
Unlocking the Higgs Potential:
from Colliders to the Cosmos

Dissertation

zur Erlangung des Doktorgrades an der Fakultät für Mathematik, Informatik und
Naturwissenschaften

Fachbereich Physik der Universität Hamburg

vorgelegt von

Kateryna Radchenko Serdula
Hamburg, 2025





iii

Gutachter/innen der Dissertation: Prof. Dr. Georg Weiglein
Prof. Dr. Géraldine Servant

Zusammensetzung der Prüfungskommission: Prof. Dr. Georg Weiglein
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Abstract

The upcoming decades in particle physics will offer an unprecedented amount of data, open-
ing new avenues to deepen our understanding of the fundamental laws of nature. On one
hand, the High-Luminosity Large Hadron Collider (HL-LHC) will significantly enhance our
experimental reach at the energy frontier. On the other hand, the Laser Interferometer
Space Antenna (LISA) will inaugurate the era of the early Universe gravitational wave as-
tronomy. The data they will collect may shed light on some of the most profound open
questions in physics. At the centre of many unresolved questions in the Standard Model
(SM), which include the origin of electroweak symmetry breaking, the matter-antimatter
asymmetry, and the nature of dark matter, lies the scalar potential. In particular, the tri-
linear Higgs self-coupling offers a unique window to determine the shape of this potential.
While collider experiments probe it as realised today, cosmological observations can pro-
vide insights into its evolution in the early Universe. Together, they offer complementary
perspectives on one of the most fundamental ingredients of particle physics.

This thesis investigates the phenomenological implications of deviations in the Higgs
trilinear self-coupling within well-motivated Beyond the Standard Model (BSM) scenarios
featuring extended scalar sectors, with a particular focus on the Two Higgs Doublet Model
(2HDM). We perform a detailed study of Higgs pair production at the HL-LHC, the pro-
cess most directly sensitive to trilinear scalar couplings, examining the effects of additional
scalar states both through direct resonant production channels and through radiative cor-
rections to the trilinear Higgs coupling. Our results show that interference effects between
resonant and non-resonant contributions, affected by loop-induced modifications to scalar
self-interactions, can significantly alter both the total production cross section and the in-
variant mass distribution, while remaining consistent with all current experimental and
theoretical constraints. To account for these effects, we develop and apply dedicated com-
putational frameworks that enable precision BSM analyses incorporating these significant
loop effects.

Turning to the early Universe, we examine the thermal evolution predicted by BSM sce-
narios and identify conditions required for a strong first-order electroweak phase transition,
which is a necessary ingredient for electroweak baryogenesis. We analyse the characteris-
tic mass hierarchies that favour such transitions and identify the most important collider
signatures capable of probing the relevant parameter space. At the same time, we explore
the complementary reach of cosmological observables, focusing on stochastic gravitational
wave (GW) backgrounds that may be sourced by such strong transitions. We find that
space-based GW astronomy could become a complementary tool for exploring fundamental
questions of particle physics.
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Zusammenfassung

Die nächsten Jahrzehnte in der Teilchenphysik versprechen eine beispiellose Menge an
Daten, die es ermöglicht, unser Verständnis der fundamentalen Naturgesetze deutlich zu
vertiefen. Einerseits wird der High-Luminosity Large Hadron Collider (HL-LHC) unsere
experimentellen Möglichkeiten im Hochenergiebereich erheblich erweitern. Andererseits
wird die Laser Interferometer Space Antenna (LISA) das Zeitalter der Gravitationswellen-
Astronomie des frühen Universums einläuten. Die auf diese Weise gesammelten Daten
könnten Licht auf einige der tiefgreifendsten offenen Fragen der Physik werfen. Im Zen-
trum vieler offener Fragen im Standardmodell (SM)- darunter der Ursprung der elek-
troschwachen Symmetriebrechung, die Materie- Antimaterie-Asymmetrie sowie die Na-
tur der Dunklen Materie - steht das skalare Potential. Insbesondere die trilineare Higgs-
Selbstkopplung bietet einen einzigartigen Zugang zur Form dieses Potentials. Während
Kolliderexperimente die heute realisierte Form des Potentials untersuchen, können kos-
mologische Beobachtungen Einblicke in dessen Entwicklung im frühen Universum geben.
Gemeinsam bieten sie komplementäre Perspektiven auf eine der grundlegendsten Größen
der Teilchenphysik.

Diese Dissertation untersucht die phänomenologischen Implikationen von Abweichun-
gen in der trilinearen Higgs-Kopplung in theoretisch fundierten Szenarien des Standard-
modells (BSM) mit erweiterten skalaren Sektoren, mit besonderem Fokus auf das Zwei-
Higgs-Doublett-Modell (2HDM). Wir führen eine detaillierte Studie zur Produktion von
Higgs-Paaren am HL-LHC durch, da dieser Prozess besonders sensi- tiv auf die trilineare
skalare Kopplung ist, und untersuchen die Auswirkungen zusätzlicher skalarer Zustände
sowohl durch direkte resonante Produktionskanäle als auch durch radiative Korrekturen
zur trilinearen Higgs-Kopplung. Unsere Ergebnisse zeigen, dass Interferenzeffekte zwi-
schen resonanten und nicht-resonanten Beiträgen, beeinflusst durch schleifeninduzierte
Modifikationen der skalaren Selbstwechselwirkungen, sowohl den gesamten Produkti-
onswirkungsquerschnitt als auch die invariante Massenverteilung signifikant verändern
können, während sie dennoch mit allen derzeitigen experimentellen und theoretischen
Einschränkungen vereinbar bleiben. Um diesen Effekten Rechnung zu tragen, entwi-
ckeln und verwenden wir spezielle Analysecodes, die eine präzise BSM-Analyse unter
Berücksichtigung dieser signifikanten Schleifen-Effekte ermöglichen.

Im Hinblick auf das frühe Universum untersuchen wir die von BSM-Scenarios vor-
hergesagte thermische Entwicklung und identifizieren Bedingungen, die für einen star-
ken elektroschwachen Phasenübergang erster Ordnung erforderlich sind, eine notwendige
Voraussetzung für die elektroschwache Baryogenese. Wir analysieren charakteristische
Massenhierarchien, die solche Übergänge ermöglichen, und identifizieren charakteristi-
sche Kollider-Signaturen, mit denen sich der relevante Parameterraum untersuchen lässt.
Gleichzeitig erforschen wir die komplementäre Sensitivität kosmologischer Beobachtun-
gen, insbesondere stochastischer Gravitationswellenhintergründe (GW), die durch einen
solchen starken Phasenübergang erzeugt werden könnten. Wir stellen fest, dass welt-
raumbasierte Gravitationswellenastronomie zu einem komplementären Werkzeug werden
könnte, um die fundamentalen Fragen der Teilchenphysik zu untersuchen.
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Chapter 1

Introduction

We’ve basically got it all worked out,
except for small stuff, big stuff, hot
stuff, cold stuff, fast stuff, heavy stuff,
dark stuff, turbulence, and the concept
of time.

— Zach Weinersmith

The development of the physical theories that anchor human knowledge is fundamen-
tally driven by curiosity. This deep desire to understand nature is supported by principles
intrinsic to our species, such as critical thinking, abstraction, and creativity. Throughout
our exploration of the natural world, we have come to recognise that mathematics is, in
fact, nature’s language of choice, one that not only describes physical reality but often
anticipates it [7]. In the historical course of physical sciences, mathematical frameworks
constructed to interpret natural phenomena have revealed truths about the universe before
experimental confirmation, thereby advancing our understanding of the fundamental laws
governing nature.

One of the most successful physical theories developed so far is Quantum Field Theory
(QFT), which is the result of contributions from some of the most brilliant minds in human
history. Over decades, if not centuries1, they have assembled the pieces of the unified picture
we possess today. Born out of the need to reconcile the principles of quantum mechanics with
those of special relativity, it postulates that particles are excitations of underlying quantum
fields that pervade spacetime [8–10]. While quantum mechanics, established in the 1920s,
successfully described the behaviour of particles at atomic scales, it was intrinsically non-
relativistic and could not accommodate key relativistic phenomena such as particle creation
and annihilation.

The first steps toward QFT were taken by Paul Dirac, who formulated a relativistic
equation for the electron [11]. This not only predicted the existence of antimatter, sub-
sequently confirmed with the discovery of the positron [12], but also laid the groundwork
for field quantisation. When applied to the electromagnetic field, it led to the formulation
of Quantum Electrodynamics (QED), the first complete quantum field theory. However,
early calculations in QED revealed infinite results of some basic physical quantities, casting

1While the origins of quantum mechanics date to the early 20th century, the idea of an atomic description
of nature can be traced back to ancient civilisations.
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2 1. Introduction

doubt on the theory’s consistency. It was not until the 1940s and 1950s that these is-
sues were resolved through the development of renormalisation theory by Feynman [13,14],
Schwinger [15–18], Tomonaga [19], and Dyson [20]. These techniques allowed for the ab-
sorption of infinities into redefined physical parameters, rendering QED a predictive and
experimentally well-tested theory.

The success of QED inspired efforts to describe other fundamental forces using similar
principles. In 1954, Yang and Mills introduced non-Abelian gauge theories [21], generalising
the idea of local symmetries and setting the stage for modern descriptions of the weak and
strong interactions. A major challenge was the incorporation of particle masses within
gauge-invariant frameworks, a problem ultimately resolved in the 1960s through the Brout-
Englert-Higgs (BEH) mechanism [22,23] and the theory of spontaneous symmetry breaking
(SSB). A byproduct of the Higgs mechanism was a fundamental scalar particle called the
Higgs boson [23], the quantum excitation of the Higgs field, which interacts with other
fundamental particles to give them mass.

These theoretical breakthroughs culminated in the formulation of the Standard Model
(SM) of particle physics, a renormalisable gauge theory based on the symmetry group
SU(3)C × SU(2)L × U(1)Y , which successfully incorporates the strong, weak and electro-
magnetic interactions [24–26] . The discovery of a Higgs boson in 2012 at the LHC [27,28]
was a historic milestone that provided the experimental evidence of the BEH mechanism.
We provide a brief introduction to the ingredients and principles behind the SM in Sec. 2.1.

One such foundational principle of the SM is symmetry, which lies at the heart of
modern physics, shaping our understanding of fundamental interactions.2 Symmetry is often
paired with the principle of simplicity, commonly referred to as Occam’s Razor: a heuristic
guiding principle in both philosophy and natural sciences [29]. The SM exemplifies this
philosophy by offering a minimal and elegant framework. However, its economy of content,
guided by symmetry principles and validated by experimental success, is shaped by historical
development and does not arise from a deeper, intrinsic necessity, but rather from an ad
hoc construction.

This is exemplified by the shape of its scalar potential, the part responsible for elec-
troweak symmetry breaking (EWSB). Despite its simplicity, the shape of this potential
remains unexplained in any deeper sense, lacking a compelling fundamental origin of the
EWSB. We provide a comprehensive introduction to the SM scalar potential in Sec. 2.2.
More fundamentally, despite its tremendous success, the SM leaves many deep questions
unanswered: What is the nature of dark matter and dark energy? Why are neutrinos
massive? Why is our universe composed of matter rather than antimatter? Why does the
electroweak (EW) scale reside so far below the Planck scale? These questions and many
others, discussed in more detail in Sec. 2.4, suggest that the SM is, at best, an effective
low-energy theory of a more complete framework.

Perhaps the most significant flaw of the SM is that it does not incorporate the grav-
itational interaction within its framework. Our most successful description of gravity is
General Relativity (GR), which captures the dynamics of space and time with unmatched

2On a philosophical note, one could argue that symmetry might be a bias inherent in our current un-
derstanding, potentially blurring the true nature of reality. Nonetheless, in light of its historical successes,
our approach is to emphasise its strengths while maintaining the critical perspective essential to scientific
progress.
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elegance. Yet, it remains fundamentally incompatible with a QFT description, eluding the
unification that has gathered theoretical efforts for nearly a century.

From these limitations of the SM, the need for Beyond the SM (BSM) physics arises
clearly. The uniqueness of the Higgs field and the relation of its potential to several aspects
of the theory, such as the origin of the EWSB and the fate of the vacuum, place the Higgs
sector in a central role of many BSM theories. One compelling and testable class of models
involves extending the particle content of the SM with extra scalars [30], often referred to
as Higgses for simplicity. These include singlet, doublet, or higher multiplet scalar fields
added to the theory, often motivated by the solutions they provide to the aforementioned
shortcomings of the SM. A richer scalar sector can lead to modified electroweak dynamics,
offer dark matter candidates [31–36], enable electroweak baryogenesis [37–40], and alter the
vacuum structure of the theory [41]. We discuss extended scalar sectors in Sec. 2.5.

One example of such scenarios is the minimal extension of the SM by one additional
complex doublet, named Two Higgs Doublet Model (2HDM) [30,42–44], which we introduce
in Sec. 2.7. We will refer to it frequently throughout this work, as a simple, yet phenomeno-
logically rich, theoretical framework for BSM phenomena. One of them is the viability of a
strong first order electroweak phase transition (SFOEWPT) [45–47] that emerges due to the
presence of additional scalar degrees of freedom. Such a transition is a necessary condition
for explaining the baryon asymmetry of the Universe through electroweak baryogenesis [48]
(EWBG).

To explore such new physics and ultimately to deepen our understanding of nature and
to find the answers to the open questions, we must explore complementary experimental
avenues. On one hand, we need the high-energy precision laboratories, such as particle
accelerators, where experiments can be performed in controlled environments. On the other
hand, we have the natural cosmic laboratory, offering a plethora of phenomena that we aim
to observe and understand.

Looking at the starred sky is, in essence, looking back in time. Light from distant
galaxies has travelled millions of years to reach our detectors, carrying information from
the evolution of the Universe. The oldest light we can observe is the cosmic microwave
background (CMB), which was emitted approximately 380,000 years after the Big Bang,
when photons decoupled from the primordial plasma. This is as far as we can see. We
do know however what happened before that, in particular we can trace back the history
of the Universe up to three minutes after the Big Bang, when Big Bang Nucleosynthesis
(BBN) occurred and gave rise to the light elements. The remarkable agreement between
BBN predictions and observed abundances is a major success of the ΛCDM model [49,50],
our current standard cosmological paradigm, that we introduce in Sec. 2.3.

Anything that happened before BBN, and in particular the EWSB, remains a mystery.
Despite the discovery of a scalar particle with the properties of a Higgs boson and therefore
of the confirmation of the Higgs mechanism, the details of the SSB are yet unsettled. The
shape of the Higgs potential today could provide insights into the cosmological history of
the Universe and the pattern of symmetry breaking. This places the investigation focus
heavily on the shape of the scalar potential, which is mostly unknown. As of today, only
the location of the global minimum at the vacuum expectation value of the electroweak
field, and the curvature around it given by the mass of the discovered Higgs boson are
known. The shape of the potential can be constrained further by precision high energy
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collider experiments, in particular by measurements of the trilinear Higgs self-interactions.
We provide a description of this type of interactions in Sec. 2.6

However, we are now beginning to peer even further back, beyond the reach of electro-
magnetic radiation. The next exciting frontier for cosmological observations lies in non-
photonic messengers, such as gravitational waves (GWs). GWs were first detected by the
LIGO collaboration in 2015 [51], opening a new observational window to the distant past
that could provide information about such early times as inflation or even the Big Bang
itself. More recently, in 2023, the first hints of a stochastic gravitational wave background
have been detected in pulsar timing array observations by the NANOGrav collaboration [52].
These signals, in the nano-Hertz regime, could be the cosmic analogue of the CMB: a grav-
itational wave background sourced by phenomena such as phase transitions, cosmic strings,
or inflation.

Today we are entering an exciting era for fundamental physics. At the energy frontier,
the High-Luminosity Large Hadron Collider (HL-LHC) is expected to deliver unprecedented
amounts of data [53,54], enabling precision tests of the SM and opening new opportunities
to discover physics beyond it. Simultaneously, on the cosmological frontier, the Laser In-
terferometer Space Antenna (LISA) [55] will be the first space-based GW observatory. Its
launch will trigger a new era of precision cosmology and GW astronomy.

This thesis lies at the intersection of these two frontiers: collider phenomenology and
early-universe cosmology. At the core of our investigation is the scalar potential, due to its
possible connections to proposed solutions for the open problems of the SM. Specifically,
this thesis focuses on the study of trilinear Higgs self-interactions, which are beginning to
come within reach of current collider experiments. We carry out a thorough investigation
of the phenomenological implications of deviations in these couplings with respect to the
SM, caused by the presence of additional BSM scalar states. Particular attention is given
to BSM extensions capable of supporting a SFOEWPT, an essential ingredient for elec-
troweak baryogenesis and thus an attractive feature for addressing the matter–antimatter
asymmetry of the Universe. Additionally, we investigate the observable imprints of such a
phase transition in both collider experiments and cosmological observables such as GWs.

Guided by the ultimate goal of understanding the shape and nature of the scalar po-
tential, we study the process most sensitive to the Higgs self-coupling at hadron colliders:
double Higgs production via gluon fusion. This process provides a unique window into the
Higgs potential and its interactions with additional scalar states. The central question is:

Q1: What are the phenomenological signatures of extra scalar particles in Higgs pair pro-
duction at the HL-LHC?

To answer this, we perform a detailed analysis of how new physics affects the couplings
involved in this process, with a focus on the radiative corrections to the trilinear couplings.
We examine whether these effects alter the expected phenomenological signatures at hadron
colliders and how future experiments can probe such deviations. In particular, we study the
potential of the HL-phase of the LHC to constrain or measure both the SM-like trilinear
Higgs coupling and the scalar self-couplings involving BSM particles.

We then turn to the practical application of future experimental data on di-Higgs pro-
duction. Specifically, we address the question:
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Q2: How can we use experimental data from the HL-LHC in theoretical developments?

The answer unfolds along two lines: in Sec. 4.1, we focus on how experimental di-Higgs
data can be used to constrain the BSM parameter space of general models with extended
scalar sectors; in Sec. 4.2, we explore the possibility of extracting BSM trilinear couplings
from HL-LHC data using modern machine learning techniques.

On the cosmology side, we examine the relation between modifications to the Higgs self-
coupling and the conditions required for a SFOEWPT. First, we study the possible thermal
histories predicted by BSM theories and the role of these modifications in the early Universe
in Sec. 5.1. Then, we scrutinise the possible observational probes of a SFOEWPT. Collider
probes are discussed in Sec. 5.2, including direct searches for BSM particles and deviations
in trilinear scalar couplings. Cosmological probes are explored in Sec. 5.3, focusing on
gravitational waves. The complementarity between these collider and cosmological probes
provides unique insights into the conditions for a SFOEWPT. This leads to our third guiding
question:

Q3: If a strong first order electroweak phase transition occurred, what observable conse-
quences could we detect today?

Following the general considerations outlined in this introduction, this thesis is struc-
tured in four main chapters. In Chapter 2, we provide an overview of the theoretical back-
ground and introduce key concepts relevant to the subsequent analysis. Chapter 3 focuses
on Higgs pair production and addresses question Q1. We begin with a general study of pa-
rameter variations in Sec. 3.1, followed by a detailed analysis within the 2HDM in Sec. 3.2,
including experimental challenges in Sec. 3.3. We analyse the impact of radiative correc-
tions and interference effects on the cross section predictions in Sec. 3.4 and confront them
with experimental data in Sec. 3.5. We then generalise the inclusion of loop corrections to
arbitrary BSM theories in Sec. 3.6. Chapter 4 bridges theory and experiment, addressing
question Q2. Chapter 5 provides a detailed investigation of probes for a strong first order
electroweak phase transition, addressing question Q3, with a focus on both collider and
cosmological observables.
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Particle Physics: Current
Knowledge and Open Questions
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2.1 Brief introduction to the Standard Model

The Standard Model of particle physics is the state-of-the-art theory that describes ∼
15% of the matter in the Universe and 3 out of the 4 known fundamental interactions in
a unified mathematical framework.1 This framework is Quantum Field Theory, which
combines the principles of quantum mechanics and special relativity. In this description the
fundamental components of nature are fields that are defined at every point in spacetime.
Particles are quantum excitations (or ripples) of fundamental fields.

The 15% percent of matter described by the SM is what we call ordinary matter, which
is divided into two main categories: fermions, which are the main building blocks of matter,

1This section is based on [8, 56, 57] and personal notes from Elementary Particle Physics and Quantum
Field Theory at Universidad Autonoma de Madrid (UAM), as well as master courses of BSM phenomenology
and Spontaneously Broken Gauge Theories at the University of Hamburg.

7
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and bosons, which act as force carriers. This distinction arises from the quantum nature of
the particles, which in the quantum mechanical formalism can be described as wavefunc-
tions. For two particles to be identical, the exchange symmetry of their wavefunction must
be either symmetric (+) or antisymmetric (−) under particle exchange:

Ψ(x1, x2) = ±Ψ(x2, x1). (2.1)

The former case corresponds to bosons, and the latter to fermions. One can immediately
see that if two fermions occupy the same quantum state, their wavefunction must vanish,
making it physically impossible. This observation directly leads to the Pauli exclusion
principle, which explains that electrons arrange in atomic orbitals, shaping the structure of
the periodic table and leading to the rich chemistry of the elements. The difference between
fermions and bosons also impacts their statistical behaviour: while multiple bosons can
occupy the same state and thus they follow Bose-Einstein statistics, fermions have to follow
Fermi-Dirac statistics because of the Pauli exclusion principle. The spin–statistics theorem
proves that particles that follow BE statistics can be described with integer spins, while
particles that follow FD statistics are characterised by half-integer spins. An intuitive way
to understand this is through rotation symmetry: fermions require a 4π rotation to return
to their original state, while bosons return to their original state after only a 2π rotation.
This behaviour is precisely described by the spin quantum number, an intrinsic property of
each elementary particle.

As of today, we know about the existence of three families (or generations) of fermions,
each with the same quantum numbers but different masses. Each family contains an up-
type quark (u, c, t), a down-type quark (d, s, b), a charged lepton (e, µ, τ) and a neutrino
(νe, νµ, ντ ), these types are usually called flavours.

The remaining 85% of the known matter is “dark”, because it can only be inferred so
far through its gravitational effects on visible matter, such as galaxy rotation curves and
gravitational lensing. If it were to interact in any other way, this would have to be very
weakly in order to accommodate the limits from the current experimental bounds.

The forces described in the SM are the electromagnetic, the strong and the weak force.
Gravity is described by the theory of General Relativity, which however cannot be con-
sistently unified in the quantum description, and therefore is not part of the SM. Each of
the forces described in the SM, is mediated by a corresponding force carrier, a spin-one
boson. In particular, the photon is the force carrier of electromagnetism, the W± and Z
bosons mediate the weak force, and the eight gluons mediate the strong force.

A special role is played by the detectedHiggs boson, the only scalar (spin-zero) particle
discovered so far. It provides consistency to the SM through the Brout-Englert-Higgs
mechanism [22,23]. The Higgs boson is an excitation of the Higgs field, which has a non-
zero vacuum expectation value (vev), meaning that the vacuum state of the field is not
zero, contrary to the rest of the fields in the SM. This non-zero vev enables the generation
of mass for the weak gauge bosons via their gauge interactions, and for fermions through
Yukawa couplings to the Higgs field. The magnitude of the mass of a given fundamental
particle is thus proportional to the strength of its coupling to the Higgs field.

The mathematical description of the SM unifies the principles of special relativity and
quantum mechanics. The basic idea is that particles, the elementary constituents of the
matter in the Universe, are excitations of their respective fields. A cornerstone of the
description of the fundamental interactions in terms of relativistic quantum field theories is
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Noether’s Theorem [58], which links symmetries of the physical system (a mathematical
description) to conserved laws (a physical outcome). Noether’s theorem establishes that
invariance under time translations leads to energy conservation, spatial translations lead
to the conservation of linear momentum, rotational symmetry leads to the conservation of
angular momentum, and a phase shift symmetry leads to the conservation of charge. A
symmetry can be global or local, in the first case it is applied uniformly across all points in
spacetime. For example if we describe a particle as a wavefunction ψ (for instance of the
electron), our physical system is automatically symmetric under phase shifts

ψ → eiαψ, (2.2)

where α is an arbitrary constant. In mathematical terminology, this is a global U(1) symme-
try, which leads to charge conservation in quantum electrodynamics via Noether’s theorem.
The fact that this is a global symmetry implies that the associated electromagnetic force
should be a background effect that exists uniformly everywhere in the Universe. This con-
tradicts the observations: electromagnetism must have a dynamical field (the photon) that
propagates and only interacts where sources (charges) exist. This can be described math-
ematically by promoting the U(1) to a local symmetry (also called gauge symmetry),
which depends on each particular spacetime coordinate,

ψ(x) → eiα(x)ψ(x). (2.3)

In this case the local U(1) symmetry introduces the electromagnetic field, which ensures
charge conservation dynamically. A local symmetry requires the introduction of a force
carrier, in the case of the electromagnetism it is the photon field, Aµ. This requirement
comes from the fact that the derivative of the field ∂µψ(x) is no longer invariant under U(1)
transformations. To ensure that the kinetic terms in the Lagrangian, which depend on the
derivatives of the fields, stays invariant and the theory is consistent, a covariant derivative
is introduced

Dµ = ∂µ + ieAµ(x). (2.4)

where e is the electric charge. With this definition, the derivative of the field transforms
in the same way under the same symmetry group as the field itself, and the equations of
motion can be consistently derived.

Identifying the symmetries of a system therefore becomes the first step to simplify a
mathematical description of a physical system. Based on observations, we could determine
the conserved quantities around us, and this leads to the establishment of the symmetries
that exist in our Universe. These symmetries will in turn restrict the terms that are allowed
in the Lagrangian description of the theory, as all the terms will have to obey them. This
reduces the number of free parameters of the theory by constraining the type of interactions.
Finally, they have a predictive power, such as historically the prediction ofW± and Z gauge
bosons was obtained from the symmetry group of the electroweak interactions.

The SM is built to respect the symmetries of spacetime, namely translational and ro-
tational invariance as well as invariance under boosts, the latter two encompass the so
called Lorentz group of transformations in special relativity and the three of them form the
Poincaré group. This implies 10 conserved quantities, namely, energy, spatial momentum,
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angular momentum and Lorentz boosts. Furthermore, it is a gauge theory based on three
local symmetries:

SU(3)C: Describes strong interactions for particles that have a colour charge: quarks
and gluons. The subindex C stands for colour, the conserved charge of the strong
interactions.

SU(2)L: Describes the weak interactions between the W± and Z gauge bosons and left-
handed leptons, which is responsible for radioactive decay processes. The right-handed
leptons do not participate in those interactions, therefore the subindex L stands for
left. This makes the weak interactions of the SM chiral, as discovered by Chien-Shiung
Wuin 1956 in the groundbreaking experiment involving the β decay of the Cobalt-60
isotope [59]. Only particles with a half-integer spin (i.e. fermions) can be chiral, as
this property refers to the alignment of their spin and momenta: if these two vector
quantities point in the same direction, the fermion is right-handed, while if they point
in opposite directions, it is said to be left-handed. Mathematically, we arrange the
particles charged under SU(2)L in doublets, like for example the first fermion family:

LL =

(
νe
e−

)
, QL =

(
uL
dL

)
, (2.5)

while singlets like the right-handed quarks uR, dR and leptons eR do not transform
under this symmetry group. The associated conserved quantity is the weak isospin,
usually denoted as T3.

U(1)Y: Describes the weak hypercharge interactions. It is one of the two gauge sym-
metries that mix to form the electroweak interaction. After SSB, U(1)Y and SU(2)L
combine to produce the photon, γ, associated with U(1)EM, and the weak bosons,
W± and Z. The subindex Y stands for the corresponding conserved quantity, the
weak hypercharge.

The usual electric charge arises after the SSB of the electroweak SM gauge symmetry
groups, which will be described in detail in the next section (Sec. 2.2). For the moment, it is
sufficient to note that the conventional electromagnetic charge is related to the hypercharge
and the weak isospin via the Gell-Mann-Nishijima [60] relation

Q = T3 +
Y

2
. (2.6)

These symmetry groups are called Lie groups, and they have an associated Lie algebra
that mathematically describes the infinitesimal transformations of the fields under their
respective symmetry group. The algebras can be Abelian, meaning that the elements of
the group commute with each other, or non-Abelian, meaning that the elements do not
commute. In an Abelian gauge theory, self-interactions between the gauge bosons are not
possible, as in electromagnetism, where the photon does not interact with itself. Conversely,
non-Abelian groups like SU(2)L for the weak interaction, or SU(3)C for colour interactions
have non-commuting elements, which means that the force carriers can interact with them-
selves. Non-Abelian gauge theories are described by the Yang-Mills framework [61], which
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generalises electromagnetism to include self-interacting gauge fields. These gauge fields cor-
respond to the generators of the Lie algebra in the fundamental representation, Aµ = AaµT

a,
and the generators satisfy the commutation relations

[T a, T b] = ifabcT c, (2.7)

with fabc being the antisymmetric structure constants of the Lie algebra corresponding to
the generators.

The global symmetries of the SM also play an important role in physics, despite not
leading to the manifestation of fundamental interactions. There are some fundamental
discrete symmetries, for example C stands for change conjugation, P for parity and T for
time reversal. C conservation means that particles and antiparticles behave in the same way,
P conservation means the system is invariant under spatial reflections. Both are violated
by the weak interactions. T is the time reversal symmetry. Only the combination of the
three of them, CPT , is an exact symmetry in any QFT, as it ensures locality and causality.
Other symmetries that can arise in the Lagrangian will be discussed throughout this thesis.

The fundamental role of symmetry in the mathematical description of a physical system
has motivated extensive efforts to unify all fundamental interactions under a single sym-
metry group. One example are Grand Unified Theories (GUT) that aim to unify the
strong and electroweak forces within a larger symmetry group such as SU(5) or SO(10).
Another possibility is Supersymmetry (SUSY), the most general extension of the Poincaré
group (the super-Poincaré group) that leads to a unique, consistent QFT [62]. SUSY in-
troduces an R symmetry that relates bosons and fermions: each bosonic degree of freedom
has a fermionic partner and vice-versa. Broader theoretical frameworks like supergravity
and string theory also commonly predict SUSY. While theoretically very compelling, these
theories remain unconfirmed experimentally, making them a lively area of research and a
significant fraction of experimental searches.

But in order to first understand the SM, we need to start from its Lagrangian, which
can be constructed from the particle content - dictating the kinetic terms - and the inter-
actions allowed between them, which we have described above. Its classical part can be
separated in the following terms

LSM = Lgauge + Lf + Lh. (2.8)

Lgauge: The gauge part describes the kinetic terms and the self-interactions between gauge
bosons, as discussed above. These terms depend on the electroweak symmetry group
but not on the matter content

LYM = −1

4
GaµνG

aµν − 1

4
W i
µνW

i µν − 1

4
BµνB

µν , (2.9)

where the field strength tensors are

Bµν = ∂µBν − ∂νBµ,

W i
µν = ∂µW

i
ν − ∂νW

i
µ + g2ϵ

ijkW i
µW

k
ν ,

Gaµν = ∂µG
a
ν − ∂νG

a
µ + gsf

abcGibG
k
c ,

(2.10)
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for the U(1)Y , SU(2)L and SU(3)C , respectively. The ϵijk and the fabc are the anti-
symmetric structure constants of the Lie algebra of SU(2)L and SU(3)C respectively,
that give rise to the self-interaction terms among the weak gauge bosons and the
gluons, while g2 and gs are the weak and the strong coupling constants, respectively.

Lf : The fermionic part depends on the matter content and includes the kinetic terms for
the fermions and their interactions with the gauge bosons via covariant derivatives

Lf =
∑
f

f̄ i /Df, (2.11)

where f stand for the fermionic fields and f̄ indicates antifermionic field, the slash
means that the vector quantities are contracted with gamma matrices /k := γµk

µ. We
note that, according to the gauge groups of the SM, the covariant derivative acting
on the fermion fields in the above equation is defined in analogy to Eq. (2.4) as

Dµ = ∂µ − ig1
Y

2
Bµ − ig2W

i
µτ

i − igsG
a
µt
a, (2.12)

where Y is the generator of the U(1)Y group and g1 its associated coupling constant.
τ i are the normalised Pauli matrices, τ i = σi/2, which are the generators of SU(2)L
in the fundamental representation. ta are the normalised generators of the SU(3)C ,
expressed in terms of the Gell-Mann matrices λa, i.e. ta = λa/2.

Lh: Finally, the Higgs part can be described by the kinetic energy of the Higgs field, the
scalar potential and the Yukawa interactions of the Higgs with the fermion matter,

Lh = (DµΦ)
†(DµΦ) + V (Φ) + LYukawa, where Φ =

(
ϕ+

ϕ0

)
(2.13)

is a complex doublet, often called Higgs doublet, under SU(2)L with hypercharge
Y = 1.

The Yukawa terms in the Lagrangian are proportional to the vev, meaning they
are zero before spontaneous symmetry breaking. After symmetry breaking, the vev
becomes nonzero, causing these terms to appear in the Lagrangian and explicitly
breaking the gauge invariance. More about this mechanism and how it influenced
the choice of the scalar potential V (Φ) will be discussed in Sec. 2.2. The explicit
expression of the Yukawa term is2

LYukawa = −yuQ̄LΦ̃uR − ydQ̄LΦdR − yeL̄LΦeR + h.c., (2.14)

where Φ̃ = iσ2Φ∗ is the conjugate Higgs doublet that has the opposite hypercharge,
thereby allowing for the correct electric charge combinations in the up-type quark
terms. The left-handed quark QL, and lepton LL doublets are defined in Eq. (2.5),
uR, dR and eR represent the right-handed quark and lepton singlets respectively. yu,yd

2We use the notation u, d and l for all up-type quarks, down-type quarks and leptons in three fermionic
generations respectively.
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and ye are the Yukawa couplings for up-type, down-type and electrons, respectively.3

h.c. stands for hermitian conjugate, i.e. the complex conjugate transpose.

Though we do not describe the mechanism of the electroweak symmetry breaking in
detail here, we note that after the Higgs field gets a vev, the gauge bosons of the
electroweak symmetry group SU(2)L × U(1)Y mix to give rise to the known gauge
bosons, namely

the photon : Aµ = cos θWBµ + sin θWW
3
µ ,

the Z boson : Zµ = − sin θWBµ + cos θWW
3
µ ,

theW± bosons : W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ),

(2.15)

where θW is the weak mixing angle. Only the photon Aµ remains massless due to the
unbroken U(1)EM symmetry.

Now that we have constructed the Lagrangian based on the symmetries and matter
content of the SM, we can proceed to compute observable quantities like the scattering
amplitudes. These describe the probabilities of particle collisions or decays and are the
key predictions of the theory and measurements of the experiment. For this we will only
briefly outline the methods developed in the QFT framework.

We will use the path integral formalism, that defines the amplitudes as a sum over
all possible classical field configurations weighted by the exponential of the classical action
S. The idea behind this formalism can be understood from the double split experiment.
In that experiment, a particle seems to follow both possible paths through two slits in
the wall simultaneously.4 However, if there was no wall, the natural inference is that the
particle in fact follows simultaneously any possible path connecting two points. Therefore,
to compute the amplitude we need to sum (integrate) over all possible quantum histories,
and the probability of a particle going from an initial state, |i⟩, to a final state, ⟨f |, is the
squared magnitude of this amplitude.

In this weighted sum over paths, the action appears in the exponent as a phase factor
because each path contributes a wavefunction with a phase proportional to its action. The
total amplitude at a point arises from the sum of all these phases. For most paths, especially
those far from the classical trajectory, the phases vary rapidly and interfere destructively, ef-
fectively cancelling out. However, near the path of least action, small deviations lead to only
small changes in phase, allowing nearby paths to interfere constructively. This constructive
interference around the classical path explains why we observe definite trajectories. For
example, the visible path of a laser beam arises from the constructive interference of many
possible photon paths clustered near the classical path: a manifestation of the principle of
least action, a foundational concept in classical mechanics. This action can be extracted
from the Lagrangian as

S =

∫
d4xL+

∑
V

JV Vµ +
∑
ϕ

Jϕ +
∑
ψ

(
Jψψ − ψ̄Jψ̄

)
, (2.16)

3Since neutrinos are massless in the SM, only the electron component of the lepton doublet has a Yukawa
interaction with the Higgs.

4For a comprehensive explanation see e.g. Ref. [56]
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where we added the sources J(x) to capture the presence of external vector JV , scalar Jϕ
and fermion Jψ fields.

With this action we can compute the generating functional (or partition function),
Z[J ], which sums over all possible quantum field configurations, in analogy to the canonical
partition function in statistical mechanics, as

Z [JV , Jϕ, Jψ] =

∫
DVDϕDψ̄DψeiS , (2.17)

where DV encodes all possible configurations of the vector field V , and equivalently for the
fermion and scalar fields. This integral is not computed exactly but rather expanded in
a perturbative series of the exponential, which will eventually give rise to the Feynman
diagrams, which are pictorial representations of the terms in this expansion. In these
diagrams, the vertices correspond to interactions, internal lines to propagators and external
lines (called legs) to the incoming and outgoing particles. The Feynman rules are extremely
useful and lie at the basis of any calculations in QFT, as they can be derived directly from
the Lagrangian and provide a convenient way to calculate the contributions to the scattering
amplitude at different orders (also called loops) in the perturbative expansion.

It must be pointed out that the gauge symmetry implies that many field configurations
are in fact physically equivalent. Therefore, to properly define the path integral, one has to
fix a gauge, e.g. the photon field Aµ in the Lorentz gauge is defined as

∂µAµ = 0. (2.18)

The gauge fixing introduces a non trivial Jacobian in the path integral, accounted for
by the Faddeev-Popov determinant. In gauge symmetries with redundant degrees of free-
dom, this determinant depends on the gauge fields and can be rewritten as a path integral
over additional scalar anti-commuting fields called ghosts. The appearance of the ghosts
is an artefact of the mathematical methods in the theory. They can only contribute in
the internal loops of a process and ensure that the predicted quantities remain consistent
and well behaved, as well as renormalisable, a concept we will introduce properly further
below. Eventually, this procedure leads to the appearance of two additional terms in the
Lagrangian, the gauge fixing and the Fadeev-Popov terms that we have not mentioned until
now.

The definition of the generating functional will allow us to compute correlation functions
(also called Green functions) for different sources. These correlation functions describe
the propagation of quantum fields at n spacetime points and they are defined as

Gn (x1, . . . , xn) = ⟨0|T {ϕ(x1) . . . ϕ(xn)} |0⟩ =
δnZ[J ]

inδJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

=
1

Z[0, 0, 0]

∫
DVDϕDψ̄DψeiSϕ (x1) . . . ϕ (x2) ,

(2.19)

where ⟨0|T {ϕ(x1) . . . ϕ(xn)} |0⟩ is the vacuum expectation value of the time-ordered product
of the field evaluated at n points in spacetime, “time-ordered” means

T {ϕ(x1)ϕ(x2)} =

{
ϕ(x1)ϕ(x2) if t1 > t2,

ϕ(x2)ϕ(x1) if t2 > t1,
(2.20)
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which enforces causality.

Now the Lehmann-Symanzik-Zimmermann (LSZ) formula allows us to relate the n-
point Green functions (mathematical artefacts describing propagation of fields with encoded
interactions and sources) to the scattering amplitudes (physical observables).

⟨i|S|f⟩ = (2π)4δ4 (pi − pf )G
trunc
n (p1, . . . pn)

∣∣
p2j=m

2
j
, (2.21)

where Gtrunc
n (p1, . . . pn) is the truncated (i.e. only the interaction parts without the external

legs) Green function in the momentum space (obtained by taking the Fourier transform),
and S is the scattering amplitude or simply the S-matrix. It describes the probability of
an initial state to transition to a final state, both of which are asymptotically free particles
in the Hilbert space. It can be rewritten as

S = I+ iT, (2.22)

where the first term represents the free, non-interacting term and T is the transition matrix
that accounts for interactions between the states. The relation between the S-matrix and
the scattering amplitude M is given by

⟨f |S|i⟩ = δfi + i(2π)4δ(4)(pf − pi)Mfi, (2.23)

which means that the transition probability from the initial state i to a final state f is equal
to the free term (i.e. the Kronecker delta δij), plus the interaction strength encoded in M,
with the conservation of four-momenta of the initial pi and final pf states.

Finally, with the value of M, the cross section of a scattering process can be computed
simply as

σ =

∫
1

F
MdΠ, (2.24)

where F is a flux factor describing the incoming particles and dΠ is the phase space for the
outgoing particles.

However, the order by order calculation in perturbative QFT involve loop diagrams that
typically suffer from ultraviolet (high-momentum) divergences, giving rise to the crucial
point of the renormalisability [8, 63]. The appearance of infinities in the formalism of
QFTs was a bustling topic of research in the 20th century. QED was the first successful
renormalisable theory, developed in the early 1940s by Julian Schwinger [15–18], Richard
Feynman [13, 14], and others. To intuitively understand this concept, we can consider the
classical electromagnetic mass of the electron:

me =
e2

4πre
, (2.25)

which describes a point-like particle with charge e and radius re. Despite being divergent
at re → 0, an experimental measurement of the electron mass never yields an infinite
result, hinting at the need to reinterpret the mass parameter. In QED, this happens to
all the free parameters of the theory, the electron mass, its charge and the field itself.
Considering the electron charge, we say that it has a bare value, e0, which is infinite,
and the vacuum around it is constantly polarised due to higher order corrections (creation
and annihilation of virtual particle-antiparticle pairs), which align their electromagnetic
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charges and screen the bare charge. The experiments are only sensitive to the effective,
or renormalised charge of the electron, which includes the charged cloud induced around
the electron by the vacuum polarisation. Increasing the energy of a scattering experiment
is equivalent to resolving smaller scales of the electron, which stripes the measured charge
from these quantum corrections and we can measure an effective increase of the electric
charge with energy, a phenomenon called the running of the coupling constants. The way
physical parameters change with energy is paramaterised by the renormalisation group
equation (RGE). This is described by the beta functions:

β(g) =
dg

d lnµ
, (2.26)

where g is the coupling constant and µ is the energy scale. The form of the beta function
depends on the symmetries, field content, and interactions in the theory, and determines
whether a coupling increases or decreases with energy. In the case of the strong interaction,
the beta function is negative, causing the strong coupling to decrease with energy. This
behaviour, known as asymptotic freedom, means that quarks and gluons are free of inter-
action at very small scales but become strongly interacting at larger scales, forcing them to
come closer together and making it impossible for quarks and gluons to exist freely without
hadrons, which leads to confinement. By contrast, the beta function the electroweak cou-
plings is positive, meaning that these couplings become weaker at higher energies, which
allows electrons and leptons to exist as free particles. Additionally, the massive nature of
W± and Z makes the electroweak force a short ranged force and prevents them from being
confined.

In practice, the procedure of renormalisation is a very specific algorithm that allows to
cancel the infinities arising in the quantum corrections of the theory. Through observable
processes masses and certain couplings are fixed, and with their input we are able to predict
the numerical values of physical observables. The most important aspect of renormalisation
is that the physical meaning of the free parameters is defined order by order. This algorithm
consists of two steps:

Regularisation: introduces a temporary modification to the equations to make the ex-
pressions mathematically meaningful. Usual choices are (1) cut-off regularisation,
which introduces a physical scale Λ as an upper bound of the momentum integrals
and is particularly helpful to understand the order of the divergencies, and (2) di-
mensional regularisation, which extends the integrals to d dimensions and then
takes the limit of d→ 4−2ϵ. Since the spacetime is deformed, a renormalisation scale
µ must be introduced to maintain the correct dimensional analysis, this is the energy
scale that appears in the running of the coupling constants in Eq. (2.26).

Renormalisation: removes the infinities by introducing counterterms (CTs). These pa-
rameters in general depend on the renormalisation scale 5 and relate the bare couplings
(denoted with a subindex 0) to the renormalised quantities (denoted by a subindex
R):

g0 = Zg(µ)gR ≃ (1 + δZg(µ))gR,

ψ0 = Z
1/2
ψ (µ)ψR ≃

(
1 +

1

2
δZψ(µ)

)
ψR,

(2.27)

5With the exception of the on-shell renormalisation scheme defined below.
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where the second equalities are only valid to the first perturbative order. This re-
definition allows to split the Lagrangian into two pieces, one with the renormalised
couplings and fields, and one with the counterterms:

L(ψ0, g0) = L(ψR, gR) + LCT(ψR, gR, δZψ, δZg). (2.28)

The bare terms and the counterterms are infinite, but the cancellation of the infinities
renders a finite renormalised parameter. There is not a unique way of cancelling the
infinities, some common choices are: (1) Minimal subtraction (MS), in which the
CTs are defined in such a way as to only cancel the poles of the theory, keeping
the finite pieces as they are. This makes the scheme mass-independent, meaning
that the renormalisation procedure does not explicitly depend on particle masses. As
a result, when comparing physical quantities defined at different energy scales, for
example, a mass parameter defined in the infrared (IR) at scale m versus one defined
in the ultraviolet (UV) at scale M , a matching procedure must be applied. This
involves converting parameters from one renormalisation scheme or scale to another to
consistently account for the physical mass thresholds and ensure accurate predictions
across scales. And (2) On-shell (OS), which enforces that renormalised mass is equal
to the physical mass of the particle and that the propagator has a pole at this mass.

Overall, the SM is an overwhelmingly powerful and predictive theory. For instance the
gluon was predicted by Harald Fritzsch, Murray Gell-Mann and Heinrich Leutwyler in the
1970s [64] and experimentally confirmed in 1979 at the PETRA collider at DESY [65] via
the observation of three-jet events in e+e− collisions consistent with the predictions of gluon
Bremsstrahlung. Similarly, theW± and Z bosons, the mediators of the weak force, were also
postulated by Sheldon Glashow, Abdus Salam and Steven Weinberg in the seventies [24–26]
and experimentally confirmed in pp̄ collisions at CERN in 1973 [66], the Z boson appeared
as an excess in the invariant mass of lepton pairs and the W± as an excess of leptons
and missing energy (corresponding to the neutrinos). The fact that these gauge bosons
were massive, contrary to the photons and the gluons, was puzzling, since a mass term in
the Lagrangian would break gauge invariance. The solution to the puzzle was developed
over the sixties and consisted in suggesting a spontaneous breaking of the gauge symmetry,
which was early explored in the work of Guralnik, Hagen, and Kibble [67] and expanded by
François Englert and Robert Brout [22] as well as independently by Peter Higgs [23], who
suggested the existence of a scalar particle. This mechanism became known as the Brout-
Englert-Higgs, or simply Higgs mechanism. More than half a century later, their prediction
was confirmed by the discovery of a particle with the predicted properties in 2012 [27, 28].
Among the numerical predictions of the SM, the agreement of the electron magnetic moment
with the prediction up to the 12th decimal is remarkable, which exemplifies the interplay
between theory and experiment [68].
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2.2 The scalar potential

The scalar potential6 in the SM takes the form

V (Φ) = −µ2Φ†Φ+ λ(Φ†Φ)2, (2.29)

where µ2 and λ are real and positive parameters. This potential is chosen because of two
reasons: it includes all the possible renormalisable and gauge invariant terms for an SU(2)L
doublet, Φ, and it has the form that allows for the mechanism of spontaneous symmetry
breaking.

SSB is a common phenomenon in physics and a necessary ingredient for the BEH
mechanism [22, 23]. The SSB refers to a symmetry that is possessed by the interactions
governing the dynamics of a physical system but not by the ground state of the system. A
common example of this phenomenon are ferromagnetic materials. At high temperatures,
a ferromagnetic material has an average zero magnetisation because the magnetic spins of
individual atoms are randomly oriented and therefore the material is rotationally invariant.
Below the Curie temperature, exchange interactions between the atoms overpower thermal
fluctuations, causing neighbouring atomic spins to align parallel to each other. This in-
duces a net magnetisation and spontaneously breaks the rotational symmetry of the ground
state of the system. This behaviour can be interpreted in therms of the Ginzburg-Landau
theory [70], which phenomenologically describes ferromagnetism as a phase transition. The
magnetisation (the so called order parameter) of the material close to the Curie temperature
can be parametrised by a free energy density with a potential energy of the form

V (M⃗) = α1(T − TC)(M⃗M⃗) + α2(M⃗M⃗)2 and α1,2 > 0. (2.30)

By minimising the above potential w.r.t. the magnetisation we obtain the magnetisation
condition of the ground state

M⃗
(
α1(T − TC) + 2α2(M⃗M⃗)

)
= 0. (2.31)

It is clear that for T > TC the term in parenthesis is positive and the only solution is null
net magnetisation M⃗ = 0, leading to a symmetric potential with a minimum at V (0) = 0.
For T < TC , i.e. after SSB, M⃗ = 0 becomes a local maximum, and the minimum is achieved
at an infinite number of solutions with the same magnetisation,

|M⃗ | =
√
α1(TC − T )

2α2
. (2.32)

This leads to a potential of the shape of a “mexican hat”, and the system needs to chose be-
tween one of the rotationally non-invariant ground states above. In the case of the SM scalar
potential, the minimisation condition leads to the infinite states of vacuum configurations
for the field doublet Φ, that must satisfy

Φ†Φ =
µ2

2λ
:=

v2

2
, (2.33)

6This section is based on Ref. [69].
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where v is defined as the vacuum expectation value and is the ground energy state of
the Universe today. It is extracted from the Fermi constant GF , which is the effective
weak interaction strength, as v2 = 1/

√
2GF ∼ (246 GeV)2. The value of GF is measured

experimentally via muon decay. The minimum of the potential is thus an arbitrary state
that lies on a circle of radius v from Φ = 0, analogously to the magnetisation potential. We
show a sketch of the scalar potential shape in the SM before and after symmetry breaking
in Fig. 2.1.

+
+

0

Degenerate EW vacua

0

Figure 2.1
SM scalar potential before (left) and after (right) SSB. The potential is symmet-
ric before SSB with a unique vacuum configuration at the origin of field space.
After SSB there are multiple energetically favourable EW vacua, and the chosen
ground state will break the symmetry of the system.

In the unitary gauge, the components of the field doublet Φ are non-zero only in the
neutral component, so that the vacuum preserves the unbroken QED gauge symmetry group
U(1)EM,

⟨Φ⟩ =
(

0
v√
2

)
. (2.34)

The similarities between Eq. (2.29) and Eq. (2.30) are manifest, as they describe the
same phenomena in nature. The Ginzburg-Landau theory is thus a precursor for the BEH
mechanism in QFTs. The latter requires however an additional ingredient, which is the
Goldstone theorem [71–73]. The Goldstone theorem states that if the Lagrangian of a
theory has a global symmetry that is not a symmetry of the vacuum, a massless scalar
or pseudoscalar boson appears associated to each generator that does not annihilate the
vacuum. These modes are called Goldstone bosons. In the case of the BEH mechanism,
the SU(2)L × U(1)Y symmetry of the Lagrangian is not a global symmetry but rather a
gauge symmetry. Therefore the would-be-Goldstone bosons are not physical particles but
rather they mix with the massless gauge bosons to give rise to their longitudinal component,



20 2. Particle Physics: Current Knowledge and Open Questions

which makes them massive vector particles. The number of vector bosons that aquire a mass
through the BEH mechanism is equal to the number of would-be-Goldstone bosons.

Therefore, the Higgs mechanism breaks the symmetry group of the Lagrangian SU(2)L×
U(1)Y down to U(1)EM. In this process the weak gauge bosons aqcuire a mass, while the
photon remains massless as it corresponds to the gauge boson of the unbroken U(1)EM.

The Goldstone modes appear as excitations of the vacuum state along the tangent direc-
tion of the circle with equivalent vacuum states. Since this direction is flat, the Goldstone
modes are massless. On the other hand, the excitations along the radial direction around
the vev are massive because there is a curvature. The mass is given by the second derivative
of the potential. This corresponds to the massive physical Higgs boson.

The SM is really the minimal configuration that allows for a successful SSB pattern.
In theories Beyond the Standard Model, where there are multiple field dimensions
and multiple scalar self-interactions, the scalar potential can have a richer structure. For a
pictorial representation see Fig. 2.2, where deeper minima can coexist with the EW vacuum
v. In Sec. 2.4 we will list some of the shortcomings of the SM that point to the need for
such BSM physics that could be probed via modifications of the SM scalar potential.

EW vacuum

Deeper
minimun

Deeper
minimun

Absolute
minimum 

v
v

v

i

j

i

j

Figure 2.2
Example representation of a scalar potential V (φ) in a BSM theory with two
scalar fields φi and φj . Indicated in red are the possible tunnelling directions
from the EW vacuum to deeper minima.
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2.3 The ΛCDM model and the Cosmological History

The Λ cold dark matter model, or ΛCDM model, is the current state-of-the-art model for
describing the cosmological history and evolution of the Universe.7 This theory adds to the
SM of particle physics by incorporating two observationally motivated components: dark
energy, represented by the cosmological constant Λ, which drives the accelerated expansion
of the Universe, and non-relativistic (i.e. “cold”) dark matter.

Our current, widely accepted understanding of the Universe is built on a few assumptions:

Cosmological principle: defines the general symmetries based on observations: the Uni-
verse is homogeneous (translation invariant) and isotropic (rotation invariant) on large
scales. Mathematically, this is described by the Friedman-Lemaitre-Robertson-Walker
(FLRW) metric

ds2 = −dt2 + a(t)2
(

dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

)
, (2.35)

which is a solution to the Einstein equations of GR. The FLRW metric also allows for
an expanding or collapsing Universe, its evolution is encoded in the time-dependent
scale factor a(t).

Cosmic expansion: describes the evolution of the Universe based on Hubble’s observation
that the space between galaxies is expanding, leading to the establishment of the
Hubble law. Mathematically, this means that the Hubble parameter is defined as the
expansion rate of the Universe, normalised by the distance

H(t) :=
ȧ(t)

a(t)
. (2.36)

Assuming that the Universe is thermodynamically isolated, it seems reasonable to
assume that this expansion is adiabatic8, i.e. there is no heat loss and the entropy is
conserved.

Properties of matter: determines what is the content of the Universe. Einstein’s GR
equations allow to relate the geometry of space time (the FLRW metric) to the matter
energy-momentum tensor: matter determines the curvature of spacetime, and the
curvature of spacetime dictates the motion of matter. To describe the properties of
matter we need to assume an equation of state. We assume the equation of state for
barotropic fluids, for which the pressure P and energy density ρ have a linear relation
given by P = wρ, with the parameter w depending on the type of matter: w = 1/3 for
radiation, w = 0 for collisionless matter, w = −1 for vacuum energy and w = −1/3
for curvature. Using the first law of thermodynamics and the continuity equation,
we can derive the relation between the energy density ρ and the scale factor at each
moment of time,

ρ ∝ a(t)−3(1+w). (2.37)

7This section is based on Ref. [50,74] and my personal notes from the Cosmology lectures at the IFT [75].
8This is also confirmed by the homogeneity of the temperature distribution of the Cosmic Microwave

Background. Furthermore, a net heat flow would be pointing towards a preferred direction, which violates
the cosmological principle.
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We can measure the different components of matter in terms of their density today:
the vacuum energy density is ΩΛ,0 = 0.685 ± 0.007, the matter energy density is
Ωm,0 = 0.315± 0.007, the curvature density is ΩK,0 = 0.001± 0.002 (i.e. our Universe
is flat) and the radiation density is negligible [49].9 Looking at the evolution of the
different components of the Universe, we see that it has only recently become vacuum-
dominated, which has a constant energy density as can be seen in Eq. (2.37). Before
it was in a period of matter domination, and at the very beginning it was radiation
dominated.

The Big Bang: defines the initial conditions. It is assumed that the Universe began from
a singularity 13.8·109 years ago in an extremely hot and dense state, which later cooled
down due to the accelerated expansion. Inflation is also thought to be responsible for
the the seeds of large-scale-structure formation: small quantum fluctuations generate
overdensities that are amplified and eventually grow into galactic structures.10

We also rely on a few physical concepts, some of the most relevant ones are:

Energy budget: The temperature of the Universe sets the available thermal energy. The
temperature will therefore govern the types of particles that are present at each mo-
ment and their energy density. At high temperatures, the thermal energy of the
particles is much larger than their rest mass energy, T ≫ m, therefore they effectively
behave as massless, i.e. relativistic, particles. The number density of a relativistc
particle in thermal equilibrium is

n = K
ζ(3)

π2
gT 3, (2.38)

where ζ(3) ∼ 1.202 is the Riemann zeta function, K = 1 for bosons and K = 3/4 for
fermions and g is the number of internal degrees of freedom of the species. As the
Universe cools down, the thermal energy decreases and the rest mass starts dominating
the total energy of each particle species, therefore when T ≈ m, the particle becomes
non-relativistic. This energy density of a non-relativistic species is

n = g

(
mT

2π

)3/2

e

[
µ−m
T

]
, (2.39)

where µ is the chemical potential.11 One can see that the non-relativistic number
density is Botlzmann suppressed, therefore some other physical process needs to hap-
pen to prevent it from completely diluting and resulting in a radiation-filled Universe.
This process is the decoupling from the thermal bath described below. We also note
here that the energy of the particles is Boltzmann distributed.

9See Ref. [76] for the latest experimental results from the Dark Energy Spectroscopic Instrument (DESI)
collaboration, which suggest a time evolution of the vacuum energy density.

10This remains a theoretical model that cannot be directly tested at the moment but is consistent with all
current observations. Inflation could potentially be probed in the future if it left some observable imprints
such as a primordial magnetic field or a gravitational wave stochastic background.

11In the early Universe, the chemical potential µ can generally be neglected because µ ≪ T . In particular,
photons have zero chemical potential (µγ = 0) and they dominate the energy density during the radiation-
dominated era, making this approximation especially valid.
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Thermal equilibrium: It refers to a state of a physical system in which energy exchange
is efficient. The particles in the early Universe can convert from one another rapidly
and continuously. They interact with each other through the weak, strong and elec-
tromagnetic forces (gravity is neglected at atomic scales). Their interaction rate is Γ,
which is proportional to the particle number density, the cross section of the interac-
tion, and the relative velocity between the interacting particles. In the early Universe
the interaction rate is greater than the Hubble rate, Γ ≫ H, and the particles can
maintain in thermal equilibrium.

As the Universe expands, the Hubble rate decreases and when Γ ≪ H, which means
that the Universe is expanding too quickly for the particles to have enough time to
interact, as a result thermal equilibrium is not kept and this leads to the decoupling
of this particle species from the thermal plasma. Its number density is thus fixed or
“frozen” until present time.

This describes the so called freeze-out, which happens for weakly interacting parti-
cles, like neutrinos or Weakly Interacting Massive Particles (WIMPs). The latter are
hypothetical dark matter candidates that can account for the observed dark matter
because, contrary to the neutrinos, they decouple from the thermal bath while be-
ing non-relativistic, and thus could potentially constitute cold dark matter. Another
alternative for a number density of a species remaining constant until today is the
freeze-in, which describes how particles that were not in thermal equilibrium start
to slowly acquire a larger number density as a result of a relative increase in their
interaction rate.

Phase transitions: A further important notion is phase transitions. In the early Universe
they occur when the properties of the cosmic medium change in a sharp or discontin-
uous way. If this change is smooth then we talk about a crossover. A first order phase
transition is characterised by an abrupt change in the properties of the medium. We
already introduced the electroweak phase transition (EWPT) in the context of the
SM as a breaking of a gauge symmetry, which changes the properties of the vacuum.
If this transition was of first order, the vev would have a discontinuity in its evolution
with the temperature. A second order transition (or a crossover) implies a slow and
continuous change of the properties, meaning the medium is always in a state close
to thermal equilibrium. There is also the Quantum Chromodynamics (QCD) phase
transition related to the confinement of quarks into hadrons. Both these transitions
in the SM are smooth crossovers.

With these ingredients the overall picture of the evolution of the Early Universe can be
chronologically described in the following milestones:

T = ? – Inflation: It is strongly believed that the Universe underwent a period of rapid
expansion called inflation, as it efficiently solves the flatness and the horizon prob-
lems. During inflation, the Universe expands exponentially, smoothing out any initial
irregularities and causing a nearly homogeneous and isotropic Universe. Radiation is
the main component of the Universe, the energy density scales as ρ ∝ R−4.
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T ∼ 100 GeV (t = 10ps) – EWPT: The SSB of the SU(2)L×U(1)Y group into U(1)EM
is a necessary ingredient of the SM.12 At finite temperatures, the Higgs potential in
Eq. (2.29) is modified by including temperature corrections (see App. A). When the
particles become massive, the top quark becomes non-relativistic because its mass is
of the same order of magnitude as the temperature, and its number density becomes
Boltzmann suppressed.

T ∼ 150 MeV (t = 20µs) – QCDPT: Before this point, the quarks and gluons are free
particles, due to the asymptotic freedom of the SU(3)C . As the Universe cools down,
it undergoes the QCD Phase Transition (QCDPT), where quarks and gluons become
confined into hadrons (protons and neutrons). After this point, the Universe has a
sufficient number of protons and neutrons for the onset of Big Bang Nucleosynthesis.

T ∼ 0.8 MeV (t = 1 s) – ν-decoupling: Since the neutrinos are the most weakly inter-
acting particles of the SM, they decouple first from the thermal plasma, while still
being relativistic. After decoupling, neutrinos remain relativistic and travel freely
through the Universe, forming the cosmic neutrino background.

T = 500 keV (t = 6 s) – e+e− annihilation: As the Universe cools down below the
electron mass threshold, electrons and positrons became non-relativistic and annihi-
late into photon pairs. This process transferred entropy to the photon bath, increasing
its temperature relative to that of the neutrinos. While the number of massive parti-
cles decreased, the photon number increased.

T = 100 keV (t = 3m) – BBN: Big Bang Nucleosynthesis is a crucial component of the
ΛCDM model, and its ability to predict the observed abundances of light elements
(like deuterium, helium, and lithium) is one of its major successes.

T = 800 meV (t ∼ 60 kyr) – Matter-radiation equality: Matter becomes the main
component of the Universe. The energy density scales as ρ ∝ R−3.

T = 310 meV (t ∼ 300 kyr) – Recombination and γ-decoupling: Photons are cou-
pled to the thermal bath via Thomson scattering. In equilibrium, protons and elec-
trons can combine to form hydrogen atoms and release photons, and the reverse
process also occurs. As the Universe cools, it becomes energetically favourable for
hydrogen atoms to remain bound. Recombination refers to the epoch when electrons
and protons form neutral hydrogen atoms. This does not occur exactly at the hydro-
gen binding energy of 13.6 eV, due to the large excess of photons relative to baryons
in the thermal (blackbody) spectrum. Recombination only proceeds efficiently once
the number of photons energetic enough to ionize hydrogen becomes sufficiently sup-
pressed. After recombination, photons no longer scatter off free charged particles and
begin to travel freely, imprinting the anisotropies observed in the CMB.

T = 5 meV (t ∼ 250 Myr) – Reionisation: The formation of the first stars light the
Universe after a period of darkness after the emission of the CMB. The emitted
photons ionise the surrounding gas clouds.

12BSM scenarios with electroweak symmetry-non-restoration are physically viable [77]. Even if the parti-
cles do have a mass they would still be relativistic as long as the temperature of the Universe is much larger
than their mass.
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T = 300 µeV(t ∼ 9 Gyr) – Λ-matter equality: The vacuum energy becomes the main
component of the Universe, with a constant evolution of the energy density.13 If this
era persists, it will eventually imply the dilution of all matter and radiation.

T = 240 µeV(t ∼ 13.8 Gyr) – today: Today we can measure imprints of the past through
electromagnetic waves (up to the CMB), gravitational waves and primordial magnetic
fields.

Some missing milestones in this chronology are the baryogenesis, which presumably took
place before the EWPT and the dark matter freeze out. These are highly active areas of
research, but strictly not part of the well established chronology.

2.4 Open problems of the SM

The remarkable success of the SM in describing the fundamental particles and high-energy
interactions necessitates that any alternative BSM theory must also provide predictions
compatible with current experimental data. The fact is, however, that a vast number of
observations remain unaccounted in the SM, which highlights the pressing need for an
extended BSM framework. In the following, we provide a non-exhaustive list of these
problems.

− As mentioned in the introduction, the SM does not incorporate one of the known
fundamental forces: gravity. The main problem is that when gravity is described in a
QFT language as a gauge theory mediated by a massless spin-2 particle, the resulting
theory is non-renormalisable. This means that at each loop order, new counterterms are
required to absorb divergences. Consequently, the number of free parameters that must be
fixed by experiment increases indefinitely, making the theory non-predictive at high energies
at the Planck scale.

− Another notable mismatch with observations is the complete lack of a dark matter
candidate. Assuming a particle nature of dark matter14, it must be non baryonic, non-
relativistic, stable, electrically neutral and interacting via the weak force, or only via gravity.

− There are some purely theoretical shortcomings related to the SM called naturalness
problems [78]. The main idea is that the parameters of the theory should be of the
same order: this is called full naturalness [79]. As we discussed in the introduction of
the SM in Sec. 2.1, QFTs are based on the concepts of symmetry. An exact symmetry of
the Langrangian will make some of the coefficients of certain operators in the Lagrangian
vanish. If this symmetry is softly broken by some small parameter, then the quantum
corrections will be proportional to that small amount. The latter observation is a rough
statement of the so called technical naturalness derived by ’t Hooft [80]. Some observed
differences between the scales can indeed be explained. For example the proton mass scale
is much smaller than the Planck scale because of the logarithmic evolution of the gauge
coupling of the SU(3)C (the RGE running) that suppresses the QCD scale with respect to
the Planck scale. The requirement of full naturalness can seem ad hoc and could be argued

13See footnote 9.
14Other proposed solutions include primordial black holes, that do not rely on a particle nature of the

dark matter and therefore could be in principle compatible with the SM.



26 2. Particle Physics: Current Knowledge and Open Questions

to disappear with anthropic reasoning. However, historical examples render naturalness a
guiding principle for new physics. These are the currently remaining naturalness problems:
the hierarchy problem, the strong CP problem and the cosmological constant problem. We
provide more details on these problems below:

− The Hierarchy problem refers to the smallness of the Higgs mass compared to higher
energy scales in nature. Thinking of the SM as effective field theory of a more complete
description, like for example one that includes gravity, the Higgs mass will recieve
quantum corrections from loop diagrams involving all particles that couple to it, same
as the other parameters in the theory. However, unlike some other masses in the SM
(e.g. the photon or the electron), there is no symmetry that protects the Higgs mass
from large corrections, from the physics at higher scales, such as the Planck mass,
MP .

For instance, the photon mass is exactly zero at all orders due to the unbroken U(1)EM
gauge symmetry of the SM. Similarly, the smallness of the electron mass can be
understood from the approximate chiral symmetry of the Lagrangian, which is restored
when the electron mass is set to zero, rendering it technically natural in the definition
above. In contrast, there is no such symmetry in the SM that would protect the Higgs
mass from getting arbitrarily large corrections from some physics at a heavier scale,
e.g. the Planck scale atMP ∼ 1.2×1019 GeV. This sensitivity implies that, unless there
is some mechanism to cancel or suppress these large corrections, an unnatural fine-
tuning of the Higgs mass is required to keep the physical mass at the electroweak scale.
This issue becomes especially relevant if the SM is viewed as an effective field theory
(EFT), valid only below some cut-off scale Λ, potentially as high as MP . Supporting
this view, the SM is known to become inconsistent in the ultraviolet: for example,
the hypercharge gauge coupling associated with U(1)Y runs toward a Landau pole at
high energies, indicating that the theory cannot remain valid arbitrarily far into the
UV.

A concrete manifestation of the hierarchy problem arises from the fact that the ra-
diative corrections to the Higgs mass are quadratically divergent. In the Wilsonian
approach to EFTs, such divergences are interpreted not merely as a mathematical
artefact, but as a reflection of our ignorance about the UV completion of the theory.
They signal the physical sensitivity of low-energy observables, like the Higgs mass, to
whatever dynamics exists at high energy. Even in a broader fully UV-complete theory
that includes the SM in some limit, where calculations can be done using dimensional
regularisation (which formally avoids power divergences), the corrections to the Higgs
mass still scale with the mass of the heavy particles in the theory. Therefore, any pre-
dictive theory of the Higgs sector is necessarily subject to large threshold corrections
proportional to the cut-off scale or the mass scale of new physics, making the presence
of such terms unavoidable. This is what makes the smallness of the Higgs mass appear
unnatural without a protective symmetry or a dynamical mechanism that explains it.

Thus, the hierarchy problem raises the question: “What new physics enters at or
below the cut-off scale to stabilise the Higgs mass and ensure the consistency of the
theory?” The answer to this question is a bustling topic of research, just to list some
solutions, (1) symmetry between fermions and bosons in SUSY protects the Higgs
mass from being sensitive to larger mass scales and thus explains the smallness of



2.4. Open problems of the SM 27

the measured Higgs mass. This happens because superpartners cancel the quadratic
divergences in the radiative corrections to the Higgs mass. (2) The composite Higgs
models in which the Higgs is a bound state of more fundamental constituents, similar
to how pions emerge as bound states of quarks in QCD. The small mass of the neutral
pion, protected by approximate chiral symmetry, serves as an analogy: the Higgs can
be understood as a pseudo-Nambu–Goldstone boson of a spontaneously broken global
symmetry, naturally explaining its lightness compared to the compositeness scale, and
(3) Extra space dimensions, which effectively lower the cut-off scale by embedding the
Universe into a higher-dimensional space.

− The strong CP problem refers to the smallness of a term in the Lagrangian that is
allowed by all symmetry considerations, but appears to be tiny in nature [81,82]:

Lθ = θQCD
g2s

32π2
GaµνG̃

aµν , (2.40)

where θQCD is a CP -violating parameter usually called theta angle, and G̃aµν =
1
2ϵ
µνρσGaρσ is the dual of the gluon field strength tensor. EDM experiments have set

an upper bound on the magnitude of the theta angle, θQCD < 10−10 [83, 84].

A way to dynamically explain its smallness is with the so called Peccei-Quinn mecha-
nism, which introduces a symmetry in the Lagrangian whose physical consequence is
the manifestation of a light “axion” particle [85,86].

− The cosmological constant problem refers to the large discrepancy between the
observed small value of the cosmological constant and the much larger value predicted
by QFT, which scales with the fourth power of the Planck scale, M4

P [87, 88].

− The masses of the neutrinos are zero in the SM, which contradicts the observations
of neutrino oscillations. In the SM the neutrinos do not have a right-handed component
because they are massless, in BSM extensions a very massive right-handed neutrino is
postulated in order to explain the experimentally observed small neutrino masses via a
dynamical Seesaw mechanism.

−There are also some tensions between experimental measurements and theoretical
predictions of the SM; perhaps the most well known example is the muon g− 2 anomaly.
It refers to the magnetic moment of the muon, given by

µ⃗ =
e

2mµ
gS⃗, (2.41)

where g = 2 is the tree-level prediction from the Dirac equation. Higher-order quantum cor-
rections lead to deviations from this value, quantified by the anomalous magnetic moment
aµ = (g − 2)/2. Experimental measurements of aµ [89] differ from the SM prediction [90],
potentially hinting at the existence of new heavy particles contributing via loop effects.
However, recent lattice calculations show better consistency with the Fermilab measure-
ment [91] coming from an improved lattice calculation of the QCD contributions to aµ (for
a short review see Ref. [92]).

− There is a lack of a description of the observed matter-antimatter asymmetry of the
Universe, a problem known as the baryon asymmetry of the Universe (BAU). The
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exact CPT symmetry of any QFTs ensures that particles and antiparticles are created in
pairs to preserve their quantum numbers like charge, baryon number and lepton number.
If this had been the case throughout the thermal evolution of our Universe, the produced
particles and antiparticles would have annihilated, resulting in a radiation filled Universe.
Assuming that the Universe was generated ad hoc with this asymmetry does not help in
solving the problem, since any initial asymmetry would have been washed out (diluted)
by inflation. Thus we know there must have been a mechanism by which the asymmetry
between baryons (components of matter) and antibaryons was generated, a process called
baryogenesis [93,94]. The way to measure this asymmetry makes use of the so called baryon
to photon ratio, whose independent measurements from primordial element abundances
and the cosmic microwave background agree. A quantity that remains constant over the
evolution of the Universe is

ηs =
nB − nB̄

s
∼ 6 · 10−10, (2.42)

where nB is the number of baryons, nB̄ is the number of antibaryons and s is the entropy.
All of these quantities scale as 1/a3 as the Universe expands, so the ratio remains constant.

In 1967, Sakharov summarised the necessary conditions for any viable baryogenesis
mechanism [48]: 1) parity P and charge parity CP violation, 2) baryon number violation and
3) out of equilibrium dynamics, needed in order to avoid the inverse process. Even though
all of these conditions are a priori present in the SM, they are insufficient to guarantee a
successful baryogenesis.15 In the following, we address the reasons for this, considering each
individual condition separately.

Baryon number violation: Baryon number conservation is an accidental global sym-
metry of the SM, it is accidental because it is not imposed a priori, but follows from
the invariance of the Lagrangian under common phase rotations of all quark fields.
This symmetry impedes tree-level baryon number violating processes. However, in
1976, ’t Hooft showed that in the SM the triangle anomaly violates baryon number
through non-perturbative effects [95] with the corresponding baryon number current
being:

∂µjBµ = 3
g2

32π2
V µν aṼ a

µν , (2.43)

where V a
µν = ∂µV

a
ν −∂νV a

µ +gϵabcV b
µV

c
ν is the field strength of the SU(2)L gauge fields

(V =W±, Z) and Ṽ a
µν = 1

2ϵµνρσV
ρσ a is the dual tensor and g is the coupling constant

of the SU(2)L gauge group. The reason for this anomaly is that only left-handed
fermions interact with the electroweak gauge field, in fact strong interactions do pre-
serve baryon number.16 The outcome of this is that there is spontaneous production
of 9 quarks and 3 leptons per each generation.

This is related to the fact that the electroweak vacuum is not unique, but rather
consists of different topologically distinct vacua with the same energy configuration,
as pointed out in Sec. 2.2. Field configurations can interpolate between these vacua,
leading to stable or unstable extended objects. An example of the former would be
soliton solutions, which are solutions to the field equations that give rise to cosmic

15In particular the third condition is incompatible with the experimental measurement of the Higgs mass,
see the forthcoming discussion for a detailed explanation.

16A similar discussion follows also for the different lepton families.
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strings or magnetic monopoles. An example of the latter are sphalerons17, which
are unstable field configurations that exist at high energy and disappear when the
Universe cools. Standard perturbation theory can only describe point-like particles
as small excitations around the ground state. These are the elementary constituents
of nature and for these the methods developed by Feynman diagrams come at hand
to make accurate predictions. However, these methods cannot be applied to the
aforementioned non-perturbative solutions, which arise when solving the classical field
equations exactly [96], and therefore non-perturbative methods or lattice calculations
are used. Each of these degenerate minima is a valid perturbative vacuum state of
the theory, the height of the energy barrier between them is

Esph =
2mW (T )

αW
f

(
mh

mW

)
, (2.44)

where mW (T ) is the temperature-dependent mass of the W± gauge boson, αW =
g2/4π ∼= 1/30 and f(mh/mW ≪ 1) = 1.56, f(mh/mW ≫ 1) = 2.72 and f(mh/mW ) =
2.4 for mh = 125 GeV. Esph is a saddle point, meaning that the energy increases along
one field direction but decreases in the others. At T = 0, transitions between the vacua
are possible only through quantum tunnelling (these solutions are called instantons)
and are very suppressed, which implies that there is no baryon number violation
today. At finite temperature, the probability of a given configuration is determined
by the free energy, meaning that the thermal energy can hop over the barrier instead
of tunnelling through it. The transition rate between the vacua in this case is [97]

Γsph = CT 4e−Esph/T , (2.45)

where Esph is given in Eq. (2.44), and for estimation purposes we set C ∼ 1. This
formula is only valid for temperatures lower than the energy barrier T ≲ Esph. Above
that, the exponential suppression is absent, in fact for temperatures above the EWSB
mW (T ≫ 100 GeV) ∼ gT , as it only has a mass from the thermal corrections and not
from the Higgs mechanism, because mW (T = 0) ∝ v and v = 0 before SSB. For high
temperatures, the following transition rate should be used

Γsph = κα5
WT

4, (2.46)

which is based on lattice simulations and dimensional analysis. An extra factor of αW
is added to account for plasma effects and κ ∼ 18 is a constant value determined by
lattice calculations. If we compare the sphaleron rates in Eq. (2.46) and Eq. (2.45)
to the Hubble rate, we can roughly estimate at which temperature the sphaleron
processes are in thermal equilibrium, which happens to be between T ∼ 1012 GeV
and T ∼ 100 GeV.

At temperatures close to the EWSB, we can estimate that sphalerons are active if

Γsph

T 3
≲ H(T ) =

T 2

MP
→ mW (T )

T
≲

αW
2f(mh/mW )

log

(
MP

T

)
, (2.47)

17In Greek σφαλερός means unstable, ready to fall.
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where H(T ) is the Hubble rate and MP is the Planck mass. By inverting the second
inequality in Eq. (2.47), we can establish the condition for shpaleron decoupling, which
effectively means that they “switch off” and are not efficient in producing a baryon
asymmetry. We get the necessary condition that baryon number violation is “switched
off” in the broken phase after the electroweak phase transition only if

ξn :=
vn
Tn

≳ 1, (2.48)

where vn and Tn are the vacuum expectation value and the temperature at the tran-
sition. This condition alone puts a bound on the Higgs mass that would allow for
baryon number violation during an electroweak phase transition, which is not fulfilled
in the SM [94]. From a rough estimate of the vacuum expectation value at the nu-
cleation temperature that one gets from the one-loop effective thermal potential (see
App.A) this mass should be [98]

mh < 35− 40GeV. (2.49)

This condition also puts a bound on the temperature of the electroweak phase tran-
sition. If it happens below 100 GeV it cannot lead to a successful electroweak baryo-
genesis (see the discussion below for a detailed explanation), regardless of the other
conditions.

C and CP violation: A theory has CP violation (i.e. the CP symmetry is not exact)
if it has complex couplings in the Lagrangian which lead to a phase that cannot
be removed by field redefinitions. In the SM the CP violation happens in weak
interactions through the phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix,
which is a unitary matrix that describes the mixing between the different quark flavors.
Effectively, the CKM matrix can be parametrised with three mixing angles and one
phase δCKM = 1.147 ± 0.026 [99] , measured in experiments like B meson decays.
Another way to measure CP violation in nature is by measuring the electric dipole
moment (EDM) of the particles, as it measures the charge distribution within that
particle. The predicted EDM of the electron in the SM is O(10−38) while experimental
bounds are O(10−29). Another source of CP violation is the complex phase of the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, that describes the mixing of the
three generations of neutrinos analogously to the CKM matrix but in the leptonic
sector. Its effects on CP violation are very small [100]. An additional source of CP
violation would be the θ-term in QCD, which would induce an EDM in the neutron
and the proton. In particular the neutron EDM puts the most stringent bound on the
smallness of the θ-term, thus further constraining the amount of CP violation in the
SM. The bounds on neutron and proton EDMs are [99]

|dn| < 1.8× 10−26 e · cm and |dp| < 10−25 e · cm. (2.50)

Any BSM theory with additional sources of CP violation has to respect these bounds.
A way to parametrise the CP -violating phase in a basis-independent way is with the
Jarlskog invariant, defined in terms of the commutator of the up-type and down-type
mass matrices squared as

J = det[m2
u,m

2
d] ∼

1

8
sin δCKM. (2.51)
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If J = 0 there is no CP violation. In the SM the result is 10 times smaller than
the amount necessary for baryogenesis [101]. Further BSM sources of CP violation
can also be searched for in the Higgs sector, as a CP -mixed character of the Higgs
boson is compatible with experiments. So far the measurements are compatible with
the SM predictions, but the amount of CP violation in the SM is insufficient for
a successful baryogenesis. Thus, all of our current understanding of physics is, in
essence, incapable of explaining our existence.

Departure from thermal equilibrium: None of the above conditions could, by them-
selves, explain a baryon surplus in the Universe, as in thermal equilibrium any gener-
ated baryon or CP asymmetry would be immediately erased by the inverse process.
Some common scenarios that lead to out-of-equilibrium conditions include first or-
der phase transitions, decays of very heavy particles out of equilibrium, topological
defects, and others.

In this thesis, we focus in the first scenario, and in particular on the phase transition
associated to the SSB of the electroweak gauge group. This mechanism is called
electroweak baryogenesis. There are also proposed mechanism for baryogenesis during
the QCD phase transition [102,103], which we will not discuss here.

A first order phase transition between the symmetric and broken phases of the elec-
troweak vacuum can occur if the finite temperature scalar potential develops a barrier
between the false and true vacua. In that case, the transition releases a significant
amount of energy and cannot proceed uniformly throughout space. Instead, it occurs
via the spontaneous nucleation of bubbles of true vacuum. These bubbles grow and
collide, creating the necessary out-of-equilibrium conditions.
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Figure 2.3
Comparison between the phase diagram of water (left) and the SM Higgs (right),
showing the different patterns of phase transition depending on the parameters.

A familiar analogy of a first order phase transition is the boiling of water. In the
water phase-diagram the liquid-gas transition becomes second order at the critical
point at a particular pressure and temperature. Above this point the change in the
water properties is continuous and homogenous and is called a crossover. In the
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cosmological phase transition the point at which the transition becomes second order
depends on the Higgs mass and the temperature. Lattice calculations show that the
mass of the Higgs must be below 80 GeV in the SM [104,105]. This means that a first
order electroweak phase transition is not possible in the SM, as the Higgs mass is too
heavy, and therefore BSM physics is needed. Similarly to the water analogy, above
this mass, the transition is a crossover.18 We illustrate this analogy in Fig. 2.3, where
we plot the phase diagram of the SM and of water describing the different nature of
the transition (first order, second order or crossover).

To summarise, a first order phase transition is essential for generating out-of-equilibrium
dynamics. It is through the formation and evolution of true vacuum bubbles that these
conditions arise. The requirement of a strong first order transition for a successful
electroweak baryogenesis arises because of the condition of baryon number washout
inside the symmetric phase, as previously discussed.

Any explanation of the aforementioned problems will necessarily involve new physics,
which we introduce in the following section. Some proposed explanations of baryogenesis
are listed below [93,99,106,107]:

GUT baryogenesis: The the asymmetry is generated by the asymmetric decay of a very
heavy GUT particle. The main challenge of GUT theories is the prediction of a rapid
proton decay, which fortunately was not observed experimentally.

Affleck-Dine mechanism: It involves the decay of flat directions in supersymmetric mod-
els that generate more baryons than antibaryons [108].

Leptogenesis: In this case an asymmetry in lepton number generated by the out-of-
equilibrium decay of a superheavy right-handed neutrino in the Seesaw mechanism is
converted to a baryon number asymmetry by sphalerons, which preserve B-L symme-
try [107].

Electroweak baryogenesis: If the baryon asymmetry was generated during the elec-
troweak phase transition, it is called electroweak baryogenesis. The SM would in
principle belong to this class of models if it had sufficient CP violation and out of
equilibrium conditions. In order to explain the baryon asymmetry with electroweak
baryogenesis the BSM theory must contain two ingredients, additional sources of CP
violation, and a strong first order electroweak phase transition. Both can be
realised in models with extended scalars sectors as will be discussed in detail in the
next section. Other possibilities include composite Higgs models, which additionally
solve the hierarchy problem. Some proposals also include phase transitions in the
dark sector.

We describe how EWBG would take place in a nutshell [38, 94]. As soon as the
Universe cools down to the electroweak temperatures, it undergoes the SSB of the
electroweak gauge symmetry group. In BSM models, the energy barrier between the
symmetric false minimum and the broken EW minimum of the scalar potential can
be quite large. Since the potential is the free energy per unit volume of the primordial

18It is usually impossible to distinguish a crossover from a second order electroweak phase transition via
their phenomenology.
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plasma, the change in the properties of the plasma is so big that in cannot happen
everywhere simultaneously. Instead, it proceeds through spontaneous nucleation of
bubbles that have the broken phase inside while the exterior plasma is still in the
unbroken phase, see Fig. 2.4 for a graphic illustration of this process.

Figure 2.4
Evolution of the vacuum expectation value with temperature in a first order and
a second order phase transition (left). Bubble nucleation of the EW vacuum in
a Universe with a zero vev (right).

As these bubbles expand, the particles in the plasma scatter off the walls. Provided
there are additional sources of CP violation, there would be a different transmission
and reflection coefficient for particles and antiparticles. The net overdensity of left-
handed particles would build up in front of the wall, which will then be transformed
into a baryon asymmetry by the sphalerons. Since the bubbles are expanding, they
will absorb the excess baryons and because the sphalerons in the broken phase are
suppressed, they will be frozen until the present day. An attractive feature of the
electroweak baryogenesis scenario is its falsifiability. On one hand, the additional
scalar particles required to generate a strong first order electroweak phase transition
can be tested at particle accelerators. On the other hand, the expansion of the bub-
bles and the resulting bulk motion of the thermal plasma may produce a stochastic
gravitational wave background, provided the transition is sufficiently violent. Re-
markably, the characteristic frequency of these GWs lies within the sensitivity range
of the space-based interferometer LISA [109,110], offering a complementary probe of
the EWBG mechanism [97]. In addition, the movement of the plasma can source
a primordial magnetic field background, potentially contributing to the origin of a
primordial magnetic field background.

2.5 Extended scalar sectors

The existence of at least one Higgs boson is necessary for two reasons: the first one is
to give masses to the gauge bosons and fermions, for which the mass terms violate the
SU(2)L × U(1)Y symmetry with weak hypercharge Y = 1. The second reason is the
scattering amplitude of longitudinal gauge bosons (VLVL → VLVL, where V =W±, Z), that
requires the Higgs-boson exchange contribution to be unitary and not diverge proportionally
to the centre of mass energy squared. One Higgs boson completes the minimum electroweak
theory.
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The existence of several scalars is an appealing possibility for many reasons [111], which
we briefly outline below in the context of specific models. Perhaps the most widely studied
model that has an extended scalar sector is the Minimal Supersymmetric SM (MSSM). It
addresses the hierarchy problem by introducing a fermionic partner for each bosonic field
and a bosonic partner for each fermion, thereby cancelling the divergent quantum correc-
tions to the Higgs mass. Additionally, it predicts the unification of the gauge couplings and
provides a dark matter candidate. Although exact Supersymmetry conflicts with current
experimental evidence, MSSM with spontaneously broken supersymmetry and its exten-
sions can solve these issues while remaining consistent with experimental constraints. The
possibility of realising a SFOEWPT in the MSSM is affected by severe constraints from the
non-observation of light stops and the necessity of accommodating a Higgs with SM-like
properties at a mass of 125 GeV [112].

On the contrary, many studies are focused on models that feature extended scalar sectors
without additional supersymmetric particles. A model that shares the scalar sector witht
the MSSM is the Two Higgs Doublet Model, which has been widely studied and can also
accommodate a first order electroweak phase transition. CP violating versions of the 2HDM
can also accommodate the necessary amount of CP violation for baryogenesis, but have been
recently subject to strong constraints from EDM bounds and collider searches [113]. Inert
versions of the 2HDM can accommodate a dark matter candidate [34–36]. Perhaps the
simplest scalar extension of the SM is a singlet extension [114], that is also appealing due to
possibly being a dark matter candidate [31–33] or accommodating a SFOEWPT [115–117].
Other possibilities include several singlets [118], doublets [119] or triplets [120].

The phenomenological consequences of extended scalar sectors are in particular the
physical particles that can directly be found at collider experiments. These can be neutral
or charged and are commonly referred to as Higgs bosons. Their existence could also lead to
measurable imprints in the electroweak precision measurements, therefore these need to be
investigated for any BSM theory. Furthermore the presence of such fields could potentially
lead to deviations in the couplings of the observed Higgs boson h at 125 GeV. Of particular
interest are the self-interactions, since they are not symmetry protected and can receive
large corrections from the presence of the additional heavy states. Finally, these states can
also leave cosmological imprints, for instance if they lead to a SFOEWPT, the produced
stochastic gravitational wave background could be observable by space based gravitational
wave telescopes.

As mentioned in Sec. 2.4, the electroweak baryogenesis cannot take place in the SM.
The presence of additional scalar states can provide the missing sources of CP violation
and the conditions for a strong first order electroweak phase transition.

2.6 The Trilinear Higgs Self-Coupling

The SM predicts triple and quartic Higgs self-interactions, both related and uniquely defined
once the vev and the Higgs mass are measured. After SSB, we can rewrite the scalar
potential in Eq. (2.29) expanding the Higgs doublet around the minimum in a unitary
gauge:

Φ =

(
0
v+h√

2

)
, (2.52)

as



2.6. The Trilinear Higgs Self-Coupling 35

V (h) ∝ v(λv2 − µ2)h+
1

2
(3λv2 − µ2)h2 + λvh3 +

λ

4
h4 (2.53)

≡ thh+
m2
h

2
h2 +

m2
h − th/v

2v
h3 +

m2
h − th/v

8v2
h4, (2.54)

where we dropped the constant terms. After the equality we defined the mass of the Higgs
boson as the coefficient in front of the quadratic term m2

h := 3λv2 − µ2, and the tadpole as
the coefficient in front of the first term th := v(λv2 − µ2). We thus replace the Lagrangian
parameters, λ and µ, for the physical mass, mh, tadpole th and vev, v, of the Higgs boson:

µ2 =
m2
h − 3th/v

2
, λ =

m2
h − th/v

2v2
. (2.55)

Usually the tadpole is removed by requiring th = 0, which is equivalent to imposing the
minimisation condition in Eq. (2.33). This can be done at tree-level, but at higher order
the tadpole equations need to be included via the definition of a tadpole counterterm. An
on-shell renormalisation condition usually refers to keeping the th = 0 condition true at
higher loop orders, i.e. the radiatively corrected vacuum remains the true vacuum of the
theory. We will set th = 0 for the moment and mention tadpoles again in the renormalisation
discussion in Sec. 3.6.1.
The SM trilinear coupling is thus given by λ3 ≡ m2

h/(2v) and the quartic λ4 ≡ m2
h/(8v

2),
where λ3 = 4vλ4. Comparing the trilinear Higgs self-interaction with the general QFT
interaction term

Lint =
−g
n!
hn, (2.56)

where the denominator is a symmetry factor and the Feynman rule for the vertex is given
by −ig, we can get the Feynman rule for the trilinear Higgs self-interaction as g = n!λ3 =
6vλ = 3m2

h/v ∼ 190 GeV. In order to use a dimensionless parameter, we will absorb the
vacuum expectation value in the definition of the Feynman rule −ig := −ivn!λSM, where
λSM = m2

h/(2v
2) ≃ 0.13.

In BSM theories, the presence of additional degrees of freedom makes scalar self-interac-
tions depend on additional Lagrangian parameters and thus a window to new physics. In
general, the trilinear and quartic coupling involving h will deviate from the SM prediction
depending on the parameters of the theory. Furthermore, additional BSM couplings between
h and the rest of the scalars are possible and interesting parameters to test BSM sectors.
The generic trilinear Higgs coupling λhhihj , involving at least one SM-like Higgs boson h,
is defined such that the Feynman rule is given by

h

hi

hj
<latexit sha1_base64="azgofPPx/bzf8av01GVpiMALVUo="></latexit>

= −ivn!λhhihj , (2.57)
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where n is the number of identical particles in the vertex (relevant for our analysis here are
λhhh and λhhH). We adopt this convention in Eq. (2.57) so that the light Higgs trilinear
coupling λhhh in BSM theories has the same normalisation as λSM. For convenience we
define the parameter κλ as

κλ ≡ λhhh/λ
(0)
SM. (2.58)

Throughout this thesis, h will represent the Higgs boson found at 125 GeV and its
properties will be SM-like.

2.6.1 Current experimental status

The current experimental sensitivity to the 125 GeV Higgs self-interaction places constraints
on the trilinear Higgs coupling (THC), for convenience we will use the coupling relative to
the SM, κλ. At 95% confidence level (C.L.), the allowed range is −1.2 < κλ < 7.2 (AT-
LAS [121]) and −1.4 < κλ < 7.8 (CMS [122]). These limits are primarily derived from
searches for Higgs boson pair production, assuming a SM–like top Yukawa coupling.

A detailed discussion of how Higgs pair production is sensitive to the trilinear coupling
can be found in Chapter 3. For now, it is important to note that the production of Higgs
boson pairs has not been observed directly so far. As a result, current measurements only
provide upper bounds on the production cross section.

These bounds are illustrated in Fig. 2.5, where the intersection of the solid black line
(experimental upper bound) with the red line (theoretical prediction of the cross section for
the different values of κλ) determines the experimentally allowed rage for κλ.

Figure 2.5
Experimental bounds on the values of κλ from ATLAS [121] (left) and CMS [122]
(right) from non-resonant di-Higgs combinations.

While the measurements remain compatible with the SM within current experimen-
tal and theoretical uncertainties, they also leave ample room for interpretations involving
physics beyond the SM [123]. A further step to establish this would be a precise measure-
ment of the THC, which directly provides information about the scalar potential. This
observation aligns with the objective of the Run 3 and the High Luminosity phase of the
LHC.
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2.6.2 One-loop corrections

Direct observation of heavy physics might be difficult because of the energy needed to
produce it. However, its effects in the experimental results can be large in the radiative
corrections to different physical processes. Therefore, it is important to measure such pro-
cesses precisely and compare to theoretical predictions that go beyond the leading order
(LO). One can think of the Higgs boson mass, or the top quark, as SM examples of particles
whose mass ranges could be induced indirectly though their effects on physics at a lower
mass scale. Thus radiative corrections provide a powerful tool to understand the structure
of the underlying theory. Such is the case for THCs in BSM theories.

In scalar extensions of the SM with somewhat large couplings due to splittings in the
mass scales of the BSM particles, the tree-level scalar potential is not sufficient to properly
capture the interactions among the particles. This effect is often called mass-splitting effect,
it was pointed out in [124,125] and occurs quite generally in BSM theories [126–133]. These
corrections are driven by couplings of the form

ghhϕϕ ∝
(m2

ϕ −M2)

v2
, (2.59)

where h is the SM-like Higgs and ϕ is a BSM scalar field with mass mϕ. M is an intrinsic
BSM mass scale, and v is the vev. An example of this behaviour will be discussed later in
Chapter 3 for the particular case of a doublet extension of the SM. For the moment we just
want to note that the appearance of large loop corrections in this model is not a sign of the
breakdown of perturbation theory, but an inclusion of a new class of contributions from the
heavy physics that are only captured at one-loop. This is confirmed by calculations of the
THCs at two loops [134–136], that follow the expected perturbative behaviour, as no new
interactions enter in the process.

This shows the need to include at least one-loop corrections to the trilinear couplings in
our analysis, either diagrammatically or with an effective potential approach:

Effective potential approach: the THCs are extracted from the one-loop-corrected ef-
fective potential,

Veff = Vtree + VCW + VCT . (2.60)

In this equation, Vtree is the tree-level potential, VCW is the one-loop Coleman–
Weinberg potential [137, 138] at zero temperature, and VCT is the counterterm po-
tential defined within a given renormalisation scheme. The loop-corrected THCs can
be computed as the third derivative of the effective potential with respect to the Higgs
fields evaluated at the minimum

λ
(1)
hhh =

1

3!v

∂3Veff
∂h3

∣∣∣∣
h,H=0

. (2.61)

This coupling is obtained at zero external leg momenta, and only includes so-called
genuine one-loop corrections, that refer to the Three-Point C (TPC) and Three-Point
B (TPB) functions.19

19These functions are known as Passarino–Veltman loop integrals [139], used to simplify one-loop Feyn-
man diagram calculations. The A-functions correspond to diagrams with one external leg (e.g. tadpole
corrections), B-functions involve two external legs (e.g. self-energy corrections), C-functions correspond to
three external legs (e.g. vertex corrections), and D-functions are used for diagrams with four external legs
(e.g. box diagrams).
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A tool that performs this calculation within specific BSM models is BSMPT [140–142].
In this tool, the counterterm potential is chosen such that the masses and mixing
angles are kept at their tree-level values by means of the conditions:

0 = ∂ϕi (VCW + VCT)|v=vtree ,
0 = ∂ϕi∂ϕj (VCW + VCT)

∣∣
v=vtree

.
(2.62)

Diagrammatic approach: alternatively, one could use a fully diagrammatic approach
by calculating the one-loop corrections to the three-point functions. This gives a
more precise understanding on the type of corrections included, and allows to include
in particular wave function renormalisation (WFR) corrections, as well as tadpole
contributions. It also allows to keep track of full momentum dependence and to define
a convenient renormalisation scheme to obtain a consistent result. This calculation
can be conveniently performed in general renormalisable extended scalar models with
the public tool anyH3 [131], which provides loop corrections to λhhh. In general BSM
models multiple scalar self-interactions are possible. Their one-loop corrections can
also be computed in a general way in terms of the contributions to the renormalised
scalar three-point function, Γ̂ijk, as

λijk = −Γ̂ijk(p
2
i , p

2
j , p

2
k) = λ

(0)
ijk+δ

(1)
genuineλijk+δ

(1)
tadpolesλijk+δ

(1)
WFRλijk+δ

(1)
CTλijk, (2.63)

where i, j, k stands for general scalar particles hi, hj and hk. The superscripts (0)

are used for the tree-level values and (1) for the one-loop ones. Therefore λ
(0)
ijk is the

tree-level result as in Eq. (2.57) and δ
(1)
genuineλijk, δ

(1)
tadpolesλijk, δ

(1)
WFRλijk, and δ

(1)
CTλijk

are the several one-loop contributions. In particular, δ
(1)
genuineλijk is the correction from

the genuine three-point vertex functions (TPC on the left and TPB on the right):

hi

hj

hk

+ hi

hj

hk

}
δ
(1)
genuineλijk,

where the solid line is a place holder for the different types of particles: scalars,
fermions, gauge bosons, would-be Goldstone bosons and Faddeev-Popov ghosts. These
type of diagrams are the ones included in the Coleman-Weinberg potential VCW, where
they are computed at zero external momentum.

The wave function renormalisation corrections enter in δ
(1)
WFRλijk

hi

hj

hk

+ hi

hj

hk

}
δ
(1)
WFRλijk,
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These contributions can be computed in terms of the self energies,
∑

ij , of the particles
i, j, k as follows

δ(1)λWFR
ijk (p2i , p

2
j , p

2
k) =

1

2

(
Σ′
i(p

2
i )λ

(0)
ijk +Σ′

j(p
2
j )λ

(0)
ijk +Σ′

k(p
2
k)λ

(0)
ijk

)
+
∑
l ̸=i

Σil(p
2
i )

p2i −m2
l

λ
(0)
ljk +

∑
l ̸=j

Σjl(p
2
j )

p2j −m2
l

λ
(0)
ilk +

∑
l ̸=k

Σkl(p
2
k)

p2k −m2
l

λ
(0)
ijl

≡ 1

2

(
δ(1)Zi(p

2
i )λ

(0)
ijk + δ(1)Zj(p

2
j )λ

(0)
ijk + δ(1)Zk(p

2
k)λ

(0)
ijk

)
+
∑
l ̸=i

δ(1)Zilλ
(0)
ljk +

∑
l ̸=j

δ(1)Zjlλ
(0)
ilk +

∑
l ̸=k

δ(1)Zklλ
(0)
ijl ,

(2.64)

where the prime means the derivative of the self energy with the respect to the momen-
tum squared. Thus in the first line we compute the contributions of all the diagonal
self-energies in the three external legs evaluated at a given momenta and in the sec-
ond line we sum over all the possibilities of the off-diagonal self energies in the three
external legs. After the equivalence sign we define the field renormalisation constants
in terms of the corresponding diagonal or off-diagonal self-energies. The WFR cor-
rections to a particular coupling such as the one involving two light Higgs bosons (h)
and one heavier heavy CP -even Higgs boson (H), are given by:

δ(1)λWFR
hhH (p21, p

2
2, p

2
3) =

1

2
δ(1)Zh(p

2
1)λ

(0)
hhH +

1

2
δ(1)Zh(p

2
2)λ

(0)
hhH +

1

2
δ(1)ZH(p

2
3)λ

(0)
hhH

+ δ(1)ZhH(p
2
1)λ

(0)
hHH + δ(1)ZhH(p

2
2)λ

(0)
hHH + δ(1)ZHh(p

2
3)λ

(0)
hhh .

(2.65)

The contributions from the tadpole diagrams are captured in δ
(1)
tadpolesλijk,

hi

hj

hk

+ hi

hj

hk

}
δ
(1)
tadpolesλijk,

where the first term is a contribution to the vertex and a second term is a contribution
to the WFR correction, which can be included in the δ

(1)
WFRλijk term (but not double

counted).

Finally, the counterterm contributions to renormalise the result will depend on the

chosen renormalisation scheme and is encoded in the term δ
(1)
CTλijk.
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hi

hj

hk

⊗
}

δ
(1)
CTλijk,

More about this approach and the automation followed in this tool will be discussed
in Sec. 3.6.

2.6.3 Relation to the Early Universe

The importance of precise measurements of the trilinear Higgs self-coupling lies not only
in unveiling the shape of the scalar potential today, which has implications for vacuum
stability, but also in paving the way for a deeper understanding of the electroweak phase
transition, i.e. the evolution of the scalar potential with temperature.

It is clear that a strong first order electroweak phase transition is required for a successful
electroweak baryogenesis. It is also clear that this can only occur if the effective potential
develops a significant barrier so that the change in the vacuum expectation value is abrupt.
This barrier can be generated already in the tree-level scalar potential, e.g in the case of a
singlet extension without a Z2 symmetry. Alternatively, this barrier can be generated by
radiative or thermal corrections. In the former case, these corrections will also alter the
trilinear self-couplings at T = 0.

The occurrence of a SFOEWPT is therefore often correlated with a deviation of the
trilinear Higgs self-interaction, as has been shown in a vast class of toy models applicable to
concrete UV complete models in Ref. [143]. There, O(1) deviations were realised whenever
BSM physics was introduced to accommodate a SFOEWPT. Three possible mechanisms are
explored: (1) large quantum corrections to the Higgs potential through large couplings to
the Higgs, (2) presence of non-renormalisable terms in the potential and (3) tree-level scalar
mixing. Another quite general analysis [144] showed that different types of modifications of
the scalar potential (including exponential and logarithmic terms beyond polynomial ones20)
that lead to SFOEWPT also necessarily imply 50% modification of the THC w.r.t the SM,
which is precisely within the sensitivity of HL-LHC [145]. We will now briefly mention the
three possible types of models introduced above.

Models with extended scalar sectors with a significant splitting between the mass scales
can feature a very enhanced value of the Higgs self-coupling due to loop corrections, therefore
they belong to the first class of models analysed in Ref. [143]. As an example, in a doublet
extension of the SM, the condition of the strong first order phase transition necessarily
leads to the deviation of the trilinear Higgs self-coupling of at least 10% from the SM
prediction [146]. Quite generally, models with extended scalar sectors with large mass
splitting feature large self-couplings [131] and we expect phase transitions to show up in
these regions.

The second class of models contains the so called Effective field theories and composite
Higgs models. For instance the Effective Field Theory of the SM (SMEFT) [147–149] can

20Logarithmic dependence of the potential on the fields is inspired by Coleman Weinberg potentials. On
the other hand, the presence of exponentials of the inverse of the field are a signature of non-perturbative
regimes.
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accommodate first order electroweak phase transitions if non-renormalisable operators of
dimension six are taken into account. These contribute directly to deviations in the trilinear
couplings up to O(1) in κλ [150]. For a catalogue of different ways to generate an EWPT
in SMEFT see [151]. In this case, however, the requirement of large Wilson coefficients
signals the inadequacy of describing the dynamics of the phase transitions at electroweak
scales with the Wilsonian EFT approach. A way to overcome this is by considering the
Higgs Effective Field Theory (HEFT) [152–154]. In HEFT the THC is in fact relatively
unconstrained and can become large [155].

While in the first two classes of models the relationship between the potential barrier
and the trilinear Higgs coupling κλ is direct, this connection becomes less straightforward
in the third. In models with tree-level scalar mixing (such as singlet-extended models),
the dependence of κλ on model parameters is more complex. If all other parameters are
fixed, the phase transition typically strengthens with increased mixing [156]. However,
even in the absence of mixing, a strong first-order EWPT can still occur if the singlet field
acquires a temporary vacuum expectation value at finite temperature that vanishes at zero
temperature [157]. This illustrates that the thermal history of the early universe can differ
substantially from zero-temperature collider physics, and that signatures of the electroweak
phase transition may be accessible primarily through cosmological probes rather than at
particle colliders.

To conclude this section we want to stress that a measurement of a deviation of the
Higgs self-couplings at the LHC is quite generally an indirect probe of a first order phase
transition, but cannot conclusively prove it. Therefore multimessenger probes need to be
considered simultaneously. Conversely, a measurement of a THC consistent with the SM
cannot completely exclude the SFOEWPT, but will substantially narrow the possible models
that feature it, including in particular two Higgs doublets models.

2.7 Two Higgs Doublet Model

As introduced in Sec. 2.5, the 2HDM is one of the simplest and most common scalar
extensions of the SM.21 It adds to the SM particle content one complex doublet (Φ1 and
Φ2) under the SU(2)L symmetry. This results in four additional degrees of freedom, two
for each real and two for each charged components of the doublet, that mix together to give
rise to the physical fields. The total number of physical states in the 2HDM is five: two
CP -even states h and H, one CP -odd A and two charged scalars H±. In the following our
convention will be mh < mH and h has the properties of the measured Higgs particle at
125 GeV.

The most general renormalisable22 theory with two complex doublets contains 14 free
parameters. However, an unrestricted 2HDM would lead to flavour changing neutral cur-
rents (FCNC), which are severely disfavoured by experiments. If both doublets couple to
the same type of fermions, then after electroweak symmetry breaking, the mass matrices
and Yukawa couplings are not simultaneously diagonalisable. This misalignment in flavour
space leads to FCNCs because of the appearance of couplings between neutral Higgs bosons
with different flavour fermions. To avoid this problem, we can restrict that each fermionic

21This section is based on my personal notes from the BSM Phenomenology couse by Prof. Dr. Georg
Weiglein and Physics beyond the Standard Model course by Prof. Dr. M. Mühlleitner

22In the classical sense, meaning that all the operators have a dimension ≤ 4.

https://www.itp.kit.edu/~rauch/BSMHiggs/
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Figure 2.6
Artistic view of the scalar sector of the 2HDM: two CP -even states h and H,
one CP -odd A and two charged scalars H±.

uR dR ℓR QL, LL

Type I - - - +
Type II - + + +

Type III (lepton specific) - - + +
Type IV (flipped) - + - +

Table 2.1: Z2 charge assignments in the 2HDM.

family can only couple to one of the doublets. At the tree-level, such a behaviour can be
achieved by imposing a Z2 symmetry [158, 159].23 Under this symmetry, the two complex
Higgs doublet fields transform as Φ1 → Φ1 and Φ2 → −Φ2. FCNC can still be avoided if
the symmetry is softly broken by a mass term m2

12. There is a total of four unique possibil-
ities of Z2 charge assignments depending on which doublet couples to each fermion within
a generation. The different variants depending on the Yukawa sector of 2HDM are shown
in Tab. 2.1, where we specify the charge under Z2 of each fermionic multiplets. We notice
that by convention Φ2 couples to the up-type quark. The number of free parameters in the
theory reduces to 10 after applying the Z2 symmetry, as it forbids the terms where there is
mixing between the doublets.

For simplicity, we will assume a CP -conserving 2HDM [30,42–44]. Neglecting the terms
that explicitly break CP symmetry will further reduce the number of free parameters in the
theory to 8, these are the real coefficients m11,m22,m12, λ1, ..., 5 that appear in the general
form of the Z2 symmetric 2HDM tree-level potential ,

V = m2
11(Φ

†
1Φ1) +m2

22(Φ
†
2Φ2)−m2

12(Φ
†
1Φ2 +Φ†

2Φ1) +
λ1
2
(Φ†

1Φ1)
2 +

λ2
2
(Φ†

2Φ2)
2

+λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1) +

λ5
2
[(Φ†

1Φ2)
2 + (Φ†

2Φ1)
2] . (2.66)

23The Paschos–Glashow–Weinberg theorem states that tree-level FCNCs are avoided if all fermions with
the same charge and helicity transform under the same SU(2)L representation, have the same isospin, and
receive mass from a single source in some basis. For a SM-like Yukawa sector, this means all right-handed
quarks of a given charge must couple to one Higgs doublet. This leads to two options in the 2HDM: all
quarks couple to the same doublet (Type I), or up-type and down-type right-handed quarks couple to different
doublets (Type II). Variants like Type-III or IV differ in how leptons couple, which is not constrained by
the theorem.
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The fields Φ1 and Φ2 can be conveniently parametrised as

Φ1 =

(
ϕ+1

1√
2
(v1 + ρ1 + iη1)

)
, Φ2 =

(
ϕ+2

1√
2
(v2 + ρ2 + iη2)

)
, (2.67)

in terms of their respective vacuum expectation values, v1 and v2 (with v21 +v
2
2 ≡ v2 ∼ 2462

GeV), and the interaction fields ϕ±1,2, ρ1,2 and η1,2. After rotating the fields from the

interaction to the mass basis the degrees of freedom ϕ±1,2, ρ1,2 and η1,2 mix to give rise

to five physical scalar fields (h,H,A,H±) and three would-be-Goldstone bosons (G0, G±).
The mixing matrices diagonalising the CP -even and CP -odd/charged Higgs mass matrices
can be expressed in terms of the mixing angles α and β, respectively, with tβ ≡ v2/v1.

24

Additionally, two minimisation conditions can be applied to introduce the tadpoles

∂V

∂ρ1

∣∣∣∣∣Φ1=⟨Φ1⟩
Φ2=⟨Φ2⟩

!
= T1,

∂V

∂ρ2

∣∣∣∣∣Φ1=⟨Φ1⟩
Φ2=⟨Φ2⟩

!
= T2, where ⟨Φ1⟩ =

(
0
v1√
2

)
, ⟨Φ2⟩ =

(
0
v2√
2

)
, (2.68)

and usually the tadpoles T1 = T2 = 0 at tree-level, but they will play a role in the renor-
malisation of the one-loop result (See Sec. 3.6).

In the following we will restrict ourselves to the physical basis of the 2HDM, where the
free parameters are the masses, mixing angles and vacuum expectation values

cβ−α, tβ, v, mh, mH , mA, mH± , m2
12. (2.69)

mh,mH ,mA,mH± being the masses of the physical scalars h,H,A,H± respectively. We
sometimes also use M2 ≡ m2

12/(sβcβ) instead of m2
12 when convenient.

The decoupling limit of the 2HDM: The mass terms for the heavier Higgses can be
expressed as

m2
ϕ =M2 + λϕv

2 (+O(v4/M2)), (2.70)

where ϕ = H,A,H± and λϕ is a linear combination of λ1, ..., 5. If the first term in
Eq. (2.70) is much larger than the second term, i.e. M2 ≫ λϕv

2, the effective theory
below the soft symmetry breaking scale M is described by one Higgs doublet. Effec-
tively the heavy states “decouple” as the effects of the heavy states in the loops vanish
and h properties become SM-like. This is described by the decoupling theorem [160].
If the value of the soft symmetry breaking parameter M is close to the electroweak
scale M2 ≲ λϕv

2, the mass of the heavy states can be enhanced by the occurrence of
large quartic couplings.25 The inapplicability of the decoupling theorem leads to large
contributions of the heavy scalars in the radiative corrections of the process, leading
to the so called non-decoupling effect. In this scenario, it is important to make sure
that perturbative unitarity is fulfilled, because λi cannot be arbitrarily large in order
to fulfill theoretical constraints, which will be discussed in greater detail in Sec. 2.7.2.

The alignment limit of the 2HDM: The alignment limit [161] corresponds to cβ−α →
0, where the light Higgs boson h has couplings to fermions and gauge bosons at lowest
order that exactly correspond to the ones in the SM.

24In the following, we use the short-hand notation sx ≡ sinx, cx ≡ cosx, tx ≡ tanx.
25We will call the quartic couplings the parameters λi entering in the potential in analogy to the SM λ

that determines the SM quartic coupling up to a prefactor.
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type I type II type III type IV

ξu cotβ cotβ cotβ cotβ
ξd cotβ − tanβ cotβ − tanβ
ξl cotβ − tanβ − tanβ cotβ

Table 2.2: Factors appearing in the Yukawa couplings in the four 2HDM Types.

2.7.1 Couplings

The richer scalar content of the 2HDM implies that the mixing between the additional states
will alter the couplings of the scalars to the other fermionic and bosonic fields w.r.t. the
SM.

Couplings to fermions: The couplings of the neutral Higgs bosons to fermions are

LY = −
∑

f=u,d,l

mf

v

[
ξfh f̄fh+ ξfH f̄fH + ξfAf̄γ5fA

]
−
√
2

v

[
ū(ξdVCKMmdPR)dH

+ + ξlν̄mlPRlH
+ + h.c.

]
, (2.71)

where mf are the fermion masses, VCKM is the CKM matrix and PR,L = (1 ± γ5)/2

are the right and left chiral projectors, respectively. The values of ξh,H,Af are called
Yukawa coupling modifiers and they are given by,

ξhf = sβ−α + ξfcβ−α, ξHf = cβ−α − ξfsβ−α, ξAu = −iξu and ξAd,l = iξd,l, (2.72)

where the factors ξf depend on the 2HDM Type, their explicit values are given in
Tab. 2.2 [162].

Couplings to gauge bosons: The couplings of the neutral scalars with the massive gauge
bosons V =W±, Z are given by the terms

L ⊃
∑

hi=h,H

[
gmW ξ

W
hi
WµW

µhi +
1

2
gmZξ

Z
hi
ZµZ

µhi

]
. (2.73)

where mW and mZ are the masses of the gauge bosons W± and Z, g is the cou-
pling constant corresponding to SU(2)L and the gauge coupling modifiers ξV=W,Z are
defined as

ξhV = sβ−α, and ξHV = cβ−α. (2.74)
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Note that ξAV = 0, and the sum rule
∑

i(ξ
hi
V )2 = 1 automatically holds. The latter

condition ensures that the scattering amplitude of longitudinal gauge bosons in lon-
gitudinal gauge bosons is unitarised. Therefore sum rules are a general theoretical
constraint in models with extended scalar sectors.

Scalar self-couplings: The explicit expressions of the possible tree-level trilinear Higgs
couplings in the 2HDM are given by

λhhh =
1

2v2

{
m2
hs

3
β−α +

(
3m2

h − 2M2
)
c2β−αsβ−α + 2 cot 2β

(
m2
h −M2

)
c3β−α

}
,

(2.75)

λhhH = −cβ−α
2v2

{(
2m2

h +m2
H − 4M2

)
s2β−α + 2 cot 2β

(
2m2

h +m2
H − 3M2

)
sβ−αcβ−α

−
(
2m2

h +m2
H − 2M2

)
c2β−α

}
, (2.76)

λhHH =
sβ−α
2v2

(
s2β−α

(
m2
h + 2m2

H − 2M2
)
+ 2sβ−αcβ−α cot 2β

(
m2
h + 2m2

H − 3M2
))
,

(2.77)

λHHH =
1

2v2
(
c3β−αm

2
H + s2β−αcβ−α

(
3m2

H − 2M2
)
− 2s3β−α cot 2β

(
m2
H −M2

))
,

(2.78)

λhAA =
1

2v2
(
sβ−α

(
2m2

A +m2
h − 2M2

)
+ 2cβ−α cot 2β

(
m2
h −M2

))
, (2.79)

λHAA =
1

2v2
(
cβ−α

(
2m2

A +m2
H − 2M2

)
− 2sβ−α cot 2β

(
m2
H −M2

))
, (2.80)

λhH+H− =
1

v2
(
sβ−α

(
m2
h + 2m2

H± − 2M2
)
+ 2cβ−α cot 2β

(
m2
h −M2

))
, (2.81)

λHH+H− =
1

v2
(
cβ−α

(
m2
H + 2m2

H± − 2M2
)
− 2sβ−α cot 2β

(
m2
H −M2

))
. (2.82)

These represent all the possible couplings that are both electrically neutral and CP -
even. If the 2HDM potential included CP -violating terms, couplings such as λAhh or
λAHH would be allowed. However, they are forbidden in the CP -conserving scenario
considered here. Note that the tree-level dependence of the trilinear couplings on
cβ−α ensures that λhhh approaches the SM value in the alignment limit, and that the
BSM trilinear coupling λhhH vanishes, while the other BSM couplings remain non-zero
and will have an impact in loop calculations. These couplings will receive significant
corrections at one-loop as discussed in Sec. 2.6.2 and as will be analysed in detail in
the context of the 2HDM in Sec. 3.2.

In the 2HDM, it has been shown that the loop contributions to the THCs involving
the heavy BSM Higgs bosons can give rise to corrections of the order of 100% and
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larger [124,125] w.r.t. their tree-level values. More recently, also two-loop corrections
have been computed [134] enhancing in some parts of the parameter space the value
of κλ to the sensitivity of current and future runs of the LHC [126]. The occurrence of
large loop corrections should, however, not been regarded as a sign of the breakdown
of perturbation theory, as large corrections at one-loop order are present mainly due
to new contributions involving couplings of the Higgs boson h to heavier BSM Higgs
bosons that do not appear at tree-level [125], while the size of the two-loop corrections
relative to the one-loop result follows the expected perturbative behaviour [126, 134,
135] (see Sec. 2.6.2). In view of these findings the impact of these large higher-order
corrections on the Higgs pair production process will be investigated in Chapter 3.

2.7.2 Constraints

There is no strong reason for the scalar sector in nature to be minimal. On the contrary,
an extended scalar sector is very well motivated by the shortcomings of the SM. However,
there are some requirements that need to be satisfied so that the extended sector theory is
theoretically consistent and experimentally allowed. In this subsection we briefly summarise
the various theoretical and experimental constraints that need to be taken into account when
working in extended scalar sectors and in particular how they are applied in the 2HDM in
this analysis.

2.7.2.1 Theoretical constraints

Custodial symmetry: The custodial symmetry is an approximate symmetry of the SM
that protects the relationship between the W± and the Z masses. It prevents large
quantum corrections to the ratio of these masses, preserving the tree-level mass ratio

ρ =
mW

mZ cos θW
≈ 1, (2.83)

which is in agreement with the measurement ρ = 1.01016 ± 0.00009 [99]. In a more
general theory, with n scalar multiples ϕi with weak isospin Ii, weak hypercharge Yi
and vev of the neutral components vi, the tree-level ρ parameter is

ρ =

∑n
i=1[Ii(Ii + 1)− 1

4Y
2
i ]vi∑n

i=1
1
2Y

2
i vi

. (2.84)

Since the SU(2)L doublets with Y = 1 present in the 2HDM satisfy the relation

I(I + 1) =
3

4
Y 2, (2.85)

ρ = 1 holds automatically at tree-level.

Perturbative unitarity: It is required that the S-matrix defined in Eq. (2.22) is unitary,
as it represents the probability amplitudes for transitions between asymptotic quan-
tum states. We will translate this condition on the parameters of the Lagrangian,
and in particular on the quartic couplings in order to set a theoretical bound on their
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values, this will give us an upper bound above which the couplings become too large
for perturbative unitarity to be a trustworthy procedure.

Using the relation between the S-matrix and the scattering amplitude M given in
Eq. (2.23), and imposing the unitarity condition on the S-matrix, one can arrive at
the optical theorem [163], which relates the scattering cross section with the imaginary
part of the scattering amplitude for a 0 scattering angle

σ =
1

s
ImM(θ = 0), (2.86)

where θ is the scattering angle. Additionally, we can expand a general wave function
in terms of partial waves by means of Legendre polynomials Pℓ, where ℓ is the order of
the polynomial that represents the orbital angular momentum quantum number. We
take the limit of large distance from the scattering center, which is an accurate limit
for our purposes, and we perturb the wave by some scattering Sℓ(k), which leads to
the following expression [164]

ψ(r⃗) ≃ eikr cos θ +

[ ∞∑
ℓ=0

(2ℓ+ 1)
Sℓ(k)− 1

2ik
Pℓ(cos θ)

]
eikr

r
≡ eikr cos θ + f(θ)

eikr

r
, (2.87)

where r⃗ is the position vector and k is the wavenumber or the momentum p in the
center of mass (c.m.) frame. The first term is the original incident plane wave and
the second term is the outgoing spherical wave, where we define f(θ) as the coefficient
that determines the scattering strength.

By definition, the partial wave amplitude is

aℓ(k) ≡
Sℓ(k)− 1

2ik
. (2.88)

Therefore the condition on the unitarity of the scattering |Sℓ(k)| ≤ 1 can be translated
into the following conditions on aℓ

|aℓ| ≤ 1, |Re(aℓ)| ≤ 1/2 and 0 ≤ Im(aℓ) ≤ 1, (2.89)

which defines the area inside a circle in the complex plane centered at (0, i/2) and
radius 1/2.

We can translate these bounds to some measurable quantities, such as the cross section
for a given process. Recalling the definition of the differential cross section

dσ

dΩ
= |f(θ)|2, (2.90)

and in QFT in the c.m. frame, where the energy is ECM ≈ 2p, the cross section is(
dσ

dΩ

)
CM

=
|M|2

64π2E2
CM

, (2.91)
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from where we derive

M(θ) = 16π
∞∑
l=0

aℓ(2l + 1)Pℓ(cos θ), (2.92)

which holds in a full result and aℓ must lie within the bounds in Eq. (2.89). Usually
in QFT we can compute M up to a particular order in perturbation theory, and if we
truncate the calculation at a specific order, it does not need to satisfy the bounds on
aℓ. In general aℓ are matrices, so the bounds are imposed on their eigenvalues. They
are also always real, therefore usually the first two conditions in Eq. (2.89) are used.
Strictly speaking, the tree-level results will then automatically break perturbative
unitarity, as only the minimum of the complex circle is in the real axis, and this at
an aℓ = 0, but it is expected that perturbative corrections to the imaginary part of
aℓ will restore unitarity.

A commonly used scattering amplitude is the scalar 2 → 2 scattering, which are the
relevant ones to constrain the interactions. We can get rid of the angular dependence
in aℓ and therefore keep the only contributing mode a0. Then taking for instance the
first bound in Eq. (2.89) and substituting it in Eq. (2.92) and taking into account that
P0(x) = 1 we get

|Mi
2→2| ≤ 16π, (2.93)

where the index i runs over the eigenvalues of the scattering matrix elements in any
basis. If the second condition in Eq. (2.89) was chosen, the limits will be 8π and both
are used in the literature.

If these tree-level conditions are violated, then perturbative corrections need to be
also large to unitarise the result, this usually signals that the couplings on which
perturbative expansion is made are too large. Therefore we can say that a violation
of unitarity in some parameter regions signals a breakdown of perturbation theory,
and the results cannot be trusted above this threshold.

Historically, the requirement of perturbative unitarity was applied to predict an upper
bound on the Higgs mass at around 1 TeV [165, 166], which served as a rationale for
the construction of the LHC.26

In the 2HDM these bounds have been derived at tree-level [167–169] and can be
conveniently written in terms of the quartic couplings as

26As mentioned before, the Higgs boson unitarises the scattering amplitude of longitudinal gauge bosons.
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∣∣∣∣12 (3λ1 + 3λ2 ±
√
9(λ1 − λ2)2 + 4(2λ3 + λ4)2

)∣∣∣∣ ≤ 16π,

|λ3 + 2λ4 ± 3λ5| ≤ 16π,∣∣∣∣12
(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ25

)∣∣∣∣ ≤ 16π,

|λ3 + 2λ4 ± 3λ5| ≤ 16π,∣∣∣∣12
(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ24

)∣∣∣∣ ≤ 16π,

|λ3 + 2λ4 ± 3λ5| ≤ 16π,

|λ3 ± λ4| ≤ 16π,

|λ3 ± λ5| ≤ 16π,

(2.94)

These conditions can be extended to NLO [170, 171] by tracking the dependence of
the couplings on the energy scale with the RGE running of the couplings, which leads
to similar but more complicated equations to bound the quartic couplings in terms of
the correponding beta-functions.

We also note here that the parameter space allowed by perturbative unitarity can be
enlarged, if we allow for a mass term breaking the imposed Z2 symmetry softly, i.e.
we choose a non-zero m2

12. In some of the sample scenarios that we will investigate
later, we chose m2

12 as

m2
12 =

m2
Hc

2
α

tβ
. (2.95)

This choice prevents λ1 from recieving large corrections for large tβ and ensures a larger
allowed region by theoretical constraints when close to the alignment limit [172] (see
also [162]).

Constraints on the electroweak vacuum: There are additional theoretical constraints
arising from the shape of the scalar potential, in particular two things need to be
ensured: that the potential is bounded from below, and that it contains a sufficiently
stable minimum at the location of the EW vev.

A stable electroweak minimum is a requirement of a consistent perturbation theory,
therefore the scalar potential needs to be bounded from below to prevent tunnelling to
an unstable vacuum configuration. In the SM, the boundedness from below is satisfied
if

λ > 0, (2.96)

where λ is defined in Eq. (2.29). A positive quartic coupling thus ensures that at
large values of ϕ the potential stays positive. This directly impacts the trilinear Higgs
coupling as well, as it only differs from λ by an additional factor of v.

In the 2HDM there are eight field directions. Therefore the conditions for boundedness
from below are more involved, as they need to prevent the potential from becoming
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arbitrarily large at large field values in any of these field directions. The conditions
on the quartic couplings that ensure boundedness from below at tree-level are [173]

λ1, λ2 > 0, λ3 + λ4 − |λ5| > −
√
λ1λ2, λ3 < −

√
λ1λ2. (2.97)

Since the trilinear Higgs coupling is a more complicated relation of the quartic cou-
plings, this means in particular that negative values of the trilinear coupling are viable,
as long as the conditions in Eq. (2.97) are fulfilled.

An additional constraint related to the vacuum of the theory comes from the fact that
the minimum of the potential should be at ∼ 246 GeV, as this is the experimentally
required value. However, it does not need to be an absolute minimum of the potential
as long as it is sufficiently stable. The possibility of tunnelling to deeper minima
remains viable, as long as the vacuum lifetime exceeds the age of the Universe. To
study the dynamics of the vacuum, the tree-level potential is insufficient, and the
zero-temperature effective potential has to be evaluated. In the SM in the leading
logarithmic approximation, and taking into account only the heaviest particles in the
theory (top quark, W±, Z and the Higgs itself) this potential is 27

V (ϕ) = λ(µ)ϕ4 +
3m4

Z + 6m4
W± − 12m4

t + 3m4
h

16π2v4
ϕ4 ln(

ϕ2

µ2
). (2.98)

where µ is the renormalisation scale. We see that the second term is negative due
to the large mass of the top. This means that the vacuum at one-loop is not stable
but metastable in the SM for µ values above ≃ 1010GeV. Taking into account the
RGE running of the quartic coupling λ up to three-loops, stability would occur at the
border of a 3σ region [174,175]. This however is not a big problem, as the decay rate is
much smaller than the inverse of the age of the Universe. This decay occurs through
spontaneous nucleation of bubbles of the vacuum, which is a tunnelling process at
T = 0 and therefore quite suppressed. A proper calculation is derived from the decay
rate per unit volume and unit time

Γ ∼ Ae−S4 , (2.99)

where S4 is the so called bounce action, which is a semiclassical solution to the equa-
tions of motion of the Euclidean action (i.e. the action with imaginary time) and
A is a subleading dimensionful parameter. An approximate calculation with the SM
parameters leads to a vacuum decay probability of P ∼ 10−340 [94].

In BSM models without RGE running, an estimate of the result for vacuum stability
in terms of the bounce action was made in Ref. [41,176], where a vacuum is considered
unstable if

S4 < 390. (2.100)

27This is an approximation of the full CW potential, details in App. A
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In the 2HDM a stronger constraint can be imposed without the need to compute the
bounce action, by requiring that the minimum is a global minimum. In that case a
simpler condition can be applied [177]

m2
12

(
m2

11 −m2
22

√
λ1
λ2

)(
tβ − 4

√
λ1
λ2

)
≥ 0. (2.101)

Constraints from electroweak precision data: The electroweak precision observables
(EWPO) are a set of parameters in the electroweak sector that are highly senstive
to deviations from the SM prediction from possible new physics, they include the
gauge boson masses mZ , mW , the Z decay width ΓZ , the Fermi constant GF , among
others. For SM extensions based solely on extensions of the Higgs sector, some of the
constraints from the EWPO can be expressed in terms of the oblique parameters S,
T and U [178,179], which parametrise deviations from the SM.

S: is sensitive to new physics that affect the photon and the Z boson propagators,
therefore related to anomalies in neutral currents.

T: is sensitive to deviations in the ratio of the W± and the Z masses, reflecting the
amount of custodial symmetry breaking in the theory. In particular [180],

ρ− 1 =
1

1− αT
− 1 ≃ αT, (2.102)

where α = 1/137 is the fine structure constant.

U: it is related to the W± boson propagator and is usually less sensitive than the
others.

These parameters are constrained from experimental measurements with relatively
high precision [99]

S = −0.04± 0.10, T = 0.01± 0.12, U = −0.01± 0.09, (2.103)

Most constraining in the 2HDM is the T parameter, requiring either mH± ≈ mA

or mH± ≈ mH . Therefore in the simplest scenarios analysed in this thesis we will
assume mass degeneracy, i.e. mH = mH± = mA. Alternatively the combinations of
mH± = mA and mH± = mH will usually ensure that EWPO constraints are fulfilled.

In practice, compatibility with EWPO can be tested by direct comparison of exper-
imental data with the predicted values of the electroweak observables for a specific
parameter point. These observables are in particular the W -mass, the total decay
width of the Z boson and the effective weak mixing angle at the Z-boson resonance.
In the 2HDM, such calculations can be performed in an automated way using the
software THDM EWPOS [181–183], which includes the full one-loop corrections and the
leading non-standard two-loop contributions from the top-Yukawa coupling and the
scalar self-couplings, the latter only in the aligment limit of the 2HDM. In our anal-
ysis, these predictions are required to be in a 2σ agreement with the experimental
measurements (by default the prediction for mW is checked against the average value
from the LHC–TeV mW Working Group [184], which does not include the latest CDF
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mW result). Alternatively, a statistical χ2 fit in terms of the parameters S, T and U
can be performed and again a 2σ agreement between measurements and prediction
is required. In contrast to precise calculations provided in THDM EWPOS (even though
the most precise calculations are only available in the alignment limit), the S, T and
U parameters are evaluated only at the one-loop level according to Ref. [185]. The
experimental fit values of the oblique parameters, their uncertainties and correlations
are taken from Ref. [186].

2.7.2.2 Experimental constraints

The search for new physics is an active branch of the activities of particle physics colliders,
and a motivation to pursue future experiments. These limits cover a wide range of masses
and couplings for possible new physics candidates, many of which cover specific targets of
the extra scalars predicted in extended scalar models and the 2HDM in particular.

Therefore, every BSM sector that either contains additional scalars or modifications of
the SM-like Higgs couplings to the other particles, has to be tested against the experimental
data of the past and present collider experiments. The amount of the available experimental
data makes it unfeasible to perform such analysis by hand whenever considering extended
scalar sectors. Therefore, the need arises to develop automated tools that contain these large
experimental datasets and facilitate the comparison with the theory predictions within a
given model.

Such tools have been available for a long time. Notably, the HiggsBounds dataset, which
includes existing BSM searches in several colliders such as LEP (Large Electron-Positron
Collider) and LHC, was first developed in 2008 [187] and subsequently updated in newer
versions [187–191] (see also Ref. [192]). The idea behind HiggsBounds is to incorporate
the experimental searches for BSM scalar particles. So far these searches have not lead to
a discovery, therefore they result in exclusion limits that constrain the parameter space of
BSM models.

In 2022, CMS [193] and ATLAS [194] published summary papers of all the properties
of the Higgs boson that have been measured in 10 years since the Higgs discovery. This
includes the main Higgs boson production cross sections and branching ratios of the decays.
It also includes the intervals of the couplings of the Higgs to the other SM particles in the so
called κ−framework, which paramaterises deviations from the SM prediction. Any model
beyond the SM has to accommodate a Higgs boson with mass and signal strengths as the
ones measured at the LHC.

Recently, HiggsBounds was integrated with HiggsSignals [191,195–197], which checks
the compatibility of BSM parameter points with precision measurements of the discovered
Higgs boson, h. Similarly to HiggsBounds, HiggsSignals constraints the BSM sectors
that despite having a Higgs with a mass at the measured 125 GeV, predict deviations of
some of its couplings. The resulting combined tool, named HiggsTools [191], is written
in modern C++ and includes Python and Mathematica interfaces for the user convenience.
Additionally, HiggsTools incorporates a new package, HiggsPredictions, which calculates
cross sections and branching ratios directly from the provided couplings in a given BSM
model.

In the following we will briefly outline how each of these tests is performed.
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HiggsBounds: It includes the experimental exclusion limits at the 95% confidence level of
all relevant BSM Higgs boson searches (at LEP and LHC). As input it requires some
specific model predictions, either production cross sections and branching ratios of the
specified BSM state to the other particles, or alternatively their effective couplings,
normalised to the SM ones. The former can be computed via effective couplings
in the HiggsPredictions framework or directly provided in case specific and more
refined prediction tools are available for that model. In particular, in the 2HDM
there are two commonly used public codes for the computation of branching ratios,
2HDMC-1.8.0 [198] and HDECAY [199,200]. For a comparison of the two codes, see [201].

For a parameter point in a particular model, the code selects which are the applied
searches depending on the BSM particles involved. It determines on the basis of
expected limits which is the most sensitive channel to test each BSM Higgs boson.
This is determined by selecting the search with the highest expected ratio

Rexp =
(σ × BR)model

(σ × BR)expected
, (2.104)

where the expected numbers are taken from the experimental data. Then, based on
this most sensitive channel, HiggsBounds determines whether the point is allowed or
not at the 95% CL, which is equivalent to excluding the points with an observed ratio
larger than one

Robs =
(σ × BR)model

(σ × BR)obs
> 1, (2.105)

where again the observed quantities are taken from experimental data.

HiggsSignals: Provides a statistical χ2 analysis of Higgs boson predictions within a certain
model compared to the experimentally measured signal rates and masses. If not
stated otherwise, our criterium for allowed scenarios in the 2HDM will be that the
corresponding χ2 value of the parameter point is within 2σ (∆χ2 = 6.18) from the
SM fit: χ2

SM = 151.70.

Constraints from flavour physics: In the 2HDM, the presence of the charged Higgs
boson can significantly alter the prediction for flavour changing processes. Some
flavour observables like rare B decays, mixing parameters of B mesons, and LEP
constraints on Z decay partial widths are sensitive to the contributions of charged
Higgs bosons [202,203]. The most constraining decays are usually

BR(B → Xsγ) = 3.49 · 10−4 ± 0.19 · 10−4,

BR(Bs → µ+µ−) = 3.45 · 10−9 ± 0.29 · 10−9.
(2.106)

In our analysis, the experimental values are taken from Ref. [204]. To compare with
the theoretical predictions in the 2HDM we use the code SuperIso [205–207].

In order to take into account all these constraints we developed a specific code in the
2HDM (with real parameters and a softly-broken Z2 symmetry): thdmtools [2]. It is a
python package that allows the user to check the compatibility of a particular parameter
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point with the aforementioned constraints. The input for the code is given in terms of the
free parameters of the model (see Eq. (2.69)). During the installation of this package the
following external codes will also be downloaded and installed: AnyHdecay [199, 200, 208],
which computes the branching ratios and decay widths of all Higgs bosons contained in the
model, HiggsTools [191] (if not already installed in the current python environment of the
user), THDM EWPOS [181–183] and SuperIso [205–207].

2.7.3 Electroweak Baryogenesis

In the 2HDM the phase transition giving rise to EW symmetry breaking can be rendered
to be a sufficiently strong first-order transition, providing the out-of-equilibrium conditions
required for EW baryogenesis [39,40,77,209–212]. The presence of the heavier scales leads
to an alteration of the Higgs potential that allows for a SFOEWPT even for the light Higgs-
boson mass up to 200-300 GeV [39, 40], provided that a sufficient mass splitting with the
heavier mass scales is realised. This possibility is excluded now by the measurement of the
Higgs at 125 GeV, but it is interesting to note that the presence of the extra scalars pushes
the upper bound for the Higgs mass compatible with a SFOEWPT (which is 80 GeV in the
SM) to such high values. In the CP violating 2HDM it is shown that low values of tβ are
preferred for a successful baryogenesis [40], since the baryon asymmetry is suppressed by a
factor of ∼ t2β. A favoured mass hierarchy of the heavier scalars was established in Ref. [213],
in particular mH+ < mH < mA, with mA ∼ 400 GeV. Also a preference of a SFOEWPT
towards the alignment limit is established in Refs. [213, 214]. In Ref. [214] correlations
between the zero temperature effective potential and the finite temperature potential are
made, earlier noted in Ref. [146]. In Chapter 5 we will investigate in greater detail the
scenarios of a SFOWPT in the 2HDM and present ways to probe them phenomenologically.
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The measurement of the Higgs pair production cross section constitutes a primary mo-
tivation for the High Luminosity upgrade of the LHC. This physical process gains its im-
portance due to the direct access it provides to the trilinear Higgs coupling, which in turn
probes the structure of the Higgs sector through the shape of the scalar potential. Producing
two Higgses simultaneously has been challenging so far because of the small cross section,
the main reason being that the main production mode is a loop-induced process at LO,
where the contributing diagrams interfere destructively. Furthermore, the phase space is
small, as two heavy particles need to be produced in the final state. Additionally, the large
backgrounds of the dominant decay modes, for instance to 4 bottom quarks (hh → bb̄bb̄),
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further difficult the measurement. This is the reason why higher luminosity is required in
order to study this process with enough statistics.

The dominant production mode in a hadron collider, such as the LHC [215,216], is gluon
fusion: gg → hh. Other production modes are [216] (1) vector boson fusion (VBF), qq →
V V ∗qq → hhqq (V =W,Z) 1, which in the SM constitutes 10% of the total production, but
can become relevant at higher energies or in certain BSM theories depending on the specific
parameters, (2) double Higgs-strahlung, qq̄ → V ∗ → V hh (V = W,Z), which accounts for
less than 1% of all the cross sections, and (3) associated production of two Higgs bosons with
a top quark pair, gg → tt̄hh, that is also within 5% of the total contribution but can become
more relevant than VBF at higher energies. In Fig. 3.1 we show the total cross section of
Higgs pair production for all these processes in the SM in terms of the center-of-mass (c.m)
energy of the proton collider, thus emphasising the importance of gluon fusion.

Figure 3.1
Total cross sections for Higgs pair production in proton collisions in the SM for
different processes assuming a Higgs mass ofmh = 125 GeV, shown as a function
of the c.m. energy. Taken from Ref. [216].

We should also mention that a small sensitivity to the trilinear Higgs coupling can be
achieved via higher orders in single Higgs production. This is possible when next-to-leading
order (NLO) electroweak corrections that depend on κλ are included [217]. Experimental
collaborations usually combine both single and double Higgs production, where in the latter
case only gluon fusion and VBF are taken into account [122, 218]. In di-Higgs production,
κλ contributes already at LO, and a ±100% deviation from the SM value (κλ = 1) can result
in a 50% change in the cross section. In contrast, for single Higgs production at

√
s = 13

TeV, the same variation in κλ would affect the cross section by only about 1%.

With all these considerations, Higgs pair production via gluon fusion remains the most
sensitive channel to the trilinear Higgs coupling at the LHC and therefore it will be the
main focus of the present work.

The first leading order calculation of σ(gg → hh) was performed in the SM in 1987
in Refs. [219, 220]. Ten years later it was extended to NLO QCD in the large mt limit
Ref. [221]. It took nearly two more decades before the full NLO corrections were calcu-

1The asterisk ∗ indicates that the vector boson is off-shell.
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lated [222–227]. These corrections were found to be significant in the SM, approximately
doubling the predicted total cross section compared to the LO result2.

Currently, the highest order prediction in the SM is [229]

σ(gg → hh) = 30.77+6%
−23% fb at

√
s = 13 TeV,

which is obtained at the NNLO FTapprox for mh = 125 GeV and the renormalisation
and factorisation scales at half the invariant mass of the Higgs pair. At NNLO FTapprox,
the cross section is computed at next-to-next-to-leading order (NNLO) QCD in the heavy-
top limit [230–232] with full LO and NLO mass effects [222–224, 226, 227] and full mass
dependence in the one-loop double real corrections at NNLO QCD [233]. The uncertainty
of the result combines the uncertainty from the renormalisation and factorisation scale
variations with the uncertainty due to the choice of the renormalisation scheme and scale
of the mass of the top quark [227, 234], which is by far the dominant source of the total
uncertainty, and is of the order of 20%.

NLO electroweak corrections to gluon fusion hh-production have been recently provided
in Ref. [235], resulting in a -4% decrease of the total cross section. Differential distributions
were found to be enhanced by 15% close to hh threshold and decrease by -10% at high ener-
gies. A cross check of these results would be desirable and is currently under investigation,
for partial EW corrections see Refs. [236–240].

In BSM models, the first calculation at LO was done in 1996 in Ref. [241] in the MSSM.
NLO QCD corrections in the MSSM in the heavy-top-mass (HTL) limit were also considered
in Ref. [221]. The NLO electroweak corrections have been investigated in the NMSSM
in Refs. [242,243].

3.1 General effects in Higgs pair production

In this section we detail the effects of the different parameters involved in gluon fusion
hh-production. We will assume that deviations in the relevant couplings w.r.t the SM are
possible, and we will additionally explore the possibility of a heavy resonance produced in
the s-channel, that is absent in the SM but present in many BSM scenarios, in particular
in singlet and doublet extensions of the SM.

In Fig. 3.2 we show the LO diagrams contributing to the gluon fusion into Higgs pairs,
which is mediated by heavy quark loops. The two diagrams on the left are present in the SM
and are usually called non-resonant or continuum contribution, the first diagram is the so-
called box, which we will denote with the symbol □, and the second diagram is the SM-like
triangle diagram which we will label with the symbol h. The right diagram shows a BSM
contribution from a heavy CP -even scalar, we will call it resonant diagram and label with
the symbol H. Generally, more than one resonant contributions are possible, e.g. in models
with doublets and singlets. The quark loop is represented with Q, which is dominantly the
top quark due to the Yukawa hierarchy. The bottom quark contribution in the SM only
plays a subleading role, accounting for less than 1% of the total cross section [216].

In the 2HDM, the bottom contribution in the process can be enhanced for large values
of tβ within the regions allowed by all the constraints, therefore we will take into account
both contributions in our LO analysis. The trilinear coupling enters through the s-channel

2For a review of higher-order corrections to SM di-Higgs production, see [228]
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SM-like triangle diagram. In the SM, the triangle and box diagram interfere destructively
leading to a small cross section. In BSM models this interference pattern can be altered,
leading to deviations in the expected value of the cross section.
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Figure 3.2
Generic diagrams contributing to Higgs pair production in gluon fusion, all mediated by heavy
quark loopsQ = b, t. The first and second diagram correspond to the non-resonant contribution,
present in the SM. The first diagram is the box, and the second is the h triangle diagram.
The third diagram shows possible resonant contributions in BSM models with heavy CP -
even scalars, Hi. The trilinear Higgs couplings λhhh and λhhHi are depicted by red/blue dots
respectively. They can be evaluated at tree-level or at one-loop. Other couplings involved are
the (top/bottom) Yukawas of the light/heavy Higgses, yQh /yQHi

, denoted by orange/pink dots.

In BSM models, there are two potential sources of changes of the gluon fusion Higgs pair
production cross section w.r.t. the SM. Firstly, the couplings in the SM-like diagrams can
differ from the SM values. While the Yukawa couplings, in particular the deviations of the
top-Yukawa coupling, are restricted by the current constraints to about ±10% (at 1σ) of the
SM value, there is still room for substantial changes in the trilinear Higgs self-coupling λhhh,
while being compatible with all relevant constraints [244]. Changes in λhhh can alleviate
the SM suppression of the hh-production cross section by altering the interference pattern
of the continuum diagrams.

Secondly, there is an additional s-channel contribution from a heavy Higgs boson, in-
volving the trilinear coupling λhhH and the top Yukwawa coupling of the H. In case its
mass, mH , exceeds twice the mass of the lighter Higgs boson, mH > 2mh ∼ 250 GeV, it
can lead to resonant hh-production, in which case the corresponding diagram is referred to
as “resonant diagram” (for simplicity we will call it resonant diagram also for non-resonant
scenarios). Thereby, the cross section can be significantly enhanced. Furthermore, depend-
ing on the involved couplings, the additional s-channel diagram can also lead to destructive
interference with the SM-like diagram.

From this discussion it becomes clear, that the involved coupling values play a crucial
role for the size of the cross section, in particular the trilinear Higgs self-couplings. Moreover,
in the 2HDM there can be substantial EW corrections to these couplings, implying sizeable
effects on the cross section, to which future high-luminosity LHC measurements will possibly
become sensitive.

We can distinguish between the partonic cross section, which concerns the process
σ(gg → hh), and the hadronic one, σ(pp → gg → hh), which is obtained by integrat-
ing over the parton distribution functions (PDFs). The partonic cross section at a given a
c.m. energy squared is given by

σ̂(ŝ) =

∫
dσ̂

dt̂
dt̂, (3.1)
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where we used the hat, ,̂ to indicate that the corresponding variables refer to the partonic
process. In particular, the partonic c.m. energy squared is ŝ = x1x2s, where s is the total
(or hadronic) c.m. energy squared. At present, the LHC is operating at a c.m. energy of√
s = 13 TeV. In the case of Higgs pair production, the partonic c.m. energy corresponds

to the invariant mass of the hh system, i.e. ŝ = m2
hh. The variable t̂ is the Mandelstam

variable for the partonic transverse momentum transfer, for gg → hh collisions it is given
by t̂ = (pg − ph)

2, where pg is the momentum of an incoming gluon and ph the momentum
of the outgoing Higgs boson.

On the other hand, the hadronic cross section is defined as

σ(s) =

∫ 1

0
dx1

∫ 1

0
dx2fg(x1, Q

2)fg(x2, Q
2)σ̂(ŝ) ≡

∫ 1

0
dτLgg(τ)σ̂(ŝ = τs), (3.2)

where we integrate over all possible combinations of gluon momentum fractions x1 and x2.
The functions fg(xi, Q

2) are the gluon PDFs, which have been determined experimentally
and represent the probability density of finding a gluon with momentum xi at a certain
factorisation scale Q. On the right hand side of the equation we define τ ≡ ŝ/s = x1x2,
and rewrite the expression in terms of the gg luminosity:

Lgg(τ) =
∫ 1

τ

dx1
x1

fg(x1, Q
2) fg

(
τ

x1
, Q2

)
, (3.3)

which can be interpreted as the probability density for producing a partonic system with
invariant mass squared ŝ = τs via gluon-gluon collisions.

In this thesis we will always provide the hadronic cross section. We will use the public
tool LHAPDF [245] for evaluating the gluon PDFs. We also evaluated the LO in QCD cross
section with LO PDFs and the strong coupling αs at LO, and the NLO QCD cross section
with NLO PDFs and αs at NLO. If not stated otherwise, we used the sets CT14lo (for LO
QCD) and CT14nlo (for NLO QCD) [245–247].

In the following, we will discuss one by one the contributions to the scattering matrix
element from each of these diagrams and will further elucidate the dependence of the cross
section on the above mentioned parameters on a toy model with one scalar resonance. We
will allow for variations of the SM couplings λhhh and yth (for simplicity we will restrict
ourselves to the top loop for this discussion) in the case of non-resonant production, and
of the BSM couplings, λhhH and ytH , as well as the heavy Higgs mass, mH , and total
decay width, ΓH , in the case of the resonant production. These are the main parameters
that intervene in the process and can get modifications in extended scalar sectors. It is
worth noting that we assume only extensions of the scalar sector of the SM, in particular,
we assume that no modifications in the SM QCD sector through coloured particles or
interactions with them are introduced. While this restricts some interesting BSM scenarios,
we do capture the effects in the most common extensions of the SM.

We will discuss two different observables which we analysed together as they provide
the greatest sensitivity to the trilinear couplings, these are the total cross section and the
invariant mass distributions of two Higgses in the final state.
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3.1.1 Non-resonant production

We start with the analysis of the SM-like box diagram, whose scattering amplitude element
M□ is given by

g

g

h

h

yth

yth
t M□ ∝ F□(s)(y

t
h)

2,

where yth is the top Yukawa of the SM-like Higgs dependent on the top mass, mt and the
vev, v,

yth =

√
2mt

v
, (3.4)

and F□(s) is the box form factor that depends on the energy. In fact, the contributions
to the box form factor can be split into two gauge-invariant pieces according to the allowed
gluon-gluon polarisation: F□(s) corresponds to spin zero and G□(s) to spin 2. The latter
contribution won’t mix with the other diagrams and therefore its overall contribution to
the partonic cross section will be ∝ (yth)

4G2
□(s), a term that we wont discuss further. These

form factors are rather lengthy complex functions that we define in App. B. Finally, because
the external lines are scalar particles, they contribute with a factor of 1 in the amplitude.

The triangle diagram contribution to the scattering matrix, Mh be written as

g

g

h

h

h

yth λhhh
t Mh ∝ F△(s)

ythλhhh
s−m2

h + imhΓh
,

where F△(s) is the energy dependent triangle form factor, and the propagation of the
internal h particle is given by the scalar propagator

1

s−m2
h + imhΓh

,

where mh and Γh are the mass and width of the SM-like Higgs. Since these two parameters
are measured quite precisely3, we will keep them fixed in our analysis. Their values are [99]

mh = 125.20± 0.11 GeV and Γh = 3.7+1.9
−1.4 MeV.

The combined matrix element of the non-resonant production can be written as

Mno res. = M□ +Mh, (3.5)

and therefore the squared element, which will contribute to the cross section according
to Eq. (2.91), is

3The width measurement is based on the assumption of equal on-shell and off-shell effective couplings,
which enables an indirect yet precise determination of such a narrow quantity [248].
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|Mno res|2 = |M□|2 + |Mh|2 + 2Re(MhM∗
□). (3.6)

Therefore, the full non-resonant matrix element of the process also includes the inter-
ference term between the two diagrams, given by 2Re(MhM∗

□). We can explicitly isolate
the dependence of the squared matrix element on the interesting to us couplings by power
counting in the respective diagrams. For convenience, we will now switch to working with
the coupling modifiers w.r.t. the SM, i.e. κλ instead of λhhh and ξth ≡ yth/(y

t
h)

SM, so we can
describe any non-resonant squared matrix element in terms of these couplings,

|Mno res|2(ξth, κλ) = (yth)
4|MSM

□ |2 + (ξth)
2(κλ)

2|MSM
h |2 + 2(ξth)

3κλRe(MSM
h MSM∗

□ )

≡ (ξth)
4A1 + (ξth)

2κ2λA2 + (ξth)
3κλA3,

(3.7)

where in the first line we use the upper index SM to account for the fact that these are
the matrix elements with the SM couplings, and in the second line we simplify the notation
of the squared matrix element of each contribution with the coefficients Ai, i = {1, 2, 3}.
These coefficients will be fixed for us because we only allow for variations of the couplings
and we took it into account in Eq. (3.7).

In order to illustrate the effects discussed in this section w.r.t the couplings involved we
have computed the total Higgs pair production cross section, and the differential distribution
of the invariant mass of the two Higgses in a toy model, where each of the couplings can
be modified ad hoc. In Fig. 3.3 we show the dependence of the total cross section (left)
and the invariant mass distributions of two Higgses in the final state, mhh (right) on κλ,
in the first case we normalise the result to the SM prediction. The blue curve on the left
corresponds to the red curve in the experimental limits on κλ shown in Fig. 2.5, i.e. the
theory prediction, although the latter also includes the vector boson fusion cross section.
In practice, we plot (besides the normalisation to the SM value σSM)

|Mno res|2(1, κλ) = A1 + κ2λA2 + κλA3. (3.8)

The gray regions on the left plot show the experimentally excluded regions at 2σ by
ATLAS [121]. We observe a minimum at the value of κλ ∼ 2.5, which happens due the
increase in the destructive interference between the triangle and box diagrams, which we
will discuss in greater detail below. We can see that currently, the maximum deviations
from the SM cross section σSM are roughly a 4-times enhancement for negative κλ and a
6-times enhancement for positive values of κλ. We have selected some points to represent
their differential cross section with respect to the invariant mass, ∂σLOhh /∂mhh, we use the
symbol σhh here for the cross section to make explicit that it is the cross section in the hh-
final state and the superscript LO to refer to the leading order in QCD result4. These points
are the SM case, κλ = 1, which is represented with a red star on the left, the extrema of the
experimentally allowed interval, κλ = −1.2 and κλ = 7.2, and the value for the maximal
destructive interference κλ = 2.5.

On the right plot of Fig. 3.3 we see the invariant mass distributions corresponding to
these points. The SM distribution, shown in red, presents a cancellation of the triangle and
box form factors right below the kinematic threshold of hh-production, which reduces the

4While applying an NLO-QCD K-factor of 2 is justified for the total cross section, it is less so for the
differential invariant mass distribution, for more details see the discussion in Sec. 3.1.5
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Figure 3.3
Cross sections for non-resonant Higgs pair production depending on the trilinear
coupling κλ. Left: total cross section. Right: invariant mass distribution of four
selected benchmark points for a fixed κλ, the value is indicated in the legend.

cross section at that region. It is later enhanced at around 400 GeV, which corresponds
to the di-top production threshold and is also present in single Higgs production via gluon
fusion (see e.g. Ref. [249]). It further decreases for larger c.m energies. If the trilinear
coupling is modified to a more negative value as in the κλ = −1.2 case (green curve), the
triangle and box diagrams cancel much below the kinematic threshold, which results in an
apparent enhancement of the cross section at threshold. If the coupling can reach larger
values than in the SM, in particular at the minimum where κλ = 2.5, the cancellation of
the form factors is shifted to higher c.m. energies and results in a dip at around the di-top
threshold, as can be observed in the purple curve. Finally, for the largest allowed value of
κλ, the distribution follows a steadily decreasing slope with no significant dips, at threshold
the contribution is enhanced over 4 orders of magnitude w.r.t. the SM and then decreases
monotonously.

In Fig. 3.4 we show the dependence of the total (left) and differential (right) cross section
on the SM-like top Yukawa coupling modifier, ξth, i.e.

|Mno res|2(ξth, 1) = A1 + (ξth)
2A2 + (ξth)

3A3. (3.9)

We again shade the regions of the top Yukawa coupling that is experimentally excluded at
2σ C.L. [193] and normalise the total cross section to the SM prediction σSM.

In this case we see an increase of about 100% for the largest possible top Yukawa coupling
at ξth = 1.2 and a cross section very close to zero for the smallest allowed top Yukawa of
ξth = 0.8. We chose these points as representatives of for the invariant mass distribution,
which we show on the right plot of Fig. 3.4, compared again to the SM distribution in red.
We can see that the shape of the invariant mas distribution is not altered by the largest
allowed deviations in the top Yukawa coupling, only an overall shift to larger values happens
for the 20% increase of the coupling, corresponding to the increase of around 100% in total
cross section, and a similar decrease in the opposite case.
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Figure 3.4
Non-resonant Higgs pair production depending on the top Yukawa coupling mod-
ifier ξht . Left: total cross section. Right: invariant mass distribution of three
selected benchmark points for a fixed ξht , the value is indicated in the legend.

Finally, we discuss the interference term in Eq. (3.7), i.e. (ξth)
3κλA3 in terms of κλ,

which we plot in Fig. 3.5. We also show three different values of the ξth coupling. In Fig. 3.5
we see that the interference becomes more negative as κλ increases due to the negative sign
of A3. The slope is bigger for a larger ξth as well, therefore in general the interference grows
when the couplings are larger.

Figure 3.5
Non-resonant Higgs pair production interference term for different values of κλ
and ξth.

The lowest-order interference term A3 in the SM, i.e. κλ = ξth = 1 would be ∼ –39.23
fb, but this is a tree-level analysis. At a higher precision this number will change and in
fact the LHC Higgs Working Group (LHCHWG) recommendation is –48.37 fb (see also
Sec. 4.1.1).
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3.1.2 Resonant production

Here we analyse the contribution of the resonant diagram in the total cross section, given
by

g

g

h

h

H

ytH λhhH
t Mh ∝ F△(s)

ytHλhhH
s−m2

H + imHΓH
,

where the matrix element is defined analogously to the SM-triangle case, except that now
the scalar propagator includes the resonant BSM scalar mass mH and decay width ΓH , and
the matrix element is proportional to the BSM couplings ytH and λhhH . All of these are new
free parameters of the theory that will complicate a possible experimental analysis of the
process, although we can simplify the problem a bit by combining the BSM couplings in a
variable that we call ξtH×λhhH , as they will enter together everywhere in this process. Here
again we use the Yukawa coupling modifier w.r.t the SM Yukawa, i.e. ξth ≡ yth/(y

t
h)

SM, and
the notation of Eq. (2.57) to define λhhH . The heavy scalar top Yukawa interaction could be
measured in a simpler production process. Isolating this dependence in the squared matrix
element we get

|Mres|2(ξtH × λhhH ,mH ,ΓH) = (ξtH × λhhH)
2A4(mH ,ΓH), (3.10)

where now the coefficient A4 is a function of mH and ΓH , which we plot in Fig. 3.6 in terms
of mH for different values of ξtH × λhhH (left) and of the total decay width ΓH (right).

Figure 3.6
Resonant Higgs pair production cross section as a function of mH . The left plot
shows the dependence on the involved BSM couplings ξtH × λhhH for a fixed
width ΓH = 1 GeV and the right plot the dependence on the total decay width
of the heavy Higgs, ΓH , for a fixed value of ξtH × λhhH = 0.05.

In Fig. 3.6 we show the cross section of the resonant only contribution normalised to
the SM. The values of the y-axis are irrelevant because they refer to a toy model, and
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the couplings are set to arbitrary values. We can however clearly see the impact of the
resonance on the cross section. The effect of the resonant diagram is inexistent below the
kinematic threshold, as there is not enough phase space to produce the hh system. As
soon as the channel opens up, the cross section increases drastically and we see a peak at
around the tt̄ mass threshold, again resembling the single Higgs production. If we analyse
the dependence of the cross section with the couplings, it increases with an increase of the
product ξtH×λhhH . On the contrary, it diminishes with an increase in the total decay width
of the heavy Higgs, as it enters in the denominator. These effects are indicated in the left
and right plots of Fig. 3.6, respectively.

3.1.3 Interference terms

The full process will include, besides the contributions outlined above, two BSM interference
terms: □−H and h−H which will arise in the presence of a resonant scalar. The SM-like
interference □− h was already defined. The total scattering amplitude is therefore,

Mtotal = M□ +Mh +MH ≡ Mno res +Mres, (3.11)

and the squared amplitude is

|Mtotal|2 = |Mno res|2 + |Mres|2 + 2Re(MHM∗
□) + 2Re(MHM∗

h), (3.12)

which can be defined with the isolated couplings as

|Mtotal|2(ξth, κλ, ξtH × λhhH ,mH ,ΓH) =|Mno res|2 + |Mres|2 + (ξth)
2(ξtH × λhhH)A5(mH ,ΓH)

+ ξthκλ(ξ
t
H × λhhH)A6(mH ,ΓH).

(3.13)

We show the new terms that have not been discussed so far in Fig. 3.7. The left plot shows
the interference of the resonant diagram with the box, i.e. (ξth)

2(ξtH × λhhH)A5, and the
right plot shows the interference of the resonant diagram with the non-resonant continuum
diagram, i.e. ξthκλ(ξ

t
H × λhhH)A6, for different values of κλ.

The behaviour around the resonance is dominated by the heavy Higgs propagator, which
can be split into real and imaginary parts as follows

M□ ∝ 1

s−m2
H + imHΓH

=
(s−m2

H)− imHΓH
(s−m2

H)
2 + (mHΓH)2

, (3.14)

so the Re(MHM∗
no res) piece of the interference terms A5 and A6 can be rewritten as a sum

of these two terms

σinterf ∝ Re(Mno res)
(s−m2

H)

(s−m2
H)

2 + (mHΓH)2
+ Im(Mno res)

mHΓH
(s−m2

H)
2 + (mHΓH)2

, (3.15)

where Mno res refers only to the box on the left plot of Fig. 3.7 and only to the h triangle
diagram in the right plot of Fig. 3.7. The interference term becomes zero roughly at

0 = s−m2
H − Im(Mno res)

Re(Mno res)
mHΓH , (3.16)
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Figure 3.7
Interference patterns between the resonant diagram and the SM box (left) and
the SM triangle (right) diagram, shown as a function of mH .

We can see where this happens in both plots of Fig. 3.7, the exact value of mH differs in
the two cases because in the left plot the coefficient in front of the width-dependent term
is Im(M□)/Re(M□) and in the right plot it is Im(Mh)/Re(Mh). In the second case the
result is independent of the value of κλ, as this cancels out in the aforementioned coefficient.
In the second case we also see clearly that the interference pattern changes with the sign of
the couplings, in particular with the sign of κλ which is varied here: for a negative κλ the
interference is destructive at low mhh and constructive for high mhh values. Conversely, if
κλ is positive it becomes constructive for low mhh values and destructive for higher mhh.
As expected, the interference also becomes larger with larger values of κλ.

We proceed now to discuss the interference contributions in the context of the differential
cross sections. In Fig. 3.8 we show the interference contribution of the resonant diagram
with the continuum contribution in the differential invariant mass cross section assuming a
resonance of 400 GeV. We show the patterns for different parameters of the resonance, in
particular the sign of the trilinear coupling λhhH and the resonant scalar width ΓH . This
means we show the last two terms in Eq. (3.13), fixing κλ = ξth = ξtH = 1, i.e.

λhhHA5(400,ΓH) + λhhHA6(mH ,ΓH). (3.17)

Clearly the sign of λhhH (in fact ξtH × λhhH) alters the interference pattern around
the resonance at mH = mhh. A positive sign leads to a constructive interference before
the resonance and a destructive interference after the resonance, i.e. a peak-dip structure
as in the blue curve of Fig. 3.8. In the opposite case, a negative sign in λhhH leads to
a destructive interference before the resonance and a destructive after it, which shows up
in the distribution as a dip-peak structure, as shown with the red curve in Fig. 3.8. We
also show what happens if the resonant width is increased, in that case the cross section is
smaller, as already discussed, but additionally the crossing of the zero happens slightly to
the right of the identity mH ∼ mhh, this is really capturing the contribution of the second,
width-dependent term in Eq. (3.15) or the last term in Eq. (3.16), where now s−m2

H = 0
as this is the differential cross section. This effect is even more pronounced if we artificially
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increase the width to higher values. The fact that for the chosen values of the width this
effect is so small, suggests that the interference can be effectively described by the piece

σinterf ∝
(s−m2

H)

(s−m2
H)

2 + (mHΓH)2
. (3.18)

Figure 3.8
Interference patterns between the resonant diagram and the SM non-resonant
contribution in the differential cross section.

3.1.4 Full process

The full process will be a sum of all the effects discussed above. In Fig. 3.9 we show these
effects on the total cross section in the left plot and on the invariant mass distributions on
the right. On the left we plot the prediction in terms of the value of the resonant mass
mH . We see that the process is only SM-like in the regions where the resonant production
is negligible, i.e. below the kinematical threshold and for very heavy resonance. The effect
of the change in κλ is added on top of the resonance. The variations in κλ contribute to
enhance or decrease the total result throughout the range of possible values of mH .

Looking at the differential distributions in the right plot of Fig. 3.9, we can see the
richness of the possibilities even in this simple toy model. In all the cases we assume a
resonant scalar of 400 GeV, which manifests as a resonant peak located at mhh ∼ mH ,
which will be the only noticeable difference if κλ is SM-like, as in the red curve. In case κλ
deviates from the SM prediction, we can expect to see a dip-peak structure as in the purple
curve for κλ = 2.5, the dip arising from the cancellation of the form factors of the box and
SM-like triangle diagrams and the peak from the resonance. The distribution to the sides
of the resonant peak can look rather flat if κλ = −1.2 as in the green curve, or enhances at
the threshold if κλ = 7.2 as in the yellow curve.

In this section we have explained in detail the contributions of the different parameters to
the di-Higgs production cross section, focusing on the full inclusive and the differential cross
sections. We have shown that the effects of the resonant and non-resonant contributions
cannot be disentangled, and should be considered at the same time. In particular, we have
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Figure 3.9
Full gg → hh total cross section (left) for different values of κλ as a function
of the resonant mass mH and invariant mass distributions (right) for that same
values of κλ for a resonance at 400 GeV.

shown that the following ingredients significantly enhance the value of the cross section
w.r.t the SM prediction:

1) large deviations in the trilinear coupling κλ,

2) a resonant scalar contribution with masses 250 GeV < mH ≲ 800 GeV,

3) sizeable BSM couplings ξtH × λhhH and relatively small widths of the scalar reso-
nance.

In the following we will show examples in a complete model, such as the 2HDM, where
these effects arise naturally. We will additionally demonstrate that the presence of the
heavy resonance that participates in di-Higgs production can automatically induce large
loop corrections to κλ that will shift it away from the SM value, in the presence of mass
splitting effects.

3.1.5 Higgs pair production in the 2HDM

In this section we will concentrate on the 2HDM as an example model in which the effects
discussed above can be realised. In particular, the 2HDM features one scalar that can
contribute to the resonant di-Higgs production, the CP -even scalar H. For the numerical
evaluation we will use the code HPAIR [221, 241, 244, 250], adapted to the 2HDM, which
also includes the possibility to specify an effective trilinear Higgs coupling that accounts for
its radiative corrections. Originally, HPAIR was developed for the calculation of Higgs pair
production in the SM and the MSSM at LO [241] and at NLO QCD in the HTL limit [221].

At LO, both top and bottom full mass dependence are included. The calculation is
equivalent to the MSSM, which shares the Higgs sector of the 2HDM. The Yukawa inter-
actions are adapted to each Type of the 2HDM. Since the coloured sector is equivalent in
both models, the NLO QCD corrections can be taken over from the MSSM. At NLO QCD,
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the HTL is used and the contributions of the bottom quark are neglected. This is the most
accurate prediction publicly available.

Recently, for the 2HDM the full NLO QCD corrections have been provided for the
production of a mixed Higgs pair Hh and for a pair of pseudoscalars, AA, in Ref. [251].
The invariant mass distributions were found to increase with large invariant mass reaching
−30% (−20%) in hH (AA) production at an invariant mass of 1.5 TeV. The mass effects
hence not only change the absolute value of the cross section but also the shape of the
distribution, so that the heavy top-mass approximation does not work as good as for the
inclusive cross section (see also [252]). So far, however, there is no public code available
that allows to compute the top-quark mass effects on the distributions for 2HDM Higgs
pair production, in particular not for the interesting case of intermediate resonant heavy
Higgs production, which we investigate here. Therefore, for our analysis we take the best
prediction available at the moment and resort to the NLO QCD corrections in the heavy-top
limit with the here mentioned caveats.5 Since we will investigate several distinct benchmark
cases and analyse what issues in general can arise in the measurement of trilinear Higgs self-
couplings, this will still give us new insights despite the used approximations. The overall
conclusions will remain the same: They will represent the best case scenario, assuming the
distributions are changed uniformly at NLO. In this way, they show what at least can be
expected in the QCD sector.

In this work, we include for the first time in the 2HDM6 the one-loop corrections to
the trilinear Higgs couplings in the computation of Higgs pair production and analyse their
effects. In the following sections we will include an effective one-loop-corrected coupling in
an effective potential approach, as discussed in Sec. 2.6, which means that we will assume
vanishing external momenta for the coupling. Taking into account the appropriate momen-
tum dependence for the Higgs pair production process would be expected to modify the
predictions for the total di-Higgs production cross section only at the percent level in the
2HDM Type I [131]. We will however elaborate in Sec. 3.6.

Our analysis is accurate in the regions where the loop-corrected effective trilinear cou-
plings constitute the leading contributions to the full EW corrections for scenarios in which
the loop corrections to λhhh and/or λhhH are very large. In this case, contributions be-
yond the trilinear Higgs self-couplings, e.g. including additional powers of the top Yukawa
couplings, can be shown to be sub-dominant [126]. Therefore, for the case of sizeable loop
corrections to the THCs our results should provide a good approximation to the full elec-
troweak loop corrections to the inclusive process at this order. It is also in this limit where
momentum effects are smallest in relative size.

In regions where loop corrections to the THCs are relatively small, which for the non-
resonant case implies that the predicted cross sections are significantly below the current ex-
perimental sensitivity, this approach becomes less accurate and a complete next-to-leading-
order (NLO) electroweak (EW) calculation of the cross section would be required, which is

5Our benchmarks also contain heavy Higgs bosons with masses above the top mass value which questions
the applicability of the heavy-top limit in the QCD corrections. The finite top-mass effects can be roughly
estimated from the NLO QCD results in the SM including the full top-quass dependence. They amount
to about 20% for heavy Higgs masses around 500 GeV, increasing to about 30% for Higgs mass values of
1 TeV.

6For investigations of the effect in the SM, see Ref. [237], and in the next-to-minimal supersymmetric
extension of the SM (NMSSM), see Refs. [242,243].
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beyond the scope of this work.7 The aim of our work is an analysis of possible implications
of large loop contributions and interference effects, in particular regarding the interpreta-
tion of the experimental results. For this purpose the approximate approach pursued here
should be sufficiently accurate.

3.2 Sensitivity to trilinear Higgs couplings in the 2HDM

In this section we discuss the current sensitivity to the trilinear couplings in the 2HDM.
Without loss of generality we focus on the Type I, where the largest deviations of κλ at
the tree level were found [253]. As a starting point we have performed a general scan of
the parameter space of the 2HDM setting the free parameters of the model in Eq. (2.69)
within the limits specified in Tab. 3.1 and applying all the constraints in Sec. 2.7.2 with
thdmTools. In particular we have set the more stringent bound of 8π for perturbative
unitarity, a global minimum condition for the EW vacuum, 2σ agreement with the fit of S
and T for the electroweak precision data and 2σ agreement with he SM χ2 value for the
Higgs rate measurements (for more details see Sec. 2.7.2).

tanβ cβ−α mH mA, m
±
H m2

12 mh

2HDM [0.1 30] [-0.3 0.3] [130 1500] [10 1500] [0 4·106] 125.25

Table 3.1: Regions of the parameter scan in the 2HDM-I used in Fig. 3.10

In Fig. 3.10 we show the scan of the allowed points in the multidimensional free parame-
ters organised in a matrix-type projections of the relations between each pair of parameters.
In the diagonal we show the distribution of points in the particular variable, in those cases
the Y axis is the number of points. We show this information only to signal the limits of
our scan, the density of points does not carry any meaningful physical information. The
colour coding represents the magnitude of the one-loop effective trilinear coupling computed
diagrammatically with anyH3 in a fully OS scheme (for details see Sec. 3.6.1).

We use the scatter plot to find the regions of parameter space and the relations between
the parameters that will lead to large corrections in κλ. We find that large deviations are
possible in the alignment limit, which was not the case in a tree-level analysis where trivially

κ
(0)
λ = 1. This will have an impact on the strength of the electroweak phase transition that

will be discussed in Sec. 5.2.3. The overall values of κ
(1)
λ range from 0 to 6, which lies within

the experimentally allowed region. We also observe that the largest corrections appear
precisely at the regions of largest mass splittings between M ∼ mH and mA ∼ m±

H . These
observations will serve as an inspiration for defining benchmark scenarios that will help us
understand the dynamics of the loop-corrected couplings and of the Higgs pair production.

We define three benchmark scenarios to analyse the impact of the loop-corrected trilinear
couplings in the Higgs pair production:

1. tβ = 10, m2
12 fixed via Eq. (2.95),

free parameters: cβ−α, mH± = mH = mA

Expected features: variation of the relevance of theH exchange contribution, variation
of top Yukawa couplings and λhhH .

7For results on the NLO EW corrections to SM Higgs pair production, see Refs. [235,237–239].
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Figure 3.10
Values of κ

(1)
λ in the 2HDM in a general scan with ranges defined in Tab. 3.1.

2. tβ = 10, cβ−α = 0.2, m2
12 fixed via Eq. (2.95)

free parameters: mH , mA = mH±

Expected features: variation of the relevance of theH exchange contribution, variation
of top Yukawa couplings and λhhH .

3. mH± = mH = mA = 450 GeV, m2
12 fixed via Eq. (2.95),

free parameters: cβ−α, tβ,
Expected features: very large H contribution, variation of top Yukawa couplings and
of λhhh and λhhH .



Our results for the trilinear couplings in the three benchmark planes are presented in
Figs. 3.11, 3.14, and 3.17. We show as a colour coding the value of the relevant to us THCs:
κλ (upper row) and λhhH (middle row) at tree-level (left) and at one-loop (right). The
tree-level values are computed using the expressions in Eq. (2.75) . The one-loop values are
calculated using BSMPT v.2. [141], i.e. from the one-loop effective potential. Additionally,
we show in the lower row the top Yukawa couplings of the light (left) and heavy (right)
CP -even Higgs bsoson, ξth and ξtH , according to the expressions in Eq. (2.72). As a black
contour we show the region of allowed parameter space, i.e. everything outside the black
contour is disallowed by theoretical or experimental constraints. In the allowed region ξtH
varies from about −0.5 to roughly +0.1, ξth stays within a 2% deviation from the SM, where
ξth = 1.

The benchmark scenario 1 depicted in Fig. 3.11 features a non-resonant scenario
since the mass of the heavy Higgs is mH = 1000 GeV. This implies that the Higgs pair
production cross section will overall feature the behaviour of the Higgs self-coupling κλ, as
the resonant contribution will be subdominant. Large corrections due to the contribution
of heavy scalars in the loop of the hhh vertex significantly modify the value of this coupling.
Following the colours within the black countour8 of the upper plots in Fig. 3.11 we observe
that loop corrections to κλ shift the value κλ = 1 (indicated by a red line) away from the
alignment limit, cβ−α = 0. We observe that the tree level κλ decreases for larger values

of cβ−α up to the ‘tip’ of the allowed region at (cβ−α, tβ) ≈ (0.1, 8) where κ
(0)
λ ≈ 0. At

one-loop, however, it increases up to values of κλ ≈ 10 that are realised in the borderline
of the region excluded by perturbative unitarity. Note that a value of κλ ≈ 2.5 is realised
in the light orange region in upper right plot. On the other side, smaller values of κλ are
reached for the slightly negative cβ−α values allowed (the exclusion of negative cβ−α in this
scenario comes from vacuum stability constraints) and are barely modified when including
loop corrections, being located roughy at (cβ−α, tβ) ≈ (−0.02, 1.3) and reaching values of

κ
(0)
λ ≈ 0.9 and κ

(1)
λ ≈ 0.87, respectively.

Switching the discussion to the λhhH coupling, we observe that it has no significant
modification from the one-loop contributions inside the allowed region but is greatly en-
hanced in the upper right corner of the middle right plot. The largest one-loop effect is a
strong modification of the prediction for this coupling found at larger (positive) values of
cβ−α once the tβ is higher than 10. For a fixed tβ >∼ 10 for increasing cβ−α we first find
a string increase, reaching its maximum. For even larger cβ−α, λhhH is then decreasing
and eventually turning negative. However, it should be noted that these features are found
outside the region allowed by theoretical and experimental constraints.

Since this scenario features very large one-loop deviations of κλ together with very low
deviations of ξth within the allowed region and very heavy resonant Higgs, which barely
contributes to the di-Higgs production process, we regard this scenario as a non-resonant
and will study it further in the context of the application of experimental non-resonant
limits in Sec. 3.5.1.

In the upper row of Fig. 3.12 we show the decay width of the heavy Higgs boson to hh
with λhhH at tree-level (left) and at one-loop (right). The behaviour follows largely the

8We show the predictions outside of the allowed parameter space to see the overall dependence of the
parameters, but no physical conclusions should be drawn from this region, in particular in Fig. 3.11 the large
corrections of the trilinear Higgs couplings up to 50 times the SM prediction appear in a region that does
not fulfill constraints from perturbative unitarity and therefore should not be taken into consideration.
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Figure 3.11
Plane 1. Tree-level predictions of κλ (upper left) and λhhH (middle left). Loop-
level predictions of κλ (upper right) and λhhH (middle right) computed with
BSMPT. The allowed region by theoretical and experimental constraints is within
the black contour. The red line in the upper plots indicates κλ = 1. Predictions
of the light (heavy) Higgs - top Yukawa modifier in the lower left (right).



74 3. Higgs pair production at the (HL-)LHC

Figure 3.12
Plane 1. Decay width of the heavy Higgs boson H decaying into a pair of light
Higgs bosons h with a λhhH at tree-level (upper left) and at one-loop (upper
right). Total decay width of H, Γtot

H with a tree-level λhhH coupling (lower left)
and with the one-loop λhhH coupling (lower right).

THC λhhH , as discussed above, In particular, at the NLO level for large cβ−α and large
tβ a very small (and even vanishing) decay width can be found. This happens where the
coupling λhhH at one-loop crosses zero when the loop corrections introduced by the mass
scale M overpower the tree-level prediction. The dominant decay mode of H in the regions
where decay to hh is disallowed or cancelled is to t̄t and it remains unperturbed due to
the corrections on the THCs. The value of the heavy Higgs top Yukawa is close to 0.25 in
this region, as can be seen in the upper left plot. We conclude that in region of large tβ
and positive cβ−α almost the whole decay rate was given by the H → hh decay mode, but
at the parameter space where the loop corrections to λhhH are ∼ 0 this decay mode does
not exist and the total decay width depicted in Fig. 3.11 presents a very large suppression
because of the absence of the hh decay mode. The decay to gauge bosons is 0 even when
the trilinear Higgs couplings are at one-loop.

In the lower row of Fig. 3.12 the values for Γtot
H are shown with the tree-level (one-

loop effective) λhhH coupling in the left (right). Since the correction to the trilinear Higgs
couplings does not enter in the rest of the decay channels entering in the total decay width,



the effect from the NLO corrections can only be observed in disallowed region with large
cβ−α and tβ >∼ 10. Where λhhH changes from large positive to large negative values and
pronounced minimum of Γtot

H can be observed, following the behaviour of Γ(H → hh).

A significant modification of the total decay width w.r.t. the tree-level value would have
an impact on the contribution of the resonant diagram, since a suppression of Γtot

H could
lead to an enhanced resonant contribution. Since this is not the case, we expect that indeed
this scenario remains non-resonant even with the loop corrections to the THCs.

Figure 3.13
Plane 1. Di-Higgs production prediction in the 2HDM w.r.t. the SM computed
at leading order including tree-level trilinear Higgs couplings (upper left), one-
loop κλ and tree-level λhhH (upper middle), and both κλ and λhhH at loop level
(upper right). Ratio of the cross section with both trilinear couplings at one-loop
with respect to the cross section with both trilinear couplings at tree-level (lower
left) and ratio of the cross section with both trilinear couplings at one-loop with
respect to the cross section with only κλ at one-loop (lower right).

In Fig. 3.13 we present the results for the di-Higgs production cross section in the 2HDM.
The upper row shows the 2HDM cross section normalised to the SM prediction, σ2HDM/σSM,
where σSM does not receive loop corrections to the λSM (which are expected to be small). We

show the results for σ2HDM using κ
(0)
λ , λ

(0)
hhH (σTHC LO, left plot), κ

(1)
λ , λ

(0)
hhH (σκλ NLO, mid-

dle plot) and κ
(1)
λ , λ

(1)
hhH (σTHC NLO, right plot). The lower row depicts σTHC NLO/σTHC LO

(left) and σTHC NLO/σκλ NLO (right). We find that the maximum value of σ2HDM/σSM ≈ 3
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Figure 3.14
Same as Fig. 3.11 but for Plane 2.

is reached at the tip of the triangle where the value of the trilinear Higgs coupling λhhH
is minimal Fig. 3.11. The middle plot shows the same ratio of the cross sections but incor-
porating the loop-corrected value of κλ. We observe a dramatic change in the prediction
of this observable that mimics the behaviour of the trilinear. As discussed in Sec. 3.1, the
cross section of Higgs pair production with κλ features a minimum at κλ ≈ 2.5, due to
an enhancement of the cancellation between the box and triangle diagrams in this process.
We observe this feature in our scenario as well, in particular the 2HDM cross section is
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Figure 3.15
Same as Fig. 3.12 but for Plane 2.

diminished w.r.t the SM in the blue band within the allowed region for positive cβ−α and
tβ > 4, where κλ at one-loop had a value of 2.5.

For a fixed value of tβ, if one follows the line of larger cβ−α, after the decrease in the
cross section, one encounters a steep rise that peaks for values of σ2HDM/σSM ≈ 10 at the
border of what is allowed by perturbative unitarity. This reassures that in some benchmark
scenarios, the loop correction to the trilinear Higgs couplings totally dominate over the
Higgs pair production, and should not be disregarded in precise calculations that aim at
comparing to the experimental data. For completeness we show in the lower left corner of
Fig. 3.13 the ratio of the σ2HDM/σSM with κλ at NLO and LO. The significance of the loop
corrections to the trilinear Higgs couplings is striking in the region close to the perturbative
unitarity exclusion bound. We finally show in the upper right plot the prediction for the
cross section with both trilinear Higgs couplings at NLO and we confirm that in this non-
resonant scenario the coupling λhhH plays a minor role, which is also evident when one sees
the ratio of the cross section with the both trilinear Higgs couplings at NLO and only κλ
at NLO, as within the allowed region deviations of barely 10% are accomplished.

We proceed to analyse the benchmark scenario 2, the results are depicted in a same
fashion as the scenario 1 in Fig. 3.14, Fig. 3.15 and Fig. 3.16. In Fig. 3.14 we show the
predictions for the trilinear Higgs couplings and top Yukawas. The loop corrections to κλ
in the region of cβ−α ≈ 0.13 and mH ≈ 1000 GeV reach 30. This corresponds to the slice



Figure 3.16
Same as Fig. 3.13 but for Plane 2.

of the benchmark scenario 1 with tβ = 10 and therefore the same discussion is applicable.
Loop corrections to λhhH in the allowed region are not significant, which translates also
into the very small changes in the total decay width of the heavy Higgs once those are
taken into account (see Fig. 3.15). Since in this scenario the mass of the heavy Higgs is
allowed to change, we observe a clear enhancement of the resonant production in the region
mH ≈ 400 GeV, which is close to the top pair production threshold. We therefore expect an
enhancement in the cross section in this region, which was already present at tree-level but
we also expect large modifications of the prediction due to the impact of the loop corrections
to κλ.

In Fig. 3.15 we show the prediction for the decay width of the heavy Higgs (without)
including the loop corrections to λhhH in the upper row (left) right. We again see that
within the allowed region the predictions are not significantly modified, which is translated
to the total decay width of H shown in the lower row for tree (loop) level λhhH in the lower
left (right) figure. Despite the smallness of these changes, we consistently use the prediction
of ΓtotH (and Γtoth ) at tree-level for the LO THC cross section and at one-loop for NLO THC
one.

The results for the cross section in this scenario are shown in Fig. 3.16. As expected,
the production is resonantly enhanced at mH ≈ 400 GeV regardless of the loop corrections
to λhhH up to a 10% of the SM prediction for cβ−α ≈ −0.1. The largest imact of the
corrections to κλ is observed for cβ−α ≈ 0.13 and mH = 800 GeV, where the cross section is
enhanced up to 20 times w.r.t. the SM prediction and up to 10 w.r.t. the 2HDM prediction
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Figure 3.17
Same as Fig. 3.11 but for Plane 3.

with tree-level κλ. We note that the sharp cut off in the allowed region for larger values
of cβ−α is originated in the signal strength of the 125 GeV Higgs whose signal strengths
are checked with HiggsSignals. We also note that the loop corrections to κλ make the
cross section decrease for values of cβ−α ≈ 0.1 and mH > 300 GeV and mH < 800 GeV.



Figure 3.18
Same as Fig. 3.12 but for Plane 3.

The lowest value is reached at the darkest blue region and is close to 45% of the tree-level
SM prediction. This shows that depending on cβ−α we could observe a very SM-like signal
in the hh channel even in scenarios that are targeted at resonant production and with a
mass of a heavy Higgs that would in principle favour a resonant enhancement. The largest
corrections to λhhH are realised for values very close to the alignment limit and around
mH ≈ 300 GeV.

Finally, we analyse the benchmark scenario 3, where the heavy Higgs has a mass
of mH = 450 GeV and therefore features a resonant production. In Fig. 3.17 we show the
loop corrections to the trilinear Higgs couplings and the top Yukawas. Since the Yukawas
for a given type of 2HDM only depend on cβ−α and tβ, we see the same behaviour as in
the benchmark plane 1, although larger deviations from the SM are allowed because of the
modified allowed region, especially in the regions further away from the tree-level alignment
limit. The behaviour of the one-loop corrections resembles those of the benchmark plane 1,
however the one-loop corrections to κλ are not as large in this case as the mass of the heavy
scalars that run in the loop is less than half. Therefore, in the allowed region deviations in
κλ up to a 100% in the region of positive cβ−α and large tβ. The corrections to λhhH in the
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Figure 3.19
Same as Fig. 3.13 but for Plane 3.

allowed region are negligible and therefore there are no visible changes induced in ΓTOT
H , as

shown in Fig. 3.18.

In Fig. 3.17 we show the impact of the corrections in the Higgs pair production cross
section. In this scenario, since the heavy scalars are all at masses of 450 GeV their con-
tributions in the corrections to the trilinear Higgs couplings are not so large and therefore
the impact in the cross section due to the deviation of the couplings is milder 30% devia-
tions in the case of κλ corrections, and 10% deviations for λhhH . At tree-level, the largest
enhancement of the cross section is observed at the region of cβ−α ≈ 0.1 and tβ ≈ 2, where
σ2HDM/σSM ≈ 6 this behaviour appears in the regions further away from the alignment (for
negative, cβ−α σ2HDM/σSM ≈ 5) due to the rising importance of the resonant contribution
and since mH is closer to the top pair production threshold than in the benchmark scenario
1. The effect of the loop corrections in the allowed region is milder due to the lighter BSM
scalars, the main feature of the corrections to κλ is visible in the region of large tβ and
positive cβ−α, where loop corrections shoft the values of κλ from roughly 1 to 2, shrinking
the prediction of the cross section from a 10% enhancement with the tree-level trilinear
couplings up to a 30% suppression w.r.t the SM cross section once the loop corrections to
κλ are included, this corresponds to the black blue region that we see in the upper right
corner of the allowed region in the lower left plot. The corrections to λhhH in this scenarios
are again mild due to the lack of mass degeneracy between the heavy scalars, however, they
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do account for up to a 20% enhancement (suppression) in the cross section in the region of
small tβ visible in the lower right (left) part of the allowed region of the lower left plot.

To conclude this section we pick up some of the main phenomenological features that
we learned from the inclusion of the corrections to the trilinear Higgs couplings in the Higgs
pair production cross section:

1: The larger corrections arise for large masses of the heavy scalars and impact heavily
on the value of κλ that can be directly translated to the cross section.

2: Mass splitting between the heavy scalars can introduce large radiative corrections,
inducing a sign flip in λhhH .

3: In the benchmark scenarios analysed there was small interplay between the enhance-
ment produced by a large correction to κλ and the one produced by the resonant
production.

3.3 Impact of experimental uncertainties

This section is based on the following publication:

[1] F. Arco, S. Heinemeyer, M. Mühlleitner, and K. Radchenko, Sensitivity
to triple Higgs couplings via di-Higgs production in the 2HDM at the (HL-)
LHC, Eur. Phys. J. C 83 (2023) 1019 [2212.11242]

Before moving to the invariant mass distribution of hh-production, we will analyse the
impact of experimental uncertainties on this observable, which will in turn impact the
sensitivity to the trilinear couplings. These effects are the experimental smearing, i.e. the
uncertainty in the mhh measurement, and the experimental resolution, i.e. the size of the
bin as well as its arbitrary location. We neglect any “background” from other SM processes,
which would require a dedicated experimental analysis. Since both these effects will have
a larger impact on the resonant structure, we will focus on the relative difference of the
number of events around the resonance after the application of these uncertainties. To give
a numeric estimate we define a variable R, following Ref. [254], as

R :=

∑
i |NR

i −NC
i |√∑

iN
C
i

, (3.19)

where NR is the number of events of the resonant contribution, and NC is the number of
events of the continuum. The window in which the events are counted is defined by

|NR −NC | > bin size× 20 GeV . (3.20)

The sum over i in Eq. (3.19) runs over all the bins that fulfill this condition. The chosen
condition in Eq. (3.20) starts with a minimum of 1000 excess events due to the resonance

https://link.springer.com/article/10.1140/epjc/s10052-023-12193-4
https://arxiv.org/pdf/2212.11242
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when the bin size is 50 GeV and 200 events when the bin size is 10 GeV, i.e. smaller bin
sizes are not “punished”. Using the absolute value in the definition of R in Eq. (3.19), as
well as in the definition of the window in Eq. (3.20) effectively makes use of both the dip and
the peak of the smeared distribution. This constitutes a simplified theory definition, where
in a realistic experimental analysis the dip-peak structure would be taken into account via
a template fitting, see e.g. the analysis in Ref. [255]. The numbers of events are in turn
obtained using the relation between the cross section and the integrated luminosity of the
collider,

N = σ · L, (3.21)

where we have used L = 6000 fb−1, i.e. the sum of the anticipated luminosity of ATLAS
and CMS combined at the end of the HL-LHC run. This constitutes the most optimistic
case.

3.3.1 Smearing

Differential cross section measurements are affected by the finite resolution of the detectors.
This translates into a blurred or “smeared” spectrum that can be observed in such exper-
iments. We try to mimic this effect by artificially smearing the theoretical prediction for
the invariant mass distributions of the chosen benchmark points. To do this we introduce a
statistical error to our prediction of the invariant mass. We apply the uncertainties in mhh

by allowing the value of an event to shift to the left or to the right in the spectrum according
to a Gaussian probability distribution. The amount of smearing is defined in terms of a
percentage of smearing p that indicates the deviation from the mhh value contained in the
full width at half maximum (FWHM) of a Gaussian distribution cantered at that value of
mhh, i.e. the FWHM = 2

√
2 log 2σ, where σ is the standard deviation.

We illustrate this effect in Fig. 3.20 for one particular example of a benchmark point
with the masses fixed to mA = mH± = 544.72 GeV and mH = 515.5 GeV, cβ−α = 0.12,
tβ = 10 and m2

12 as in Eq. (2.95). In this figure we show in blue the mhh distribution
without smearing (the ideal case). The solid line depicts the full distribution, whereas the
dashed line shows the result for the continuum (non-resonant) diagrams. The red lines
demonstrate the effect of applying a 10% (left plot) and 15% (right plot) smearing on the
theoretical prediction of the mhh distributions, where the solid (dashed) lines indicates the
full (continuum) result. While a 15% smearing was given as a realistic future estimate, the
10% smearing indicates a potential optimistic improvement. One can observe that from the
original dip-peak structure as seen in the solid blue line effectively only a peak or bump
around the original peak remains. The original dip is visible only as a very small reduction
of the unsmeared distribution, as the relative weight of the points below the continuum
is smaller than those above the continuum (note the logarithmic scale). Furthermore it
should be noted that on the edges of the mhh values there is a slight bump in the smeared
distribution. This is an artefact of the method that we used for the smearing and should
be neglected. Since we do not generate the number of events but rather a theoretical
prediction for a specific value of dσ/dmhh, we cannot redistribute the events according to
some uncertainty. What we do is an approach that is independent of the number of events
but should be equivalent. We generate a Gaussian probability distribution function centered
at each of the predicted points and a standard deviation according to the percentage of
smearing as explained above. Afterwards at each point in mhh the Gaussians of the full



84 3. Higgs pair production at the (HL-)LHC

distribution are summed and finally normalised to the original value of the integrated total
cross section. This corresponds to taking the limit of the number of events N → ∞. At
the edges only events from one side contribute to the sum of the Gaussians and are not
lowered by a smaller counterpart on the other side. If the distribution would continue down
to infinite values, there would be no bumps at the edges.

Figure 3.20
Theoretical (blue) and smeared (red) invariant mass distributions for the selected
benchmark point (see text). Solid (dashed) lines show the contribution of the
total (continuum) differential cross section. Left (right) plot has a 10% (15%)
smearing.

3.3.2 Binning

As a further step in the evaluation of the experimental challenges, we analyse the effect of
the bin width. The binning means that the data in a particular interval in mhh is presented
as the mean value of the differential cross section of all the points that fall in that interval.
Assuming that at least one of the Higgs bosons analysed will decay in a bb̄ pair, the bin size
will eventually be determined by the b-jet mass resolution from the reconstruction of the
h → bb̄ decay mode. This affects the visualisation of the results in a realistic experimental
set up, but also the counting of events for the evaluation of the experimental sensitivity, see
Eq. (3.19). The binning is applied after the smearing discussed in the previous subsection.

In Figs. 3.21 and 3.22 we show the same spectrum but for a different bin size in the mhh

variable: 10 GeV (upper left), 20 GeV (upper right), 40 GeV (lower left) and 50 GeV (lower
right). Fig. 3.21 assumes a 10% smearing, whereas in Fig. 3.22 we show the more realistic
result with 15% smearing. The red lines show the true (smeared and binned) prediction,
whereas the other colours indicate the unsmeared, but binned results for comparison. One
can observe that the effect of the smearing becomes less significant in the region of resonant
production for a larger bin size. The resonance is already partially diluted by the smearing,
and the effect of the binning becomes less visible, as can be observed best in the lower right
plots of Figs. 3.21 and 3.22. The effect of the binning is less important once the smearing
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Figure 3.21
Different bin sizes for a 10% smeared distribution in the example benchmark
point (10, 20, 40 and 50 GeV). The red lines correspond to the true (smeared
and binned) prediction of the mhh distribution. The other colour indicates the
corresponding binned, but unsmeared distribution. Solid (dashed) lines repre-
sent the total (continuum) contribution to the cross section. The grey region
represents the region that falls into the window defined to compute the vari-
able R. The black vertical line indicates the value of the resonant mass, i.e.
512.5 GeV.

of the experimental data is taken into account. After the binning the “dip” is effectively
indistinguishable from the continuum contribution. The peak is still persistent and for
larger bin size approaches the same height as the bump at ∼ 400 GeV before binning.

In the most conservative result, the expected experimental resolution should have a bin
size of 50 GeV and a smearing of ∼ 15%. The expected results in this case would possibly
give access to the location of the resonance (the mass of the CP -even H should be know
via single production by the time the di-Higgs cross section is measured) and partially to
the height, and thus possibly to the size of λhhH . In order to make a quantitative estimate
of the sensitivity of the signal produced by the resonant diagram we have calculated the
value of the variable R defined in Eq. (3.19) that is obtained from Figs. 3.21 - 3.22, shown
in Tab. 3.2. The grey region represents the region that falls into the window defined to
compute the variable R. Overall, one can see that the values of R are significant, i.e. the
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Figure 3.22
Same as Fig. 3.21 but for 15% smearing.

signal could possibly be distinguished at the HL-LHC if our assumptions on the experimental
uncertainties are met. It should be noted that we are not taking into account the efficiency
of the particle detectors, which could reduce significantly the estimate of R (see also the
discussion in Sec. 4.2). Comparing the two columns in Tab. 3.2 one observes R is roughly
10% worse as the assumed percentage of smearing increases by 5%. However, R is is
somewhat more stable w.r.t. the bin size, where deviations within ∼ 5% are found. This
would constitute a rather positive feature for an experimental set-up.

Bin size R(10% smear) R(15% smear)

10 GeV (blue) 108.8 98.0

20 GeV (light blue) 107.6 98.3

40 GeV (green) 106.5 101.0

50 GeV (yellow) 103.0 98.9

Table 3.2: Values of the variable R for the significance of the signal for different bin sizes
for a 10% and 15% smeared distribution, see Figs. 3.21-3.22.
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The next part of the analysis concerns the arbitrary choice of the location of the bin.
This choice can also affect the pattern of the invariant mass distribution. The concrete
value of mmin

hh (the value of mhh at the bin start) and mmax
hh (the value of mhh at the bin

end) affects the number of events that fall into that bin and thus can have an impact on
the evaluation of the sensitivity R. For the previously used benchmark point we change the
location of the bin for a 10% and 15% smeared distribution and a 50 GeV bin size.

Figure 3.23
Invariant mass distributions for different bin locations assuming a bin size of 50
GeV and a smearing of 10% (left) and 15% (right). Solid (dashed) curves show
the full (continuum) result.

In Fig. 3.23 we show the difference in the invariant mass distribution created by a
change in the location of the first bin by 10 or 20 GeV, i.e. we start the distribution at
251, 261, 271 GeV as orange, yellow and purple lines, respectively. In both plots we show
the difference between the total differential cross section (solid lines) and the continuum
contribution (dashed lines). The left (right) plot uses a smearing of 10% (15%). One can
observe that for all three choices of bin locations the peak structure remains similarly visible
(the dip is strongly diluted from the smearing and the binning as discussed in the previ-
ous subsections). To quantitatively evaluate the significance of the signal of the resonant
enhancement we list the values of R for the two plots discussed above in Tab. 3.3.

Bin location R(10% smear) R(15% smear)

start at 251 GeV (orange) 103.0 98.9

start at 261 GeV (yellow) 104.6 90.4

start at 271 GeV (purple) 102.8 95.1

Table 3.3: Values of the variable R for the sensitivity of the signal for different bin locations
for a 10% and 15% smeared distribution and a bin size of 50 GeV.

In Tab. 3.3 one can observe that the variation in R stays within 5% when we modify the
location of the bins. That means that the uncertainties associated to the location of the
bin are smaller than the ones associated to the smearing and about the same as for the bin
size. Therefore, overall we find that the experimental resolution of the particle detector,
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which we tried to mimic by smearing the data, has a larger impact on the resonance, and
the width and location of the binning has a smaller effect in diluting the resonance.

We conclude this section saying that the smearing of experimental data partially blurs
the dip-peak structure around the resonance and mostly a bump survives, with a very small
reduction due to the dip w.r.t. the unsmeared result. While the smearing has a visible
effect on R, the binning hardly reduces its value. Similarly, the location of the bin, which is
partially arbitrary, has a smaller impact on R once we take into account the finite resolution
of the detector (smearing), thus it is crucial for experimental analysis to reduce the smearing
as much as possible, while the binning playing a smaller impact according to our analysis.
We will investigate further experimental uncertainties and the expected sensitivity to the
BSM ξtH × λhhH couplings in greater detail in Sec. 4.2.

3.4 Loops and Interference

This section and Sec. 3.5 are based on the following publication:

[3] S. Heinemeyer, M. Mühlleitner, K. Radchenko, and G. Weiglein, Higgs
Pair Production in the 2HDM: Impact of Loop Corrections to the Trilinear
Higgs Couplings and Interference Effects on Experimental Limits, Eur. Phys.
J. C. 85 (2025) 437 [2403.14776]

In this section, we explore the behaviour of the invariant mass distribution of the di-
Higgs final state when incorporating loop corrections to the trilinear couplings involved
in Higgs pair production. We start our analysis discussing the effects on two benchmark
scenarios defined in Tab. 3.4.

tβ cβ−α mH mA m2
12 κ

(1)
λ λ

(1)
hhH

BP1 10 0.13 465 660 m2
Hsβcβ 3.65 0.25

BP2 15 0.12 400 660 m2
Hsβcβ 5.31 0.2

κ
(0)
λ λ

(0)
hhH λ

(0)
hHH λ

(0)
HHH λ

(0)
hAA λ

(0)
HAA

BP1 0.84 0.1 -2.31 0.07 -5.83 0.54
BP2 0.97 -0.07 -2.27 0.12 -6.77 0.67

Table 3.4: Benchmark points for the analysis of the impact of trilinear Higgs couplings in
the invariant mass distributions. Masses are given in GeV. For both points sβ−α > 0 and

mH± = mA, which in particular means λ
(0)
hAA = λ

(0)
hH±H± and λ

(0)
HAA = λ

(0)
HH±H± . These

benchmarks are allowed by the applied constraints in 2HDM Type I, altough the quantities
shown are independent of the type.

https://link.springer.com/article/10.1140/epjc/s10052-025-14124-x
https://link.springer.com/article/10.1140/epjc/s10052-025-14124-x
https://arxiv.org/pdf/2403.14776
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The invariant mass distributions shown in our analysis are calculated at leading order
in QCD. It would be possible to compute the invariant mass spectrum with HPAIR at NLO
QCD in the Born improved heavy-top limit. However, it has been shown that mass effects
may significantly distort the NLO distributions [222–224, 226, 227]. While, for the 2HDM,
the full mass effects at NLO QCD have been considered in Ref. [251], there exists no public
code that allows us to obtain results for our benchmark scenarios, in particular including
resonances. In Ref. [256] a parametrisation has been given for the total cross section and the
mhh distribution in the framework of a non-linear effective field theory as a function of the
anomalous Higgs couplings that includes NLO corrections. While this framework considers
deviations from the SM Higgs sector, it however does not include the possibility of additional
Higgs bosons. Consequently, one has the choice between a LO distribution ignoring NLO
effects and an approximate NLO distribution ignoring finite top-mass effects at NLO, where
we chose to adopt the LO case. While this approach obviously cannot capture the full NLO
mass effects, it does provide information regarding the possible impact of a BSM Higgs
boson resonance and of NLO electroweak corrections to THCs on the mhh distribution,
which is the main goal of our analysis. The inclusive cross section, on the other hand, is
rather well approximated at NLO QCD by applying a K-factor, obtained from the ratio of
the NLO to the LO cross section, of K(NLO) ≈ 2.

Figure 3.24
Left: Invariant mass distribution for the benchmark point BP1 in the 2HDM Type I
defined in Tab. 3.4. The SM prediction (dashed black line) is shown together with the
2HDM results with (solid red line) and without (solid blue line) loop corrections to the
THCs, see text. Right: Impact of the loop corrections to λhhH on the resonance shape
for the benchmark point BP2 defined in Tab. 3.4. The red (orange) line shows the result
with (without) loop corrections to λhhH .

In Fig. 3.24 we present the mhh distributions for the points in the 2HDM Type I defined
in Tab. 3.4, BP1 on the left and BP2 on the right. The blue curve in the left plot of
Fig. 3.24 is the invariant mass distribution for BP1 with both THCs taken at tree-level,
whereas the red line displays the result for the distribution for the case where both THCs
are incorporated at the one-loop level. The dashed black line indicates the SM prediction.
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Starting our discussion with the tree-level distribution (blue line), we can see the features
discussed in the toy model in Sec. 3.1: (1) the small values of the differential cross section
just above the threshold as a consequence of a cancellation of the form factors involved
in the continuum diagrams and (2) the maximum at mhh ≈ 400 GeV, which is related
to the di-top on-shell production. In this case, the resonance is located at mhh ≈ mH

showing a peak-dip structure. Apart from the resonant contribution, the shape of the tree-
level distribution resembles the SM prediction (dashed black line), taking into account the

relatively SM-like value of λ
(0)
hhh.

Turning to the red line, incorporating one-loop corrections to both THCs, one can ob-
serve that the shape of the distribution changes drastically. In particular the cancellation
close to the kinematical threshold in the leading order distribution is lifted.9 This can-
cellation now happens at values of mhh ≈ 400 GeV and leads to a large reduction of the
differential cross section in the region where at leading order a maximum occurred. Fur-
thermore, close to the kinematical threshold the distribution is largely enhanced, leading to
the appearance of a structure resembling a peak at mhh ≈ 250 GeV. We also investigated
the impact of the one-loop corrections to the two THCs individually (not shown in the plot)
and found that in this scenario the corrections to λhhH play a minor role, while the biggest
changes are caused by the large one-loop corrections to κλ.

Also shown in the figure are the total cross section values.10 Here it is interesting to
note that the decrease in the tree-level value of κλ of about 15% w.r.t. the SM11 leads to an
increase of roughly 20% of the tree-level cross section, whereas the inclusion of the one-loop
corrections to the THCs results in a reduction of the 2HDM cross section by about 30%,
i.e. 20% smaller than the SM result.

On the right plot of Fig. 3.24 we show an example where the loop corrections to λhhH
play a crucial role. The input parameters are defined in the BP2 of Tab. 3.4.

The result including NLO corrections only to κλ is shown as orange solid line, and
corresponds to a total LO QCD cross section of 44.4 fb. The mhh distribution shows a
pronounced peak–dip structure atmhh ∼ mH . The result including the one-loop corrections
to both THCs is shown as solid red line. The incorporation of the higher-order corrections

results in a larger λ
(1)
hhH value with opposite sign compared to the tree-level value. Its

inclusion gives rise to a dip–peak structure, i.e. the opposite behaviour compared to the
tree-level case. This effect is caused by a change in the overall sign of the couplings involved
in the resonant diagram, λhhH×ξtH , see the discussion in Sec. 3.1. In the present example we
demonstrate that such a change can arise solely from one-loop corrections to λhhH , i.e. the
incorporation of electroweak loop corrections is crucial in this case for a reliable prediction
of the experimental signature (experimental effects like smearing due to a limited detector
resolution will be discussed in the next section). This effect is clearly visible even in the
case of large one-loop corrections to κλ, as it is the case in this example. Our discussion
highlights the relevance of higher-order corrections also in the THCs involving BSM Higgs
bosons, as they can have a drastic effect on the invariant mass distributions.

9This effect has already been observed in the context of the SM in Ref. [237].
10The total cross section values are given at LO QCD in accordance with the distributions given at LO.

As stated above, including the NLO QCD corrections obtained with HPAIR, the cross section values would
increase by about a factor of 2 [1].

11Here we use the LO SM total cross section.
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3.5 Confrontation with experimental data

In view of the significant improvements in the experimental sensitivity to the di-Higgs
production cross section that have occurred recently and are expected to be achieved in
the future, it is crucial that the experimental limits (and of course eventually also the
experimental measurements) are presented in such a way that they can be confronted with
theoretical predictions in different scenarios of electroweak symmetry breaking in a well-
defined way. Up to now the experimental limits presented by ATLAS and CMS are given
either for non-resonant production, taking into account only SM-like contributions, or for
purely resonant production, where SM-like non-resonant contributions are omitted. We
discuss both types of limits in the following.

3.5.1 Non-resonant production

We start our discussion with the analysis of the non-resonant limits. In this case the
experimental limits are obtained under the assumption that there is no contribution from
an s-channel exchange of an additional Higgs boson, i.e. only the contributions of the
first and second diagrams in Fig. 3.2 are taken into account. The most recent results
from ATLAS [218] and CMS [193] report a limit on the cross section of gg → hh, which
depends on the value of κλ, and a bound on κλ is extracted. This is done by comparing the
experimental limit with the SM prediction for a varied κλ. We show in Fig. 3.25 an example
of the application of these limits for one particular benchmark scenario in the 2HDM, where
we vary cβ−α. The chosen input parameters are

tβ = 10, cβ−α ∈ {0 . . . 0.16} (sβ−α > 0),

mH = mA = mH± = 1000 GeV, m2
12 = m2

Hc
2
α/tβ .

(3.22)

The large mH value ensures that the resonant contribution from the s-channel H exchange
is negligible (we do not discuss effects of varying λhhH in this context), as seen in Sec. 3.1.
The variation of cβ−α results in a variation of κλ as indicated in the left plot of Fig. 3.25.
The blue dashed line shows the prediction for κλ at lowest order, while the blue solid
line shows the one-loop prediction for κλ. The gray line indicates the value of κλ = 1,

which corresponds to a coupling value of λhhh = λ
(0)
SM. The parameter spaces that are

excluded by theoretical constraints are indicated by the yellow (vacuum stability), dark
green (perturbative unitarity at LO) and light green (perturbative unitarity at NLO) shaded
areas. For the application of these limits we used the public package thdmTools [2]. The
constraints from vacuum stability exclude the displayed yellow region with negative values
of cβ−α. For the largest positive values of cβ−α the tightest bound arises from perturbative
unitarity (for the constraints at LO and NLO we require that the eigenvalues of the 2 → 2
scattering matrix satisfy |a0| < 1, where a0 denotes the s-wave amplitude of the scattering
process). Demanding that the measured properties of the Higgs boson at 125 GeV should
be satisfied poses a bound that is weaker than the one from NLO perturbative unitarity
and therefore this bound is not explicitly shown in the plot. It can be observed that at

tree level the variation of cβ−α towards larger values results in a decrease of κ
(0)
λ , which

reaches values close to zero for cβ−α >∼ 0.1. Including the one-loop corrections, as shown

by the blue solid line, yields a strong increase of κ
(1)
λ , with κ

(1)
λ

>∼ 5 for cβ−α >∼ 0.1 in this
example.
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Figure 3.25
2HDM Type I scenario described in Eq. (3.22). Left: κλ as a function of cβ−α. The

gray (blue dashed, blue solid) line shows the result for λ
(0)
SM (λ

(0)
hhh, λ

(1)
hhh), normalised to

λ
(0)
SM. Right: Limits on µ ≡ σ2HDM/σSM (each cross section calculated at LO QCD) as

function of cβ−α. Red, gray and blue: expected, observed experimental limits and theory
predictions with κλ taken at LO (dashed) and NLO (full). In both plots the parameter
space excluded by theoretical constraints is indicated by the yellow (vacuum stability),
dark green (perturbative unitarity at LO) and light green (perturbative unitarity at NLO)
shaded areas.

In the right plot we present the corresponding experimental limits and theoretical pre-
dictions for the ratio between the 2HDM and SM di-Higgs cross sections, µ ≡ σ2HDM/σSM,
both calculated at LO QCD. The solid (dashed) blue line shows the theory prediction using
the one-loop (tree-level) value for κλ. The dark red line shows the latest experimental ob-
served limit from non-resonant searches reported by ATLAS [218]. The solid (dashed) line
indicates the observed limit for the value of κλ that we have calculated at NLO (LO). The
corresponding gray line represents the expected limit for κλ at NLO (LO), in this case the
calculation is done using BSMPT. Confronting the experimental limits with the theoretical
predictions, a value of cβ−α is regarded as excluded if the predicted cross section is larger
than the experimentally excluded one. One can see that non-resonant di-Higgs searches

would not exclude any value of cβ−α for the case where κ
(0)
λ is used. As a consequence of

the large loop corrections to κλ this changes once the one-loop corrections are taken into
account. One can see that in this case for the considered example the non-resonant searches
exclude a region for large cβ−α values that is allowed by all other constraints. This under-
lines the fact that the search for di-Higgs production at the LHC already provides sensitivity
to parameter regions of the 2HDM that were unconstrained so far, see also Ref. [126], where
scenarios with cβ−α = 0 have been considered.
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3.5.2 Resonant production

We now turn to the interpretation of experimental limits for resonant di-Higgs production
in the 2HDM. The resonant limits that have been presented by ATLAS and CMS so far were
obtained assuming that only one heavy resonance is realised, neglecting the contributions
of the continuum diagrams. This approach is potentially problematic since in any realistic
scenario the contributions of the non-resonant diagrams one and two in Fig. 3.2 will of
course always be present in addition to the possible resonant contribution of an additional
Higgs boson. The limits obtained by ATLAS and CMS can therefore only be directly applied
to scenarios where the impact of the non-resonant diagrams is negligible compared to the
contribution of the resonant diagram. Using the 2HDM as a test case for scenarios that
have been claimed to be excluded or non-excluded by ATLAS and CMS we will investigate
in the following to what extent the assumption made in obtaining the experimental limits
is justified.

We note that the assumption of restricting to the resonant contribution implies that the
mhh distribution corresponding to the assumed signal will have a peak structure located at
mhh ≈ mH . This peak structure can potentially be modified by the continuum contributions
and by interference effects, where the latter in particular can give rise to peak–dip or dip–
peak structures. In the context of assessing the non-resonant contribution arising from the
exchange of the detected Higgs boson at 125 GeV (second diagram in Fig. 3.2) we will
analyse the impact of loop corrections to κλ.

Figure 3.26
Invariant mass distribution for the 2HDM Type I benchmark point BP1 defined in Tab. 3.4.

Left (right) plot: using κ
(0)
λ , λ

(0)
hhH (κ

(1)
λ , λ

(1)
hhH). Red (blue): Complete σ(gg → hh)

prediction (resonance contribution only).

As a first step, to demonstrate the various possible interference and higher-order effects,
we show in Fig. 3.26 the invariant mass distributions for the benchmark point used on the
left plot of Fig. 3.24, which is defined in Tab. 3.4. This benchmark point is allowed by all
theoretical and experimental constraints. The blue curves show the pure resonant result,
while the red curves correspond to the complete model calculation, including also the non-
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resonant diagrams and the interference contributions. The left (right) plot uses the THCs
at LO (NLO). Their values and those of the corresponding total cross sections are specified
in the plots. Contrary to the plots in the previous subsections, here we apply a smearing
of 15% and a binning in mhh of 50 GeV in order to take into account the limited detector
resolution in the experimental analyses, see Sec. 3.3 for details.

For the case where the tree-level THCs are used, as shown in the left plot of Fig. 3.26, one
can observe that the peak in the mhh distribution given by the pure resonant distribution is
broadened substantially over several mhh bins as a consequence of the inclusion of the non-
resonant contributions. The effect of the resonance itself is very small, since its contribution
to the full result is only about 4%. Furthermore, the “resonance-like” structure of the full
result is caused dominantly by the contribution of the continuum diagrams, which peaks
slightly above the di-top production threshold (∼ 400 GeV), while the resonant contribution
(at ∼ 465 GeV) in this case is minor and does not appear as a clear resonant structure above
the continuum distribution. As can be inferred from the right plot, the inclusion of the NLO
contributions to the THCs enhances the pure resonant distribution in this example due to

the increased absolute size of λ
(1)
hhH in comparison with λ

(0)
hhH , which is also reflected in

the result for the total cross section. As indicated by the red curve in the right plot, the
combined effect of taking into account non-resonant contributions, interference effects and
the NLO corrections to the THCs has a drastic effect on the predicted mhh distribution.
Instead of a pronounced peak as it would be expected from the pure resonant contribution,
the full result incorporating all relevant contributions gives rise to an mhh distribution that
is overall smoothly falling with just a small modulation near mhh ≈ mH . Resolving this
structure experimentally will clearly be much more challenging than it would be the case if
the distribution had the form obtained from restricting to the pure resonant contribution.
A striking feature that can be inferred from the plot is the large effect of the non-resonant
contributions on the mhh distribution just above the threshold at mhh ∼ 250 GeV. In this
region the differential cross section for the full result differs by several orders of magnitude
from the one for the pure resonant contribution. The shape of the differential cross section
in this region is also very significantly modified in comparison to the prediction using the
THCs at lowest order (red curve in the left plot). As discussed above, the latter large
enhancement happens as a result of a the change in κλ which affects the cancellation
between the triangle and box form factors of the continuum diagrams that is present at the
mhh threshold at leading order. For κλ ̸= 1 this cancellation does not take place, giving
rise to a large enhancement just above the threshold.

While the benchmark point that we have discussed in Fig. 3.26 is unexcluded by the
non-resonant and resonant searches, we now turn to two benchmark points that are claimed
to be excluded by the existing resonant searches. In Fig. 3.27 we show the results for the
two benchmark points in the 2HDM Type I whose input parameters and couplings are given
in Tab. 3.5. For each case we compare the mhh distributions based purely on the resonant
diagram, shown in blue, with the one based on the full calculation, shown in red. In the
displayed results the NLO results for the THCs have been used (with the values given in
the respective plots). Like in the previous plots, all results are shown at LO in QCD. By
comparing the predicted distributions based on the full result with the ones based on only
the pure resonant contribution we will investigate to what extent the assumption of taking
into account only the pure resonant contributions is justified.
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tβ cβ−α mH mA m2
12 κ

(1)
λ λ

(1)
hhH

BP3 4.0 0.05 450 800 m2
Hc

2
α/tβ 5.01 0.23

BP4 2.2 0.04 450 800 m2
Hc

2
α/tβ 0.86 0.24

κ
(0)
λ λ

(0)
hhH λ

(0)
hHH λ

(0)
HHH λ

(0)
hAA λ

(0)
HAA

BP3 0.94 0.21 0.37 -0.06 7.56 0.3
BP4 0.96 0.20 0.15 -0.05 0.12 -0.05

Table 3.5: Benchmark points for the analysis of the applicability of resonant limits. Masses
are given in GeV. For both points sβ−α > 0 and mH± = mA, which in particular means

λ
(0)
hAA = λ

(0)
hH±H± and λ

(0)
HAA = λ

(0)
HH±H± .

We also give the total cross section values calculated with HPAIR for the two benchmark
points in Tab. 3.6. In column 2 and 3 we show the results of the full calculation at LO and
NLO QCD in the HTL, respectively (confirming the factor of about 2 between them, as
mentioned above). In column 4 and 5 we give the corresponding results taking into account
only the resonant diagram. The cross section values at LO QCD quoted in the legends of the
figures correspond to the integrated curves of Fig. 3.27. Column 6 shows the “obs. ratio”,
calculated with HiggsTools [187–191,195–197,257]. The obs. ratio in this case defined (see
Eq. (2.105)) as

obs. ratio ≡ σmodel(ggH)× BRmodel(H → hh)

σobs(ggH)× BRobs(H → hh)
, (3.23)

where the superscript “obs.” refers to the observed experimental limit and “model” refers to
the 2HDM. Here, the model cross sections have been calculated at NLO QCD in the Born
improved heavy-top limit, using HPAIR. The model branching ratios have been obtained

with HDECAY [199,200], which we modified to include the effective NLO coupling λ
(1)
hhH in the

decay width of the heavy Higgs boson into the SM-like Higgs boson pair. These calculated
2HDM cross section and branching ratio values are then provided as inputs for HiggsTools.
The definition Eq. (3.23) implies that the points with an observed ratio larger than 1 are
excluded by experimental searches. In view of the assumptions made in the experimental
analyses we apply this limit only to the resonant contribution σres. The benchmark points
BP3 and BP4 (left and right plots of Fig. 3.27) are both excluded by the resonant search
pp→ hh→ bb̄τ+τ− [258].12

σ (LOQCD) σ (NLOQCD) σres (LOQCD) σres (NLOQCD) obs. ratio

BP3 82.53 165.89 45.06 89.23 1.8
BP4 85.95 169.03 71.51 140.77 2.9

Table 3.6: Higgs pair production cross sections σ(gg → hh) [fb] and the resonant contribu-
tion only (σres), computed with HPAIR at LO and NLO QCD in the Born improved heavy-top
limit for the total cross section, respectively; “obs. ratio” obtained with HiggsTools (see
text).

12This search is included in HiggsTools dataset since version v1.6.
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The left plot of Fig. 3.27 shows the result for the benchmark point BP3, which is claimed
to be excluded by resonant di-Higgs searches, but not by non-resonant searches. This point
is characterised by significant corrections to κλ, corresponding to a parameter region where
the one-loop effective coupling approximation is well justified, the explicit values are given
in Tab. 3.5.

Figure 3.27
Invariant mass distribution versus the invariant mass for the full result (red) and the
result based on the pure resonant contribution (blue). Both BP3 (left) and BP4 (right)
are examples of scenarios allowed by non-resonant searches but excluded by resonant
searches.

The results for the total cross sections indicate that the pure resonant contribution
amounts to about half of the full result (both at LO and NLO QCD), this is indicated
with the percentage of the resonant production contribution in the full process, displayed
in the bottom of the plots in Fig. 3.27. Concerning the mhh distributions, one can see that
the qualitative features are similar to the right plot of Fig. 3.26. While the pure resonant
contribution shows a pronounced peak, this peak-like structure appears only as a rather
small modulation of a smoothly falling distribution in the full result. As in Fig. 3.26 the cross
section just above the hh threshold is enhanced by several orders of magnitude compared
to the expectation based on the pure resonant contribution. The peak-like structure in the
full result will clearly be much more difficult to resolve experimentally than it would seem
to be the case based on the pure resonant contribution. We therefore conclude that the
exclusion limits obtained for the resonant di-Higgs searches by ATLAS and CMS may be
too optimistic in view of the modifications that occur in the invariant mhh mass distribution
upon the inclusion of the SM-like non-resonant contributions that are present in all realistic
scenarios and of the relevant interference contributions.

Our second example, BP4, is shown on the right plot of Fig. 3.27, and defined by the
input values in the second row of Tab. 3.5. As BP3, it is claimed to be excluded by resonant
di-Higgs searches, but not by the non-resonant ones. Contrary to BP3, the higher-order
corrections to the THCs are substantially smaller, as shown in Tab. 3.5. For this parameter
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point the mhh distribution based on the pure resonant contribution and on the full result
are more similar than in the previous example, and the pure resonant contribution amounts
to about 83% of the full cross section. However, still a substantial broadening of the peak by
the inclusion of the non-resonant diagrams can be observed. Similarly to BP1, we therefore
conclude that the exclusion limits obtained for the resonant di-Higgs searches by ATLAS
and CMS are possibly too optimistic in view of the mhh modifications due to the inclusion
of all the relevant contributions in a realistic scenario.

Our discussion shows that the sensitivity of the resonant di-Higgs searches by ATLAS
and CMS has already reached a level of sensitivity that strongly motivates to go beyond
the assumption of restricting to the pure resonant contribution in deriving the experimen-
tal limits. A dedicated joint effort of experiment and theory would be desirable to define
an appropriate framework in which the experimental limits should be presented in the fu-
ture. In particular, the non-resonant contributions should be included in the signal model,
and the possibility of interference effects between the resonant and non-resonant contribu-
tions should be incorporated. This will require an extension of the analysis setup involving
additional parameters.

3.6 Generalisation to any model: anyH3 and anyHH

The introduction of this chapter provided a general overview of the leading order effects
in the Higgs pair production. We then explored these effects in depth within the frame-
work of the 2HDM, highlighting their implications for collider phenomenology and ongoing
experimental searches. In addition, we incorporated the dominant source of electroweak
corrections arising from mass-splitting effects through an effective trilinear coupling, which
captures the one-loop contributions of the Coleman-Weinberg potential.

In this section, we compare the 2HDM results with those obtained using a diagrammatic
approach to loop-corrected trilinear couplings. We complete the picture by extending our
analysis to arbitrary renormalisable models with extended scalar sectors. This generalisation
led to the development of an automated tool, anyHH, yet to be published.

The first public version of the tool, coined anyH3 [131], was limited to the SM-like
trilinear coupling λhhh. As part of this thesis, we contributed to extending the capabilities
of anyH3 to the calculation of generic trilinear coupling λhihjhk in arbitrary renormalisable
scalar sectors at one-loop order. Such corrections can be included in the LO QCD Higgs pair
production cross section predictions within the anyHH framework. This approach enables
the inclusion of the dominant corrections to hh while maintaining full control over both the
corrections to the effective couplings and their momentum dependence.
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3.6.1 One-loop corrections to λijk

We begin by implementing a full OS scheme for the calculation of the trilinear scalar cou-
plings λijk. The generic one-loop coupling is given in Eq. (2.63). Here we provide the
explicit form of the counterterm contribution which was not described in Sec. 2.6.2 and can
be expressed as

δ
(1)
CTλijk =

∂λ
(0)
ijk

∂v
· δ(1)CTv +

∑
i

∂λ
(0)
ijk

∂ti
· δ(1)CTti +

∑
i

∂λ
(0)
ijk

∂m2
i

· δ(1)CTm
2
i +

∑
αi

∂λ
(0)
ijk

∂αi
· δ(1)CTαi, (3.24)

in terms of the counterterms of the vev, δ
(1)
CTv, the tadpoles andmass parameters present

in λ
(0)
ijk, δ

(1)
CTti and δ

(1)
CTm

2
i respectively (the index i runs over the different scalar states), and

of the different BSM-specific parameters δ
(1)
CTαi, such as mixing angles, independent

couplings or others. The coefficients in front of these counterterms are the partial deriva-
tives of the corresponding parameters in the tree-level expressions of the trilinear coupling
(including the tadpole contribution).

To guide the discussion of the necessary counterterms, let us start by defining the scalar
self energy13 as the 1-particle irreducible diagrams (1PI) two-point correlation function of
a scalar 14

iΣϕ(p
2) ≡ 1PI . (3.25)

The full propagator to all perturbative orders in the coupling can then be expressed as the
tree-level contribution defined in Eq. (3.1.1) plus a series sum of 1PI diagrams

∆ϕ(p
2) = + 1PI + 1PI 1PI + ...

=
i

p2 −m2
ϕ

+
i

p2 −m2
ϕ

iΣϕ(p
2)

i

p2 −m2
ϕ

+
i

p2 −m2
ϕ

(
iΣϕ(p

2)
i

p2 −m2
ϕ

)2

+ ...

=
i

p2 −m2
ϕ

1 + −Σϕ(p
2)

p2 −m2
ϕ

+

(
−Σϕ(p

2)

p2 −m2
ϕ

)2

+ ...

 =
i

p2 −m2
ϕ +Σϕ(p2)

,

(3.26)

where in the last step we used the geometric series resummation. This shows that the
leading order mass parameter mϕ is dressed with the self energy contribution containing
virtual particles. Applying the renormalisation conditions in Eq. (2.27) to the mass and to
the scalar field we obtain the renormalised propagator

13This discussion is based on my personal notes from the course Renormalisation of spontaneously broken
gauge theories and related phenomenological aspects by Prof. Dr. Georg Weiglein

14This means that the diagrams cannot be split into two distinct diagrams by cutting one internal line
that carries a non vanishing momentum.

https://syncandshare.desy.de/index.php/s/Gd4s74zBJDLQZQa?dir=undefined&openfile=559119123
https://syncandshare.desy.de/index.php/s/Gd4s74zBJDLQZQa?dir=undefined&openfile=559119123
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∆̂ϕ(p
2) =

i√
Zϕ

∗
(
p2 −m2

ϕ +Σϕ(p2)− δm2
ϕ

)√
Zϕ

≃ i

p2 −m2
ϕ + Σ̂ϕ(p2)

, (3.27)

where the hat indicates that the corresponding function is renormalised. In the last step we
did not use a strict equality because approximate the renormalised self energy at one-loop
as in Eq. (2.27). Correspondingly, the definition of the renormalised self energy is given by

Σ̂ϕ(p
2) = Σϕ(p

2)− δm2
ϕ +

δZ∗
ϕ

2
(p2 −m2

ϕ) + (p2 −m2
ϕ)
δZϕ
2
, (3.28)

which consists of the unrenormalised self energy plus the one-loop counterterm contribu-
tions. If we were to go beyond one-loop order in the perturbative expansion, we would
need to include the second term in the square root of Zϕ expansion from Eq. (3.27) and the
expression for the renormalised self energy would become more involved (involving also a
subloop renormalisation). We see that the pole of the propagator occurs at mP , which in
general is a complex quantity,

m2
P −m2

ϕ + Σ̂ϕ(m
2
P ) = 0. (3.29)

In particular, m2
P = m2

p − impΓ, where mp is the physical mass of the particle and Γ is its

total width. If Σ̂(m2
P ) ̸= 0 it means that the pole is shifted by the higher order contributions.

The Goldstone theorem ensures that this term is zero for the massless gauge bosons that
arise from a SSB (Σ̂γ(0) = 0) for the photon, as it is protected by the U(1)EM symmetry.

In an on-shell scheme the counterterms are fixed in a way such that the loop-corrected
quantities correspond to the physically measured quantities. This means in particular that
the physical mass of the particle mp coincides with its tree-level mass mϕ (from now on we
will use only mϕ notation for simplicity, and because we define an OS scheme), and that
the renormalised one-loop self energy at the real part of the complex pole vanishes:

ReΣ̂ϕ(p
2 = m2

ϕ)
!
= 0, (3.30)

Additionally, the mixing between the different mass eigenstates also needs to vanish, for
two particles i, j with i ̸= j, the off-diagonal self energies must fulfil

Σ̂ij(p
2 = m2

i )
!
= 0 and Σ̂ij(p

2 = m2
j )

!
= 0. (3.31)

These conditions ensure that the pole of the propagator remains at p2 = m2
ϕ at higher

orders.
We proceed now to apply these conditions to all the parameters involved in the tree-level

expressions of the trilinear couplings defined in Eq. (3.24). Starting from the vev, we define
the OS scheme analogously to the SM definition in Ref. [63]. For this purpose we express
the vev in terms of physically measured quantities, namely the masses of the W± and Z
bosons, and the electric charge, e 15,

v =
2mW

e

√
1− m2

W

m2
Z

→ δOS
CTv

v
=
δOS
CTm

2
W

2m2
W

+
c2θ
2s2θ

(
δOS
CTm

2
Z

m2
Z

− δOS
CTm

2
W

m2
W

)
− δOSe

e
, (3.32)

15From now we will omit the superindex (1) in all the counterterms for simplicity.
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where θ is the weak mixing angle and the counterterms for the physical masses and electric
charge are

δOS
CTm

2
Z = ΣTZ

(
m2
Z

)
,

δOS
CTm

2
W = ΣTW

(
m2
W

)
,

δOS
CTe = −1

2
δOS
CTZγ −

sθ
cθ

1

2
δOS
CTZγZ =

1

2

∂ΣTγ
(
p2
)

∂p2

∣∣∣∣∣
p2=0

− sθ
cθ

ΣTγZ(0)

m2
Z

,

(3.33)

where the upper index T stands for the transversal component of the corresponding self
energy, which can be computed using the projector

PT ≡ −1

(D − 1)

(
gµν −

kµkν
k2

)
, (3.34)

where D is the dimension (using dimensional regularisation), gµν is the metric tensor and k
is the momentum. With this projector we compute the transversal part of a general vector
boson self energy defined as

Σµνab (k) =

k k

a, µ b, ν
, (3.35)

simply by applying the projector to the full result

ΣT µν
ab (k2) = PTΣµνab (k). (3.36)

The on-shell tadpole counterterms are defined to cancel exactly the tadpole diagrams

δtOS
i = −Ti, where Ti = hi , (3.37)

note that there will be as many tadpole renormalisation conditions as vevs.

The conditions for the on-shell scalar mass counterterms arise from imposing the
condition in Eq. (3.30) in the definition of the renormalised self energy in Eq. (3.28), which
for the diagonal case reads

Σ̂i(p
2) = Σi(p

2)− δm2
i + (p2 −m2

i )δZi, (3.38)

and the unrenormalised scalar self energy is defined as

Σi(p) =

p p

hi hi . (3.39)

Thus applying the condition in Eq. (3.30) leads to

δmOS
i = ReΣi(m

2
i ). (3.40)
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From Eq. (3.38) an additional on-shell condition can be derived for the δZ counterterms
that governs theWFR corrections that enter in Eq. (2.64). This condition is the vanishing
of the derivative of the renormalised diagonal self energy w.r.t the momentum squared
evaluated on shell

∂Σi(p
2)

∂p2

∣∣∣∣
p2=m2

i

!
= 0. (3.41)

Applying this condition leads to the following diagonal WFR conterterm definition

δZOS
i =

−∂Σi(p2)
∂p2

∣∣∣∣
p2=m2

i

. (3.42)

On the other hand the off-diagonal renormalised self energy can be written as

Σ̂ij(p
2) = Σij(p

2) + (p2 −m2
i )
δZij
2

+ (p2 −m2
j )
δZji

2
, (3.43)

where i ̸= j and the unrenormalised self energy diagramatically is

Σij(p) =

p p

hi hj . (3.44)

The OS renormalisation conditions are imposed to cancel out the contributions of the
renormalised self energies at the two on-shell momenta, p2 = m2

i and p2 = m2
j . This

will introduce equations for the counterterms that depend on the mixing parameters of
the theory, such as for instance the mixing angles in the 2HDM. We will focus on this
specific model from now on for concreteness, bu the above discussion remains general. For
convenience, we can define the off diagonal Z-factors as

δZHh
2

:= δCh + δα,
δZhH
2

:= δCh − δα. (3.45)

And applying the renormalisation conditions

Σ̂hH(p
2 = m2

h)
!
= 0 and Σ̂hH(p

2 = m2
H)

!
= 0, (3.46)

we get the counterterms for the mixing angle and the off-diagonal WFR that is included in
the WFR contribution to λijk defined in Eq. (2.64). Their explicit forms are

δα =
ΣHh(m

2
h) + ΣHh(m

2
H)

2(m2
h −m2

H)
,

δZHh =
ΣHh(m

2
h)

(m2
h −m2

H)
,

δZhH =
ΣhH(m

2
H)

(m2
H −m2

h)
.

(3.47)

Analogously for the CP -odd mixing angle we get
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δβ =
ΣG±H±(m2

W ) + ΣG±H±(m2
H±)

2(m2
W −m2

H±)
. (3.48)

For our purposes, i.e. the trilinear couplings entering Higgs pair production, we do not
need the WFR constants for the CP -odd fields. Note that there is an equivalence between
calculating the β-counterterm with the charged G±H± self energy and the neutral ZA self
energy.

With this we have exploited all possible OS conditions. However, one counterterm
remains to be fixed, the conterterm for the BSM mass parameter M:

M0 →MR + δM.

We chose to define the counterterm of δM such that it cancels all the remaining UV diver-
gence in λhhh. To also make it renormalisation scale independent, the counterterm δM was
derived by integrating the one-loop RGE of M , fixing all the other parameters OS, i.e. not
running. We define the input parameter MMS at a reference scale µinp = MMS, while the
scale used in the calculation is renormalisation scale µren. The resulting expression for δM
thus effectively converts MMS(µ = MMS) to MMS(µ = µren), truncating at the one-loop
order and retaining only the logarithmic dependence. The counterterm reads

δM =
M

32π2v2

{
−3
(
2m2

W +m2
Z

)
+ 6

[
m2
u +m2

c +m2
t

t2β
+
(
m2
d +m2

s +m2
b

)
t2β

]
+ 2t2β

(
m2
e +m2

µ +m2
τ

)
+ 4M2 − 2m2

H± −m2
A

− s2α
s2β

(
m2
h −m2

H

)} 1

∆
.

(3.49)

where ∆ = 1/ϵ+ ln(µ2/M2) This scheme is known in the literature as KOSY scheme [125]
(see also [259]). In our results we have explicitly verified that the results for the trilinear
scalar couplings in this scheme are renormalisation scale independent and UV-finite. We
will use the KOSY scheme to define the effective one-loop-corrected trilinear couplings that
will be included in the calculation of the double Higgs production. Therefore we will focus
on the two couplings involved in the di-Higgs production, λhhh and λhhH . To be more
specific and to follow the discussion so far we will maintain the discussion in the 2HDM,
even though anyH3 v.2. can be used for any trilinear scalar coupling in any renormalisable
model with an extended scalar sector.

In Fig. 3.28, we compare the one-loop trilinear Higgs couplings computed with anyH3

using the OS scheme described above with the results of the public code BSMPT [140–142],
which uses the Coleman Weinberg one-loop effective potential [137, 138] as discussed in
Sec. 2.6.2.16 As said before, we concentrate on the two couplings involved in hh-production
in the 2HDM, i.e. λhhh (left column) and λhhH (right column). The different rows show
different benchmark scenarios, in particular

row 1: mH = mA = m±
H = 450 GeV, tβ = 10 and m2

12 = m2
Hc

2
α/tβ,

16Additionally, the diagrams contributing to the one-loop result of anyH3 have been tested independently
with the FeynCalc [260, 261] and FeynArts [262] Mathematica packages. The loop integrals were evaluated
using LoopTools [263,264].
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Figure 3.28
Comparison of the tree-level and one-loop trilinear Higgs couplings in the 2HDM Type
I computed using the diagrammatic approach implemented in anyH3 and the effective
potential approach implemented in BSMPT. The left column shows the λhhh coupling and
the right column shows the λhhH coupling, both involved in Higgs pair production in
the 2HDM. The three rows represent three different benchmark scenarios. The lower
panel represents the absolute difference between both approaches ∆λijk := λijk(anyH3)−
λijk(BSMPT) for the tree-level (solid) and one-loop (dashed) results.
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row 2: mH = 450 GeV, mA = m±
H = 650 GeV, tβ = 10 and m2

12 = m2
Hc

2
α/tβ,

row 3: mH = mA = m±
H = 650 GeV, tβ = 10 and m2

12 = m2
Hc

2
α/tβ.

The results from anyH3 are shown in blue while the results from BSMPT are shown in
pink. The tree-level result is a dashed line in the BSMPT case and a dotted line in anyH3.
The difference at tree-level arises from a difference in the vev. On one hand, BSMPT uses
the v as an input with a default value of v = 246.2197 GeV (extracted experimentally from
GF ). On the other hand, anyH3 extracts it from mW , α := e2/(4π) and mZ (according to
Eq. (3.32)), which leads to a numerical value of v = 250.6919 GeV. If we set them to equal
values, the two results agree exactly. However, we chose to keep the anyH3 approach both
at tree-level and at one-loop in order to consistently define a renormalisation scheme with a
proper treatment of the vev. The solid line shows the analytic result according to Eq. (2.75)
with the value of the vev obtained from the value of GF , therefore it matches the BSMPT

result.

The one-loop results are depicted with a solid line for BSMPT and as a dot-dashed line
for anyH3. The differences at one-loop order are in all the analysed scenarios below 10%
of the one loop correction. For the benchmark scenario in row 1 displayed in Fig. 3.28 it
is below 2% (4%) for λhhh (λhhH), for the scenario in row 2 it remains below 5% (10%)
for λhhh (λhhH) and for the scenario in row 3 below 4% (7%) for λhhh (λhhH). Since the
two results are not in the same renormalisation scheme we do not expect perfect agreement
but deviations that are formally of higher order. In total, we find an overall relatively good
agreement of both results which reassures the consistency of both approaches.

To conclude, we emphasise that our results show that there is in general a good agree-
ment between the two codes at the zero momentum approximation and that our imple-
mentation is robust. It is also interesting to note how large these corrections are in both
approaches and to note that their inclusion is always taken into account in the cosmological
analysis by means of the CW potential but were up to now not included in collider phe-
nomenology studies. The steps for obtaining these results were described in the previous
sections of this chapter. In the following we will only present the capabilities of anyHH

as a flexible tool for the collider phenomenology side of the loop-corrected trilinear Higgs
couplings through Higgs pair production.

3.6.2 Higgs pair production

We have mentioned that anyHH is an extremely powerful tool that can perform calculations
of the leading order QCD Higgs pair production cross section in arbitrary renormalisable
models with extended scalar sectors. We incorporate the loop-corrected couplings in order
to account for the leading higher-order electroweak effects, while for the higher-order QCD
corrections K-factors ∼ 2 are used. For simplicity and coherence, we will stick to the
2HDM in the examples shown here and will refer the interested reader to the forthcoming
publication, where also scenarios with more than one heavy resonance (e.g. in models with
doublets + singlets) are realised.

First we compare the performance of anyHH with the existing tools in the literature
such as HPAIR. Although the public version of HPAIR does not include EW corrections, we
use here the privately implemented version that was used in the analysis in Sec. 3.2 which
includes the effective one-loop-corrected trilinear scalar couplings. In the THDM Type I, we
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perform a comparison between HPAIR and anyBSM for several benchmark points with tβ = 2
and M = 400GeV, shown in Fig. 3.29. In the left plot we compare four benchmark points
with cβ−α = 0.04 and cβ−α = −0.04, and mH = mA = mH± = 500 and 600GeV, all of
which are allowed by experimental and theoretical constraints (checked with thdmTools [2]).
For completeness we show in Tab. 3.7 the values of their tree-level and one-loop couplings,
where we also define the three benchmark points used in the right plot of Fig. 3.29, all of
which are in the alignment limit. We show here the same normalisation as throughout this
work, as defined in Eq. (2.57).

mH [GeV] cβ−α
17 κ

(0)
λ κ

(1)
λ λ

(0)
hhH λ

(1)
hhH

BP1 500 -0.04 0.97 1.03 -0.11 -0.05
BP2 500 0.04 0.97 1.03 0.11 0.22
BP3 600 -0.04 0.97 1.76 -0.08 0.25
BP4 600 0.04 0.97 1.76 0.08 0.5
BP5 500 0 1 1.07 0 0.08
BP6 550 0 1 1.32 0 0.19
BP7 600 0 1 1.79 0 0.38

Table 3.7: Benchmark points chosen for the Higgs pair production comparison between
anyHH and HPAIR with their κλ and λhhH trilinear couplings at tree-level and one-loop (at
zero external momenta).

For the points outside the alignment limitshown in the right plot of Fig. 3.29 we im-
plement the tree-level value of the trilinear couplings. The same input parameters were
used in both codes, in particular the decay width for the involved scalars was obtained
setting the automatic width mode of anyHH, which uses the optical theorem, namely Γi =
−Im

(
Σi(p

2 = m2
i )
)
/mi, and implementing the same numerical value in HPAIR, where the

width is an external parameter. We show the anyHH results with dashed lines and the HPAIR
ones with solid lines, adopting a different colour for each scenario.

It can be seen that the four explored scenarios show very good agreement, the absolute
difference between the two codes is very small as shown in the lower panel of Fig. 3.29,
where ∆ = |∂σLOhh /∂mhh(HPAIR)− ∂σLOhh /∂mhh(anyHH)|. The largest difference arises close
to the resonant peak, which has been checked to be an artefact of the numerical integration.
Overall the curves of both codes are very similar to the SM curve, shown in black, as their
κλ value at tree level (the one used for this plot) is very close to 1. Their main difference
from the SM curve is the resonance located at the corresponding heavy Higgs mass, the
dip-peak and peak-dip structure is determined by the sign of λhhH which in turn depends
on the value of cβ−α according to the Eq. (2.75).

On the right plot of Fig. 3.29 we show the prediction for the differential hh-production
cross section with loop corrections to the trilinear couplings, with solid lines we show the
result using anyHH, and with dashed lines the results from the modified HPAIR code. The
agreement between both codes is remarkable, with less than 1% deviations in the total
cross section and, as shown in the lower panel, less than 1/1000 deviations in the absolute
differential cross sections. Again the largest differences arise at the highest points of the
resonant peak, where the numerical integration has the largest impact.

In this scenario we can see additionally that we are in the tree-level alignment limit.
Still, the mass splitting betweenmH andM induces sizeable loop corrections to the trilinear
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Figure 3.29
Comparison between the Higgs pair production cross section results by anyHH and HPAIR

in the 2HDM-I. Left: four benchmark scenarios with tree-level trilinear Higgs couplings
away from the alignment limit . Right: three scenarios with loop trilinear Higgs couplings,
all of them in the alignment limit, therefore the prediction with tree-level trilinear Higgs
couplings coincides with the SM prediction depicted by a solid black line.

scalar couplings, which in turn alter dramatically the invariant mass distribution. This can
also be seen in the values of the trilinear couplings provided in Tab. 3.7, were both κλ
and λhhH grow as the splitting between M = 400 GeV and the resonant mass rises. As
discussed in the previous section, a dip arises close to the di-top threshold as a consequence of
a deviation of κλ from the alignment limit, and, additionally, a resonance peak is developed
due to the loop corrections to λhhH which is absent at tree-level. Consequently, the results
underline the importance of precision calculations for BSM hh phenomenology.

Finally, we want to briefly study the momentum effects, as those can be included in
the anyHH setup. These were initially studied in the λhhh coupling in Ref. [131]. These
findings suggest that a sizeable momentum dependence is found for larger values of external
momentum, and therefore the impact on the SM-like hh-production is mild, as the cross
section becomes small in the high-momentum region. It was also found that the momentum
effects are relatively smaller than the one-loop corrections to κλ.

Here we study these effects for the hh invariant mass distribution. In particular we
include effective couplings of the type λhhh(m

2
hh,m

2
h,m

2
h) and λhhH(m

2
hh,m

2
h,m

2
h) where

the internal propagator is set to the energy of the invariant mass system in the final state,
i.e. mhh, and the external legs are set to the on shell light Higgs masses mh. In Fig. 3.30 we
show our results in the same benchmark scenarios as before, i.e. the four points out of the
alignment limit on the left plot and the three points in the alignment limit on the right. The
difference is that now we show the predictions with loop-corrected trilinear Higgs couplings
in both plots. With dashed lines we show the results with the effective couplings at zero
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momenta p2 = 0, while solid lines show the result with full momentum dependence in the
couplings. Therefore the dashed lines in the right plot are the same results in Fig. 3.29
and Fig. 3.30. Again in the lower panel we show the absolute difference between the solid
and dashed curves, which in this case means the difference between the zero-momentum
effective couplings and the full momentum dependent ones.
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Figure 3.30
Higgs pair production invariant mass distribution for different scenarios in the THDM
Type I. Same scenarios as in Fig. 3.30 are used, on the left outside of the alignment
limit and on the right in the alignment limit. Solid lines depict the predictions including
momentum dependence in the trilinear couplings and dashed lines show the results with
the zero momentum approximation for the trilinear Higgs couplings.

We observe that the corrections in general are minor, in particular for the case of higher
resonance masses (mH = 600 GeV), ans become slightly more significant for smaller reso-
nant masses (mH = 500 GeV). The momentum dependence in λhhH is of smaller importance
than the corrections to λhhH , which slightly alter the shape around the resonance, while
maintaining the overall structure (peak/dip or dip/peak). In view of these results we con-
clude that the zero momentum approximation is a reasonable one, especially if the mass
splittings become larger and the dominant source of corrections are captured by the large
couplings. In that case, which is the scenario of highest interest to us, the momentum
dependence is subdominant.
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In this chapter, we address the challenge of bridging the gap between the theoretical
predictions presented in the previous chapter and experimental measurements. To do so,
we pursue two complementary approaches. First, we constrain the BSM parameter space
of theoretically motivated models using the latest experimental limits, focusing on recent
di-Higgs searches. To this end, we extended the capabilities of the public HiggsTools

package by (i) incorporating resonant and non-resonant Higgs pair production cross section
predictions into the HiggsPredictions module, (ii) implementing a coupling-dependent
treatment for non-resonant searches that allows κλ to be used as an input parameter when
testing against experimental constraints, and (iii) updating HiggsBounds with the most
recent resonant (gg → H → hh) search results. Second, we explore how experimental data
can be used to extract model parameters, using the BSM trilinear coupling λhhH in the
2HDM as a case study. Motivated by the goal of reconstructing the shape of the scalar
potential, we analyse the sensitivity to this parameter through the measurable invariant
mass distributions of Higgs pair production. We compare the performance of classical
statistics and modern machine learning techniques.
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4.1 Application of experimental data for testing BSM: Hig-
gsTools

Our objective is to ensure that experimental data can be meaningfully interpreted within the
framework of extended scalar sectors. To this end, the most effective approach is to develop
an automated software framework that not only integrates the most recent experimental
results but also facilitates direct comparisons with theoretical predictions from a broad class
of models.

In the context of this thesis, we have extended the capabilities of HiggsTools [191] to
incorporate recent di-Higgs searches, which are expected to play a central role in the Run 3
and High-Luminosity phases of the LHC programme. In particular, we have implemented
predictions for both resonant and non-resonant Higgs-boson pair production cross sections
using an effective coupling approach within the HiggsPredictions framework. Addition-
ally, we have improved the HiggsBounds dataset by enabling the inclusion of coupling-
dependent non-resonant searches, which depend on the value of κλ, and by integrating the
latest experimental limits from resonant di-Higgs searches.

4.1.1 HiggsPredictions

The HiggsPredictions package serves to provide the necessary theoretical input to the
other components of HiggsTools, HiggsBounds and HiggsSignals, in the form of pro-
duction and decay rates for all relevant particle processes. As part of this thesis, the
package was extended to include predictions for resonant, non-resonant, and combined
resonant/non-resonant Higgs-boson pair production. The current implementation supports
scenarios involving a single BSM resonance decaying into a Higgs-boson pair.

The LHCHWG [229,234,265,266] provides a recommended parametrisation of the non-
resonant Higgs pair production cross section as a function of κλ, effectively specifying the
coefficients A1,2,3 in Eq. (3.7). For a c.m. energy of

√
s = 13 TeV, the cross section is given

by:
σ13TeVno res (κλ)/fb = 68.5624− 48.3673κλ + 10.5635κ2λ , (4.1)

and for
√
s = 13.6 TeV:

σ13.6TeVno res (κλ)/fb = 75.7617− 53.2855κλ + 11.6126κ2λ . (4.2)

We have implemented both functions, as well as the prediction for 14 TeV c.m. energy,
which is not explicitly provided but can be extracted by applying K-factors to the LO-
prediction from anyHH. These K-factors were determined by comparing the LO predictions
from anyHH to the LHCHWG recommendations, yielding agreement at the percent level for
both 13 TeV and 13.6 TeV. The resulting non-resonant predictions for all three energies are
now part of the HiggsPredictions output. These cross sections, plotted as a function of
κλ, are shown in the left plot of Fig. 4.1, where the LHCHWG expressions are overlaid as
dashed lines for comparison.

In order to capture additional BSM effects, we generalise the above κλ-dependent equa-
tions to also account for modifications to the top Yukawa coupling via the parameter ξth, in
accordance to the more general equation Eq. (3.7). For 13 TeV, we implement:

σ13TeVno res (ξ
t
hκλ)/fb = 68.5624 (ξth)

4 − 48.3673 (ξth)
3 κλ + 10.5635 (ξth)

2 κ2λ , (4.3)
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and analogously for the higher c.m. energies with the appropriate coefficients. The powers
of ξth reflect the number of htt̄-vertices in the diagrams contributing to the cross section
at leading order. As discussed in Sec. 3.1, the first term corresponds to the box diagram,
which does not involve the trilinear Higgs coupling. The third term arises from the tri-
angle diagram with an internal h propagator, and the second (negative) term reflects the
destructive interference between the two.

The functional dependence of σno res on ξth has also been investigated in an (H)EFT
approach in Ref. [267], where the dependence on further effective couplings in addition
beyond ξth and κλ are considered. A fit formula for the cross section in terms of the Wilson
coefficients in the HEFT is provided (see Eq. (4.1) in Ref. [267]), which can be mapped onto
LHCHWG expression in Eq. (4.1).

However, the coefficients in Ref. [267] differ from the LHCHWG recommendations, as
the former includes only NLO QCD corrections, whereas the latter is rescaled using the
FTapprox (see Sec. 3 for details) approximation for κλ = 1. Consequently, we adopt the
LHCHWG parameterisation and extend it to include ξth dependence, as given by Eq. (4.3).
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Figure 4.1
Prediction of the non-resonant Higgs pair production cross section as a function
of κλ implemented in HiggsPredictions. Left: Comparison with the LHCHWG
recommendations for different c.m. energies and ξth = 1. Right: Comparison with
the NLO HEFT fit formula in Ref. [267] for different values of the light Higgs
top Yukawa coupling modifier ξth = 1 and ξth = 1.2 and

√
s = 13 TeV.

In the right plot of Fig. 4.1, we show the difference between the two approaches at 13
TeV c.m. energy. The LHCHWG recommendation, valid only for ξth = 1, aligns with the
implementation in HiggsTools, which is shown as a solid blue line in both plots in Fig. 4.1.
The prediction from Ref. [267] for ξth = 1 appears as a dashed light blue curve and lies slightly
above our implementation. For ξth = 1.2, the HiggsTools implementation (solid light green
curve) shows reasonable agreement but remains slightly below the result of Ref. [267], as
expected due to the difference in the coefficients. The expression from Ref. [267] is also
implemented in HiggsPredictions and may be used if preferred, although we recommend
to use the modified LHCHWG formula as the default.

The function for the non-resonant hh production cross section can be called in python

simply by typing
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import Higgs.predictions as HP

pred = HP.Predictions() # create the model predictions object

ggHH_XS_nores = HP.EffectiveCouplingCxns.ggHHnores(

'LHC13',

lam = 1,

tt = 1)

which yields a result of the non-resonant di-Higgs production cross section in femtobarns,
in this case σ13TeVno res (1, 1) = 30.76 fb. The HEFT formula can be called with

ggHH_XS_nores = HP.EffectiveCouplingCxns.hhggh(

'LHC13',

mH = 125,

lam = 1,

tt = 1,

bb = 1)

where additionally the mass of the SM-like Higgs and the bottom Yukawa coupling modifier,
bb, need to be provided. This yields a cross section of σ13TeVHEFT = 31.66 fb.

We also provide a prediction for the resonant Higgs pair gluon fusion production cross
section. In order to get the highest level of precision in the resonant production we apply
the narrow width approximation (NWA), i.e. we split the full process into the gluon fusion
production of a heavy resonance and subsequent decay into a h−pair

σ(gg → H → hh) ∼ σ(gg → H)× BR(H → hh). (4.4)

The σ(gg → H) is obtained from the already existing HiggsPredictions implementa-
tion of single Higgs production, which in turn uses tabulated results from SusHi 1.7.0 [268,
269] rescaled to the LHCHWG recommendations, which capture the N3LO corrections to
the process. The branching ratio is computed as

BR(H → hh) =
λ2hhH

32πmH

√
1− 4m2

h

m2
H

1

ΓH
. (4.5)

Our implementation assumes that the BSM resonance H is dominantly produced via
gluon fusion production and that only the contribution from the top-quark loop is relevant.
In particular, we do not include the effects of the bottom loop, which contribute at the
per-cent-level [226]. Thus we effectively implement Eq. (3.10) from Sec. 3.1, where the
coefficient A4 present in that equation has been computed as a function of mH and ΓH in a
two dimensional grid and stored in the form of data tables in HiggsPredictions to speed
up the calculation. An internal interpolation is performed to predict the result at arbitrary
values of mH and ΓH . The validation plot of the implemented resonant hh production for
different c.m. energies is shown in Fig. 4.2. With dashed lines we show the result using the
NWA, since both agree we conclude that our interpolation function is robust. The resonant
Higgs pair production cross section for an example resonant particle with a 400 GeV mass
and 4 GeV width can be called in python by typing



4.1. Application of experimental data for testing BSM: HiggsTools 113

300 400 500 600 700 800
mH [GeV]

0.0

0.5

1.0

σ
re

s
[p

b
]

dashed = σ(ggH)BR(H → hh)
solid = HPred

13.0 TeV

13.6 TeV

14.0 TeV

Figure 4.2
Prediction of the resonant Higgs pair production cross section as a function of
mH for different c.m. energies.

# set mass and width of the resonant particle

mH = 400

widthH = 4

# add the resonant particle with the above properties

H = pred.addParticle(HP.BsmParticle("H", "neutral", "even"))

H.setMass(mH)

H.setTotalWidth(widthH)

# compute only the resonant contribution

ggHH_XS_res = HP.EffectiveCouplingCxns.ggHHres(

'LHC13',

mH = mH,

totalWidth = widthH,

la112 = -0.1)

where the symbol la112 refers to ξtH × λhhH .

Our prediction for the total di-Higgs cross section is defined as in Eq. (3.13). We have
already described the |Mno res|2 and the |Mres|2 contributions entering in this equation.
Now we concentrate on the interference terms proportional to the coefficients A5 and A6.
To compute them we have used the framework of anyHH, which provides the LO gluon
fusion Higgs pair production cross section σ(gg → hh) based on a user-defined UFO model
file. We have implemented a toy model that contains an additional resonant scalar that is
produced via gluon fusion. The additional terms in the SM Lagrangian that will generate
such a resonant contribution are the ones that contain ttH and hhH interactions:

LH =
1

2
∂µH∂

µH − 1

2
M2
HH

2 − λhhHvhhH − ξtH
mt

v
t̄tH, (4.6)
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where λhhH and ξtH are the aforementioned dimensionless parameters. We note that for the
Feynman rules of the trilinear BSM coupling defined in such a way, a symmetry factor of 2
would appear, which needs to be taken into account to map the couplings to a particular
model.

Since anyHH can only compute a LO QCD prediction, we defined K-factors to account
for the NLO contributions in the interference terms that are already included in the resonant
and non-resonant pieces as described above. These K-factors are multiplicative and depend
on the value of mH . The interference between the box and the triangle diagrams, □− h, is
already captured by the negative coefficient of Eq. (4.3). For the interference between the
triangle and the resonant diagram, h−H, and between the box and the resonant diagram,
□−H, we approximate the K-factors of the interference terms as

Kno res−H =
√
Kno resKH , (4.7)

where Kno res is the K-factor accounting for the contributions of either the box □ or the
h triangle diagram and KH is the K-factor of the resonant contribution. The total cross
section then becomes,

σtot(ξ
t
h, κλ, ξ

t
H × λhhH ,mH ,ΓH) =σno res + σres+

(ξth)
2(ξtH × λhhH)K□−H(mH)A5(mH ,ΓH)+

ξthκλ(ξ
t
H × λhhH)Kh−H(mH)A6(mH ,ΓH).

(4.8)

In practice, we compute the K-factor for interference between the resonant and non-
resonant contributions using Eq. (4.7) as

Kinterf =
√
KresKno res =

=

(
[σ(ggH) BR(H → hh)]HiggsPredictions

[σres(gg → hh)]anyBSM
· [σno res(gg → hh)]LHCHWG

[σno res(gg → hh)]anyBSM

)1/2

. (4.9)

In this way, we obtain all the terms in Eq. (4.8) and save them in the form of grids
in HiggsPredictions. Analogously to the resonant cross section, this data is linearly
interpolated to obtain values at non-grid points.

An example usage of the described full di-Higgs production cross section, after loading
the HiggsPredictions package is shown below:

ggHH_XS = HP.EffectiveCouplingCxns.ggHH(

'LHC13',

mH = 400,

totalWidth = 4,

lam = 0.8,

la112 = -0.1,

tt = 1

)

# set the internal 'pair' cross section to apply experimental bounds

H.setCxn('LHC13', 'pair', ggHH_XS)
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Where we set the collider to LHC13, refering to the 13 TeV c.m. energy, the resonant mass
to 400 GeV, the total width of the resonance to 4 GeV, κλ = 0.8, ξtH × λhhH = −0.1 and
ξth = 1. In the final command, the Higgs pair production cross section is set to the value
calculated above for later application of the limits from experimental searches. Prior to the
implementation of di-Higgs production predictions developed in this work, this value had
to be supplied manually by the user based on an independent cross section calculation.

In Fig. 4.3 we show an example application of the implemented function to predict the
Higgs pair production cross section in the 2HDM Type II. We set tβ = 2, cβ−α = 0.1,
mH = mA = mH± = M and plot the prediction of HiggsPredictions for a variable
resonant mass mH . We use thdmTools [2] to compute the total decay width of the resonant
Higgs, ΓH . We use the tree level formulas for the Yukawa coupling modifiers of h and H in
Eq. (2.72) and we use the tree level trilinear λhhh and λhhH as in Eq. (2.75).
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Figure 4.3
Contributions to the Higgs pair production cross section in the 2HDM Type II
(tβ = 2, cβ−α = 0.1, mH = mA = mH± = M) done with HiggsPredictions:
full cross section (black), resonant only contribution (dark green) and non-
resonant contribution (light green). The LO result in anyHH is shown in orange
and the NLO QCD in the heavy top limit result of HPAIR in blue. No constraints
applied.

The full Higgs pair production cross section prediction is shown as a solid black line
in Fig. 4.3. 1 The non-resonant contribution is indicated in light green, while the resonant
only contribution is shown in dark green. A significant enhancement of the cross section is
observed for values of the heavy scalar mass mH near the di-top mass threshold, where the
resonant contribution overwhelmingly dominates the total production cross section. For
BSM masses above approximately 700 GeV, the non-resonant contribution becomes the
dominant, causing the total cross section to plateau.

We also display the LO prediction from anyHH in orange, alongside the NLO prediction
from HPAIR in the heavy top limit. A discrepancy of roughly a factor of two is observed
between these two predictions, due to the well known K ∼ 2 factor for NLO contributions.
The inclusion of the N3LO corrections in the resonant single Higgs gluon fusion production,

1No experimental constraints are applied in this plot.
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as detailed above, further raises the K-factor of the LO prediction to approximately a factor
of 3.

4.1.2 HiggsBounds

In this section, we describe how experimental constraints from non-resonant and resonant
di-Higgs searches were incorporated into HiggsBounds, enabling their application to BSM
models once the corresponding cross section predictions have been provided.

4.1.2.1 Non-resonant searches

The new version of HiggsBounds supports the implementation of coupling-dependent ex-
clusion limits. This feature is particularly important for Higgs pair production, where
the experimental bounds depend the value of the trilinear Higgs coupling κλ, as shown in
Fig. 2.5. The implementation is based on an additional acceptance factor that captures
this dependence of the cross section when defining the exclusion limit. To determine the
acceptance factor, we approximate the observed exclusion limit (solid black line in Fig. 2.5)
as a function of κλ using the rational expression:

σobs =
Aκ2λ +Bκλ + C

Dκ2λ + Eκλ + F
σSM. (4.10)

The coefficients A, B, C, D, E, and F are obtained via a fit to the observed experimental
exclusion limit using FindFit in Mathematica. These coefficients along with the value of
the limit at σobs(κλ = 1), are implemented in the limit definition files for each non-resonant
search. Because combinations of multiple decay channels yield significantly stronger con-
straints than individual channels (represented as coloured lines in Fig. 2.5), we only include
the two non-resonant combinations from ATLAS [121] and CMS [193] in the current imple-
mentation.
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Figure 4.4
Coupling-dependent non-resonant di-Higgs limits. Left: observed ratio for
an effective value of κλ. Right: observed ratio for different values of cβ−α for
the benchmark plane defined in Eq. (3.22) for the Type I 2HDM depending
on the value of κλ, taken at tree-level (dashed) or one-loop (solid).
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In practice, this feature enables the automated application of exclusion limits to BSM
parameter space, as demonstrated in Fig. 4.4. The left plot shows the observed exclusion
ratio for different values of κλ based on the ATLAS and CMS combinations. The red shaded
region denotes the excluded parameter space where the predicted cross section exceeds the
experimental limit, i.e. the observed ratio defined in Eq. (2.105) is larger than one. The
allowed range for κλ corresponds to the values at which the exclusion lines enter this region,
with a slight difference from the experimental values due to the different contributions to
the result.

The right plot illustrates the application of the coupling dependent limits in a concrete
BSM scenario, for convenience we chose the 2HDM Type I, though this procedure is general
and can be used for any model that predicts a deviation κλ from the SM. For simplicity,
we use as an example the same scenario as in Fig. 3.25, defined in Eq. (3.22) as: tβ = 10,
mH = mA = mH± = 1000 GeV and m2

12 = m2
Hcα/tβ. In this case the limits are automati-

cally applied by adding κλ to the effectiveCouplingInput feature of HiggsPredictions,
either at tree-level (dashed line) or including full one-loop corrections (solid line), the latter
computed using anyH3 [131]. The applied limit corresponds to the most sensitive chan-
nel, i.e. the one that maximises the ratio between the model prediction and the expected
95% C.L. exclusion bound on the cross section. In this case, that channel is the ATLAS
combination.

Since κλ is now part of the effective coupling input, HiggsTools can automatically
evaluate whether a given parameter point is excluded by the implemented limits. In this
example, including loop-level corrections to κλ leads to exclusion for cβ−α ≳ 0.12 from the
ATLAS combination (we do not show the limits from the CMS combination as they are
weaker).

This implementation benefits from the flexibility of the HiggsTools framework: once
the effective couplings of a BSM point are specified, all relevant limits are automatically
applied. As a result, non-resonant di-Higgs searches are now integrated into global analyses
of BSM scenarios.

4.1.2.2 Resonant searches

A number of resonant di-Higgs searches have been incorporated into the HiggsBounds

dataset. In keeping with the philosophy of HiggsBounds, we did not differentiate between
the experimental searches. In particular, we chose not to exclude the most sensitive di-
Higgs searches discussed in Sec. 3.5.2, despite concerns about their potentially optimistic
applicability. Thus although they are applied by default, the user must be cautious in the
regions where large trilinear couplings or interference effects are realised. The complete list
of newly added searches is as follows:

- pp→ hh→ bb̄γγ at 13 TeV including 35.9 fb−1 [1806.00408] [270]

- pp→ hh→ bb̄γγ at 13 TeV including 139 fb−1 [2112.11876] [271]

- pp→ hh→ bb̄bb̄ at 13 TeV including 126− 139 fb−1 [2202.07288] [272]

- pp→ hh→ bb̄τ+τ− at 13 TeV including 139 fb−1 [2209.10910] [258]

- pp→ H → hhATLAS combination at 13 TeV including up to 139 fb−1 [2311.15956] [273]
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- pp→ H → hh CMS combination at 13 TeV including up to 138 fb−1 [2403.16926] [274]

- pp→ hh→ bb̄bb̄ at 13 TeV including 138 fb−1 [2407.13872] [275]

In Fig. 4.5, we present a comprehensive overview of all the currently implemented limits
on the resonant Higgs pair production cross section, σres(pp → H → hh), as a function of
the resonant scalar mass mH . This includes both the newly incorporated searches discussed
above and those implemented in previous releases of HiggsTools. For the purpose of this
plot, we assume a gluon fusion production cross section of 1 pb and a that H only decays
into hh, i.e. a branching ratio of 1.

The searches implemented as part of this thesis currently impose the most stringent
constraints on the resonant cross section. In particular, the combined analyses by ATLAS
and CMS across different h-pair decay channels, depicted as solid pink and green lines,
respectively, set the strongest bounds. Notably, the search in the bb̄τ+τ− final state, shown
as a solid dark orange line, is also highly competitive and provides a dominant contribution
to the combined limit, as discussed in Sec. 3.5.2.
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Figure 4.5
Included resonant di-Higgs searches in HiggsBounds. 95% confidence-level
cross section limits on the process pp → H → hh from the experimental
searches in various final states. Solid lines show the searches implemented in
the context of this thesis and dashed lines represent previously implemented
searches.

We proceed now to illustrate some applications in the context of BSM scenarios of these
newly implemented searches and their impact in the allowed regions. In Fig. 4.6 we present
four benchmark scenarios in the 2HDM, these scenarios are defined by the parameters:
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upper left: Type I, cβ−α = 0.1, mH = mA = mH± and m2
12 = m2

Hcβsβ,

upper right: Type II, cβ−α = 0.03, mH = mA = mH± and m2
12 = m2

Hcβsβ,

lower left: Type I, mH = 450 GeV, mA = mH± = 650 GeV and m2
12 = m2

Hcβsβ,

lower right: Type II, mH = 450 GeV, mA = mH± = 650 GeV and m2
12 = m2

Hcβsβ.
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Figure 4.6
Impact of resonant di-Higgs searches in selected 2HDM benchmark planes.
Colored regions show exclusion bounds, while white regions are allowed (see
text for details).

In all plots, coloured and hatched regions are excluded by theoretical or experimental
constraints, verified using thdmTools, while white regions are allowed. The region excluded
by vacuum stability (VS in the legend) constraints at tree level appears in light purple.
The perturbative unitarity (PU) exclusion at leading order—based on the bound |a0| ≤ 1
for 2 → 2 partial wave amplitudes—is shown in shaded pink. The region disfavoured by
flavour constraints (FC) is depicted in light blue and is mostly relevant for low tβ and charged
Higgs masses below 600 GeV in Type II. The region disfavoured by HiggsSignals (HS) is
shown in grey, using the definition from Sec. 2.7.2, where points with a χ2 value within 2σ,
corresponding to ∆χ2 ≤ 6.18, of the SM best fit (assuming a Gaussian distribution) are
considered allowed.
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To determine exclusions at 95% C.L. in the 2HDM scenarios considered, we use Higgs

Bounds (HB), which applies only the observed limit with the highest expected sensitivity per
parameter point, ensuring a statistically consistent interpretation. Requiring all individual
95% C.L. limits to be satisfied simultaneously would lead to overly conservative exclusions.
For comparison, we also show in solid colours the parameter regions that would be ex-
cluded if each resonant search were applied individually, highlighting the impact of newly
implemented resonant hh-searches across different final states and how they probe previ-
ously unconstrained regions. The exclusion from the rest of the searches implemented in
HiggsTools is marked by a hatched black region, while the overall exclusion is represented
by the dot-dashed contours.

Due to statistical fluctuations, this approach can sometimes yield weaker exclusions than
those suggested by individual limits. For instance, in the lower right plot, the resonant
searches provide stronger bounds than the combined HiggsTools result for tβ ∼ 1.5 and
tβ ∼ 10. However, their expected sensitivity is lower than that of the A → ZH channel
(see Sec. 5.2 for a detailed discussion of these searches), which has an observed limit ratio
below 1 in that region of parameter space, therefore leaving it viable.

Whenever the dot-dashed line coincides with the coloured regions from the different
searches, it means the strongest limit is the resonant hh bound. In the upper plot we can
see that in both types these searches have the highest sensitivity for mH ∼ 400–600 GeV,
where the ATLAS and CMS combinations dominate over the individual channels (it is also
seen that bb̄τ+τ− dominates the combination, as discussed in Sec. 3.5.2).

In Type I (upper left), the most sensitive searches besides the hh-resonant ones show
up as three hatched peaks for masses mH = mA = mH± ≲ 300, around 450 GeV, and 700
GeV. These are all excluded by searches for a pseudoscalar decaying into a SM-like Higgs
and a Z boson [276,277].

In Type II (upper right), the only competing search with the resonant di-Higgs searches
is pp → tbH± → tbtb [278], which dominates the region of charged Higgs masses between
600–900 GeV. For masses below 400 GeV, the searches into τ+τ− dominate over the whole
range of tβ [279]. They also dominate in the region with large tβ [279, 280]. The searches
in the τ+τ− final state are very relevant in Type II due to the enhancement in the lepton
Yukawa coupling modifier with t2β (see Tab. 2.2 and also the discussion in Sec. 5.2). Although
the regions covered by these searches are also in tension with other constraints, in particular
flavour physics for mH± ≲ 400 GeV and HiggsSignals for tβ > 10.

In the lower left plot in Type I, the resonant hh-searches are more sensitive than the
others, except in the alignment limit for tβ ≲ 1, which is excluded by pp → tbH± →
tbtb [278] in this mass range of the charged Higgs boson. This region is also in tension with
the bounds from flavour observables precisely because of the charged scalar mass. The large
impact on the exclusion region from the resonant di-Higgs searches further emphasises the
need to improve the resonant Higgs pair analysis by taking into account the non-resonant
contribution and the interference effects, so that they can be interpreted within complete
models (see the discussion in Sec. 3.5.2).

The lower left plot is similar to the lower right but in Type II. In this case, HiggsSignals
and HiggsBounds constrain regions with cβ−α ≳ |0.03|. The resonant di-Higgs searches are
the most restrictive ones for 1 ≲ tβ ≲ 4 for positive values of cβ−α and 1 ≲ tβ ≲ 6 for
negative values. Around tβ ∼ 1 and tβ ∼ 10, the A → ZH search becomes the most
sensitive one and therefore the allowed region is larger than for individual resonant hh-
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searches, as discussed above. This is also the search giving rise to the exclusion “island” at
5 ≲ tβ ≲ 9, in the ℓ+ℓ−bb̄ and ℓ+ℓ−W+W− final states [281]. For values of tβ > 10, searches
for heavy Higgs into τ -pairs [280] become the most sensitive and dominate the region at
any value of cβ−α in the analysed region. The region for tβ < 1 is in tension with the search
pp→ tbH± → tbtb [278], as in Type I.

While hh-searches provide leading constraints in many parts of the parameter space,
they are ineffective in the alignment limit, where the H → hh decay is zero at tree level.

4.2 Parameter estimation using neural networks

In this section, we describe the second approach for bridging theory and experiment, related
to a reliable parameter estimation analysis. An ever-increasing availability of experimental
data in particle physics poses a challenge on conventional statistical methods. In response,
a broad selection of modern data analysis tools, particularly machine learning (ML) tech-
niques, have been adopted by the high-energy physics community in recent years [282,283].
In particular, in experimental particle physics, ML techniques have proven to be extremely
useful for tasks such as the event selection. More recently, phenomenological studies have
begun exploiting the capabilities of neural networks (NN) and related techniques to explore
the underlying structure of physical theories (for a brief review see e.g. Ref. [284]).

In this work, we study the possibility of inferring the magnitude of ξtH × λhhH from
the invariant mass distribution of the di-Higgs pair in gluon fusion, mhh, all computied at
leading order QCD and with tree level THCs with our version of the code HPAIR, introduced
in Chapter 3. To this end, we evaluate the performance of machine learning techniques,
specifically, a NN, in determining this coupling from anticipated HL-LHC data of di-Higgs
production, as opposed to conventional statistical approaches. To our knowledge, this work
constitutes the first analysis of the feasibility of extracting BSM THCs from (HL-)LHC
data.

We note that loop corrections to the THC are not included in this analysis, although
they can be relevant in di-Higgs production, as discussed in Chapter 3. Our focus lies on
the broader question of whether, assuming a theoretical prediction for mhh, the underlying
coupling can be inferred. In the hypothetical case of a future detection of a heavy Higgs
resonance in the di-Higgs production, the framework we present here should be extended
to include higher order corrections in the trilinear couplings, as well as in the QCD part.
However, such refinements are not expected to significantly affect the performance of the
NN analysis.

Our numerical study is carried out for a specific benchmark scenario within the Type
I 2HDM, chosen without loss of generality. The results are identical in all 2HDM Types,
where the ξtH × λhhH couplings are the same, although the possible realisable values of
ξtH × λhhH depend on the experimental constraints that change in the different types. We
assume mass degeneracy mϕ := mA = mH = mH± for simplicity and because EWPO
favour either mH± ≈ mH or mA ≈ mH . The example is chosen to be representative of
a scenario with resonant di-Higgs production: we set mϕ = 450 GeV, assuming this mass
to be determined independently through a different, experimentally cleaner process. The
mixing angles tβ and cβ−α are taken as free parameters, under the assumption that their
determination in the future will be more complicated. m2

12 is either fixed via Eq. (2.95)
or left as a free parameter. The experimental prospects of determining m2

12 at the HL-
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LHC are unclear [285], therefore the variation of m2
12 as a third free parameter is the most

conservative approach. Additionally, we explore the possibility of the measured mH value
to differ from the one in reality due to limited detector efficiency. In such a scenario we
train the net on datasets with a different value of mH within some uncertainty, in particular
mH±15 GeV. In all these cases we will only include parameter points that are in agreement
with the constraints after checking with thdmTools.

In Fig. 4.7 we show our original benchmark plane for m2
12 fixed according to Eq. (2.95)

and mH = 450 GeV. The coloured region is allowed by all the applied constraints (while the
white region is excluded by either of them), and the colour coding indicates the product of
the couplings ξtH ×λhhH that we aim to extract. The black lines indicate the regions where
ξtH × λhhH = 0. It can be observed that ξtH × λhhH = 0 for cβ−α = 0, i.e. the alignment
limit, as expected. However, the value of ξtH × λhhH = 0 is also found along a curve for
λhhH = 0 at cβ−α = 0.02− 0.12 and tβ = 8− 50, as well as for ξtH = 0 at cβ−α = 0.03− 0.10
and tβ = 15−50. The coloured crosses are benchmark points that will be discussed in more
detail further on.

Figure 4.7
ξtH × λhhH in the example benchmark plane in Type I 2HDM with mϕ =
450 GeV andm2

12 fixed via Eq. (2.95). Black lines located at ξtH×λhhH = 0,
either because λhhH =0 (in the alignment limit and the lower curved line on
the right upper corner) or ξtH = 0 (the upper line on the right corner). The
blue cross indicates an example point whose mhh distribution is displayed
later in Fig. 4.9. The yellow cross features an example with roughly the
opposite sign value of ξtH×λhhH and its distribution is displayed in Fig. 4.8.
The cyan cross is an example point for which different predictions of the
NN will be analysed further in Fig. 4.14.

The core of our analysis will be the connection between the value of ξtH × λhhH and the
shape of the corresponding mhh distribution. The shape of the invariant mass distribution
of di-Higgs production has been analysed with great detail in the past. In Ref. [252], the
possibility of classifying different kinds of distributions with a NN was investigated. The
projected shapes were classified in the region of the coupling parameters space in an EFT
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approach, allowing for the identification of deviations in the coupling involved in the SM
gluon fusion di-Higgs production trough the invariant mass shape analysis. However, since
no further BSM state was assumed, there was no investigation of the role of a BSM THC.

In Sec. 3.3 we have shown that di-Higgs invariant mass distributions at the HL-LHC
could possibly provide access to the BSM THC λhhH . In particular, assuming that a
resonant scenario is realised, i.e. the contribution of H is sizeable, the sign of the product
ξtH × λhhH would determine the resonant structure at mhh ≈ mH . More precisely, the
structure would be dip-peak for an overall negative sign and peak-dip for an overall positive
sign, assuming no further BSM effects arise from e.g. large loop corrections to the λhhh
trilinear Higgs coupling. However, the structure around the resonant peak is partially
washed out by experimental uncertainties, as we have seen in Chapter 3.

After smearing and binning the theoretical prediction for the mhh distributions with
different signs of ξtH×λhhH , the peak–dip / dip–peak structure cannot be resolved optically
anymore, as a concrete example see Fig. 4.8. These curves represent the smeared and binned
prediction of an invariant mass distribution for the points marked with the yellow and blue
crosses in Fig. 4.7. The yellow point has tβ = 3 and cβ−α = −0.018, which yields a value
of ξtH × λhhH = 0.0304 and corresponds to the red mhh distribution. It is roughly the
same magnitude but opposite sign as the blue point, giving rise to the blue curve. The loss
of the clear peak-dip/dip-peack structure poses a challenge on the experimental access to
ξtH × λhhH that we address below.

Figure 4.8
Comparison of two benchmark points yielding a positive (blue) and negative
(red) value of ξtH × λhhH with ξtH × λhhH ≈ ±0.03. The blue (red) curve
corresponds to the point marked by a blue (yellow) cross in Fig. 4.7.

The location of data points in an experimental distribution is inevitably subject to
uncertainties. These uncertainties can generally be categorised into three components:
statistical, theoretical, and systematic. In this work, we focus exclusively on the statistical
component, as the theoretical and systematic uncertainties are more difficult to estimate
and, in an optimistic scenario, are expected to be subdominant.
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To determine the statistical uncertainty, we compute the expected number of events in
each bin of the mhhdistribution. However, experimental efficiencies are only available for
specific final states that include the decay products of the Higgs-boson pair. A combination
of various final states, on the other hand, is an experimental analysis on its own and thus
goes far beyond the scope of our NN focused work. We restrict our analysis to a single
decay channel, the most promising option (i.e. the one producing the largest number of
events taking into account experimental efficiencies) being gg → hh→ bb̄ bb̄.

We have calculated the expected number of events in this channel in each bin as:

Ni = σi(gg → hh) × L × BR2(h→ bb̄) × ϵ, (4.11)

where σi(gg → hh) is the differential production cross section in each mhh bin, i, times the
size of the bin (in our case 50 GeV), L = 3000 fb−1 is the integrated luminosity expected
at the end of the HL-LHC, BR(h → bb̄) = 0.5841 is the branching ratio of the decay of a
SM Higgs boson to a pair of bottom quarks. Finally, ϵ = ϵTOT ϵSR is the detector efficiency,
ϵTOT is the preselection efficiency, in this case it is the number of events with ≤ 2 b-tagged
jets over the total number of events (N = σ × BR × L), and ϵSR is the efficiency of the
signal region, i.e. the number of di-Higgs events out of the preselected events. For the
bb̄ bb̄ channel we took the efficiencies from Fig. 3 (right plot for s = 0) in Ref. [272] for
mH = 450 GeV. They are 17.3% and 1% for the total and the signal region efficiencies,
respectively. The statistical uncertainty in bin i is then given by

√
Ni, where Ni is defined

in Eq. (4.11).

Figure 4.9
Example number of events in the bb̄ bb̄ channel with statistical errorbars
(see text) for the point marked by the blue cross in Fig. 4.7.

In Fig. 4.9, we show an example of the expected number of events in the bb̄ bb̄ channel for
the parameter point in the benchmark scenario with mH = 450 GeV, indicated by the blue
cross in Fig. 4.7. The statistical uncertainties are shown by black error bars in each mhh

bin. These uncertainties are interpreted as one standard deviation of a Poisson distribution
centered around the theoretical prediction, which serves as the mean of the distribution.
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The input data will therefore consist of the event counts in each bin, and the output is the
value of ξtH × λhhH for each distribution.

4.2.1 Classical statistical analysis

Our setup is as follows: we have a predicted mean count of the number of events in each
bin from our theory, mi, and an observed count from experimental data ni. For hypothesis
testing we want to check whether the null hypothesis H0 can be rejected, H0: the observed
counts ni come from Poisson distributions with means mi, in our case the null hypothesis
is the distribution with ξtH × λhhH= 0. Our alternative hypothesis is the opposite H1: The
observed counts ni do not come from Poisson distributions with means mi. The Poisson
probability mass function (PMF) provides the probability of observing exactly ni events in
bin i, if the true mean number of events is mi

P (ni|mi) =
mni
i e

−mi

ni!
. (4.12)

When the PMF is viewed as a likelihood function, we treat mi as a variable and evaluate
how well different values ofmi explain the observed data ni. In the first case we can compute
the likelihood under the null hypothesis as:

L(H0) =

Ni∏
i=0

mi
nie−mi

ni!
, (4.13)

where we have multiplied the likelihoods in each of the Ni bin because they are independent.
In the second case we compute the likelihood under the alternative hypothesis H1 as

L(H1) =

Ni∏
i=0

ni
nie−ni

ni!
, (4.14)

where we do not assume a specific mean value mi but we allow each bin to have its own
most likely mean. For a Poisson distribution, the maximum likelihood estimate (MLE) of
the mean is simply equal to the observed count, ni.

With this we can compute the standard likelihood ratio test statistic, λLR, which is
defined as:

λLR = −2 ln

(
L(H0)

L(H1)

)
= 2

Nbins∑
i=0

(
ni ln

ni
mi

+mi − ni

)
, (4.15)

whose interpretation is: for small λLR the observed data is consistent with the model mean
mi, so H0 cannot be rejected. Alternatively, if λLR is large then the data is inconsistent
with the model predicted mean mi, so we reject H0 in favour of H1.

λLR is by itself hard to interpret, but it is useful because it can be asymptotically2

approximated by a χ-squared distribution under the null hypothesis. This result is known
as Wilks’ theorem, and it allows to directly compute a p-value as

2This means the sample size (each ni and mi) must be large enough, as a rule of thumb they should be
larger than 5.
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p = P (χ2 > λLR). (4.16)

The p-value is the probability of obtaining a result at least as extreme as the data,
assuming the null hypothesis is true. Typically values of p < 0.05 (roughly corresponding
to a 95% CL) suggest evidence against the null hypothesis. To summarise, we assumed a
certain distribution of data to properly define a p-value, if our number of counts in each
bin is large enough, we can make use of Wilks’ theorem to assume such distribution to be
a χ2, if we could not use this theorem, we would have to estimate an empirical distribution
of the data with e.g. a Montecarlo simulation, in order to statistically define a p-value for
each parameter.

In order to correctly apply Wicks’ theorem, we need to ensure that the number of events
in each bin is “large enough”, therefore we aggregate some bins together in order to have
better statistics. We show an example of this aggregation in Fig. 4.10, where two sample
distributions from Fig. 4.7 are shown, one with a small ξtH × λhhH (orange) and one with a
large ξtH × λhhH (green), and compared to the SM distribution (blue), which is equivalent
to a distribution in the alignment limit. On the left we show the distributions with the
original 50 GeV binning and on the right the aggregated bins that lead to a particle count
of at least 4 events, so that the statistical tests can be performed. In particular, the first
and second bins are added up together, and correspond to the first bin on the right. The
third, fourth, fifth and sixth bin are unchanged and correspond to the bins 2, 3, 4 and 5 on
the right. All the other bins are combined in bin number 6 on the right.

Figure 4.10
Example disributions for the number of events with the original 50 GeV binning (left) and
the aggregated bins (right). Shown the distributions for the SM (blue), and two examples
with small ξtH × λhhH (orange) and large ξtH × λhhH (green).

As a side note, the square root of a χ2-distributed variable, in our case λLR, can be
interpreted in terms of standard deviations or sigmas from the null hypothesis, which is
a more common statistical variable in particle physics. In particular if

√
λLR > 1.96, the

conclusion would be the same as if p < 0.05, meaning such point is statistically far from the
null hypothesis. However, this approach only works exactly for 1 degree of freedom, and gets
worse for our case, where we have 6 degrees of freedom (Nbins after aggregation). Therefore
in Fig. 4.11 we will only show p-values for the benchmark scenario defined in Fig. 4.7, and
not the significance, which we however checked that yields a similar result. In Fig. 4.11
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we have coloured in red the points in the parameter space with p > 0.05, i.e. compatible
with the null hypothesis. Outside this region, we plot the values of ξtH × λhhH that are
incompatible with the null hypothesis, however with this approach we do not really have a
way of estimating the value of ξtH × λhhH from the data. For that we need to perform a
parameter estimation.

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

cβ−α

100

101
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n
β

Type I mH = 450 GeV

p > 0.05

−0.10 −0.05 0.00 0.05 0.10
ξtH × λhhH

Figure 4.11
p-value in the example benchmark plane. The red region shows the param-
eters points where the p-value is larger than 0.05, i.e. the null hypothesis
cannot be rejected. The colour coding indicates the value of ξtH × λhhH in
the regions where the null hypothesis is unlikely.

Classically, the most precise method for parameter estimation is maximum likelihood
estimation (MLE). The likelihood of each BSM scenario is defined as in Eq. (4.13). We
calculate L for every set of mi (all the points in Fig. 4.7) and find the one that maximises
L given the experimentally observed count ni. This would be the most likely parameter
point to produce the observed distribution. This method is only meaningful when we input
Poisson distributed data according to the errorbars shown in Fig. 4.9, as otherwise the
actual value of ξtH × λhhH will trivially be the best fit.

Fig. 4.12 shows the predicted parameter ξtH × λhhH with the MLE method versus the
model parameter, where we used 2048 sample Poisson distributed mhh distributions. We
see that the method fails to correctly predict the sign of the ξtH × λhhH couplings, as we
expected from the invariant mass distributions, because the dip-peak structure becomes
unresolvable.
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Figure 4.12
Predicted value of ξtH ×λhhH with classical maximum likelihood estimation
method versus the theoretical value of ξtH × λhhH .

4.2.2 Neural Network analysis

In this section we go beyond classical statistics to compare their performance with more
recent machine learning approaches. Our analysis can be essentially summarised as the use
of deep learning in statistical parameter estimation, which has already been proposed in
Ref. [286]. We will demonstrate that this method performs better in our example scenario,
which serves as a proof of concept for future use of such methods in the context of high
energy physics.

In this work, we focus on a technical question: the extraction of the value of ξtH × λhhH
from the mhh distribution, as anticipated to be measured at the HL-LHC. We employ a
neural network that has been trained on “realistic” mhh distributions, i.e. taking into ac-
count smearing, binning, and, most crucially, Poisson noise to reflect statistical fluctuations
in future measurements. This approach enables the simulation of the expected conditions
under which experimental data would be obtained, making our analysis as close to reality
as possible.

We employ a simple one layer network using PyTorch [287]. The network architecture
consists of an initial batch normalisation layer, followed by a single hidden layer with 64
neurons and ReLU activation, and a final output neuron with a linear activation to predict
the value of ξtH×λhhH . The Adam optimiser is used with mean squared error (MSE) as the
loss function. More complex architectures were tested but offered no significant performance
advantage, despite requiring substantially more computational resources.

As input, the model receives 16-bin histograms of the smeared mhh distribution, with
each bin representing a width of 50 GeV. These inputs are modified during training by
applying Poisson noise, mimicking statistical uncertainties on the binned data. The train-
ing dataset consists of O(600 − 5000) distributions, depending on the scan settings of the
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2HDM parameter space (i.e. wether we fix m2
12 and mH , or not). Each model is trained

for a total of 32768 epochs, during which a new noisy version of the input is generated at
each epoch. In the following we will refer to the value of ξtH ×λhhH obtained by theoretical
calculation as “ξtH × λhhH(theory)”, whereas the corresponding NN prediction is labeled as
“ξtH × λhhH(NN predicted)”.

We use three different datasets:

1) one corresponding to the benchmark scenario defined in Fig. 4.7,

2) one where we drop the condition on m2
12 in Eq. (2.95), allowing m2

12 to vary freely
within the ranges of the allowed parameter space, and

3) one incorporating the potential future uncertainty in the measured mH value. In this
case, we employ a total of 9 datasets, each corresponding to the allowed regions of tβ
and cβ−α for mH = {435, 440, 445, 449, 450, 451, 455, 460, 460} GeV. In this case, m2

12

is fixed according to Eq. (2.95). We do not let m2
12 as a free parameter as predicting

distributions for such a large dataset would otherwise require the computation of 9
three-dimensional allowed parameter regions, which is computationally cumbersome.
This choice is further motivated by the stability of our results when relaxing the m2

12

condition applied in the benchmark scenario. Also in the third case, we test the
network on a dataset with mH = 443 GeV, which was part of the training set.

The result of the NN prediction, ξtH ×λhhH(NN predicted), for the dataset (1) is shown
as a function of the ξtH × λhhH(theory) value in the left plot of Fig. 4.13. We observe that
most of the points lie in the diagonal, i.e. that overall the NN provides a good estimate of
the value of ξtH × λhhH . Comparing to the result of the MLE in Fig. 4.12, the cross shape
is much more subtle, with less faulty predictions of the net, that however cover all the space
between the true value of ξtH × λhhH and the same value with the opposite sign.

In order to clearly illustrate the distribution of the points, in the right plot of Fig. 4.13
we show the density distribution corresponding to the points in the left plot. The density is
normalised to 100 in each bin of ξtH × λhhH(theory), meaning that the total density in one
vertical strip, corresponding to a given value of ξtH × λhhH(theory), adds up to 100. The
colour code indicates such density. One can see that the highest density of points in the
prediction falls into the diagonal line of ξtH × λhhH(NN predicted) = ξtH × λhhH(theory).
This indicates that, although there are some outliers, the neural network’s main prediction
is reasonably accurate.

We have analysed in detail the case of two different smeared distributions, both as-
sociated with the same benchmark point, marked by a cyan cross in Fig. 4.7. The ξtH ×
λhhH(NN predicted) values for each of them are shown as red and green points in the left
panel of Fig. 4.14. The parameters of the benchmark point are provided in Tab. 4.1, along
with the NN predictions of the two smeared distributions. These distributions are displayed
in Fig. 4.14, where the red mhh distribution is identical in both plots and was calculated
with ξtH × λhhH(theory). As before, the vertical bars represent the statistical uncertainty
for each bin. Based on these uncertainties, the two blue mhh were randomly selected for
this point and fed to the trained NN to evaluate ξtH × λhhH(NN predicted). In the left
plot (refereed in the table as the “close” point), the ξtH × λhhH(NN predicted) value is very
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Figure 4.13
Prediction of ξtH × λhhH for the dataset (1). We show the results in a scatter plot (left)
and a density plot (right), where in the latter case the colour represents the density of
points that falls into this grid. The green and red points in the left plot are example results
discussed in the text.

Figure 4.14
Examples of invariant mass distributions of the point marked by a cyan cross in
Fig. 4.7 with the parameters given in Tab. 4.1. The red distributions are based on
ξtH × λhhH(theory), and the vertical bars represent the statistical uncertainties. The blue
distributions are randomly chosen based on these uncertainties (see text). They corre-
spond to the green point on the left plot of Fig. 4.13 (left) and the red point of the left
plot of Fig. 4.13(right).
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close to ξtH × λhhH(theory). The key to achieving this good agreement in the NN predic-
tion lies in the small deviation of the randomly chosen distribution from the one based on
ξtH × λhhH(theory), particularly in the five bins around the resonance at mhh = 450 GeV.
This argument is further illustrated in the right plot (for the“far” point), where the five
bins near the resonance show a shift in the relative height of the true distribution compared
to the randomly chosen one, due to the statistical uncertainties. These shifts result in
event numbers in three out of five bins around the resonance falling outside the 1σ range of
their respective bin, leading to a large discrepancy between ξtH × λhhH(NN predicted) and
ξtH × λhhH(theory). In this case, the NN predicts the wrong sign, indicated by a red point
in the left plot of Fig. 4.13.

tβ cβ−α (sβ−α > 0) ξtH × λhhH(th) ξtH × λhhH(NN) “close” ξtH × λhhH(NN) “far”

4.38 -0.04 0.0547 0.0572 -0.0775

Table 4.1: Parameters for the point marked by a cyan cross in Fig. 4.7. The value of
ξtH × λhhH(NN predicted) “close” (“far”) corresponds to the random distribution shown in
blue in the left (right) plot of Fig. 4.14. (ξtH × λhhH(th) is short for ξtH × λhhH(theory),
ξtH×λhhH(NN) is short for ξtH×λhhH(NN predicted).) The “close” point is marked in green
in the left plot of Fig. 4.13, and the “far” point is marked in red.

Next, we switch to the analysis the dataset (2), where we have extended the dataset to
add the allowed parameter points without fixing m2

12 to Eq. (2.95). This lead to an increase
in the dataset for the learning process from roughly 600 points of the original benchmark
scenario to 4500 points. We show the results for Poisson smeared distributions in the scatter
plot of the left side oF Fig. 4.15, with the corresponding density of points shown on the
right side.

Figure 4.15
Predictions for the dataset (2), leaving m2

12 as a free parameter.
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We observe in Fig. 4.15 that the density of faulty points increases slightly w.r.t the
dataset (1), specially in the regions around ξtH×λhhH(theory) = ±0.05, with less outliers in
the most extreme values of ξtH×λhhH . We see that despite this, the largest density of points
still lies in the diagonal ξtH×λhhH(theory) = ξtH×λhhH(NN predicted), with a density close
to 70% in the three vertical bins around the diagonal for positive ξtH ×λhhH(theory) values,
and closer to 50% for negative values od ξtH × λhhH(theory).

Finally, the results for the dataset (3) are shown in Fig. 4.16 in the same fashion as
before. In this case we observe a slight preference for the predicted data to lie above the
diagonal for negative values of ξtH×λhhH(theory), and below for positive ones. We attribute
this feature to the fact that the tested dataset has more trouble handling the uncertainty
in mH as it shifts the position of the peak-dip structure along the horizontal axis. Still, the
overall prediction is within reasonable proximity of the true value of ξtH × λhhH .

Figure 4.16
Predictions for the dataset (3), i.e. including uncertainties in the measured value of mH in
the training set and tested on statistically smeared values of a benchmark scenario with
mH = 443 GeV, which is not part of the training set.

Our conclusion from this analysis is that the determination of the variable ξtH × λhhH
with the correctly trained NN is possible, even taking into account all relevant experimental
uncertainties (we did not take into account the systematic and theoretical uncertainties as
they are harder to estimate). For this determination it is crucial to reduce the statistical
uncertainties, and the result depends strongly on the experimental efficiencies. But even
with the low acceptance of ϵ = 0.17×0.01, the results presented in this section demonstrate
that an experimental determination of ξtH × λhhH is possible.
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4.2.3 Comparison between classical statistics and Neural Networks

In this section we compare the improvement in the performance of the NN relative to the
classical MLE method on the original benchmark scenario. To quantify this we have used
the 95% confidence interval for the absolute error of ξtH × λhhH AE95. We trained on an
equal number of samples the NN and the MLE. The interpretation of AE95 is that the error
in the prediction of ξtH × λhhH is at 95% CL smaller than AE95.

We find that the error is highly sensitive to the value of ξtH × λhhH as illustrated in
Fig. 4.17. The left plot shows the AE95 for ξtH × λhhH computed using the MLE method,
while the right plot displays the results from the NN analysis. Both approaches reveal a
similar overall trend: the largest errors occur near ξtH × λhhH = ±0.05 and decrease for
larger absolute values. Additionally, the minimum error appears near zero, with a slight
preference for negative values.

Figure 4.17
Comparison of the AE95 with MLE (left) and NN (right).

We can define the ranges where the 95% CL error is larger than the value itself as the
crossing points between the blue and gray lines in Fig. 4.17, this comparison yields the
ξtH × λhhH intervals:

−0.0755 <ξtH × λhhH < 0.0799 for MLE,

−0.0459 <ξtH × λhhH < 0.0450 for NN (1σ).
(4.17)

These intervals can be interpreted as the sensitivity ranges of ξtH ×λhhH with each method.
It is clearly visible that the NN method yields a larger sensitivity to the BSM couplings.

We can also use these intervals to compare the regions of the original plane that can be
probed with both methods, this region is shown in Fig. 4.18. In this figure, we display the
original benchmark plane with the colour coding indicating the magnitude of ξtH × λhhH .
Inside the solid contour lines the determination of ξtH × λhhH would not be conclusive
with each respective method, i.e. compatible with zero. We point out several observations:
(1) the MLE (red contour) is worse than the NN (cyan contour) for the determination of
ξtH × λhhH , (2) the p-value (black contour) cannot do a parameter estimation, it can only
exclude the null hypothesis of the SM, and in this it is competitive with the NN, and (3) the
NN can do both, a hypothesis test and parameter estimation simultaneously, while being
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Figure 4.18
Comparison between classical methods and NN for the ξtH×λhhH estimation
in the benchmark scenario of Fig. 4.7

comparable with the classical methods in the first case, it outperforms them in the second
case.

Additionally, we trained the network on data with a larger uncertainty range (allowing
2σ errorbars with the means of the Poisson distribution at the the theoretical values of
ξtH ×λhhH ) and validated it on data with a 1σ smaller uncertainty. In this way we provide
to the net more information about the points that deviate the most from the prediction, so
that it can learn more about them. The AE95 limits for ξtH × λhhH in that case are

−0.0334 <ξtH × λhhH < 0.0341 for NN (2σ), (4.18)

shown with a solid blue line in Fig. 4.18. The results were better than with other methods,
specially for negative values of ξtH × λhhH . However, training the net on points with a
larger Poisson deviation from the mean values (> 2σ) proved to worsen the results, as the
dataset became too noisy to extract any meaningful information. We therefore conclude
that the NN is not only the best method for BSM parameter determination, as it can do
both hypothesis testing and parameter estimation in a more efficient way, it also has the
potential to be improved with a dedicated analysis of the data.

If we compare the different training datasets with the AE95 metric we obtain the fol-
lowing result

−0.0459 <ξtH × λhhH < 0.0450 for dataset (1),

−0.0386 <ξtH × λhhH < 0.0338 for dataset (2),

−0.0503 <ξtH × λhhH < 0.0712 for dataset (3).

(4.19)
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The respective AE95 for each value ξtH ×λhhH are shown in Fig. 4.19. The key features
are: the net performs better for the dataset (2) than for dataset (1), i.e. more adding a
free parameter of the model to the dataset improves its performance, and it performs worse
for the dataset (3) than for the dataset (1), specially for positive ξtH × λhhH values, which
suggests that an uncertainty in the measurement might be a source of error in the NN
approach, which however can be taken under control by including a larger training sample
with more mH values.

Figure 4.19
AE95 for the different datasets studied here.

Finally, we also mention here how we used the AE95 metric to decide on the network
architecture. As shown in Fig. 4.20, there is no significant improvement in the ranges of
ξtH × λhhH(NN predicted) when using a 2-hidden layer network with 128 neurons or even
a 4 layer with 128 neurons each w.r.t the simple 1 layer with 64 neurons employed in the
present analysis.

4.2.4 Future prospects

The results in the previous subsection have been obtained using the experimental efficiencies
as given by ATLAS [272]. However, it is conceivable that the efficiencies during the HL run
of the LHC might improve due to a better knowledge of the systematic uncertainties with
increasing luminosity. As a hypothetical scenario we analyse here the level of improvement
in the NN determination of ξtH × λhhH in the case that each of the two efficiencies, ϵTOT

and ϵSR are improved by a factor of two. This increase of the number of events by a factor
of four would yield a factor of 1/2 in the statistical uncertainty for each bin in the mhh

distribution.
In Fig. 4.21 we show the results of the NN analysis assuming this improvement of the

combined efficiency by a factor of four, i.e. the same as in Figs. 4.13, 4.15, and 4.15 but with
relative statistical uncertainties smaller by a factor of 1/2. We evaluate the improvements
on the initial benchmark plane (first row), on the plane with the free m2

12 (middle row) and
the uncertain mH (lower row). We show the scatter plots on the left and the density plots
on the right, in the same fashion as before. All the plots in Fig. 4.21 show a substantial
improvement over the corresponding in Figs. 4.13, 4.15, and 4.15. The conclusion being
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Figure 4.20
AE95 for different NN architectures. The one employed in this project
is the simplest 1 hidden layer with 64 neurons (blue), the more complex
architectures include a 2 and 4 hidden layers with 128 neurons each, shown
in green and purple respectively.

that a factor of two improvement in the efficiencies will lead to a NN determination of
ξtH × λhhH at the level of 10-20%.

4.2.5 Outlook

As discussed in Chapter 2, the shape of the scalar potential remains undetermined exper-
imentally and is strongly influenced by deviations in the scalar sector from the minimal
electroweak sector of the SM. In particular, the presence of additional scalar fields would
induce new BSM scalar self-interactions, as for instance λhhH . Motivated by BSM theories
that suggest modifications of the “vanilla” SM-like scalar potential, we present an analysis
aimed at determining the access to one BSM parameter shaping its possible form.

We presented the first sensitivity study of such a BSM trilinear scalar coupling using a
NN trained on the invariant mass distributions of Higgs pair production at the HL-LHC to
extract ξtH × λhhH , the product of the resonant scalar top Yukawa coupling and trilinear
coupling of H to the two SM-like Higgses in the final state, hh. Assuming a hypothetical H
mass of 450 GeV, we show that, depending on future experimental efficiencies and uncer-
tainties, a determination of ξtH ×λhhH at the 10–20% level may be achievable by the end of
the HL-LHC. We also present a simple and efficient alternative to classical statistical meth-
ods, demonstrating that basic NNs are effective for both hypothesis testing and parameter
estimation, outperforming conventional MLE methods in this context.

If in the future data is available that confirms the existence of a BSM scalar particle
in nature, a NN model with a larger accuracy can be trained, by taking into account
the future mass uncertainty range and by including higher order loop corrections to the
process gg → hh, and in particular to the involved THCs. We expect a more realistic and
sophisticated analysis based on this future knowledge to outperform our results. Despite the
fact that our analysis is model dependent, it is reasonable to assume that any model with
a similar experimental signature that may then be favoured by experimental data will have
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Figure 4.21
NN prediction of ξtH ×λhhH for the different datasets: (1) upper, (2) middle and (3) lower
row. All with a factor 4 improvement in the total efficiency ϵ (see text).
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good prospects for the determination of the couplings involved in the resonantly produced
Higgs-boson pairs. In this way, NNs pave the way to determine the shape of the BSM Higgs
potential.



Chapter 5

New probes of a strong first order
electroweak phase transition

The sections 5.2.1, 5.2.2 and 5.3 are based on the following publication:

[2] T. Biekötter, S. Heinemeyer, J.M. No, K. Radchenko, M.O. Olea Roma-
cho and G. Weiglein, First shot of the smoking gun: probing the electroweak
phase transition in the 2HDM with novel searches for A → ZH in ℓ+ℓ−tt
and ννbb final states, JHEP 01 (2024) 107 [2309.17431]
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In this section we will explore the different phenomenological probes of a strong first
order electroweak phase transition in the early Universe. We begin with collider probes, fol-
lowed by cosmological ones. On the collider side, we focus on two main aspects: (1) searches
for additional scalar particles, which, as we discussed, are a requirement for electroweak
baryogenesis due to the absence of a first-order phase transition in the SM, highlighting in
particular the smoking gun signature A → ZH, and (2) deviations in the Higgs trilinear
coupling, which are linked to the observation of Higgs pair production. On the cosmological
side we explore the cosmological probes of a strong first order phase transition, where we
will explore the gravitational wave stochastic background produced by such a transition.
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5.1 General effects of a SFOEWPT in the 2HDM

In order to study the physics of the EW phase transition, we will use the finite-temperature
effective potential formalism. The one-loop, daisy resummed, finite-temperature 2HDM
effective potential is derived in App. A. It is given by

Veff = Vtree + VCW + VCT + VT + Vdaisy . (5.1)

The temperature-independent part of the potential comprises the first three terms, where
Vtree is defined in Eq. (2.66), VCW is the one-loop Coleman Weinberg potential [138] incor-
porating the radiative corrections, and VCT is a UV-finite counterterm potential introduced
in order to keep the physical masses and the vevs of the Higgs fields at their tree-level
values at zero temperature [211]. The thermal corrections to the scalar potential are split
into two terms. The first one, VT, incorporates the one-loop thermal corrections in terms of
the well-known J-functions (see e.g. Ref. [288]). The second term, Vdaisy, is an additional
piece accounting for the resummation of the so-called daisy diagrams. As resummation pre-
scription, we follow the Arnold-Espinosa method [289], which resums the infrared-divergent
contributions from the bosonic Matsubara zero-modes. We emphasize that the computation
of the finite-temperature effective potential, at the order performed in this work, is affected
by sizeable theoretical uncertainties, see Refs. [290–293] for a detailed discussion.

For the numerical evaluation of the effective potential at finite temperatures we use
the public code CosmoTransitions [294], which was updated in Ref. [295]. Typically, the
universe evolves starting from an EW symmetric vacuum configuration at the origin of field
space.1 We identify the regions of the 2HDM parameter space that, as the Universe cools
down, develop an electroweak symmetry-breaking minimum in the Higgs potential, sepa-
rated from the origin by a potential barrier. The universe reaches the critical temperature
Tc when these two coexisting vacua are degenerate. At later times, when T < Tc, the
minimum corresponding to the EW vacuum drops below the minimum in the origin, and
thus becomes energetically more favourable. At this point, the onset of the first-order phase
transition from the minimum at the origin to the EW vacuum depends on the transition
rate per unit time and unit volume

Γ(T ) = A(T )e−S3(T )/T , (5.2)

where A(T ) ∼ T 4(S3/2πT )
3/2 [296]. Here S3(T ) is the temperature-dependent Euclidean

bounce action of the (multi-)scalar field configurations, defined as

S3 = 4π

∫
r2dr

[
1

2

(
dϕB
dr

)2

+ V (ϕB, T )

]
, (5.3)

where ϕB is the solution to the equation of motion defined by the Euclidean action S3(T ).
The onset of the phase transition occurs when (see e.g. Ref. [110])

S3(Tn)/Tn ≈ 140 , (5.4)

1EW symmetry non-restoration in the high-temperature regime T ≫ mA,mH± ,mH ,M (with M2 ≡
m2

12/(sβ cβ)) is possible in the 2HDM [77].
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which arises from the comparison of the transition rate and the expansion rate of the
universe. Tn is the nucleation temperature, which very accurately corresponds to the tem-
perature at which the transition takes place. If the condition (5.4) is not fulfilled at any
temperature T < Tc, the phase transition cannot complete successfully, and the universe
remains trapped in the false vacuum at the origin [77] (see also Refs. [295,297]).

With this in mind, and following Ref. [77] (see also Ref. [298]), we can define several
thermal histories in the 2HDM according to the temperature evolution of the vacuum con-
figuration:

Global minimum at the origin: parameter points that fall in this category exhibit a
global minimum at the origin of field space at T = 0. They can be divided into two
subregions: regionA, where the electroweak minimum existed at high temperature but
the system never transitioned to it, resulting in electroweak symmetry non-restoration
(see discussion below); and regionB, where the global minimum remained at the origin
throughout the thermal history, and no phase transition occurred either. In region
A, the SSB required for the Higgs mechanism must have taken place at temperatures
higher than the range considered in our analysis (valid up to Tmax ∼ 500 GeV), thus
beyond the reach of perturbative effective potential methods. For related work on
high-scale baryogenesis, see Ref. [299–304]. Region B is unphysical, as the system
remains in the symmetric phase at zero temperature.

Symmetry non-restoration (SnR): refers to scenarios where the EW symmetry re-
mains broken even at high temperatures, contrary to the standard expectation of
symmetry restoration. This phenomenon can occur due to large quartic couplings
and resummed thermal corrections. Contrary to vacuum trapping, EW SnR is not
necessarily an unphysical scenario. Even though in the presence of SnR an EWPT
is not possible, high-scale GUT baryogenesis scenarios might happen due to the sup-
pression sphaleron processes in the broken phase [305–309]. However care must be
taken as SnR up to high scales alters the thermal history of the Universe, poten-
tially affecting dark matter abundance, the Hubble rate, and the evolution of particle
species through modified interactions with the thermal bath. These points belong to
the category labelled C.

Vacuum trapping: refers to the unphysical situation where the Universe becomes stuck
in a false vacuum during its thermal evolution, preventing it from reaching the EW
vev at zero temperature at 246 GeV. Even if the EW vacuum is the global minimum
at T = 0, a viable cosmological history requires that the Universe can evolve to it
at an earlier stage. This means that zero-temperature analyses alone are insufficient
to determine the physically allowed parameter space in BSM models. If a potential
barrier prevents a first order phase transition, the Universe may remain trapped in a
symmetric (false) vacuum. These points belong to the category labelled D, and same
as for B, they are unphysical.

Strong first order electroweak phase transition: In this category we classify the pa-
rameter points that feature a phase transition strong enough to allow for electroweak
bayogenesis. We label this region as E. For them the condition in Eq. (2.48) ξn > 1
is satisfied. The transition happens at a nucleation temperature Tn. The larger the
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splitting between the nucleation and the critical temperature Tc, the stronger the
transition and the better the prospects for GW observations.

Weak phase transition: here we classify the points that feature either a weak first-order
transition that cannot lead to successful baryogenesis or a second order phase tran-
sition. In such cases the evolution of the vacuum with temperature is continuous
and no vacuum tunnelling occurs, therefore no bubble nucleation takes place and the
transition happens continuously and simultaneously throughout space.

In the context of this thesis we extended the analysis performed in Ref. [77] to further
regions of the 2HDM parameter space. In Figs. 5.1 and 5.2 we show our results in the
four 2HDM Types for tβ = 2 and tβ = 10, respectively. The x-axis represents the mass
of the CP -even scalar, mH , and the y-axis is the mass of the CP -odd scalar. All these
scenarios are in the alignment limit, cβ−α = 0, and furthermore satisfy mA = mH± in
order to avoid constraints from EWPO, and m2

12 = mHcβsβ to enlarge the region allowed
by perturbative unitarity. In the four upper plots we show as a colour coding the regions
excluded by experimental constraints, using the same conventions as described in Sec. 2.7.2.
The yellow regions are excluded by tree-level vacuum stability (VS), the green regions by
perturbative unitarity (PU), the cyan regions by flavour constraints (FC), the pink by
electroweak precision observables (EW), the red by HiggsBounds (HB) and the purple by
HiggsSignals (HS). The allowed regions by all the constraints are white. We observe that
the flavour constraints cut the parameter space of all mA < 600 GeV. Regions with large
mass-splittings between mA and mH are constrained by perturbative unitarity. In the
analysed benchmark plane, the region with mH ≲ 400 GeV is excluded mostly by A→ ZH
searches analysed in greater detail in the following subsection. We note that in Type II the
searches for BSM scalars in regions with tβ = 10 exclude most of the analysed parameter
space, with masses of the scalar particles up to 800 GeV. This is mainly due toH/A→ τ+τ−

searches, as will be discussed in more detail in the next section.

The lower four plots show the thermal histories in the allowed parameter regions (i.e. the
white regions in the four upper plots). We show the same scenario in the four 2HDM
Types. In this case, the disallowed region by experimental constraints that was coloured
in the plots above is represented by a gray region. In the allowed region we distinguish
between the coloured regions A (light blue), B (green), C (dark blue), D (black), E (colour
code indicating the nucleation temperature Tn) and F (light brown) explained above. In the
white points the numerical calculation failed. In most of the cases this happens in the limits
of the weakest transitions, as the numerical integration struggles to find a transition. We
could have tuned the parameters of the numerical integration in these regions, but since this
is a qualitative study of the effects we did not perform a detailed investigation of specific
parameter points.

In general, we recover the results from Ref. [77], which was however restricted to Type II
and tβ = 3. We observe that in the mH −mA plane a weak phase transition takes place at
the values along the diagonal. For a fixedmH , the strength of the transition increases asmA

becomes larger, i.e. as the mass splitting between the scalars increases, which in turn implies
larger quartic couplings and a larger barrier. When the phase transition becomes strong,
thus entering in the region E, for which we show the bubble nucleation temperature as a
colour coding. The strongest transitions happen at yellow values of the coloured region,
which correspond to a nucleation temperature Tn ∼ 50 GeV. When the mass splittings
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Figure 5.1
All 2HDM Types for tβ = 2, cβ−α = 0. The four upper plots show the region constrained
by the applied theoretical and experimental constraints. The four lower plots depict the
different thermal histories in the allowed region. The colour coding indicates the nucleation
temperature in the region compatible with a SFOEWPT. See text for details.
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Figure 5.2
Same as in Fig. 5.1, but for tβ = 10, cβ−α = 0.



5.2. Collider probes 145

become larger, the vacuum trapped region D emerges for masses roughly below mH ≲ 600
GeV. For higher masses, the EW symmetry remains unrestored at high temperatures.

The main conclusion that can be drawn from this analysis is that the Yukawa type does
not play a major role in the phase transition. The differences in the type are differences
among the light Yukawa couplings and therefore the contributions in the effective potential
are minor, this was expected. A major difference between types arises once experimental
constraints are taken into account, as they depend on the allowed production channels and
decay rates and these depend significantly on the Yukawas of the light particles (see Sec. 5.2
for a detailed discussion).

Comparing the results for tβ = 2 and tβ = 10, we cannot see a major difference in the
thermal histories. Turning to the region featuring a SFOEWPT, which is most relevant
here, we can see that larger values of tβ seem to open the possibility for a strong transition
at larger masses of the CP -even scalar, mH , up to values of 1 TeV. The strongest transitions
have a Tn ∼ 50 GeV, as in the case for smaller tβ values.

5.2 Collider probes

We have seen that mass splitting effects in BSM theories induce large quartic couplings and
these contribute to enhancing the energy barrier in the early Universe that opens up the
possibility for a strong first order transition to take place. There are two phenomenological
consequences of the above statement, one is the occurrence of BSM states, which is an
active area of experimental searches, and the second one is the deviation in the measured
trilinear Higgs coupling today.

5.2.1 Direct searches

Any BSM searches could a priori lead to the discovery of a particle that would favour a
strong first order electroweak phase transition. In this thesis we will focus on one search
in particular, which has been coined a smoking gun signature for a FOEWPT [310]. This
process is the decay of a pseudoscalar particle into a Z boson and a heavy BSM CP -even
particle, A → ZH. This search requires a mass splitting between mA and mH at least of
the order of the Z-boson mass (mZ ∼ 91 GeV) in order to be kinematically allowed and
therefore enforces the necessary mass splittings that induce a SFOEWPT in BSM theories.
It also contains two of the four BSM states present in the 2HDM, which is therefore a
minimal complete theory that accommodates such a decay channel.

Our analysis will be based on the recent ATLAS A→ ZH searches that were published
during the course of this thesis in two A production modes (gluon fusion and bb̄-associated
production) and three decay channels (ℓ+ℓ−tt̄, ℓ+ℓ−bb̄ and ννbb̄):

- gg → A→ ZH → ℓ+ℓ−bb̄ at 13 TeV including 139 fb−1 from Ref. [281]

- bb̄→ A→ ZH → ℓ+ℓ−bb̄ at 13 TeV including 139 fb−1 from Ref. [281]

- gg → A→ ZH → ℓ+ℓ−tt̄ at 13 TeV including 140 fb−1 from Ref. [311]

- gg → A→ ZH → ννbb̄ at 13 TeV including 140 fb−1 from Ref. [311]

- bb̄→ A→ ZH → ννbb̄ at 13 TeV including 140 fb−1 from Ref. [311]
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We note that the results from Ref. [281] update the previous ATLAS results based on
36.1 fb−1 collected during the first two years of Run 2 [312], which are contained in the
public HiggsBounds dataset (and which will now be replaced by the full Run 2 results). The
corresponding CMS results include first-year Run 2 data [313] and are also implemented in
HiggsBounds, but since they are based on less data, the extracted limits are weaker than
the limits from the new ATLAS analyses. More recently, CMS published the results in
the ℓ+ℓ−tt̄ final state [314], which were not available at the time of our analysis and are
therefore not included here.

We focus on two distinct regions of the 2HDM parameter space: a low-tβ regime (tβ ≤ 3)
and a high-tβ regime (tβ ≥ 10). In the low-tβ regime, the pseudoscalar Higgs boson A
can be efficiently produced via gluon fusion. Similarly to the CP -even scalar production
discussed so far, the dominant fermion loop is the top quark loop, whose Yukawa coupling is
proportional to 1/tβ and therefore leads to a cross section scaling as 1/t2β for all 2HDM Types
(see Eq. (2.72) and Tab. 2.2). The contributing diagram is shown on the left of Fig. 5.3. We
find that searches in the ℓ+ℓ−tt̄ final state exclude substantial regions of parameter space
that were previously unconstrained. In contrast, searches in the ννbb̄ final state primarily
exclude regions already ruled out by other LHC analyses or theoretical constraints such as
perturbative unitarity. Due to the aforementioned dependence on tβ, these searches quickly
lose sensitivity in intermediate tβ regions, where also bb̄-associated production remains
inefficient, for which the corresponding Feynman diagram shown on the right of Fig. 5.3.
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Figure 5.3
Diagrams with the main A → ZH production modes: gluon fusion on the left
and bb̄-associated production on the right. In orange the involved Yukawa cou-
pling modifiers are indicated, the A-boson top-Yukawa on the left and the A-
boson bottom-Yukawa on the right.

In the high-tβ regime, bb̄-associated processes for A production become efficient in
some 2HDM Types. In this case, the cross section is enhanced in Yukawa Types II and
IV (scaling as t2β), and suppressed in Types I and III (scaling as 1/t2β) (see Eq. (2.72) and

Tab. 2.2). In this regime, the ννbb̄ searches primarily probe regions already covered by
previous ℓ+ℓ−bb̄ analyses, we find however that in order for this production mode to have
a sizeable sensitivity, the enhancement needs to be of t2β ≈ 100, which fixed the minimum
value of our high-tβ regime at 10. The impact of the searches for even larger values of tβ can
be extrapolated from the discussion of this scenario, as will be shown in detail in Sec. 5.2.1.2.

The 2HDM parameter region that we explore in this work is motivated by the possibility
of realising a strong FOEWPT giving rise to EW baryogenesis in the early Universe. In
this scenario the CP -odd scalar A and the charged scalars H± are assumed to be mass-
degenerate, i.e. mA = mH± , and the squared mass scale M2 = m2

12/(sβcβ) is set equal
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to the mass of the heavy CP -even scalar H, i.e. M = mH .
2 In addition, the alignment

limit cos(α − β) = 0 is assumed, in which the properties of the (in this case) lightest
Higgs boson h with mass mh = 125 GeV are the same as for the SM Higgs boson at tree
level. These conditions on the parameter space allow for sizeable mA−mH mass splittings,
driven by the quartic couplings in the 2HDM scalar potential Eq. (2.66), facilitating the
presence of a FOEWPT [77,310] while being in agreement with the LHC measurements of
the properties of the detected Higgs boson at 125 GeV as well as with the results for the
EW precision observables and further theoretical constraints. After imposing the above-
mentioned conditions, the only remaining free parameters are the masses mH and mA =
mH± as well as tβ. In the following, we discuss our results in the (mH ,mA)-plane for
different values of tβ within the two regimes discussed above. We check the compatibility
of the parameter space with experimental and theoretical constraints using thdmTools,
although we do not explicitly apply the constraints from flavour physics, as we focus on the
direct sensitivity of collider searches in the BSM parameter space.

5.2.1.1 Low tβ-regime

In this section we present our results for the low-tβ regime, which focuses on the range
1 ≤ tβ ≤ 3. The lower bound on tβ was chosen because values of tβ below 1 are in strong
tension with constraints from flavour physics observables. The indirect limits from flavour
physics also constrain the 2HDM parameter space for slightly larger values of tβ depending
on the 2HDM Yukawa Type and the mass of the charged Higgs boson. As discussed above,
we do not carry out a detailed investigation of the indirect limits from flavour physics in
the following.

In Fig. 5.4 we show the impact of the new A → ZH searches from ATLAS [281, 311]
in the (mH ,mA)-plane for tβ = 1 (upper left), tβ = 1.5 (upper right), tβ = 2 (lower left)
and tβ = 3 (lower right). The upper left plot is valid independently of the chosen 2HDM
Yukawa Type. However, for tβ ̸= 1 the relevant cross sections and branching ratios depend
on the Yukawa Type, and the specific choice of type that is specified in the upper right and
the lower plots will be further discussed below.

In each plot we indicate the parts of the parameter space that are excluded by vacuum
stability and perturbative unitarity with pink and cyan colours, respectively. The regions
excluded by the new ATLAS search [311] for gg → A → ZH in the ℓ+ℓ−tt̄ and the ννbb̄
final states are indicated with red and blue shaded contours, respectively, whereas regions
excluded from previous LHC searches (including the recent ATLAS gg → A → ZH →
ℓ+ℓ−bb̄ search [281]) are indicated in gray. In each case the search channel giving rise to the
exclusion (under the assumption that this search is applied individually, see the discussion
in Sec. 4.1.2.2) is stated in the plots. For the new ATLAS searches we show in addition the
expected exclusion regions with dashed lines in the same colours. By comparing the gray
shaded areas with the red and blue shaded areas, one can determine to what extent the
new ATLAS searches probe previously unexplored parameter space regions.

2We note that in the 2HDM interpretation presented by ATLAS almost the same benchmark scenario
was considered [311]. However, therein the condition M = mA was used instead of M = mH as applied
here. We apply the latter condition in order to have a theoretically consistent form of the Higgs potential for
mA = mH± ≫ mH , whereas the condition used by ATLAS gives rise to an unbounded Higgs potential, and
thus an unstable EW vacuum, in the parameter space regions in which the A → ZH decay is kinematically
allowed.
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Finally, we show in the plots in Fig. 5.4 the parameter regions that exhibit a strong
FOEWPT as defined in Sec. 5.1 (based on the one-loop thermal effective potential with
daisy resummation in the so-called Arnold-Espinosa scheme). As discussed above, we note
the sizeable theoretical uncertainties in the predictions for a strong FOEWPT using this
approach, and thus the regions shown should only be regarded as indicative for the presence
of such strong transitions. The colour coding of the points indicates the ratio between the
vev vn in the broken phase at the onset of the transition and the nucleation temperature Tn.

The results for tβ = 1 (all Types) are shown in the upper-left plot of Fig. 5.4. One can
see that the new A → ZH → ℓ+ℓ−tt̄ ATLAS search (red) excludes the region 350 GeV ≲
mH ≲ 450 GeV and 650 GeV ≲ mA = mH± ≲ 800 GeV, which was so far allowed. This
demonstrates the exclusion power of such smoking gun signature for masses above the di-top
threshold. In addition, when combined with searches for the charged scalars using theH± →
tb decay [278, 315], searches for neutral scalars decaying into top-quark pairs [255], and
searches for the A→ ZH decay in the ℓ+ℓ−bb̄ final state [281], the mass range 300 GeV ≲
mH ≲ 450 GeV and 450 GeV ≲ mA = mH± ≲ 700 GeV is now excluded. Fig. 5.4 also
highlights that for tβ = 1 the parameter region with a strong FOEWPT to which the
new ATLAS search is sensitive, assuming mA = mH± , is already excluded by the charged
Higgs-boson searches. Yet, we stress that if the condition mA = mH± were relaxed by
allowing for an additional mass gap between these states, i.e. mH± > mA (which however
would lead to a tension with the electroweak precision observables), the searches for the
charged scalars would become less sensitive, such that the smoking gun search would have
the highest sensitivity in an even larger region of parameter space.

The results for tβ = 1.5 (Type II) are shown in the upper right plot of Fig. 5.4.
While for low tβ values the gluon-fusion production cross sections of A are dominantly
mediated by the top-quark loop, making the cross sections still very much independent of
the type, the branching ratios of A and H differ depending on the chosen type. However,
for tβ = 1.5 the differences between the types are mild, and we focus on the Yukawa Type II
for definiteness. Comparing to the results for tβ = 1 (upper left plot), one can see that
the region excluded by the searches for the charged scalars via pp → H±tb → tb tb, where
the cross section times branching ratio roughly scales with 1/t2β in the low-tβ regime, is

substantially smaller. This search loses even more sensitivity where the decay H± →W±H
is kinematically allowed, giving rise to the slope of the corresponding excluded region for
mH ≲ 500 GeV (which is more pronounced than for tβ = 1 because of the reduced H±tb
coupling). As a consequence, for tβ = 1.5 the H± → tb searches are not sensitive anymore to
the parameter space region indicative of a strong FOEWPT. Instead, this region is excluded
up to masses of mH ≈ 2mt by searches for H → τ+τ− [279, 280] and by searches for the
A → ZH decay using the ℓ+ℓ−bb̄ final state [281]. Above the di-top threshold, the decay
H → tt̄ very quickly dominates, and the new ATLAS search in the ℓ+ℓ−tt̄ final state is
the most sensitive one. In contrast to the tβ = 1 case, for tβ = 1.5 the new search is able
to exclude a significant parameter region featuring a strong FOEWPT that was previously
allowed. The new search substantially pushes the lower limit on the Higgs boson masses to
larger values of about mH ≳ 400 GeV and mA = mH± ≳ 550 GeV. We also stress that,
based on the expected cross section limits, an even larger mass region would be excluded,
as indicated with the dashed red line. However, ATLAS observed a local 2.85σ excess for
mA ≈ 650 GeV and mH ≈ 450 GeV, giving rise to a weaker observed cross section limit.
The masses corresponding to the excess, indicated with a magenta star in the upper right
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1Figure 5.4
Impact of the new ATLAS searches for the A → ZH signature in the (mH ,mA)-plane
for tβ = 1 (upper left), tβ = 1.5 and Type II (upper right), tβ = 2 and Type IV (lower
left), and tβ = 3 and Type IV (lower right). Parameter space regions excluded by vacuum
stability or perturbative unitarity are indicated with pink and cyan colours, respectively.
Regions excluded from previous LHC searches are indicated in gray, and regions excluded
by the new ℓ+ℓ−tt̄ and ννbb̄ searches are indicated in red and blue, respectively, where
the dashed lines indicate the corresponding expected exclusion limits. Parameter space
regions featuring a FOEWPT with vn/Tn > 1 are indicated with the scatter points, where
the colour coding indicates the values of vn/Tn. The mass values of the most significant
excess (2.85σ local significance) observed by ATLAS in the ℓ+ℓ−tt̄ search are indicated
with a magenta star in the upper right plot.
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plot of Fig. 5.4, and the corresponding cross section are such that they fall into the strong
FOEWPT region. This excess was however not confirmed by the later CMS search in the
same parameter region [314].

As an important outcome of the above discussion, a promising complementary LHC
search to target the strong FOEWPT region consists of charged scalar production followed
by the decay H± → W±H → ℓ±νtt̄, which so far has not been performed.3 In particular,
producing the charged scalar via pp→ tbH± would in this case lead to a 4-top-like (or 3-top-
like, depending on the signal selection) signature, which has very recently been performed
by CMS [317] and ATLAS [318] (but not interpreted in terms of the scenario discussed
here), yielding a mild excess over the SM expectation.

Finally, it can be seen that for tβ = 1.5 the new smoking gun search using the ννbb̄
final state starts to probe the considered parameter plane. An exclusion region is visible
below the di-top threshold regarding mH and for a minimum amount of mass splitting of
mA − mH ≳ 200 GeV. However, in contrast to the searches using the ℓ+ℓ−tt̄ final state
indicated by the red shaded region, the blue shaded region indicating the new exclusion
region resulting from the search using the ννbb̄ final state is already excluded by previous
LHC searches, namely searches for H decaying into tau-lepton pairs [279,280] and searches
for the smoking gun signature A → ZH with Z → ℓ+ℓ− and the decay of H into bottom-
quark pairs [281]. One should note, however, that the new A→ ZH search in the ννbb̄ final
state covers larger masses up to mH = 600 GeV and mA = 1000 GeV [311], extending the
reach of previous ATLAS searches in ℓ+ℓ−bb̄ and ℓ+ℓ−W+W− final states [281] in the region
with mH > 350 GeV and mA > 800 GeV. In the 2HDM constraints from perturbative
unitarity (cyan area in Fig. 5.4) exclude large mass splittings between states from the same
SU(2) doublet. As a consequence, the extended mass reach of the new searches in the ννbb̄
final state (not visible in the plot) does not give rise to new constraints on the 2HDM for
mA > 800 GeV. However, in other models allowing for larger mass splittings between the
BSM states, the searches in the ννbb̄ final state can potentially provide new constraints.

We show the results for tβ = 2 (Type IV) in the lower left plot of Fig. 5.4. From here
on, we focus our discussion on the Yukawa Type IV, in which the new ATLAS searches
have the highest potential for probing parameter regions that were unconstrained so far. In
particular, compared to Type I and III the decay width for H → bb̄ is enhanced in Type IV
for tβ > 1, such that the searches in the ννbb̄ final state become more important with
increasing values of tβ. Moreover, in Type IV the decay width for H → τ+τ− is suppressed
approximately by 1/t2β, whereas it is enhanced by about a factor of t2β in Type II. Hence,
while in Type II the parameter region below the di-top threshold, i.e. mH < 2mt, is entirely
excluded by the searches for di-tau resonances, in Type IV the ννbb̄ search can potentially
yield stronger constraints.

One can see in the lower left plot of Fig. 5.4 that in this case only three LHC searches
give rise to excluded regions in the parameter plane. This is a manifestation of the fact
that the so-called wedge-region of the 2HDM, with intermediate values of 2 ≲ tβ ≲ 8, is
difficult to probe at the LHC [319]. As an example, we note that the searches for the
charged scalars via the signature pp → H±tb → tb tb, suppressed by factors of about 1/t2β
in the low-tβ regime, cannot probe the parameter plane in this case. Below the di-top
threshold, we find that the A → ZH searches in the ℓ+ℓ−bb̄ (gray) and the ννbb̄ (blue)

3Searches targeting the H± → W±H decay have been performed by CMS assuming the decay H → τ+τ−

and assuming a fixed mass of mH = 200 GeV [316].
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final states exclude the entire region allowed by the theoretical constraints. As discussed
above, for mA < 800 GeV searches for the decay A→ ZH using the decay Z → ℓ+ℓ− have
been performed by ATLAS [281], which are more powerful than the new searches using the
Z → νν decay (the corresponding CMS search using the Z → ℓ+ℓ− decay covers masses
up to mA = 1 TeV, but is based on first-year Run 2 data only [320]). For mA > 800 GeV
ATLAS limits exist only from the new searches using the decay Z → νν (the resulting
exclusion regions are not visible in our plots since in the 2HDM such large mass splittings
are excluded by perturbative unitarity, indicated by the cyan area). Above the di-top
threshold, the searches relying on the decay H → bb̄ quickly lose their sensitivity to the
2HDM parameter plane. Accordingly, for masses of H substantially larger than twice the
top-quark mass the new smoking gun search for the decay H → tt̄ is in fact the only
channel that can probe the parameter plane. As indicated with the red shaded area, the
searches in the ℓ+ℓ−tt̄ final state are able to exclude masses smaller than mH ≈ 400 GeV
and mA ≈ 750 GeV for the lighter and the heavier BSM resonance, respectively. As it is
also visible in the plots for tβ = 1, tβ = 1.5 and tβ = 2 of Fig. 5.4, the difference between
the expected (red dashed line) and the observed (red solid line) exclusion region resulting
from the searches using the ℓ+ℓ−tt̄ final state arises from the excess observed in the ATLAS
search (except for the upper right part of the red region in the plots for tβ = 1.5 and tβ = 2,
where the observed limit is stronger than the expected one).

As a final step of the discussion of the low-tβ regime we consider a value of tβ = 3, in
(Type IV). The results of our analysis are shown in the lower right plot of Fig. 5.4. Again,
we focus on the Yukawa Type IV (see the discussion above).

One can see that in this case the smoking gun searches in the ℓ+ℓ−tt̄ final state can-
not probe the parameter space as a consequence of the suppression of the gluon-fusion
production cross section of A. We will discuss in Sec. 5.2.2 the prospects for probing the
benchmark plane for tβ = 3 in future runs of the LHC, in which roughly 20 times more
integrated luminosity will be collected by both ATLAS and CMS.4 At and below the di-top
threshold mH ≈ 2mt the results are similar to the case of tβ = 2, where the smoking gun
searches relying on the decay H → bb̄ essentially exclude the whole parameter region. One
should note that in Type IV (and Type II) the partial widths for the decays A,H → tt̄ are
suppressed approximately by 1/t2β, and the partial width for the decay H → bb̄ is conversely

enhanced by (approximately) t2β. As a result, the gray exclusion region from the searches

in the A→ ZH → ℓ+ℓ−bb̄ channel extends to slightly larger masses for tβ = 3 compared to
tβ = 2 (lower left plot).

5.2.1.2 High tβ-region

In the discussion above, we investigated the low-tβ regime where the CP -odd Higgs boson A
can be produced with a sizeable cross section via gluon fusion. For tβ ≳ 10, this production
mode is suppressed, and in Yukawa Types II and IV, A is instead produced more efficiently
via bb̄-associated production, which scales with t2β. Focusing now on this high-tβ regime,
we consider the relevance of the new ATLAS searches for the A → ZH signature in this
production mode. We focus on Type IV because the constraints from di-tau resonance
searches are significantly weaker than in Type II (as discussed above).

4See Ref. [77] for an earlier projection based on expected cross section limits reported by CMS.
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It should be noted that the new ATLAS searches reported in Ref. [311] only considered
the bb̄-associated production utilising the ννbb̄ final state, whereas the smoking gun search
utilising the ℓ+ℓ−tt̄ final state was considered only assuming gluon-fusion production of
the heavy BSM resonance. Thus, the only relevant searches for the A → ZH decay in
the following discussion will be the previously reported searches utilising the ℓ+ℓ−bb̄ final
state [281,313] and the new searches utilising the ννbb̄ final state [311].
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As in Fig. 5.4, but for tβ = 10 in Type IV. Parameter space regions excluded by the new
ννbb̄ searches in the bb̄-associated production channel are indicated in yellow, while the
yellow dashed line indicates the expected exclusion limit

In Fig. 5.5 we show our results for tβ = 10 as a representative benchmark scenario for
the high-tβ regime. The colour coding of the exclusion regions and the scatter points is the
same as in Fig. 5.4, except for the yellow dashed and solid lines indicating the expected and
observed exclusion limits resulting from the recent ATLAS search for bb̄ → A → ZH →
ννbb̄, respectively. One can see that the parameter space region excluded by this search
(yellow shaded area) lies within the gray shaded area indicating the exclusion from the
searches for bb̄ → A → ZH → ℓ+ℓ−bb̄ [281], which were published previously. Hence,
although the new searches based on the decay of the Z boson into neutrinos are able to
probe the 2HDM parameter space for values of tβ ≳ 10, these regions are already excluded
by the searches making use of the decay of the Z boson into charged leptons. We stress,
however, that the new searches using the ννbb̄ final state cover a larger mass interval of up
to 1.2 TeV for the heavy BSM resonance (not visible in the plot), whereas the corresponding
upper limit in the ATLAS searches using the ℓ+ℓ−bb̄ final state is about 800 GeV. Therefore,
in other models in which larger mass splittings between the heavier and the lighter BSM
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resonance are possible compared to the 2HDM (where perturbative unitarity implies an
upper limit on such mass splittings, see the cyan region in Fig. 5.5), the new searches using
the ννbb̄ final state could potentially give rise to new constraints.

The two LHC searches relevant in Fig. 5.5 differ in the targeted decay mode of the
Z boson, whose branching ratios are precisely measured. As a consequence, the relative
importance of both searches is independent of the 2HDM parameters, especially of tβ. We
can therefore extrapolate based on the results for tβ = 10 shown in Fig. 5.5 that also for
larger values of tβ the searches making use of the Z → ℓ+ℓ− decay mode are more promising
to probe the considered benchmark plane compared to the searches using the Z → νν decay
mode. It should also be taken into account that for larger values of tβ other LHC searches
become relevant in Type IV.5 In particular, searches for new resonances produced in bb̄-
associated production with subsequent decay into bottom-quark pairs [322], giving rise to
four b-jet final states, start to exclude sizeable parts of the benchmark plane for tβ ≳ 15.
Moreover, for such values of tβ searches for new resonances produced in association with a
photon and decaying into two jets [323] are able to exclude parameter regions especially in
the mass-degenerate regime.

5.2.2 Future prospects for ℓ+ℓ−tt̄ searches

In Sec. 5.2.1.1 we have demonstrated that the new ATLAS smoking gun searches targeting
the ℓ+ℓ−tt̄ final state exclude sizeable parts of previously allowed parameter space of the
2HDM assuming values of tβ not much larger than one. In particular, we have shown that for
BSM scalar masses above the di-top threshold and values of 1.5 ≲ tβ ≲ 3 the smoking gun
searches arguably are the most promising of all LHC searches for probing so far unexplored
parameter space regions, with the potential to discover additional Higgs bosons that are
consistent with a 2HDM interpretation. Due to their exceptional importance, we briefly
discuss here the projected sensitivity of the searches for the A → ZH decay in the ℓ+ℓ−tt̄
final state during future runs of the LHC and HL-LHC. As input for our projections we use
the expected limits from the ATLAS analysis for an integrated luminosity of 140 fb−1. This
improves upon the previous projections presented in Ref. [77] that were obtained based on
an estimate of the expected sensitivities from the CMS collaboration.

The projected exclusion limits discussed in the following were obtained by re-scaling
the expected cross section limits reported in Ref. [311] with future values for the integrated
luminosity that will be collected during future runs of the (HL-)LHC, i.e.

σexp. 95% CL
proj. (L,mH ,mA) = σexp. 95% CL

Run 2 (mH ,mA)

√
140 fb−1

L . (5.5)

Here, σexp. 95% CL
Run 2 is the expected cross section limit at 95% confidence level reported by

ATLAS based on 140 fb−1 collected during Run 2 as a function of the masses of the probed
BSM resonances, and σexp. 95% CL

proj. is the future projection of the expected cross section
limits depending additionally on the assumed integrated luminosity L. Accordingly, in
the projections we only account for the reduction of statistical uncertainties, whereas no
assumption is made on possible improvements of systematic theoretical or experimental

5In Type II, for tβ ≳ 10 the whole investigated parameter plane is excluded for masses up to about 1 TeV
by searches for scalar resonances decaying into tau-lepton pairs [279,280,321].
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uncertainties. Moreover, we do not account for the slight increase of the center-of-mass
energy at future runs of the LHC and the HL-LHC, operating at 13.6 TeV and 14 TeV,
respectively, compared to the Run 2 dataset collected at 13 TeV. Taking this into account,
we consider our projections as fairly conservative estimates.
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As in Fig. 5.4 for tβ = 1.5 (left) and tβ = 3 (right), shown here for Type II, but the red
dashed lines indicate projected expected exclusion regions assuming integrated luminosities
of 300, 600, 1000, 3000 fb−1 from future runs of the LHC.

The projected expected cross section limits can be cast into projected exclusion regions
in the 2HDM. In Fig. 5.6 we show our projections in the same 2HDM benchmark plane
discussed so far for the Yukawa Type II with tβ = 1.5 in the left plot and tβ = 3 in the
right plot.

In both plots, the colour coding of the scatter points and the definition of the pink
and cyan regions is as in Fig. 5.4, and the red dashed lines indicate the expected exclusion
regions for different values of the integrated luminosity, ranging from L = 300 fb−1 (end of
LHC Run 3) to L = 3000 fb−1 (end of the LHC high-luminosity phase). Moreover, in the
left plot the red shaded area indicates the currently excluded region based on the observed
cross section limits obtained for L = 140 fb−1, and the magenta star indicates the masses
for which ATLAS has observed the most pronounced local excess. As already discussed in
Sec. 5.2.1.1, currently the smoking gun searches are not able to probe the benchmark plane
for tβ = 3 (see the lower left plot of Fig. 5.4). Accordingly, no red shaded region is visible
in the right plot of Fig. 5.6.

One can observe in the left plot of Fig. 5.6 that with the prospective improvements of the
integrated luminosity it will be possible to increase very significantly the regions that can be
probed in the considered benchmark plane for tβ = 1.5. While currently in the upper right
part of the red shaded region the smoking gun searches are able to exclude masses up to
values slightly below 500 GeV for the lighter and up to 850 GeV for the heavier BSM scalar,
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in the future the LHC will be able to probe via this search masses up to about 700 GeV
and 1 TeV for the lighter and the heavier BSM scalar, respectively. This improvement in
sensitivity has a very important impact on the parameter region that is suitable for the
realisation of a strong FOEWPT according to the thermal effective potential approach. In
the case of the absence of a signal the exclusion within the region that is indicative for a
strong FOEWPT would extend up to mH ≲ 550 GeV and mA ≲ 700 GeV. It should be
noted in this context that the strength of the phase transition diminishes with increasing
masses of the BSM scalars. As one can infer from the colour coding of the displayed points,
the projected exclusion regions cover the parameter region for which the strongest phase
transitions can be accommodated. As a result, and since in the 2HDM the generation of
a sufficiently large BAU may be possible only for small values of tβ not much larger than
one [40], the searches for the smoking gun signature will provide a stringent test of the
possibility to explain the BAU by means of EW baryogenesis in the 2HDM.

In this context it is also important to note that in the 2HDM the primordial GW
background generated during the phase transition is only potentially detectable with LISA
for the largest possible values of vn/Tn, which are only reached in a very restricted region
of the 2HDM parameter space and have a very strong dependence on the details of the
scalar spectrum [77]. We have verified using the approach that will be detailed in Sec. 5.3
that for the considered values of tβ all parameter points predicting a GW signal that is
potentially detectable with LISA would be probed by the projected exclusion limits from
the HL-LHC. Hence, in the 2HDM the HL-LHC results will have an enormous impact on the
possibility for a detection of a GW background with LISA consistent with a FOEWPT. This
exemplifies that the HL-LHC has the potential to probe large parts of the relevant parameter
space before the LISA experiment will have started its operation. Here it should be noted,
however, that the presence of a strong FOEWPT, without demanding a realisation of EW
baryogenesis, is also possible for larger values of tβ, where the gg → A → ZH → ℓ+ℓ−tt̄
searches lose their sensitivity. A GW signal potentially detectable with LISA therefore
cannot be fully probed with the searches in the ℓ+ℓ−tt̄ final state.

Besides the analysis of the potential of future runs of the (HL-)LHC for probing the
2HDM parameter space in terms of projected exclusion limits, it is also of interest to
investigate the possible interplay between the LHC and LISA for the case where a smoking
gun signal would be detected. The detection of the smoking gun signal would allow for the
determination ofmH andmA, and possibly also ofmH± via the corresponding cross sections
in combination with the application of other constraints. The experimentally determined
values of the BSM scalar masses could then be used in dedicated analyses of the phase
transition dynamics. For instance, the experimental information about the mass hierarchy
of the scalar spectrum would allow an analysis of the thermal potential in an appropriately
chosen dimensionally-reduced effective-field theory, in which the heavier scalars have been
integrated out in a systematic way in order to facilitate the incorporation of relevant higher-
order effects, as well as dedicated lattice simulations (see Refs. [324, 325] for recent efforts
towards these directions in the 2HDM, and Refs. [292,293,326–328] for related investigations
in other extended scalar sectors).

In the right plot of Fig. 5.6, in which we show the projections for tβ = 3, one can
see that with more integrated luminosity the (HL)-LHC also in this case is able to probe
substantial parts of the otherwise unconstrained parameter space regions. Interestingly, the
red dashed lines indicating the expected reach of the LHC stretch out to the largest values
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of mH within the parameter regions which might be suitable for a realisation of a strong
FOEWPT. Assuming an integrated luminosity of 3000 fb−1 collected by both ATLAS and
CMS by the end of the LHC high-luminosity phase, masses of up to mH ≈ 550 GeV and
mA ≈ 800 GeV can be probed. Here it should be taken into account that the parameter
space region with mH below the di-top threshold is already excluded by di-tau searches
(only for Type II) and by searches for gg → A → ZH → ℓ+ℓ−bb̄ (both for Type II and
Type IV), as was discussed in detail in Sec. 5.2.1.1 (see the lower right plot of Fig. 5.4).
However, the sensitivity of these searches to the parameter space regions above the di-top
threshold will not improve significantly with increasing data, because the branching ratio
for the decay H → bb̄ is strongly suppressed for mH > 2mt.

Figure 5.7 provides a summary of the various searches discussed in this section, high-
lighting their sensitivity across different regions of the 2HDM parameter space. The x-axis
represents tβ and the y-axis the mass of the heavy scalar states. As before, we divide the
discussion into the low- and high-tβ regimes. Notably the low-tβ region is favourable for
electroweak baryogenesis in the presence of CP -violating sources.

The most promising searches in each regime are marked with a red exclamation mark,
and their regions of sensitivity are roughly indicated by their location in the tβ − mH/A

coordinates. The new ATLAS searches discussed in this section are represented with the
same color scheme used in previous figures. The gg → A→ ZH → ℓ+ℓ−tt̄ search (shown in
red) is particularly important in the low-tβ regime and above the di-top threshold: it covers
large unconstrained region for tβ = 1, it is the only one to probe the SFOEWPT favoured
region for tβ = 1.5 and the only one to probe the allowed parameter region for tβ > 2, with
even better prospects for the future, when a higher luminosity will be available.

The gg/bb̄ → A → ZH → ννbb̄ searches (indicated in blue/yellow) are generally less
sensitive in their respective regimes than the ones in the ℓ+ℓ−bb̄ decay channel, which are
quite sensitive specially below the tt̄ threshold. However, the ννbb̄ final state can access
regions with large mass splittings, which, while excluded in 2HDM by perturbative unitarity,
may remain viable in other BSM scenarios.

At tβ = 1, the tbH± → tb, tb search already excludes a large portion of the SFOEWPT-
favoured region, although its sensitivity decreases rapidly with increasing tβ. We propose
a new search channel which so far has not been performed: H± → W±H → ℓ±νtt̄. It
becomes accessible for sizeable mH −mH± mass splittings and complements the reach of
the smoking gun. We also show the sensitivity of the H/A → τ+τ− searches, which are
particularly relevant in Type II at both low- and very high-tβ.

5.2.3 Deviations in the Triple Higgs Self-Coupling

A deviation in the trilinear Higgs self-coupling from the SM prediction offers a comple-
mentary collider probe of a SFOEWPT (see discussion in Sec. 2.6.3) and directly affects
Higgs pair production. In this section, we quantify the impact of a SFOEWPT on di-
Higgs production, highlighting the necessity of including loop-corrected trilinear couplings
in both predictions. Since loop effects are essential for capturing the dynamics of the elec-
troweak phase transition, we consistently include one-loop corrections to the Higgs trilinear
interactions also in the calculation of the pair production cross section. Fig. 5.8 illustrates
the correlation between the strength of the phase transition and the magnitude of loop
corrections in the 2HDM. To produce it, we perform a general scan over the viable param-
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Figure 5.7
Summary of the most sensitive experimental searches in the EWPT favoured region de-
pending on the tβ (x-axis) and the mass of the scalar particles (y-axis). Exclamation
marks indicate the most sensitive searches in the corresponding region. The future arrow
indicates that this search will be sensitive to higher values of tβ at future higher luminosity
LHC runs. The searches implemented in this work are marked with red, blue and yellow,
depending on the production and decay modes.

eter space of the 2HDM Type II, selecting only points with a strong first-order transition
(ξn > 1). The x-axis, shows the hh-production cross section with loop-corrected trilinear
Higgs couplings6, while the y-axis shows the relative size of the loop corrections to the Higgs
trilinear coupling in the leading order cross section, defined as

∆σ
λ
(1)
ijk

≡ 100 · (σ
λ
(1)
ijk

− σ
λ
(0)
ijk

)/σ
λ
(0)
ijk

. (5.6)

where σ
λ
(1)
ijk

is the cross section with the THC at tree level and σ
λ
(0)
ijk

includes one-loop

corrections to the THC. We find loop-induced corrections ranging from –60% to +80%. The
parameter points featuring positive corrections can have an enhancement of the total cross
section value w.r.t. the SM up to a factor of 20. These large enhancements are driven by a
resonant contribution with a mass located very close the on-shell top production threshold,
which significantly enhances the cross section (see Sec. 3.1). In Fig. 5.8 we also show the
SM value with a red star, which does not feature a SFOEWPT. The maximum values of
the strength that we find are around 3. The general trend is to find the largest values at
the negative corrections, which drive the cross section to be roughly a factor of 2 smaller

6We have computed the cross section at LO in QCD with anyHH and applied a K-factor of 2 to roughly
account for higher order QCD corrections.
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Impact of the loop corrections to the trilinear couplings in the Higgs pair production cross
section and strength of the electroweak phase transition. The relative size of the loop
correction to the trilinear Higgs couplings is defined as ∆σ

λ
(1)
ijk

(see text). The red star

shows the cross section with loop corrections to the trilinear Higgs couplings (including
momentum dependence) in the SM.

than in the SM, leading to cross sections around 15 fb. These corrections are mainly driven
by non-resonant production. We observe that in general, stronger transitions are correlated
with larger κλ values, but this does not necessarily imply a smaller cross section, as resonant
production can still lead to an enhancement in these scenarios.

These effects can be observed in Fig. 5.9, where we show κ
(1)
λ (left) and the resonant

scalar mass mH (right) for the same benchmark points as in Fig. 5.8. For scenarios with
negative corrections, a heavy resonance with mH > 500 GeV suppresses the resonant con-
tributions. Near the di-top threshold at 350 GeV, however, resonant enhancement becomes
significant, enabling strong transitions even with positive corrections.

We confirm that a SFOEWPT in the 2HDM typically requires κλ ∈ [1.3, 2.2] , in agree-
ment with Ref. [77]. Smaller values of κλ are generally correlated with a smaller energy
barrier and lead to second order transitions or crossovers, while for larger values of κλ the
barrier can be enhanced so much that the vacuum is trapped in the false minimum, leading
to the phenomenon of vacuum trapping. These bounds are reflected in limits of the colour-
coded points of the left plot in Fig. 5.9. Furthermore, we observe that the cross sections are
minimised around κλ ≈ 2.5, where destructive interference between the triangle and box
form factors becomes maximal.

Our results indicate a tension between the values of κλ compatible with a SFOEWPT
in the 2HDM and the sensitivity in non-resonant Higgs pair production that will be within
the reach of the HL-LHC. Specifically, the largest trilinear couplings compatible with a
SFOEWPT tend to lie precisely in regions where destructive interference in the di-Higgs
production cross section suppresses its total magnitude. While some parameter points yield
cross sections above this minimum, they often correspond to vacuum-trapped configurations,
rendering them unphysical. This coincidence highlights a limitation in pp-collider sensitivity
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Left: values of the one-loop-corrected trilinear coupling κ

(1)
λ for the parameter points

depicted in Fig. 5.8. Right: value of the resonant scalar mass for the same parameter
points.

via hh-production precisely in the parameter space most relevant for baryogenesis. In
particular, if a value of κλ ∼ 1 is realised, the expected sensitivity at the HL-LHC is around
30%, while if the true value of κλ is close to 2.5, which is favoured by the realisation of a
SFOEWPT in the 2HDM, the sensitivity to κλ diminishes up to 60% at the HL-LHC [145].
An opposite situation happens at e+e− linear colliders such as the ILC (for a detailed
analysis of the sensitivity to trilinear scalar couplings in future high-energy e+e− colliders
see Ref. [329]), where for κλ ∼ 2 the sensitivity is increased w.r.t. the SM value [330].
The total cross section can still be large due to large resonant production, in such case we
expect resonant di-Higgs searches to capture such deviations. Overall, this result emphasises
the need for complementary probes to fully access the physics of the electroweak phase
transition. With this spirit in mind, we address the cosmological probes in the following
section.

5.3 Cosmological probes

A cosmological first order phase transition gives rise to a stochastic gravitational wave
signal [331, 332]. Since the EW phase transition would have happened at temperatures
comparable to the EW scale, the GW signal spectrum would be largest around milli-Hz
frequencies, thus in the best-sensitivity range of the planned LISA space-based GW inter-
ferometer [110,333].

The GWs in a FOEWPT are sourced by the collision of bubbles and the surrounding
plasma motions in the form of sound waves [334–337], as well as the turbulence generated
after the collisions [338–342] (see Ref. [343] for a review). In the case of the 2HDM, the
GW contribution from bubble collisions themselves can be neglected, and the GW power
spectrum may be modelled with the sound waves as dominant source [210].

There are four phase transition parameters that characterise the corresponding GW
signal [343]:
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(i) the temperature T∗ at which the phase transition occurs, which we identify here
with the nucleation temperature Tn.

7 (ii) the phase transition strength α, defined as the
difference of the trace of the energy-momentum tensor between the two vacua involved in
the transition, normalised to the radiation background energy density. (iii) the inverse
duration of the phase transition in Hubble units, β/H. (iv) the bubble wall velocity in the
rest frame of the fluid (and far from the bubble), vw.

To compute α we follow Refs. [110,343],

α =
1

ρR

(
∆V (T∗)−

(
T

4

∂∆V (T )

∂T

) ∣∣∣∣
T∗

)
, (5.7)

where ∆V (T∗) is the potential difference between the two vacua evaluated at the temper-
ature of the phase transition, and ρR is the radiation energy density of the Universe. The
inverse duration of the phase transition β/H can be generally calculated as

β

H
= T∗

(
d

dT

S3(T )

T

) ∣∣∣∣
T∗

, (5.8)

where S3(T ) is (as in Eq. Eq. (5.4)) the temperature-dependent (3-dimensional) Euclidean
bounce action. Finally, based on recent results indicating that phase transition bubbles
preferentially expand with either vw ≈ cs (cs being the speed of sound of the plasma)8

or vw → 1 [345, 346] (see also Ref. [347] for a further discussion of bubble wall velocity
estimates in BSM theories) we choose to fix vw = 0.6 as a representative case.

Based on the four quantities introduced above, the primordial stochastic GW back-
ground produced during a cosmological phase transition can be computed using numerical
power-law fits to results of GW production obtained in hydrodynamical simulations of the
thermal plasma. In our numerical analysis, we include the contributions to the GW power
spectrum from sound waves h2Ωsw and turbulence h2Ωturb, where sound waves are the
dominant GW source for the FOEWPTs considered here. The specific formulas used in
our analysis for the computation of the GW spectral shapes, their amplitudes and the peak
frequencies can be found in Ref. [77], which closely follows Refs. [342,343].

Whether a stochastic GW signal is detectable at a GW observatory depends on the
signal-to-noise ratio (SNR), which can be computed for a specific parameter point and a
specific GW experiment as

SNR =

√
T
∫ +∞

−∞
df

[
h2ΩGW(f)

h2ΩSens(f)

]2
, (5.9)

where T is the duration of the experiment, h2ΩSens is the nominal sensitivity of the detector,
computed according to the mission requirements [348], and h2ΩGW = h2Ωsw+h

2Ωturb is the
spectral shape of the GW signal. For the present analysis, we focus on the GW detectability
with LISA, for which we will assume an operation time of T = 7 years, and consider a GW
signal to be detectable if SNR > 1 (more stringent SNR detection criteria could also be
considered [343]).

7We could instead consider T∗ to be the percolation temperature [344], at which the phase transition
completes from the percolation of bubbles, yet the numerical difference compared to Tn is very small.

8For a relativistic perfect fluid, cs = 1/
√
3 ≃ 0.577.
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5.3.1 Gravitational waves in the 2HDM

To further illustrate the impact of the experimental mass resolution of BSM scalar searches
at the LHC on the predicted GW signals, we show in Fig. 5.10 the spectral shape of the
GW backgrounds produced during a FOEWPT for several parameter points with masses
of the heavy scalars specified in Tab. 5.1 together with the parameters that characterise
the phase transition. The remaining 2HDM parameters are kept fixed according to the
previous discussion. We chose the point with the largest SNR found in the vicinity of
the ATLAS excess marked with the pink star in Fig. 5.4 for tβ = 1.5. We take it as an
example for analysis of a possible hint for a BSM particle in the smoking gun search, even
though this particular point is disfavoured by the later CMS searches in this channel, as
mentioned above. We allow for up to 10% deviations in the values of the masses mH , mA,
which translates into deviations of the SNR of several orders of magnitude. In addition,
we show in Tab. 5.1 the parameters for the point (mH ,mA) = (450, 650) GeV, although
we omit its GW spectrum in Fig. 5.10 because of the smallness of the SNR. The spectral
shapes of the GW backgrounds are computed as discussed above, where the solid curves
depict the sound-wave contribution h2Ωsw only, whereas the dashed curves depict the sum
of sound-wave and turbulence contributions, i.e. h2Ωsw + h2Ωturb.
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Figure 5.10
Gravitational wave spectra for parameter points specified in Tab. 5.1 that are
compatible with the excess observed in the ATLAS search. The solid (dashed)
lines show the prediction without (including) the turbulence contribution, using
vw = 0.6. The coloured regions show the prospective sensitivities of future
experiments.
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mH mA mA −mH Tn vn/Tn α β/H SNR

417.2 660.8 243.6 79.44 3.10 0.0308 77 13.7
432.8 673.4 240.6 86.23 2.85 0.0206 134 3.8
453.6 686.4 232.8 110.89 2.19 0.0073 468 0.022
445.7 677.1 231.4 116.48 2.06 0.0062 674 0.004
450.0 650.0 200.0 145.08 1.42 0.0029 5399 < 0.001

Table 5.1: Results for parameters characterising the phase transition for example points
of the 2HDM that are compatible with the excess observed in the ATLAS search. The
corresponding GW spectra are shown in Fig. 5.10. Dimensionful parameters are given
in GeV.The SNR values evaluated for LISA include the turbulence contribution.

We also show the sensitivity curves of LISA [110], AEDGE [349], DECIGO [350, 351]
and BBO [352], where the latter three are planned, but not yet approved space-based
GW detectors. One can see that only for the smallest value of mH = 417.2 GeV, i.e. the
largest mass splitting between H and A, the GW signal might be detectable with LISA,
according to the predicted SNR. For values of mH only a few percent larger, the peak
amplitudes of the GW signals drastically decrease and quickly drop to values far below the
experimental sensitivity of the proposed GW detectors. We emphasise again at this point
that the detectability of the GW signal for a single parameter point cannot be determined
definitively with the methods applied here due to the substantial theoretical uncertainties
in the prediction of the GW signals [291]. However, the fact that in the case of a possible
detection of BSM scalars at the LHC a mass resolution at the percent level would be required
in order to draw conclusions about the detectability of a GW signal poses a challenge
independently of the status of the remaining theoretical uncertainties at that time.

Of course, one can also turn this argument around. An LHC discovery, e.g. a signal in the
smoking gun signature, in combination with a GW detection at LISA that is consistent with
a SFOEWPT as interpreted in a UV-complete model, could be used for a more precise (but
model-dependent) determination of the parameters of the considered BSM Higgs sector. In
this way space-based GW astronomy could become a complementary tool to sharpen the
precision of particle physics.9

To further illustrate the large spread in SNR over the particular BSM model parame-
ters, we study the thermal histories away from the alignment limit. In Fig. 5.11 we show
three benchmark points in the 2HDM Type I that feature a strong phase transition in the
alignment limit. We select three points with masses very close to each other: mH = 404.7
GeV, mH = 405.7 GeV and mH = 406.7 GeV. We evaluate the strength of the transition
away from the alignment limit and therefore we show the variable cβ−α in the x-axis. In
the the y-axis we show the temperatures on the left and the SNR on the right. The shaded
regions represent the exclusions from experimental constraints, in particular the pale purple
region is disfavoured by HiggsSignals constraints, the pale orange area is disfavoured by
HiggsBounds, and the pale red region by both.

The types of the lines indicate the scenario, dashed for mH = 406.7 GeV, solid for
mH = 405.7 GeV and dotted for mH = 406.7 GeV. The red lines show the nucleation

9This would be similar in spirit to the present situation regarding the sum of neutrino masses, constrained
most stringently using astrophysical observations, e.g. the measurement of the spectrum of the cosmic
microwave background [353].
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temperature and the orange-black show the critical temperature, the transition from orange
to black represents the moment at which the minimum becomes trapped, i.e. there is no
corresponding nucleation temperature for the given critical temperature. Additionally, the
SNR of each benchmark scenario is shown with blue lines and its magnitude is represented
in the right-y-axis. On the right plot of Fig. 5.11 we zoom in the relevant region of the left
plot.
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Figure 5.11
Analysis of the benchmark points away from the alignment limit in the 2HDM Type II.
Each benchmark point is indicated with a different line style. The critical and nucleation
temperatures are indicated with orange-black and red lines, respectively, in the left vertical
axis (the critical temperature becomes black if the point with that scalar mass is vacuum
trapped). The SNR is indicated in blue in the right vertical axis. The pale purple area is
disallowed by HiggsSignals, the pale orange area is disallowed by HiggsBounds and the
pale red is disallowed by both. On the right we zoom into the relevant region of the left
plot.

In the 2HDM, we find that the strength of the electroweak phase transition increases near
the alignment limit, especially for lighter mH , with the strongest transitions occurring for
values with very small and positive cβ−α alignment, prior to the onset of vacuum trapping.
This is correlated with the stronger GW signal, reaching values of the SNR up to 100.
Intuitively, this trend can be understood by analogy with the SM, where a light Higgs mass
(≲ 80 GeV) allows for a thermally induced first-order transition via gauge boson loops,
while the physical Higgs mass of 125 GeV suppresses the barrier due to the dominance of
the quartic term. In contrast, the 2HDM introduces additional scalar fields that enhance
the thermal cubic terms and deepen the barrier with a smaller impact on the quartic term.
However, deviations from alignment cause the EW vev direction to be shared between h
and H, weakening the transition similarly to how a heavier scalar does in the SM. Thus,
the alignment limit in the 2HDM plays a double role: it ensures SM-like phenomenology for
h, bringing it closer to the experimental data gathered at colliders, while also supporting a
stronger first-order phase transition in the early Universe.





Chapter 6

Conclusions

In this thesis, we have explored complementary approaches to probing the shape of the
scalar potential realised in nature. At zero temperature, we focus on collider observables,
particularly Higgs pair production, which provide a unique window into the structure of
the potential via its sensitivity to the trilinear Higgs self-couplings. At finite temperature,
we have studied the implications of a strong first-order electroweak phase transition in the
early universe, revealing insights into the dynamics of electroweak symmetry breaking and
its potential cosmological consequences. We now return to the central questions posed in
the introduction and address them in light of our findings.

Q1: What are the phenomenological signatures of extra scalar particles in Higgs pair pro-
duction at the HL-LHC?

We have reviewed the effects of the leading order gluon fusion Higgs-boson pair pro-
duction in BSM theories with additional scalar particles in Sec. 3.1. We concluded that
the combination of the sizeable trilinear scalar self-interactions and resonant masses within
250-800 GeV can give rise to a wide range of phenomenological implications in both the
total production cross section and the invariant mass distribution. The presence of both
these effects in concrete UV-complete BSM models cannot be isolated from each other. As
a result, the interference patterns between resonant and non-resonant Higgs pair production
are widely different from the SM and can be substantially enhanced.

We have explored the possibility of realising such a scenario in the context of the 2HDM.
In the first place, we have performed a general analysis of the effects in h-pair production
in the allowed region of the 2HDM parameter space (Sec. 3.2), where we took into account
the sizeable radiative corrections to the trilinear scalar-couplings. We included these cor-
rections for the first time in the analysis of hh-production, showing that the impact on
the phenomenology is dramatic. Even considering the experimental uncertainties that a
future measurement would entail, such as smearing and binning (Sec. 3.3), we concluded
that the impact on the measurable invariant mass of the hh-system can significantly alter
the interpretations that can be derived from experimental data gathered with simplified
assumptions.

In Sec. 3.4 we have seen that the increasing experimental sensitivity in hh-searches affects
both non-resonant and resonant production modes. The former already puts constraints
on the otherwise allowed region of the parameter space of BSM models, once the loop
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corrections to the trilinear couplings are taken into account. The latter shows remarkable
sensitivity in a vast region of parameter space which was unexplored by previous searches.

In Sec. 3.5 we outline the major consequences of the loop corrections to the trilinear
couplings in the experimental resonant and non-resonant searches. We found that non-
resonant searches can probe regions of otherwise unconstrained parameter space in the
2HDM. We have also shown that the contribution of the heavy states targeted in the
resonant searches will inevitably enhance the loop corrections to the trilinear couplings in
scenarios with mass splitting between the BSM states. In such scenarios, the signal model
used by the experimental collaborations so far to target the resonance does not reproduce
the predictions of a complete BSM theory.

Despite the fact that our results are illustrated for the 2HDM, they are quite general
for BSM scenarios with extra scalars and mass-splitting effects. Therefore, an extension of
the public tool anyH3 is provided, which generalises the calculation of the one-loop effective
trilinear scalar coupling to arbitrary renormalisable theories with extended scalar sectors.
These results can be used in the prediction for the leading-order hh-production cross section
in these models. We developed a full on-shell renormalisation scheme for such couplings
and tested the robustness of the new version of the tool, which is implemented into the
anyHH package.

A major conclusion of this section is that in view of the increasing experimental im-
provements in Higgs pair searches, loop corrections to THC need to be included in theory
calculations in the BSM frameworks. Additionally, experimental analyses should be mod-
ified to take into account all resonant and non-resonant contributions as well as their in-
terference terms simultaneously. Well-motivated BSM scenarios should be analysed in this
context and reliably tested taking into account the effects outlined in Chapter 3.

Q2: How can we use experimental data from the HL-LHC in theoretical developments?

As a first step, a versatile framework was developed to accommodate new di-Higgs
searches in the context of the existing HiggsTools framework. As a result, any BSM
scenarios that accommodate deviations in the trilinear self-coupling can now be tested
with experimental data, which is necessary, considering that non-resonant searches are
narrowing the regions of allowed BSM parameter space. Resonant hh-searches were also
implemented and are now part of the HiggsTools dataset. We have shown their importance
in several selected benchmark scenarios in the 2HDM. In particular, they are the most
sensitive searches to constrain deviations from the alignment limit in 2HDM Types I (for
tβ ≳ 1) and II (for 1 ≲ tβ ≲ 10) for resonant masses around 400 − 600 GeV. This further
exemplifies the need to improve the experimental analyses with the incorporation of the
non-resonant contribution and the interference terms in order consistently interpret such
limits in UV-complete models.

As a second step, we have studied the sensitivity to BSM trilinear scalar couplings in
the di-Higgs invariant mass distributions. Assuming a heavy scalar mass of 450 GeV, we
find that a precision of 10–20% on ξtH × λhhH (the product of the BSM trilinear coupling
between hhH and the heavy Higgs top Yukawa coupling) may be achievable, depending
on experimental efficiencies, whose improvements can suppress the statistical uncertainties.
Our results show that even simple neural networks can outperform traditional statistical
methods like MLE for parameter estimation and hypothesis testing. While the analysis
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is model-dependent, the methodology is adaptable and can be refined with future data
and improved theoretical inputs, offering a promising path toward reconstructing the BSM
scalar potential.

Q3: If a strong first order electroweak phase transition occurred, what observable conse-
quences would we detect today?

After studying the possible thermal histories predicted for the parameter points in the
2HDM in Sec. 5.1, we proceeded to the analysis of different ways to probe the region
compatible with a SFOEWPT. We have shown that mass splittings between scalars enhance
the strength of the phase transition in the 2HDM. The CP -even state has to be ideally
between 400-600 GeV, the lower bound being typically imposed by collider constraints and
the higher bound by the Boltzmann suppression of the very heavy states in the thermal
corrections that drive the energy barrier. The ideal mass splitting with mA is around
100 − 200 GeV, which enlarges the barrier with the right amount to prevent the vacuum
trapping phenomenon. This mass hierarchy naturally leads to a scenario that can be probed
by the A → ZH searches, which become kinematically open in the region preferred by a
SFOEWPT and therefore were coined “smoking gun” searches.

The relative heaviness of the charged Higgs boson H± can further contribute to thermal
corrections that strengthen the transition, provided its mass arises largely from the vev, so
we set its mass to the heaviest scale mH± = mA, in order to also accommodate constraints
from EWPO. M cannot significantly deviate from mH without hitting constraints from
perturbative unitarity, therefore the splittings between mH and M are quite constrained
and cannot enhance the phase transition further, so for simplicity we chose to keepM = mH .
Additionally, in the alignment limit, the direction of the electroweak symmetry breaking is
aligned with the direction of the lighter state. This allows the heavier scalars to enhance
the thermal corrections that strengthen the transition without deviating from the EWSB
direction, which would weaken the transition. Based on these considerations, we show that
the transition is stronger closer to the alignment limit.

We have analysed in detail the impact of the smoking gun search in the 2HDM parameter
space. We stress that because of the above considerations this search is interesting regardless
of the dynamics of the phase transition because it would completely constrain the mass
sector of the 2HDM. In particular, the search gg → A → ZH → ℓ+ℓ−tt̄ is the most
promising one to probe masses ofmH > 2mt in the low tβ regime at present as well as future
collider experiments. It is crucial for testing the 2HDM parameter space regions overlapping
with a plausible explanation of the BAU via EW baryogenesis. It is the only search to target
the so far unexplored regions for tβ > 2 and the regions featuring a SFOEWPT for tβ ∼ 1.5.

A further well known probe of the SFOEWPT is a deviation of the trilinear Higgs self
coupling from the SM prediction. In this regard we want to stress that despite the fact
that sizeable loop corrections in the trilinear couplings have always been considered in the
Coleman-Weinberg potential in the analysis of the phase transitions, up to now they had not
been systematically included in the corrections to the collider signature of hh-production in
the context of BSM models. Our results stress the importance of including them not only
in the finite temperature observables, but also in the predictions at zero temperature.

We have explored the interplay between di-Higgs production at colliders and the nature
of the electroweak phase transition in the 2HDM, focusing on the role of loop-corrected tri-
linear Higgs self-couplings. Our analysis shows that large deviations in these couplings can



168 6. Conclusions

significantly alter the Higgs pair production cross section. However, the parameter space
regions that feature the largest trilinear couplings and could enhance the strength of the
phase transition often lie near the destructive interference minimum in di-Higgs produc-
tion. This reveals an important limitation: the hadron collider sensitivity to κλ is naturally
suppressed precisely in the regions of parameter space that are most favourable for baryo-
genesis. As such, our results underscore the complementarity of collider and cosmological
probes: while trilinear coupling measurements at the HL-LHC can provide valuable indi-
rect insight into the scalar potential, they may have a low accuracy in key regions linked
to a viable SFOEWPT. A complete understanding of the electroweak epoch therefore re-
quires a synergy between hadron and e+e− at sufficiently high energies, gravitational wave
observations, and theoretical modelling of the Higgs sector.

Turning to cosmological probes, we find that predictions for the GW spectrum are highly
sensitive to the exact values of the BSM scalar masses. As a result, the expected signal-to-
noise ratio at LISA can vary by several orders of magnitude within the parameter region
compatible with potential collider signals. Therefore, if a BSM particle consistent with a
SFOEWPT is discovered at colliders, a detectable GW background cannot be generally
expected at LISA or other future space-based GW detectors. However, if LISA were to
observe a stochastic GW signal alongside a corresponding collider signal, it would, in the
context of the 2HDM, provide new and very precise information on the allowed values of
the parameters.

In summary, this work has investigated the prospects for measurable deviations in the
trilinear Higgs couplings within a simple BSM framework, guided by a pragmatic approach
that merges precise theoretical predictions with realistic experimental signatures. It empha-
sizes the importance of complementarity between different observational strategies, spanning
collider experiments and cosmological probes. More broadly, it underscores the essential
role of collaboration between theory and experiment and across the high-energy physics and
cosmology communities in advancing our understanding of fundamental physics.
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Appendix A

Effective potential at Finite
Temperatures

We can split the potential into temperature-dependent and temperature-independent parts
[38,288].1 The T = 0 part includes the tree-level potential, the one-loop quantum corrections
and a counterterm to cancel the UV-divergences, usually in the MS scheme. This potential
has been derived by Coleman and Weinberg [138]. Explicitly, it is given by

VCW(ϕ, T = 0) =
∑
j

(nj)(−1)(2sj)

64π2
m4
j (ϕ)

[
ln

(
mj(ϕ)

2

µ2

)
− cj

]
(A.1)

where sj is the spin corresponding to the particle j with nj degrees of freedom and mass
mj(ϕ), and cj are renormalisation constants such that cj = 3/2 for scalars and fermions and
cj = 5/6 for gauge bosons. It is evaluated in the Landau gauge to avoid ghost contributions.
It is a gauge-dependent quantity, but these dependencies are smaller than other contribu-
tions [324, 355] and can be taken under control in the calculation of observables [356, 357]
for instance using Nielsen identities [358].

At finite temperatures, QFT needs to be extended to incorporate thermal effects. In
this regime, the vacuum energy is no longer sufficient to describe the system’s equilibrium
properties. Instead, these are governed by the free energy, which accounts for thermal
excitations. In practice, this involves incorporating some tools employed in statistical me-
chanics into QFT, in particular the canonical ensemble. In the canonical ensemble, the
central quantity is the partition function, which encodes all thermodynamic properties of
the system. It is defined as a trace over the Hilbert space

Z = Tr
[
e−βH

]
=

∫
Dϕe−SE , (A.2)

where H is the Hamiltonian, β = 1/T , and T is the temperature. After the second equality
we expressed the partition function in the path integral formulation of QFT, in which the
trace becomes a functional integral over all field configurations and SE is the Euclidean
action. The partition function is related to the free energy in the canonical ensemble by the
expression:

1This section is based on [94,288,354]
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F = −T lnZ. (A.3)

Therefore, the free energy of the system in quantum mechanics is the sum over mi-
crostates weighted by a Boltzmann factor, while in QFT it is the integral over fields in a
functional integral weighted by the exponential of the Euclidean action.

To gain some intuition on the meaning of the effective potential, we will develop it from
thermodynamic arguments in the following. Thermodynamically, the free energy is given
by

F = E − TS, (A.4)

where E is the energy, T is the temperature and S is the entropy. In terms of energy and
entropy densities, the above relation becomes:

f = ρ− Ts = −P, (A.5)

where f is the free energy density, ρ the energy density, s the entropy density and P is
the pressure. The last equality follows from the thermodynamic identity s = (ρ + P )/T .
The Eq. (A.5) shows the system prefers configurations that minimize the energy density,
because those are the ones that maximize the pressure. In the context of cosmological phase
transitions, this means that if a bubble of a lower-energy vacuum (the true electroweak
vacuum) nucleates, it will tend to expand, since it has a higher pressure, displacing the
surrounding phase (false vacuum at the origin of field space).

The free energy is more conveniently described by the temperature dependent scalar
effective potential Veff(ϕ, T ). For a homogeneous scalar field ϕ, the total free energy is given
by

F = ΩVeff(ϕ, T ), (A.6)

where Ω is the spacial volume. Thus, the free energy density f is Veff

f = Veff(ϕ, T ). (A.7)

The free energy depends non trivially on the vacuum expectation value of the scalar
field, as it determines the masses of the particles and these contribute to the pressure. We
can therefore derive the effective potential from its relation to the pressure in Eq. (A.5)
by adding up the contributions to the pressure from the scalar field itself and the particles
present in the medium.

The tree level contribution (or background field pressure) is simply the zero temperature
potential:

P (ϕ) = −V (ϕ). (A.8)

The thermal contribution from the particles assuming they form an ideal gas is given by

fi = −pi = − gi
6π2

∫ ∞

0

k4dk√
k2 +m2

i

1

e
√
k2+m2

i /T ± 1
, (A.9)

where gi counts the degrees of freedom and the sign depends on the species, + is for fermions
and − for bosons. This term captures the thermal pressure contribution of each species i.
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Thus effective potential becomes simply

Veff = V (ϕ) +
∑
i

fi. (A.10)

The equation in Eq. (A.9) does not have an analytical solution, but it can be approx-
imated analytically in the high energy limit, where T ≫ mi. A general expression can be
written as

Veff(ϕ) = V (ϕ)+
T 2

24

( ∑
i=bosons

gim
2
i (ϕ) +

1

2

∑
i=fermions

gim
2
i (ϕ)

)
− T 2

12π

∑
i

gim
3
i (ϕ)... (A.11)

The quadratic term is the one that restores the symmetry at high temperatures. For a
simple scalar potential at T = 0 such as the SM potential given in Eq. (2.29) the effective
thermal mass of the scalar is given by the second derivative of the potential with respect to
the field ϕ and therefore is

m2
eff(ϕ, T ) = −µ2 + cT 2 (A.12)

where c ∝ ∑i gi is constant. Since at high T meff > 0 the origin of field space becomes a
local minimum and the electroweak symmetry is restored. The cubic term is the one that
can induce a strong first order phase transition.

The thermal corrections can be expanded at one loop as

VT(ϕ, T ) =
∑

i=boson

ni
T 4

2π2
Jb

(
m2
i

T 2

)
−

∑
j=fermion

nj
T 4

2π2
Jf

(
m2
j

T 2

)
(A.13)

where Jb and Jf are loop functions, that in the high-temperature regime, x ≪ 1 can be
expanded as

Jb(x
2) =

−π4
45

+
π2

12
x2 +

π

6
x2 − 1

32
x3ln(x2/ab) +O(x3),

Jf (x
2) =

−7π4

360
− π2

24
x2 − 1

32
x4ln(x2/af ) +O(x3).

(A.14)

where ln(ab) ≃ 5.4076 and ln(af ) ≃ 2.6351. In the opposite limit, when mi ≫ Ti, the
J-functions take the form

Jb(x
2) ≃ Jf (x

2) =
( x
2π

)3/2
e−x

(
1 +

15

8π
+O(x−2)

)
, (A.15)

showing that particles much heavier than the temperature get Boltzmann suppressed and
do not participate framing the barriers in the effective potential.

In models where the masses of the particles are given by the vacuum expectation values
of the scalar field, the expression of the full effective potential can be more conveniently
written as

Veff(ϕ, T ) ≃ D(T 2 − T 2
0 )ϕ

2 − ETϕ3 +
λ̃

4
ϕ4, (A.16)
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where D and λ̃ are functions mildly depending on T . The cubic term ∝ E is what drives
the barrier in the phase transition. The form of the J-functions in the high T limit given
in Eq. (A.14) shows that fermions, notably the top due to the Yukawa hierarchy, do not
contribute to a ϕ3 term in the thermal masses and do not help enhancing a transition. In
fact the opposite is the case, they weaken the transition by contributing to the ϕ2 term.

In more formal derivations of these quantities in QFT, the Matsubara formalism is
usually used. This formalism consists in performing a Wick rotation on time t → iτ , and
compactifying the time direction into a finite interval with periodic boundary conditions
τ ∈ [0, β]. This leads to periodic boundary conditions for fermions and bosons: fermionic
fields are antiperiodic in imaginary time while bosonic fields are periodic. This in turn
leads to a discrete spectrum of frequencies for these particles, namely ωn = 2πn/β for
bosons and ωn = (2n + 1)π/β for fermions. The fields can then be Fourier expanded in
these Matsubara frequencies, and thermal observables can be computed using path integrals
over these periodic fields. We do not derive the equations above using this formalism here
but we refer to the literature [288,359].

The above perturbative treatment of the finite temperature potential is known to break
down at very high temperatures when the expansion parameter T 2/m2 becomes large.
This situation can be amended by adding the largest thermal corrections. This is done by
incorporating the thermal masses in the propagators and resumming the resulting diagrams,
named daisy diagrams due to their flower-like (or also bubble-like) shape. There are several
methods available to perform such resummation. The Parwani method [360] consists in
dressing the Matsubara modes of the bosonic fields by replacing their tree-level masses
with thermally corrected, resummed masses in the one-loop potential, which avoids the IR
divergencies, this shift is given by,

m2
i (ϕ, T ) → m2

i (ϕ) + Πi(T ), (A.17)

where Πi(T ) is the leading-order thermal mass correction, obtained from the one-loop self-
energy (1PI diagram) of the field i in the high-temperature limit. The main issue with this
approach it over-counts contributions which do not contribute to the IR divergences. To fix
this, the Arnorld-Espinosa method was proposed [289], where only the zero modes of the
bosonic propagators are dressed. A review of other resummation methods can be found in
Ref. [361,362].

These diagrams can be written as

Vdaisy(ϕ, T ) = −
∑
i

T

12π
Tr
[
(m2

i (ϕi) + Π2
i )

3/2 − (m2
i (ϕi))

3/2
]

(A.18)

The daisy terms are crucial for a first order phase transition analysis because they
contain cubic terms that alter the energy barrier.

Therefore, the full effective finite temperature potential is

Veff = Vtree + VCW + VCT + VT + Vdaisy . (A.19)



Appendix B

Form factors for ggHH production

For the definition of the form LO QCD form factors in gluon fusion Higgs pair production,
gagb → hchd, we follow [241]. The triangle form factor for the top-loop is defined as:

F△ = τt [1 + (1− τt)f(τt)] (B.1)

where τt = 4m2
t /(pa+ pb)

2, mt is the mass of the top quark, and pa, pb are the momenta of
the incoming gluons, and

f(τt) =

arcsin2 1√
τt

if τt ≥ 1,

−1
4

[
log 1+

√
1−τt

1−
√
1−τt

− iπ
]2

if τt < 1.
(B.2)

The top-quark from factor of the box diagram can be decomposed into contributions
corresponding to different total angular momentum states of the initial gluon pair, specifi-
cally the spin can be either s = 0 or s = 2. This reflects the fact that two massless gluons
can couple to form either a scalar (J = 0) or a tensor (J = 2) state, and each component
gives rise to a distinct Lorentz structure in the form factor decomposition. The two form
factors are:

F□ =
1

S2

{
4S + 8Sm2

tCab − 2S(S + ρc + ρd − 8)m4
t (Dabc +Dbac +Dacb)

+ (ρc + ρd − 8)m2
t

[
T1Cac + U1Cbc + U2Cad + T2Cbd − (TU − ρcρd)m

2
tDacb

]}
,

G□ =
1

S(TU − ρcρd)

{
(T 2 + ρcρd − 8T )m2

t

[
SCab + T1Cac + T2Cbd − STm2

tDbac

]
+ (U2 + ρcρd − 8U)m2

t

[
SCab + U1Cbc + U2Cad − SUm2

tDabc

]
− (T 2 + U2 − 2ρcρd)(T + U − 8)m2

tCcd

−2(T + U − 8)(TU − ρcρd)m
4
t (Dabc +Dbac +Dacb)

}
,

(B.3)

where ρc = ρd = m2
h/m

2
t , T1 = T − ρc, U1 = U − ρc, T2 = T − ρd, U2 = U − ρd,

S =
(pa + pb)

2

m2
t

, T =
(pc − pa)

2

m2
t

and U =
(pc − pb)

2

m2
t

, (B.4)

and Cij , Dij are the scalar Passarino-Veltman integrals [139]
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Cij =

∫
d4q

iπ2
1

(q2 −m2
t )
[
(q + pi)2 −m2

t

] [
(q + pi + pj)2 −m2

t

]
Dijk =

∫
d4q

iπ2
1

(q2 −m2
t )
[
(q + pi)2 −m2

t

] [
(q + pi + pj)2 −m2

t

] [
(q + pi + pj + pk)2 −m2

t

]
(B.5)

The full matrix element will be

M(gg → hh) = Mh
△ +MH

△ +M□, (B.6)

where

Mh/H
△ = K

λhh(h/H)v ξ
h/H
t

s−m2
h/H + imh/HΓh/H

F△A
s=0
µν ϵ

µ
aϵ
ν
b δab

M□ = Kξht (F□A
s=0
µν +G□A

s=2
µν )ϵµaϵ

ν
b δab,

(B.7)

where K = GFαss/(2
√
2π), GF is the Fermi constant, αs is the strong coupling constant,

v is the vev, ξ
h/H
t are the Yukawa couplings modifiers of the Higgs in the s-channel in units

of the SM Yukawa couplings, λhh(h/H) are the dimensionful trilinear Higgs couplings (e.g.
λhhh = 3m2

h/v), ϵa,b are the gluon polarisation vectors.
The helicity projectors are

Aµνs=0 = gµν − pνap
µ
b

pa · pb
, (B.8)

Aµνs=2 = gµν +
p2hp

ν
ap
µ
b

p2T (pa · pb)
− 2(pb · ph)pνapµh

p2T (pa · pb)
− 2(pa · ph)pµb pνh

p2T (pa · pb)
+

2pµhp
ν
h

p2T
, (B.9)

with

p2T = 2
(pa · pc)(pb · pc)

pa · pb
− p2c . (B.10)

In the large top quark mass limit, m2
t ≫ m2

h, the form factors simplify to

F△ =
2

3
+O(s/m2

t ),

F□ = −2

3
+O(s/m2

t ),

G□ = O(s/m2
t ),

(B.11)

where s is the Mandelstam variable s = (pa + pb)
2. Notably, the triangle and box form

factors cancel exactly at threshold, which plays a key role in the double Higgs production
invariant mass distributions. In a BSM scenario with a modified κλ, this cancellation is
shifted due to the change in the trilinear coupling. If it happens closer to the mass of the
top quark, this approximation is less exact ad the corresponding cancellation is smaller than
in the SM.



Appendix C

NN loss functions

In Fig. C.1 we show the loss functions and the AE95 evolutions over the training epochs
for the different datasets used in 4.2. The upper row corresponds to the dataset (1), the
middle row to the dataset (2) and the lower row to the dataset (3). These correspond to
datasets with the original benchmark plane, with free m2

12, and with an uncertainty in mH ,
respectively.

Clearly, the training and validation losses closely track each other throughout the entire
training process. There is no visible gap between them, and the decrease steadily over the
epochs, which suggests that there is no overfitting. We could consider an early stopping, as
the MSE does not decrease significantly after ∼ 20k epochs. However, we prefer to keep a
longer learning rate to include further data, as each epoch learns from new Poisson smeared
data.
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Figure C.1
NN prediction of ξtH ×λhhH for the different datasets: (1) upper, (2) middle and (3) lower
row.
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