal atlas cov-
ering multiple GN categories is warranted. Such an atlas could allow for better treatment
proposals for different types of GN, similar to our ANCA-GN study. Furthermore, it is
important to note that GN categories based solely on the pathology of the lesions may not
offer sufficient information about molecular differences in these diseases (Lerner et al.,
2021; Smith et al., 2022). Thus, it is necessary to compare these diseases beyond their
pathology and identify dysregulated pathways and cell types.

5.3. GLIOBLASTOMA (GBM) HETEROGENEITY

In our study with multi-omics analysis of glioblastoma, presented in chapter 4), we
observed two distinct groups of glioblastoma based on DNA methylation across many
cohorts. These groups, low- and high-neural, differ in their DNA methylation and tran-
scriptomic profiles. The differentially methylated CpGs on gene promoter sites were
enriched for synaptic pathways and integration with scRNA-seq highlighted an neural
progenitor cells (NPC) and oligodendrocyte progenitor cells (OPC)-like gene expression
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profile. This study highlights the heterogeneity of the GBM tumor microenvironment. The
neural signature and its predictive significance are not limited to glioblastoma; similar
patterns can be found in H3 K27-altered diffuse midline gliomas. Such broad applicability
underlines the plausibility of mechanistically important effects of neural integration
across several aggressive brain neoplasms.

5.3.1. ROLE OF IMMUNE CELLS AND OLIGODENDROCYTE-LIKE CELLS

High-neural GBMs significantly express a phenotype of malignant stem cells that defines
them as closely congruent with NPC or OPC. A surprising observation is the very low
presence of immune cells in these tumors, which may indicate the existence of possible
mechanisms for immune evasion. In contrast, we found low-neural GBMs to be immune-
enriched based on our analysis of transcriptomics and cell state composition. This di-
chotomy suggests the existence of two opposing glioblastoma subtypes, each potentially
requiring distinct therapeutic approaches. These differences in immune-enrichment are
crucial for evaluating treatment options in these tumors using immunotherapy.

The high-neural GBMs exhibit upregulation and reduced methylation of genes associated
with invasiveness and the formation and signaling of neuron-to-glioma synapses. This
specific molecular profile indicates the mechanisms underlying the assimilation of these
tumors into neural circuits (Venkataramani et al., 2019, 2022). The observation of tran-
scriptomic oligodendrocyte modules in high-neural GBMs may reflect the influence of
surrounding healthy oligodendrocyte progenitor cells on neuronal activity-driven mecha-
nisms affecting glioma cells or the interplay between immune cells and oligodendrocytes
(Hide et al., 2019; Moore et al., 2015).

5.3.2. ORIGIN OF CELLS IMPLICATED IN HIGH-NEURAL GBM

Although in our work we observed consistent detection of two neural subgroups of GBM
across multiple cohorts, we could not comprehensively characterize them. First, the term
"neural” here is broad and may refer to GBM cells with profiles similar to various neural
lineage cell types, including NPCs, OPCs, and astrocyte precursor cells (APCs). While
high-neural GBMs show increased NPC or OPC phenotype, it is also possible that the
total neural abundance may reflect a combination of these cell type profiles.

Given that with cell type deconvolution at the mRNA level, we could not find differences in
the proportion of these cell types between the two neural groups, this may indicate either
upstream changes or subtle differences that are not detectable at the mRNA level, partic-
ularly in bulk RNA-seq. This relates to limitations detailed in section 5.1.3, particularly
regarding the estimation of rare cell populations. Further, studying DNA methylation with
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greater granularity would require generation and analysis of single-cell DNA methylation
data or the generation of DNA methylation reference profiles from diverse neural cell
lineages and construction of more expansive cell type signatures to be used in cell type
deconvolution.

5.3.3. CLINICAL IMPLICATIONS OF THE NEURAL SUBGROUPS OF GLIOBLAS-
TOMA

In patients with high-neural GBMs, increased concentrations of brain-derived neu-
rotrophic factor (BDNF) are noted. This observation indicates the potential utility of
BDNF as a biomarker for the identification and surveillance of high-neural gliomas.
BDNF is a neurotrophin whose expression is regulated by neuronal activity and has
recently been described to exert functions that promote the growth of gliomas (Radin
and Patel, 2017). Inhibiting BDNF-TrkB signaling pathway is considered an attractive
therapeutic target for IDH-wildtype GBM (Taylor et al., 2023). Our research makes some
key additions regarding BDNF in the context of high-neural glioblastoma: First, we ob-
served elevated serum BDNF levels in adult patients with high-neural tumors, suggesting
its potential use as a biomarker for this tumor subtype. Increased BDNF levels could
originate from neurons in a glioma-induced hyperexcitable state or from the glioblastoma
cells themselves, as a subpopulation of these cells express and secrete BDNF as clear in
the integrated scRNA-seq data from glioblastoma and healthy brain, presented in our
study. Consistent with preclinical models, high serum levels of BDNF corresponded to a
greater seizure frequency within the glioblastoma population. This effect is consistent
with the role of BDNF in regulating a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptor trafficking and upregulation of AMPA genes within highly epilepto-
genic glioblastoma subclasses (Nakata and Nakamura, 2007). Neuronal activity resulting
from glioma-to-neuron interactions during growth or the onset of seizures appears to be
a major stimulus for BDNF release. This is evidenced by studies that have shown rising
serum concentrations of BDNF after the artificial induction of activity with ECT (van Buel
et al,, 2015; Ryan and McLoughlin, 2018). Further, inhibiting the BDNF-TrkB signaling
pathway is considered an attractive therapeutic target for GBM.

We observed a significant benefit of maximal surgical resection of the GBM tumor in
high-neural samples. In contrast, for the low-neural group, the benefit was already ob-
served with partial resection, and a complete resection did not lead to a clear advantage,
suggesting that for low-neural samples, complete surgical resection is not necessary.
Taken together, serum BDNF levels can be used as a biomarker to identify high-neural
subgroups that may require complete tumor resection.
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Given the stability and different outcomes of the two neural subclasses of GBV, it can be
hypothesized that these groups may also respond differently to various pharmacological
interventions. In the future, exploration of the impact of different drugs on the two
neural groups could be particularly useful, especially considering, for example, that trials
with programmed cell death protein-1 (PD-1) inhibitors in GBM treatment have shown
heterogeneous responses (Reardon et al., 2020; Lim et al., 2018).

5.4. CONCLUSION

In conclusion, this dissertation presents a series of findings that collectively advance
our understanding of cellular heterogeneity in complex diseases through computational
and multi-omics approaches. From the development of an improved cell type decon-
volution method to the application of cell type deconvolution in estimating cellular
compositions in ANCA-GN and GBM, our work demonstrates the utility of integrating
diverse data modalities to understand disease mechanisms. The methodological ad-
vances described in this work—particularly our semi-supervised learning framework for
deconvolution—provide a novel approach that can be applied across various disease
contexts to reveal cellular heterogeneity that would otherwise remain hidden in bulk
RNA-seq analysis.

Our studies led to the identification of distinct cellular subtypes in both ANCA-GN and
GBM with significant prognostic and therapeutic implications. Building on these findings,
several important research directions could be important for future work: (1) developing
cell type deconvolution methods that incorporate modality-specific knowledge, partic-
ularly for spatial transcriptomics data; (2) exploring cell type heterogeneity across GN
subtypes using high-resolution single-cell spatial technologies; and (3) investigating the
origin of neural cells highly abundant in high-neural GBM and evaluating differential
responses to pharmacological interventions between low- and high-neural GBM sub-
types. Addressing these will further advance our understanding of complex diseases and
potentially lead to better therapeutic approaches.
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