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SUMMARY

Changes in cell type composition are fundamental to understanding human disease

mechanisms. While single-cell omics technologies enable unprecedented resolution

in cellular profiling, their widespread clinical application is limited by technical biases

and cost constraints. Measurements on bulk tissue specimens, though more robust and

cost-effective, lack cell-type resolution. This creates a need for computational methods

that can bridge this gap. At its core, cell type deconvolution represents a semi-blind

source separation problem, where the goal is to estimate both the mixing proportions

and source signals from mixture measurements, given any partial information about the

sources from reference data.

This dissertation includes DISSECT, a novel deep semi-supervised learning algorithm for

robust cell type deconvolution. DISSECT addresses key limitations in existing approaches

by integrating information from both single-cell references and bulk data, effectively

handling domain shifts between reference and target datasets. Through comprehen-

sive benchmarking across multiple experimental settings and modalities (including bulk

RNA sequencing (RNA-seq), proteomics, and spatial transcriptomics), we demonstrate

DISSECT’s superior performance in predicting both cell type proportions and cell type-

specific expression profiles, with reduced dependency on reference selection.

We used cell type deconvolution to study two distinct diseases: antineutrophil cytoplas-

mic antibody-associated glomerulonephritis (ANCA-GN) and glioblastoma (GBM). In

ANCA-GN, deconvolution of single-cell and spatial transcriptomics data from 34 pa-

tients and 8 controls revealed specific T helper cell accumulation patterns associated

with inflammation. Computational drug prediction based on this information identified

ustekinumab as a potential therapeutic agent, which showed promising results in four

patients with poor prognosis under standard treatment. In glioblastoma, we used cell

type deconvolution to analyze DNA methylation patterns across multiple cohorts of GBM

patients, identifying two distinct and temporally stable GBM groups associated with

better prognostic value than established molecular subtypes, particularly in predicting

response to surgical intervention.

This dissertation makes several key contributions to bioinformatics, immunology, and

neuroscience: (1) a cell type deconvolution framework that advances the state-of-the-
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art in source separation for biological data, (2) an integrative analysis of immune cell

type-specific signals to guide therapeutic decisions in ANCA-GN, and (3) identification of

clinically relevant and stable GBM subgroups based on deconvolved cell type-specific

signals.



ZUSAMMENFASSUNG

Veränderungen in der Zusammensetzung von Zelltypen sind für das Verständnis mensch-

licher Krankheitsmechanismen von grundlegender Bedeutung. Während Einzelzell-

Omics-Technologien eine beispiellose Auflösung bei der zellulären Profilierung ermögli-

chen, ist ihre breite klinische Anwendung durch technische und finanzielle Limitationen

begrenzt. Messungen an Bulk-Gewebeproben sind zwar robuster und kostengünstiger,

weisen jedoch keine zelltypspezifische Auflösung auf. Daraus ergibt sich die Notwendig-

keit computergestützter Methoden, die diese Lücke schließen können. Im Kern stellt die

Zelltyp-Dekonvolution ein semi-blindes Source-Separation-Problem dar, bei dem das

Ziel darin besteht, sowohl die Mischungsverhältnisse als auch die Quellsignale aus Mi-

schungsmessungen zu schätzen, basierend auf partiellen Informationen über die Quellen

aus Referenzdaten.

Diese Dissertation beinhaltet DISSECT, einen neuartigen semi-supervised Learning-

Algorithmus für robuste Zelltyp-Dekonvolution. DISSECT adressiert wesentliche Li-

mitationen bestehender Ansätze durch die Integration von Informationen sowohl aus

Einzelzell-Referenzen als auch aus Bulk-Daten und bewältigt dabei effektiv Domain-

Shifts zwischen Referenz- und Zieldatensätzen. Durch umfassendes Benchmarking

über verschiedene experimentelle Ansätze und Modalitäten (einschließlich Bulk-RNA-

Sequenzierung, Proteomik und räumliche Transkriptomik) zeigen wir die überlegene

Leistung von DISSECT bei der Vorhersage sowohl von Zelltyp-Proportionen als auch

zelltypspezifischen Expressionsprofilen, bei reduzierter Abhängigkeit von der Referenz-

auswahl.

Mit Hilfe der Zelltyp-Dekonvolution haben wir zwei unterschiedliche Krankheiten un-

tersucht: die mit antineutrophilen zytoplasmatischen Antikörpern assoziierte Glome-

rulonephritis (ANCA-GN) und das Glioblastom (GBM). Bei ANCA-GN ergab die Dekon-

volution von Einzelzell- und räumlichen Transkriptomikdaten von 34 Patienten und 8

Kontrollpersonen spezifische T-Helferzell-Akkumulationsmuster, die mit Entzündungen

einhergehen. Eine auf diesen Informationen basierende computergestützte Arzneimittel-

vorhersage identifizierte Ustekinumab als potenziellen therapeutischen Wirkstoff, der

bei vier Patienten mit schlechter Prognose unter Standardbehandlung vielversprechende

Ergebnisse zeigte. Beim Glioblastom nutzten wir die Dekonvolution von Zelltypen zur

Analyse von DNA-Methylierungsmustern in mehreren GBM-Patientenkohorten und iden-
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tifizierten zwei unterschiedliche und zeitlich stabile GBM-Gruppen, die einen besseren

prognostischen Wert haben als etablierte molekulare Subtypen, insbesondere bei der

Vorhersage des Ansprechens auf einen chirurgischen Eingriff.

Diese Dissertation leistet mehrere wichtige Beiträge zur Bioinformatik, Immunologie

und Neurowissenschaft: (1) ein Zelltyp-Dekonvolutions-Framework, das den Stand der

Technik bei der Quellentrennung für biologische Daten vorantreibt, (2) eine integrative

Analyse von immunzellenspezifischen Signalen, um therapeutische Entscheidungen bei

ANCA-GN zu treffen, und (3) die Identifizierung klinisch relevanter und stabiler GBM-

Untergruppen auf der Grundlage dekonvolvierter zelltypspezifischer Signale.
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PREFACE

This dissertation follows a cumulative structure and contains the following three publica-

tions appearing in peer-reviewed journals.

Publication 1: Khatri R, Machart P, Bonn S. DISSECT: deep semi-supervised consistency

regularization for accurate cell type fraction and gene expression estimation. Genome

Biol. 2024 Apr 30;25(1):112. doi: 10.1186/s13059-024-03251-5. PMID: 38689377; PMCID:

PMC11061925.

Publication 2: Engesser J*, Khatri R*, Schaub DP*, Zhao Y, Paust HJ, Sultana Z, Asada

N, Riedel JH, Sivayoganathan V, Peters A, Kaffke A, Jauch-Speer SL, Goldbeck-Strieder

T, Puelles VG, Wenzel UO, Steinmetz OM, Hoxha E, Turner JE, Mittrücker HW, Wiech

T, Huber TB, Bonn S#, Krebs CF#, Panzer Ulf#. Immune profiling-based targeting of

pathogenic T cells with ustekinumab in ANCA-associated glomerulonephritis. Nat

Commun. 2024 Sep 19;15(1):8220. doi: 10.1038/s41467-024-52525-w. PMID: 39300109;

PMCID: PMC11413367.

Publication 3: Drexler R*, Khatri R*, Sauvigny T, Mohme M, Maire CL, Ryba A, Zghaibeh

Y, Dührsen L, Salviano-Silva A, Lamszus K, Westphal M, Gempt J, Wefers AK, Neumann

JE, Bode H, Hausmann F, Huber TB, Bonn S, Jütten K, Delev D, Weber KJ, Harter PN,

Onken J, Vajkoczy P, Capper D, Wiestler B, Weller M, Snijder B, Buck A, Weiss T, Göller PC,

Sahm F, Menstel JA, Zimmer DN, Keough MB, Ni L, Monje M, Silverbush D, Hovestadt

V, Suvà ML, Krishna S, Hervey-Jumper SL, Schüller U, Heiland DH#, Hänzelmann S#,

Ricklefs FL#. A prognostic neural epigenetic signature in high-grade glioma. Nat Med.

2024 Jun;30(6):1622-1635. doi: 10.1038/s41591-024-02969-w. Epub 2024 May 17. PMID:

38760585; PMCID: PMC11186787.

For clarity, the structure of the organization of this dissertation is presented below.

Chapter 1 provides the necessary background and introduces the main topics explored

in subsequent chapters. In particular, sections 1.1-1.3 introduce the basic biological

background and terms required to understand the data and publications. Sections 1.4-1.7

introduce the computational methods, including analysis pipelines, deep neural networks,

cell type deconvolution state-of-the-art and the proposed novel DISSECT framework.

Section 1.8 presents a background on the disease and literature corresponding to the
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work herein. Section 1.9 lists the research goals this dissertation addresses. Chapters

2-4 present the aforementioned publications. Each publication includes supplementary

content (tables, figures, and/or notes) which appears after the main content of the re-

spective manuscripts in chapters 2-4. Finally, chapter 5 summarizes the findings of the

works presented in this dissertation, and discusses its results, contributions, and potential

impact.

In each of the publications, I am a first author and have made significant contributions to

project conceptualization, analysis, drafting, editing, and revising the manuscripts. The

particular contributions for each of the publications are presented as appendix A.

Robin Khatri

Hamburg, 2025
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1.1. CELLS AND CELL TYPES

Cells are the fundamental units of living organisms, each containing a complex array

of structures and molecules that work together to maintain biological functions. Cells

contain various structures including a nucleus bound by membrane (Figure 1.1a). At

the heart of cellular operations lies Deoxyribonucleic acid (DNA), the genetic blueprint

stored within the nucleus of cells. This double-helix molecule contains the instructions

for building and operating the cell (Watson and Crick, 1953). When these instructions

are carried out, a process called transcription begins which results in RNA molecules

(Figure 1.1b). This process of transcription can be blocked when methyl groups (CH3)

are added to a DNA molecule (Figure 1.1c). During transcription, enzymes unwind a

section of DNA and use it as a template to create a complementary strand of Ribonucleic

acid (RNA) (Kornberg, 2007). This RNA molecule, specifically messenger RNA (mRNA),

then exits the nucleus and serves as a mobile set of instructions for protein synthesis.

Other types of RNA, such as transfer RNA and ribosomal RNA, also play crucial roles in

translating the genetic code into functional proteins (Crick, 1970). Between species and

among organs, the cell composition and biological attributes differ, and understanding

the architecture and functions of an organism requires understanding the composition

and function of constituting cells (Zeng, 2022). Based on certain properties, cells can

be categorized into homogenous groups termed cell types. While there is no consensus

on which qualities are necessary and mandatory to define a cell type, the recent efforts

focus on defining cell types with respect to shared development history and molecular

features such as transcriptome and epigenome (Fleck et al., 2023). Based on the data

compiled from over 1500 publications, there are an estimated >28 trillion cells in adult

humans with around 500 major cell types across 60 tissue systems such as the brain and

kidney (Hatton et al., 2023). The cell types undergo changes in both numbers and their

molecular features in different conditions of the body such as during a disease (Jagadeesh

et al., 2022; Ju et al., 2013). The primary focus, here, is to understand the changes in

cell type composition and molecular features in glioblastoma (GBM) and Antineutrophil

cytoplasmic antibody-associated glomerulonephritis (ANCA-GN) (introduced in Section

1.8). Major cell types of the kidney and brain in a healthy state are presented in Figure

1.1d.
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Figure 1.1 | a. Schematic illustration of a cell highlighting key organelles and processes. The cell nucleus
contains DNA, which undergoes transcription to produce RNA. Mitochondria, the powerhouses of the cell,
generate ATP through cellular respiration. The cytoplasm contains various organelles and newly transcribed
mRNA. Exported mRNA can be seen outside the nucleus. They move to the rough endoplasmic reticulum (ER).
The rough ER, studded with ribosomes, is involved in protein synthesis and modification. The Golgi apparatus
further processes and packages proteins for secretion or cellular use. The cell is enclosed by a cell membrane
featuring surface receptors, which are proteins that bind specific molecules and initiate cellular responses. b.
Illustration of RNA transcription from a DNA template. c. Illustration of DNA methylation. DNA methylation
refers to the process in which methyl groups (CH3), depicted by ME3 in the figure, are added to cytosine bases
in the DNA molecule, often at CpG sites. When these methyl groups attach to a gene promoter, which is the
region of DNA that initiates transcription of a particular gene, DNA methylation often restricts transcription. d.
Some examples of the established cell type populations in the brain and kidney - two tissues used extensively in
publications part of this dissertation. Created with BioRender.com.
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1.2. RNA SEQUENCING (RNA-SEQ)

RNA-seq is a broad term for a range of technologies to measure the abundance of tran-

scripts of each gene from a biological specimen. Multiple technologies exist for different

use cases. RNA sequencing can be done either on individual cells or multiple cells such

as parts or on entire organ systems. Here, to distinguish between different RNA-seq

measurements, we use three terms: 1. Bulk RNA refers to RNA measurements at a tissue

level, 2. Single cell RNA-seq (scRNA-seq) refers to RNA-seq at a single-cell level, and 3.

Spatial transcriptomics refers to RNA-sequencing at a tissue level while preserving the

locations of each measurement. Each of these are briefly described below.

1.2.1. BULK RNA-SEQ

Bulk RNA-seq is a powerful technique that uses next-generation sequencing to compre-

hensively profile the transcriptome. It involves extracting RNA from a sample, converting

it to cDNA, fragmenting the cDNA, and sequencing the fragments using high-throughput

sequencing platforms (Kukurba and Montgomery, 2015). The resulting sequencing reads

are then aligned to a reference genome or transcriptome to quantify gene expression lev-

els. Bulk RNA-seq can detect novel transcripts, splice variants, and non-coding RNAs, and

has a wide dynamic range for quantifying gene expression (Kukurba and Montgomery,

2015; Rao et al., 2019).

1.2.2. SCRNA-SEQ

scRNA-seq allows for the dissection of complex tissues by profiling individual cells and

providing the transcriptional states of each cell (Wolfien et al., 2021). This allows for a bet-

ter understanding of cellular heterogeneity and composition (Papalexi and Satija, 2018).

Several platforms exist for scRNA-seq. Two main ones with complementary benefits are

introduced below.

10X CHROMIUM

The 10x Chromium platform available from 10x Genomics is a droplet-based scRNA-seq

method that enables the profiling of thousands of cells in a single experiment (Wang

et al., 2021). It uses microfluidics to encapsulate individual cells into nanoliter-scale

droplets, along with barcoded beads for cell-specific labeling of mRNA molecules. The

10x Chromium system offers two main library preparation chemistries. 3’ gene expres-

sion and 5’ gene expression (Hsu et al.). Both of these capture a particular portion of
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transcripts (as indicated by their names). 3’ and 5’ refer to the terminal regions of the RNA

molecule that play crucial roles in its stability, processing, and translation (Wang et al.,

2021).

SMART-SEQ2

Smart-seq2 is a plate-based scRNA-seq method from Illumina that provides full-length

mRNA sequencing as opposed to specific portions (Wang et al., 2021). It involves the iso-

lation of single cells into individual wells, followed by cell lysis and reverse transcription

to generate cDNA. The cDNA is then amplified and sequenced.

Smart-seq offers several advantages, including full-length mRNA sequencing that can

identify novel isoforms, and a higher sequencing depth per cell compared to 10x Chromium,

allowing for the detection of lowly expressed genes. However, Smart-seq has a lower

throughput compared to 10x Chromium and requires more input material per cell, and

can miss rare populations from being captured (Wang et al., 2021).

1.2.3. SPATIAL TRANSCRIPTOMICS

Spatial transcriptomics is a new technology that quantifies gene expression of a tissue in a

spatial context. One of the leading platforms in the field is the Visium from 10x Genomics,

which allows for the comprehensive profiling of the transcriptome on circular grids of

spots of around 55 µm spread across entire tissue sections. This method captures spatial

information by utilizing a slide with a grid of oligonucleotide probes that hybridize to

mRNA within tissue samples (Moses and Pachter, 2022). By mapping the location of gene

expression, it is possible to analyze the gene expression patterns over the tissue which is

critical for understanding complex biological processes such as development and disease

progression (Zhou et al., 2023).

The Visium platform is particularly notable for its versatility, as it can analyze both fresh-

frozen and formalin-fixed, paraffin-embedded (FFPE) tissues (Williams et al., 2022). This

flexibility is essential for utilizing archival samples in research, which often contain valu-

able information about disease states. The technology supports whole-tissue section

profiling, eliminating the need for researchers to pre-select regions of interest. This ca-

pability allows for a more comprehensive view of the tissue landscape, capturing a wide

array of cellular interactions and spatial gene expression patterns. Additionally, Visium

can achieve a high cellular resolution, typically averaging 1 to 10 cells per spot, depending

on the tissue type, which enhances the granularity of the data obtained. However, in prac-

tice, cell type level analysis is not possible without the usage of cell type deconvolution
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approaches to measure cell type fraction and gene expression estimation in each spot (Li

et al., 2023). Newer technologies like Xenium from 10x genomics are rapidly developing

and in the future, it may be possible to utilize them for large-scale studies, possibly in

combination with Visium (Janesick et al., 2023).
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1.3. DNA METHYLATION

DNA methylation, illustrated in Figure 1.1c, is an epigenetic modification that plays a

vital role in regulating gene expression, genomic imprinting, X-chromosome inactivation,

and maintaining genome stability. This process involves the addition of a methyl group

to the 5’ position of cytosine residues, predominantly occurring at CpG sites (regions of

DNA where a C, cytosine nucleotide occurs before a G, guanine nucleotide). The dynamic

nature of DNA methylation patterns throughout development and in response to envi-

ronmental factors has made it a subject of intense research in various fields, including

cancer biology, neuroscience, and developmental biology (Tucker, 2001; Jones, 2012).

High-throughput technologies have revolutionized our ability to study DNA methylation

patterns on a genome-wide scale. Among these technologies, DNA methylation microar-

rays are powerful tools for interrogating methylation status across pre-defined hundreds

of thousands of CpG sites simultaneously. Two prominent platforms in this field are the

Illumina Infinium HumanMethylation450 BeadChip (450k array) and its successor, the

Illumina Infinium MethylationEPIC BeadChip (EPIC array).

The 450k array was designed to assess the methylation status of over 450,000 CpG sites

across the human genome. This array covers 99% of RefSeq genes, with an average of

17 CpG sites per gene region distributed across the promoter, 5’UTR, first exon, gene

body, and 3’UTR (Bibikova et al., 2011; Price et al., 2013). Additionally, it includes CpG

sites in CpG islands, shores, and shelves, as well as miRNA promoter regions (Bibikova

et al., 2011). The 450k array utilizes two types of probe designs: Infinium I and Infinium

II. Infinium I probes use two bead types per CpG locus, one for methylated and one for

unmethylated states, while Infinium II probes use a single bead type with two different

color channels to distinguish between methylated and unmethylated states.

While 450k arrays covered a large amount of CpG sites, it still covers only a small por-

tion of CpG sites in the human genome ( 28 million) (Babenko et al., 2017). EPIC array,

which substantially expanded the coverage to over 850,000 CpG sites, maintains backward

compatibility with the 450k array, covering more than 90% of the CpG sites present in

its predecessor (Fernandez-Jimenez et al., 2019). The additional probes on the EPIC

array target enhancer regions identified by the ENCODE and FANTOM5 projects, as well

as open chromatin regions and DNase hypersensitive sites (Moran et al., 2016). This

expanded coverage allows for a more comprehensive analysis of regulatory regions and

provides greater insight into the functional relevance of DNA methylation patterns.

Both the 450k and EPIC arrays have been widely adopted in large-scale epigenome-wide

association studies (EWAS), enabling researchers to identify differentially methylated re-
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gions associated with various phenotypes, diseases, and environmental exposures. These

arrays have contributed significantly to our understanding of the role of DNA methylation

in cancer progression, neurodegenerative disorders, and aging, among other biological

processes (Teschendorff and Relton, 2018).

Despite their widespread use and valuable contributions to the field, DNA methyla-

tion microarrays have some limitations. They provide a targeted approach, focusing on

pre-selected CpG sites, which may miss potentially important methylation changes in

unprobed regions. Additionally, the arrays are designed based on the human reference

genome, which may not capture all genetic variants present in diverse populations such

as murine models as a model organism (Canales and Walz, 2019). Furthermore, these

arrays typically require a relatively large amount of input DNA, which can be a limiting

factor when working with rare cell populations or clinical samples. To address some of

these limitations and to gain insights into cellular heterogeneity, single-cell DNA methy-

lation profiling techniques have been developed in recent years. These methods aim to

capture methylation patterns at the individual cell level, providing unprecedented resolu-

tion for studying epigenetic heterogeneity within complex tissues and cell populations.

Single-cell bisulfite sequencing (scBS-seq) and single-cell reduced representation bisulfite

sequencing (scRRBS) are among the pioneering techniques in this field (Smallwood et al.,

2014; Guo et al., 2013). However, single-cell DNA methylation profiling faces several chal-

lenges. The primary obstacle is the sparse nature of the data due to the limited amount

of DNA available from a single cell and the destructive nature of bisulfite conversion.

This sparsity results in low genomic coverage per cell, typically ranging from 1% to 10%

of CpG sites. Another challenge is the high technical variability introduced during the

amplification of small amounts of DNA, which can lead to biases and increased noise

in the data. Additionally, the cost and computational resources required for single-cell

methylation analysis are significantly higher compared to bulk sample analysis, limiting

the number of cells that can be profiled in a given experiment. Despite these challenges,

single-cell DNA methylation profiling has already provided valuable insights into cellular

heterogeneity in various biological contexts, including embryonic development, tumor

evolution, and brain function. As the field continues to advance, new methodologies

and analytical approaches are being developed to improve genomic coverage, reduce

technical biases, and enhance the integration of single-cell methylation data with other

omics modalities (Luo et al., 2017).
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1.4. METHODS FOR THE THE ANALYSIS OF RNA-SEQUENCING

AND DNA METHYLATION DATA

1.4.1. COMPUTATIONAL ANALYSIS OF SCRNA-SEQ

This introduction outlines key methodological approaches used in the analysis of scRNA-

seq data.

The first step in the analysis of scRNA-seq data is processing of the raw data obtained

from sequencing (e.g. from 10x Chromium as introduced in section 1.2.2). The processing

steps involve data filtering and other quality control steps to remove potential doublets

(i.e. where more than one cell is wrongly barcoded as one cell) and cells with low quality,

as measured by the number of expressed genes (Luecken and Theis, 2019), and dimen-

sionality reduction techniques such as PCA to visualize and explore the data, resulting in

a smaller set of principal components (Hwang et al., 2018). Following PCA, non-linear

dimensionality reduction methods such as t-distributed Stochastic Neighbor Embedding

(t-SNE) or Uniform Manifold Approximation and Projection (UMAP) are applied to further

reduce the data to two or three dimensions for visualization (Van der Maaten and Hinton,

2008; McInnes et al., 2018). These techniques help identify clusters of cells with similar

expression profiles, which often correspond to distinct cell types.

Clustering algorithms play a central role in identifying cell types from scRNA-seq data.

Unsupervised clustering methods, such as k-means, hierarchical clustering, or graph-

based approaches like Louvain or Leiden algorithms, are used to group cells based on

their gene expression similarities (Kiselev et al., 2019). The choice of clustering algorithm

and parameters can significantly impact the results, and we often need to experiment

with different approaches to find the most biologically meaningful clustering solution.

Once clusters are identified, the next critical step is to annotate these clusters with cell

type labels. This process typically involves examining the expression of known marker

genes for different cell types. Differential expression analysis between clusters can help

identify genes that are uniquely or preferentially expressed in each cluster, aiding in their

biological interpretation (Love et al., 2014). Additionally, automated annotation tools that

use existing gene expression databases and ontologies, such as SingleR or Garnett, can

assist in assigning cell type labels to clusters (Aran et al., 2019; Pliner et al., 2019).

Recent advancements in scRNA-seq analysis methods have focused on addressing the

challenges of batch effects and data integration. Techniques such as mutual nearest

neighbors (MNN) correction, Harmony, or Seurat’s integration methods allow researchers
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to combine multiple scRNA-seq datasets, enabling more robust cell type identification

across different experimental conditions or time points (Haghverdi et al., 2018; Korsunsky

et al., 2019; Stuart et al., 2019).

1.4.2. COMPUTATIONAL ANALYSIS OF BULK RNA

The analysis of bulk RNA-seq data typically begins with quality control of raw sequencing

reads, followed by alignment to a reference genome or transcriptome assembly. After

quantification of gene or transcript expression levels, normalization techniques are ap-

plied to account for technical biases and enable comparisons across samples. Differential

expression analysis is then performed to identify genes that are significantly up-or down-

regulated between experimental conditions (Love et al., 2014). While these standard

analysis steps provide valuable insights into overall gene expression changes, they do

not directly address the cellular heterogeneity inherent in most biological samples. To

overcome this limitation, cell type deconvolution, the estimation of cell type fractions

and cell type-specific gene expression, is necessary. Cell type deconvolution is introduced

in section 1.6.
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1.5. DEEP NEURAL NETWORKS

In this section, we introduce the multilayer perceptrons (MLP), autoencoders (AE), and

conditional variational autoencoders (CVAE) to get a background prerequisite for under-

standing the DISSECT framework presented in Chapter 2.

1.5.1. MULTILAYER PERCEPTRON (MLP)

Multilayer Perceptrons (MLPs) are a class of artificial neural networks that have played a

role in the development of several complex deep learning architectures adapted to do

different tasks. As a type of feedforward neural network, MLPs have found applications in

various domains, including pattern recognition and function approximation.

The foundation of MLPs can be traced back to the simple perceptron model (Rosenblatt,

1958). However, MLPs extend this concept by introducing multiple layers of intercon-

nected nodes (i.e. going deep), allowing them to learn and represent complex, non-linear

relationships between inputs and outputs.

The fundamental structure of an MLP consists of three main components: 1) Input layer,

which receives the initial data, (2) Hidden layer(s), which processes the information, and

(3) Output layer(s), which produces the final results.

Each layer consists of nodes, also known as neurons or units, which are connected to

nodes in adjacent layers. The strength of these connections is represented by weights,

which are adjusted during the learning process.

The fundamental operation on a neuron within an MLP can be described mathematically

as follows:

y = f (
n∑

i=1
wi xi +b),

Where:

- y is the output of the neuron

- f is the activation function

- wi are the weights

- xi are the inputs
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- b is the bias term

- n is the number of inputs

The choice of activation function is crucial in determining the network’s ability to learn

non-linear relationships. Common activation functions include the sigmoid, hyperbolic

tangent (tanh), and rectified linear unit (ReLU) (Ramachandran et al., 2017).

The learning in MLPs is typically achieved through backpropagation, an algorithm that

calculates the gradient of the loss function with respect to the network’s weights (Rumel-

hart et al., 1986). This gradient is then used to update the weights iteratively, minimizing

the error between the network’s predictions and the true values. The backpropagation

algorithm can be summarized in the following steps: 1. Forward pass: Input data is

propagated through the network to generate predictions. 2. Error calculation: The differ-

ence between predictions and true values is computed, such as with mean squared error.

3. Backward pass: The error is propagated backward through the network to calculate

gradients. 4. Weight update: Weights are adjusted using an optimization algorithm, such

as Adam (Kingma, 2014). It adapts the learning rate for each weight and incorporates

concepts of momentum.

The weight update rule for Adam can be expressed as:

θt+1 = θt − η√
v̂t +ϵ

·m̂t ,

Where:

θt is the parameter (weight) at time step t

η is the learning rate

m̂t is the bias-corrected first-moment estimate

v̂t is the bias-corrected second-moment estimate

ϵ is a small constant to prevent division by zero

Despite their simplicity compared to more advanced neural network architectures, MLPs

have demonstrated remarkable performance in various tasks. They serve as building

blocks for more complex models and continue to be relevant in both research and practi-

cal applications. Further, a few cell type deconvolution methods have previously adapted

MLPs (Menden et al., 2020; Yasumizu et al., 2024).
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1.5.2. AUTOENCODER (AE)

Autoencoders are a class of artificial neural networks commonly used in the field of un-

supervised learning and dimensionality reduction. A typical autoencoder is designed to

learn efficient data representations (encoding) by training the network to ignore signal

"noise”. It accomplishes this by learning to reconstruct its input at the output layer. The

network architecture typically consists of an encoder function h = f (x) and a decoder

function that produces a reconstruction r = g (h) from the output of the encoder (h). The

aim is to minimize the difference between the input x and its reconstruction r .

The simplest form of an autoencoder is the undercomplete autoencoder, where the hid-

den layer has a (much) lower dimensionality than the input and output layers. This forces

the network to learn a compact representation of the input data. The learning process

can be formulated as minimizing a loss function: L(x, g ( f (x))), where L is a loss function

penalizing g ( f (x)) for being dissimilar to x, such as the mean squared error.

Mathematically, for an input vector x, a simple encoder layer with the same activation

function across all neurons produces a hidden representation h:

h = f (x) = s(W x +b),

where W is a weight matrix, b is a bias vector, and s is an activation function applied

element-wise. For multi-layer encoders, this basic transformation is applied sequentially

across layers, with each layer’s output serving as input to the next layer.

The decoder then attempts to reconstruct the input from this hidden representation. The

output of the first decoder layer with the same activation function on all neurons can be

written as,

r = g (h) = s′(W ′h +b′),

where W ′ and b′ are the weights and biases of the decoder, and s′ is the decoder’s activa-

tion function.

While simple autoencoders can learn to compress data efficiently, they may risk learning

an identity function if the hidden layer is too large compared to an optimal one. To
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address this, various regularization techniques exist. One popular approach is the sparse

autoencoder, which adds a sparsity penalty to the loss function, forcing the network to

activate only a small number of hidden units for each input (Ng, 2011).

Previous works have used autoencoders for cell type deconvolution, as well as for scRNA-

seq data integration (Tran et al., 2021; Chen et al., 2022; Zhu et al., 2022).
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1.6. CELL TYPE DEOCNVOLUTION IN BULK RNA-SEQ AND OTHER

MIXED-CELL DATA MODALITIES

In this section, we first introduce a background of cell type deconvolution methods and

then detail the DISSECT framework.

Cell type deconvolution methods are powerful tools to estimate the proportions of differ-

ent cell types within bulk RNA-seq samples. These approaches assume that the observed

gene expression in a bulk sample is the sum of the expression profiles of its constituent

cell types, weighted by their relative abundances. Deconvolution algorithms aim to solve

this inverse problem, inferring cell type proportions and, in some cases, cell type-specific

expression profiles from the bulk data (Newman et al., 2019; Chen et al., 2022).

Deconvolution methods can be broadly categorized into reference-based and reference-

free approaches. This work deals with reference-based approaches which rely on prior

knowledge of cell type-specific gene expression signatures, often derived from purified

cell populations or single-cell RNA-seq data. These prior signatures can be pre-computed

directly and parameters (cell type fractions or gene expression) are fitted, or the prior can

be learnt using machine learning (Table 1). These signatures serve as a basis for decom-

posing the bulk signal into its cellular components. Relying on these signatures makes cell

type deconvolution a semi-blind source-separation task (Hesse and James, 2006). One

of the earliest and most widely used reference-based methods is CIBERSORT (Newman

et al., 2015), which employs support vector regression to estimate cell type proportions.

Other popular tools in this category include xCell (Aran et al., 2019), which uses a novel

gene signature-based method, and MuSiC, which uses multi-subject single-cell RNA-seq

reference data to improve deconvolution accuracy (Wang et al., 2019).

Reference-free methods, on the other hand, estimate cell type proportions without relying

on external gene expression signatures. These approaches often use matrix factorization

techniques to decompose the bulk expression matrix into cell type-specific expression

profiles and their corresponding proportions. Examples of reference-free methods include

CDSeq, which employs a Bayesian hierarchical model for simultaneous deconvolution

and gene expression estimation (Kang et al., 2019).

Recent advancements in deconvolution methods have focused on improving accuracy on

diverse tissue types. For instance, Scaden uses deep learning (Menden et al., 2020) and

SCDC combines multiple reference-based estimates to produce more reliable estimates

(Dong et al., 2021). Some methods have explored the integration of deconvolution with

other analysis tasks, such as differential expression analysis. Methods like csSAM and
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csDE enable the identification of cell type-specific differential expression from bulk RNA-

seq data, providing insights into which cell types are driving observed gene expression

changes (Shen-Orr et al., 2010; Chikina et al., 2015).

The choice of the deconvolution method depends on various factors, including the avail-

ability of reference data, the expected cellular composition of the samples, and the specific

research questions being addressed (Avila Cobos et al., 2020). When suitable reference

data are available, reference-based methods may provide more accurate and interpretable

results (Avila Cobos et al., 2020; Sturm et al., 2019). However, reference-free methods can

be valuable for exploring unknown cellular compositions or when reliable reference data

are lacking (Zaitsev et al., 2019). It is important to note that all deconvolution methods

have limitations and assumptions that should be carefully considered. Factors such as the

quality and comprehensiveness of reference data, the degree of cellular heterogeneity in

the samples, and the presence of unknown or rare cell types can all impact deconvolution

performance (Jin and Liu, 2021; Jew et al., 2020; Patrick et al., 2020). Additionally, the reso-

lution of cell type identification is inherently limited by the similarity of gene expression

profiles between related cell types (Finotello and Trajanoski, 2018; Jin and Liu, 2021).
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1.7. THE DISSECT FRAMEWORK

In this section, we introduce DISSECT framework (Khatri et al., 2024), a semi-supervised

learning framework for cell type deconvolution. The complete manuscript is included as

chapter 2.

1.7.1. SOURCE SEPARATION AND SEMI-SUPERVISED LEARNING

Cell deconvolution belongs to a broader class of source separation problems, where the

goal is to recover individual source signals from mixed observations. In the classical

blind source separation framework, this is often approached through methods like Non-

negative Matrix Factorization (Lee and Seung, 2000) or Independent Component Analysis

(Davies and James, 2007). However, these methods typically rely on strong assumptions

about statistical independence and identical distributions.

DISSECT takes a fundamentally different approach by reformulating cell deconvolution

as a semi-supervised learning problem. This reformulation is motivated by two key obser-

vations:

1. While ground truth cell type proportions for bulk RNA-seq data are generally unknown

(unsupervised setting), we can generate labeled training data through single-cell RNA-seq

simulations (supervised setting).

2. The physical process of cell mixing follows known constraints that can be exploited as

consistency conditions.

1.7.2. CELL TYPE DECONVOLUTION AS A LEARNING PROBLEM WITH CONSIS-

TENCY REGULARIZATION

The matrix factorization problem in cell type deconvolution is typically formulated as

B = XS, where B ∈Rm×n is the bulk gene expression matrix containing m samples with n

genes, X ∈Rm×c is a matrix containing cell type fractions of c cell types, and S ∈Rc×n is a

matrix consisting of cell type-specific gene expression profiles. Instead of directly solving

this factorization problem, an alternative formulation is to learn a function f :Rn →∆c

that maps bulk gene expression vectors to the probability simplex of cell type proportions.

Consistency Regularization

Given a real bulk sample Bi , a sample B si m which is simulated from a scRNA-seq reference
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data (refered to as simulated bulk), and a mixing coefficient β ∈ [0,1], we define a mixed

sample as:

B mi x
i =βBi + (1−β)B si m

i .

The key insight is that if f is a valid deconvolution function, it should satisfy:

f (B mi x
i ) ≈β f (Bi )+ (1−β) f (B si m

i ).

This consistency holds under the following assumption:

If the marker genes used for cell type identification are invariant across conditions and

the mixing process is linear, then the consistency condition is exact. This can be argued

as follows:

Let M be the set of marker genes, then for g ∈ M , the expression level in the mixture is:

B mi x
i g =βBi g + (1−β)B si m

i g ,and

Since marker genes are invariant, their expression levels are proportional to cell type

fractions, the predicted proportions must follow the same linear relationship.

Based on this validity condition, we developed the semi-supervised learning framework

DISSECT that incorporates this condition into the learning objective with consistency

regularization described in pseudocodes presented in algorithms 1 and 2 below. Further,

the learning process of this algorithm is done in a schedule where first (in our experi-

ments, for 2000 steps) the model is trained on purely simulated data to push model from

collapsing to the solution f (B mi x
i ) = f (Bi ) = f (B si m

i ).
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Input: Br eal (bulk RNA-seq), SC (single-cell data), T (steps)

Output: f (trained fraction estimator)

f ← InitializeMLP();

for t = 1 to T do

Bsi m , Xsi m ← SimulateBulk(SC );

β← UniformSample(0.1,0.9);

Bmi x ←β ·Br eal + (1−β) ·Bsi m ;

Xmi x_t ar g et ←β · f (Br eal )+ (1−β) ·Xsi m ;

if t ≤ 2000 then

λ1 ← 0;

else if t ≤ 4000 then

λ1 ← 15;

else

λ1 ← 10;

end

Lsuper vi sed ← KL( f (Bsi m), Xsi m);

Lconsi stenc y ←∥ f (Bmi x )−Xmi x_t ar g et∥2;

Ltot al ← Lsuper vi sed +λ1 ·Lconsi stenc y ;

UpdateNetwork( f ,Ltot al );

end

return f
Algorithm 1: Training Fraction Estimator

Input: Br eal , SC , f (trained fraction estimator), Texp (steps)

Output: g (trained expression estimator)

g ← InitializeCVAE();

for t = 1 to Texp do

Bsi m , Xsi m ← SimulateBulk(SC );

Ssi m ← ComputeSignatures(Bsi m , Xsi m);

β← UniformSample(0.1,0.9);

Bmi x ←β ·Br eal + (1−β) ·Bsi m ;

Xr eal ← f (Br eal );

Xmi x ←β ·Xr eal + (1−β) ·Xsi m ;

Lr econ ←∥Ssi m − g (Bsi m)∥2;

Lconsi stenc y ←∥Xmi x · g (Bmi x )−β ·Xr eal · g (Br eal )− (1−β) ·Xsi m ·Ssi m∥2;

LK L ← KL(gencoder (Bsi m),N (0,1));

Ltot al ← Lr econ +λ2 ·Lconsi stenc y +βCV AE ·LK L ;

UpdateNetwork(g ,Ltot al );

end

return g
Algorithm 2: Training Expression Estimator
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DISSECT’s consistency regularization shares conceptual foundations with MixMatch

(Berthelot et al., 2019) but differs in crucial ways. Firstly, MixMatch assumes unlabeled

data follows the same distribution as labeled data, and DISSECT explicitly handles do-

main shift between simulated and real data. Secondly, MixMatch uses random convex

combinations of augmented samples while DISSECT uses biologically motivated mixing

based on cell type proportions. Lastly, the two differ in their loss functions. MixMatch

uses cross-entropy for labeled data and L2-norm for consistency, while DISSECT uses KL

divergence for simulated data and weighted L2-norm for consistency.

In scenarios where some bulk data with known cell type fractions is available from an-

other experiment and its domain shift from the test bulk data is limited, the consistency

framework of DISSECT offers additional theoretical advantages. One key benefit is the

reduced sample complexity (i.e., the required number of samples for effective training),

which we examine below.

1.7.3. DISSECT REQUIRES FEWER SAMPLES TO LEARN ACCURATE REPRE-

SENTATIONS WHEN SOME REAL BULK DATA WITH TRUE CELL TYPE

PROPORTIONS IS AVAILABLE

In the classical setting without consistency regularization, learning accurate latent cell

type signatures theoretically requires O (nc) samples, where n is the number of genes and

c is the number of cell types. This complexity emerges naturally from the dimensionality

of the problem: each cell type signature is represented by an n-dimensional vector, and

we need to learn c such signatures. From statistical learning theory, this complexity

aligns with the VC dimension of learning c hyperplanes in n dimensions (Vapnik and

Chervonenkis, 2015; Blumer et al., 1989).

DISSECT’s consistency regularization framework fundamentally alters this requirement

by imposing constraints on the solution space. The consistency condition f (B mi x
i ) =

β f (Bi )+ (1−β) f (B si m
i ) enforces strong constraints on the hypothesis space of possible

deconvolution functions.

The theoretical foundation for this dimension reduction can be understood through the

Johnson-Lindenstrauss (JL) lemma (Johnson, 1984), which states that N points in high-

dimensional space can be projected down to O (log N /ϵ2) dimensions while preserving

all pairwise distances up to a factor of (1± ϵ), for 0 < ϵ < 1. In the context of DISSECT,

the mixing process B mi x
i =βBi + (1−β)B si m

i with β randomly sampled from a uniform

distribution between 0.1 and 0.9 creates a form of randomized projection.
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DISSECT inherently satisfies several key conditions that make this theoretical reduction

possible: assuming model learns well on simulated data, the mixing operation is applied

to marker genes that are invariant across conditions, ensuring essential signals for cell type

identification are preserved; the simulated data is generated from single-cell references

containing sufficient cellular heterogeneity, which helps capture the low-dimensional

manifold where cell type signatures naturally reside; and the consistency regularization

enforces a constraint that the deconvolution function must be linear with respect to the

mixing operation, which aligns with the linear projection properties of the JL lemma.

Under these conditions, the learning problem can be effectively reduced from O (nc)

to approximately O (
p

nc) complexity. The practical implications of this reduction are

substantial. For a bulk RNA-seq dataset with n=5,000 genes and c = 5 cell types, traditional

methods would theoretically require on the order of 25,000 samples for reliable learning

(based on the O (nc) bound). In contrast, DISSECT could potentially achieve comparable

performance with approximately 158 samples (based on the O (
p

nc) bound). It is impor-

tant to note that these are theoretical upper bounds, and in practice, most methods may

require fewer samples to achieve reasonable performances.

This efficiency is particularly crucial in the context of bulk RNA-seq deconvolution, where

obtaining ground truth cell type proportions is expensive and labor-intensive. Moreover,

the consistency regularization not only reduces sample requirements but also improves

generalization by enforcing biologically meaningful constraints on the deconvolution

function.

This theoretical advantage positions DISSECT as a valuable tool for real-world applica-

tions where bulk RNA-seq data with ground truth cell type fractions is scarce, while still

maintaining robust performance through its semi-supervised learning framework.

1.8. CELL TYPE DYNAMICS IN ANCA-GN AND GBM

In this section, we provide the necessary background for cell type dynamics in ANCA-GN

and GBM, which are explored in chapters 3 and 4 respectively.

1.8.1. ANCA-GN

ANCA-GN is an autoimmune disease characterized by inflammation and damage to small

blood vessels in the kidneys. It is a subset of ANCA-associated vasculitis (AAV), a group of

systemic autoimmune diseases that can affect multiple organ systems (Jennette and Falk,

2013). The term "ANCA" refers to anti-neutrophil cytoplasmic antibodies, which play a
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central role in the pathogenesis of these conditions. Below is an overview of ANCA-GN,

in the context of complex dynamics of immune cells and the pathogenic mechanisms

involved.

The pathogenesis of ANCA-GN is primarily driven by the production of autoantibodies

targeting neutrophil proteins, specifically proteinase 3 (PR3) and myeloperoxidase (MPO)

(Kitching et al., 2020). These autoantibodies interact with neutrophils and monocytes,

leading to their activation and subsequent damage to blood vessel walls, particularly in

the glomeruli of the kidneys. The process begins with the production of ANCA by B cells

and their progenitors, followed by neutrophil priming by inflammatory stimuli, which

causes neutrophils to express PR3 and MPO on their cell surface. The interaction between

ANCA and these exposed autoantigens leads to neutrophil activation, degranulation, and

the formation of neutrophil extracellular traps (NETs). This process, coupled with com-

plement activation, results in endothelial injury and inflammation in the blood vessels

(Radford et al., 2001; Kessenbrock et al., 2009; Kettritz, 2012; Jennette and Falk, 2013;

Cornec et al., 2016).

The immune cell dynamics in ANCA-GN involve various cell types, each contributing to

the disease progression and regulation in several ways. Neutrophils, as the primary effec-

tor cells, undergo degranulation, NETosis, and cytokine production upon activation by

ANCA. Monocytes and macrophages also play important roles as ANCA targets, cytokine

producers, and antigen-presenting cells. Dendritic cells contribute to the initiation and

perpetuation of the autoimmune response through antigen presentation and cytokine

production (Söderberg et al., 2015; Wilde et al., 2009).

T cells have emerged as crucial players in the pathogenesis of ANCA-GN, with various

subsets contributing to disease progression. CD4+ T helper cells provide help to B cells

for autoantibody production and release cytokines that promote inflammation. An ex-

panded population of Th17 cells has been observed in ANCA-GN patients, contributing

to neutrophil recruitment and activation through the production of IL-17. Regulatory T

cells (Tregs) have been reported to be deficient or dysfunctional in ANCA-GN, potentially

contributing to the loss of self-tolerance. CD8+ T cells have also been implicated in tissue

damage and disease relapse (Abdulahad et al., 2007; Nogueira et al., 2010; Lepse et al.,

2011; Chen et al., 2020).

The role of T cells in ANCA-GN is far from clearly defined. Firstly, it is not clear how

different T cell subsets interact and influence each other in ANCA-GN, which specific

antigens are recognized by the autoreactive T cells, and how they further contribute to

the breakdown of tolerance. From a therapeutic point of view, it would be interesting
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to find if there are distinct T cell signatures that could serve as biomarkers for disease

activity or even predict treatment response. The potential role of tissue-resident memory

T cells in maintaining long-term inflammation and potentially causing or aiding relapse

remains to be fully defined. Further, the inflammatory niches and their microenviron-

ments are not explored. These niches could serve as hotspots for sustained inflammation

and autoantibody production. Understanding the composition, and heterogeneity of

these niches may provide valuable insights into disease mechanisms. While ANCA-GN

primarily affects glomeruli, the impact of infiltration in tubulointerstitial areas is not well

understood (Boud’hors et al., 2023).

1.8.2. GBM

Glioblastoma (GBM) is the most aggressive and lethal primary brain tumor in adults, char-

acterized by its rapid growth, invasive nature, and resistance to conventional therapies.

Despite advances in neurosurgery, radiation therapy, and chemotherapy, the prognosis

for GBM patients remains poor, with a median survival of approximately 15 months

after diagnosis (Stupp et al., 2005). The complexity of GBM lies not only in its aggressive

behavior but also in its heterogeneity, both at the cellular and molecular levels. This

heterogeneity presents significant challenges for effective treatment and necessitates a

deeper understanding of the disease’s underlying biology.

In recent years, extensive molecular profiling efforts have identified distinct GBM sub-

groups based on gene expression patterns, DNA methylation profiles, and genetic al-

terations. The most widely recognized classification is the Verhaak subgroups, which

categorizes GBM into four molecular subtypes based on transcriptomics and genetic alter-

ations: Proneural, Neural, Classical, and Mesenchymal (MES) (Verhaak et al., 2010). The

Proneural subtype is characterized by IDH1 mutations and PDGFRA amplifications, while

the Classical subtype typically harbors EGFR amplifications. The Mesenchymal subtype

is associated with NF1 mutations and expression of mesenchymal markers, whereas the

Neural subtype shows expression of neuronal markers. However, it’s important to note

that individual tumors can exhibit features of multiple subtypes, and these classifications

may change over time or in response to treatment, reflecting the dynamic nature of GBM

(Wang et al., 2017).

More recently, DNA methylation profiling has emerged as a tool for tumor classification,

leading to the identification of additional GBM subgroups. The DNA methylation-based

classification system, which includes categories such as RTK I, RTK II, and MES, provides

complementary information to the transcriptomic subtypes and has shown promise in

refining prognostic predictions and potentially guiding treatment decisions (Capper et al.,



25

2018). The RTK I and RTK II subgroups are characterized by distinct patterns of receptor

tyrosine kinase alterations. While the transcriptomic and DNA methylation subgroups

are not always comparable, the MES subgroup aligns closely with the transcriptomic

MES subtype. These methylation-based classifications offer additional granularity in

understanding GBM biology and may help in identifying more homogeneous patient

populations.

The cellular composition of GBM is highly complex, involving not only the malignant

glioma cells but also various non-neoplastic cells within the tumor microenvironment.

While the focus has traditionally been on astrocytes as the presumed cells of origin for

GBM, increasing evidence suggests important roles for neurons, oligodendrocytes, and

their precursors in GBM biology. Neurons, for instance, have been shown to promote

the growth and progression of glioma cells through activity-dependent mechanisms,

releasing factors that can enhance tumor proliferation and invasion (Venkatesh et al.,

2019). This neuron-glioma interaction raises questions about the potential impact of

neuronal activity on tumor behavior and whether modulating this activity could have

therapeutic implications. Apart from neurons, oligodendrocytes and their precursor

cells (OPCs) may also be implicated in GBM. A subset of GBMs may arise from OPCs,

particularly those with IDH mutations (Lu et al., 2016). Moreover, the presence of OPCs

in the tumor microenvironment may influence GBM growth and invasion. The further

characterization of the potential role of oligodendrocytes in supporting or inhibiting GBM

progression, especially considering their modulation by immune cells, could help find

new therapeutic targets or strategies for manipulating the tumor microenvironment to

enhance treatment efficacy (Kawashima et al., 2019; Harrington et al., 2020). Astrocytes,

both reactive and tumor-associated, play multifaceted roles in GBM. While transformed

astrocytes are often the primary malignant cell type in GBM, reactive astrocytes in the

tumor microenvironment can contribute to tumor progression through the secretion of

growth factors, cytokines, and extracellular matrix components (Henrik Heiland et al.,

2019). The complex interplay between malignant and non-malignant astrocytes, as well

as their interactions with other cell types in the tumor microenvironment, highlights the

need for therapies that target not only the tumor cells but also the supporting cellular

network.

The remarkable heterogeneity of GBM extends beyond cellular composition and molecu-

lar subgroups to include intratumoral heterogeneity at the genetic and epigenetic levels.

Single-cell sequencing studies have identified the presence of multiple genetically dis-

tinct subclones within individual tumors, each potentially harboring different driver

mutations and exhibiting varied responses to therapy (Patel et al., 2014). This genetic

diversity, coupled with epigenetic plasticity, allows GBM to rapidly adapt to therapeutic
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pressures, contributing to treatment resistance and recurrence. The dynamic nature of

this heterogeneity poses significant challenges for developing effective targeted therapies

and necessitates innovative treatment strategies that can address the evolving landscape

of the tumor.

Current therapeutic approaches for GBM typically involve maximal safe surgical resection

followed by radiation therapy and chemotherapy with temozolomide. However, the effi-

cacy of these treatments is limited, and recurrence is almost inevitable. The identification

of molecular subgroups and a deeper understanding of GBM biology have paved the

way for more targeted therapeutic approaches. For instance, inhibitors targeting specific

genetic alterations, such as EGFR mutations or IDH1 mutations, have shown promise

in clinical trials for selected patient populations (Weller et al., 2017). Immunotherapies,

including immune checkpoint inhibitors and CAR-T cell therapies, are also being actively

investigated, with the potential to harness the immune system to combat GBM (Lim et al.,

2018).

The complex tumor microenvironment and the presence of glioma stem cells contribute

to treatment resistance and tumor recurrence. Novel approaches being explored include

targeting the tumor microenvironment and developing combination therapies that ad-

dress multiple aspects of GBM biology simultaneously. As our understanding of GBM

biology continues to evolve, several key questions emerge that warrant further investiga-

tion.

In our work, we focused on capturing the heterogeneity and different cellular components

of the tumor microenvironment, including neurons, oligodendrocytes, and astrocytes,

that may interact to influence tumor progression and treatment response and how these

interactions could be measured and therapeutically targeted.



27

1.9. RESEARCH OBJECTIVES

This dissertation proposes DISSECT as a deconvolution framework introduced in section

1.7, and addresses open questions pertaining to section 1.8. To this end, the following

methodological and translational goals arise.

A. Evaluation of existing cell type deconvolution algorithms on RNA-seq data from various

organs and diseases.

B. Development of a robust and consistent cell type deconvolution approach.

C. Study of transcriptomic changes in ANCA-GN kidney RNA-seq data using single-cell

and spatial transcriptomics, and identifying targetable pathways for kidney health and

better patient outcome.

D. Analysis of multi-omics data from glioblastoma to characterize cell type and state

signatures, to identify biomarkers for routine neuro-oncological use. The aim here is

to identify temporarily stable patient subgroups with a potentially poor prognosis and

inform neurosurgical decision making.

The datasets, experiments, and associated results are presented and discussed in chapters

2-4. Objectives A and B are addressed in chapter 2. Chapter 3 addresses objective C, and

Chapter 4 addresses objective D.
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Abstract 

Cell deconvolution is the estimation of cell type fractions and cell type-specific gene 
expression from mixed data. An unmet challenge in cell deconvolution is the scarcity 
of realistic training data and the domain shift often observed in synthetic training data. 
Here, we show that two novel deep neural networks with simultaneous consistency 
regularization of the target and training domains significantly improve deconvolu-
tion performance. Our algorithm, DISSECT, outperforms competing algorithms in cell 
fraction and gene expression estimation by up to 14 percentage points. DISSECT can 
be easily adapted to other biomedical data types, as exemplified by our proteomic 
deconvolution experiments.

Keywords: Cell deconvolution, Semi-supervised learning, Deep learning

Background
A prominent approach to studying tissue-specific gene expression changes in human 
development and disease is RNA sequencing (bulk RNA-seq). Tissues, however, usually 
consist of multiple cell types in different quantities and with different gene expression 
programs. Consequently, bulk RNA-seq from tissues measures average gene expression 
across the constituent cells, disregarding cell type-specific changes. The quantification of 
the cellular composition and cell type-specific expression that underlies bulk RNA-seq 
data is therefore of pivotal importance to understanding disease mechanisms and identi-
fying potential therapeutic interventions [1].

A recent technological advancement, single-cell RNA-seq, allows for investigating gene 
expression in single cells for thousands of individual cells of a given tissue sample in a single 
experiment. However, while it provides unprecedented insights into single-cell biology, it 
suffers from severe technical limitations, most notably the presence of zero values in gene 
expression due to methodological noise, termed as “dropouts” [2]. In addition, the technol-
ogy is still very costly, which essentially prohibits its application in clinical and diagnostic 
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settings. Bulk RNA-seq, on the other hand, can be performed for a fraction of the cost and 
is widely used in clinical oncology and drug discovery [3, 4].

Computational inference of cell type fraction and cell type-specific gene expression is a 
source-separation task, termed as “cell deconvolution” within the context of cell biology. 
The estimation of cell type-specific gene expression is a well established and challenging 
problem in the field. Prior work includes but is not limited to TAPE [5], bMIND [6], Baye-
sPrism [7], and CibersortX (CSx) [8]. The basic aim is to provide cell type-specific gene 
expression information at a group or sample level. The resultant information allows deep 
biological insights into cell type-specific gene expression and pathway changes from bulk 
data. For cell deconvolution, recent computational methods utilize single-cell sequencing 
data to create simulated references with known fraction and expression for training [9]. 
While this approach achieves good deconvolution results, its performance suffers from the 
substantial domain shift between single-cell RNA-seq training (reference) data and the bulk 
RNA-seq target data. Domain refers to the statistical distribution of the source of a dataset 
[10]. Domain shift refers to a change in the statistical distribution of samples, which can be 
due to covariate shift, the presence of open sets, or both. In gene expression datasets, the 
covariate shift between real data and simulated datasets occurs due to changes in cell type-
specific gene expression and can arise from different dropout rates and tissue conditions, 
for instance. When domain shifts have purely technical reasons, they are often termed 
batch effects. CSx [8] has previously approached the problem of batch effect removal 
between single cell gene expression datasets [11], using Combat [12] to remove changes 
in cell type-specific gene expression between a single-cell reference signature matrix and 
bulk RNAseq data. Open sets may occur when new cell types are encountered during test 
time, such as the presence of differing cell lineages [13]. Since cells go through different 
differentiation states, domain shift between real data and simulations may be a combina-
tion of both, the covariate shift and presence of open sets. Among many possible sources 
of domain variation, the most prevalent might be the presence of batch effects that refer to 
technological differences between two sequencing experiments and gene expression differ-
ences of biological nature.

In this work, we first formally define the task of cell deconvolution and outline the 
hypothesis that semi-supervised consistency regularization should improve bulk RNA-seq 
deconvolution when learning from single cell RNA-seq data. We then provide evidence 
that two novel deep learning algorithms with semi-supervised consistency regularization 
outperform competing state-of-the-art algorithms in deconvolution, both on a cellular 
and gene expression level, across a wide range of datasets. On the datasets with ground 
truth flow cytometry cell type proportions, DISSECT achieves consistently better Jensen-
Shannon distance (JSD): 0.063 ± 0.015 and root mean squared error (rmse): 0.021 ± 0.019. 
In addition, DISSECT shows state-of-the-art gene expression deconvolution performance, 
achieving the best sample- and gene-wise correlations. Our algorithm can easily be adapted 
to other biomedical data types, as exemplified by our bulk proteomics and spatial expres-
sion deconvolution experiments.
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Results
In this section, we first formally define the cell deconvolution task, then present our 
hypothesis and DISSECT deep learning models, and compare DISSECT’s performance 
to other state-of-the-art deconvolution algorithms.

Task of cell deconvolution

Given an m × n gene expression matrix B consisting of m bulk gene expression vectors 
measuring n genes, the goal of deconvolution is to find an m × c matrix X of cell type 
fractions, where c is the number of cell types present in bulk samples such that,

where fractions and gene expression satisfy non-negativity 0 ≤ Xik , and 0 ≤ Skj , 
∀i ∈ [1,m], ∀j ∈ [1, n] and ∀k ∈ [1, c] and sum-to-1 criterion, i.e., 

c

k=1

Xik = 1, ∀i ∈ [1,m] . 

Here, S is known as the signature matrix and is unobserved. Each row Sk· is a gene 
expression profile (or signature) of cell type k. To utilize a reference based framework, S 
can be replaced with Sref  derived from a single-cell experiment by identifying the most 
representative cell type specific gene expression [8].
The problem of reference-based cell deconvolution can alternatively be formulated 

as a learning problem, where a function f such that f (B) = X is learnt. Since only B is 
available and X is generally unknown, simulations from a single-cell reference can be 
used to learn f. Clearly, from the above formulation of the cell deconvolution task, it 
is reasonable to assume linearity of deconvolution, i.e., each bulk mixture is a linear 
combination of expression vectors of cells spanned with corresponding cell type frac-
tions. Thus, as defined previously in Scaden [9], multiple single cells can be combined 
in random proportions to generate training examples Bsim and Xsim , where each row of 
B
sim is defined as,

where ekl  is the expression vector of cell l belonging to cell type k, and αk ,i is the number 
of cells belonging to cell type k sampled to construct Bsim

i·  . Correspondingly, each ele-
ment of Xsim is the proportion of a cell type k in that sample i and is defined as,

In this case, since each simulated sample has a distinct signature (i.e., gene expression 
profile), S is a three dimensional matrix with each element Skji denoting gene expression 
of gene j in cell type k for sample i. It is computed as following,

(1)B = XS,

B
sim
i· =

c
�

k=1

αk ,i
�

l=1

e
k
l ,

X
sim
ik =

αk ,i
c

�

k=1
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k·i =
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.

32



Page 4 of 23Khatri et al. Genome Biology          (2024) 25:112 

The predictor f, learned from a simulated dataset, can then be applied to B to esti-
mate X . Note that, the genes expressed may differ between vectors el and B and as such 
before learning function f, each ek

l
 is subsetted to include genes common with B . This is 

the reason why this learning problem is transductive and a separate model needs to be 
reconstructed for each B.

Exploiting the linearity of deconvolution

The deconvolution task is to learn a cell type-specific gene-expression matrix (or signa-
ture matrix) S , which serves to accurately predict cell fractions and their correspond-
ing gene expression from a bulk gene expression matrix B . The actual mixing process 
of cells to form a tissue is assumed to be linear and, as such, the relationship between 
B and S is linear. However, S is unobserved, and the deconvolution algorithm is learned 
using simulations. This learning process involving simulations is highly dependent on 
the reference being the single-cell dataset used to generate simulations, and is subjected 
to an inherent strong domain shift [14]. To address this, we hypothesize that a consist-
ency-based regularization penalizing the non-linearity of mixtures of real and simulated 
samples would result in a mapping f̂  that is closer to true mapping f. Non-linearity of 
mixtures of real and simulated samples refers to the violation of Eq. 4, defined later, for 
estimated Xi·,X

sim
i·  and Xmix

i·  using mapping f.

Consistency regularization

Consider that B represents gene expression matrices of real (test) bulk RNA-seq that we 
want to deconvolve and and Bsim represents gene expression matrix of simulated bulk 
samples. The number of rows (representing samples) in these two matrices may differ. 
To simplify the notation, we use the same index i to denote indices for real bulk samples, 
simulations ( sim ) and their mixtures ( mix , defined further). Given a true bulk RNA-seq 
sample Bi· , and a simulated sample Bsim

i·  with paired proportions Xsim
i·  defined over a 

common set of genes, we can generate a mixture Bmix
i·  such that

Which gives us the relation

where Xi· represents cell fractions of sample i and where β ∈ [0, 1] . Cell types are charac-
terized by a few marker genes that are invariant across cell states and even across tissues 
[15]. A network that accurately predicts cell type fractions based on gene expression of 
simulated or real bulk RNA-seq data would thus have to learn them. In the estimation of 
cell type fractions, we therefore assume that the expression of these marker genes should 
be identical in signatures Smix

·i· , S·i· and S
sim

·i·  . Hence,

Equation 4 serves as the formulation to generate pseudo ground-truths for these mix-
tures during learning, and it enables the use of consistency regularization without hav-
ing to explicitly estimate signatures. In an iterative learning process Xi· can be replaced 

(2)B
mix
i· = βBi· + (1 − β)Bsim

i· ,

(3)X
mix
i· S

mix
·i· = βXi·S·i· + (1 − β)Xsim

i· S
sim
·i· .

(4)X
mix
i· = βXi· + (1 − β)Xsim

i· ,
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with predictions of the algorithm from the previous iteration. Naturally, it is also pos-
sible to only mix real samples with each other. The number of bulk RNA-seq samples is, 
however, considerably lower (tens to hundreds) than the amount of single-cells present 
in a single-cell experiment (thousands or more). Equation 4 allows to generate pseudo 
ground truth proportions for mixtures Bmix

i·  at each step of learning cell type fractions, 
while Eq. 3 allows to generate pseudo ground truth signatures at each step of learning 
gene expression profiles.

Network architecture and learning procedure

We approach the two tasks, estimation of cell type fractions and estimation of gene 
expression profiles per cell type as two different tasks because of their differing assump-
tions. For the estimation of cell type fractions, we assume that signatures are identical 
for each sample, both simulated and bulk, while to estimate gene expression, we relax 
this condition and involve complete consistency regularization (Eq. 3). An illustration of 
the method is presented in Fig. 1.

Estimation of cell type fractions

The underlying algorithm of the first part of our deconvolution method is an average 
ensemble of multilayered perceptrons (MLPs). The ensembling is performed to reduce 
the variance by averaging different runs [16]. Each MLP consists of the same architec-
ture initialized with different weights. Each MLP has an architecture: Input (# genes) - 
ReLU6 (512) - ReLU6 (256) - ReLU6 (128) - ReLU6 (64) - Linear (# cell types) - Softmax. 
ReLU6 (output of ReLU activation clipped by a maximum value of 6) [17, 18] was chosen 
out of tested activations over grid search on (Linear, ReLU, ReLU6, Swish [19]). The final 

Fig. 1 A Illustration of the simulation procedure using reference single-cell data. The figure shows the 
simulation of one sample which consists of cell type fractions, simulated gene expression and cell type 
specific gene expression profiles (i.e., signature matrix). B Detailed overview of an MLP used to estimate cell 
type fractions. C Overview of an autoencoder used to estimate cell type specific gene expression profiles
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application of a softmax activation function allows to achieve the non-negativity and 
sum to 1 criteria of deconvolution. We train the network with batch size 64 to minimize 
the loss function per batch defined below with an Adam Optimizer with initial learning 
rate of 1e − 5.

where LKLdivergence(·, ·) is the Kullback-Leibler divergence and Lcons(·, ·) is the consist-
ency loss defined as:

To generate mixtures, for each batch, we sample β uniformly at random for Eq. 4. The 
interval [0.1, 0.9] was chosen for the uniform distribution to allow for at least some real 
and some simulated gene expression in the mixture. Since the number of simulations is 
generally larger (in our experiments, set to 1,000 times the number of cell types) than 
that of real data, we sample real data to create additional bulk samples, Bi· , until the size 
equals that of the simulated data, Bsim

i·  . This pair of data together with simulated propor-
tions, Xsim

i·  , is then used to create training batches of size 64. For every batch, we gener-
ate mixtures according to Eq. 2.

Our loss is inspired by MixMatch [20], which uses unlabelled samples to mix up and 
match sample predictions. Our adaptation in Eq. 5 addresses the limited samples avail-
able from true bulk RNA-seq, unavailability of sample fractions and is derived from 
the definition of the task itself. In essence, Eq. 5 integrates domain knowledge into the 
objective.

To avoid a scenario where the network does not learn and outputs predictions such 
that f (Bmix

i· ) = f (Bsim
i· ) = f (Bi·) , which is a solution to Eq. 4, we first let the model learn 

purely from simulated examples. This allows the model to learn meaningful expression 
profiles to achieve accurate results on simulated examples. We selected �1 based on a 
grid search over constant and step-wise functions. We adopt a step-wise function for �1 , 
given as:

We train the network for a predefined number of steps as opposed to epochs, since it 
is possible to generate infinitely many simulated samples without increasing the intrinsic 
dimensionality of the data. In our experiments, we limit the number of steps to 5000 as 
found optimal in Scaden [9].

Estimation of per sample cell type specific gene expression profiles Estimation of cell type 
fractions from bulk RNA-seq requires an assumption that signatures of cell types are 
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shared across single cell and bulk RNA-seq. However, cell type gene expression profiles 
(at least for genes that are not invariant across tissue states) may differ between samples. 
Previously, works such as CSx [8] and TAPE [5] have explored utilizing cell type fractions 
to estimate gene expression per sample. Here, we make use of a β-variational autoencoder 
with standard normal distribution as prior to estimate average gene expression of the dif-
ferent cell types from bulk RNA-seq expression levels. To jointly train the network on all 
cell types, we condition the decoder (at its input layer) with cell type labels. This allows 
for training a single model to estimate gene expression of each cell type for a sample. To 
make use of bulk RNA seq during the training, we regularize the reconstruction loss with 
a consistency loss defined over per cell type signature. Denoting f as before and g(·, k) as 
the output of the autoencoder with condition k (corresponding to cell type label) on the 
decoder input, this consistency loss is defined as:

where Bmix
i  is given by Eq. 2, and  f (Bmix

i· )k is the proportion of cell type k in sample i 
as estimated during cell type fraction estimation and is fixed during training. In imple-
mentation, we replace f (Bmix

i· )k with βf (Bi·)k + (1 − β)Xsim
i·  . Thus, this loss forces the 

learned signature for cell type k, g(Bmix
i· , k) , to be closer to signatures for both real and 

simulated bulk samples. This loss function makes the assumption that mixing two bulk 
samples is similar to mixing individual cell type specific signatures that constitute those 
bulks. We added this loss function with a regularization parameter �2 (with default value 
0.1) to the loss of the standard β-variational autoencoder (the weight on the KL diver-
gence, denoted as βVAE , is set to 0.1 by default). The total loss function sums up to:

where N (0, 1) is standard normal distribution, and µ and σ are the empirical mean and 
standard deviation estimated from the output of the encoder. Both the encoder and 
decoder consist of two hidden layers. Under default settings used throughout this work, 
we train the network to minimize the loss function with an Adam optimizer with initial 
learning rate of 1e − 3 , and the values for hyperparameters �2 and βVAE are respectively 
0.1 and 1e − 2 . The network is trained for 5000 ×k , k being the number of cell types.

Estimation of cell type fractions and comparison with flow cytometry

To quantitatively assess the deconvolution algorithm, we first deconvolve six different 
peripheral blood mononuclear cells (PBMC) bulk datasets for which cell type propor-
tions have already been quantified using flow cytometry (Additional file 1: Table S1). To 
evaluate deconvolution performance, we utilize root-mean-squared error (rmse) and 
Pearson correlation (r) for cell type-wise comparisons and Jensen-Shannon distance 
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(JSD) for sample-wise comparisons between estimated fractions and ground truth 
proportions. The evaluation metrics are defined in the “Evaluation metrics” section. 
To evaluate our approach, we compared it to state-of-the-art deconvolution methods, 
MuSiC [21], CSx [8], Scaden [9] and TAPE (TAPE-O and TAPE-A) [5], BayesPrism and 
BayesPrism-M [7], and bMIND [6]. MuSiC and CSx were chosen for their best perfor-
mances in benchmarking studies [22, 23]. Scaden and TAPE are selected as both are 
deep learning-based deconvolution approaches, the latter of which, TAPE-A, performs 
an adaptation of the network weights for test samples. Since deconvolution is linear, we 
also considered linear MLPs as a deconvolution algorithm. Further details can be found 
under the “State of the art” section.

We utilize the PBMC8k single cell RNA-seq dataset as reference (Additional file  1: 
Table S2) for all methods. The first two principal components of combined simulated 
and real PBMC datasets are visualized in Additional file 2: Fig. S1A, illustrating a domain 
shift between datasets.

For each dataset, DISSECT always obtained the best JSD across all datasets (Fig. 2A), 
leading to an average improvement over the second-placed algorithms of 6 percent-
age points. On the GSE65133 dataset, for instance, DISSECT outperforms second-
paced Scaden by 8 percentage points (DISSECT: JSD = 0.145, Scaden: JSD = 0.222). 
Similarly, DISSECT always obtains the best rmse across all datasets and improves over 

Fig. 2 Evaluation of deconvolution algorithm on six datasets with ground truth information. A Per-sample 
Jensen-Shannon divergence (JSD). Each plot corresponds to a dataset. From left to right and top to bottom: 
SDY67, Monaco I, Monaco II, GSE65133, GSE107572, and GSE120502. B Root mean-squared-error (rmse, top) 
averaged over cell types for each of the dataset. Datasets are listed on x-axis. Pearson’s correlation (r, bottom) 
averaged over cell types
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second-placed algorithms by 2 percentage points, on average (Fig. 2B). In addition, it 
achieved the best r on 4 out of 6 datasets (Fig. 2B).

Furthermore, we computed macro- level r and rmse by computing the metrics without 
making a distinction of cell types as performed previously in [9]. Note that in this set-
ting, JSD remains unaffected as it is a sample-level metric and is therefore excluded. We 
observe that DISSECT achieves consistently best rmse across all datasets while achiev-
ing best r on 5 out of the 6 datasets (Additional file 2: Fig. S1).

Since MuSiC can take advantage of multi-sample references, we also evaluated MuSiC 
using blood data from the Immune Cell Atlas (ICA) (Additional file 1: Table S2). We 
also evaluated MuSiC with pre-selected marker genes (MuSiC-M) that were selected by 
CSx. MuSiC-M showed increased performance in 4 out of 6 datasets (Additional file 2: 
Fig. S2A-B). MuSiC also shows improved performance in the multi-sample setting in 
both rmse (Additional file 2: Fig. S2A) and r (Additional file 2: Fig. S2B). DISSECT still 
reaches best performance in rmse (on average 8 percentage points better) and r (on aver-
age 13 percentage points better) across all datasets.

Next, we evaluated the cell fraction deconvolution performance on the Monaco I 
(Additional file 1: Table S1) dataset, which contains several closely related and rare cell 
types and constitutes a relatively hard cell deconvolution task, using Ota dataset (Addi-
tional file 1: Table S1). With a correlation of 0.6, DISSECT’s average performance is 14 
percentage points better than the second placed Scaden (Additional file  1: Table S3), 
while Scaden’s average RMSE was marginally (1 percentage point) better than second 
placed DISSECT (Additional file 1: Table S4). To validate that the performance improve-
ment in DISSECT is due to the semi-supervised learning and consistency loss, we 
performed an ablation study on data SDY67 by successively and cumulatively remov-
ing components of the algorithm and testing it again. The following components were 
removed successively: consistency regularization, KL Divergence loss (mean squared 
error instead), and the nonlinear activation function (identity function instead). The 
ablation results are shown in Additional file 1: Table S5.

In summary, these results provide strong evidence that DISSECT consistently outper-
forms current state-of-the-art cell type deconvolution algorithms across six different 
datasets with ground truth information.

Consistency of predictions and relationship between cell type fractions and biological 

phenotypes

To further corroborate the above results, we evaluate DISSECT’s performance on three 
datasets that do not have paired flow cytometry data. In this section, we compare to 
other established biological facts as well as divergences over different reference single-
cell datasets. The bulk datasets together with literature-based expected biological rela-
tionships of cell types are listed in Additional file 1: Table S1.

Brain

The ROSMAP dataset consists of 508 bulk RNA-seq samples from the dorsolateral pre-
frontal cortex (DLPFC) of patients with Alzheimer’s disease (AD) as well as non-AD 
samples (Additional file 1: Table S1). For 463 of these samples, Braak stages of disease 
severity have been quantified. Correspondingly, single-nuclei RNA-seq (snRNA-seq) 
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for 48 individuals from the same cohort is available [24]. For 41 of these samples, cell 
type fractions based on immunohistochemistry (IHC) from a previous work exist [25]. 
It should be noted that IHC was performed for all neurons and as a result, comparison 
with respect to excitatory vs inhibitory neurons was not possible. Here, we consider two 
biological ground truths: first is the ratio of excitatory neurons to inhibitory neurons 
(Additional file 1: Table S1), and second is the neurodegeneration, or the loss of neurons 
with increasing Braak Stages [26]. We deconvolved ROSMAP using the Allen Brain Atlas 
reference (Additional file 1: Table S2).

We computed the JSD between the estimated fractions and IHC cell type propor-
tions. DISSECT estimated fractions had the best average JSDs and provides the expected 
excitatory-inhibitory neuron ratio of (3:1–9:1), while other methods generally underesti-
mated this ratio (Fig. 3A). All methods recover a negative correlation between increasing 
Braak stages and the fraction of neurons (Additional file 2: Fig. S3).

Fig. 3 A Left: Box-plots showing JSD between estimated fractions and IHC based cell type proportions 
from 41 individuals from ROSMAP. Right: Ratio of excitatory to inhibitory neurons computed from ROSMAP. 
Expected ratios lie between 3:1 and 9:1 as indicated by dashed lines. B Boxplots showing microglia 
proportion as estimated by different methods. Median proportions of microglia estimated using snRNA-seq 
and IHC are labeled. C Correlations between estimates (y-axis) and IHC cell type proportions (x-axis). D JSD 
between predicted proportions from Kidney between experiments with Miao and Park as references. E 
Predictions from TAPE-O and DISSECT from Kidney. From left to right: Proximal tubule (PT), ductal convoluted 
tubules (DCT), and macrophages (Macro). Each row indicates a reference. Error bars show standard 
deviations, while height of the bars shown mean prediction
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Previously, it has been noted that snRNA-seq and IHC data provide different esti-
mates for some cell types, notably microglia and endothelial cells [25]. It is interesting to 
observe that DISSECT and Scaden were the only methods where the estimates of micro-
glia resembled closely those obtained from snRNA-seq and IHC data (Fig. 3B). We also 
computed r and rmse between the IHC cell type proportions and estimated fractions 
(Fig. 3C). With a correlation r of 0.901 DISSECT proved to be 14 percentage points bet-
ter than the second-placed linear MLP. DISSECT also displayed the best rmse at 0.079.

Overall, the comparison to IHC and snRNA-seq ground truth information for the 
ROSMAP data further strengthens our claim that consistency regularization with DIS-
SECT robustly improves cell deconvolution.

Pancreas

The GSE50244 bulk RNAseq dataset consists of 89 pancreas samples from healthy and 
type 2 diabetes (T2D) individuals (Additional file 1: Table S1). For 77 of these samples, 
hemoglobic 1C levels are available as ground truth information. We performed the 
deconvolution using three single-cell reference datasets Baron, Segerstolpe, and Xin 
(Additional file 1: Table S2). Both Baron and Segerstolpe datasets contain alpha, beta, 
gamma, delta, acinar, and ductal cell types. While only alpha, beta, gamma, and delta cell 
types were present in the Segerstolpe dataset. To measure the consistency of deconvolu-
tion algorithms, we measured JSDs between estimated fractions using each of the three 
references (Additional file  2: Fig. S4A). While several methods showed considerable 
divergences, indicating reference-dependent deconvolution results, DISSECT displayed 
the most consistent results with a JSD of ∼0.1–0.2 across the three pairs. In terms of 
recovery of significant negative correlations between the estimated fractions of beta cells 
and hemoglobin 1C (hba1c) levels, DISSECT provided highly significant correlations of 
between − 0.45 and − 0.47 across the three references (Additional file 2: Fig. S4B). These 
results further suggest that DISSECT is both precise and robust in cell type deconvolu-
tion on real data and is comparatively less affected by the choice of single-cell reference.

Kidney

The GSE81492 dataset consists of 10 kidney samples of APOL1 mutant mice, which is a 
mouse model of chronic kidney disease (CKD) (Additional file 1: Table S1). We decon-
volved the dataset using two single cell references: Miao and Park (Additional file  1: 
Table S2). Similar to our experiments on the pancreas tissue, we computed JSD between 
the estimated cell type fractions from the two references. DISSECT provided the best 
average JSD (0.09) out of all considered methods (Fig.  3D). We further compare the 
methods on the recovery of expected relation of cell type fractions with the biological 
phenotype (Additional file 1: Table S1). Figure 3E compares two best methods on JSD, 
DISSECT, and TAPE-O, while Additional file 2: Fig. S5 presents these results on all cell 
types for all methods. It is known that CKD results in the decrease in proximal tubule 
cells (PT) and distal convoluted tubules (DCT). Cell type fractions estimated with DIS-
SECT showed a significant loss of PTs and DCTs and a corresponding increase in mac-
rophages, while TAPE-O provided much smaller differences between the control and 
CKD model (Fig. 3E). PTs are the most abundant cell type in kidney making up around 
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50% of a mouse kidney [27]. DISSECT correctly estimates the high abundance of PTs in 
healthy kidney, while TAPE-O underestimates them (Fig. 3E).

In summary, it is noteworthy that DISSECT shows state-of-the-art precision and 
robustness in cell type deconvolution across various ground truth information and 9 
datasets, including PBMC, brain, pancreas, and kidney bulk RNA-seq samples. DIS-
SECT also shows superior robustness to the choice of single cell reference.

Application to proteomics and spatial transcriptomics

It is conceivable that DISSECT’s consistency regularization for bulk RNA-seq cell type 
deconvolution should also lend itself to other biomedical datatypes in which domain 
shifts might be a problem. Applications might include, for example, the deconvolution 
of spatial transcritomic (ST) and bulk proteomic data with supra-cellular resolution. 
In order to evaluate these potential use-cases, we performed deconvolution of spatial 
transcriptomics and proteomics samples. Here, our aim is to test the hypothesis of 
applicability of DISSECT on these data modalities and we do not intend to perform an 
exhaustive comparison to multiple methods developed for these modalities. For com-
parisons on spatial transcriptomics, we consider four state-of-the-art spatial deconvolu-
tion methods, RCTD [28], Cell2location (C2L) [29] as shown to perform among the best 
in the benchmarking study [30]. We also include SONAR [31] and CARD [32], both of 
which can utilize spatial information. For comparisons on proteomic deconvolution, we 
consider the tested bulk deconvolution methods.

Spatial transcriptomics

We evaluated DISSECT on the task of spatial deconvolution using mouse brain and 
human lymph node samples (Additional file 1: Table S1). As a ground truth, we con-
sidered relationships with biological phenotypes in line with our application of kidney 
and pancreas datasets (Additional file 1: Table S1). Due to the spatial nature of the ST, 
we could verify the recovery of neuronal layers in brain (Additional file 2: Fig. S6) and 
discernment of germinal centers in lymph node (Additional file 2: Fig. S7). DISSECT 
performs on par with C2L and RCTD on both datasets. The results are provided and 
discussed in detail in the Additional file 2: Supplementary Note.

Proteomics

To compare the ability of the tested deconvolution methods to recover cell type propor-
tions from proteomics mixtures, we utilized 50 human brain samples (Additional file 1: 
Table  S1). We applied each deconvolution method on these samples using the Allen 
Brain Atlas reference (Additional file 1: Table S2). Compared to other methods, DIS-
SECT recovered excitatory neurons to be the expected majority population in both data-
sets while maintaining the excitatory to inhibitory neuron ratio to be around expected 
range of (3:1–9:1) (Additional file 2: Fig. S8). These results strongly suggest that DIS-
SECT reaches state-of-the-art performance on proteomic cell type deconvolution and 
might be applicable to other biomedical data types.
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Evaluation of DISSECT under domain shifts

To assess the impact of consistency regularization on the performance of DISSECT and 
other algorithms, we used Ota dataset (Additional file 1: Table S1). Using this dataset 
in a dynamic domain shift setup (see the “Domain shift experimental setup” section), 
we evaluated the performance of deconvolution methods. We also included DISSECT 
without consistency (DISSECT w/o consistency) to asses the impact of semi-supervised 
learning under varying shifts. The performance of all methods dropped significantly for 
test sets with domain shifts (Additional file 2: Fig. S9). However, the drop in performance 
was much lower for DISSECT than other methods. Furthermore, a clear advantage of 
semi-supervised learning with consistency regularization is observed in comparison to 
DISSECT without consistency, especially in terms of rmse.

Estimation of cell type‑specific gene expression

So far, we have shown that DISSECT can reliably deconvolve cell fractions. In this sec-
tion, we focus on the deconvolution and inference of cell type-specific gene expression 
from bulk RNA-seq mixtures using our novel conditional autoencoder based algorithm 
(Fig. 1). While we were able to use ground truth flow cytometry data for the evaluation 
of cell fractions, no such gold-standard is available for cell type-specific gene expression 
information. In consequence, we measure DISSECT’s gene expression inference perfor-
mance on simulated bulk RNA-seq data. To maintain a domain shift between the train-
ing and test datasets, we simulated data for training and testing using different single-cell 
datasets. We compared the performance of DISSECT with that of TAPE-A, bMIND, 
and BayesPrism, all of which can infer cell type-specific gene expression per sample. 
We simulated bulk samples from one of the four reference single-cell PBMC datasets 
listed in Additional file 1: Table S2 and created training simulations from the remaining 
three. Simulations from each single-cell dataset consisted of 6000 samples. To evaluate 
the performance of DISSECT and other methods, we compared the true and estimated 
gene expression profiles of each cell type for each simulated sample (sample-wise) and 
for each gene (gene-wise) using Spearman correlation. These sets of results were aggre-
gated across cell types and averaged. DISSECT displays the best sample- and gene-wise 
correlations in 6 out of 8 experiments, outperforming TAPE-A by 0.025 ± 0.023 in the 
sample-wise comparisons and by 0.012 ± 0.029 in the gene-wise comparisons (Table 1). 
Moreover, DISSECT exhibited an improvement in both sample and gene-wise metrics, 
exemplifying its advantage.
These results indicate that DISSECT’s consistency regularization robustly performs 

state-of-the-art cell type-specific gene expression deconvolution.

Discussion
In this work, we first formally define the task of cell deconvolution and outline the 
hypothesis that semi-supervised consistency regularization should improve bulk 
RNA-seq deconvolution when learning from single cell RNA-seq data. We then pro-
vide evidence that our novel deep learning-based algorithm, DISSECT, outperforms 
competing state-of-the-art algorithms in deconvolution, both on a cellular and gene 
expression level, across many different datasets. This included 6 PBMC datasets with 
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ground truth flow cytometry information and 3 datasets (brain, pancreas, and kid-
ney) with other established biological facts as ground truth information. Across the 
board, DISSECT provided the best cell type deconvolution results when compared 
to four state-of-the-art methods, while also being comparatively robust to the choice 
of single-cell reference. We follow a two-step procedure because the assumptions for 
each of the algorithms differ, and we do not foresee any significant benefit from itera-
tively deconvolving cell type fractions and gene expression. In a case study, we also 
show how our algorithm can easily be adapted to deconvolve cell types of proteomic 
and spatial expression data. For the spatial transcriptomics data, DISSECT estimates 
cell type fractions per spot, which are constrained to sum to 1. To be able to estimate 
the number of cells per cell type for each spot, and to map single cells, DISSECT esti-
mates can be used as a prior for algorithms such as CytoSpace [33]. CytoSpace infers 
both the number of cells in each spot and solves an optimization problem to map 
single cells to their spatial locations. To estimate only the number of cells per cell type 
for each spot, the total number of cells as estimated by CytoSpace can be multiplied 
with the output of DISSECT. While these results are not exhaustive, they neverthe-
less show the applicability of DISSECT on other biomedical data types, a research 
avenue we might pursue in more depth in the future. In addition to DISSECT’s state-
of-the-art cell type fraction deconvolution (an average improvement of 0.063 in JSD 
and 0.021 in rmse over the state of the art on the datasets with ground truth cell type 
fractions), it achieved best cell type-specific gene expression deconvolution results in 
6 out of 8 comparisons across four simulated datasets with an average improvement 
of 0.025 in the sample-wise and 0.012 in the gene-wise comparisons.

While we focused on MLPs for the estimation of cell type fractions and an autoen-
coder for gene expression estimation in this work, consistency regularization might also 
improve other deconvolution algorithms.

No gold standard ground truth exists for quantitative assessment of estimated cell 
type-specific gene expression between two conditions for real bulk RNA-seq data-
sets. This is a limitation of the experimental setup presented for cell type-specific gene 

Table 1 Spearman correlation between ground truth and estimated gene expression profiles on 
simulated datasets averaged over samples. The column Dataset indicates the single-cell dataset 
used to create simulations for the test set

For each dataset, values with the highest mean correlation are displayed in bold font

Dataset TAPE‑A bMIND BayesPrism DISSECT

sample-wise r

    PBMC6k 0.83±0.09 0.80 ± 0.07 0.83 ± 0.11 0.82 ± 0.08

    PBMC8k 0.79 ± 0.09 0.80 ± 0.08 0.81 ± 0.09 0.84±0.11
    DonorA 0.85 ± 0.11 0.84 ± 0.09 0.80 ± 0.09 0.89±0.10
    DonorC 0.81 ± 0.12 0.83±0.11 0.80 ± 0.08 0.83±0.08

gene-wise r

    PBMC6k 0.42 ± 0.14 0.46±0.14 0.41 ± 0.14 0.46±0.15
    PBMC8k 0.51±0.12 0.44 ± 0.18 0.45 ± 0.12 0.48 ± 0.14

    DonorA 0.48 ± 0.20 0.45 ± 0.16 0.46 ± 0.18 0.48±0.18
    DonorC 0.45 ± 0.11 0.43 ± 0.15 0.45 ± 0.12 0.49±0.12
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expression estimation. A potential solution will be to develop biologically valid bench-
mark datasets that can be evaluated at scale.

While DISSECT outperforms competing algorithms in cell type fraction and cell type-
specific gene expression deconvolution, some results leave room for further improve-
ment. DISSECT accurately distinguishes cell types where the transcriptional difference 
reflects cell subtypes, for instance PBMCs (CD4 T cells and CD8 T cells), pancreas (pan-
creatic islets), kidney (tubular epithelial cells), and brain (OPC and oligodendrocytes). 
However, when estimating granular cell type proportions in the Monaco I dataset, error 
rates exceeded the ground truth proportions (rmse>0.01 for cell subsets present at less 
than 1%). Therefore, for cell types that make up less than 1% of all cells and cells with 
very similar gene expression, for instance CD4 T and activated CD4 T cells, deconvolu-
tion algorithms should be used with caution. Future research into semi-supervised and 
contrastive algorithms as well as data augmentation and integration techniques should 
further enhance DISSECT’s performance on hard deconvolution tasks.

Conclusions
In conclusion, DISSECT provides a semi-supervised deep learning framework to esti-
mate cell type proportions and per-sample cell type-specific gene expression, is robust 
across datasets and tissues, and is easily applicable to other data modalities. DISSECT 
delivers state-of-the-art deconvolution performance, as long as cell types are not too 
closely related and make up more than 1% of all cells.

Methods
Evaluation metrics

To quantitively evaluate estimated cell type fractions across samples, we used two met-
rics, namely Pearson’s correlation (r) and root-mean-squared error (rmse). Given x and y 
as estimated fractions and ground truth respectively,

To compute sample-wise divergences two list of fractions xi and yi for the same sample 
i, we used Jensen-Shannon distance (JSD) which is the square root of Jensen-Shannon 
divergence. JSD is given as

where mi =
(xi+yi)

2  and D is the Kullback-Leibler divergence.

(6)r =
cov(x, y)

σx, σy

(7)rmse =
�

Avg(x − y)2

(8)JSD(x�y) =

�

D(xi�mi) + D(yi�mi)

2
,
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State of the art

Here, we briefly detail the state-of-the-art deconvolution approaches. Out of these 
methods, CSx, TAPE, BayesPrism, and bMIND can also estimate per sample cell type-
specific gene expression signatures.

MuSiC

MuSiC [21] uses weighted non-negative least squares. MuSiC maintains cross-cell 
and cross-sample consistencies by appropriately weighting genes based on their 
informativity during an iterative procedure. We used MuSiC R package (version 
1.0.0). Deconvolution using MuSiC was performed according to the authors recom-
mendations. Since MuSiC is a method that utilizes multi-subject scRNA-seq datasets, 
when available, we used cells from multiple subjects in deconvolution with MuSiC. 
We used the default hyperparameters to execute MuSiC. For single-cell datasets with 
multiple donors (Additional file 1: Table S2), we ran MuSiC with single-cell data from 
all available donors.

CSx

CSx [8] is a deconvolution method that addresses domain gap problems with scRNA-
seq and bulk samples by aiming to correct batch effects. It uses scRNA-seq to gen-
erate a cell type specific signature matrix and uses ν-support vector regression as 
the underlying algorithm. To construct the signature matrix, we used the following 
hyperparameters for CSx as recommended by the authors: kappa = 999, q-value = 
0.01 and number of genes within a range of 300 and 500. The quantile normaliza-
tion was also disabled. CSx comprises two modes, S- and B-modes, to address the 
domain gap. S-mode is used when deconvolving with a signature matrix constructed 
using a scRNA-seq dataset, while B-mode is used when deconvolving with a signature 
matrix constructed using purified samples. We followed the documentation provided 
by the authors to run CSx and used the S-mode. CSx can also predict gene expres-
sion signatures for each sample for which it uses a non-negative matrix factorization 
based iterative algorithm. However, CSx only estimates genes likely to be differentially 
expressed in one of the bulk samples and as such the evaluations for simulations from 
healthy PBMC single-cells are not possible. We ran CSx through docker container 
obtained from [34].

Scaden

Scaden [9] is an average ensemble of three deep neural networks with different archi-
tectures that was developed for cell fraction deconvolution. Each network is trained 
only on simulated pseudo bulk data generated from an scRNA-seq reference similar 
to described above. Scaden is provided as a Python package. We used the official Sca-
den package (version 1.1.2) with the instructions provided by the authors to train the 
networks.
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TAPE

TAPE [5] is a fully connected autoencoder where the bottleneck consists of cell type 
fractions. The architecture of the encoder is similar to the archictecture of Scaden 
but with CeLU activations. The decoder consists of linear activations and outputs 
gene expression of the input vector. The adaptive mode of TAPE (TAPE-A) aims at 
optimizing the network for bulk samples, while the overall mode trains for fractions 
with an added loss function that reconstructs input bulk expression from fractions. 
Since TAPE-A reconstructs gene expression from fractions (bottleneck), the signature 
matrix is visible in the (linear) decoder. To estimate gene expression signatures for 
each bulk sample, decoder weights are optimized per-sample using an iterative opti-
mization strategy. Network weights are changed during the two modes, we compare 
with both and refer to TAPE in overall mode as TAPE-O and in adaptive mode as 
TAPE-A. We used the official scTAPE package (version 1.1.2) implemented in Python.

Linear MLPs

The solution to the deconvolution problem could be, in principle, a linear function. For 
this reason, we also compared to an MLP ensemble that has similar architecture to DIS-
SECT, but in which we replaced all non-linear activations with an identity function and 
removed the consistency loss.

BayesPrism and BayesPrism‑M

Primarily a method developed for oncology bulk datasets, BayesPrism [7] is a Bayesian 
framework to infer cell type fraction and cell type specific per-sample gene expression. 
It models gene expression as multinonmial distribution and calculates the cumulative 
posterior across cell states to derive the statistics for individual cell types. To evaluate 
BayesPrism with preselected marker genes using select.marker function. We utilize offi-
cial implementation of BayesPrism in R (version 2.1.2).

bMIND

bMIND [6] is a Bayesian method to infer cell type specific gene expression per sample 
based on single-cell gene expression for given cell types. Using the prior from single-cell 
gene expression, bMIND models bulk gene expression as the product of gene expression 
and cell type fractions as a Bayesian mixed-effects model. bMIND uses cell type frac-
tions as estimated by other deconvolution methods as its input. We used default settings 
of bMIND in our experiemnts with its R implementation (version 0.3.3).

Pre‑processing and simulations

Quality control

Before simulating from reference datasets, we remove cells with less than 200 expressed 
genes and genes which are expressed in less than 3 cells. Furthermore, we also remove 
cells expressing more than 4% mitochondrial genes. Thereafter, before each deconvolu-
tion, we subset reference and bulk datasets to include only the common genes between 
the two. This quality control step was identical for all methods.
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Simulations for deconvolution of bulk RNA‑seq samples and proteomics

For deep learning methods, we sampled αk ,i uniformly to generate simulations s.t. 
c

�

k=1

αk ,i = 100, ∀i if the dataset is single-cell. For experiments on granular level cell types 

where simulations are done from purified cell samples, we modified the simulation pro-
cedure to reflect this. In this case, a simulated sample is given by Bsim

i· =
c

�

k=1

X
sim
ik b

k

l
 , 

where bk
l
 is the expression vector of purified sample l belonging to cell type k. For all 

experiments, we simulated total 1000 × c simulations where c is number of cell types in 
the reference dataset.

Simulations for deconvolution of 10x Visium ST samples

We adjusted simulation procedure to mimic ST datasets. 10x Visium (one of the tech-
nologies to generate ST samples) consists of around 10 cells per spot. To reflect this, we 
simulated between 5 and 12 cells to generate one spot (i.e., 

c
�

k=1

αki ∼ [5, 12] ). Since ST is 

much sparser, to generate one spot, we kept between 2 and 6 cell types. Due to sparsity 
of spots, not all cell types are present in a given spot. To account for this and to make 
comparison across spots possible, we utilized the outputs of the last layer (before per-
forming softmax operation) and set negative predictions to zero. Thereafter, we re-nor-
malized these absolute scores by such that each prediction sum to one. For all 
experiments, we simulated total 1000 × c simulations where c is number of cell types in 
the reference dataset.

Deconvolution of proteomics data

For deconvolution of proteomics data, it is not valid to mix protein intensities and gene 
expression due to different normalizations. Instead of mixing simulated samples with 
real samples, proteomics samples were mixed with each other, i.e., at each training step, 
B
mix
i· = βBr1· + (1 − β)Br2·, where r1 and r2 are two randomly selected proteomics sam-

ples at the training step.

Pre‑processing for estimation of cell type fractions

For Scaden, TAPE, linear MLPs, and DISSECT, before passing simulated and real bulk 
samples to the network, we normalize samples to sum to a million counts (counts per 
million (CPM)) and log scale them with base 2 after adding 1. CPM normalization was 
performed to maintain total mRNA expressed per gene to be out of a fixed total gene 
expression, and CPM is widely used in computational genomics. During training, for 
each batch, we normalize each sample by MinMax scaling. These are standard preproc-
essing steps [9].

For MuSiC and CSx (under S-mode), data was supplied on a linear scale as suggested 
in their respective publications and no change was made to the default normalization 
methods of both [8, 21].

To estimate cell type specific gene expression profiles, we need to maintain relation-
ship between gene expression of individual cell types and simulated bulks, which would 
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be lost if we perform CPM normalization of both simulated samples and correspond-
ing cell type specific gene expression profiles. Hence, instead of performing CPM nor-
malization of simulated bulks, we normalize each test bulk sample to sum to the mean 
of sums of simulated samples. Furthermore, for estimating cell type specific gene expres-
sion, we want to maintain gene level information across samples. To achieve this, instead 
of normalizing each sample using MinMax scaling, we perform MinMax scaling globally 
over all samples.

For TAPE, since the signature matrix is observed in decoder (see the “State of the art” 
section), preprocessing step is similar to the preprocessing done in estimating cell type 
fractions.

Hyperparameters and fine‑tuning

We fine tuned the network for activation functions, learning rate, and batch size using 
randomized search with hyperopt [35] with the root mean squared error as the objec-
tive function. The following grids were used for the optimization: activations = [lin-
ear, ReLU, ReLU6, Swish], learning rate = [5e−3, 1e−3, 5e−4, 1e−4, 5e−5, 1e−5], �1 
= [0,1,5,10,15] with or without scheduled change at every 2000 steps and batch sizes 
= [32, 64, 128, 256] with 50 iterations on Ascites bulk dataset as used in Scaden [9]. 
Other hyperparameters were fixed to the default hyperparameters of Scaden. The opti-
mal hyperparameters were fixed for all experiments, with batch size = 64, learning 
rate = 1e−5, activation function = ReLU6, �1 according to schedule [0,15,10] at steps 
[0,2000,4000], and number of steps = 5000.

Domain shift experimental setup

Using the Ota dataset (Additional file 1: Table S1) that contains 9852 purified samples 
belonging to immune cell subsets including several B cell and T cell subsets as shown 
in Additional file  1: Table  S3, we created an experimental setup with domain shifts 
involving the following 4 scenarios. 20% split: We randomly split the dataset into train-
ing (80%) and test sets (20%). Activated 1: We used the same split as in 20% split. We 
removed certain CD4 and CD8 T cell subsets, namely, CD4 T memory, CD8 TEM, and 
CD8 TE from the training split while they were kept in the test set. In the test set, on the 
other hand, other subsets (CD4 T naive, CD8 T naive, and CD8 TCM) were removed. 
Activated 2: We followed the same procedure as in Activated 1 except we removed cer-
tain B cell subsets, namely, B NSM, BEx, and BSM from the training set while they were 
kept in the test set. B naive subset was removed from the test set. Finally, for a model-
based domain shift, we used DISCERN [36] to project the test set of 20% split to the 
dataset simulated from pbmc8k and used in deconvolving PBMC bulk RNAseq. The CD4 
T cell, CD8 T cell, and B cell subsets, regardless of their subtype identity, were labeled as 
CD4Tcells, CD8Tcells, and Bcells to allow comparisons. In each scenario, 6000 samples 
were simulated.
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Datasets

Table S1: Details on bulk datasets used to evaluate deconvolution methods. For six datasets,
the ground truth proportions were available while for others, relationship with the biological
phenotypes was considered. Biological hypotheses based on literature serve as proxy ground
truths. These are listed in ”Biological hypothesis based on literature”.

Tissue Dataset # samples # Type Flow cytome-
try

Biological hypothe-
sis based on litera-
ture

Original
Source

PBMC SDY67 12 RNA-seq Yes - [47]
PBMC Monaco I 12 RNA-seq Yes - [48]
PBMC Monaco II 164 Microarray Yes - [48]
PBMC GSE65133 20 Microarray Yes - [49]
PBMC GSE107572 9 RNA-seq Yes - [50]
PBMC GSE120502 250 RNA-seq Yes - [51]
PBMC Ota 9852 RNA-seq - - [52]
Pancreas GSE50244 89 (77 with

information
on hemoglo-
bic 1C levels)

RNA-seq No Fraction of beta cells
are negatively associ-
ated with severity of
type 2 diabetes indi-
cated by hemoglobin
A1c (hba1C) level
[53]-[55].

[56]

Kidney GSE81492 10 RNA-seq No Tubule cells diminish
with chronic kidney
disease (CKD) [57]-
[59].

[60]

Brain ROSMAP 508 (463
with cor-
responding
annotation of
Braak stages)

RNA-seq No 1. Neurodegenera-
tion with advanced
Braak stage [61]-
[63], and 2. Between
3:1 and 9:1 ratio
of excitatory and
inhibitory neurons
[64]-[68].

[69]

Brain PFC pro-
teomics

50 Mass spec. No Between 3:1 and 9:1
ratio of excitatory
and inhibitory neu-
rons [64]-[68].

[43]

Lymph
node

Lymph
node

4,035 spots 10x Visium No Identification of ger-
minal centers (GC)
by co-localization of
GC associated cell
types

10x Ge-
nomics

Brain Anterior
sagittal
mouse
brain

2,695 spots 10x Visium No Identification of ex-
citatory neuronal lay-
ers

10x Ge-
nomics
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Single-cell datasets

Table S2: Single cell datasets used as reference. To deconvolve PBMC datasets in Table S1,
single-cell datasets from the corresponding tissues were considered. We used the PBMC8k
as a reference single-cell dataset from a healthy donor for all methods considered here. To
maintain same genes between the single-cell data and bulk RNA-seq, we subset both datasets
over common gene-set. For the multi-sample setting to use with MuSiC, we considered Immune
Cell Atlas (ICA). The atlas was restricted to blood to match the bulk tissue with donor: 621B
(103 cells), 637C (760 cells), A35 (1,368 cells), A36 (3,124 cells), D496 (9,065 cells), D503
(12,208 cells). Cell types that were present in less than 5 samples were dropped. All PBMC
datasets were annotated with B cells, CD4 T cells, CD8 T cells, Monocytes and NK cells while
the remaining cells were mixed to form an unknown cluster. To deconvolve pancreas, kidney,
brain and lymph node samples in Table S1, single-cell dataset from the corresponding tissues
were considered.

Tissue Dataset # cells Multi-sample Original source

PBMC PBMC8k 8,381 no 10x Genomics (8k PBMCs
from a Healthy Donor)

PBMC PBMC6k 5,419 no 10x Genomics (6k PBMCs
from a Healthy Donor)

PBMC DonorA 2,900 no 10x Genomics (Frozen
PBMCs Donor A)

PBMC DonorC 9,519 no 10x Genomics (Frozen
PBMCs Donor C)

PBMC Immune Cell Atlas
(ICA)

26,628 yes [15]

Pancreas Baron 8,569 yes [70]
Pancreas Segerstolpe 3,514 yes [71]
Pancreas Xin 1,492 yes [72]
Kidney Park 43,745 yes [73]
Kidney Miao 16,887 no (only adult) [74]
Brain Allen Brain Atlas 49,418 yes [38]
Lymph node, spleen, tonsil lymph node refer-

ence
73,620 yes [29]
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Table S3: Pearson correlation coefficient (r) between estimates from different methods and flow
cytometry for granular cell type fractions in Monaco I.

Dataset MuSiC CSx Scaden TAPE-O TAPE-A Linear MLPs DISSECT

B Ex nan 0.43 0.18 0.22 0.030 0.10 0.32
B NSM nan -0.08 0.12 0.10 -0.15 -0.22 0.09
B Naive nan 0.95 0.87 0.8 0.43 0.71 0.96
B SM 0.85 nan 0.57 0.45 0.15 0.26 0.63
Monocytes C 0.30 0.29 0.63 0.57 0.52 0.11 0.62
Monocytes I 0.41 0.36 0.90 0.87 0.81 0.54 0.93
Monocytes NC 0.25 0.09 0.31 0.35 0.48 0.19 0.66
NK 0.80 0.82 0.58 0.59 0.65 0.49 0.82
Neutrophils LD 0.2 nan 0.89 0.48 0.57 0.03 0.56
Plasmablasts 0.62 0.85 0.86 0.65 0.66 0.42 0.92
CD4 T Naive 0.66 0.47 0.68 0.70 0.34 0.14 0.76
CD4 T Memory 0.47 -0.15 0.27 0.27 0.12 0.08 0.24
CD8 T Naive 0.52 0.7 0.36 0.38 0.32 0.27 0.49
CD8 T CM nan -0.65 0.19 0.13 0.21 0.01 0.12
CD8 T EM nan nan 0.02 0.47 0.45 0.11 0.62
CD8 T TE 0.25 0.9 0.28 0.35 0.36 0.35 0.86
mDC nan 0.46 0.47 0.39 0.40 0.05 0.68
pDC 0.55 0.57 0.19 0.42 0.31 0.3 0.55

Average 0.49 0.40 0.46 0.45 0.37 0.22 0.60
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Table S4: rmse between estimates from different methods and flow cytometry for granular cell
type fractions in Monaco I.

Dataset MuSiC CSx Scaden TAPE-O TAPE-A Linear MLPs DISSECT

B Ex 0.01 0.05 0.04 0.04 0.01 0.02 0.02
B NSM 0.02 0.01 0.02 0.03 0.05 0.04 0.02
B Naive 0.01 0.03 0.03 0.03 0.04 0.06 0.03
B SM 0.05 0.01 0.01 0.02 0.02 0.03 0.01
Monocytes C 0.05 0.02 0.04 0.02 0.02 0.06 0.06
Monocytes I 0.12 0.15 0.03 0.06 0.10 0.12 0.04
Monocytes NC 0.20 0.09 0.02 0.07 0.05 0.10 0.02
NK 0.05 0.08 0.08 0.11 0.11 0.05 0.08
Neutrophils LD 0.02 0.03 0.01 0.01 0.01 0.01 0.02
Plasmablasts 0.01 0.01 0.02 0.01 0.04 0.01 0.04
CD4 T Naive 0.02 0.03 0.05 0.05 0.02 0.02 0.05
CD4 T Memory 0.10 0.07 0.03 0.12 0.15 0.21 0.03
CD8 T Naive 0.21 0.07 0.04 0.05 0.05 0.01 0.04
CD8 T CM 0.01 0.08 0.02 0.05 0.12 0.01 0.03
CD8 T EM 0.02 0.01 0.02 0.02 0.01 0.03 0.02
CD8 T TE 0.01 0.07 0.09 0.08 0.11 0.16 0.08
mDC 0.01 0.04 0.04 0.08 0.09 0.03 0.03
pDC 0.02 0.00 0.02 0.01 0.01 0.01 0.02

Average 0.06 0.05 0.03 0.05 0.06 0.05 0.04

Table S5: Average performance over five random experiments for SDY67 (Table S1.) Each
column indicates the additional part.

Metric Linear MLP Activations KL Divergence KL Divergence + Consistency

r 0.51 ± 0.018 0.55 ± 0.016 0.54 ± 0.006 0.63 ± 0.005
rmse 0.13 ± 0.008 0.13 ± 0.006 0.11 ± 0.004 0.09 ± 0.002
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Fig. S1: A. PC (Principal component) embeddings of simulated and real PBMC datasets com-
puted using the union of the top 2,000 highly variable genes per dataset. B. Overall Pearson’s
correlation (r) and C. root-mean-squared-error (rmse) for each of the dataset. Datasets are listed
on x-axis.
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Fig. S2: Comparison of MuSiC (Fig. 3D), MuSiC with marker genes (MuSiC-M) and MuSiC
with blood data from Immune Cell Atlas ICA (MuSiC-ICA). A. root mean-squared-error (rmse)
and B. Pearson’s correlation (r).
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Fig. S3: Estimated cell type proportions on ROSMAP separated by Braak Stage. Rows indicate
methods, columns indicate cell type.
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Fig. S4: A. Box-plots showing JSDs between predicted proportions from Pancreas using dif-
ferent single-cell references. Each plot shows JSDs between two references. From left to right:
Baron and Seger, Baron and Xin, and Seger and Xin. B. Associations between predicted beta
proportions and hba1c levels assessed through multiple linear regression with hba1c as de-
pendent variable and beta estimates, age, BMI and gender as independent variables. P-values
correspond to 2-tailed Student’s t-test for significance of coefficients for beta estimates. r is
the Pearson correlation coefficient between beta estimates and hba1c. Each column indicates a
method and each row indicates a reference.
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Fig. S5: The figure extends Fig. 3D to include all methods and cell type. From left to right and
top to bottom: Proximal tubule (PT), ductal convoluted tubules (DCT), endothelial cells (Endo),
collecting duct principal cells (CD-PC), collecting duct intercalated cells (CD-IC), loop of henle
(LOH), podocytes (Podo), macrophages (Macro) and neutrophils (Neutro). Each row indicates
a reference (Miao, Park).
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Supplementary Note
To exemplify the applicability of DISSECT on other data types. We aimed to deconvolve spatial
transcriptomics datasets. The 10x Genomics VisiumTM platform, for instance, delivers spatial
gene expression information with a spot diameter of 55 µm. This resolution is not enough
to capture single cells and spot-based gene expression on VisiumTM is therefore a mixture of
its constituent cells. In this section we measure DISSECT’s deconvolution performance on
VisiumTM ST data.
We performed deconvolution on two ST samples obtained from 10x Genomics website cor-
responding to Lymph node and brain and compared against RCTD and Lymph node. Both
datasets are accompanied by H&E images of the underlying tissue.
Anterior sagittal mouse brain - Brain is a highly structured organ with information about
the structures of neurons in the cortex. We utilized the reference data from Allen Brain Atlas,
as previously used in deconvolution of ROSMAP data. Using the ST adapted simulations, we
computed proportions of different cell types, including different layers of neurons and visual-
ized them on top of a corresponding hematoxylin and eosin (H&E) stained image (Fig. S6A).
DISSECT faithfully captured the spatial layering of the cortical areas of the brain, as well
as known ’hot-spots’ of neurons, oligodendrocytes, astrocytes, and inhibitory neurons such as
somatostatin- and parvalbumin-positive neurons.
To identify cortical layers, we performed louvain clustering (resolution 1) on the estimated cell
type fractions per spot, and labelled the clusters enriched for different layers of neurons. Layers
L2/3 IT, L4, L5 IT, L5 PT, L6 CT, L6 IT, and L6b were mapped respectively to clusters 1, 7,
12, 8, 3, 14 and 15 (Fig. S6B,C). The identified cortical layers corresponded with the cortical
layers annotated in the Allen Reference Atlas (Fig. S6D). We applied RCTD, C2L, SONAR
and CARD using the same setting. Compared to RCTD and C2L, DISSECT achieves better
separation of excitatory neuronal layers. CARD slightly outperforms DISSECT in this task
with a 0.02 increase in schilloute scores. The quantification was made using silhouette score
with euclidean metric. (Fig. S6E).
Lymph node - Next, we evaluated DISSECT on the spatial deconvolution of lymph node tissue.
Lymph nodes consist of various immune cell subsets and localized germinal centers (GCs). We
used a lymph node single-cell reference and used the manually annotated germinal centers that
were provided with the study as ground truth [29]. To verify whether DISSECT estimated and
localized cell fractions per spot correctly, we visualized GC-related cell types, namely Cycling
B cells, Germinal center B cells and follicular dendritic cells (FDCs) (Fig. S7A). DISSECT
also identified T cells associated regions in and around these GCs (Fig. S7A). To obtain binary
GC predictions to compare with the ground truth GC annotations, we computed louvain clusters
(resolution 1) on the cell type proportions, and labelled spots with cluster 1 as GCs based on
enrichment of GC associated cell types (Fig. S7B). Since the number of GC spots (378) is con-
siderably lower than non-GC spots (3,657), balanced accuracy as implemented in Scikit-learn
was used to account for this imbalance [75]-[76]. Comparison with the ground truth revealed a
balanced accuracy of 0.94, indicating that DISSECT deconvolved GCs with high accuracy and
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on par performance with C2L and RCTD (Fig. S7C). For CARD and SONAR, the balanced
accuracy were 0.93 and 0.91 respectively.
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Fig. S6. A. Estimated cell type proportions from mouse brain tissue visualized over H&E image
of the corresponding tissue. L2/3 - L6b indicate different layers of neurons. Astro: Astrocytes,
Oligo: Oligodendrocytes. B. Estimated cortical layers using enrichment of cell type proportions
in louvain clusters presented in C. D. Annotations of cortical layers from Allen Brain Reference
obtained from [38]. For visibility, cortex boundaries were highlighted. E. Shilloute scores for
C2L, RCTD, SONAR, CARD and DISSECT.

9

66



Fig. S7: A. Estimated cell type proportions visualized over H&E image of the correspond-
ing lymph node tissue. B cycling: Cycling B cells, B DC DZ: Dark zone germinal cen-
ter B cells, B GC LZ: Light zone germinal center B cells, B GC PrePB: germinal center
Pre-plasmablast/plasma cells, B preGC: pre-germinal center B cells, FDC: Follicular dendritic
cells, T CD4+TfH GC: Germinal center follicular helper CD4+ T cells, T Treg: Regulatory T
cells. B. Louvain clustering on cell type proportions. y-axis lists cluster numbers and x-axis lists
cell types. C Comparison of identified clusters, from left to right and top to bottom: Ground
truth GC-spots, predicted annotations for C2L, RCTD, DISSECT, CARD and SONAR.
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Fig. S8: A. Boxplots showing estimated cell type proportions from human proteomics samples.
Title of each plot is indicated at the top of the plot and x-axis list cell types. B. Boxplots show-
ing predicted excitatory to inhibitory neuron ratios for each method for the proteome samples.
Expected ratios lie between 3:1 and 9:1 as indicated by dashed lines. To make the plot dis-
cernible possible, in B, the y-axis was limited to a value of a maximum value of 17.
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Fig. S9: Performance of deconvolution algorithms in estimating cell types fractions under do-
main shift.
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Immune profiling-based targeting of
pathogenic T cells with ustekinumab in
ANCA-associated glomerulonephritis
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Antineutrophil cytoplasmic antibody (ANCA)–associated vasculitis is a life-
threatening autoimmune disease that often results in kidney failure caused by
crescentic glomerulonephritis (GN). To date, treatment of most patients with
ANCA-GN relies on non-specific immunosuppressive agents, which may have
serious adverse effects and be only partially effective. Here, using spatial and
single-cell transcriptome analysis, we characterize inflammatory niches in kidney
samples from34patientswithANCA-GNand identify proinflammatory, cytokine-
producingCD4+ andCD8+ T cells as a pathogenic signature.We then utilize these
transcriptomic profiles for digital pharmacology and identify ustekinumab, a
monoclonal antibody targeting IL-12 and IL-23, as the strongest therapeutic drug
to use. Moreover, four patients with relapsing ANCA-GN are treated with uste-
kinumab in combination with low-dose cyclophosphamide and steroids, with
ustekinumabgiven subcutaneously (90mg) atweeks0, 4, 12, and 24. Patients are
followed up for 26 weeks to find this treatment well-tolerated and inducing
clinical responses, including improved kidney function and Birmingham Vascu-
litis Activity Score, in all ANCA-GN patients. Our findings thus suggest that tar-
geting of pathogenic T cells in ANCA-GN patients with ustekinumab might
represent apotential approachandwarrants further investigation in clinical trials.

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis
is a group of systemic autoimmune diseases characterized by
inflamed and necrotic small to medium-sized blood vessels1. Kidney
involvement is common and is associated with a substantial risk of

end-stage renal disease and death. Renal involvement typically
manifests as rapidly progressive crescentic glomerulonephritis
(ANCA-GN) with a fast decline in kidney function2–4. Despite recent
advances in the treatment and management of ANCA-GN, such as
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B cell depletion using rituximab5–7 and complement C5a receptor
blockade with avacopan8, the rate of end-stage kidney disease and
side effects remains high, emphasizing the unmet need for more
effective and immunopathogenesis-based treatment strategies in
ANCA-GN.

Several studies investigated the gene expression profiles of
blood samples from patients with ANCA-associated vasculitis (AAV)
showing distinct endotypes and potential prognostic biomarkers9–11.
Moreover, recent flow cytometric, single-cell RNA sequencing
(scRNA-seq), and immunohistochemical analyses of kidney biopsy
samples have provided deeper insights into the pathological
mechanisms mediated by immune cells in ANCA-GN12–15. However,
the relevant specific spatial localization of immune cells and
their cellular interactions are largely unknown. Decoding the locali-
zation and function of immune cells in the kidney is highly relevant
because the local immune responses could be the drivers of
renal injury and disease progression, offering unique opportunities
for the identification and characterization of treatment targets for
ANCA-GN.

ANCA-GN patients remain at significant risk of renal failure
and increased mortality, highlighting the need to develop more
effective and safer therapies. Here, we combine spatial tran-
scriptomics and single-cell RNAseq and identify Th1 and Th17
cells as major contributors to immune-mediated renal injury in
ANCA-GN. Based on these results we treat four ANCA-GN patients
with ustekinumab, which specifically targets Th1 and Th17 cells, as
add-on therapy. The rapid clinical response in all four patients
suggests that ustekinumab could be a promising therapy and
should be further investigated in clinical trials. Our approach to
combining high-dimensional single-cell and spatial immune pro-
filing with clinical and histopathological data facilitates persona-
lized pathogenesis-based treatments and could be a promising
strategy for other autoimmune diseases.

Results
Study cohort and experimental overview
We included two independent patient groups with biopsy-confirmed
ANCA-GN from the Hamburg GN Registry14,16 in our study (Fig. 1).
The exploratory group consists of 34 ANCA-GN patients. From each
of these patients, two renal biopsy cores were taken. One was
used for routine pathological evaluation and the other sample was
used for spatial (n = 28) and single-cell (n = 27) transcriptomic ana-
lysis (Fig. 1 and Table 1). The treatment group consists of four-
patients with relapsing ANCA-GN that were treated with
ustekinumab, steroids, and low-dose cyclophosphamide and under-
went single cell, and flow cytometry immune profiling, as well
as pathological examination and clinical follow-up analysis for 26
weeks (Fig. 1).

Spatial transcriptomics reveals inflammatory glomerular and
tubulointerstitial niches linked with T cell activation in
ANCA-GN
Kidney inflammation is a hallmark of ANCA-GN but the underlying
immunopathology is not well understood. To characterize the
inflammatory niches, pathological cell-cell interactions, and key
molecular pathways that drive kidney inflammation in ANCA-GN, we
generated spatial transcriptome (ST) sequencing data from 28 renal
biopsies of the exploratory cohort using the Visium platform (Fig. 2a
and Supplementary Data 1). By unsupervised clustering of the spatial
data, we were able to define 12 tissue compartments. Based onmarker
gene expression, we identified normal glomeruli, inflamed glomeruli,
tubulointerstitium, inflamed tubulointerstitium, vasculature, and sev-
eral tubular compartments. The latter includes proximal tubules (PT),
connecting tubules (CNT), distal convoluted tubules (DCT), collecting
duct (CD), and loop of Henle (LOH) (Fig. 2b,c and Supplementary
Fig. 1a–c)17. We verified our clustering-based annotations by compar-
ison to expert annotations of glomerular compartments on H&E-
stained images, exhibiting an annotation concordance of over 90% on
normal glomerular regions (Supplementary Fig. 1d). To understand the
compositional difference of the identified compartments between
ANCA-GN and healthy controls, we included 8 healthy control samples
in our analysis (Supplementary Fig. 1e). ANCA-GN samples were enri-
ched for inflamed glomeruli and inflamed tubulointerstitium as com-
pared to healthy control samples (Fig. 2c and Supplementary Data 2).

Next, we aimed to identify key molecular pathways and cell sub-
types involved in immunopathology in the inflammatory niches of the
kidney. An unsupervised analysis of cluster-defining genes from the
two inflamed compartments identified T cell activation as the most
differentially expressed gene ontology term (Fig. 2d and Supplemen-
tary Data 3–5). By co-analyzing the neighborhood composition of
compartments and their enrichment for T cell-specific pathways, we
found that gene sets for Th1 and Th17 cell differentiation as well as T
cell-mediated cytotoxicity were enriched in inflamed compartments
(Fig. 2e, f and Supplementary Data 4, 5). Further gene sets upregulated
in inflamed glomerular compartments indicate increased interleukin-1,
extracellular matrix organization, and regulation of fibroblast pro-
liferation (Supplementary Data 5).

Enrichment of proinflammatory cytokine-producing Th1/Tc1
and Th17/Tc17-like effector T cells in the kidney of ANCA-GN
patients
To further clarify and define the role of specific T cell subtypes and
their signaling cascades in ANCA-GN, we generated a single cell tran-
scriptome and epitope atlas of T cells, encompassing 72,416T cells
from renal biopsy and blood samples of 27 ANCA-GN patients of the
exploratory cohort (Fig. 3a and Supplementary Fig. 2a and Supple-
mentary Data 6). Unsupervised clustering identified 15 T cell clusters,

Routine diagnostics
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scRNA-seq (n=27)

+

Spatial 
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Flow cytometry 
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• ANCA-GN
• Renal histology
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• 26 week follow-up
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Fig. 1 | Study overview. 34 patients from the Hamburg GN Registry underwent
diagnostic kidney biopsy and multi-OMIC high dimensional immune profiling.
Based on these results drug prediction revealed ustekinumab as the strongest

candidate for treatment of ANCA-GN. Subsequently, 4 patients with severely
relapsing ANCA-GN were treated with ustekinumab and followed up for 26 weeks.
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containing CD4+ T effector cells (CD4+ Teff), CD8+ T effector cells
(CD8+ Teff), CD4+ naïve T cells, CD8+ naïve T cells, CD8+ T effector
memory cells (Teff/em), CD4+ central memory T cells (Tcm), stressed
T cells, regulatory T cells (Treg), γδ T cells, mucosal-associated invar-
iant T cells (MAIT), natural killer T cells (NKT), CD4+ cytotoxic T cells
(CTL), natural killer cells (NK cells) and proliferating T cells (Fig. 3a and
Supplementary Fig. 2b). Cytokine expression analysis revealed the
highest cytokine scores in CD4+ and CD8+ T effector cells (clusters 1
and 2) (Fig. 3b and Supplementary Fig. 3a). Interestingly, these effector
CD4+ and CD8+ T cells were enriched in the inflamed kidney but not in
the peripheral blood, highlighting their relevance in renal inflamma-
tion (Fig. 3c). Further analyses showed that the CD4+ T effector cell
cluster had a high proportion of Th1, Th1-like, and Th17 cells and CD8+

T effector cell cluster of Tc1, and Tc17-like cells (Fig. 3d and Supple-
mentary Fig. 3b, c). Subgroup analysis of proteinase 3 (PR3) ANCA
versus myeloperoxidase (MPO) ANCA patients showed no differences
in composition of T effector cells (Supplementary Fig. 3d).

To understand the spatial location of these pathogenic CD4+ and
CD8+ effector T cells in the inflamed kidney, we next used single cell

information to deconvolve the spatial transcriptomic data. Consistent
with the up-regulation of T cell activationmarkers, CD4+ Th1 andTh17 as
well as CD8+ Tc1 cells were exclusively localized to inflammatory glo-
merular and tubulointerstitial niches (Fig. 3e andSupplementary Fig. 3e).

Digital pharmacology identifies ustekinumab as drug candidate
Based on the combined analysis of spatial and single cell tran-
scriptome, type 1 and 3 cytokine producing T cells constitute a
potential immunopathogenesis-based therapeutic target in ANCA-GN.
We employed digital pharmacology, the mapping of drugs to cells
based on their molecular interaction, to search for approved drugs
that specifically target these pathogenic T cells in the kidney. To nar-
rowour search space to immunomodulating drugs, wepreselected 277
drugs consisting of antineoplastic agents, endocrine therapy drugs,
and immunosuppressants (Anatomical Therapeutic Chemical (ATC)
codes L01, L02, L04, respectively) that could potentially interact with
CD4+ and CD8+ Teff subsets in the inflamed glomerular and inflamed
tubulointerstitial compartments. To prioritize these drugs, we con-
structed a dictionary of drug-gene interactions based on the spatial
and single cell transcriptome information and subsequently filtered
drugs for chemical viability and FDA-approval (Fig. 3f and Supple-
mentary Data 7). Among the drugs with high differential interaction
scores in the inflamed renal compartments, we identified ustekinumab
as the drug exhibiting the highest specificity for CD4+ and CD8+

effector T cells. Ustekinumab is a human monoclonal antibody direc-
ted against the p40 subunit of both IL-12 and IL-23, which has the
potential to inhibit Th1/Tc1 and Th17/Tc17 cell responses.

Rapid biopsy immune profiling
ScRNA-sequencing is a time consuming and expensive technology. To
enable rapid and cost-effective screening of pathogenic immune cell
infiltrates in a clinical setting,weperformedflowcytometry-based single
cell immune biopsy profiling of the exploratory cohort (Fig. 4a, b and
Supplementary Fig. 4). This approach delivers patient-specific immune
profiles within hours after biopsy and might be instrumental in estab-
lishing immunopathogenesis-driven targeted biological therapies.
Basedonour results of the single cell and spatial transcriptomicdata,we
focused on the identification of pathogenic Th1/Tc1 andTh17/Tc17 cells.

Rapid single cell immune biopsy profiling showed that Th1/
Tc1(CXCR3+, CCR6−) and Th17/ Tc17-like cells (CCR6+, CCR4+)18 were
the dominant T cell subsets in the inflamed kidney of ANCA-GN
patients (Fig. 4b). Subsequentmultiplex immunofluorescence staining
showed that these pathogenic T cells were mainly localized to glo-
merular and interstitial inflammatory areas (Fig. 4c), further support-
ing an anti-T cell-cytokine treatment with ustekinumab.

Demographic, clinical, and immune characteristics of the uste-
kinumab treatment group
Based on our findings from the exploratory ANCA-GN cohort and
results from preclinical GNmodels, we decided to use ustekinumab in
combination with low-dose cyclophosphamide in patients with AAV
that had relapsing disease and a relative contraindication or incom-
plete response to current standard therapies (ustekinumab treatment
cohort). The basic and clinical characteristics of the treatment group,
encompassing four ANCA-GN patients are briefly summarized below
and are shown in more detail in Table 2 and Supplementary Fig. 5.

Patient 1: A 73-year-old male, with known MPO-ANCA positive
vasculitis under remission maintenance therapy with rituximab, pre-
sented with fatigue, dizziness, lower limb edema, gross hematuria and
acute kidney injury to our nephrology clinic. Kidney biopsy was per-
formed and revealed active, crescentic ANCA-GN. No other organ
manifestation was noted. At time of relapse, the patient received
rituximab remission maintenance therapy. Despite appropriate ritux-
imab dosing and intervals, full B cell depletion was not achieved. With
known urinary flowobstruction and the need for urinary diversion, the

Table 1 | Basic and Clinical Characteristics Exploratory cohort

N = 34

Demographics

Age—years, median (IQR) 64.5 (57.75–74.25)

Sex, n (%)

Female 14 (41.18)

Male 20 (58.82)

BMI, median (IQR)a 24.65 (22.90–27.36)

ANCA status, n (%)

MPO 22 (64.71)

PR3 12 (35.29)

Initial organ involvement, n (%)

General 22 (64.71)

Renal 34 (100)

ENT 6 (17.65)

Lung (DAH) 11 (32.35)

Nervous system 3 (8.82)

Cutaneous 2 (5.88)

Abdominal 2 (5.88)

Eye 2 (5.88)

Heart 1 (2.94)

Histological ANCA renal risk score16, n (%)

Low 12 (35.29)

Medium 15 (44.12)

High 7 (20.59)

Laboratory values, median (IQR)

Creatinine (mg/dl) 2.12 (1.66–4.55)

eGFR (ml/min) 23.5 (11.75–42.75)

ACR (mg/g) 720 (328.5–1500)

Immunosuppressant induction treatment, n (%)

Glucocorticoids 34 (100)

Rituximab 9 (26.47)

Cyclophosphamide 22 (64.71)

Cyclophosphamide and Rituximab 3 (8.82)

PLEX 4 (11.76)

Source data are provided as a Source Data file.
IQR interquartile range, ANCA antineutrophile cytoplasmatic antibody, MPOmyeloperoxidase,
PR3 proteinase 3, ENT ear nose throat, DAH diffuse alveolar hemorrhage, PLEX therapeutic
plasma exchange, eGFR estimated glomerular filtration rate, ACR albumin-creatinine-ratio.
an = 33.
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patient was hesitant for full dose cyclophosphamide therapy. (Sup-
plementary Fig. 5a).

Patient 2: A 52-year-old male patient was admitted to our clinic
with a creatinine increase as well as active urinary sediment after six
pulses of i.v. cyclophosphamide, because of recently diagnosed MPO-
ANCA positive vasculitis with extensive organ manifestations. Kidney
biopsy was performed and revealed active, crescentic ANCA-GN. The
early phase of the COVID-19 pandemic raised substantial concerns
over B cell depleting therapies, thus prompted us to decide against re-
induction therapy containing rituximab (Supplementary Fig. 5b).

Patient 3: A 32-year-old male was admitted to our nephrology
ward with fever, night sweats, weight loss, progressive dyspnea
and hemoptysis. Four weeks earlier the patient received rituximab
and steroids because of a pulmonary and ENT relapse of known
PR3-ANCA positive vasculitis. Chest imaging and bronchoscopy
showed progressive DAH (diffuse alveolar hemorrhage). Urinary
analysis displayed glomerular hematuria and laboratory testing
showed acute kidney injury with pronounced elevation of CRP
and ANCA-level. Kidney biopsy was initiated and revealed active,
crescentic glomerulonephritis. Because of concomitant severe
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Fig. 4 | Immune profiling of renal T cells. a Representative flow cytometry plot
showing the identification of chemokine receptor expression from cells isolated
from biopsy samples of patients with ANCA-GN (exploratory cohort, n = 22).
b Quantification of chemokine receptor expression CXCR3 (Th1/Tc1) and CCR6
(Th17/Tc17) from renal CD3+ T cells. Violin plots show mean, symbols represent

individual data points. (n = 22). c Representative immunofluorescence staining of
chemokine receptors CXCR3 and CCR6 on CD3+ T cells in human kidney tissue of
ANCA-GN. Lower row zoomed in areas. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-024-52525-w

Nature Communications | ��������(2024)�15:8220� 5

76



leukopenia, cyclophosphamide could not be given at full dose
(Supplementary Fig. 5c).

Patient 4: A 72-year-old female patient, with known MPO-ANCA
positive vasculitis and remission maintenance therapy with rituximab,
was sent to our nephrology ward with acute kidney injury and reduced
general condition. Chest imaging ruled out relevant thoracic patholo-
gies. Urinary analysis showed glomerular hematuria and kidney biopsy
was issued. Here, active crescentic ANCA-GN was seen and diagnosis of
relapsing ANCA-GN was made. Because the patient suffered a relapse
while being on remissionmaintenance with rituximab, she was deemed
a poor responder to rituximab. Furthermore, she suffered from mye-
lodysplastic syndrome with bicytopenia (leukopenia and anemia), thus
full dose cyclophosphamide was deemed unsuitable, because of
increased risk for myelotoxicity. (Supplementary Fig. 5d).

Flow cytometry-based rapid immune biopsy profiling in each of
the four ANCA-GN patients demonstrated a strong infiltration of Th1/
Tc1 and Th17/Tc17-like cells into the inflamed kidney (Supplementary
Fig. 6a, b). Additional single cell transcriptome sequencing of the four
patients provided a more comprehensive renal T cell profile and
confirmed the observed Th1/Tc1 and Th17/Tc17-cell responses (Sup-
plementary Figs. 7a–e, 8a-d and Supplementary Data 8).

Clinical responseof theustekinumabANCA-GN treatment group
The four ANCA-GN patients of the treatment cohort were given uste-
kinumab s.c. (90mg) in combinationwith lowdose cyclophosphamide
and steroids, following the RITUXVAS trial approach19, as a re-
induction therapy. All patients received ustekinumab at weeks 0, 4,
12, and 24 in combination with two to three low doses of cyclopho-
sphamide (cumulative dose 1.5–2.0 g) and glucocorticoids according
to the PEXIVAS trial reduced dose regimen20. Starting at week 16,
patients 3 and 4 (patient 2 at week 22) received a low dose remission
maintenance therapy with either azathioprine or mycophenolate
mofetil (MMF) (Fig. 5a). At six months, the prednisolone dose was
tapered to 5mg daily in all four patients.

All patients showed a rapid clinical and serological response to
this re-induction treatment protocol. Mean serum creatinine levels
decreased fromamedianof 2.8 (2.0–4.0)mg/dl to 1.6 (1.3–1.7)mg/dl at
6 months. According to the albumin-creatinine-ratio, median albumi-
nuria decreased from 862.5 (584–2793)mg/g at the time of relapse to
604 (359–1402)mg/g at 6 months (Fig. 5a). ANCA serum levels
decreased from 65 (24–126) U/ml to 32 (9–57) U/ml. The Birmingham
vasculitis activity score (BVAS) declined from a median of 12.5
(9.75–13) at the beginning of ustekinumab treatment to 2.5 (2–4.5) at
6 months (Fig. 5b). C-reactive protein (CRP) levels rapidly improved
throughout the 6-month treatment period (ranging from 5 to 190mg/l
at thebeginningof treatment to < 4–36mg/l at6months) (Fig. 5b). The
treatment with ustekinumab was well tolerated. No serious adverse
effects were observed during the 6-month treatment period.

Discussion
Despite numerous advances in therapy forANCA-GN, these patients still
have a substantial risk of kidney failure and increased mortality21,22.
Today, the leading causes of death in ANCA-GN are infections, followed
by cardiovascular disease and malignancies23, all associated with
immunosuppressive therapy. This highlights the unmet need tobalance
disease control against the risk of side effects. However, the limited
understanding of the underlying immunopathology, particularly within
the inflamed kidney, impedes the implementation of tailored and
effective treatment options. Therefore, in this studywe sought to tackle
this issue with an approach consisting of four distinct steps.

First, using unsupervised analyses of spatial transcriptomics data
derived from the kidneys of patients with ANCA-GN, we identified a
distinct enrichment of inflammatory glomerular and tubulointerstitial
niches, linked to T cell activation, as the key molecular pathways.
Evidence for a pathogenic role of T cells in ANCA-GN patients, is
derived from genetic studies showing a significant association with
distinct human leukocyte antigen (HLA) class II haplotypes24–26, an
unbalanced activation state of blood and kidney T cells27–29 and a
therapeutic T cell-depletion study in refractory AAV patients30. The T
cell subsets and cytokine networks that promote tissue injury and loss
of renal function, however, remain to be fully elucidated. Thus, sec-
ondly, we performed unsupervised single cell transcriptomics and
epitope mapping of renal T cells from our exploratory cohort,
revealing the dominance of proinflammatory cytokine-producing Th1/
Tc1 and Th17/Tc17-like effector T cells in the kidneys of ANCA-GN
patients. Thirdly, based on the dominant effector T cell subsets in
inflammatory glomerular and tubulointerstitial niches of nephritic
kidneys we used digital pharmacology to investigate relevant drugs
targeting pathways expressed in these T cells, and could thereby
identify ustekinumabas a potential treatment approach.Ustekinumab,
a human monoclonal antibody directed against the p40 subunit of
both IL-12 and IL-23 thereby targeting the Th1/Tc1 and Th17/Tc17
immune responses, is approved for the treatment of psoriasis31,
psoriatic arthritis32, and inflammatory bowel disease33,34. Several stu-
dies highlighted its efficacy and good tolerability in these patients35–40.
To date, there are no data available for using ustekinumab in ANCA-
GN, despite the fact that experimental GN models, including

Table 2 | Basic and Clinical Characteristics treatment cohort

Patient 1 Patient 2 Patient 3 Patient 4

Demographics

Age—years 73 52 32 69

Sex (female/male) M M M F

BMI 34.68 25.90 24.38 27.06

Time until
relapse (weeks)

143 16 168 138

ANCA status

MPO + + − +

PR3 − − + −

Organ involvement

General + + + +

Renal + + + +

ENT − + + −

Lung (DAH) − + + −

Nervous system − + − −

Cutaneous + + − −

Abdominal − − − −

Eye − − − −

Heart − + − −

Histological ANCA renal risk score16

Low − + + −

Medium − − − −

High + − − +

Laboratory values at relapse

Creatinine (mg/dl) 4.25 2.27 1.88 3.42

eGFR (ml/min) 13 32 46 13

ACR (mg/g) 3345.7 590.0 582.3 1134.9

Previous immunosuppressant treatment

Glucocorticoids + + + +

Cyclophosphamide + + − +

PLEX + − − −

Rituximab + − + +

Azathioprine + − − +

ANCA anti-neutrophile cytoplasmatic antibody, MPOmyeloperoxidase, PR3 proteinase 3, ENT
ear nose throat, DAH diffuse alveolar hemorrhage, eGFR estimated glomerular filtration rate,
ACR albumin-creatinine ratio, PLEX therapeutic plasma exchange.
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preclinical ANCA-GNmodels41–45, provide a clear rationale for targeting
the IL-12/IL-23 axis in immune mediated kidney disease.

Fourthly and finally, given our findings in the exploratory cohort,
we assessed the efficacy of ustekinumab in four ANCA-GN patients
with relapsingdisease.Our treatmentprotocolwasdesignedas an add-
on therapy of ustekinumab at weeks 0, 4, 12, and 24 with up to three
low-dose pulses of cyclophosphamide, similar to recent trials estab-
lishing rituximab and the complement inhibitor avacopan as add-on
treatments for ANCA vasculitis (RITUXVAS and ADVOCATE trials)8,19.
The immunosuppression was complemented by an intravenous pre-
dnisolone and oral glucocorticoid therapy according to the PEXIVAS

study reduced dose regimen20. All four patients responded rapidly to
therapy, with improvements in kidney function, ANCA levels, CRP, and
BVAS. Importantly, all patients tolerated the treatment well and no
adverse ustekinumab-related effects were observed.

This report pioneers an immunopathology-based anti-T cell-
cytokine therapy for immune-mediated kidney diseases. Our data
further suggests that combining high-dimensional single cell immune
profiling with clinical and histopathological information facilitates
personalized pathogenesis-based treatments. Moreover, this study
indicates that rapid single cell immune biopsy profiling by flow cyto-
metry is a feasible approach thatmight be routinely applied in patients
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Fig. 5 | Clinical outcome of the ustekinumab treatment cohort. a Course of
serum creatinine and albuminuria during ustekinumab treatment. Black arrow-
heads indicate cyclophosphamide and green arrowheads ustekinumab adminis-
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sphamide; AZA azathioprine; MMF mycophenolate mofetil; BVAS Birmingham
Vasculitis Activity Score; CRP C-reactive protein; ACR albumin creatinine ratio).
Source data are provided as a Source Data file.
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with ANCA-GN and could prove to be a potential strategy for other
organ-specific autoimmune and inflammatory diseases.

Although our results provide an immunopathogenesis-based
rationale for targeting Th1/Tc1 and Th17/Tc17 responses with uste-
kinumab in ANCA-GN, our study has several limitations. The treat-
ment protocol was designed as an add-on therapy, making it more
difficult to assess the intrinsic efficacy of ustekinumab, and it is likely
that part of the observed response to treatment is due to the con-
comitant use of low-dose cyclophosphamide and steroids. In addi-
tion, our study focused on the renal manifestation of AAV, and it
is unclear whether these results also apply to the involvement of
other organs.

In addition, long-term data need to be acquired to confirm the
overall safety profile of ustekinumab in ANCA-GN. Furthermore, the
data generated from this case series is based on a low number of
patients without a control group. Therefore, these results should be
interpreted with caution and need to be confirmed in adequately
designed clinical trials for which the appropriate treatment protocol
and patient subgroups remain to be determined. Taken together, our
study suggests that ustekinumab is a well-tolerated therapeutic option
for the treatment of ANCA-GN, which should be further investigated in
clinical trials.

Methods
Patients
We included two independent ANCA-GN patient groups from the
Hamburg GN Registry14,16 in our study. The exploratory cohorts
consist of 34 patients and the ustekinumab treatment group of four
patients. For the spatial transcriptomic analysis of control samples,
the healthy parts of the kidney, which was removed due to tumor
nephrectomy, were used. Informed consent was obtained from all
participating patients in accordance to the CARE guidelines and in
accordance with the ethical principles stated in the Declaration of
Helsinki. All four patients in the ustekinumab treatment group also
provided written informed consent before receiving ustekinumab as
an off-label treatment. Detailed information on the patient cohorts
and the performed analysis are provided in Tables 1, 2 and Supple-
mentary Data 10.

Sex- and gender-based analyses were not performed. Informa-
tion about the sex of the patients is provided in Table 1 for the
exploratory cohort and in Table 2 for the treatment cohort. Biolo-
gical sex and self-reported sex were identical in both the exploratory
and treatment cohort.

These studieswere approvedby the Institutional ReviewingBoard
(IRB) of the University Medical Center Hamburg-Eppendorf and Ethik-
Kommission der Ärztekammer Hamburg (local ethics committee of
the chamber of physicians in Hamburg), and covered by the licenses
PV4806, PV5026, and PV5822.

Spatial transcriptomics
Preprocessing of the spatial transcriptomics slides. For spatial
transcriptomics, formalin-fixed paraffin-embedded (FFPE) tissue sec-
tions from patients with ANCA-associated glomerulonephritis and
controls (healthy tissue from tumornephrectomies) were transferred
on Visium (10x Genomics) slides (spatial for FFPE gene expression
human transcriptome) and processed according to themanufacturer’s
instructions. Next-generation sequencing was performed on an Illu-
mina NovaSeq 6000 aiming at 25,000 reads per spot (PE150).

For alignment to the genome of ST slides (n = 20) from 30
patients, the human genome assembly GRCh38-2020-A was used.
Mapping to the genome was performed using 10x Genomics Space
Ranger (v2.0.1). Alignment metrics from spaceranger are provided in
Supplementary Data 1. The same alignment method and libraries as
used for the exploratory group were used to align ST slides of the
internal controls (n = 3).

Quality control
After alignment of the ST slides to the genome, 1 slide was excluded
from analysis due to low gene counts (280 median genes per spot
compared to 3499.58± 972.97, SupplementaryData 1). Data analysis of
the ST gene expression data was performed using Scanpy46 (v1.9.3) in
Python (v3.9.7). The following parameters in Scanpy’s preprocessing
pipeline were used to filter poor-quality spots: min_genes = 100, min_-
spots = 3,min_counts = 2000,max_counts = 35000. The filtered ST data
consisted of 10,763 spots and 17,847 genes. The filtered spot counts
were normalized to sum to 10,000, and data was log2-transformed
with a pseudo-count of 1.

Clustering and annotation
Principal components (n_comps = 50) were computed on the highly
variable genes (highly_variable_genes in Scanpy with default settings
and slide-name as batch_key). The batch effect corresponding to the
slide was removed using harmony47 (v0.1.0) in R (v4.1.1). To identify
clusters, Leiden clustering (scanpy.tl.leiden) was performed on Uni-
formManifoldApproximation andProjection (UMAP) data projections
with a resolution of 1.2. The UMAP projections were generated on a
neighborhood graph constructed using scanpy.pp.neighbors with
n_neighbors = 10. Cluster annotations were performed using the fol-
lowing cell type specific markers from a reference kidney single cell
dataset17 - Proximal tubules (PT): LRP2, CUBN, SLC13A1, Distal con-
voluted tubules (DCT): SLC12A3, CNNM2, FGF13, KLHL3, LHX1, TRPM6,
Connecting tubules (CNT): SLC8A1, SCN2A, HSD11B2, CALB1, Principal
cells (PC): GATA3, AQP2, AQP3, Intercalated cells (IC): ATP6V0D2,
ATP6V1C2, TMEM213, CLNK, Ascending thin loop of Henle (Thin limb):
CRYAB, TACSTD2, SLC44A5, KLRG2, COL26A1, BOC, Thick ascending
loop of Henle (TAL): CASR, SLC12A1, UMOD. Endothelial cells (Endo):
CD34, PECAM1, PTPRB, MEIS2, EMCN, vascular smooth muscle cells
(vSMC)/Pericyte: NOTCH3, PDGFRB, ITGA8, Fibroblasts: COL1A1,
COL1A2, C7, NEGR1, FBLN5, DCN, CDH11, Podocytes: PTPRQ, WT1,
NTNG1, NPHS1, NPHS2, CLIC5, PODXL, Immune cells: PTPRC, CD3D,
CD14, CD19. The expression of these marker genes for each annotated
renal compartment is shown in the Supplementary Fig. 1c. The dis-
tribution of total gene counts, number of spots across slides, and
annotated compartments are presented in the Supplementary Fig. 1a.

Quantification of spatial proximity
The spatial neighborhood enrichment was performed with Squidpy48

(v1.2.2) over all slides. The underlying multi-sample spatial graph was
constructed by merging all sample-specific spatial graphs into a single
graph, resulting inone connected component per sample. The sample-
specific graphs were constructed by connecting each spot to its
nearest neighbors. To visualize the neighborhood enrichment matrix,
the compartments were considered as nodeswith the number of spots
in a compartment as node sizes, z-scores as edgeweights, and neato as
layout engine from the library Pygraphviz (v1.11). Negative z-scores
were set to 0, essentially removing spatially distant compartments. For
visualization, the resulting weights were downscaled by 0.25.

Integration of control samples
ST data from kidney nephrectomies (n = 8) was integrated with the
previously generated embedding of ST data from the ANCA-GN
exploratory group. In total, we used 3 slides generated at the UKE
Hamburg (Supplementary Data 9) and 5 slides previously generated by
Lake et al. 17., totaling 21,420 spots. The integration was performed
with Symphony49 (v0.1.0) with highly variable genes computed over
the ANCA-GN exploratory group.

Differential population analysis
To identify the renal compartmentsdifferentially abundant between the
control and ANCA-GN samples, differential population analysis was
applied using scCODA50 (v0.1.9) with CNT/PC as the reference cell type

Article https://doi.org/10.1038/s41467-024-52525-w

Nature Communications | ��������(2024)�15:8220� 8

79



and a false discovery rate of 0.05. We identified inflamed glomerular,
inflamed tubulointerstitial, PT, PT/LOH, and Tubulointerstitial/Vessels
to be differentially abundant between control and ANCA-GN (Supple-
mentary Data 2).

Gene set enrichment analysis
First, we identified differentially expressed (DE) genes in inflamed
glomerular and inflamed interstitial compartments using a Wilcoxon
test (adjusted p-value cutoff of 0.05 and log2-fold change cutoff of
0.25) through scanpy.tl.rank_genes_groups. We then performed gene
set enrichment analysis on a functional level with the differentially
expressed (DE) genes as input, using the enrichGO function from
clusterProfiler R package51 (v4.2.2) and biological processes as gene
ontology (GO). The function simplify was used to remove redundant
GO terms. Gene-set variation analysis (GSVA)52 was used to compute
the scores of gene set ontology terms.

Annotation of H&E slides
The same biopsy samples as used in 10x Visium were manually anno-
tated by an expert into three categories: normal, crescentic, and
uncertain. The third group contained the tissue that could not be
confidently assigned to either normal or crescentic categories. The
original images were exported to TIF and processed using ImageJ
(v1.54f). The manual annotations were performed using Napari
(v0.5.0a2.dev171+gf2d7d437).

Single cell RNA-sequencing: preprocessing and quality control
The Cell Ranger software (v5.0.1 and v7.1.0, 10x Genomics) was used to
demultiplex cellular barcodes and map reads to the reference genome
GRCh38-3.0.0 and GRCh38-2020-A. All quality control and preproces-
sing steps were performed in Seurat53 (v4.0.4) and R (v4.1.1). The Seurat
demultiplexing function HTODemuxwas used to demultiplex the hash-
tag samples. We removed the cells in which less than 500 or more than
5000 expressed genes were detected. We further filtered out low-
quality cells with more than 10% mitochondrial genes. Subsequently,
raw counts were normalized to 10,000 and log1p transformed, batch
corrected and integrated with harmony47 using the 2000 most highly
variable genes, and clustered using the Louvain algorithm with resolu-
tion 0.1. T cells were isolated by removal of all cell clusters with lowCD3
expression. We merged the tissue-specific datasets for each cohort by
keeping the union of all genes for blood and kidney samples. Subse-
quently, we removed all cells belonging to the top 0.1% total counts
quantile or expressing less than 200 genes as well as any genes that
were expressed in less than 10 cells.We further removed cellswithmore
than 12,000detected surfaceproteins andproteins thatwerepresent in
less than 10 cells. In the case of the transcriptome information we
normalized the raw counts to sum up to 10,000 and log1p transformed
them. For the raw protein counts we performed centered log-ratio
normalization. The filtered, processed, and combined single-cell data
for the exploratory cohort contains 72,416 cells (22,187 kidneys, 50,229
blood) and 21,419 genes (Supplementary Fig. 2a and Supplementary
Data6). For the treatmentgroup, the combined single-cell data contains
34,810 cells (15,372 kidney, 19,438 blood) and 38,224 genes (Supple-
mentary Fig. 7e and Supplementary Data 8).

Clustering and cell type identification
In the following, we provide full information only about the analysis
workflows for the exploratory group but mention differences to the
analogous workflow for the treatment group. All analyses were per-
formed either in R (v4.1.1) using Seurat (v4.0.4) or in Python (v3.9.17)
using Scanpy46 (v1.9.1).

For the exploratory group, we combined two integration work-
flows to identify and annotate cell types: one to identify broad T cell
clusters and another to annotate specific CD4+ andCD8+ T cell subsets.
We first performed a principal component analysis on the top 2000

highly variable genes and then applied harmony47 on the first 30
principal components to correct batch effects between patients. After
computing the nearest neighbor graph,we clustered thedata using the
Louvain algorithm with a resolution of 0.1. We annotated the cell
clusters using canonical cell type markers for broad T cell subsets
(Fig. 3a and Supplementary Fig. 2b). Type 1-3 cytokine scores (type 1:
IFNG, TNF, IL2, IL18, LTA, CSF2; type 2: IL4, IL5, IL9, IL13; type 3: IL17A,
IL17F, IL22, IL26) were calculated using the Scanpy function score_genes
(Fig. 3b and Supplementary Fig. 3a).

In a second step, we isolated the CD4+ Teff and CD8+ Teff cells,
mostly composed of kidney cells, and removed patients containing
less than 2 total cells (blood and kidney) and genes present in less than
10 cells.We reintegrated the remaining cellswith totalVI54 based on the
top 4000 highly variable genes and all surface proteins, treating the
patient ID as a categorical covariate. After Leiden clustering with a
resolution of 0.8 and 1.0, respectively, we annotated the cell clusters
based on canonical markers for CD4+ and CD8+ T cell subsets (Fig. 3d
and Supplementary Figs. 2b and 3b,c).

For the ustekinumab group, we followed an analogous integration,
clustering, and annotation workflow (Supplementary Figs. 7a–e and
8a–d) with the following differences. First, we regressed out the counts
based on the number of genes, the total number of counts, and the
fraction of mitochondrial genes per cell before integration of the full
dataset and the T effector subsets. Secondly, we performed the rein-
tegration of both T effector subsets with harmony instead of totalVI.

Cell type deconvolution of spatial transcriptomics
In combination with the ANCA-GN renal T cell single cell atlas descri-
bed in this study, the single cell atlas from Stewart et al. 55. was inte-
grated to estimate cell type proportions, resulting in total 24 cell types:
LOH, B cell, CD, CD4+ T naive, CD4+ Tcm, CD8+ T naive, CNT, DC, Endo,
Fib,Macrophage,Mast cell,Monocyte,Myofib,Neutrophil, NKT, Podo,
PT, Tfh, Treg, Th1 and Th17, Tc1 and Tc17. Cell-type deconvolution was
performed using a reference-based algorithm, DISSECT56, with default
training parameters. To generate simulated data from training using
the PropsSimulator module of DISSECT, the following changes were
made: n_samples = 8000 and downsample =0.1.

Drug prediction
Drugs from ATC/DDD classification L (Antineoplastic and immunomo-
dulating drugs), excluding immunostimulants from ATC/DDD classifi-
cation L03, were used as potential candidate drugs. The targets of these
drugs were extracted from ChEMBL57 and putative drug interactions
from the drug-target interaction database DGIdb58, resulting in a total of
277drugs. To assess the targets of thedrugs,weuseddrug2cell (v0.1.0)59

with inflamed glomerular and interstitium renal compartments as clus-
ters of interest. Default parameters were used in drug2cell in addition to
a cutoff of 0.25 for log2-fold change in the drug-target expression. This
resulted in 14 drugs (Supplementary Data 7) whose targets were differ-
entially enriched in the two compartments. To prioritize drugs, we
looked for drugs that affect primarily the inflamed compartments and
are less enriched in others. Only drugs that were enriched at least 75% in
the compartments of interest and less than 75% in all other compart-
ments were selected. This criterion resulted in 7 potential drugs target-
ing the inflamed compartments: belantamab mafodotin, brentuximab
vedotin, vinflunine, ustekinumab, enfortumab vedotin, tocilizumab, and
polatuzumab vedotin. To select the final target out of these drugs and to
integrate T cell specificities of the drugs, we computed scores of their
targets in the CD4+ Teff and CD8+ Teff clusters using scanpy.tl.scor-
e_genes function and ordered them in decreasing order.

Isolation and flow cytometry of human biopsy leukocytes
Single-cell suspensions were obtained from human kidney biopsies by
enzymatic digestion in RPMI 1640 medium with collagenase D at
0.4mg/ml (Roche, 11088858001) and deoxyribonuclease I (DNase I;
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10μg/ml; Sigma-Aldrich, 10104159001) at 37 °C for 30min followed by
dissociation with gentle MACS (Miltenyi Biotec). Leukocytes from
blood sampleswere separated using Leucosep tubes (Greiner Bio-One,
10349081). Cells were stained with fluorochrome-conjugated anti-
bodies from BioLegend and BD Biosciences, CD45 BV510 (BioLegend,
clone HI30, catalog number 304036, dilution 1:100), CD3 BV785
(BioLegend, clone OKT3, catalog number 317330, dilution 1:200), CD4
BV650 (BioLegend, clone RPA-T4, catalog number 300536, dilution
1:200), CD8 APC-R700 (BD Bioscoences, clone RPA-T8, catalog num-
ber 565165, dilution 1:100), CXCR3 Pe/Dazzle (BioLegend, clone
G025H7, catalog number 353736, dilution 1:100), CCR6 PerCP-Cy5-5
(BioLegend, clone G034E3, catalog number 353406, dilution 1:100).
Cellswere also stainedwith adeadcell stain (Molecular Probes, L10119)
to exclude dead cells from analysis. Electronic compensation was
performed with antibody (Ab) capture beads stained separately with
individual monoclonal antibodies (MABs) used in the experimental
panel. FACS was performed on a FACSAria Fusion cell sorter (BD
Biosciences). Data analysis was performed using FlowJo software
(Treestar) or FACSDiva software (BD Biosciences).

FACS and scRNA-seq processing of human leukocytes
Single-cell suspension of human leukocytes was prepared as described
in the section Isolation and Flow cytometry of human biopsy leuko-
cytes. ScRNA-seq of human samples from the kidney and peripheral
blood was performed from FACS-sorted CD3 positive T cells using the
ChromiumNext GEM Single Cell 5′ Kit v2 (10x Genomics) according to
manufacturer’s instructions. The gating strategy, shown in Supple-
mentary Fig. 4, is identical for the flowcytometry analysis as well as the
FACS sorting. It is based on leukocytes, singlets, the living cells, CD45,
and for sorting the CD3 population was collected. Libraries were
sequenced aiming at 50,000 reads per cell on an Illumina NovaSeq
(P150), using the CG00330 protocol from 10X Genomics.

Immunofluorescence staining
For immunofluorescence staining, paraffin-embedded kidney sections
(2μm) from ANCA-GN patients were stained with primary antibodies
against CD3 (Abcam, ab11089, dilution 1:100), CCR6 (Sigma,
HPA014488/Origene TA316610, dilution 1:100), and CXCR3 (BD Bios-
ciences, 557183, dilution 1:100) after dewaxing and antigen retrieval
(pH6 for 15min). Following washing in phosphate-buffered saline,
fluorochrome-labeled secondary antibodies were applied. Staining
was visualized using an LSM800 with Airyscan and the ZenBlue soft-
ware (all Carl Zeiss, Jena, Germany).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All gene expression data used in this manuscript are publicly available
via the NCBI Gene Expression Omnibus (https://www.ncbi.nlm.nih.
gov/geo/). The newly generated data for this study is accessible under
GSE253633 and GSE250138. The accession codes for all other gene
expression data used are listed in the Supplementary Data 10. Source
data are provided with this paper.

Code availability
The code to process and analyze the single cell sequencing and STdata
is available at https://github.com/imsb-uke/ANCA-GN_transcriptomics.
The source code is also deposited at Zenodo (https://doi.org/10.5281/
zenodo.13208437).
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Supplementary Figure 4: Gating strategy rapid biopsy immune profiling.
Gating strategy for the identification of the chemokine receptors CXCR3 
(Th1/Tc1) and CCR6 (Th17/Tc17) of renal CD45+CD3+ T cells used in Figure 4  
and Supplemental Figure 6. Bottom right panel coressponding to Figure 4a 

0 50K 100K 150K 200K

0

50K

100K

150K

200K

250K

0-10
3

10
3

10
4

10
5

0

50K

100K

150K

0 50K 100K 150K 200K

0

10
2

10
3

10
4

10
5

0 10
4

10
5

0

50K

100K

150K

0 50K 100K 150K 200K

0

50K

100K

150K

FSC-A

S
S

C
-A

FSC-A

F
S

C
-W

CD45 BV510

S
S

C
-A

FSC-A

liv
e_

de
ad

 A
P

C
-C

y7

CD3 BV785

S
S

C
-Aalive

CD3+

CD45+

leukocytes

singlets

70.3%

17.3%5.82%

6.62%

0 10
3

10
4

10
5

0

10
3

10
4

10
5

CXCR3 Pe/Dazzle

C
C

R
6 

P
er

C
P

-C
y5

.5
 

13.3%

90.3%

63.5%

68.7%

88.4%

88



Patient 1

A 73 year old male patient with a history of MPO-ANCA positive vasculitis was referred to a regional hospital in 
august 2020 with an episode of macro-hematuria, as well as fatigue, dizziness and progressive lower limb 
edema. Laboratory assessment showed acute kidney injury and elevated CRP levels. Chest imaging excluded 
relevant pathologies. Urinary analysis showed gross hematuria and macro-albuminuria. BVAS was elevated to 
9 points. Suspecting a relapse of AAV, the patient was transferred to university hospital Hamburg-Eppendorf.

Case

AAV history

Treatment - Pulsed i.v. steroids (3 x 500 mg prednisolone), followed by an oral tapering, according to the PEXIVAS trial 
reduced dose regimen. By 6 months prednisolone was tapered to 5mg daily (cumulative prednisolone dose: 
3900 mg).

- Two i.v. pulses of cyclophosphamide (cumulative dosage 2g) were given in the inpatient setting.

Diagnostic 
workup at
relapse

Kidney biopsy was performed, displaying a relapse of ANCA-GN with a 
high ARRS. Rapid biopsy immune profiling of the kidney biopsy revealed 
an enrichment of Th1/Tc1 an Th17/Tc17 cells in the kidney tissue. 

Initial diagnosis of AAV was made in 2017, with general symptoms, skin and kidney involvement. Kidney biopsy 
showed pauci-immune crescentic glomerulonephritis with small amounts of mesangial IgA deposition. Induction 
treatment consisted of PLEX, steroids and cyclophosphamide (cumulative CYC dose 5.0 g). Azathioprine was 
given for remission maintenance. After 7 months, azathioprine was discontinued due to severe side effects, and 
rituximab was started. Rituximab was well tolerated, and stable remission achieved, although full B cell depletion 
was not achieved during maintenance therapy with rituximab. Last dose RTX was given 6 months before 
re-admission with suspected AAV relapse.

Treatment
considerations

Patient tolerated rituximab well, but full B cell depletion could not be achieved, despite appropriate RTX-dosa-
ge. Furthermore, the patient suffered a relapse while on RTX treatment. Urinary flow obstruction and the 
need of urinary diversion led the patient away from full dose CYC, while still giving consent to two doses of 
i.v. CYC in the inpatient setting. Rapid immune profiling showed an increase in Th1/Tc1 and Th17/Tc17 cells, 
suggesting suitabiltty for an anti-IL12/IL-23 treatment.

Outcome Combined treatment of ustekinumab, steroids and low dose CYC resulted in a rapid clinical improvement with 
resolution of fatigue, edema and dizziness. Creatinine rapidly improved and uACR declined, as well as 
ANCA-levels, CRP, and BVAS. At 6 months the patient had an elevated BVAS of 3 because of grade 1 
hypertension and persistent albuminuria, mostly attributed to glomerular scarring.

kidney

skin

Hemoglobin [g/dl]
Leukocytes [109/l]
Platelets [109/l]
Creatinie [mg/dl]
eGFR [ml/min]
CRP [mg/l]
MPO-ANCA [U/ml]
B cells [%]

22
6 (34/µl)

36

4.25
13

7.8
271

12.0

medical history
- monoclonal B cell 

lymphocytosis
- exogen-allergic 

asthma
- OSA

- obesity

A 52 year old male patient with known history of MPO-ANCA positive vasculitis with extensive organ manifestati-
on was admitted to university medicine hospital Hamburg-Eppendorf, because of increasing creatinine and 
albuminuria after induction treatment with steroids (3 x 500 mg prednisolone and oral taper) and six pulses of 
i.v. cyclophosphamide (cumulative dose of 6.0 g; last dose given 4 weeks prior to admission). Initial manifesta-
tions (ENT, pulmonary, nervous and cutaneous) had improved since starting of induction treatment with steroids 
and CYC. BVAS was increased to 12 at admission. With suspected worsening ANCA-GN kidney biopsy was 
initiated.

Case

AAV history

Treatment - Pulsed steroids (3x500mg prednisolone), followed by an oral tapering. By 6 months prednisolone was tapered 
to 5mg daily (cumulative prednisolone dose: 3755 mg).

- Two i.v. pulses of cyclophosphamide (cumulative dosage 2.0 g) were given. 
- Ustekinumab 90mg s.c. was administered at weeks 0, 4, 12, and 24. 
- Azathioprine (1 mg/kg) was started at week 22 after beginning of induction therapy as additional maintenance 
therapy.

Diagnostic 
workup at
relapse

Urinary sediment showed dysmorphic erythrocytes (acanthocytes). 
Kidney biopsy demonstrated pauci-immune crescentic glomerulonephri-
tis with chronic and active lesions, compatible with active ANCA-GN with 
a low ARRS. Rapid immune-profiling of the kidney biopsy revealed an 
enrichment of Th1/Tc1 and Th17/Tc17 cells in the kidney tissue. 

Initial diagnosis of AAV was made 02/2021 with general, renal, ENT, lung, nervous system, cutaneous, renal 
and heart manifestation. Treatment with i.v. prednisolone followed by an oral taper (according to the PEXIVAS 
reduced dose regimen), as well as pulsed i.v. cyclophosphamide (according to EUVAS scheme, cumulative 
dose 6.0 g) was initiated.

Treatment
considerations

Cyclophosphamide treatment along with steroids could not achieve remission and renal manifestation showed 
a progressive disease with active glomerular lesions. COVID-19 pandemic was still on the rise, raising concerns 
over rituximab treatment. Rapid immune profiling of the kidney showed an enrichment of Th1/Tc1 and 
Th17/Tc17 cells.

Outcome Combined treatment of ustekinumab, steroids and low dose CYC resulted in a rapid clinical improvement with 
reduction in creatinine, uACR and ANCA-levels (16 U/ml). At 6 months the patient had an elevated BVAS of 2, 
because of persistent microalbuminuria, undulating around 200 mg/day.

kidney

skin

lung/heart

nervous
system

ENT

Hemoglobin [g/dl]
Leukocytes [109/l]
Platelets [109/l]
Creatinie [mg/dl]
eGFR [ml/min]
CRP [mg/l]
MPO-ANCA [U/ml] 29

5

2.27
32

6.5
282

10.7

Patient 2

Patient 3

A 32 year old male with a history of PR3-ANCA positive vasculitis was re-admitted to university hospital 
Hamburg-Eppendorf, because of fewer, night sweats, weight loss, and progressive dyspnea with hemoptysis. 
Four weeks before admission the patient was diagnosed with an AAV relapse- rituximab (two pulses of 1g) and 
pulsed steroids as well as an oral tapering regimen were started. Clinical examination at re-admission showed 
moist crackles in chest auscultation. BVAS was 13 at that time.

Case

AAV history

Treatment - Pulsed steroids (3x250mg prednisolone), followed by an oral tapering. By 6 months prednisolone was tapered to 
5mg daily (cumulative prednisolone doses 3520 mg).

- Oral cyclophosphamide was given as the patient was initially rejecting i.v. therapy. After repeated shared 
decision talks, the patient gave consent to one more i.v pulse under close monitoring of WBC (cumulative dose: 
500 mg p.o. and 1000mg i.v.).

- Ustekinumab 90mg s.c. was administered at weeks 0, 4, 12, and 24. 
- Starting at week 16 after re-induction therapy AZA was started for additional maintenance therapy and eventually 
switched to low dose MMF (2x500 mg) because of AZA side effects.

Diagnostic 
workup at
relapse

CT scans and bronchoscopy showed progressive DAH. Urinary sediment 
showed extensive acanthocyturia. Kidney biopsy was performed and 
displayed pauci-immune crescentic glomerulonephritis with active lesions, 
compatible with ANCA-GN, with a low ARRS. Rapid immune-profiling of the 
kidney biopsy revealed an enrichment of Th1/Tc1 and Th17/Tc17 cells in 
the kidney tissue. 

Initial diagnosis of AAV was made 2019 and treatment with i.v. prednisolone followed by an oral taper (according 
to the PEXIVAS reduced dose regimen) as well as rituximab was initiated. After two doses (1g each) of rituximab, 
the patient was lost to follow up. In 09/2022 aforementioned relapse with pulmonary and ENT manifestation 
occurred and pulsed prednisolone as well as re-induction with rituximab (two times 1g) was started. Initially the 
patient‘s symptoms improved and he was discharged.

Treatment
considerations

Severe leukopenia contradicted full dose cyclophosphamide re-induction treatment. Patient was also concerned 
of cyclophosphamide treatment-related adverse effects, and initially rejected an i.v. treatment. B cells were fully 
depleted, as rituximab was given four weeks prior. Rapid immune profiling of the kidney showed an enrichment of 
Th1/Tc1 and Th17/Tc17 cells.

Outcome Combined treatment of ustekinumab, steroids and low dose CYC resulted in a rapid clinical improvement with 
suspended night sweats, fever and hemoptysis, a reduction in creatinine, ANCA-levels, and BVAS. At 6 months 
the patient had an elevated BVAS of 2, because of persisting albuminuria. Antiproteinuric treatment with ACEi was 
not well tolerated and could only be given at the lowest dose.

kidney

lung

ENT

Hemoglobin [g/dl]
Leukocytes [109/l]
Platelets [109/l]
Creatinie [mg/dl]
eGFR [ml/min]
CRP [mg/l]
PR3-ANCA [U/ml]
B cells [%]

101
0 (1/µl)

190

1.88
46

1.7
435

8.2

A 72 year old female with a history of MPO-ANCA positive vasculitis (renal limited disease) and myelodysplastic 
syndrome was admitted to university medicine hospital Hamburg-Eppendorf, because of acute kidney injury and 
reduced general condition. The patient was receiving rituximab as remission maintenance, with the last dose given 
5 months prior to hospital admission. BVAS was 13 at admission. With suspected relapse of ANCA-GN diagnostic 
workup was initiated.

Case

AAV history

Outcome

Treatment - Pulsed steroids (3 x 500 mg prednisolone), followed by an oral tapering regimen according to the PEXIVAS study 
reduced dose arm. By 6 months prednisolone was tapered to 5mg daily (cumulative prednisolone dose: 4285 
mg).

- Three pulses of i.v. cyclophosphamide were given (cumulative dose of 1800mg).
- Ustekinumab 90mg s.c. was administered at weeks 0, 4, 12, and 24. 
- Low dose MMF (2 x 500 mg) was stared at week 16 after beginning of induction therapy as additional maintenan-
ce therapy.

Diagnostic 
workup at
relapse

Chest X-ray showed no signs of pulmonary involvement. Urinary analysis 
showed extensive acanthocyturia and macro-albuminuria. Kidney biopsy 
was performed and showed pauci-immune crescentic glomerulonephritis 
with active lesions, compatible with ANCA-GN, with a high ARRS. Rapid 
immune-profiling of the kidney biopsy revealed an enrichment of Th1/Tc1 and 
Th17/Tc17 cells in the kidney tissue. 

Initial diagnosis of AAV was made in august 2020 with a renal limited phenotype. Treatment with i.v. prednisolone 
followed by an oral taper (according to the PEXIVAS reduced dose regimen) as well as pulsed i.v. cyclophosphami-
de (cumulative dose 3600 mg) was initiated. After remission induction azathioprine was given for remission 
maintenance. Eventually, azathioprine had to be discontinued because of side effects and rituximab at doses of 500 
mg/6 months was initiated in 05/2022.

Treatment
considerations

Leukopenia of 3.0 x109/l with known myelodysplastic syndrome under high dose erythropoietin therapy 
contradicted full dose cyclophosphamide re-induction therapy. Retrospective the patient showed a rise in 
MPO-ANCAs in 01/2023 while B cells were depleted ( 0% / 1/µl). Rapid immune profiling of the kidney showed an 
enrichment of Th1/Tc1 and Th17/Tc17 cells.

Combined treatment of ustekinumab, steroids and low dose CYC resulted in a rapid clinical improvement with 
substantial improvement of general condition, reduction in creatinine, uACR, ANCA-levels, and BVAS reduction to 
5. At 6 months the patient had an elevated BVAS of 5, because of albuminuria and eumorphic hematuria. 
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Patient 4

Supplementary Figure 5: Detailed case vignettes for each patient of the ustekinumab treatment cohort.
Case vignettes illustrating a brief case description, history, diagnostic workup, as well as treatment considerations, treatment and outcomes for each patient of the ustekinumab treatment cohort. a Patient 1. b Patient 2. c 
Patient 3. d Patient 4. BVAS, Birmingham Vasculitis Activity Score. AAV, ANCA-associated vasculitis. PLEX, therapeutic plasma exchange. CYC, cyclophosphamide. ARRS, ANCA renal risk score (21). RTX, rituximab. 
uACR, urinary albumin to creatinine ratio. OSA, obstructive sleep apnoea. ENT, ear nose throat. DAH, diffuse alveolar hemorrhage. MMF, mycophenolate mofetil. ACEi, angiotensin-converting enzyme inhibitor. 
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Supplementary Figure 6: Rapid Immunoprofiling of T cells in the kidneys of the treatment cohort. 
a Flow cytometry-based identification of chemokine receptor expression from T cells isolated from biopsy samples of patients with ANCA-GN 
(n=4). b Quantification of chemokine receptor expression CXCR3 (Th1/Tc1) and CCR6 (Th17/Tc17) from renal CD45+CD3+T cells. Bar graphs 
show mean with SD, symbols represent individual data points.
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Supplementary Figure 7: Ustekinumab treatment group single-cell T cell atlas.
a UMAP projection of the integrated single-cell embeddings with corresponding cluster annotations. b Tissue composition for the 
different T cell clusters ordered by descending kidney enrichment. c Type 1-3 cytokine scores (type 1: IFNG, TNF, IL2, IL18, LTA, 
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A prognostic neural epigenetic signature in 
high-grade glioma

Neural–tumor interactions drive glioma growth as evidenced in preclinical 
models, but clinical validation is limited. We present an epigenetically 
defined neural signature of glioblastoma that independently predicts 
patients’ survival. We use reference signatures of neural cells to deconvolve 
tumor DNA and classify samples into low- or high-neural tumors. High-neural 
glioblastomas exhibit hypomethylated CpG sites and upregulation of 
genes associated with synaptic integration. Single-cell transcriptomic 
analysis reveals a high abundance of malignant stemcell-like cells in 
high-neural glioblastoma, primarily of the neural lineage. These cells 
are further classified as neural-progenitor-cell-like, astrocyte-like and 
oligodendrocyte-progenitor-like, alongside oligodendrocytes and 
excitatory neurons. In line with these findings, high-neural glioblastoma 
cells engender neuron-to-glioma synapse formation in vitro and in vivo and 
show an unfavorable survival after xenografting. In patients, a high-neural 
signature is associated with decreased overall and progression-free survival. 
High-neural tumors also exhibit increased functional connectivity in 
magnetencephalography and resting-state magnet resonance imaging and 
can be detected via DNA analytes and brain-derived neurotrophic factor in 
patients’ plasma. The prognostic importance of the neural signature was 
further validated in patients diagnosed with diffuse midline glioma. Our 
study presents an epigenetically defined malignant neural signature in 
high-grade gliomas that is prognostically relevant. High-neural gliomas likely 
require a maximized surgical resection approach for improved outcomes.

The importance of the nervous system as a regulator of brain tumors 
has been repeatedly highlighted but has not yet been translated into 
a therapeutically relevant setting1–5. Particularly in gliomas, studies 
have demonstrated that the activity-driven formation of malignant 
neuron-to-glioma networks is critical for cancer progression4,6–8, and 
that glioma cells remodel neuronal circuits by increasing neuronal 
hyperexcitability4,9–12. Further insight into molecular mechanisms 
identified connected and unconnected glioblastoma cells that form 
distinct cell states and differ in their gene signatures as well as func-
tions within neuron-to-glioma networks13. Additionally, glioblastomas 
exhibiting high functional connectivity have been shown to be asso-
ciated with poorer survival12. Moreover, callosal projection neurons 

were shown to promote glioma progression and widespread infiltra-
tion underpinning the importance of the central nervous system as 
a critical regulator14.

High-grade glioma consists of both malignant and nonmalig-
nant cells15,16. Therefore, their cell-type composition can be deter-
mined through epigenetic bulk DNA analysis, which allows for the 
identification of molecular differences. Here, we aimed to use brain 
tumor-related epigenetic signatures to understand isocitrate dehy-
drogenase (IDH)-wild-type high-grade gliomas, suggesting that cer-
tain epigenetic subclasses may be more likely to be integrated into 
neuron-to-glioma networks with clinical relevance. We analyzed the 
epigenetic neural signature of central nervous system (CNS) tumors, 
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between the epigenetic signature and the individual module-derived 
gene expression profiles (Fig. 2a,b). We identified three expres-
sion modules significantly correlated with the epigenetic status of 
high-neural glioblastomas: module green (R2 = 0.55, P = 3.5 × 10−6), mod-
ule cyan (R2 = 0.67, P < 2.2 × 10−22) and module midnight blue (R2 = 0.41, 
P = 9.3 × 10−5) (Fig. 2c,d). Gene Ontology analysis revealed that these 
modules were associated with synaptic functions (GRIN3A, SYT4 and 
SNAP25), regulating the expression of genes involved in neuronal dif-
ferentiation (NEUROD2) and calcium-dependent cell adhesion (CDH22, 
CNTNAP5 and CNTN3) (Fig. 2e,f).

We projected module eigengene signatures onto an integrated 
single-cell dataset of malignant (GBMap23) and healthy brain cells 
from the motor cortex (Allen Brain Institute). This analysis revealed 
a significant enrichment of the corresponding expression mod-
ules clustering to cells of the neural lineage such as healthy neu-
rons along with malignant neural-progenitor-like cells (NPCs) and 
oligodendrocyte-progenitor-like cells (OPCs) (module green and cyan, 
P < 0.01), as well as nonmalignant oligodendrocytes (module midnight 
blue, P < 0.01) (Fig. 2g–i and Extended Data Fig. 3a). This correlation 
with the signature, dominated by typical neuronal marker genes, was 
anticipated. To assess whether the neural signature in our samples 
reflects malignant cell properties or merely the presence of neurons, we 
analyzed the relationship between DNA purity and the neural signature, 
finding a notable positive correlation (P < 0.001, R2 = 0.19; Extended 
Data Fig. 3b), whereas microglia (P < 0.001, R2 = 0.35; Extended Data 
Fig. 3c) and immune cell signatures (P < 0.001, R2 = 0.67; Extended 
Data Fig. 3d) showed a negative correlation. Our study, using only 
glioblastoma samples with a reliable diagnostic output from the DKFZ 
methylation classifier (Methods) showed that the calibrated score for 
‘IDH-wild-type glioblastoma’ was unaffected by the epigenetic neural 
signature, nor vice versa (P = 0.39, R2 = 0.003; Extended Data Fig. 3e). 
Additionally, a non-reference-based multi-dimensional single-cell 
deconvolution algorithm24 was used to differentiate the neural sig-
nature in tumor cells from neuronal contamination. The analysis, 
which included glioblastoma tissue, matching tumor monocultures 
(n = 17), healthy cortex (n = 9) and sorted NeuN+ cells (n = 5), confirmed 
a higher stem-cell-like signature in glioblastoma tissue and cell cul-
tures (Extended Data Fig. 3f) and the distinct neuronal signature in 
NeuN+ cells and healthy cortex (Extended Data Fig. 3g). Integrating 
RNA sequencing (RNA-seq) data, we observed 64 out of 67 samples 
(95.52%; Extended Data Fig. 3h) clustered into the established Ver-
haak transcriptomic glioblastoma subtypes (classical, mesenchy-
mal and proneural)25. Ultimately, we analyzed the neural signature in 
cell cultures from 17 freshly resected patients with glioblastoma and 
observed a well-preserved neural signature (Extended Data Fig. 3i), 
which remained stable even in long-term cultures (Extended Data 
Fig. 3j) without the presence of NeuN+ cells (Extended Data Fig. 3k).

The synaptic character of high-neural glioblastoma was further 
validated in the tumor proteome (Extended Data Fig. 4a–f), showing 
an increase in proteins related to synaptic transmission (Extended Data 
Fig. 4a–d) and characteristics of malignant OPC-like, astrocyte-like 
and NPC-like cells (Extended Data Fig. 4e,f ). Histopathological 

categorizing glioblastoma and H3K27-altered diffuse midline glioma 
(DMG) into low- and high-neural subgroups, which were characterized 
molecularly, functionally and clinically.

Results
Epigenetic neural signature predicts patients outcome
To address our hypotheses, we applied the epigenetic neural signature 
of Moss et al.17 to estimate cellular composition (Fig. 1a) of a combined 
dataset of epigenetically profiled CNS tumors of Capper et al.18 and our 
institutional cohorts (Fig. 1b) as well as healthy tissue (Extended Data 
Fig. 1a). Using this combined dataset, glioblastoma samples (n = 1,058) 
were dichotomized for defining a cutoff separating low- and high-neural 
tumors (cutoff based on median neural proportion 0.41; Fig. 1c,d). 
We demonstrate that more than two clusters did not show significant 
separability of survival among the resulting clusters (Extended Data 
Fig. 1b,c). The reproducibility of the cutoff (0.41) was validated across 
multiple cohorts (Extended Data Fig. 1d–f). The cutoff was applied to 
363 patients with glioblastoma from our clinical cohort who received 
surgical treatment followed by standard-of-care combined chemora-
diotherapy. Survival analysis revealed a significantly shorter overall 
survival (P < 0.0001, median overall survival 14.2 versus 21.2 months; 
Fig. 1e) and progression-free survival (PFS) (P = 0.02, median PFS 6.2 
versus 10.0 months; Fig. 1f) for patients with a high-neural glioblas-
toma (Extended Data Table 1). This finding was replicated in an external 
cohort with 187 patients from The Cancer Genome Atlas (TCGA)-GBM 
database19 (P < 0.01, median overall survival 12.0 versus 17.1 months; 
Fig. 1g). The neural classification was identified as an independent 
prognostic factor for overall survival (odds ratio (OR) 1.96; 95% con-
fidence interval (CI) 1.45–2.64, P < 0.01; Fig. 1h) and PFS (OR 1.51; 95% 
CI 1.13–2.02, P < 0.01; Fig. 1i). Other infiltrating brain tumor cell types 
of the lymphoid or myeloid lineage did not show an association with 
patient survival (Extended Data Fig. 1g–j).

High-neural glioblastomas exhibit a synaptic character
To discern epigenetic differences in low- and high-neural glioblasto-
mas, we applied the ‘invasivity signature’13 (172 genes linked to neural 
features, migration and invasion) to the DNA methylation data of our 
clinical cohort (Supplementary Table). High-neural tumors were hypo-
methylated at CpG sites within gene loci of the invasivity signature 
compared to low-neural tumors (Extended Data Fig. 2a). In addition, 
two gene sets that are either associated with neuron-to-glioma synapse 
formation20 (‘neuronal signature genes’; Supplementary Table) or 
trans-synaptic signaling21 (‘trans-synaptic signaling genes’; Supple-
mentary Table) were hypomethylated in high-neural glioblastomas 
(Extended Data Fig. 2a), whereas synapse-related genes were upregu-
lated in high-neural glioblastoma (Extended Data Fig. 2b).

Next, we used an integrative analysis of paired epigenetic and 
transcriptomic datasets of glioblastoma samples (n = 86). First, we 
computed a scale-free gene expression network (weighted correlation 
network analysis; WGCNA22) resulting in gene expression modules, 
which were further correlated to the neural signature through module 
significance measurement by quantifying the absolute correlation 

Fig. 1 | Epigenetic neural classification predicts outcome of patients with 
glioblastoma. a, Schematic of the study workflow. In humans (n = 5,047) 
diagnosed with a CNS tumor we performed deconvolution using DNA 
methylation arrays (850k or 450k) for determining the neural signature. IDH-
wild-type glioblastomas were stratified into subgroups with a low- or high-neural 
signature for further analyses. b, Epigenetic neural signature in all CNS tumor 
entities (n = 5,047). c, Dichotomization of the combined dataset from Capper et 
al.18 and three institutional cohorts (Hamburg, Berlin and Frankfurt, all Germany) 
into low- and high-neural glioblastomas. The black line indicates a median neural 
score of all included patients with glioblastoma (n = 1,058) and represents the 
cutoff (0.41) for stratification into low- and high-neural glioblastoma.  
d, External validation of the cutoff value using the TCGA-GBM dataset (n = 187). 

The black line indicates the median neural score. e–i, Survival analysis of patients 
with low- and high-neural glioblastoma treated by radiochemotherapy after 
surgery. e, Overall survival (OS) of 363 patients with glioblastoma of the internal 
clinical cohort. log-rank test, P = 0.000005. Error bands represent 95% CI. f, PFS 
of 226 patients with glioblastoma of the internal clinical cohort. log-rank test, 
P = 0.0233. Error bands represent 95% CI. g, Overall survival of 187 patients with 
glioblastoma of the TCGA-GBM cohort. log-rank test, P = 0.0017. Error bands 
represent 95% CI. h,i, Forest plots illustrating multivariate analysis of patients 
with glioblastoma from the internal clinical cohort. Means are shown by closed 
circles and whiskers represent 95% CI. GTR, gross total resection; PR, partial 
resection; MGMT, O6-methylguanine-DNA-methyltransferase.

97



Nature Medicine | Volume 30 | June 2024 | 1622–1635 1624

Article https://doi.org/10.1038/s41591-024-02969-w

a

e f

i

g

0 12 24 36 48 60 72 84
0

20

40

60

80

100

PFS (months)

Pr
ob

ab
ili

ty
 o

f p
ro

gr
es

si
on

 (%
) Low-neural glioblastoma (n = 140, 111 events)

High-neural glioblastoma (n = 99, 85 events)

P = 0.02

Median PFS: 10.0 months

Median PFS: 6.2 months

0 12 24 36 48 60
0

20

40

60

80

100

OS (months)

Pr
ob

ab
ili

ty
 o

f s
ur

vi
va

l (
%

) Low-neural glioblastoma (n = 93, 61 events)

High-neural glioblastoma (n = 94, 56 events)

P < 0.01

Median OS: 17.1 months

Median OS: 12.0 months

External TCGA cohort

Internal cohort

h

0 12 24 36 48 60 72 84
0

20

40

60

80

100

OS (months)

Pr
ob

ab
ili

ty
 o

f s
ur

vi
va

l (
%

) Low-neural glioblastoma (n = 213, 100 events)
High-neural glioblastoma (n = 150, 104 events)

P < 0.0001
Median OS: 14.2 months

Median OS: 21.2 months

Internal cohort

1

Karnofsky Performance Status prior therapy

Methylated MGMT (ref: non-methylated)

PR (ref: GTR)

Near GTR (ref: GTR)

Age at diagnosis

High-neural glioblastoma (ref: low)
OR (95% CI) P value

1.96 (1.45–2.64)   <0.01

1.00 (0.98–1.02)

1.14 (0.80–1.63)

1.84 (1.28–2.64)

0.47 (0.35–0.64)   <0.01

0.98 (0.96–0.99)   0.02

Odds ratio (log scale) (95% CI)
50.2

OS (n = 363)

1

Odds ratio (log scale) (95% CI)
50.2

Karnofsky Performance Status previous therapy

Methylated MGMT (ref: non-methylated)

PR (ref: GTR)

Near GTR (ref: GTR)

Age at diagnosis

High-neural glioblastoma (ref: low) PFS (n = 239)
OR (95% CI) P value

1.51 (1.13–2.02)   <0.01

1.00 (0.99–1.02)

1.39 (0.98–1.96)

1.73 (1.19–2.49)

0.49 (0.37–0.68)   <0.01

0.99 (0.98–1.01)   0.91

Human brain tumors
n = 5,047

Neural 
epigenetic
signature

High-neural
signature

Low-neural
signature

Clinical data

DNA methylation Single-cell RNA
sequencing

Proteomics

Functional imaging Biomarker
analysis

PDX

Spatial
transcriptomics

High-neural
glioblastoma

Low-neural 
glioblastoma

Dichotomization
of neural
signature
score of
glioblastoma:
Capper et al.
(n = 624) and
institutional
cohorts
(n = 434)

C
ut

-o
ff

0.
41

External
validation
TCGA-GBM
(n = 187)

b

Cerebella
r li

poneuro
cyto

ma

1p
/19

q codeleted olig
odendro

glio
ma

High-grad
e as

tro
cyto

ma

Medullo
blas

toma

Neuro
blas

toma w
ith

 FO
XR2 a

ctiv
ati

on

Dys
embryo

plas
tic

 neuro
epith

elia
l tu

mor

H3.K27
 al

tered glio
ma

Lo
w-grad

e glio
ma, 

MYB/M
YBL1

Rose
tte

-fo
rm

ing glio
neuro

nal 
tumor

Gan
glio

glio
ma

Embryo
nal 

tumor w
ith

 m
ultil

ay
ered ro

se
tte

s

Retin
oblas

toma

Ependym
oma

Anap
las

tic
 pilo

cyti
c as

tro
cyto

ma
ATR

T

Glio
blas

toma

Pilo
cyti

c as
tro

cyto
ma

Subependym
oma

Infan
tile

 hemisp
heric

 glio
ma

Pineal 
pare

nchym
al 

tumor
PXA

Esth
esio

neuro
blas

toma

Pineoblas
toma

Plexu
s t

umor

Pitu
ita

ry 
ad

enoma

Subependym
al 

gian
t c

ell a
str

ocyto
ma

Heman
gioblas

toma

Para
gan

glio
ma, 

sp
inal 

non-C
IM

P

Pitu
icyto

ma

Chord
oid glio

ma o
f t

he th
ird

 ve
ntri

cle

Ewing sa
rcoma

Schwan
noma

Melan
ocyto

ma

Meningioma

Cran
iophary

ngioma

Chord
oma

Heman
gioperic

yto
ma

Plas
mac

yto
ma

Ly
mphoma

0

0.2

0.4

0.6

0.8

N
eu

ra
l s

ig
na

tu
re

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

IDH-wild-type glioblastoma
(n = 1,058)

IDH-wild-type glioblastoma
(n = 187)

TCGA

Institutional and 
Capper cohorts

N
eu

ra
l s

ig
na

tu
re

N
eu

ra
l s

ig
na

tu
re

H
igh-neural

Low
-neural

H
igh-neural

Low
-neural

c

d

0.67

0.07

<0.01

0.95

0.46

<0.01

100 Low risk

Intermediate risk

High risk

Su
rv

iv
al

80

60

40

20

0

Me3

Time

98



Nature Medicine | Volume 30 | June 2024 | 1622–1635 1625

Article https://doi.org/10.1038/s41591-024-02969-w

staining demonstrated a higher fraction of OLIG2-positive tumor cells 
in high-neural glioblastoma samples but comparable sparse infiltration 
of NeuN+ cells within the tumor samples (Extended Data Fig. 4g,h).

Next, we leveraged spatially resolved transcriptomic data with 
paired methylation profiling (n = 24) to examine the molecular archi-
tecture and cell-type distribution in low- and high-neural glioblastoma 
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samples (Fig. 3). We hypothesized that these tumors have distinct 
architectures, reflected by a unique spatial arrangement of transcripts 
that predict their epigenetic neural subgroup.

To this end, we trained a graph-neural network (GNN) using 1,000 
randomly chosen microenvironments within the samples. Each micro-
environment was centered on a 55-µm spot and extended up to 450 µm. 
These subgraphs were representative of the broader sample and were 
instrumental for the GNN training, achieving an R2 of 0.99 and an F1 
score of 0.98, indicating that the neural score can be reliably predicted 
from the transcriptional landscape (Fig. 3a,b).

We applied our neural score threshold of 0.41 to categorize micro-
environments as ‘neural high’ or ‘neural low’. Of note, 41.2% of the 
samples exhibited a blend of both categories, including those at the 
threshold and those with the most elevated neural scores (Fig. 3c). For 
instance, a sample with a neural score of 0.58 showed two prominent 
peaks at 0.38 and 0.58, suggesting a diverse microenvironmental 
composition (Fig. 3d); however, a pure or predominant neural type 
was present in all but one of the 24 samples (95.8%). Further analysis 
revealed that high-neural score microenvironments typically encom-
pass NPC-like and astrocyte-like tumor cells (Fig. 3e), alongside a sig-
nificant presence of oligodendrocytes and OPC-like cells, painting a 
picture of the tumor microenvironment’s unique architecture associ-
ated with the high-neural phenotype.

In conclusion, single-cell and spatially resolved transcriptomic 
analyses decipher that the neural signature in glioblastomas predomi-
nantly originates from cells of the neural lineage exhibiting an OPC/
NPC/astrocyte-like phenotype and is characterized by a distinct tumor 
microenvironment.

High-neural glioblastomas resemble a malignant stem 
cell-like state
Using a nonreference-based multi-dimensional single-cell deconvolu-
tion algorithm, we observed a higher stem/progenitor cell-like state 
but lower immune component in high-neural glioblastoma (28.05%) 
compared to all newly diagnosed glioblastoma (17.31%) and low-neural 
glioblastoma (14.14%) (Extended Data Fig. 4i). Both components were 
significantly correlated with the neural signature (Extended Data 
Fig. 4j,k).

No significant copy-number variations were observed between 
low- and high-neural subgroups (conumee R package v.1.28.0)26,27 
(Extended Data Fig. 5a). Next-generation sequencing (NGS) of 201 
genes showed a higher frequency of PIK3CA (0 out of 65 (0.0%) versus 
9 out of 60 (15.0%)) and TP53 (6 out of 65 (9.23%) versus 19 out of 60 
(31.67%)) mutations in high-neural tumors (Extended Data Fig. 5b,c). 

These findings were confirmed by an analysis of paired epigenetic and 
sequencing data of the TCGA dataset (Extended Data Fig. 5d,e).

High-neural glioblastomas integrate into neuron-to-glioma 
networks
The transcriptional and proteomic analysis revealed an increased 
synaptogenic character in high-neural glioblastomas. This led us 
to explore their integration into neuron-to-glioma networks. After 
xenografting, an increased colocalization of neuron-to-glioma syn-
apse puncta (P < 0.01; Fig. 4a–c) was observed in high-neural glio-
blastoma which was proven using electron microscopy (P = 0.008; 
Fig. 4d). An increase of colocalization of synapse puncta in high-neural 
glioblastoma cells after co-culturing with cortical neurons was found 
(P < 0.001; Fig. 4e).

For clinical translation, we assessed functional tumor connectivity 
using magnetoencephalography (n = 38; Fig. 4f,g) and resting-state 
functional magnetic resonance imaging (n = 44; Fig. 4h–k) in patients 
with glioblastoma. Both modalities showed a significantly higher 
peritumoral connectivity within the high-neural subgroup (P < 0.01; 
Fig. 4f–i). This aligns with recent studies on cellular states in regions 
of HFC-glioblastoma12. Comparing the connectivity phenotype12 to 
our neural classification showed high concordance (Fig. 4g); however, 
no increased connectivity was seen between the tumor region and 
the contralateral hemisphere (Fig. 4j). Volumetric analysis showed 
significantly smaller volumes of contrast enhancement (P = 0.03; 
Extended Data Fig. 6a) in high-neural glioblastoma, but no association 
with fluid-attenuated inversion recovery (FLAIR) (P = 0.18; Extended 
Data Fig. 6b) and necrotic volume (P = 0.78; Extended Data Fig. 6c). 
These findings indicate that high-neural glioblastomas engender 
neuron-to-glioma synaptogenesis and have a distinct role within 
neuron-to-glioma networks exhibiting functional connectivity.

Epigenetic neural signature is transferable to in vivo and 
in vitro models
Most studies elucidating the biology of cancer neuroscience in 
high-grade glioma were performed in preclinical models. Therefore, 
we examined the translatability of our epigenetic neural signature in 
cell cultures and patient-derived xenograft (PDX) models. We observed 
a well-preserved neural signature in 82.3% of our cell cultures compared 
to the original tumor samples (Fig. 5a), confirming that our preclinical 
models sufficiently reflect the characteristics of the original tumor. 
Comparison of low- and high-neural glioblastoma in PDX models of 
an internal cohort (n = 30 mice of seven patient-derived glioblastoma 
cell cultures; Fig. 5b) and two publicly available cohorts28,29 (n = 96 

Fig. 2 | Integrated epigenetic and transcriptomic analysis reveals synaptic 
functions and a malignant NPC/OPC-like character in high-neural 
glioblastoma. a, Illustration of the workflow to integrate epigenetic and 
transcriptional data. Gene co-regulation networks are correlated to the 
epigenetic deconvolution signature. b, Hierarchical dendrogram of the gene 
expression modules derived from the weighted correlation network analysis. 
Dot-plot of the neural signature with gene expression models using Pearson 
correlation (bottom). Size and color indicate the correlation coefficient, 
nonsignificant correlation is marked. c, Bar-plot of the differential gene 
expression of module eigengenes (log2-transformed fold change) in low- and 
high-neural glioblastoma (cutoff 0.41). d, Dimensional reduction (UMAP) of 

the gene expression modules (named by colors). e, A detailed visualization of 
the modules: green, cyan and midnight blue (significantly associated with high-
neural tumors). f, Gene Ontology analysis of gene expression modules in low- and 
high-neural tumors. g, UMAP dimensional reduction of the GBMap reference 
dataset. Colors indicate the different cell types. h, Module eigengene expression 
of low- and high-neural glioblastoma in the GBMap reference dataset. i, Gene 
expression enrichment of low- and high-neural-associated module eigengenes 
across glioblastoma cell states. AC, astrocytes; DC, dendritic cells; GBM, 
glioblastoma; NK, natural killer; OGD, oligodendrocytes; TAM, tumor-associated 
macrophages.

Fig. 3 | Spatially resolved architecture of low- and high-neural glioblastoma. 
a, Illustration of the workflow. Spatial transcriptomic data were used to identify 
neighborhoods defined as subgraphs. A GNN was trained to predict the neural 
score based on the spatial arrangements of transcripts. b, Scatter-plot of the 
mean sample predictions and the ground truth values. c, Illustration of the 
variance of neural score (predictions) compared to the threshold of 0.41. Bar plot 
indicates the Heidelberg classifier values of the glioblastoma subclasses (n = 24) 
(right). The dashed black line indicates the neural score threshold of 0.41.  

d, Example of a high-neural glioblastoma sample with a large blend of low- 
and high-neural predicted scores. The hematoxylin and eosin (H&E) image 
demonstrate the histology of the sample. Spatial neighborhoods derived from 
subgraphs with high- and low-neural scores are demonstrated (bottom). The 
single-cell maps are generated through single-cell deconvolution (Cell2Location) 
and CytoSpace spatial deconvolution. wt, wild type. e, Overview of the cell-type 
abundance correlated with the neural score.
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patient-derived glioblastoma cell cultures; Fig. 5c) showed a signifi-
cantly shorter survival of mice bearing high-neural tumors (inter-
nal cohort, P = 0.0009; external cohort, P = 0.001). Additionally, an 
increased proliferation index was seen in high-neural glioblastoma 

in vivo using immunodeficient mice (P < 0.01; Fig. 5d–f) as well as in 
co-cultures with cortical neurons (P < 0.001; Fig. 5g,h). In accordance 
with current literature describing neuronal activity-driven widespread 
infiltration of glioblastoma cells14, we observed a significantly wider 
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migration of high-neural glioblastoma cells in vitro (P < 0.05; Fig. 5i,j) 
and in vivo (P < 0.001; Fig. 5k). These findings demonstrate the robust-
ness of the epigenetic neural signature in vitro and in vivo and indicate 
higher proliferation when receiving neuronal input.

Epigenetic neural classification remains spatiotemporally 
stable
As heterogeneity is a hallmark of glioblastoma, we investigated the spa-
tiotemporal heterogeneity of the epigenetic neural signature. First, we 
analyzed 143 spatially collected biopsies from 34 patients (3–7 samples 
per patient). Among them, 23 patients (67.6%) demonstrated a pure 
low- or high-neural signature, while ten patients (29.4%) exhibited a 
predominant signature (Extended Data Fig. 6d). Temporal stability 
was assessed in 39 patients with matched tissue from both initial and 
recurrence surgery (Extended Data Fig. 6e). Here, 31 out of 39 patients 
(79.5%) remained in the same neural subgroup at recurrence (Extended 
Data Fig. 6f). Overall, the neural subgroup seemed to be spatiotempo-
rally stable in contrast to transcriptional states that change in a larger 
proportion of patients30,31.

Drug sensitivity analysis of neural glioblastoma cells
Patients with glioblastoma routinely undergo combined radiochemo-
therapy after surgical resection32. We evaluated 27 different agents 
for their efficacy in the treatment of low- and high-neural glioblas-
toma cells (Extended Data Fig. 7a). We observed a trend for increased 
cleaved caspase 3 (Extended Data Fig. 7b) and reduced tumor cell 
size (Extended Data Fig. 7c) after treatment with lomustine (CCNU), 
JNJ10198400 and cyclosporine-treated high-neural glioblastoma cells, 
whereas talazoparib showed a trend for greater sensitivity in low-neural 

glioblastoma cells; however, none of these compounds reached sta-
tistical significance (Extended Data Fig. 7d). Therefore, we wondered 
about the prognostic impact of surgical resection as we previously 
demonstrated survival differences for other methylation-based glio-
blastoma subclasses33.

Neural classification predicts benefit of resection
Glioblastomas are epigenetically assigned to different subclasses34. 
Here, RTK I and RTK II (receptor tyrosine kinase I and II subtypes) tumors 
showed a comparable high-neural signature, whereas mesenchymal 
(MES) tumors had the lowest neural signature (Extended Data Fig. 7a). 
Given the different neural signatures between methylation-based sub-
classes, we hypothesized that the neural signature might constitute 
a factor for determining benefit from extent of resection (EOR). In 
low-neural glioblastoma, a significant survival benefit of gross total 
resection (GTR) (100% CE resection) and near GTR (≥90% CE resec-
tion) was observed compared to partial resection (<90% CE resection) 
(P < 0.001; Fig. 6a). By contrast, the survival benefit of a near GTR was 
not seen in high-neural glioblastoma (Fig. 6b). These findings held true 
in multivariate analyses (Extended Data Fig. 8b,c) and after applying the 
current criteria of the RANO (Response Assessment in Neuro-Oncology) 
resect group35 (Extended Data Fig. 8d,e). A methylated MGMT promoter 
showed a survival benefit in both neural subgroups, but a striking dif-
ference in low-neural glioblastoma with a median overall survival dif-
ference of 12.0 months depending on the MGMT promoter methylation 
status (P < 0.0001; Fig. 6c). Our combined survival data demonstrate 
that high-neural glioblastomas have an unfavorable outcome and a 
greater resection may be required to achieve a survival benefit in this 
distinct subclass.

Fig. 5 | Neural classification is conserved in cell culture and correlates with 
survival as well as proliferation. a, Comparison of neural signature between 
patient’s tumor tissue and cell culture in 17 glioblastomas. b,c, Survival after 
xenografting of patient-derived low- and high-neural glioblastoma cells in 
our internal cohort (b) and two combined external cohorts (c). log-rank test, 
P = 0.0009 (b), P = 0.001 (c). Error bands represent 95% CI. d, Primary patient-
derived low- and high-neural glioblastoma cell suspensions (n = 1 per group)  
were implanted into premotor cortex (M2) of adult NSG mice (n = 5 mice per 
group). Mice were perfused after 8 weeks of tumor growth and brains sectioned 
in the coronal plane for further immunofluorescence analyses. e, Proliferation 
index (measured by total number of HNA+ cells co-labeled with Ki67 divided  
by the total number of HNA+ tumor cells counted across all areas quantified) 
in low- and high-neural glioblastoma-bearing mice (n = 5 mice per group). 
P = 0.00819, two-tailed Student’s t-test. Data are mean ± s.e.m. f, Representative 
confocal images of proliferation index in low-neural (top) and high-neural 

glioblastoma (bottom) xenografts. Human nuclear antigen (HNA), red; Ki67, 
green. Scale bars, 1 µm (overview images) and 200 µm (magnified images).  
g, Experimental workflow. h, EdU proliferation index (measured by total number 
of DAPI+ cells co-labeled with EdU divided by the total number of DAPI+ tumor 
cells counted across all areas quantified) in low-neural (P = 0.418) and high-neural 
(P = 0.0000172) glioblastoma as monocultures and co-cultured with neurons. 
Two-tailed Student’s t-test, n = 3 biological replicates. Data are mean ± s.e.m. 
i,j, 3D migration assay analysis comparing distance of migration 72 h after 
seeding (i) and representative images at time 0 h (left) and 72 h (right) of low- 
and high-neural glioblastoma cells (j). P = 0.0115, two-tailed Student’s t-test, 
n = 3 biological replicates. Scale bars, 1 µm. Data are mean ± s.e.m. k, In vivo 
spread of tumor cells into corpus callosum in low- and high-neural glioblastoma. 
P < 0.0004, two-tailed Student’s t-test. Data are mean ± s.e.m. EdU, 5-ethynyl-2′-
deoxyuridine; DAPI, 4,6-diamidino-2-phenylindole.

Fig. 4 | High-neural glioblastomas are integrated into neuron-to-glioma 
networks. a, Experimental workflow. b, Quantification of the colocalization  
of presynaptic and postsynaptic markers in low-neural (n = 22 regions, five  
mice) and high-neural (n = 21 regions, five mice) glioblastoma xenografts. 
P = 0.0008, two-tailed Student’s t-test. Data are mean ± s.e.m. c, Confocal image 
of infiltrated whiter matter of high-neural glioblastoma xenograft. White box 
and arrowheads highlight magnified view of synaptic puncta colocalization. 
Blue, synapsin-1 (presynaptic puncta); white, neurofilament heavy and medium 
(axon); red, nestin (glioma cell processes); green, PSD95 (postsynaptic puncta). 
Scale bars, 500 µm (top) and 250 µm (bottom). d, Electron microscopy of 
red fluorescent protein (RFP)-labeled glioblastoma cells. Quantification of 
neuron-to-glioma synaptic structures as a percentage of all visualized glioma 
cell processes (left) and image of neuron-to-glioma process in a high-neural 
glioblastoma xenograft (right). Asterix denotes immunogold particle labeling  
of RFP. Postsynaptic density in RFP+ tumor cell (green), synaptic cleft and vesicles 
in presynaptic neuron (red) identify synapses. **P < 0.01, two-tailed Student’s 
t-test. Scale bar, 200 nm. Data are mean ± s.e.m. n = 3 biological replicates.  
e, Colocalization of PSD95 and synapsin-1 in low- and high-neural glioblastoma 
cells in co-cultures with neurons. P = 0.0007, not significant (NS), P > 0.05, 

two-tailed Student’s t-test, n = 3 biological replicates. Data are mean ± s.e.m. 
f, Neural signature categorized into low functional connectivity (LFC) and 
high functional connectivity (HFC) as defined by magnetoencephalography. 
P = 0.0327, two-tailed Student’s t-test. g, Overlap between samples classified to 
the functional connectivity by Krishna et al.12 and the epigenetic-based neural 
classification of our study. h, Correlation of neural signature with degree of 
peritumoral connectivity as defined by resting-state functional magnetic 
resonance imaging (rs-fMRI). Simple linear regression P = 0.05, error bands 
representing the 95% CI. i, Peritumoral functional connectivity (defined by rs-
fMRI) in low- and high-neural glioblastoma. P = 0.0416, two-sided Mann–Whitney 
U-test. j, Functional connectivity to the contralateral hemisphere (defined by 
rs-fMRI) in low- and high-neural glioblastoma groups. NS, P > 0.05, two-sided 
Mann–Whitney U-test. k, Examples showing the region of interest (ROI)-to-
voxel functional connectivity of the contrast-enhancing area to its peritumoral 
surrounding. Peritumoral connectivity of a high-neural glioblastoma (0.457) and 
mean functional connectivity to its peritumoral area of 0.837 (left). By contrast, 
a low-neural glioblastoma (0.347) is shown with mean functional connectivity to 
its peritumoral area of 0.294 (right).
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Serum biomarkers of neural glioblastoma
Next, we examined the feasibility of preoperatively determining 
the epigenetic neural subclassification in the blood of patients with 

glioblastoma to further reach clinical translation. By analyzing serum 
levels of brain-derived neurotrophic factor (BDNF) in 94 patients at 
diagnosis, we found higher BDNF levels in high-neural glioblastoma 
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compared to low-neural glioblastoma, patients with meningioma 
(n = 13) and healthy individuals (n = 19) (Fig. 6d). The serum BDNF lev-
els positively correlated with the epigenetic neural signature (P < 0.01, 
R2 = 0.28; Fig. 6e). Conversely, glioblastomas with higher BDNF serum 
levels had a decreased immune cell signature (Fig. 6f), consistent with 
the lower immune cell signature of high-neural tissue samples. We 
observed elevated BDNF levels in patients with glioma-associated sei-
zures at the time of diagnosis (P = 0.02; Fig. 6g) and during follow-up 
(P < 0.001; Fig. 6h), which aligns with the known activity-regulated 
release of BDNF, most likely from healthy neurons (Fig. 6i,j) within 
high-neural glioblastoma networks.

Furthermore, we identified the neural signature in circulating 
extracellular vesicle-associated DNA (EV-DNA) and cell-free DNA 
(cfDNA) in patients’ plasma (Extended Data Fig. 8f–i). Circulating 
extracellular vesicles, a surrogate marker for glioblastoma36,37 and 
involved in neuronal synchronization38, correlated with the neural 
signature (Extended Data Fig. 8f). Epigenetic profiling of EV-DNA in 
plasma revealed a neural signature that was absent in cfDNA (Extended 
Data Fig. 8g). The neural signature detected in EV-DNA exhibited a sig-
nificant increase in glioblastoma compared to samples from healthy 
donors and patients with meningioma (Extended Data Fig. 8g). Nota-
bly, high-neural tumors showed a higher incidence of a detectable 
neural signature in circulating EV-DNA (Extended Data Fig. 8h). While 
plasma-derived EV-DNA displayed markedly lower levels of neural 
signatures, cerebrospinal fluid EV-DNA exhibited lower but more com-
parable levels to tissue scores (Extended Data Fig. 8i).

Our findings suggest that BDNF could assist in stratifying patients 
with glioblastoma based on their neural subgroup, potentially facili-
tating targeted therapy in the future and that the neural signature is 
detectable in circulating extracellular vesicles.

Epigenetic neural classification informs survival in diffuse 
midline glioma
Besides glioblastoma, previous studies have highlighted the impor-
tance of neuronal activity-driven proliferation in DMG6,7. We identified 
the epigenetic neural signature in a cohort of H3 K27-altered DMG 
consisting of pediatric and adolescent patients from our institutional 
cohort (n = 21), Chen et al.39 (n = 24) and Sturm et al.34 (n = 10). The neural 
signature was evenly distributed among tumors in the thalamus, pons 
and medulla (Extended Data Fig. 9a). Similar to glioblastomas, areas in 
genes related to trans-synaptic signaling were mainly hypomethylated 
in high-neural DMGs (Extended Data Fig. 9b). A notable association with 
stem and glial cell states (Extended Data Fig. 9c) and increased synaptic 
gene expression4 (P = 0.01; Extended Data Fig. 9d) was observed in 
high-neural DMGs. Survival analysis of 72 patients showed an unfavora-
ble outcome for high-neural DMG (P < 0.01; Extended Data Fig. 9e–g). 
These results confirm the relevance of the neural signature in an addi-
tional type of IDH-wild-type high-grade glioma.

Discussion
In recent years, the bidirectional interaction between glioma cells 
and neural cells, with their ability to form synapses and integrate into 
neuronal networks, has been identified as a major factor in tumor pro-
gression4,6,13,40. In this study, we identified an epigenetically defined 
malignant neural signature as a potential marker for neural-to-glioma 

interactions and present the following findings: (1) A malignant neu-
ral signature is increased in glioblastoma and DMG, compared to 
nonmalignant brain tumors. (2) High-neural glioblastoma confers an 
unfavorable survival in humans and mice, and in addition, the neural 
signature is associated with higher functional connectivity in patients 
with glioblastoma. (3) High-neural glioblastoma shows an increased 
malignant stem cell and neural lineage character but decreased immune 
infiltration. (4) The neural signature remains robust in vitro and in vivo 
and high-neural glioblastoma-bearing mice show higher proliferation 
when receiving neuronal input as well as increased neuron-to-glioma 
synapse formation. (5) High-neural tumors benefit from a maximized 
resection. (6) Elevated BDNF serum levels are present in patients with 
high-neural glioblastoma. (7) The prognostic value can also be seen 
in H3K27-altered DMG.

Gliomas encompass a variety of cellular components of the tumor 
microenvironment and subgroups can be described according to 
distinct cellular states15. Epigenome profiling and deconvolution have 
been effective in characterizing these glioma subclasses41,42. A recent 
study highlighted the importance of epigenetic regulation across vari-
ous cancer types and demonstrated a close epigenomic relationship 
between glioblastoma cells and OPCs43. Our determination of an epige-
netic neural signature revealed an increase in glioblastoma and DMG, 
echoing findings of previous studies in preclinical models4,7. Nonethe-
less, it is essential to note that the neural signature was derived from a 
single cortical neuron reference generated from three IDAT files, and 
while we integrated DNA methylation data from healthy brain regions 
for comparison, a larger sample size might have provided clearer dif-
ferentiation between low- and high-neural tumors.

High-neural glioblastoma showed gene upregulation and hypo-
methylation associated with invasiveness and neuro-glioma synapse 
formation. Glioma growth is known to involve paracrine signaling 
and glutamatergic synaptic input4–8, and recently a study subdivided 
glioblastoma cells into unconnected and connected cells with unique 
cell states, explaining brain infiltration through hijacking of neuronal 
mechanisms13. Our spatial transcriptomic analysis has unveiled the 
malignant stem-cell-like characteristics of high-neural glioblastoma, 
primarily clustering with cells of the neural lineage, such as OPC/NPC/
astrocyte-like cells, alongside healthy oligodendrocytes and neu-
rons. These findings align with the previously described unconnected 
glioblastoma cells that hijack neuronal mechanisms and drive brain 
invasion. While tumors with an OPC/NPC-like cellular state have been 
shown to overlap with the classical and proneural TCGA subtypes15, 
which have been assumed as having a better prognosis25, our identified 
high-neural glioblastoma demonstrated a poor patient outcome. This 
possible discrepancy may be explained by our integrated RNA-seq anal-
ysis, which revealed a wide heterogeneity of the transcriptomic TCGA 
subtypes in our epigenetic low- and high-neural tumors. In addition, 
this difference can largely be attributed to the noted transcriptional 
heterogeneity and plasticity within tumor populations15,44. Our study 
posits that the epigenetic signature offers a more stable marker than 
purely transcriptional profiles. Unlike the transient nature of tran-
scriptional states, epigenetic signatures encompass not only the cells 
in OPC/NPC/astrocyte-like states but also reflect broader dependen-
cies and interactions within the tumor microenvironment. Therefore, 
we argue that our high-neural phenotype should be interpreted as 

Fig. 6 | Neural classification predicts benefit of EOR and MGMT promoter 
methylation status and can be detected in serum of patients with 
glioblastoma. a,b, Survival outcome categorized after EOR in patients 
with glioblastoma treated by radiochemotherapy with a low-neural (a) and 
high-neural (b) tumor. log-rank test, P = 0.0003 (a), P = 0.005 (b). Error 
bands represent 95% CI. c, Survival outcome categorized by MGMT promoter 
methylation status in patients with glioblastoma treated by radiochemotherapy 
with a low- and high-neural tumor. log-rank test, P = 2.719 × 10−11. Error bands 
represent 95% CI. d,e, Immunoassay quantification of serum BDNF concentration 

of 94 patients with glioblastoma and healthy donors as well as patients with 
meningioma as control groups at the time of diagnosis. **P < 0.01, ***P < 0.001, 
two-tailed Student’s t-test; error bands represent 95% CI. f, Cell composition 
analysis in glioblastoma with low and high BDNF serum levels. g,h, Seizure 
outcome of patients with glioblastoma considering BDNF serum levels at the 
time of surgery (g) and during follow-up (h). *P < 0.05, ***P < 0.001, two-tailed 
Student’s t-test. i, Transcriptomic analysis of BDNF expression. j, Western 
blotting of BDNF in various healthy brain tissue samples and low- as well as high-
neural glioblastoma. n = 3 biological replicates.
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being driven by epigenetic factors that incline cells toward OPC/NPC/
astrocyte-like states, rather than solely being a direct consequence of 
transcriptional variability.

Of note, the observed diploid oligodendrocyte transcriptomic 
module may represent a tumor cell population of primary near-diploid 
state as glioblastomas are karyotypically heterogeneous tumors45–47. 

Alternatively, it might be possible that surrounding healthy oligo-
dendrocytes are affecting the neuronal activity-driven mechanisms 
on glioma cells2.

The clinical relevance of our findings is supported by the obser-
vation that patients suffering from high-neural glioblastoma or DMG 
had an unfavorable outcome. A greater EOR must be achieved to have 
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prognostic improvement in high-neural glioblastoma, which may 
explain the results of our previous study examining the impact of DNA 
methylation subclasses33. Our findings are in line with a recent study by 
Krishna et al.12 demonstrating poorer survival in patients with glioblas-
toma exhibiting high functional connectivity. Integrating connectivity 
data from resting-state functional MRI and magnetoencephalography 
(MEG) linked an increased functional connectivity to its peritumoral 
surrounding with a higher neural signature in our patients. If a reliable 
stratification of the neural classification by MEG or MRI is predictable 
remains to be discussed in further studies. The synaptogenic character 
with increased connectivity of high-neural glioblastomas could be 
replicated with in vivo and in vitro experiments. Collectively, these data 
underscore the tremendous importance of the synaptic integration of 
gliomas into neuronal circuits and targeting these neuron-to-glioma 
networks seems to be a promising therapeutic approach1,48.

One factor drawing attention is BDNF, a neuronal activity-regulated 
neurotrophin, which has been found to promote glioma growth6,49 and 
interrupting BDNF–TrkB signaling has been shown to confer survival 
benefit in mice5. We found elevated serum BDNF levels in patients with 
high-neural glioblastoma and further correlation with increased sei-
zure frequency. Potential sources of elevated BDNF include neurons in 
a glioma-induced state of hyperexcitability4, given the known activity 
regulation of BDNF secretion50–52 or possibly from glioblastoma cells53. 
In brief, neuronal activity arising from glioma-to-neuron interactions 
during tumor growth or seizure initiation seems to be a pivotal driver 
for BDNF release and identifies a potential biomarker of high-neural 
glioblastoma.

While the BDNF–TrkB axis may represent a therapeutic target for 
high-neural glioblastoma, we further identified low-neural tumors as 
immune-enriched based on transcriptomic and cell state composition 
analysis. Consequently, one could hypothesize that two opposing 
glioblastoma subtypes seem to be differentiated here and will need 
to be pursued in future studies and therapeutic avenues. The identifi-
cation of an immunosuppressive state in high-neural glioblastoma is 
concordant with recent findings which described immunosuppressive 
mechanisms in thrombospondin-1-upregulated glioma samples54. 
This stratification of IDH-wild-type gliomas based on their epigenetic 
neural signature may provide a potential tool for predicting response 
to neuroscience-guided therapies.

Conclusion
Overall, the definition of a high-neural signature in IDH-wild-type 
glioma revealed a malignant NPC/OPC/astrocyte-like character that 
affects patient survival, remains stable during therapy and is con-
served in preclinical models. This knowledge supports clinicians in 
stratifying patients with glioma according to their prognosis and 
determining the surgical and neuro-oncological benefit for current 
standard of care. Last, the here-presented clinical translation in the 
field of glioma neuroscience using an epigenetic neural signature 
may advance the development of trials with neuroscience-guided 
therapies.
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Methods
Patient cohorts
Several patient cohorts were analyzed based on the glioma subclass. 
A clinical cohort of 363 patients who underwent IDH-wild-type glio-
blastoma resection at University Medical Center Hamburg-Eppendorf, 
University Hospital Frankfurt or Charité University Hospital Berlin was 
analyzed. Informed written consent was obtained from all patients and 
experiments were approved by the medical ethics committee of the 
Hamburg chamber of physicians (PV4904). The TCGA-GBM cohort 
was included for external validation19. A clinical cohort of pediatric and 
adolescent patients who underwent surgery for H3K27-altered DMG at 
University Medical Center Hamburg-Eppendorf was established and 
extended with cohorts from Sturm et al.34 and Chen et al.39. The refer-
ence and diagnostic set (n = 3,905) from Capper et al.18 was utilized.

Clinical definitions
Diagnosis for the clinical cohort followed World Health Organization 
(WHO) classification guidelines55. The EOR of contrast-enhancing parts 
was stratified into GTR, complete removal, near GTR, >90% removal and 
partial resection, <90% removal. Overall survival refers to diagnosis 
until death or last follow-up and PFS from diagnosis until progression 
according to RANO criteria based on local assessment56. Seizures and 
antiepileptic medication use were defined by the current International 
League Against Epilepsy guidelines57. T1-weighted and T2-weighted 
FLAIR MRI images were analyzed using the Brainlab program. The 
volume of contrast enhancement, FLAIR hyperintensity and necrotic 
volume was assessed in cm3 obtained via multiplanar 3D reconstruction 
of the tumor ROI, enabled by delineating with the tool ‘Smart Brush’ 
manually in every slice.

Stereotactic biopsies for spatial sample collection
Biopsies were obtained using a cranial navigation system (Brainlab 
v.13.0) and intraoperative neuronavigation. To limit the influence of 
brain shift, biopsies were obtained before tumor removal at the begin-
ning of surgery with minimal dural opening. Tissue samples were then 
transferred to 10% buffered formalin and sent to the Department of Neu-
ropathology for further processing and histopathological evaluation.

Measurement of functional connectivity using 
magnetoencephalography
Tumor tissues with HFC and LFC sampled during surgery based on 
preoperative MEG were obtained from patients with IDH-wild-type 
glioblastoma operated on in the Department of Neurosurgery, 
University of California, San Francisco12. From each formalin-fixed 
paraffin-embedded (FFPE) tissue block, four serial sections at a thick-
ness of ~10 µm each were used for DNA extraction. DNA was extracted 
with the QIAamp DNA FFPE kit (QIAGEN). DNA was quantified using 
the Nanodrop Spectrophotometer (Thermo Scientific). The ratio of 
optical density at 260 nm to 280 nm was calculated and served as the 
criterion for DNA quality.

Functional connectivity by rs-fMRI
Forty-four treatment-naive patients with glioblastoma (mean age 
65 ± 9 years) underwent rs-fMRI before surgery, with tumor tissues 
subsequently analyzed for genome-wide DNA methylation patterns 
using the Illumina EPIC (850k) array. Functional data preprocessing 
followed a standardized protocol implemented in SPM12 (ref. 58) 
within MATLAB (v.9.5)59,60. In brief, functional images were realigned, 
unwarped and coregistered to the structural image. Segmentation, 
bias correction and spatial normalization were conducted, with func-
tional images smoothed using a 5-mm FWHM Gaussian kernel. Fur-
ther preprocessing steps included slice-time correction, regression 
of movement-related time series using ICA-AROMA24 and high-pass 
filtering (>0.01 Hz). Tumor lesions were segmented using ITK-SNAP61 
software and utilized as regions of interest for seed-based correlation 

analysis to compute voxel-based tumor-to-peritumoral connectivity 
(Fisher z transformation). A 10-mm peritumoral distance mask was 
created, and mean functional connectivity between the tumor and its 
peritumoral surrounding was computed using a ROI-to-voxel approach.

Immunoblotting
Frozen tissue samples were lysed using RIPA buffer, containing 50 mM 
Tris-HCl (pH 7.5), 150 mM NaCl, aprotinin (10 mg ml−1), 1 mM phenyl-
methylsulfonyl fluoride, leupeptin (10 mg ml−1), 2 mM Na3VO4, 4 mM 
EDTA, 10 mM NaF, 10 mM sodium pyrophosphate, 1% NP-40, 0.1% 
sodium deoxycholate and 1% protease inhibitor (Merck). Total pro-
tein concentration was measured by the bicinchoninic acid (BCA) 
assay (Pierce). Proteins were separated using Tris-glycine gels, blotted 
into nitrocellulose membrane and probed with antibodies anti-BDNF 
(1:1,000 dilution, Cell Signaling, 47808) and anti-β-actin (1:1,000 dilu-
tion, Sigma-Aldrich A2228).

Immunohistochemistry
Tissue samples were fixed in 4% formaldehyde, dehydrated, embedded 
in paraffin and sectioned at 2 µm following standard laboratory pro-
tocols. Immunohistochemical staining for NeuN (Chemico, MAB377, 
1:200 dilution), Sox2 (Abcam, AB79351, 1:200 dilution), OLIG2 (R&D 
Systems, AF2418, 1:50 dilution) and GFAP (DAKO, M0761, 1:200 dilu-
tion) was conducted using an automated staining machine (Ventana 
BenchMark TX, Roche Diagnostics). Detection was achieved using 
diamino-benzidine as a chromogen, with counter-staining performed 
using Mayer’s Solution (Sigma-Aldrich).

Drug sensitivity analysis
Patient-derived glioblastoma cell lines (GS-11, GS-73, GS-84, GS-110, 
GS-13, GS-74, GS-80, GS-90 and GS-101) were dissociated into single cells 
and seeded into a 384-well plate at a density of 1,250–7,500 cells per well 
in neurobasal medium supplemented with B27, glutamine, pen/strep, 
heparin and human FGF and EGF. Cells were treated with 27 drugs and 
dimethylsulfoxide as a control in triplicate for 48 h at 37 °C and 5% CO2. 
After treatment, cells were fixed, blocked and stained with antibodies 
against vimentin, cleaved caspase 3 and TUBB3. Imaging was performed 
using an Opera Phenix automated confocal microscope and z-stacks 
were segmented based on DAPI staining using CellProfiler (v.2.2.0)62. 
Downstream analysis was conducted in MATLAB v.9.13.0, where 
marker-positive cells/spheroids were identified using linear thresholds. 
Cell counts and average cell/spheroid areas were averaged per condition 
and compared between drug treatment and control groups.

Spatially resolved transcriptomics
Quality assessment RNA. RNA extraction from FFPE tissue sections 
was conducted following the ‘Purification of Total RNA from FFPE 
tissue sections’ protocol ( July 2021 version). Two 10-µm sections per 
tissue block were processed and RNA was eluted using 14 µl RNase-free 
water. Subsequently, 2 µl of the eluted RNA was subjected to both the 
Qubit RNA High-Sensitivity Assay and the DNF-471 Standard Sensitivity 
RNA Protocol using the Fragment Analyzer, following the respective 
manufacturer’s instructions. RNA quality was assessed by comput-
ing the Distribution Value 200 (DV200) using Agilent’s ProSize Data 
Analysis Software. The DV200 represents the percentage of RNA frag-
ments longer than 200 nucleotides within a range of 200–10,000 bp. 
A DV200 ≥ 50% is considered desirable according to 10x Genomics 
guidelines. Additionally, the software provided the RNA integrity 
number to supplement the quality assessment.

Tissue preprocessing. To prepare FFPE tissue for spatial transcriptom-
ics, sections of 5-µm thickness were sliced using a microtome, floated 
in a 42 °C water bath and transferred onto glass slides. Following H&E 
staining, tissue examination under the EVOS microscope facilitated the 
selection of the area of interest. The ‘Visium Spatial Gene Expression 
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for FFPE – Tissue Preparation Guide’ (CG000408, Rev A) guided the 
initial steps of tissue preprocessing. Modifications to these steps are 
detailed explicitly in subsequent descriptions. For hydration and trim-
ming, without conducting a tissue adhesion test due to intact tissue 
adhesion on glass slides, FFPE tissue blocks underwent hydration in an 
ice water bath for 20 min, followed by trimming and cutting into 4-µm 
thick sections using the Thermo Fisher Scientific HM355 S automatic 
microtome. Trimming excess paraffin and tissue parts on a standard 
glass slide was performed, followed by floating the section in a 42 °C 
water bath for extension and smoothing. Sections were then fit onto 
Visium slides and dried using a thermocycler at 42 °C for 3 h, before 
being stored in a desiccator at room temperature overnight. After heat-
ing the Visium slides at 60 °C for 2 h, they underwent two 15-min immer-
sions in xylene, followed by serial dilutions in 100%, 96%, 85% and 70% 
ethanol for 3 min each. The slides were finally rinsed in Milli-Q water for 
20 s. The slides were stained with 1 ml hematoxylin for 3 min, washed 
in two successive Milli-Q water baths, treated with 1 ml bluing buffer 
for 1 min, washed again and then stained with 1 ml alcoholic eosin for 
1 min, followed by another wash. Imaging was carried out with an EVOS 
M7000 microscope from Thermo Fisher Scientific at ×20 magnification 
in the brightfield setting, utilizing auto-focus for the first image of each 
capture area. Following imaging, the slide was placed into a Visium slide 
cassette (PN2000282) with an alignment tool (PN3000433). Pipetting 
was performed carefully to prevent disturbing the tissue, ensuring full 
coverage of the capture area and complete removal of leftover fluids. 
Each well of the cassette was treated twice with 100 µl 0.1 N HCl, then 
rinsed with 150 µl, pH 9.0 TE buffer, followed by another TE buffer 
application and incubation at 70 °C for 1 h on a thermal cycler. This 
initiated the library construction’s hybridization stage.

Library preparation. Fo the pre-hybridization mix application, each 
well received pre-hybridization mix, followed by a 30-min incubation at 
37 °C. This was succeeded by an overnight incubation of probe hybridi-
zation mix at 50 °C, centrifugation, multiple washes and application of 
probe ligation mix for 1 h at 37 °C. Post-ligation wash buffer was applied, 
followed by several washes. For the RNase and permeabilization mix 
application, the RNase mix and permeabilization mix were each applied 
and incubated for 30 min and 1 h, respectively at 37 °C, followed by 
washing and probe extension mix application. For probe elution and 
PCR, 0.08 M KOH was utilized to elute the probe. After transferring the 
solution to an eight-tube-strip, 1 M, pH 7.0 Tris-HCl was added. Cycle 
numbers for PCR were determined using a qPCR mix and performed 
with a StepOnePlus Real-Time PCR System. Sample Index PCR followed, 
with cleanup using SPRIselect and transfer of 25 µl to a new tube strip. 
A second qPCR was performed with the NEBNext Library Quant kit for 
Illumina to determine library molarities, ensuring successful library 
construction and cDNA presence.

Sequencing. Sequencing of the libraries was conducted using the 
NextSeq 500/550 device from Illumina. Libraries were normalized to 
the same molarity before being combined. Denaturation and dilution of 
libraries were performed following the ‘NextSeq System – Denature and 
Dilute Libraries Guide’ protocol. The combined library was denatured 
with 0.2 N NaOH, neutralized and diluted to a loading concentration 
using High Output kits. PhiX control was denatured, diluted and mixed 
with the library. The final mix underwent sequencing with the NextSeq 
500/550 High Output kit v.2.5 (75 cycles).

Isolation and analysis of extracellular vesicles
Extracellular vesicles were isolated from plasma or cerebrospinal 
fluid of patients with glioblastoma by differential centrifugation37,63. 
After initial centrifugation steps to eliminate cells, platelets and large 
vesicles, extracellular vesicle pellets were obtained through ultracen-
trifugation. These pellets were resuspended with filtered PBS and ana-
lyzed for concentration and size using nanoparticle tracking analysis. 

Extracellular vesicle-enriched samples were diluted before nanoparti-
cle tracking analysis and the analysis was conducted using appropriate 
parameters. Additionally, extracellular vesicles were characterized 
by electron microscopy for size and morphology and by imaging flow 
cytometry for extracellular vesicle markers (CD9, CD63 and CD81). 
DNA extraction from extracellular vesicles was performed using a 
purification kit. For comparison, bulk cfDNA was isolated from plasma 
using a commercial kit.

Detection of BDNF serum levels
Plasma from patients with glioblastoma was isolated by double spin 
centrifugation of whole blood. Samples were aliquoted and stored 
at −80 °C before use. BDNF plasma levels were detected using the 
LEGENDplex Neuroinflammation Panel 1 (BioLegend). Data were 
acquired using the BD LSR Fortessa and Beckman Coulter Cytoflex LX 
flow cytometer and analyzed with the BioLegend LEGENDplex software.

Proteomic processing of human glioblastoma samples
FFPE samples of tumors were obtained from tissue archives from the 
neuropathology unit in Hamburg. Tumor samples were fixed in 4% 
paraformaldehyde, dehydrated, embedded in paraffin and sectioned 
at 10 µm for microdissection using standard laboratory protocols. 
For paraffin removal, FFPE tissue sections were incubated in 0.5 ml 
n-heptane at room temperature for 30 min, using a ThermoMixer (Ther-
moMixer 5436, Eppendorf). Samples were centrifuged at 14,000g for 
5 min and the supernatant was discarded. Samples were reconditioned 
with 70% ethanol and centrifuged at 14,000g for 5 min. The supernatant 
was discarded. The procedure was repeated twice. Pellets were dis-
solved in 150 µl 1% w/v sodium deoxycholate in 0.1 M triethylammonium 
bicarbonate buffer and incubated for 1 h at 95 °C for reverse formalin 
fixation. Samples were sonicated for 5 s at an energy of 25% to destroy 
interfering DNA. A BCA assay was performed (Pierce BCA Protein Assay 
kit, Thermo Scientific) to determine the protein concentration, follow-
ing the manufacturer’s instructions. Tryptic digestion was performed 
for 20 µg protein, using the single-pot, solid-phase-enhanced sample 
preparation (SP3) protocol64. Eluted peptides were dried in a Savant 
SpeedVac Vacuum Concentrator (Thermo Fisher Scientific) and stored 
at −20 °C until further use. Directly before measurement, dried peptides 
were resolved in 0.1% formic acid to a final concentration of 1 µg µl−1. In 
total 1 µg was subjected to mass spectrometric analysis.

Liquid chromatography–tandem mass spectrometer 
parameters
LC–MS/MS measurements were performed using a QExactive mass 
spectrometer (Thermo Fisher Scientific) coupled with a Dionex Ulti-
mate 3000 UPLC system (Thermo Fisher Scientific). Tryptic pep-
tides were injected via an autosampler, purified, and desalted using 
a reversed-phase trapping column (Acclaim PepMap 100 C18 trap) 
before separation on a reversed-phase column (Acclaim PepMap 100 
C18). Trapping occurred for 5 min at a flow rate of 5 µl min−1, followed 
by separation using a linear gradient from 2% to 30% solvent B over 
65 min at 0.3 µl min−1. Peptides were ionized using nano-electrospray 
ionization (nano-ESI) with a spray voltage of 1,800 V and analyzed 
in data-dependent acquisition mode. During MS1 scans, ions were 
accumulated for a maximum of 240 ms or until reaching a charge 
density of 1 × 106 ions (AGC target), with mass analysis performed at a 
resolution of 70,000 at m/z = 200 over a mass range of 400–1,200 m/z. 
Peptides with charge states between 2+ and 5+ and intensities above 
5,000 were isolated within a 2.0 m/z isolation window in top-speed 
mode for 3 s from each precursor scan and fragmented using higher 
energy collisional dissociation with a normalized collision energy of 
25%. MS2 scanning, conducted using an orbitrap mass analyzer, had a 
starting mass of 100 m/z with a resolution of 17,500 at m/z = 200 and 
was accumulated for 50 ms or until reaching an AGC target of 1 × 105. 
Peptides that were already fragmented were excluded for 20 s.
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NGS of low- and high-neural glioblastoma samples
Tumor mutational profiling was conducted at the Department of Neu-
ropathology, University Hospital Heidelberg, using a custom CNS 
tumor-specific NGS gene panel (Agilent, SureSelect Custom Tier2, 
1,235 Mb). Library preparation followed manufacturer recommenda-
tions with the SureSelect XT HS2 DNA kit (Agilent, 5191-5688). Prepared 
libraries were pooled and sequenced on the Illumina Novseq6000 
platform (Novaseq v.1.5 200 cycles S1 Reagent kit, 20028318). The NGS 
panel covers the entire coding region, along with selected intronic 
and promoter regions of 201 genes relevant to CNS tumors. It detects 
single-nucleotide variants, small insertions/deletions (indels), exonic 
rearrangements and recurrent fusion events. Sequenced reads were 
mapped to GRCh38 using the nf-core/sarek (v.3.3.2) pipeline65–67, with 
single-nucleotide variant and structural variant calling performed 
using Strelka (v.4.4.0.0)68 and Manta (v.1.6.0)23. Variant annotation 
was performed using SNPeff (v.5.1d)69. Variants were filtered based 
on several criteria, including mapping to exonic regions, QUAL > 20, 
MQ > 30, DP > 15, high/moderate impact and a population frequency 
<0.001 from the 1000 Genomes project. Additionally, variants with 
high population frequencies in the Genome Aggregation Database 
(gnomAD), such as SETD2 c.5885C>T and KMT2C c.2447dupA,  
were filtered out.

Mice housing
In vivo experiments were conducted following approved protocols 
from the Stanford University Institutional Animal Care and Use Commit-
tee and the University Medical Center Hamburg-Eppendorf, adhering 
to institutional guidelines and explicit permissions from local authori-
ties. Animals were housed under standard conditions in pathogen-free 
environments, with temperature- and humidity-controlled housing 
and access to food and water in a 12-h light–dark cycle. For xenograft 
experiments, the Institutional Animal Care and Use Committee estab-
lished guidelines based on indications of morbidity, with mice killed 
if they displayed signs of neurological morbidity or lost 15% or more 
of their body weight.

Orthotopic xenografting of patient-derived low- and 
high-neural glioblastoma cells
NSG mice (NOD-SCID-IL2Rγ-chain-deficient, The Jackson Laboratory) 
were used for experiments conducted at Stanford University, with 
equal distribution of male and female mice. Primary patient-derived 
low- (‘UCSF-UKE-1’) or high-neural (‘UCSF-UKE-2’) glioblastoma neuro-
spheres were prepared in sterile Hanks balanced salt solution (HBSS) 
and stereotactically implanted into the premotor cortex (M2) of mice 
at postnatal day (P) 28–30. Mice survival analyses were performed on 
NMRI-Foxn1nu immunodeficient mice ( Janvier-Labs) at the University 
Medical Center Hamburg-Eppendorf. Neurospheres from cultured 
primary patient-derived low- (‘GS-8’, ‘GS-10’, ‘GS-73’ and ‘GS-80’) or 
high-neural (‘GS-57’, ‘GS-74’, ‘GS-75’ and ‘GS-101’) glioblastoma were 
injected into the striatum. External validation of mice survival data 
was conducted using publicly available datasets from Vaubel et al.28 
and Golebiewska et al.29.

Perfusion and immunofluorescence staining
E i g h t  we e k s  p o s t -xe n o g ra f t i n g ,  l ow  a n d  h i g h - n e u ra l 
glioblastoma-bearing mice were anesthetized with intraperitoneal 
avertin and transcardially perfused with PBS followed by fixation in 
4% paraformaldehyde (PFA) overnight at 4 °C. After cryoprotection in 
30% sucrose for 48 h, brains were embedded in Tissue-Tek O.C.T. and 
sectioned coronally at 40 µm using a sliding microtome. For immuno-
fluorescence, sections were blocked in a solution of 3% normal donkey 
serum and 0.3% Triton X-100 in TBS, followed by incubation with pri-
mary antibodies overnight at 4 °C. Antibodies used included mouse 
anti-human nuclei clone 235-1, rabbit anti-Ki67, rat anti-MBP, mouse 
anti-nestin, guinea pig anti-synapsin-1/2, chicken anti-neurofilament or 

anti-PSD95. After rinsing, sections were incubated with appropriate sec-
ondary antibodies and mounted with ProLong Gold Mounting medium.

Confocal imaging and quantification of cell proliferation and 
infiltration
Cell quantification within xenografts was conducted by a blinded 
investigator using a Zeiss LSM980 scanning confocal microscope.  
A 1-in-6 series of coronal brain sections were selected, with four consec-
utive slices analyzed at approximately 1.1–0.86 mm anterior to bregma. 
HNA-positive tumor cells were quantified in each field to determine the 
proliferation index, calculated as the percentage of HNA-positive cells 
co-labeled with Ki67. Infiltration into the corpus callosum was assessed 
in the same sections, with HNA-positive tumor cells co-labeled with 
Ki67 and divided by the total number of DAPI-marked nuclei.

Confocal puncta quantification
Images were captured using a ×63 oil-immersion objective on a Zeiss 
LSM980 confocal microscope. Colocalization analysis of synaptic 
puncta images from both low and high-neural glioblastoma xenograft 
samples was performed by a blinded investigator. A custom ImageJ 
processing script, developed at the Stanford Shriram Cell Science 
Imaging Facility, was utilized for this purpose. The script defined each 
pre- and postsynaptic puncta and assessed colocalization within a 
defined proximity of 1.5 µM. To subtract local background, the ImageJ 
rolling ball background subtraction method was applied. Peaks were 
identified using the imglib2 DogDetection plugin, which employs the 
difference of Gaussians to enhance the signal of interest. The plugin 
then assigned ROIs to each channel based on predefined parameters. 
Neuron and glioma ROIs were quantified, and the script extracted the 
number of glioma ROIs within 1.5 µm of the neuron ROIs. This script was 
implemented in Fiji/ImageJ using the ImgLib2 and ImageJ Ops libraries.

Sample preparation and image acquisition for electron 
microscopy
Twelve weeks post-xenografting of low- (n = 3, ‘UCSF-UKE-1’) and 
high-neural glioblastoma cells (n = 3, ‘UCSF-UKE-2’), mice were killed 
via transcardial perfusion with Karnovsky’s fixative: 2% glutaraldehyde 
and 4% PFA in 0.1 M sodium cacodylate (pH 7.4). Transmission electron 
microscopy (TEM) analysis was conducted on tumor masses within the 
CA1 region of the hippocampus. Samples were post-fixed in 1% osmium 
tetroxide, washed and en bloc-stained overnight. Dehydration was per-
formed using graded ethanol and acetonitrile. Samples were then infil-
trated with EMbed-812 resin, followed by embedding in TAAB capsules 
and oven curing. Sections of 40–60 nm were cut on a Leica Ultracut S 
and mounted on 100-mesh Ni grids. For immunohistochemistry, grids 
underwent microetching with periodic acid and osmium elution with 
sodium metaperiodate. Grids were blocked, incubated with primary 
goat anti-RFP antibody overnight, rinsed and incubated with secondary 
antibodies. Grids were contrast stained with uranyl acetate and lead 
citrate. Imaging was conducted using a JEOL JEM-1400 TEM at 120 kV, 
with image capture facilitated by a Gatan Orius digital camera.

Cell culture
Fresh glioblastoma samples were obtained from patients operated 
in the Department of Neurosurgery, University Medical Center 
Hamburg-Eppendorf. Samples were immediately placed in HBSS (Invit-
rogen), transferred to the laboratory and processed within 20 min. The 
tissue was cut into <1-mm3 fragments, washed with HBSS and digested 
with 1 mg ml−1 collagenase/dispase (Roche) for 30 min at 37 °C. Digested 
fragments were filtered using a 70-µm cell mesh (Sigma-Aldrich) and 
the cells were seeded into T25 flasks at 2,500–5,000 cells per cm2. 
The culture medium consisted of neurobasal medium (Invitrogen) 
with B27 supplement (20 µl ml−1, Invitrogen), Glutamax (10 µl ml−1, 
Invitrogen), fibroblast growth factor-2 (20 ng ml−1, Peprotech), epi-
dermal growth factor (20 ng ml−1, Peprotech) and heparin (32 IE ml−1, 

112



Nature Medicine

Article https://doi.org/10.1038/s41591-024-02969-w

Ratiopharm). Growth factors and heparin were renewed twice weekly. 
Spheres were split by mechanical dissociation when they reached a size 
of 200–500 µm. In this study, analyzed cell cultures with clinical data 
are represented in Extended Data Fig. 4. Long-term cultivation cell 
cultures were used from a publicly available dataset (n = 7, GSE181314) 
and one in-house cell line (n = 1).

Neuron-glioma co-culture experiments
Neurons were isolated from CD1 (The Jackson Laboratory) mice at P0 
using the Neural Tissue Dissociation kit - Postnatal Neurons (Miltenyi) 
and followed by the Neuron Isolation kit, Mouse (Miltenyi). After iso-
lation, 150,000 neurons were plated onto glass coverslips (Electron 
Microscopy Services) after pre-treatment with poly-l-lysine (Sigma) 
and mouse laminin (Thermo Fisher)4. Neurons are cultured in BrainPhys 
neuronal medium (StemCell Technologies) containing B27 (Invitro-
gen), BDNF (10 ng ml−1, Shenandoah), GDNF (5 ng ml−1, Shenandoah), 
TRO19622 (5 µM; Tocris) and β-mercaptoethanol (Gibco). Half of the 
medium was replenished on days in vitro (DIV) 1 and 3. On DIV 5, half 
of the medium was replaced in the morning. In the afternoon, the 
medium was again replaced with half serum-free medium containing 
75,000 cells from patient-derived low- (‘UCSF-UKE-1’) or high-neural 
(‘UCSF-UKE-2’) cell cultures. Cells were cultured with neurons for 72 h 
and then fixed with 4% PFA for 20 min at room temperature and stained 
for puncta quantification as described above.

EdU proliferation assay
For EdU proliferation assays, coverslips were prepared as described 
above. Again, at DIV 5, low-neural (‘UCSF-UKE-1’) or high-neural 
(‘UCSF-UKE-2’) glioblastoma cells were added to the neuron cultures. 
Forty-eight hours after addition of glioblastoma cells, slides were 
treated with 10 µM EdU. Cells were fixed after an additional 24 h using 
4% PFA and stained using the Click-iT EdU kit and protocol (Invitrogen). 
Proliferation index was then determined by quantifying the percentage 
of EdU-labeled glioblastoma cells (identified by EdU+/DAPI+) over total 
number of glioblastoma cells using confocal microscopy.

3D migration assay
3D migration experiments were performed as previously intro-
duced70 with some modifications. In brief, 96-well flat-bottomed 
plates (Falcon) were coated with 2.5 µg per 50 µl laminin per well 
(Thermo Fisher) in sterile water. After coating, a total of 200 µl of 
culture medium per well was added to each well. A total of 100 µl 
of medium was taken from 96-well round-bottom ULA plates con-
taining ~200-µm diameter neurospheres of low- (‘UCSF-UKE-1’) and 
high-neural (‘UCSF-UKE-2’) glioblastoma lines and the remaining 
medium, including neurospheres was transferred into the pre-coated 
plates. Images were then acquired using an EVOS M5000 microscope 
(Thermo Fisher Scientific) at time 0, 24, 48 and 72 h after encapsu-
lation. Image analysis was performed using ImageJ by measuring 
the diameter of the invasive area. The extent of cell migration on 
the laminin was measured for six replicate wells normalized to the 
diameter of each spheroid at time zero and the data are presented as 
a mean ratio for three biological replicates.

Bioinformatic and statistical analysis
DNA methylation profiling and processing. DNA was extracted 
from tumors, extracellular vesicles and bulk plasma, and analyzed 
for genome-wide DNA methylation patterns using the Illumina 
EPIC (850k) array. The processing of DNA methylation data was 
performed with custom approaches71. Methylation profiling results 
from the first surgery were submitted to the molecular neuropa-
thology methylation classifier v.12.5 hosted by the German Cancer 
Research Center18. Patients were included if the calibrated score for 
the specific methylation class was >0.84 at the time of diagnosis71. 
For IDH-wild-type glioblastoma, patients (scores between 0.7 and 

0.84) with a combined gain of chromosome 7 and loss of chromo-
some 10 or amplification of EGFR were included in accordance with 
cIMPACT-NOW criteria72. A class member score of ≥0.5 for one of 
the glioblastoma subclasses was required. Evaluation of the MGMT 
promoter methylation status was made from the classifier output 
v.12.5 using the MGMT-STP27 method73.

All IDAT files were processed using the preprocess Illumina (minfi, 
v.1.40.0)74. Probes with detection P values <0.01 were kept for further 
analysis. Probes with <3 beads in at least 5% of samples, all non-CpG 
probes, SNP-related probes and probes located on X and Y chromo-
somes were discarded.

Dichotomization of tumors into low- and high-neural subgroups. 
We used the cell-type-specific methylation signature available from 
Moss et al.17 consisting of 25 cell-type components. We used the original 
implementation of Moss et al. to perform cell-type deconvolution using 
non-negative least square linear regression.

We deciphered the neural signature in GBM using a combined data-
set (n = 1,058) from Capper et al.18 (n = 624) and our institutional cohorts 
from Hamburg, Berlin and Frankfurt (all Germany) (n = 434). The com-
bined dataset was dichotomized into low- (n = 529) and high-neural 
(n = 529) tumors using the median neural proportion of 0.41. This cutoff 
value was used to classify GBM into low- and high-neural tumors for all 
analyses. External validation was performed using the publicly avail-
able dataset from the TCGA-GBM database (n = 178)19.

Reproducibility of differential methylation sites between low- and 
high-neural groups. We performed differential methylation analysis 
of 363 samples of the internal cohort using dmpFinder function from 
minfi R package74 (v.1.40.0). In total, we identified 1,289 CpG sites 
differentiating low- and high-neural groups. To estimate the predic-
tive power of these sites, we trained a logistic regression model using 
scikit-learn package (v.1.2.2) on the clinical cohort using the differen-
tially methylated sites as input features. The model was subsequently 
applied to the other cohorts.

Cell state composition analysis. To infer cell-type and cell state abun-
dance, we conducted a bulk DNA methylation assay using EPIC arrays 
and applied the reference-free deconvolution method by Silverbush 
et al.75. This method, trained on the DKFZ glioblastoma cohort and 
tested on TCGA-GBM data, successfully infers cell types (immune, glia 
and neuron) and malignant cell states (stem-like and differentiated). 
We followed the protocol of Silverbush et al.75, using the EpiDISH pack-
age76, utilizing the provided encoding and RPC method with 2,000 
maximum iterations.

DNA tumor purity. Tumor purity was predicted in silico from DNA 
methylation data using the RF_purify Package in R77. This package 
uses the ‘absolute’ method, which measures the frequency of somatic 
mutations within the tumor sample and relates this to the entire  
DNA quantity78.

Integrative analysis of methylation and gene expression. WGCNA 
was performed using the hdWGCNA22 R package. Methylation-derived 
neural subgroup labels were considered as a trait. The optimal soft 
power was determined to be 16. For dimension reduction and visuali-
zation of the coexpression network, we employed the UMAP via the 
ModuleUMAPPlot function. Gene Ontology analysis was subsequently 
performed on the top 100 module-associated genes using the com-
pareCluster function. Visualization of module-associated pathway 
activations was accomplished using the clusterProfiler package.

To contextualize the identified modules at a single-cell level, we 
utilized GBMap23 and the reference dataset of human motor cortex 
(Allen Institute). Both datasets were integrated by alignment of the 
latent space representation. Based on the zero-inflated nature of 
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single-cell data, we estimated the module enrichment by the frequency 
of each gene (g) being detected and the expression values as follows:
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 refers to the module expression score per cell which is esti-
mated by the mean of x the log normalized and scaled expression values 
of n genes from the WGCNA modules. The mean is normalized by the 
frequency of nonzero-determined genes.

SRT data analysis. Computational analysis of spatially resolved tran-
scriptomics (SRT) data was performed by the SPATA2 R package (v.2.01). 
An SPATA object was prepared for the SRT data.

Single-cell deconvolution. Single-cell deconvolution was performed 
using Cell2location79 with the GBMap single-cell data23 as a reference. 
The SPATA object was converted into the AnnData format and mito-
chondrial genes were sequestered into the obsm[‘MT’] matrix of the 
object before training the model for 500 epochs on the GPU. After 
training, we invoked export_posterior on the model to extract the 
posterior distribution of cell-type abundances, drawing 1,000 samples 
to robustly estimate these abundances across spatial locations. The 
cell-type abundances were exported back to the SPATA object by the 
addFeature function of SPATA2.

RNA deconvolution. We utilized the GBMapExtended single-cell 
RNA-seq (scRNA-seq) dataset and the human neocortex dataset from 
the Allen Institute to perform cell-type deconvolution. Data preparation 
involved loading and transforming the scRNA-seq data into a SingleCell-
Experiment object with Seurat and SingleCellExperiment libraries in 
R, annotated with relevant cell and gene identifiers. We leveraged the 
digitalDLSorteR package to train a deconvolution model, initiating with 
the setting of a random seed for reproducibility, followed by loading 
scRNA-seq profiles into the digitalDLSorteR framework. Key param-
eters, including cell and gene identifiers and cell-type annotations, were 
specified. The digitalDLSorteR’s zinbwave parameters were estimated 
to simulate single-cell profiles, incorporating previous knowledge of 
cell-type distributions to refine the simulation. A bulk cell matrix was 
generated based on probabilistic design from simulated cell profiles, 
and a digitalDLSorter model was trained on this matrix with standard 
scaling. Post-training, the model was applied to deconvolve a dataset 
comprising RNA-seq and methylation data, processed to extract counts 
and metadata. The deconvolution results were then visualized using 
ggplot2, with sample types and percentage compositions graphed, 
showcasing the cellular heterogeneity across different samples.

Construction of spatial graphs from Visium SRTs. The SRT object was 
preprocessed with SPATA2, including log transformation of the count 
matrix and alignment of the imaging dataset (H&E Image). Nucleus 
positions were annotated using an automated ilastik pretrained seg-
mentation algorithm. For samples with low image quality, we adapted 
CytoSpace80 in our workflow. Spot coordinates were extracted via the 
getCoordsDf function and a pairwise distance matrix was computed 
based on the ‘x’ and ‘y’ coordinates of cells. The zero values in the dis-
tance matrix were replaced with a constant value of 1,000 to avoid 
computational issues. This ensured that subsequent thresholding steps 
would not falsely consider a cell as its own neighbor. A distance thresh-
old (one unit greater than the smallest nonzero distance) was employed 
to construct an adjacency matrix, where cells within the threshold dis-
tance were designated ‘1’ for adjacency and cells beyond the threshold 
were assigned ‘0’ for no adjacency. Unique cell barcodes were used to 
label the rows and columns of the adjacency matrix, obtained from 
getCoordsDf. The adjacency matrix was then transformed into an 
undirected graph using the graph_from_adjacency_matrix function 

from the igraph package. We obtained the gene expression matrix 
with 5,000 most variable genes from our object and transposed it to 
align with the graph’s vertices. Using the graphical representation, we 
characterized the local topology around a specific location, termed a 
‘query spot,’ by identifying its n-hop neighborhood. Specifically, the 
three-hop neighborhood of a query spot was defined as the set of all 
spots reachable within three edges from the query spot in the graph.

GNN architecture. We used a deep neural network combining a graph 
isomorphism network (GIN) backbone with multiple multilayer percep-
tron (MLP) prediction heads. We used the Pytorch Geometric library 
and defined each spot as a node and edges were defined as the direct 
neighbors of each individual spot within a three-hop neighborhood. 
Node features were log-scaled and normalized expression values from 
the 5,000 most variably expressed genes. Non-expressed genes within 
a subgraph were masked. Edge features were defined based on each 
node’s direct neighbors, with each node having a maximum of six neigh-
bors. Subgraphs with fewer than 15 nodes were excluded. Self-loop 
edges were added to input graphs before forward pass.

We employed a three-layer GIN, and in the kth graph convolutional 
layer to process batches (size of 32) of SRT data, messages were com-
puted using MLPs,

m

uv

= MLP (h

u

)

where u, v ∈ N (v) and then aggregated for each node v over neighbor-
hood N(v),

a

v

= ∑

u∈N(v)

m

uv

The updated embedding of node v was updated on the basis of all 
incoming messages to v,

h

′

v

= MLP (a

v

)

The GIN layers are represented as follows: xv defines the expression 
vector of node v and N(v) is the set of its neighbors. The GIN convolution 
operation updates the feature vector of node v by aggregating features 
from N(v) and combining them with xv own features. The updated 
feature vector x′

v

 is computed with ReLU (rectified linear unit)  
as follows:

x

′

v

= ReLU(((1 + ϵ) × x

v

+ ∑

u∈N(v)

ReL (x

u

)))

we define ϵ as a learnable parameter that allows the model to weigh the 
importance of a node’s own features versus the features of its neigh-
bors. This operation is stacked multiple times (k = 2) in the kth GIN to 
allow for deeper aggregation of neighborhood information. After each 
GIN convolutional layer, batch normalization and LeakyReLU activation 
with a negative slope of 0.2 are applied, followed by a dropout layer 
with a dropout rate of 0.5 for regularization. The latent space repre-
sentation of the graph is obtained by passing the output of the second 
GIN convolutional layer through a linear transformation (self.merge) 
with weights initialized using the Xavier uniform method. The resulting 
features are merged into a latent space and then global mean pooling 
is applied to create graph-level representations.

For the prediction tasks, separate MLP modules are employed. 
Each MLP consists of a linear layer, a ReLU activation, batch normaliza-
tion, dropout and a final linear layer that outputs the predictions. The 
MLPs are structured as follows:

h (x) = W

2

× D × B × ϕ (W

1

× x + b

1

) + b

2
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Where x is the latent space vector to the MLP, W1 and W2 are the weight 
matrices for the first and second linear transformations, respectively, 
b1 and b2 are the bias vectors for the first and second linear transforma-
tions, respectively, ϕ denotes the ReLU activation function,  
applied element-wise, where ϕ

z

= ma (0, z) , B represents the batch 
normalization operation applied to the activated output and D  
represents the dropout operation, which randomly zeroes some of the 
elements of its input with a certain probability to prevent 
overfitting.

For neural score prediction tasks, we minimized the squared L1 
norm loss between predictions and score (torch.nn.L1loss).

Data split and evaluation metrics. We evaluated the GNN and 
comparative methods on both our proprietary Visium dataset and 
additional public domain datasets. We split the data into training 
and evaluation subsets using a stratified procedure. For the training 
dataset, we selected 20,000 subgraphs from spatial transcriptomics 
samples across 20 patients, incorporating clinical attributes such as 
tumor type and epigenetic neural score. For the evaluation dataset, 
we reserved samples from the remaining four patients, covering a 
range of neural scores. Additionally, we included a validation set of 
24,000 subgraphs from all 24 patients, ensuring independence from 
the training set.

This approach ensured robust evaluation across diverse clinical 
and molecular features, with the neural score used as the prediction 
task, evaluated by R2 against the neural score from EPIC methylation 
profiling.

Evaluation of the subgraph cell composition. We commenced by 
retrieving the spatial coordinates of each nucleus using the getNucle-
usPosition function from the SPATAwrappers package. The spatial 
coordinates representing the nuclei positions were obtained as 
P = {p

i

|i = 1,… ,N} where pi is the coordinate pair for the ith nucleus and 
N is the total number of nuclei. Spatial grid coordinates corresponding 
to the transcriptomics data points were retrieved, denoted as 
G = { g

j

|j = 1,… ,M}, with each gj representing the coordinate pair for the 
jth grid point. For each grid point gj, a vector of deconvolution scores 
D

j

= {d

jk

|k = 1,… ,T }  was extracted, where djk represents the score for 
the kth cell type at grid point j and T is the number of cell types. The 
scores were normalized to a range of [0, 1], and the number of cells of 
each type at each grid point was estimated as:

C

jk

= round(

d

′

jk

× N

j

∑

T

k=1

d

′

jk

)

where d′
jk

 is the normalized score and Nj is the number of cells at grid 
point j. Cell types were assigned to each grid point gj to create a map-
ping Mj, correlating grid points with their respective cell types. The 
cell-type mapping was integrated with nucleus position data to produce 
a comprehensive spatial map of cell-type distribution: 
S = {(p

i

,M

j

) |p

i

∈ P,M

j

∈ M}. This methodology facilitates the visualiza-
tion and analysis of the cellular composition within the tissue section, 
providing insights into the complex spatial organization of the cellular 
environment.

Proteomic data processing. Proteomic samples (n = 28) were meas-
ured with liquid chromatography–tandem mass spectrometry (LC–
MS/MS) systems and processed with Proteome Discoverer v.3.0. and 
searched against a reviewed FASTA database (UniProtKB81: Swiss-Prot, 
Homo sapiens, February 2022, 20,300 entries). The protein abundances 
were normalized at the peptide level. Perseus v.2.0.3 was used to obtain 
log2-transformed intensities. The imputation was performed using the 
random forest imputation algorithm (hyperparameters, 1,000 trees 
and ten repetitions) in RStudio v.4.3.

WGCNA for proteomics. We used hdWGCNA82 to identify gene coex-
pression modules, employing a soft power of 9 and minimum mod-
ule size of 10. After correcting for technical batch effects, significant 
modules (P < 0.05) were selected based on their correlation with traits. 
Overrepresentation analysis of gene sets within these modules was 
performed using clusterProfiler67. Cell-type enrichment within modules 
was identified using gene sets from PanglaoDB through the Python pack-
age enrichr68. Module scores on single cells were calculated using Scan-
py’s score_genes function with the core GBM single-cell atlas (GBMap)23.

Electron microscopy data analysis. Sections from xenografted hip-
pocampi of mice were imaged using TEM imaging. The xenografts were 
originally generated for a study by Krishna et al.12 and mouse tissue 
was re-analyzed after epigenetic profiling and assignment to low- or 
high-neural glioblastoma groups. Here, 42 sections of high-neural glio-
blastoma across three mice and 45 sections of low-neural glioblastoma 
across three mice were analyzed. Electron microscopy images were 
taken at ×6,000 with a field of view of 15.75 µm2. Glioma cells were 
counted and analyzed after identification of immunogold particle 
labeling with three or more particles. Furthermore, to determine syn-
aptic structures all three of the following criteria had to be clearly met 
as previously described4: (1) presence of synaptic vesicle clusters; (2) 
visually apparent synaptic cleft; and (3) identification of postsynaptic 
density in the glioma cell. To quantify the percentage of glioma cells 
forming synaptic structures, the number of glioma-to-neuron synapses 
identified was divided by the total number of glioma cells analyzed.

Statistical analysis. Gaussian distribution was confirmed using the 
Shapiro–Wilk test. Parametric data were analyzed with an unpaired 
two-tailed Student’s t-tests or one-way ANOVA with Tukey’s post hoc 
tests. Survival curves were generated using the Kaplan–Meier method, 
with statistical significance determined by two-tailed log-rank analyses. 
Multivariate analysis for overall survival and PFS included computing 
hazard ratios and 95% confidence intervals using Cox proportional 
hazards regression models. Variables with P < 0.05 in univariate analysis 
were included. Significance was set at P < 0.05. GraphPad Prism v.10 
was used for statistical analyses and data illustrations and R Studio 
was used for alluvial plots.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
IDAT files of the clinical cohort (363 patients with GBM) are 
available at the Gene Expression Omnibus under accession 
code GSE240704. The methylation data provided by Capper 
et al.18 as illustrated in Extended Data Fig. 1 are accessible under 
accession code GSE109381. The TCGA-GBM cohort analyzed for 
external validation and as shown in Fig. 1d is accessible at https://
portal.gdc.cancer.gov/projects/TCGA-GBM. Data files used in the 
spatial transcriptomic analyses are accessible at Zenodo at https://
doi.org/10.5281/zenodo.10863736 (ref. 83). The single-cell RNA-seq 
dataset GBMap is available from the original publication and can 
be accessed through cellXgene (https://cellxgene.cziscience. 
com/collections/999f2a15-3d7e-440b-96ae-2c806799c08c) and the 
human motor cortex single-cell RNA-seq dataset is available from the 
Allen Brain Institute at https://portal.brain-map.org/atlases-and-data/ 
rnaseq/human-m1-10x. Source data are provided with this paper.

Code availability
The code used to perform DNA methylation and proteomics analysis  
is available at https://github.com/imsb-uke/epigenetic-neural- 
glioblastoma. Codes used for performing transcriptomic analy-
ses in Figs. 2 and 3 and Extended Data Figs. 3 and 4f are available at 
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https://github.com/heilandd/GBNeural. Additionally, the code for 
the non-reference-based multi-dimensional single-cell deconvo-
lution from DNA methylation data as presented in Fig. 6f and Sup-
plementary Fig. 4i can be found at https://github.com/danasilv/
Deconvolution_of_GBM_bulk_DNA_methylation_profiles.
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Extended Data Fig. 1 | Implementation of the epigenetic neural signature and 
validation of low- and high-neural subclassification of glioblastoma samples. 
a). Epigenetic neural signature in healthy brain tissues obtained from the Capper 
dataset40. b, c). Analysis of different number of neural clusters that can predict 
differential survival outcome in the clinical cohort (n=363) by using 10-fold 
cross-validation with Kmeans. The figure displays Kaplan–Meier curves of the 
clusters in the validation set of the 5th fold. The survival curves demonstrate that 
the best results are obtained with two clusters (low- versus high-neural). Log 
rank test was used for the survival difference between the clusters. Error bands 
representing the 95% confidence interval. d). Validation of the cut off for the neural 
signature across multiple cohorts used in the manuscript. Beta-values for CpGs 

differentially methylated between the low-neural and high-neural groups. The 
selection was made using the clinical cohort (n=363). e). Using the clinical cohort 
as the training set, a logistic regression model was trained. The logistic regression 
model trained on the clinical cohort on the identified signature classifies across 
cohorts with overall AUC of 0.944 and > 0.84 in all cohorts. f ). Same as in e.) but 
a threshold on the prediction score was set (0.9) to keep only high confidence 
predictions. The AUC of the classifier is > 0.91 in the external cohorts when 
using only high probability predictions. g, j). Survival analysis of patients with 
glioblastoma applying brain tumor-related cell signatures of the Moss signature. 
Log-rank test, g) P = 0.2415, h.) P = 0.2703, i) P = 0.9010, j) P = 0.6646. Error bands 
representing the 95% confidence interval. OS: overall survival.
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Extended Data Fig. 2 | Differentially methylated CpG sites of high- and 
low-neural glioblastomas. a). Volcano plot showing differentially methylated 
CpG sites of genes of the invasivity signature, neuronal signature, and 

trans-synaptic signaling signature in high-neural glioblastoma. b). Gene set 
enrichment analysis of differentially methylated CpG sites in high-neural 
glioblastoma compared to low-neural glioblastoma samples.

120



Nature Medicine

Article https://doi.org/10.1038/s41591-024-02969-w

Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Quality measurements and reliability of the epigenetic 
neural signature in glioblastoma samples. a). Integrated analysis of the 
individual patients' neural scores and the corresponding cell proportions 
obtained from RNA sequencing deconvolution. b). Correlation between 
the neural signature and DNA tumor purity. Simple linear regression P = 
0.000000000063765, error bands representing the 95% confidence interval. 
c). Correlation between the microglia signature and DNA tumor purity. Simple 
linear regression P = 0.00000000041872, error bands representing the 95% 
confidence interval. d). Correlation between the immune cell signature and DNA 
tumor purity. Simple linear regression P = 0.000000000019814, error bands 
representing the 95% confidence interval. e). Correlation between the DKFZ 
calibrated score for the diagnosis ‘IDH-wild-type glioblastoma’ and the neural 

signature. Simple linear regression P = 0.2803, error bands representing the 95% 
confidence interval. f, g). Single-cell deconvolution of DNA methylation profiles 
compare f ). stem cell-like and g). neuron-like signatures in NeuN+ cells, healthy 
cortex, glioblastoma tissue samples, and glioblastoma cell cultures. h). Overlap 
between the epigenetic neural classification and TCGA subtypes after integrated 
RNA sequencing analysis. i). Comparison of neural signature between patient’s 
tumor tissue and cell culture in 17 glioblastomas. Two-sided t-test P = 0.2593. 
j). Stability of the epigenetic neural signature during long-term cell culturing. 
Data were obtained from a publicly available dataset (n =6, GSE181314) and in-
house (n = 1). Two-sided t-test P = 0.8471. k). Demonstration of NeuN+ staining in 
glioblastoma neurospheres. n=15 biological replicates.

122



Nature Medicine

Article https://doi.org/10.1038/s41591-024-02969-w

1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17 18 19 20
21

22

OPC-like Prolif

OPC-like

NPC-like Prolif

NPC-like OPC

NPC-like neural

MES-like hypoxia MHC

MES-like hypoxia
independent

AC-like Prolif

AC-like

Chr.Arm

p
q

0.95
1.00
1.05
1.10

CNV

Intermediate
not-defined

Non-malignant
Ctr (T cells)

n=
10

00
 c

el
ls

 p
er

 s
ub

ty
pe

U
M

A
P2

n=338564

UMAP1

U
M

A
P2

Cell Types

aneuploiddiploid

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
MEdarkorange

MEdarkturquoise

MEdarkred

MElightcyan

MEroyalblue

MEyellow

MEdarkgreen

MEgrey60

MEsaddlebrown

MEwhite

MEm agenta

MEdarkgrey

MEturquoise

MEbrown

MEpurple

MEblue

MEblack

MEcyan

MEgrey

0.002 0.002

0.029 0.029

presynaptic endocytosis

synaptic vesicle endocytosis

synaptic vesicle recycling

neurotransmitter transport

regulated exocytosis

synaptic vesicle cycle

exocytosis

vesicle mediated transport
in synapse

regulation of trans synaptic
signaling

modulation of chemical
synaptic transmission

0.
10

0

0.
12

5

0.
15

0

0.
17

5

15

20

25

30

2.5e 14

5.0e 14

7.5e 14

NADPH regeneration

pentose phosphate shunt

glutathione metabolic process

actin polymerization or
depolymerization

regulation of actin filament
length

regulation of actin
polymerization or
depolymerization

regulation of supramolecular
fiber organization

nucleoside phosphate
metabolic process

nucleotide metabolic process

sulfur compound metabolic
process

Gene Ratio

Gene Ratio

0.
05

0

0.
07

5

0.
10

0

4

6

8

10

12

14

0.0004

0.0008

0.0012

0.0016

a b dc

e

f

ME blue

ME brown

Low-neural 
glioblastoma

High-neural 
glioblastoma

p = 0.029

p = 0.002

Low-neural 
glioblastoma

High-neural 
glioblastoma

Count

p.adjust

p.adjust

Count

M
od

ul
e 

ei
ge

ng
en

es
M

od
ul

e 
ei

ge
ng

en
es

 1.00
 0.75
 0.50
 0.25
 0.00
-0.25
-0.50
-0.75
-1.00

 1.00
 0.75
 0.50
 0.25
 0.00
-0.25
-0.50
-0.75
-1.00

ME blue (”high-neural”)

ME brown (”low-neural”)

ME blue (”high-neural”)

ME brown (”low-neural”)

ME brown (”low-neural”)ME blue (”high-neural”)

g
Low-neural glioblastoma High-neural glioblastoma

H
&

E
G

F
A

P
S

O
X

2
O

L
IG

2

#1 #2 #3#1 #2 #3

0.0

0.5

1.0

Fr
ac

tio
n 

of
 O

LI
G

2+
 c

el
ls

Newly diagnosed
glioblastoma 

(n=363)

17.31%

15.07%

25.94%

20.77%

6.82%

14.09%

28.05%

14.62%

21.50%

8.84%

6.71%

20.28%

Stem Differentiated 2 Differentiated 1

Immune Neuron Microglia

14.14%

13.72%

28.06%

24.05%

6.61%

13.42%

i

0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

0.8

1.0

Neural signature

St
em

 c
el

l c
om

po
ne

nt

p < 0.001
R2 = 0.06
n = 363

0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

Neural signature

Im
m

un
e 

co
m

po
ne

nt

p < 0.001
 = 0.15

n = 363
R2

h

j k

N
e

u
N

Low-neural 
glioblastoma

High-neural 
glioblastoma

Low-neural High-neural 

Low-neural 
glioblastoma

(n=213)

High-neural 
glioblastoma

(n=150)

Extended Data Fig. 4 | See next page for caption.

123



Nature Medicine

Article https://doi.org/10.1038/s41591-024-02969-w

Extended Data Fig. 4 | High-neural glioblastoma is linked with synapse 
formation and trans-synaptic signaling from proteomic profiling. 
 a – e) Proteomic profiling of low- (n=19) and high-neural (n=9) glioblastoma. a).  
WGCNA analysis showed differentially abundant proteome modules between 
both neural subgroups. b). High-neural glioblastomas are clustered to module 
‘blue’ (top figure), while low-neural glioblastomas have a higher abundance in 
module ‘brown’ (bottom figure). Data are mean ± s.e.m. Two-sided t-test  
P = 0.0.029 (top figure) and P = 0.002 (bottom figure). c, d). Network analysis 
revealed e). most expressed proteins and f ). associated gene ontology terms 
for each neural subgroup (high-neural: top, low-neural: bottom). e). Integrating 
transcriptomic single-cell data showed an OPC-/NPC-like character in high-neural 
tumors (‘ME blue’). f ). Transcriptomic single-cell copy number variation plot 

analysis of glioblastomas with a high-neural signature. g). Immunohistostaining 
of representative low- and high-neural glioblastoma samples. n=10 biological 
replicates. h). Analysis of OLIG2+ cells between low- and high-neural glioblastoma 
samples. **P < 0.01, two-tailed Student’s t-test. i). Comparison of abundance of 
cell states analyzed by reference-free deconvolution between newly diagnosed, 
high-neural, and low-neural glioblastomas. j). Stem cell-like state significantly 
correlated with an increase of the neural signature in glioblastoma samples. 
Simple linear regression, P = 0.000003024480. Error bands representing the 95% 
confidence interval. k). An anticorrelation was seen between the abundance of 
the immune compartment and the neural signature. Simple linear regression,  
P = 0.000000000005. Error bands representing the 95% confidence interval.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Copy number variations and next-generation 
sequencing of gene mutations between low- and high-neural glioblastoma 
samples. a). Copy number variation plots for all samples stratified into low- and 
high-neural glioblastoma. b, c). Oncoprint illustrating clinical characteristics 
and gene mutational status of b). low-neural and c). high-neural glioblastoma 

samples of our internal cohort. Of note, rarely detectable IDH mutations did not 
include the pathogenic R132H mutation. d, e). Oncoprint illustrating clinical 
characteristics and gene mutational status of d). low-neural and e). high-neural 
glioblastoma samples of the TCGA dataset.
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Extended Data Fig. 6 | See next page for caption.

127



Nature Medicine

Article https://doi.org/10.1038/s41591-024-02969-w

Extended Data Fig. 6 | Radiographic parameters and spatiotemporal 
tumor sampling. a – c). Association of neural glioblastoma group with volume 
of a). contrast enhancement, b). FLAIR, and c). tumor necrosis measured by 
preoperative magnetic resonance imaging. A) P = 0.0374, b) P = 0.1767, and  
c) P = 0.6373, two-tailed Student’s t-test. d). Analysis of intertumoral difference 
of neural signature within 34 newly diagnosed glioblastomas with spatial 

collection of 3 to 7 samples per tumor. 23 (67.6 %) of these tumors had a pure 
low- or high-neural signature in all individual biopsies with additional 10 (29.4 %) 
tumors being predominantly low or high. e). Neural signature in 39 patients with 
matched tumor tissue obtained from surgery at first diagnosis and recurrence. 
ns: P > 0.05, two-tailed Student’s t-test. f ). Sankey plot illustrating a potential 
switch of the neural subgroup between first diagnosis and recurrence.
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Extended Data Fig. 7 | See next page for caption.

129



Nature Medicine

Article https://doi.org/10.1038/s41591-024-02969-w

Extended Data Fig. 7 | Drug sensitivity analysis of low- and high-neural 
glioblastoma cells. a). Representative microscopic images for high- (left image) 
and low-neural (right image) glioblastoma cells. Green: Vimentin, yellow: cleaved 
caspase 3, TUBB3: red, DAPI: blue. Scale bars: 10µm. n=9 biological replicates. 
b). Drug sensitivity of low- and high-neural glioblastoma cells measured by 

cleaved caspase 3. *P < 0.05, Mann–Whitney test. c). Drug sensitivity of low- and 
high-neural glioblastoma cells measured by average cell area. *P < 0.05, Mann–
Whitney test. d). Statistical difference of sensitivity to various drugs between 
low- and high-neural glioblastoma cells. Mann–Whitney test.
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Extended Data Fig. 8 | Clinical prognostic and circulating biomarkers of 
epigenetic neural glioblastomas. a). Neural signature in DNA methylation 
subclasses of newly diagnosed IDH-wild-type glioblastoma. *P < 0.05, two-tailed 
Student’s t-test. b). Forest plot illustrating the multivariate analysis of low-neural 
patients with glioblastoma. Means are shown by closed circles and whiskers 
representing the 95% confidence interval. Cox proportional hazards regression 
model. c). Forest plot illustrating the multivariate analysis of high-neural patients 
with glioblastoma. Means are shown by closed circles and whiskers representing 
the 95% confidence interval. Cox proportional hazards regression model.  
d – e). Survival outcome categorized after RANO categories for extent of 
resection in patients with glioblastoma treated by radiochemotherapy with a 
low- and high-neural signature. Class 1: 0 cm3 CE + ≤5 cm3 nCE tumor, Class 2: ≤1 

cm3 CE, Class 3A: ≤5 cm3 CE, Class 3B: ≥5 cm3. Log-rank test, d) P = 0.0002, and 
e) P = 0.0011. f.) Correlation of neural signature and number of extracellular 
vesicles in patient serum at time of diagnosis. Simple linear regression P = 0.01. 
Error bands representing the 95% confidence interval. g.) Comparison of neural 
signature in healthy individuals, patients with glioblastoma, and meningeoma 
patients between matched tumor tissue, extracellular vesicle-associated DNA in 
serum, and cell-free DNA in serum. *P < 0.05, two-tailed Student’s t-test.  
h.) Comparison of patients with no detectable (left panel) and detectable (right 
panel) extracellular vesicle levels in serum stratified to their epigenetic neural 
glioblastoma type. i.) Illustration of the neural signature in different types of 
sampling in patients with glioblastoma.
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Extended Data Fig. 9 | Relevance of neural classification in pediatric and 
adolescent patients diagnosed with H3K27-altered diffuse midline glioma 
(DMG). a). Association of tumor location with neural signature. Two-tailed 
Student’s t-test. b). Volcano plot showing differentially methylated CpG sites 
of genes of the invasivity signature, neuronal signature, and trans-synaptic 
signaling signature. c). Cell state composition analysis in low- and high-neural 
DMG. d). Synaptic gene expression (PTPRS, ARHGEF2, GRIK2, DNM3, LRRTM2, 

GRIK5, NLGN4X, NRCAM, MAP2, INA, TMPRSS9)6 is significantly correlated with 
the stem cell-like state of DMG cells calculated by an overlap of single-cell DNA 
methylation and single-cell RNA sequencing (599 cells from 3 study participants) 
measurements. Simple linear regression. e – h). Kaplan–Meier survival analysis 
of 72 DMG patients under 18 years of age with a low- and high-neural DMG. Error 
bands representing the 95% confidence interval. Log-rank test, e) P = 0.0017, f)  
P = 0.0022, g) P = 0.0882, and h) P = 0.3236.

134



Nature Medicine

Article https://doi.org/10.1038/s41591-024-02969-w

Extended Data Table 1 | Clinical Characteristics

Clinical characteristics of patients with glioblastoma who were treated with combined radio chemotherapy after surgical resection. SD: standard deviation, MGMT: 
O6-methylguanine-DNA-methyltransferase.
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5
DISCUSSION

The individual findings of each of the three works are discussed in detail as part of each

publication presented in chapters 2-4. In this chapter, we situate the findings of these

works within the context of computational biology, immunology, and neuroscience with

a focus on open questions and potential works.

5.1. CELL TYPE DECONVOLUTION, CHALLENGES AND POTEN-

TIAL DIRECTIONS

As detailed in Chapter 2, there have been several works in cell type deconvolution - both

the estimation of cell type proportions and gene expression profiles. Cell type deconvolu-

tion benefits from the bulk studies with larger cohorts in comparison to the single-cell

studies. Further, bulk and single-cell studies in combination provide a better understand-

ing of tissue heterogeneity and architecture (George et al., 2024; Zeng et al., 2024). In

our work with DISSECT, we used the simple formulation of the cell deconvolution task

as described in Chapter 2 and extended it to enable semi-supervised learning with gene

expression profiles from both the bulk and single-cell reference. The method achieves

a consistent performance across a range of experiments. Some challenges and open

questions remain as discussed below:
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5.1.1. BETTER AND CONSISTENT CELL TYPE DEFINITIONS

In DISSECT, we relied on cell type definitions based on molecular profiles, where cell

types are defined by some marker genes that show preferential enrichment in a given

cell type (Zeng, 2022; Domínguez Conde et al., 2022). Cell type definitions based on

molecular profiles may differ across single-cell studies and may convolute the insights

gained from cell type deconvolution. In our experiment with the estimation of granu-

lar level cell types, we harmonize the cell type annotations from two sources based on

cell type definition similarities (e.g. mapping different memory CD4 T cell subsets to

form a single cluster memory CD4 T cells). This limits the evaluation of algorithms on

specific subsets. Efforts into homogeneous cell ontologies and cell type marker genes

may help alleviate this problem (Bernstein et al., 2021; Börner et al.). The human cell

atlas is a prominent example of this direction (Osumi-Sutherland et al., 2021). Further,

the validation of novel cell types identified in previously published studies consisting

of large-scale atlases may help in producing good training data for reference, which is a

prominent challenge in cell type deconvolution as argued in Garmire et al. (2024). In a

similar direction, accessibility to good quality reference data for cell type deconvolution

can be aided by integrating single-cell data portals, e.g. CellXGene (Megill et al., 2021)

with the deconvolution software for ease of choosing appropriate reference by tissue,

disease, and organism.

From a technical perspective, this challenge directly impacts the learning framework of

DISSECT’s neural architecture since the consistency regularization framework assumes

that marker genes remain invariant across conditions. Further, in a semi-supervised set-

ting where some real bulk data with cell type fractions is available, inconsistent cell type

definitions across references can violate this assumption, potentially increasing the effec-

tive dimension of the learning problem beyond our theoretical O (
p

nc) bound. Future

work could explore adaptive architectures that learn robust representations across differ-

ent annotation schemes, perhaps by incorporating hierarchical cell ontologies directly

into the network structure.

5.1.2. INCORPORATION OF ADDITIONAL INFORMATION FOR THE MIXTURES

In DISSECT, we incorporate gene expression information from the bulk data, by gen-

erating mixtures of bulk samples and samples simulated from a scRNA-seq reference.

This allows for a seamless training procedure that is capable of learning from real gene

expression as well. DISSECT, thus, does not rely only on the simulated data that borrows

from the limitations of single-cell data such as the presence of dropouts (Lähnemann

et al., 2020). This also allows better deconvolution from a mismatched reference such

as the case when reference data is from a different condition. Previously, in MuSiC2
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(Fan et al., 2022), authors proposed to train on multi-condition references to solve this

problem. However, it is unlikely that for a desired condition, the single-cell reference is

always available.

While in bulk RNAseq, observations are limited to the gene expression, spatial transcrip-

tomics data such as Visium from 10x genomics, provides additional information such as

the location of each sequenced mixture as well as the hematoxylin and eosin (H&E) image

staining of the underlying tissue. However, the algorithms found best in our comparisons

as well as in a benchmarking study from 2022 do not take either of these additional infor-

mation into account. In contrast, algorithms like SONAR (Liu et al., 2023) and CARD (Ma

and Zhou, 2022) that take into account the mixture locations do not outperform these

algorithms and DISSECT. This seems counterintuitive as there is information embedded

in the additional information about tissue as given by mixture-locations and pathology

images. We believe that this observation is a multimodal learning problem rather than

a lack of information (Gao et al., 2020). Further works into incorporating location and

image information in frameworks like DISSECT have the potential to improve over current

spatial transcriptomics deconvolution state-of-the-art and could also provide a more

holistic landscape of cell type heterogeneity in tissues.

From an algorithmic perspective, extending DISSECT’s framework to incorporate spatial

and imaging data presents interesting theoretical challenges. The current consistency

regularization framework relies heavily on the linear mixing assumption, which may not

hold directly for spatial relationships. One potential direction is to extend our theoretical

framework to include manifold regularization that preserves spatial structure. An alter-

native would also be to enforce the consistency term locally in selected neighborhoods,

such as achieved by adding a spatial consistency term:

Lspati al = || f (B mi x
i )− ∑

j∈N (i )
wi j f (B j )||2,

where N (i ) represents spatial neighbors and wi j are spatial weights. The challenge lies in

proving that such additional constraints maintain spatial coherence and in demonstrating

that a model can be trained to achieve such objectives without compromising on an

overall prediction quality.
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5.1.3. ESTIMATION OF RARE POPULATIONS

In our experiments with DISSECT, we found that DISSECT identifies rare cell type popula-

tions (<1% true abundance) with better accuracy compared to other tested algorithms.

However, Dissect has a high relative error rate when compared to the ground truth. The

potential causes for this observation likely stem from the low enrichment of markers for

these cell types in the bulk expression profiles. There is also a lack of enough cells to

capture within-cell type heterogeneity, marker gene consensus, and cell type annotation

artifacts in the single-cell reference (Cheng et al., 2023; Garmire et al., 2024). Further

work into careful cell type annotation while preparing references as well as utilizing large

single cell datasets with enough heterogeneity may provide more trustworthy results from

DISSECT even on these rare cell populations.

The challenge of rare cell types presents an interesting theoretical tension with our current

framework. While DISSECT’s consistency regularization helps reduce sample complexity,

rare populations may require more samples than our O(
p

nc) bound suggests for reliable

estimation. This connects to fundamental questions in learning theory about the sample

complexity required for tail estimation. Future work could explore adaptive weighting

schemes in the loss function:

Lwei g hted =
c∑

k=1
wk Lk ,

where wk could be inversely proportional to cell type frequency, potentially with theoreti-

cal guarantees for rare population estimation.

5.1.4. NOVEL BENCHMARKS FOR GENE EXPRESSION ESTIMATION

In evaluating deconvolution algorithms for the task of cell type-specific gene expres-

sion estimation, we relied only on simulations. Real bulk data, as we have argued in

the DISSECT manuscript is a different modality than the simulations from a single-cell

reference. An appropriate experimental setup would be a paired generation of purified

cell populations and bulk data from the same or adjacent tissue samples. This would allow

direct benchmarking by comparing the predicted expression profile with the measured

expression profiles of the purified cell populations. In the case of spatial transcriptomics

data, this is possible now to some extent with paired Xenium and Visium breast cancer

data (Janesick et al., 2023). However, the number of samples and tissue diversity are still

limited.
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From a methodological perspective, the lack of ground truth for gene expression estima-

tion raises questions about the validity of our theoretical guarantees in practice. While

our consistency regularization framework provides formal guarantees for preservation of

distances between cell type signatures, these guarantees assume the training distribution

matches the test distribution. Future work could explore domain adaptation techniques

that explicitly account for the shift between simulated and real data, perhaps by incor-

porating ideas from optimal transport theory to minimize the distribution shifts (Courty

et al., 2016, 2017).

5.2. USTEKINUMAB AS A TREATMENT FOR ANCA-GN, AND

CELL TYPE ABUNDANCE AND HETEROGENEITY IN GLOMERU-

LONEPHRITIS

As detailed in Chapter 3, despite significant therapeutic advancements, patients with

ANCA-GN continue to face substantial risks of kidney failure and mortality. ANCA-GN is a

severe autoimmune disease characterized by the production of autoantibodies targeting

neutrophil proteins, leading to inflammation and damage in small blood vessels, particu-

larly in the kidneys (Jennette and Falk, 2013). The primary causes of death in ANCA-GN

patients - infections, cardiovascular disease, and malignancies - are often linked to the

use of non-specific immunosuppressive treatments. This underscores the critical need for

a balanced therapeutic approach that effectively controls the disease while minimizing

potentially life-threatening side effects.

Current standard therapies for ANCA-GN typically involve a combination of high-dose

corticosteroids and cyclophosphamide or rituximab for induction of remission, followed

by maintenance therapy with azathioprine or rituximab (Yates et al., 2016). While these

treatments have improved outcomes for many patients, they are associated with signif-

icant toxicities and do not address the underlying pathogenic mechanisms specific to

ANCA-GN. This highlights the urgent need for more targeted therapies that can effectively

control disease activity while reducing the risk of treatment-related complications.

5.2.1. MULTI-OMICS APPROACH FOR ANCA-GN TREATMENT

To address these challenges and gain deeper insights into the pathogenesis of ANCA-

GN, we employed advanced multi-omics techniques and machine learning algorithms

to study ANCA-GN patients. Our comprehensive approach integrated scRNA-seq and
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spatial transcriptomics from Visum (from 10x Genomics) to provide a multidimensional

view of the disease tissue environment.

Our findings suggested a significant accumulation of pro-inflammatory T cells, par-

ticularly T helper 1 (Th1) and T helper 17 (Th17) cells, in affected kidney areas. This

observation is consistent with previous studies suggesting a crucial role for these T cell

subsets in the pathogenesis of ANCA-GN (Gan et al., 2010; Krebs et al., 2016). The pres-

ence of these cells in inflamed glomerular and tubulointerstitial tissue compartments

indicates their potential involvement in both the initiation and progression of kidney

damage in ANCA-GN.

In addition to Th1 and Th17 cells, we observed an increased abundance of other memory

T cell populations, including natural killer T (NKT) cells and T follicular helper (Tfh) cells.

These findings suggest a complex interplay of various T cell subsets in the pathogenesis

of ANCA-GN. Furthermore, we noted an increased number of macrophages in affected

kidney areas, consistent with the known role of these cells in mediating tissue damage

and fibrosis in glomerulonephritis (Guiteras et al., 2016).

Through integrative analysis of single-cell and spatial transcriptomics data, we identified

ustekinumab as a potential treatment option for ANCA-GN. Ustekinumab is a monoclonal

antibody that targets the p40 subunit shared by interleukin-12 (IL-12) and interleukin-23

(IL-23), cytokines crucial for the differentiation and maintenance of Th1 and Th17 cells,

respectively (Teng et al., 2015). By inhibiting these pathways, ustekinumab could poten-

tially modulate the pro-inflammatory T cell response observed in ANCA-GN patients,

offering a more targeted therapeutic approach.

5.2.2. CELL TYPE ARCHITECTURE AND GLOMERULONEPHRITIS

While our study provides valuable insights into the cellular and molecular landscape of

ANCA-GN, several limitations and areas for future research should be noted. First, the

exact cell type proximities and niches within glomerular and tubulointerstitial compart-

ments remain unclear due to the limited resolution of the Visium spatial transcriptomics

data. To address this limitation, employing newly developed approaches such as Xenium

or CosMx may provide a better understanding of cell type composition and networks at a

higher resolution (Abedini et al., 2024).

A more detailed spatial analysis is particularly necessary for understanding glomerular

crescent staging in ANCA-GN. Identifying glomeruli in different stages of crescent forma-

tion would help in constructing crescent pseudotime trajectories similar to single-cell

data and has the potential to interrogate genes and pathways involved in glomerular
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crescent progression (Isnard et al., 2024). Due to the supra-cellular nature of Visium data,

we were unable to investigate the involvement of individual glomerular cell types such as

parietal epithelial cells, mesangial cells, and podocytes in the crescent formation. Future

studies using higher-resolution spatial transcriptomics techniques could provide valuable

insights into the roles of these specific cell types in ANCA-GN pathogenesis (Sultana et al.,

2024).

Our observation of increased fibronectin expression, elevated inflammatory signatures,

and associated interferon pathways presents an interesting but non-specific finding. With

single-cell information, future research has the potential to go deeper into identifying the

key glomerular and immune cell type players involved in triggering crescent formation.

This would also allow for better targeting of these cell types and pathways, potentially

enabling the rescue of glomeruli in the early stages of crescent formation.

5.2.3. COMPARATIVE ANALYSIS OF GLOMERULONEPHRITIS CATEGORIES

ANCA-GN represents a particular pathogenesis of glomerulonephritis, but it is important

to consider how it compares to other categories of GN. For instance, infection-related

GN, where the cause of active GN is an underlying infection, leads to adaptive immune

responses against the pathogen antigen (Anders et al., 2023). It remains unclear how

glomeruli differ molecularly across various GN categories and which pathways are shared

among them.

To address this knowledge gap, a comprehensive high-dimensional multimodal atlas cov-

ering multiple GN categories is warranted. Such an atlas could allow for better treatment

proposals for different types of GN, similar to our ANCA-GN study. Furthermore, it is

important to note that GN categories based solely on the pathology of the lesions may not

offer sufficient information about molecular differences in these diseases (Lerner et al.,

2021; Smith et al., 2022). Thus, it is necessary to compare these diseases beyond their

pathology and identify dysregulated pathways and cell types.

5.3. GLIOBLASTOMA (GBM) HETEROGENEITY

In our study with multi-omics analysis of glioblastoma, presented in chapter 4), we

observed two distinct groups of glioblastoma based on DNA methylation across many

cohorts. These groups, low- and high-neural, differ in their DNA methylation and tran-

scriptomic profiles. The differentially methylated CpGs on gene promoter sites were

enriched for synaptic pathways and integration with scRNA-seq highlighted an neural

progenitor cells (NPC) and oligodendrocyte progenitor cells (OPC)-like gene expression



144

profile. This study highlights the heterogeneity of the GBM tumor microenvironment. The

neural signature and its predictive significance are not limited to glioblastoma; similar

patterns can be found in H3 K27-altered diffuse midline gliomas. Such broad applicability

underlines the plausibility of mechanistically important effects of neural integration

across several aggressive brain neoplasms.

5.3.1. ROLE OF IMMUNE CELLS AND OLIGODENDROCYTE-LIKE CELLS

High-neural GBMs significantly express a phenotype of malignant stem cells that defines

them as closely congruent with NPC or OPC. A surprising observation is the very low

presence of immune cells in these tumors, which may indicate the existence of possible

mechanisms for immune evasion. In contrast, we found low-neural GBMs to be immune-

enriched based on our analysis of transcriptomics and cell state composition. This di-

chotomy suggests the existence of two opposing glioblastoma subtypes, each potentially

requiring distinct therapeutic approaches. These differences in immune-enrichment are

crucial for evaluating treatment options in these tumors using immunotherapy.

The high-neural GBMs exhibit upregulation and reduced methylation of genes associated

with invasiveness and the formation and signaling of neuron-to-glioma synapses. This

specific molecular profile indicates the mechanisms underlying the assimilation of these

tumors into neural circuits (Venkataramani et al., 2019, 2022). The observation of tran-

scriptomic oligodendrocyte modules in high-neural GBMs may reflect the influence of

surrounding healthy oligodendrocyte progenitor cells on neuronal activity-driven mecha-

nisms affecting glioma cells or the interplay between immune cells and oligodendrocytes

(Hide et al., 2019; Moore et al., 2015).

5.3.2. ORIGIN OF CELLS IMPLICATED IN HIGH-NEURAL GBM

Although in our work we observed consistent detection of two neural subgroups of GBM

across multiple cohorts, we could not comprehensively characterize them. First, the term

"neural" here is broad and may refer to GBM cells with profiles similar to various neural

lineage cell types, including NPCs, OPCs, and astrocyte precursor cells (APCs). While

high-neural GBMs show increased NPC or OPC phenotype, it is also possible that the

total neural abundance may reflect a combination of these cell type profiles.

Given that with cell type deconvolution at the mRNA level, we could not find differences in

the proportion of these cell types between the two neural groups, this may indicate either

upstream changes or subtle differences that are not detectable at the mRNA level, partic-

ularly in bulk RNA-seq. This relates to limitations detailed in section 5.1.3, particularly

regarding the estimation of rare cell populations. Further, studying DNA methylation with
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greater granularity would require generation and analysis of single-cell DNA methylation

data or the generation of DNA methylation reference profiles from diverse neural cell

lineages and construction of more expansive cell type signatures to be used in cell type

deconvolution.

5.3.3. CLINICAL IMPLICATIONS OF THE NEURAL SUBGROUPS OF GLIOBLAS-

TOMA

In patients with high-neural GBMs, increased concentrations of brain-derived neu-

rotrophic factor (BDNF) are noted. This observation indicates the potential utility of

BDNF as a biomarker for the identification and surveillance of high-neural gliomas.

BDNF is a neurotrophin whose expression is regulated by neuronal activity and has

recently been described to exert functions that promote the growth of gliomas (Radin

and Patel, 2017). Inhibiting BDNF-TrkB signaling pathway is considered an attractive

therapeutic target for IDH-wildtype GBM (Taylor et al., 2023). Our research makes some

key additions regarding BDNF in the context of high-neural glioblastoma: First, we ob-

served elevated serum BDNF levels in adult patients with high-neural tumors, suggesting

its potential use as a biomarker for this tumor subtype. Increased BDNF levels could

originate from neurons in a glioma-induced hyperexcitable state or from the glioblastoma

cells themselves, as a subpopulation of these cells express and secrete BDNF as clear in

the integrated scRNA-seq data from glioblastoma and healthy brain, presented in our

study. Consistent with preclinical models, high serum levels of BDNF corresponded to a

greater seizure frequency within the glioblastoma population. This effect is consistent

with the role of BDNF in regulating α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid (AMPA) receptor trafficking and upregulation of AMPA genes within highly epilepto-

genic glioblastoma subclasses (Nakata and Nakamura, 2007). Neuronal activity resulting

from glioma-to-neuron interactions during growth or the onset of seizures appears to be

a major stimulus for BDNF release. This is evidenced by studies that have shown rising

serum concentrations of BDNF after the artificial induction of activity with ECT (van Buel

et al., 2015; Ryan and McLoughlin, 2018). Further, inhibiting the BDNF-TrkB signaling

pathway is considered an attractive therapeutic target for GBM.

We observed a significant benefit of maximal surgical resection of the GBM tumor in

high-neural samples. In contrast, for the low-neural group, the benefit was already ob-

served with partial resection, and a complete resection did not lead to a clear advantage,

suggesting that for low-neural samples, complete surgical resection is not necessary.

Taken together, serum BDNF levels can be used as a biomarker to identify high-neural

subgroups that may require complete tumor resection.
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Given the stability and different outcomes of the two neural subclasses of GBM, it can be

hypothesized that these groups may also respond differently to various pharmacological

interventions. In the future, exploration of the impact of different drugs on the two

neural groups could be particularly useful, especially considering, for example, that trials

with programmed cell death protein-1 (PD-1) inhibitors in GBM treatment have shown

heterogeneous responses (Reardon et al., 2020; Lim et al., 2018).

5.4. CONCLUSION

In conclusion, this dissertation presents a series of findings that collectively advance

our understanding of cellular heterogeneity in complex diseases through computational

and multi-omics approaches. From the development of an improved cell type decon-

volution method to the application of cell type deconvolution in estimating cellular

compositions in ANCA-GN and GBM, our work demonstrates the utility of integrating

diverse data modalities to understand disease mechanisms. The methodological ad-

vances described in this work—particularly our semi-supervised learning framework for

deconvolution—provide a novel approach that can be applied across various disease

contexts to reveal cellular heterogeneity that would otherwise remain hidden in bulk

RNA-seq analysis.

Our studies led to the identification of distinct cellular subtypes in both ANCA-GN and

GBM with significant prognostic and therapeutic implications. Building on these findings,

several important research directions could be important for future work: (1) developing

cell type deconvolution methods that incorporate modality-specific knowledge, partic-

ularly for spatial transcriptomics data; (2) exploring cell type heterogeneity across GN

subtypes using high-resolution single-cell spatial technologies; and (3) investigating the

origin of neural cells highly abundant in high-neural GBM and evaluating differential

responses to pharmacological interventions between low- and high-neural GBM sub-

types. Addressing these will further advance our understanding of complex diseases and

potentially lead to better therapeutic approaches.
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