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Abstract

This thesis investigates the role of quantum fluctuations in a cavity Bose-Einstein condensate (BEC)

system, where a condensate of atoms is placed in an optical resonator. The atoms are quantum two-

level systems and their transitions are pumped o!-resonance by a retroreflected laser. Due to the

Purcell e!ect, the atoms and the cavity light strongly couple by enhanced Rayleigh scattering and

form strongly coupled polaritons. Weak atom-atom interactions in the BEC are modeled by s-wave

scattering, resulting in quantum fluctuations in both the atomic and light fields. The system exhibits

a rich phase diagram with quantum fluctuations playing a key role. Light leaving the cavity can

be detected to analyze the quantum many-body system non-destructively. This setup is well suited

for the study of quantum fluctuation phenomena, and we investigate decoherence e!ects and novel

aggregate states of matter.

In the first part, we explore decoherence and its control. Damping e!ects arise from quantum fluctua-

tions in the weakly interacting condensate and manifest as phonon-like damping in the form of Landau

and Beliaev processes. This damping couples to both the atomic and photon modes, with stronger

coupling to the photon mode. We derive exotic spectral properties of the dissipative bath, including

competition between damping and antidamping channels, and sub-Ohmic signatures associated with

non-Markovian dynamics. The bath is tunable via experimental parameters. We study the central

polariton system and find that the quantum fluctuation bath renormalizes the light-matter system,

shifting the critical point of the non-equilibrium quantum phase transition. Additional signatures of

the quantum bath in the observables are uncovered and shown to be tunable by external parameters.

In the second part, we examine the formation of cavity-induced quantum droplets, a novel state

of matter formed by the competition between attractive and repulsive interactions. A classification

based on e!ective energy potentials that incorporates important finite-size e!ects is introduced. We

study a generic long-range interaction with a periodic signature and exponential decay and develop a

Bogoliubov theory to analyze the quantum corrections. The leading corrections are those from rotons,

which depend on the system size, and as such compete with the mean-field, leading to the formation

of a quantum droplet.

This formalism is applied to the cavity BEC setup, focusing on the long-range interaction induced by

the cavity mode and the pump field. We show that the zero-point energy of a roton mode selected by

the light field can induce droplet formation of the newly identified droplet class. Corrections to the

infinite-range interaction are critical for droplet formation, and we develop a model that provides an

analytical solution for droplet size. We also investigate droplet optimization using typical experimen-

tal parameters and o!er a thermodynamic interpretation in terms of pressure, compressibility, and

chemical potential. Furthermore, finite temperature e!ects are discussed and a critical temperature

for droplet existence is found. Finally, we study how engineering the interaction, its envelope shape,

and symmetries, a!ects droplet formation.



Zusammenfassung

In dieser Arbeit wird die Rolle von Quantenfluktuationen in einem Hohlraum-Bose-Einstein-Kondensat-

System (Hohlraum-BEC) untersucht, bei dem ein Kondensat von Atomen in einem optischen Reso-

nator platziert ist. Die Atome sind quantenmechanische Zwei-Niveau-Systeme und ihre Übergänge

werden durch einen retroreflektierten Laser fern der Resonanz gepumpt. Aufgrund des Purcell-E!ekts

koppeln die Atome und das Resonatorlicht durch verstärkte Rayleigh-Streuung stark miteinander

und formen stark gekoppelte Polaritons. Schwache Atom-Atom-Wechselwirkungen im BEC werden

durch s-Wellenstreuung modelliert, was zu Quantenfluktuationen sowohl im atomaren als auch im

Lichtfeld führt. Das System weist ein umfangreiches Phasendiagramm auf, in dem Quantenfluktua-

tionen eine Schlüsselrolle spielen. Licht, das den Resonator verlässt, kann detektiert werden, um das

Quanten-Vielteilchensystem nicht-destruktiv zu untersuchen. Dieser Aufbau eignet sich gut für die

Untersuchung von Quantenfluktuationsphänomenen, und wir befassen uns mit Dekohärenze!ekten

und neuartigen Aggregatzuständen.

Im ersten Abschnitt erforschen wir die Dekohärenz und ihre Kontrolle. Die Dämpfungse!ekte entstehen

durch Quantenfluktuationen im schwach wechselwirkenden Kondensat, die phononenartige Dämpfung

in der Form von Landau- und Beliaev-Prozesse manifestieren. Diese Dämpfung koppelt sowohl an

die atomaren als auch an die Photonenmode, wobei die Kopplung an die Photonenmode stärker

ist. Wir leiten exotische spektrale Eigenschaften des Dissipationsbades her, einschließlich der Kon-

kurrenz zwischen Dämpfungs- und Antidämpfungskanälen, sowie sub-Ohmsche Signaturen, die mit

nicht-Markov’scher Dynamik verbunden sind. Das Dissipationsbad ist über experimentelle Parame-

ter einstellbar. Wir untersuchen das zentrale Polaritonsystem und zeigen, dass das Quantenfluktua-

tionsbad das Licht-Materie-System renormiert und den kritischen Punkt des Nicht-Gleichgewichts-

Quantenphasenübergangs verschiebt. Zusätzliche Signaturen des Quantenbads in den Observablen

werden aufgedeckt und es wird gezeigt, dass sie durch externe Parameter einstellbar sind.

Im zweiten Abschnitt untersuchen wir die Formation von hohlrauminduzierten Quantentröpfchen,

einen neuartigen Zustand der Materie, der durch den Wettbewerb zwischen anziehenden und absto-

ßenden Wechselwirkungen entsteht. Wir führen eine Klassifizierung ein, die auf e!ektiven Energiepo-

tentialen basiert und wichtige E!ekte endlich großer Systeme berücksichtigt. Es wird eine neue Klasse

von Tröpfchen identifiziert. Wir untersuchen eine generische langreichweitige Wechselwirkung mit peri-

odischer Signatur und exponentiellem Zerfall und entwickeln eine Bogoliubov-Theorie zur Analyse der

Quantenkorrekturen. Die Korrekturen führender Ordnung sind die von Rotonmoden, die von der Sys-

temgröße abhängen, so mit dem Molekularfeld konkurrieren und zur Bildung eines Quantentröpfchens

führen.

Wir wenden diesen Formalismus auf das Hohlraum-BEC-System an und konzentrieren uns dabei auf

die langreichweitige Wechselwirkung erzeugt von der Resonatormode und dem Pumpfeld. Wir zei-

gen, dass die Nullpunktenergie einer durch das Lichtfeld ausgewählten Rotonmode die Bildung von

Tröpfchen der neu identifizierten Tröpfchenklasse herbeiführen kann. Korrekturen der unendlich wei-

ten Wechselwirkung sind für die Tröpfchenbildung entscheidend, und wir entwickeln ein Modell, das

eine analytische Lösung für die Tröpfchengröße liefert. Wir untersuchen auch die Optimierung von

Tröpfchen unter Verwendung typischer experimenteller Parameter und präsentieren eine thermody-

namische Interpretation in Bezug auf Druck, Kompressibilität und chemisches Potenzial. Darüber

hinaus diskutieren wir die Auswirkungen der endlichen Temperatur und finden eine kritische Tem-

peratur für die Existenz von Tröpfchen. Schließlich untersuchen wir, wie sich die Konstruktion der

Wechselwirkung, ihre Hüllenform und Symmetrien auf die Tröpfchenbildung auswirken.
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1 – Introduction

It is common understanding that quantum mechanics is the fundamental framework that governs the

microscopic mechanisms of our world [1]. Although it underlies the world in which we live, we cannot

experience with our senses anything that adequately resembles the mechanisms at the quantum level.

Mathematical tools and their development have allowed us to achieve a description of this realm [2].

In particular, it is the interactions (or measurements) that create the unhinged quantum phenomena

far beyond human imagination. Yet even the mathematical description is limited and usually relies

on describing an interacting system in an e!ective picture with the quasi absence of interactions [3].

Physics, including condensed matter physics, relies on e!ective mathematical descriptions [4], which

are models that capture the relevant phenomena in a system while ignoring negligible microscopic

details. As Phillip W. Anderson proclaimed: “The ability to reduce everything to simple fundamental

laws does not imply the ability to start from those laws and reconstruct the universe.” [4]. Neverthe-

less, similar mathematical e!ects such as bound states, decay, spontaneous symmetry breaking, and

quantum vacuum occur in many interacting quantum systems in diverse areas of physics [5]. From

very few-body to many-body physics, similar concepts, approximations, and e!ective models can be

developed and tested. Testing the theories is paramount because once a breaking point is found, it

has historically proven to be a great opportunity for new advances [3].

However, real systems can be arduous to handle and manipulate. For example, since the initial dis-

covery of a high-temperature superconductor [6], meaning around 30 Kelvin, nearly 40 years have

passed without success in developing one that does so at normal room conditions. Moreover, despite

decades of dedicated work by brilliant people, no e!ective microscopic theory of such unconventional

superconductivity has yet been established [7]. If we allow ourselves to oversimplify a bit, the bottom

line is that there are just too many interactions of electrons with electrons, phonons, impurities, and

magnetic fluctuations∗ [7]. Immediately prior to the emergence of the Bardeen-Cooper-Schrie!er the-

ory as the e!ective microscopic model for conventional superconductivity [8, 9], when the community

was still uncertain which of the many interactions in conventional superconductors are indispensable

and which are not, Richard Feynman argued that there should be su”cient experimental detail and

clues, yet no theoretical explanation had been established. He concluded his review quite critically:

“The only reason that we [theoretical physicists] cannot do this problem of superconductivity is that

we haven’t got enough imagination” [10]. If we follow his suggestion and guess the answer without

just making a long list of things that might produce a relevant e!ect [10], we must have a way to test

and challenge our ideas.

With the increase in computing power, numerical simulations have become a powerful tool for evalu-

ating models. However, computer simulations of quantum physics face essentially the same problem

as those performed by humans. Strongly correlated systems, especially those with multiple degrees

of freedom, make quantum mechanical problems intractable. Feynman concluded that if we want to

study quantum phenomena in a fundamental way, we should simulate them using systems that are

themselves quantum mechanical [1].

Once we have an e!ective model for a problem, we can look for a quantum system where the phenom-

∗We do not intend to single out high-temperature superconductivity research with our opening. Rather, it seems
to us to be a good example because we would argue that it is a holy grail of condensed matter research for the last
half-century.
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1 – Introduction

ena can be simulated and studied in more detail with greater experimental control and/or observation.

This may then challenge the proposed model or reveal new phenomena. In this thesis, we deal with a

controllable, non-destructively observable condensed matter system with phenomena such as (photon)

mediated interaction, coupling to a vacuum, symmetry breaking, and bound states. Phenomena that

arise throughout quantum physics, from the fundamental particles of the standard model to few-body

systems such as atoms, many-body systems, and even the universe [3, 5].

The basis for the system studied in this thesis is one of the seemingly simplest systems in which quan-

tum mechanics produces a fascinating phenomenon. Interactions occur at the quantum level even in

situations that we would classically expect to be free of interaction. A single atom in a vacuum is

not an isolated system. In fact, it forms a system with the electromagnetic field of the vacuum [11].

The e!ective description depicts the atom as a two-level system of states separated by the transition

frequency. Such a two-level system in the vacuum, when excited to the higher energy state, sooner

or later emits a photon by returning to its ground state [11]. Intricately, the vacuum provides a

large reservoir of electromagnetic modes to which the two-level system is coupled. This whole sys-

tem can then be described as a system-bath model, where dissipation into the large reservoir leads

to irreversibility. This irreversibility is expressed in the phenomenon of spontaneous emission [11].

Spontaneous emission occurs because the two-state system has an infinite number of vacuum states

into which it can emit the photon [12]. Consequently, if one were to change these states, or rather the

density of states, one could control the physics by changing the dissipative bath. This can be achieved

by placing the atom in a cavity, which can be constructed, for example, by two mirrors. Depending

on the geometry of this construction, the spontaneous emission is inhibited or enhanced [12]. The

introduction of such boundary conditions on the electromagnetic vacuum a!ecting atomic radiation

was first mentioned historically as the Purcell e!ect [13].

Modifying the quantum vacuum of the electromagnetic field by constructing and controlling large

macroscopic objects like mirrors has proven to be a powerful tool for studying quantum mechanics.

One of the first achievements to exploit this phenomenon was the study of quantum decoherence using

a microwave cavity [14].

In a similar line, simulation of quantum many-body physics, condensates of atoms have emerged as

viable tools. This development was initiated in the wake of the first realization of a Bose-Einstein

Condensate (BEC) [15,16], for example, by realizing the Bose-Hubbard model using optical trapping

potentials of atoms in a lattice [17]. An important goal of many-body physics is the study of phase

transitions and entanglement [18,19]. In the Bose-Hubbard model, a superfluid to Mott insulator tran-

sition can be controlled and observed to a finer degree than similar transitions in real materials [17].

Another example realized with fermionic atoms is the transition from a BEC to a Bardeen-Cooper-

Schrie!er regime [20–22].

All degenerate quantum gases on their own∗ are governed by short-range interactions. By engineering

a strong coupling to the electromagnetic vacuum, long-range, even global, interactions can be created

in the condensate. In the appropriate parameter regime, the photon field does not adiabatically follow

the atomic dynamics, so that rich backaction e!ects can arise. In addition, the dissipation of the light

field can be used to non-destructively observe the system and its dynamics. Using the Purcell e!ect

enhanced Rayleigh scattering in combination with a BEC, the driven dissipative Dicke model has been

simulated [23]. The Dicke model is one of the fundamental models of light-matter interaction [24].

Furthermore, the extended Bose-Hubbard model with its rich phase diagram could be studied [25,26].

∗Later in the thesis we will briefly review that in certain atomic species, utilizing modification of their contact
interaction with magnetic fields, long-range dipole-dipole interaction becomes significant.
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Figure 1.1: Correspondence of an electron moving through a lattice, where it interacts with lattice
phonons, to a harmonic oscillator that is individually weakly coupled to an almost infinite number of
harmonic oscillators at the mathematical level of description. Indeed, other physical systems share
this correspondence.

In the meantime, a lot of other physical phenomena have been simulated using such a setup with a

BEC coupled to an optical cavity, which we will refer to as cavity BEC [27]. We mention a selected zoo

of these phenomena realized in cavity BEC in the corresponding section 2.3. The system also lends

itself to the study of quantum dissipation and its impact on the phase transition and the behavior of

quantum fluctuations and universal scaling [28]. Reservoir engineering is a further important aspect

of quantum simulation and universal quantum computing [29–31].

1.1 – Intrinsic quantum dissipation and decoherence

The simulation of quantum systems in the presence of quantum reservoirs, where dissipation and deco-

herence play a crucial role, is directly related to the first project presented in this thesis. Phonons and

phonon-related damping are common in real systems such as semiconductors, metals, ionic crystals,

and molecular crystals [32], see figure 1.1. In unpolar crystals such as semiconductors and metals,

charged particles couple to the lattice, giving rise to characteristic phonon interactions. The motion of

these particles distorts the surrounding lattice, and the resulting lattice deformations propagate with

them. These interactions are governed by acoustic phonons. Similarly, in ionic crystals, an electron

interacts with the surrounding lattice ions, polarizing the medium. This interaction lowers the energy

of the electron and its motion is accompanied by a cloud of longitudinal optical phonons. The coupling

in these cases is e!ectively described by the Fröhlich interaction [32]. On the e!ective mathematical

level, the particle is coupled to a bath of e!ectively infinitely many harmonic oscillators, which we

visualize in figure 1.1.

Beyond solid state systems, phonon damping also plays a role in superfluid systems through Landau

and Beliaev processes [33]. It emerges due to weak interactions between the atoms of the condensate

described by s-wave scattering. Both types of superfluid damping are third-order processes in the

fluctuations around the condensate mean-field. Hence they are the next-order corrections beyond the

quadratic fluctuation terms of Bogoliubov theory [33]. As a consequence, they lead to significant

corrections when either the density is large or the temperature is high.

We will review in the appropriate section 2.3 that in a homogeneous BEC coupled to a cavity vacuum,

not all Bogoliubov modes are treated equally [34]. The cavity field mode selects certain excitations of

the condensate that are commensurable. It leads to the formation of roton-like excitations [35]. Due

to the strong coupling between the matter and the light field, polariton modes are formed [36]. Since

the light-matter coupling can be strong and is independent of the atom-atom scattering interaction,

the damping can be addressed via the light field tuning, resulting in significant corrections, as we will

show. Consequently, the polariton quasiparticle is damped in a tunable way. The two modes that
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hybridize to the polariton are linearly coupled to a bath of the remaining excitations of the conden-

sate. In essence, we derive a framework in which the system can be tuned to have a phononic coupling

of two polariton modes, which are mathematically equivalent to harmonic oscillators. The physical

description creates the intriguing situation that two coupled quantum harmonic oscillators, one for

the cavity light mode and one for the matter, are damped by a phonon bath. The damping for each of

them is independently tunable in the experiment. It extends the notion of a single harmonic oscillator

coupled to a dissipative quantum bath as in figure 1.1 to two interacting harmonic oscillators coupled

to the dissipative bath. Furthermore, it can be tuned to significant Beliaev damping even at zero

temperature due to the strong coupling light field.

Mathematically, we will use the same system-bath techniques that are commonly used for the Fröhlich

Hamiltonian and its lattice phonon damping for the cavity BEC damping. We will obtain a system-

bath description of the central polariton system in its phonon bath with Landau and Beliaev damping,

including the zero and finite temperature regimes. Our focus is then on the analysis of the quantum

fluctuations of the two physical modes of the system. In particular, the cavity mode is of interest

because it can be studied experimentally in situ by a non-destructive measurement of the photons

lost from the cavity [23, 28]. With our results, the strong hybridization of matter and light allows us

to deduce the system physics very precisely from the photon observation.

1.2 – Quantum droplets

The emergence of bound states is a remarkable property of quantum mechanics. It is essential to our

humanly perceived world, which arises from fundamental particles. The e!ective interaction poten-

tial of two or more particles, fundamental or not, can have several bound states. They are states of

negative energy, so that the energy is below the e!ective potential at infinity [2]. The lowest energy

state, the ground state, is stable.

The formation of bound states begins at the smallest level, where the fundamental particles undergo

competing interactions mediated by bosonic fields. This interplay is necessary to form the bound

states of a proton and an electron cloud around it to produce the hydrogen atom [2]. Assuming

that the heavy nucleus of the proton sits still at the center of mass with the fast and light electron

forming a cloud around it∗, its states can be derived from the Schrödinger equation with the Coulomb

interaction potential between the two particles. This Coulomb potential is the e!ective model for the

photon-mediated electromagnetic interaction between the two [2].

Simply counting up one element in the periodic table brings us to helium. Solving even the ground state

of the second element in the periodic table is much more involved than for hydrogen because, in addi-

tion to the hydrogen problem, there is significant electron-electron repulsion term in the Schrödinger

equation [2]. The recipe for its stable bound state requires only one additional proton, one additional

electron, and one or two neutrons. The addition of just one neutron produces fermionic 3He, while

the addition of a second neutron means that the helium is bosonic 4He [5].

Now let us imagine, as far as we can, two helium atoms. In the e!ective description, they interact at

large distances via spontaneously induced dipole moments that lead to van der Waals attraction. At

shorter distances, they must repel each other because the Pauli exclusion principle forbids overlapping

wave functions. An e!ective potential describing this two-body interaction is of the Lennard-Jones

type. It must combine both the attractive and repulsive interactions that result from the constituents

of the atoms interacting with each other. If we have many helium atoms, this can quickly become an

insurmountable orchestra of interactions.

∗In the sense of the wave function and its absolute value the probability density so that it is like a cloud of probability
and phase.
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Figure 1.2: Sketch of a helium droplet of 12 4He atoms. The solid blue dots indicate their repulsive
Pauli exclusion interaction, while the light blue regions visualize their van der Waals attractive range.
The roton dispersion Ep and the pressure P in dependence of the density n are sketched on the right.
The zero pressure marked by the blue dot determines the density of a droplet. Droplet sketch in the
style of Ref. [39], dispersion and pressure sketch based on Ref. [40].

However, combining many helium atoms is a resource for versatile quantum many-body e!ects. Cooled

below the temperature of 2.17 Kelvin, 4He is in an aggregate state unpredictable by classical physics.

First observed almost a century ago, the superfluid [37] has no entropy and flows without friction.

It fostered the introduction of the roton dispersion relations [38] illustrated in figure 1.2, which indi-

cate long-range interactions. Such a superfluid can also host discretized quantum vortices [41]. The

competition in the superfluid between short-range repulsion and long-range attraction means that it

can form a quantum droplet, sketched in figure 1.2. It is a bound state where the many-body wave

function is spatially bound to a fixed size around its center of mass. Once the number of atoms in the

droplet is large, it has an e!ectively homogeneous bulk density [40]. Now that we have many particles

forming the bound state, we can invoke notions of thermodynamics. The ground state of the droplet

represents the stability of the e!ective thermodynamic potential describing the quantum liquid. It has

zero pressure and positive compressibility, see figure 1.2. Any perturbation of the size of the liquid

will return it to the equilibrium value. Furthermore, the chemical potential is negative, so it does not

evaporate by itself [5].

If an arrangement of quantum droplets is coherent, it forms a supersolid. A supersolid combines the

properties of the liquid quantum aggregate state with the density grating of a solid. This quantum

aggregate state was also originally predicted for liquid helium [42]. However, it has not yet been

successfully realized [43]. A large body of theory has been developed for dilute condensed Bose gases,

which also qualitatively captures superfluidity. However, the droplet state of helium requires not only

an e!ective energy functional of the mean-field and beyond-mean-field interactions of the Lennard-

Jones potential, which has to be fit to the experimental data after numerical evaluation. Furthermore,

the Lennard-Jones terms are not su”cient, and gradient terms describing boundary e!ects have to

be added for a qualitative agreement [40]. It can then be said that the helium quantum droplets and

their dispersion are strongly correlated and involve long-range interactions that are beyond tractability

from first principles. Liquid helium is just one of many examples of intriguing phenomena that arise

from the complexity of many-body quantum physics, which makes their prediction from fundamental

laws inaccessible [4].
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In the middle of the last decade a new approach to quantum droplets had its dawn [44]. Bose-Einstein

condensates had famously been realized two decades prior [15, 16]. These atomic condensates are

dilute quantum gases, and their repulsive low-energy atom-atom interaction is precisely described by

s-wave scattering. This means that their complicated Lennard-Jones-like interaction potential can be

replaced by a simple e!ective potential, which reduces to a simple s-wave scattering length describing

the strength of an e!ective contact interaction. In a stable three-dimensional gas, there is e!ectively

only a repulsive interaction between the atoms, which does not allow bound many-body states. A

competing interaction is therefore required. In 2016, a quantum droplet was realized using the atomic

species 164Dy and its Feshbach resonances [45]. The two types of interactions, dipole and scattering,

and the tuning via the Feshbach resonances created an interplay of an e!ectively attractive mean-field

and a repulsive beyond-mean-field term in the form of the Lee-Huang-Yang (LHY) correction [46–49].

Since the mean-field could be almost completely suppressed, the quantum correction could compete on

an equal footing. The competition of the attractive and repulsive terms then formed the self-confined

quantum droplet∗. Due to the long-range nature of the dipole-dipole interaction, a roton is formed

in the dispersion of the dipolar Bose gas [50–53]. When this roton is weakened, an array of droplets

becomes coherent, forming a supersolid [54–56].

This minimal realization of a quantum droplet from two competing interaction terms emphasizes

that it is truly quantum in nature. The mean-field approximation treats the field of the system as

a complex number or function. It can therefore be considered classical because the mean-field has

a trivial commutator [3]. Only beyond the mean-field the operator characteristics and its nontrivial

commutation play a role. The LHY correction itself arises precisely as the sum over the zero-point

energies of the quasiparticle excitations of the respective system, which in turn are a manifestation of

the nontrivial commutation of the operators. To call something a quantum droplet, beyond mean-field

e!ects must be essential for its formation.

Another aspect that we have only implicitly touched on is that the interplay is quantitatively pre-

dictable from analytical calculations using Bogoliubov theory [57]. Because the quantum liquid is

dilute and weakly interacting, unlike strongly correlated helium, a model can be derived using the

dilute weakly interacting approximations. For a quantum droplet, this was first worked out in 2015

in the seminal prediction of droplets of dilute quantum gases by D. S. Petrov [44]. He derived that

the repulsive LHY correction in the mixture of two s-wave scattering Bose gases can compete with an

almost suppressed attractive mean-field. The mixture droplets were soon realized [58, 59] and can be

studied in one, two, or three dimensions [60]. We will review them in more detail in chapter 4.

For now, let us step back and take the broad view that two quantum simulations of this intriguing

quantum aggregate state have been realized. They could be a fertile ground for the simulation of

phenomena such as surface e!ects, self-binding, nucleation, and other bound many-body states [39].

However, both rely on Feshbach resonances for tuning. In cavity BEC, we have the opportunity to

directly address the light field, which mediates a long-range interaction between the atoms. It can be

fine-tuned to compete with the s-wave scattering of BEC, in principle without Feshbach resonances.

Furthermore, the specific long-range interaction potential can even be controlled from the outside [27].

The cavity-mediated interaction also leads to the formation of roton-like excitations [35]. Admittedly,

this is not straightforward. A theory for the analytical derivation of the necessary quantum correc-

tions is developed to obtain our results. At least for global-range interactions, the model is mean-field

exact in the thermodynamic limit. Thus, we present in this work a description of droplets in finite-size

systems and of finite-size e!ects. As a caveat, this leads to a classification of droplets based on their

qualitative minimal model.

∗The dipole-dipole interaction is not isotropic and is attractive only along the axis in which the dipoles are aligned.
Consequently, these droplets are really only in this one axis, not in all three dimensions.
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1.3 – Outline

We will proceed as follows. First, in chapter 2 we review the foundations for this thesis. As described

in this introduction, we start with the e!ective description of the interaction between two atoms at

low energies. This will lead us through the derivation of s-wave scattering in section 2.1 and then

quickly transfer it to the quantum many-body interaction in a dilute Bose gas. Consequently, in sec-

tion 2.2 “Bogoliubov theory” we recall the e!ective theory for treating weakly interacting degenerate

Bose gases and many other systems. It is based on an elegant expansion around the complex-valued

mean-field of the system. We thus review the derivation of the Bose gas mean-field and its quantum

corrections, as well as a brief look at thermal e!ects in the low-temperature limit.

Then, having covered the necessary basics for Bose gases, we combine them with the modified electro-

magnetic vacuum of a cavity in the section 2.3 aptly titled “Introduction to the cavity BEC system”.

First, we need to understand the role of the electromagnetic vacuum and its modification leading to

the Purcell e!ect. Therefore, we go over a single atom in the considered cavity setup of the Jaynes-

Cummings model and then generalize it to the e!ective field Hamiltonian of many atoms. With the

fundamental theoretical description at hand, we divert to a brief review of the experimental realization

of this field Hamiltonian. Afterward, we return to the theory to evaluate which physical phenomena

are realized in this setup. In view of our work presented in the following chapters of the thesis, we

focus on the application of Bogoliubov theory techniques to the homogeneous mean-field of the normal

superfluid phase. On the mean-field level, we review the superradiant self-assembly into a checker-

board lattice at a critical light-matter coupling. We then recall the collective excitations of the system

that drive this phase transition and find the polariton modes formed by the hybridization of the cav-

ity mode and selected matter excitations. The instability of the lower polariton mode indicates the

critical value for the self-organization transition. The physics in this phase and the phase transition

can be mapped to the Dicke model. Subsequently, we show that in the fast strongly dissipative cavity

regime the cavity dynamics can be eliminated to find an atom-only description with a cavity-mediated

global long-range atom-atom interaction. This interaction creates a roton-like excitation for the atom

gas. We take a look at the cavity BEC beyond the critical point of self-organization, its realized

extended Bose-Hubbard model, and its phase diagram. This is followed by a brief excursion that a

similar coupling and e!ective Hamiltonian can be realized in hybrid atom-optomechanical setups.

In chapter 3 titled “Exotic dissipation from quantum fluctuations” we study the intrinsic damping of

the cavity BEC and derive its intriguing dissipation signatures, their controllability, and observation.

To this end, we review the theory of quantum dissipation around the system-bath picture and its

arguably most widely applied model, the Caldeira-Leggett model. We then proceed more specifically

and recall the existing literature investigating dissipation in cavity BEC and of damped Dicke models

and polaritons. This then provides the foundation and motivation to derive an e!ective system-bath

model for the quantum fluctuations from the cavity BEC field Hamiltonian that has the ambition

to provide an all-encompassing investigation of the prevalent damping, dissipation, and decoherence

phenomena previously reviewed. The treatment of the Landau and Beliaev damping processes as

a quasiparticle bath by the system-bath formalism allows us to perform an exact analysis. It also

provides us with the influence functional of the bath and hence the e!ective partition function of the

central polariton-forming system. Mathematically, these are two bilinearly coupled harmonic oscilla-

tors in the e!ective dissipative bath of atomic quasiparticles formed by the s-wave scattering in the

condensate.

We find a Stokes shift and signatures of the quantum fluctuations of the bath in the observables of

the system. Both are controllable by tuning typical parameters of the experiments. A brief outlook

16



1 – Introduction

on further investigations based on the presented theory and its results is provided. We conclude that

we derive from first principles an intriguing system-bath model that is intrinsic to the cavity BEC due

to phononic damping in the weakly interacting condensate. It is both tunable and its signatures are

non-destructively observable in the experiment. Consequently, we find it to be a suitable platform for

the simulation of highly nontrivial phononic damping, which, given an optimization of the setup, e.g.

by particle number, should be employed to study stimulating quantum dissipation and decoherence

relevant to many other condensed matter systems.

In chapter 4 we investigate cavity-induced quantum droplet formation. We start by introducing the

criteria for a stable quantum liquid droplet and derive a novel droplet classification based on a minimal

model for the e!ective ground state energy. The classification hinges on the parameter set classes of

the minimal model that can satisfy the droplet conditions. Afterwards, we recapitulate the established

quantum droplet realizations in Bose-Bose mixtures and dipolar Bose gases. Returning to our work,

we start with a generic model for the type of long-range interactions that can be created in cavity light

fields. Defining this type of long-range interaction is the envelope that captures its range, for example

by exponential spatial decay. We develop an analytical Bogoliubov theory that is applicable if the

interaction has a global range, but is not necessarily infinite-range. Subsequently, specific examples

of cavity-induced long-range interactions are investigated.

To establish the context with the rest of the thesis, we focus on the long-range interaction induced

by a single-mode cavity, where the exponential decay of the interaction emerges due to the Gaussian

profile of the TEM00 light field. We show that the e!ective energy potential can fulfill the droplet

criteria and analytically derive a minimal model. This allows us to directly classify the cavity quantum

droplet and its tuning by external parameters. We find that it is a new type of a quantum droplet that

can only form in systems of finite size. Furthermore, we investigate the low-temperature e!ects on

the droplet formation, where we encounter a critical temperature above which no stable droplet can

exist. We exploit the generality of the developed theory to study di!erent interaction envelopes. Also,

we study a translation invariant cavity-induced interaction, which leads to qualitatively equivalent

results despite a di!erent physical mechanism.

Because the cavity-induced quantum droplets are of a completely di!erent type compared to the estab-

lished ones, with a di!erent underlying mechanism, many areas for further investigation open up. We

discuss some of these aspects in the outlook. At the end of the chapter, we conclude that we generalize

the minimal model of quantum droplets to finite-size systems, where we find an undiscovered droplet

type. We show that quantum corrections due to the cavity-induced long-range interaction interplay

with the mean-field of the Bose gas to form a droplet of this novel type. This relies on the e!ec-

tively distinct roton modes having a roton depth that is dependent on the system size, making their

zero-point energy quantum correction also dependent on the system size. We demonstrate that the

cavity-induced droplet is controllable by many external tuning parameters, in particular those of the

light field. Therefore, cavity-induced quantum droplets are an excellent basis for the simulation and

study of bound many-body quantum states that occur throughout many-body physics. They could

also be an interesting platform for any quantum setup that requires long-term stability and coherence

due to their self-confined nature. This includes applications in quantum sensing, interferometry, or

computing.

Throughout, this thesis we will set ⊋ = 1 unless it is explicitly written. Similarly, we choose kB = 1

for the Boltzmann constant and c = 1 for the speed of light.
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2.1 – Elastic collisions of quantum particles

In this section, we review the weak interaction of atoms in dilute gases. Considering the elastic col-

lision of two slow particles leads us to s-wave scattering. It turns out to be one of the two types of

coupling fundamental to the phenomena discussed throughout this thesis. Its strength U , Eq. (2.12),

emerges as a key parameter for the physics presented. Thus, this introductory section of non-original

work constitutes a central pillar for the entire thesis.

When one reads “collision”, one classically imagines something like a billiard ball hitting another

billiard ball. Such a classical elastic collision is completely determined by the velocities of the two

particles, e.g. billiard balls, and the distance at which they would pass if they did not interact [61].

Quantum mechanics shatters this classical idea that is associated with the collision of two particles.

In quantum mechanics, the idea of a particle with a definite velocity and a definite path has no merit

due to Heisenberg’s uncertainty principle. All that is accessible is to calculate the probability that the

particles are scattered by any given angle ω [61]. During an elastic collision, the particles and their

internal states must remain unchanged.

The two-body problem can be simplified to the scattering of a single e!ective two-body wave function

in a central spherically symmetric potential U(r). We consider the situation visualized in figure 2.1.

A free particle is incoming, traveling along the positive direction of the z-axis, which is described by

the plane wave e
ikz. The outgoing wave has the asymptotic form f(ω)eikr/r far from the scattering

center r → ↑. Due to its spherical wave property, it has a radial 1/r dependence that normalizes

the probability |ε|
2 on the surface of any spherical shell ↓ r

2 of arbitrary radius r. The scattering

amplitude f(ω) is then only a function of the scattering angle ω relative to the z-axis. Combining

the incoming and outgoing waves we obtain the solution ε(r) of the Schrödinger equation with the

Figure 2.1: Picture of the incoming free particle and the scattering angle ω as well as the scattered
spherical wave. The scattering center is in the large black dot.

18



2 – The atoms, the cavity, and their interplay

Figure 2.2: Sketch of the phase shift ϑl=0 for a simple box potential U(r) = E/2 for r ↔ r0.
The solid line draws the solution of the stationary Schrödinger equation ϖ

→→(r) + [E ↗ U(r)]ϖ(r) = 0
with the boundary condition ϖ(0) = 0, ϖ→(0) = 1, limr↑r0 ϖ(r) = limr↓r0 ϖ(r), and limr↑r0 ϖ

→(r) =
limr↓r0 ϖ

→(r). The wave function in the absence of the scattering potential is drawn as a dashed line.

central potential U(r) in the form

ε(r) = e
ikz + f(ω)

e
ikr

r
. (2.1)

The probability that the scattered particle passes through the surface of a sphere in the solid angle

element d# is determined by the e!ective cross-section dϱ for scattering into the solid angle d# [41,61]

dϱ = |f(ω)|2d# = |f(ω)|22ς sin(ω)dω , (2.2)

where we apply that the scattering is symmetric around the z-axis, i.e. independent of the azimuthal

angle.

In this thesis, we consider identical bosonic atoms occupying the same state. Due to their indistin-

guishable nature, the orbital part of their wave function and thus the cross section must be symmetric,

so that dϱ = |f(ω) + f(ς ↗ ω)|2d# for 0 ↔ ω ↔ ς/2 [41].

In a central potential U(r) the Schrödinger equation can be separated into an angular and a radial

equation. The eigenfunctions for the angular momentum l are the Legendre polynomials Pl(cos(ω)).

It is convenient to express the radial part by the functions ϖkl(r)/kr of the solution of the radial

di!erential equation

d
2
ϖkl(r)

dr2
↗

l(l + 1)

r2
ϖkl(r) +m [E ↗ U(r)]ϖkl(r) = 0 , (2.3)

with the energy E = k
2
/m fixed by the incoming wave of the free particle. The mass of a single

particle is m in our consideration of two identical atoms, while the reduced mass in the two-body

problem takes on the value m
↔ = m/2. The solution of Eq. (2.3) can be evaluated asymptotically for

large distances r ↘ r0, where r0 is the range of the potential U(r). For large distances relative to a

short-range interaction U(r), both the interaction and the centrifugal term in Eq. (2.3) are negligible,

so the solution for r ↘ r0 is [41, 62]

ϖkl(r) = Al sin

(
kr ↗

ςl

2
+ ϑl(k)

)
. (2.4)

This solution contains a yet undefined amplitude Al and a phase shift ϑl(k). The phase shift holds
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the characteristic information of how the potential acts on an incoming wave with the energy E ↓ k
2,

as can be seen from physical reasoning. In the case of a repulsive potential, such as the repulsive box

potential in figure 2.2, the wave function is squeezed to the outer region, resulting in a negative phase

shift ϑl < 0 [62]. The “squeezing strength” or more technically the value of the phase shift ϑl is related

to the strength of the interaction potential U(r). An attractive potential sucks in the wave function

in its outer region such that ϑl > 0 [62].

The collisions of atoms that we consider in this thesis are not only non-relativistic, they are actually

of low-energy in the sense that kr0 ≃ 1. In these low-energy collisions, one can find asymptotic

solutions of Eq. (2.3) which can be used to determine the phase shift. First, for distances r ≃ 1/k in

Eq. (2.3) it asymptotically holds that E = 0 and the resulting equation is independent of the incoming

wavenumber k. Second, examining the solutions of Eq. (2.3) yields an iterative relation between the

solutions for angular momentum l + 1 and angular momentum l [41, 62]. This iteration manifests in

ϑl/ϑ0 ↓ k
2l. Thus, in the limit k → 0 it is su”cient to consider the equation for l = 0

d
2
ϖk0

dr2
↗mU(r)ϖk0 = 0

r↗r0
↗→ ϖk0(r) = c0(1↗ kUr) . (2.5)

Far from the scattering center r ↘ r0 the solution is asymptotically linear with free parameters c0

and kU depending on the choice of the interaction potential U(r). The free parameters of the solution

of Eq. (2.5) are found by comparison with the expansion of Eq. (2.4) for l = 0 at kr ≃ 1 to linear

order in kr. The solution of Eq. (2.5) is thus obtained as

ϖk0(r) = e
iω0 sin(ϑ0) (1 + kr cot(ϑ0)) , (2.6)

where the k-dependence arises through the free parameters. We find a linear relationship between

the phase shift ϑ0 and the wavenumber k by expanding cot(ϑ0) ⇐ 1/ϑ0 so that ϑ0 = ↗k/kU . Using

the expression limk↘0 f(ω) = ↗as we get the scattering length as = 1/kU . It connects a single scalar

value as with a potential U(r) [41].

If we insert the relation kU = 1/as into Eq. (2.5), we can directly derive a geometric interpretation of

the s-wave scattering length. We visualize this in figure 2.3. In the long wavelength limit k → 0, the

two-body wave function of the scattering problem with potential U(r) is determined by the di!erential

equation in Eq. (2.5). Examples are shown in figure 2.3. The asymptotic solution far beyond the

potential range r/r0 ↘ 1 is the linear function in Eq. (2.5) independent of the shape of U(r). This

linear function ϖ(r) = c0(1 ↗ r/as) intersects the x-axis at r = as. Therefore, the scattering length

as can be interpreted geometrically as how far the arbitrary scattering potential U(r) pushes the zero

crossing of the asymptotic wave function for k → 0 and r/r0 ↘ 1 away from the scattering center

r = 0. If the potential is attractive, the intersection of the x-axis is pulled to a negative radius value

so that as < 0 [63].

Because not only the angle ω at which the atoms scatter, but also the shape of the interaction potential

U(r) itself has turned out to be irrelevant for this low-energy scattering k → 0, the real potential can be

replaced by a pseudopotential Ûps(r). This pseudopotential is constructed by stating the comparison

of the two asymptotic solutions used in the derivation of Eq. (2.6) as a boundary condition [41]

kU = ↗

[
1

ϖk0

dϖk0

dr

]

r=0

, (2.7)
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2 – The atoms, the cavity, and their interplay

Figure 2.3: Geometric interpretation for the scattering length as. The plot shows the solution of
the long wavelength asymptotic Schrödinger equation, Eq. (2.5), for a box potential in orange and a
realistic scattering potential in purple. The dashed lines show the linear distant wavefunction as given
in Eq. (2.5). This sketch blends figures from Refs. [41, 63].

so that the pseudopotential takes the form of the di!erential operator

Ûps(r) =
4ςas
m

ϑ
(3)(r)

d

dr
r . (2.8)

Note that if the operator Ûps(r) is applied to a function that is regular at r = 0, the di!erential

operator part (d/dr)r has no e!ect. However, if applied to a function with a 1/r singularity for

r → 0, this singularity is projected out Ûps(r)[1/r] = 0 [62]. Hence, if we can assert that there are no

corresponding singularities in the many-body wave function, the di!erential operator can be discarded

and we obtain

Ups(r) =
4ςas
m

ϑ
(3)(r) . (2.9)

2.1.1 Quantum many-body systems

In this thesis, we deal with many-body systems, usually consisting of at least several thousand indis-

tinguishable atoms. Hence, the fact that we have just discussed the scattering of only two particles

may seem a bit of a ruse. However, we are dealing only with weakly interacting dilute systems. This

means that the average distance between the particles is large compared to the range of the interatomic

forces. Such is assured for a small gas parameter |as|3n ≃ 1, which consists of the scattering length

as and the density n = N/V of the N atoms occupying the volume V . If |as|3n ≃ 1 the simultaneous

interaction of three or more particles is negligible [41]. In addition, the use of asymptotic expressions

for the wave function of the scattering process is justified. The interaction is thus characterized only

by the s-wave scattering length. We can describe such a system with the bosonic field operator ε̂(r),

where [ε̂(r), ε̂†(r→)] = ϑ
(3)(r ↗ r→) and [ε̂(r), ε̂(r→)] = [ε̂†(r), ε̂†(r→)] = 0 in a Hamiltonian with the

two-body potential U(r) = U(|r ↗ r→|)

Ĥ =

∫

V

d
3r

{
ε̂
†(r)

[
↗
⇒

2

2m

]
ε̂(r)

}
+

1

2

∫

V

d
3r

∫

V

d
3r→

{
ε̂
†(r)ε̂†(r→)U(|r ↗ r→|)ε̂(r→)ε̂(r)

}
. (2.10)

Actual interatomic potentials like the Lennard-Jones potential or the similar potential in figure 2.4

evade the solution of their Schrödinger equation. Especially for slow particles, the solutions of the

Schrödinger equation cannot be calculated by perturbation theory either [41]. However, since the
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Figure 2.4: Realistic potential U(r) for the two-body scattering in the many-body system with a
short-range repulsion ↓ r

≃6 and long-range attraction term ↓ ↗r
≃2. The plot also shows an e!ective

potential that produces the same asymptotic s-wave scattering properties as. The sketch is strongly
based on Ref. [41].

interaction is fully characterized by the s-wave scattering length as, we can replace it by an e!ective

potential Ue! as in figure 2.4 which yields the same interaction properties, i.e. as [41]. Of course,

the range of the e!ective potential must be much smaller than the average distance between the

particles n≃1/3. This adjustment to the microscopic physical reality still provides us with the correct

macroscopic results for the many-body system. We can go a step further and use the pseudopotential

Eq. (2.9), which yields the many-body Hamiltonian

Ĥ =

∫

V

d
3r

{
ε̂
†(r)

[
↗
⇒

2

2m
+

U

2
ε̂
†(r)ε̂(r)

]
ε̂(r)

}
, (2.11)

where U = 4ςas/m. In the case of a potential where the Born approximation [64, 65] is applicable,

like Ue!(r), the parameter U is the value of the Fourier transform of the e!ective potential Uq at the

origin of the Fourier space q = 0 [41]

U = Uq=0 =

∫

R3

d
3r

{
Ue!(r)e

≃iqr

∣∣∣
q=0

}
=

∫

R3

d
3r

{
Ue!(r)

}
. (2.12)

In this work, we encounter interactions with long-range potentials, where the range of the potential

is either much larger than the average distance between atoms or more challenging if its range is

comparable to the average distance.
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2.2 – Bogoliubov Theory

The idea of studying a weakly interacting Bose gas posed a challenge since traditional perturbation

techniques cannot be applied because the ideal Bose gas has zero ground state energy. It was the

first achievement of Bogoliubov theory to circumvent this problem [57]. Subsequently, it became the

standard approach to dilute gases, including many major advances in many-particle physics, ranging

from the weakly interacting Bose gases, superfluidity, parametrically driven oscillators, light-matter

interactions, to interacting fermions and superconductivity [3, 27, 41, 66, 67]. It is the key technique

utilized throughout this thesis, so the following introduction proves to be relevant not only for the

following section 2.3, but also for all subsequent chapters.

We begin with the many-body Hamiltonian for the Bose gas with weak contact interaction

Ĥ =

∫

V

d
3r

{
ε̂
†(r)

[
↗
⇒

2

2m
+

U

2
ε̂
†(r)ε̂(r)

]
ε̂(r)

}
. (2.13)

In a homogeneous Bose gas, i.e. one that occupies the volume V with uniform spatial distribution, it

is advantageous to express the field operators in the plane wave basis as

ε̂(r) =
1

⇑
V

∑

p

ε̂pe
ipr

, (2.14)

with the cyclic boundary conditions fixing the values of the momenta p in a finite volume V . Appli-

cation of this expansion to Eq. (2.13) using the relation

1

V

∫

V

d
3r

{
e
ipr

}
= ϑ

(3)
p,0 , (2.15)

where ϑ
(3)
p,k is the 3-dimensional Kronecker delta yields the momentum-space Hamiltonian

Ĥ =
∑

p

[
p2

2m
ε̂
†

pε̂p +
U

2V

∑

p→,k

(
ε̂
†

p+kε̂
†

p→≃kε̂p→ ε̂p

)]
. (2.16)

Now, the brilliant trick of the Bogoliubov theory [57] is based on the realization that the ground state

occupancy of the system of N0 condensed atoms is macroscopically large and comparable to the total

number of atoms N . Therefore, the creation ε̂
†

0 or annihilation ε̂0 of a single atom in this state

leaves the macroscopic system e!ectively unchanged N0 ± 1 ⇐ N0. Put di!erently, the commutator

of the ground state operators [ε̂0, ε̂
†

0] = 1 ≃ N0 is negligibly small [3]. Hence, in the Bogoliubov

prescription, the operators ε̂(†)
0 are replaced by a complex number, more precisely here [41]

ε̂0|GS⇓ ⇐
√
N0|GS⇓ ⇐ ε̂

†

0|GS⇓ ⇔ ε̂
(†)
0 =

√
N0 , ε̂

†

0ε̂
†

0ε̂0ε̂0 = N0(N0 ↗ 1) . (2.17)

Note that at zero temperature with weak interactions, where almost all N atoms are condensed,

we can immediately substitute N0 ⇐ N [41]. The number of atoms not in the ground state is

given by the quantum depletion, so we have to consider this depletion to be small if we want to

use the approximation N0 ⇐ N . We then notice that this yields the same results as the mean-field

approximation for the atomic field ↖ε̂
(†)(r)⇓ =

⇑
n =

√
N/V . A conceptually valuable remark is

that since both the mean-field and Bogoliubov approximation are equivalent to neglecting nontrivial

operator commutation, they constitute a classical treatment of the system [3]. The ground state
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energy in this classical approximation of the system, valid for a large number of atoms N , is then [41]

Emf =
UN

2

2V
. (2.18)

2.2.1 Quantum fluctuations

The number of atoms in the ground state can be expressed as the total number of atoms reduced

by quantum depletion. Based on this, the number operator for the ground state is expressed as

N̂0 = N ↗
∑

p

→
ε̂
†
pε̂p where we omit p = 0 and denote this by the primed sum. We then write the

ground state creation and annihilation operators as ε̂(†)
0 =

√
N̂0. Now we take Eq. (2.16) and where

before we kept only zeroth order terms of p ↙= 0, we now retain the terms up to quadratic order using

Eq. (2.17) and obtain

Ĥ =
U

2V
ε̂
†

0ε̂
†

0ε̂0ε̂0 +
∑

p

→
[(

p2

2m
+ 2

U

V
ε̂
†

0ε̂0

)
ε̂
†

pε̂p +
U

2V

(
ε̂
†

pε̂
†

≃pε̂0ε̂0 + ε̂
†

0ε̂
†

0ε̂≃pε̂p

)]

=
U

2V
N̂0(N̂0 ↗ 1) +

∑

p

→


p2

2m
+ 2

UN̂0

V


ε̂
†

pε̂p +
UN̂0

2V

(
ε̂
†

pε̂
†

≃p + ε̂≃pε̂p

)

=
U

2V


N

2
↗ 2N

∑

p

→
(
ε̂
†

pε̂p

)
+
∑

p

→
[(

p2

2m
+

2UN

V

)
ε̂
†

pε̂p +
UN

2V

(
ε̂
†

pε̂≃p + ε̂≃pε̂p

)]

= Emf +
∑

p

[(
p2

2m
+ 2nU ↗ µmf

)
ε̂
†

pε̂p +
nU

2

(
ε̂
†

pε̂≃p + ε̂≃pε̂p

)]
, (2.19)

with the mean-field energy Emf = UN
2
/2V and its chemical potential µmf = (φEmf/φN)V = nU . One

might think that we could now analyze the Hamiltonian Eq. (2.19) to extract the energy correction that

the quantum fluctuations p ↙= 0 add to the ground state energy Emf . However, the zero-point energy

found from the eigenmodes of Eq. (2.19), which we will examine next, is a divergent sum. It turns

out that Eq. (2.19) is inconsistent in the order of approximation [41, 61]. To capture the interatomic

potential by the simple U = Uq=0, Eq. (2.12), we applied the lowest-order Born approximation. This

is consistent if we study the ground state energy in the lowest order Emf . For the quadratic-order

approximation, we have to use the quadratic-order perturbation theory for the e!ective potential

Ue! , which implies that instead of U we have to consider U + (U2
/V )

∑
p

→
m/p2 [41, 61]. Thus, the

self-consistent Hamiltonian of quadratic order is

Ĥ = Emf +
∑

p

[(
p2

2m
+ nU

)
ε̂
†

pε̂p +
nU

2

(
ε̂
†

pε̂≃p + ε̂≃pε̂p

)
+

m(nU)2

2p2

]
. (2.20)

From it, we can uncover not only the Bogoliubov quasiparticles but also their ground state energy

correction, the famous Lee-Huang-Yang (LHY) correction [46], since the additional last term in Eq.

(2.20) regularizes the sum [5].

2.2.2 Excitation spectrum

The linear Bogoliubov transformation [41,57]

ε̂p = up↼̂p ↗ v
↔

p↼̂
†

≃p , ε̂
†

p = u
↔

p↼̂
†

p ↗ vp↼̂≃p , (2.21)

diagonalizes the quadratic Hamiltonian Eq. (2.20). Imposing on the quasiparticle operators ↼̂, that

they follow bosonic commutation relations, introduces the constraint |up|
2
↗ |vp|

2 = 1 on the transfor-
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Figure 2.5: Bogoliubov dispersion ↽p, Eq. (2.25), for di!erent strengths of the interaction nU .
The momentum p is in units of some arbitrary wavenumber k, so both the dispersion ↽p and the
interaction energy nU are given in units of k2/2m. The dispersion for the attractive interaction U < 0
is pathological. In this case, the mean-field is unstable, which is reflected in the instability of the
dispersion, seen in its zero real part and positive imaginary part. The latter is indicated in the plot
by the dashed line.

mation coe”cients. This is the characteristic equation for hyperbolic functions, so we can write [41]

up = cosh(⇀p) , vp = sinh(⇀p) . (2.22)

Inserting the transformation Eq. (2.21) into the quadratic Hamiltonian Eq. (2.20) yields the diago-

nalization condition

(
p2

2m
+ nU

)
upvp ↗

nU

2


|up|

2 + |vp|
2

= 0 , (2.23)

so that the terms of ↼̂†
p↼̂

†

≃p and ↼̂≃p↼̂p are eliminated. With the hyperbolic identities cosh2(⇀p) +

sinh2(⇀p) = cosh(2⇀p) and 2 cosh(⇀p) sinh(⇀p) = sinh(2⇀p) the eigenmodes are found by the trans-

formation coe”cients determined by

tanh(2⇀p) =
nU

p2

2m + nU

. (2.24)

The Hamiltonian Eq. (2.20) is then diagonalized with the eigenmodes following the Bogoliubov dis-

persion [57]

↽p =


p2

2m

(
p2

2m
+ 2nU

)
. (2.25)

It is shown in figure 2.5. In the long-wavelength limit, i.e. for low momentum p
2
≃ 2mnU , the

dispersion is linear ↽p ∝ p

√
gn/m. This is called the phononic region with the associated speed of

sound cs =
√

gn/m [41] and is shown in blue in figure 2.5. The asymptotic behavior of the dispersion

at large momenta p
2
↘ 2mnU is a parabola ↽p ∝ p

2
/2m. We can identify this from the green curve

in figure 2.5, which is accurately approximated by ↽p ⇐ p
2
/2m+ nU .

The Hamiltonian obtained with these Bogoliubov quasiparticles of modes Eq. (2.25) is

Ĥ = Emf +
1

2

∑

p

→
[
↽p ↗

p2

2m
↗ nU +

m(nU)2

p2

]
+

∑

p

→
[
↽p↼̂

†

p↼̂p

]
= E0 +

∑

p

→
[
↽p↼̂

†

p↼̂p

]
. (2.26)
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The vacuum of the quasiparticles adds to the ground state of the system. Thus, the ground state

energy E0 = Emf + Eqf now includes the higher-order correction arising as the zero-point motion of

the Bogoliubov quasiparticle excitations resulting from operator commutation in the derivation of Eq.

(2.26), see appendix A.1.

The sum of the zero-point energies Eqf of the quasiparticle vacuum can be evaluated in the continuum

limit
∑

p

→
→ [V/(2ς)3]


R3 d

3p to obtain the LHY correction [46] with the detailed calculation in the

appendix A.2 or, e.g., in Ref. [62]. It follows that

Eqf =
V

2(2ς)3

∫

R3

d
3p

{
↽p ↗

p2

2m
↗ nU +

m(nU)2

p2

}
=

8V m
3/2

15ς2
(nU)

5
2 . (2.27)

2.2.3 Thermodynamics of the Bose gas

The weakly interacting Bose gas, even at zero temperature, has a finite pressure [41]

P = ↗

(
φE0

φV

)

N

=
Un

2

2
+

4m3/2

5ς2
(nU)

5
2 = Pmf + Pqf , (2.28)

and finite bulk modulus

K = V

(
φ
2
E0

φV 2

)

N

=
3Un

2

2
+

2m3/2

ς2
(nU)

5
2 = Kmf +Kqf , (2.29)

with their respective mean-field values Pmf , Kmf and the corrections Pqf , Kqf stemming from the

quantum fluctuations. If the scattering is repulsive U > 0, both the pressure and the compressibility

are positive, and the gas is thermodynamically stable [5, 41]. It should be noted that the performed

analysis of quantum fluctuations presumes a stable mean-field, i.e. that U > 0, otherwise the excitation

spectrum Eq. (2.25) takes on imaginary values for |p| < 2
⇑
mnU as shown in figure 2.5. Below in

chapter 4 we briefly review mixtures of two Bose gases where an unstable mean-field can be rescued

by quantum fluctuation corrections. Thermodynamically, the sound velocity cs =
√
K(P = 0)/(mn)

is related to the bulk modulus at zero pressure [68]. The mean-field value cs,mf agrees with the

value obtained from the long wavelength limit |p| ≃ mc properties of the dispersion relation Eq.

(2.25). A result which implies that the long wavelength excitations of the Bose gas are sound waves.

They are regarded as the Goldstone modes of gauge symmetry breaking due to the Bose-Einstein

condensation [3, 41].

The chemical potential of the Bose gas is also finite, as we have already seen for the mean-field [41].

We have

µ =

(
φE0

φN

)

V

= nU +
4m3/2

3ς2
U(nU)

3
2 = µmf + µqf . (2.30)

As for the pressure and compressibility modulus, the chemical potential is positive for U > 0 and thus

in the case of a stable condensate.

2.2.4 Finite temperature

If the Bose gas is at finite temperature, an additional term contributes to E0 and consequently to

the pressure, bulk modulus, and chemical potential Eqs. (2.28), (2.29), and (2.30). The thermal

contribution at the inverse temperature ⇁ = 1/T is determined by the dispersion relation Eq. (2.25)
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and is

Eth =
1

⇁

∑

p

→
ln

1↗ e

≃εϑp

. (2.31)

Like the LHY correction in Eq. (2.27), this is evaluated in the continuum limit. The addition of the

low-temperature limit allows the approximation

ln


1↗ e

≃ε

√
p2

2m

(
p2

2m+2Un

)
⇐ ln


1↗ e

≃ε

√
Unp2

m


, (2.32)

of the dispersion in the integrand by its phononic part [41, 62]. The detailed calculation is given in

appendix A.3. The computation then can be performed analytically and yields the additional thermal

contributions

Eth =
↗V m

3/2
ς
2

90⇁4(Un)3/2
, Pth =

m
3/2

ς
2

36⇁4(Un)3/2
,

Kth =
↗m

3/2
ς
2

24⇁4V (Un)3/2
, µth =

m
3/2

ς
2

60⇁4(Un)3/2n
. (2.33)

The considerations of the previous sections, starting with section 2.1, can be formulated analogously in

arbitrary dimension d. We then discuss the Hamiltonian of the single interacting Bose species, where

each atom occupies the same internal state Eq. (2.13), in d dimensions for equivalent low energy and

small gas parameter asymptotics. This reproduces analogous results for the pseudopotential, Bogoli-

ubov theory, ground state energy, dispersion relation, etc., which we will use in later chapters where

we consider systems with spatial dimensionality other than three, or even just generic d dimensions.
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2.3 – Introduction to the cavity BEC system

Placing an ultracold gas of atoms in an optical resonator has been a vastly successful endeavor in the

study of condensed matter. The idea of utilizing quantum systems to simulate quantum physics and

thus gain a new and deeper understanding of the phenomena of the quantum mechanical world was

proposed more than 40 years ago by Richard Feynman [1].

A noteworthy first mention of the achievements in cavity BECs is the realization of the open Dicke

model [23], which is the driven-dissipative pendant of the fundamental model of light-matter interac-

tion and in quantum optics [24]. The discovery includes the second-order non-equilibrium quantum

phase transition in this system [23]. This achievement already highlights the advantage of the setup,

which allows in situ measurements of the light field, allowing direct observation of the superradiant

order parameter from simple photon counting to elaborate correlations such as the g
(2)-function by

heterodyne detection schemes [28,69]. The occurring quantum Dicke phase transition to the superra-

diant phase is accompanied by a Z2 symmetry breaking [69] and the softening of a roton-like mode [35]

into a self-organized checkerboard lattice phase [23]. With superfluid coherence prevailing between

lattice sites, this phase exhibits supersolid-like properties [26,70]. For increasingly stronger pumping,

the phase diagram also shows a Mott phase in which the coherence between lattice sites has broken

down in both a self-organized checkerboard [25] and a normal square lattice arrangement [26]. The

driven-dissipative nature combined with the feasibility of in situ measurements lends itself to the

realization of all kinds of dynamical and non-equilibrium phenomena. For example, phenomena like

quantum fluctuations at a driven-dissipative phase transition [28], a dynamical Dicke phase transition

with hysteresis [71], and both discrete and continuous time crystals [72–74].

Modifications of the setup allow the realization of other lattice geometries utilizing a di!erent pump-

ing geometry as in Refs. [70, 75]. More elaborate pumping schemes for the atoms are possible, for

example, creating a $-state scheme of internal atomic transitions [76] instead of the usual two-state

atomic system [23]. It was also predicted that in the interplay with the Rydberg atom interaction, a

superglass could be formed [77]. Furthermore, it was proposed to paint e!ective atom-atom interac-

tion potentials using the pump beam [78]. The step from a single cavity mode to a nearly degenerate

confocal cavity yields tunable interaction ranges and, for example, the creation of an optical phonon

lattice with sound [79]. This list is of course far from being complete, but rather biased towards the

quantum mechanical physics on which this thesis builds. Although not directly relevant to this thesis,

we would also like to mention the possibility of using fermionic atomic species instead of bosonic

ones [80] and the possibilities of studying topological phenomena [81,82].

2.3.1 Purcell e!ect

In this thesis, we study atoms that behave as two-level systems illustrated in figure 2.6. The two

energy levels of a single atom are its ground state |g⇓ and its excited state |e⇓, separated by the

frequency ↽A. To understand the magic of cavity quantum electrodynamics, we must first consider

the two-state system in a vacuum without a cavity. When excited to the state |e⇓, the two-level system

will eventually emit a photon and return to the state |g⇓ [11]. Quantum mechanically speaking, the

vacuum is a bath of electromagnetic modes with the canonical quantization of the electrodynamic

vector potential of a single radiation mode k [83, 84]

Âk(r, t) =
ωk

⇑
4ε0V↽k


âke

≃i(kr≃ϑkt) + â
†

ke
i(kr≃ϑkt)


(2.34)

where the annihilation âk and creation â
†

k operators of the second quantization formalism are akin

to the quantum harmonic oscillator ladder operators [âk, â
†

k→ ] = ϑ
(3)
k,k→ . Each radiation mode is thus
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interpreted as a quantum harmonic oscillator of frequency ↽k, so that

Ĥfield =
∑

k

↽k

(
â
†

kâk +
1

2

)
. (2.35)

The quantization volume is V and we have the polarization of the mode ωk and the permittivity of

free space ε0. Due to its coupling to the bath, the atom dissipates energy and the photoemission is

irreversible, giving rise to the phenomenon of spontaneous emission [11].

The probability %0 that a photon will be emitted, i.e. the probability to find the two-level system

in state |e⇓ at time t from excitation at t = 0 is given by Pe(t) ↓ e
≃”0t and determined by Fermi’s

golden rule %0 = 2ς|↖g|Ĥ →
|e⇓|

2
ρ(↽) [2]. For the atom-vacuum system, the key physical quantities are

the Rabi frequency of the vacuum geg and the mode density ρ0(↽A) of the photon states available in

the vacuum at ↽A [12]. The former geg = degEvac is the product of the electric dipole matrix element

of the atom deg and the electric field amplitude of the vacuum Evac. Each harmonic oscillator in

the radiation field contributes its zero point energy ↽k/2 so that the electric field amplitude of the

vacuum is Evac = [↽A/(2ε0V)]1/2 for an arbitrary quantization volume V, which is V ↘ (2ς/↽A)3 [12].

The mode density of the vacuum is given by ρ0(↽A) = ↽
2
A
V/ς

2, so the photon emission in vacuum is

characterized by [12]

%0 = 2ςg2
eg

ρ(↽A)

3
=

↽
3
A

3ς

|deg|
2

ε0
. (2.36)

If a cavity is constructed around the two-level system by placing two mirrors, the vacuum field is

modified because its mode density is altered [13,14]. A cavity tuned at resonance so that the emission

is enhanced in the small solid angle covered by the mirrors has a mode density ρcav(↽A) = ρ0(↽A,k ′

cav)A(↽A) modified according to the Airy formula A(↽) [84]. The Airy formula is a function of the

finesse F = FSR/2▷ which characterizes the cavity by the ratio between the separation between cavity

resonances called the free spectral range FSR and the cavity decay rate ▷. Assuming a high finesse

F ↘ 1 for the cavity of length LC and mode volume VC , the Airy formula can be expanded to lowest

order in 1/F and the Purcell factor reads [14]

fP =
%cav

%0
=

6LC

4ς2VC

F

↽
2
A

, (2.37)

where the cavity frequency ↽C is resonant with the atomic transition ↽A.

However, the setups considered in this thesis operate with a large detuning between the cavity ↽C

and the atomic transition ↽A, which suppresses spontaneous emission. Nonetheless, the e!ect of

enhanced Rayleigh scattering is present [85, 86]. The enhanced Rayleigh scattering is based on a

classical description of the atomic dipole, which is valid for large detuning between the light and the

atomic transition and low saturation of the transition [86]. For this o!-resonant cavity description of

the Purcell e!ect, the atomic transition ↽A is replaced by the cavity frequency ↽C in Eq. (2.37). The

Purcell factor of the far detuned TEM00 cavity with the waist of the mode ◁ leading to the e!ective

mode volume VC = ςLC◁
2
/4 is [86]

fP =
24F

ς(◁k)2
. (2.38)

Thus, the cavity geometry, which determines the wavenumber k, its transversal mode waist ◁, and

its finesse F , also determines the enhanced emission into the cavity. Notably, in the case of Rayleigh

scattering, the atomic transition ↽A does not play a role anymore compared to Eq. (2.38). The

strength of the interaction between a single atom and the cavity light field is characterized by the
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single photon Rabi frequency, which for a cavity of length LC with e!ective mode volume VC is [86]

g0 = degEC = deg


↽C

2ε0VC

, (2.39)

with the e!ective electric field amplitude EC of the cavity mode of frequency ↽C .

2.3.2 Driven Jaynes-Cummings model

The creation of a cavity BEC system begins at the single atom level as a realization of the Jaynes-

Cummings model [87] in the driven form [88]. We consider the two-level atom with ground state |g⇓

and excited state |e⇓ separated by the frequency ↽A as shown in figure 2.6. The transition between

the two states of the atom is captured by the raising operator ϱ̂+ = |e⇓↖g| and the lowering operator

ϱ̂
≃ = |g⇓↖e|. A coherent pump of frequency ↽P drives the transition ↽A between the atomic ground

state |g⇓ and its excited state |e⇓. The longitudinal profile of the pump is described by a standing wave

of wavenumber k in the y-axis. Its maximum coupling is given by the Rabi frequency h0. The width of

the pump laser is assumed to be extremely large so that the transverse profile of the beam is assumed

to be uniform and extends to infinity or beyond any position the atom can occupy. Consequently, the

pump mode function has the mathematical expression h(r) = h0 cos ky. The cavity has a single mode

with frequency ↽C . It is described by a standing wave along the cavity axis x with a wavenumber

e!ectively identical to that of the pump mode k. Its transverse mode is TEM00 with a waist ◁. In

this chapter, we also assume that the cavity mode is broad in the sense that the atom sees a constant

profile in the yz-directions. The maximum one-photon Rabi frequency of the coupling between the

cavity and the atom is given by g0, Eq. (2.39) [86]. Here we discuss the cavity with a mode function

g(r) = g0 cos kx. The annihilation of a cavity photon is performed by the bosonic operator â. In

the rotating-wave approximation, where the counterrotating terms with the frequency ↽A + ↽C are

omitted, the annihilation of a cavity photon is coupled to the excitation of the atom ϱ̂
+
â and the

emission of a cavity photon to the relaxation of the atom ϱ̂
≃
â
†. Finally, p̂2

/2m is the kinetic term of

the atom of mass m in the driven Jaynes-Cummings Hamiltonian

Ĥ =
p̂2

2m
+ ↽Aϱ̂

+
ϱ̂
≃
↗ ih(r)


ϱ̂
+
e
≃iϑP t

↗ ϱ̂
≃
e
iϑP t


+ ↽C â

†
â↗ ig(r)


ϱ̂
+
â↗ ϱ̂

≃
â
†

. (2.40)

With the unitary transformation Û(t) = exp[i↽P t(ϱ̂+
ϱ̂
≃ + â

†
â)] we change into the frame rotating

with the pump [88] and obtain

Ĥ =
p̂2

2m
↗&Aϱ̂

+
ϱ̂
≃
↗ ih(r)


ϱ̂
+
↗ ϱ̂

≃

↗&C â

†
â↗ ig(r)


ϱ̂
+
â↗ ϱ̂

≃
â
†

, (2.41)

with the detuning of the atomic transition &A = ↽P ↗ ↽A and of the cavity &C = ↽P ↗ ↽C .
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y

xz

Figure 2.6: The cavity BEC setup: A condensed Bose gas (blue) is placed in the center of two
mirrors creating an optical cavity. The cavity mode of frequency ↽C surrounds the condensate. The
rate ▷ at which photons are lost from the cavity is indicated at the right mirror. Each atom is a
two-level system with states |g⇓ and |e⇓ separated by the frequency ↽A shown on the right. The pump
of frequency ↽P that excites the atoms is oriented outside the cavity mode. Without the atoms in
the cavity, the cavity would always remain unoccupied. The pump drives the system equally from
positive and negative y directions. It is detuned by &A relative to the atomic transition ↽A. As we
see in section 2.3.5, once the pump is su”ciently strong, the system self-organizes into a checkerboard
lattice. This lattice is indicated by the lighter blue dots in the depiction of the condensate.

2.3.3 Field Hamiltonian of many atoms in the cavity

The generalization toN identical atoms is achieved by the second quantization field operator formalism

[ε̂f (r), ε̂
†

f →(r→)] = ϑ
(3)(r↗ r→)ϑf,f → and [ε̂f (r), ε̂f →(r→)] = [ε̂†

f
(r), ε̂†

f →(r→)] = 0 where f, f →
′ {g, e} refer

to the ground state with g and to the excited state with e [27,88]. The interaction between the atoms

is included by their s-wave scattering in the form of a contact interaction of strength Uff → . Then the

generalization of the single atom Hamiltonian Eq. (2.41) to a many-body field Hamiltonian is [27,88]

Ĥ =

∫

V

d
3r

{
ε̂
†

g
(r)

[
↗⇒

2

2m

]
ε̂g(r) + ε̂

†

e
(r)

[
↗⇒

2

2m
↗&A

]
ε̂e(r)

+
∑

f,f →⇐{g,e}

[
Uff →

2
ε̂
†

f
(r)ε̂†

f →(r)ε̂f →(r)ε̂f (r)

]
↗ ih(r)


ε̂
†

g
(r)ε̂e(r)↗ ε̂

†

e
(r)ε̂g(r)



↗ig(r)

â
†
ε̂
†

g
(r)ε̂e(r)↗ ε̂

†

e
(r)ε̂g(r)â

}
↗&C â

†
â . (2.42)

To realize temperatures close to zero, heating must be avoided. Therefore, weak atomic excitation

must be ensured to have negligible spontaneous emission. This is achieved by a large detuning &A,

which is orders of magnitude larger than the kinetic term of the atoms and the cavity dynamics [88].

It allows us to perform an adiabatic elimination of the excited state e [88] which follows the Heisenberg

equation

i
φε̂e(r)

φt
= ↗

[
⇒

2

2m
+&A ↗ Ueeε̂

†

e
(r)ε̂e(r)↗ Ugeε̂

†

g
(r)ε̂g(r)

]
ε̂e(r) + i [g(r)â+ h(r)] ε̂g(r) . (2.43)

In the adiabatic elimination, the kinetic energy term, the time derivative, and the contact interaction

are discarded relative to the large |&A| term to determine

ε̂e(r) =
i

&A

[h(r) + g(r)â] ε̂g(r) . (2.44)
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We apply this to the Heisenberg equations for ground state atoms and cavity photons and find

i
φε̂g(r)

φt
=

[
↗⇒

2

2m
+ Uggε̂

†

g
(r)ε̂g(r)

]
ε̂g(r)↗ i[h(r) + g(r)â†]ε̂e(r)

=

[
↗⇒

2

2m
+ Uggε̂

†

g
(r)ε̂g(r) +

h
2(r)

&A

+
g
2(r)

&A

â
†
â+

g(r)h(r)

&A


â+ â

†
]

ε̂g(r) , (2.45a)

i
φâ

φt
= ↗&C â↗ i

∫

V

d
3r

{
g(r)ε̂†

g
(r)ε̂e(r)

}

=

[
↗&C +

∫

V

d
3r

{
g
2(r)

&A

ε̂
†

g
(r)ε̂g(r)

}]
â+

∫

V

d
3r

{
g(r)h(r)

&A

ε̂
†

g
(r)ε̂g(r)

}
. (2.45b)

The e!ective Hamiltonian that describes the dynamics of Eq. (2.45) is [27, 88]

Ĥ =

∫

V

d
3r ε̂†(r)

[
↗⇒

2

2m
+

h
2(r)

&A

+
g
2(r)

&A

â
†
â+

g(r)h(r)

&A


â+ â

†

+

U

2
ε̂
†(r)ε̂(r)

]
ε̂(r)↗&C â

†
â ,

(2.46)

where we have suppressed the index of the ground state field operators ε̂g = ε̂. First in the square

brackets is the kinetic term of the atoms. This is followed by the self-interference of the pump

h
2(r)/&A. It results from the standing wave of the pump along both the positive and negative y-

directions. The third term is characterized by the coupling U0 = g
2
0/&A of a single atom to the cavity.

It takes the form of an optomechanical coupling g
2(r)ε̂†(r)â†âε̂(r) and is the dynamical refractive

index experienced by the cavity due to the presence of the atoms. The next term follows the underlying

potential of the product of the pump and cavity mode functions g(r)h(r) and describes the scattering

of a photon between the pump and the cavity via the adiabatically eliminated absorption and emission

by the atoms. Finally, there is the contact interaction between the atoms U = 4ςas/m, Eq. (2.12).

Outside the integral the cavity mode dynamics with the detuning &C is given. In this thesis, we focus

on systems where the atomic transition is red-detuned &A < 0 to the pump. This leads to a negative

single atom coupling U0 < 0, which means that the light field is attractive for the atoms. Given a

cavity light field they will accumulate at its intensity maxima [27]. In addition, we will also consider

the cavity red-detuned &C < 0 to the pump.

2.3.4 Setup of the experiment

The central element of the experimental setup is a vacuum chamber in which a BEC [15,16] is prepared

in a trap by cooling techniques. For the experimental run, this BEC is placed in the mode of a high-

finesse optical resonator cavity. Once in place, it is pumped by an additional laser beam. To go into

a little more detail about the single cavity mode BEC experiment we use the example of the setup

in Hamburg [89–93]. It distinguishes itself due to its small resonator linewidth, which in drastically

simplified terms results from a large distance between the mirrors of about 5 cm [91], but serves here

as an example for a generic cavity BEC setup. This section is only intended to give a brief insight

into the experimental reality and is not a full explanation of the processes and protocols. Rather, it

is designed to give an idea of how the experiment is performed, what its advantages are, and where

its limitations lie. Most of the details can be found in the references [89, 90]. The transport to the

quadrupole-Io!e configuration trap is described in detail in Ref. [90] and the cavity stabilization can

be studied in detail in Refs. [91, 92].

To prepare a BEC, rubidium atoms 87Rb are laser-cooled in a magneto-optical trap [94–96] in a

separate section of the vacuum chamber. They are then cooled using the optical molasses technique

and pumped to the magnetic state |F = 2,mf = +2⇓, which is optimal for later trapping in the
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Figure 2.7: Setup in the science chamber with the trapped Bose condensate(blue) in the red light
field of the pump and cavity mode. The pump beam is retroreflected by a mirror. The copper rings
represent the coils of the quadrupole-Io!e trapping configuration. In this setup, gravity is along the
negative x direction. The figure is based on Refs. [25, 91].

magnetic quadrupole-Io!e configuration [97] in the science chamber. The atoms are transported to

the science chamber using transfer coils. Trapped in the quadrupole-Io!e configuration shown in

figure 2.7, the ensemble is further cooled by evaporative cooling according to the protocol described

in Ref. [98]. The atoms are pumped from the state |F = 2,mf = +2⇓ via |F = 2,mf = +1⇓ to

|F = 2,mf = 0⇓. In the latter state, they are no longer confined and leave the trap. The remaining

ensemble thermalizes to a lower temperature due to its weak atom-atom interaction. After a second

cooling phase with another radio frequency and an additional o!set between the mf states to reduce

atomic losses, the remaining ensemble drops below the critical condensate temperature. Typically, the

final condensate prepared in this setup has up to 105 atoms at a temperature of about 100 nK [91].

After the BEC is prepared, it needs to be overlapped by the TEM00 cavity mode. The experiment

relies on a TEM11 reference laser, which is crucial for the stabilization of the cavity mode, and therefore

needs to run permanently. Hence, the final BEC preparation step was performed about 100 µm outside

the cavity mode [91]. A microtransport protocol is used to maneuver the BEC through the gap in the

TEM11 reference mode, which is barely 10 µm wide [90,91]. Once the BEC is placed in the center of

the cavity, the experimental protocol using the pump beam can commence. The trapping frequencies

during the experimental run are on the order of 2ς ∞ 10 Hz along the cavity axis x and 2ς ∞ 100 Hz

in the y and z directions perpendicular to the cavity. In terms of spatial extent, the cloud is thus on

the order of 10s of micrometers along the cavity axis and single-digit micrometers perpendicular to

the cavity axis [93].

The optical cavity stores photons between its highly reflective mirrors, as seen in figure 2.7. How well

the photons are stored is determined by the cavity field decay rate ▷. In the Hamburg experiment

the photons cycle on average Ncyc ↭ 105 times through the cavity [91]. Consequently, they travel

a significant distance in this particularly long cavity, so their lifetime is long and conversely their
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decay rate ▷ ⇐ 4.5 kHz is remarkably small [91]. In fact, it is comparable to the recoil frequency

↽R = k
2
/2m ⇐ 3.5 kHz experienced by an atom when it absorbs or emits either a cavity photon or a

pump photon which have approximately the same wavenumber k. Accordingly, the cavity is said to

operate in the recoil-resolved regime [99]. Consequently, it is classified as an optical resonator with

narrow linewidth 2▷ and ultra-high finesse F = FSR/2▷ ⇐ ςNcyc, where FSR is the free spectral

range, i.e., the separation between cavity resonances.

The key role of the optical cavity for our purposes is its influence on the vacuum fluctuation that

underlies spontaneous emission [13]. This Purcell e!ect favors Rayleigh scattering into the cavity

mode over emission into the remaining solid angle of free space. The ratio of scattering into the cavity

to scattering into free space, the Purcell factor Eq. (2.38), is ↓ F/(◁k)2. It depends on the finesse

F , the wavenumber k, and the cavity waist ◁. The waist characterizes the width of the transverse

TEM00 mode by the 1/e value of its electric field at the narrowest section of the mode, as shown in

figure 2.7. The waist of the TEM00 cavity mode is about 31 µm [90].

The transversal pump beam is oriented along the y-axis. It is retroreflected on the other side to

create the standing wave pump [91,92]. The pump is a laser of wavelength 803 nm, which is about the

resonance of the cavity so that the entire light field has roughly the wavelength 803 nm, corresponding

to the wavenumber k = 7.8 µm≃1 [89–92]. The light field is red-detuned compared to the atomic

resonances of rubidium at 795 and 780 nm [91].

When the atoms are placed in the cavity, they act as a dynamic refractive index that changes the

resonance frequency of the cavity. The atoms and cavity are coupled by the processes described in

the e!ective Hamiltonian of the system Eq. (2.46). Because the cooperative coupling of many atoms

leads to a resonance frequency shift greater than the cavity linewidth 2▷, the setup is classified as

strongly coupled [91].

2.3.5 Mean-field approximation and self-organization

The coupled mean-field equations for the cavity ⇀ = ↖â⇓ and the condensate wave function ε(r) =

↖ε̂(r)⇓ with the single-atom coupling U0 = g
2
0/&A, the pump strength ↽P = ↗h

2
0/4&A, and the

atom-cavity coupling 0 = g0h0/2&A =
⇑
↗U0↽P are [100]

i
φ⇀

φt
=

[
↗&C +

∫

V

d
3r


U0 cos

2(kx)|ε(r)|2

↗ i▷

]
⇀

+

∫

V

d
3r


20 cos(kx) cos(ky)|ε(r)|2


, (2.47a)

i
φ

φt
ε(r, t) =

[
↗
⇒

2

2m
+ U |ε(r)|2 ↗ 4↽P cos2(ky) + U0 cos

2(kx)|⇀|2

+ 40 cos(kx) cos(ky)Re(⇀)

]
ε(r, t) , (2.47b)

where the cavity mode linewidth ▷ has been included. The steady state solution of the dissipative

system (⇀0,ε0(r)) with ε(r, t) = ε0(r)e≃iµt obeys the equations

⇀0 =
20

↗&C + U0


V
d3r {cos2(kx)|ε(r)|2}↗ i▷

∫

V

d
3r


cos(kx) cos(ky)|ε(r)|2


, (2.48a)

µε0(r) =

[
↗
⇒

2

2m
+ U |ε0(r)|

2
↗ 4↽P + U0 cos

2(kx)|⇀0|
2 + 40 cos(kx) cos(ky)Re(⇀0)

]
ε0(r) . (2.48b)
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Figure 2.8: Homogeneous BEC in blue on the left with a pump wave below the critical value in red.
On the right, the self-organized checkerboard of the condensate with the superradiant cavity light
field along the x-axis due to the pump above the threshold. The Z2 symmetry-breaking can be seen
both in the lattice choice on the checkerboard and in the phase of the superradiant cavity light. To
visualize the phase di!erence, dashed lines are added to two of the cavity light maxima.

It can be solved by imaginary-time propagation [100] as typical for a Gross-Pitaevskii-like equation.

The mean value

1 =

∫

V

d
3r


cos(kx) cos(ky)|ε(r)|2


, (2.49)

is an order parameter for the self-organization of the condensate into either the even 1 = +1 or odd

1 = ↗1 sites of a lattice that then resembles a checkerboard as visualized in figure 2.8 [23, 100]. This

order parameter occurs directly in Eq. (2.48a) so that the cavity steady state ⇀0 ↓ 1 is connected to

it. A homogeneous condensate has 1 = 0 and therefore in the normal phase, the cavity steady state

vanishes ⇀0 = 0. Each density grating 1 = ±1 in figure 2.8 satisfies the Bragg condition to maximize

the coherent scattering of photons from the pump field into the cavity and vice versa [101]. It thus

realizes a macroscopically large ⇀. The resulting interference between the pump and intra-cavity light

fields, as shown in figure 2.8, leads to a two-dimensional potential that stabilizes the prevailing density

distribution of atoms on the checkerboard.

The kinetic energy and the collision term in the Gross-Pitaevskii type equation Eq. (2.47b) try to

maximize the spread of the wave function ε0(r). Once the coupling to the cavity 0 = g0h0/2&A

reaches a critical value 0cr it can be overcome. However, one has to look at condensate and cavity

photon fluctuations to understand the underlying process. The scattered field of each atom depends

on its position in the cavity and on the pump field [101]. Atoms separated by half a wavelength

produce the same light field but with opposite phases. Therefore their contributions cancel each

other out. A density fluctuation, however, facilitates the generation of a small field with a random

phase. In a red-detuned cavity, the attraction to the antinodes of the field redistributes the atoms.

If the coupling between the atoms and the cavity 0 is strong enough, these condensate fluctuations

trigger the transition. Since the created atomic density lattice induces strong scattering into the cavity

mode, the optical potential is deepened. Subsequently, the e!ective light field potential cos kx cos ky

is su”ciently large and the order parameter 1 of the self-organized phase takes on a finite value [100].

This phase transition is accompanied by the spontaneous Z2 symmetry-breaking between even and

odd lattice sites [69, 100]. The fluctuations then initiate a runaway process stabilizing the atomic

density grating [101]. Hence, at zero temperature, quantum fluctuations determine the fate of the

condensate [100]. We will review them in more detail in the next section 2.3.6. The critical coupling

0cr can be determined analytically by the linear stability analysis of the trivial solution of Eq. (2.48):
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⇀0 = 0, ε0(r) =
⇑
n, µ = nU [100]. Equivalently, it is obtained as a by-product of examining the

collective excitation spectrum, which will be reviewed next.

The self-organization was observed in the experiment [23]. In an experiment, the setup is advantageous

because its cavity loss channel o!ers the possibility to monitor the system in situ [102–104]. This

is particularly applicable to the self-organization phase transition due to the relationship between

the cavity steady state and the self-organization order parameter ⇀0 ∝ 1. On the other hand, the

drive directly determines the light-matter coupling 0 ↓ h0 via the pump Rabi frequency h0, thus

providing exceptional control over the model. The simplest experimental run would start with a

condensate initialized in the absence of the external drive. Thereupon the pump is ramped up until

the critical value of the phase transition 0cr is reached [23]. At this point, a macroscopic number

of photons is detected in the cavity output field as the atoms organize into the symmetry-broken

checkerboard lattice [23]. The relation between the order parameter 1 and the cavity steady state ⇀0

also encapsulates that the phase of the light field is linked to the sign of 1 = ±1 in the self-organized

phase. The cavity light consequently carries the information on whether the atoms have organized

into even or odd lattice sites. Note that even and odd sites are relative terms here, depending on the

chosen definition of sites and, equivalently, the choice of zero phase in the cavity light. By measuring

not only the amplitude of the outcoupled cavity light but also its phase in a heterodyne detection

scheme, the spontaneous Z2 symmetry-breaking nature of the phase transition was verified [69].

2.3.6 Collective excitations

The cavity is damped with the rate of photon loss ▷. This adds the term i▷â to the Heisenberg

equation for the cavity operator Eq. (2.45b) as well as the fluctuation operator ’̂ in accordance with

the fluctuation-dissipation theorem [32]. The cavity dissipation produces white noise which means the

fluctuation operator has only one nontrivial correlation function ↖’̂(t)’̂†(t→)⇓ = 2▷ϑ(t ↗ t
→) [32]. The

collective excitations around the steady state solutions following the ansatz

â(t) = ⇀0 + ϑâ , ε̂(r, t) = e
≃iµt


ε0(r) + 2̂(r, t)


, (2.50)

obey in linear order the Heisenberg-Langevin equations [36, 100]

i
φ

φt
ϑâ =

[
↗&C + U0

∫

V

d
3r


cos2(kx)|ε0(r)|

2

↗ i▷

]
ϑâ+ i’̂

+ U0⇀0

∫

V

d
3r

{
cos2(kx)


ε
↔

0(r)2̂(r) + 2̂
†(r)ε0(r)

}

+ 20

∫

V

d
3r

{
cos(kx) cos(ky)


ε
↔

0(r)2̂(r) + 2̂
†(r)ε0(r)

}
, (2.51a)

i
φ

φt
2̂(r) =

[
↗
⇒

2

2m
+ 2U |ε0(r)|

2
↗ 4↽P cos2(ky) + U0 cos

2(kx)|⇀0|
2

+40 cos(kx) cos(ky)Re(⇀0)↗ µ

]
2̂(r)

+ Uε
2
0(r)2̂

†(r) + U0 cos
2(kx)ε0(r)


⇀
↔

0ϑâ+ ϑâ
†
⇀0


+ 20ε0(r)


ϑâ+ ϑâ

†

. (2.51b)

The equations couple the fluctuations to their Hermitian conjugates. Therefore, it is convenient to

introduce separate operators for the propagation positive in time + and negative in time ↗. This

yields the ansatz that doubles the operator space by adding frequencies with negative real parts [100]

ϑâ = e
≃i#t

ϑâ+ + e
i#↑

t
ϑâ

†

≃
, 2̂(r) = e

≃i#t
2̂+(r) + e

i#↑
t
2̂
†

≃
(r) . (2.52)
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The Langevin equations (2.51) need to be fulfilled separately for the terms e
≃i#t and e

i#↑
t, so that

the fluctuations are described by the linear eigenvalue equation [100]

#





ϑâ+

ϑâ≃

2̂+(r)

2̂≃(r)




= M





ϑâ+

ϑâ≃

2̂+(r)

2̂≃(r)




, (2.53)

with the non-Hermitian stability matrix M . Through some mathematical trickery elaborated on in

Ref. [100] one finds that the eigenvalues describing the system dynamics come in pairs (#,↗#↔) with

a real part of opposite sign and the same imaginary part, i.e. damping [100]. For an arbitrary mean-

field (⇀0,ε0(r)) they can only be obtained numerically. Below the self-organization threshold, though,

the spectrum becomes analytically calculable. As discussed, in the normal phase the steady state is

described by the trivial solution ⇀0 = 0, ε0 =
⇑
n, and µ = Un of Eq. (2.48). The cavity couples

only to the Fourier component cos(kx) cos(ky) which is commensurable with the coupling potential in

Eq. (2.51). All other modes outside this closed subspace are described approximately by the familiar

condensate excitations ↽p =
√
(p2/2m)[(p2/2m) + 2Un] of the Bose gas Bogoliubov dispersion Eq.

(2.25) assuming that the pump ↽P is negligible. Next we insert the trivial mean-field along with

the relevant Fourier component of the fluctuations 2̂(r) = 2 cos(kx) cos(ky)2̂1/
⇑
V into the Langevin

equations given in Eq. (2.51). Using
 +L/2
≃L/2 du cos(ku) = 0 and cos2(ku) = [1 + cos(2ku)]/2, the

fluctuations in the normal phase thus follow in the form

i
φ

φt





ϑâ

ϑâ
†

2̂1

2̂
†

1




= M





ϑâ

ϑâ
†

2̂1

2̂
†

1




+ i





’̂

’̂†

0

0




, (2.54)

with

M =





↗ϑC ↗ i▷ 0 +0
⇑
N +0

⇑
N

0 +ϑC ↗ i▷ ↗0
⇑
N ↗0

⇑
N

+0
⇑
N +0

⇑
N +(2↽R + Un↗ ↽P ) +Un

↗0
⇑
N ↗0

⇑
N ↗Un ↗ (2↽R + Un↗ ↽P )




. (2.55)

The stability matrix M is non-normal due to the cavity dissipation ▷. Consequently, it has di!erent

left and right eigenvectors and the mentioned eigenvalue pairing (#,↗#↔). Without any coupling

0 = 0 the eigenvalues # ′ C of the stability matrix are one pair for the cavity with the real part ±ϑC

with

ϑC = &C ↗
U0N

2
, (2.56)

and the negative damping which is the imaginary part ↗▷. The other pair is the matter mode of the

real part ±↽1 with

↽1 =
√
(2↽R ↗ ↽P )(2↽R ↗ ↽P + 2Un) . (2.57)

When the coupling 0 is turned on, the cavity and matter modes hybridize and form two polaritons as

shown in figure 2.9. If |&C | ↘ 2↽R, the mode with the larger real part of the eigenvalue will always

remain predominantly cavity-like and the other predominantly matter-like.
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(a) (b)

Figure 2.9: Eigenvalues # of the stability matrix M versus pump strength ↽P (a) and single atom
coupling U0 (b). The real part of #M gives the dynamic frequency, while negative imaginary parts
correspond to the damping of the system. The critical pump ↽P,cr or single atom coupling U0,cr is
at the point Im(#) = 0 where the upper branch of the damping crosses into the positive half-plane.
Beyond the critical point 0 > 0cr the simple approximation that the atomic excitation is just a
single Fourier mode 2̂1 breaks down. Thus, the eigenvalues in this region are shown as dashed lines.
Parameters are &C = ↗27.5↽R, ▷ = 1.25↽R, nU = 10≃2

↽R, U0 = ↗10≃3
↽R, ↽P = 2.8 ∞ 10≃2

↽R,
N = 5∞ 104.

The smaller polariton mode becomes soft when the coupling between the atoms and the cavity 0

reaches the critical value

0cr =
(√

↗U0↽P

)

cr
=


ϑ
2
C
+ ▷2

↗ϑC

2↽R ↗ ↽P + 2Un

4N
. (2.58)

It is determined as the coupling strength for which the soft mode polariton becomes unstable. The

imaginary part, i.e. the damping of the mode, acquiring a positive value in its upper branch indicates

this, as can be seen in the figure 2.9. Note also that Eq. (2.58) is in principle implicit regarding

the critical value for the single atom coupling U0 and the pump strength ↽P . The first, U0, is small

compared to |&C |, and the second, ↽P , occurs only if the system is treated in more than one dimension.

A crucial ramification of this result is that the criticality of the phase transition survives in the presence

of dissipation [36]. Although, the study of the divergence of the fluctuation near the phase transition

point 0cr shows that the critical exponent is modified from 1/2 to 1 by the addition of the dissipative

e!ect [36].

Here the dissipation was included because we considered the cavity loss channel. The channel allows

to measure the cavity light by detecting the outgoing photons [102–104]. Since the atomic fluctuations

are strongly correlated with the cavity fluctuations due to the formation of polaritons, the atomic state

can also be monitored non-destructively in this way. Thus, in the cavity BEC setup, fluctuations in

the matter and light sectors can be studied in situ [102–104].

2.3.7 Mapping to the Dicke model

The self-organization of the homogeneous atomic gas under a su”ciently strong coupling to the cavity

light can be mapped to the Dicke model [105]. The Dicke model is one of the fundamental models of

light-matter interaction [24]. It describes the coupling of a two-level system to a single bosonic light

mode. The coupling is such that both the excitation and the relaxation of the two-level matter are

linearly coupled to the creation and annihilation of a photon, see Eq. (2.62). From the analysis of

collective excitations, it was determined that the Hilbert space of the atomic field ε̂ is closed below
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Bloch Sphere

yx

z

Figure 2.10: Atomic excitation paths from the condensate zero momentum mode to the checkerboard
modes ε̂

†

1ε̂0 in momentum space. In the Dicke model, the atomic excitations are represented by Ĵ+

on the Bloch sphere sketch on the right, where according to Eq. (2.62) the coupling term is Ĵx. Note
that the spin moving on the Bloch sphere is macroscopically large ↓ N . The left side of the plot is
adapted from Ref. [23].

the critical point. Consequently, the atomic field operator is expressed in terms of this subspace [105]

in the form

ε̂(r) =
1

⇑
V
ε̂0 +

2
⇑
V

cos(kx) cos(ky)ε̂1 . (2.59)

The ansatz is inserted into the field Hamiltonian of the cavity BEC Eq. (2.46) where we make again

use of
 +L/2
≃L/2 du cos(ku) = 0 and cos2(ku) = [1 + cos(2ku)]/2 and find

Ĥ =
k
2

m
ε̂
†

1ε̂1 ↗ 2↽P

(
ε̂
†

0ε̂0 +
3

2
ε̂
†

1ε̂1

)
+

U0

2
â
†
â

(
ε̂
†

0ε̂0 +
3

2
ε̂
†

1ε̂1

)
+ 0

(
â+ â

†

)(
ε̂
†

1ε̂0 + ε̂
†

0ε̂1

)

+
U

2V

(
ε̂
†

0ε̂
†

0ε̂0ε̂0 + ε̂
†

1ε̂
†

1ε̂0ε̂0 + ε̂
†

0ε̂
†

0ε̂1ε̂1 + 4ε̂†

1ε̂
†

0ε̂0ε̂1 +
9

4
ε̂
†

1ε̂
†

1ε̂1ε̂1

)
↗&C â

†
â .

(2.60)

It is ε̂†

0ε̂0+ ε̂
†

1ε̂1 = N due to the closed subspace. For the homogeneous condensate the occupation of

the zero mode ε̂0 is macroscopically large ↖ε̂
†

1ε̂1⇓/↖ε̂
†

0ε̂0⇓ ∝ 1/N . Furthermore, the s-wave scattering

U is considered to be very weak compared to the cavity dynamics |&C | and the recoil frequency

↽R = k
2
/2m transferred to an atom by a pump or cavity photon. The Hamiltonian Eq. (2.60) is

vastly simplified by these approximations and follows as

Ĥ =
(
2↽R ↗ ↽P + 2Un

)
ε̂
†

1ε̂1 +

(
↗&C +

U0N

2

)
â
†
â+ 0

(
â+ â

†

)(
ε̂
†

1ε̂0 + ε̂
†

0ε̂1

)
, (2.61)

where we have neglected constant terms like ↗2↽PN or Un(N ↗ 1)/2. Application of the Schwinger

representation Ĵx = (ε̂†

1ε̂0 + ε̂
†

0ε̂1)/2, Ĵy = (ε̂†

1ε̂0 ↗ ε̂
†

0ε̂1)/2i, and Ĵz = (ε̂†

1ε̂1 ↗ ε̂
†

0ε̂0)/2 yields the

expression for the e!ective Hamiltonian [105]

ĤDicke =

2↽R ↗ ↽P + 2Un


Ĵz ↗ ϑC â

†
â+ 20


â+ â

†

Ĵx , (2.62)

that has precisely the form of a Dicke Hamiltonian and we visualize this in figure 2.10. Note, however,

that the realization of the model by a cavity BEC setup is technically an open Dicke model due to its
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driven nature. The Dicke model exhibits a quantum phase transition [106] at the critical value

0cr =

(
↗&C +

U0N

2

)
2↽R ↗ ↽P + 2Un

4
, (2.63)

that matches the critical point from the linear stability analysis or collective excitations around the

mean-field of the normal condensate phase for ▷ → 0. It is the critical point of the second-order

non-equilibrium Dicke quantum phase transition [106].

The Dicke model belongs to the class of infinite-range interaction models that have e!ectively zero

dimensionality and are mean-field exact in the thermodynamic limit N,V → ↑ while n = N/V =

const [107]. With Ĵi ∝ N and ↖â
(†)

⇓ ∝
⇑
N the coupling between the cavity light and the atoms must

scale as g0 ∝ 1/
⇑
V . This is supported by the equation for the Rabi frequency g0 = deg

√
↽C/(2ε0VC),

Eq. (2.39), if we consider that we want to keep the ratio between the cavity mode volume VC and the

atomic volume V constant V/VC = const. It has been shown that the diagrammatic corrections to the

mean-field Hamiltonian Eq. (2.46) scale as 1/V relative to the mean-field diagrams [107]. This verifies

that the cavity BEC setup with infinite interaction range is also mean-field exact in the thermodynamic

limit [107].

The e!ective description in the Dicke model reveals the coupling of the zero-momentum state to the

degenerate superposition of states |±k,±k⇓ described by cos(kx) cos(ky) by the scattering of a photon

between pump and cavity. As depicted in Figure 2.10, an excitation to the finite momentum state

Ĵ+ =
∑

±,±
| ± k,±k⇓↖0, 0| can occur by two processes as exposed by replacing Ĵx = Ĵ+ + Ĵ≃ [23].

Either a standing wave pump photon is absorbed and then a photon is emitted into the cavity â
†
Ĵ+

or a cavity photon is absorbed and then light is emitted into the pump field âĴ+. In the superradiant

phase, both the cavity field ↖â⇓ and the atomic polarization ↖Ĵx⇓ take on macroscopically large values

and provide the order parameter for the light and matter, respectively [23].

2.3.8 Cavity-induced long-range interaction in the atom-only picture

Starting from the Heisenberg equation Eq. (2.45b), the damping of the cavity due to photon losses of

the mirror is included by the white noise dissipation characterized with the cavity decay rate ▷ [36].

As discussed in section 2.3.6 this adds the term i▷â and the fluctuation operator ’̂ to Eq. (2.45b).

While the equation for the atomic field Eq. (2.45a) is unchanged, the cavity field is now described by

i
φâ

φt
=

[
↗&C +

∫

V

d
3r

{
g
2(r)

&A

ε̂
†(r)ε̂(r)

}
↗ i▷

]
â+

∫

V

d
3r

{
g(r)h(r)

&A

ε̂
†(r)ε̂(r)

}
+ i’̂ . (2.64)

If the detuning of the cavity field is large |&C | ↘ ↽R, the cavity dynamics follows the atomic degrees

of freedom e!ectively instantaneously [27, 88]. The cavity field operator â can then be eliminated

in a Born-Oppenheimer approximation [27]. Alternatively, in the bad cavity limit ▷ ↘ ↽R, where

all excitations of the cavity are rapidly damped away, the cavity field can be equivalently eliminated

adiabatically [108]. Thus, if the parameter |&C + i▷| ↘ ↽R is the steady state of Eq. (2.64), i.e.

i
ϖâ

ϖt
= 0 and neglecting ’̂, we get

â =


V
d
3r

{
g(r)h(r)

$A
ε̂
†
ε̂

}

&C + i▷↗

V
d3r

{
g2(r)
$A

ε̂†ε̂

} . (2.65)

While this equation was perfectly fine for the complex-valued mean-field Eq. (2.47a) in its operator

form, it introduces some ordering ambiguities of the operators in the numerator and denominator.

However, with the normalization of the atomic field to the number of atomsN and the large parameters
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y

xz

Figure 2.11: Sketch of the cavity-induced interaction in the atom-only picture Eq. (2.68). The
cavity-mediated interaction by scattering of a pump photon into the cavity and subsequent scattering
of a cavity photon into the pump by another atom. Note that the left diagram is momentum conserving
while the right one is not. The sketch is adapted from Ref. [35]. On the right, we show the softening
of the roton mode Eq. (2.69) with the increase of the cavity-induced interaction strength I to a critical
value. Beyond the critical value, the roton mode is unstable with an imaginary value, which we plot
as a dashed curve. The parameter is nU = 10≃2

↽R.

|&A| ↘ |&C + i▷| ↘ ↽R so that |&C ± i▷| ↘ |U0| = g
2
0/|&A|, we can expand the denominator as a

harmonic series to [27]

â =
1

&C + i▷

∫

V

d
3r

{
g(r)h(r)

&A

ε̂
†
ε̂

}[
1 +O

(
U0

|&C + i▷|

)]
. (2.66)

The order ambiguities occur only in the higher orders of the harmonic series. Insertion of Eq. (2.66)

into the field Hamiltonian Eq. (2.46) yields the e!ective atom-only picture, although again operator

ordering ambiguities occur. They are resolved correctly per Ref. [109] by the ordering

1

2

(
â
†

∫

V

d
3r

{
g(r)h(r)

&A

ε̂
†
ε̂

}
+

∫

V

d
3r

{
g(r)h(r)

&A

ε̂
†
ε̂

}
â

)

=
1

2

2&C

&2
C
+ ▷2

(∫

V

d
3r

{
g(r)h(r)

&A

ε̂
†
ε̂

})2

+O

(
U

2
0

|&C ± i▷|2

)
, (2.67)

for the coupling term linear in the cavity field of Eq. (2.46). In the lowest order of U0/|&C ± i▷|,

the cavity thus induces a two-body density-density interaction between the atoms. Crucially, if the

coupling between the cavity field and the atoms of the mode functions g(r)h(r) is e!ectively infinite-

range, then the induced interaction is also infinite-range. The higher orders omitted in Eq. (2.66)

describe three and more body interactions of unknown operator ordering, as can be seen by considering

further terms in Eq. (2.67). Conversely, even the lowest order of the optomechanical coupling term

g
2(r)â†â/&A in Eq. (2.46) is at least of three-body type and O(U2

0 /|&C ± i▷|
2), so this term does not

contribute. The e!ective atom-only field Hamiltonian of the cavity BEC is therefore

Ĥat =

∫

V

d
3r

{
ε̂
†(r)

[
↗
⇒

2

2m
+

h
2(r)

&A

+
U

2
ε̂
†(r)ε̂(r)

]
ε̂(r)

}

+
1

2

∫

V

d
3r

∫

V

d
3r→

{
ε̂
†(r)ε̂(r)

2&C

&2
C
+ ▷2

g(r)h(r)g(r→)h(r→)

&2
A

ε̂
†(r→)ε̂(r→)

}
. (2.68)

The cavity-induced interaction term of the second line in Eq. (2.68) describes an interaction that is

global throughout the intersection of the pump mode and cavity mode as depicted in figure 2.11. The

fast dynamical cavity field is strongly slaved to the atomic distribution Eq. (2.45a) so that a small
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local fluctuation of the latter significantly a!ects the global cavity field [27]. In a microscopic view,

the induced interaction is realized by an atom scattering a pump photon into the cavity, where the

photon is stored delocalized over the mode volume until another atom scatters it into the pump, as

illustrated in figure 2.11. Thus, the indistinguishable atoms are globally correlated [27]. Note that

the induced interaction in Eq. (2.68) is not translation invariant. While the e!ective Hamiltonian

Ĥat may appear to be a closed system, we have to remember that the underlying physics is that of

a driven dissipative system. Hence, we can associate the lack of momentum conservation with the

pumping of the atoms and the losses of the cavity. It should be mentioned that more complicated

experimental setups succeed in engineering the cavity-induced interaction to be e!ectively momentum

conserving [79].

Of course, below the critical pump strength, the atom-only picture is also in the homogeneous mean-

field ↖ε̂⇓ =
⇑
n. The atomic excitations of the atom-only Hamiltonian can then be derived similarly

by Bogoliubov theory. We generalize this derivation in the chapter 4, so we postpone the presenta-

tion of the details there and only briefly discuss the results here. Given the cavity mode function

g(r) = g0 cos(kx) and the pump mode function h(r) = h0 cos(ky), the cavity-mediated long-range

interaction a!ects only the checkerboard mode excitations 2̂1 ↓ cos(kx) cos(ky). Because the in-

teraction is infinite-range, it selects only these distinct atomic momenta | ± k,±k⇓. For the red-

detuned cavity &C < 0 the interaction is locally attractive with the e!ective interaction parameter

I = 2&Cg
2
0h

2
0/[(&

2
C
+ ▷

2)&2
A
] < 0. Consequently, the excitation spectrum in the atom-only picture is

the Bose gas dispersion Eq. (2.25) except for a single distinct mode as derived later as Eq. (4.55)

# =



2↽R

(
2↽R + 2Un+

IN

2

)
. (2.69)

This mode # is roton-like because I < 0 and its softening with the cavity interaction I is shown

in figure 2.11. At the critical point Icr = ↗4(↽R + nU)/N , the roton is completely softened # = 0,

signaling the self-organization phase transition in the atom-only description. The roton-like excitation

of the atomic system and its softening have been observed in Ref. [35].

2.3.9 Short review of the cavity BEC above the critical point for self-organization

Near and beyond the self-organizing phase transition 0 ↭ 0cr the cavity BEC can be treated accurately

as a lattice model [27, 88, 110]. The atomic field operators can then be expanded in the localized

eigenfunctions at each site i given by the lowest-band expansion in Wannier functions w(r) such

that [88]

ε̂(r) =
∑

i

b̂iw(r ↗ ri) . (2.70)

The lattice site index i runs over both the even and odd sites of the square checkerboard lattice

shown in figure 2.8. For an overdamped light field ▷ ↘ ↽R, the Wannier expansion Eq. (2.70) can

be applied to the e!ective atom-only Hamiltonian Eq. (2.68) to obtain the generalized Bose-Hubbard

model [88, 111]

Ĥ =
∑

⇒i,j⇑

tij b̂
†

i
b̂j +

Ulat

2

∑

i

n̂i(n̂i ↗ 1) +
Ilat

2

∑

i,j

(↗1)i+j
n̂in̂j , (2.71)

with the cavity-mediated global interaction Ilat ↓ 0
2 and the on-site number operator n̂i = b̂

†

i
b̂i.

The validity of this model can be extended to the entire phase diagram, and in particular to the
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Figure 2.12: Sketch of the phase diagram of the extended Bose-Hubbard model for varying e!ective
cavity detuning ϑC and pumped lattice depth. The cavity detuning only changes the global interaction
Ilat, while the lattice depth increases both the on-site interaction U and the global interaction Ilat [26].
In the upper left is a zoom-in on the small detuning and lattice depth region to resolve the details
of the phase diagram there. It shows the normal superfluid (NO/SF), the superradiant self-organized
(SR/SO), and the self-organized Mott insulator phase (MI/SO). The phase diagram at large cavity
detuning is shown below the gray horizontal section through the phase diagram. There is also the
normal Mott insulator phase (MI/NO) with a first-order phase transition indicated by the dashed
line and the shaded region. The sketch amalgamates the diagrams shown for the di!erent regimes in
Refs. [25, 26, 111]

normal ordered superfluid phase, by adding an external potential that traps the atoms initially at

all possible sites, both odd and even. It adds a term with the e!ective on-site chemical potential
∑

i
(V trap

i
↗ µi)n̂i to Eq. (2.71). The self-organization order parameter Eq. (2.49) takes the lattice

form 1 = (
∑

i
(↗1)ini)/(

∑
i
ni) with the expectation values ni = ↖n̂i⇓ [111].

The Z2 symmetry-breaking into even or odd lattice sites at the self-organization transition can be

emphasized in the Hamiltonian by introducing separate indices (e, o) running over the even e and odd

o sites of the checkerboard [26]. We obtain

Ĥ = t

∑

⇒e,o⇑

(
b̂
†

e
b̂o + b̂

†

o
b̂e

)
+

Ulat

2

∑

i⇐{e,o}

n̂i(n̂i ↗ 1) +
Ilat

2


∑

e

n̂e ↗

∑

o

n̂o

2

+
∑

i⇐{e,o}

(V trap
i

↗ µi)n̂i .

(2.72)

Below the critical pump strength the system is in the usual normal superfluid phase where all lattice

sites are coherent and the order parameter is 1 = 0. This phase is shown in white in the phase

diagram of the extended Bose-Hubbard model in figure 2.12. Above the critical pump strength, the

order parameter also takes finite values in the lattice model, forming the superradiant self-organized

phase. In addition, when the pump strength is increased beyond the critical point, hopping between

sites of the lattice is gradually hindered [111]. The system retains its superfluid properties in a small

range above the critical pump value. Due to its combined superfluid properties and self-assembly into

a lattice, this phase is often referred to as supersolid in the literature [26, 70,112].

Deeper in the self-organized phase, the pump is su”ciently strong that the superfluidity breaks down

because hopping is severely impeded so that there is no spatial coherence. Above this second critical

pump strength, the system is in a self-organized Mott insulator phase [111]. This phase is also

associated with a charge density wave [26]. The self-organized Mott phase has been experimentally

verified [25].

Further studies have revealed regions of bistability and hysteresis as well as a fourth phase [26,71,112].

The phase diagram described so far is the picture for smaller cavity detunings below a certain critical
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o!-resonance, which in Ref. [26] is about |&C |/2ς < 50 MHz. When the cavity is very far red-tuned,

the superfluid phase does not transition to a checkerboard phase with higher pump power. Instead,

it transitions directly to a Mott insulator phase in which the atoms are equally localized on both odd

and even sites [26]. In fact, the imbalance between even and odd sites 1 in the self-organized phase

is most pronounced for good cavity resonance. As the red-detuning &C increases in absolute value,

it becomes smaller until a first-order phase transition to the evenly distributed Mott insulator phase

occurs in the region around &C/2ς ⇐ ↗50 MHz, where blue and green overlap with a hysteresis that

is independent of how fast the detuning is changed [26].

2.3.10 The hybrid atom-optomechanical setup

In the atom-optomechanical setup, a low-finesse cavity contains a semitransparent nanomechanical

membrane with mass M and resonance frequency #m as shown in figure 2.13. The second section of

the setup contains an ultracold quasi-one-dimensional Bose gas of N atoms, each with mass m. Every

atom is considered to have three internal states |↗⇓, |+⇓, and |e⇓. The transition between |+⇓ ∈ |e⇓

is driven at the detuning & by a ϱ≃ polarized beam of frequency ↽L. After passing through the

condensate, the pump beam hits a polarizing beam splitter (PBS), where the linear ςy polarized light

continues in the direction of the cavity, while the ςx light is reflected in a perpendicular direction.

The ςx light is reflected back into the beam splitter, forming the vertical arm shown in figure 2.13.

When the membrane in the cavity is not displaced, the ςy polarized light from the cavity returns to

the beam splitter without any phase shift relative to the light of the vertical arm. However, if the

membrane is displaced, it induces a phase shift between the two beams recombined at the polarized

beam splitter. Then ϱ+ polarized light from the beam splitter returns to the atoms and drives their

internal transition |↗⇓ ∈ |e⇓. This produces the $ coupling scheme shown in figure 2.13. Note that an

internal transition between atomic states |↗⇓ ∈ |+⇓ along the $ emits a ϱ+ photon and thus a!ects

the radiation pressure experienced by the membrane. In summary, the light field mediates coupling

between the single-mode harmonic oscillator of the membrane and the atomic condensate [B].

The light field and the excited atomic state |e⇓ can be adiabatically eliminated because the system is

in the bad-cavity limit, i.e. the dissipation of light is the fastest time scale. In this e!ective picture,

the Hamiltonian of the hybrid atom-optomechanical setup is [B,113,114]

Ĥaom = #mâ
†
â+

∑

ϱ=±

∫
dz

{
ε̂
†

ϱ
(z)

[
3
#a

2
↗ ↽Rφ

2
z
+ Vϱ(z) +

∑

ϱ→=±

Uϱϱ→

2
ε̂
†

ϱ→(z)ε̂ϱ→(z)

]
ε̂ϱ(z)

}

↗

â+ â

†
 ∫

dz

{
sin(2z)

[
0exε̂

†

+(z)ε̂+(z) +
0

2


ε̂
†

+(z)ε̂≃(z) + ε̂
†

≃
(z)ε̂+(z)

]}
, (2.73)

with the rescaling of the position coordinate z → z/↽L. The system is e!ectively a two-species Bose

gas ε̂ϱ=± of the |↗⇓ and |+⇓ internal state of the atoms coupled to the single bosonic mode of the

membrane #m. The Bose species have atom-atom interactions by s-wave scattering intra species U≃≃

and U++ as well as inter species U+≃ = U≃+. Between the atoms and the membrane, there is an

infinite-range coupling characterized by the light field mode sin(2z) to the displacement quadrature

of the membrane ↓ (â+ â
†). We see that in principle there is an asymmetric coupling to the species

by the parameter 0ex.

The hybrid atom-optomechanical system undergoes a non-equilibrium quantum phase transition, a

phenomenon that is also seen in cavity BEC as discussed in section 2.3.6. The phase diagram is rich

and shows transitions from exclusive macroscopic occupation of one of the internal atomic states to

phases where both are occupied [B,113]. The transition can also be seen in the change of the membrane

from a non-displaced to a constantly displaced state [B, 113]. Depending on the parameters of the
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Figure 2.13: The hybrid atom-optomechanical setup with internal coupling scheme. A nanomem-
brane oscillates in the cavity with #m. The cavity light and its outcoupled dissipative field mediate an
interaction with a one-dimensional BEC on the right by addressing its internal states in the $ scheme
shown in the inset. Figure as published in Ref. [B] for which it was adapted from Ref. [113].

transition frequency #a, the coupling 0 and the asymmetry of the coupling 0ex the transitions can

be tuned to be first or second order with spontaneous breaking of the U(1) symmetry of the internal

states of the Bose gases [B, 113]. The first-order non-equilibrium quantum transition is accompanied

by hysteresis [113]. We have associated the transition to finite membrane displacement in the steady

state with the formation of a self-organized density wave state in the BEC from a homogeneous

state [B], i.e. a state similar to the self-organized state in the cavity BEC. If quantum fluctuations

are taken into account in this analysis, phase boundaries are likely to be a!ected and new phases like

the quantum droplets of Bose-Bose mixtures could emerge in the already rich phase diagram [B]. We

will have a brief review of Bose-Bose mixture droplets in chapter 4.

For simplicity, let us assume that 0ex = 0, leaving only the symmetric coupling with 0. Equivalently,

the external potential is independent of the species V±(z) = ↗V cos(2z)/2 and so is the atom-atom

interaction Uϱϱ→ = U . In comparison with the e!ective Hamiltonian of the cavity BEC Eq. (2.46), the

di!erence comes down to the involvement of two species and their splitting #a.

We now take a look at Ref. [114], where it is assumed that the atoms are in a su”ciently deep optical

lattice V to expand the atomic field operators in lowest-order Wannier functions [115]. Thus a two-

species Bose-Hubbard model with coupling to the membrane is found, which in momentum space gives

the expression [114,115]

Ĥaom = #mâ
†
â+

∑

k,ϱ

εkϱ b̂
†

kϱ
b̂kϱ +

Ulat

2l

∑

k,p,q

∑

ϱ,ϱ→

b̂
†

k+qϱ
b̂
†

p≃qϱ→ b̂pϱ→ b̂kϱ

↗
$

2
(â+ â

†)
∑

k

(
b̂
†

k+b̂k≃ + b̂
†

k≃
b̂k+

)
, (2.74)

with εkϱ = 3#a/2 ↗ 2J cos(k) where J is the hopping amplitude and with $ ↓ 0. The Hamiltonian

Eq. (2.74), although physically completely di!erent, is mathematically very similar to the expression

we find in our work for cavity BEC in Eq. (3.28). This similarity is even more striking when the

Bogoliubov theory is applied to the respective Bose gas. In the hybrid atom-optomechanical physics,

the rotation of the atomic operators b̂kϱ → ĉkϱ by the Bogoliubov coe”cients uk and vk yields [114,115]

Ĥaom = #mâ
†
â+ #aĉ

†

0+ĉ0+ +
∑

k ⇓=0,ϱ

↽kϱ ĉ
†

kϱ
ĉkϱ ↗

$
⇑
N

2
(â+ â

†)(ĉ0+ + ĉ
†

0+)

↗
$

2
(â+ â

†)
∑

k ⇓=0

(
uk[ĉ

†

k≃
ĉk+ + ĉ

†

k+ĉk≃] + vk[ĉk≃ĉ≃k+ + ĉ
†

≃k+ĉ
†

k≃
]
)
, (2.75)
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with

↽k≃ = ↗2J [1↗ cos(k)]



1 +
nUlat

J [1↗ cos(k)]
, ↽k+ = #a + 2J [1↗ cos(k)] + nUlat . (2.76)

In appendix A.4 the detailed derivation laid out in Ref. [115] can be found. The hybrid atom-

optomechanical setup forms a phononic damping system-bath Hamiltonian similar to the Eqs. (3.38)

to (3.40) derived in our work. We will explore the mathematical correspondence in more detail

after deriving these equations in section 3.4. The evaluation of the dissipation characteristics of this

intrinsic damping yields, among other phenomena, exciting bath spectral densities [114, 115]. The

spectral density is gapped by the atomic transition frequency #a, where its dominant peak lies. The

quasiparticle excitations of the bath lead to enhanced squeezing in the system and nontrivial many-

body states [114].
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Cavity BEC systems, with their strong coupling between the atomic and cavity sectors, provide ex-

traordinary possibilities to study quantum phenomena in its central two harmonic modes forming a

polariton system, even by in situ measurements in the cavity loss channel. We show that the presence

of weak atom-atom interactions generates quantum fluctuations that act as a quantum dissipative

bath of Landau and Beliaev damping on the central polariton system. The bath shows exotic spectral

properties involving damping and antidamping competition as well as sub-Ohmic signatures. Using

a beyond-Bogoliubov approximation on the system’s field Hamiltonian, we give an analytical deriva-

tion of all relevant processes from microscopic principles. The dissipation characteristics are exactly

captured by the techniques of imaginary-time path integrals. The rich influence on the physical ob-

servables of the polariton system is discussed and quantified. We determine the Stokes shift in the

critical point of the Dicke quantum phase transition. The control and enhancement of the quantum

bath and its influence on the quantum fluctuations of the system using external tuning parameters

are described in detail. We find that the cavity BEC setup provides a great platform to study exotic

quantum fluctuation and dissipation phenomena thanks to its tunability and the exploitation of its

strong light-matter coupling. In this chapter we present the work published as Ref. [A] L. Mixa,

H. Keßler, A. Hemmerich, and M. Thorwart, Enhancing exotic quantum fluctuations in a strongly

entangled cavity BEC system, Phys. Rev. Res. 6, L012024 (2024).

3.1 – Introduction

The design of the cavity BEC system discussed in this thesis realizes a setup with a strong light-

matter coupling that o!ers both great experimental access and controllability. In situ observation of

the system dynamics [102–104] is the first of these advantages. The ability to control the coupling

between light and matter simply by the strength of the pump laser is another. Thus, the cavity BEC,

with its rich landscape of quantum phases discussed in section 2.3.9, provides an excellent basis for

studying quantum phenomena. One of these phases is the self-organized supersolid-like phase. The

system passes from the superfluid normal phase to this phase via the second-order non-equilibrium

Dicke phase transition, which is discussed in more detail in sections 2.3.5 and following. As a zero-

temperature quantum phase transition, this requires the presence of quantum fluctuations to initiate

the runaway process. These are provided by the atom-atom interaction in the BEC described by

s-wave scattering. The model underlying the superradiant self-organizing phase transition is that of

two quantum harmonic oscillators. One is represented by the cavity mode. The other is represented

by the symmetric superposition of the condensate excitations |±k,±k⇓, which carry a quantum of the

light field momentum k both along the cavity axis x and along the pump axis y. If the dissipation is

taken into account, as in the in situ measurement of cavity photon losses, the criticality remains [36].

However, it is qualitatively modified by the change of the critical exponent for the quantum fluctuations

from 1/2 to 1.

Weak atom-atom interactions introduce processes called Landau [33, 116–122] and Beliaev damping

[33, 67, 123–126] to superfluids. The Dicke system of cavity and checkerboard modes is inevitably

coupled to other collective excitations of the Bose gas by these processes. Adopting a system-bath

picture, we reveal that the cavity BEC provides useful experimental grounds to study a system of
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two bilinearly coupled quantum harmonic oscillators in the dissipative bath provided by Landau

and Beliaev damping. Previous literature on this type of system already indicates peculiar bath

properties leading to interesting dissipation characteristics [34, 127, 128]. The exploration of such

phenomena provided in this quantum simulator setup is relevant for systems such as superconducting

qubits [129,130], nanomechanical systems [131], glassy systems [132], quantum dots [133], and impurity

systems [134, 135]. We review the similarity of the cavity BEC to the hybrid atom-optomechanical

system in section 3.4 and the following investigation in the cavity BEC was sparked by the one

performed in those systems in Ref. [114].

In this chapter, we begin with a quick review of the basics of the system-bath formalism for quantum

dissipation in section 3.2, which underlies the rest of the chapter. It also contains a summary of the

existing literature on describing some of the phenomena in cavity BEC and Dicke model systems. In

section 3.3 we then begin our work to uncover a result that addresses all these e!ects by derivation from

the first principles of the cavity BEC. A beyond-Bogoliubov theory ansatz to describe the quantum

fluctuations in the system is the first step on this journey. In section 3.5 this is followed by invoking

the system-bath notion on the collective excitations with the Landau and Beliaev processes describing

the coupling between the two-harmonic-oscillators system emerging from the cavity BEC and the

bath consisting of excitations of the condensate. We use the imaginary-time path integral technique

to extract the influence functional of the bath. Following that, in section 3.6 we analyze the spectral

densities that characterize the coupling to the bath and hence its dissipation properties. There we

also explore the controllability of the bath by external tuning parameters accessible in the experiment.

Having previously obtained the e!ective action of the system by computing the influence functional,

in section 3.7 we study the fluctuations in the coupled harmonic oscillator system and, in particular,

how they are a!ected by the bath. Again we explore the tuning of the bath so that we dive into

the control and enhancement of its influence on the system and especially on the observable quantum

fluctuations. Finally, we give a brief outlook in section 3.9 and conclude on our results in section 3.10.

3.2 – Quantum dissipation

The dynamics of quantum systems appear to be perfectly reversible, considering that the Schrödinger

equation is a linear di!erential equation. Nevertheless, systems experience dissipation, damping,

relaxation to equilibrium, and irreversibility. Examples are biological energy transfer [136, 137] and

dissipative conical intersections [138], nanomechanical systems [B, 113, 114], molecular junctions and

solvent dynamics [139–142], decoherence in Majorana wires [143], or the relaxation of a two-level

system briefly touched on in section 2.3.1. Of course, the systems mentioned in the introduction to

this chapter provide further examples.

As in the relaxation of the two-level system, it is crucial to consider the generic quantum system not

as isolated, but in contact with an environment. This environment provides a bath consisting of a

plethora of modes where the coupling to any single mode of the bath is weak. Nevertheless, due to

the large number of bath modes and their dense spectrum, the influence of the bath on the system

can be large [32].

In a quantum mechanical description, both the system and the bath, as well as the coupling between

them, are modeled explicitly [144]. The total system is considered to be in thermal equilibrium at the

inverse temperature ⇁ = 1/T with the temperature T and the Boltzmann constant kB = 1.

48



3 – Exotic quantum dissipation from fluctuations

3.2.1 System-bath formalism

The total system-bath Hamiltonian Ĥ = ĤS + ĤB + ĤSB combines the isolated system ĤS and the

isolated bath ĤB by describing the coupling between them in ĤSB . Here we focus on describing a

system in equilibrium at all times. Throughout this thesis, we only stray into discussing dynamics

and non-equilibrium techniques in the introductory literature review of this chapter and the outlook.

We use the imaginary-time path integral technique [32, 65, 144, 145]. In this Wiener path integral

formalism, the phase acquired along a path is given by the Euclidean action S =

ε

0 d4H, where the

integrand is the Hamiltonian functional H integrated over the imaginary time 4 . The Hamiltonian

functional is H[r(4)] and hence not an operator which we indicate by the omission of the hat∗. The

complete equilibrium system-bath ensemble is then described by the Euclidean action [32,144]

S = SS + SB + SSB =

∫
ε

0
d4


HS +HB +HSB


. (3.1)

The imaginary-time path integral of this action yields the equilibrium density matrix of the total

system [32,144]

Wε(r
→→
, r

→) =

〈
r
→→

∣∣∣∣
1

Z
e
≃εĤ

∣∣∣∣ r
→

〉
=

1

Z

∫
r(ε)=r

→→

r(0)=r→
Dr(·)e≃S[r(·)]

, (3.2)

with the partition function of the system-bath model

Z = Tre≃εĤ =

∫

r(0)=r(ε)
D[r(·)]e≃S[r(·)] =

∫

r(0)=r(ε)
D[r(·)]e≃

∫ ω
0 dς{H[r(·)]}

. (3.3)

We, however, are interested just in the system SS within the environment of the bath, not the entire

ensemble described by Z. If we consider that the system’s path is given by q(·) and that of the bath

by x(·), it is clear that the degrees of freedom of the bath can be traced out to obtain the reduced

density matrix of the system

ρε(q
→→
, q

→) = trBWε =

∫ +⇔

≃⇔

dx
→
Wε(q

→→
, x

→; q→, x→) . (3.4)

It naturally involves the reduced partition function Z = Z/ZB . In terms of the path integral for-

mulation, the bath trace produces an integral over all ⇁-periodic paths of the bath. Their period is

determined by the inverse temperature ⇁. This results in the influence functional of the bath [32,144]

F [q(·)] = e
≃Sinfl[q(·)] =

1

ZB

∮
Dx(·)e≃


SB [x(·)]+SSB [q(·),x(·)]


, (3.5)

which is determined by the influence action Sinfl according to its definition in Eq. (3.5). The reduced

density matrix thus has the expression

ρε(q
→→
, q

→) =
1

Z

∫
q(ε)=q”

q(0)=q→
Dq(·)e≃SS [q(·)]

F [q(·)] =
1

Z

∫
q(ε)=q”

q(0)=q→
Dq(·)e≃Seff [q(·)] . (3.6)

Here we have used the notation of the e!ective action for the system in the bath Se! = SS + Sinfl. It

is noteworthy that while the original contributions in the action SS , SB , and SSB are local in time,

the reduction of the bath to its influence on the system yields an action Sinfl that can be, and usually

is, nonlocal in time [32].

∗See the derivation of the path integral formalism in Refs. [32, 65,144].
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Having obtained a description of the system under the influence of the bath, its equilibrium expectation

values can be computed from its partition function via a source term [32,144]

↖A⇓ =
1

Z

1

⇁

∫

q(0)=q(ε)
Dq

∫
ε

0
d4

→
A(q(4 →))e≃Seff [q(ς)]

=
↗1

Z⇁

φ

φ0

∫

q(0)=q(ε)
Dq e

≃(Seff [q(ς)]+
∫ ω
0 dςφA(q(ς))) = ↗

1

Z⇁

φ

φ0
Z = ↗

1

⇁

φ

φ0
lnZ . (3.7)

3.2.2 Caldeira-Leggett model

If the bath SB consists of harmonic oscillator modes that are linearly coupled to the system in SSB ,

the influence functional and equivalently the influence action Eq. (3.5) can be calculated exactly [32].

Even if this does not coincide with the microscopic structure of the studied system, the idea of linear

coupling is usually a very good approximation due to the weak coupling between the system and a

single bath mode [32]. Thus, it is a proven strategy that if the microscopic structure is not accessible or

intractable, the bath can be modeled by a large number of harmonic oscillator modes linearly coupled

to the system [32]. The coupling strength of each bath mode to the system can then be obtained

phenomenologically from the classical system in what we will find to be the spectral density of the

bath G(↽). Such a system-bath setup is described by the celebrated Caldeira-Leggett model, where

the bath consists of N independent harmonic oscillators with masses mj and frequencies ↽j

ĤB =
N∑

j=1

Ĥj =
N∑

j=1

p̂
2
j

2mj

+
mj↽

2
j

2
x̂
2
j
. (3.8)

The system is described by a potential V (q̂) and couples to the bath linear in the bath operators x̂j

given by the Hamiltonian

ĤSB =
N∑

j=1


↗Fj(q̂)x̂j +

F
2
j
(q̂)

2mj↽
2
j


. (3.9)

The second term in the coupling Hamiltonian Eq. (3.9) counters renormalization of the system poten-

tial caused by the coupling to the bath [32, 144]. This counter-term prevents the physics from being

altered by the phenomenological bath construction. Below in the thesis, a bath emerges from first

principles. In that case, we can learn that the intrinsic bath renormalizes the system in a way that

can even have qualitative consequences. An example is the Stokes shift where the e!ective dissipation

into a bath shifts the photon emission spectrum of a system relative to its absorption spectrum.

We next consider the special case of a bilinear coupling between the system and the bath by setting

Fj(q̂) = cj q̂ in Eq. (3.9). To trace out the bath, the path integral over all ⇁-periodic paths must be

performed. Therefore, it is opportune to use a periodic summation of the paths based on the bosonic

Matsubara frequencies 3n = 2ςn/⇁ with n ′ Z [144]

xj(4) =
1

⇁

+⇔∑

n=≃⇔

xj,ne
iϱnς , q(4) =

1

⇁

+⇔∑

n=≃⇔

qne
iϱnς . (3.10)

The coe”cients fulfill xj,n = x
↔

j,≃n
and qn = q

↔
≃n

. Additionally, it is useful to express the paths as

their stationary path x̄j plus fluctuations around them. The stationary paths are obtained from the

classical equations of motion [144]

mj
¨̄xj ↗mj↽

2
j
x̄j + cj q̄ = 0 ⇔ x̄j,n =

cj

mj(32n + ↽
2
j
)
qn . (3.11)
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Because the action is extremized for the stationary paths x̄j , the terms linear in the fluctuations vanish

and the influence action Sinfl[q] is obtained. We leave further details of the derivation to corresponding

literature [32, 144,145] and just state the result

Sinfl[q(·)] =
1

2⇁

+⇔∑

n=≃⇔

Kn|qn|
2
. (3.12)

The coe”cients Kn express the properties of the bath influence on the system. In the continuum limit

for a bath of infinitely many dense bath modes ↽j , the bath coupling characteristics are expressed via

the spectral density of the bath G(↽) [144]. We have

Kn =
N∑

j=1

c
2
j

mj

1

32
n
+ ↽

2
j

= 2

∫
⇔

0
d↽

{
G(↽)

↽

32
n
+ ↽2

}
. (3.13)

The fraction next to the spectral density in the integrand of Eq. (3.13) involve the Matsubara coe”-

cients of the imaginary-time free boson propagator

Dϑ(4) =
1

⇁

+⇔∑

n=≃⇔

2↽

32
n
+ ↽2

e
iϱnς = [1 + nB(↽)]e

≃ϑς + nB(↽)e
+ϑς

, (3.14)

with the Bose distribution nB(↽) = [eεϑ ↗ 1]≃1. It is also referred to as the free thermal Green’s

function Dϑ(4). The integral kernel of the influence action Eq. (3.12)

K(4) =
1

⇁

+⇔∑

n=≃⇔

Kne
iϱnς =

∫
⇔

0
d↽G(↽)Dϑ(4) , (3.15)

combines the bath coupling characteristics in the spectral density G(↽) and the imaginary-time prop-

agation of the free bath modes Dϑ(4). With Eq. (3.15) the influence action takes the form

Sinfl =
1

2

∫
ε

0
d4

∫
ε

0
d4

→

q(4)K(4 ↗ 4

→)q(4 →)

, (3.16)

where the nonlocality in time of the influence action becomes apparent [32].

3.2.3 Bath spectral density

The general influence of a dissipative bath is usually studied in the spin-boson model, where a two-

state system ĤS = #ϱ̂x/2 is bilinearly coupled to a harmonic oscillator bath via ϱ̂z

∑
N

j=1 cj x̂j/2

[32, 146, 147]. The bath is classified by the low-frequency signature of its spectral density G(↽) ↓

5↽
s. Where 5 is the coupling constant to the bath and s is the spectral exponent of the frequency

dependence. A bath with s = 1 is called Ohmic, since it results in a time-local bath influence

comparable to a series resistor [32]. As visualized in figure 3.1, the ratio of the damping rate to the

oscillation frequency is constant, which manifests the time-local dynamics. By increasing the coupling

5 to an Ohmic bath out of the weak regime 5 < 0.5, the dynamics are tuned to be incoherent [32,147].

In a super-Ohmic bath s > 1 the damping is comparatively weak for slow oscillations, but grows

large for high frequencies, as shown in figure 3.1. The consequence is that no incoherent e!ects are

induced [147]. Figure 3.1 illustrates that a sub-Ohmic spectral density s < 1 gives a large weight

to the coupling to low-frequency oscillations and rather little to fast dynamics. Studies of the spin-
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Figure 3.1: Plot of the asymptotic low-frequency behavior of the spectral densities G(↽) with Ohmic
(s = 1), super-Ohmic (s = 2), and sub-Ohmic (s = 3/4, 1/2, and 1/4) bath properties.

boson model revealed that a bath with 1/2 ↫ s ↔ 1 produces damped dynamics at small coupling∗,

5 ↫ 0.2, which become incoherent with increasing coupling and finally lead to a localized phase at

strong bath coupling [147–151]. For an even smaller exponent 0 ↔ s ↫ 1/2 the bath preserves the

oscillatory dynamics independent of the bath coupling 5 [147, 150]. In fact, at very strong coupling,

any sub-Ohmic bath 0 ↔ s ↔ 1 produces pseudo-coherent dynamics as described in Ref. [147].

In the classical limit ⊋ → 0 an Ohmic environment produces white noise [32]. The key property

of white noise is its delta-correlated bath fluctuations ↖’̂†(t)’̂(t→)⇓ = 2▷ϑ(t ↗ t
→), see section 2.3.6.

This lack of retardation e!ects is the defining property for Markovian dissipation [32]. A non-Ohmic

bath with its biased coupling to low frequencies for s < 1 or high frequencies for s > 1 consequently

produces colored noise. Sub-Ohmic reservoirs induce strong non-Markovian dynamics and come along

with exotic quantum colored noise features [32, 147].

Sub-Ohmic dissipation s < 1 describes phenomena such as incoherent tunneling by the open two-

state description. This is valuable for example in the theory of quantum transport [32]. Sub-Ohmic

e!ects are also the basis of ultra-slow glass dynamics [132]. In recent decades they have also been

found in quantum impurity systems [134, 135] and quantum dots [133]. They can also play a role

in nanomechanical oscillator systems [131] and arise from charge noise in superconducting qubits

[129,130].

In general, the dynamics under coupling to a sub-Ohmic bath are di”cult to handle in computation

[147] due to aspects like long-term memory e!ects.

3.2.4 Dissipation in the cavity BEC

The special feature of the cavity setup to allow in situ measurements of the photon dynamics [23,69,

102–104] facilitates a real-time measurement of the cavity photon fluctuations approaching the Dicke

critical point [28]. Intriguingly, the data reveal that the cavity occupation ↖â
†
â⇓ exceeds that of the

isolated Hamiltonian system. On the other hand, the Bogoliubov theory prediction of the dissipative

system as discussed in Ref. [36], see section 2.3.6, exaggerates the fluctuations. It was concluded that

additional damping of the atomic excitations, not accounted for by Bogoliubov theory, is responsible,

so a phenomenological damping rate was constructed. The model was extended by the additional

∗The precise boundaries for weak and strong coupling depend on the exponent s, see the phase diagram in Ref. [147],
and on the cut-o! frequency of the bath as well as the chosen criterium to distinguish between coherent, pseudocoherent,
and incoherent dynamics.

52



3 – Exotic quantum dissipation from fluctuations

damping channel in quantum Langevin form and fitted to data obtained from the measurement of the

second-order correlation function g
(2)(t, 0) ↓ ↖â

†(t)â†(0)â(0)â(t)⇓ [28].

The correlation measurement shows the critical slowing of the dynamics associated with the softening

of the excitation frequency, as also verified in Ref. [35], and a critical exponent of 0.9±0.1 is extracted

for the divergence of the fluctuations in the vicinity of the phase transition [28]. It agrees well with

the theoretical prediction from the dissipative system, see section 2.3.6 [36].

The complicated phenomenological damping, which had to be nontrivially adjusted with the atom-

light coupling strength 0, see figure 4 in Ref. [28], suggests an exciting non-Markovian environment

that facilitates this additional damping channel. A phenomenological analysis of such an environment

coupled to the Bogoliubov description of the cavity BEC setup Eq. (2.54) has been performed based

on a toy model for the bath Hamiltonian [152,153]. This model is described by

Ĥ = ↗ϑC â
†
â+ ↽1ε̂

†

1ε̂1 + 0

⇑

N

(
â+ â

†

)(
ε̂1 + ε̂

†

1

)
, (3.17)

coupled to the usual white noise bath for the cavity of damping rate ▷ as employed in section 2.3.6 [36]

and the colored bath for the atomic dissipation characterized by the generic ansatz for the spectral

density

G(↽) = 1H(↽)
5

ς

(↽/↽1)s

1 + (↽/↽cut)2
, (3.18)

with a cuto! at the frequency ↽cut and the Heaviside function 1H(↽). This bath is Ohmic for s = 1,

sub-Ohmic for 0 < s < 1, and super-Ohmic for s > 1, with exemplary spectral densities for these

cases plotted in the figure 3.1. Note that for the super-Ohmic choice of s the exponent of the cut-o!

term (↽/↽cut)2 must be increased to a value greater than 2 to be at least 2s [152, 153]. The spectral

density completely characterizes the bath via the functions

K
R,A(↽) = P

∫
⇔

0
d↽

→

{
G(↽→)

↽ ↗ ↽→

}
∋ iςG(↽) , D(↽) = 2iςG(↽) . (3.19)

The non-equilibrium dynamics of the model is represented by the action in the Keldysh formalism

[67,154–157]

S =

∫
d↽

2ς

{(
a
↔

cl a
↔
qu

)
0 ↽ + ϑC ↗ i▷

↽ + ϑC + i▷ 2i▷


acl

aqu



+
(
ε
↔

1,cl ε
↔
1,qu

)
0 ↽ ↗ ↽1 ↗K

A

↽ ↗ ↽1 ↗K
R

D


ε1,cl

ε1,qu



↗
0
⇑
N

2


aqu + a

↔

qu

 
ε1,cl + ε

↔

1,cl


+ (acl + a

↔

cl)

ε1,qu + ε

↔

1,qu


}

. (3.20)

Introducing fields with negative frequencies

v†(↽) =
(
a
↔

cl(↽) acl(↗↽) ε
↔

1,cl(↽) ε1,cl(↗↽) a
↔
qu(↽) aqu(↗↽) ε

↔
1,qu(↽) ε1,qu(↗↽)

)
,

(3.21a)

and thus doubling the variable space yields the expression of the Keldysh action

S =
1

2

∫
d↽

2ς
v†(↽)


0


GA

4↖4

≃1
(↽)


GR

4↖4

≃1
(↽) DK

4↖4(↽)


v(↽) . (3.22)
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The characteristic frequencies of the system are the poles of the retarded Green’s function GR

4↖4(z)

analytically extended into the lower complex plane. Finding an expression for the self-energies requires

a choice of Riemann sheet. Here the second sheet is selected as indicated by the Roman numeral index

II so that the self-energy is

K
R

II (z) = 5
e
i↼s

sinςs

(
z

↽1

)s

. (3.23)

Using the symmetry K
A

II (z) =

K

R

II (z)
↔

and defining %(z) =

K

R

II (z)↗K
A

II (↗z
↔)

/2i and &(z) =


K

R

II (z) +K
A

II (↗z
↔)

/2, the poles of the retarded Green’s function are found in the characteristic

equation

det

GR

4↖4

≃1
(z) =


(z + i▷)2 ↗ ϑ

2
C

 (
[z ↗ i%(z)]2 ↗ [↽1 +&(z)]2

)
+ 0

2
⇑

NϑC [↽1 +&(z)] = 0 .

(3.24)

The poles are either pairs (z,↗z
↔) with real parts of opposite sign or purely imaginary values z ′ iR.

One of the solutions for the poles corresponds to the soft mode polariton which we have already seen

in the Bogoliubov theory discussed in section 2.3.6. Away from the critical value 0cr the damping of

the soft mode polariton is significantly modified by the coupling to the bath compared to the damping

seen as the real part in figure 2.9. The e!ect of the bath is analyzed by an exact numerical calculation

of the correlation functions for the photonic mode Ca(↽) = i[GK

4↖4]11 and the low-frequency mode

C↽1(↽) = i[GK

4↖4]33, obtained as elements of GK

4↖4 = ↗GR

4↖4(↽)D
K

4↖4(↽)G
A

4↖4(↽). If the two system

modes are uncoupled 0 = 0, the correlation function for the photonic mode is simply a Lorentzian

peak at ↽ = ↗ϑC with width 2▷. For 0 = 0 the colored bath a!ects only the low-frequency mode ↽1

and its spectral peak is strictly zero for negative frequencies and has a high-frequency tail predeter-

mined by the cuto! ↽cut. It is not Lorentzian. The bath modifies the bare frequency ↽1 according to

the strength of the coupling to the reservoir 5. Turning on the coupling to the photonic mode 0 the

peak is shifted towards ↽ = 0. If the reservoir takes influence, the real part of the soft mode polariton

frequency vanishes for smaller 0/0cr compared to the isolated polariton system reviewed around figure

2.9. Equivalently, the imaginary part bifurcates earlier due to the bath’s presence. At fairly large

couplings around 0 = 0.80cr the spectrum of the correlation functions becomes double-peaked with

one peak at positive and one at negative frequency due to the hybridization of the modes. Near the

critical point 0 ↭ 0.930cr the spectrum of the correlation functions has only a single peak at ↽ ⇐ 0.

It diverges at the critical point where they are located precisely at ↽ = 0.

To determine how the sub-Ohmic characteristics a!ect the universality class of the phase transition, the

cavity photon number ↖â†(0)â(0)⇓ is analyzed. It diverges near the phase transition 1↗ 0/0cr < 10≃4

like |1↗0/0cr|
≃c with the critical exponent c. Tuning the sub-Ohmic bath characteristic exponent s re-

sults in a continuous monotonic change of the critical exponent. For a sub-Ohmic reservoir 0.5 < s < 1

the critical exponent c is less than 1 and reaches c = 1 when the bath is Ohmic s = 1 in agreement with

predictions made for Markovian dissipation channels, i.e. in the absence of a colored bath [152, 153].

If the spectral density eq. (3.18) is modified to include super-Ohmic behavior s > 1, no significant

change from the Ohmic characteristic exponent is found [153].

The analysis of the next-order terms of the fluctuations beyond the usual Bogoliubov theory unveils

processes of Landau and Beliaev damping known to occur in superfluids [33, 67, 116–126]. Landau

damping is a process that relies on temperature, so it vanishes as ⇁ → ↑. Zero-temperature pure

quantum damping can therefore only arise from Beliaev processes. Analysis of the one-dimensional

form of the field Hamiltonian Eq. (2.46), where y = z = 0 is fixed and only dynamics along the cavity

axis are permitted, reveals Heisenberg equations with a hierarchy in the powers of the square root of
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the number of atoms
⇑
N [34, 127]. As predicted, at order N0 the Bogoliubov spectrum reviewed in

section 2.3.6 emerges, while at order N≃1/2 Landau and Beliaev processes appear and orders of N≃1

and beyond are discarded. The fluctuations manifesting these damping processes have phonon-like

properties, and for large condensate sizes, they become spectrally dense to form an intrinsic dissi-

pative bath arising from short-range s-wave scattering. In a Landau or Beliaev process, a polariton

excitation is damped by a two-phonon process in this reservoir [127]. In a system where the dynamics

are constrained to be e!ectively one-dimensional by a harmonic trap, the spectral density function of

the Beliaev bath for the atomic checkerboard mode ↽1 is found to be G(↽) ↓
√
(↽/↽R)↗ 1/2 [128].

Due to the conservation of momentum, it is gapped from ↽ = 0. Subsequently, although it follows a

sub-Ohmic power law 1/2 it does so away from zero frequency and, thus, does not modify the critical

exponent at the phase transition [128].

The Beliaev process in the one-dimensional system is peaked at an atom-cavity coupling of about

0 = 0.80cr due to a resonance of the soft-mode polariton with the phononic Beliaev process. This

was further analyzed by discarding all polariton modes except the soft one, creating a system analog

to a single harmonic oscillator with the soft mode frequency #s coupled to the phonon bath [34]. It

leads to a closed set of equations for the retarded Green’s functions so that the self-energies can be

extracted. In the Born-Markov approximation for the self-energies ((↽) ⇐ ((#s), the divergent peak

of the Beliaev damping is found at 0 = 0.80cr [34]. However, the Born-Markov approximation turns

out to be poor in the vicinity of the spectral peak. The analysis of the poles of the Green’s function

of the soft-mode polaritons uncovers that at 0 = 0 or 0 = 0cr the pole that can be attributed to

the polariton is well separated from those of the phonon bath, especially the most relevant of the

latter, which is closest to the real axis. Although at coupling parameters 0 < 0 < 0cr the soft-

mode polariton pole and the phonon bath pole exhibit an avoided crossing between them at about

0 = 0.80cr apparent in their real parts [34]. The dynamics in this region cannot be interpreted as

that of a single dressed oscillator mode. Furthermore, while the Beliaev decay rate is still peaked as

found in the Born-Markov approximation, the peak is an order of magnitude smaller [34]. Analysis

of the correlation functions where the cavity mode is damped by the photon losses and the atomic

checkerboard mode is in contact with the G(↽) ↓
√
(↽/↽R)↗ 1/2 Beliaev reservoir gives some more

concrete insights into the peculiarities of the system [128]. For weak coupling to the environment,

the correlation function spectrum of the low-frequency mode exhibits sharp resonance peaks for the

soft polariton frequency. If the Beliaev processes are coupled stronger by an order of magnitude, the

peaks are significantly broadened but strictly vanish for ↽ < ↽R/2. Increasing the coupling pushes

this peak into the limit of the frequency range at ↽R/2. For about 0 = 0.90cr the spectrum has a

hole-burning e!ect. If the cavity is strongly damped, i.e. ▷ is larger, the increased linewidth of the

sharp peak below ↽R/2 washes out the fine structure of the Beliaev process because its tail extends

into the ↽ > ↽R/2 region. These e!ects are all present in the spectrum of the photon correlation

function Ca as well.
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y

x Pump

Pump

Figure 3.2: Sketch of the cavity BEC setup described by the Hamiltonian Eq. (3.25). The dynamics
are constrained to the pump cavity plane xy. The checkerboard fluctuations are indicated by one of
the checkerboard configurations in the blue condensate. Cavity dissipation as shown in figure 2.6 will
be reintroduced when we go beyond the Hamiltonian description of the system.

In this thesis, we formulate an extension of Bogoliubov theory to microscopically derive the colored

spectra of quantum statistical fluctuations. They exhibit exotic, strongly sub-Ohmic features, yielding

significant non-Markovian dynamics. The imaginary-time path integral allows us to write down the

bath spectral density in an exact analytical way and to study the dissipative two-mode polariton

system. Finally, we determine the influence of the damping on the physical observables, illustrating

the possibility of controlling and enhancing the quantum fluctuations in the system.

3.3 – Derivation of the fluctuations

We start out with the e!ective field Hamiltonian of the cavity BEC system Eq. (2.46) with its dynamics

constrained to the xy plane of the cavity and the pump mode as in figure 3.2 [27, 88]

Ĥ =

∫
d
2r ε̂†(r)

[
↗⇒

2

2m
+

h
2(r)

&A

+
g
2(r)

&A

â
†
â+

g(r)h(r)

&A


â+ â

†

+

U

2
ε̂
†(r)ε̂(r)

]
ε̂(r)↗&C â

†
â .

(3.25)

From the preexisting analysis of the normal phase discussed in section 2.3.7, we can expand the atomic

field operators around ε̂0 ∝ 1 and ε̂1 ∝ cos(kx) cos(ky) introduced in Eq. (2.59). The expansion thus

has the form of two-mode Bloch functions

ε̂(r) =
1

⇑
V2D

∑

p⇐P


e
ipr

(
ε̂0,p + 2 cos(kx) cos(ky)ε̂1,p

)
, (3.26a)

P =

{(
2↼jx
Lx

2↼jy
Ly

)T
∣∣∣∣jx, jy ′ Z △ |px|, |py| <

k

2

}
, (3.26b)

where ε̂0,0 = ε̂0 and ε̂1,0 = ε̂1. We consider the subspace of the two Bloch modes Eq. (3.26) to be

closed. When we insert the Bloch mode expansion into the cavity BEC field Hamiltonian Eq. (3.25),

we have to consider

1

L

∫ L
2

≃
L
2

dx

{
e
≃ipx

}
= ϑp,0 , (3.27a)

1

L

∫ L
2

≃
L
2

dx

{
e
≃i(p≃k/2)x

}
= ϑ2p,k = 0 , (3.27b)
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where the second identity follows from the definition of the quasi-momentum |p| < k/2 in the bands Eq.

(3.26b), i.e. the Brioullin zone. Additionally, the trigonometric identity cos2(kx) = [1 + cos(2kx)]/2

comes into play. The Hamiltonian of the cavity BEC expressed in the two Bloch modes is then

Ĥ =
∑

p⇐P

[(
p2

2m
+

h
2
0

2&A

)
ε̂
†

0,pε̂0,p +

(
p2

2m
+

k
2

m
+

3h2
0

4&A

)
ε̂
†

1,pε̂1,p

+
g
2
0

2&A

â
†
â

(
ε̂
†

0,pε̂0,p +
3

2
ε̂
†

1,pε̂1,p

)
+

g0h0

2&A


â+ â

†
 (

ε̂
†

1,pε̂0,p + ε̂
†

0,pε̂1,p

)

+
U

2V2D

∑

q,q→⇐P

(
ε̂
†

0,p+q→ ε̂
†

0,q≃q→ ε̂0,qε̂0,p + ε̂
†

1,p+q→ ε̂
†

1,q≃q→ ε̂0,qε̂0,p + 4ε̂†

1,p+q→ ε̂
†

0,q≃q→ ε̂0,qε̂1,p

+ε̂
†

0,p+q→ ε̂
†

0,q≃q→ ε̂1,qε̂1,p +
9

4
ε̂
†

1,p+q→ ε̂
†

1,q≃q→ ε̂1,qε̂1,p

)]
↗&C â

†
â . (3.28)

In a weakly interacting dilute BEC the occupation of the zero momentum mode ε̂0 is macroscopic.

Below the Dicke phase transition point 0cr this remains true if the BEC is coupled to the cavity, except

for a tiny region near 0cr where the quantum depletion to ε̂1 is large [36, 100]. Therefore, we will

apply the Bogoliubov theory as reviewed for the Bose gas without the cavity in section 2.2. We know

that the mean-field of the normal phase is ↖ε̂0⇓ =
⇑
n and ↖ε̂0,p ⇓=0⇓ = ↖ε̂1⇓ = ↖ε̂1,p ⇓=0⇓ = ↖â⇓ = 0 [100].

Thus, any operator other than that of the homogeneous condensate ε̂0 is just the fluctuation around

its trivial mean-field

ε̂1 = 2̂1 , â = ϑâ , ε̂0,p ⇓=0 = 2̂0,p , ε̂1,p ⇓=0 = 2̂1,p . (3.29)

We then use the closed subspace property to express the zero-momentum condensate mode by the

total macroscopic number of atoms N , from which the fluctuations in the other modes are subtracted

ε̂0 = ε̂
†

0 =


N ↗ 2̂

†

12̂1 ↗

∑

p⇐P

→
(
2̂
†

0,p2̂0,p + 2̂
†

1,p2̂1,p

)
, (3.30)

where the primed sum denotes the exclusion of p = 0. We insert the ansatz into Eq. (3.28) together

with Eq. (3.29). We need to be careful to respect the commutator ε̂†

0ε̂
†

0ε̂0ε̂0 = ε̂
†

0ε̂0(ε̂
†

0ε̂0 ↗ 1) before

injecting the ansatz Eq. (3.30). Using that the quantum depletion from the homogeneous condensate

is small, i.e.

↖D̂⇓

N
=

↖2̂
†

12̂1⇓+
∑

p⇐P

→
(
↖2̂

†

0,p2̂0,p⇓+ ↖2̂
†

1,p2̂1,p⇓

)

N
≃ 1 , (3.31)

we expand the square root of Eq. (3.30) where necessary as

⇑

N



1↗
D̂

N
=

⇑

N



1↗ 2̂
†

12̂1

2N
↗

1

2N

∑

p⇐P

→
(
2̂
†

0,p2̂0,p + 2̂
†

1,p2̂1,p

)
+ . . .



 . (3.32)

We count each occurrence of a fluctuation operator from Eq. (3.29) or its conjugate as an order in the

fluctuations. We immediately discard any term that is of fourth order or higher. The procedure is

mostly based on counting orders in the square root of the large number of atoms
⇑
N and neglecting

any density-density interaction term that is not at least of order
⇑
N . For a density-density interaction

term to survive this procedure, it must include the zero momentum condensate mode ε0,0 in Eq. (3.28).

Finally, there remain a few terms that represent, for example, Umklapp processes within the bands

without directly involving the cavity â or the checkerboard fluctuations 2̂1. We neglect these few
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terms as well as the constant mean-field energy shift UnN/2 with n = N/V2D. Thus, we acquire

Ĥ =

(
k
2

m
+

h
2
0

4&A

+ Un

)
2̂
†

12̂1 +
Un

2

(
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†
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†

1

)

+
∑
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p2

2m
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)
2̂
†

0,p2̂0,p +
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2
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†
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†
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+
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⇑
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†
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)
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†
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†
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†
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+
g0h0
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(
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†
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†

1

)
+

g0h0
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†
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†
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

+
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↗&C +
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2
0N

2&A

)
â
†
â+ const . (3.33)

We reintroduce the e!ective parameters that have already appeared in the review of the cavity BEC

Bogoliubov theory in section 2.3.6. They are the recoil frequency ↽R, the pumping strength ↽P , and

the coupling U0 of a single atom to the cavity. Based on these, there is the coupling 0 between the

atoms and the cavity and the e!ective cavity detuning ϑC modified by the refractive index of the

atoms ↓ U0N . There is also a new parameter 6 for the coupling of the checkerboard mode 2̂1 to the

bands

↽R =
k
2

2m
, ↽P = ↗

h
2
0

4&A

, U0 =
g
2
0

&A

,

0 =
g0h0

2&A

=
√

↗U0↽P , ϑC = &C ↗
g
2
0N

2&A

= &C ↗
U0N

2
, 6 = 2

U
⇑
N

V2D
. (3.34)

The Bogoliubov modes, which represent the eigenmodes of the BEC without the cavity (0 = 0), are

found by the usual transformation, see section 2.2.2 [57],

2̂0,p = u0,p↼̂0,p ↗ v0,p↼̂
†

0,≃p , 2̂1,p = u1,p↼̂1,p ↗ v1,p↼̂
†

1,≃p , (3.35)

with the Bogoliubov transformation coe”cients for the bands i = 0, 1 given by

ui,p = cosh(⇀i,p) , vi,p = sinh(⇀i,p) ,

tanh(2⇀0,p) =
nU

p2

2m + nU

, tanh(2⇀1,p) =
nU

p2

2m + 2↽R ↗ ↽P + nU

. (3.36)

The eigenfrequencies of these quasiparticles are

↽0,p =


p2

2m

(
p2

2m
+ 2nU

)
, ↽1,p =

(
p2

2m
+ 2↽R ↗ ↽P

)(
p2

2m
+ 2↽R ↗ ↽P + 2nU

)
. (3.37)

Taking into account that ui,≃p = ui,p and vi,≃p = vi,p the resulting Hamiltonian consists exclusively

of harmonic oscillators and linear couplings between two or three of them, see Eqs. (3.38), (3.39), and

(3.40) or Appendix A.5. We invoke the system-bath model Ĥ = ĤS + ĤB + ĤSB as introduced in

section 3.2.1, where we obtain a system of two harmonic oscillators in a phonon-like bath provided

by the two Bloch bands [32]. The system is provided by the e!ective Bogoliubov level model of two
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cavity photons atomic excitations

Figure 3.3: Sketch of the e!ective cavity BEC model in terms of the system-bath formalism Ĥ =
ĤS + ĤB + ĤSB . The cavity mode ↗ϑC is shown as the red subsystem. The checkerboard mode ↽1 is
the blue subsystem. These two modes are coupled by their bilinear coupling 0

⇑
N in green and form

the system ĤS , Eq. (3.38). The bath modes, which are the band excitations of the atomic condensate
ĤB , Eq. (3.39), are represented in purple surrounding the checkerboard on the atomic subsystem side
of the sketch. To this bath, the checkerboard mode couples with the parameter 6 and the cavity mode
couples with the coupling parameter 0, creating the linear system-bath coupling ĤSB , Eq. (3.40).

bilinearly coupled harmonic modes of the cavity fluctuations â and the checkerboard fluctuations ↼̂1

ĤS = ↗ϑC â
†
â+ ↽1↼̂

†

1↼̂1 + 00


â+ â

†

↼̂1 + ↼̂

†

1


. (3.38)

The quantum fluctuation bath is given by the phonon-like modes

ĤB =
∑

p⇐P

→

↽0,p↼̂

†

0,p↼̂0,p + ↽1,p↼̂
†

1,p↼̂1,p


. (3.39)

In the visualization of the system-bath in figure 3.3 they are portrayed as a bath surrounding the

matter mode ↽1 of the system due to their nature as excitations of a weakly s-wave scattering BEC.

The coupling Hamiltonian between the harmonic two-mode system and the harmonic phonon bath is

ĤSB =

0

â+ â

†

+ 6


↼̂1 + ↼̂

†

1

 
L̂1 ↗ B̂1



+ 6

u1↼̂1 ↗ v1↼̂

†

1


↗ L̂

†

2 + B̂
†

2


+ 6


u1↼̂

†

1 ↗ v1↼̂1


↗ L̂2 + B̂2


, (3.40)

with the operators

L̂1 =
∑

p⇐P

→

(u0,pu1,p + v0,pv1,p)

(
↼̂
†

0,p↼̂1,p + ↼̂
†

1,p↼̂0,p

)
, (3.41a)

B̂1 =
∑

p⇐P

→

(v0,pu1,p + u0,pv1,p)

(
↼̂1,≃p↼̂0,p + ↼̂

†

0,p↼̂
†

1,≃p

)
, (3.41b)

L̂2 =
∑

p⇐P

→

v0,pu1,p↼̂

†

0,p↼̂1,p + u0,pv1,p↼̂
†

1,p↼̂0,p


, (3.41c)

B̂2 =
∑

p⇐P

→

u0,pu1,p↼̂1,≃p↼̂0,p + v0,pv1,p↼̂

†

0,p↼̂
†

1,≃p


, (3.41d)

describing the Landau L̂ and Beliaev B̂ processes in the phonon bath. Note that the coupling is

always linear as shown in figure 3.4 with one (de)excitation each of the system (â, ↼̂1), the lower band

↼̂0,p, and the upper band ↼̂1,p. The bath-coupling Hamiltonian already proves to be quite exceptional
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Landau Beliaev

Figure 3.4: Band structure of the two considered bands based on Eq. (3.26) and the subsequent
Bogoliubov transformation to ↽0(εp) and ↽1(εp), Eq. (3.37), with εp = p2

/2m. The boundaries of
the quasimomentum are indicated by the dashed vertical lines. In the figure on the left, the Landau
process ↼̂

†

1,p↼̂0,p↼̂1 is sketched by denoting the annihilation of a quasiparticle by an empty circle
and the creation by a filled circle. The inset shows a diagram of such a Landau process, where the
annihilation of a system excitation either ↼̂1 (blue propagator) or â (red photon propagator) combines
with annihilation in the lower band ↼̂0,p to create a quasiparticle in the upper band ↼̂

†

1.p. On the

right, the Beliaev process ↼̂†

0.p↼̂
†

1,≃p↼̂1 is sketched. The inset shows how the annihilation of a system
excitation (â, ↼̂1) leads to the creation of two quasiparticles in the bath with opposite quasimomentum,
one in the lower band ↼̂

†

0,p and one in the upper band ↼̂
†

1,≃p. The parameters for the band structure
are nU = 10≃1

↽R, ↽P = 10≃2
↽R. Figure inspired by Ref. [127].

here, even beyond its occurrence from microscopic processes intrinsic to the cavity BEC setup. The

interaction of the system with the quantum fluctuation bath Eq. (3.40) manifests either a Landau or a

Beliaev damping process where the quasi-momentum p is conserved. In a Landau process, the creation

or annihilation of a system fluctuation leads to the creation of a phonon in one band, while a phonon

with the same quasi-momentum is annihilated in the other band. In a Beliaev process, the creation

or annihilation of a system fluctuation simultaneously annihilates or creates a phonon in each band

but with opposite quasi-momentum. The processes are weighted by the Bogoliubov transformation

coe”cients ui,p and vi,p intrinsic to the weakly scattering Bose gas [57]. Remarkably, as shown in figure

3.3, the Landau and Beliaev damping, originally known as the damping of a superfluid [33,67,116–126]

also couple to the photon fluctuations of the cavity. The coupling parameter to the bath is di!erent

depending on whether the bath is acting on the cavity fluctuations or on the checkerboard fluctuations.

For the checkerboard it is given by the parameter 6 = 2U
⇑
N/V2D = 2Un/

⇑
N , while for the cavity it

is the light-matter coupling via the pump 0 = g0h0/2&A that determines the bath coupling strength.

Although physically there is only a single bath, in the following we will treat it from the point of

view of the two-harmonic-oscillators system Eq. (3.38). We will then decompose it according to which

degrees of freedom of Eq. (3.38) it is coupled to, as shown in figure 3.3.

3.4 – Interlude: Similarity to the hybrid atom-optomechanical system∗

We make a few assumptions for the coupling parameters in the system-bath model described by Eqs.

(3.38) to (3.41), which simplify the model and yield a direct mapping to the e!ective model of the

hybrid atom-optomechanical setup, see section 2.3.10. One of the assumptions is that for the system-

bath coupling, the coupling to the cavity 0 dominates over the coupling to the checkerboard mode 6.

Given 6 ≃ 0 the bath is e!ectively only coupled to the cavity. Our second assumption is that both the

∗This discussion is not published, neither in Ref. [A] nor other work.
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pump strength ↽P and the energy of the s-wave scattering nU are tiny relative to the recoil frequency

↽R. Utilizing nU,↽P ≃ ↽R yields a plethora of simplifications: u1p = 1, v1p = 0, ↽1p = 2↽R+p2
/2m,

and 00 = 0
⇑
N . If we now apply all this to Eqs. (3.38) to (3.41) the system-bath model takes the

form

Ĥ =↗ ϑC â
†
â+ 2↽R↼̂

†

1↼̂1 +
∑

p⇐P

→

↽0,p↼̂

†

0,p↼̂0,p + ↽1,p↼̂
†

1,p↼̂1,p


+

⇑

N0(â+ â
†)(↼̂1 + ↼̂

†

1)

+ 0(â+ â
†)

∑

p⇐P

→

u0,p

(
↼̂
†

0,p↼̂1,p + ↼̂
†

1,p↼̂0,p

)
↗ v0,p

(
↼̂1,≃p↼̂0,p + ↼̂

†

0,p↼̂
†

1,≃p

)
. (3.42)

We identify #m = ↗ϑC , #a = 2↽R, ↼̂0/1,p = ĉk↙, ↽0/1,p = ↽k,↙, u0,p = uk, v0,p = ↗vk, and

$/2 = ↗0. This is straightforward except for the mapping between the momenta p ′ P to the

momenta of the atom-optomechanical system k. The momenta k run from ↗ς to ς in equidistant

steps of 2ς/l where l is the one-dimensional number of lattice sites of the setup. Therefore, we have

to find a fitting l for our (Lx, Ly) so that we can have a bilinear map between the momenta. We

should note that this issue is circumvented if the cavity BEC is treated as quasi-one-dimensional

from the outset. By inserting the identities it becomes apparent that the e!ective Bogoliubov theory

Hamiltonian of the cavity BEC, Eq. (3.42), has the same mathematical structure as the Bogoliubov

theory Hamiltonian of the hybrid atom-optomechanical system Eq. (2.75)

Ĥaom = #mâ
†
â+ #aĉ

†

0+ĉ0+ +
∑

k ⇓=0,ϱ

↽kϱ ĉ
†

kϱ
ĉkϱ ↗

$
⇑
N

2
(â+ â

†)(ĉ0+ + ĉ
†

0+)

↗
$

2
(â+ â

†)
∑

k ⇓=0

(
uk[ĉ

†

k≃
ĉk+ + ĉ

†

k+ĉk≃] + vk[ĉk≃ĉ≃k+ + ĉ
†

≃k+ĉ
†

k≃
]
)
. (3.43)

We should point out that below the surface, the di!erence in the excitation spectra ↽0/1,p and ↽k↙,

Eq. (2.76), of the two physical realizations remains. In the cavity BEC, as we treat it, it is determined

by the dispersion of a homogeneous Bose gas while in the hybrid atom-optomechanical setup it is

determined by the hopping J of a Bose gas confined to a lattice. Put di!erently, in the latter the

atomic field operators are expanded in Wannier functions while in the cavity BEC we have applied

the two-mode Bloch functions Eq. (3.26). It has a qualitative impact on the bath spectral densities

we obtain in the following section.

3.5 – Quasiparticle dissipative bath

We use the imaginary-time integral technique described in section 3.2 to extract the influence func-

tional F , Eq. (3.5), and the properties of the bath encoded in the spectral density of the bath G(↽),

Eq. (3.15). Tracing out the bath degrees of freedom ↼i,p ⇓=0 is performed using the bath expectation

value

↖·⇓B =
1

ZB

∫
D [↼↔

,↼] (·) e≃SB [⇀↑
,⇀]

. (3.44)
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a) b) c) d)

Figure 3.5: Diagrams of the bath expectation values that enter into Eq. (3.48). An external line of
the system (a,↼1) is coupled to each vertex as in figure 3.4. The arrow ↖↼i,p↼

↔

i,p⇓B . The solid lines
are for ↼0,p while the dashed lines are for ↼1,p. The Landau damping consists of loops a) and b). The
Beliaev damping consists of loops c) and d).

Due to the coupling of the phonon bath containing only linear terms, the influence functional of the

bath decomposes into quadratic correlators by using the Wick theorem [32,158] and we find

e
≃Sinfl[a

↑
,a,⇀

↑
1 ,⇀1] =

〈
e
≃SSB [a↑

,a,⇀
↑
1 ,⇀1,⇀

↑
,⇀]

〉

B

=
⇔∑

j=0

↖(↗SSB)j⇓B
j!

=
⇔∑

m=0


↖(↗SSB)2⇓B

m

m!
= e

+⇒S
2
SB⇑B . (3.45)

Therefore, we only have to evaluate the correlator ↖HSB(4)HSB(4 →)⇓ of the system-bath coupling Eq.

(3.40). Any correlation of a Beliaev and Landau process like ↖L(4)B(4 →)⇓B = 0 is trivial. The bath

average of two Landau operators ↖L(↔)
1,2(4)L

(↔)
1,2(4

→)⇓B or of two Beliaev operators ↖B(↔)
1,2(4)B

(↔)
1,2(4

→)⇓B is

a linear combination of single-loop diagrams depicted in the figure 3.5. We need the phonon bath to

be in equilibrium to evaluate the influence functional in imaginary time. For this we invoke detailed

balance [32] by constructing the correlators symmetric in the imaginary time arguments (4, 4 →), for

example,

↖B1(4)B2(4
→)⇓

B
=

∑

p⇐P

→
{
(v0,pu1,p + u0,pv1,p)


v0,pv1,pnB(↽0,p)nB(↽1,p)e

+(ϑ0,p+ϑ1,p)(ς≃ς
→)

+u0,pu1,p(1 + nB(↽0,p))(1 + nB(↽1,p))e
≃(ϑ0,p+ϑ1,p)(ς≃ς

→)
}

, (3.46a)

↖B2(4)B1(4
→)⇓

B
=

∑

p⇐P

→
{
(v0,pu1,p + u0,pv1,p)


u0,pu1,pnB(↽0,p)nB(↽1,p)e

+(ϑ0,p+ϑ1,p)(ς≃ς
→)

+v0,pv1,p(1 + nB(↽0,p))(1 + nB(↽1,p))e
≃(ϑ0,p+ϑ1,p)(ς≃ς

→)
}

. (3.46b)

The symmetric correlator satisfying the equilibrium invariance under 4 → ⇁ ↗ 4 is

K
B

12(4 ↗ 4
→) =

1

2
[↖B1(4)B2(4

→)⇓
B
+ ↖B2(4)B1(4

→)⇓
B
]

=
1

2

∑

p⇐P

→
{
(v0,pu1,p + u0,pv1,p)(u0,pu1,p + v0,pv1,p) [1 + nB(↽0,p) + nB(↽1,p)]∞

∞


nB(↽0,p + ↽1,p)e

+(ϑ0,p+ϑ1,p)(ς≃ς
→) + [1 + nB(↽0,p + ↽1,p)]e

≃(ϑ0,p+ϑ1,p)(ς≃ς
→)
}

.

(3.47)

Further details and the remaining correlators can be found in the appendix A.5. We sort the correla-

tors according to which part of the system SS they couple to. This is either the displacement quadra-

ture of the cavity qC = (a + a
↔)/

⇑
↗2ϑC or of the checkerboard quasiparticle qA = (↼1 + ↼

↔
1)/

⇑
2↽1.

Hence the second order correlator of the coupling Hamiltonian ĤSB between the bath and the system,
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Eq. (3.40), has the form

〈
HSB(4)HSB(4

→)
〉
B
=↗ ϑCKC(4 ↗ 4

→)qC(4)qC(4
→)

+
√
↗ϑC↽1KAC(4 ↗ 4

→)

qA(4)qC(4

→) + qC(4)qA(4
→)


+ ↽1KA(4 ↗ 4
→)qA(4)qA(4

→) +
1

↽1
K

Ȧ
(4 ↗ 4

→)q̇A(4)q̇A(4
→) , (3.48)

where we denote the respective bath correlation functions Kϱ with 3 = {C,AC,A, Ȧ}. The exception

is the last term in Eq. (3.48), where the bath mediates between the momentum quadrature of the

checkerboard excitation. In the Lagrangian of a harmonic mode, this becomes q̇A(4). The correla-

tors which provide the integral kernels in each term of the influence functional resulting from the

combination of Eqs. (3.45) and (3.48) take the general form

Kϱ(4 ↗ 4
→) = 5ϱ

∑

p⇐P

→

f
L

ϱ
(p)NL

p DϑL
p
(4 ↗ 4

→) + f
B

ϱ
(p)NB

p DϑB
p
(4 ↗ 4

→)

, (3.49)

for 3 ′ {C,AC,A, Ȧ}. They are composed of a bath coupling parameter 5ϱ

5C = 0
2
, 5AC = 06(u1 ↗ v1) , 5A = 6

2(u1 ↗ v1)
2
, 5

Ȧ
=

6
2

(u1 ↗ v1)2
, (3.50)

and the free thermal Green’s function Dϑ(4), Eq. (3.14), of the frequencies ↽
L

p = ↽1,p ↗ ↽0,p for

the Landau and ↽
B

p = ↽0,p + ↽1,p for the Beliaev terms. Moreover, they also contain the respective

combination of Bose-Einstein distributions nB(↽) = (eεϑ ↗ 1)≃1 for the Landau N
L

p and Beliaev

processes NB

p

N
L

p = nB(↽0,p)↗ nB(↽1,p) , N
B

p = 1 + nB(↽0,p) + nB(↽1,p) , (3.51)

and finally, most importantly, the coe”cients of the bath kernels fL,B

ϱ
(p). The specific characteristics

of the bath kernels Kϱ(4) for the influence functional, Eq. (3.45), are encoded in the coe”cients

f
L,B

ϱ
(p), which are given by combinations of the Bogoliubov transformation coe”cients of the phonon

bands, Eq. (3.36),

f
L

C
(p) = 2 (u0,pu1,p + v0,pv1,p)

2
, f

B

C
(p) = 2 (v0,pu1,p + u0,pv1,p)

2
, (3.52a)

f
L

AC
(p) = 2 (u0,pu1,p + v0,pv1,p)

2
↗ (u0,pu1,p + v0,pv1,p) (v0,pu1,p + u0,pv1,p) ,

f
B

AC
(p) = 2 (v0,pu1,p + u0,pv1,p)

2
↗ (u0,pu1,p + v0,pv1,p) (v0,pu1,p + u0,pv1,p) , (3.52b)

f
L

A
(p) =

5

2
(u0,pu1,p + v0,pv1,p)

2
↗ 2 (u0,pu1,p + v0,pv1,p) (v0,pu1,p + u0,pv1,p)↗

1

2
,

f
B

A
(p) =

5

2
(v0,pu1,p + u0,pv1,p)

2
↗ 2 (u0,pu1,p + v0,pv1,p) (v0,pu1,p + u0,pv1,p) +

1

2
, (3.52c)

f
L

Ȧ
(p) =

1

2
(u0,pv1,p ↗ v0,pu1,p)

2
, f

B

Ȧ
(p) =

1

2
(u0,pu1,p ↗ v0,pv1,p)

2
. (3.52d)

We proceed by capturing the properties of each bath correlation integral kernel Kϱ(4), Eq. (3.49), in

its spectral density Gϱ(↽), as prescribed by Eq. (3.15)

Kϱ(4) =

∫
⇔

0
d↽Gϱ(↽)Dϑ(4) . (3.53)

Due to the finite interval in which the quasi-momenta |p| ′ (0, k/
⇑
2) of the Brillouin zone lie, see

Eq. (3.26b), the frequencies of the Landau ↽
L

p and the Beliaev damping ↽
B

p are also confined to finite
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intervals. For the former, one has ↽
L

p = ↽1,p ↗ ↽0,p ′ IL = (2↽R ↗ ↽P ,↽1), while for the latter it is

↽
B

p = ↽0,p+↽1,p ′ IB = (↽1, 3↽R+2nU↗↽P ). The boundary between the intervals is the frequency ↽1

of the checkerboard quasiparticles of p = 0 in Eq. (3.37). For weak s-wave scattering and small pump

strength nU,↽P ≃ ↽R it is ↽1 ⇐ 2↽R↗↽P+nU . The width of the Landau damping frequency range IL

is thus determined by the small energy nU from s-wave scattering. This results in a narrow frequency

range for the Landau processes, as shown in figure 3.6. On the other hand, the extent of the frequency

range of the Beliaev damping IB is dominated by the recoil energy ↽R for nU,↽P ≃ ↽R making it

comparatively wide. The recoil energy ↽R and the s-wave scattering energy nU are parameters that

are di”cult to change in the experiment. However, the pump energy ↽P is easily manipulated. As

the pump strength is increased, the frequency bands of the quantum fluctuations are shifted to lower

frequencies. They maintain their respective widths to a good approximation as long as ↽P ≃ ↽R.

Another noteworthy result is that the frequency ranges are gapped from zero frequency ↽ = 0 for

reasonable choices of parameters. If one wants to explore the case ↽P ↫ 2↽R, it comes with the caveat

that the optical potential created by the self-interference of the pump h
2(r) in Eq. (3.25) would be

significant. Physically, the atomic cloud would then be cut into pancakes stacked along the y axis,

with each pancake occupying one period of the cos2(ky) pump potential. In its wake, modes of the

atomic field operators not included in the calculation would be significantly occupied, especially the

cos(2ky) Fourier component.

The spectral densities obtained by Eq. (3.53) decompose at the borderline into a Landau and a Beliaev

part as

Gϱ(↽) = G
L

ϱ
(↽)1H(↽1 ↗ ↽) +G

B

ϱ
(↽)1H(↽ ↗ ↽1) . (3.54)

Matching Eq. (3.53) to Eq. (3.49) unveils that the constituents must follow the generic formula

G
L,B

ϱ
(↽) = 5ϱ

∑

p⇐P

→ 
f
L,B

ϱ
(p)NL,B

p ϑ(gL,B(ε(p)))

, (3.55a)

gL,B(ε(p)) = ↽ ↗ ↽
L,B

p , (3.55b)

where ε(p) = p2
/2m. To further extract the properties of the bath coupling, we invoke the continuum

limit
∑

→

p⇐P
→ [V2D/(2ς)2]


P
d
2p on the phononic bath and thus the spectral densities Eq. (3.55a) as

reviewed in section 3.2.2 [32]. The corresponding function gL,B , Eq. (3.55b), in the argument of the

delta distribution is continuously di!erentiable g
→

L,B
(ε) = ↗d↽

L,B(ε)/dε. Its derivative is non-zero on

the intervals IL and IB . Therefore, the relation ϑ(g(ε)) =
∑

i
ϑ(ε ↗Wi)/|g→(Wi)| holds for the roots

of g(ε = Wi) = 0. The roots of gL,B(ε) in the respective frequency ranges of ↽L

p and ↽
B

p are

W (↽) = ↗
2↽R ↗ ↽P + 2nU

2
+

↽

2



1 +
(2nU)2

↽2 ↗ (2↽R ↗ ↽P )
2 . (3.56)

They are plotted in figure 3.6. We can now evaluate the quasi-momentum integral in polar coordinates

with ρ = |p| as

G
L,B

ϱ
(↽) = 5ϱ

V2D

2ς

∫
k/

∝
2

0
dρ

{
ρf

L,B

ϱ
(ρ)NL,B

⇁

ϑ(ε(ρ)↗W (↽))

|g→
L,B

(W (↽))|

}
=

V2D

2ς
m5ϱf

L,B

ϱ
(W (↽))

N
L,B(W (↽))

|g→
L,B

(W (↽))|

=
V2D

2ς
m5ϱf

L,B

ϱ
(↽)

N
L,B(↽)

|g→
L,B

(↽)|
, (3.57)
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Figure 3.6: RootsW (↽), Eq. (3.56), of the argument of the delta distribution in the spectral densities
Eq. (3.55). The solid vertical line marks the ↽1 boundary between the Landau IL and Beliaev IB

frequency intervals. The dashed lines indicate the lower bound of IL and the upper bound of IB . The
parameters are ↽P = 10≃2

↽R and nU = 10≃1
↽R.

and find the exact analytical expression of the bath spectral densities shown in figure 3.7. This is

the key result of this chapter since the spectral densities carry the complete information about the

quantum fluctuation processes.

3.6 – Discussion of the spectral characteristics of the bath

The spectral densities Eq. (3.57) derived in the previous section and shown for exemplary parameters

in figure 3.7 di!er drastically from any of the usual textbook examples, some of which were discussed

in section 3.2.3. We start with the feature of finite frequency ranges analyzed just before. The Landau

processes G
L

C
, GL

AC
, and G

L

A
are all strongly peaked near the lower bound of their frequency range.

This peak decays rapidly toward the boundary to the Beliaev region. The Landau damping of G
Ȧ
is

small compared to other damping channels. It is paramount that any Landau process is inherently

thermal and vanishes for zero temperature ⇁ = T
≃1

→ ↑, as is easily deduced from Eq. (3.51), which

carry the complete temperature dependence of any Landau and Beliaev channel. The temperature in

figure 3.7 has been deliberately chosen to be ⇁↽R = 17.1 or T = 10 nK, a value at which the Beliaev

and Landau channels couple on a similar scale. For larger temperatures, the spectral weight of the

Landau damping dominates, e!ectively placing the fluctuations in the Landau channels. Although

in the pathological case of a BEC, at very large temperatures ⇁↽R ≃ 1, the Landau damping is

again suppressed compared to Beliaev due to the signs in Eq. (3.51). If the temperature is zero,

only the Beliaev damping remains. As soon as the temperature of the atomic cloud is such that

nB(↽0(↽)) + nB(↽1(↽)) ≃ 1 for ↽ ′ IB , i.e. in the Beliaev frequency range, we can state that the

fluctuations are of pure quantum nature.

The Beliaev channel GB

C
, which damps the cavity by coupling to qC(4)qC(4 →), is strongest near

the boundary to the Landau range ↽ = ↽1 and decreases rapidly towards higher frequencies. This

is similar to the shape of the Landau process with its minimum value at the upper bound of the

Beliaev domain. Over the entire frequency range, GB

C
(↽ ′ IB) is positive and the fluctuations thus

act in a damping manner on the cavity. Studying the coe”cients characterizing this spectral weight

Eq. (3.52) we find that G
B

C
contains a specific phonon channel by its Bogoliubov coe”cient weight
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Figure 3.7: Spectral densities Gϱ of the four di!erent coupling channels to the bath (C,AC,A, Ȧ) as
given by Eq. (3.48). The dashed lines visualize the competing phonon channels. Their sum results in
the spectral density shown as the solid line with a constant o!set in GA(↽), see Eq. (3.52c). The data
have been scaled by 2ς⊋↽R/V2Dm to compensate for the global prefactor in Eq. (3.57). The vertical
solid gray line in each plot marks the boundary ↽ = ↽1 between the Landau damping frequency range
on the left ↽ < ↽1 and the Beliaev range ↽ > ↽1 on the right. Gray dashed lines indicate the lower
bound ↽ = 2↽R ↗ ↽P of the Landau range and the upper bound ↽ = 3↽R + 2nU ↗ ↽̄P of the Beliaev
range. The parameters are ↽P = 10≃2

↽R, U0 = ↗10≃3
↽R, nU = 10≃1

↽R, N = 104, ⇁↽R = 17.1,
Lx = 60µm, Ly = 11µm, m = 87 u, ↽R = 2ς ∞ 3560 Hz.

↓ (u0,pu1,p + v0,pv1,p)
2. This channel also enters the spectral density, which influences the atomic

checkerboard mode GA(↽) and the coupling between it and the cavity fluctuations GAC(↽).

The analog is true for the Landau part, see Eq. (3.52). Note that although a connection between

the cavity damping channel GB

C
and the s-wave scattering nU may not be obvious at first glance,

the Beliaev damping of the cavity only exists if there is a nontrivial rotation to the quasiparticle

excitations ↼̂. This is evident from the comparison of the cavity coupling term in Eq. (3.33) with Eq.

(3.40). The bare atomic fluctuations 2̂ in Eq. (3.33) couple to the cavity only as a Landau channel.

It follows that at zero temperature ⇁ → ↑ and in the absence of an interaction between the atoms

U → 0 none of the derived fluctuation channels exist, not even the one influencing the cavity.

As teased, the bath channel GAC coupling the cavity and the checkerboard mode combines the spec-

tral characteristics of the cavity damping channel fC with a competing phonon fluctuation channel

with spectral weight ↓ ↗ (u0,pu1,p + v0,pv1,p) (v0,pu1,p + u0,pv1,p), see Eq. (3.52b). We analyze the

continuum limit of the spectral characteristics of each bath by plotting fϱ(↽)/|g→(↽)| as they occur

as part of Eq. (3.57) in figure 3.8. The competition within the spectral density leads to even more
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Figure 3.8: The functions characterizing the spectral densities Eq. (3.55) in the continuum limit,
see Eq. (3.57), plotted as solid lines. If more than one phonon channel contributes, the individual
channels are plotted as dashed lines. The sum of the channels (dashed) yields the overall function
(solid), see Eq. (3.52). Note that there is an o!set in fA(↽), see Eq. (3.52c). Again, the solid vertical
line visualizes the boundary ↽1, while the dashed vertical lines mark the lower boundary of IL and
the upper boundary of IB .

exotic spectral weighting properties of its Beliaev fluctuations. In the lower frequency region near

the ↽1 boundary, the phonon channel, which is the same as for the cavity damping, dominates. To-

wards higher frequencies, however, the Beliaev damping turns into anti-damping, as the GB

AC
spectral

density is dominated by the second phonon channel, i.e. the second term in Eq. (3.52b). Figure

3.8 is helpful to visualize this competition. The frequency at which the crossover between damping

and anti-damping occurs can be tuned by parameters such as ↽P and nU . Both contributing phonon

channels have the maximum of their absolute magnitude at the low-frequency end of the Beliaev range

and decrease in their absolute spectral weight towards higher frequencies, see figure 3.8. The damping

channel GA coupled to the displacement quadrature of the checkerboard excitation is composed of

the same phonon channels as GAC as evident from Eq. (3.52c). However, the weight between the

channels is di!erent and there is a constant o!set that is positive for the Beliaev part and negative for

the Landau part. Since the same phonon channels occur, the Beliaev damping G
B

A
is similar to G

B

AC

over the frequency range. Although, due to the relatively larger weight of the second channel in Eq.

(3.52c), it becomes the dominant channel at a lower frequency in G
B

A
compared to G

B

AC
, see figures

3.7 and 3.8. The final Beliaev damping spectral density G
B

Ȧ
is magnificent for its nearly constant

value throughout the frequency range. Note that the di!erence in spectral weight seen in figure 3.7

for di!erent spectral densities like GC and GAC goes beyond the di!erence in phonon channel weight

in Eq. (3.52). Also the di!erence in the global bath coupling parameters 5ϱ , Eq. (3.50), is significant.

The cavity-atom coupling 0 is stronger than 6. As a consequence, the bath is most strongly coupled

to the cavity quadrature qC .

For deeper insight, we analyze the functions Eq. (3.52) as they determine the qualities of the di!erent

67



3 – Exotic quantum dissipation from fluctuations

damping channels. We find

f
L

C
(↽) = cosh2

(
A+(↽)

2

)
, f

B

C
(↽) = sinh2

(
A+(↽)

2

)
, (3.58a)

f
L

AC
(↽) = cosh

(
A+(↽)

2

)[
2 cosh

(
A+(↽)

2

)
↗ sinh

(
A+(↽)

2

)]
,

f
B

AC
(↽) = sinh

(
A+(↽)

2

)[
2 sinh

(
A+(↽)

2

)
↗ cosh

(
A+(↽)

2

)]
, (3.58b)

f
L

A
(↽) =

1

2

[
sinh

(
A+(↽)

2

)
↗ 2 cosh

(
A+(↽)

2

)]2
,

f
B

A
(↽) =

1

2

[
cosh

(
A+(↽)

2

)
↗ 2 sinh

(
A+(↽)

2

)]2
, (3.58c)

where

A+(↽) = artanh

(
nU

W (↽) + nU

)
+ artanh

(
nU

W (↽) + 2↽R ↗ ↽P + nU

)

=
1

2
ln

(
1 +

nU

W (↽) + nU

)
+

1

2
ln

(
1↗

nU

W (↽) + nU

)
+

1

2
ln

(
1 +

nU

W (↽) + 2↽R ↗ ↽P + nU

)

+
1

2
ln

(
1↗

nU

W (↽) + 2↽R ↗ ↽P + nU

)
, (3.59)

using that the arguments of these artanh(u) fulfill 0 ↔ u < 1. For the sake of completeness, we have

f
L

Ȧ
(↽) =

1

2
sinh2

(
A≃(↽)

2

)
, f

B

Ȧ
(↽) =

1

2
cosh2

(
A≃(↽)

2

)
, (3.60)

with

A≃(↽) = artanh

(
nU

W (↽) + nU

)
↗ artanh

(
nU

W (↽) + 2↽R ↗ ↽P + nU

)

=
1

2
ln

(
1 +

nU

W (↽) + nU

)
+

1

2
ln

(
1↗

nU

W (↽) + nU

)
↗

1

2
ln

(
1 +

nU

W (↽) + 2↽R ↗ ↽P + nU

)

↗
1

2
ln

(
1↗

nU

W (↽) + 2↽R ↗ ↽P + nU

)
. (3.61)

We note that cosh2(u) = (e2u + e
≃2u + 2)/4, sinh2(u) = (e2u + e

≃2u
↗ 2)/4, and cosh(u) sinh(u) =

(e2u ↗ e
≃2u)/2. So we have derived via Eqs. (3.58), (3.59), and (3.60) that the functions fL,B

ϱ
(↽) are

sums of the root expressions

(
1±

nU

W (↽) + nU

)±
1
2

, and

(
1±

nU

W (↽) + 2↽R ↗ ↽P + nU

)±
1
2

. (3.62)

Of these eight di!erent building blocks, seven are well behaved for ↽ in the frequency range of the

Landau and Beliaev processes ↽ ′ (2↽R ↗↽P , 3↽R ↗↽P +3nU). The exception is where the radicant

in the denominator can attain zero value (1↗ nU/[W (↽) + nU ])≃1/2. If ↽ → ↽1, then W (↽) → 0

and this term diverges. In other words, it diverges at the boundary ↽ = ↽1 between the Landau and

Beliaev domains. However, this is not the origin of the divergence of the spectral functions at ↽ = ↽1

that we see in the figure 3.7. This is due to the pole of order 1 of the Bose-Einstein distribution

nB(↽0(W (↽))) at W (↽ = ↽1) = 0 in the thermal distributions NL,B(W (↽)), Eq. (3.51).

The W
≃1/2 divergence of the functions f

L,B

ϱ
(W (↽)) is lifted by g

→

L,B
(W ), which also diverges like

W
≃1/2 for W → 0. Thus, the functions of the Bogoliubov coe”cients that give the spectral densities
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Figure 3.9: Comparison of the approximated spectral densities near the critical point at zero tem-
perature Eq. (3.64) (dashed lines) and the exact ones (solid lines). The latter are identical to those
shown in figure 3.7.

their characteristics fL,B

ϱ
/|g

→

L,B
| are finite at the boundary, as apparent in figure 3.8.

If we focus on the purely quantum fluctuations at zero temperature ⇁ → ↑, so that the Bose distri-

butions vanish, it is GB

ϱ
(↽) ↓ f

B

ϱ
(↽)/|g→

B
(↽)| and the spectral densities maintain a finite value at the

boundary ↽ = ↽1. To get a deeper understanding of the shape of the spectral densities, we analyze

them at the boundary and find the expansion

d

dW

f
B

ϱ
(W )

|g→
B
(W )|

∝ ↗
aϱ
⇑
W

+ bϱ , (3.63)

with the expansion coe”cients aϱ and bϱ functions of ↽R, ↽P , and nU , see Appendix A.6. The

coe”cients aϱ and bϱ for 3 = C,AC,A are all positive and only those for Ȧ are negative. Based on

Eq. (3.63), we can approximate the spectral densities near W = 0 by the antiderivatives

f
B

ϱ
(W )

|g→
B
(W )|

∝ ↗2aϱ
⇑

W + bϱW + Cϱ , (3.64)

where the constants Cϱ are determined by f
B

ϱ
(0)/|g→

B
(0)|, see the appendix A.6. An analogous analysis

can be done for the Landau damping side, but it is physically irrelevant since at zero temperature,

where the pole of NL(↽) is absent, the total Landau damping is also zero. In figure 3.9 we show

the approximation for the Beliaev spectral densities obtained in Eq. (3.64). Approximating W (↽) as

roughly ↓ (↽↗ ↽1), we find that the zero temperature ⇁ → ↑ spectral densities are characterized by

G
B

ϱ
(↽) ↓ (↽↗↽1)1/2. They thus follow a spectral exponent s = 1/2, which is a sub-Ohmic character-

istic. Hence, we have derived from first principles the sub-Ohmic bath introduced phenomenologically

in existing studies [152, 153]. Sub-Ohmic quantum fluctuations induce strong, exotic, non-Markovian

real-time dynamics, as we have reviewed in section 3.2.3.

It is striking in figure 3.9 that they approximate the spectral densities only in the very vicinity of

the singular point ↽ = ↽1. The discrepancy indicates the complicated nature of the damping that

occurs in the cavity BEC system. It is particularly pronounced in fAC and fA, where we find the

multichannel competition.
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3.7 – E!ective partition function

In the preceding sections we dealt with and discussed the characteristics of the dissipative bath

based on the spectral densities we derived. Via Eqs. (3.5), (3.15), and (3.16) these spectral densities

determine the influence functional so that we can investigate the two-mode polariton system ĤS ,

Eq. (3.38), coupled to the bath. Within the Bogoliubov and system-bath techniques of the previous

sections, we have obtained an e!ective Euclidean action that is quadratic in the system path (qA qC)T

Se! [qA,C ] =
1

2

∫
ε

0
d4

∫
ε

0
d4

→

{
q̇A(4)

[
ϑ(4 ↗ 4

→)↗
K

Ȧ
(4 ↗ 4

→)

↽1

]
q̇A(4

→) + q̇C(4)ϑ(4 ↗ 4
→)q̇C(4

→)

+
(
qA(4) qC(4)

)
S(4 ↗ 4

→)


qA(4 →)

qC(4 →)

}
, (3.65)

with

S(4) =




↽
2
1ϑ(4)↗ ↽1KA(4)

⇑
↗ϑC↽1


0
⇑
N(u1 ↗ v1)ϑ(4)↗KAC(4)



⇑
↗ϑC↽1


0
⇑
N(u1 ↗ v1)ϑ(4)↗KAC(4)


ϑ
2
C
ϑ(4) + ϑCKC(4)↗ ϑCKCenv(4)



 .

(3.66)

We have included the damping of the cavity by photon loss at the experimentally determined rate

▷ by an additional Ohmic bath GCenv ∝ ↽ for the cavity fluctuations. The high-frequency cuto!

↽
2
D
/(↽2 + ↽

2
D
) for the cavity photon loss is of the Drude type with an appropriate cuto! frequency

↽D ↘ |ϑC |. Furthermore, it has to satisfy

⇔

0 d↽GCenv(↽) = ▷
2
/(↗ϑC).

We expand Se! in periodic eigenfunctions of the bosonic Matsubara frequencies, 3n = 2ςn/⇁ with

n ′ Z as introduced in section 3.2.2,

qA,Cn(4) =
1

⇁

∑

iϱn

qA,Cne
iϱnς , Kϱ(4) =

1

⇁

∑

iϱn

Kϱne
iϱnς . (3.67)

The expansion coe”cients obey the symmetry q≃n = q
↔
n
, so the expanded action has the form

Se!(qAn, qCn) =
1

2⇁

∑

iϱn

{(
q
↔

An
q
↔

Cn

)
S
n


qAn

qCn

}
, (3.68)

with the (2∞ 2)-matrix

S
n
=




3
2
n
[1↗K

Ȧn
/↽1] + ↽

2
1 ↗ ↽1KAn

⇑
↗ϑC↽1


0
⇑
N(u1 ↗ v1)↗KACn



⇑
↗ϑC↽1


0
⇑
N(u1 ↗ v1)↗KACn


3
2
n
+ ϑ

2
C
+ ϑCKCn ↗ ϑCKCenvn



 . (3.69)

The determinant of S
n
is

Dn =

3
2
n
[1↗K

Ȧn
/↽1] + ↽

2
1 ↗ ↽1KAn

 
3
2
n
+ ϑ

2
C
+ ϑCKCn ↗ ϑCKCenvn



+ϑC↽1

(
0

⇑

N(u1 ↗ v1)↗KACn

)2
. (3.70)

It is invariant under the change of sign n → ↗n. The partition function is given with some normal-

ization N by the simple expression [32]

Z =
N

⇑
D0

∏

n>1

D
≃1
n

, (3.71)
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Figure 3.10: Shift of the critical point (purple, dashed) and its deviation due to the Stokes shift (solid,
orange) of the quantum phase transition determined by the atom-atom interaction nU . The black
dashed line shows a linear fit to the growth of the Stokes shift. Parameters for the recoil resolved
experimental setup of Ref. [99, 159] are used: ϑC = ↗2↽R, U0 = ↗10≃3

↽R, nU = 1.6 ∞ 10≃2
↽R,

N = 5∞ 104, ▷ = 1.25↽R, ↽D = 109 ↽R, ↽R = 2ς ∞ 3560 Hz.

3.7.1 Role of the Stokes shifts

If the coupling 0 =
⇑
↗U0↽P between cavity and atomic fluctuations is gradually increased, the first

determinant to go to zero is Dn=0. From D0 = 0, we derive the modified Dicke critical point in the

presence of the fluctuations

0
2
cr =

ϑ
2
C
+ ▷

2

↗ϑC

↽1 ↗RA
RC/0

2

↽1 ↗RA


+
⇑

N [u1 ↗ v1]↗ [RAC/0]
2 , (3.72)

where the reorganization energies Rϱ =

⇔

0 d↽Gϱ(↽) encode the influence of the bath based on the

bath spectral densities Eq. (3.57). We have done our best to remove any 0 dependence on the right-

hand side of the equation. However, it remains an implicit equation due to the occurrence of ↽P in ↽1

and the phonon dispersion a!ecting the bath reorganization energies, as well as U0 contributing in ϑC .

In figure 3.10 we show how 0cr changes under the modification of the s-wave scattering which is the

basis for the existence of the bath. If we artificially remove the bath by setting Rϱ = 0, we find the

bare critical point of the system 0
2
cr,0 = (ϑ2

C
+ ▷

2)↽1/[↗ϑCN(u1 ↗ v1)2], which agrees with the mean-

field stability analysis and the prediction of the Bogoliubov theory discussed in section 2.3.6. [36].

The dashed purple line in figure 3.10 shows a linear growth of the critical value for 0
2
cr ∝ ↽P,cr

when the s-wave scattering strength U is increased. This quality is no di!erent from the bare critical

value without the fluctuation bath 0
2
cr,0 = U0↽P,cr,0 ∝ nU as can be seen from Eqs. (2.58) or (2.63).

However, by comparing the critical value of the whole system ↽P,cr with the naked system ↽P,cr,0 in

figure 3.10 we find a linear increase of the relative critical pumping strength ↽P,cr/↽P,cr,0 ↗ 1. The

presence of the quasiparticle dissipative bath induces a Stokes shift to the two-mode system, which

also leads to a shift of the critical point. With increasing interaction energy nU the Stokes shift

becomes stronger. In the region where the Stokes shift starts to deviate from the linear influence on

the critical point, the prerequisite of the Bogoliubov approximation nU/↽R ≃ 1 breaks down.
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3.8 – Observables of the quantum fluctuations

Given the partition function Eq. (3.71), we have direct information about the observables for the

quantum fluctuations of both the cavity qC and the checkerboard mode qA. We consider

↖q
2
C
⇓ = ↗

1

⇁ϑC

φ lnZ

φϑC
=

1

2⇁(↗ϑC)

+⇔∑
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
3
2
n
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2
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
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+
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⇑
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Dn


, (3.73a)

↖q
2
A
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φ lnZ
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1

2⇁↽1

+⇔∑
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
3
2
n
K

Ȧn
/↽

2
1 + 2↽1 ↗KAn

 
3
2
n
+ ϑ

2
C
+ ϑCKCn ↗ ϑCKCenvn



Dn

+
ϑC(0

⇑
N [u1 ↗ v1]↗KACn)2

Dn


, (3.73b)

respectively. Due to the high polynomial order in 3
2
n

of the expectation values with the bath as

revealed by Eq. (3.13), an analytical solution in the zero temperature limit ⇁ → ↑ is not available.

Instead, we numerically evaluate the sums
∑

nmax

n=≃nmax
up to the Matsubara terms nmax. We choose

nmax depending on the inverse temperature ⇁ so that the values are converged. From our bath spectral

density analysis, we know that at temperatures ⇁↽R ↭ 103 the thermal spectral weight is orders of

magnitude smaller than the quantum weight that remains at zero temperature. Therefore, we consider

our bath to be e!ectively at zero temperature for such a large ⇁.

The light and matter sectors become strongly entangled as we approach the critical point 0cr from

below by increasing either the coupling of a single atom to the cavity U0 or the strength of the pump

↽P in 0 =
⇑
↗U0↽P . A pair of polaritons is formed, which we find in the naked system SS , from Eq.

(3.38), by the transformation


qC

qA


=


cos(ϖ) sin(ϖ)

↗ sin(ϖ) cos(ϖ)


q1

q2


, tan(2ϖ) =

↗0
⇑
↗ϑC↽1N(u1 ↗ v1)

|ϑ2
C
↗ ↽

2
1 |

. (3.74)

Its application to Eq. (3.38) yields the e!ective action

Se! =
1

2

2∑

s,s→=1

∫
ε

0
d4

{
ϑs,s→


q̇
2
s
(4) + #2

s
q
2
s
(4)



↗

∫
ε

0
d4

→

{
qs(4)Kss→(4, 4

→)qs→(4
→) + q̇sKṡṡ→(4, 4

→)q̇s→(4)

}}
. (3.75)

Figure 3.11 displays the respective expectation values of the observables ↖q2
A,C

⇓ as the pump strength

↽P is increased. If the cavity and BEC are uncoupled, ↽P = 0, there are no cavity fluctuations. The

quantum fluctuations in the BEC originate from the s-wave scattering and are thus already present

without the cavity through KA and K
Ȧ
. However, they are comparatively weak. By introducing

the coupling to the atoms, fluctuations are created in the cavity. As the coupling 0 =
⇑
↗U0↽P is

gradually increased, the fluctuations in both sectors grow monotonically. At the critical value of the

phase transition 0cr given by Eq. (3.72), the quantum fluctuations diverge. We can see this in the

figure 3.12 for a selection of temperatures. Near the phase transition, the fluctuations of the system

diverge with the critical exponent c = 1. This result is consistent with the prediction for the bare

system, i.e. the Bogoliubov theory discussed in section 2.3.6. The reason for this is that the fluctu-
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Figure 3.11: Expectation values for the light ↖q
2
A
⇓ and the matter sector ↖q

2
C
⇓ of the system as it

approaches its Dicke phase transition by increasing the pump strength ↽P . The plot shows data for
three di!erent inverse temperatures from ⇁↽R = 1.71, where thermal fluctuations dominate the bath,
to ⇁↽R = 171, where zero temperature quantum fluctuations are significant. The parameters are the
same as in figure 3.10 with nmax = 103.

ation bath is gapped from ↽ = 0, see figure 3.7, so it does not a!ect the soft polariton while it is

close to zero frequency, see figure 2.9. Thus the sub-Ohmic signature of the bath does not a!ect the

critical exponent [128,152]. Finite temperature extends the region where the expectation values grow

according to the universal phase transition behavior. In this way, the additional thermal fluctuation

on top of the quantum fluctuation increases the expectation values for both the photon ↖q
2
C
⇓ and the

atomic sector ↖q2
A
⇓ equivalently.

We now examine the influence of the quantum fluctuation bath on these observables in figure 3.12 by

comparing their value ↖·⇓ in the presence of the bath with the value ↖·⇓0 observed when we artificially

turn o! the fluctuation bath Gϱ = 0. Because the cavity fluctuations vanish without any coupling

↽P = 0, there is no di!erence in the cavity photon observable ↖q
2
C
(↽P = 0)⇓. The observable of the

matter sector ↖q2
A
⇓ however is already influenced at ↽P = 0, so that we spot a small deviation in figure

3.12. From there on, the influence of the fluctuation bath increases in both sectors as the coupling

between them is increased. If we compare ↖q
2
A,C

⇓ and ↖q
2
A,C

⇓0 at the same absolute pump strength

↽P in units of the recoil frequency ↽R, as shown by the dashed lines in figure 3.12, the bath-induced

deviation of the observables diverges at the critical point because the presence of the bath moves the

critical point 0cr through the Stokes shift, as discussed around figure 3.10. Consequently, the two

expectation values reach the phase transition at di!erent values of ↽P . The relative deviation of the

critical values caused by the Stokes shift is 2.3∞ 10≃4 for the parameters of figure 3.12.

Once we account for the Stokes shift by comparing the observables at the same relative value to their

respective critical points, i.e. the solid lines of figure 3.12 where ↽P in units of ↽P,cr for ↖q
2
A,C

⇓ and

↽P,cr,0 for ↖q
2
A,C

⇓0, we gain further insights. The deviation still largely increases over the ramp-up

of the coupling 0 by increasing the pump strength ↽P . However, it saturates near the critical point

0cr, indicating that the quantum fluctuation bath does not change the critical exponent of the phase

transition as seen in figure 3.11. In figure 3.12 we see that the bath a!ects the atomic sector of

the system more than the photonic sector. This seems to contradict the conclusions drawn from the

analysis of the bath spectral densities. There we found that the spectral weight GC of the cavity

bath is larger than the other coupling channels due to the di!erence in the coupling parameter 0 > 6,

see figure 3.7. For the parameters in figure 3.12, the bath coupling for the checkerboard mode is

6 = 2Un/
⇑
N ⇐ 1.4 ∞ 10≃4

↽R. With U0 = ↗10≃3
↽R the cavity bath coupling 0 =

⇑
↗U0↽P is
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Figure 3.12: Relative di!erence between the quantum fluctuations in the photon (red, left) and
atom (blue, right) sectors with quasiparticle-damping ↖·⇓ and without quasiparticle-damping ↖·⇓0 for
varying pump strengths. The upper axis is scaled to the recoil frequency ↽R and the result is shown
as dashed lines. Thus, these data include the e!ect of the Stokes shift. On the other hand, the lower
axis is scaled in units of the critical pumping strength and the results shown as solid lines do not
include the Stokes shift. The purple vertical line marks the critical point of the modified Dicke phase
transition. The temperature is ⇁↽R = 1.71∞ 103 so that thermal fluctuations are negligible and only
quantum fluctuations prevail. The parameters are again those for the recoil resolved experimental
setup as in figure 3.10 with nmax = 104.

already larger than 6 if ↽P > 2∞ 10≃5
↽R. The e!ect must be due to the hybridization of the cavity

photons and the checkerboard mode in the creation of the polaritons. Unless ↗ϑC and ↽1 are on

resonance, one polariton is necessarily more photon-like while the other is more matter-like. As the

polariton frequencies change, they resonate better or worse with the damping processes described in

the bath of fluctuations. Thus, the actual expectation values for the two sectors ↖q
2
C
⇓ and ↖q

2
A
⇓ are

entangled by the bath, see Eq. (3.75).

So far, we have studied the case of pure quantum fluctuations at zero temperature in figure 3.12, where

we have chosen a parameter set of a weakly damped optical cavity of the Hamburg experiment [99,159]

introduced in section 2.3.4. However, the derived theory also works at finite temperatures and for

strongly damped cavities. In figure 3.13 we analyze the quantum fluctuations of the system for the

finite temperature ⇁↽R = 1.71. In the chosen setup this is about 100 nK and the thermal fluctuations

are dominant in the bath. In the left panel, all parameters except the temperature are the same as in

figure 3.12. We find that the addition of thermal fluctuations to the quantum fluctuations increases

the observable system fluctuations by orders of magnitude. No qualitative di!erences to the case of

e!ectively zero temperature are found. The relative deviation of the critical point induced by the

Stokes shift is 8.7 ∞ 10≃2, almost 10 percent of the required pump strength. For the right plot, we

change the cavity detuning ϑC = ↗20↽R to be significantly away from resonance with the checker-

board mode ↽1 ⇐ 2↽R. The fluctuations observed in the cavity are more strongly influenced by the

bath for the larger cavity detuning. In particular, near the phase transition, the data for the relative

deviation at ↽P [↽P,cr] catches up with that in the atomic sector. The Stokes shift induced change in

the critical point is slightly reduced to a relative change in pump strength of 8∞ 10≃2. Note that the

fluctuations in the atomic sector are largely una!ected.
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Figure 3.13: Relative di!erence between the quantum fluctuations in the sectors of the system
against the pump strength ↽P as also shown in figure 3.12. Here, however, for a finite temperature
typical of contemporary experiments ⇁↽R = 1.71. On the left, all other parameters are the same as
in figure 3.12. In the right plot, the cavity detuning has been changed to ϑC = ↗20↽R.

Figure 3.14: Relative di!erence in the quantum fluctuations as the pump strength ↽P is tuned as
in figure 3.12. However, here the cavity parameter set is that of the non-recoil resolved (overdamped)
regime, and for a typical experimental temperature, i.e., ϑC = ↗2000↽R, ▷ = 1250↽R and ⇁↽R = 1.71.

A fast (|ϑC |/↽R ↘ 1) and strongly damped (▷/↽R ↘ 1) cavity is also realized in experiments. For

example, in the setup at ETH Zürich in Refs. [23, 28, 35, 69]. We analyze such a setup in figure 3.14.

Over most of the pumping range ↽P [↽R] the bath-induced fluctuations are significantly suppressed

compared to the other parameter sets of figure 3.13. Except at the phase transition where the fluc-

tuations diverge. The change in fluctuations due to bath influence without Stokes shift, i.e. using

↽P /↽P,cr, is also smaller over most of the pumping range. However, they grow faster up to the satu-

ration value at the critical point marked by the horizontal bar in the plot. This saturation value of

the atomic sector ↖q
2
A
⇓ is roughly the same as in figure 3.13. In the cavity photon sector, the data

catch-up with the atomic sector is even more pronounced than in figure 3.13, corresponding to the

much larger cavity detuning |ϑC |. The Stokes shift at the critical pump strength is a relative deviation

of 2.6∞ 10≃3 and thus significantly smaller than in the recoil resolved regime.

3.8.1 Tuning the contact interaction

The central characteristics of the bath is the strength of the s-wave scattering U . We next explore

how its spectral densities and its influence are shaped by tuning this parameter. In the experiment,

one would have to utilize di!erent atomic species or di!erent hyperfine levels, and ideally, Feshbach

resonances, to achieve this kind of control. Figure 3.15 shows the change of the quantum fluctuations

as U is varied. We keep the density n of the atomic gas constant. A larger scattering parameter U

leads to more fluctuations and consequently to a larger value of the observables ↖q2
A.C

⇓. Nevertheless,

we have to keep in mind that even if we again artificially eliminate the bath fluctuations Gϱ = 0, the
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Figure 3.15: Relative di!erence between the quantum fluctuations in the photon (red, left) and the
atom (blue, right) sectors as a function of the atom-atom interaction nU for two di!erent values of
↽P and for the same parameters as in figure 3.12.

magnitude of the fluctuations and the observables are changed, since the checkerboard mode ↽1 is

directly dependent on nU , see Eq. (3.37). Thus, any increase in U leads to a larger pump strength

↽P,cr needed to reach the critical fluctuations for the phase transition, Eq. (3.72). If we again adjust

for the shifted critical point, which grows approximately linearly with U , see figure 3.10, as in figure

3.12 by comparing the value with and without the bath not at the same absolute pump strength

↽P /↽R but at the same relative value to the critical point ↽P /↽P,cr, we find a much more pronounced

response of the observables to changing U . In figure 3.15 we find, when we examine this influence, that

the di!erence in influence observed in the cavity and checkerboard sectors is greatly reduced for larger

s-wave scattering strengths. We find that if the Stokes shift is taken into account, the strength of the

fluctuations is increased by two orders of magnitude while the atom-atom interaction U is modulated

by two orders of magnitude inbetween 2∞10≃3
↽R ↔ nU ↔ 2∞10≃1

↽R. In fact, the cavity observable

↖q
2
C
⇓ increases by almost three orders of magnitude in that range.
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3.9 – Outlook

So far we have only analyzed equilibrium correlation functions ↖q
2
A,C

⇓ to study the response of the

system to the bath. In principle, it is feasible to obtain the dynamics by modeling the system as two

harmonic oscillators with di!erent couplings to the quantum fluctuation bath, e.g. using the Keldysh

approach [67,154–157]

SS =

∫ +⇔

≃⇔

dt

{(
a
↔

cl a
↔
qu

)
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≃1
C,0


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↗ 00
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with the notation

L
µ,ϱ

1 =
∑

p⇐P

→

(u0,pu1,p + v0,pv1,p)


↼
↔

0pµ↼1pϱ + ↼
↔

1pµ↼0pϱ

 
, (3.77)

and for the other operators defined in Eq. (3.41) analog. Although the system SS and the bath SB

are still quadratic and their coupling SSB linear, the computation from Eq. (3.76) is tedious.

Alternatively, having already obtained the bath spectral densities Eq. (3.57), we can use them to solve

the dynamics of the two harmonic oscillators in the real-time form of the action Se! , Eq. (3.65) [160].

However, both approaches are computationally tedious and never purely analytical, since the self-

energies or damping kernels associated with the spectral densities are nonelementary integrals.

One might simplify the elaborate model of the damping channels. Studying figure 3.7 and the spectral

density approximations in Eq. (3.64) quantitatively, we find that the cavity is most strongly coupled

to the fluctuating bath in common parameter regimes, see our discussion in sections 3.5 and 3.8 on

0 and 6. This is a remarkable result, considering that the bath is essentially an e!ect of the atoms

and their interactions with one another. However, it is simply because the cavity-atom coupling 0

is significantly larger than the coupling of the checkerboard mode to the phonon bath 6. Hence,

the coupling parameter of the spectral density GC(↽) is much larger compared to the other spectral

densities. From this point of view we can discard the terms coupled by 6 in the system-bath Hamil-

tonian Eq. (3.40), leaving us with HSB = 0(â + â
†)(L̂1 ↗ B̂1). We have mentioned this and further

approximations already in section 3.4. In the e!ective action picture Eq. (3.65) the much simplified
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form
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1
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→)qC(4
→)
}}

, (3.78)

is obtained. Here we have again included the cavity loss with rate ▷ through the Ohmic bath

GC → GC + GCenv with Drude cuto!. Analogously, this reduction of the bath can be performed

for 6 ↘ 0, but this limit is physically less likely since it would require strong scattering interaction U

or small volumes V2D, or conversely a large number of atoms in the same volume, all of which tend

to contradict the dilute weakly interacting gas assumption of Bogoliubov theory.

Even in the reduced bath picture of Eq. (3.78) it still requires great e!ort to obtain the dynamics of

the two coupled oscillator system [160]. Fortunately, there is a simpler way. Applying the technique

developed in Ref. [161], one of the harmonic oscillators can be eliminated and reduced to an e!ective

spectral density Ge!(↽). The dynamics of a single harmonic oscillator coupled to a bath is well un-

derstood [32,162].

Determining an e!ective spectral density by including the system modes in the bath also opens the

possibility of studying the backaction of a detector on the system. In the experiment, this detector

setup is placed behind a cavity mirror and thus directly detects only the light lost through that of

the mirror. For a detector capable of observing single photons, an appropriate simple approach for

its modeling could be an e!ective harmonic oscillator mode or two-state system. In turn, the appli-

cation of the e!ective bath technique could also allow us to predict the actual dynamic measurement

performed at the detector and to study it in relation to the actual cavity BEC system dynamics.

3.10 – Conclusions

In this chapter, we explore e!ects arising from quantum fluctuations due to weak scattering interac-

tion in the BEC. Some aspects of this work have been studied in the existing literature [28, 34, 127,

128,152,153], but here we present an all-encompassing picture of these phenomena starting from first

principles.

Starting from the field Hamiltonian of the cavity BEC setup, we consider the dynamics in the two-

dimensional cavity pump plane Eq. (3.25). In the intersection of the cavity and the pump beam, a

weakly interacting condensate with interaction strength U is placed. This interaction is the physical

foundation for quantum fluctuations in the system and thus for the quantum phase transition to the

self-organized state to occur. Based on existing literature [34,36,100,105,128] analyzing such systems,

we identify a Bloch band structure of the atomic field and pinpointed the two relevant bands for the

dominant dynamics, see Eq. (3.26). From there, we have carried out a beyond-Bogoliubov approx-

imation around the macroscopically occupied condensate, which allows for higher-order fluctuations

than the standard Bogoliubov theory. We thus find a description of the quantum fluctuations that

are of quadratic order equivalent to the existing Bogoliubov theory discussed in sections 2.3.6 and

2.3.7. However, we additionally find in the next order terms of Landau and Beliaev damping within

the phononic band structure, which is coupled to the Dicke model-like system of the common Bo-

goliubov approach. Because the key cavity BEC features and their measurement are centered on the

Dicke model system of cavity photons and checkerboard excitations, the resulting total microscopic
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Hamiltonian is interpreted in a system-bath model. We show that the quasiparticle bath of quantum

fluctuations couples via independent coupling parameters 0 and 6 to the photon and atom sectors of

the two-mode system, respectively. Both parameters are tunable in an experiment, the former by light

field properties such as the strength ↽P of the transversal pump beam and the latter by Feshbach

resonances to modify the strength U of the atom-atom scattering.

We extract the characteristics of the quantum bath and its influence on the Dicke system by deriving

the influence functional in the imaginary-time path integral approach. Within our beyond-Bogoliubov

approximation, this can be done analytically exactly due to the linear coupling in all modes. It pro-

vides us with bath spectral densities for each type of coupling between the system and the bath. The

spectral densities are defined on finite frequency intervals determined by the Brillouin zone related

to the Bloch bands. The frequency interval for Landau damping is di!erent from that for Beliaev

damping. However, they meet at the boundary defined by the frequency of the checkerboard mode

↽1, Eq. (3.37). We have discussed in detail how the spectral densities and their frequency intervals

can be controlled by the tuning external parameters ↽P and U . We would like to emphasize that

the possibility of using the pump strength to tune the atomic excitation bands only presents itself

in a system with dynamics in more than one dimension as we consider it in our calculation taking

into account the two-dimensional dynamics in the pump-cavity plane. The spectral densities reveal

exotic coupling properties of the quantum bath to the system. Key results of our analysis are pe-

culiar competitions between di!erent quasiparticle channels leading to frequency regions of damping

and antidamping induced by the bath. Zero-temperature pure quantum e!ects exist exclusively in the

channels of Beliaev damping. These peak at the boundary ↽ = ↽1 with a finite valued cusp singularity

if ⇁ → ↑. Since the boundary represents the point of zero quasi-momentum p = 0 in the system, we

discovered analytically that in the immediate vicinity of the boundary the dominant expansion term

of the spectral densities is sub-Ohmic. Thus, if the coupling to the bath is significant, the dynamics of

the system can acquire strong non-Markovian signatures. Finally, we also analyzed the competition

between the thermal weight of the bath influence and that of the quantum fluctuations. This led to

the conclusion that temperatures of ⇁↽R ↭ 103 are required to e!ectively eliminate all thermal e!ects.

We furthermore analyzed the e!ective partition function of the system as its expansion in Matsubara

frequencies. First, we note that the system parameters are renormalized by the bath in terms of its

Stokes shift. It is observed in the shift of the critical point for the Dicke phase transition Eq. (3.72).

In fact, for realistic parameters of contemporary experimental setups, this shift is up to almost 10

percent of the critical pump strength ↽P . We proceeded by analyzing the fluctuations in the system

observables using their equilibrium expectation values. We found that while finite temperatures quan-

titatively change the measurement, it has no qualitative e!ect. Likewise, the bath with its gap to the

zero frequency of the soft mode polariton does not change the universality class of the system at the

phase transition. On the other hand, the quantum bath qualitatively a!ects the system beyond the

Stokes shift. The magnitude of the fluctuations in the system observables is changed by taking into

account the intrinsic quantum fluctuations from the bath. Although this e!ect appears to be small

for most parameter ranges in contemporary experimental setups, it is straightforward to increase its

significance. The coupling to the bath is suppressed compared to the Bogoliubov level by
⇑
N , see

Eq. (3.33) or figure 3.3. Thus, systems with fewer particles N ↫ 103 will open the door to study the

enhancement and control of the fluctuation bath influence and the non-Markovian dynamics induced

by it on the polariton system. The control is performed by tuning external parameters such as the

pump laser strength ↽P , the single-atom-cavity coupling U0 and the atom-atom scattering strength U .

We have demonstrated that the cavity BEC platform intrinsically o!ers a simulation of an intriguing

system-bath model with exceptional control over the quantum fluctuations and nondestructive access
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to the dynamics. Therefore, it constitutes a great platform to study stimulating dissipative dynamics

with time-nonlocal signatures. Their investigation and exploitation are not just relevant for the

cavity BEC, polariton, or Dicke systems but in a broader scope throughout condensed matter physics.

This includes fields such as superconductor qubits, quantum information, nanomechanical and glassy

systems, and quantum dots.

80



4 – Cavity-induced quantum droplet formation

Quantum droplets are formed in quantum many-body systems when the competition of quantum

corrections with the mean-field interaction yields a stable self-bound quantum liquid. We predict

the emergence of a quantum droplet in a dilute Bose gas with both a short-range and an e!ective

long-range interaction between the atoms. The long-range interaction is spatially characterized by a

periodic signature and a tunable envelope. We formulate a Bogoliubov theory based on a homogeneous

mean-field description and quantum fluctuations around it where roton modes emerge. We find that

the repulsive mean-field contact interaction could be destabilized by quantum fluctuation corrections

rooted in the long-range interaction. The competition between both facilitates the formation of self-

bound quantum droplets. This generic approach is applied to setups where a BEC is placed in an

optical cavity. The cavity induces an e!ective long-range interaction between the atoms with di!erent

interaction profiles and symmetries depending on the specific setup. The favorable scaling of the

quantum fluctuations with respect to the system size is determined by the envelope of the long-range

interaction potential. We show analytically how the size and the central density of the cavity-induced

quantum droplets depend on the contact interaction strength, the long-range interaction strength,

and the shape of the spatial envelope. In this chapter we present the work published as Ref. [C] L.

Mixa, M. Radonjić, A. Pelster, M. Thorwart, Cavity-induced quantum droplets, Phys. Rev. Res. 7,

033216 (2025) and Ref. [D] L. Mixa, M. Radonjić, A. Pelster, M. Thorwart, Engineering quantum

droplet formation by cavity-induced long-range interactions, Phys. Rev. Res. 7, 023204 (2025).

4.1 – Introduction to and classification of droplets

In classical physics, matter exists uniquely in the solid, liquid, or gas phase. Once quantum mechanics

takes e!ect, a variety of further aggregate states emerge. In 1938 Kapitza published his findings on

ultracold helium-4 [37], where at temperatures below 2.17 Kelvin he discovered the superfluid state,

a liquid that flows without friction and has no entropy. This sparked a widespread and enduring

interest in exploring the intricate macroscopic quantum states of helium. Landau provided the roton

mode in the dispersion relation of superfluid 4He [38] as the explanation of the superfluid properties.

The quantum liquid helium can also realize a free droplet state [5]. This state is characterized by zero

pressure at a certain density, which leads to a self-trapping quantum liquid. A self-trapping liquid

of N atoms occupying the volume V and avoiding self-evaporation can be understood by its e!ective

energy E0(V,N) satisfying the minimal generic conditions [5]

(C1) zero pressure:

(
φE0

φV

)

N

= 0 ⇔ V0 > 0 , (4.1a)

(C2) positive bulk compressibility:

(
φ
2
E0

φV 2

)

N

∣∣∣∣
V=V0

> 0 , (4.1b)

(C3) negative chemical potential:

(
φE0

φN

)

V=V0

< 0 . (4.1c)

At the equilibrium volume V0, the e!ective energy of the liquid is minimized, which determines the

size of the droplet. The discussion within the e!ective ground state energy E0 generalizes the notion
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of a droplet in the thermodynamic limit to finite systems with significant finite-size e!ects.

A model must contain at least two terms to possibly satisfy the conditions. Usually, the first term is the

mean-field energy ↓ N
2
/V . For finite volume it cannot fulfill (C1), Eq. (4.1a), by itself. Therefore, a

contact interaction BEC has V0 → ↑ as we depict in figure 4.1. It needs competition that contributes

an energy term with a di!erent algebraic dependence on the volume V . To amount to a quantum

droplet, this player against the mean-field must be of a quantum fluctuation nature. We denote the

di!erence in the exponent of the volume by the parameter c and introduce the parameters a(N) for

the mean-field prefactor and b(N) for the quantum competition prefactor so that we can write the

minimal energy model of a droplet in the form

E0(V,N) = a(N)V ≃1 + b(N)V ≃(1+c) + d(N) , (4.2)

with an atom number dependent o!set d(N). For a true minimal model we should set d(N) = 0 and

indeed it would su”ce to fulfill (C1) to (C3) but its inclusion allows us a wider range of choices for

a(N) and b(N) while still satisfying condition (C3). We find from Eq. (4.1a) the generic solution for

the droplet size of the model E0(V,N)

V
c

0 = ↗
(1 + c)b(N)

a(N)
, (4.3)

and three classes of parameters (a, b, c) that satisfy (C1) and (C2), i.e. Eqs. (4.1a) and (4.1b) so that

V0 > 0,

(D1) a(N) < 0 , b(N) > 0 , c > 0 , (4.4a)

(D2) a(N) > 0 , b(N) < 0 , 0 > c > ↗1 , (4.4b)

(D3) a(N) > 0 , b(N) > 0 , c < ↗1 . (4.4c)

Figure 4.1 illustrates their qualitative di!erence in satisfying the conditions. Starting with (D1) we

find that in the large system or equivalently dilute system limit 1/V → 0 the curve follows an inverse

parabola ↗(1/V )2 due to a < 0 and c > 0. In the small system limit 1/V → ↑ the curve is described

by the convex function (1/V )2+c since b > 0 and c > 0. In the particular example sketched in figure

4.1 the asymptotic behavior is (1/V )5/2 for 1/V → ↑. The second class of droplets (D2), because it

has the parameter c < 0, follows its correction term ↗(1/V )2+c in the large system limit 1/V → 0.

Its negative parameter b < 0 means that it has concave asymptotic behavior at 1/V → 0. The plot

shows (1/V )3/2. For the dense system limit 1/V → ↑ the parabola +(1/V )2 of the mean-field term

in E0 with positive parameter a > 0 dominates. Studying the sketch of the third droplet class (D3)

it is again c < 0, so that in the dilute limit 1/V → 0 the correction term ↗(1/V )2+c rules. The

sketch in figure 4.1 shows an example where ↗2 < c < ↗1, so the exponent c̃ = 2 + c ′ (0, 1) is some

fraction, provided c ′ Q. Therefore, the pressure in the large system limit 1/V → 0 shown for (D3) is

given by some root expression ↗(1/V )c̃=1/3. In class (D3), if the exponent parameter c has a larger

absolute value c < ↗2, the pressure is given by a function diverging to negative infinity as ↗V
|c|≃2 for

V → ↑. Finally, the limit of small system size 1/V → ↑ for the droplet model (D3) is dominated by

the positive parabola (1/V )2 resulting from the mean-field term with a > 0. Figure 4.1 also underpins

the mathematical interpretation of conditions (C1) and (C2) that the e!ective energy of the system

is minimized with respect to the system size V in the droplet state given by V0. The third droplet

condition (C3), Eq. (4.1c), implies that the dependence of a(N) and b(N) on the number of atoms N
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4 – Cavity-induced quantum droplet formation

Figure 4.1: Pressure ↗(φE0/φV )N of the minimal energy model E0, Eq. (4.2), against the inverse of
the system size V for a stable BEC and the three droplet classes Eq. (4.4). It visualizes the qualitative
di!erences between the classes (D1)-(D3). More precisely, the plot shows the derivative of the minimal
energy model E0 with respect to the system size V : (↗φE0/φV )N plotted against the inverse system
size 1/V for (BEC): a = 0.5, b = 0.01, c = +1/2, (D1): a = ↗1.35, b = +1, c = +1/2, (D2): a = +0.6,
b = ↗1, c = ↗1/2, and (D3): a = +1, b = +1/2, c = ↗5/3. The parameters for a and b were picked
for optimal visual presentation. The dashed lines show the tangents to the pressure curves at droplet
equilibrium volume V0, i.e. (↗φE0/φV )N = 0. Their positive slopes demonstrate the stability of the
zero pressure points or, in other words, the positive compressibility of the respective droplet.

follows

(
φE0

φN

)

V=V0

=
1

V0

φa(N)

φN
+

1

V
1+c

0

φb(N)

φN
+

φd(N)

φN
< 0

⇔
φa(N)

φN
↗

a(N)

(1 + c)b(N)

φb(N)

φN
+

φd(N)

φN
< 0 , (4.5)

to prevent self-evaporation of the droplet. We believe it is important to note that if the dependence

of the parameters on the number of particles is such that a(N) ↓ N
2, b(N) ↓ N

2+c, and d(N) = 0,

then the condition given in Eq. (4.5) can only be satisfied for c > ↗1. In particular, this excludes the

droplet class (D3), Eq. (4.4c). This may seem benign, but only if the model parameters have these

proportionalities a(N) ↓ N
2 and b(N) ↓ N

2+c, the pressure can be expressed as a function P (n)

only depending on the particle density n = N/V . Solely if this is given, the droplet can survive the

thermodynamic limit N → ↑, V → ↑ with n = N/V = const and in fact this also relates to whether

we can express the e!ective droplet model as an energy density ε0(n). Hence, our notion based on the

energy potential Eq. (4.2) generalizes the notion of droplets existing in the thermodynamic limit [5]

and additionally covers those arising in systems of finite size.

For the strongly interacting and highly correlated liquid helium, the derivation of the specific long-

range correlations and quantum many-body interactions is concealed from the first-principles deriva-

tion. For superfluid helium e!ective energy functionals have been applied [40,163–165] to achieve great

progress. Over the past decade, quantum droplets have been established as a novel macroscopic quan-

tum state of matter through their discovery in weakly interacting dilute atom gases. This was sparked

by the seminal prediction of a quantum droplet state in Bose-Bose mixtures by D. S. Petrov [44]. In

the description of the ground state energy, their three-dimensional realization is of class (D1) with

c = +1/2, as follows from Eq. (4.8) in the next section. The one-dimensional mixture droplets are

of class (D2) with c = ↗1/2 [60]. The isolated droplets formed in a dipolar BEC [45, 166–168] are
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4 – Cavity-induced quantum droplet formation

Figure 4.2: Excitation spectrum of the Bose-Bose mixture. The Bogoliubov dispersion of each
species is shown as ↽p,s=1,2 with U11n1 and U22n2 respectively. The two branches of the mixture
#p,±, Eq. (4.7), are shown. As for the single Bose gas dispersion figure 2.5 the units are determined
by an arbitrary wavenumber k and any finite imaginary part in the dispersion is shown as a dashed
curve. The parameters are U11n1 = 0.11 k2/2m, U22n2 = 0.09 k2/2m, and U12 = ↗1.1

⇑
U11U22.

another manifestation of class (D1) with c = +1/2 as follows from Eq. (4.14). Dipolar BECs have

a roton mode in their excitation spectrum [50–53], which enables the spontaneous formation of a

spatial density modulation of the superfluid in a narrow parameter window [54–56]. Such a quantum

aggregate state called a supersolid, which combines the signatures of both a liquid and a solid, has

long been predicted to exist in ultracold helium [42]. However, supersolid properties have not yet been

demonstrated in 4He.

4.2 – Quantum liquid droplets

In this section, we want to explore what constitutes a quantum droplet and what physical systems they

can be realized and observed in. In recent years, quantum droplets have been a rapidly developing

and exciting field, and there is much more to say than we take space for. However, in the context of

this thesis, where we are dealing with di!erent kinds of systems, our aim should be to give an intuitive

but probably incomplete picture based on the current state of research and not the intricate details of

every derivation or experimental setup. Of course, reference is made to the necessary literature where

this information can be found.

4.2.1 Bose-Bose mixtures

A way to realize a dilute droplet in a weakly interacting system was devised by D. S. Petrov in the

seminal Ref. [44]. Consider two Bose gases of two di!erent atoms, called species s = 1 and s = 2. In

such a mixture there is both intraspecies Uss and interspecies U12 = U21 contact interaction, so that

the single species Hamiltonian Eq. (2.11) is generalized to [44,169]

Ĥ =

∫

V

d
3r

2∑

s=1

{
ε̂
†

s
(r)


↗
⇒

2

2m
+

2∑

s→=1

Uss→

2
ε̂
†

s→(r)ε̂s→(r)


ε̂s(r)

}
. (4.6)

Thus, the homogeneous mean-field ↖ε̂
(†)
s ⇓ =

⇑
ns of the Bose-Bose mixture is stable if the quadratic

form of the interaction term is positive definite. Mean-field stability can only be obtained if both

intraspecies scattering parameters U11, U22 > 0 are positive and U
2
12 < U11U22 so that ϑU = U12 +

⇑
U11U22 > 0. Note that the two species are miscible if U12 <

⇑
U11U22. By performing the Bogoliubov
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theory, two excitation branches are found [44]

#p,± =

√√√√↽
2
p,1 + ↽

2
p,2

2
±


(↽2

p,1 ↗ ↽
2
p,2)

2

4
+

U
2
12n1n2p4

m1m2
, (4.7)

with ↽p,s =
√

(p2/2ms)2 + Ussnsp2/ms the Bogoliubov dispersion of the individual species, Eq.

(2.25). We show these in figure 4.2. The LHY correction arising from the excitation spectrum Eq.

(4.7) of the mixture is

Eqf =
V

2(2ς)3

∫

R3

d
3p

{
#p,≃ + #p,+ ↗

p2

2m↔
↗ U11n1 ↗ U22n2

+
m1U

2
11n

2
1 +m2U

2
22n

2
2 + 4m↔

U
2
12n1n2

p2

}

=
8V m

3/2
1

15ς2
(U11n1)

5
2 f

(
m1

m2
,

U
2
12

U11U22
,
U22n2

U11n1

)
, (4.8)

where m
↔ = m1m2/(m1 +m2) and f > 0 is a dimensionless, in general nonelementary function [44].

However, for equal masses m1 = m2, the integral Eq. (4.8) can be solved analytically and results in

f(1, x, y) =
1

4
⇑
2

∑

±

(
1 + y ±

√
(1↗ y2) + 4xy

)5/2
. (4.9)

Petrov then argues that the mean-field collapse due to a small negative ϑU < 0, visualized in the

unstable lower excitation branch of figure 4.2, is cured by the LHY correction of the mixture Eq.

(4.8) [44]. The competition between the attractive mean-field ↓ ϑUn
2 and the repulsive quantum

correction ↓ [(U11 + U22)n/2]5/2 with their di!erent dependence on the mixture density n and the

interaction parameters U11, U22, and U12 leads to an equilibrium density which, for small |ϑU |, has

the form [44]

n1,0 =
25ς

1024


f


m2

m1
, 1,


U22

U11

≃2

a
≃3
11

ϑU

U11U22
, (4.10)

with the scattering length a11 of U11 = 4ςa11/m1. The other component n2,0 is then determined by

the ratio locking of the mixture n2/n1 =
√
U11/U22 [44].

For this dilute droplet, the wavelength of the dominant excitations is much smaller than the droplet

size p ≃ 1/◁h. Therefore, the local density approximation can be applied. Thereby, the competition

between the mean-field term and the LHY correction in the low-energy regime of the system can be

cast into an extended Gross-Pitaevskii equation for the ground state of the mixture condensate wave

function 20(r̃), which has the expression [44]

0 =

(
↗
⇒

2
r̃

2
↗ 3|20|

2 +
5

2
|20|

3
↗ µ̃

)
20 , (4.11)

in rescaled units denoted by a tilde. For a large number of particles, the ground state is a spherical

droplet of large radius with uniform bulk. When the number of atoms is not large, the wave function

can be found numerically, leading to the results in figure 4.3, where we see that for larger numbers of

atoms, the droplet approximates a uniform bulk with a small surface. It also shows that the addition

of particles only extends the radial size of the wave functions, but leaves its local density in the bulk

unchanged. Below a rescaled number of atoms Ñcr ⇐ 18.65 the droplet is unstable due to the kinetic

energy contribution in Eq. (4.11). Slightly above the critical number of atoms, it is just meta-stable
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4 – Cavity-induced quantum droplet formation

(a) (b)

Figure 4.3: (a) Sketch of the wave function 20(r) of the mixture condensate droplet for di!erent
numbers of particles based on the numerical evaluation of the extended Gross-Pitaevskii Eq. (4.11)
in Ref. [44]. In orange, the wave function of a droplet that is metastable barely above the critical
number of particles is sketched. The central part of its wave function is well approximated by a
Gaussian curve in dashed orange. Hence the droplet size, indicated by the vertical dashed line, can
be evaluated by a Gaussian fit ↓ e

≃r
2
/σ

2

from the fit parameter ϱ [58]. Once the number of particles
is large enough for the droplet to be stable, the addition of particles creates a flat top, shown as the
blue wave function. Further addition of particles creates a larger droplet, shown in purple, without
changing the bulk density. On the right (b) the features observed in the experiment are sketched, see
Refs. [58,59]. If the parameters can stabilize a droplet, the prepared atomic condensate maintains its
size ϱ over time t. In the experiment, at some time t e!ects like three-body losses put an end to the
stability of the droplet, from when on its size ϱ grows [58,59]. For comparison, the results for a stable
Bose gas are shown in an orange dashed curve. It expands immediately after the preparation of the
experiment t = 0 [58, 59]. In purple, we sketch the evolution of the number of particles N . In the
mean-field attractive parameter regime, the number of atoms decays due to three-body recombination
until it falls below the critical minimum number of atoms for the droplet, which here is about 104

based on Ref. [58].

and only truly stable at Ñ > 22.55 [44].

The excitation branches of the mixture condensate are obtained for identical mass m1 = m2 = m

by the transformation ε̂c = (
⇑
n1ε̂1 +

⇑
n2ε̂2)/

⇑
n0 and ε̂d = (

⇑
n2ε̂1 ↗

⇑
n1ε̂2)/

⇑
n0 [170]. This

produces the lower condensate branch ↖ε̂c⇓ =
⇑
n0 and the upper spin branch ↖ε̂d⇓ = 0. It is deduced

that the leading quantum correction is the LHY energy of the upper branch [171]. The excitation

of the lower branch with the collapsing mean-field is renormalized by the one-loop self-energy of the

Beliaev coupling to the upper branch [170]. The Beliaev damping through the upper branch then

cures the instability in the condensate branch [170, 171]. An alternative route to a consistent theory

for the droplet phase is that of bosonic pairing as applied in Ref. [172, 173], a common technique in

fermionic BEC-BCS theory as discussed in these references.

The droplets of Bose-Bose mixtures were experimentally verified in Refs. [58,59,174]. In the experiment

of Ref. [58] a mixture of 39K is prepared in the two hyperfine states |F,mF ⇓ = |1,↗1⇓ and |1, 0⇓. The

Feshbach resonance tunes the intraspecies interaction of the state |1, 0⇓, which in turn changes the

parameter ϑU . After the preparation of the atomic cloud in a red-detuned radial optical dipole trap

and a blue-detuned optical lattice in the vertical z direction, the radial trap is opened and in situ

images are taken at times t. Such an experimental protocol is designed around the key property of

a droplet to be a self-confined quantum liquid [44]. The imaged distribution is fitted by a Gaussian

e
≃r

2
/σ

2

to extract its size from the Gaussian 1/e width ϱ. This distinguishes the droplet state from

that of a gas ϑU > 0 which expands as shown in figure 4.3. Reference [59] uses a very similar

approach, where they prepare the 39K mixture in a trap of three red-detuned laser beams, creating

a crossed dipole trap. In addition, they use a modulated beam to create an e!ective gradient that

compensates for gravity. The picture of a quantum liquid that maintains its average size ϱ without any

additional confinement is verified, as shown in figure 4.3. Once it has lost too many atoms N < Ncr
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due to three-body losses, the droplet is not a stable or even meta-stable state and turns into a Bose

gas [58, 59].

4.2.2 Dipolar Bose gas

Although their first theoretical prediction was in Bose-Bose mixtures, dilute quantum droplets were

first observed in dipolar gases [45]. Using an atomic species with a significant magnetic dipole moment

µm creates an atomic system in which the atoms interact not only via the contact interaction U(r, r→) =

4ςasϑ(3)(r ↗ r→)/m but also via the long-range dipole-dipole interaction [167,168]

Vdd(r ↗ r→) =
µ0µ

2
m

4ς

1↗ 3 cos2(ω)

|r ↗ r→|3
. (4.12)

Here ω is the angle between the chosen polarization direction z and the relative position of the dipoles

r↗ r→. The Gross-Pitaevskii equation of the mean-field wave function ε(r, t) in the dipolar system is

iφtε =

[
↗
⇒

2

2m
+ Vext(r) + U |ε|

2 +

∫
d
3r→

{
Vdd(r ↗ r→)|ε(r→, t)|2

}]
ε . (4.13)

The balance between the contact interaction with the scattering length as and the dipolar interaction is

expressed by the relation εdd = add/as = mµ0µ
2
m
/(12ςas), which assigns an e!ective scattering length

add to the dipolar interaction [49]. If the attractive dipolar interaction dominates the contact repulsion

εdd > 1 the mean-field is unstable [167,168,175]. Bogoliubov theory for this weakly interacting system

reveals the quantum correction [47–49]

Eqf = V
256

⇑
ς

15m
(asn)

5
2Q5(εdd) , (4.14)

where the nonelementary function

Q5(εdd) =
1

2

∫
↼

0
dω

{
sin(ω)


1 + εdd


3 cos2(ω)↗ 1

 5
2

}
, (4.15)

provides the average angular contribution of the dipolar interaction with εdd [49]. Similar to the

LHY correction in the mixture case, the dipolar LHY correction Eq. (4.14) is dominated by hard

modes [175]. Therefore it can provide a stabilizing mechanism against the unstable mean-field asso-

ciated with unstable soft modes, i.e. the instability of the roton.

To obtain the extended Gross-Pitaevskii equation, the term |ε|
3 is added in the local density approx-

imation with the appropriate prefactor from Eq. (4.14) to Eq. (4.13). Again, this is possible because

the LHY correction Eq. (4.14) is dominated by wavelengths much smaller than the size of the atomic

system. The solution of this extended Gross-Pitaevskii equation shows that the dipolar quantum

correction Eqf , Eq. (4.14), indeed compensates for the collapsing mean-field and a droplet density

distribution is formed along the axis of polarization z [167,168,175].

Remarkably, the long-range dipolar interaction Vdd, Eq. (4.12), yields Bogoliubov excitations with a

roton dispersion similar to that of liquid helium [50]. Albeit, due to the anisotropy of the interaction,

the roton is exactly in the magnetization direction where the potential is attractive. The dipolar

roton formation was measured in the experiment with highly magnetic erbium atoms in Ref. [52,53].

Because the dispersion relation of the superfluid forms a potentially soft roton from its interaction

characteristics, density modulation as in a classical solid should be achievable. Such a system combin-

ing superfluid and solid properties called a supersolid, was first proposed more than 50 years ago [42].

Helium-4, the only known bosonic quantum liquid at the time, with its roton dispersion already known
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from neutron scattering experiments, was the subject of early attempts to create a supersolid [176,177].

However, e!orts with helium have not yet been successful [43,178]. To create a supersolid from a quan-

tum liquid, one has to create an array of droplets in which the droplets are coherent with each other.

It was shown that in dipolar gases there exists a narrow parameter regime where the conditions

are fulfilled when three groups realized the dipolar supersolid in experiment [54–56]. The setups in

Refs. [54,55] used 162Dy atoms, strongly exploiting the Feshbach resonance of the atoms to reach the

required interaction parameter range at the cost of increased three-body losses [176, 177]. The third

experiment Ref. [56] achieved with one of their two choices of atomic species 164Dy supersolids that

existed as long as 150 ms thanks to the dominant dipolar interactions compared to the weak contact

interaction in 164Dy [176, 177]. Curiously, a dipolar superfluid can also be heated to a supersolid

phase [179].

Throughout this work, we have explored the quantum fluctuations in the cavity BEC setup associated

with a roton mode in the e!ective atom-only picture. The emergence of droplets by a long-range

interaction engineered in a cavity has been studied in the extended Bose-Hubbard model created by

confining the BEC in an external optical lattice, see section 2.3.9. Initially, the energetic competition

of an alternating long-range interaction with the entropy of the possible states at finite temperature

was considered [180]. Later, quantum Monte Carlo calculations were performed for the extended Bose

Hubbard model, where the long-range interaction interplays with the on-site repulsion [181]. Also, the

mean-field emergence of a single droplet and the mean-field supersolid with phonon-like excitations

have been studied for ring cavities, where multimode cavity physics is generated with interaction

ranges such that the rotons extend over multiple modes in reciprocal space [182]. Here we show that a

generic long-range interaction such as that induced by the cavity can compete with the atomic contact

interaction to give rise to quantum droplets. We explore this mechanism at length in the example

of the specific long-range interaction induced by a single-mode cavity but also survey other forms of

interactions that can be engineered in cavity BEC setups.

4.3 – Generic model

In section 2.3.8 the long-range density-density interaction induced on the atoms by the scattering

of photons between the pump and the cavity was reviewed. Its interaction potential in the atom-

only Hamiltonian Eq. (2.68) can be abstracted as the e!ective interaction parameter I and a di-

mensionless periodic potential v(r, r→). In the example of the Hamiltonian Eq. (2.68) it would be

I = 2&Cg
2
0h

2
0/([&

2
C
+ ▷

2]&2
A
) and v(r, r→) = cos(kx) cos(ky) cos(kx→) cos(ky→). In general, we as-

sign to the periodic signature that it is real, symmetric in its arguments v(r→, r) = v(r, r→), even

v(↗r,↗r→) = v(r, r→), and bounded |v(r, r→)| ↔ 1. We explicitly point out that in general, we do

not have translational invariance to discuss interactions mediated by dissipative degrees of freedom.

These do not necessarily conserve momentum, and the cavity-induced interaction Eq. (2.68) is indeed

an example of this. The interaction described by the periodic potential v(r, r→) would be infinite-

range. For our generic model, we add a real dimensionless envelope fω(r, r→) of widths ε to the

long-range interaction potential. We give this function the properties that it is argument symmetric

fω(r→, r) = fω(r, r→), even fω(↗r,↗r→) = fω(r, r→), and that it has its maximum value 1 at the origin

of the coordinate system |fω(r, r→)| ↔ fω(0,0) = 1 with a well-defined limit to the infinite-range case

limω↘→ fω(r, r→) = 1. The resulting generic long-range interaction potential

VC(r, r
→) = Iv(r, r→)fω(r, r

→) , (4.16)
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Figure 4.4: Sketch of the cavity-induced long-rang interaction potential in one dimension as
VC(x, x→) = cos(x) cos(x→)e≃x

2
/50

e
≃x

→2
/50.

shares therefore substantial similarities with a stationary wave packet. This also sticks out in its

visualization shown in figure 4.4. We discuss below how the envelope in the interaction fω(r, r→)

actually arises naturally in the single-mode cavity but has been discarded until now.

The generic field Hamiltonian of a d-dimensional system, which we study in this section, is

Ĥ =

∫

V

d
dr

{
ε̂
†(r)

[
↗
⇒

2

2m
+

U

2
ε̂
†(r)ε̂(r)

]
ε̂(r)

}

+
1

2

∫

V

d
dr

∫

V

d
dr→

{
ε̂
†(r)ε̂(r)VC(r, r

→)ε̂†(r→)ε̂(r→)

}
, (4.17)

for the N atoms of mass m and their contact interaction strength U .

4.3.1 Transformation to momentum space

As a periodic function, we can express v(r, r→) by its Fourier series

v(r, r→) =
∑

k,k→

e
ikr

e
ik→r→

vk,k→ . (4.18)

The symmetries that we have given to v(r, r) result in real Fourier coe”cients vk,k→ with

vk,k→ = vk→,k = v≃k,≃k→ . (4.19)

We assume periodic boundary conditions, so the atomic field operators ε̂
(†)(r) can be expanded in

their respective Fourier series as well resulting in the expression

ε̂(r) =
1

⇑
V

∑

p

e
ipr

ε̂p . (4.20)

For our d-dimensional system of volume V =
∏

d

ϱ=1 Lϱ the momenta have the discrete values pϱ =

2ςjϱ/Lϱ with the integers jϱ ′ Z. We assume that the periods of the periodic signature v(r, r→) are

integer fractions of the system extensions, i.e. Lϱ/lϱ for lϱ ′ Z \ {0}. Hence the set of wave vectors

k ′ KC is a proper sublattice of the atomic momenta set because of the commensurability of the
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4 – Cavity-induced quantum droplet formation

respective periods. The Fourier coe”cients for v(r, r→) can be expressed as

vk,k→ =

∫

V

d
dr

V

∫

V

d
dr→

V

{
e
≃ikr

e
≃ik→r→

v(r, r→)
}
, (4.21)

with kϱ = 2ςjk,ϱ lϱ/Lϱ and k
→
ϱ
= 2ςj→

k,ϱ
lϱ/Lϱ .

In the infinite-range limit of the envelope fω↘→(r, r→) → 1 the second line in Eq. (4.17) describes

an infinite-range interaction between the atoms with a periodic potential v(r, r→). Using the Fourier

expansions Eqs. (4.18) and (4.20) we find with the Kronecker delta

∫

V

d
dr

V

{
e
≃i(p1≃p2≃k)r

}
= ϑ

(d)
p1≃p2≃k,0 , (4.22)

that such an infinite-range interaction selects distinct momenta p from the field operators ε̂
(†)(r)

with its wave vectors k. More precisely, each wave vector k of v(r, r→) determines commensurable

sets {(p1,p2), (p→
1,p

→
2)} of atomic momenta p under the Kronecker delta Eq. (4.22). Trivially, sets

like {(k,0), (k→
,0)} are elements of these combinations of commensurable momenta. Consequently,

a subset of the atomic momenta p coincides with the wave vectors k and this subset is denoted

as KC. The Fourier coe”cients vk,k→ encode the symmetries of the periodic potential v(r, r→) and

thus control which combinations of (p1,p2) with (p→
1,p

→
2) are possible under the respective long-range

interaction. To give an example: If v(r, r→) is translation invariant, then vk,k→ is non-zero only if

k→ = ↗k. Consequently, the selected momentum sets must satisfy ϑ
(d)
p̃,0 with p̃ = p1 + p2 ↗ p→

1 ↗ p→
2 in

addition to the Kronecker delta given in Eq. (4.22).

If we relax the infinite-range limit so that the envelope is a nontrivial part of the integrand in Eq. (4.17),

the long-range interaction will in principle couple to atomic momenta other than those selected by the

infinite-range interaction. Crucially, though, these selected momenta will always be those modes to

which the long-range interaction VC(r, r→) couples most strongly. Therefore, the atomic momenta that

are elements of KC are maximally coupled by the long-range interaction. Moreso, if the long-range

interaction leads to the emergence of rotons as we will find below it is energetically favorable for the

system to satisfy the assumption that KC is a proper sublattice of the discrete set of atomic momenta

because of the maximized coupling.

We now anticipate what is required to transform the long-range interaction term of the Hamiltonian

Eq. (4.17) into momentum space. We find that we have to solve integrals related to the Fourier

coe”cients of the envelope function

f̃ω(p,p
→) =

∫

V

d
dr

V

∫

V

d
dr→

V

{
e
≃ipr

e
≃ip→r→

fω(r, r
→)
}

. (4.23)

We choose to deal with envelopes that vary slowly compared to the complex exponentials e
ipr for

p ↙= 0. The integral Eq. (4.23) can thus be approximated by the spatial average of the envelope. In

the volume V , the spatial average of the envelope function is precisely the p = p→ = 0 coe”cient

f̃ω(0,0), so we get

f̃ω(p,p
→) ⇐ f̃ω(0,0)

∫

V

d
dr

V

∫

V

d
dr→

V

{
e
≃ipr

e
≃ip→r→

}
= ϑ

(d)
p,0ϑ

(d)
p→,0f̃ω(0,0) . (4.24)

Consequently, for an envelope that varies su”ciently slowly on the scale of the atomic system, the

only relevant property is f̃ω(0,0) and the limit limω↘→ fω(r, r→) = 1 to the infinite-range case directly

implies the textbook relation limω↘→ f̃ω(p,p→) = ϑ
(d)
p,0ϑ

(d)
p→,0. The approximation Eq. (4.24) is the key

technical result that we use in the following analysis and that allows us to perform it analytically.
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4 – Cavity-induced quantum droplet formation

For an extended discussion, it is useful to express Eq. (4.23) as a convolution

f̃ω(p,p
→) =


f̄ω ▽ ḡV


(p,p→)

=

∫

Rd

d
dq

∫

Rd

d
dq→

{
f̄ω(q, q

→)
d∏

ϱ=1

sin([pϱ ↗ qϱ ]Lϱ/2)

[pϱ ↗ qϱ ]Lϱ/2

sin([p→
ϱ
↗ q

→
ϱ
]Lϱ/2)

[p→
ϱ
↗ q→

ϱ
]Lϱ/2

}
, (4.25)

of the Fourier transformation of the envelope

f̄ω(q, q
→) =

∫

Rd

d
dr

(2ς)d

∫

Rd

d
dr→

(2ς)d

{
e
≃iqr

e
≃iq→r→

fω(r, r
→)
}
, (4.26)

and the product of the sampling function of the spatial system extension sinc(qϱLϱ/2) which is the

Fourier transformation of the Heaviside function. Our assumption of a slowly varying envelope can

be elaborated by noting that the Fourier transform f̄ω(q, q→) is narrow in (q, q→) space. More quanti-

tatively, we want it to be exponentially small for |qϱ |, |q→ϱ | ̸ 2ς/Lϱ in all 3 = 1, . . . , d. Then we can

expand the denominators, where pϱ , p
→
ϱ
↙= 0 in Eq. (4.25), as a harmonic series to obtain

f̃(p,p→) =

∫

Rd

d
dq

∫

Rd

d
dq→

{
f̄ω(q, q

→)
d∏

ϱ=1

(↗1)jε+j
→
ε
sin(qϱLϱ/2)

ςjϱ


1 +

qϱLϱ

2ςjϱ
+O

(
qϱLϱ

2ςjϱ

)2


∞
sin(q→

ϱ
Lϱ/2)

ςj→
ϱ


1 +

q
→
ϱ
Lϱ

2ςj→
ϱ

+O

(
q
→
ϱ
Lϱ

2ςj→
ϱ

)2
}

, (4.27)

where we use that the momenta pϱ = 2ςjϱ/Lϱ in the finite system only take on discrete values with

jϱ ′ Z \ {0}. For narrow f̄ω(q, q→), we e!ectively perform the integration of the q-integrals only in

the intervals Pϱ = (↗2ς/Lϱ ,+2ς/Lϱ). We can then compare the integrands of the spatial average

f̃ω(0,0) of Eq. (4.25) with the highest order in Eq. (4.27) to see why |f̃ω(p,p→)|/f̃ω(0,0) ≃ 1 so that

Eq. (4.24) holds. The function sinc(qϱLϱ/2) in the spatial average integral is greater everywhere than

sin(qϱLϱ/2)/ς on the interval qϱ ′ Pϱ , as visualized in figure 4.5. Since sin(qϱLϱ/2)/ς is the leading

order contribution of Eq. (4.27), we investigate the ratio of this term to the sinc function given by

qϱLϱ/2ς on the interval Pϱ = (↗2ς/Lϱ ,+2ς/Lϱ). The modulus of the ratio is less than 1 everywhere

in the interval, but crucially it is much less than one in the center qϱ ⇐ 0 and approaches 1 only near

the edges of the interval, as seen in figure 4.5. If the interaction potential Eq. (4.16) is constructed

faithfully so that all oscillatory behavior is in the periodic signature v(r, r→), such that fω(r, r→) is a

smooth slowly varying envelope, we can combine this to estimate the integrands and thus the ratio of

the integrals. Because we demand that f̄ω(q, q→) is exponentially small for |qϱ |, |q→ϱ | ̸ 2ς/Lϱ relative to

f̄ω(0,0) and slowly varies at the edges of the interval, Pϱ = (↗2ς/Lϱ ,+2ς/Lϱ), where the integrands

are of similar size, the outer region of Pϱ contributes very little to each integral. On the other hand,

we notice that in the central region, the integrand of p ↙= 0 is much smaller than that for p = 0

because the leading term of the ratio behaves like |q|/ς. Therefore, since the integrand of f̃ω(0,0) is

much larger than that for p ↙= 0 in the region that contributes significantly to the integral Pϱ , we

conclude that f̃ω(0,0) itself is much greater than f̃ω(p,p→) for p ↙= 0. In other words, Eq. (4.24) holds

for a generic envelope fω(r, r→) with the properties introduced at the beginning of this section. Such

an envelope has a Fourier transform that is narrow and therefore f̄ω(q, q→) acts in the lowest order

as a multidimensional delta distribution in the integral of Eq. (4.25). Note that it acts like a delta

distribution but is not one. It is more akin to a narrow function out of a sequence that converges

to the delta distribution in the distributional sense. The e!ective distribution takes into account the

symmetries of the specific envelope choice fω(r, r→). Applying this picture of the delta distribution to

the Fourier analysis Eq. (4.25) yields a d-dimensional function similar to a sinc(p,p→) function that
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4 – Cavity-induced quantum droplet formation

Figure 4.5: Estimates of the integrands of the convolution Eqs. (4.25) and (4.27). The integrand for
the spatial average (p,p→) = (0,0) based on Eq. (4.25) is represented by sin(q/2)/(q/2) (blue). The
integrand for (p,p→) ↙= (0,0) is embodied by the zeroth order of the expansion of the harmonic series
in Eq. (4.27), i.e. sin(q/2)/ς (red). The modulus of the fraction of both, i.e. red divided by blue
|q|/ς, is displayed in purple.

is well localized around the center (p,p→) = (0,0). This property of localization around the center

implies Eq. (4.24).

A more rigorous mathematical formulation of this notion is likely possible but is beyond the scope of

this thesis, where we verify Eq. (4.24) anyway for the specific envelopes we study in sections 4.4 and

4.5.

4.3.2 Mean field

We study the generic system described by the Hamiltonian Eq. (4.17) in its homogeneous mean-field

phase, where the expectation value of the field operators is the square root of the particle density

n = N/V , i.e. ↖ε̂
(†)(r)⇓ =

⇑
n. In the following, we look at the quantum fluctuations around it in a

Bogoliubov theory. The expansion of the atomic field operator with the fluctuations 2̂(r) is

ε̂(r) =
⇑
n+ 2̂(r) =

⇑
n+

1
⇑
V

∑

p

→
e
ipr

2̂p , (4.28)

where we have applied the Fourier series expansion of the fluctuations in the second identity. The

primed sum indicates again the omission of p = 0.

With Eq. (4.28) the mean-field energy of the Hamiltonian Eq. (4.17) is promptly found in the zeroth

order of the quantum fluctuations in the form

Emf =
Un

2

2

∫

V

d
dr

{
1
}
+

In
2

2

∑

k,k→

∫

V

d
dr

∫

V

d
dr→

{
vk,k→e

ikr
e
ik→r→

fω(r, r
→)
}

=
UN

2

2V
+

IN
2

2
v0,0f̃ω(0,0) , (4.29a)

Emf,U =
UN

2

2V
, Emf,C =

IN
2

2
v0,0f̃ω(0,0) , (4.29b)

using Eqs. (4.18) and (4.24). The first term Emf,U in the mean-field energy is the familiar contribution

from s-wave scattering in a homogeneous Bose gas Eq. (2.18). The long-range interaction gives rise to

the energy Emf,C, which is finite only if v0,0 ↙= 0, i.e. the periodic signature has a constant background.

We are interested in the quantum fluctuation contribution of this long-range interaction and therefore

declare v0,0 = 0. This leaves us with systems where Emf,C = 0 the mean-field is una!ected by the

long-range interaction VC . The chemical potential is µmf = nU .
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4 – Cavity-induced quantum droplet formation

4.3.3 First-order quantum fluctuations

To validate the assumption of a homogeneous phase, we check whether the first order in the quantum

fluctuations vanishes when the ansatz for the field operator Eq. (4.28) is applied to the Hamiltonian

Eq. (4.17). Using Eqs. (4.18), (4.24) and (4.28) we find

Ĥ1 = In
3/2

∫

V

d
dr

{
2̂(r) + 2̂

†(r)
 ∫

V

d
dr→

{
v(r, r→)fω(r, r

→)
}}

= IN
3/2

f̃ω(0,0)
∑

k⇐KC

(
2̂≃k + 2̂

†

k

)
vk,0 , (4.30)

so we have to require vk,0 = 0, which means we set 0 /′ KC . Thus, due to the symmetry Eq. (4.19),

v(r, r→) has no constant background in any of its arguments (r, r→).

4.3.4 Second-order quantum fluctuations

We now derive the energy correction due to quantum fluctuations in the second order. The second-

order quantum fluctuations contribute to the total system the Hamiltonian term

Ĥ2 =
1

2

∑

p

→
[
p2

2m

(
2̂
†

p2̂p + 2̂≃p2̂
†

≃p

)
+ nU

(
2̂≃p + 2̂

†

p

)(
2̂p + 2̂

†

≃p

)
↗

p2

2m
↗ nU

]

+
IN

2
f̃ω(0,0)

∑

p,p→

→ ∑

k,k→⇐KC

(
2̂pϑ

(d)
≃p,k + 2̂

†

pϑ
(d)
p,k

)
vk,k→

(
2̂p→ϑ

(d)
≃p→,k→ + 2̂

†

p→ϑ
(d)
p→,k→

)
. (4.31)

The detailed derivation is discussed in the appendix A.7. To proceed, we transform Eq. (4.31) to its

representation in the quasi-position operator x̂p and the quasi-momentum operator ŷp [183]

x̂p =


m

p2

(
2̂p + 2̂

†

≃p

)
, ŷp = ↗i


p2

4m

(
2̂≃p ↗ 2̂

†

p

)
, (4.32a)

[x̂p, ŷp] = iϑ
(d)
p,p→ , x̂≃p = x̂

†

p , ŷ≃p = ŷ
†

p . (4.32b)

It turns Eq. (4.31) into

Ĥ2 =
1

2

∑

p

→
[
ŷ≃pŷp + ↽

2
px̂≃px̂p ↗

p2

2m
↗ nU

]
+

IN

2
f̃ω(0,0)

∑

k,k→⇐KC

[
vk,≃k→

|k||k→
|

m
x̂≃kx̂k→

]
, (4.33)

with the Bogoliubov dispersion in the presence of a contact interaction U , Eq. (2.25),

↽p =


p2

2m

(
p2

2m
+ 2nU

)
. (4.34)

Thus we have already found the eigenfrequencies of the modes p /′ KC as Eq. (4.34). We continue with

the modes a!ected by the long-range interaction KC = {k1, . . . ,kd̃
} where d̃ = |KC | is the number of

these modes. In this notation we define 7̂x = (x̂1 · · · x̂d̃
)T , 7̂y = (ŷ1 · · · ŷd̃)

T , and the (d̃ ∞ d̃) matrix ṽ

with the elements ṽij = vki,≃kj |ki||kj |/m. We split the Hamiltonian Eq. (4.33) into the modes that

are already uncoupled p /′ KC and those that couple to the long-range interaction potential

Ĥ2 =
1

2

∑

p/⇐KC

→


ŷ
†

pŷp + ↽
2
px̂

†

px̂p ↗
p2

2m
↗ nU


+

1

2


7̂y
†I

d̃↖d̃
7̂y + 7̂x

†
h7̂x↗

∑

k⇐KC

(
k2

2m
+ nU

)
, (4.35)
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with the real symmetric matrix

h = diag

↽
2
1 , . . . ,↽

2
d̃


+ INf̃ω(0,0)ṽ . (4.36)

Some remarks about the second square bracket of Eq. (4.35) are in order. The long-range interaction

couples exclusively to the quasi-position operators, since v(r, r→) is even and symmetric Eq. (4.19).

That h is real and symmetric also follows directly from the properties of the periodic signature v(r, r→)

via Eq. (4.19). Finally, as is evident from Eq. (4.31), the Fourier coe”cient of the envelope f̃ω(0,0) is

a prefactor of the long-range coupling, i.e. it is the same for all long-range coupled modes. Because it

carries the dependence on the system extensions Lϱ , it can be thought of as a system size dependent

modification of the long-range interaction strength I between the momentum modes.

The orthogonal diagonalization of h yields d̃ eigenvalues #2
k, which are the squares of the eigenfrequen-

cies of the modes k ′ KC coupled by the long-range interaction VC . Each eigenfrequency #k ↙= ↽k

that is changed by VC compared to the dispersion Eq. (4.34) necessarily carries the dependence on the

spatial extension of the system via f̃ω(0,0). The familiar expression of the diagonalized Hamiltonian

Ĥ2 in annihilation and creation operators ↼̂(†)
p of its eigenmodes is obtained by the transformation [183]

x̂p/⇐KC
=


1

2↽p

(
↼̂p + ↼̂

†

≃p

)
, ŷp/⇐KC

= ↗i


↽p

2m


↼̂≃p ↗ ↼̂

†

p


, (4.37a)

x̂k⇐KC =


1

2#k

(
↼̂k + ↼̂

†

≃k

)
, ŷk⇐KC = ↗i


#k

2m

(
↼̂≃k ↗ ↼̂

†

k

)
. (4.37b)

After this transformation, we integrate out the fluctuations ↼̂ and can easily read o! the zero-point

energy they leave behind as a quantum fluctuation correction to the ground state energy of the system

Eqf =
1

2

∑

p/⇐KC

→
(
↽p ↗

p2

2m
↗ nU

)
+

1

2

∑

k⇐KC

(
#k ↗

k2

2m
↗ nU

)
. (4.38)

Finally, as in the case of the mean-field, the energy correction Eqf = Eqf,U + Eqf,C is separated into

the contribution Eqf,U which is exclusively due to the contact interaction and the term which is only

present if there is a long-range interaction Eqf,C. To do this, we complete the sum in the first term of

Eq. (4.38) by extracting the respective summands from the second term and obtain

Eqf,U =
1

2

∑

p

→
(
↽p ↗

p2

2m
↗ nU

)
, Eqf,C =

1

2

∑

k⇐KC

(
#k ↗ ↽k

)
. (4.39)

We evaluate the contact interaction correction Eqf,U in the continuum limit
∑

p

→
→ [V/(2ς)d/2]


Rd d

dp

with the appropriate renormalization, see discussion in section 2.2.1. This then yields the Lee-Huang-

Yang correction Eq. (2.27) [46]. In a weakly interacting dilute Bose gas the quantum correction due

to the contact interaction U is small Eqf,U ≃ Emf,U compared to the mean-field contribution from

the contact interaction. Thus we neglect this subleading correction and deal only with Emf,U, Eq.

(4.29b), and Eqf,C, Eq. (4.39). The dependence on the spatial extension of the former is given by

↓ V
≃1, while for the latter it is encoded in the spatial average of the envelope f̃ω(0,0), which appears

in the long-range interacting modes #k. Next, we discuss two generic examples of long-range interac-

tion in which we can analytically find the eigenmodes #k. We achieve this by imposing an additional

symmetry on the long-range interaction VC(r, r→).
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Figure 4.6: Dispersion relation Eq. (4.41) for the simple example of KC = {↗k,+k}. The dots mark
the discrete modes of the finite system with the distinct roton at p = k. The black line indicates
the continuum of the discrete modes marked by the dots. The blue curve shows the continuum of
the dispersion without the long-range interaction, I = 0. The horizontal blue line marks the roton
mode value for I = 0. Consequently, the di!erence between the actual roton value and the horizontal
blue line given by the red arrow represents the roton contribution to the long-range induced quantum
correction Eqf,C.

4.3.5 Examples of generic long-range interactions

The first additional symmetry we impose on the interaction is that of momentum conservation. Tech-

nically, it must be a translation invariant interaction VC(r +R, r→ +R) = VC(r, r→) for all R ′ Rd.

The translation invariance of the periodic signature v(r, r→) implies that its only non-zero Fourier

coe”cients in Eq. (4.18) are v≃k,k, so that the matrix ṽ in Eq. (4.36) is diagonal. Actually, within

the conditions for Eq. (4.24) to hold so that only the spatial average of the envelope f̃ω(0,0) needs to

be considered, we can weaken the criterium of translation invariance of the total interaction VC . To

obtain a momentum-conserving fluctuation Hamiltonian Ĥ2 it is su”cient that the periodic function

v(r, r→) is translation invariant. Any term that is not momentum conserving due to the lack of trans-

lation invariance of the envelope fω(r, r→) and thus VC(r, r→) becomes a subleading correction to the

momentum conserving terms in Ĥ2 as long as v(r, r→) is translation invariant. Since ṽ is diagonal, Eq.

(4.35) immediately takes the form

Ĥ2 =
1

2

∑

p

→
[
ŷ
†

pŷp + E
2
px̂

†

px̂p ↗
p2

2m
↗ nU

]
, (4.40)

with the dispersion including the long-range interaction unveiled to be

Ep =

√√√√↽2
p +

p2

m
INf̃ω(0,0)

∑

k⇐KC

ϑ
(d)
p,kv≃k,k . (4.41)

The modes altered by the presence of the long-range interaction are therefore #k = Ek. For a negative

long-range interaction parameter I < 0, a roton is created in the dispersion, Eq. (4.41). Figure 4.6

shows such a dispersion for the simplest one-dimensional example KC = {↗k,+k}. The quantum

fluctuation correction of the long-range interaction with a translation invariant periodic signature

v(r, r→) is given by Eq. (4.39) to be

E
(ti)
qf,C =

1

2

∑

k⇐KC


↽
2
k +

k2

m
INf̃ω(0,0)v≃k,k ↗ ↽k


. (4.42)
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Figure 4.7: Visualization of the four modes in KC = {(±k ± k 0)T } in the (px py) momentum
plane. They interact bilinearly all to all via the red arrows. The value of the red arrows is determined
by INf̃ω(0,0)ṽ of Eq. (4.36). As discussed in the text, all elements of ṽ are equal, so ṽ = ṽk2

/(m)J ,
where J is the matrix of all elements equal to 1. In the example discussed in the next section 4.4, it
is ṽ = 1/16.

If the interaction parameter is such that rotons are formed when I < 0, then E
(ti)
qf,C < 0 is negative. A

roton is soft, Ek = 0, as soon as the critical interaction

I
(ti)
cr (k) = ↗

k2
/2m+ 2nU

2Nv≃k,kf̃ω(0,0)
, (4.43)

is reached. Next, we consider a periodic signature v(r, r→) that couples modes with the same modulus,

i.e., |k| = |k→
| for all k,k→

′ KC . Furthermore, we add that the Fourier coe”cients of v(r, r→) are

equal, so that ṽij = ṽk2
/m for all ki,kj ′ KC and all elements of the interaction matrix ṽ are equal.

Since the contact dispersion, Eq. (4.34), depends only on k2, we also get ↽k = ↽k→ for all k,k→
′ KC .

Taken together, these are then the properties of the long-range interaction induced by the single-

mode cavity, Eq. (2.68), and lead to a coupling between the modes as shown in the figure 4.7. After

applying these additional constraints to the matrix h, Eq. (4.36), the d̃ eigenmodes are easily found

analytically with the details in appendix A.7. First, note that h ↗ ↽
2
kId̃↖d̃

is singular with rank 1,

so (d̃ ↗ 1) eigenvalues are una!ected by the presence of the long-range interaction. They lie in the

contact interaction dispersion ↽k, Eq. (4.34). The final eigenvalue is revealed when we realize that

h ↗ (↽2
k + d̃INf̃ω(0,0)ṽk2

/m)I
d̃↖d̃

is singular. A long-range interaction with these constraints thus

produces a single distinct mode

# =


↽
2
k +

k2

m
INf̃ω(0,0)d̃ṽ , (4.44)

that is roton-like if I < 0 and becomes soft at the critical point

Icr = ↗
k2

/2m+ 2nU

2Nd̃ṽf̃ω(0,0)
. (4.45)

Consequently, the quantum fluctuation correction from this long-range interaction is the zero-point

energy of this single mode

Eqf,C =
1

2
(#↗ ↽k) . (4.46)

If # is roton-like as I < 0, this energy correction is negative Eqf,C < 0.
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4 – Cavity-induced quantum droplet formation

4.3.6 Discussion

Let us study in more detail how the rotons in Eqs. (4.41) and (4.44) emerge from the long-range

interaction in the Hamiltonian, Eq. (4.17). Previously we discussed that the momenta p = k at which

a roton is located in the reciprocal space follow the selection from the periodic signature v(r, r→) of the

long-range interaction potential, Eq. (4.16). In a sense, the envelope fω(r, r→) measures the system

extensions Lϱ in units of its interaction ranges ◁ϱ under the spatial integrals

V
d
dr. This informa-

tion is encoded in the spatial average f̃ω(0,0), which is a function of the ratios Lϱ/◁ϱ . Expressing

the spatial average f̃ω(0,0) as the convolution, Eq. (4.25), highlights this notion that the envelope

scans the size of the system. In the derivation of the quantum fluctuations, we found that the spatial

average enters as a coupling prefactor into the momentum-space expression of the Hamiltonian, for

example in Eq. (4.31). Therefore, the e!ective interaction strength in reciprocal space depends on

the system size. Since the long-range interaction is responsible for the formation of the rotons, the

roton modes, Eqs. (4.41) and (4.44), depend on the spatial extension of the system. More specifically,

the depth of the rotons is varied by changing the size of the system. Consequently, the zero-point

energies of the rotons are system-size dependent, and these provide the energy correction given in Eq.

(4.39). Crucially, this means that its derivative (φEqf,C/φV )N is nontrivial if the envelope fω(r, r→) is

nontrivial and can compete with the mean-field so that a droplet can form, see Eq. (4.1).

We deal with the quantum fluctuation energy of an individual mode or a few distinct modes, and

thus face the fact that this energy is not extensive but intensive. It is therefore expected to vanish in

a proper thermodynamic limit. However, the thermodynamic limit of the kind of system we stated

in Eq. (4.17) turns out to be a delicate matter, which we have already discussed in the context of

Dicke model mapping, see section 2.3.7. A physical thermodynamic limit requires not only N → ↑

and V → ↑, while N/V = const, but also the widths of the envelope should be ◁ϱ → ↑ under the

constraint that Lϱ/◁ϱ = const, which leads to some issues with our analytical approach. Namely, for

finite-size systems we could argue for Eq. (4.24) that the Fourier transform of the envelope f̄ω(q, q→) is

exponentially small for |qϱ | > 2ς/Lϱ . However, to maintain this while Lϱ → ↑, the Fourier transform

of the envelope must essentially become a delta distribution. This erases any information about the

spatial shape of the envelope. It is like the delta distribution, independent of the chosen sequence of

functions that converges to it in the sense of distributions. Based on this intricate property of Eqf,C

there are some consequences for the e!ective ground state energy E0 = Emf,U + Eqf,U + Eqf,C. Let

us first recall that we have already figured out that we can discard Eqf,U due to Eqf,U ≃ Emf,U.

Moreover, we noticed that the mean-field term ↓ V
≃1 cannot realize a droplet by itself. To satisfy

conditions (C1)-(C3), Eq. (4.1), the competition must come from the long-range correction Eqf,C.

With the dependence of the spatial extension encoded in the spatial mean of the envelope f̃ω(0,0)

this is feasible in a finite system.

The spatial average of the envelope f̃ω(0,0) can be expanded around ◁ϱ → ↑. This expansion can

subsequently be applied to the eigenmodes #k and their zero-point energy Eqf,C. Such an expansion

allows us not only to better understand the qualitative influence of the shape of the envelope on the

quantum fluctuations but also to compare the realized E0 with the minimal model Eq. (4.2) and its

classification Eq. (4.4), as well as to analytically find the solution Eq. (4.3) for the droplet size V0.

Due to the constraints, we imposed to derive Eq. (4.24), so that the atoms see only the spatial average

of the center of the envelope, we get a good quantitative agreement even if we only expand to the first

nontrivial order in 1/◁ϱ .
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4 – Cavity-induced quantum droplet formation

Figure 4.8: Sketch of a cavity BEC setup with a single mode cavity. The BEC in blue is pumped
by a broad beam along both directions of the y-axis. The cavity axis is along the x-axis with photon
loss rate ▷ through the right mirror. The cavity mode has a Gaussian transverse profile with waist ◁.

4.4 – Spatial self-confinement in the single-mode cavity setup

We consider the setup discussed in previous chapters of a BEC that is coupled by a transversal

pumping scheme to a single mode cavity described by the field Hamiltonian, Eq. (2.46), [27, 88]

Ĥ =

∫

V

d
3r ε̂†(r)

[
↗
⇒

2

2m
+

h
2(r)

&A

+
g
2(r)

&A

â
†
â+

g(r)h(r)

&A


â+ â

†

+

U

2
ε̂
†(r)ε̂(r)

]
ε̂(r)↗&C â

†
â ,

(4.47)

where we study a three-dimensional BEC in this section. However, unlike in the previous chapters, we

here consider the transverse shape of the light modes. Namely, a TEM00 cavity mode with waist ◁ and

the same for the pump laser shape with width ◁P as sketched in figure 4.8. The spatial dependence of

the light mode profiles influences the respective Rabi frequency that couples the light to the atoms.

We consider

g(r) = g0 cos(kx) exp

(
↗
y
2 + z

2

◁2

)
, h(r) = h0 cos(ky) exp

(
↗
x
2 + z

2

◁
2
P

)
. (4.48)

The derivation of the e!ective atom-only Hamiltonian is analogous to that performed in section 2.3.8

to obtain Eq. (2.68). Taking into account the transverse profile, we obtain for the adiabatic elimination

of the cavity mode

â =
g0h0

&A(&C + i▷)

∫

V

d
3r

{
cos(kx) cos(ky) exp

(
↗
y
2 + z

2

◁2

)
exp

(
↗
x
2 + z

2

◁
2
P

)
ε̂
†(r)ε̂(r)∞

∞

[
1 +O

(
U0

|&C + i▷|

)]}
. (4.49)

Subsequently, up to order O(U2
0 /[&

2
C
+ ▷

2]), the e!ective atom-only Hamiltonian [109], Eq. (4.17), is

realized with the long-range interaction

VC(r, r
→) =

2&Cg
2
0h

2
0

(&2
C
+ ▷2)&2

A

cos(kx) cos(ky) cos(kx→) cos(ky→) exp

(
↗
y
2 + z

2

◁2
↗

x
2 + z

2

◁
2
P

)
∞

∞ exp

(
↗
y
→2 + z

→2

◁2
↗

x
→2 + z

→2

◁
2
P

)
. (4.50)
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For the brevity of the equations, we now assume that the width ◁P of the pump is much larger than

the cavity waist ◁ and that the condensate occupies a cube V = L
3 contained within the cavity waist

L < ◁. Neglecting the pump and thus the entire envelope along the cavity axis x may seem far-fetched.

However, if one imagines a tabletop experiment, external levitation of the atomic cloud against gravity

is likely required. Now imagine that the cavity axis x is the vertical axis, and we do not need any

self-confinement along this axis, which would result from the pump profile alone. Theoretically, of

course, this choice is arbitrary. We could just as well consider the cavity width ◁ ↘ ◁P and study the

confinement from the pump profile with ◁P and get the same results for the box of atoms V 1/3
< ◁P .

To reiterate, we choose L = V
1/3

< ◁ ≃ ◁P and investigate the confinement from the TEM00 profile of

the cavity with waist ◁. Furthermore, we recall the parameter hierarchy for the atom-only picture to

hold in the presented form |&A| ↘ |&C |,▷ ↘ ↽R = k
2
/2m ↘ nU, |U0|. We decompose the long-range

interaction Eq. (4.50) into its constituents after applying ◁P → ↑ and obtain

I =
2&Cg

2
0h

2
0

(&2
C
+ ▷2)&2

A

, v(r, r→) = cos(kx) cos(ky) cos(kx→) cos(ky→) ,

f
(2)
ξ

(r, r→) = exp

(
↗
y
2 + z

2

◁2

)
exp

(
↗
y
→2 + z

→2

◁2

)
. (4.51)

The superscript (2) denotes the algebraic order of the exponent and thus the specific form of the

exponential envelope Eq. (4.51) of the TEM00 mode. Having determined the constituents of the long-

range interaction Eq. (4.51), we can apply the formalism developed in section 4.3. First, we verify Eq.

(4.24) for f̃
(2)
ξ

(p,p→), which is given by nonelementary integrals. Therefore, for the one-dimensional

integrals of which f̃
(2)
ξ

(p,p→) is composed, we study their Taylor series, which is in principle given by

integrating the Taylor series of the integrand term by term. The derivation, which is presented in the

appendix A.8.1, yields the estimate

∣∣∣∣
∫ +L

2

≃
L
2

dx

L

{
e
i
2ϑj
L x

e
≃

x2

ϖ2

}∣∣∣∣ <
L
2

2ς2j2◁2

∫ +L
2

≃
L
2

dx

L

{
e
≃

x2

ϖ2

}
. (4.52)

The spatial average of the Gaussian envelope Eq. (4.51) is

f̃
(2)
ξ

(0,0) =

[⇑
ς◁

L
erf

(
L

2◁

)]4
, (4.53)

and we can verify Eq. (4.24) for p,p→
↙= 0 and L < ◁, i.e.

|f̃ξ(p,p→)|

f̃ξ(0,0→)
<

2∏

ϱ=1

→ 1

(ςjϱ)2

2∏

ϱ→=1

→ 1

(ςj→
ϱ→)2

. (4.54)

The primed product denotes the omission of jϱ = 0.

By confirming that Eq. (4.24) holds, we can simply use the results of the generic theory, see section

4.3. The wavenumber k of the light field and the associated recoil frequency ↽R = k
2
/2m are finite.

Consequently, there is no mean-field contribution from the cavity-induced long-range interaction VC ,

Eq. (4.50). This interaction couples the four modes KC = {(±k ± k 0)T } with the same absolute

momentum
⇑
2k and identical Fourier coe”cient vk,k→ = 1/16 for all k,k→

′ KC . This means that the

conditions of Eq. (4.44) are fulfilled and the cavity induces a single roton-like mode

# =

√√√√2↽R


2↽R + 2nU +

IN

2

[⇑
ς◁

L
erf

(
L

2◁

)]4
. (4.55)
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4 – Cavity-induced quantum droplet formation

Figure 4.9: E!ective energy per particle E0/N against the inverse of the spatial extent of the system
1/L. We also show the contributions to E0, Eq. (4.58), which are the Bose gas mean-field energy
Emf,U and the cavity-induced quantum correction Eqf,C. The gray dashed line marks the equilibrium
system size where the competition between the mean-field Emf,U and the correction Eqf,C produces
a minimum in the e!ective energy E0. From the quantum correction Eqf,C we have subtracted the
infinite-range correction, which is shown as the dashed red line. Additionally, the e!ective chemical
potential µ0 is displayed. The parameters are N = 103, ◁ = 50µm, I = ↗85 Hz, as = 100 a0, m = 87
u, ↽R = 2ς ∞ 3560 Hz.

The roton characteristic results from the red-detuned cavity &C < 0, which implies that the e!ective

cavity-induced interaction strength I < 0 is negative. This interaction strength then determines the

softness of the roton # with the critical point given by Eq. (4.45) as

Icr = ↗
4 (↽R + nU)

N [
⇑
ςerf(L/2◁)◁/L]

4 . (4.56)

In the limit of ◁ → ↑, where the square bracket in the denominator approaches 1, this is the established

critical point for cavities with infinite-range interaction [36], see section 2.3.8. In the following study

of the e!ective energy, we must choose the system parameters such that we stay below this critical

point to maintain the homogeneous mean-field condensate phase. To change the interaction strength

I realized in the cavity setup of Eq. (4.51) the most accessible parameters are the pump strength h0

or the cavity detuning &C . Of course, in principle, one can change any of the cavity parameters in

Eq. (4.51) to control the strength of the induced interaction and thus the softness of the roton. The

roton # directly determines the leading quantum fluctuation correction according to Eq. (4.46)

Eqf,C =
1

2
(#↗ ↽k) , (4.57)

from its softness relative to the s-wave scattering dispersion ↽k, Eq. (2.25/4.34). Due to the roton

property, the energy correction is negative Eqf,C < 0. The e!ective beyond mean-field energy of the

condensate is therefore

E0 = Emf,U + Eqf,C =
UN

2

2V
+

1

2
(#↗ ↽k) , (4.58)

with the scattering mean-field contribution Emf,U, Eq. (4.29b), and the cavity-induced quantum fluc-

tuation term Eqf,C.
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4.4.1 Evaluation of the e!ective energy under the droplet criteria

We now examine how the e!ective energy E0, Eq. (4.58), can realize the conditions for a quantum

droplet (C1) to (C3), Eq. (4.1). To satisfy (C1), a system for a fixed number of atoms N must have an

energy extremum with respect to its size V . If there is no cavity interaction I = 0 then the quantum

correction vanishes Eqf,C = 0, but for a stable BEC, i.e. U > 0, the mean-field energy Emf,U ↓ 1/V

is positive and grows strictly monotonously with the inverse of the system size. Only if there is a

significant correction Eqf,C rooted in the quantum fluctuations of the cavity, can (C1) be satisfied.

Their competition is shown in figure 4.9 and we see that a minimum of energy is created. This means

that we have also fulfilled (C2), Eq. (4.1b). The system extension at which the e!ective energy E0 is

minimal determines the equilibrium volume V0 of the atomic system, which is the size of the droplet.

Figure 4.9 also shows that the e!ective chemical potential

µ0 = nU +

(
φEqf,C

φN

)

V

, (4.59)

is negative in the vicinity of the equilibrium 1/L0.

4.4.2 Analytical Investigation

We perform the analytical expansion around L/◁ = 0 mentioned in the discussion of the generic

correction, section 4.3.6, on the specific example for Eqf,C. Due to the constraint L < ◁, the system

experiences only the center of the envelope f
(2)
ξ

(r, r→), so we can expand it to second order in L/◁, or

equivalently expand its spatial average Eq. (4.53) for our needs and have

f̃
(2)
ξ

(0,0) = 1↗
L
2

3◁2
+O

(
L

◁

)4


. (4.60)

For L < ◁ the approximation is also quantitatively accurate. First, we use this on the roton mode Eq.

(4.55) and obtain

# =



2↽R

(
2↽R + 2nU +

IN

2

)
↗

IN

12
√
1 + (4nU + IN)/4↽R

L
2

◁2
+O

(
L
4

◁4

)
. (4.61)

In the limit of an infinitely broad envelope ◁ → ↑, only the first term prevails. We consequently

denote it by #(⇔). It demonstrates that since we can apply the expansion around L/◁ = 0 in the

sense of ◁ → ↑ as in Eq. (4.60), we can recover the results for the well-established infinite-range cavity

interaction at any point of the derivation presented in section 4.3. The succeeding term encapsulates

the leading dependence on the system extension that is characteristic of the specific envelope. Here,

the Gaussian shape of f (2)
ξ

(r, r→) yields a term of order L2
/◁

2. Based on its similarity to a harmonic

oscillator potential due to the quadratic dependence on the system length L, we denote the prefactor

by the e!ective spring constant

k# =
↗IN

12◁2
√
1 + (4nU + IN)/4↽R

. (4.62)
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The expansion applied to the quantum energy correction Eqf,C yields

Eqf,C =
1

2



2↽R

(
2↽R + 2nU +

IN

2

)
↗ 2↽R ↗ nU
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↗

IN

24
√
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L
4

◁4

)

= E
(⇔)
qf,C +

k#

2
L
2 +O

(
L
4

◁4

)
, (4.63)

which we dissect again into the term E
(⇔)
qf,C for infinite width ◁ → ↑ and the leading spatial extension

dependence term of order L2
/◁

2. Yet analytically we cannot compare the e!ective energy E0 obtained

from Eq. (4.58) with this approximation to the minimal e!ective model Eq. (4.2) due to the dependence

on the system volume V in the s-wave scattering terms nU . In figure 4.9 we can see that this

dependence cannot be significant for nU/↽R ≃ 1, since the dashed line of the infinite-range correction

E
(⇔)
qf,C is almost perfectly horizontal, i.e. independent of 1/L = V

≃1/3. Analytically speaking, as long

as the radicants in Eq. (4.61) or equivalently Eq. (4.63) are not close to zero #(⇔)
↘ nU , we can

discard any occurrence of nU in the roton # and its zero-point motion Eqf,C. Due to the way the roton

approaches zero near the Dicke critical point, see figure 2.11, this is a good approximation except in

the very vicinity of Icr, Eq. (4.56).

We now have obtained an analytically solvable e!ective potential

E0(N,V ) = E
(⇔)
qf,C +

UN
2

2V
+

k#

2
V

2/3
, (4.64)

with the terms induced by cavity quantum fluctuations

E
(⇔)
qf,C ⇐

1

2



2↽R

(
2↽R +

IN

2

)
↗ 2↽R


, k# ⇐

↗IN

12◁2
√

1 + IN/4↽R

. (4.65)

Next we can directly compare Eq. (4.64) with the minimal droplet model Eq. (4.2). The infinite-range

correction E
(⇔)
qf,C = d(N) is independent of the spatial extent of the atomic system V and therefore

acts as a system size-independent shift in Eq. (4.64), as we see in figure (4.9). The other two terms

are akin to the remaining minimal model terms. Thus, from the mean-field term linear in 1/V we

find the model parameter a(N) = UN
2
/2. For the quantum correction proportional to V

2/3 we get

b(N) = k#/2 and c = ↗5/3 from the comparison with the term ↓ V
≃1≃c. According to our analysis

of the droplet parameter classes in Eq. (4.4), it must be (D3), since c < ↗1. If we restrict ourselves to

a stable BEC, then a(N) > 0. A red-detuned cavity &C < 0 implies the roton characteristic due to a

negative e!ective interaction parameter I and thus b(N) > 0. Indeed, we match the model parameter

class of (D3), Eq. (4.4c).

On the analytical model Eq. (4.64) we can directly use the generic solution Eq. (4.3) to obtain the

droplet size as the equilibrium system volume

V0 =


↗
18◁2UN

I


1 +

IN

4↽R

3/5

. (4.66)

Equation (4.66) now reveals how the droplet size is influenced by the respective system parameters

to leading order. In figure 4.10 we show the dependence of the droplet density n0 = N/V0 on the

interaction parameters U and I. From Eq. (4.66) we get the relation of V0 ↓ U
3/5

↓ a
3/5
s for the

contact interaction parameter U given by the s-wave scattering length as. For the e!ective strength

of the cavity-induced interaction away from the Dicke critical point Icr we find the proportionality

V0 ↓ |I|
≃3/5. When the interaction is I ↭ 0.6 Icr the square root in Eq. (4.66) is significant and
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Figure 4.10: Dependence of the droplet density n0 on the interaction parameters, i.e. the cavity
interaction strength I (red, top scale) and the s-wave scattering length as (blue, bottom scale). We set
as = 0.1 a0 and I = 0.99 Icr, respectively. The lower bound of the y-axis is given by the self-consistency
constraint V0 < ◁

3. The parameters are N = 104, ◁ = 50µm, and m = 87u.

therefore the relation between the droplet density n0 and the e!ective interaction parameter I deviates

from the simple relation V0 ↓ |I|
≃3/5, as we can see in figure 4.10. The dependence on the number

of atoms N works similarly and is V0 ↓ N
3/5 when the deviation of the square root of the radicant

from 1 is negligible. Finally, the droplet size also varies with the width of the envelope ◁, which here

is given by the cavity waist in the proportionality V0 ↓ ◁
6/5. Note, however, that the theory behind

Eq. (4.66) involves the restriction to V0 < ◁
3, which must be respected for self-consistency.

If we consider a stable BEC of rubidium-87 atoms with the s-wave scattering length as as in figure 4.9,

the theory predicts a quantum droplet that is orders of magnitude more dilute than those observed in

both dipolar gases and Bose-Bose mixtures [45,58,59,166,174] as well as the BEC prepared in cavity

BEC experiments [23, 25, 35]. This is primarily because, in the droplet presented here, the quantum

fluctuation correction competes with a normal mean-field contact interaction. In the established

droplet realizations, however, the mean-field is almost completely suppressed by the use of Feshbach

resonances. Figure 4.10 indicates that a similar suppression of the mean-field would result in an

increase of the droplet density by one to two orders of magnitude due to the relation n0 ↓ U
≃3/5.

4.4.3 Thermodynamic Interpretation

We study how the creation of the droplet by the cavity-induced quantum fluctuations can be inter-

preted in terms of thermodynamic concepts typically applied to liquids. The droplet conditions Eq.

(4.1) each have a physical interpretation to make a droplet a thermodynamically stable state [5]. First

(C1), Eq. (4.1a), a self-bound liquid must have zero pressure P0 = ↗(φE0/φV )N = 0 so that it neither

expands nor collapses. In the mean-field, the system has a positive pressure Pmf,U = Un
2
/2 due to

the repulsive contact interaction mean-field. However, the quantum fluctuations of the cavity-induced

roton mode contribute the correction which acts as a negative pressure Pqf,C = ↗k#/(3L). Their

competition can facilitate the vanishing of the e!ective pressure

P0 = Pmf,U + Pqf,C =
UN

2

2L3
↗

k#(N)

3L
. (4.67)

This is shown in figure 4.11, where the e!ective pressure P0 is plotted in the plane of the number of

atoms N and the spatial extent of the system L. The magenta line denotes zero pressure P0 and thus

the equilibrium system size L0 for any number of atoms N . Figure 4.11(b) shows the density n0 of
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Figure 4.11: (a) Logarithm of the system pressure P0 as a function of the number of atoms N and
the system size L for I = ↗25 Hz. The magenta line marks zero pressure. Above the line of zero
pressure, P0 is negative, and below, it is positive. The pressure is displayed relative to the reference
pressure Pref = 6.5 ∞ 10≃19 Pa, which is the mean-field pressure of a BEC with 103 atoms and a
cube edge length of L = 38.8µm, i.e. the mean-field pressure at the point indicated by the magenta
dot. The dashed magenta line shows L0 ↓ N

1/5 as discussed in section 4.4.2 based on the analytical
solution Eq. (4.66). Where the dashed line deviates from the solid magenta line, the square root in
Eq. (4.66) has a value significantly di!erent from one. (b) Droplet density n0 = N/L

3
0 (blue) and the

single particle energy di!erence &E = [E0(N ↗ 1, V0) ↗ E0(N,V0)]|P0(N,V0)=0 (green) realized along
the magenta line P0 = 0 of (a). (c) System pressure P0 for a relative cavity interaction strength
I = 0.95 Icr. The absolute value of I decreases with increasing N . The reference pressure is again the
mean-field pressure of the Bose gas at the magenta point Pref = 1.9∞10≃17 Pa. Remaining parameters
are as in figure 4.9.

the droplet along this line of zero pressure. It increases monotonically as n0 = N/V0 ↓ N
2/5 with

increasing number of atoms N , as predicted by the analytical model Eq. (4.66), until it diverges at

about Ncr ⇐ 4000. The phenomenon is due to the cavity-induced interaction being a collective e!ect,

and thus the critical interaction strength Icr for the Dicke phase transition, Eq. (4.56), decreases with

a larger number of atoms. In the approximations for the analytical model, it is Icr ↓ N
≃1. At the

critical point, where the roton becomes soft, the radicant vanishes in the square root of Eq. (4.66),

leading to an arbitrarily dense droplet. This is due to the divergence of the quantum fluctuations

and the negative pressure Pqf,C they induce. Note, however, that this divergence also indicates a

divergence of the quantum depletion, which is not taken into account in the presented theory. If we

adjust the e!ective interaction strength I = 0.95 Icr to remain relatively constant to the critical point

of self-organization Icr, we obtain the results shown in figure 4.11(c). This is because the value of the

square root in Eq. (4.66) is held at a constant value throughout the diagram figure 4.11(c).

A common feature we observe in both pressure plots of figure 4.11(a) and (c) is that we have negative

e!ective pressure above the magenta line of zero pressure, i.e., for system extensions greater than the

equilibrium size, and positive pressure for any system extension smaller than the equilibrium one.

This is the realization of (C2) a positive bulk modulus K0(P0 = 0) = ↗V (φP0/φV )N |V=V0 > 0, Eq.

(4.1b). A system with an extension greater than the equilibrium L0 will collapse back to equilibrium

due to the negative e!ective pressure. Equivalently, a system that is too dense, i.e. smaller than the

equilibrium size, expands to the equilibrium size because it has a positive e!ective pressure. This

balance renders the droplet mechanically stable. Although the e!ective compressibility of the droplet
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at P0 = 0 is positive, it is modified compared to the bulk compressibility resulting from the mean-

field, see Eq. (2.29). It is straightforward to derive these two statements from the analytical model

Eq. (4.64)

K(P0 = 0) = V

(
φ
2
E0

φV 2

)

N

∣∣∣∣
V=V0

=

[
Un

2
↗

k#(N)

9L

] ∣∣∣∣
V=V0

=
5

6
Un

2
0 > 0 , (4.68)

where we have entered P0 = 0 from Eq. (4.67). The compressibility of any cavity-induced droplet

is therefore positive. It follows that the speed of sound cs =
√
K(P0 = 0)/mn is correspondingly

reduced by the cavity-induced interaction compared to the homogeneous Bose gas c
gas
s

=
√

Un/m,

see section 2.2.3.

Figure 4.11(b) also displays the energy di!erence &E = [E0(N↗1)↗E0(N)]|P0(N)=0 due to the loss of

a single particle. Since it is positive, it ensures that the droplet is not self-evaporating (C3), Eq. (4.1c).

In thermodynamic terms, a positive &E/N is a negative chemical potential µ0 = (φE0/φN)V0 < 0.

We analyze this for the e!ective energy E0(N,V ), Eq. (4.64), analytically in addition to the graphical

presentation in figure 4.11. Based on the e!ective potential, Eq. (4.64), we get three contributions to

the e!ective chemical potential. The first is the standard mean-field chemical potential of the weakly

interacting Bose gas µmf = Un. The second is the cavity quantum correction term for the spatial

extension b(N)V 2/3 = k#V
2/3

/2, which yields the contribution

(
φb(N)V 2/3

φN

)

V=V0

= ↗
IV

2/3
0

24◁2
√
1 + INm/2k2

+
I
2
NV

2/3
0 m/2k2

48◁2[1 + INm/2k2]3/2
. (4.69)

For interaction parameters U > 0 and I < 0 all these terms of the chemical potential are strictly

positive. The negative e!ective chemical potential seen in figure 4.9 must therefore be due to the

third contribution to the chemical potential which is the infinite-range cavity correction

µ
(⇔)
qf,C =

φE
(⇔)
qf,C

φN
=

I

8
√

1 + INm/2k2
. (4.70)

With I < 0, it is indeed negative. We note that Im/2k2 ↫ 1 based on the self-organization crit-

ical point, Eq. (4.56), and that we consider the system in a dilute weakly interacting regime, so

gmN/2V0k
2
≃ 1 must always be valid. Estimating the contributions to the e!ective chemical poten-

tial for the droplet µ0(P0 = 0) under these restrictions reveals that the negative infinite-range part of

the chemical potential is significantly larger than both Eq. (4.69) and µmf . This ensures a negative

chemical potential at the equilibrium point that determines the droplet size and verifies (C3). As

figure 4.9 shows, this is not true far from the equilibrium system size.

4.4.4 Finite temperature

Any experiment will inadvertently involve a gas of finite temperature. In a system of finite temperature

T , the e!ective energy E0, Eq. (4.58), has an additional term Eth [62, 179], i.e.

E0(N,V, T ) = Emf + Eac + Eth . (4.71)

For the cavity BEC this additional term Eth consists of a term for the Bose gas excitations, as discussed

in section 2.2.4, and a term for the deviation of the roton mode # from the Bose gas dispersion. In

this way, we have separated Eth in the same notion as the zero-point motion Eqf , Eq. (4.39), into a

Bose gas term and a cavity-induced term, so that the latter vanishes when there is no cavity-mediated
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Figure 4.12: System pressure P0(N,V, T ) = Pmf,U + Pqf,C + Pth,U in the plane of temperature T

and system extension L. The magenta line indicates zero pressure P0 = 0. The dashed vertical line
indicates the critical temperature above which the parameter set can no longer realize a stable droplet.
The parameters are N = 102, ◁ = 5µm, as = 100 a0, I = 0.99 Icr, m = 87u, ↽R = 2ς ∞ 3560 Hz.

interaction. We have

Eth =
1

⇁

∑

p

→
ln

1↗ e

≃εϑp

+

1

⇁
ln

(
1↗ e

≃ε#

1↗ e≃εϑk

)
= Eth,U + Eth,C . (4.72)

The sum over the momenta p is evaluated in the continuum and the low-temperature limit as discussed

in section 2.2.4 and Refs. [41, 62]. We find

Eth = ↗
V m

3/2
ς
2

90⇁4(Un)3/2
+

1

⇁
ln

(
1↗ e

≃ε#

1↗ e≃εϑk

)
. (4.73)

The thermal pressure from the Bose gas is Eq. (2.33) and reads

Pth,U =
m

3/2
ς
2

36⇁4(Un)3/2
. (4.74)

In comparison, the cavity-induced thermal pressure Pth,C = (↗φEth,C/φV )N,T is very small, and from

now on we omit the cavity-induced thermal contributions.

The positive thermal pressure of the Bose gas Pth,U, Eq. (4.74), will shift the zero pressure point to

a lower density, see figure 4.12, that is, if a minimum of e!ective energy can be realized at all for a

given temperature. As figure 4.12 shows, no droplet can form above a critical temperature Tcr. The

critical temperature depends naturally on the other parameters. We also find that the window below

the critical temperature where the thermal contribution to the pressure is significant is very narrow

due to Pth,U ↓ T
4. In figure 4.12 the droplet is e!ectively zero temperature below 2 nK, so the region

for a droplet with significant thermal e!ects is just half a nanokelvin. Finally, we note that there is a

second solution for zero pressure at larger system size L, which can be seen in figure 4.12. However,

it is not stable because of its negative compressibility.

Optimization of the experiment should focus on enabling a denser droplet to raise the critical tem-

perature because Pth,U ↓ T
4
/n

3/2. We have already chosen optimized parameters for figure 4.12,

where the droplet can be sustained up to nanokelvin temperature. Compared to figure 4.9 we have

reduced the number of particles N , chosen a narrower light field ◁ resulting in a shorter interaction

range, and moved closer to the Dicke phase transition I = 0.99 Icr to obtain a softer roton. If we
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want droplet formation for the same parameters as in figure 4.9 we must have a system below the

critical temperature of about 0.1 nK where ⇁↽R ⇐ 103. It has been demonstrated that condensates

can be prepared at these temperatures [184]. Recently, even tens of picokelvins have been reached

with matter wave lensing techniques [185, 186], albeit we admit that this requires great experimental

e!ort. Hence, temperature is probably the biggest obstacle to verifying the proposed droplet in an

experiment. Nevertheless, our results show that a finite temperature is not a no-go for the formation

of a droplet.

4.4.5 Other envelope shapes: Quartic exponent

Now we want to explore further how the shape of the envelope influences the self-confinement mech-

anism of the cavity-induced quantum liquid. We have already established in our theory in section

4.3 that the envelope directly determines the dependence of the quantum correction on the spatial

extension of the system through its spatial average f̃ω(0,0). Here, we consider the same setup as

before, figure 4.8 and Eq. (4.47), but change the exponents in the envelope to quartic as

f
(4)
ξ

(r, r→) = exp

(
↗
y
4 + z

4

◁4

)
exp

(
↗
y
→4 + z

→4

◁4

)
. (4.75)

We obtain the estimate, see appendix A.8.2, i.e.
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}
, (4.76)

and thus can verify Eq. (4.24) explicitly for p,p→
↙= 0 and L < ◁

|f̃ξ(p,p→)|

f̃ξ(0,0)
<

2∏

ϱ=1

→ 1

(ςjϱ)2

2∏

ϱ→=1

→ 1

(ςj→
ϱ→)2

, (4.77)

where the primed product indicates the omission of jϱ = 0. Hence, we have satisfied the condition to

apply Eq. (4.24) and only require the spatial average of the envelope

f̃
(4)
ξ

(0,0) =

[
2◁

L
%

(
5

4

)
↗

◁

2L
%

(
1

4
,
L
4

16◁4

)]4
, (4.78)

where %(s, x) is the upper incomplete gamma function. Thus we get the single distinct roton from

Eq. (4.44) and its zero-point motion from Eq. (4.46) with d̃ = 4 and ṽ = 1/16.

The obtained e!ective energy E0 = Emf,U + Eqf,C can be analyzed in the same way as for the

Gaussian envelope. Its competition to realize the equilibrium of a droplet is presented in figure 4.13.

The e!ective energy E0 is molded by the spatial extension dependence of the cavity-induced quantum

correction Eqf,C determined by the envelope shape. We have chosen identical system parameters in

figure 4.13 as for the Gaussian envelope, figure 4.9. Yet the density of the droplet in the quartic

exponent envelope is only about 40% of that realized in the Gaussian envelope. This indicates a

weaker self-confinement of the system.

We expand the envelope in Eq. (4.75) or its spatial average, Eq. (4.78), around L/◁ = 0 and find that

the first nontrivial order is L4
/◁

4. Matching the e!ective energy E0 to the minimal model, we obtain

here c = ↗7/3. The quartic exponent envelope still realizes the same droplet class (D3), Eq. (4.4c),

as for the Gaussian envelope. However, since it creates a significantly more dilute droplet, we have an

indication that an exponent parameter c closer to its upper limit ↗1 optimizes the density of a (D3)

droplet.
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Figure 4.13: E!ective system energy E0 per particle with its mean-field Emf,U and quantum fluc-
tuation cavity contribution Eqf,C for the quartic exponent envelope, Eq. (4.75), as a function of the
inverse of the atomic system extension 1/L. The constant shift due to the infinite-range cavity cor-

rection E
(⇔)
qf,C has already been subtracted. An equilibrium droplet size L0 is realized at the energy

minimum marked by the gray dashed line. The remaining parameters are the same as figure 4.9.

4.4.6 Other envelope shapes: Generic exponent

We explore tunability and control by the exponent 5 in the envelope further with the generic ansatz

f
(▷)
ξ

(r, r→) = exp

(
↗
|y|

▷ + |z|
▷

◁▷

)
exp

(
↗
|y

→
|
▷ + |z

→
|
▷

◁▷

)
. (4.79)

Assuming that the approximation of Eq. (4.24) holds for an arbitrary 5 > 0, we need only the zero

Fourier coe”cient

f̃
(▷)
ξ

(0,0) =

(
2◁

5L

[
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(
1

5

)
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(
1

5
,

(
L
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= 1↗
4
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(
L
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)▷

+O

(
L

2◁

)2▷


. (4.80)

From Eq. (4.44) the roton mode is determined by f̃
(▷)
ξ

(0,0) with d̃ = 4 and ṽ = 1/16 and hence

the quantum correction, Eq. (4.46). Analyzing the right-hand side of Eq. (4.80) we deduce that the

first nontrivial term in the cavity-induced pressure is Pqf,C ↓ L
▷≃3. We also find that the parameter

5 is related to the droplet classification by c = ↗(1 + 5/3) for the three-dimensional system under

investigation V = L
3.

We analyze the interplay between the Bose gas mean-field Emf,U, Eq. (4.29b), and the quantum

correction Eqf,C as a function of the envelope exponent 5 in figure 4.14. In subfigure (a) we find that

the exponent parameter 5 does a!ect the droplet size L0. As suspected in the previous section 4.4.5,

a larger exponent 5 such as 5 = 4 or 3 results in a more dilute droplet than the Gaussian envelope

5 = 2. In figure 4.14(a) we find that decreasing the exponent below 5 = 2 indeed leads to further

improvement. The maximum droplet density is obtained at the peculiar value 5 = 1.36. This is

further investigated in figure 4.14(b). We observe that the optimal exponent 5 to create the densest

possible droplet is sensitive to the remaining set of parameters. In figure 4.14(b), taking only half of

the atoms N/2 leads to an optimal 5 of about 1.02. Conversely, increasing the s-wave scattering by a

factor of 5 shifts the optimal exponent to 5 ⇐ 1.85. In the limit 5 → 0 the envelope Eq. (4.79) becomes

spatially constant, so the interaction becomes infinite-range. Consequently, if 5 → 0 a droplet can no

longer be generated and 1/L0 → 0. Although the initial growth around 5 = 0 is in the region where

our approximation does not hold, it is related to the optimal exponent 5 of a parameter set. Since it

starts at 1/L0 = 0, a parameter set with a smaller optimal 5 must have a steeper growth near 5 = 0,

as the results in figure 4.14(b) show.

Also of note in figure 4.14(a) is the relationship between the e!ective energy per particle E0/N and

the exponent 5. It is evident that a larger exponent leads to a more negative E0. If we examine the
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(a) (b)

Figure 4.14: (a) E!ective energy per particle E0/N plotted against the inverse system size 1/L for
five di!erent choices of the envelope exponent 5. The droplet size L0 corresponding to the minimum
of E0 is indicated by a dashed line in the corresponding color. The dashed red horizontal line indicates

the value of the infinite-range quantum correction E
(⇔)
qf,C/N . The parameters are N = 103, ◁ = 50µm,

I = ↗85 Hz, as = 100 a0, m = 87 u, ↽R = 2ς ∞ 3560 Hz. (b) Inverse droplet size 1/L0 against the
exponent in the envelope 5 for three parameter sets. The first, with the same parameters as in subplot
(a), is labeled ”(a)”. The set ”N/2” uses identical parameters except that the number of atoms is
halved to N/2 = 500. Finally, the parameter set ”5as” uses the same parameters as subplot (a), but
with five times the s-wave scattering length 5as = 500 a0. The optimal exponent 5 that leads to the
densest droplet is indicated by a dashed vertical line. If 1/L0 < 0.02µm≃1, the condition is violated
that L/◁ < 1 which is necessary for the approximation leading to analytical solvability. To indicate
this, a gray horizontal line separates the region of applicability above from the pathological region
below. The curves are drawn as dashed lines in the region where the approximation breaks down to
further indicate this.

right-hand side of Eq. (4.80), we deduce that the correction term (L/2◁)▷ relative to the infinite-range

order 1 decreases in magnitude as the exponent 5 increases. Thus, a larger 5 moves the e!ective

energy E0 closer to the value of E(⇔)
qf,C/N ⇐ ↗17.37 Hz, Eq. (4.65), i.e. to more negative values.

4.4.7 Other envelope shapes: Both pump and cavity profile∗

In this section we consider both the cavity and pump profiles, as shown in figure 4.8. For both profiles

to have a significant contribution, the envelope of the cavity mode width ◁ must be comparable to the

system size in each respective dimension, and so must be the transverse width ◁P of the pump mode.

Studying figure 4.8 and Eq. (4.50) we find that the pump determines the envelope along the cavity

axis x with ◁P and, as before, the cavity determines the width ◁ of the envelope along the pump axis

y. The product of the cavity and pump field shape yields the width 1/
√
1/◁2 + 1/◁2

P
of the envelope

normal to the cavity-pump plane, which is the z-axis. In total, we thus obtain the three-dimensional

Gaussian envelope characterized by εCP = (◁P , ◁ , 1/
√
1/◁2 + 1/◁2

P
)T of the form
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)
. (4.81)

Given three di!erent envelope sizes along the axes, we consider the atoms in a rectangular cuboid

volume V = LxLyLz. Nonetheless, based on the generic model discussion in section 4.3, we know

that as long as in each dimension it is Lϱ/◁ϱ < 1, we can use our formalism and only need the spatial

∗The discussed results are unpublished.
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Figure 4.15: Combinations of (Lx0, Ly0, Lz0) that realize the energy minimum of the zero pressure
condition P0 = 0 with Eq. (4.85). The gray shaded region indicates that there are solutions, but they
violate the global-range assumption Lz0 < ◁z ⇐ 25µm. We have set ◁P = 30µm while the remaining
parameters are the same as in figure 4.9.

average of the envelope as given by Eq. (4.24). It has the expression
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We still consider the same periodic signature v(r, r→) of the interaction, see Eq. (4.51), so we imme-

diately obtain the roton mode from Eq. (4.44) of the form

# =



2↽R

(
2↽R + 2nU +

IN

2
f̃ωCP(0,0)

)
, (4.83)

as we did for Eq. (4.55). Analogously, we acquire the e!ective energy with the mean-field energy

Emf = gN
2
/(2LxLyLz) as

E0 =
gN

2

2LxLyLz

+
1

2
(#↗ ↽k) . (4.84)

Based on this, we can verify the droplet conditions (C1)-(C3), Eq. (4.1), by the derivative to obtain

the pressure

P0 = ↗

(
φE0

φV

)

N

= ↗
1

3

(
1

LyLz

φE0

φLx

+
1

LxLz

φE0

φLy

+
1

LxLy

φE0

φLz

)

N

. (4.85)

Hence, the zero pressure condition is underdetermined for a set of parameters to obtain the corre-

sponding (Lx0, Ly0, Lz0) of the droplet.

Figure 4.15 shows the solutions of system extensions Lx,y,z0 for P0 = 0 of Eq. (4.85). We see that a

narrower droplet in one direction is a trade-o! with an increased extension of the droplet in the other

directions. The curve, where the droplet size in the z axis is as big as its envelope, is determined by the
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respective extension in the x and y plane. A possibility to lift the ambiguity would be to couple the

ratio of the extensions in each dimension to the ratios of the envelope sizes, for example, Lz/Lx = ◁z/◁x

and Lz/Ly = ◁z/◁y. Then the studies we have performed for the previous section for the cube could

be transferred to the rectangular cuboid without having to evaluate high dimensional plots for the

droplet solutions. Similarly, the results obtained for the cube or cuboid-shaped atomic volume can be

generalized to arbitrary d-dimensional shapes as long as some equivalent of the approximation in Eq.

(4.24) can be applied.

4.5 – Translation invariant envelope engineered in a multi-mode cavity

The envelope of a single transversal mode, as studied in the preceding sections, is just one way to

engineer a cavity-induced long-range interaction. In this section, we explore the possibilities estab-

lished in the setup of an almost degenerate confocal cavity of Refs. [79, 187–190]. A large number of

cavity modes contribute to the e!ective long-range interaction in such a setup. To create a transla-

tion invariant cavity-induced interaction, two main details have to be meticulously prepared in the

experiment. The atoms are placed in only one half-plane of the cavity at a distance from the center

of the cavity much larger than the interaction range ◁. This is done to suppress interactions with

the mirror image [79]. In addition, an extra beam is used to cancel the remaining non-translation

invariant contributions in the cavity-induced interaction [79]. Under these assumptions, a translation

invariant e!ective long-range interaction can be engineered, such as

VC(y, y
→) = I cos[k(y ↗ y

→)] exp

(
↗
|y ↗ y

→
|
2

◁2

)
. (4.86)

Here, we study a one-dimensional system in the axis of the pump y. Droplet formation for this type

of long-range interaction has been studied by quantum Monte Carlo techniques in a system confined

in an external optical lattice in Ref. [181]. A similar e!ective interaction can be created in a ring

cavity and has been studied for droplets in the superradiant regime, i.e. in a lattice, with mean-field

methods in Ref. [182].

The total e!ective Hamiltonian is
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Following the generic approach of section 4.3, we verify f̃
(ti)
ξ

(p, p→) ≃ f̃
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(0, 0) for p, p
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↙= 0, Eq.

(4.24), for the translation invariant envelope f (ti)
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special case p = ↗p
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→ = 0 before so that the estimate
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Hence, we have confirmed that we only need to consider the spatial average of the envelope
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Figure 4.16: E!ective energy per particle E0/N and its constituents for the multi-mode cavity
system realizing a translation-invariant long-range interaction versus the inverse system size 1/L. The

system size independent energy shift of the infinite-range interaction term E
(⇔)
qf,C is subtracted. The

droplet size L0 at the minimum of the total system energy E0 is marked by the black dashed line. The
parameters are ↽R = 2ς∞ 3560 Hz, I = ↗21.25 Hz, N = 103, ◁ = 50µm, and gn0/↽R = 1.6∞ 10≃4.

We can then apply the theory discussed in section 4.3.5 for a translation invariant long-range inter-

action. Since the wavenumber is non-zero, k ↙= 0, the homogeneous mean-field Emf,U = UN
2
/2L is

una!ected by the cavity-induced interaction. As discussed in section 4.3.5, the translation invariance

of v(y, y→) = cos[k(y ↗ y
→)] restricts the coupling to be momentum conserving, so that the Fourier

coe”cients of the periodic signature v(y, y→) are all v≃k,k = 1/2 and ṽ is diagonal. We know from Eq.

(4.41) the dispersion including the long-range interaction

Ep =

√√√√ p2

2m


p2

2m
+ 2nU + INf̃

(ti)
ξ

(0, 0)
∑

σ=±

ϑσp,k


, (4.90)

For I < 0 rotons emerge at p = ±k that are part of the dispersion and precisely those we visualized

in figure 4.6. This is a notable di!erence from the case of the non-translation invariant cavity-induced

interaction that we studied in section 4.4. The roton correction of the translation invariant interaction

involves a roton at each k ′ KC , i.e. here at p = ±k. The multiplicity of the roton mode influences

the cavity-induced quantum correction following Eq. (4.42) and we obtain

Eqf,C = Ek ↗ ↽k , (4.91)

since the zero-point motion of each roton contributes.

The e!ective energy E0 = Emf,U + Eqf,C of the competition between the multi-mode cavity-induced

quantum correction Eqf,C, Eq. (4.91), and the contact interaction mean-field Emf,U = UN
2
/2L is

shown in figure (4.16). We observe that the repulsive mean-field energy scaling as ↓ 1/L is counter-

acted by the cavity-induced zero-point motions of the rotons Eqf,C to form the energy minimum of

the equilibrium. The dependence on the system size of the rotons encoded in the spatial average of

the envelope f̃
(ti)
ξ

(0, 0) determines that and how the quantum correction manages to compete with

the mean-field. Expanding the spatial average of the envelope around L/◁ = 0 yields

f̃
(ti)
ξ

(0, 0) = 1↗
L
2

6◁2
+O

(
L
4

◁4

)
. (4.92)

The translation invariant cavity-induced interaction with a Gaussian envelope thus again has an

infinite-range interaction term E
(⇔)
qf,C and a leading L

2 dependence on the spatial extension. Note

that the infinite-range term is again crucial to counteract self-evaporation to satisfy (C3), but is not

involved in conditions (C1) and (C2) of Eq. (4.1). We conclude from Eqs. (4.91) and (4.92) that
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the quantum droplet is realized by the multi-mode engineered interaction as it was for the single

transversal mode envelope previously in section 4.4. Applying the same approximations as for the

analytical study of the single-mode cavity, we find a qualitatively similar description of the e!ective

energy

E0(N,L) = E
(⇔)
qf,C +

UN
2

2L
+

kE

2
L
2
. (4.93)

The prefactor of the quantum self-confinement mechanism is

kE =
↗IN

6◁2
√

1 + (4nU + IN)/4↽R

⇐
↗IN

6◁2
√
1 + IN/4↽R

. (4.94)

It shows that the quantum self-confinement is qualitatively the same ↓ L
2 as for the factorized interac-

tion, see Eq. (4.63). However, there are quantitative di!erences because of the di!erent dimensionality

and the discussed prefactor due to the multiplicity of the roton mode.

Comparing the e!ective energy, Eq. (4.93), with the minimal model, Eq. (4.2), we get the parameters

a(N) = UN
2
/2 and b(N) = kE/2 > 0. Since here we study a one-dimensional system V = L, the

final parameter is c = ↗3. To fulfill the conditions for a droplet, the contact interaction must be

positive U > 0, so we get a(N) > 0. Thus we have again a droplet realization of (D3) according to

the classification Eq. (4.4).

4.6 – Outlook

The novel type of droplet and its mathematical description opens up many new opportunities for

further study. We discuss some of them in this section.

One could consider the e!ective energy E0 of the droplet in terms of Landau theory for a second-order

phase transition. This would be invaluable in studying the formation of the droplet. To briefly recap

the Landau theory, we follow Ref. [191]. In the homogeneous system of our purpose, this theory

originally considers the free enthalpy expanded to the form

G(T,↼) = G(T, 0) +
a(T )

V
↼
2 +

b(T )

V 3
↼
4
, (4.95)

for the order parameter

↼ =

∫

V

d
drε(r)





= 0, if T > TC

↙= 0, if T < TC

, (4.96)

that has a trivial solution or nontrivial solution depending on the control parameter T . The equilibrium

value of the order parameter should minimize Eq. (4.95) such that

(
φG

φ↼

)

T

=
2a(T )

V
↼+

4b(T )

V 3
↼
3 !
= 0 . (4.97)

There are three solutions for the equilibrium order parameter

↼0 = 0 △ ↼0 = ±



↗V 2
a(T )

2b(T )
. (4.98)
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T > Tc
T = Tc
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Figure 4.17: Free enthalpy in the Landau theory G(T,↼) against the order parameter ↼ for the
control parameter above the critical value (blue), at the critical value (orange), and below the critical
value (purple). For the latter, we denote the finite equilibrium value of the order parameter by ↼0.
The free enthalpy plot is adapted from Ref. [191]. In addition, we display the e!ective energy Eq.
(4.100) in red with its equilibrium order parameter, i.e. the cavity-induced droplet.

Which solution is the stable one is determined by the second derivative

(
φG

φ↼

)

T

∣∣∣
⇀=⇀0

!
> 0 , (4.99)

so that the order parameter minimizes the potential. The minimum condition Eq. (4.99) combined

with Eqs. (4.96) and (4.98) imply that a(T ) must change sign at the critical value of the control

parameter TC [191]. It must be 0 < a(T > TC) and a(T < TC) < 0 as visualized in figure 4.17.

Returning to our results, let us compare the free enthalpy ansatz of the Landau theory Eq. (4.95)

with the e!ective energy of the one-dimensional droplet, Eq. (4.93), that has the expression

E0(N,↼ =
√

1/L) = E
(⇔)
qf,C(N) +

UN
2

2L
+

kE(N)

2
L
2

= Eqf,C(N,↼ → ↑) +
UN

2

2
↼
2 +

kE(N)

2
↼
≃4

, (4.100)

where we have chosen the supposed order parameter to be ↼ =
√

1/L. We have sketched this in figure

4.17. Simply from a mathematical perspective, this cannot have a solution ↼ = 0 unless kE = 0. This

requires that the cavity-induced interaction is absent I = 0. Minimizing Eq. (4.100) with respect

to the order parameter, like Eq. (4.97), will yield the equivalent result to finding the equilibrium

size of the droplet by the zero pressure condition, i.e. ↼0 = 1/L0. However, these solutions do not

take into account that the theory in its current state is only valid for the global-range interaction

↼0 = 1/L0
!
> 1/◁. Furthermore, in the regime where no droplets are produced, the equilibrium solu-

tion ↼0 has complex values instead of ↼0 in Landau theory. Note as well that the order parameter

for fluids and gases, both quantum and not, is the square root of the density
⇑
n [3]. A description

of the droplet state and its formation in a Landau theory would be a powerful tool, but conceptual

issues need to be resolved, or our first gullible ansatz for the potential Eq. (4.100) needs to be exten-

sively reworked. Resolving the open question we raise in the next paragraph will help in this endeavor.

Another aspect we view as important is to find a description of the droplet wave function based on an

extended Gross-Pitaevskii-like equation. Both established types of quantum droplets are described by

such a nonlinear Schrödinger equation, as discussed in section 4.2. Often these descriptions are found

by a local density approximation for the condensate order parameter ε0. Under this assumption, the
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density varies slowly with respect to the wavelength of the dominant excitations. For the cavity BEC,

we would need to consider the wavelength of the light field, since it selects the roton mode. However,

deriving the appropriate equation for the cavity BEC droplet wavefunction raises some conceptual

issues. First, the e!ective ground state energy E0 cannot be expressed by an energy functional that

depends only on the condensate order parameter. In fact, we have found that this is a general problem

in the droplet class (D3). Therefore, it seems inevitable to re-derive the zero-point energy quantum

correction while closely following the wave function of the condensate mean-field ε0(r). To perform

the derivation analytically, a local density approximation must be applied to ε0(r) in the sense that

it was done for the envelope in Eq. (4.24). One of the benefits of an extended Gross-Pitaevskii-like

equation would be to give a more accurate prediction for the droplet that forms in an actual experi-

ment. An extension of the Gross-Pitaevskii equation for the droplet would allow us to determine the

shape of the droplet and how it deals with external trapping potentials and their release, which are

required in the preparation and handling of the BEC.

An additional avenue worth exploring would be to go to other regimes of the interaction range. In

this thesis, we have always discussed a cavity-induced interaction with a global range L/◁ < 1. Such a

restriction was motivated to keep the Bogoliubov theory analytically solvable because, for the global

interaction, we were able to show that only a single atomic excitation mode is modified by the in-

teraction. To put it di!erently, the roton is e!ectively so narrow in dispersion that only its central

momentum needs to be considered, see figure 4.6. If we were to go to cavity-induced interactions with

less than global range L/◁ > 0, then the finite width of the roton would have to be respected. Look-

ing at the dispersion, figure 4.6, neighboring modes of p = ±k would be significantly coupled by the

long-range interaction and thus involved in the diagonalization that unveils the eigenmodes. The di-

agonalization is certainly numerically possible [182]. Furthermore, an evaluation of the cavity-induced

quantum correction Eqf,C in the continuum limit might be necessary if a large part of the dispersion

is roton-like. We have also used the global-range approximation to make sure that the mean-field is

homogeneous, see section 4.3.2. If we go to L/◁ > 1 we will find a significant contribution of the

cavity already at the mean-field level.

It seems valuable to derive an analytical description of the non-global interaction, considering the

quantum Monte-Carlo study of droplets from this type of interaction in Ref. [181]. There, in a lattice

model, a distinction is made between strongly glued and weakly glued droplets, the former being those

with global-range interaction and the latter those with only local interactions ◁ ≃ L0. Qualitative

di!erences between the two cases in view of the stability and the order of the phase transition are

predicted [181].

In Ref. [171] an e!ective single-mode description for the Bose-Bose mixture has been derived based

on the density and the spin excitation branches of the mixture. We have explored that if such a

Bose-Bose mixture is placed in the cavity, the cavity couples at the Bogoliubov level to only one of

the excitation branches or the single e!ective branch of the condensate. Thus, the formalism we have

developed is directly applicable to the generalized system. We can imagine a situation in the cavity

mixture setup where the mean-field energy is tuned to zero by a Feshbach resonance. In this case,

only the attractive quantum correction of the cavity-induced roton and the repulsive LHY correction

of the mixture remain in the energy functional. Their interplay could realize a pure quantum droplet

without any classical mean-field.

In the thesis, long-range interactions with an exponential decay were studied. Conversely, typical

long-range interactions have an algebraic decay. Examples are the Coloumb interaction or the dipo-
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lar interaction, Eq. (4.12). It would be interesting to study long-range interactions that combine

exponential decay with algebraic decay, similar to the Yukawa potential e≃◁mr
/r. Such interaction

potentials have been developed in multimode cavities cos(kr)e≃r/ξ
/

√
r/◁ to create optical lattices

with sound [79]. These would physically use photons to mediate the interaction. However, by engi-

neering the vacuum fluctuations of the optical cavity, an interaction is realized that e!ectively selects

a roton mode by the periodic signature and then has an algebraically decaying interaction with an

e!ectively massive mediation if we compare the exponential decay to that of the Yukawa potential.

So far in this chapter, we have only dealt with the e!ective atom-only picture of cavity BEC. Re-

markably, the Bogoliubov theory we have developed, with its approximations and treatment of the

envelope, can be applied directly to the full field Hamiltonian Eq. (4.47), which includes the full

cavity dynamics. From this, we could study droplet signatures in the cavity light or formation of

the droplet in the recoil-resolved regime. As we have seen in figure 2.9 in the recoil resolved regime

there is a pronounced plateau near the Dicke phase transition where the excitation energy of the soft

mode polariton has already vanished but the homogeneous phase is still stable. The existence of this

zero-energy excitation was recently verified in an experiment [192]. In this plateau region, we can

expect a zero-energy excitation of the droplet, so that a periodic density modulation arises from the

beyond mean-field fluctuations. Since the coherence between the periods of the density modulation is

maintained, this would constitute a quantum supersolid due to cavity quantum fluctuations. Notably,

because of the envelope creating the global droplet on which the density grating acts, this supersolid

would be nonsti! as explored for the classical mean-field of a multimode realization in a ring cav-

ity [182].

We have already mentioned in the previous discussion that very close to the phase transition there is

a large quantum depletion of the homogeneous mean-field. Thus, this should be taken into account in

the narrow regime where we propose to investigate the formation of the quantum supersolid. However,

it is also important to study since we have found that operating close to the phase transition is a great

way to optimize the droplet.

With the established theory at hand and knowing that it applies to the full cavity BEC field Hamilto-

nian, higher-order Hamiltonian beyond-Bogoliubov e!ects can be studied. To do so, we would simply

have to combine the approach of the previous chapter 3 [A] with the approximations and light field

shapes developed in this chapter [C,D], which are straightforward to amalgamate. The corrections to

the leading order terms of the droplet are quite rich. They include the Bose gas LHY correction, Eq.

(2.27), neighboring modes of the roton, further terms in the envelope expansion, Eq. (4.60), and the

Beliaev damping e!ects investigated in chapter 3. Without actually performing the calculation, it is

di”cult to estimate whether their combined e!ect is beneficial or detrimental to the formation of the

droplet. However, considering that the droplet is founded on the interplay of weak s-wave scattering

and a finite-size roton correction, it seems relevant to at least explore these next-order corrections of

the system.

Another phenomenon of interest for droplets are vortices. Vortices have been studied in the cavity

BEC and it has been shown that they alter the energy potential such that the superradiant Dicke

transition is shifted and its universality class could be modified [193]. Furthermore, the cavity me-

diates an interaction between the vortices similar to the cavity-mediated interaction of the atoms.

Therefore, inducing vortices will lead to significant changes in the droplet.

In this thesis we have also discussed the parallels between the cavity BEC and the hybrid atom-

optomechanical setup, see sections 2.3.10 and 3.4. It is only logical to investigate the possibility of
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droplet formation in these systems, and indeed such investigations are already underway. A $-level

scheme like the one in the atom-optomechanical system, see figure 2.13, can also be implemented in

the cavity BEC so that the two Bose species of the |±⇓ internal atomic state are created [76].

4.7 – Conclusions

We derive an analytical description of a dilute Bose gas with the interplay of two types of interactions.

On the one hand, the atoms of the Bose gas undergo a contact interaction, i.e. an e!ectively infinitesi-

mal short-range interaction. On the other hand, the atoms interact at long-range via a density-density

interaction. To treat this latter interaction analytically, we discuss it in the regime where the inter-

action range is global. Each atom can be correlated with every other atom in the gas. We provide a

Bogoliubov theory for this generic system. E!ectively, only a few distinct modes are a!ected by the

long-range interaction. If its range is finite, as determined by the envelope function characterizing its

spatial decay, its coupling strength in momentum space is dependent on the system size. A locally

attractive long-range interaction produces roton modes in the excitation spectrum of the atomic gas.

Consequently, the softness of these rotons is influenced by changes in system size. Since the leading

ground state energy correction from quantum fluctuations is the zero-point motion of the rotons, the

quantum energy correction depends on the system size. It can compete with the mean-field energy of

the Bose gas to form a quantum droplet.

The few roton modes from the long-range interaction manage to destabilize the gas of stable mean-field.

The discovered mechanism is drastically di!erent from the established quantum droplets in dipolar

Bose gases and Bose-Bose mixtures [45, 58, 59, 174]. In these systems, the mean-field is destabilized

utilizing Feshbach resonances. The quantum fluctuation corrections of the contact and dipolar inter-

action contribute to a stabilization mechanism and a liquid self-bound state emerges. We generalize

the notion of a quantum droplet to include finite-size e!ects such as the distinct roton modes, which

provide an energy correction that is not extensive. This naturally leads to a new class of droplets that

can only persist in the thermodynamics of finite-size systems. We show that the droplets introduced

here are of this novel type.

Subsequently, we apply the theory to the single-mode cavity BEC system. In this setup, the light

field shape is determined by the longitudinal and transversal functions describing the light mode. The

cavity-mediated interaction leads to the formation of a single distinct roton mode. It is tunable by

cavity parameters such as the pump laser power, the cavity pump detuning, or the transversal size

of the pump and cavity light fields. We derive the e!ective energy potential analytically. Its leading

terms are the mean-field energy of the Bose gas, the quantum correction induced in the limit of the

infinite interaction range of the cavity, and a correction to this infinite-range quantum correction

characterized by the finite-range interaction envelope. The minimization of the energy potential with

respect to the system size determines the size of the self-bound quantum droplet. Only the mean-

field and the finite-range correction of the quantum fluctuations are involved in the interplay that

determines the minimum. Their algebraic dependencies determine the classification of the droplet as

a novel type.

Furthermore, we provide a description of the droplet mechanism in thermodynamic terms. The mean-

field of the stable Bose gas contributes a positive pressure. This is countered by the cavity-induced

quantum fluctuations, which create a negative pressure. The competition between the two underlies

the emergence of the mechanically stable droplet with its positive bulk compressibility. Notably, the

bulk modulus and hence the speed of sound in the quantum liquid is reduced compared to that of the

Bose gas without the cavity. The droplet criteria of pressure and compressibility are una!ected by
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the infinite-range correction term in the e!ective energy potential, which carries no information about

the interaction envelope or the system size. However, this term is the leading term in the chemical

potential and it is essential that it is negative to avoid self-evaporation of the droplet. We investigate

the role of the finite temperature for the droplet in the single cavity mode setup and reveal a critical

temperature for droplet formation.

The e!ective energy potential can be modified by the size and shape of the envelope, which charac-

terize the long-range interaction. Their modification changes the properties of the quantum droplet

such as its size and confinement. We find that the optimal profile of the envelope is sensitive to the

remaining parameters of the setup.

Another modification of the interaction is the addition of symmetries. We study a translation invariant

interaction that can be induced in multi-mode cavities. Our results show that the discovered droplet

mechanism is qualitatively upheld despite the di!erent physical origins of the interaction properties.

However, the modification of the interaction brings quantitative di!erences, e.g. in the droplet size.

A contributing aspect is the emergence of multiple roton modes, which, in contrast to the interaction

of the single mode cavity, are part of the dispersion of the Bose gas. Notably, multiple roton modes

add their zero-point energy to the correction of the ground state energy.

We present a new type of quantum liquid droplet that relies on a long-range atom-atom interaction

which can be engineered by a cavity. Thus, we demonstrate that cavity BEC can be used to simulate

quantum bound and aggregate states with the unprecedented control and observability that the cavity

setup provides. In particular, we emphasize that not only is the strength of the interaction potential

continuously tunable during an experiment, but also its profile can be adjusted, leading to qualitative

changes in the e!ective energy potential of the droplet. It can be used to further explore new quantum

many-body states in driven-dissipative systems. The self-bound nature of the system thus opens

avenues for the study of nucleation, quantum sensing, and interferometry, and is potentially viable for

long-term operation of cold gas setups and hence quantum computing.
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In this thesis, we studied the intricate quantum fluctuations in a cavity BEC system. The setup places

a condensate of atoms in an optical resonator. Each atom is modeled by a two-level system and its

transition is pumped far o!-resonance by the standing wave of a retroreflected laser transversal to the

cavity axis. The atoms and the cavity light become coupled strongly on a quantum level due to the

Purcell e!ect for the Rayleigh scattering processes. In the BEC exists a weak atom-atom interaction

modeled by s-wave scattering. Quantum fluctuations arise in the atomic sector and in parallel emerge

in the quantum light field due to their coupling. In the cavity BEC the strength of the pump laser

driving the internal transition of the atoms is proportional to the coupling between the atoms and

the quantum fluctuations in the cavity. This parameter is easily accessible and finely tunable in the

experiment. We demonstrated in this thesis that the quantum fluctuations, which we study, and

hence the phenomena arising from them are directly influenced by such accessible parameters. The

setup realizes a rich phase diagram where the fluctuations are fundamental for the quantum phase

transitions [23, 25, 26, 36]. Light lost from the cavity can be detected and, hence, the system and its

dynamics can be studied in situ [28]. We have explored and successfully shown in this thesis that

this provides an exceptional platform to realize, investigate, control, and exploit quantum fluctuation

phenomena. In particular, decoherence e!ects and novel aggregate states of matter have been the two

focus points of the thesis.

In the first project, we explored decoherence and exercising control over it. The particular e!ects

under investigation arise from intrinsic damping due to quantum fluctuations in the weakly inter-

acting condensate. These create phonon-like damping that takes the form of Landau and Beliaev

damping processes. Due to the entanglement between the cavity and the atoms the damping couples

to both sectors. Intriguingly, the damping couples stronger to the cavity photon mode than it does

within the atoms. We revealed exotic spectral properties of the dissipative bath. It shows competition

between damping and antidamping channels and sub-Ohmic signatures. The latter is connected to

non-Markovian dynamics and exciting coherence e!ects. We established that the dissipative bath is

controllable by tuning typical parameters of experiments. In addition, thermal e!ects were included

and quantified.

Subsequently, we studied the signatures of the quantum dissipative bath in the system observables.

We noticed that the central quantum system of polaritons is renormalized by a Stokes shift. Quanti-

tative results were presented that the Stokes shift translates to a measurable shift of the critical point

of the quantum phase transition. The transition and phase are related to the Dicke phase transition

and the Dicke model [23], one of the fundamental models of light-matter interaction [24]. Further, we

showed that there are signatures of the dissipation in observable fluctuations beyond the Stokes shift

e!ects. In the cavity BEC the respective observables can be measured in situ and we showed how

they are influenced by a change in the tuning of external parameters.

Intricate quantum dissipation with sub-Ohmic damping, 1/f noise, non-Markovian dynamics, and

strong memory e!ects have only really developed into a field of research after the turn of the mil-

lennium, driven by dephasing and relaxation of, e.g., Josephson qubits with their 1/f noise [148].

Understanding and simulating the dissipative dynamics of quantum systems is not only relevant to
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qubits, molecular, and biological physics, but also reservoir engineering, which is seen as a resource

to control quantum computing setups [30,31,129,130,136–138,143,148]. The setup investigated here

expands on the typically studied systems like the spin-boson model and involves strong light-matter

coupling with hybridization of the two and study of the dissipation e!ects in the vicinity of a non-

equilibrium quantum phase transition.

In the second project, we investigated the aggregate state of a quantum droplet which is a novel state

of matter realized by the competition of an attractive and a repulsive interaction. The state has zero

pressure, positive compressibility, and negative chemical potential and is therefore the thermodynam-

ically stable state of a self-bound quantum liquid [5]. A generic minimal model of the e!ective ground

state energy can satisfy the quantum droplet criteria for di!erent regimes of its model parameters.

Based on these parameter regimes we introduced a systematic classification of quantum droplets. This

novel classification is founded on an e!ective energy potential and therefore droplets with finite-size

e!ects are contained in our formalism. We found that one of the droplet classes has been neither

predicted nor found in an experiment. A generic long-range interaction of the type realized in the

cavity BEC was constructed. The interaction has a periodic signature and a spatial decay inspired

by transversal light field modes where the decay is exponential. We described this property of the

long-range interaction by an envelope function. We developed a Bogoliubov theory to solve the quan-

tum corrections around the mean-field analytically. For analytical solvability, we assume that the

envelope varies slowly in position space compared to the excitations of the finite system. The equiv-

alent statement is that the Fourier transformation of the envelope must be narrow. In leading order,

the quantum correction is the zero-point energy of distinct roton modes induced by the long-range

interaction. The coupling of the long-range interaction in reciprocal space depends on the size of the

system relative to the interaction range. With the softness of the rotons depending on the system

size, the quantum correction is system-size dependent as well. Consequently, the correction competes

with the mean-field and a quantum droplet can form.

Having developed the generic formalism, we applied it to the single-mode cavity BEC setup, and in

particular, the long-range interaction engineered in it by the interplay of the cavity mode and the

pump field. We uncovered how the zero-point energy of a single distinct roton selected by the light

field momentum interplays with the mean-field of the repulsive interaction within the Bose gas. It be-

came evident that the roton in a finite-size system can facilitate the formation of a droplet. We showed

that corrections to the notion that the cavity-induced interaction is infinite-range are essential for the

formation of the droplet. These corrections modify the roton mode. For a long-range interaction with

a global range, the first-order expansion around infinite-range interaction is accurate and allowed us

to derive an analytical model for the droplet. This model for the e!ective energy of mean-field and

quantum correction yields an analytic solution for the droplet size. Furthermore, it shows that the

self-confinement is qualitatively similar to harmonic trapping. Thus, we have demonstrated a droplet

of the previously found novel droplet class. Subsequently, we studied how the droplet can be opti-

mized by typical tuning parameters of an experiment and successfully described these results by the

analytical model. We provided a thermodynamic interpretation in terms of pressure, compressibility,

and chemical potential of the ensemble. In addition, we derived finite temperature e!ects and expose

a critical temperature for a droplet to exist. Furthermore, we studied other exponential interaction

drop-o!s of other shapes and symmetries. Interactions of di!erent geometries and symmetries have al-

ready been realized in the cavity BEC [35,70,79]. Painting the cavity-mediated interaction so that the

setup o!ers near endless freedom in molding the potential has been proposed very recently [78]. The

setup can then be utilized to test characteristics of long-range interactions and probe the emergence

of novel many-body quantum states like the self-bound quantum liquid droplets or beyond-mean-field
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supersolids based on our predictions of qualitatively tuning the stabilizing mechanism provided by the

fluctuations. Notably, this novel quantum state would then be realized in a driven-dissipative system

where the physics of phase transitions is subject to active research. The exploration of this physics

relates to nucleation processes, supercold helium physics, and superconductivity [10, 39, 40, 163–165].

From there even a connection to the fundamental physics of our universe could be raised in the context

of emergence [5].

Taking a broader view, in both parts of this thesis we have investigated novel quantum many-body

phenomena using the vacuum of the electromagnetic field in a cavity to facilitate, tune, and observe

them. Our motivation, as we conceptualized in the introduction, is to employ quantum simulations [1]

to aid the development and testing of theories for phenomena that emerge throughout physics and

in particular in many-body condensed matter which have proven di”cult to model. The challenge of

many-body scenarios e!ects that are unpredictable from fundamental theories is common through-

out physics [4]. However, the mathematical mechanisms underlying the emergences are the same all

over [4, 5].

Our projects revealed quantum dissipative phenomena that go beyond basic reservoir models and a

new type of quantum droplet. Underlying the two phenomena is the interplay of s-wave scattering in

the weakly interacting dilute Bose condensate and the coupling of the atoms to the cavity light field.

The driven-dissipative system produced by this setup then can host e!ects from both the competition

and the complementation of the two interactions. In the cavity BEC setup, the nondestructive mea-

surements and hence in situ observation can be performed. Furthermore, the light-matter coupling is

freely adjustable even during an experimental run. If Feshbach resonances are utilized, even the other

interaction of the s-wave scattering can be tuned so that the entire interaction landscape is modifiable

in an experiment. Thus, we provide testable theoretical predictions of intriguing quantum physics in

a realizable setup which now await their experimental scrutiny.
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A.1 – Bogoliubov transformation

We start with the second-order terms of the Hamiltonian of the Bose gas in momentum space, Eq.

(2.20),

Ĥ2 =
∑

p

→
[(

p2

2m
+ nU

)
ε̂
†

pε̂p +
nU

2

(
ε̂
†

pε̂
†

≃p + ε̂≃pε̂p

)
+

m(nU)2

2p2

]
, (A.1)

and apply the Bogoliubov transformation, Eq. (2.21),

ε̂p = up↼̂p ↗ v
↔

p↼̂
†

≃p , ε̂
†

p = u
↔

p↼̂
†

p ↗ vp↼̂≃p . (A.2)

Utilizing u≃p = up and v≃p = vp, we get

Ĥ2 =
∑

p

→
[(

p2

2m
+ nU

)(
|up|

2
↼̂
†

p↼̂p + |vp|
2
↼̂≃p↼̂

†

≃p ↗ u
↔

pv
↔

p↼̂
†

p↼̂
†

≃p ↗ vpup↼̂≃p↼̂p

)

+
nU

2

(
[u↔2

p + v
↔2
p ]↼̂†

p↼̂
†

≃p + [u2
p + v

2
p]↼̂≃p↼̂p ↗ [u↔

pvp + v
↔

pup][↼̂
†

p↼̂p + ↼̂≃p↼̂
†

≃p]
)
+

m(nU)2

2p2

]
.

(A.3)

We now apply the commutation relation [↼̂≃p, ↼̂
†

≃p] = 1 and exchange terms in the p-sum between p

and ↗p to obtain

Ĥ2 =
∑

p

→
[(

p2

2m
+ nU

)(
[|up|

2 + |vp|
2]↼̂†

p↼̂p + |vp|
2
↗ u

↔

pv
↔

p↼̂
†

p↼̂
†

≃p ↗ vpup↼̂≃p↼̂p

)

+
nU

2

(
[u↔2

p + v
↔2
p ]↼̂†

p↼̂
†

≃p + [u2
p + v

2
p]↼̂≃p↼̂p ↗ [u↔

pvp + v
↔

pup][2↼̂
†

p↼̂p + 1]
)
+

m(nU)2

2p2

]
.

(A.4)

In view of the target to diagonalize the Hamiltonian, i.e. the ↼̂
†
p↼̂

†

≃p and ↼̂≃p↼̂p terms must cancel,

we obtain the diagonalization condition, Eq. (2.23),

↗

(
p2

2m
+ nU

)
upvp +

nU

2


u
2
p + v

2
p


= 0 . (A.5)

We discussed in the main text that the coe”cients have to adhere to the characteristic equation for

hyperbolic functions which is

[↼̂p, ↼̂
†

p→ ] = upu
↔

p→ [ε̂p, ε̂
†

p→ ] + v
↔

pvp→ [ε̂†

≃p, ε̂≃p→ ] = (upu
↔

p→ ↗ v
↔

pvp→)ϑ(3)p,p→ ⇔ |up|
2
↗ |vp|

2 = 1 , (A.6)

so that the transformation is canonical. We thus take the ansatz, Eq. (2.22),

up = cosh(⇀p) , vp = sinh(⇀p) , (A.7)
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and insert it into the diagonalization condition, which yields

↗

(
p2

2m
+ nU

)
cosh(⇀p) sinh(⇀p) +

nU

2


cosh(⇀p)

2 + sinh(⇀p)
2

= 0

↗

(
p2

2m
+ nU

)
sinh(2⇀p) + nU cosh(2⇀p) = 0

tanh(2⇀p) =
nU

p2

2m + nU

, (A.8)

where using the hyperbolic identities cosh2(⇀p) + sinh2(⇀p) = cosh(2⇀p) and 2 cosh(⇀p) sinh(⇀p) =

sinh(2⇀p) we have attained Eq. (2.24) for the transformation parameter ⇀p. Having now obtained

the transformation coe”cients up and vp, we can reinsert them into the second-order Hamiltonian to

find the eigenfrequencies as well as their zero-point motion that are founded on the [↼̂≃p, ↼̂
†

≃p] = 1

commutation. We get

Ĥ2 =
∑

p

→
[(

p2

2m
+ nU

)
cosh(2⇀p)↼̂

†

p↼̂p + sinh(⇀p)
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sinh(2⇀p)


2↼̂†
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
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m(nU)2

2p2

]
.

(A.9)

We now use the identities cosh(artanh(u)) = (1 ↗ u
2)≃1/2, sinh(artanh(u)) = u(1 ↗ u

2)≃1/2, and

sinh(artanh(u)/2)2 = [(1↗ u
2)≃1/2

↗ 1]/2 to find the expression
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√
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√
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+
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
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2

√
p2
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∑
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1
2
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m(nU)2

p2

)
, (A.10)

where we have obtained the second-order terms of Eq. (2.26) with the Bogoliubov dispersion, Eq.

(2.25),

↽p =


p2

2m

(
p2

2m
+ 2nU

)
, (A.11)

and the energy correction

Eqf =
1

2

∑

p

→
[
↽p ↗

p2

2m
↗ nU +

m(nU)2

p2

]
. (A.12)

Other ways of performing this diagonalization are available and since we exploit it in chapter 4 we
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introduce also the method using quasi-position operators x̂p and quasi-momentum operators ŷp of

Ref. [183]. These operators are defined as

x̂p =


m

p2

(
ε̂p + ε̂

†

≃p

)
, ŷp = ↗i


p2

4m

(
ε̂≃p ↗ ε̂

†

p

)
, (A.13a)

[x̂p, ŷp] = iϑ
(3)
p,p→ , x̂≃p = x̂

†

p , ŷ≃p = ŷ
†

p . (A.13b)

We start from Eq. (2.20/A.1) and exchange terms in the p-sum as well as commute operators to obtain

Ĥ2 =
1

2
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pε̂p + ε̂≃pε̂
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)
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2

∑

p

→
[
↗

p2

4m

(
ε̂≃p ↗ ε̂

†

p

)(
ε̂p ↗ ε̂

†

≃p

)
+

(
p2

4m
+ nU
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m(nU)2

p2

]
. (A.14)

Another exchange of terms in the sum, in particular ŷpŷ≃p, yields

Ĥ2 =
1

2

∑

p

→
[
ŷ
†

pŷp + ↽
2
px̂

†

px̂p ↗
p2

2m
↗ nU +

m(nU)2
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]
. (A.15)

The reverse transformation [183]

x̂p =


1

2↽p

(
↼̂p + ↼̂

†

≃p

)
, ŷp = ↗i


↽p

2

(
↼̂≃p ↗ ↼̂

†

p

)
, (A.16)

yields the second-order terms Ĥ2 = Eqf +
∑

p

→
[↽p↼̂

†
p↼̂p] in Eq. (2.26).

A.2 – Lee-Huang-Yang Correction

The LHY correction of the ground state energy is obtained by evaluating Eqf , Eq. (A.12), in the

continuum limit with ρ = |p| that yields the expression

Eqf =
V

2(2ς)3

∫

R3

d
3p

{
↽p ↗
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⇔
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
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ρ
4

2m
↗ nUρ
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. (A.17)

The substitution E = ρ
2
/2m leads to

Eqf =
V m

3/2

23/2ς2

∫
⇔

0
dE

{
E
⇑
E + 2nU ↗ E

3
2 ↗ nU

⇑
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(nU)2

2
⇑
E

}
. (A.18)
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The antiderivative of the first term of the integrand is found with the substitution v = u+ 2nU as

∫
du

{
u

⇑
u+ 2nU

}
=

∫
dv
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3
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⇑
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5
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3
nUv

3
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15
(u+ 2nU)

3
2 (3u↗ 4nU) + C . (A.19)

This is used to obtain Eq. (2.27), i.e.,
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A.3 – Thermal correction of the Bose gas

The thermal energy correction Eq. (2.31) is evaluated in the continuum limit following the procedure

in Ref. [62]. We have

Eth =
1

⇁
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
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
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}

. (A.21)

Like in the previous section it is ρ = |p| and E = ρ
2
/2m is substituted to obtain

Eth =
V

2ς2⇁

∫
⇔

0
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(A.22)

Subsequently, partial integration is applied to attain
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. (A.23)

The substitution with u =
√
2⇁2nUE yields

Eth =
↗V m
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6ς2⇁4(nU)3/2

∫
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0
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 . (A.24)

In the low-temperature limit ⇁ → ↑ this is vastly simplified to the form

Eth =
↗V m

3/2

6ς2⇁4(nU)3/2

∫
⇔

0
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{
u
3

eu ↗ 1

}
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ς
4

15
=
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ς
2

90⇁4(nU)3/2
, (A.25)

and Eq. (2.33) could be obtained.
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A.4 – Transformation of the hybrid atom-optomechanical system

The e!ective field Hamiltonian for the hybrid atom-optomechanical system is with symmetric coupling

0ex = 0 [114,115]

Ĥaom = #mâ
†
â+

∑

ϱ=±

∫
dz

{
ε̂
†

ϱ
(z)


3
#a

2
↗ ↽Rφ

2
z
↗

V

2
cos(2z) +

U

2

∑

ϱ→=±

ε̂
†

ϱ→(z)ε̂ϱ→(z)


ε̂ϱ(z)

}

↗
0

2
(â+ â

†)

∫
dz

{
cos(2z)


ε̂
†

+(z)ε̂≃(z) + ε̂
†

≃
(z)ε̂+(z)

}
. (A.26)

In comparison to Eq. (2.73) the system was shifted relative to the light field by a ς/2 phase sin(2z) →

cos(2z) and the external optical lattice potential Vϱ=±(z) = ↗V cos(2z)/2 applied. Furthermore, the

s-wave scattering interaction is assumed to be independent of the internal atomic state Uϱϱ→ = U . We

strictly follow Ref. [115] through the derivation of Eq. (2.75) and a more detailed discussion can be

found there. The atomic field operators are expanded in the Wannier functions w(z ↗ zj) located at

the lattice sites zj = jς with j = 1, . . . , l. This expansion reads

ε̂ϱ =
l∑

j=1

w(z ↗ zj)b̂jϱ . (A.27)

Treating the Wannier expansion in leading order terms and defining them as

J =

∫
dz

{
w(z ↗ zj)

[
↽Rφ

2
z
+

V

2
cos(2z)

]
w(z ↗ zj+1)

}
,

$ = 0

∫
dz

{
cos(2z)|w(z)|2

}
, Ulat = U

∫
dz

{
|w(z)|4

}
, (A.28)

the Hamiltonian has the expression

Ĥaom = #mâ
†
â+

#a
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∑
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†
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†)
l∑
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†
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†

j≃
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)
. (A.29)

Its transformation to momentum space b̂kϱ =
∑

l

j=1 b̂jϱe
≃ijk

/
⇑
l where the momentum index k runs

from ↗ς to ς in equidistant steps 2ς/l yields [115]

Ĥaom = #mâ
†
â+

∑
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(
3
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†
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†

k≃
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)
. (A.30)

Assuming the parameter regime 0, nU ≃ #m,#a, the ground state of the system is (k, 3) = (0,↗)

[115]. Bogoliubov theory is performed around this mean-field state of the system with [115]

b̂0≃ ⇐ b̂
†

0≃ ⇐

√
n̂0≃ , b̂

†

0≃b̂
†

0≃b̂0≃b̂0≃ = n̂0≃(n̂0≃ ↗ 1) , (A.31)

n̂0≃ = N ↗ b̂
†

0+b̂0+ ↗

∑

k ⇓=0

∑

ϱ

b̂
†

kϱ
b̂kϱ . (A.32)
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In second order of the fluctuations out of the mean-field n0≃, the Hamiltonian is (n = N/l) [115]

Haom =
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↗
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2
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nUlat

2

)
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†
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
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⇑
N

2
(â+ â
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2

∑

k ⇓=0

(
b̂≃k≃b̂k≃ + b̂
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k≃
b̂≃k≃

)
. (A.33)

Under the assumption nUlat ≃ #a the o!-diagonal terms for the + branch like nUlatb̂≃k+b̂k+/2 are

neglected. Hence, the Bogoliubov transformation only needs to address the ↗ branch

ĉk≃ = uk ĉk≃ + vk ĉ≃k≃ , (A.34)

and ĉk+ = b̂k+. A canonical transformation must satisfy u
2
k
↗ v

2
k
= 1 and we find the eigenmodes via


2J [1↗ cos(k)] + nUlat nUlat

↗nUlat ↗2J [1↗ cos(↗k)]↗ nUlat


uk

vk


= ↽k≃


uk

vk


. (A.35)

The eigenvalues are, Eq. (2.76),

↽k≃ = 2J [1↗ cos(k)]



1 +
nUlat

J [1↗ cos(k)]
, (A.36)

and the eigenvectors are [115]

uk =


2J [1↗ cos(k)] + nUlat + ↽k≃

2↽k≃

, vk =


2J [1↗ cos(k)] + nUlat ↗ ↽k≃

2↽k≃

. (A.37)

The result of the transformations is the Hamiltonian, Eq. (2.75), [115]

Ĥlat = #mâ
†
â+ #aĉ

†

0+ĉ0+ +
∑

k ⇓=0,ϱ

↽kϱ ĉ
†

kϱ
ĉkϱ ↗

$
⇑
N

2
(â+ â

†)(ĉ0+ + ĉ
†

0+)

↗
$

2
(â+ â

†)
∑

k ⇓=0

(
uk[ĉ

†

k≃
ĉk+ + ĉ

†

k+ĉk≃] + vk[ĉk≃ĉ≃k+ + ĉ
†

≃k+ĉ
†

k≃
]
)
+ const , (A.38)

where, in addition, it was employed that #a+nUlat ⇐ #a, ĉ0+ = b̂0+, and ↽k+ = #a+2J [1↗cos(k)]+

nUlat.

A.5 – From the cavity BEC system-bath Hamiltonian to its spectral densi-

ties

The system-bath Hamiltonian Ĥ = ĤS + ĤB + ĤSB of Eqs. (3.38) to (3.40) is

Ĥ = ↗ ϑC â
†
â+ ↽1↼̂

†

1↼̂1 + 00


â+ â

†

↼̂1 + ↼̂

†

1


+

∑

p⇐P

→

↽0,p↼̂

†

0,p↼̂0,p + ↽1,p↼̂
†

1,p↼̂1,p



+

0

â+ â

†

+ 6


↼̂1 + ↼̂

†

1

 
L̂1 ↗ B̂1


+ 6


u1↼̂1 ↗ v1↼̂

†

1


↗ L̂

†

2 + B̂
†

2



+ 6

u1↼̂

†

1 ↗ v1↼̂1


↗ L̂2 + B̂2


. (A.39)

127



Appendix

As discussed in the main text we must evaluate the correlator of the system-bath coupling action

↖S
2
SB

⇓B which is the expression

↑S2
SB↓B =

 ω

0

dϑ

 ε

0

dϑ
→ 
HSB(ϑ)HSB(ϑ

→)

B

=

 ω

0

dϑ

 ε

0

dϑ
→
(

ϖ

a(ϑ) + a

↑(ϑ)

+ ϱ


ω1(ϑ) + ω

↑
1(ϑ)


L1(ϑ)→B1(ϑ)



+ ϱ


u1ω1(ϑ)→ v1ω

↑
1(ϑ)


→ L

↑
2(ϑ) +B

↑
2 (ϑ)


+ ϱ


u1ω

↑
1(ϑ)→ v1ω1(ϑ)


→ L2(ϑ) +B2(ϑ)

)
↔

↔
(

ϖ

a(ϑ →) + a

↑(ϑ →)

+ ϱ


ω1(ϑ

→) + ω
↑
1(ϑ

→)


L1(ϑ
→)→B1(ϑ

→)


+ ϱ


u1ω1(ϑ

→)→ v1ω
↑
1(ϑ

→)


→ L
↑
2(ϑ

→) +B
↑
2 (ϑ

→)

+ ϱ


u1ω

↑
1(ϑ

→)→ v1ω1(ϑ
→)


→ L2(ϑ
→) +B2(ϑ

→)
)

B

.

(A.40)

We expressed the bath average, Eq. (3.44), in the form

↖·⇓B =
1

ZB

∫
D [↼↔

,↼] (·) e≃SB [⇀↑
,⇀] (A.41)

with, Eq. (3.39),

HB =
∑

p⇐P

→ 
↽0,p↼

↔

0,p↼0,p + ↽1,p↼
↔

1,p↼1,p


. (A.42)

We use that since ↼i,p are the normal modes of ĤB it is

↖↼i,p(4)↼j,p→(4 →)⇓
B
=

〈
↼
↔

i,p(4)↼
↔

j,p→(4 →)
〉
B
= 0 . (A.43)

Therefore, we can derive that

〈
L
(↔)
1,2(4)B

(↔)
1,2(4

→)
〉

B

=
〈
B

(↔)
1,2(4)L

(↔)
1,2(4

→)
〉

B

= 0 . (A.44)

The correlator determining the influence action expressed in Eq. (3.45) hence is

↑S2
SB↓B =

 ω

0

dϑ

 ε

0

dϑ
→


ϖ

a(ϑ) + a

↑(ϑ)

+ ϱ


ω1(ϑ) + ω

↑
1(ϑ)

〈
L1(ϑ)L1(ϑ

→) +B1(ϑ)B1(ϑ
→)
〉

B
↔

↔

ϖ

a(ϑ →) + a

↑(ϑ →)

+ ϱ


ω1(ϑ

→) + ω
↑
1(ϑ

→)


→

ϖ

a(ϑ) + a

↑(ϑ)

+ ϱ


ω1(ϑ) + ω

↑
1(ϑ)

〈
L1(ϑ)L

↑
2(ϑ

→) +B1(ϑ)B
↑
2 (ϑ

→)
〉

B
ϱ


u1ω1(ϑ

→)→ v1ω
↑
1(ϑ

→)


→

ϖ

a(ϑ) + a

↑(ϑ)

+ ϱ


ω1(ϑ) + ω

↑
1(ϑ)

〈
L1(ϑ)L2(ϑ

→) +B1(ϑ)B2(ϑ
→)
〉

B
ϱ


u1ω

↑
1(ϑ

→)→ v1ω1(ϑ
→)


→ ϱ


u1ω1(ϑ)→ v1ω

↑
1(ϑ)

〈
L

↑
2(ϑ)L1(ϑ

→) +B
↑
2 (ϑ)B1(ϑ

→)
〉

B


ϖ

a(ϑ →) + a

↑(ϑ →)

+ ϱ


ω1(ϑ

→) + ω
↑
1(ϑ

→)


+ ϱ
2

u1ω1(ϑ)→ v1ω

↑
1(ϑ)

〈
L

↑
2(ϑ)L

↑
2(ϑ

→) +B
↑
2 (ϑ)B

↑
2 (ϑ

→)
〉

B


u1ω1(ϑ

→)→ v1ω
↑
1(ϑ

→)


+ ϱ
2

u1ω1(ϑ)→ v1ω

↑
1(ϑ)

〈
L

↑
2(ϑ)L2(ϑ

→) +B
↑
2 (ϑ)B2(ϑ

→)
〉

B


u1ω

↑
1(ϑ

→)→ v1ω1(ϑ
→)


→ ϱ


u1ω

↑
1(ϑ)→ v1ω1(ϑ)

〈
L2(ϑ)L1(ϑ

→) +B2(ϑ)B1(ϑ
→)
〉

B


ϖ

a(ϑ →) + a

↑(ϑ →)

+ ϱ


ω1(ϑ

→) + ω
↑
1(ϑ

→)


+ ϱ
2

u1ω

↑
1(ϑ)→ v1ω1(ϑ)

〈
L2(ϑ)L

↑
2(ϑ

→) +B2(ϑ)B
↑
2 (ϑ

→)
〉

B


u1ω1(ϑ

→)→ v1ω
↑
1(ϑ

→)


+ ϱ
2

u1ω

↑
1(ϑ)→ v1ω1(ϑ)

〈
L2(ϑ)L2(ϑ

→) +B2(ϑ)B2(ϑ
→)
〉

B


u1ω

↑
1(ϑ

→)→ v1ω1(ϑ
→)
}

. (A.45)
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We now compute the correlators in the interaction picture ↼i,p(4) = ↼i,pe
≃ϑi,pς and ↼

↔

i,p(4) =

↼
↔

i,pe
ϑi,pς so that

〈
↼
↔

i,p(4)↼j,p→(4 →)
〉
B
= ϑi,jϑ

(2)
p,p→nB(↽i,p) ,

〈
↼i,p(4)↼

↔

j,p→(4 →)
〉
B
= ϑi,jϑ

(2)
p,p→ [1 + nB(↽i,p)] . (A.46)

For convenience, we define

U1p = u0,pu1,p , U2p = v0,pv1,p ,

V1p = u0,pv1,p , V2p = v0,pu1,p , (A.47)

so that Eq. (3.41) becomes

L̂1 =
∑

p⇐P

→

(U1p + U2p)

(
↼̂
†

0,p↼̂1,p + ↼̂
†

1,p↼̂0,p

)
, (A.48a)

B̂1 =
∑

p⇐P

→

(V1p + V2p)

(
↼̂1,≃p↼̂0,p + ↼̂

†

0,p↼̂
†

1,≃p

)
, (A.48b)

L̂2 =
∑

p⇐P

→

V2p↼̂

†

0,p↼̂1,p + V1p↼̂
†

1,p↼̂0,p


, (A.48c)

B̂2 =
∑

p⇐P

→

U1p↼̂1,≃p↼̂0,p + U2p↼̂

†

0,p↼̂
†

1,≃p


. (A.48d)

Hence, we find the first correlator

〈
L1(4)L1(4

→)
〉
B
=

∑

p⇐P

→

U1p + U2p

2
↖↼

↔

0,p(4)↼0,p(4
→)⇓B↖↼1,p(4)↼

↔

1,p(4
→)⇓B

+ ↖↼0,p(4)↼
↔

0,p(4
→)⇓B↖↼

↔

1,p(4)↼1,p(4
→)⇓B



=
∑

p⇐P

→

U1p + U2p

2
nB(↽0,p)[1 + nB(↽1,p)]e

≃(ϑ1,p≃ϑ0,p)(ς≃ς
→)

+ [1 + nB(↽0,p)]nB(↽1,p)e
+(ϑ1,p≃ϑ0,p)(ς≃ς

→)


. (A.49)

Utilizing

nB(↽0,p)[1 + nB(↽1,p)] =
1

eεϑ0,p ↗ 1

[
1 +

1

eεϑ1,p ↗ 1

]
=

1

eεϑ0,p ↗ 1

[
e
εϑ1,p ↗ 1

eεϑ1,p ↗ 1
+

1

eεϑ1,p ↗ 1

]

=
e
εϑ1,p

(
eεϑ0,p ↗ 1

)(
eεϑ1,p ↗ 1

) =
e
εϑ1,p

(
eεϑ0,p ↗ 1

)(
eεϑ1,p ↗ 1

) e
εϑ1,p ↗ 1↗ e

εϑ0,p + 1

eεϑ1,p ↗ eεϑ0,p

=

[
1

eεϑ0,p ↗ 1
↗

1

eεϑ1,p ↗ 1

]
1

1↗ e≃ε(ϑ1,p≃ϑ0,p)
= [nB(↽0,p)↗ nB(↽1,p)]

e
ε(ϑ1,p≃ϑ0,p)

eε(ϑ1,p≃ϑ0,p) ↗ 1

= [nB(↽0,p)↗ nB(↽1,p)] [1 + nB(↽1,p ↗ ↽0,p)] , (A.50a)

[1 + nB(↽0,p)]nB(↽1,p) = [nB(↽0,p)↗ nB(↽1,p)]nB(↽1,p ↗ ↽0,p) , (A.50b)

we get, with the definition of ↽L

p = ↽1,p ↗ ↽0,p,

〈
L1(4)L1(4

→)
〉
B
=

∑

p⇐P

→

U1p + U2p

2
[nB(↽0,p)↗ nB(↽1,p)]∞

∞

(
1 + nB(↽

L

p )

e
≃ϑ

L
p (ς≃ς

→) + nB(↽
L

p )e
+ϑ

L
p (ς≃ς

→)
) 

. (A.51)
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We apply the free thermal Green’s function Dϑ(4), Eq. (3.14), such that

〈
L1(4)L1(4

→)
〉
B
=

∑

p⇐P

→

U1p + U2p

2
N

L

p DϑL
p
(4 ↗ 4

→)

, (A.52)

if we define Eq. (3.51)

N
L

p = nB(↽0,p)↗ nB(↽1,p) . (A.53)

In the analogous fashion, we calculate the correlator

〈
B1(4)B1(4

→)
〉
B
=

∑

p⇐P

→

V1p + V2p

2
↖↼0,p(4)↼

↔

0,p(4
→)⇓B↖↼1,≃p(4)↼

↔

1,≃p(4
→)⇓B

+ ↖↼
↔

0,p(4)↼0,p(4
→)⇓B↖↼

↔

1,≃p(4)↼1,≃p(4
→)⇓B



=
∑

p⇐P

→

V1p + V2p

2
[1 + nB(↽0,p)][1 + nB(↽1,p)]e

≃(ϑ0,p+ϑ1,p)(ς≃ς
→)

+ nB(↽0,p)nB(↽1,p)e
+(ϑ0,p+ϑ1,p)(ς≃ς

→)


, (A.54)

where we use ↽i,≃p = ↽i,p. Utilizing

[1 + nB(↽0,p)][1 + nB(↽1,p)] =
e
εϑ0,p

eεϑ0,p ↗ 1

e
εϑ1,p

eεϑ1,p ↗ 1
=

e
ε(ϑ0,p+ϑ1,p)

(
eεϑ0,p ↗ 1

)(
eεϑ1,p ↗ 1

) e
ε(ϑ0,p+ϑ1,p) ↗ 1

eε(ϑ0,p+ϑ1,p) ↗ 1

=

(
e
εϑ0,p ↗ 1

)(
e
εϑ1,p ↗ 1

)
+ e

εϑ0,p ↗ 1 + e
εϑ1,p ↗ 1

(
eεϑ0,p ↗ 1

)(
eεϑ1,p ↗ 1

) e
ε(ϑ0,p+ϑ1,p)

eε(ϑ0,p+ϑ1,p) ↗ 1

= [1 + nB(↽0,p) + nB(↽1,p)] [1 + nB(↽0,p + ↽1,p)] , (A.55a)

nB(↽0,p)nB(↽1,p) = [1 + nB(↽0,p) + nB(↽1,p)]nB(↽0,p + ↽1,p) , (A.55b)

we attain, with the definition ↽
B

p = ↽0,p + ↽1,p,

〈
B1(4)B1(4

→)
〉
B
=

∑

p⇐P

→

V1p + V2p

2
[1 + nB(↽0,p) + nB(↽1,p)]∞

∞

( 
1 + nB(↽

B

p )

e
≃ϑ

B
p (ς≃ς

→) + nB(↽
B

p )e+ϑ
B
p (ς≃ς

→)
)

=
∑

p⇐P

→

V1p + V2p

2
N

B

p DϑB
p
(4 ↗ 4

→)

, (A.56)

where we apply the definition

N
B

p = 1 + nB(↽0,p) + nB(↽1,p) , (A.57)

given in Eq. (3.51). Because they always occur alongside each other in Eq. (A.45), the Landau term

and the Beliaev term are combined into a single handy correlation function

K11(4 ↗ 4
→) =

〈
L1(4)L1(4

→)
〉
B
+

〈
B1(4)B1(4

→)
〉
B
. (A.58)

We discuss in the main text that the treatment in imaginary time and stationary states assumes

detailed balance and where necessary we do so by construction. The two correlators we have derived
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until here in the appendix inherently have the required symmetry 4 → ⇁ ↗ 4 . This is also true for

〈
L2(4)L2(4

→)
〉
B
=

∑

p⇐P


V1pV2p


↖↼

↔

0,p(4)↼0,p(4
→)⇓B↖↼1,p(4)↼

↔

1,p(4
→)⇓B

+ ↖↼0,p(4)↼
↔

0,p(4
→)⇓B↖↼

↔

1,p(4)↼1,p(4
→)⇓B



=
∑

p⇐P


V1pV2pN

L

p DϑL
p
(4 ↗ 4

→)

=

〈
L
↔

2(4)L
↔

2(4
→)
〉
B
, (A.59)

and for

〈
B2(4)B2(4

→)
〉
B
=

∑

p⇐P


U1pU2p


↖↼0,p(4)↼

↔

0,p(4
→)⇓B↖↼1,≃p(4)↼

↔

1,≃p(4
→)⇓B

+ ↖↼
↔

0,p(4)↼0,p(4
→)⇓B↖↼

↔

1,≃p(4)↼1,≃p(4
→)⇓B



=
∑

p⇐P


U1pU2pN

B

p DϑB
p
(4 ↗ 4

→)

=

〈
B

↔

2(4)B
↔

2(4
→)
〉
B
. (A.60)

Again we combine them as

K22(4 ↗ 4
→) =

〈
L2(4)L2(4

→)
〉
B
+
〈
B2(4)B2(4

→)
〉
B
. (A.61)

For the remaining correlation functions, we have to construct the symmetry to satisfy the assumption

that the bath is to a good approximation in equilibrium. Note that

〈
L1(4)L2(4

→)
〉
B
=

〈
L
↔

2(4)L1(4
→)⇓B =

〈
L2(⇁ ↗ 4)L1(⇁ ↗ 4

→)
〉
B
=

〈
L1(⇁ ↗ 4)L↔

2(⇁ ↗ 4
→)
〉
B
, (A.62a)

〈
B1(4)B2(4

→)
〉
B
=

〈
B

↔

2(4)B1(4
→)⇓B =

〈
B2(⇁ ↗ 4)B1(⇁ ↗ 4

→)
〉
B
=

〈
B2(⇁ ↗ 4)B1(⇁ ↗ 4

→)
〉
B
, (A.62b)

so that we substitute

〈
L1(4)L2(4

→)
〉
B
,
〈
L2(4)L1(4

→)
〉
B
,

〈
L1(4)L

↔

2(4
→)
〉
B
,
〈
L
↔

2(4)L1(4
→)
〉
B

}
→

1

2

〈
L1(4)L2(4

→)
〉
B
+
〈
L2(4)L1(4

→)
〉
B


, (A.63a)

〈
B1(4)B2(4

→)
〉
B
,
〈
B2(4)B1(4

→)
〉
B
,

〈
B1(4)B

↔

2(4
→)
〉
B
,
〈
B

↔

2(4)B1(4
→)
〉
B

}
→

1

2

〈
B1(4)B2(4

→)
〉
B
+
〈
B2(4)B1(4

→)
〉
B


.

The Landau term is

1

2

〈
L1(4)L2(4

→)
〉
B
+
〈
L2(4)L1(4

→)
〉
B


=

1

2

∑

p⇐P

→

U1p + U2p


V1p + V2p


∞

∞

↖↼

↔

0,p(4)↼0,p(4
→)⇓B↖↼1,p(4)↼

↔

1,p(4
→)⇓B + ↖↼0,p(4)↼

↔

0,p(4
→)⇓B↖↼

↔

1,p(4)↼1,p(4
→)⇓B



=
1

2

∑

p⇐P

→

U1p + U2p


V1p + V2p


N

L

p DϑL
p
(4 ↗ 4

→)

, (A.64)

the Beliaev term is

1

2

〈
B1(4)B2(4

→)
〉
B
+
〈
B2(4)B1(4

→)
〉
B


=

1

2

∑

p⇐P

→

V1p + V2p


U1p + U2p


∞

∞

↖↼0,p(4)↼

↔

0,p(4
→)⇓B↖↼1,≃p(4)↼

↔

1,≃p(4
→)⇓B + ↖↼

↔

0,p(4)↼0,p(4
→)⇓B↖↼

↔

1,≃p(4)↼1,≃p(4
→)⇓B



=
1

2

∑

p⇐P

→

V1p + V2p


U1p + U2p


N

B

p DϑB
p
(4 ↗ 4

→)

, (A.65)
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and we combine them to

K12(4 ↗ 4
→) =

↗1

2

〈
L1(4)L2(4

→)
〉
B
+
〈
L2(4)L1(4

→)
〉
B
+

〈
B1(4)B2(4

→)
〉
B
+

〈
B2(4)B1(4

→)
〉
B


.

(A.66)

Note the minus sign to include the minus sign in Eq. (A.45).

Analogously, we treat the final correlation functions

〈
L2(4)L

↔

2(4
→)
〉
B
,
〈
L
↔

2(4)L2(4
→)
〉
B
→

1

2

〈
L2(4)L

↔

2(4
→)
〉
B
+

〈
L
↔

2(4)L2(4
→)
〉
B


, (A.67)

〈
B2(4)B

↔

2(4
→)
〉
B
,
〈
B

↔

2(4)B2(4
→)
〉
B
→

1

2

〈
B2(4)B

↔

2(4
→)
〉
B
+
〈
B

↔

2(4)B2(4
→)
〉
B


, (A.68)

that yield the expressions

1

2

〈
L2(4)L

↔

2(4
→)
〉
B
+

〈
L
↔

2(4)L2(4
→)
〉
B


=

1

2

∑

p⇐P

→

V
2
1p + V

2
2p


N

L

p DϑL
p
(4 ↗ 4

→)

, (A.69a)

1

2

〈
B2(4)B

↔

2(4
→)
〉
B
+
〈
B

↔

2(4)B2(4
→)
〉
B


=

1

2

∑

p⇐P

→

U

2
1p + U

2
2p


N

B

p DϑB
p
(4 ↗ 4

→)

, (A.69b)

K2↑2(4 ↗ 4
→) =

1

2

〈
L2(4)L

↔

2(4
→)
〉
B
+
〈
L
↔

2(4)L2(4
→)
〉
B
+
〈
B2(4)B

↔

2(4
→)
〉
B
+
〈
B

↔

2(4)B2(4
→)
〉
B


.

(A.69c)

We have calculated all the correlation functions that occur in Eq. (A.45) and insert them such that

we designate them to which degree of freedom a or ↼1 of the system they couple to

〈
S
2
SB

〉
B
=

1

4

∫
ε

0
d4

∫
ε

0
d4

→

{
(a(4) + a

↔(4))KC(4, 4
→)(a(4 →) + a

↔(4 →))

+ (a(4) + a
↔(4))KAC(4, 4

→)(↼1(4
→) + ↼

↔

1(4
→)) + (↼1(4) + ↼

↔

1(4))KAC(4, 4
→)(a(4 →) + a

↔(4 →))

+ (↼1(4) + ↼
↔

1(4))KA(4, 4
→)(↼1(4

→) + ↼
↔

1(4
→))↗ (↼1(4)↗ ↼

↔

1(4))KȦ
(4, 4 →)(↼1(4

→)↗ ↼
↔

1(4
→))

}

=
1

2

∫
ε

0
d4

∫
ε

0
d4

→

{
↗ ϑCqC(4)KC(4, 4

→)qC(4
→) +

√
↗ϑC↽1qC(4)KAC(4, 4

→)qA(4
→)

+
√
↗ϑC↽1qA(4)KAC(4, 4

→)qC(4
→) + ↽1qA(4)KA(4, 4

→)qA(4)

+
1

↽1
q̇A(4)KȦ

(4, 4 →)q̇A(4
→)

}
, (A.70)

where qC = (a+ a
↔)/

⇑
↗2ϑC as well as qA = (↼1 + ↼

↔
1)/

⇑
2↽1 and we introduced

KC(4 ↗ 4
→) = 202

K11(4 ↗ 4
→) , (A.71a)

KAC(4 ↗ 4
→) = 206(u1 ↗ v1)


K11(4 ↗ 4

→)↗K12(4 ↗ 4
→)

, (A.71b)

KA(4 ↗ 4
→) = 6

2(u1 ↗ v1)
2

2K11(4 ↗ 4

→) +K2↑2(4 ↗ 4
→) +K22(4 ↗ 4

→)↗ 4K12(4 ↗ 4
→)

, (A.71c)

K
Ȧ
(4 ↗ 4

→) =
6
2

(u1 ↗ v1)2

K2↑2(4 ↗ 4

→)↗K22(4 ↗ 4
→)

. (A.71d)

Now we use Eq. (3.15), i.e.

K(4) =

∫
⇔

0
d↽G(↽)Dϑ(4) , (A.72)
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to extract the spectral densities GL,B

ϱ
(↽) with 3 = {C,AC,A, Ȧ}

G
L

C
(↽) =

∑

p⇐P

→

202


U1p + U2p

2
N

L

p ϑ(↽ ↗ ↽
L

p )

, (A.73a)

G
B

C
(↽) =

∑

p⇐P

→

202


V1p + V2p

2
N

B

p ϑ(↽ ↗ ↽
B

p )

, (A.73b)

G
L

AC
(↽) =

∑

p⇐P

→

06(u1 ↗ v1)


2

U1p + U2p

2
↗


U1p + U2p


V1p + V2p


N

L

p ϑ(↽ ↗ ↽
L

p )

, (A.73c)

G
B

AC
(↽) =

∑

p⇐P

→

06(u1 ↗ v1)


2

V1p + V2p

2
↗

U1p + U2p


V1p + V2p


N

B

p ϑ(↽ ↗ ↽
B

p )

, (A.73d)

G
L

A
(↽) =

∑

p⇐P

→

6
2(u1 ↗ v1)

2 5(U1p + U2p)2 ↗ 4(U1p + U2p)(V1p + V2p)↗ 1

2
N

L

p ϑ(↽ ↗ ↽
L

p )

, (A.73e)

G
B

A
(↽) =

∑

p⇐P

→

6
2(u1 ↗ v1)

2 5(V1p + V2p)2 ↗ 4(U1p + U2p)(V1p + V2p) + 1

2
N

B

p ϑ(↽ ↗ ↽
B

p )

, (A.73f)

G
L

Ȧ
(↽) =

∑

p⇐P

→


6
2

(u1 ↗ v1)2
(V1p ↗ V2p)2

2
N

L

p ϑ(↽ ↗ ↽
L

p )

, (A.73g)

G
B

Ȧ
(↽) =

∑

p⇐P

→


6
2

(u1 ↗ v1)2
(U1p ↗ U2p)2

2
N

B

p ϑ(↽ ↗ ↽
B

p )

. (A.73h)

Therefore, we have derived Eqs. (3.49) to (3.52) and Eq. (3.55a)

G
L,B

ϱ
(↽) = 5ϱ

∑

p⇐P

→ 
f
L,B

ϱ
(p)NL,B

p ϑ(↽ ↗ ↽
L,B

p )

, (A.74)

with 5ϱ ′ {0
2
, 06(u1 ↗ v1) , 62(u1 ↗ v1)2 , 62/(u1 ↗ v1)2} and

f
L

C
(p) = 2


U1p + U2p

2
, f

B

C
(p) = 2


V1p + V2p

2
, (A.75a)

f
L

AC
(p) = 2


U1p + U2p

2
↗

U1p + U2p


V1p + V2p


,

f
B

AC
(p) = 2


V1p + V2p

2
↗

U1p + U2p


V1p + V2p


, (A.75b)

f
L

A
(p) =

5(U1p + U2p)2 ↗ 4(U1p + U2p)(V1p + V2p)↗ 1

2
,

f
B

A
(p) =

5(V1p + V2p)2 ↗ 4(U1p + U2p)(V1p + V2p) + 1

2
, (A.75c)

f
L

Ȧ
(p) =

(V1p ↗ V2p)2

2
, f

B

Ȧ
(p) =

(U1p ↗ U2p)2

2
. (A.75d)

Note that due to hyberbolic identities U2
1p + U

2
2p = V

2
1p + V

2
2p + 1 it is

f
L

C
(p) = f

B

C
(p) + 2 , f

L

AC
(p) = f

B

AC
(p) + 2 , f

L

A
(p) = f

B

A
(p) +

3

2
, f

L

Ȧ
(p) = f

B

Ȧ
(p)↗

1

2
. (A.76)

A.6 – Series expansion of spectral densities

We analyze the functions determining the spectral density characteristics fϱ(W )/|g→(W )|, see Eqs.

(3.58) to (3.62). In particular, we focus here on the vicinity of the Landau to Beliaev damping

boundary at ↽1 where W (↽ = ↽1) = 0. The singularity is of the cusp type which is evident from the
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two leading order terms of the derivatives’ asymptotic analysis Eq. (3.63)

d

dW

f
B

C

|g→
B
|
∝ ↗

aC
⇑
W

+ bC , aC =
1

⇑
2nU

(
1 +

(2↽R ↗ ↽P + nU)(2↽R ↗ ↽P + 2nU)

↽
2
1

)
,

bC =
1

↽1

(
2↽R ↗ ↽P

nU
+

)
↗

(2↽R ↗ ↽P + nU)(2↽R ↗ ↽P + 2nU)

↽
3
1

,

(A.77a)

d

dW

f
B

AC

|g→
B
|
∝ ↗

aAC
⇑
W

+ bAC aAC =
1

⇑
2nU

(
1 +

(2↽R ↗ ↽P + nU)(2↽R ↗ ↽P + 2nU)

2↽2
1

)
,

bAC =
2↽R ↗ ↽P

2↽1nU
↗

(2↽R ↗ ↽P + nU)(2↽R ↗ ↽P + 2nU)

2↽3
1

, (A.77b)

d

dW

f
B

A

|g→
B
|
∝ ↗

aA
⇑
W

+ bA , aA =
1

4
⇑
2nU

(
3 +

(2↽R ↗ ↽P + nU)(2↽R ↗ ↽P + 2nU)

↽
2
1

)
,

bA =
1

2↽1

(
2↽R ↗ ↽P

nU
↗ 1

)
↗

(2↽R ↗ ↽P + nU)(2↽R ↗ ↽P + 2nU)

4↽3
1

,

(A.77c)

d

dW

f
B

Ȧ

|g→
B
|
∝ ↗

a
Ȧ

⇑
W

+ b
Ȧ
, a

Ȧ
=

↗1

4
⇑
2nU

(
1↗

(2↽R ↗ ↽P )(2↽R ↗ ↽P + nU)

↽
2
1

)
,

b
Ȧ
=

↗1

4↽1

(
2↽R ↗ ↽P

nU
↗ 1

)
↗

(2↽R ↗ ↽P )(2↽R ↗ ↽P + nU)

4↽3
1

.

(A.77d)

We compute their antiderivative to obtain the approximate behavior of the spectral densities around

the cusp singularity W = 0. The constants of the antiderivatives Cϱ = f
B

ϱ
(W = 0)/|g→

B
(W = 0)| are

determined by the finite value at the cusp. This yields the series expansion for the spectral densities

Eq. (3.64)

f
B

C
(W )

|g→
B
(W )|

∝ CC ↗ 2aC
⇑

W + bCW , CC =
2↽R ↗ ↽P + 2nU

↽1
, (A.78a)

f
B

AC
(W )

|g→
B
(W )|

∝ CAC ↗ 2aAC

⇑

W + bACW , CAC =
2↽R ↗ ↽P + 2nU

2↽1
, (A.78b)

f
B

A
(W )

|g→
B
(W )|

∝ CA ↗ 2aA
⇑

W + bAW , CA =
2↽R ↗ ↽P + 2nU

4↽1
, (A.78c)

f
B

Ȧ
(W )

|g→
B
(W )|

∝ C
Ȧ
↗ 2a

Ȧ

⇑

W + b
Ȧ
W , C

Ȧ
=

2↽R ↗ ↽P

4↽1
. (A.78d)

Note that in the limit of nU,↽P ≃ ↽R the checkerboard frequency is ↽1 ⇐ 2↽R ↗ ↽P + nU and the

expansion parameters aϱ , bϱ , and Cϱ are significantly simplified and tanh(2⇀1) = nU/(2↽R↗↽P+nU),

Eq. (3.36), can be utilized.

A.7 – Bogoliubov theory of the generic long-range envelope interaction

model

Let us quickly validate the linear-order of quantum fluctuations for the expansion of the atomic field

operator Eq. (4.28)

ε̂(r) =
⇑
n+ 2̂(r) =

⇑
n+

1
⇑
V

∑

p

→
e
ipr

2̂p , (A.79)
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applied to the generic atomic field Hamiltonian, Eq. (4.17), which has the form

Ĥ =

∫

V

d
dr

{
ε̂
†(r)

[
↗
⇒

2

2m
+

U

2
ε̂
†(r)ε̂(r)

]
ε̂(r)

}

+
I

2

∫

V

d
dr

∫

V

d
dr→

{
ε̂
†(r)ε̂(r)v(r, r→)fω(r, r

→)ε̂†(r→)ε̂(r→)

}
. (A.80)

In linear order in 2(r) around the homogeneous mean-field derived in the main text with µmf = Un

it is

Ĥ1 =
⇑
n

∫

V

d
dr

{[
↗
⇒

2

2m

]
2̂(r) + Un


2̂(r) + 2̂

†(r)

↗ µmf


2̂(r) + 2̂

†(r)
}

+ In
3
2

∫

V

d
dr

{
2̂(r) + 2̂

†(r)
 ∫

V

d
dr→

{
v(r, r→)fω(r, r

→)

}}

=

⇑
n

⇑
V

∑

p

→ p2

2m
2̂p

∫

V

d
dr

{
e
ipr

}

+ I
n
3/2

⇑
V

∑

p

→ ∑

k,k→

∫

V

d
dr

{
2̂pe

ipr + 2̂
†

pe
≃ipr

 ∫

V

d
dr→

{
vk,k→e

ikr
e
ik→r→

fω(r, r
→)

}}

=

⇑
n

⇑
V

∑

p

→ p2

2m
2̂pV ϑ

(d)
p,0 + IN

3
2

∑

p

→ ∑

k,k→

vk,k→

2̂pϑ

(d)
≃p,k + 2̂

†

pϑ
(d)
p,k


ϑ
(d)
0,k→ f̃ω(0,0) = 0 . (A.81)

The terms of linear order vanish because we presuppose that the Fourier coe”cient vk,0 = 0 and p = 0

is omitted from the sum.

The Hamiltonian of second-order is

Ĥ2 =

∫

V

d
dr

{
2̂
†(r)

[
↗
⇒

2

2m
+ 2Un↗ µmf

]
2̂(r) +

Un

2


2̂(r)2̂(r) + 2̂

†(r)2̂†(r)
}

+ In

∫

V

d
dr

{
2̂
†(r)2̂(r)

∫

V

d
dr→v(r, r→)fω(r, r

→)

}

+
In

2

∫

V

d
dr

{
2̂(r) + 2̂

†(r)
 ∫

V

d
dr→

{
v(r, r→)fω(r, r

→)

2̂(r→) + 2̂

†(r→)
}}

=
1

V

∑

p,p→

→
∫

V

d
dr

{
2̂
†

pe
≃ipr

[
p→2

2m
+ Un

]
e
ip→r

2̂p→ +
Un

2


2̂p2̂p→e

i(p+p→)r + 2̂
†

p2̂
†

p→e
≃i(p+p→)r

}

+
In

2V

∑

p,p→

→ ∑

k,k→

∫

V

d
dr


2̂pe

ipr + 2̂
†

pe
≃ipr


vk,k→e

ikr

∫

V

d
dr→eik

→r→
fω(r, r

→)

2̂p→e

ip→r→
+ 2̂

†

p→e
≃ip→r→

=
∑

p

→
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p2

2m
+ Un

]
2̂
†

p2̂p +
Un

2


2̂≃p2̂p + 2̂

†

p2̂
†

≃p

)

+
IN

2
f̃ω(0,0)

∑

p,p→

→ ∑

k,k→

[
vk,k→


2̂pϑ

(d)
≃p,k + 2̂

†

pϑ
(d)
p,k


2̂p→ϑ

(d)
≃p→,k→ + 2̂

†

p→ϑ
(d)
p→,k→

]

=
∑

p

→
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p2

2m
+ Un

]
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†

p2̂p +
Un

2


2̂≃p2̂p + 2̂

†

p2̂
†

≃p

)

+
IN

2
f̃ω(0,0)

∑

p,p→

→ ∑

k,k→

[
vk,k→


2̂pϑ

(d)
≃p,k + 2̂

†

pϑ
(d)
p,k


2̂p→ϑ

(d)
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†

p→ϑ
(d)
p→,k→

]
. (A.82)
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Utilizing the commutation of operators and exchange of terms in the same way as in the Bogoliubov

theory of the Bose gas, see appendix A.1, we find Eq. (4.31) as

Ĥ2 =
1

2

∑

p

→
[
p2

2m

(
2̂
†

p2̂p + 2̂≃p2̂
†

≃p

)
+ nU

(
2̂≃p + 2̂

†

p

)(
2̂p + 2̂

†

≃p

)
↗

p2

2m
↗ nU

]

+
IN

2
f̃ω(0,0)

∑

p,p→

→ ∑

k,k→⇐KC

[(
2̂pϑ

(d)
≃p,k + 2̂

†

pϑ
(d)
p,k

)
vk,k→

(
2̂p→ϑ

(d)
≃p→,k→ + 2̂

†

p→ϑ
(d)
p→,k→

)]

=
1

2

∑

p

→
[
p2

2m

(
2̂
†

p2̂p + 2̂≃p2̂
†

≃p

)
+ nU

(
2̂≃p + 2̂

†

p

)(
2̂p + 2̂

†

≃p

)
↗

p2

2m
↗ nU

]

+
IN

2
f̃ω(0,0)

∑

k,k→⇐KC

[
2̂≃k + 2̂

†

k


vk,k→


2̂≃k→ + 2̂

†

k→

]
. (A.83)

By introducing the quasi-position and quasi-momentum operators, Eq. (4.32), [183]

x̂p =


m

p2

(
2̂p + 2̂

†

≃p

)
, ŷp = ↗i


p2

4m

(
2̂≃p ↗ 2̂

†

p

)
, (A.84a)

[x̂p, ŷp] = iϑ
(d)
p,p→ , x̂≃p = x̂

†

p , ŷ≃p = ŷ
†

p , (A.84b)

we obtain Eq. (4.33) by exchanging terms under the double sum

Ĥ2 =
1

2

∑

p

→
[
ŷ≃pŷp +

p2

2m

(
p2

2m
+ 2nU

)
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p2

2m
↗ nU

]

+
IN

2
f̃ω(0,0)

∑

k,k→⇐KC

[
vk,≃k→

|k||k→
|

m
x̂≃kx̂k→

]
. (A.85)

Next we denote KC = {k1, . . . ,kd̃
} and

7̂x =





x̂1

x̂2

...

x̂
d̃
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ŷ
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


, ṽ =
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m
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. . .
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· · · · · · vkd̃,≃kd̃

|kd̃|
2

m




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such that Eq. (4.35) is attained

Ĥ2 =
1

2

∑

p/⇐KC

→


ŷ
†
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2
px̂

†
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1

2
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†
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2m
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with Eq. (4.36)

h =





↽
2
1 + INf̃ω(0,0)ṽ11 INf̃ω(0,0)ṽ12 · · · INf̃ω(0,0)ṽ1d̃
INf̃ω(0,0)ṽ21 ↽

2
2 + INf̃ω(0,0)ṽ22 · · · INf̃ω(0,0)ṽ2d̃

...
...

. . .
...

INf̃ω(0,0)ṽd̃1 · · · · · · ↽
2
d̃
+ INf̃ω(0,0)ṽd̃d̃




. (A.88)
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In section 4.3.5 we discuss two generic cases of the long-range interaction. If the interaction is trans-

lation invariant, it holds that vk,≃k→ = ϑ
(d)
k,k→vk,≃k and hence Eq. (A.85) is diagonal of the form

Ĥ
(ti)
2 =

1

2

∑

p

→


ŷ
†

pŷp +
p2

2m


p2
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+ 2Un+ 2INf̃ω(0,0)

∑

k⇐KC

ϑ
(d)
p,kv≃k,k


x̂
†

px̂p ↗
p2

2m
↗ Un


,
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with the dispersion, Eq. (4.41),

Ep =

√√√√ p2

2m


p2

2m
+ 2Un+ 2INf̃ω(0,0)

∑

k⇐KC

ϑ
(d)
p,kv≃k,k


. (A.90)

In the second case, that |ki| = |kj | and ṽij = ṽ for all i, j = 1, . . . , d̃, the matrix coupling the

quasi-position operators is

h =





↽
2
k + INf̃ω(0,0)ṽ INf̃ω(0,0)ṽ · · · INf̃ω(0,0)ṽ

INf̃ω(0,0)ṽ ↽
2
k + INf̃ω(0,0)ṽ · · · INf̃ω(0,0)ṽ

...
...

. . .
...

INf̃ω(0,0)ṽ · · · · · · ↽
2
k + INf̃ω(0,0)ṽ




. (A.91)

We recognize that

h↗ ↽
2
kId̃↖d̃

= INf̃ω(0,0)ṽ





1 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 · · · · · · 1




, (A.92)

is a singular matrix with rank 1. Therefore, ↽2
k is an eigenvalue of h with multiplicity d̃↗ 1. Because

h→ [ε2
k + d̃INf̃ω(0,0)ṽ]I =





→(d̃→ 1)INf̃ω(0,0)ṽ INf̃ω(0,0)ṽ · · · INf̃ω(0,0)ṽ

INf̃ω(0,0)ṽ →(d̃→ 1)INf̃ω(0,0)ṽ · · · INf̃ω(0,0)ṽ
...

...
. . .

...

INf̃ω(0,0)ṽ · · · · · · →(d̃→ 1)INf̃ω(0,0)ṽ




,

(A.93)

is trivially singular given the eigenvector (1 1 · · · 1)T /
√

d̃ of h, we acquire the remaining eigenvalue

that is the single mode out of the dispersion Eq. (4.44)

# =


↽
2
k +

k2

m
INf̃ω(0,0)d̃ṽ . (A.94)
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A.8 – Estimates of the envelope transformation

Here, we illustrate in figure A.1 the validity of the inequalities Eqs. (4.52) and (4.76) for L < ◁ by

numerical evaluation.

Figure A.1: Graphical visualization of the validity of Eq. (4.52) in (a) and of Eq. (4.76) in (b) in
dependence of the system extension L relative to the envelope width ◁. The horizontal line in (a)
marks the value of 1.

A.8.1 Gaussian envelope

The integral on the left-hand side of Eq. (4.52) is nonelementary and yields error functions with

complex arguments

∫ +L
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≃
L
2

dx
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e
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⇑
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2
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)]
. (A.95)

The atomic momenta are discrete values p = 2ςj/L, where j ′ Z and we introduce ε = pL = 2ςj

which we view as a large parameter |ε| ↘ 1 for j ′ Z \ {0}. Subsequently, we expand the integral in

this parameter ε according to

∫ +L
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Using e
≃u

2
/4

<
⇑
ς erf(u/2)/u for u ↙= 0, we obtain Eq. (4.52), i.e.
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A.8.2 Quartic exponent envelope

We evaluate the nonelementary integral on the left-hand side of Eq. (4.76) by its Taylor series and

expand the solution in orders of |ε| = |pL| = |2ςj| ↘ 1 for j ′ Z \ {0} which yields
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It is
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and e
≃(u/2)4

< [%(1/4)↗ %(1/4, (u/2)4)]/(2u) for u ↙= 0, so that we find Eq. (4.76), i.e.
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[B] M. Radonjić, L. Mixa, A. Pelster, and M. Thorwart, Nanomechanically-induced nonequilibrium

quantum phase transition to a self-organized density wave of a Bose-Einstein condensate, Phys.

Rev. Res. 6, 033094 (2024).
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