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1 Abstract

Scientific research involves different processes, including the accumulation, aggregation,

and cumulation of knowledge. The latter is construed by using existing theories and

empirical findings to obtain new results based on previous ones in further research. In

psychology, the accumulation and aggregation of knowledge is employed in everyday

research. This thesis sheds light on the cumulation of knowledge in psychology by focus-

ing on statistical cumulation – the use of quantitative external information in statistical

analyses. To prevent new results from being biased by misspecified external informa-

tion, the uncertainties of the external information should be considered. This includes

estimation and structural uncertainty, as external quantities are estimates and there are

often structural differences between a new data set and external sources, such as different

designs or populations. Furthermore, this thesis discusses a wide range of approaches

for incorporating external information and considers how well they reflect present un-

certainties. Previous approaches include generalized Bayesian analyses and inferential

models that incorporate partial prior information about a parameter of interest. Careful

consideration of previous approaches indicates that a frequentist approach had not been

developed for this purpose in psychology. To address this issue, this thesis introduces an

externally informed generalized method of moments approach, which was developed and

outlined across the four attached papers. Within this novel approach, two uses of exter-

nal information are possible: improving the statistical analysis of new data and testing

the fit of external information and data to indicate structural differences between them.

Furthermore, this approach can incorporate external information about variables in the

form of statistical moment equations. Thus, it is a relevant addition to existing methods

as generalized Bayesian and inferential model approaches have difficulty incorporating

this type of external information. The main focus of the four attached papers was on

the application of the externally informed generalized method of moments approach to

multiple linear and repeated measures generalized linear models. Additionally, this PhD

project provides software that allows applied researchers to use the developed approach

with various models, such as multiple linear models, repeated measures generalized linear

models, two-level mixed linear models, and structural equation models.
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2 Introduction

The pursuit of knowledge has been a fundamental aspect of human history, driven by the

efforts of numerous generations of researchers. Theories were developed and accumulated

if they were not disproven or forgotten. The manner in which knowledge accumulates

varies between scientific disciplines and is contingent upon the theoretical framework of

each discipline.

In the field of mathematics, formal proofs of theorems are developed based on prereq-

uisites that are meticulously defined. These proofs are designed to be applicable to any

situation in which the prerequisites are satisfied. This fosters an optimal environment for

the development of theories and a cumulative science, in the sense that existing theories

are employed to derive new theories.

In the field of physics, theories are formulated using mathematical models derived

from mathematical principles and sophisticated experiments. Once these models are

established, they can be accumulated and used in the development of new theories.

One of the most illustrative examples may be the development of electromagnetism,

particularly the Maxwell equations, as described by Huray (2009): Coulomb’s law was

postulated in 1750 and confirmed in 1785. The invention of the battery by Volta in 1800

enabled experiments on electric currents. These experiments led Ampere to formulate his

law relating circulating magnetic fields and currents in 1820. In 1831, Faraday discovered

the law of electromagnetic induction through experimentation. All of these laws were

then combined by Maxwell in 1864 into a unified theory through his equations. Each new

theory in this example builds on older theories and experimental results. Furthermore,

some theories are direct generalizations of older ones.

In the field of philosophy of science, cumulative science has been debated exten-

sively. One major argument against the cumulative nature of science is the occurrence

of paradigm shifts, revolutionary changes in scientific theories and in fundamental con-

cepts, as discussed by Kuhn (1962). However, according to Kuhn (1987), there are both

normal and revolutionary changes in science. The former is not made obsolete by the lat-

ter and represents the majority of scientific work in which knowledge accumulates within

the current paradigm. Furthermore, Kuhn (1987) distinguishes between empirical laws
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and theory. Although theories are holistic and prone to displacement during a paradigm

shift, empirical laws can be tested directly using observations or experiments, adding to

scientific knowledge. Though some difficulties remain in conception of empirical laws,

from an idealized perspective, they seem to persist.

In the field of psychology, the concept of cumulative science may not be widespread,

but the accumulation of theories and empirical results certainly is. One reason may be

that modern psychology is a relatively young discipline. Its beginnings can be traced back

to the mid-nineteenth century, when Gustav Theodor Fechner, Hermann von Helmholtz,

Ernst Weber, and Wilhelm Wundt introduced the experimental method to psychological

research (Schultz, 1981, Chapter 3).

As more and more theories and data emerged, the idea of cumulative science be-

came increasingly attractive. In this context, Mischel (2009) criticized psychological

researchers for treating theories like toothbrushes, using only their own. Mischel advo-

cated for building a cumulative psychological science. Interestingly, he placed less em-

phasis on theoretical cumulation and more on the development of common tools, such as

normed questionnaires and brain imaging techniques, as well as robust, replicable, and

consequential findings.

New opportunities through online publications and open data facilitate the empirical

realization of such a cumulative psychological science. However, the same adaptabil-

ity that has been helping humanity develop and spread around the globe may be a

fundamental reason for ongoing changes in psychological theory and empirical results.

Nevertheless, stepping back from the idea of a global, persistent theoretical cumulation,

there is still a chance for local, temporary cumulation, when it comes to empirical results.

2.1 Knowledge accumulation, aggregation and cumulation in

psychology

This thesis defines knowledge accumulation as an increase in the number of theories and

empirical findings maintained by researchers in a given field. In modern psychology, a

vast number of articles are published each year. In June 2025, a search based on the

term “psychology” in the PubMed database alone yielded 1,906,483 results (PubMed,

2025). Of these results, 85,165 were published in 2023, and 115,150 were published in

2024.

Due to the large number of studies, even in specific fields of psychological research,

some aggregation of accumulated knowledge seems necessary. Knowledge aggregation

refers to the development of a single source that encompasses the theories or empirical
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findings of many sources, often with the goal of providing a concise summary. There are

two common approaches to aggregating psychological knowledge from multiple studies.

On the one hand, narrative reviews provide a flexible, subjective method for analyzing

a set of psychological studies. The possible goals of a narrative review include under-

standing a topic, developing theories, or evaluating and critiquing existing literature

based on theoretical premises (Sukhera, 2022). These reviews are often qualitative, not

quantitative, and do not use statistical or mathematical techniques.

On the other hand, there are systematic reviews and meta-analyses. The goal of a

systematic review is to synthesize all available empirical evidence to answer a specific re-

search question (Patole, 2021). Meta-analyses employ statistical methods to synthesize

the results of a set of studies (Patole, 2021). There are criteria and checklists for con-

ducting and reporting the results of systematic reviews and meta-analyses; see Higgins

et al. (2019) and Page et al. (2021).

So far, the accumulation and aggregation of psychological knowledge has been dis-

cussed, but not its cumulation, i.e., how existing theories or empirical findings are used

in subsequent research. Typically, authors cite previous studies in the introduction or

theoretical background section of their paper, as required by the American Psychological

Association (2020). The existence of a phenomenon is stated based on these citations.

For instance, previous studies may indicate that two psychological concepts are (linearly)

related. In some cases, the effect sizes of previous results are reported as small, medium,

or large, according to the approach developed by Cohen (1962) for the categorization of

statistical findings. Another convention is to indicate which models were used in pre-

vious studies or meta-analyses, as well as whether their parameters can be considered

significantly different from zero. In this case, even though there is a mathematical model,

the corresponding parameter estimates from previous studies are usually omitted.

It appears that the previous results are mainly reported so that the existence of a

phenomenon can be established and new existence hypotheses can be derived. For

instance, a researcher might hypothesize that the previously established correlation of

psychological constructs also exists in a different scenario, or that other psychological

variables influence this correlation. However, the estimated values of parameters or

other statistics have been reported in previous empirical studies. The utilization of

these quantities during the analysis of a novel data set, which will be referred to as

statistical cumulation in the subsequent discussion, may prove advantageous for various

reasons.

First, it may provide a theory-independent method of knowledge cumulation. Even

if the models chosen in a previous paper were incorrect, the sample variance and mean
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of an observed variable can still be valid estimates of its expected value and population

variance. The reason is that the typical asymptotic properties of a single variable only

depend on assumptions about that variable, not on its relationships with other variables

(Casella & Berger, 2024). For example, even if theories about intelligence were falsified,

the mean item score of an intelligence test in a specific sample remains the same estimate

of the population item score.

Second, it may be helpful to derive a specific null hypothesis. The typical testing

of whether a parameter is equal to zero, also known as the point-null hypothesis, was

criticized early on for providing only weak support for a theory since it is almost always

false (Meehl, 1967). As a solution, equivalence tests have been proposed for use in

psychological research (Lakens et al., 2018). These consist of two one-sided tests in

opposite directions, and the null hypotheses are constituted by the smallest effect size

of interest (SESOI). An effect is only considered meaningful if its absolute value exceeds

the SESOI. The specification of the SESOI may be guided by the results of previous

empirical studies.

Third, statistical cumulation might help distinguish between different populations,

detect selectivity, or analyze changes over time. If some relevant variable produces

substantially different statistics in one sample compared to the previous results on the

population of interest, then the findings and the theory may not be generalizable.

Fourth, it may improve the current statistical analyses. For example, if a value is

known to be positive, a researcher may want to use a model that excludes negative

values. Heuristically, if information is present, it should aid in inference or prediction

much like a clue helps a detective solve a case by narrowing down the set of suspects.

Statistical cumulation involves using information that is external to the new data

set in its statistical analysis. Throughout this thesis, external information will refer to

quantitative information independent from the currently analyzed data. One way to

develop a cumulative psychology is to develop methods for using external information

in statistical analyses.

A note of caution should be made regarding the use of external information in multiple

ways during statistical analysis. Using the same sources to define the SESOI and then to

improve the statistical analysis may result in a dangerous conflation. The same external

information may bias the statistical results and influence the stated hypotheses, raising

the question of whether the new data sufficiently impact statistical inference.

Analyzing the effects of such a conflation would constitute its own research project

and is outside of the scope of the current project. Thus, this thesis will focus on theory-

independent cumulation, identifying differences between populations, and improving sta-
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tistical analyses with external information, as outlined above. However, the thesis will

not focus on externally informed hypotheses.

2.2 Goals of this dissertation

This dissertation aims to rigorously examine quantitative external information, its forms,

uncertainties, and use in statistical analyses in psychology. It will discuss which types

of uncertainties are present and how they can be reflected using an externally informed

generalized method of moments approach based on F-probabilities. This approach is

new to psychology and was developed as part of this PhD project. Additionally, it will

provide an overview of existing approaches to incorporating external information into

statistical analyses.

The focus of this work lies in techniques that can incorporate external information

while representing its uncertainties. As will be discussed, there is extensive literature

on using external information in a Bayesian framework. However, to the best of the

authors’ knowledge, no such framework existed for incorporating external information

into frequentist analyses in psychology at the beginning of this research project in 2019.

The main goal of the project has been to develop a novel framework for incorporating

external information into frequentist analyses that reflects existing uncertainties.

It will be elaborated on how the developed approach incorporates external information.

This will be followed by an explanation of how using external information can reduce the

variance of estimates and thus increase statistical power. Techniques based on external

information to assess whether the population behind the new data set is compatible

with other populations will be discussed subsequently. Reflecting uncertainty provides

a robust way of using external information, reducing or avoiding possible harm due to

misspecified information, and indirectly making statistical inference more robust.

Following the exposition of the theoretical concepts, the contributions of each paper

will be delineated. The first paper introduced a statistical test to detect differences

between populations by assessing the fit of external information and data. The second

paper analyzed how external information improves statistical analyses by reducing the

variance of estimators, focusing on linear models. Building on the findings of the first

paper, the third paper presents a general hypothesis-testing procedure for model pa-

rameters that incorporates external information and reflects its associated uncertainties.

The fourth paper examined how external information improves statistical analyses of

repeated measures generalized linear models. The contributions of each paper can be

comprehended in the context of the presented, overarching theory.
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3 External information and its uncertainties

For a precise definition of external information, some technical concepts are needed.

There is a mathematical formulation behind statistical thinking, a foundation for esti-

mation, statistical inference, and prediction. As a reference for the following discussion

of mathematical foundations, consider Klenke (2020) or other introductory courses in

probability theory or mathematical statistics. Let (Ω,A, P ) be an underlying probability

space, where Ω denotes the sample space, A a Ã-algebra (the set of measurable sets)

and P a probability measure. As is common in statistics, this probability space is not

specified. Here, random variables (measurable functions) on this space are of interest

and the probability space just induces all relevant measures. The task of proving the

existence of probability spaces for certain scenarios belongs to the domain of stochastics.

In applied statistics (and in this thesis), the existence of probability spaces is typically

taken for granted. Since this thesis focuses on psychology, technical aspects such as mea-

surability and the existence and uniqueness of distributional quantities (e.g., expected

values) will not be discussed, but implicitly assumed to be true. Let z be a random

variable on (Ω,A, P ), such that one unit of newly sampled data can be considered a

realization of z. Typically, multiple units are sampled from a vector-valued z, inducing

random variables zi for i = 1 . . . , n, where n is the sample size. In this case the mul-

tiple units can be arranged as a matrix Z =
(

z1 · · · zn

)T
, where the superscript T

indicates that the matrix is transposed. In this thesis, bold uppercase letters represent

matrices and bold lowercase letters represent vectors. Additionally, in regression models,

y denotes the dependent variable and x denotes the independent variables.

Often, Pz and PZ are linked by assuming that the zi are independent random variables

distributed identically like z (in short i.i.d.). In the following, Pz will be treated as a

special case of PZ for n = 1. Now, Z induces the pushforward measure PZ, called

the distribution of Z or the data generating process. Typically, PZ (or a conditional

expectation based on it) is supposed to be specified by a parameter ¹ ∈ Θ, where Θ

denotes the parameter space, which is the set of possible parameter values. Throughout

this thesis, the components of a parameter, such as its entries if the parameter is a vector

or set, are referred to as “parameters.”
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A prominent example in psychology is the normal distribution N(µ, Ã2), which is

fully specified by its mean, µ, and its variance, Ã2. Heuristically, if researchers knew

the true values of both parameters, they would have all the possible knowledge about

the phenomenon according to this statistical framework. The equivalent expressions

Pθ(Z) and P (Z|¹) are used to denote the dependence of a probability distribution on

a parameter. The true value of a parameter will be symbolized by a subscript of 0 to

distinguish it from other parameter values.

In addition to the current data, there are often other sources about or related to the

phenomena of interest. These will be called external sources. Technically, each external

source provides a random variable, Zex, which does not necessarily represent the same

variables as Z and has its own data generating process, PZex
. The random variable

Zex is called an external sample. Based on the realizations of Zex, (external) empirical

distributions of variables or models can be calculated. Therefore, if the full (realization

of) Zex is given, then complete information regarding the external source is also given.

However, oftentimes only the reported results and quantities derived from the reported

results are available. These quantities are called external values and are defined as

f(Zex), where f is a function with values in R
k for some natural number k. For the

sake of generality, the term “external values” will also refer to cases in which Zex is

considered as a random variable, not just a realization. In this sense, expected values or

probabilities are also external values. One example for this is expert knowledge, where

an expert is consulted about population values, such as the probability of an event.

Further, external information is defined as any (quantitative) assertion about (an

aspect of) PZ that is based on a set of external values. This includes assertions about ¹.

Compared to external values, external information may be quite vague. For instance, one

might assert that a construct is positively correlated with another, such as intelligence

and the number of correct answers on a quiz. This assertion could be based on the fact

that other studies and expert knowledge have provided positive external values of the

correlation, despite the fact that these correlations differ in size.

It should be noted that the notion of external information links new data and external

values. It is clear that external information may be incorrect. Therefore, the first step in

using external information is understanding its uncertainties. Different types of uncer-

tainty arise depending on the source of the external information. The following sections

cover sources and types of external information, as well as uncertainties, and introduce

a framework to represent these uncertainties. This is directly related to the quantitative

representation of empirical knowledge in psychology, since external information is simply

current quantitative knowledge.
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3.1 Sources and types of external information

Given the proliferation of empirical studies in recent decades, the probability of iden-

tifying relevant external values has notably increased. An important property of an

external source is the range of computable or reported quantities. Fortunately, many

psychological papers follow the APA style, which requires reporting means and standard

deviations, as well as test statistics and p-values (American Psychological Association,

2020). Some studies have data sets that are freely accessible online. This open data

allows researchers to calculate any computable quantity of interest, making use of the

full range of computable quantities.

Oftentimes there are multiple external sources containing information on the same

population aspect and likely not agreeing on all results. One solution for this would be

to aggregate all the available information using the methods discussed in the previous

chapter. Although narrative reviews may provide more of a qualitative aggregation,

systematic reviews with meta-analyses provide quantitative aggregation. A narrative

review may conclude that a certain effect exists and has a direction. This can be trans-

lated into the assertion that a statistic, such as a correlation coefficient, is positive (or

negative) in the population and, thus, in the data generating process of the new data.

Meta-analyses, on the other hand, contain a variety of statistical results. Meta-analyses

typically report effect estimates for individual studies, the overall effect estimate, and

the respective confidence intervals (Higgins et al., 2019).

A variety of external information can be constructed based on a meta-analysis that

varies in boldness. A (very) risky approach is to interpret the overall effect estimate as

being equal to the population effect in PZ. A less risky approach would be to interpret

the confidence interval of the overall effect as a confidence interval of the population effect

in PZ. A conservative approach would be to create an external interval encompassing the

full range of effect estimates from all the included studies. This yields the assertion that

the population effect treated as an aspect of PZ is bounded by the smallest and the largest

estimates of the selected studies. Such external intervals could be calculated analogously

using the lower and upper bounds of the reported confidence intervals of the individual

studies. Another approach to formulating external information is acknowledging that

the external values are estimates. For example, rather than claiming that the overall

estimate equals the population effect, one could state that it is an unbiased or consistent

estimate thereof.

If treated as an assessment of population values, external sources may be rated by the

statistical quality of their results. The most reliable statistics on national populations are
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likely provided by national administrative offices. These are known as official statistics.

As a reference for the following discussions of official statistics, see Wallgren and

Wallgren (2014, Chapter 1). Three types of sources for official statistics can be dis-

tinguished: sample surveys, censuses, and (surveys based on) administrative registers.

All three types aim to accurately describe aspects of the selected population. Sample

surveys and censuses are based on collecting a data set using questionnaires developed

for this purpose. The difference is that in a sample survey a random sample of the

population is drawn (often based on address lists), whereas a census attempts to collect

data from all members of the population.

Surveys based on administrative registers use existing data, which is often automati-

cally collected for administrative purposes, not statistical ones. Examples include annual

pay registers (collected to prevent tax evasion) and disease registers (collected by the

healthcare system). For demographic variables (such as age) which are often assessed

in psychological studies, there are official statistics, like the distribution of (a grouped

version of) the variable in the population. One limitation to keep in mind is that a psy-

chological study may not target the same population as existing official statistics. For

example, a study of the cognitive abilities of depressed inpatients in Germany should not

carelessly employ official statistics about the entire German population since it analyzes

a subpopulation whose statistical characteristics may differ substantially.

In addition to published sources, there is subjective external information, such as ex-

pert opinions (Garthwaite et al., 2005; Kadane & Wolfson, 1998). For instance, a clinical

expert may assert that at least half of untreated patients will experience worsening of a

specific symptom within one year. The expert thus states that the median of the true

distribution of symptom improvement for untreated patients is below zero. This may

be the only available external source in new research areas where no published sources

exist yet. One possible procedure in Bayesian statistics is to use experts to elicit a prior

distribution of the parameter of interest, which will be discussed in Section 3.6. In this

case the external information is that the subjective belief about the parameter ¹ is re-

flected by the elicited distribution. Another approach would be to elicit only certain

probability statements, such as “I am 90% sure that ¹ lies in the interval [1; 2]”.

External values, as well as the information derived from them, can be categorized based

on statistical properties. In psychological studies, statistics such as means, variances,

correlations, and parameter estimates are frequently reported. External means and

(co)variances are examples of statistical moments. A statistical moment of a random

variable v is defined as E(vk) for a natural number k (Casella & Berger, 2024). This

notation includes sample moments when used with an empirical measure. If external
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values can be considered as statistical moments of a random variable, then they are said

to be of moment-type. External information is of moment-type if it is an assertion about

statistical moments. This type of external information plays a crucial role in this thesis

because it is often present in psychological studies. As will be discussed in Chapter

4, it challenges existing methods of incorporating external information into statistical

analyses.

External information about the parameters of a statistical model will be called model-

specific. For example, consider the assertion that the slope of a simple linear model of

one variable on another is positive in the population. An important special case occurs

when the external information is about the same model fitted to the new data. In this

case, external information will be called parameter-specific. External information does

not have to be model-specific. There is also external information about variables, such

as the assertion that the expected value of a variable y lies within a specific external

interval. This information is independent of any model linking y to other variables.

However, these two types of external information are not incompatible. External

information about variables can be translated into model-specific information when a

model is provided.

Example 1. (Jann, 2023) Suppose a simple linear regression model y = ´1 + x´2 + ϵ

is given and E(y) = 100 is known externally. Under the assumption E(ϵ) = 0, the

moment-type external information E(y) = 100 becomes a constraint on the parameters,

100 = E(y) = ´1 + E(x)´2,

which is a linear constraint on intercept ´1 and slope ´2.

Similarly, under certain conditions, model-specific external information can be trans-

lated into information about variables. In a simple regression model, a positive slope

is equivalent to a positive covariance between the dependent and independent variables.

This assertion about a covariance is not model-specific – it is external information about

variables. Nevertheless, these two types of external information should be distinguished

because translating between them may be difficult for models that are more complex

than linear ones. This translation would be necessary each time a new model is con-

sidered. Ideally, external information about variables would be used as is, without the

need for translation.

The named external sources are characterized by a certain degree of uncertainty. That

is to say, there is a need to ascertain whether the external information can be considered

a correct assertion about aspects of PZ, the data generating process of the new data.
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3.2 Estimation uncertainty

External information derived from other studies is based on an external sample Zex,

following its own data generating process PZex
. Assume that the external information

about aspects of PZ is correct if and only if it is also correct for the same aspects of PZex
.

Informally, this means that the data generating processes agree on the aspects addressed

by the external information. Even under this strict assumption, external information is

still based on results reported in the external source. These results are only estimates

of certain aspects of PZex
.

Therefore, such external information involves random variables and will most likely

differ from sample to sample, even if the data generating process is the same. Due

to the fact that population aspects are never exactly known but only estimated, this

uncertainty was first called estimation uncertainty by Jann (2024) and will be referred

to as such throughout this thesis. To reflect estimation uncertainty, a theory about the

properties of the underlying estimators is necessary. Fortunately, estimation uncertainty

is the most common type of uncertainty in statistics and is covered in both old and new

introductory textbooks alike (Casella & Berger, 2024; Cox & Hinkley, 1974).

Estimation uncertainty can be addressed (asymptotically) by stating the (asymptotic)

distribution of the estimator of which the external values are a realization. A typical

frequentist approach to do this is to use laws of large numbers and central limit theorems

to establish the consistency and asymptotic normality of estimators (Casella & Berger,

2024). These results are especially applicable to means or more general moment-type

external information. If the estimator is asymptotically normally distributed and its

variance has been estimated consistently, then the estimation uncertainty is asymptoti-

cally covered by stating its variance. Then, the asymptotic normal distribution is fully

specified. To avoid imposing further assumptions, the variance should be calculated

using the same external sample Zex and will be called external variance.

Even if the external sample is unavailable, variances are likely reported in the paper

related to the external source due to APA style, as previously mentioned. However,

if the external information is about a multidimensional aspect of PZex
, then a variance

matrix, not just a variance, is needed for the asymptotic multivariate normal distribution

to be fully specified. Covariances between variables may be more difficult to obtain

than variances because they are not required to be reported. Fortunately, correlations

between variables are often reported, so covariances can be calculated using correlations

and variances.

Despite the asymptotic approach, another approach applicable to small samples is to
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make direct assumptions about the form of the data generating process. Although this

may be strict assumptions, it seems to be the only solution when the sample size is small

and the data are not sufficiently representative for the entire population.

Estimation uncertainty is not directly applicable to subjective external information.

Here, the goal is to accurately represent the beliefs or opinions of persons (e.g., experts),

rather than objectively estimating population values (Garthwaite et al., 2005). However,

it should be noted that experts and other professionals in a given field often base their

knowledge on samples of the population, so estimation uncertainty may indirectly be at

play. Section 3.6 will discuss the more prevalent uncertainty of subjective information

in terms of the proper mathematical representation of subjective beliefs.

3.3 Structural uncertainty

External sources may not accurately reflect the scenario of the new data set. They

may be based on a different population. Furthermore, sampling in psychology is often

selective, which can appear as exclusion criteria or the “typical” student sample. This

can result in biased estimates of population quantities (Spiess & Jordan, 2023). Previous

experimental studies may have involved different stimuli, a greater or lesser number of

trials, or varied procedures. Further, performance on a task of interest may vary across

a day. This means that external information derived from studies in which participants

were tested in the morning may not apply to a new study in which data was collected

in the evening. In general, multiple developments occur over time, hence a data set that

is several years old may not be compatible with the new data.

In many of these examples, it is questionable a priori whether or not the external in-

formation aligns with the new data. This discrepancy may be due to the external values

being estimates or due to structural differences in the data generating processes of the

external sample and the new data. Unlike estimation uncertainty, structural differences

between external values and new data become more apparent and influential on statis-

tical inference as sample sizes increase. For the case of selective sampling mechanisms

Spiess and Jordan (2023) analyzed and reported this phenomenon. Structural differences

may also be present when it comes to subjective information. This occurs if a subject

specializes in a very specific area or works with particular populations. In these cases,

the subject has only selective expertise.

Taken together, the assumption that the external information about aspects of PZ is

correct if and only if it is also correct for the same aspects of PZex
seems to be too strict for

psychological research. The uncertainty regarding this transferability of true assertions
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is called structural uncertainty. This type of uncertainty is referred to by different names

in the attached papers. For example, Jann (2023) used the term “epistemic uncertainty”,

whereas Jann (2024) used the term “qualitative uncertainty”. The question remains of

how to handle structural uncertainty. The following three approaches offer different ways

to address this issue:

The first approach would be to either ignore structural uncertainty or identify the-

oretical obligations against its presence or relevance. This approach involves implicit

statistical assumptions. For instance, one might assume that structural uncertainty

cancels out on average.

If more than one study is available, then there are multiple external values and the

question arises of how to combine them. If a sufficient number of studies are available,

a meta-analysis is a sophisticated way to statistically aggregate sets of external values

based on certain assumptions, as described in Section 2.1. However, the underlying

assumptions may be incorrect. Meta-analyses form aggregated overall estimates across

studies that may be structurally different, meaning their data generating processes dif-

fer in relevant ways. Even if the overall population mean is correctly estimated by a

meta-analysis, each of the single studies as well as the new sample may differ from it

structurally. When external information is used in statistical analyses, however, it should

fit the respective population aspects of the new data set.

The second approach would be to directly analyze or even model structural uncer-

tainty. Various psychological effects, even optical illusions such as the Müller-Lyer illu-

sion, were shown to be different or even absent in some non-Western cultures (Henrich

et al., 2010). Hence, external information from Western samples should be used with

caution when adapting it to non-Western samples. With regard to performance variation

over the course of a day, one could try to model the relationship between day time and

performance. The resulting function could then be used to derive external information

for a new data set that is sampled at a specific time of the day.

Although this seems to be the ideal scenario with structural uncertainty becoming

structural knowledge, there are some drawbacks. This approach seems to be straight-

forward for metric variables like time, but it hardly applies to categorical variables like

country of origin or to qualitative variables like stimuli or procedures. Technically, sam-

ples from all countries would be needed for a complete assessment of structural differ-

ences, since a country that is not sampled may differ substantially in its laws or culture.

A prediction of the results in one country based on the results in another would require

further assumptions regarding the underlying structure. Estimation uncertainty further

complicates the analysis, as one would need a large enough sample size to infer that
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differences are due to structural differences rather than random variation. Furthermore,

it is impractical to model every aspect of structural uncertainty, since each new variable

adds another dimension. For example, studies of the Müller-Lyer illusion may differ not

only in population but also in procedure. Finally, an applied researcher typically only

has access to limited external sources when conducting data analysis.

The third approach aims to address these problems by constructing external bounds

to delimit the true value of the relevant aspects of the data generating process. This

approach can be seen as a compromise between the first two. Rather than assuming that

uncertainty is absent or averages out, it is assumed that the effect differs only within a

certain range. No explicit model of the structural differences has to be specified, any

shape within the bounds is valid.

To illustrate this approach, a thought experiment may be helpful. Consider how time

of day affects task performance in a problem-solving experiment where the relative fre-

quency of correct responses is of interest. Set aside estimation uncertainty and consider

the following values to be the population values. Imagine that two previous studies had

the same design but observed an effect mainly in the morning and evening, respectively.

A new study may take place in the afternoon. Taking the range of values from both

previous studies provides a safer estimate than taking a single aggregated value.

This is illustrated in Figure 3.1. Since the new value lies between the previous values,

an interval that covers both also covers the new value. Although using an interval is

safer than using a single value, some regions are not covered. At 9 p.m., the frequency of

correct responses is not bounded by the previous values. In practice, achieving absolute

safety is unrealistic since there are multiple possible sources of structural uncertainty.

Furthermore, even if absolute safety were achievable, the resulting intervals might be

uninformatively broad.

Even when ignoring structural uncertainty and relying on aggregated values, there

may be multiple meta-analyses or reviews. Multiple official statistics may be available,

such as administrative registers, which fosters the need for aggregation, often based on

theoretical considerations (Wallgren & Wallgren, 2014, Chapter 1). One way to avoid

developing higher-order aggregations is to apply the principle of structural uncertainty

to these multiple sources of aggregated external information and construct an external

interval based on their results.

Of the reasons discussed, the third approach was employed during this PhD project.

Therefore, sets of external values were used instead of aggregated quantities. Note that

sets of external values alone do not provide a reliable method for addressing structural

uncertainty. When multiple external values are used without constructing an interval,

15



0 5 10 15 20

0
.2

0
.3

0
.4

0
.5

0
.6

Structural circadian variation of correct responses

hour of the day

re
la

ti
ve

 f
re

q
u
e
n
c
y
 o

f 
c
o
rr

e
c
t 
re

s
p
o
n
s
e
s

Figure 3.1: Hypothetical scenario of structural uncertainty. The curve depicts the true relative fre-
quency of correct responses at a given time point. The circle and the triangle represent the
frequencies reported in the previous studies in the morning and the evening, respectively.
The square represents the frequency observed in a new data set. The dotted lines show
the area that is covered by taking the interval from the lowest to the highest value of the
previous studies, independent of time.

one of them is assumed to be correct, and even slight differences are not accounted for.

Therefore, intervals are preferable because they cover deviations from the true values of

other studies. Figure 3.1 shows that none of the old values (circle and triangle) is equal

to the new value (square), but the square falls within the interval they define.

3.4 Combine structural and estimation uncertainty

In practice, structural and estimation uncertainty will occur simultaneously. The com-

bined treatment of both, which is presented here, was developed by Jann (2024) and

Jann and Spiess (2025). Figure 3.2 shows how the data generating process can be con-

ceptualized when both types of uncertainty are present.

At the population level, there is not one true value, but rather a set of possible

true values. Each new data set may be sampled based on a different true value. The

mechanism behind selecting a true value can be deterministic, as shown in Figure 3.1. In

practice, however, this selection process is unknown. Figure 3.2 only displays the range

of possible true values to reflect this. After the true value is selected, the units of the

data set are sampled according to a probability distribution. For example, it could be a
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Figure 3.2: Scheme of the data generating process under structural and estimation uncertainty. The
range of possible true values at the population level is displayed as a graphical interval.

normal distribution with the true value as the expected value. Note that this probability

distribution may vary from data set to data set unless otherwise assumed. Thus, the

observed data result from two nested mechanisms: a selection mechanism (which is not

necessarily random) and a random draw from a probability distribution.

To reflect the uncertainties, the data generating process should be thought of as re-

versed. Estimates of a quantity of interest in a population are provided based on a

number of studies or observed data sets. This set of estimates is denoted by Mex. For

each estimate, the estimation uncertainty should be represented as described in Section

3.2.

Following the approach in Section 3.3, structural uncertainty can be represented by

constructing a (multidimensional) interval covering all the estimates. The narrowest

of such intervals can be constructed using the (elementwise) minimum and maximum

estimates as the interval’s boundaries. This interval is denoted by Iex. Note that this

is an interval of estimates rather than an interval of population values. It is a random

variable that would vary if the external samples were drawn again. Consequently, the
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bounds only need to be unbiased (or at least consistent) estimates of the population

values that encompass the true value of the new data.

The combination of both uncertainties is not fully realized at this stage. To illustrate

this, consider means or moment-type external information. In this case the estimation

uncertainty is represented by an asymptotic normal distribution and external variances

as explained in Section 3.2. However, the whole interval Iex is prone to estimation

uncertainty. Even if many external sources are given, Iex contains more values than

there are estimates. This raises the question of how to consider estimation uncertainty

for a non-estimate value.

In the one-dimensional case, each value in Iex can be considered as a convex combina-

tion of the interval boundaries (Jann, 2024). As a consequence, the normal distribution

applies to each value in Iex and an external variance can be assigned by combining the

external variances of the minimal and maximal estimates. This approach fails if there are

multiple minimal or maximal estimates with different external variances. The process

may also fail due to the non-uniqueness of convex combinations in the multidimensional

case. Consider the midpoint of a square, for example. Because the two diagonals inter-

sect at the midpoint, it can be described by two different convex combinations based on

the two pairs of opposite corners of the square.

At a first glance, using the maximum external variance of all extremal estimates seems

like it would solve the problem. This is considered an upper bound because it cannot be

exceeded by any convex combination of the external variances of the extremal estimates.

However, as will be explained in the following, this approach may be too pessimistic.

There is a phenomenon called the optimizer’s curse (J. E. Smith & Winkler, 2006). This

“curse” is characterized by the fact that the maximum mean has a non-negative bias

when estimating the maximum expected value. A similar statement immediately follows

for the minimum.

Thus, if external means are considered as estimates and their minimum and maximum

are used to construct an external interval, the expected mean interval will be at least as

large as the population interval of expected values. In the context of utilizing external

information, this effect is advantageous because it enhances the robustness of Iex against

misspecification. Regarding external variances, this effect reduces the need for an upper

bound. As demonstrated in simulation studies, using the minimal external variance for

inference purposes may suffice in some cases (Jann & Spiess, 2025).

It is debatable whether the proposed way of combining the two uncertainties may be a

type of “double dipping” of uncertainty. On the one hand, different samples will almost

always lead to different means even if sampled from the same distribution. Thus, the
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same probabilistic variation affects both the width of Iex and the external variances.

However, when external sources have large sample sizes and consistent estimators are

used, the external variances will likely be comparably small, reducing the “double dip-

ping” effect as the sample size increases.

On the other hand, the number of external sources may be low, resulting in structural

uncertainty not being covered for all possible true values. For example, consider Figure

3.1, where some areas are uncovered. A new study testing correct responses at night

would not be covered by the current external interval. Therefore, a researcher should

refrain from shortening Iex.

Overall, “double dipping” may be the price to pay for greater robustness against

structural misspecification. The only reasonable way to reduce “double dipping” seems

to be choosing a less conservative rule for calculating external variances for the values

in Iex. Currently, only the concept of a data generating process is provided, in which

multiple distributions are at play. To make the presented ideas usable for statistical

inference, a mathematical formalism is needed.

3.5 F-probability as representation

The data generating process described in the previous section cannot be modeled by

a single probability distribution because there are multiple distributions at play. A

mathematical framework for addressing this issue is provided by imprecise probabilities

(Augustin, Coolen, et al., 2014). In this framework, a set of distributions is called a

credal set, and the idea is to treat this set as a mathematical object in its own right. As

with probabilities, events can be evaluated based on credal sets. The following concept

provides the theoretical basis for this:

Definition 1. (Augustin, 2002) Let Ω be a set and A be a Ã-algebra on Ω. In addition,

let K(Ω,A) be the set of all probability measures on (Ω,A). Then a set-valued function

F on A is called Feasable-probability (F-probability) with structure M, if

1. there are functions L,U : A → [0; 1] such that for every event A ∈ A it holds that

L(A) f U(A) and F has the form

F : A → {[a; b] | a, b ∈ [0; 1] and a f b}
A 7→ F (A) := [L(A);U(A)] for every event A ∈ A,

2. the set M := {P ∈ K(Ω,A) |L(A) f P (A) f U(A), for all A ∈ A} is not empty,
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3. if for all events A ∈ A

inf
P∈M

P (A) = L(A)

sup
P∈M

P (A) = U(A).

The concept of F-probabilities was first introduced by Weichselberger (2001), pre-

sented in a detailed book (original in German). To refer to English-speaking literature,

the subsequent discussion of F-probabilities is based on Augustin (2002). The functions

L and U serve as the lower and upper bounds of possible probabilities.

For example, suppose that the probability of rain for tomorrow (coded as R) is reported

differently by various sources, such as forecasting websites and apps. Thus, it can be

concluded that the probability of R is between L(R) = 0.1 and U(R) = 0.2. The

first requirement of Definition 1 ensures that these bounds are defined for all events

and that they are reasonable. In terms of the example at hand, reasonable means

0 f L(R) f U(R) f 1. The second requirement guarantees that there is at least one

probability measure covered by L and U . In the current example, consider the event that

it will not rain tomorrow, R. For L(R) = 0.6 and U(R) = 0.7, the second requirement

would not be met due to the complement rule of probability. In fact, the complement

of p ∈ [0.6; 0.7] is an element in [0.3; 0.4], but this is disjoint from the interval [0.1; 0.2]

specified for R. Such cases, in which two assignments contradict the probability axioms,

are ruled out. The third requirement ensures that the probability intervals are no wider

than necessary. In the example, F (R) = [0.1; 0.2], P ∈ M must satisfy P (R) ∈ [0.8; 0.9].

Therefore, the infimum cannot be below 0.8, and the assignment F (R) = [0.5; 0.9] is not

possible.

Interestingly, F-probabilities and credal sets are closely related. On the one hand, M
is a credal set. On the other hand, given a credal set, one can use the third requirement

of Definition 1 as a construction rule for an F-probability by using the credal set as M.

An important feature of constructing an F-probability based on a credal set is that the

resulting M often contains more distributions than the credal set. All convex combi-

nations of the elements of the credal set are included in M. For a detailed discussion

on this topic, see Jann and Spiess (2024). These convex combinations may differ sub-

stantially from the distributions in the credal set. For example, convex combinations of

normal distributions can be skewed or multimodal.

To illustrate this property, consider the set of all normal distributions with variance

equal to one and expected value in the interval [0; 3]. This set is denoted by the symbol
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N [0; 3]. Figure 3.3 shows some of the convex combinations constructed based on N [0; 3].

Figure 3.3: Displayed is the F-probability that was constructed based on the credal set N [0; 3]. Shown
are the cumulative distribution functions of N(0, 1) (black, left) and N(3, 1)(black,right),
as well as convex combinations of the two (colored).

Now, all probability statements based on the constructed F-probability cover these con-

vex combinations as well. The probability that they would assign to an event is always

contained within the probability interval that F assigns to the same event.

This implies an increase in distributional robustness, since the true distribution is

allowed to be non-normal, even if the credal set consists only of normal distributions.

The approach is similar to the “neighborhoods” of distributions used in robust statistics

to protect statistical analyses from small deviations from an assumed distribution (Huber

& Ronchetti, 2009, p. 12). Despite violations of distributional assumptions, this effect

may be helpful with small- to medium-sized samples, where the asymptotic distribution

and the true distribution may differ to some extent.

Now, the data generating process from the previous section can be formalized. The

population level is determined by a set of possible true values reflecting structural un-

certainty. Each possible true value is mapped to a probability distribution reflecting its

estimation uncertainty, and all resulting distributions are treated as a credal set. This

credal set encompasses both the structural and the estimation uncertainty. Finally, an

F-probability is derived based on the credal set. The F-probability generates an envelope
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around the data generating process that includes more distributions than were used to

create it. This increases distributional robustness. Thus, F-probabilities naturally arise

when representing structural and estimation uncertainty.

3.6 Further uncertainties

Apart from structural and estimation uncertainty, further aspects should be considered

before using external information in statistical analysis.

First, model-specific external information is only valid for a specific model. Assume

there is external information about the slope of a simple linear regression model that

states, “The slope is positive.” for instance. Suppose a new study considers a multiple

linear model that extends the simple linear model by an additional independent vari-

able. One might be tempted to apply the external information about the slope of the

independent variable in the simple linear model to the multiple linear model.

However, due to Simpson’s paradox, the slope of the same independent variable may

differ in a multiple linear model compared to a simple linear model (Simpson, 1951). The

sign may even change, meaning the external information “The slope is positive” may

not be directly transferable. A good discussion of Simpson’s paradox in psychological

research is provided by Kievit et al. (2013).

Second, even parameter-specific external information may not be correct for new data.

This is because the employed model is likely incorrect, leading to model uncertainty.

From a stochastic perspective, based on the data generating process, the estimator can

still be seen as a random variable, even if the model is wrong. This random variable may

still converge in probability to some aspect of the data generating process. This applies

in the case of the typical i.i.d. assumption for the involved variables when treated

as vectors, due to the asymptotic results discussed in Section 3.2. In a simple linear

regression model, both the independent and dependent variables must align with the

i.i.d. assumption, since the slope estimator involves both.

Suppose a simple linear model is chosen for statistical analysis, but the true relation-

ship is E(y|x) = ex. Further suppose that yi = exi + ϵi with ϵi ∼ N(0, Ã2), where ∼
denotes “(is) distributed like”. In this case, the range of the observed values, x1, . . . , xn,

affects the slope of the fitted linear model. For instance, the result differs greatly depend-

ing on whether the range is [−10; 0] or [5; 10], because ex increases exponentially with

x. Therefore, researchers should investigate whether the distribution of the independent

variable in the external sources is similar to that of the new data, before using external

information regarding a simple linear regression slope. This is an example of structural
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uncertainty, which shows that it may be better not to rely on a single external source.

A third important aspect is that many psychological constructs are latent variables

that can not be observed directly. Instead, latent variables are measured indirectly based

on manifest (observable) variables. This “indirect measurement” is achieved using a

latent variable model (Loehlin & Beaujean, 2016). External information about a latent

variable depends on the latent variable model. This can be considered a special case of

model uncertainty.

However, a manifest score value is often reported and used in further analysis. This

manifest score can be viewed independently of the latent variable model and represents

an aspect of the data generating process. In practice, even if the latent variable model

for a questionnaire changes, the mean scores (or other aspects of the manifest variables)

in an external sample do not change.

Fourth, with regard to subjective external information, estimation uncertainty does

not apply. Instead, uncertainty arises when representing the subjective knowledge of a

person, such as an expert, in a precise mathematical form that can be used in statistical

analysis. This issue is addressed by a procedure called elicitation (Kadane & Wolfson,

1998). The typical objective is to derive a distribution that mathematically represents

subjective beliefs about a parameter and can serve as a Bayesian prior. See Section

4.1 for a description of the Bayesian approach. According to Garthwaite et al. (2005),

medians and quantiles are easier to obtain than moments, and eliciting multivariate

distributions poses additional difficulties. Elicitation is often done within a feedback

loop, until the statistician and the person agree on the result.

Now, consider the following, admittedly provocative thought experiment. Suppose

there is an agreed-upon final distribution. Then, calculate different aspects, such as the

mean or a quantile, that differ from the elicited aspects. The results will have precise

values that may seem odd to the person, such as a mean of 3.129, which may cause

discomfort. A person may be unwilling to give a precise quantile or probability, but

rather a statement such as “Thirty to fifty percent of patients are diagnosed with a

major depression”. Lastly, multiple persons may disagree with one another.

This could be explained by structural uncertainty. For example, one expert may base

their experience on a structurally different phenomenon or group than another expert,

even if the two seem similar. To allow for imprecision and circumvent “strange precision”

or structural uncertainty, it may be better not to elicit a single distribution, but rather

a credal set constituted by imprecise statements. The elicitation of credal sets (and

imprecise probabilities in general) is discussed by Smithson (2014), who points out that

it is a relatively new field of research.
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Elicitation is certainly important from a non-subjective viewpoint as well. Based on

current knowledge, it is the researcher’s responsibility to determine which previous stud-

ies align with the new data set and which do not. Systematic reviews and meta-analyses

address this issue by establishing inclusion criteria that align with existing guidelines.

(Higgins et al., 2019). These guidelines can also help determine which external sources

to include or exclude in a statistical analysis of new data.

However, some qualitative aspects of the new data may not be covered by external

sources, particularly if there are few, if any, of them. In this case, it is important to

avoid overly strict inclusion criteria. In order to construct an external interval that

certainly captures the true effect, it may be beneficial to consider external sources that

differ substantially from those recommended by guidelines. Including these additional

sources will not result in misspecification. Rather, it will broaden the external interval

Iex.

A fifth source of uncertainty pertains to research and publication practices in psy-

chology. An essential feature of empirical science is that findings are reproducible. If

researchers use the same or a similar study design, stimuli, and variables, they should

find similar results. A large-scale attempt to replicate 100 psychological findings found

that only 36% of the replicated results were statistically significant, whereas 97% of the

original results were significant (Open Science Collaboration, 2015). Ensuing discus-

sions on non-replicable findings in the field of psychology led to the establishment of the

term replication crisis. Simmons et al. (2011) argue that p-hacking techniques, such as

Hypothesis formulation After Results are Known (HARKing) or post hoc exclusion of

participants, are a responsible factor for the replication crisis.

The presence of p-hacking can influence the reported statistics. Therefore, external

information derived from this data may not be applicable to new data analyzed without

p-hacking. Over the last decade, preregistration of studies has become a popular way

to address the replication crisis. Preregistration involves publishing hypotheses, designs,

and analysis plans online before sampling any data. Although preregistration may in-

crease statistical power, its effectiveness in preventing p-hacking or HARKing is unclear

(van den Akker et al., 2024).

To address issues such as p-hacking and HARKing, researchers should screen external

sources. Researchers should check preregistration files to ensure transparency in the

circumstances of the obtained results, such as exclusion criteria. This will help to rule

out the most obvious cases of questionable research practices. However, more subtle

cases, such as manual data manipulation, may go undetected when only a paper and its

preregistration files are examined. If trustworthy, independent research groups manage
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to replicate the findings, the external interval can still be valid. In this case, p-hacked

results would only increase the width of an otherwise correctly specified external interval.

Apart from questionable research practices, there may be a non-reporting bias due to

the fact that non-significant results are not published or are less visible to the research

community (Higgins et al., 2019). To detect a possible non-reporting bias, meta-analyses

often include (contour-enhanced) funnel plots. These plots display the effect sizes and

their standard errors from all studies in the form of a scatter plot. Meta-analyses may

also include sensitivity analyses based on these graphs (Higgins et al., 2019). One possi-

ble reason for the asymmetry of a funnel plot is a non-reporting bias. Sensitivity analyses,

such as selection models, can then be used to determine how the results change under

different assumptions about the origin of this asymmetry. The range of results from

these sensitivity analyses constitutes another external set that can be used to construct

an external interval.

Sixth, a technical aspect of external sources is how results are reported and the level

of precision with which they are reported. The results reported in a paper are rounded

to a specific number of digits. This means that the original result falls within a rounding

interval of the reported value. For example, if the value 3.5 is reported, the original

result falls within the interval [3.45; 3.55]. Although this may seem like a minor issue for

large numbers, it is especially important for frequencies.

In some cases, the desired value is not reported, and instead, many other quantities

are provided. An interesting approach to avoid discarding the external source is to

use the presented results to approximate those of interest. However, the calculation

is commonly restricted to the bounds on the value of interest. For example, Jann and

Spiess (2025) calculated external intervals for frequencies of certain variable values based

on means, variances, correlations, and other reported quantities while using rounding

intervals for all quantities. This procedure yields sets of potential external values and,

consequently, credal sets and F-probabilities. However, this approach has limitations.

The calculated bounds may be very broad or uninformative, and the implementation

may be both complex and case-dependent.

Seventh and finally, missing values in external samples can be a source of uncertainty.

A statistical analysis based on fully observed cases only may be biased if some values

are missing. Even if there is no structural uncertainty and the external sample size is

large, the bias induced by missing data may persist. Thus, statistical techniques such

as multiple imputations are needed to correct for this bias (Rubin, 1996). However, it is

likely that not all previous studies employed valid techniques to handle missing data. It

may not always be possible to perform multiple imputations on external samples. For
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example, this method is inapplicable if the external sample lacks relevant variables for

the intended imputation model or is unavailable.

One possible strategy to address these cases is the partial identification approach

described by Manski (2003). This approach is particularly well-suited when the amount

of missing data is small and the range of the variable or parameter is bounded. For

example, consider a variable with values ranging from 1 to 4, such as a questionnaire

score based on a four-point Likert scale. Suppose an external sample of size 100 has 10

missing values and a mean of 3.1, calculated on the basis of the observed values. The

lowest possible mean would be reached if all missing values were 1. In this case, the

mean would equal 0.1 · 1 + 0.9 · 3.1 = 2.89. Similarly, the maximum possible value is

0.1 · 4 + 0.9 · 3.1 = 3.19. Thus, the interval [2.89; 3.19] encompasses all possible means

with respect to the missing values.

Note that constructing this interval does not require any assumptions about the miss-

ing mechanism. However, this technique has limitations. The intervals broaden as the

rate of missing values increases and the range of possible values widens. As a com-

promise, Manski (2003) provides a hierarchy of assumptions that enables researchers to

balance the strength of additional assumptions with the width of the intervals.

The list of uncertainties discussed with regard to external information is not exhaus-

tive. Other factors than those currently under consideration may become even more

relevant in the future. In fact, it would be surprising to have certainty about all aspects

of uncertainty. Although it may not be feasible to provide a comprehensive list of un-

certainties, researchers should be considerate and transparent about the ones discussed

here, even when deciding to disregard them in statistical analyses.
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4 Existing statistical approaches that

incorporate external information

This chapter examines statistical approaches that permit the use of external information.

It discusses the extent to which these approaches can account for the uncertainties of

that information. The approaches will vary in terms of the type of external information

they are able to implement directly.

External information can be utilized for multiple purposes. Section 2.1 elucidated

two primary applications of external information. First, it can be used to test the com-

patibility and fit of external information and data. Second, it can improve estimation,

statistical inference, and prediction in new data sets. Note that this list is not exhaustive,

and more uses may emerge in the future.

When asked about approaches to incorporate external information, many psycho-

logical researchers would likely name the Bayesian approach. It is arguably the most

renowned approach for this purpose. From the author’s perspective, it is debatable

whether the standard Bayesian approach is appropriate for addressing structural un-

certainty. Thus, the first section of this chapter is devoted to a generalized Bayesian

approach that accounts for structural uncertainty and includes the classical Bayesian

approach as a special case.

In contrast, there is no such general and renowned framework in frequentist statis-

tics to incorporate external information. The second section of this chapter provides an

overview of existing frequentist approaches. The mathematical details of a promising

candidate for a frequentist framework, capable of representing structural and estimation

uncertainty, will be presented in the next chapter. There are methods of statistical infer-

ence beyond the Bayesian and frequentist approaches that allow for the use of external

information. One such approach will be discussed in Section 4.3.

4.1 Generalized Bayesian inference

Bayesian statistics is the most prominent method for incorporating external information.

For a book-length treatment of the arguments presented here, see Bernardo and Smith
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(1994). The foundation of Bayesian statistics is Bayes’ theorem, also known as Bayes’

rule, which is expressed by the equation

P (¹|Z)︸ ︷︷ ︸
posterior

= P (Z|¹)︸ ︷︷ ︸
likelihood

·P (¹)︸ ︷︷ ︸
prior

/ P (Z)︸ ︷︷ ︸
evidence

.

The idea behind Bayesian statistics is to specify a prior distribution (in short prior)

on the parameter space to reflect the prior knowledge and uncertainty of the parameter

before seeing the data. Then, the prior is updated using Bayes’ rule based on the

observed data to obtain the posterior distribution (in short posterior). The prior is a

genuine Bayesian concept that represents the degree of belief in certain parameter values

as a probability distribution. Bayes’ theorem can also be formulated with probability

density functions, which is more convenient when dealing with continuous distributions.

In its density form, the likelihood in Bayes’s theorem is equal to the typical likelihood

used in frequentist statistics and is often given by the density of the assumed sampling

mechanism.

All statistical analyses are based on the posterior distribution. The shortest posterior

interval with probability ³, called the highest density interval, is the counterpart of a

frequentist confidence interval. Bayes factors can be used to test relevant statistical

hypotheses about the parameters. Predictions can be made by sampling values from the

posterior predictive distribution.

The Bayesian approach is often accompanied by a subjective view of probability, inter-

preting it as a degree of belief. As stated in Section 3.6, subjective external information

is elicited as a prior distribution, which can then be incorporated into a Bayesian analysis

(Garthwaite et al., 2005). However, there are multiple approaches to Bayesian statistics.

Objective Bayes for example, attempts to create “non-informative” default priors based

on certain rules, such as Jeffrey’s rule or reference priors. This approach avoids subjec-

tive elicitation but sacrifices the interpretability of the posterior (Martin & Chuanhai,

2015, p. 30).

Note that defining a prior is mandatory, not optional. However, specifying or eliciting

a full prior distribution allows for many degrees of freedom and arbitrariness, particularly

when the prior is continuous. This has often been used as an argument against the use of

Bayesian statistics, prompting the development of methods to reduce arbitrariness, such

as objective Bayes. Fortunately, as the sample size increases, the influence of the prior

on the posterior decreases (given certain technical assumptions) (Bernardo & Smith,

1994, pp. 285 – 294). For small sample sizes, which are common in psychology, the prior

can have a significant impact on the posterior.
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Considering the different types of uncertainty in external information mentioned in

Chapter 3 and its representation by F-probabilities, the Bayesian approach is inadequate

because it only works with a single distribution. Model uncertainty plays an important

role since the prior is specified for a parameter. Using a posterior distribution based

on an external sample for a new data set requires employing the same model. Even for

nested models, Simpson’s paradox makes transferring external information risky.

Further, to reflect structural uncertainty, it may be better to rely on multiple sources

and multiple previous posterior distributions that can be used as priors to form a credal

set. In addition, it is uncommon for other studies to report complete posterior distri-

butions. Often, only partial information is available, which is insufficient to identify a

single prior, but rather a credal set. Moreover, as mentioned in Section 3.6, credal sets

may be a way to address elicitation uncertainty.

Fortunately, it is straightforward to generalize Bayesian inference across the domain of

credal sets and F-probabilities. The following elaboration is based on work by Augustin,

Walter, and Coolen (2014). Instead of a single prior distribution, a credal set of prior

distributions, denoted by Mθ, is provided. This can be given through the set M of an

F-probability representing external information. Then, each element of Mθ is updated

according to Bayes’ rule. The result is a credal set of posterior distributions, denoted

by Mθ|Z. Note that this framework allows for a non-informative prior by defining Mθ

as the set of all probability distributions on a given measurable space.

By constructing F-probabilities based on Mθ and Mθ|Z, this approach can be inter-

preted as updating an F-probability given the data. Interestingly, the set Mθ does not

have to be equal to the set M of the prior F-probability for the update to produce the

same posterior F-probability. It can be much smaller. According to the lower envelope

theorem, if two prior credal sets induce the same F-probability, then their posterior

credal sets will induce the same F-probability (Augustin, Walter, & Coolen, 2014, p.

154). For example, consider the F-probability shown in Figure 3.3 which is constructed

based on the credal set N [0; 3] as a prior. According to the lower envelope theorem, only

the normal distributions in N [0; 3] need to be updated, not their convex combinations.

Updating the convex combinations would not alter the resulting posterior F-probability.

Statistical analyses using the generalized Bayesian approach are implemented by ex-

tending the corresponding methods from the classical Bayesian approach. Interval esti-

mation can be performed by computing the highest posterior density interval for each

element of the set Mθ|Z and forming their union as sets (Walter & Augustin, 2009).

Hypotheses can be tested using a generalized notion of Bayes factors based on a concept

of practical relevance. This method was described in detail by Schwaferts (2022).
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Thus far, the use of external information in Bayesian analysis has been discussed un-

der the premise that the information is valid. However, if the validity of the external

information is questionable, it may be better to contrast the data with external infor-

mation to test whether they fit together. In Bayesian terms, a mismatch between data

and external information is called a prior-data conflict.

In terms of the generalized Bayesian approach, Walter and Augustin (2009) addressed

prior-data conflicts in generalized imprecise models with linearly updated conjugate prior

knowledge, as well as potential solutions to these conflicts. As Jann (2024) argues, the

prior-data conflict criterion developed by Walter and Augustin (2009) is liberal in that it

incorrectly identifies many cases without conflict as having conflict. This is intentional,

since the objective of Walter and Augustin (2009) was to rectify statistical inference for

prior-data conflict. With this approach, missing a true conflict case is more problematic

than generating a false positive. However, if the intention is to properly detect prior-data

conflicts, then false positives matter.

To tackle this issue, Jann (2024) proposed an approach based on the work of Bickel

(2015) for a conjugate normal model case. The approach is based on an assessment

function, A, that evaluates the adequacy of a probability distribution given the data.

Then, a credal set of probability distributions with an adequacy greater than a specified

threshold is constructed. This credal set can then be compared to Mθ. If there is no

prior with an adequacy level that is at least as high as the lower bound, then that is

considered a prior-data conflict. Since the data set is assumed to be observed and thus

constant, it is omitted from the following notation.

Definition 2. (Bickel, 2015) Let M be a credal set. Let A : M → R be a mapping to

the extended real line. Then for a ∈ R a set of a-adequate models is

M(a) := {P ∈ M : A(P ) g a}.

As an assessment function, Bickel (2015) proposed the logarithmized Bayes factor or

the integrated likelihood ratio. To derive a criterion for prior-data conflict, Jann (2024)

proposed constructing the credal set M in Definition 2 using the general distributional

form of the priors. For example, if all priors were normal distributions, then M would

be the set of all normal distributions. The adequacy values of all P ∈ M are then

determined based on A and the observed data.

Definition 3. Let Mθ be a credal set of prior distributions and M a credal set with

the property Mθ ¢ M. Then prior-data conflict with threshold a (based on M) is said

to occur if M(a) ∩Mθ = ∅.
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Clearly, smaller values of a lead to a larger M(a) and thus the procedure less often

decides in favor of prior-data conflict. Through simulation studies, Jann (2024) demon-

strated that, for conjugate normal models with a variance of 1, values of a below 0 result

in more conservative tests for prior-data conflict when using the integrated likelihood

ratio assessment. Reasonable type I error rates were found for values of −0.1 or lower.

However, power decreased as values of a decreased. Furthermore, when a = 0, it was

shown that the prior-data conflict with threshold a performed identically to the criterion

of Walter and Augustin (2009), so the latter can be considered a limit case in the scenar-

ios examined. The limitations were that selecting and interpreting a can be challenging

and that the results may be sensitive to slight variations in a (Bickel, 2015; Jann, 2024).

With respect to the type of external information, differences exist in how the infor-

mation can be implemented in a Bayesian approach. In particular, external information

about variables poses difficulties (Jann, 2023). It may be possible to use moment-type

information about variables to restrict the set Mθ. For example, if the true covariance of

two variables is positive, then the slope of a simple linear model based on these two vari-

ables should also be positive. Therefore, a researcher could exclude prior distributions

from Mθ for which the expected value of the slope is negative, or restrict the support

of the prior distributions to positive values only.

To the best of the author’s knowledge, no framework exists for directly including

moment-type information about variables in generalized Bayesian inference thus far,

though some investigations on this topic have been conducted. For example, Zellner

(1996) developed a Bayesian method of moments approach. However, this approach has

been criticized for not being properly Bayesian, but rather being based on the maximum

entropy principle (Geisser, 1999). Additionally, Yin (2009) developed a Bayesian gener-

alized method of moments approach. Unfortunately, this approach also used a full prior

distribution for the parameter, which leads to the same issues when trying to incorporate

moment-type information about variables.

4.2 Frequentist approaches

A variety of frequentist approaches allow for incorporating certain types of external

information – some for a wide range of models. However, these approaches are not

designed to reflect structural uncertainty. This chapter discusses the advantages and

disadvantages of these approaches and concludes with an explanation of which approach

could be extended to reflect structural uncertainty.

Some frequentist methods for incorporating external information are “domain spe-
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cific”. For example, suppose there are accurate estimates of the frequencies of values of

a categorical variable within a population. These frequencies can then be used to adjust

an estimate of a parameter in a new sample. By calculating a weighted estimate, the

frequencies of the categorical variable in the new sample are adjusted to align with the

previously estimated population values. This approach is called poststratification and

can be used for various purposes, such as reducing the variance of an estimate or cor-

recting for selective sampling (T. M. F. Smith, 1991). Since external frequencies should

closely resemble population frequencies, they are often taken from census data. Suit-

able poststratification variables are demographic variables, such as age groups. As their

name suggests, “domain-specific” methods for using external information are limited in

the types of information they can incorporate. The presented form of poststratification

is limited to incorporating the external values of the frequencies of categorical variables.

One general approach is the use of external information to establish constraints on

the parameter space. For general constrained multiple linear and non-linear regression

models with an additive error term, Knopov and Korkhin (2012) provide algorithms

to calculate estimates and demonstrate the asymptotic properties of estimators, such as

consistency and asymptotic normality. Their approach can be embedded into the broader

field of stochastic optimization, which involves solving optimization problems where the

objective function or the constraints include random variables (Rahimian & Mehrotra,

2022). This is achieved by approximating probability distributions and expected values

with empirical distributions and means (Knopov & Korkhin, 2012, p. 73).

Stochastic optimization can be extended to distributionally robust optimization, for

which only partial knowledge of the exact distribution is necessary, and which employs

a set of possible distributions. For a discussion of the theoretical framework and re-

cent developments in this field, see Rahimian and Mehrotra (2022). This approach

can account for estimation uncertainty by treating parameter constraints as random

and structural uncertainty by selecting an appropriate set of underlying distributions.

However, distributionally robust optimization is not rooted in in frequentism. There-

fore, establishing the necessary asymptotic theory for the approach when using common

models in psychology might be better addressed in a research project in mathematical

statistics. Nevertheless, such a project would be worthwhile because virtually all of the

approaches presented in this thesis can be considered special cases of distributionally

robust optimization.

Another issue with using external information as parameter constraints is that only

parameter-specific information can be implemented directly. Therefore, the discussion

about model uncertainty in Section 3.6 applies. Consider Example 1 again. Knowledge
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of both E(y) and E(x) establishes an equality constraint on the parameters ´1 and ´2,

which can be used for constraint optimization via the method outlined by Knopov and

Korkhin (2012).

However, if only E(y) is known, the constraint is partially specified and cannot be

implemented directly within the framework of Knopov and Korkhin (2012). Using the

empirical mean x̄ instead of E(x) makes the constraint random because x̄ is a random

variable. Therefore, stochastic optimization is necessary to implement this constraint.

In addition to these technical issues, the parameter constraints imposed by moment-type

information, such as the knowledge of E(y), do not generalize well. These constraints

must be derived anew for other models.

Another general approach, albeit a lesser-known one, is based on confidence distribu-

tions. A commendable reference to the prevailing theory in the one-dimensional case

presented here is the review by Xie and Singh (2013). Consider a lower-sided (100 ·³)%
confidence interval defined by an upper bound and treat the confidence probability ³ as

a variable rather than a fixed value. If the resulting function is continuous and increasing

for each possible realized data set, then its inverse is a confidence distribution.

More generally, let Z be the sample space and Θ be the one-dimensional parameter

space, then a function H : Z × Θ → [0; 1] is a confidence distribution if two criteria

are met. First, for each z ∈ Z, the function H(z, ·) must be a cumulative distribution

function on Θ. Second, for the true value of the parameter, ¹0, the random variable

H(z, ¹0) must be uniformly distributed on the unit interval [0; 1]. If these properties

only hold asymptotically, H is called an asymptotic confidence distribution.

Multiple (asymptotic) confidence distributions, Hj , for j = 1, ..., k, on the same pa-

rameter space, with the same true value, ¹0, but possibly different sample spaces, can

be combined into a single confidence distribution, Hc, using the combination rule

Hc = Gc(F
−1
de (H1) + · · ·+ F−1

de (Hk)).

Here, Fde is the cumulative distribution function (CDF) of the standard double expo-

nential distribution and Gc is the CDF of the random variable F−1
de (U1)+ · · ·+F−1

de (Uk),

where U1, . . . , Uk are independent random variables with a uniform distribution on [0; 1].

Using an equivalent formulation of this combination rule, Bickel (2012) developed a

frequentist framework that incorporates external information regarding one-dimensional

values. This is based on the idea that confidence distribution(s) of the new data set(s)

can be combined with subjective confidence distributions derived from multiple indepen-

dent persons (e.g., experts). This formalism allows for the incorporation of confidence
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distributions from other studies, enabling the consideration of multiple sources of in-

formation, subjective or objective. Here, the underlying assumption is that the data

generating processes of all studies possess the same true parameter value ¹0, although

they are allowed to differ in other aspects.

This procedure can also be interpreted in a purely subjective manner, providing coher-

ent inductive reasoning that is similar to a Bayesian approach (Bickel, 2012). Subjective

confidence distributions resemble the prior distribution, and the combined Hc resem-

bles the posterior distribution. Therefore, this approach is subject to the same critique

regarding the elicitation of a single prior distribution (as discussed in Section 3.6).

An additional limitation to be considered is with respect to incorporating confidence

distributions from multiple previous studies. Although this approach may cover estima-

tion uncertainty, it does not cover structural uncertainty. If the true parameter value

varies across studies, then Hc represents a mixture of these values, which may differ

from the true parameter value in the new study. Finally, this approach does not easily

generalize to multidimensional parameter problems. Although some results for multi-

variate confidence distributions are reported by Xie and Singh (2013), there seems to be

no general solution to this problem to the best of the author’s knowledge.

Lastly, there are two econometric approaches that provide frameworks with well-

developed asymptotics and the ability to directly incorporate moment-type external

information about variables. The first is the empirical likelihood approach (Owen, 1988),

in short EL, and the second is the generalized method of moments (Hansen, 1982), in

short GMM. The incorporation of moment-type external values of variables was demon-

strated by Qin and Lawless (1994) for EL, and by Imbens and Lancaster (1994) as well

as Hellerstein and Imbens (1999) for GMM. The EL approach will be outlined here. The

GMM approach will be explained in detail in the next chapter.

Let z1, . . . , zn be realizations of i.i.d. random variables, each distributed like z. Sub-

sequently, for a probability measure P on the same measure space as z, the empirical

likelihood function (based on P ) is

L(P ) = Πn
i=1P (zi) = Πn

i=1pi.

For continuous distributions, it is imminent that L(P ) is zero. This is because they assign

a probability of zero to each individual value, zi. Of interest are probability measures

P that assign non-zero probability to each zi. This is the case for discrete distributions

on the set of points {z1, . . . , zn}, which may be possible empirical measures.

Assume that there is a function g(z,¹) with values in R
q, that satisfies the moment
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equations E(g(z,¹0)) = 0. Statistical models are implemented by including the corre-

sponding estimating equations in g(z,¹). External information, such as E(z) = e0, can

be incorporated by adding its sample equivalent, z−e0 to g(z,¹), as an additional entry.

Note that only moment equations were specified to estimate the parameter, rather

than specifying a likelihood function. The EL approach is named as such because it

substitutes likelihood with empirical measures for realized data. Now, an estimate is

derived by maximizing the empirical likelihood function subject to the constraints

pi g 0 for i = 1, . . . , n,
n∑

i=1

pi = 1 and
n∑

i=1

pig(zi,¹) = 0.

This can be translated into a nested maximization procedure (Qin & Lawless, 1994).

Given a parameter value, ¹, the pi values that maximize the empirical likelihood are

searched for. As a result, the constrained optimization problem is nested within the un-

constrained optimization problem of finding the ¹ value that yields the highest overall

empirical likelihood for maximal pi. This maximum value of ¹ constitutes the EL esti-

mate and is consistent and asymptotically normally distributed under suitable regularity

conditions (Qin & Lawless, 1994).

4.3 Approaches beyond frequentist and Bayesian

Taking a step back from the frequentist and Bayesian schools of thought, there are other

approaches to statistical inference. Heuristically, statistical inference aims to “invert”

the probabilistic data generation due to Pθ(Z), meaning assertions about Pθ(Z) are

derived from the observed data set (Augustin, Walter, & Coolen, 2014). Expressing

skepticism about the Bayesian approach, particularly the specification of a uniform prior

distribution, Fisher (1935) endeavored to develop a prior-free inference method, which

he called fiducial inference. In a manner analogous to the posterior distribution in

Bayesian statistics, a fiducial distribution of the parameter based on the observed data

is considered in this approach.

Fiducial inference has been the subject of extensive debates within the statistical com-

munity, particularly with regard to its interpretation and limitations in multidimensional

scenarios. Some have even considered it to be Fisher’s one great failure (Zabell, 1992).

Although fiducial inference has historically garnered minimal attention beyond the do-

main of statistics, recent endeavors have emerged to develop inference methods that are

(partly) motivated by fiducial arguments.

One such method is the approach of confidence distributions or confidence measures,
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as presented in Section 4.2. There were disputes in the statistical community regarding

the observation that confidence distributions appeared to be analogous to fiducial dis-

tributions. However, it should be noted that these distributions are based on frequentist

considerations rather than the fiducial argument (Cox, 1958).

Another method motivated by fiducial arguments that has received attention in the

field of imprecise probabilities is the inferential model approach described by Martin and

Chuanhai (2015). The following is an introduction to inferential models based on this

source. For the sake of simplicity, only the one-dimensional case will be considered.

In order to motivate the idea, one should consider what is given in a statistical inference

problem. In most cases, a parametric sampling model is employed, which is a probability

distribution that is intended to be equivalent to the data generating process. Suppose

the sampling model is correctly specified, that is, assuming it is equal to Pθ(Z). Then,

statistical inference will be conducted based on Pθ(Z). Therefore, the only unknown

aspect remaining to be assessed is the true value of the parameter.

In a typical statistical inference problem, the true parameter value is considered a

constant, as in frequentist inference. In addition, the data have been observed and

are therefore also considered constant, as in a Bayesian posterior distribution. In this

scenario, questions arise as to where the uncertainty comes from and how it should

be modeled. Inferential models address these questions by introducing an unobserved

auxiliary random variable, U , that introduces uncertainty and is primarily defined by

the sampling model. Therefore, it is not necessary to specify a prior distribution for the

parameter.

Consider, for example, the sampling mechanism z ∼ N(¹0, 1). This mechanism can

be decomposed as z = ¹0 +Φ−1(U), where U is uniformly distributed on (0; 1) and Φ−1

is the inverse of the standard normal CDF. If there is one observation z∗ of z, then the

equation becomes z∗ = ¹0+Φ−1(u∗) with a fixed value u∗ ∈ (0; 1). This indicates that a

statistician could determine the constant ¹0 based on the known observed value z∗ with

knowledge of u∗. Thus, the decomposition separates the known observed value from the

part that introduces uncertainty.

To formally describe inferential models, one must distinguish three steps: association,

prediction, and combination. During the association step, an association function a is

defined based on the assumed sampling mechanism, such that z = a(U, ¹0) with an

auxiliary random variable U . By default, U is assumed to be uniformly distributed on

(0; 1). Looking at the realization z∗ = a(u∗, ¹0), it is clear that possible values of ¹0

could be calculated by solving the equation if u∗ were known.

The goal of the subsequent prediction step is to predict u∗ based on the assumed
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distribution of U . Randomly sampling a value of U is a good start, but using prediction

sets can improve predictions. Therefore, random sets are used. For example, if z ∼
N(¹0, 1), then a valid random set for this purpose is

S(u) = {u, ∈ (0; 1) : |u, − 0.5| < |u− 0.5|}.

The set S(u) is larger for values of u that are further away from 0.5.

During the combination step, equation z∗ = a(u,, ¹) is solved for each u, ∈ S(u), and

the results are combined. Let Θz∗(u
,) denote the set of solutions for u, ∈ S(u). Then,

the (random) set of possible parameter values is defined by

Θz∗(S(u)) =
⋃

u,∈S(u)

Θz∗(u
,).

Now, suppose that there is an assertion A about the parameter that can be viewed as a

subset of the parameter space. For example for a real-valued parameter, the hypothesis

¹0 < 0 corresponds to A = (−∞; 0). Let PS be the pushforward measure of PU under

the random set. Assuming Θz∗(S(u)) ̸= ∅, the belief function at A is defined as

belz∗(A) = PS{Θz∗(S(u)) ¦ A}.

Heuristically, the belief function can be interpreted as a “degree of belief” in the correct-

ness of assertion A. The plausibility function at A is defined as plz∗(A) = 1− belz∗(Ā).

The belief and plausibility functions are both meaningful in a frequentist sense given

certain requirements regarding the random set S(u) (Martin & Chuanhai, 2015, pp. 60

– 62). Interestingly, plz∗(A) can play a role similar to a p-value. Consider the procedure

of rejecting the null hypothesis ¹0 ∈ A, if plz∗(A) f ³ for some prespecified value

³ ∈ (0; 1), and maintaining the null hypothesis otherwise. Given the aforementioned

requirements with regard to S(u), this procedure controls the type I error rate at level

³. Furthermore, the classic Bayesian update formula can be obtained using conditional

inferential models.

Inferential models provide a framework for incorporating partial prior information

(Martin, 2022, 2023a, 2023b). A detailed discussion of this framework would exceed

the scope of this dissertation, therefore only a selection of aspects will be addressed.

Martin (2022) considers the generalized Bayesian approach described in Section 4.1 to

be a method of incorporating partial prior information in accordance with the inferen-

tial model framework. This indicates that inferential models can represent structural

uncertainty.
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To illustrate what partial prior information means, Martin (2023a) provides multiple

examples. In one example, a person asserts that they are 90% sure that the true value of

the parameter is less than or equal to 0.6. This assertion indirectly specifies that the 0.9

quantile of the prior distribution is 0.6. Another example is the external information that

E(¹) = 0 and E(|¹|) f K, with a constant K > 0. In this case, the expected value and

an upper bound on the expected absolute deviation from that value are both specified.

In both examples, the prior distribution of ¹ is only partially specified. Therefore, a set

of prior distributions is consistent with the partial information on the parameter.

One limitation of this approach is that the association function is usually based on a

likelihood function, i.e., the assumed sampling model. It is unclear how to incorporate

prior information when there is no likelihood. For example, if only estimating equations

are provided for a model, this approach is not applicable (Martin, 2023b). Consequently,

incorporating moment-type information about variables poses a challenge to the current

stage of the inferential model framework.

4.4 Conclusion regarding existing methods

Generalized Bayesian and inferential model approaches are well-suited for representing

structural uncertainty. In contrast, frequentist approaches require further development.

The following comments seek to justify the development of a genuine frequentist method

that incorporates external information. They are intended as a compromise between

Bayesian and frequentist approaches.

In his work on multiple imputation (a technique based on the Bayesian approach that

can also be applied to a frequentist analysis) Rubin (1987, p.67) argues that Bayesian and

frequentist inferences will asymptotically lead to the same statistical inferences under

some weak regularity conditions. Furthermore, he asserts that a Bayesian analysis that

does not align asymptotically with a frequentist analysis is unreliable because it fails to

approximate a relevant aspect of the population. Such an analysis would be a purely

subjective speculation, which is not suited to the intersubjective endeavor of science.

Therefore, in the asymptotic sense, frequentist inference is equally as justified as Bayesian

inference. Regarding frequentist inference, Rubin (1987, p.67) urges that the results be

interpretable in terms of knowledge about a parameter or quantity in a statistical model.

The next chapter will address his calls by discussing a conditional interpretation of the

proposed frequentist framework.

More generally, Martin (2022) proposed that the only way to resolve the conflict

may be to embed typical frequentist techniques in a way that is compatible with the
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Bayesian approach. Thus, the frequentist approach that will be presented in this thesis

could contribute to this endeavor by offering a method for the incorporation of moment-

type information about variables. As discussed in preceding sections, this has yet been

difficult in the context of Bayesian and inferential model approaches.

Despite the increased use of Bayesian approaches, frequentist methods remain the

most common way of performing statistical analyses in many areas of psychology. A

text mining analysis of 57,909 articles on the PubMed Central database showed that the

use of Bayesian statistics rose, but from 1% in 2010 to only 4% in 2021 (Böschen, 2023).

The same analysis also showed that 85% of the articles reported frequentist p-values. In

addition, a bibliometric analysis of articles published from 1962 to 2023 using the Scopus

database revealed that no more than 3.1% of articles in any of the analyzed psychological

subfields mentioned to use Bayesian methods (Jevremov & Pajić, 2024). In the context

of cumulative science, it is imperative that applied researchers have the opportunity to

incorporate external information, irrespective of their methodological approach, whether

it be frequentist or Bayesian.

From the perspective of distributional robustness, as described by Huber and Ronchetti

(2009), using a single likelihood function makes a strong assumption about the data gen-

erating process which is often violated in practice. GMM and EL only require the spec-

ification of moment equations based on certain aspects of the data generating process

(Hansen, 1982; Owen, 1988). They do not require a full likelihood function. Further-

more, they can directly incorporate moment-type external information regarding vari-

ables, eliminating the need for prior translation in terms of parameter constraints for a

specific model (Hellerstein & Imbens, 1999; Imbens & Lancaster, 1994; Qin & Lawless,

1994).

With regard to extensions that reflect structural uncertainty, EL appears less promis-

ing due to the computational complexity of the nested maximization used to calculate

the EL estimate. Conversely, GMM enables reasonable computational procedures and

analytical formulas for estimators, as demonstrated in the attached papers. The expla-

nations in Section 3.3 show that an external interval should be used to reflect structural

uncertainty. As will be discussed in Section 5.4, the evaluation of estimators or other

statistics at an external interval is inherently difficult. Therefore, estimators that are less

computationally intensive are preferable. Based on these arguments, GMM was chosen

to be extended in order to reflect structural uncertainty.
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5 Externally informed generalized method

of moments

This chapter introduces the externally informed generalized method of moments ap-

proach. The fundamental technical concepts of GMM will be delineated. To demon-

strate its applicability to psychological research, a discussion will be conducted on the

range of relevant models that can be estimated using GMM. Subsequently, the text will

elaborate on the incorporation of external information into the GMM framework and

the representation of structural and estimation uncertainty in this process.

5.1 Basic technical concepts

The method of moments has a long history in statistics. Ronald A. Fisher and Karl

Pearson likely coined this name during a dispute on maximum likelihood versus the use

of sample moments (Pearson, 1936). In other terms, the idea can be expressed as follows:

Suppose the expected value of a function of a random variable, E(f(z)), is to be

estimated. If the data set can be considered a realization of random variables z1, . . . , zn,

i.i.d. like z, then some law of large numbers and a central limit theorem may apply under

minimal additional requirements (Casella & Berger, 2024). These theorems establish the

consistency and normality of the estimator 1
n

∑n
i=1 f(zi) of E(f(z)). Thus, the rationale

is to replace population moments with their corresponding sample moments or means.

When a statistical model is present, it is often possible to deduce sample moment equa-

tions that effectively serve as estimating equations. For example, employing a multiple

linear regression model, y = xT´+ ϵ, the assumption E(ϵ|x) = 0 implies the population

moment equations

0 = E(ϵx) = E(x(y − xT´)),

according to the law of iterated expectations (Cameron & Trivedi, 2005, p. 167). The

corresponding sample moment equations are given by 0 = 1
n

∑n
i=1(xi(yi−xT

i ´)). Solving

for ´ yields the well-known ordinary least squares (in short OLS) estimator.
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If there are more sample moment equations than parameters, then they are generally

unsolvable because they pose an overidentified system of equations. For instance, this

situation arises when external information is included, as will be demonstrated in Section

5.3. In his renowned work, Hansen (1982) developed the GMM and its asymptotics to

resolve this situation. The underlying idea is to find an estimate that is “as close as

possible” to a solution of the sample moment equations rather than seeking an exact

solution, which probably does not exist.

To formalize this idea, let ¹ ∈ Θ ¢ R
p be a p-dimensional parameter, where p is a

positive integer, and let ¹0 be its true value. Suppose the population moment equations

are E(g(z,¹0)) = 0, where g(z,¹) is an R
q-valued function, and q g p. The correspond-

ing sample moments are 1
n

∑n
i=1 g(zi,¹). To measure the distance of 1

n

∑n
i=1 g(zi,¹) to

0, a mathematical norm on R
q is employed.

This raises the question of which norm should be used. For the Euclidean norm for

example, the result is the sum of the squares of the entries of 1
n

∑n
i=1 g(zi,¹). Thus,

all sample moment equations have equal influence on the result. However, heuristically

speaking, one equation may be “more informative” than others. To address this issue, a

weighting matrix Ŵ can be used to create a norm in which the sample moment equations

have different influences on the result.

Definition 4. (Newey & McFadden, 1994, p. 2116) Let g(z,¹) be a vector-valued

function with values in R
q, that meets the moment equations E(g(z,¹0)) = 0. Let

Ŵ ∈ R
q,q be a positive semi-definite, possibly random matrix. Then the GMM estimator

¹̂ex is defined as the value ¹, that maximizes the following function:

Q̂n(¹) := −(
1

n

n∑

i=1

g(zi,¹))
TŴ(

1

n

n∑

i=1

g(zi,¹)) .

A set of assumptions is used to establish the statistical properties of the GMM esti-

mator. These assumptions are called regularity conditions. This set is presented here

to discuss some of the assumptions and give researchers the opportunity to determine

whether their analysis scenario is suitable for GMM estimation (if this is not yet known).

Definition 5. (Newey & McFadden, 1994, pp. 2132, 2133, 2148) Let ∥ · ∥ denote the

Euclidean norm of a matrix or a vector. Let ∇θg(z,¹) denote the Jacobian matrix of g

with respect to ¹. The regularity conditions for GMM estimation are

1. The random variables zi for i = 1, . . . , n are independent and identically dis-

tributed, or they follow a stationary and ergodic stochastic process.
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2. Ŵ converges in probability to a positive semi-definite matrix W.

3. The equation WE(g(z,¹)) = 0 only holds when ¹ = ¹0.

4. The parameter space Θ is a compact set.

5. The function g(z,¹) is almost surely continuous at each ¹ ∈ Θ.

6. The expected value E(supθ∈Θ ∥g(z,¹)∥) exists and is finite.

7. The true value of the parameter, ¹0, is contained in the interior of Θ.

8. The function g(z,¹) is almost surely continuously differentiable in a neighborhood

N of ¹0.

9. The expected value E(∥g(z,¹0)∥2) exists and is finite.

10. The expected value E(supθ∈N ∥∇θg(z,¹)∥) exists and is finite.

11. Define G := E(∇θg(z,¹0)), then GTWG is non-singular.

The first regularity condition shows that the data set does not have to adhere to the

i.i.d. assumption. Some dependencies are permitted. Although no formal definition

of stationary ergodic processes will be provided here, the heuristics will be discussed

below. For formal definitions and heuristic arguments, see Todorovic (1992). A process

is (strictly) stationary if its marginal distributions remain unchanged under shifts in

the time variable. An ergodic process is defined by the property that its time average

converges to the ensemble average, i.e., the expected value of the process. In this case,

observing a single unit multiple times and calculating the average over time asymptoti-

cally yields the same value as the mean of a sample of multiple units observed once.

A recent discussion about ergodicity in psychological data was presented by Hunter

et al. (2024). According to the authors, ergodicity is implausible in many psychological

scenarios, particularly with regard to its implied equality of within-person and between-

person variance. However, stationary ergodic processes can be considered a generaliza-

tion of i.i.d. processes, provided that the time and ensemble averages exist and are finite

(Gray, 1988, pp. 210 – 212). Therefore, the fact that the i.i.d. assumption does not

have to be exactly true still increases statistical robustness.

Note that the dependencies between entries in unit zi are not restricted to any specific

form. The term “unit” is not limited to participants. In educational research for example,

a unit zi could represent a school class, with its entries representing the students in that

class. Students in the same class likely show correlated results.
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The second regularity condition causes Ŵ, and thus its induced norm, to stabilize with

larger sample size. In this sense, Ŵ can be considered as a consistent estimate of the

population weighting matrixW. The third regularity condition, when combined with the

second, ensures that the maximum of the objective function Q̂n is asymptotically unique.

If this condition is not met, then the estimator may be unidentifiable, or converge to

an incorrect value. The fourth regularity condition is quite strict, as it requires the

parameter space to be bounded. However, it can be replaced by a weaker version that

will be stated below.

Under the regularity conditions 1 – 6, Theorem 2.6 of Newey and McFadden (1994, pp.

2132 – 2133) shows that ¹̂ex is a consistent estimator, in the sense that ¹̂ex converges in

probability to ¹0. The asymptotic normality of ¹̂ex follows from Theorem 3.4 of Newey

and McFadden (1994, p. 2148), if ¹̂ex is consistent and regularity conditions 7 – 11 are

met. More precisely, define Ω = E(g(z,¹0)g(z,¹0)
T ). Then,

√
n(¹̂ex − ¹0) converges in

distribution to a normal distribution with a mean of 0 and the asymptotic variance of

¹̂ex is

Var(¹̂ex) =
1

n
(GTWG)−1GTWΩWG(GTWG)−1.

So far, the selection of W and its estimator Ŵ has not been elaborated on. Compared

to other weighting matrices, the choice of W = Ω−1 leads to the most efficient estimator

(Hansen, 1982). The resulting GMM estimator is called optimal GMM estimator. In this

case, Var(¹̂ex) simplifies to 1
n(G

TWG)−1. A reasonable choice for the estimator of W

is Ŵ = Ω̂
−1

, if Ω̂ is a consistent estimator of Ω and non-singular. For a singular matrix

Ω̂, it is possible to choose a generalized inverse, such as the Moore-Penrose inverse Ω̂
+
,

as an estimator for W, yielding the same asymptotic results (Xiao, 2020).

Note that the regularity conditions 1 through 6 could be replaced by any conditions

implying consistency of ¹̂ex. For example, the strict requirement that Θ be compact

could be changed to it being a convex set, while slightly tightening the other regularity

conditions (see Theorem 2.7 of Newey and McFadden (1994)). Furthermore, Section 7

of Newey and McFadden (1994) shows that it is not necessary for g(z,¹) to be generally

differentiable, only asymptotically differentiable. The regularity conditions for GMM

estimation are sufficient but not necessary for the stated asymptotics. Therefore, similar

asymptotics may hold under different conditions.

Following the establishment of asymptotic results, it is necessary to provide further

information on estimation. The obvious sample moment estimators of G and Ω are

Ĝ = 1
n

∑n
i=1(∇θg(zi, ¹̂ex)) and Ω̂ = 1

n

∑n
i=1 g(zi, ¹̂ex)g(zi, ¹̂ex)

T (Cameron & Trivedi,

43



2005). The obvious variance estimator for the optimal GMM estimator is V̂ar(¹̂ex) =
1
n(Ĝ

T
ŴĜ)−1. Unless otherwise stated, the obvious estimators and the optimal GMM

estimator will always be chosen for the remainder of this thesis. Note that the obvious

estimators are functions of the data and ¹̂ex. In this case, however, Ŵ is also a function

of ¹̂ex.

There are three asymptotically equivalent approaches to resolving the dependency of

Ŵ on ¹̂ex when calculating the GMM estimator (Hansen et al., 1996). They differ if

small samples are given. The simplest approach is two-step GMM estimation. First, the

GMM estimator is computed based on a simple, constant weighting matrix, such as the

identity matrix Iq. In this case, the second regularity condition is met, so the first-step

estimator is consistent as long as no other relevant regularity condition is violated. The

next step is to compute Ω̂, based on the first-step estimator. Because the first-step

estimator is consistent, the resulting matrix Ω̂ is a consistent estimate of Ω. Then, the

GMM estimator is recalculated using Ω̂. The result is called a two-step GMM estimator.

An iterative GMM estimator is obtained by repeating this procedure until the esti-

mates converge. If the optimization is performed on the function Q̂n(¹) while treating

Ŵ as a function of ¹, the result is called a continuously updating GMM estimator. Al-

though this optimization problem may be substantially harder than those in the other

two approaches, it only requires one maximization. It should be noted that unless oth-

erwise stated, the two-step GMM estimator will be used throughout the remainder of

this thesis, as it has the least computational complexity. The first-order conditions for

maximizing Q̂n are Ĝ
T
Ŵ 1

n

∑n
i=1 g(zi, ¹̂ex) = 0. The first-order conditions can be solved

using root-finding algorithms, such as the Newton-Raphson method or the method of

scoring (Cameron & Trivedi, 2005, pp. 341 – 348).

Statistical inference and prediction can be conducted based on asymptotic normality.

The following delineation is based on Chapter 7 of Cameron and Trivedi (2005). In many

application scenarios, only aspects of the parameter are of interest rather than the full

parameter itself. Formally, let f : Θ → R
k, where k f p, be a continuously differentiable

function. The value of f(¹0) may then be of interest. For example, the difference of two

parameters could be represented by f(¹) = ¹1 − ¹2.

Now, plugging in the GMM estimator yields f(¹̂ex). Let R(¹) = ∇θf(¹) be the Jaco-

bian matrix of f, which is assumed to have full row rank, meaning its rows are not linearly

dependent. Based on the asymptotic properties of the GMM estimator, an application of

the delta method yields that f(¹̂ex) is asymptotically normally distributed with a mean of

f(¹0) and an asymptotic variance of V̂ar(f(¹̂ex)) =
1
nR(¹̂ex)(Ĝ

T
ŴĜ)−1R(¹̂ex)

T . These

results can be used to construct significance tests and confidence intervals. When f is a
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scalar-valued function, the asymptotic (1− ³)% confidence interval is given by

CI1−α(f(¹0)) =
[
f(¹̂ex)− z1−α/2

√
V̂ar(f(¹̂ex)); f(¹̂ex) + z1−α/2

√
V̂ar(f(¹̂ex))

]
,

where z1−α/2 is the 1 − ³/2 quantile of the standard normal distribution. The same

procedure can be used to create a confidence interval for predicting the conditional

mean. Suppose a model specifies the conditional mean of the dependent variable given

the independent variables as E(y|x) = f(xT¹). For a given value xp of x, the conditional

mean is simply a function of the parameter, and the delta method can be applied as

described above.

Similarly, significance tests can be constructed. Assuming that the null hyptohesis is

H0 : f(¹0) f 0. Values different from 0 can be included by subtracting them from the

current f(¹). For example, if the null hypothesis states that the difference between the

two parameters is equal to or less than 3, then the result is f(¹) = ¹1 − ¹2 − 3. Based

on the significance level, ³, H0 is rejected if

zt =
f(¹̂ex)√

V̂ar(f(¹̂ex))

> z1−α

holds. The other one-sided and two-sided tests work analogously. To account for esti-

mated variances, it is reasonable to replace standard normal quantiles with the corre-

sponding quantiles of a Student’s t-distribution with n − p degrees of freedom. More

advanced significance tests are needed for multidimensional cases. Three such tests are

typically used for hypothesis testing in the GMM framework.

Definition 6. (Cameron & Trivedi, 2005, p. 245) Suppose that the null hypothesis of

interest is H0 : f(¹0) = 0. Let ¹̂r denote the restricted GMM estimator using the unre-

stricted weighting matrix Ŵ, which is the maximum of Q̂n(¹) subject to the constraints

f(¹) = 0. Then, the Wald test statistic is

W := f(¹̂ex)
T
(
V̂ar(f(¹̂ex))

)−1
f(¹̂ex).

Let Ĝr denote Ĝ evaluated at ¹̂r, not ¹̂ex. The Lagrange Multiplier test statistic is

LM :=
( 1
n

n∑

i=1

g(zi, ¹̂r)
)T

ŴĜr(Ĝ
T
r ŴĜr)

−1Ĝ
T
r Ŵ

( 1
n

n∑

i=1

g(zi, ¹̂r)
)
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and the difference test statistic is

D := n(Q̂(¹̂r)− Q̂(¹̂ex)).

Under the null hypothesis, all three test statistics are asymptotically Ç2
k-distributed

with k degrees of freedom. As before, k represents the dimension of the values of f. The

null hypothesis is rejected with significance level ³, if a test statistic exceeds the 1 − ³

quantile of the Ç2
k-distribution. The ideas behind the tests are quite different.

The Wald test statistic measures how far f(¹̂ex) is from 0. The LM statistic measures

how far the first-order conditions of the GMM are from 0, when evaluated at the re-

stricted GMM estimate. The D statistic measures the difference between the maximum

values of the GMM objective function for the unrestricted and the restricted estimation.

Therefore, D appears to be similar to the classic likelihood ratio test. The likelihood

ratio test is not discussed here since it does not generalize well to scenarios in which

only estimating equations are given and no likelihood is provided (Cameron & Trivedi,

2005, p. 244).

Although these three tests are asymptotically equivalent, they may produce different

results in small samples. In small samples, the Wald test seems to perform worse than

the others (Bond & Windmeijer, 2005). Since the focus of frequentism is on asymptotic

properties, the tests are sometimes defined differently, with these differences vanish-

ing asymptotically. For example, Bond and Windmeijer (2005) calculated the variance

matrix estimate in W based on a first-step estimator.

As Dufour et al. (2016) analyzed, the tests differ in terms of their invariance when

it comes to equivalent hypothesis reformulations or reparametrizations. D is the only

test that is invariant under equivalent hypothesis reformulations because the maximum

values of the objective function, Q̂n, remain unchanged under such reformulations for

both restricted and unrestricted optimization. Although none of these three tests are

invariant under reparametrization, this property can be achieved by modifying D to use

the continuously updating GMM estimator instead of the two-step GMM estimator.

Despite testing hypotheses about (aspects of) ¹0, the GMM framework offers a test

for overidentifying restrictions when there are more moment equations than parameters.

Definition 7. (Hansen, 1982; Sargan, 1958) Suppose the dimension of ¹ is lower than

the number of moment equations, i.e., q > p. Assuming the prerequisites of Definition 4

are met, the Sargan-Hansen test statistic is defined as follows:

SH := −nQ̂n(¹̂ex).
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Under the null hypothesis H0 : E(g(z,¹0)) = 0, the test statistic SH has a Ç2
q−p-

distribution. The null hypothesis is rejected at a significance level of ³ if SH exceeds

the 1 − ³ quantile of the Ç2
q−p-distribution. The Sargan-Hansen test can be applied to

assess whether the data and the specified moment equations are compatible.

5.2 Scope of possible models and estimation methods

For the GMM approach to be useful in the field of psychology, it should encompass the

majority of models employed in psychological research. This section aims to underline

that this is the case indeed. As described in the previous section, multiple linear models

can be used in the GMM via the sample moment equations 0 =
∑n

i=1(xi(yi − xT
i ´)),

which solution is the OLS estimator. This already covers typical analysis of variance

(ANOVA) models since they can be expressed as multiple linear models, as discussed in

most introductory statistics courses, such as Rasch et al. (2011, pp. 401 – 402).

As a substantial extension, generalized linear models with repeated measures can be

incorporated into the GMM using generalized estimating equations (GEE) (Cameron &

Trivedi, 2005, p. 790). The GEE approach was developed by Liang and Zeger (1986).

For an introduction to GEE, see Diggle et al. (2002). The idea behind GEE is to

specify a link function, µ, that maps the linear combination of the regression parameters

and independent variables, X´, to E(y|X). Common examples include the log-link for

count data and the logit-link for logistic models. To model the dependencies among

different measurements of the dependent variable, a working covariance matrix, denoted

by the symbol Σ, is used. This matrix is modeled as a function of multiple correlation

parameters, ³, and one scale parameter, ϕ. Now, the GEE are

m̄GEE(´,³, ϕ) = XTDΣ(y− µ(X´)) = 0,

where D is a diagonal matrix containing the derivatives of µ with respect to X´.

Clearly, generalized linear models and repeated measures ANOVAs can be considered

special cases. The GEE approach is a marginal method in the sense that the regression

coefficients are of interest, while the remaining parameters of the covariance matrix are

considered nuisance parameters. GEE can be applied not only to repeated measures,

but also to correlated data in general. Notably, even in instances where the covariance

matrix is misspecified, GEE can generate consistent estimates (Liang & Zeger, 1986).

Although correlation parameters are usually considered nuisance parameters, GEE can

be modified with additional estimating equations to consistently estimate covariance
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parameters if they are of interest (Spiess, 2006).

In addition to repeated measures, there are other sources of dependency structures

in psychological data. In educational, social, and organizational psychology, data sets

are often hierarchical. For example, participants in a study may belong to groups such

as classes, schools, or teams. Participants in the same group may share characteristics,

such as having the same teacher or team leader. This creates statistical dependencies

among participants’ responses within the same group while keeping them independent

of responses from other groups.

There are multiple approaches to analyzing these clustered data sets. Although most

psychological researchers use multilevel analysis, clustered data can also be analyzed

using GEE (McNeish et al., 2017). Considering the prevalence of multilevel analysis, it

will also be briefly examined in the following. The presentation of multilevel analysis

will align with standard textbooks on the subject (de Leeuw & Meijer, 2008). Multilevel

analysis allows for both fixed and random regression coefficients, as well as different

regression error variances.

Suppose the data set is structured intom groups, where j = 1, . . . ,m denotes a specific

group, and nj its group size. Let X denote the design matrix of an underlying linear

regression model corresponding to the variables with a fixed effect on the dependent

variable y. Due to the group structure, X can be split into parts Xj for j = 1, . . . ,m.

Let U be another constant matrix containing the variables in the data set that have a

random effect on y. Again, let Uj denote the part of U for group j. Though not a

requirement, the matrices X and U are allowed to have some variables in common. A

two-level mixed linear model is given by

yj = Xj´ +Uj¶j + ϵj

for j = 1, . . . ,m, where ´ represents the fixed regression coefficients and ¶j as well as

ϵj are random variables. Suppose ¶j is independent of ¶k and ϵl for all k ̸= j and

l = 1, . . . ,m. In addition, assume that ϵj is independent of ϵk for all k ̸= j. Fur-

thermore, suppose ϵj ∼ N(0, Ã2j Inj
) and ¶j ∼ N(0,Σ). Given these requirements,

yj ∼ N(Xj´,Vj), where Vj = UjΣUT
j + Ã2j Inj

. This result shows that including ran-

dom effects introduces potential correlations between measures of the dependent variable.

Furthermore, the two-level mixed linear model model splits the variance matrix of yj

into two components. This is why some literature refers to these models as “variance

components models”. Special cases include two-level random coefficient models, random

intercept models, and slopes-as-outcomes models. These models are frequently employed
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in psychological research because they enable the analysis of within- and between-cluster

variation through the respective variance components (McNeish et al., 2017).

Many psychological concepts of interest, such as intelligence and personality, are latent

constructs that are not directly observable. Structural equation models can be used to

model these latent variables and their relationships (Loehlin & Beaujean, 2016). These

models can be specified using multiple linear regression models (Bollen, 1989, Chapter

8) or by defining the implied covariance or correlation matrix of the observed variables

as a matrix product (McArdle & McDonald, 1984). The latter method will be presented

here, as explained by Loehlin and Beaujean (2016).

Suppose the model consists of t variables in total, including m observable variables

and t−m latent variables. Let the t variables be in any order, so the implied order of the

m observable variables can be determined by removing the latent variable ranks. The

implied covariance structure can now be specified using three matrices. The order of

the columns and rows in a matrix reflects the order of the variables that was previously

determined.

First, there is an m × t filter matrix, F, which indicates which variables are directly

observable and which are not. For example, if the first variable is the first observable

variable, then a 1 is placed in the top left cell of F. Otherwise, a 0 is placed there.

Next, a symmetric t × t matrix, S, is defined that contains the assumed covariances

and variances of all the variables. Then, an asymmetric t× t matrix, A, is constructed

to represent the assumed directed paths between the variables. These paths represent

the relationships between latent variables, as well as the effects of latent variables on

observable variables. In both A and S, unknown elements are represented by symbols.

These symbols correspond to parameters that need to be estimated. In conclusion, the

covariance matrix of the observable variables implied by the three matrices is

C = F(I−A)−1S(I−AT )−1FT .

The implied covariance matrix can be compared to the sample covariance matrix, Ŝ, of

the observable variables, which is not dependent on any particular model. The objective

is to calculate parameter values that minimize the distance between the two matrices.

These values are then used as estimates. If C contains more parameters than Ŝ has

entries, there may be multiple estimates that minimize the distance between the two

matrices. To identify a single estimate, the variance of the latent variables is often fixed

to 1, or the value of one path originating from each latent variable is set to 1.

Under the assumption of multivariate normality of the variables, both two-level mixed
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linear models and structural equation models fully specify the distributions of the random

variables involved. Therefore, the maximum likelihood method is often used to estimate

their parameters (de Leeuw & Meijer, 2008; Loehlin & Beaujean, 2016). For a technical

reference on maximum likelihood estimation and how it is a special case of GMM under

the given regularity conditions, see Newey and McFadden (1994).

The idea behind maximum likelihood estimation is to maximize the density of the

assumed sampling model Pθ(Z)for the parameter given the data. Thus, the roles of the

parameter and the data have switched: The parameter is now treated as a variable,

while the data are fixed. The resulting function is denoted by LZ(¹) and is called the

likelihood (function). Due to the multiplicative nature of the likelihood, it is often more

convenient to work with the logarithmized likelihood, also known as the log-likelihood.

Because it is additive, the log-likelihood often makes it easier to determine the first and

second derivatives. Further, the log-likelihood can often be simplified, for example by

removing constant terms, as they are irrelevant to maximization. To find the maximum

likelihood estimate, the root of the first derivatives of the log-likelihood, also known as

the score function, is approximated. This score function can be implemented directly

within the GMM as sample moment equations (Newey & McFadden, 1994).

The log-likelihood of the two-level mixed linear model, ignoring the constant terms, is

lnLy,X,U(´,Σ, {Ã2j , j = 1, . . . ,m}) = −
m∑

j=1

ln(det(Vj)) + (yj −Xj´)
TV−1

j (yj −Xj´),

where “ln” denotes the natural logarithm and “det” denotes the determinant of a matrix.

Similarly, the log-likelihood for the restricted maximum likelihood (REML) estimation

could be stated if an unbiased estimate of the variance components Σ and {Ã2j , j =

1, . . . ,m} is of interest (de Leeuw & Meijer, 2008, p. 22).

For the structural equation model, let ¹ denote the vector of the parameters involved

in C = C(¹). After removing the irrelevant constants, the log-likelihood is

lnL
Ŝ
(¹) = ln(det(Ŝ)) +m− ln(det(C(¹)))− tr(ŜC(¹)−1),

where in addition “tr” denotes the trace of a matrix (Loehlin & Beaujean, 2016, p.

55). Note that maximum likelihood is not the only method of formalizing the differ-

ence between the implied and observed covariance matrices. Other approaches, such

as generalized least squares, can be used to generate different estimating equations for

structural equation models (Loehlin & Beaujean, 2016). The score functions that can

be incorporated into the GMM estimation process are constructed by stacking the first
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derivatives of the stated log-likelihoods with respect to each of the parameters. The

result is the gradient of the log-likelihood. As will be discussed in the next chapter, this

can be done numerically without the need to analytically determine the gradients.

Finally, GMM permits the use of certain M-estimators. M-estimators generalize

the maximum likelihood method and provide robust estimation techniques (Huber &

Ronchetti, 2009). Let zi, for i = 1, . . . , n, denote the observed data set (i.e., a realiza-

tion, not a random variable) with the same sample space Ωz. Let Ä be a real-valued

function on Ωz and the parameter space, Ä : Θ ×Ωz → R. Then, an M-estimator is a

solution of the minimization problem

min
θ∈Θ

n∑

i=1

Ä(zi,¹).

Using Ä(z,¹) = − lnLz(¹) yields the typical maximum likelihood estimator. If Ä is dif-

ferentiable with respect to ¹, then the first-order conditions that define the M-estimator

are given by

0 =

n∑

i=1

È(zi,¹),

where È(z,¹) = ∇θÄ(z,¹) is the gradient of Ä with respect to ¹. These first-order

conditions can be incorporated into GMM by dividing by n. Valid inference is only

possible if the GMM regularity conditions or equivalent sufficient conditions that imply

the same asymptotic results hold.

As a negative example, consider the function È = sign(z − ¹), which leads to the

sample median. This function is not differentiable in the classical sense, and the resulting

estimator does not have a proper asymptotic distribution according to the asymptotic

theory of M-estimation (Huber & Ronchetti, 2009, p.95). As a positive example, using

the Huber loss as Ä does not conflict with the GMM regularity conditions and can

therefore be implemented in GMM. See Corollary 3.5 of Huber and Ronchetti (2009)

and the subsequent discussion for a more detailed elaboration on the underlying theory.

5.3 Incorporating external information

Imbens and Lancaster (1994) as well as Hellerstein and Imbens (1999) developed the idea

of using moment equations to incorporate moment-type external values into the GMM.

Suppose E(y) is known to be 100. Then, this external value induces the population

51



moment equation E(y)− 100 = 0. As described in Example 1, it imposes constraints on

the parameters of a linear model. This is despite the fact that it is information about

a variable. The respective sample moment equation is ȳ − 100 = 0. This equation

incorporates both a statistic derived from the new data set and the external value.

The fundamental idea is to add this external moment equation to the moment equa-

tions used to estimate the model, creating a combined set of moment equations. To

fix the notation, let h : z → R
p2 denote the external moment function with property

E(h(z)) = 0. Define h = 1
n

∑n
i=1 h(zi). Then, the external (sample) moment equations

are h = 0. Although h(z) contains the external values, they are constant and will thus

be suppressed in the notation for now. This corresponds to the assumption of exact

knowledge of the population value. First, the results for this case will be presented. As

will be shown in the next section, these results can easily be extended to cases involving

estimation and structural uncertainty.

It is assumed that h(z) does not depend on ¹. Although this seems restrictive at

first, note that only the specific parameter of the chosen model for the new data set

is considered. If there is an external value of the regression coefficients of a linear

model, ´ex, then the expression 1
nX

T (y −X´ex) is not a function of the parameter to

be estimated for the new data set. Thus, it can be used as h.

Since h(z) is not a function of the parameter, the GMM regularity condition 8 is

always satisfied, even if h(z) is not differentiable. For example, the external value of

a median mex can be incorporated using the first-order condition for the M-estimator

based on È = sign(z −mex). Although employing È poses problems when it is used to

estimate a median, plugging in an external median turns it into a constant, which makes

it differentiable with respect to the parameters.

There are multiple ways to incorporate parameter-specific external values. One ap-

proach is to formulate additional moment equations, as mentioned above. This may re-

sult in strong dependencies between moment equations. Another approach is to plug the

external parameter values directly into the model’s moment equations. Then, the values

of the objective function can be derived, and a Sargan-Hansen test can be conducted

to evaluate how well the previous parameter values fit the new data. An alternative

approach to formulating moment equations is to express parameter-specific external in-

formation as constraints on the parameter space. However, constrained GMM estimation

is beyond the scope of this thesis.

Let m(z,¹) denote the R
p1-valued moment function for the statistical model of in-

terest. This function induces m = 1
n

∑n
i=1m(zi,¹), which constitutes the estimating

equations of the model, m = 0. Then, the combined moment function is g(z,¹) =
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(m(z,¹)T ,h(z)T )T . The GMM procedure based on g(z,¹) and the procedure’s exten-

sions in the next section are called an externally informed GMM. Note that the resulting

system of moment equations is overidentified, regardless of whether m is just-identified

or overidentified. This justifies the use of GMM instead of the traditional method of

moments. The remainder of this section discusses the analytical implications of using

these combined moment equations, as they may lead to simplifications and new insights.

Lemma 1. [Separability](Jann, 2024) Let Ŵ = Ω̂
+

be the Moore-Penrose inverse of

the obvious estimator Ω̂ of Ω and let g(z,¹) = (m(z,¹)T ,h(z)T )T . Then, Ω̂ has the

block form

Ω̂ =

(
Ω̂m Ω̂

T
r

Ω̂r Ω̂h

)
,

with Ω̂m ∈ R
p1,p1 and Ω̂h ∈ R

p2,p2 . If rank(Ω̂) = rank(Ω̂m)+rank(Ω̂h), it holds that

−Q̂n(¹) = (m− Ω̂
T
r Ω̂

+
h h)

T (Ω̂/Ω̂h)
+(m− Ω̂

T
r Ω̂

+
h h) + h

T
Ω̂

+
h h.

Clearly, Ω and Ω̂ can both be represented by the same block form. The condition

rank(Ω̂) = rank(Ω̂m)+rank(Ω̂h) is particularly satisfied if Ω̂ is non-singular. The proof

of Lemma 1 is a straightforward application of the Schur-inversion formula, as outlined

by Puntanen et al. (2011, p. 294). This formula lays the foundation for the results in

this chapter. Applying Lemma 1 to the first-order conditions of the externally informed

GMM reduces them to

m− Ω̂
T
r Ω̂

+
h h = 0,

as Jann and Spiess (2025) demonstrated.

These simplified first-order conditions allow for a conditional interpretation that may

be interesting from a Bayesian perspective. Assuming that g(z,¹0) has a multivariate

normal distribution and replacing Ω̂ with Ω, the left side of the simplified first-order

conditions becomes an estimate of the conditional expectation ofm(z,¹0) given h(z) = 0

(Puntanen et al., 2011, p. 197). Due to the GMM regularity conditions, the central limit

theorem applies to (mT ,h
T
)T , allowing for the same interpretation in an asymptotic

sense for m and h. Therefore, the simplified first-order conditions will be referred to as

conditional moment equations from this point forward.

According to Lemma 1, the GMM objective function can be separated into two parts:

The expression h
T
Ω̂

+
h h measures the distance between the external values and the corre-
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sponding values computed based on the new data. It is not a function of the parameter.

The other part can be viewed as an objective function resulting from the conditional

moment equations alone. Now, the heuristic of external information leading to a lower

variance of the estimator can be formalized in the following.

Corollary 1. (Jann & Spiess, 2024) Assume that ¹̂M is the GMM estimator based on

the model moment equations alone, ignoring the external moment equations. Suppose

that m(z,¹) and ¹ are of the same dimension. Using the prerequisites of Lemma 1,

Var(¹̂ex) =
1

n

(
E(∇θm(z,¹0))

T
)−1

Ωm −ΩT
r Ω

−1
h Ωr

(
E(∇θm(z,¹0))

)−1

= Var(¹̂M )− 1

n

(
E(∇θm(z,¹0))

T
)−1

ΩT
r Ω

−1
h Ωr

(
E(∇θm(z,¹0))

)−1
.

The corresponding variance estimator is

V̂ar(¹̂ex) = V̂ar(¹̂M )− 1

n

( 1
n

n∑

i=1

(∇θm(zi, ¹̂ex))
T
)−1

Ω̂
T
r Ω̂

+
h Ω̂r

( 1
n

n∑

i=1

(∇θm(zi, ¹̂ex))
)−1

.

Assuming multivariate normality of g(z,¹0), the expression Ωm−ΩT
r Ω

−1
h Ωr in Corol-

lary 1 is the conditional population variance matrix ofm(z,¹0) given h(z) = 0 (Puntanen

et al., 2011, p. 197). Taken together, using additional moment equations independent of

the parameter is consistent with using conditional moment equations. Heuristically, this

reflects an update to the model’s moment equations by conditioning them on external

values under the assumption of multivariate normality.

The subtrahends in the variance formulas in Corollary 1 are positive semi-definite, so

their diagonal elements are non-negative (Jann & Spiess, 2024). Therefore, the diago-

nal elements of Var(¹̂ex) are equal to or less than the respective diagonal elements of

Var(¹̂M ). These diagonal elements represent the variances of the individual entries of

¹̂ex and ¹̂M . Consequently, using an externally informed GMM will not increase the

variances compared to an uninformed GMM.

Furthermore, proper variance reduction can only occur if the subtrahend is not the

null matrix. Therefore, a necessary condition for reducing sample variance is Ω̂r ̸= 0

(Jann & Spiess, 2024). Similarly, a necessary condition to reduce the expected variance

is Ωr ̸= 0. This means that variance reduction only occurs if the external moment

functions and the model moment functions are linearly dependent on each other.

An important counterexample involves external information about the independent

variables in linear regression models. In this case, the error term, ϵ, and the independent

variables, x, are assumed to be independent. As discussed in Section 5.1, this allows for

54



the use of E(xϵ) = 0 as population moment equations for the model. If only external

information about x is available, the external moment function is just a function of x,

denoted by h(x). The independence of ϵ and x leads to Ωr = E(h(x)xT ϵ) = 0, so no

variance reduction can be expected (Jann & Spiess, 2024).

However, Jann and Spiess (2024) provide an example in which combining external in-

formation about independent variables with other external information reduced variance

more than using the latter information alone. In contrast, using external information

about the dependent variable of a linear regression model generally results in reduced

variance because the dependent variable is linked to the error term. This includes co-

variances between the dependent and independent variables. According to simulation

studies, using these covariances, or quantities that include them, in an externally in-

formed GMM yields the lowest variance estimates in linear models, as opposed to other

external values (Jann & Spiess, 2024).

The theoretical considerations made so far can be used to simplify two of the test

statistics presented in Section 5.1.

Theorem 1. (Jann, 2024; Jann & Spiess, 2025) Suppose that the premises of Lemma

1 hold. Assume that Ω̂h is not a function of ¹. If a ¹h ∈ Θ with the property m −
Ω̂

T
r Ω̂

+
h h = 0 exists, then

−Q̂n(¹̂ex) = h
T
Ω̂

+
h h.

As a consequence, the Sargan-Hansen and the difference test statistic simplify to

SH = nh
T
Ω̂

+
h h

and

D = n(m− Ω̂
T
r Ω̂

+
h h)

T (Ω̂/Ω̂h)
+(m− Ω̂

T
r Ω̂

+
h h),

where D is evaluated at the restricted GMM estimator ¹̂r.

As discussed in Section 5.1, the Sargan-Hansen test is a test of compatibility between

the moment equations and the data. Incompatibility may arise from either the external

or the model moment equations. However, Theorem 1 shows that the model moment

equations cancel out, meaning the Sargan-Hansen test can be viewed as a test of the fit

of external values and new data (Jann, 2024).

In case h(z) is linear in the external values, there are two choices for estimator Ω̂h

that behave differently for misspecified external values. The first is the obvious esti-
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mator Σ̂h = 1
nΣ

n
i=1h(zi)h(zi)

T . The second is the sample covariance matrix, Ŝh =
1

n−1Σ
n
i=1(h(zi)−h)(h(zi)−h)T . The external values cancel out in the latter, so it is not

a function of the external values and is thus unaffected by misspecification. In contrast,

the estimator Σ̂h is a function of the external values and will be affected by misspecifi-

cation. One advantage of Σ̂h is that it can be used in the non-linear case, whereas Ŝh

is only valid in the case where h(z) is linear. Further details on the effects of using the

different estimators of Ωh will be discussed in Chapter 6 and in the attached papers.

Now, only Ω̂r remains to be specified. Two possible approaches exist. The first ap-

proach is to derive the asymptotic matrix Ωr analytically and then to use a consistent

estimator for Ωr. Jann and Spiess (2024) applied this approach to linear models. How-

ever, this approach is only feasible for simple models for which analytical results can be

obtained.

The second approach is to use the obvious estimator, Ω̂r =
1
n

∑n
i=1 h(zi)m(zi, ¹̂ex)

T .

Unless otherwise stated, this approach will be employed for the remainder of this thesis.

Using the obvious estimator Ω̂r, the conditional moment equations become

0 = m− Ω̂
T
r Ω̂

+
h h =

1

n

n∑

i=1

(1− h(zi)
T Ω̂

+
h h)m(zi,¹). (5.1)

This provides an alternative interpretation of the externally informed GMM as a

weighting procedure, in which the model moment function for each unit is weighted by

(1 − h(zi)
T Ω̂

+
h h). This means that the model moment functions of units with values

close to the external values are weighted differently than those of units with values far

from the external values. The weights do not behave like frequencies. They sum up to

n −∑n
i=1 h(zi)

T Ω̂
+
h h and not one. Furthermore, there may be negative weights. For

example, consider the two-unit sample h(z1) = 3 and h(z2) = 5. In this case, the weights

for the second unit are negative for both Σ̂h and Ŝh.

If m(z,¹) is the gradient of a known objective functionM(z,¹) with respect to ¹, then

Equation (5.1) is the first-order condition to optimize the objective function M(¹) =
1
n

∑n
i=1(1−h(zi)

T Ω̂
+
h h)M(zi,¹). For example, the log-likelihoods of structural equation

models and two-level mixed linear models in Section 5.2 are objective functions. Their

gradients can be extensive and must be calculated anew for different scenarios. In

these cases, it may be easier to state M(¹) than to state the first-order conditions

based on equation (5.1). The objective function M(¹) can be optimized using numerical

derivatives, which eliminates the need to derive analytical first-order conditions.

In the field of psychology, the software environment R is commonly used to conduct

statistical analyses (R Core Team, 2025). In R the function optim implements opti-
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mization algorithms based on numerical derivatives. Therefore, it is possible to avoid

cumbersome derivations when estimating the parameters of externally informed versions

of structural equation models or two-level mixed linear models. Of course, this proce-

dure’s numerical stability should be evaluated to assess any potential divergence or error

propagation in the results.

The objective of finding a root of the first-order conditions (5.1) can be achieved

using the functions fsolve or newtonsys, which implement the Newton-Raphson al-

gorithm and others, in the R package pracma (Borchers, 2023). Although both func-

tions can calculate numerical derivatives, they can also be provided with analytical

derivatives in the form of the Jacobian matrix. Since the weights are not a function

of the parameter, the Jacobian matrix corresponding to the first-order conditions is
1
n

∑n
i=1(1 − h(zi)

T Ω̂
+
h h)∇θm(zi,¹). Thus, computing this Jacobian matrix does not

require much knowledge beyond what is needed to compute the Jacobian matrix based

on the model moment functions alone.

An R function that calculates the externally informed GMM estimator using the

aforementioned numerical optimization and root-finding approaches has been devel-

oped during this PhD project and will soon be publicly available under the link https:

//github.com/MartinJann/exgmm.

5.4 Reflecting structural and estimation uncertainty

Thus far, the prevailing assumption has been that the external moment equations are

correctly specified, i.e., that the external values are precisely equal to the corresponding

population moments. However, in almost all cases, the external values are estimates.

To reflect this estimation uncertainty, the external values will be treated as a random

variable, denoted by e, and not as a constant. Since e is derived from an external sample,

it is assumed that it is independent of the new data set. Furthermore, it is assumed that

the population variance matrix of e exists and is finite.

First, consider the linear case, in which h(z, e) = ĥ(z)− e, where ĥ(z) is an unbiased

estimate of the corresponding population moment E(e) in the new data set. Impor-

tant examples of this case include means, variances, covariances, and estimates of linear

regression parameters. However, it excludes estimators that are consistent yet not un-

biased, such as correlations and most estimates of non-linear model parameters. Now,

inference is possible by relying on either the GMM regularity conditions or another set

of sufficient conditions for consistency and asymptotic normality.

Given the independence of the external sample and the new data, the only change is
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in Ω̂h. As first shown by (Jann, 2024), the new obvious estimator of Ωh is

Ŝh = Σ̂h + V̂ar(e),

where V̂ar(e) is a consistent estimate of the population variance matrix of e. Thus, to

fully reflect estimation uncertainty in the linear case, researchers only need to add a

consistent variance estimate for the external values to the obvious estimator Σ̂h.

However, V̂ar(e) must be derived from the external sample. See Section 3.2 for a

discussion of this issue. Note that since e is an unbiased estimator, its variance will

asymptotically shrink to zero in most practical cases. Once again, consider the example

h(z) = z̄ − 100, where 100 is now correctly considered a mean rather than the actual

population value. If an external source reports a sample size of 144 and a variance of

81, then V̂ar(e) = 81/144 = 0.25 is a reasonable estimate of the variance of e.

Even for a random e, GMM estimation requires that E(ĥ(z)) = E(e). Therefore,

structural uncertainty is not yet covered. This can be achieved by defining k random

variables e1, . . . , ek, which reflect k external sources. It is reasonable to assume that

these variables are independent of the new data set. Let e0 denote the corresponding

population values of the new data set, i.e., the correctly specified external values.

The results from Section 3.4 now apply. Instead of using k external values pointwise, it

is more reasonable to use the external interval Iex = [minj=1,...,k ej ; maxj=1,...,k ej ], where

the minima and maxima are taken elementwise. The key assumption for the validity of

the following arguments is that e0 ∈ I0 = [minj=1,...,k E(ej);maxj=1,...,k E(ej)]. Due to

the optimizer’s curse, Iex is a reasonable, conservative estimator of I0.

Furthermore, a combination rule for the external variance estimates must be chosen.

The combined variance estimate is then used to compute Ŝh. For example, the minimum

variance estimate could be selected. Unfortunately, this is not possible with variance

matrix estimates. Although the Löwner order can be used to compare matrices, compa-

rability between matrices with respect to this order is not guaranteed (Puntanen et al.,

2011, p. 13). If there are few cases, it may be reasonable to conduct the analysis using

each incomparable matrix estimate and then aggregate the results. However, if there

are many incomparable matrix estimates, it may be more appropriate to aggregate them

differently. For example, since estimation uncertainty often depends on sample size, it is

reasonable to choose the matrix estimate corresponding to the smallest external sample.

The fundamental idea to reflect structural and estimation uncertainty is that GMM

estimation for each value in Iex and for each selected (combined) external variance es-

timate should be performed. Due to the key assumption that e0 is bounded by the
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expected values of e1, . . . , ek, there is an unbiased point estimator of e0 in Iex. For ex-

ample, it can be expressed as a convex combination of e1, . . . , ek. The GMM estimator

based on this unbiased estimator of e0 is correctly specified.

This is an example of “epistemic” uncertainty. Although there is a correctly specified

estimator, it is unknown which one it is. Therefore, all values should be treated as

equally plausible. The correctly specified GMM estimator is supposed to fulfill the GMM

regularity conditions, making it consistent and asymptotically normally distributed. The

other elements of Iex correspond to misspecified GMM estimators if their expected values

are not equal to e0. These estimators do not satisfy the GMM regularity conditions.

Ideally, misspecified estimators would form an “envelope” around the correctly speci-

fied estimator, similar to the classical neighborhood models that underlie robust statistics

(Huber & Ronchetti, 2009). To rigorously demonstrate this, it is necessary to elaborate

on the asymptotic distributions in the misspecified cases. Combined with the correctly

specified estimator’s asymptotic normal distribution, they form a credal set on the basis

of which an F-probability can be constructed, enhancing distributional robustness. Typ-

ical estimation or inference concepts, such as confidence intervals or significance tests

can then be extended via conservative principles or decision rules. This will be covered

in the following subsections.

Now, some comments will be given on how to address estimation uncertainty when

working with consistent yet biased estimators. Often, external variance matrices can

be assumed to converge in probability to the null matrix. Conversely, if structural

uncertainty is present, Iex converges in probability to a constant interval. Therefore,

estimation uncertainty with consistent estimators can be incorporated using the linear

moment equations approach for unbiased estimators described above. This is possible

provided that the external sample sizes are large enough so that the biases in the external

values are negligible and e0 remains within I0. For an empirical indicator supporting

this claim, see the simulation studies of Jann and Spiess (2024), which used an external

interval of correlations without adding an external variance estimate. In the analyzed

scenarios, the coverage rates were nominal even though the correlation estimator was

consistent albeit not unbiased.

5.4.1 Estimation and prediction

All the results in this section are based on the conservative principle that each element

of Iex is potentially correctly specified, and no element is preferred over another. First,

the generalization of point estimates and point predictions to the case of Iex will be

discussed. To define a GMM estimator based on Iex, the basic idea is to solve the
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first-order conditions for each value in Iex and for each selected external variance.

In practice, this computation may only be possible at certain grid points of Iex because

the first-order conditions can only be solved numerically. Once the results for each of

the grid points are obtained, the elementwise minima and maxima over all results are

taken to yield an interval. The resulting interval constitutes the GMM estimator based

on Iex. Of course, the resulting interval is only an approximation, and the fewer grid

points there are, the less precise it will be. For some models, analytical solutions exist

for the first-order conditions, which substantially reduces the computational burden.

One of the main goals of the papers attached to this thesis was to address some of

these cases and develop simplifications through analytical solutions. Even with analyt-

ical solutions, describing the resulting set of point estimates may be non-trivial. For

example, determining the minimum or maximum of a statistic over Iex is generally a

non-convex optimization problem (Jann, 2023).If the variance or covariance estimates

of the GMM estimator based on Iex are of interest, the same procedure can be applied

to the variance (matrix) estimator. The variance decomposition shown in Corollary 1

provides an analytical solution in any case. A similar procedure can be used to approx-

imate the set of predictions of the conditional mean of a dependent variable based on a

model given its independent variables. As described in Section 5.1, the model specifies

E(y|x) = f(xT¹), and the point prediction for a given xp is f(xT
p ¹̂ex). In summary,

using Iex instead of external values transforms point estimates and predictions into sets.

To determine the asymptotic properties of these set estimators, the asymptotic distri-

butions have to be stated for each case. For the correctly specified estimate, the typical

GMM asymptotics apply, as discussed in Section 5.1. Under weak additional assump-

tions, the remaining misspecified estimators asymptotically follow a normal distribution,

albeit with bias and altered variance estimators (Hall & Inoue, 2003).

An important observation is that the bias not necessarily converges to zero as the

sample size increases. This implies that using a misspecified estimator alone results in

an externally informed estimator that is not a consistent estimator of the true parameter

value. This can be seen in simulation studies such as those conducted by Jann and Spiess

(2024). These studies demonstrate that for misspecified external values, the proportion

of confidence intervals covering the true value of the parameters decreases with sample

size. When considered as a whole, the set of estimators corresponds to an asymptotically

valid credal set of normal distributions that induces an F-probability. In the misspecified

case, the estimated variances should be modified to provide better estimates of the

true variances, as discussed by Hall and Inoue (2003). However, to achieve the goal of

providing a numerically feasible “envelope” around a consistent estimate, the approach
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described here should be sufficient. Thus, the variance estimators derived by Hall and

Inoue (2003) that are more computationally intensive are omitted, although they are

of interest for further research. Nevertheless, using an F-probability provides greater

robustness than using a single estimator and its resulting probability distribution, even

if the single estimator is correctly specified.

The subsequent discussion will address the extension of confidence intervals to the

presence of Iex. The fundamental concept is to use the set union of all confidence intervals

derived from each element of Iex and each selected external variance. This approach

was utilized by Walter and Augustin (2009) in the context of Bayesian highest density

intervals. Formally, let CI1−α(e) be the (1 − ³)% confidence interval for estimation or

prediction based on the externally informed GMM estimator given the external values e,

then the (1− ³)% confidence union is
⋃

e∈Iex
CI1−α(e). See Section 5.1 for the formula

for one-dimensional confidence intervals based on the delta method.

The (1− ³)% confidence union is valid in the sense that it covers the true parameter

value with a probability of at least 1− ³, provided that the GMM regularity conditions

hold for the correctly specified estimator and the external values constituting the latter

are included in Iex. The reason for this is that the CI1−α for the correctly specified

estimator is already valid in the aforementioned sense and is a subset of the confidence

union. Again, the underlying asymptotic construct is the F-probability previously de-

scribed, which may increase robustness. Therefore, the (1 − ³)% confidence union also

covers (1−³)% confidence intervals based on distributions beyond the normal distribu-

tion, such as slightly skewed or multimodal distributions.

There is an interesting relationship between the reflection of uncertainties and the

variance-reducing property of external information. In almost all cases, the confidence

union is substantially broader than the confidence interval for the correctly specified

externally informed GMM estimator. Thus, greater robustness comes at the cost of

reduced precision. However, using an externally informed GMM estimator may result in

lower variance than using an uninformed GMM estimator. Since both estimators have

an asymptotic normal distribution, the confidence interval for the externally informed

GMM estimator is narrower. Therefore, using external values improves precision.

When combined, the broadness of Iex is counterbalanced by the precision gained

through variance reduction. If the variance of the correctly specified estimator is low

enough, the resulting confidence union may still be narrower than the uninformed con-

fidence interval. This has been demonstrated by Jann and Spiess (2024) through simu-

lation studies. Even if the confidence union is equal or slightly broader, there is a net

gain in distributional robustness compared to the uninformed confidence interval.

61



5.4.2 Hypothesis testing

Significance tests are a common method of frequentist statistical inference in psychology

to test hypotheses about parameters (Rasch et al., 2011). Therefore, it is important to

provide an extension of significance tests to reflect the structural uncertainty of external

information. A discussion of a näıve extension approach and its limitations will serve as

the starting point for motivating more sophisticated developments. Consider a specific

test from the GMM framework, such as the Sargan-Hansen or the Wald test. Sections

5.1 and 5.3 discuss how these tests can be performed when external values are present.

Following the conservative principle, these tests are extended to cases involving an

external interval Iex by calculating test statistics for each value in Iex and each external

variance selected. The result is a set of test statistics. The distribution of the test

statistic under the null hypothesis is the same for each value in Iex, provided the value is

correctly specified. Therefore, a single critical value can be compared to the set of test

statistics. Using the distribution under the null hypothesis, the set of test statistics can

be translated into a set of p-values and compared to the significance level, ³.

There are two scenarios in which the test decision becomes seemingly obvious. If all

p-values are below ³, the null hypothesis will be rejected for each value in Iex. Thus,

rejecting the null hypothesis overall is appropriate. Conversely, if all p-values are greater

than ³, the null hypothesis should be maintained because all possible tests would also

maintain it.

As for the third case, in which some p-values are larger than ³ and some are smaller,

it is not possible to make an overall decision without additional decision rules. However,

this should be approached with caution. Suppose that the set of p-values forms an

interval. Consider the rule of rejecting the null hypothesis if the center of the interval

is below ³. The rule encompasses the two obvious cases, reducing the entire test to a

procedure solely based on the center of the p-value interval. This amounts to ignoring

structural uncertainty, since any external interval that yields the same midpoint of the p-

value interval would result in the same test decision, regardless of its breadth. However,

the structural uncertainty reflected by a narrower or broader external interval differs.

Therefore, it may be better to neither reject nor maintain the null hypothesis in

the third case. This third decision could therefore be described as “undecided”. The

idea is similar to the “decision withheld” scenario of generalized Bayes factors based

on imprecise specifications (Schwaferts, 2022, p. 44). However, there is an important

drawback to using this third decision in the frequentist setting. Consider the Sargan-

Hansen test for the fit of external values and new data. If external information is provided

by an external interval Iex, a reasonable extension would be to test the null hypothesis
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that any value in Iex fits the new data (Jann, 2023).

According to Theorem 1, for linear external moment functions, the Sargan-Hansen test

for the fit of external values and new data is equivalent to a Wald test. The Wald test

is consistent, with an asymptotic power of 1 for fixed alternatives (Cameron & Trivedi,

2005, p. 248). Thus, asymptotically, the Sargan-Hansen test will almost surely reject

the fit of each misspecified value in Iex to the new data set. However, it will maintain

the fit for the correctly specified external values with probability ³.

Taken together, the test decision for a näıvely extended Sargan-Hansen test will prob-

ably be “undecided” asymptotically if the correctly specified value falls within Iex. Con-

sequently, this test is usually unable to uphold a true null hypothesis asymptotically.

Any external interval that is not a singleton is susceptible to this effect.

One way to avoid this asymptotic indecisiveness is to establish reasonable decision

rules for the third case. Note that structural uncertainty results in a scenario in which

an F-probability is present. Huntley et al. (2014) provides an introduction to decision-

making under imprecise probabilities, which underlies the following arguments. The

arguments are informally presented to illustrate the basic idea. A more rigorous treat-

ment, including proofs, is given by Jann (2024).

The procedure begins with the establishment of a credal set M0 of asymptotic distri-

butions of the set of test statistics under the null hypothesis. As discussed in Section

5.1, the test statistics SH, W , LM , and D are asymptotically Ç2
k-distributed under the

null hypothesis for correctly specified external values (for SH set k = q − p). However,

for misspecified external values, the test statistics generally diverge to ∞ (Cameron &

Trivedi, 2005, p. 248).

This can be reflected by including a probability distribution in the credal set that

shifts all mass to infinity. Using the extended real line, its CDF can be denoted as 1∞,

the indicator function at ∞. In addition to these two extremes, local alternatives around

e0, defined by en = e0 + ¶/n, exist. The test statistics for these local alternatives are

asymptotically distributed according to a non-central Ç2
k-distribution with k degrees of

freedom and a non-centrality parameter ¼, denoted by Ç2
k(¼).

Therefore, the complete asymptotic credal set M0 consists of Ç2
k(¼) for 0 f ¼ < ∞

and 1∞. Based on this credal set, the six choice functions presented by Huntley et al.

(2014) can be used to develop decision rules for the third case by selecting optimal test

statistics. According to Proposition 2 by Jann (2024), the presence of 1∞ causes four

out of the six choice functions to identify all test statistics as optimal. This does not

result in any changes to the “undecided” scenario. The remaining two functions select

the lowest test statistic, thus collapsing to the same function. This collapsed choice
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function is called Γ-maximin, and leads to the following significance test for a general

null hypothesis ¹0 ∈ Θ0, where Θ0 is a predefined set.

Definition 8. (Jann, 2024) Let T (¹, e) be a test statistic that is a function of a param-

eter ¹ ∈ Θ and the external values e ∈ Iex. Let T be the set of observed test statistics

based on Θ0 and Iex, where t denotes its infimum. Let M be a credal set of possible

distributions of the test statistics under the null hypothesis and P be the lower bound

of the F-probability based on M. For the null hypothesis H0 : ¹0 ∈ Θ0, a Γ−maximin

test with significance level ³ ∈ (0; 1) is as follows:

If P (T > t) < ³, then reject H0 : ¹0 ∈ Θ0,

else maintain H0 : ¹0 ∈ Θ0.

The Γ-maximin test corresponds to the simple idea of rejecting the null hypothesis

only if it would be rejected by all possible test statistics based on Iex, and maintaining

it otherwise. The fact is that if the lower probability of {T > t} is below ³, then the

lower probability of each corresponding event for an observed test statistic is also below

³, since t corresponds to the largest event. The following property establishes that the

Γ-maximin test is a valid significance test that controls the probability of a type I error.

Definition 9. (Jann, 2024) Let e0 denote the correctly specified external values. A

Γ−maximin test with significance level ³ has ³-level under the (asymptotic) distribution

of T (¹0, e0), if (asymptotically)

PT (θ0,e0)(T > tα) f PT (θ0,e0)(T (¹0, e0) > tα) f ³

holds, given the null hypothesis is true, where T = infΘ0,Iex T (¹, e) and tα is the upper

1 − ³ quantile of a distribution in M that constitutes the lower probability P at the

event {T > t}.
The right inequality in Definition 9 indicates that the test based on the correctly

specified test statistic T (¹0, e0) is valid. The event {T > tα} is equal to the event that

the Γ-maximin test rejects the null hypothesis. Given the null hypothesis and correctly

specified external information, the probability of {T > tα} under the true distribution

(i.e., the probability of type I errors) is bounded by ³. There is a simple criterion under

which a Γ-maximin test has significance level ³ under the (asymptotic) distribution of

T (¹0, e0). This criterion generalizes Theorem 2 from Jann (2024) using the same proof.

Theorem 2. Suppose that the credal set M contains the (asymptotic) distribution of

T (¹0, e0), and that this distribution yields the lower probability of the event {T (¹0, e0) >
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tα}, i.e., P (T (¹0, e0) > tα) = PT (θ0,e0)(T (¹0, e0) > tα). Then, a Γ−maximin test with

significance level ³ has ³-level under the (asymptotic) distribution of T (¹0, e0).

Now, consider the credal set M0 for the test statistics SH,W,LM and D. Since the

Ç2
k(¼)-distributions are stochastically ordered in ¼, the lower probability of the credal

set M0 at the events {T > t} for all possible t is the central Ç2
k-distribution (Ghosh,

1973). Because this is also the asymptotic distribution of the correctly specified test

statistic under the null hypothesis, T (¹0, e0), Theorem 2 can be applied. Therefore,

significance tests based on the test statistics SH,W,LM and D can be extended into

valid Γ-maximin tests. In practice, the minimum test statistic has to be computed and

compared to a critical value from a Ç2
k-distribution, or its p-value has to be calculated

based on this distribution. Note that for the Γ-maximin Sargan-Hansen test as derived

by Jann (2024), the expected external values are the parameter, i.e., ¹ = E(e). The Γ-

maximin Sargan-Hansen test evaluates the null hypothesis that Iex contains the correctly

specified external values, resolving the aforementioned asymptotic indecisiveness.

At a first glance, the ability to freely specify Θ0 seems general enough to include

one-sided tests. However, the considered test statistics are quadratic in nature and in-

conclusive in terms of the sign of the deviations from the null hypothesis. A better

approach would be constructing a test based on the asymptotic normality of the GMM

estimator and extend it to a Γ-maximin test. The null hypothesis for a left-sided test

is f(¹0) g 0, and for a right-sided test f(¹0) f 0. As discussed in Section 5.1, the cor-

responding test statistic zt asymptotically follows a standard normal distribution under

the null hypothesis. If the external values are misspecified, then f(¹̂ex) is asymptotically

“distributed” as 1−∞ or 1∞. For local alternatives, the test statistic is distributed as

N(¼, 1) with ¼ ∈ R, since it is the (signed) square root of the Wald test statistic, which

is Ç2
1(¼

2)-distributed. To apply Theorem 2, it is necessary to construct the credal set

so that N(0, 1) yields the lower probabilities for the events {zl < z} for each possible z.

Consequently, the credal set should only include N(¼, 1) for ¼ f 0 and 1−∞.

Using N(¼, 1) for ¼ > 0 would lead to the application of distributions that would

reject the null hypothesis in cases when it is valid. For example, N(3, 1) might reject

a test statistic value of 0, however, this value is perfectly consistent with the nominal

null hypothesis. To avoid this issue, only the N(0, 1)-distribution of the null hypothesis

boundary should be included, rather than distributions consistent with the interior of

the null hypothesis. Including distributions in a credal set ensures that they will be

considered among the calculation of possible p-values. However, if they correspond to a

different, more restrictive null hypothesis, the Γ-maximin test will test that hypothesis,

which is easier to reject than the nominal null hypothesis.
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6 Contributions

The externally informed GMM approach was successively developed over the course

of this PhD project and the following four papers. Three of the papers have been

published as of now (available via open access online, links can be found in the respective

subsection), and one is currently under review (planned to be open access). Aside

from theory development, the papers provide analytical formulas for estimators and test

statistics in important use cases. They also present simulation studies that analyze

the behavior of the externally informed GMM approach in small samples across various

scenarios. The cases in question include the (Γ-maximin) Sargan-Hansen test, as well as

linear models and generalized linear models with repeated measures. Generalized linear

models with repeated measures are estimated using the GEE approach. All papers are

provided in full text in appendices A – D (pp. 82 – 209). The individual contributions

of the papers are summarized below.

6.1 Paper 1: Coherence of external information and data

Jann, M. (2023). Testing the coherence of data and external intervals via an imprecise

Sargan-Hansen test. In E. Miranda, I. Montes, E. Quaeghebeur, & B. Vantaggi (Eds.),

Proceedings of the thirteenth international symposium on imprecise probability: Theories

and applications (pp. 249–258, Vol. 215). PMLR. https://proceedings.mlr.press/v215/

jann23a.html

This paper established the Sargan-Hansen test as a test for the fit of external in-

formation and new data. It contains a proof of the separability lemma and the first

part of Theorem 1 to show that the model moment equations cancel out. Further, the

Sargan-Hansen test was extended to include an external interval to represent structural

uncertainty. The obvious estimator Σ̂h, the sample covariance matrix Ŝh, and a small

sample version of the Sargan-Hansen test based on a normality assumption were de-

veloped. By and large, three versions of the Sargan-Hansen test were discussed. The

employment of quadratic programming to compute the minimum test statistic for all
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three versions of the test for linear external moment functions h(z) obviated the neces-

sity of a grid search in these cases.

The paper provides the results of simulation studies for sample sizes of 30 and 50, as

well as for various external moments. They considered normally distributed data and

a linear model. When it comes to the type I error rate and power, the three tests only

showed minor discrepancies. The observed power was sufficient and, in some cases, high

for externally known expected values. The type I error rates were also below the nominal

significance level. For an externally known variance of the dependent variable, Var(y),

the simulations indicated low power and increased type I error rates. The simulation

studies also suggest that using multiple external moments does not necessarily lead to

better test performance. In fact, combinations of Var(y) with other external moments

resulted in lower power than cases without Var(y).

Taken together, the results indicate that the Γ−maximin Sargan-Hansen test is feasible

and well suited for sample sizes commonly found in psychology. Thus, the first paper

fulfilled the goal of providing a frequentist method of statistical cumulation that helps

to distinguish between populations and detects structural uncertainty.

6.2 Paper 2: Using external information for more precise

inferences

Jann, M., & Spiess, M. (2024). Using external information for more precise inferences

in general regression models. Psychometrika, 89 (2), 439–460. https://doi.org/10.1007/

s11336-024-09953-w

Statement of author’s contribution:

I derived the analytical formulas, conducted the simulation studies, and wrote the initial

draft of the paper. Then, Prof. Dr. Martin Spieß and I jointly discussed and finalized

the draft for the initial submission, as well as for subsequent revisions.

This paper investigated the effects of using moment-type external information about

variables to improve statistical analyses. Corollary 1 was proven in this paper. It

showed the variance reduction property and the necessary condition Ωr ̸= 0 for variance

reduction. The paper presents analytical formulas for the externally informed multiple

linear regression model. The formulas sparked a discussion about which moments reduce

the variance of which parameters. For instance, E(y) only influenced the variance of the

intercept. In addition, when used alone, covariate information had no variance-reducing

effect. Knowledge of the covariances Cov(y, xj) reduced the variance of the intercept
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and the respective slope ´j for xj , but not the variances of the other slopes.

The coverage behavior of confidence interval unions was analyzed in simulation studies.

These studies addressed structural uncertainty. However, estimation uncertainty was

not reflected in order to test whether it was covered by using external intervals. The

simulation studies used intervals of expected values, (co-) variances, correlations, simple

linear regression slopes, and other moments as external information for sample sizes

of 15, 30, 50, and 100. Two scenarios were considered: one with correctly specified

external information and normally distributed regression error terms, and another with

misspecified external information and Ç2
1-squared distributed regression error terms. As

in the first study, the squared moments of the dependent variables, such as Var(y),

exhibited increased type I errors for sample sizes below 100.

Interestingly, in both simulation scenarios, the width of the confidence union was

smaller than the width of the uninformed confidence intervals when covariances, corre-

lations, or simple linear regression slopes were used. Furthermore, the confidence unions

had valid type I error rates in the misspecified case, whereas the confidence intervals

based on external values did not. These results suggest that using confidence unions

increases distributional robustness. Finally, a real data set investigating the predictabil-

ity of the premorbid intelligence of elderly individuals using lexical tasks was analyzed.

This analysis used external information to demonstrate the variance reduction property

of confidence unions in practice.

Overall, the results demonstrate the validity of confidence unions, even in misspecified

cases and with sample sizes commonly found in psychological research. This paper intro-

duced psychological researchers to a frequentist technique that enhances linear models

using external information while accounting for structural uncertainty.

6.3 Paper 3: Fit of external information and data

Jann, M. (2024). Testing the fit of data and external sets via an imprecise Sargan-

Hansen test. International Journal of Approximate Reasoning, 170, 109214. https :

//doi.org/10.1016/j.ijar.2024.109214

This paper is an extended version of the first publication, as prompted by an invitation

to contribute to the special issue of the International Journal of Approximate Reasoning

on the Thirteenth International Symposium on Imprecise Probabilities: Theories and

Applications. It expands upon the first paper’s results in several ways. Rather than

assuming that all matrices are regular, this paper generalized the results to generalized
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inverses. The lemmas, corollaries, and theorems in this thesis are based on this extension.

This paper introduced the use of an external variance estimate to represent estimation

uncertainty. It was also the first to discuss and implement a combined representation

of estimation and structural uncertainty. The Γ-maximin test was introduced through a

rigorous discussion of decision-making under imprecise probabilities.

An algorithm was provided to compute the minimum Sargan-Hansen test statistic,

thus eliminating the need for a grid approximation. Figure 1 was provided in the paper

to illustrate the impact of various estimators of Ωh on the Sargan-Hansen test statistic.

As a Bayesian competitor, this paper derived the criterion for prior-data conflict with

threshold a, as discussed in Section 4.1.

Simulation studies were conducted to analyze the behavior of the proposed methods

in small samples with directly simulated structural uncertainty. The results showed that

the proposed methods had valid type I errors and sufficient power. For the Bayesian

method, different values of the threshold a produced very different type I error rates.

This may be a drawback, as the threshold a is more difficult to interpret and define

a priori than the nominal type I error rate is in the frequentist case. Ultimately, the

estimator of Ωh that produced the highest type I error rates was Ŝh. Therefore, the

estimators Σ̂h or Ŝh should be preferred.

Taken together, the existing uncertainties can be addressed for a wide range of hypoth-

esis testing problems using the proposed Γ-maximin test. Thus, this paper accomplished

the goal of providing a robust frequentist method for using external information in sta-

tistical inference. It enables applied researchers to actually consider both estimation and

structural uncertainty in their analyses and benefit from using external information.

6.4 Paper 4: Testing linear hypotheses using external

information

Jann, M., & Spiess, M. (2025). Testing linear hypotheses in repeated measures general-

ized linear models using external information [Manuscript under review]

Statement of author’s contribution:

I derived the analytical formulas, conducted the simulation studies, and wrote the initial

draft of the paper. Then, Prof. Dr. Martin Spieß and I discussed and finalized the draft

for the initial submission collaboratively.

This paper extended the tests statistics W,LM, and D to include an external interval

by generalizing them to a Γ-maximin tests for general linear hypotheses. The test
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statistics were analyzed for generalized linear models with repeated measures estimated

with GEE. The special case of block invariant independent variables allowed for the

derivation of analytical formulas for the GMM estimator, and a simplification of D.

Constrained optimization methods were developed to calculate all three test statistics

when external values are present. Then, these methods were extended to an external

interval via grid approximation.

The paper provides the results of simulation studies analyzing the behavior of the three

tests in small samples based on two real-data examples. The first example was error count

data collected from 63 participants in a figure-ground segmentation experiment based on

sequential distractor-response binding. The second example built upon an intervention

study in sports psychology with 72 participants. It tested mood enhancement through

exercise by comparing a control group with an exercise group measured three times.

The dependent variable was categorized to employ and test cumulative logit models.

Many simulation scenarios were tested to analyze the effects of estimation and structural

uncertainty. To do so, two external samples based on different true values were generated.

Using an external interval rather than external values reduced type I errors. Nominal

significance levels were achieved when the interval was correctly specified. However,

misspecified intervals led to increased type I error rates. Therefore, caution is advised

when constructing external intervals. Interestingly, the simulation studies showed that

using external values that fully determine some of the model parameters caused the

GMM estimator to set those parameters to that exact value and set the corresponding

variance to zero. This was discussed as a strong argument for using external variances

to reflect that the value is based on a sample. Otherwise, GMM estimation treats the

external values as if they were population quantities. Finally, the two data sets were

reanalyzed using external intervals. This resulted in reduced p-values, demonstrating

the effect of the variance reduction property in practice.

Overall, externally informed generalized linear models with repeated measures showed

good performance in small samples in scenarios relevant to psychological research. Thus,

this paper achieved the goal of developing a frequentist method of statistical cumulation

for generalized linear models with repeated measures that possibly reduces variance and

increases power while being less susceptible to misspecification of external information.
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7 Discussion

7.1 Conclusion and limitations

This thesis aimed to demonstrate the possibility of a cumulative psychological science

in terms of statistical cumulation. The ideal has been that statistical cumulation (i.e.,

using external information) is theory-independent, allows for testing for differences be-

tween populations, and improves statistical analyses. The goals of the PhD project have

been to rigorously examine external information and its uncertainties, explore existing

approaches and develop a novel frequentist approach.

Chapter 3 provided a formal description of external information, identified various

types of external information, such as moment-type external information about variables

and discussed a variety of uncertainties related to external information. Estimation and

structural uncertainty are particularly likely to be present when external information is

derived from previous studies. Chapter 4 provided an overview of existing approaches

and identified the generalized Bayesian and inferential model approaches as the only ones

capable of reflecting structural uncertainty. To the best of the author’s knowledge, no

frequentist framework existed at the beginning of this PhD project that could incorporate

external information while reflecting structural uncertainty.

The externally informed GMM approach presented in Chapter 5 is able to address

this issue. It fills a gap in the scope of existing methods, as generalized Bayesian and in-

ferential model approaches cannot incorporate moment-type external information about

variables directly yet. Furthermore, moment-type external information about variables

is not limited to one particular model. One piece of information can be used in numer-

ous future studies with different models. Thus, the externally informed GMM approach

provides a theory-independent method of statistical cumulation.

The Γ-maximin Sargan-Hansen test provides a method to test if two populations differ

in certain aspects. Further, Section 5.3 discussed the variance reduction property of the

externally informed GMM approach. This property improves statistical analyses by

leading to higher power of significance tests and narrower confidence intervals. Even

when these positive effects disappear when an external interval is used, distributional
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robustness increases due to the F-probability induced by the external interval. One

advantage of using external intervals instead of aggregated external values is that they

are less susceptible to structural uncertainty. The attached papers include simulation

studies indicating the validity of the externally informed GMM approach in small samples

across various scenarios.

Overall, this PhD project demonstrated that the robust use of external information in

statistical analysis and thus statistical cumulation is possible. The discussed approaches

could serve as starting grounds for a cumulative psychological science that is able to use

accumulated empirical findings, aggregated or not, in subsequent research. To enable

applied researchers to use the externally informed GMM approach developed in this

thesis, the analytical results from the four attached papers, as well as general approaches

to solving the first-order conditions (5.1), have been implemented as R functions and

will be made openly available via https://github.com/MartinJann/exgmm.

The most apparent limitation of the externally informed GMM approach is that the

external interval has to be correctly specified to contain an unbiased estimator of the true

moment value for the new data. This is related to the fact that structural uncertainty

is rarely fully understood in practice, so some aspects of the new data set may not be

covered by external sources. In this respect, the correct specification of the external

interval will remain an assumption. Based on the available qualitative and quantitative

information, it is up to the researcher to decide whether to rest their results on this

assumption or not. This limitation can also be discussed in relation to other approaches

of incorporating external information into statistical analyses of small samples, where

the partial prior may substantially influence the results. This highlights that sensitivity

to misspecification of external information is not unique to the current approach, but

applies to all existing approaches. To enhance statistical analyses based on external

information while maintaining their frequentist validity, accepting such assumptions may

be the only option.

Moreover, if there are substantial doubts about the correctness of the external interval

specification, the externally informed GMM approach enables researchers to test the fit

of external information and new data using the Γ-Maximin Sargan-Hansen test. The

fit can be evaluated for a new data set, and the external information can be applied

to other data sets collected under the same conditions. Thus, the presented approach

proves to be useful despite the risk of misspecified external intervals.

Another limitation of the externally informed GMM approach is that it is only feasi-

ble for low-dimensional external intervals. This is because the duration of a grid search

increases exponentially with each additional dimension, assuming an equal number of
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grid points in each dimension. However, adding some moments may not improve statis-

tical analyses. For example, in the case of the Sargan-Hansen test, combining multiple

moments did not increase the test’s power if one of the moments was ineffective, as

demonstrated in Paper 1. Rather than producing synergy, combining the moments pro-

duced a mixture of their behaviors. Therefore, one should refrain from using as many

moments as possible and instead investigate their behavior.

7.2 Further research

Thus far, the externally informed GMM approach has been tested with multiple linear

and repeated measures generalized linear models. However, many other models are

employed in psychological research. Thus, more research is necessary to understand how

the approach behaves with different models. For instance, further studies should examine

two-level mixed linear models and structural equation models. Of particular interest are

the performance of the externally informed GMM approach with small samples, its

robustness under misspecification of underlying distributions, and the effectiveness of

external information about specific statistical moments.

More research is also needed on parameter-specific external information. One possible

approach would be to extend the externally informed GMM approach by using stochastic

constraints on the parameters and applying the distributionally robust optimization

framework. Additionally, further research is warranted to understand how to incorporate

higher-dimensional external intervals. This requires computational methods other than

grid approximation. Another approach could be to reduce the dimension of the external

intervals based on efficiency. For instance, it ought to be investigated whether including

multiple moments results in greater variance reduction than including a single, highly

effective moment.

Applications of external information other than the ones discussed in this thesis may

be explored in future endeavors. For instance, recognizing that misspecified external val-

ues generally result in a bias that does not vanish asymptotically could help to correct

for sample selectivity. Constructing externally informed GMM estimators that mimic

poststratification would be beneficial if there were reliable estimates of a variable’s char-

acteristics within the population of interest, such as official demographic statistics.

Finally, in the spirit of mutual completion, it is important to research and imple-

ment externally informed GMM, generalized Bayesian, and inferential model approaches

alongside one another. This would allow applied researchers to access the full potential

of statistical cumulation methods and to establish a cumulative psychological science.
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Abstract

When information about a population is sparse, it is

difficult to test whether a data set originated from that

population. In applied research, however, researchers

often have access to external information in the form of

(central) statistical moments such as mean or variance.

To compensate for the uncertainty in the external point

values, this paper uses external intervals instead to

represent the information about moments. The Sargan-

Hansen test from the generalized method of moments

framework is used, which exploits point-valued ex-

ternal information about moments in the presence of

a statistical model to test whether data and external

information are in conflict. For the Sargan-Hansen

test, a separability result is derived with respect to the

model and the external information. This result leads

to a simplification of the test in terms of its analytical

form and the calculation of the test statistics. To allow

the use of external intervals instead of point values, an

imprecise version of the Sargan-Hansen test is created

using the Gamma-maximin decision rule. Assuming

that the variables are normally distributed, a small

sample version of this imprecise Sargan-Hansen test is

derived. The power and type I errors of the developed

tests are analyzed and compared in a simulation study

in different small sample scenarios.

Keywords: imprecise external information,

information-data conflict, generalized method of

moments, Sargan-Hansen test, credal set, robustness

1. Introduction

The use of (external) prior information on parameters has

frequently been studied. Well-known techniques for incorpo-

rating external information into statistical analysis include

informed prior distributions in Bayesian statistics [3] and

constraints on the parameter space imposed by the external

information, leading to constrained optimization (see, e.g.

Knopov and Korkhin [11] for the case of multiple linear

regression). However, in some research areas, there may

not be enough information to determine the feasible region

or a prior distribution. The following example is provided

to support this assertion:

Example 1 Suppose we have a simple linear regression

model H = V1 + GV2 + n under Gauss-Markov assumptions

and only the expected value � (H) = 100 is known externally.

Under the model assumptions, � (H) = 100 becomes a

constraint on the parameter,

100 = � (H) = V1 + � (G)V2, (1)

which is a linear constraint on intercept V1 and slope V2.

However, if � (G) is not known, we cannot use Equation (1)

directly as a constraint in the optimization. Equation (1) is

also not sufficient to identify (the moments of) a prior distri-

bution, since there are usually several different distributions

that satisfy this condition.

The fact that the external information in Example 1 is in

the form of a moment motivates another method of using

external information. According to an idea proposed by

Imbens and Lancaster [9], this type of external information

implies moment conditions that can be combined with the

moment conditions used to estimate a statistical model.

In general, the resulting overidentified system of moment

conditions does not have an exact solution, but the General-

ized Method of Moments (GMM) [7] can be used to find

estimators that are ’as close as possible’ to a solution with

respect to some norm. Imbens and Lancaster [9] showed for

multiple linear models that the estimators found in this way

generally have lower variances than the corresponding OLS

estimators, provided that the external information is cor-

rect. This paper examines the opposite question: Given the

combined moment conditions of the model and the external

information, is the external information correct (for a given

data set)? This concept is similar to the prior-data conflict

in Bayesian statistics and will be referred to hereafter as

information-data conflict. To answer this question in the

GMM framework, the Sargan-Hansen test is typically used

because it is a test for overidentifying restrictions [18, 7].

However, its role as a test for misspecification has been

criticized in current research, especially with respect to

models that use instrumental variables [14, 10]. Therefore,

the results of this paper should be interpreted as a test

of the coherence of external information and data rather

than a test of misspecification of a model. This argument

is supported by a small thought experiment. There are

© 2023 M. Jann.
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two statements: "The model assumptions are true." and

"The expected value of the dependent variable is 100."

Both statements are logically independent, one is neither

necessary nor sufficient for the other to be true. How might

a model specification test benefit from this kind of external

information? A mathematical formulation of this logical

independence is proved in Section 2.

Most external information depends on population, time,

and many other aspects, which makes the use of point

values for the external information risky because the results

of Imbens and Lancaster [9] depend on the correctness

of these point values. To reduce the risk of potentially

misspecified external information, this paper addresses the

case where an interval is given that contains the true value

of the external moments, but its exact position inside the

interval is unknown. This epistemic uncertainty about the

true value of the external moments leads directly to the use

of imprecise probabilities in the form of credal sets, as we

show in Section 2.

2. The Sargan-Hansen Test with External

Information

2.1. The Point-Valued Case

We assume that the external information only consists of

point values of the respective moments. The notation from

Newey and McFadden [12] is adopted. In the following,

italic lowercase letters are for (random) scalar values, bold

lowercase letters are for (random) vectors, and bold upper-

case letters are for (random) matrices, unless otherwise

indicated. Now let z be a random variable over ℝġ and

z1, . . . , zĤ be = > 1 i.i.d. random variables distributed like

z.1 Further let @ be an integer and � ⊂ ℝ
ħ , then let ) ∈ �

be a possible value for a (fixed) parameter of a statistical

model, where )0 is the true value. Given a function g(z, ))
with the property � [g(z, )0)] = 0, one can try to esti-

mate the parameter by the method of moments. Practically,

this is done by formulating the equivalent sample moment

conditions 1

Ĥ

∑Ĥ
ğ=1

g(zğ , )) = 0 and solving for ) .

To explain this method, let’s consider Example 1. Let

y = (H1, . . . , HĤ)Đ be an i.i.d. sample of random variables

distributed like y, and let

X =

©­­«
1 G1,1 G1,2 . . . G1,ħ−1

...
...

...
...

...

1 GĤ,1 GĤ,2 . . . GĤ,ħ−1

ª®®¬
be the design matrix containing the covariates assumed to

be an i.i.d. sample of the random variable x. The sample mo-

ment conditions for the OLS estimator can be derived by set-

ting the mixed moment of the independent variables and the

1Some entries of z could possibly be fixed, as long as at least one

entry is random.

error term to zero, i.e. � (g(z, #0)) = � (xn) = 0. The sam-

ple moment conditions are therefore 0 =
1

Ĥ

∑Ĥ
ğ=1

g(zğ , #) =
1

Ĥ
XĐ (y − X#), where # in this case denotes the parameter

[4, p. 172].

However, sometimes the number of the moment condi-

tions is larger than the dimension of the parameter. As a

classic example from econometrics, we present estimation

using instrumental variables, following the presentation of

Cameron and Trivedi [4, p. 170]. As before, we assume a

linear model. If some of the independent variables in x are

correlated with the error term, then the Gauss-Markov as-

sumptions are incorrect, and therefore OLS will not provide

a consistent estimate of the regression parameter. A common

idea to solve this problem is to find other variables that are

correlated with x but uncorrelated with the error term. These

variables are called instruments, and we represent their sam-

ple realizations by the (= × B) matrix D. Similar to the OLS

case, we can set the mixed moment of the instruments and

the error term to zero. The corresponding sample moment

conditions are 0 =
1

Ĥ

∑Ĥ
ğ=1

g(zğ , #) = 1

Ĥ
DĐ (y − X#). If the

number of potential instruments is greater than the dimen-

sion of the parameter, the sample moment conditions are

generally not solvable for #, the system of equations is

overidentified. Not using all the instruments would result

in a loss of efficiency. Instead of solving the equations,

the idea of the GMM is to find a value for # that makes
1

Ĥ
DĐ (y − X#) as small as possible in terms of quadratic

loss, i.e, by minimizing

( 1

=
DĐ (y − X#))Đ W( 1

=
DĐ (y − X#)),

where W is a chosen positive-definite weighting matrix.

Note that this is a generalization of the case of solvable

sample moment conditions, since a positive quadratic form

in 1

Ĥ
DĐ (y − X#) is zero if and only if 1

Ĥ
DĐ (y − X#) = 0.

In general, different W lead to different estimators. In

the GMM approach, there is a way to choose the optimal

weighting matrix with respect to the efficiency of the es-

timator. This optimality is achieved by W = !−1 with

! = � (g(z, ))g(z, ))Đ ) [7]. This optimal W is almost

always unknown and must be estimated by a random matrix

Ŵ. Taken together, this leads to the following definition:

Definition 1 [12, p. 2116] Let ? ≥ @ be an integer and

g(z, )) be a vector valued function with values in ℝ
Ħ , that

meets the moment conditions � [g(z, )0)] = 0. Further let

Ŵ ∈ ℝ
Ħ,Ħ be a positive semi-definite (and hence symmetric)

random matrix such that (rĐ Ŵr)1/2 is almost surely a norm

for all r ∈ ℝ
Ħ . Then a GMM-estimator )̂ěĮ is defined as a

) , that maximizes the following objective function:

&̂Ĥ ()) = −( 1

=

Ĥ∑
ğ=1

g(zğ , )))Đ Ŵ( 1

=

Ĥ∑
ğ=1

g(zğ , ))) . (2)
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Under mild regularity conditions, the GMM-estimator

is point-identified, consistent, and asymptotically normally

distributed [12, Theorem 3.4]. To emphasize the generality

of the GMM, we give some examples. Special cases of

GMM-estimators range from OLS estimators to maximum

likelihood estimators (MLE) [4, p. 172] to estimators de-

rived by generalized estimating equations [4, p. 790]. To see

that GMM is an extension of MLE, note that maximizing

the log-likelihood function implies setting the score func-

tion to zero. This corresponds to the first-order conditions

for MLE and has exactly the form of sampling moment

conditions. In addition, the regularity conditions of the

MLE require that the expected value of the score function

be zero at the true parameter value, which is exactly the

requirement � [g(z, )0)] = 0 in Definition 1. This property

of the score function is central to establishing the con-

sistency and asymptotic normality of the MLE. For the

mathematical details of incorporating the MLE into the

GMM, see Cameron and Trivedi [4, p. 140]. Finally, there

is also an important connection to robust statistics, since

M-estimators with differentiable d (those of the k−type)

are also derived by sample moment conditions and thus

represent a special case of GMM estimators [4, p. 118].

Following Imbens and Lancaster [9], we include in g(z, ))
not only the moment conditions for the model, but also those

for the external information, resulting in an overidentified

system of moment conditions. Let m(z, )) denote the ?1 ≥
@ moment conditions for the model and h(z) denote the

?2 moment conditions for the external information, which

are assumed to be expressible as functions of the data

alone, then g(z, )) = (m(z, ))Đ , h(z)Đ )Đ . For example,

the condition for the external moment in Example 1 is

ℎ(z) = H − 100. If one of the moment conditions for the

external information depends only on the parameter, then

the results derived here will not hold in general.

For the overidentified case ? > @, under the null hypoth-

esis that all moment conditions are correct, it holds that

−=&̂Ĥ ()̂ěĮ)
Ě→ j2

Ħ−ħ if the regularity conditions hold and

if Ŵ
Ħ→ W = !−1 . The j2−test that results from this distri-

bution property is called the Sargan-Hansen test [18, 7]. For

simplicity, in the remainder of this paper we assume that

Ŵ is invertible almost surely and therefore positive-definite

almost surely by Definition 1. All the following results

are derived for this almost sure case of invertible Ŵ and

thus hold almost surely. If Ŵ is singular for certain data,

one should first check whether the moment conditions are

linearly dependent, and accordingly delete some conditions,

so that the remaining ones are not linearly dependent. Oth-

erwise, one could add random noise to Ŵ to try to make it

invertible, or use its Moore-Penrose inverse [20].

Let !̂ be the inverse of Ŵ. For the sake of brevity we

define m =
1

Ĥ

∑Ĥ
ğ=1

m(zğ , )) and h =
1

Ĥ

∑Ĥ
ğ=1

h(zğ). By A/B

we denote the Schur complement of the block B of the

matrix A and obtain

Lemma 2 (Separability) From the premises of Definition 1

and g(z, )) = (m(z, ))Đ , h(z)Đ )Đ it follows that !̂ has the

block form

!̂ =

(
!̂ģ !̂

Đ

Ĩ

!̂Ĩ !̂ℎ

)
,

where !̂ģ ∈ ℝ
Ħ1 , Ħ1 and !̂ℎ ∈ ℝ

Ħ2 , Ħ2 . Further,

−&̂Ĥ ()) = (m − !̂
Đ

Ĩ !̂
−1

ℎ h)Đ (!̂/!̂ℎ)−1 (m − !̂
Đ

Ĩ !̂
−1

ℎ h)

+ h
Đ
!̂

−1

ℎ h.

Proof We take advantage of the fact that Ŵ is symmetric,

positive-definite, and can be written in block form

Ŵ =

(
Ŵģ Ŵ

Đ

Ĩ

ŴĨ Ŵℎ

)
,

where Ŵģ ∈ ℝ
Ħ1 , Ħ1 and Ŵℎ ∈ ℝ

Ħ2 , Ħ2 . The first statement

follows from the fact that Ŵ = !̂
−1

and the block form

of Ŵ. For the second statement, note that Ŵ is positive-

definite and so is !̂, so the Schur complement !̂/!̂ℎ =

!̂ģ − !̂
Đ

Ĩ !̂
−1

ℎ !̂Ĩ is invertible. Now Ŵ can be expressed

by Schur complements:

Ŵģ = (!̂/!̂ℎ)−1,

ŴĨ = −!̂−1

ℎ !̂Ĩ (!̂/!̂ℎ)−1,

Ŵℎ = !̂
−1

ℎ + !̂
−1

ℎ !̂Ĩ (!̂/!̂ℎ)−1!̂
Đ

Ĩ !̂
−1

ℎ .

It follows that

−&̂Ĥ ()) = ( 1

=

Ĥ∑
ğ=1

g(zğ , )))Đ Ŵ( 1

=

Ĥ∑
ğ=1

g(zğ , )))

= m
Đ

Ŵģm + 2m
Đ

Ŵ
Đ

Ĩ h + h
Đ

Ŵℎh

= m
Đ (!̂/!̂ℎ)−1m − 2m

Đ (!̂/!̂ℎ)−1!̂
Đ

Ĩ !̂
−1

ℎ h

+ h
Đ (!̂−1

ℎ + !̂
−1

ℎ !̂Ĩ (!̂/!̂ℎ)−1!̂
Đ

Ĩ !̂
−1

ℎ )h

= (m − !̂
Đ

Ĩ !̂
−1

ℎ h)Đ (!̂/!̂ℎ)−1 (m − !̂
Đ

Ĩ !̂
−1

ℎ h)

+ h
Đ
!̂

−1

ℎ h.

Lemma 2 can be interpreted as a separability result, since

h
Đ
!̂

−1

ℎ h is not a function of ) if a suitable !̂ℎ is used, e.g,

�̂ℎ =
1

Ĥ

∑Ĥ
ğ=1

h(zğ)h(zğ)Đ or the sample covariance matrix

Ŝℎ =
1

Ĥ−1

∑Ĥ
ğ=1

(h(zğ) − h) (h(zğ) − h)Đ . In these cases, !̂ℎ

can be calculated from the data and external information
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alone. Note that the matrix Ŝℎ can be computed even

without knowing the true external value. Both matrices are

asymptotically identical if the null hypothesis of correctly

specified external values holds, but different if it does not.

The following important result holds for these examples.

Theorem 3 Let the premises and notation of Lemma 2 be

given. If !̂ℎ is not a function of ) and if there is a )ℎ ∈ �,

for which m − !̂
Đ

Ĩ !̂
−1

ℎ h = 0 holds, it follows that

−&̂Ĥ ()̂ěĮ) = h
Đ
!̂

−1

ℎ h.

Proof By Definition 1 we get

−&̂Ĥ ()̂ěĮ) = −max
)∈�

&̂Ĥ ()) = min
)∈�

−&̂Ĥ ()).

For )ℎ given in the premises, it follows from Lemma

2, that −&̂Ĥ ()ℎ) = h
Đ
!̂

−1

ℎ h. Since !̂ is positive-

definite, (!̂/!̂ℎ)−1 is also positive-definite. Therefore,

(m − !̂
Đ

Ĩ !̂
−1

ℎ h)Đ (!̂/!̂ℎ)−1 (m − !̂
Đ

Ĩ !̂
−1

ℎ h) is a positive

quadratic form and reaches its global minimum at 0, which

is achieved by the given )ℎ . Since h
Đ
!̂

−1

ℎ h is not a function

of the parameter ) , the proof is complete.

Theorem 3 shows the reduction of the Sargan-Hansen

test based on external information to a test of the fit of

the external information and the data alone, without the

model. Moreover, under the conditions of Theorem 3 the test

statistic −=&̂Ĥ ()̂ěĮ) has the form of a Wald statistic, and the

Sargan-Hansen test is then equivalent to a Wald test of linear

restrictions [4, p. 136]. The condition m − !̂
Đ

Ĩ !̂
−1

ℎ h = 0

is equivalent to the main separability result of Ahu and

Schmidt [1], if the external information is interpreted as a

parameter with only one possible value. Their result gives an

indication of the meaning of m − !̂
Đ

Ĩ !̂
−1

ℎ h = 0, since they

proved that it always holds when the first-order conditions

for the GMM are satisfied. As an important special case, this

result applies to OLS estimation in multiple linear models

when the design matrix X has full rank, because the result

then has the form 1

Ĥ
XĐ (y − X#) − !̂

Đ

Ĩ !̂
−1

ℎ h = 0, which

can be directly resolved to #. This is the mathematical form

of logical independence mentioned in Section 1.

Finally, h, if the external information is correct, will in

general almost surely be arbitrarily close to 0 for = → ∞
as � (h) = 0, in which case the disturbance term !̂

Đ

Ĩ !̂
−1

ℎ h

vanishes. Overall, the case m − !̂
Đ

Ĩ !̂
−1

ℎ h ≠ 0 for all ) ∈ �

seems to be rather pathological for models that are just-

identified by their moment conditions, which is why it will

not be treated in the rest of the paper and only the case of

just-identified models, @ = ?1, will be treated.

2.2. The Interval-Valued Case

The assumption of point-value external information is now

weakened by the assumption that a (possibly multidimen-

sional) closed interval IěĮ is known, for which we want to

test the null hypothesis that it contains the true value of the

external moments. The nature of this external interval is

that it is based on external data that is affected by random

noise. Thus, it reflects the current state of knowledge

about the (moments of the) variables. Now the regularity

conditions of the GMM apply to this true value, but it is

not known which value in IěĮ it is. Therefore, IěĮ can be

interpreted as coarse data, and cautious data completion

can be applied to the test statistic = · h
Đ
!̂

−1

ℎ h to derive the

set of possible test statistics without further assumptions

[2, p. 182]. If IěĮ is bounded and the test statistic is a

continuous function of the external information, the result is

a bounded and closed interval [= · h
Đ
!̂

−1

ℎ h, = · h
Đ
!̂

−1

ℎ h],
since in this case IěĮ is compact and connected. The

interval [= · h
Đ
!̂

−1

ℎ h, = · h
Đ
!̂

−1

ℎ h] is denoted by [j2, j2].
However, if IěĮ is unbounded, the cautious data completion

may result in a right-unbounded interval [j2,∞), e.g,

if !̂ℎ = Ŝℎ is used. The test statistic interval cannot be

left-unbounded because the test statistic = · h
Đ
!̂

−1

ℎ h is a

positive-definite quadratic form and therefore cannot be

less than zero. In the following, we will focus on the case

where the set of possible test statistics is an interval [j2, j2].

One strategy for computing [j2, j2] for a given data

set is to use quadratic programming, as we will show

now. To reflect the dependence of h on the external value

e ∈ IěĮ , it is now written as a function h(e). If !̂
−1

ℎ is

not a function of e, e.g, !̂ℎ = Ŝℎ, the objective function

= · h(e)Đ !̂−1

ℎ h(e) = h(e)Đ (!̂ℎ/=)−1h(e) is already in

quadratic form based on the variable h(e). The feasible

region becomes h(IěĮ), the image of IěĮ under h(e). If

h(e) can be written as h(e) = ĥ − e, where ĥ represents

the sample moment, then h(IěĮ) = ĥ − IěĮ holds (Again,

ĥ − IěĮ denotes the image of ĥ − 4 on IěĮ .). In this case,

the feasible region is an interval. Taken together, the opti-

mization problem is now a quadratic programming problem.

If !̂ℎ depends on e, for example !̂ℎ = �̂ℎ , the optimiza-

tion problem is more complex. Again, the dependence on e

is denoted by the notation !̂ℎ (e). In this case, the problem is

not necessarily convex, as Figure 1 shows. Another problem

is that the matrix !̂ℎ (e) must be nonsingular for each e for

the problem to be well-defined. In the case !̂ℎ (e) = �̂ℎ (e)
both problems can be solved by

Theorem 4 The matrix �̂ℎ (e) is positive-definite for each

e ∈ IěĮ if Ŝℎ is positive-definite. Assuming that Ŝℎ is
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Figure 1: Graph of the objective function

= · h(e)Đ �̂ℎ (e)−1h(e) as a function of the

external value e in the context of Example 1,

i.e, ℎ(I) = H − 4, based on a sample of 50 i.i.d

random variables H1, . . . , H50 distributed like

# (3, 1)

positive-definite, the objective function (2) becomes

= · h(e)Đ �̂ℎ (e)−1h(e) = = · h(e)Đ Ŝ
−1

ℎ h(e)
Ĥ−1

Ĥ
+ h(e)Đ Ŝ

−1

ℎ h(e)

and reaches its minimum over IěĮ at the same point as the

objective function = · h(e)Đ Ŝ
−1

ℎ h(e).

Proof For brevity, we will denote h(e) by h during the

proof of the first statement. The first statement is clear by

definition, since

�̂ℎ (e) =
1

=

Ĥ∑
ğ=1

h(zğ)h(zğ)Đ

=
1

=

Ĥ∑
ğ=1

(h(zğ) − h + h) (h(zğ) − h + h)Đ

=
= − 1

=
Ŝℎ + hh

Đ

(3)

is a sum of the positive-definite matrix Ĥ−1

Ĥ
Ŝℎ and the posi-

tive semi-definite matrix hh
Đ

, and hence positive-definite.

Using (3) and applying the formula (13.72) in Puntanen

et al. [16, p. 301] to Ĥ−1

Ĥ
Ŝℎ + hh

Đ
now yields

= · h
Đ
�̂ℎ (e)−1h = = · (hĐ ( = − 1

=
Ŝℎ)−1h

−
(hĐ ( Ĥ−1

Ĥ
Ŝℎ)−1h)2

1 + h
Đ ( Ĥ−1

Ĥ
Ŝℎ)−1h

).

The second statement follows after a little algebra. The last

statement follows from the fact, that the function 5 (G) =
Į

Ĥ−1

Ĥ
+ Į

Ĥ

is strictly increasing for every = > 1 in G ≥ 0. Thus,

the extrema of quadratic form G = = · h(e)Đ Ŝ
−1

ℎ h(e) over

IěĮ and the extrema of 5 (G) over IěĮ are attained by the

same values in IěĮ .

Theorem 4 effectively reduces the case !̂ℎ = �̂ℎ (e) to the

case !̂ℎ = Ŝℎ , which is solvable by quadratic programming.

To extend the Sargan-Hansen test to the case of an exter-

nal interval IěĮ , it is necessary to consider the distributional

properties of the test statistic interval [j2, j2]. Each value

e ∈ IěĮ can be specified correctly or incorrectly. If it is

specified correctly, = · h(e)Đ !̂−1

ℎ h(e) Ě→ j2
Ħ2

, since the

results of Section 2.1 apply. If it is not specified correctly,

= · h(e)Đ !̂−1

ℎ h(e) Ě→ ∞ [4, p. 248], showing the inherent

point value assumption. Only for values in a shrinking

neighborhood around the true value, i.e, e = e0 + %/=,

where e0 is the correctly specified value and % is a constant

representing the bias, the asymptotic distribution of the

test statistic is a noncentral j2
Ħ2
−distribution [4, p. 249].

The noncentral j2
Ħ2
− distribution with the noncentrality

parameter _ is denoted by j2
Ħ2
(_). The interval IěĮ is

assumed to be constant because it is constructed outside the

data, so the problem of degenerate asymptotic distributions

arises. To avoid this problem, the focus is on j2, the

minimum value of the test statistic over IěĮ , using the

heuristic that it should not go to ∞ if e0 ∈ IěĮ . To justify

this decision and to develop a test based on j2, two

arguments are given.

First, the task is to decide whether an external interval

IěĮ is coherent with the data, i.e. whether it contains a value

that is ’close enough’ to its sample equivalent. If a test

decides that this is false for IěĮ , it should also decide that

this is false for all intervals contained in IěĮ as well. For

example, if a test decides that the true value is negative, one

should conclude that the test would also decide that it is not

in [0, 1]. This requirement is satisfied when j2 is used as a

single test statistic, because if j2 is greater than a critical

value, then all values within [j2, j2] are greater than it.

Under the null hypothesis e0 ∈ IěĮ , this critical value could

be derived from the central j2−distribution to account for

the fact that any value within [j2, j2] could be the true one.

Second, this decision rule (reject the null hypothesis if

j2 is greater than a critical value resulting from the central

j2−distribution) amounts to a �−maximin decision rule

[8, p. 193] for choosing the p-value. To recognize this, the

corresponding set of gambles and the credal set must be

specified. For an observed test statistic j2
e ∈ [j2, j2], its
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p-value is the probability of the event {j2 > j2
e } under the

validity of the null hypothesis, where e is fixed. Therefore,

the indicators of the events {j2 > j2
e } for all e ∈ IěĮ form

the set of gambles. The possible asymptotic distributions

for = · h(e)Đ !̂−1

ℎ h(e) under the null hypothesis are j2
Ħ2
(_)

for _ ∈ [0,∞), so these distributions form the credal set.

Now, the probabilities %Ć2
Ħ2

(Č) ({j2 > j2
e }) are increasing

in _ if j2
e is fixed [6], so the lower probability is reached at

_ = 0. Note that this is equivalent to cumulative distribution

functions that decrease pointwise in _. But j2
Ħ2
(0) is just

the central j2
Ħ2
−distribution. Note that the above degenerate

distributions at = → ∞ are the limits for _ → ∞ and thus

the lower probability includes these ’distributions’ as well.

Finally, the lower probability %Ć2
Ħ2

({j2 > j2
e }) is maximal

at j2
e = j2, because

{j2 > j2

e } ⊂ {j2 > j2}

for all e ∈ IěĮ .

Taken together, we calculate the maximum of the respec-

tive lower probabilities of the events {j2 > j2
e } for e ∈ IěĮ

and compare it with the significance level U. Thus, the

Sargan-Hansen test based on external intervals is

1. %Ć2
Ħ2

({j2 > j2}) ≥ U

⇒ maintain null hypothesis e0 ∈ IěĮ

2. %Ć2
Ħ2

({j2 > j2}) < U

⇒ reject null hypothesis e0 ∈ IěĮ .

This test is conservative, but ensures that the asymptotic

significance level is at most U, regardless of which value in

IěĮ is the true value under the null hypothesis.

The results obtained so far are asymptotic in nature. To

derive a test for information-data conflict in small samples,

distributional assumptions for h(e) are required. So sup-

pose that h(e) is normally distributed for each e ∈ IěĮ . If

h(e) = ĥ − e holds, as assumed above for the application

of quadratic programming, it is sufficient to assume that

the sampling moment ĥ is normally distributed. Under this

normality assumption, the test statistic = · h(e)Đ Ŝ
−1

ℎ h(e)
at a fixed e ∈ IěĮ has the scaled noncentral F-distribution
(Ĥ−1) Ħ2

Ĥ−Ħ2
�Ħ2 ,Ĥ−Ħ2

(_), where _ is again the noncentrality pa-

rameter [15, p. 889].2 If the cumulative distribution func-

tions of
(Ĥ−1) Ħ2

Ĥ−Ħ2
�Ħ2 ,Ĥ−Ħ2

(_) for _ ∈ [0,∞) are pointwise

decreasing in _, the same arguments used in the above

construction of the Sargan-Hansen test based on external

intervals can be applied. Now, the cumulative distribution

2The notation of Phillips [15] is very different from ours, so we

explain it here: Their Đ is our Ĥ, their Ħ is 1 in our case, and their ħ is our

Ħ2.

function of �Ħ2 ,Ĥ−Ħ2
(_) is decreasing in _ [6]. This prop-

erty carries over to
(Ĥ−1) Ħ2

Ĥ−Ħ2
�Ħ2 ,Ĥ−Ħ2

(_) since the scaling by
(Ĥ−1) Ħ2

Ĥ−Ħ2
is a strictly increasing transformation and can be

inverted using the definition of pushforward measures, i.e,

% (Ĥ−1) Ħ2

Ĥ−Ħ2
ĂĦ2 ,Ĥ−Ħ2

(Č) (�) = %ĂĦ2 ,Ĥ−Ħ2
(Č) (

= − ?2

(= − 1)?2

· �).

Taken together, the test for information-data conflict in small

samples based on Ŝℎ and the assumption of normality is

1. %ĂĦ2 ,Ĥ−Ħ2
({j2 >

Ĥ−Ħ2

(Ĥ−1) Ħ2
j2}) ≥ U

⇒ maintain null hypothesis e0 ∈ IěĮ

2. %ĂĦ2 ,Ĥ−Ħ2
({j2 >

Ĥ−Ħ2

(Ĥ−1) Ħ2
j2}) < U

⇒ reject null hypothesis e0 ∈ IěĮ .

At first glance, one might think that the choice of !̂ℎ is

always important when working with small samples. This

is not necessarily the case, as we will show now. From the

fact that the function 5 (G) from the proof of Theorem 4 is

strictly increasing for G ≥ 0, it follows that for every 2 ≥ 0

the inequality = · h(e)Đ Ŝ
−1

ℎ h(e) > 2 is satisfied iff

= · h(e)Đ �̂ℎ (e)−1h(e) = 5 (= · h(e)Đ Ŝ
−1

ℎ h(e)) > 5 (2)
holds. Both inequalities represent the same event in

the common underlying probability space, and both are

assigned the same probability. Therefore, 2 and 5 (2) can

be interpreted as quantiles with the same level U, and the

small sample tests for information-data conflict based on

Ŝℎ and �̂ℎ , respectively, are the same.

The tests developed in this section are either asymptotic

or assume a normal distribution. Therefore, it is important

to check their properties in small samples when there is

no normal distribution. Since a conservative �−Maximin

decision rule was used, it would be interesting to compare

the expected type I error rates with the significance level

U. On the one hand, the use of lower probabilities could

correct for the small sample bias of the asymptotic test

or for the errors caused by deviations from the normal

distribution. This is due to the fact that all distributions in

the credal set and their convex combinations are undercut

by the lower probability. On the other hand, the type I error

rate could become very low if IěĮ is very broad, possibly

leading to low power of the tests for a fixed =. Regarding to

the use of multiple external moments, the question is how

this affects the type I error rate and the power of the tests.

The inclusion of additional moments increases the degrees

of freedom ?2, which may increase the critical values for

a given significance level U. Thus, if the interval of the

added moment includes or is close to the true value, the

power may decrease. On the other hand, if the interval of

the added moment is far from the true value, this could

increase the power. We will analyze these issues through a

short simulation study.
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3. A Simulation Study to Investigate Small

Sample Properties

First, we choose sample sizes = = 30 and = = 50 so that

each scenario occurs twice and the effect of increasing

sample size can be analyzed. Based on Example 1, we

use a simple linear regression model under Gauss-Markov

assumptions and normally distributed errors. The slope is

V2 = 1 and the intercept is V1 = 16. The sample values for

the independent variable G and the dependent variable H

are drawn i.i.d. as G ∼ # (4, 4) and H = V1 + V2G + n with

n ∼ # (0, 60), where the second terms (4 and 60) are the

variances. In these settings, the actual correlation between

G and H is 0.25, which is low but quite typical for applied

research, e.g, in psychology. The sample values are denoted

by Gğ and Hğ for 8 = 1, . . . , =. As external information, the

moments � (H), � (G), and Var(H) are used individually

or in combination of two or more of them, resulting in

7 moment scenarios. For Var(H), the moment function

ℎ(z) = Ĥ
Ĥ−1

(H− H̄)2 − 4 is used, where H̄ is the sample mean

of H and Ĥ
Ĥ−1

corrects for degrees of freedom. Note that using

Var(H) leads to ℎ(4) = 1

Ĥ−1

∑Ĥ
ğ=1

(Hğ − H̄)2 − 4, which is not

normally distributed. Finally, two scenarios are chosen with

respect to IěĮ to investigate the type I error and the power,

respectively. For the first scenario, IěĮ = [0.95 ·e0, 1.05 ·e0]
and for the second, IěĮ = [1.2 · e0, 1.3 · e0].

To analyze the effect of the proximity of IěĮ to the true

value on the power of the tests, we use distributions for

G and H that differ in terms of their standardized mean

difference. To justify this, note that the square root of the

test statistic can be simplified when using only one of the

selected moments, as follows:

√
= · h(e)Đ !̂−1

ℎ h(e) =
√
=
| ℎ̂ − 4 |
√
l̂ℎ

, (4)

where all expressions are not written in bold because they

are now single-valued. Now, (4) resembles a t-test statistic

and the typical effect size used for this test statistic is the

standardized mean difference 3 =
|ě0−ě |√

Var(ℎ (z))
[5]. The value

in IěĮ that is closest to e0 is 1.2 · e0. For the Sargan-Hansen

test based on external intervals using !̂ℎ = Ŝℎ , it holds for

� (G) that 3 =
|4−1.2·4 |

2
= 0.4, a small effect size, and for

� (H) that 3 =
|20−1.2·20 |

8
= 0.5, a medium effect size [5].

Thus, using � (H) alone should result in higher power than

using � (G) alone. For Var(H) the calculation of 3 is a bit

more complex. Under the above conditions, Ĥ
Ĥ−1

(H− H̄)2 has

a scaled j2

1
−distribution. However, 3 is scale invariant, so

we can assume without loss of generality that Ĥ
Ĥ−1

(H− H̄)2 is

j2

1
− distributed. This leads to 3 = 0.2 1√

2
= 0.1414, which

is below the threshold for small effects according to Cohen

[5]. Note that the effect size for Var(H) does not depend on

the value of any moment, which is a consequence of using

a normally distributed H.

Taken together, these are 2 (sample sizes) × 7 (moment

combinations) × 2 (choices of IěĮ) = 28 scenarios. For

each scenario, the rejection rates of the null hypothesis are

calculated for three tests, namely the Sargan-Hansen test

based on external intervals using !̂ℎ = Ŝℎ (abbreviated

SH(Ŝℎ)), the Sargan-Hansen test based on external intervals

using !̂ℎ = �̂ℎ (abbreviated SH(�̂ℎ)), and the small sample

test for information-data conflict (IDC). The significance

level is always set to U = 0.05. For SH(Ŝℎ) and IDC, the

test statistic j2 is computed using quadratic programming

as described in Section 2.2, and for SH(�̂ℎ) it is computed

using Theorem 4.

Simulations were performed in R, version 4.2.1 [17]. The

R package quadprog [19] was used to perform quadratic

programming. To calculate rejection rates, each simulation

scenario was repeated 10000 times. The associated R script

can be found in the electronic supplementary material. The

results concerning type I error rates are presented in Table 1

and Table 2 and the results concerning power are presented

in Table 3 and Table 4.

Table 1: Type I error rates for = = 30

Moments SH(Ŝℎ) SH(�̂ℎ) IDC

� (H) 0.0085 0.0061 0.0065

Var(H) 0.0752 0.0657 0.0674

� (G) 0.0162 0.0121 0.0124

� (H),Var(H) 0.0573 0.0429 0.0460

Var(H), � (G) 0.0578 0.0456 0.0482

� (H), � (G) 0.0115 0.0057 0.0069

� (H),Var(H), � (G) 0.0487 0.0302 0.0345

Table 2: Type I error rates for = = 50

Moments SH(Ŝℎ) SH(�̂ℎ) IDC

� (H) 0.0055 0.0043 0.0044

Var(H) 0.0554 0.0502 0.0508

� (G) 0.0089 0.0070 0.0075

� (H),Var(H) 0.0330 0.0293 0.0302

Var(H), � (G) 0.0358 0.0298 0.0305

� (H), � (G) 0.0041 0.0029 0.0031

� (H),Var(H), � (G) 0.0264 0.0195 0.0213
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Table 3: Power for = = 30

Moments SH(Ŝℎ) SH(�̂ℎ) IDC

� (H) 0.7811 0.7519 0.7564

Var(H) 0.2530 0.2341 0.2364

� (G) 0.5994 0.5604 0.5680

� (H),Var(H) 0.7421 0.6687 0.6852

Var(H), � (G) 0.6027 0.5209 0.5409

� (H), � (G) 0.8116 0.7404 0.7576

� (H),Var(H), � (G) 0.8076 0.6885 0.7189

Table 4: Power for = = 50

Moments SH(Ŝℎ) SH(�̂ℎ) IDC

� (H) 0.9416 0.9339 0.9355

Var(H) 0.2808 0.2677 0.2699

� (G) 0.8048 0.7877 0.7906

� (H),Var(H) 0.9040 0.8807 0.8860

Var(H), � (G) 0.7929 0.7526 0.7626

� (H), � (G) 0.9607 0.9478 0.9508

� (H),Var(H), � (G) 0.9499 0.9219 0.9302

4. Discussion

4.1. Summary of the Simulation Results

All type I error rates were below the U significance level,

except in the cases where Var(H) was used. When Var(H)
was used alone, the type I error rates of all tests were

above U, indicating that the tests could not compensate

for deviations from the normal distribution. A possible

explanation could be that IěĮ was not large enough. In

practice, however, IěĮ is determined externally and should

not be expanded carelessly, since a broader IěĮ would result

in lower power. Nevertheless, a larger sample size would be

a possible solution, since in all our scenarios an increase in

sample size resulted in lower Type I error rates and higher

power. When Var(H) was used in combination with other

moments, the type I error rates were below U at = = 30 for

the tests SH(�̂ℎ) as well as IDC, and at = = 50 for all tests,

showing that combinations of normally and non-normally

distributed sample moments can improve the type I error

rate. When in doubt, a simulation of the practical scenario

should be performed to analyze whether the significance

level is exceeded. For the scenarios using � (H) alone, the

smallest type I error rates were 0.0061 for = = 30 and

0.0043 for = = 50, showing that the tests can be much

more conservative than the significance level would suggest.

This is the expected consequence of using the conservative

�−maximin rule. In all moment scenarios, there was a clear

order of the tests in terms of type I error rate. The test

SH(Ŝℎ) always had higher type I error rates than IDC and

IDC always had higher error rates than SH(�̂ℎ).

As for the power of the tests, their order corresponds

to the order of the type I error rate. In all moment sce-

narios, SH(Ŝℎ) had the highest power, followed by IDC

and SH(�̂ℎ). As expected, � (H) yielded the highest power

when used alone, followed by � (G) and Var(H), clearly

reflecting the effect size 3 calculated in Section 3. With

powers ranging from 0.7519 to 0.7811 for = = 30 and from

0.9339 to 0.9416 for = = 50, the moment � (H) shows that

the use of an external interval does not erase all of the

power of the tests in our simulation study. Even for the

small effect size exerted by the moment � (G), the power

ranged from 0.7877 to 0.8048 for = = 50. However, using

combinations of moments does not always result in higher

power. Combinations with Var(H) resulted in lower power

than the same combinations without Var(H), with the sole

exception of Var(H) and � (G) for the test SH(Ŝℎ) in the case

= = 30. The maximum power reduction due to the inclusion

of Var(H) was 0.0832 for = = 30 and 0.0532 for = = 50,

respectively, for the moment � (H) for the test SH(�̂ℎ). This

reduction property is explained by the very small effect

size when using Var(H), which causes the increase in the

critical value due to the higher degrees of freedom ?2 to

exceed the expected increase in the test statistic due to the

inclusion of Var(H). Only for the test SH(�̂ℎ) and = = 30

did the combination of � (G) and � (H) result in lower power

than using � (H) alone. In all other cases, however, the

combination of � (G) and � (H) led to an increase in power,

although not as pronounced, since for = = 30 the power

only increased by a maximum of 0.0305.

Despite the conservative �−maximin decision rule used

to construct them, the tests had good power for small sample

sizes at small and medium effect sizes in our simulation

scenarios. However, when a moment is not normally dis-

tributed, one should be very careful with its use, as it may

lead to too high a type I error rate when used alone and to a

lower power when used in combination with other moments.

The simulations suggest that in scenarios such as those used

here, one should select the single normally distributed mo-

ment with the largest effect size rather than using multiple

moments in combination. In particular, deviations from the

normal distribution, which are likely to occur frequently in

practice, need to be considered in further research.

4.2. Outlook

Most importantly, the robustness of the tests to deviations

from the normal distribution should be further investigated.

If only the variance of H is used as the external moment,

one should correct for type I error rates by deriving the
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specific distribution of the test statistic in this case, given

normally distributed variables.

Since the �−maximin decision rule is conservative, one

could analyze the effect of using other p-value decision

rules on the tests developed here. There are some issues

regarding this endeavor. First, the upper probabilities of

the events in Section 2.2 would effectively be 1. This is

because the credal set includes distributions with arbitrarily

large noncentrality parameters. These distributions shift

the probability mass to infinity, while the interval of test

statistics for a fixed = is bounded almost surely. One way to

deal with this problem would be to set an upper bound on the

noncentrality parameter for a fixed =. Second, note that using

a �−maximax decision rule would result in higher p-values

and thus an even more conservative test. A more liberal

procedure would be to minimize the lower probabilities.

Since the external interval necessarily contains values that

are not the true moment value, the p-values for these would

asymptotically be 0, resulting in a test that always rejects

the null hypothesis even if the interval contains the true

moment value.

Another way to construct a more liberal test would be to

use different significance levels, possibly increasing with

=, since the actual type I error rates appear to be low even

at = = 50. However, one should keep in mind that the type

I error rate depends on where the true value lies within

the external interval. Therefore, it would be interesting to

analyze the type I errors for several locations of the true

value to calculate the worst case type I error.

Although the Sargan-Hansen test has been reduced to a

Wald test as shown here, there are still ways to use infor-

mation about model parameters in the tests constructed in

this paper, for example implementing the OLS estimator (a

function based only on the data) and an external interval

that represents the external information about the regression

parameter. It would be interesting to study the properties of

such ’indirect’ model moment conditions. In addition, other

tests or frameworks for using moment-type external infor-

mation could be used and compared to the tests developed

here, such as the Empirical Likelihood framework [13].

Finally, the results derived here may also be useful when

working with interval-valued information about moments in

other research areas, since the �−maximin decision rule for

the p-values is based on the stochastic order of the underlying

family of distributions of a test statistic. This is true for

many econometric and psychometric procedures, such as

the Wald test for general linear and nonlinear hypotheses, the

likelihood ratio test, and the Langrange multiplier test, since

their test statistics are asymptotically chi-squared distributed

under the null hypothesis (see Cameron and Trivedi [4] for

more details). The algebraic results could help to derive

analytical formulas for the externally informed estimators of

Imbens and Lancaster [9] and combine them with the use of

external intervals. Since these estimators are more efficient

than OLS estimators and since external intervals are a more

realistic and robust representation of external information,

there could be an interesting interaction between the two.
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USING EXTERNAL INFORMATION FOR MORE PRECISE INFERENCES IN GENERAL

REGRESSION MODELS
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Empirical research usually takes place in a space of available external information, like results from
single studies, meta-analyses, official statistics or subjective (expert) knowledge. The available information
ranges from simple means and proportions to known relations between a multitude of variables or estimated
distributions. In psychological research, external information derived from the named sources may be used
to build a theory and derive hypotheses. In addition, techniques do exist that use external information
in the estimation process, for example prior distributions in Bayesian statistics. In this paper, we discuss
the benefits of adopting generalized method of moments with external moments, as another example for
such a technique. Analytical formulas for estimators and their variances in the multiple linear regression
case are derived. An R function that implements these formulas is provided in the supplementary material
for general applied use. The effects of various practically relevant moments are analyzed and tested in
a simulation study. A new approach to robustify the estimators against misspecification of the external
moments based on the concept of imprecise probabilities is introduced. Finally, the resulting externally
informed model is applied to a dataset to investigate the predictability of the premorbid intelligence quotient
based on lexical tasks, leading to a reduction of variances and thus to narrower confidence intervals.

Key words: external information, generalized method of moments, imprecise probabilities.

1. Introduction

When planning new empirical studies, researchers are confronted with a variety of information

from previous studies, including statistical quantities such as means, variances or confidence

intervals. However, this external information is mostly used qualitatively, i.e., to develop new

theories, and rarely in a quantitative way, i.e., to estimate parameters. One advantage of using

external information to estimate a parameter is that some parameter values can be excluded or

considered less likely than without the external information, potentially leading to more efficient

estimators. The usage of informed prior distributions, where the external information can be

used to specify (certain aspects of) the prior distribution, is well known in Bayesian statistics

(Bernardo & Smith, 1994). The underlying goal for its use must be clear. On the one hand,

external information can facilitate the fitting or tuning of a model. On the other hand, it can

make estimators more robust or efficient. This paper aims to achieve the latter of the two goals.

Bayesian statistics refers to this as statistical elicitation (Kadane & Wolfson, 1998). The objective

is to translate expert knowledge into a prior distribution. Therefore, many psychological biases,

such as judgment by representativeness, availability, anchoring, adaptation, or hindsight bias and

the intentional misleading by experts, must be considered. It should be noted that the aim is not
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to achieve objectivity but to ensure a proper statistical representation of subjective knowledge

(Garthwaite et al., 2005; Lele & Das, 2000). However, we believe that in applied psychological

research, the researcher is usually the one who selects the external information, but is susceptible to

the same psychological biases, e.g., in deciding which studies to include. Moreover, the difficulties

in eliciting a (multivariate) prior distribution are well documented (Garthwaite et al., 2005, pp.

686–688). The method proposed in this paper allows a simplification of the elicitation compared

to Bayesian statistics, since only moments need to be elicited. The elicitation of moments has been

well studied for correlations, means, medians, or variances (Garthwaite et al., 2005). In Bayesian

elicitation, there are several possible prior distributions for these externally given moments, e.g.,

with the same expected value or the same correlation, leading to different posterior distributions

and thus potentially different results. This problem of prior sensitivity was addressed by Berger

(1990) and led to work on robust Bayesian analysis (for an overview, see Insua & Ruggeri, 2000).

However, it is somewhat arbitrary to choose the class of distributions for which one wants to

make the analysis robust (Garthwaite et al., 2005, p. 695). In our framework, no restriction to a

particular class of distributions is required, since it relies solely on moment information and a

central limit theorem.

Another important point is that external information may not in general be precise and correct.

As nearly all of the external quantities are estimates themselves, they are at least prone to sampling

variation. If the external information is not correct (e.g., due to poor sampling or measurement

protocols), its use can lead to biased conclusions that may even be worse than without external

information. To address this problem, we suggest using an interval for the external information

instead of point values, enabling researchers to incorporate any uncertainty about the external

moments into the analysis. Inserting external intervals into estimators results in the imprecise

probabilistic concept of feasible probability (F-probability) discussed in Sect. 4 (Augustin et al.,

2014; Weichselberger, 2001). This approach provides an alternative way to enhance the robustness

of elicitation compared to the classical Bayesian paradigm: Using intervals can reflect uncertainty

about moments, and the resulting inference is still coherent if the interval contains the true value.

However, researchers must be cautious of and avoid overconfidence bias when eliciting intervals;

that is, the tendency to select intervals that are too narrow to represent current uncertainty (Winman

et al., 2004). A test of the latter assumption is available, more specifically a test of the compatibility

of the external interval and the data, which could serve as a pretest before applying the methods

proposed here (Jann, 2023).

The insertion of intervals into estimators resembles creating fuzzy numbers (Kwakernaak,

1978; Zadeh, 1965), for which generalizations of traditional statistical methods already exist. This

is particularly true for the special case of triangular numbers (Buckley, 2004). The possibility

distributions induced by triangular numbers constitute special cases of imprecise probabilities

and are constructed based on only one distribution (Augustin et al., 2014, pp. 84–87). This is the

key difference between triangular numbers and F-probabilities, since the latter are constructed

from a set of possible probability distributions, which can enhance the robustness of the outcomes

compared to constructions based on only one distribution. Another difference lies in the fact that

triangular numbers are constructed by varying the confidence probability of a confidence interval

based on the estimator, while the external interval we use in this paper is fixed. Moreover, there

is no probabilistic statement about the values within that interval.

In the present study, we analyze the frequentist properties of estimators if external information

is used, that can be expressed as moment conditions and thus does not use complete distributions as

prior information. To our knowledge, there is no general framework for robustly incorporating such

quantitative external information into frequentist analysis. Since this would offer the advantage

of improving upon classical inference procedures widely used in psychology, our goal is to

present such a framework. The use of these external moment conditions in addition to the moment

conditions used to estimate the model parameters leads to an overidentified system of moment
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conditions. The main idea to find well performing estimators for such “externally” overidentified

systems is the framework of the Generalized Method of Moments (GMM) (Hansen, 1982). This

idea has already been used in the econometric literature, for example, by Imbens and Lancaster

(1994) who combine micro- and macro-economic data and by Hellerstein and Imbens (1999) by

constructing weights for regression models based on auxiliary data. A different yet related way to

incorporate external moment-information is the empirical likelihood approach (Owen, 1988). This

technique is quite frequently used in the literature, for example, in finite population estimation

(Zhong & Rao, 2000) and for externally informed generalized linear models (Chaudhuri et al.,

2008). Both approaches have in common that the use of external information may increase the

efficiency of an estimator and/or reduce its bias.

Actually, in Sect. 3, we show that there will always be a variance reduction, if the external

moment conditions and the ones for the model are correlated and if the covariance matrix of

all moment conditions is positive definite. As the GMM allows the estimation of a large class

of models, and many statistical measures like proportions, means, variances and covariances are

statistical moments, the range of possible applications is large but far from being implemented

in psychological research. For a multiple linear model, we derive the estimators analytically in

Sect. 3. The use of imprecise probabilities will increase the overall variation of the estimator, and

moreover, the effect of the variance reduction will decrease. As we will demonstrate, however,

variance reduction will still be possible while increasing the robustness of the estimation. The

proposed method and techniques allow more precise and robust inferences, which is particularly

relevant in small samples. To illustrate the small sample performance of the externally informed

models in multiple linear models, a simulation study is presented in Sect. 5. An application to a

real data set analyzing the relation of premorbid (general) intelligence and performance in lexical

tasks (Pluck & Ruales-Chieruzzi, 2021) is presented in Sect. 6.

2. Externally Informed Models

In a first step, we assume that precise external information is available, an assumption that

will be relaxed in Sect. 4. Throughout, we assume that all variables will be considered as random

variables if not given otherwise. For notational clarity, we will always write single-valued random

variables in italic small letters. Vectors as well as vector-valued functions will be written in small

bold letters and matrices in bold capital letters.

Although the basic concepts are presented in the following section, for the class of general

regression models, we will consider the family of linear models for their illustration in a concrete

class of models due to their frequent use. Note that, for example, ANOVA models are special

cases of this model, however, with fixed factors instead of random covariates. Nevertheless, the

results derived in this paper carry over to these models.

Let z = (z1, . . . , z p)
T be a real-valued random vector and zi , i = 1, . . . , n, be i.i.d. random

vectors distributed like z, representing the data. Suppose we want to fit a regression model to this

data set with fixed parameter θ ∈ R
p, where the adopted model reflects the interesting aspects of

the true data-generating process and θ0 is the true parameter value. In linear regression models,

the parameter of scientific interest is usually the parameter of the mean structure denoted as

β = (β1, . . . , βp)
T with true value β0. The notation β will only be used for linear regression

models, while we will use θ to denote the regression coefficients in general regression models. The

random vector z is given by z = (xT , y)T with random explanatory variables x = (x1, . . . , x p)
T

and dependent variable y. Accordingly, the unit specific i.i.d. random vectors z are written as

zi = (xT
i , yi )

T for i = 1, . . . , n. Hence, the random (n × p)-design matrix is X = (x1, . . . , xn)T ,

and we write y = (y1, . . . , yn)T .

Downloaded from https://www.cambridge.org/core. 17 Mar 2025 at 12:26:16, subject to the Cambridge Core terms of use.



442 PSYCHOMETRIKA

The multiple linear model can now be written as y = Xβ0 + ε with random error terms

ε = (ε1, . . . , εn)T . As an illustration, suppose we want to investigate the effect of the explanatory

variables fluid intelligence and depression on the dependent variable mathematics skills. We

could design a study, in which fluid intelligence and math skills are measured via Cattell’s fluid

intelligence test, in short CFT 20-R, (x2) and the number sequence test ZF-R (y), respectively

(Weiss, 2006). Depression could be measured as a binary variable indicating if a person has a

depression-related diagnosis (x3). The model could be a linear multiple regression of the ZF-R

score on the depression indicator and the CFT 20-R score for fluid intelligence. To include the

intercept, x1 is a degenerate variable with value 1.

In addition to the observed data and the assumptions justifying the model, we often have

available external information like means, correlations or proportions, e.g., through official statis-

tics, meta-analyses or already existing individual studies. In our applied example, there are various

German norm groups for the CFT 20-R and the ZF-R, even for different ages (Weiss, 2006). Hence,

we could always transform the results into scores with known expected value and variance, i.e.

the CFT 20-R score can be transformed into an IQ-score based on a recent calibration sample

from 2019, reported in the test manual (Weiss, 2019). Regarding the relation of fluid intelligence

and math skills, a recent meta-analysis based on more than 370,000 participants in 680 studies

from multiple countries suggests a correlation of r = 0.41 between the two variables (Peng et

al., 2019). In addition, based on a study covering 87% of the German population aged at least

15 years, Steffen et al. (2020) report a prevalence of depression, defined as a F32, F33 or F34.1

diagnosis following the ICD-10-GM manual, of 15.7% in 2017.

Let us assume that these values can be interpreted as true population values, an assumption

that will be relaxed later. Note that they have the form of statistical moments. For example, the

observable depression prevalence is assumed to equal the expected value of the binary depression

indicator (first moment), the mean (now considered as expected value) and variance of the test

scores are set equal to the first moment and the second central moment, respectively, of the random

variables CFT 20-R-score and ZF-R-score. Finally, the correlation is assumed to equal the mixed

moment of the standardized CFT 20-R-score and ZF-R-score. Taking q to be the number of known

external moments, we state

Definition 1. Let M be a statistical model. Further let u be a (q ×1)-vector of statistical moment

expressions and μex the corresponding (q × 1)-vector of externally determined values for the

statistical moments in u. Then the model combining M and the conditions u = μex is called

externally informed model.

To illustrate the definition, we will use the applied example from above in which case the

model M is a multiple linear regression model. Interpreting the norms for the dependent variable

ZF-R from the calibration sample as population values, external knowledge about the correspond-

ing moments, for example the means of ZF-R, is available. Let us assume that ZF-R is transformed

into the IQ-scale. Then, if u = E(y) and μex = 100, we get E(y) = 100 × 1n = E(X)β0, where

1n is a (n × 1)-vector of ones. Thus, u = μex imposes conditions on β.

3. Estimation and Properties of Externally Informed Models

3.1. Generalized Method of Moments with External Moments

The GMM approach (Hansen, 1982) allows to estimate (general) regression models and to

incorporate external moments into the estimation (Imbens & Lancaster, 1994). To estimate the

parameter of a general regression model, a “model moment function” m(z, θ) must be given, which

satisfies the conditions E[m(z, θ)] = 0 only for the true parameter value θ0. The corresponding
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“sample moment function” for zi will be denoted as m(zi , θ). In case of the linear regression

model from Sect. 2, the model moment function corresponding to the method of Ordinary Least

Squares (OLS) is m(z,β) = x(y − xT β) (Cameron & Trivedi, 2005, p. 172). Given the model

is correctly specified, for true parameter value β0, E[m(z,β0)] = E[x(y − xT β0)] = 0 holds.

Replacing these population model moment conditions by corresponding sample model moment

conditions,

0 =
1

n

n∑

i=1

m(zi ,β) =
1

n

n∑

i=1

xi

(
yi − xT

i β
)

=
1

n
XT (y − Xβ) ,

and solving these estimating equations for β, leads to an estimator β̂ for β0. The above conditions

are identical to the estimating equations resulting from the least-squares or, if normality of the

errors is assumed, the maximum likelihood method. Furthermore, the general classes of M- and

Z-estimators can be written using estimating equations that have this moment form. This leads

to broad applicability, since these classes, for example, include the median and quantiles (Vaart,

1998).

The possibly vector-valued “external moment function” will be denoted as h(z) = u(z)−μex,

where the functional form of u(z) depends on the external information included into the model.

We assume that μex = E[u(z)], so that E[h(z)] = 0. If, for example, the expected value of y is

known to be E(y) = 100, then u(z) = y, μex = 100 and h(z) = y − 100. The corresponding

sample moment condition is 0 = 1
n

∑n
i=1(yi − 100) (Imbens & Lancaster, 1994).

To simplify the presentation, we define the combined moment function vector in gen-

eral regression models as g(z, θ) = [m(z, θ)T , h(z)T ]T in what follows and assume that

E[ 1
n

∑n
i=1 g(zi , θ0)] = 0 holds. Note that the number of moment conditions exceeds the number

of parameters to be estimated, i.e. the externally informed model is overidentified. This means

that there will in general be no estimator θ̂ that solves the corresponding sample moment condi-

tions 1
n

∑n
i=1 g(zi , θ) = 0. To deal with the overidentification problem, we will use the GMM

approach (Hansen, 1982), that finds an estimator as “close” as possible to a solution of the sample

moment conditions. This is done by maximizing a quadratic form defined by a chosen symmetric,

positive definite weighting matrix W in the moment functions of the sample. The efficiency of

the estimator is affected by W, and this can be chosen to maximize the asymptotic efficiency of

the estimator in the class of all GMM-estimators based on the same sample moment conditions

(Hansen, 1982). This optimal weighting matrix is W = �−1, where � = E[g(z, θ0)g(z, θ0)
T ].

However, this optimal W is unknown in practice and must be estimated by a consistent estimator

Ŵ.

Definition 2. (Newey & McFadden, 1994, p. 2116) Let g(z, θ) be a vector-valued function with

values in R
K , that meets the moment conditions E[g(z, θ0)] = 0. Further let Ŵ ∈ R

K ,K be a

positive-semidefinite, possibly random matrix, such that (rT Ŵr)1/2 is a measure of distance from

r to 0 for all r ∈ R
K . Then, the GMM-estimator θ̂ex is defined as the θ , which maximizes the

following function:

Q̂n(θ) = −

[
1

n

n∑

i=1

g(zi , θ)

]T

Ŵ

[
1

n

n∑

i=1

g(zi , θ)

]
.

The GMM approach provides consistent and normally distributed estimators under mild

regularity conditions (Newey & McFadden, 1994, p. 2148) for a wide range of models, like linear

or nonlinear, cross-sectional or longitudinal regression models. Note that we have not assumed that
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Ŵ is invertible because we will mainly derive asymptotic expressions based on W for which the

invertibility of Ŵ is not necessary. However, when deriving estimators, additional assumptions

about invertibility must be made, which we explain in Sect. 3.2. Let G = E[∇θ g(z, θ0)] be a

fixed matrix and W the optimal weighting matrix, then Var(θ̂ex) = 1
n
(GT WG)−1. This variance

expression is not informative with respect to a possible efficiency gain of the GMM-estimator

if external information is used. Hence, the following corollary explicitly shows the effect of the

external information on the variance of θ̂ex.

Corollary 1. Assume θ̂ M is the GMM-estimator based on the model estimating equations alone

(ignoring the external moments), and that m(z, θ) and θ have the same dimension. Using the

prerequisite g(z, θ) = [m(z, θ)T , h(z)T ]T it follows, that � has the block form

� =

(
E[m(z, θ)m(z, θ)T ] E[m(z, θ)h(z)T ]

E[h(z)m(z, θ)T ] E[h(z)h(z)T ]

)
=

(
�M �T

R

�R �h

)

and that

{
E[∇θ m(z, θ0)]

T
}−1

�T
R�−1

h �R {E[∇θ m(z, θ0)]}
−1 (1)

A proof of Corollary 1 can be found in the supplementary materials online. Note that (1) shows

that Var(θ̂ex) is equal to the conditional variance of θ̂ M under the external moment conditions,

since the asymptotic distribution is normal. This equality shows why there is a reduction in the

variance. Let the second term on the right-hand side of (1) be denoted by D, then Var(θ̂ex) can

be written as Var(θ̂ex) = Var(θ̂ M ) − D. If D is nonnegative definite and not equal to 0, then

including external moments leads to an expected efficiency gain in θ̂ex as compared to θ̂ M . That

D �= 0 is nonnegative definite if �R �= 0 is easily seen by noting that �−1
h is positive definite

and therefore can be written as �−1
h = �

−1/2
h �

−1/2
h , where �

−1/2
h is the positive definite square

root of �−1
h . Since nD can be written as the product of {E[∇θ m(z, θ0)]

T }−1�T
R�

−1/2
h with its

transpose, D is nonnegative definite. In summary, �R �= 0 is a necessary and sufficient condition

for the presence of variance reduction based on Corollary 1. Finally, it should be noted that

Var(θ̂ex) can consistently be estimated via the plug-in approach (e.g. Newey & McFadden, 1994,

pp. 2171–2173) by replacing all unknown expected values by sample means.

3.2. The Externally Informed Multiple Linear Model

In linear models, θ̂ex is denoted as β̂ex. For analytical simplicity, in this section, we assume

the Gauss–Markov assumptions hold, specifically E(εi ) = 0, V ar(εi ) = σ 2, Cov(εi , ε j ) = 0

for all i �= j with i, j = 1, . . . , n, and independence of the explanatory variables and the error

terms ε. Furthermore, we assume the errors to be normally distributed in small samples. Analytical

solutions to the estimating equations exist under these assumptions:

Theorem 1. Let H = [h(x1, y1), . . . , h(xn, yn)]T be the (n × q) random matrix containing the

externally informed sample moment functions and 1n a (n ×1)-vector of ones. Further let �̂h and

�̂R be consistent estimators of the corresponding matrices in Corollary 1. Then, the (consistent)

externally informed OLS estimator is:

β̂ex = (XT X)−1XT y − (XT X)−1�̂
T

R�̂
−1

h HT 1n

and its variance is
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Var(β̂ex) = Var(β̂) − D

=
1

n
σ 2

[
E

(
xxT

)]−1
−

1

n

[
E

(
xxT

)]−1
�T

R�−1
h �R

[
E

(
xxT

)]−1
,

where σ 2 is the variance of the error in the assumed linear model.

The proof of Theorem 1 is given in the supplementary materials online. Note that only

the assumption of invertibility of �̂h is made, which is weaker than the assumption that �̂ is

invertible. From Theorem 1, it is not immediately obvious which of several possibly available

functions may lead to a variance reduction. Therefore, let us consider some external moment

functions and their possible effects on the variance of β̂ex. Note that inclusion of external moment

functions into the estimating equations may lead to expected efficiency gains only if �T
R =

E[x(y − xT β0)h(x, y)T ] = E[x ε h(x, y)T ] �= 0 holds.

Let the expressions σx j
and σy denote the population standard deviations of x j and y, respec-

tively, whereas σx j ,y indicates the covariance of x j and y. To denote the covariance vector

(σx1,x j
, . . . , σx p,x j

)T of x and x j the expression σ x·,x j
is used, including σ 2

x j
at the j-th posi-

tion. Finally, ρx j ,y is the population correlation of x j and y.

First, consider some function f(x) of x, i.e. h(x) = f(x) − E[f(x)]ex, where E[f(x)]ex is

the known expected value of f(x). If the assumptions underlying the linear model hold, then

�R = E[x ε h(x)T ] = 0 because ε is independent of f(x) and E(ε) = 0. Thus, according to

the results of Sect. 3.1, there will be no variance reduction if the external moment function is a

function of the explanatory variables only. In the example described in Sect. 2, there will be no

efficiency gain if the 15.7%-prevalence of depression is used as external information to estimate

the linear regression model.

On the other hand, if the external moment function is a function of ε, then generally,

E[x ε h(x, y)T ] �= 0. In the example, assume that the correlation between fluid intelligence

and math skills reported in Peng et al. (2019) is taken as external information, in which case

h(x, y) = h(x2, y) = [y − E(y)][x2 − E(x2)]/(σx2σy) − ρ(x2, y)ex, where ρ(x2, y)ex = 0.41.

Then E[x ε h(x2, y)] = [σ 2/(σx2σy)]σ x·,x2 will not in general be zero, and hence, there will,

in general, be efficiency gains with respect to β̂ex. For more examples, see Table 1 and for the

derivation of the results, see the supplementary materials online. It should be noted that if the

distribution of the errors is not symmetrical, then E(x)E(ε3) has to be added to the entries in

column �T
R of Table 1 for the cases E(y2) and σ 2

y , see the supplementary materials online for

further details.

Table 2 presents, in the second column, the absolute variance reduction for the parameters if

the external information given in the first column is used to estimate the regression model. The

third column in Table 2 shows which entries of the parameter β can be estimated more precisely if

the external information is used. The results of Table 2 are derived in the supplementary materials

online. Note that �h is written as ωh here, as it is single-valued. It holds that ωh = E[h(x, y)2],

where h(x, y) is of the form given for various moments in Table 1. However, this expression

often includes the terms E(ε) and E(ε3), which are already set to zero in �T
R (see supplementary

materials online). In order to avoid invalid estimates, E(ε) and E(ε3) should be set to zero in ωh .

For example, if the correlation between fluid intelligence and math skills reported in Peng et al.

(2019) would be used in the regression from math skills on fluid intelligence and depression, then

the variance of the estimator weighting the variable fluid intelligence would be reduced by:

σ 4

nωhσ 2
y σ 2

x2

=
σ 4

nVar{[x2 − E(x2)][y − E(y)]}
.
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Table 1.
Forms of �T

R
for various single moments.

Moments h(x, y) �T
R

E(y) y − E(y)ex σ 2 E(x)

E(x j y) x j y − E(x j y)ex σ 2 E(x j · x)

E(y2) y2 − E(y2)ex 2σ 2 E(xxT )β0

σ 2
y [y − E(y)]2 − (σ 2

y )ex 2σ 2[E(xxT )β0 − E(y)E(x)]

σx j ,y [y − E(y)][x j − E(x j )] − (σx j ,y)ex σ 2σ x·,x j

ρx j ,y
[y−E(y)][x j −E(x j )]

σx j
σy

− (ρx j ,y)ex
σ 2

σx j
σy

σ x·,x j

βx j ,y
[y−E(y)][x j −E(x j )]

σ 2
x j

− (βx j ,y)ex
σ 2

σ 2
x j

σ x·,x j

The subscript ex indicates externally determined values. In the last line, βx j ,y represents the expected value

of the estimator of the slope from a simple linear regression model, which is identical to the true value of

the slope only if x j is independent of the other explanatory variables.

Table 2.
Effects of various single moments in terms of variance reduction.

Moments D Effect on

E(y) σ 4

nωh
e1eT

1 Only β1

E(x j y) σ 4

nωh
e j eT

j
Only β j

E(y2) 4σ 4

nωh
β0βT

0 All β j �= 0

σ 2
y

4σ 4

nωh
[β0 − E(y)e1][β0 − E(y)e1]T All β j �= 0 and β1

σx j ,y
σ 4

nωh
ẽ j ẽT

j β j and β1

ρx j ,y
σ 4

nωhσ 2
y σ 2

x j

ẽ j ẽT
j β j and β1

βx j ,y
σ 4

nωhσ 4
x j

ẽ j ẽT
j β j and β1

The expression e j denotes the (p × 1)-vector with 1 at the j-th position and zeros elsewhere. Further we

set ẽ j := −E(x j ) · e1 + e j . In the last line, βx j ,y represents the expected value of the estimator of the

slope from a simple linear regression model, which is identical to the true value of the slope only if x j is

independent of the other explanatory variables.

This means that there will be a variance reduction in all practically relevant cases, where σ 2 �= 0

and Var{[x2−E(x2)][y−E(y)]} < ∞hold. For a comparison of the effects of the different external

moments, the corresponding relative variance reductions may be of interest. These are obtained by

dividing the j-th diagonal element of the absolute reductions in Table 2 by 1
n
σ 2 E(xxT )−1

( j, j), where

E(xxT )−1
( j, j) denotes the element of the inverse of E(xxT ) in the j-th row and the j-th column.

For the resulting expressions it is clear that n factors out, as D also includes 1
n

as the only factor

depending on n, while the rest are fixed values. Hence, the relative efficiency gains do not vanish

with increasing n, but are constant. In our example, the known correlation ρx2,y = .41 exerts an

expected relative variance reduction of

σ 2

E(xxT )−1
(2,2)

Var{[x2 − E(x2)][y − E(y)]}
,
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which is independent of n and does not vanish for large σ 2. Including more than one external

moment is straightforward. In that case �h includes not only variances but also covariances of

the external moments which may lead to additional variance reduction. To illustrate this effect,

consider the example from Sect. 2 using the external moments ρ(x2, y)ex = 0.41 and E(x2)ex =

100. For the sake of simplicity and without loss of generality we assume x2 and y to be centralized.

In this example, the external moments ρx2,y and E(x2) are included in the externally informed

multiple linear model, leading to �T
R =

(
0 σ 2

σx2
σy

σ x·,x j

)
according to Table 1, and

�h =

⎛
¿

Var(x2)
Cov(x2

2 ,y)

σx2
σy

Cov(x2
2 ,y)

σx2
σy

Var(x2 y)

σ 2
x2

σ 2
y

À
⎠

via definition, wherein Var(x2 y) is the scalar variance of x2 times y. Using the notation of Table 2,

the explicit inversion formula for (2 × 2)-matrices implies

D =
1

n

[
E

(
xxT

)]−1
�T

R�−1
h �R

[
E

(
xxT

)]−1

=
1

n

[
E

(
xxT

)]−1 σ 2

σx2σy

σ x·,x j
(�−1

h )(2,2)σ
T
x·,x j

σ 2

σx2σy

[
E

(
xxT

)]−1

=
σ 4(�h)(1,1)

n det(�h)σ 2
x2

σ 2
y

ẽ2ẽT
2 =

σ 4

n

[
Var(x2 y) −

Cov
(
x2

2 ,y
)2

σ 2
x2

] ẽ2ẽT
2 ,

where det(A) denotes the determinant of matrix A. Assuming both variances to be finite and

positive and invoking the Cauchy–Schwartz inequality, the fraction Cov(x2
2 , y)2/σ 2

x2
will not

exceed Var(x2 y) and hence D will be nonnegative. Further, if x2
2 and y have a covariance different

from 0, the variance will decrease even further, compared to the reduction due to ρx2,y alone.

Hence, β1 and β2 can in general be estimated even more efficiently, if E(x2) is used in addition.

3.3. Additional Remarks

Using many moments, however, increases the risk of a near-singular � matrix, especially if

the moments are strongly mutually (linear) dependent. Calculation of the GMM-estimator with

additional external moment functions often includes unknown population moments, like E(x) or

σ 2
y (see Table 1), which may be replaced by the corresponding sample moments. However, �R

and �h may in addition be functions of unknown σ 2 or β0, as can be seen in Table 1. Hence,

the externally informed GMM-estimator is calculated iterating over the following steps until

convergence: First estimate the model using the ordinary least squares approach without external

moments to get σ̂ 2 and β̂ and then estimate β̂ex based on the estimates from the former step.

Statistical inference with a GMM-estimator can be based on the Wald test, which simplifies

to a t-test if single regression coefficients are tested and its approximative normality can be used

to construct confidence intervals (Cameron & Trivedi, 2005). However, in small samples or when

dealing with complex models, it is sometimes better to use a bootstrap method (Cameron &

Trivedi, 2005; Spiess et al., 2019, p. 177).

As this approach combines data from different sources, one should take into account the issues

arising in meta-analyses in general. The Cochrane Handbook for Systematic Reviews of Interven-

tions (Higgins et al., 2019) and the PRISMA statement (Page et al., 2021) should be considered
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to select proper sources of external information, which are as up-to-date and as close as possible

to the same population, method and design of the study one wishes to use the externally informed

model in. This is important because a core regularity condition of the GMM is that the expected

values of the moment functions are zero, which can be violated, if the external moment and the

data were taken from different populations. As a possible approach to deal with this compatibility

issue, the GMM framework incorporates the Sargan–Hansen test to test if the overidentification

due to the additional moment conditions causes a Q̂n(θ̂ex) significantly larger than 0 (Hansen,

1982; Sargan, 1958). Another option to test for incompatibility especially in linear regression

models is the Durbin–Wu–Hausman test (Hausman, 1978), as it compares two estimators of the

same parameter. We will take a different approach here, as we will instead relax the assumption

of correct external point-values to intervals containing the true value.

4. Robustness due to Interval Probability

External information is only an estimate itself and thus prone to uncertainty. A classical

approach to analyze and prevent the issues of misspecification and thus misleading inferences

is to use robust models (Huber, 1981). Hence, it is important to use techniques to robustify the

estimation of the externally informed model. In this paper, we will adopt an approach based on

the theory of imprecise probabilities due to Weichselberger (2001), that is capable of dealing

with probabilistic and non-probabilistic uncertainty, not depending on a fully specified stochastic

model. The advantage is that instead of distributional assumptions we only need bounds for the true

external values. It would be possible to model the uncertainty in the external information within

a probabilistic, e.g., a Bayesian, framework. However, this framework would replace uncertainty

in the external information by assuming an additional parametric model of its estimation process

in form of precise prior distributions. Moreover, it is not straightforward to represent only certain

distributional aspects (moments) within a Baysian approach, e.g., the external information 100 =

E(y) = E(x)T β0 presented in Sect. 2.

4.1. Externally Informed Models Based on Interval Information

Assume that Iex is an interval containing the true value of an unknown external moment.

Hence every value in the interval could be the true one. To illustrate a possible way to construct an

Iex, we use our earlier example. In our application example, we have a 95% confidence interval

of [0.39, 0.44] for the correlation between fluid intelligence and mathematical skills (Peng et al.,

2019). This is, of course, an interval that includes the true value only with a positive probability, but

not with certainty. However, combining this confidence interval with the results of other studies on

this or a similar correlation, and thus possibly widening the interval, the resulting interval serves

as a subjective, rough approximation for Iex. We illustrate the use of this technique in Sect. 6.

In this section, we discuss another way of constructing Iex. Regarding the estimated depression

prevalence of 0.157 in Steffen et al. (2020), we know that 87% of the population has been

investigated. Thus, we can construct an interval by the technique proposed, e.g., in Manski (1993,

2003), Manski and Pepper (2013), Cassidy and Manski (2019). The two extreme cases that could

occur are that no person of the 13% unobserved individuals has a depression and on the other

extreme that all of these individuals have a depression. As 87% of 0.157 is 0.137, we get the

interval [0.137, 0.267] for the prevalence. The advantage of such intervals is that they completely

compensate for the missing values without any further assumptions. Having available an interval

for the external information, one can adopt a technique denoted as cautious data completion

proposed by Augustin et al. (2014, p. 182) to determine based on Iex the sets of possible values

for the estimator itself and its variance estimator. In our setting, this amounts to evaluating the
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estimator for the externally informed linear model and its variance estimator from Theorem 1

traversing Iex. This leads to a set Bex of possible parameter estimates and a set Vex of possible

variance estimates. These sets of estimates are compact and connected in the strict mathematical

sense, since both estimators are continuous functions on the external interval.

4.1.1. F-Probability Interval-based inferences can be justified by adopting the concept of

F-probabilities (Augustin, 2002; Weichselberger, 2000).

Definition 3. (Augustin 2002) Let � be a set and A be a σ -algebra on �. Further, let K(�,A)

be the set of all probability measures on (�,A). Then, a set-valued function F(·) on A is called

F-probability with structure M, if

1. there are functions L(·), U (·) : A → [0, 1] such that for every event A ∈ A it holds

that L(A) ≤ U (A) and F(·) has the form

F(·) : A → {[a, b] | a, b ∈ [0, 1] and a ≤ b}

A �→ F(A) := [L(A), U (A)] for every event A ∈ A,

2. the set M := {P(·) ∈ K(�,A) | L(A) ≤ P(A) ≤ U (A), for all A ∈ A} is not empty,

3. for all events A ∈ A it holds that inf P(·)∈M P(A) = L(A) and

supP(·)∈M P(A) = U (A).

For most applications, it is sufficient to restrict to the case � = R
d and letAbe the correspond-

ing Borel σ -algebra. F-probabilities are best understood as a representation of a “continuous” set

of probability measures. For example, consider all normal distributions with a variance of 1 and a

mean between −0.5 and 0.5. If we consider all these distributions as possible true distributions for

a random variable X and evaluate an event in terms of its probability, we obtain a set of possible

probability values. Consider the event A = {X ≤ 0}, its possible probability ranges from 0.3085

(for mean 0.5) to 0.6915 (for mean −0.5) and thus P(A) ∈ F(A) := [0.3085, 0.6915]. If this

procedure is performed for all A ∈ A, the resulting F(·) is an F-probability. In general, given any

nonempty setP of probability measures, one can construct the narrowest F-probability containing

P by defining F(A) := [inf P∈P P(A), supP∈P P(A)] for each event A ∈ A, cf. Remark 2.3. in

Augustin (2002). If the intervals F(A) consist of one element for all A, the F-probability simply

corresponds to a single probability measure. Thus, it is a natural generalization of the conven-

tional notion of probability, using simultaneously a range of probability measures between a lower

bound and an upper bound. An important property of F-probabilities for ensuring robustness is

that their structure M (all the probability measures covered by F(·), in the sense of condition 2 in

Definition 3) is generally larger than the set P (called pre-structure) of probability measures used

to construct them, since the structure is closed under convex combinations (Augustin, 2002). For

two probability measures P and Q, this follows by the basic inequality that for all 0 ≤ ε ≤ 1 and

A ∈ A it holds that

min(P(A), Q(A)) ≤ εP(A) + (1 − ε)Q(A) ≤ max(P(A), Q(A)).

For example, convex combinations of normal distributions are not themselves normally distributed

and include skewed and bimodal distributions. This illustrates that robustness with respect to

distributional assumptions increases compared to using normal distributions alone. Unlike other

concepts that reflect uncertainty about probability measures, such as triangular numbers (fuzzy

numbers), there is no preference for one distribution over another caused by weighting functions or
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possibility distributions. This agnosticism regarding the true distribution also covers deterministic

ambiguity to some extent. For instance, in our example, a deterministic alteration of μ over time,

where μ(t) ∈ [−0.5, 0.5] for all t , like μ(t) = 0.5 sin(t), would still be covered by the F-

probability at any time t because the F-probability covers the range of μ(t). In applied research,

the exact form of deterministic variation of μ is typically unknown, but if its bounds are known to

lie within an interval, the F-probability based on this interval would account for it. Of course, these

advantages come at the cost of greater conservatism than using a single probability distribution.

In our framework, the assumption of knowing the true moment value can be relaxed to

assuming that an interval is known containing the unknown true moment value. As the GMM-

estimator is asymptotically normally distributed for the true value of the external moment, we

asymptotically get a pre-structure consisting of all normal distributions for estimator β̂ex with

expected value inside Bex and with variance inside Vex. This pre-structure is guaranteed to contain

the normal distribution based on GMM asymptotics, since the true external moment value is

assumed to be in Iex. Therefore, for each event, the probability assigned to an event by this true

normal distribution will lie between the lower and upper bounds assigned to that event by F(·),

possibly leading to more conservative but valid statistical inference. Based on this pre-structure,

we get an F-probability. Statistical inference based on F-probabilities is done by treating the

probability intervals as a whole, e.g., by interval arithmetic. We demonstrate this principle by

constructing an equivalent to confidence intervals in the context of F-probabilities in the next

section.

4.1.2. Confidence Intervals for the Externally Informed Model Under F-Probabilities The

construction of confidence intervals (point-CIs) is in general not possible in the framework of

F-probabilities, because instead of a single probability value lower and upper bounds are assigned

to an event. One possibility, however, is to use the union of all possible point-CIs traversing

Iex. The idea to calculate unions of intervals already has been investigated for Bayesian highest

density intervals in an imprecise probability setting by Walter and Augustin (2009). Let θ̂e, j be

the j-th entry of the externally informed GMM-estimator θ̂ex using external value e, we define

the (1 − α) · 100% confidence union for θ j to be

⋃
CI1−α :=

[
inf

e∈Iex

[θ̂e, j − t1− α
2 ,n−p

√
V̂ar(θ̂e, j )], sup

e∈Iex

[θ̂e, j + t1− α
2 ,n−p

√
V̂ar(θ̂e, j )]

]

Because the true external moment value is in Iex, the borders of the point-CI constructed via the

true moment value lie between the infimum and the supremum of the lower and upper borders,

respectively, of all point-CIs on Iex. Therefore,
⋃

CI1−α covers the point-CI constructed via the

true moment value. The asymptotic normal distribution of β̂ex at the true value of the external

moment implied by the asymptotic properties of GMM-estimators described in Sect. 2 ensures

that the confidence union covers the true parameter asymptotically with probability at least 1−α.

An approximation of the confidence union can be calculated using grid search traversing Iex. If

the point-CIs used to construct
⋃

CI1−α differ, then the resulting interval is wider than every of

these point-CIs. This demonstrates that the positive effect of the variance reduction (a shorter

CI) can be reversed by the length of Iex. The reason is that a broader Iex increases the set over

which infimum and supremum are taken, possibly expanding
⋃

CI1−α . However, we will show in a

simulation study in Sect. 5 that in some cases it is possible to get a
⋃

CI1−α shorter than the (1−α)

confidence interval based on the OLS multiple linear regression. Hence, the variance reduction can

compensate the broadening of
⋃

CI1−α introduced by Iex. Finally, using
⋃

CI1−α strengthens

the robustness through the F-probability, on which
⋃

CI1−α is based, as it also includes, e.g.,

bimodal and skewed distributions.
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5. A Simulation Study

5.1. Settings

To test the externally informed GMM approach for multiple linear models in small samples,

we conducted two simulation studies. The first setting illustrates possible variance reduction if

correctly specified external moments are used and shows that the usage of small external moment

intervals can lead to confidence unions that may even be shorter than the OLS confidence interval.

In the second setting, we focus on misspecified external information and non-normal errors. In

this case, it is interesting to see, if inferences are still valid and whether the effects of the variance

reduction illustrated in the first setting still occur. The simulation script was written and executed in

R version 4.2.1 (R Core Team, 2022), the script can be found in the supplementary materials online.

The function interval_gmm() implements the calculation of intervals of estimators and of

their standard deviation, as well as confidence interval unions. In both settings, we used an intercept

(x1 = 1), a normally distributed variable x2 ∼ N (2, 4) and a binary variable distributed according

to Bernoulli distribution x3 ∼ Bernoulli(0.4) as explanatory variables. The response variable was

generated according to y = x1 + 0.5x2 + 2x3 + ε, where ε ∼ N (0, 9) in the first setting. In the

second setting, the errors were generated by affine transformation of a χ2
1 −distributed random

sample, so that its mean is 0 and its variance is 9. The settings were selected, so that all required

moments can easily be calculated, which is done before the simulations. The ratio of explained

variance to total variance was 1 − 9/Var(y) = 1 − 9/10.96 = 0.178 a value which is similar to

often reported values in psychological research. This amounts to a relatively high error variance,

a factor for possibly large variance reduction for some external moments (see Sect. 3).

Different moments have different scales, so a similar interval width of Iex does not imply

similar “sharpness” of the external information across scales. To create intervals for the external

information, that are comparable across the different scales of the external moments, we have

used external intervals where the ratio of half their width to their center is the same for all

external moments in each setting. It should be noted that this technique is different from the

design techniques discussed in Sect. 4.1. The reason for this difference is that the simulation study

aims to compare the different moments in terms of their effectiveness and statistical validity in a

context where the Iex are comparable in magnitude and contain the true value. To motivate this,

one could compare the given ratio to the coefficient of variation. For the standard IQ-scale, the

coefficient of variation is 15/100 = 0.15. For the first setting, we arbitrarily chose a ratio of 0.1

to represent somewhat more precise external information than one standard deviation in the IQ-

scale around the center. For the second setting, we have chosen a ratio of 0.3 to represent a radius

of two standard deviations in the IQ-scale and thus an approximate confidence interval width

that takes the IQ-scale as a basis. In the first setting, we created intervals that were symmetrical

around the true external value. Hence, if the true external value was e, then the interval was

Iex = [0.9e, 1.1e]. In the second setting, we first multiplied all true external moment values by

1.3. Since none of these true external values were equal to zero, this resulted in misspecified point

values. These misspecified values were used as external point values during the simulation to test

the sensitivity of the externally informed model based on point information. The constant 1.3

was again chosen arbitrarily and leads to a relative bias of 30%. Then, as in the first setting we

generated a symmetric interval around the misspecified value. If e again denotes the true external

value, 0.7 · 1.3e = 0.91e was the lower limit and 1.3 · 1.3e = 1.69e the upper limit of Iex, i.e.

Iex = [0.91e, 1.69e], which contains the true value e. As for sensitivity, tests with center width

ratio and misspecification values similar to 0.1, 0.3 and 1.3 gave similar results.

Sample sizes n chosen are 15, 30, 50, 100. The moments used are those listed in Table 2

for both, x2 and x3. Given the results in Sect. 3, the expected relative variance reductions were

calculated to check if these settings are capable of providing enough variance reduction. For every
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moment condition in each setting we run 500 simulations. Only single moment conditions were

used.

In a first step, all explanatory variables were generated and y was calculated as described

above. In the second step, β̂ex and V̂ar(β̂ex) were calculated according to the following two-step

GMM algorithm:

1. Calculate β̂ and σ̂ 2 via the classical OLS method

2. Determine �̂R , ω̂h and β̂ex based on β̂ and σ̂ 2

3. Recalculate σ̂ 2, �̂R and ω̂h based on β̂ex

4. Update β̂ex and calculate V̂ar(β̂ex)

Then, 95% confidence intervals were calculated based on β̂ex and its estimated variance, using

a t-distribution with n − 3 degrees of freedom. Let β̂ex be one element of β̂ex, then it’s 95%

confidence interval is

CI0.95 =

[
β̂ex − tn−3,0.975

√
V̂ar(β̂ex), β̂ex + tn−3,0.975

√
V̂ar(β̂ex)

]
.

To calculate
⋃

CI0.95 a grid search algorithm was adopted. First we determined 101 equidistant

points in the given Iex (including the bounds of the interval). The number 101 was chosen after

some preliminary tests of the algorithm as a compromise between precision and computing time.

Then we traversed these grid points calculating β̂ex and V̂ar(β̂ex) using the two step procedure

from above at each point. Comparing the bounds of the CIs sequentially, the minimal lower and

maximal upper CI bounds on the grid points were determined and served as approximation for

the bounds of
⋃

CI0.95.

5.2. Results

As criteria to evaluate the statistical inferences, we calculated the mean
¯̂
βex of the

estimates β̂ex and their variances Var(β̂ex) over 500 simulations. The latter will be com-

pared to the corresponding means of estimated variances, V̂ar(β̂ex). To evaluate possible

variance reduction for β j , the mean ratio of variance reduction to OLS-variance, 
̂ j :=

[V̂ar(β̂O L S) − V̂ar(β̂ex)]( j, j)/[V̂ar(β̂O L S)]( j, j), will be considered. In addition, the actual cover-

age is calculated over simulations. For given α = 0.05 and 500 simulations, the actual coverage

should be between 0.93 and 0.97 for the point-valued moments (Spiess, 1998) and equal to or

greater than 0.93 for the external moment intervals, as the confidence union is used to calculate

the coverage in this case. Finally, |CI| := CI0.95 − CI0.95 and |
⋃

CI| :=
⋃

CI0.95 −
⋃

CI
0.95

were computed. They can be compared to the OLS-CI-length to evaluate the possible precision

gains or losses.

5.2.1. Results for the Correctly Specified Setting The detailed results for sample size n = 15

are presented in Table 3, while the results for the other sample sizes are given in Tables 7 to 9 in the

supplementary materials. Consistent with the theory in Sect. 3, the use of the moment E(x2) had

no effect on the variances, neither for the correctly specified nor for the misspecified setting, and

estimation results were equal to OLS estimation results. The corresponding results are presented

for comparison. For all moments except E(y2) and σ 2
y both the coverages for the point valued

moments as well as the coverages for the external intervals exceeded 0.93. The coverages for σ 2
y

were in the valid range only for n = 100, while for E(y2) they were in the valid range already for

n = 50. The undercoverage for sample sizes below n = 100 can be explained by the skewness
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Table 3.
Results of the simulations with correctly specified external moments for sample size n = 15.

Moments β j
¯̂
βex Var(β̂ex) V̂ar(β̂ex) 
̂ j Cov CovI |CI| |

⋃
CI|

E(x2) β1 1.045 1.929 1.968 0 0.944 0.944 5.866 5.866

= OLS β2 0.499 0.205 0.211 0 0.950 0.950 1.909 1.909

β3 1.955 3.422 2.976 0 0.940 0.940 7.292 7.292

E(y) β1 1.048 1.453 1.593 0.217 0.942 0.964 5.215 5.639

E(x2 y) β2 0.560 0.174 0.177 0.169 0.950 0.956 1.740 1.832

σx2,y β1 0.802 1.478 1.456 0.239 0.954 0.954 5.054 5.222

β2 0.625 0.096 0.080 0.616 0.960 0.978 1.153 1.237

ρx2,y β1 0.928 1.405 1.418 0.258 0.944 0.948 4.984 5.141

β2 0.562 0.069 0.074 0.639 0.976 0.984 1.110 1.188

βx2,y β1 0.967 1.263 1.414 0.255 0.960 0.964 4.982 5.131

β2 0.543 0.054 0.072 0.633 0.986 0.986 1.107 1.180

E(x3 y) β3 2.150 2.745 2.380 0.192 0.936 0.946 6.525 6.837

σx3,y β1 0.959 1.552 1.704 0.141 0.964 0.966 5.433 5.561

β3 2.202 0.783 0.949 0.689 0.976 0.976 3.952 4.273

ρx3,y β1 0.977 1.659 1.694 0.148 0.960 0.960 5.415 5.541

β3 2.136 0.888 0.919 0.699 0.964 0.970 3.891 4.208

βx3,y β1 0.942 1.545 1.700 0.143 0.964 0.970 5.426 5.559

β3 2.182 0.692 0.908 0.698 0.976 0.980 3.888 4.213

E(y2) β1 1.072 1.965 1.935 0.018 0.914 0.936 5.807 5.950

β2 0.507 0.207 0.204 0.031 0.942 0.946 1.875 1.929

β3 1.995 3.414 2.871 0.030 0.916 0.930 7.164 7.367

σ 2
y β1 0.905 1.951 1.708 0.142 0.920 0.928 5.434 5.667

β2 0.540 0.228 0.184 0.148 0.896 0.910 1.766 1.839

β3 2.092 3.646 2.584 0.151 0.858 0.878 6.725 7.005

The expressions
¯̂
βex, Var(β̂ex), V̂ar(β̂ex), 
̂ j ,|CI| and |

⋃
CI| are defined in the beginning of Sect. 5.2. The

results for the moment E(x2) are equivalent to the OLS results. Cov is the coverage for the external point

value and CovI symbolizes the coverage for the confidence interval union based on the external interval.

Only the affected coefficients are reported per moment. The true values are β1 = 1, β2 = 0.5 and β3 = 2.

of the distributions of their sample moment functions in small samples caused by the quadratic

terms y2, leading to higher sample size required for the asymptotic results to be applicable. Using

confidence unions only reduced these required sample sizes to n = 50 and n = 30, respectively,

showing that high skewness is also problematic for
⋃

CI-based coverage in small samples.

For βx j ,y with j = 2, 3, the coverage for β j was in many cases above 0.97 (up to 0.994)

for all n. This was also the case, though not as pronounced, when the external information about

the covariance between x j and y was used. The reason for this is that the variances were mostly

overestimated in these cases, as can be seen in Tables 3 and 4 as well as in Tables 7 to 12 in the

supplementary materials by the fact that V̂ar(β̂ex) was larger than Var(β̂ex) for the respective β j .

Although variances are overestimated, the true and estimated variances nevertheless tend to be

smaller than the variance of the OLS-estimators. Thus, inferences still tend to be more precise,

suggesting a possible relationship with superefficiency (Bahadur, 1964).

As shown in Sect. 3, the relative variance reduction for each estimator of β j , reported in

column 
̂ j of Table 3 as well as Tables 7 to 9 in the supplementary materials, did not change

significantly under the various conditions over the different sample sizes realized. The smallest

relative variance reduction per β j was attained by using the external information E(y2), ranging

from 0.018 to 0.059, followed by σ 2
y with a maximal relative variance reduction of 0.180. The
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largest relative variance reduction was attained by using the covariance, the correlation and βx j ,y

regarding β j , ranging from 0.633 to 0.734 for j = 2 as well as from 0.698 to 0.857 for j = 3.

For all other moments the values varied between 0.169 and 0.294, see Table 3 and Tables 7 to 9

in the supplementary materials.

These variance reductions translated for all moments directly into a reduction of the length

of the confidence interval for the external point value. For the external interval, the length of the

union of the confidence intervals is always greater than the one derived from a single external

point. These differences increase with larger samples, as the variance estimator decreases with

increasing sample sizes, while it can be seen from the formulas in Theorem 1 that the interval

for β̂ex is only affected by the difference between the estimators and the true values of �R and

�h , not directly by n. Finally, with regard to |
⋃

CI| compared to |CI| the results imply that at the

sample sizes 15 and 30, using any moment except E(y2) resulted in a shorter confidence interval

union than the OLS confidence interval. For n = 50, this was the case for all moments except

E(y2), E(y) and σ 2
y . Finally, for n = 100, only the moments σx2,y , ρx2,y , βx2,y , σx3,y , ρx3,y and

βx3,y resulted in shorter confidence unions than point-CIs. This can be explained by the constancy

of Iex while n increases. There is always an interval inside
⋃

CI which does not vanish for large

n, while |CI| converges to 0.

5.2.2. Results for the Misspecified Setting The detailed results for sample size n = 50 are

presented in Table 4, while the results for the other sample sizes are given in Tables 10 to 12 in

the supplementary materials. The coverage rates using the point-valued moments illustrate the

expected sensitivity of the models due to misspecification. Even at n = 15 more than half of the

coverage rates are below 0.93, although in most cases they are still above 0.9. The severeness

increases with increasing n: For n = 30 only five coverage rates are in the acceptable range of

at least 0.93. As seen in Table 4 for n = 50 the coverage is as low as 0.586 in the worst case

for β3 if σx3,y is used. Finally, for n = 100 all coverage rates are invalid, see Table 12 in the

supplementary materials. Except for the moments E(y2) and σ 2
y , this is corrected by the union

of confidence intervals based on the external interval, since all coverage rates in these cases are

above 0.93, except the one for β1 using σx2,y while n = 15. Like in the correctly specified

setting, there are considerably larger coverage rates for the moments βx j ,y and lower coverage

rates for σ 2
y or E(y2) even in the cases n = 30 and n = 15. The explanations for these over-

and undercoverages are the same as for the correctly specified case in Sect. 5.2.1. However, only

the use of covariance, correlation or β for x j and y for j = 2, 3 resulted in narrower confidence

unions as compared to OLS confidence intervals, not the use of other moments. Regarding β j for

j = 2, 3 this is the case for every n, regarding β1 this is only the case for n = 15. We conclude

that the use of external intervals for covariances, correlations or β not only corrects low coverage

rates due to misspecified point values for external moments, but can also lead to narrower (unions

of) confidence intervals.

6. Application

To illustrate the possible benefits of using external information in a linear model, we reanalyze

a dataset of Pluck and Ruales-Chieruzzi (2021), who investigated the estimation of premorbid

intelligence based on lexical reading tasks in Ecuador. We will focus on their Study 2. Since the

purpose of this analysis is to illustrate the proposed use of external information, we will only

shortly sketch the theoretical background of the study. For a more detailed description, see Pluck

and Ruales-Chieruzzi (2021). The dataset was downloaded from PsychArchives (Pluck, 2020a).

To quantify the cognitive impairment of patients, it is necessary to have an accurate baseline

estimate observed in the premorbid state (Pluck & Ruales-Chieruzzi, 2021). As psychometric

Downloaded from https://www.cambridge.org/core. 17 Mar 2025 at 12:26:16, subject to the Cambridge Core terms of use.



MARTIN JANN, MARTIN SPIESS 455

Table 4.
Results of the simulations with misspecified external moments for sample size n = 50.

Moments β j
¯̂
βex Var(β̂ex) V̂ar(β̂ex) Cov CovI |CI| |

⋃
CI|

E(x2) β1 1.012 0.440 0.509 0.936 0.936 2.778 2.778

= OLS β2 0.488 0.041 0.049 0.960 0.960 0.865 0.865

β3 2.042 0.751 0.803 0.954 0.954 3.494 3.494

E(y) β1 1.636 0.412 0.376 0.782 0.992 2.397 4.032

E(x2 y) β2 0.615 0.031 0.040 0.924 0.984 0.779 1.062

σx2,y β1 0.733 0.307 0.380 0.912 0.954 2.409 2.922

β2 0.627 0.016 0.016 0.864 0.984 0.496 0.747

ρx2,y β1 0.756 0.243 0.380 0.952 0.968 2.401 2.914

β2 0.617 0.019 0.016 0.880 0.996 0.494 0.744

βx2,y β1 0.768 0.271 0.376 0.926 0.960 2.397 2.901

β2 0.610 0.008 0.015 0.948 0.998 0.488 0.735

E(x3 y) β3 2.505 0.486 0.622 0.934 0.982 3.095 4.165

σx3,y β1 0.827 0.341 0.413 0.930 0.966 2.502 3.026

β3 2.549 0.116 0.139 0.586 1.000 1.445 2.751

ρx3,y β1 0.830 0.291 0.413 0.956 0.978 2.498 3.025

β3 2.525 0.341 0.138 0.642 0.978 1.434 2.739

βx3,y β1 0.822 0.346 0.412 0.922 0.966 2.499 3.030

β3 2.537 0.092 0.135 0.618 1.000 1.428 2.740

E(y2) β1 1.136 0.512 0.513 0.914 0.944 2.802 3.151

β2 0.558 0.053 0.049 0.894 0.948 0.863 1.011

β3 2.318 0.846 0.790 0.894 0.958 3.477 4.093

σ 2
y β1 0.512 0.894 0.433 0.698 0.828 2.543 3.361

β2 0.626 0.067 0.044 0.754 0.896 0.806 1.029

β3 2.597 1.054 0.697 0.750 0.896 3.234 4.167

The expressions
¯̂
βex, Var(β̂ex), V̂ar(β̂ex),|CI| and |

⋃
CI| are defined in the beginning of Sect. 5.2. The results

for the moment E(x2) are equivalent to the OLS results. Cov is the coverage for the external point value

and CovI symbolizes the coverage for the confidence interval union based on the external interval. Only the

affected coefficients are reported per moment. The true values are β1 = 1, β2 = 0.5 and β3 = 2.

intelligence tests can be too long or cumbersome for elderly people with emerging cognitive

impairments, it is important to have short, yet reliable tests for general intelligence. It is argued in

Pluck and Ruales-Chieruzzi (2021) that vocabulary has a high positive correlation with general

intelligence, hence using short lexical tests could be helpful to estimate general intelligence.

Following Cattell’s classical theory, general intelligence can be divided into fluid and crystallized

intelligence (Cattell, 1963). In this context, the variance reduction property of the externally

informed linear model could provide an asymptotically unbiased estimate with higher precision

than the estimates in Pluck and Ruales-Chieruzzi (2021), because external information about the

correlation of general, fluid or crystallized intelligence and lexical tests is available. Although

the different factors of intelligence are not identical, combining external information about them

leads to a broader and thus more reliable external interval than using information about general

intelligence alone, as the correlation between lexical tasks and fluid or crystallized intelligence

may be lower or higher than for general intelligence.

In their Study 2 Pluck and Ruales-Chieruzzi (2021) used a Spanish, validated seven-subtest

version of the Wechsler Adult Intelligence Scale in the 4th edition (WAIS-IV) (Meyers et al., 2013)

to measure general intelligence, as well as three lexical tests, the Word Accentuation Test (WAT)

in Spanish (Del Ser et al., 1997), the Stem Completion Implicit Reading Test (SCIRT) (Pluck,
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2018) and the Spanish Lexical Decision Task (SpanLex) (Pluck, 2020b). The sample consists of

106 premorbid participants without neurological illness. As one participant has not completed

the WAT, this person was excluded from the analysis regarding the WAT score. Simple linear

regression models with the WAIS-IV as dependent and the lexical tests as independent variable,

respectively, were conducted to determine the percentage of explained variance and to test the

predictability of general intelligence through every single test. Therefore, the sample was randomly

divided into two halves; hence, the net sample size for the linear regression models was 53 as the

other half was used to test the prediction based on the regression models. We compared the widths

of the 95% confidence intervals for the parameters of these regression models to the widths of the

95% confidence unions resulting from externally informed versions of the linear models. Because

the OLS estimation does not account for heteroscedastic errors, which are common in practice,

the standard errors are often too small (White, 1980). To correct for heteroscedasticity, we have

computed robust standard errors of type HC3 using the package sandwich (Zeileis, 2004; Zeileis

et al., 2020). Since the dependent variable is the WAIS-IV, an intelligence test with calibration

sample, we calculated E(y) = 100. In the simulation study using the external information about

ρ was found to lead to high variance reduction. Hence, by reviewing the literature, we identified

the upper bound for the correlation between general intelligence and lexical tasks to be .85.

This value was reported as correlation between WAT and the vocabulary scale of the Wechsler

Adult Intelligence scale in Burin et al. (2000). A lower bound for the correlation between general

intelligence and lexical tasks was found using the meta-analysis of Peng et al. (2019) or the study

of Pluck (2018). Pluck (2018) argued based on a couple of studies that the correlation of general

intelligence and lexical skills is typically higher than .70. In the meta-analysis of Peng et al.

(2019), the reported 95% confidence interval for the correlation of fluid intelligence and reading

is [0.36, 0.39]. To compare the results, both sources were used separately, leading to the lower

bounds 0.4 and 0.7, where 0.4 is very conservative as it is derived from a correlation including

a different variable (fluid intelligence). Together this amounts to the intervals [0.4, 0.85] and

[0.7, 0.85], which are adopted for each of the three lexical tests. The confidence unions were

calculated in the same way as in the simulations using grid search, but with 10001 grip points

instead of 101 and �̂h = 1
n

∑n
i=1 h(z)h(z)T . The details of the analysis can be found in the R script

in the online supplements to this article. The results for the interval [0.7, 0.85] are shown in Table

5 and the results for the interval [0.4, 0.85] are in Table 13 in the supplementary materials. First,

the results of Pluck and Ruales-Chieruzzi (2021) were recalculated, showing no differences from

the results reported in their Study 2. In addition, the corresponding OLS confidence intervals

for the parameters were calculated based on the HC3 estimator (see column five of Table 5).

Then, estimator and standard error intervals, as well as the unions of confidence intervals, were

calculated for the externally informed model. For both [0.4, 0.85] and [0.7, 0.85], the maxima

of all standard error intervals were below the respective standard errors calculated for the OLS

models of Pluck and Ruales-Chieruzzi (2021). This clearly shows the variance reduction property

of the externally informed model and was most pronounced for the SpanLex. For [0.4, 0.85] all

estimation intervals included the OLS estimates and all confidence unions were larger than the

corresponding OLS confidence intervals, indicating that [0.4, 0.85] is very conservative. For [0.7,

0.85], the estimation interval [β̂ j , β̂ j ] included the OLS estimator only for the slope and intercept

of the regression on SCIRT and the one based on the WAT. In this case, however, all confidence

unions overlapped with the OLS-based confidence intervals. Using [0.7, 0.85], for every lexical

test, the widths of the confidence unions from the externally informed model were smaller than

the confidence intervals from the simple linear regression models, for both slopes and intercepts,

except for the intercept of WAT. Since the prediction interval is calculated based on the distribution

of parameter estimators, this would lead to shorter prediction intervals for a participant’s general

intelligence based on the externally informed model. In addition, the confidence union approach
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Table 5.
Results using ρx,y ∈ [0.7, 0.85] and E(y) = 100.

j Test Pluck and Ruales-Chieruzzi Externally informed estimates

β̂ j s(β̂ j ) C I0.95 [β̂ j , β̂ j ] [s(β̂ j ), s(β̂ j )]
⋃

C I0.95

1 SpanLex 54.61 8.864 [37.06, 72.15] [37.41, 47.15] [2.373, 2.663] [32.06, 51.91]

WAT 62.81 4.701 [53.51, 72.12] [60.02, 62.89] [3.587, 3.612] [52.77, 70.10]

SCIRT 60.81 4.395 [52.11, 69.51] [59.01, 61.28] [3.910, 3.920] [51.14, 69.13]

2 SpanLex 1.821 0.332 [1.163, 2.480] [2.068, 2.430] [0.124, 0.132] [1.818, 2.696]

WAT 2.083 0.240 [1.607, 2.559] [2.041, 2.186] [0.190, 0.191] [1.659, 2.568]

SCIRT 3.292 0.358 [2.583, 4.001] [3.213, 3.393] [0.309, 0.310] [2.592, 4.015]

The third and fourth columns contain the recomputed results of Pluck and Ruales-Chieruzzi (2021) in terms

of the OLS regression coefficients β̂ j , where β̂1 is the intercept and β̂2 is the slope and the robust standard

errors s(β̂ j ) of the coefficients. The (robust) 95% confidence intervals C I0.95 for the parameters were

computed in addition. The estimator interval [β̂ j , β̂ j ], the standard error interval [s(β̂ j ), s(β̂ j )] and the 95%

confidence interval union
⋃

C I0.95 are shown as results of the estimation of the externally informed model.

is more robust than OLS confidence intervals with respect to deviations from the assumed normal

distribution. Taken together, this amounts to possibly more precise yet robust parameter estimation

and prediction, if the external information is correct.

7. Discussion

In this paper, we show that incorporating external moments into the GMM framework by

using intervals instead of point values can lead to more robust analyses, while a possible variance

reduction can prevent the confidence unions from being too wide.

The results of the simulation study for point values show that the variance reduction can

be considerable, over 70% using external information about covariances, correlations or βx j ,y .

However if the external moments deviate from the true values, the inferences will be biased,

getting worse with increasing sample size. Instead, the use of external intervals often leads to

correct inferences. However, the F-probability couldn’t completely correct the undercoverages

caused by using the moments σ 2
y as well as E(y2), though it slightly improved them. The reason

for these undercoverages is the skewed distribution induced by y2, indicating a limitation of the

distributional robustness in the presence of large deviations from the normal distribution. As these

two moments also showed low variance reduction when used, one should thoughtfully decide on

basis of their relative variance reduction if one wants to use them in small samples. However,

bootstrap methods, like the bias-corrected accelerated bootstrap (Efron & Tibshirani, 1993), could

be used instead to try to correct the undercoverage.

For small sample sizes, the use of covariances, correlations, and βx j ,y , j = 2, 3, leads to

variance reduction despite the use of external intervals. However, this was mostly the case for

certain entries β j of β in this setting, not for all elements in β. Interestingly, the use of covariances

and βx j ,y , j = 2, 3, still resulted in overcoverage caused by overestimation of the variance. This

means that inferences based on these moments would be more conservative than necessary, yet

they had the highest variance reduction of all the moments tested, providing an interesting link

to the concept of superefficiency (Bahadur, 1964). Further research on the variance estimator is

needed to potentially correct for its overestimation.
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Taken together, the simulation study showed promising results regarding very small sample

sizes as n = 15, and however, one should still be cautious as the estimators are only proved to

be consistent, not unbiased. To be sure that the inference will be valid in the sample at hand, a

simulation to test the adopted scenario, i.e., model to be estimated and data set, is advised. In Sect. 6,

we showed the applicability of the theoretical results to real data, where for the variable SpanLex

the width of the confidence unions was significantly smaller than the width of the corresponding

point-CI, if an appropriately small external interval is used. This shows the usefulness of adopting

an externally informed model for applied problems.

A possible limitation of GMM is the assumption of the covariance matrix of the external

moments being positive definite, which excludes distributions for which the required covariance

matrix does not exist, e.g., the Cauchy distribution. Nevertheless, in many psychological applica-

tions the variables have a constrained range of values, so that at least the existence of the covariance

matrix can be assumed. In general, the applicability of the method is not overtly limited by its

assumptions. Another limitation is that the true value of the external moment must be within the

external interval. However, this identifiability assumption, or an analogous assumption, exists in

other approaches, and it is much weaker than point identifiability. Thus, a more robust use of

external information is possible, up to using the full range of possible values, which would defi-

nitely lead to a valid, more robust, but also very conservative inference. The construction of the

external moment interval in Sect. 6 was based on a rough, subjective approximation. The question

of how to construct the external intervals requires further research. In particular, further links to

existing techniques for eliciting intervals and preventing overconfidence bias would be important.

An application of the theory to generalized linear models or multi-level models is of inherent

interest for psychological research, especially as Corollary 1 sets the foundation for research on

more complex models. At first glance, the results appear to be in conceptional “conflict” with

multi-level-models, since these often assume the random effects to be normally distributed and

in this case there is no bounded interval, that includes the true parameter. However, even in these

models there are fixed (hyper-)parameters one could know bounds for, and hence, it would be

interesting for future research to analyze the behavior of these models in the external GMM

framework. With respect to the limitation of robustness found in the simulation study, it would be

interesting to investigate how robust the estimators are as a function of the length of the external

interval. Finally, research on (the properties of) significance tests based on the use of an external

intervals would be of great interest.
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Using External Information for More Precise

Inferences in General Regression Models:

Supplementary Material II - Proofs and Tables

1 Introduction

This document presents the proofs of Corollary 1, Theorem 1, and the expressions

in Table 1 and Table 2 in Section 3, as well as the results of the simulation study

and the application of the externally informed linear model discussed in Sections

5 and 6 of the main paper. Each heading includes the relevant section in the

main paper that cites the results presented under that heading.
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2 Proofs (Section 3)

2.1 Corollary 1 (Section 3.1)

We start with the proof of Corollary 1:

Corollary. Assume θ̂M is the GMM-estimator based on the model estimating

equations alone (ignoring the external moments), and that m(z, θ) and θ have the

same dimension. Using the prerequisite g(z, θ) = [m(z, θ)T , h(z)T ]T it follows,

that Ω has the block form

Ω =




E[m(z, θ)m(z, θ)T ] E[m(z, θ)h(z)T ]

E[h(z)m(z, θ)T ] E[h(z)h(z)T ]


 =




ΩM Ω
T
R

ΩR Ωh




and that

Var(θ̂ex) = Var(θ̂M) −
1

n
{E[∇θm(z, θ0)]

T }−1
Ω

T
RΩ

−1
h ΩR{E[∇θm(z, θ0)]}

−1

(1)

Proof. The block form of Ω follows directly. The variance is Var(θ̂ex) = 1
n
(GT WG)−1.

Because h(z) does not depend on θ, we have E(∇θh(z)) = 0, leading to G =

E(∇θm(z, θ0)
T , 0)T . Using this form of G and partitioning W in the same way

as Ω leads to

Var(θ̂ex) =
1

n
[E(∇θm(z, θ0))

T ]−1W−1
M [E(∇θm(z, θ0))]

−1

as E(∇θm(z, θ0))
T is a square matrix and is non-singular because both WM

and GT WG are non-singular. Applying results for inverse blocks of partitioned

matrices based on Schur complements (Chamberlain, 1987, p. 329, Lemma A.1.)
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to W and Ω, leads to W−1
M = ΩM − Ω

T
RΩ

−1
h ΩR. This completes the proof, since

Var(θ̂M) = 1
n
[E(∇θm(z, θ0))

T ]−1
ΩM [E(∇θm(z, θ0))]

−1.

2.2 Theorem 1 (Section 3.2)

Now we continue with the proof of Theorem 1.

Theorem. Let H = [h(x1, y1), . . . , h(xn, yn)]T be the (n×q) random matrix con-

taining the externally informed sample moment functions and 1n a (n×1)-vector

of ones. Further let Ω̂h and Ω̂R be consistent estimators of the corresponding

matrices in Corollary 1. Then the (consistent) externally informed OLS estimator

is

β̂ex = (XT X)−1XT y − (XT X)−1
Ω̂

T

RΩ̂
−1

h HT 1n

and its variance is

Var(β̂ex) = Var(β̂) − D

=
1

n
σ2[E(xxT )]−1 −

1

n
[E(xxT )]−1

Ω
T
RΩ

−1
h ΩR[E(xxT )]−1,

where σ2 is the variance of the error in the assumed linear model.

The variance of the estimator shown in Theorem 1 can be seen as a special

case of the variance formula in Corollary 1 and it was also derived by Hellerstein

and Imbens (1999), hence we will only derive β̂ex here:

Proof. Using the notation of Definition 2, the regularity conditions are fulfilled

for the externally informed linear model. The first order conditions for the

GMM-estimator are Ĝ
T
Ŵ[ 1

n

∑n

i=1 g(zi, θ)] = 0 (Newey & McFadden, 1994)[p.
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2145], where Ĝ is a consistent estimator for G. In the multiple linear case

1
n

∑n

i=1 g(zi, θ) becomes




1
n
XT (y − Xβ)

1
n
HT 1


 and it’s Ĝ is 1

n
(XT X, 0)T . Partition-

ing Ŵ = Ω̂
−1

in the same manner as Ω and solving for β we get

0 = Ĝ
T
Ŵ[

1

n

n∑

i=1

g(zi, θ)] =
1

n
(XT X, 0)Ŵ




1
n
XT (y − Xβ)

1
n
HT 1




= XT X

(
ŴM Ŵ

T

R

)



XT (y − Xβ)

HT 1


 = ŴMXT (y − Xβ) + Ŵ

T

RHT 1

⇒ ŴMXT Xβ = ŴMXT y + Ŵ
T

RHT 1 (multiply by Ŵ
−1

M and (XT X)−1)

⇒ β̂ex = (XT X)−1XT y + (XT X)−1Ŵ
−1

M Ŵ
T

RHT 1.

The second order derivative is −XT XŴMXT X, which is negative definite if X

has full column rank, which proves that β̂ex is indeed the searched maximum

according to Definition 2. The structure of Ŵ as a partitioned inverse provides

the equality Ŵ
−1

M Ŵ
T

R = −Ω̂
T

RΩ̂
−1

h . This completes the proof.
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2.3 Expressions in Table 1 (Section 3.2)

We continue with the proof for the expressions in Table 1:

Forms of Ω
T
R for various single moments

moments h(x, y) Ω
T
R

E(y) y − E(y)ex σ2E(x)

E(xjy) xjy − E(xjy)ex σ2E(xj · x)

E(y2) y2 − E(y2)ex 2σ2E(xxT )β0

σ2
y [y − E(y)]2 − (σ2

y)ex 2σ2[E(xxT )β0 − E(y)E(x)]

σxj ,y [y − E(y)][xj − E(xj)] − (σxj ,y)ex σ2σx
·
,xj

ρxj ,y
[y−E(y)][xj−E(xj)]

σxj
σy

− (ρxj ,y)ex
σ2

σxj
σy

σx
·
,xj

βxj ,y
[y−E(y)][xj−E(xj)]

σ2
xj

− (βxj ,y)ex
σ2

σ2
xj

σx
·
,xj

Note: The subscript ex indicates externally determined values. In the last line, βxj ,y represents
the expected value of the estimator of the slope from a simple linear regression model, which
is identical to the true value of the slope only if xj is independent of the other explanatory
variables.

Proof. We only have to prove the correctness of the third column (the one for

Ω
T
R). First we note, that Ω

T
R = E(x(y − xT β0)h(x, y)) = E(xεh(x, y)). We can

omit the exact values of the external moments, as they are constants and as ε

has the expected value 0. For the first row we get

E(xεy) = E(xε2 + εxxT β0) = E(xε2) = σ2E(x)

by the Gauss-Markov-assumptions. The second row follows by the same argument
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just with the additional factor xj. For the second moment of y it follows that

E(xεy2) = E(xε(ε + xT β0)
2) = E(xε3) + 2E(ε2xxT β0) + E(εx(xT β0)

2)

= E(x)E(ε3) + 2σ2E(xxT )β0.

If the errors are assumed to be at least symmetrically distributed, the first sum-

mand vanishes, leaving the term written in the third row in Table 1. For the next

row, we rewrite (y − E(y))2 as y2 − 2yE(y) + E(y)2 and use the linearity of the

expected value. Then the Ω
T
R of the fourth row is just the one in the fourth row mi-

nus 2E(y) times the one in the second row. This is 2σ2E(xxT )β0−2σ2E(x)E(Y ),

which is written in the fourth row. The expression in the fifth row is derived in

the same manner as we can write

xε(xj − E(xj))(y − E(y)) = xεxjy − xεxjE(y) − xεyE(xj) + xεE(xj)E(y).

The expected value of the second and the fourth term is zero, while the first term

is equal to Ω
T
R for the moment E(xjy) and the third term is equal to Ω

T
R for the

moment E(y) times E(xj). The result is σ2E(xxj) − σ2E(x)E(xj), which is the

vector of the covariances written in the fifth row. The last two rows follow from

the fifth row, treating σxj
and σy as constants.

6



2.4 Expressions in Table 2 (Section 3.2)

Effects of various single moments in terms of variance reduction.

moments D effect on

E(y) σ4

nωh
e1e

T
1 only β1

E(xjy) σ4

nωh
eje

T
j only βj

E(y2) 4σ4

nωh
β0β

T
0 all βj 6= 0

σ2
y

4σ4

nωh
[β0 − E(y)e1][β0 − E(y)e1]

T all βj 6= 0 and β1

σxj ,y
σ4

nωh
ẽj ẽ

T
j βj and β1

ρxj ,y
σ4

nωhσ2
yσ2

xj

ẽj ẽ
T
j βj and β1

βxj ,y
σ4

nωhσ4
xj

ẽj ẽ
T
j βj and β1

Note: The expression ej denotes the (p × 1)-vector with 1 at the j-th position and zeros
elsewhere. Further we set ẽj := −E(xj) · e1 + ej . In the last line, βxj ,y represents the expected
value of the estimator of the slope from a simple linear regression model, which is identical to
the true value of the slope only if xj is independent of the other explanatory variables.

Proof. To prove the results in Table 2 it is sufficient to use Theorem 1. As ωh

is single valued, it holds that D = 1
nωh

[E(xxT )]−1
Ω

T
RΩR[E(xxT )]−1. To derive

[E(xxT )]−1
Ω

T
R the expressions of Ω

T
R in Table 1 are used. The main idea is to

factorize E(xxT ) out of Ω
T
R. As E(x ·xj) = E(xxT )ej using the notation of Table

2 and noting that x1 = 1, we get the results for [E(xxT )]−1
Ω

T
R in Table 6.

Table 6: Expressions for [E(xxT )]−1
Ω

T
R depending on the moment used.

moments E(y) E(xjy) E(y2) σ2

y σxj ,y ρxj ,y βxj ,y

[E(xx
T )]−1

Ω
T
R σ2

e1 σ2
ej 2σ2β

0
2σ2[β

0
− E(y)e1] σ2

ẽj
σ2

σyσxj

ẽj
σ2

σ2
xj

ẽj

This proves the results in Table 2.
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To illustrate how to determine ωh, the case E(y2) is treated. Using ε ∼

N(0, σ2) and the Gauss-Markov-assumptions, we get

ωh = E{[y2 − E(y2)]2} = E{[ε2 + 2εxT β0 + (xT β0)
2 − E(y2)]2}

= E(ε4) + E[(2εxT β0)
2] + 2E{ε2[(xT β0)

2 − E(y2)]} + E{[(xT β0)
2 − E(y2)]2}

+ 2E{2εxT β0[(x
T β0)

2 − E(y2)]} + E(2ε3xT β0)

= 3σ4 + 4σ2E[(xT β0)
2] + 2σ2E[(xT β0)

2 − E(y2)] + E{[(xT β0)
2 − E(y2)]2}.
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3 Detailed results of the simulations (Section 5)

3.1 Correctly specified external moments (Section 5.2.1)

Table 7: Results of the simulations with correctly specified external moments for
sample size n = 30.

moments βj
¯̂
βex Var(β̂ex) V̂ar(β̂ex) ∆̂j Cov CovI |CI| |

⋃
CI|

E(x2) β1 0.979 0.880 0.866 0.000 0.950 0.950 3.757 3.757
=OLS β2 0.489 0.077 0.087 0.000 0.970 0.970 1.184 1.184

β3 2.077 1.383 1.326 0.000 0.934 0.934 4.675 4.675
E(y) β1 0.978 0.618 0.646 0.263 0.948 0.974 3.230 3.677

E(x2y) β2 0.514 0.063 0.068 0.211 0.966 0.976 1.051 1.145
σx2,y β1 0.860 0.663 0.628 0.261 0.934 0.944 3.207 3.364

β2 0.549 0.027 0.026 0.687 0.958 0.978 0.649 0.727
ρx2,y β1 0.911 0.676 0.619 0.272 0.932 0.944 3.183 3.337

β2 0.523 0.021 0.025 0.700 0.970 0.982 0.634 0.710
βx2,y β1 0.928 0.615 0.618 0.270 0.952 0.954 3.183 3.332

β2 0.515 0.014 0.025 0.697 0.994 0.994 0.633 0.707
E(x3y) β3 2.109 1.076 1.008 0.233 0.950 0.968 4.082 4.421
σx3,y β1 0.994 0.678 0.703 0.188 0.952 0.956 3.379 3.518

β3 2.066 0.211 0.267 0.798 0.994 0.998 2.030 2.374
ρx3,y β1 1.001 0.729 0.700 0.192 0.938 0.948 3.373 3.512

β3 2.033 0.256 0.260 0.803 0.970 0.986 2.007 2.348
βx3,y β1 0.983 0.677 0.702 0.190 0.948 0.956 3.377 3.519

β3 2.063 0.177 0.258 0.803 0.994 0.998 2.005 2.352
E(y2) β1 0.991 0.887 0.848 0.020 0.932 0.952 3.717 3.843

β2 0.495 0.074 0.083 0.043 0.968 0.976 1.158 1.209
β3 2.103 1.374 1.260 0.050 0.922 0.938 4.554 4.770

σ2

y β1 0.885 0.745 0.731 0.165 0.934 0.948 3.437 3.699
β2 0.514 0.072 0.076 0.141 0.928 0.960 1.100 1.171
β3 2.189 1.332 1.127 0.164 0.892 0.914 4.280 4.587

Note. The expressions
¯̂
βex, Var(β̂ex), V̂ar(β̂ex), ∆̂j ,|CI| and |

⋃
CI| are defined in the beginning

of Section 5.2. The results for the moment E(x2) are equivalent to the OLS results. Cov is
the coverage for the external point value and CovI symbolizes the coverage for the confidence
interval union based on the external interval. Only the affected coefficients are reported per
moment. The true values are β1 = 1, β2 = 0.5 and β3 = 2.

10



Table 8: Results of the simulations with correctly specified external moments for
sample size n = 50.

moments βj
¯̂
βex Var(β̂ex) V̂ar(β̂ex) ∆̂j Cov CovI |CI| |

⋃
CI|

E(x2) β1 1.026 0.463 0.509 0.000 0.956 0.956 2.846 2.846
β2 0.491 0.050 0.049 0.000 0.936 0.936 0.886 0.886
β3 2.013 0.881 0.799 0.000 0.942 0.942 3.574 3.574

E(y) β1 1.024 0.355 0.366 0.285 0.952 0.976 2.408 2.865
E(x2y) β2 0.506 0.038 0.038 0.227 0.946 0.968 0.778 0.873
σx2,y β1 0.954 0.326 0.367 0.272 0.966 0.982 2.419 2.574

β2 0.528 0.015 0.014 0.714 0.960 0.982 0.466 0.543
ρx2,y β1 0.975 0.332 0.365 0.277 0.964 0.978 2.411 2.564

β2 0.517 0.012 0.014 0.720 0.962 0.980 0.461 0.536
βx2,y β1 0.987 0.296 0.364 0.276 0.976 0.988 2.410 2.561

β2 0.511 0.008 0.013 0.719 0.994 0.996 0.460 0.534
E(x3y) β3 2.071 0.649 0.594 0.252 0.948 0.968 3.085 3.437
σx3,y β1 1.019 0.357 0.410 0.196 0.966 0.978 2.551 2.689

β3 2.049 0.137 0.133 0.834 0.982 0.996 1.412 1.764
ρx3,y β1 1.020 0.383 0.409 0.198 0.956 0.966 2.548 2.687

β3 2.037 0.157 0.131 0.837 0.942 0.972 1.403 1.754
βx3,y β1 1.016 0.355 0.410 0.196 0.964 0.974 2.550 2.690

β3 2.036 0.103 0.130 0.837 0.986 0.996 1.400 1.751
E(y2) β1 1.035 0.469 0.497 0.025 0.946 0.960 2.810 2.933

β2 0.491 0.048 0.047 0.052 0.938 0.950 0.863 0.917
β3 2.013 0.847 0.757 0.052 0.942 0.954 3.478 3.696

σ2

y β1 0.989 0.382 0.428 0.166 0.956 0.982 2.602 2.871
β2 0.501 0.046 0.043 0.144 0.932 0.946 0.821 0.895
β3 2.055 0.810 0.685 0.150 0.912 0.940 3.296 3.604

Note. The expressions
¯̂
βex, Var(β̂ex), V̂ar(β̂ex), ∆̂j ,|CI| and |

⋃
CI| are defined in the beginning

of Section 5.2. The results for the moment E(x2) are equivalent to the OLS results. Cov is
the coverage for the external point value and CovI symbolizes the coverage for the confidence
interval union based on the external interval. Only the affected coefficients are reported per
moment. The true values are β1 = 1, β2 = 0.5 and β3 = 2.
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Table 9: Results of the simulations with correctly specified external moments for
sample size n = 100.

moments βj
¯̂
βex Var(β̂ex) V̂ar(β̂ex) ∆̂j Cov CovI |CI| |

⋃
CI|

E(x2) β1 0.968 0.252 0.246 0.000 0.952 0.952 1.962 1.962
β2 0.512 0.024 0.024 0.000 0.958 0.958 0.606 0.606
β3 2.020 0.377 0.383 0.000 0.944 0.944 2.449 2.449

E(y) β1 0.966 0.180 0.175 0.294 0.944 0.984 1.650 2.108
E(x2y) β2 0.515 0.018 0.018 0.235 0.952 0.982 0.530 0.623
σx2,y β1 0.954 0.174 0.178 0.276 0.954 0.976 1.666 1.819

β2 0.519 0.007 0.006 0.731 0.944 0.986 0.312 0.388
ρx2,y β1 0.964 0.184 0.177 0.280 0.944 0.960 1.662 1.815

β2 0.513 0.006 0.006 0.735 0.966 0.996 0.309 0.385
βx2,y β1 0.972 0.164 0.177 0.279 0.960 0.978 1.662 1.813

β2 0.509 0.003 0.006 0.734 0.994 0.996 0.309 0.384
E(x3y) β3 2.030 0.273 0.281 0.262 0.962 0.990 2.101 2.459
σx3,y β1 0.972 0.194 0.195 0.209 0.964 0.972 1.744 1.884

β3 2.018 0.047 0.055 0.856 0.984 1.000 0.910 1.260
ρx3,y β1 0.972 0.212 0.195 0.210 0.948 0.962 1.742 1.883

β3 2.013 0.061 0.055 0.857 0.934 0.996 0.906 1.257
βx3,y β1 0.969 0.194 0.195 0.209 0.956 0.972 1.744 1.885

β3 2.016 0.042 0.054 0.857 0.994 1.000 0.906 1.258
E(y2) β1 0.973 0.260 0.241 0.022 0.938 0.958 1.940 2.054

β2 0.512 0.022 0.022 0.059 0.962 0.974 0.588 0.645
β3 2.020 0.348 0.361 0.055 0.942 0.960 2.379 2.604

σ2

y β1 0.945 0.189 0.203 0.180 0.952 0.984 1.777 2.065
β2 0.518 0.019 0.020 0.154 0.954 0.980 0.557 0.638
β3 2.046 0.315 0.327 0.147 0.944 0.968 2.261 2.579

Note. The expressions
¯̂
βex, Var(β̂ex), V̂ar(β̂ex), ∆̂j ,|CI| and |

⋃
CI| are defined in the beginning

of Section 5.2. The results for the moment E(x2) are equivalent to the OLS results. Cov is
the coverage for the external point value and CovI symbolizes the coverage for the confidence
interval union based on the external interval. Only the affected coefficients are reported per
moment. The true values are β1 = 1, β2 = 0.5 and β3 = 2.
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3.2 Misspecified external moments (5.2.2)

Table 10: Results of the simulations with misspecified external moments for
sample size n = 15.

moments βj
¯̂
βex Var(β̂ex) V̂ar(β̂ex) Cov CovI |CI| |

⋃
CI|

E(x2) β1 0.982 2.210 2.096 0.926 0.926 5.676 5.676
β2 0.499 0.228 0.223 0.964 0.964 1.843 1.843
β3 2.128 3.110 3.148 0.966 0.966 7.051 7.051

E(y) β1 1.438 1.962 1.690 0.890 0.954 5.102 6.484
E(x2y) β2 0.634 0.183 0.190 0.952 0.970 1.707 1.973
σx2,y β1 0.547 1.581 1.612 0.896 0.924 5.012 5.546

β2 0.723 0.117 0.092 0.910 0.966 1.187 1.452
ρx2,y β1 0.647 1.280 1.593 0.934 0.948 4.945 5.481

β2 0.672 0.102 0.088 0.958 0.978 1.154 1.417
βx2,y β1 0.711 1.337 1.560 0.914 0.932 4.931 5.424

β2 0.640 0.057 0.083 0.968 0.984 1.141 1.384
E(x3y) β3 2.525 2.206 2.560 0.958 0.980 6.418 7.348
σx3,y β1 0.794 1.711 1.821 0.922 0.936 5.279 5.751

β3 2.655 0.764 1.044 0.966 0.996 3.955 5.105
ρx3,y β1 0.796 1.546 1.819 0.940 0.952 5.256 5.739

β3 2.616 1.400 1.032 0.926 0.980 3.897 5.065
βx3,y β1 0.771 1.712 1.815 0.918 0.936 5.268 5.759

β3 2.648 0.734 1.003 0.948 0.998 3.893 5.067
E(y2) β1 1.046 2.124 2.108 0.896 0.914 5.726 6.081

β2 0.563 0.234 0.225 0.916 0.952 1.856 1.985
β3 2.343 2.964 3.151 0.928 0.954 7.085 7.585

σ2

y β1 0.503 3.109 1.883 0.754 0.832 5.343 5.963
β2 0.636 0.280 0.204 0.804 0.876 1.746 1.932
β3 2.638 3.537 2.828 0.812 0.896 6.615 7.358

Note. The expressions
¯̂
βex, Var(β̂ex), V̂ar(β̂ex),|CI| and |

⋃
CI| are defined in the beginning

of Section 5.2. The results for the moment E(x2) are equivalent to the OLS results. Cov is
the coverage for the external point value and CovI symbolizes the coverage for the confidence
interval union based on the external interval. Only the affected coefficients are reported per
moment. The true values are β1 = 1, β2 = 0.5 and β3 = 2.
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Table 11: Results of the simulations with misspecified external moments for
sample size n = 30.

moments βj
¯̂
βex Var(β̂ex) V̂ar(β̂ex) Cov CovI |CI| |

⋃
CI|

E(x2) β1 1.009 0.871 0.853 0.920 0.920 3.586 3.586
β2 0.496 0.081 0.086 0.948 0.948 1.132 1.132
β3 1.984 1.386 1.341 0.950 0.950 4.486 4.486

E(y) β1 1.588 0.726 0.644 0.852 0.980 3.142 4.665
E(x2y) β2 0.623 0.063 0.070 0.936 0.974 1.032 1.301
σx2,y β1 0.689 0.634 0.636 0.890 0.932 3.126 3.643

β2 0.656 0.034 0.029 0.894 0.972 0.671 0.924
ρx2,y β1 0.751 0.487 0.632 0.930 0.958 3.098 3.612

β2 0.626 0.037 0.028 0.928 0.992 0.657 0.909
βx2,y β1 0.764 0.564 0.624 0.912 0.942 3.094 3.595

β2 0.619 0.015 0.027 0.970 0.996 0.650 0.896
E(x3y) β3 2.411 0.994 1.041 0.944 0.984 4.003 5.013
σx3,y β1 0.795 0.670 0.700 0.910 0.934 3.250 3.767

β3 2.529 0.226 0.287 0.872 0.998 2.061 3.315
ρx3,y β1 0.819 0.578 0.701 0.930 0.954 3.244 3.752

β3 2.462 0.564 0.287 0.822 0.986 2.043 3.278
βx3,y β1 0.779 0.671 0.699 0.904 0.934 3.249 3.778

β3 2.532 0.188 0.277 0.814 0.998 2.040 3.312
E(y2) β1 1.127 0.951 0.866 0.888 0.914 3.635 3.962

β2 0.569 0.097 0.086 0.906 0.938 1.137 1.273
β3 2.287 1.524 1.344 0.900 0.938 4.505 5.031

σ2

y β1 0.456 1.456 0.744 0.716 0.790 3.321 4.051
β2 0.645 0.117 0.077 0.772 0.880 1.058 1.268
β3 2.619 1.900 1.187 0.760 0.882 4.180 5.008

Note. The expressions
¯̂
βex, Var(β̂ex), V̂ar(β̂ex),|CI| and |

⋃
CI| are defined in the beginning

of Section 5.2. The results for the moment E(x2) are equivalent to the OLS results. Cov is
the coverage for the external point value and CovI symbolizes the coverage for the confidence
interval union based on the external interval. Only the affected coefficients are reported per
moment. The true values are β1 = 1, β2 = 0.5 and β3 = 2.
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Table 12: Results of the simulations with misspecified external moments for
sample size n = 100.

moments βj
¯̂
βex Var(β̂ex) V̂ar(β̂ex) Cov CovI |CI| |

⋃
CI|

E(x2) β1 1.012 0.257 0.252 0.928 0.928 1.959 1.959
β2 0.497 0.023 0.024 0.952 0.952 0.605 0.605
β3 2.004 0.388 0.392 0.956 0.956 2.446 2.446

E(y) β1 1.666 0.233 0.184 0.606 0.994 1.677 3.383
E(x2y) β2 0.621 0.017 0.019 0.850 0.994 0.543 0.831
σx2,y β1 0.767 0.175 0.187 0.900 0.960 1.692 2.205

β2 0.619 0.008 0.007 0.726 0.990 0.339 0.590
ρx2,y β1 0.772 0.136 0.187 0.924 0.980 1.690 2.205

β2 0.616 0.010 0.008 0.744 0.988 0.339 0.591
βx2,y β1 0.787 0.157 0.186 0.914 0.966 1.686 2.194

β2 0.609 0.003 0.007 0.844 1.000 0.335 0.584
E(x3y) β3 2.470 0.252 0.301 0.882 0.986 2.150 3.265
σx3,y β1 0.805 0.192 0.201 0.902 0.966 1.749 2.289

β3 2.533 0.048 0.057 0.354 0.996 0.925 2.258
ρx3,y β1 0.800 0.160 0.201 0.914 0.974 1.748 2.293

β3 2.538 0.157 0.057 0.432 0.970 0.923 2.264
βx3,y β1 0.801 0.194 0.201 0.896 0.968 1.748 2.292

β3 2.532 0.043 0.056 0.332 0.998 0.921 2.258
E(y2) β1 1.141 0.294 0.253 0.908 0.954 1.970 2.334

β2 0.567 0.030 0.024 0.864 0.944 0.600 0.765
β3 2.286 0.486 0.384 0.878 0.954 2.424 3.090

σ2

y β1 0.547 0.580 0.209 0.630 0.840 1.772 2.695
β2 0.625 0.039 0.021 0.708 0.914 0.558 0.813
β3 2.523 0.641 0.337 0.700 0.906 2.256 3.288

Note. The expressions
¯̂
βex, Var(β̂ex), V̂ar(β̂ex),|CI| and |

⋃
CI| are defined in the beginning

of Section 5.2. The results for the moment E(x2) are equivalent to the OLS results. Cov is
the coverage for the external point value and CovI symbolizes the coverage for the confidence
interval union based on the external interval. Only the affected coefficients are reported per
moment. The true values are β1 = 1, β2 = 0.5 and β3 = 2.
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4 Results of the application of the externally

informed model (Section 6)

Table 13: Results using ρx,y ∈ [.4, .85] and E(y) = 100.

Pluck & Ruales-Chieruzzi externally informed estimates

j test β̂j s(β̂j) CI0.95 [β̂j , β̂j ] [s(β̂j), s(β̂j)]
⋃

CI0.95

1 SpanLex 54.61 8.864 [37.06, 72.15] [37.41, 66.90] [2.336, 2.663] [32.06, 71.90]

WAT 62.81 4.701 [53.51, 72.12] [60.02, 68.25] [3.587, 3.689] [52.77, 75.65]

SCIRT 60.81 4.395 [52.11, 69.51] [59.01, 65.48] [3.910, 3.990] [51.14, 73.50]

2 SpanLex 1.821 0.332 [1.163, 2.480] [1.334, 2.430] [0.124, 0.132] [1.070, 2.696]

WAT 2.083 0.240 [1.607, 2.559] [1.773, 2.186] [0.190, 0.196] [1.379, 2.568]

SCIRT 3.292 0.358 [2.583, 4.001] [2.882, 3.393] [0.309, 0.317] [2.246, 4.015]

Note. Note: The third and fourth columns contain the recomputed results of in terms of Pluck
& Ruales-Chieruzzi (2021) the OLS regression coefficients β̂j , where β̂1 is the intercept and β̂2 is

the slope and the robust standard errors s(β̂j) of the coefficients. The (robust) 95% confidence

intervals CI0.95 for the parameters were computed in addition. The estimator interval [β̂j , β̂j ],

the standard error interval [s(β̂j), s(β̂j)] and the 95% confidence interval union
⋃

CI0.95 are
shown as results of the estimation of the externally informed model.
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In empirical sciences such as psychology, the term cumulative science mostly refers to the 
integration of theories, while external (prior) information may also be used in statistical inference. 
This external information can be in the form of statistical moments and is subject to various 
types of uncertainty, e.g., because it is estimated, or because of qualitative uncertainty due to 
differences in study design or sampling. Before using it in statistical inference, it is therefore 
important to test whether the external information fits a new data set, taking into account its 
uncertainties. As a frequentist approach, the Sargan-Hansen test from the generalized method 
of moments framework is used in this paper. It tests, given a statistical model, whether data 
and point-wise external information are in conflict. A separability result is given that simplifies 
the Sargan-Hansen test statistic in most cases. The Sargan-Hansen test is then extended to 
the imprecise scenario with (estimated) external sets using stochastically ordered credal sets. 
Furthermore, an exact small sample version is derived for normally distributed variables. As a 
Bayesian approach, two prior-data conflict criteria are discussed as a test for the fit of external 
information to the data. Two simulation studies are performed to test and compare the power and 
type I error of the methods discussed. Different small sample scenarios are implemented, varying 
the moments used, the level of significance, and other aspects. The results show that both the 
Sargan-Hansen test and the Bayesian criteria control type I errors while having sufficient or even 
good power. To facilitate the use of the methods by applied scientists, easy-to-use R functions are 
provided in the R script in the supplementary materials.

1. Introduction

In statistical inference and inductive reasoning in general, the goal is to derive information about the population from a sample 
of data, often by “inverting” the probability laws that are assumed to have generated the data [1]. An important aspect of this data 
generation process is the sampling mechanism. In some applied fields, such as psychology, the influence of selective sampling is 
often neglected, ultimately leading to biased statistical inferences about the population [2]. If external (prior) information about 
the population or about other data drawn from the population is available, it is possible to compare this external information 
with quantities computed from the data at hand. Provided that other aspects of statistical inference are valid, a mismatch between 
external information and new data may indicate selective sampling. The aim of this paper is therefore to discuss and develop (robust) 
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approaches for testing the fit between the available data and existing external information. Regarding statistical methods that allow 
the use of prior information, there are two well-known possibilities.

First, Bayesian statistics allows external information to be incorporated via a prior probability distribution, which is then com-
bined with a likelihood function by the Bayes rule to form a posterior probability distribution [3]. Second, external information can 
be used to formulate constraints on the parameter space. Since many statistical estimation techniques are optimization problems, 
such as ordinary least squares (OLS) or maximum likelihood estimation, constrained optimization serves as a method to incorporate 
these external constraints on the parameter. For example, the case of linear and nonlinear regression analysis under constraints is 
covered by Knopov and Korkhin [4]. However, both methods primarily incorporate the external information during estimation or 
updating and not per se to test the fit of external information and data. In order to achieve the goal of this paper, there are still 
challenges to overcome, which will motivate the further approach.

A first challenge is that external information comes in different forms, some of which are more convenient for constructing prior 
distributions or constraints, and some of which are more difficult to use. To justify this claim, consider the following example.

Example 1. Assume a linear regression model ÿ = xÿ ÿ + ÿ under Gauss-Markov assumptions. All that is known externally is the 
expected value ý(ÿ) = 100. Under the Gauss-Markov assumptions, it is true that

100 =ý(ÿ) =ý(x)ÿ ÿ, (1)

which is a linear constraint on the parameter ÿ . Since ý(x) is not known, (1) cannot be used directly as a constraint in the optimiza-
tion. Furthermore, the condition (1) is satisfied by many distributions. Therefore, it is not sufficient to identify (the moments of) a 
prior distribution.

The consequence is not, that it is impossible to use moment-type information as in Example 1 in constrained optimization or 
Bayesian statistics, but that it may not be straightforward. Precisely for this external moment-type information, there is a third way 
to incorporate it into statistical inference. To motivate this idea, note that many statistical estimation techniques can be represented 
by solving moment conditions, such as OLS and maximum likelihood estimation (via solving the score function at zero) [5, p. 172]. 
According to Imbens and Lancaster [6], the moment conditions used to estimate model parameters can be viewed together with 
external moment conditions such as (1) as a system of equations. This system of equations contains more equations than parameters 
and will therefore generally be overidentified. To find an estimator anyway, the Generalized Method of Moments (GMM) can be 
used [7]. Instead of an exact solution of the system of equations (which generally does not exist), in the GMM it is sufficient to 
find a vector that comes “as close as possible” to a solution with respect to a (matrix-induced) norm in order to obtain a consistent 
and normally distributed estimator under mild regularity conditions. The GMM is thus a third technique for incorporating external 
information and will be the main focus of this paper.

A second challenge is that some method is needed to actually decide whether the external information and the data fit or not. 
For the GMM, the Sargan-Hansen test can serve this purpose, since it tests, for a given data set, whether the moment conditions 
for the model estimation and those representing the external information are close enough to zero and thus whether they fit the 
data [8,7]. It should be noted that the use of the Sargan-Hansen test to identify model misspecification has been questioned in the 
presence of instrumental variables [9,10]. In this paper, it is interpreted as a test of the fit of external information to the data and 
not as a test of misspecification. In (classical) Bayesian statistics, there are procedures to test for prior-data conflict, for example via 
Bayesian p-values computed for a sufficient statistic based on the predictive distribution [11] or via the data agreement criterion, 
which is a ratio of Kullback-Leibler divergences [12]. To the best of the author’s knowledge, there are no sophisticated methods in 
constrained optimization to check whether the constraints are “correct”, except for the naive approach of calculating the distance 
from the constrained to the unconstrained estimator with respect to some metric.

A third challenge is that the external information will be uncertain in several ways. There are always at least slight differences 
between data sets, even when they are sampled from the same population, because the external information depends on time, study 
design, and many other aspects. Under this “qualitative uncertainty”, point values will never fit a new data set exactly and may be 
rejected by a test procedure even though the sample value of the data set is in the range of the external values. To reflect this, an 
appropriate representation could be an interval constructed by the external values, allowing all values in the range. Furthermore, 
external information is almost always estimated itself. Therefore, its variance should be reflected, especially if it comes from small 
samples, to avoid false rejections.

In constrained optimization, the use of an interval of estimated external information can be implemented using the distributionally 
robust optimization approach. For an overview of this approach, see Rahimian and Mehrotra [13]. External intervals can be used 
to construct ambiguity sets, sets of probability distributions over which optimization is performed. Moment-type information can be 
used to construct moment-based ambiguity sets, while reflecting qualitative uncertainty by using the bounds of external moment sets. 
Estimation uncertainty is then addressed by calibration. Another way to incorporate external information into distributionally robust 
optimization could be to formulate (imprecise) chance constraints. However, to the best of the authors’ knowledge, the framework 
of distributionally robust optimization does not include a simple test of whether new data fits externally known (imprecise) chance 
constraints, or whether a given ambiguity set is correct for new data. The discussion of such methods is beyond the scope of this 
paper, but the methods derived in this paper could be seen as a version of such tests in the scenarios considered here.

In Bayesian statistics, the use of an interval of external values leads to a set of possible prior distributions. The generalized 
Bayesian rule can be used to compute a corresponding set of posterior distributions. Prior-data conflict in this generalized Bayesian 
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scenario has been studied by Walter and Augustin [14] for imprecise Linearly Updated Conjugate prior Knowledge (iLUCK) models, 
following the idea that prior-data conflict should lead to a larger set of posterior ambiguity, proposed by Walley [15]. Another 
approach for the generalized Bayes scenario was given by Bickel [16], using sets of a-adequate models. In the GMM approach, the 
Sargan-Hansen test uses only external point values, but it can be extended to sets of external values.

Section 2 discusses the mathematical background and properties of the Sargan-Hansen test when external point values are used. 
Section 3 extends the Sargan-Hansen test to external sets. Section 4 introduces the corresponding Bayesian methods. Finally, Section 5
evaluates and compares the false positive and false negative rates of the discussed methods in different small sample scenarios based 
on simulation studies.

2. External information and the Sargan-Hansen test

This section covers the development of a Sargan-Hansen test based on external information in the point-valued case. Throughout 
this section, the notation is based on Newey and McFadden [17]. Unless otherwise indicated, (random) scalar values are represented 
by italic lowercase letters, (random) vectors by bold lowercase letters, and (random) matrices by bold uppercase letters.

2.1. Introduction to the point-valued case

Assume that all external information given is point-valued. Let ÿ ⊂ℝ
ÿ be the parameter space of a (fixed) parameter ÿ ∈ÿ in a 

statistical model. Let ÿ0 denote the “true” value of the parameter for this model, which is induced by the data generating process. 
The data is then assumed to be a realization of ÿ > 1 random variables z1, … , zÿ that are i.i.d. like a random variable z over ℝý. 
In this setting, the basic idea of the traditional method of moments to estimate the parameter would be to find a function g(z, ÿ)
that maps onto (a subset of) ℝÿ and for which ý[g(z, ÿ0)] = 0 holds [5, p. 166]. Then, the corresponding sample moment conditions 
1

ÿ

∑ÿ
ÿ=1 g(zÿ, ÿ) = 0 are solved for ÿ and the result is the desired estimator for the parameter.
In Example 1, the method of moments can be used as follows: The design matrix based on an i.i.d. sample of the independent 

variable x is

X =

»¼¼¼½

1 ý1,1 ý1,2 … ý1,ÿ−1

⋮ ⋮ ⋮ ⋮ ⋮

1 ýÿ,1 ýÿ,2 … ýÿ,ÿ−1

¾¿¿¿À
,

and likewise y = (ÿ1, … , ÿÿ)
ÿ represents an i.i.d. sample of the dependent variable ÿ. Under the Gauss-Markov assumptions, the 

mixed moment of the covariates x and the regression error term ÿ is zero, i.e., 0 = ý(xÿ) = ý(x(ÿ − xÿ ÿ0)). Thus, the function 
g(x, ÿ, ÿ) = x(ÿ − xÿ ÿ) is suitable for the method of moments. The corresponding sample moment conditions are 0 = 1

ÿ
Xÿ (y − Xÿ), 

which give the OLS estimator when solved for ÿ [5, p. 172].
In general, moment conditions are only uniquely solvable if the dimension of the parameter is equal to the number of moment 

conditions. However, when external information is present, there are not only the moment conditions for estimating the model 
parameter, but also moment conditions representing external information. Thus, the traditional method of moments must be ex-
tended. A classic example to illustrate the idea behind this extension is instrumental variable estimation, a well-known technique in 
econometrics [5, p. 170]. In Example 1, assume that the linear model holds, but now there is a correlation between the error term 
and the covariates x. In this case, the Gauss-Markov assumptions are violated and hence OLS will generally produce inconsistent 
estimates. Suppose the data set contains not only the covariates but also other variables that are known to be uncorrelated with the 
error term. Because these variables are not included in the model itself, but may be helpful in estimating the parameter, they are 
called instrumental variables. The mixed moment of the instrumental variables and the error term is again zero, allowing a procedure 
analogous to the OLS case. Let V be the ÿ × ý matrix containing the ÿ realizations of the ý instrumental variables, then the sample 
moment conditions are 0 = 1

ÿ
Vÿ (y− Xÿ). Often, however, the number of potential instrumental variables exceeds the dimension of 

ÿ . In this case, the sample moment conditions are an over-identified system of equations and therefore generally not solvable for the 
parameter. Deletion of some moment conditions would lead to a loss of efficiency, a consequence that (applied) researchers want to 
avoid. One way out of this dilemma is to use an estimate for ÿ that is as close as possible to a solution with respect to quadratic loss. 
Specifically, let W be a chosen positive definite weighting matrix, then the ÿ that minimizes

(
1

ÿ
Vÿ (y− Xÿ))ÿW(

1

ÿ
Vÿ (y− Xÿ))

is chosen as estimate.
This is the basic idea of the GMM. It is a generalization of the traditional method of moments, because a positive quadratic form 

in 1
ÿ

∑ÿ
ÿ=1 g(zÿ, ÿ) is zero (reaches the lowest possible minimum value of a positive quadratic form) if and only if 1

ÿ

∑ÿ
ÿ=1 g(zÿ, ÿ) = 0. 

In general the so derived estimator depends on W. Therefore, the choice of W is important for the properties of the estimator. Since 
efficiency is of great importance (as it was in the instrumental variables example), the weighting matrix W is mainly chosen to 
maximize the efficiency of the estimator. Let ÿ ∶= ý(g(z, ÿ)g(z, ÿ)ÿ ), then the maximum efficiency is achieved at W =ÿ−1 [7]. In 
practice, however, this optimal W is unknown and must be estimated. The corresponding estimator is denoted by Ŵ. All in all, the 
previous considerations motivate the following definition:
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Definition 1. [17, p. 2116] Let g(z, ÿ) be a function with values in ℝý, where ý ≥ ÿ and ý[g(z, ÿ0)] = 0 holds. Also let Ŵ ∈ℝ
ý,ý be 

a positive semidefinite (and thus symmetric) random matrix such that ||ÿ|| = (rÿ Ŵr)1∕2 is almost surely a norm on ℝý. Then a GMM 
estimator ÿ̂ýÿÿ is defined as a maximizer of the objective function

ý̂ÿ(ÿ) = −(
1

ÿ

ÿ∑
ÿ=1

g(zÿ,ÿ))
ÿ Ŵ(

1

ÿ

ÿ∑
ÿ=1

g(zÿ,ÿ)) . (2)

The properties of a GMM estimator include point identification, consistency, and asymptotic normality under mild regularity 
conditions (including cases that are not i.i.d. but ergodic and stationary stochastic processes) [17, Theorem 3.4].

Special cases of GMM estimators are OLS estimators, maximum likelihood estimators (MLE) [5, p. 172] and estimators derived by 
generalized estimating equations [5, p. 790]. Generalized estimating equations are mainly used to model longitudinal data that are 
not normally distributed, especially discrete data [18]. In the case of MLE, its regularity conditions require that the expected value of 
the score function is zero when evaluated at the true parameter value. This implies the condition ý[g(z, ÿ0)] = 0 in Definition 1, with 
the score function serving as g. Furthermore, the first-order conditions for maximizing the log-likelihood function are equivalent to 
setting the score function to zero, which provides the analog of the sample moment conditions. These properties of the score function 
are fundamental to establishing the consistency and asymptotic normality of the MLE (for mathematical details, see Cameron and 
Trivedi [5, p. 140]). Finally, some M-estimators are special cases of GMM estimators, providing a link to robust statistics. To see this, 
note that the equations based on a ÿ−function that implicitly define M-estimators have the form of sample moment conditions [19, 
p. 46].

The inclusion of external information can now be realized by formulating additional moment conditions and combining them 
with the moment conditions used to estimate the model [6]. Let m(z, ÿ) be a function with values in ℝý1 , where ý1 ≥ ÿ, which is 
used to estimate the model parameter. Let h(z) be a function that maps to ℝý2 , which represents the external information and is 
assumed to be a function of the data alone. The corresponding moment conditions are ý(h(z)) = 0. Results derived in this paper 
are generally not valid if h(z) is also dependent on the parameter. For example, a function representing the external information 
ý(ÿ) = 100 used in Example 1 is ℎ(z) = ÿ − 100. Both functions are then combined to g(z, ÿ) = (m(z, ÿ)ÿ , h(z)ÿ )ÿ , which has the 
dimension ý1 + ý2 = ý > ÿ.

Under the regularity conditions of the GMM, the maximum of the objective function plays an important role, since −ÿý̂ÿ(ÿ̂ýÿÿ) 
ý
→

ÿ2
ý−ÿ . The asymptotic ÿ

2 test that results from this property is called the Sargan-Hansen test [8,7]. The GMM regularity conditions 
can be found in Theorem 2.6 and Section 9.5 from Newey and McFadden [17], but will not be discussed in detail here. Only one 

regularity condition can be considered essential for the following discussions, namely Ŵ
ý
→W =ÿ−1, because it restricts the choice 

of Ŵ.

2.2. Choice of the weighting matrix Ŵ and separability

Since W = ÿ−1, it would suffice to find an estimator ÿ̂ that is nonsingular and has the property ÿ̂
ý
→ ÿ. Such an estimator 

satisfies the GMM regularity conditions using the continuous mapping theorem and the continuity of matrix inversion. By definition, 
ÿ = ý(g(z, ÿ)g(z, ÿ)ÿ ), so a natural choice would be a consistent estimator ÿ̂ that is symmetric and positive semidefinite, such as 
the sample analog ÿ̂ =

1

ÿ

∑ÿ
ÿ=1(g(zÿ, ̂ÿýÿÿ)g(zÿ, ̂ÿýÿÿ)

ÿ ), relying on a law of large numbers. Note that the dependence on ÿ̂ýÿÿ can be 

resolved by using an iterative estimation procedure based on a starting point for ÿ̂, such as the identity matrix. Here, two steps of 
iterative estimation are sufficient to provide estimators while satisfying the regularity conditions [17, p. 2171]. Now, the problem is 
that a (weak) law of large numbers does not guarantee the invertibility of ÿ̂.

Often, the invertibility can be assumed to hold almost surely, but in practice it is important to know what to do if a singular 
matrix occurs. A first approach is to check whether the entries of g(z, ÿ) (viewed as random variables) are linearly dependent and, 
if so, to delete entries until the remaining ones are no longer linearly dependent. There are more sophisticated ways to solve the 
singularity problem [20]. The first is to add random noise to ÿ̂, which again assures the invertibility “only” almost surely and 
artificially increases the variance of the estimator. The second is to use generalized inverses, which always exist, even for singular 

matrices. For the Moore-Penrose inverse ÿ̂+ of ÿ̂, it holds that ÿ̂+
ý
→ ÿ+ = ÿ−1, since we assumed ÿ to be invertible [20]. It is 

advisable to be cautious when using generalized inverses in practice, since the generalized inverse of a singular matrix can be very 
sensitive to small changes in the singular matrix [20]. However, since generalized inverses include the regular inverse as a special 
case, and since it is desirable that the reader should be able to decide which method to use, the following results are derived based 
on the Moore-Penrose inverse Ŵ = ÿ̂+ where possible.

Accepting the arguments made so far, it is possible to split the objective function, and thus the test statistic of the Sargan-
Hansen test, into two parts if a small additional assumption is made. To improve readability by using abbreviations, define m =
1

ÿ

∑ÿ
ÿ=1m(zÿ, ÿ), as well as h =

1

ÿ

∑ÿ
ÿ=1 h(zÿ), and denote the generalized Schur complement of a block B of a matrix A by A∕B.

Lemma 1 (Separability). Assume that the premises of Definition 1 are true. Let g(z, ÿ) = (m(z, ÿ)ÿ , h(z)ÿ )ÿ and ÿ̂ be symmetric and positive 
semidefinite. Then ÿ̂ has the block form

ÿ̂ =

(
ÿ̂ÿ ÿ̂ÿÿ

ÿ̂ÿ ÿ̂ℎ

)
,
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with ÿ̂ÿ ∈ℝ
ý1 ,ý1 , ÿ̂ℎ ∈ℝ

ý2 ,ý2 . If rank(ÿ̂) = rank(ÿ̂ÿ)+rank(ÿ̂ℎ), it holds that

−ý̂ÿ(ÿ) = (mÿ ,h
ÿ
)ÿ̂+(mÿ ,h

ÿ
)ÿ

= (m− ÿ̂
ÿ
ÿ ÿ̂

+
ℎ
h)ÿ (ÿ̂∕ÿ̂ℎ)

+(m− ÿ̂
ÿ
ÿ ÿ̂

+
ℎ
h) + h

ÿ
ÿ̂

+
ℎ
h. (3)

Proof. The first statement follows from the symmetry of ÿ̂ and by partitioning it according to g(z, ÿ), since m(z, ÿ) is ℝý1−valued 
and h(z) is ℝý2−valued.

For the second statement, the first equality follows by Definition 1 with Ŵ = ÿ̂+ and 1

ÿ

∑ÿ
ÿ=1 g(zÿ, ÿ) = (mÿ , h

ÿ
)ÿ . Now, by 

Proposition 13.1 from Puntanen et al. [21, p. 294], the condition rank(ÿ̂) = rank(ÿ̂ÿ)+rank(ÿ̂ℎ) and the block form of the symmetric 
positive semidefinite ÿ̂ from the first statement imply

ÿ̂
+ =

(
(ÿ̂∕ÿ̂ℎ)

+ −(ÿ̂∕ÿ̂ℎ)
+ÿ̂ÿÿ ÿ̂

+
ℎ

−ÿ̂+
ℎ
ÿ̂ÿ(ÿ̂∕ÿ̂ℎ)

+ ÿ̂
+
ℎ
+ ÿ̂

+
ℎ
ÿ̂ÿ(ÿ̂∕ÿ̂ℎ)

+ÿ̂ÿÿ ÿ̂
+
ℎ

)
. (4)

It follows that

−ý̂ÿ(ÿ) = (mÿ ,h
ÿ
)ÿ̂+(mÿ ,h

ÿ
)ÿ

=mÿ (ÿ̂∕ÿ̂ℎ)
+m− 2mÿ (ÿ̂∕ÿ̂ℎ)

+
ÿ̂
ÿ
ÿ ÿ̂

+
ℎ
h

+ h
ÿ
(ÿ̂+
ℎ
+ ÿ̂

+
ℎ
ÿ̂ÿ(ÿ̂∕ÿ̂ℎ)

+
ÿ̂
ÿ
ÿ ÿ̂

+
ℎ
)h

= (m− ÿ̂
ÿ
ÿ ÿ̂

+
ℎ
h)ÿ (ÿ̂∕ÿ̂ℎ)

+(m− ÿ̂
ÿ
ÿ ÿ̂

+
ℎ
h) + h

ÿ
ÿ̂

+
ℎ
h. □

Note, that the condition rank(ÿ̂) = rank(ÿ̂ÿ)+rank(ÿ̂ℎ) will always hold if ÿ̂ is invertible. Furthermore, the condition will hold 
asymptotically, since for the consistent estimator ÿ̂ all involved matrices converge in probability to (invertible) submatrices of the 
invertible matrix ÿ, which have full rank. Thus, the use of (3) could be justified by asymptotics. However, it is still advisable to 
check the rank condition to detect cases where the assumption that ÿ is invertible does not hold.

Now Lemma 1 separates the quadratic form −ý̂ÿ(ÿ) into two quadratic forms in different variables. Since the Sargan-Hansen test 
is based on the maximum of ý̂ÿ(ÿ), the quadratic form must be maximized. The following theorem shows that this optimization can 
be simplified if ÿ̂ℎ is chosen not to be a function of ÿ, for example, by choosing ÿ̂ℎ =

1

ÿ

∑ÿ
ÿ=1 h(zÿ)h(zÿ)

ÿ .

Theorem 1. Suppose the premises of Lemma 1 hold. Suppose ÿ̂ℎ is not a function of ÿ. If a ÿℎ ∈ ÿ with the property m − ÿ̂ÿÿ ÿ̂
+
ℎ
h = 0

exists, then

−ý̂ÿ(ÿ̂ýÿÿ) = h
ÿ
ÿ̂

+
ℎ
h. (5)

Proof. With Definition 1 the equations

−ý̂ÿ(ÿ̂ýÿÿ) = −max
ÿ∈ÿ

ý̂ÿ(ÿ) = min
ÿ∈ÿ

−ý̂ÿ(ÿ)

hold. The matrix ÿ̂ is positive semidefinite, so ÿ̂+ = ÿ̂+ÿ̂ÿ̂+ is also positive semidefinite. The matrix ÿ̂ℎ is positive semidefinite 
because it is a principal submatrix of ÿ̂. By the same argument, ÿ̂+

ℎ
is also positive semidefinite. Applying (4) from the proof of 

Lemma 1, (ÿ̂∕ÿ̂ℎ)
+ is a principal submatrix of ÿ̂+ and thus also positive semidefinite. Now, using the separation based on Lemma 1, 

the objective function −ý̂ÿ(ÿ) is a sum of two positive semidefinite quadratic forms, each with a possible global minimum of zero 
or higher. Using the ÿℎ defined in the premises, the first quadratic form (m − ÿ̂ÿÿ ÿ̂

+
ℎ
h)ÿ (ÿ̂∕ÿ̂ℎ)

+(m − ÿ̂ÿÿ ÿ̂
+
ℎ
h) reaches the global 

minimum 0. Since ÿ̂ℎ is not a function of ÿ, the second quadratic form h
ÿ
ÿ̂

+
ℎ
h is also not a function of the parameter ÿ. Thus, the 

second quadratic form is a constant in the optimization problem. Taken together, the global minimum is h
ÿ
ÿ̂

+
ℎ
h. □

Theorem 1 indicates that in the vast majority of scenarios, the model moment conditions simply cancel out. In these scenarios, 
the Sargan-Hansen test based on external information reduces to a goodness-of-fit test of the data and the external information alone. 
To illustrate this, consider again the context of linear regression.

Example 2. Based on Example 1, consider OLS estimation in multiple linear models when external information is known. When the 
design matrix X is of full rank, it holds that m − ÿ̂ÿÿ ÿ̂

+
ℎ
h =

1

ÿ
Xÿ (y − Xÿ) − ÿ̂ÿÿ ÿ̂

+
ℎ
h = 0. This equation can be solved directly for ÿ, 

for all possible values of the external information.

To emphasize the importance of the condition m − ÿ̂ÿÿ ÿ̂
+
ℎ
h = 0, note that it is equivalent to the main separability result of Ahu 

and Schmidt [22, see (5) on p. 21] (for invertible ÿ̂ℎ), if one interprets the external information as a parameter for which only 
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one value is possible. Furthermore, this condition follows from the first-order conditions for the GMM [22]. This implies, that if 
the condition fails, then the first-order conditions are not satisfiable, eventually violating the GMM regularity condition or at least 
making it very difficult to find the maximizer of the objective function in Definition 1.

Finally, even if the condition is not met, the parameter value is chosen for which the objective function is closest to the global 
minimum 0. The GMM attempts to compensate for the misspecified external information by shifting the parameter estimate. There-
fore, the test statistic is generally not able to indicate the combined misspecification of the external information and the model, 
but instead eventually cushions overidentification or even misspecification of the model. Taken together, it is advisable to use the 
reduced test statistic (5) of Theorem 1 whenever possible.

To justify the use of (5) even if m − ÿ̂ÿÿ ÿ̂
+
ℎ
h ≠ 0, note that the reduced test statistic −ÿý̂ÿ(ÿ̂ýÿÿ) = ÿh

ÿ
ÿ̂

+
ℎ
h has the form of a 

generalized Wald statistic [23,24]. This actually provides another way to prove the asymptotic validity of Lemma 1 for ÿ = ÿ̂ýÿÿ and 
hence of Theorem 1, since the Sargan-Hansen test can be reinterpreted as a generalized Wald Test [23, p. 348].1 Theorem 2.1 from 
Hadi and Wells [24] or Theorem 1 from Andrews [23] establishes (under the respective regularity conditions) that the asymptotic 
ÿ2−distribution of a generalized Wald test is invariant of the choice of the generalized inverse for ÿ̂. Choosing a generalized inverse 
in Banachiewicz-Schur form then allows to verify Lemma 1 and Theorem 1 with analogous proofs (see [21, p. 295] for the definition 
of the Banachiewicz-Schur form).

Besides consistency, the choice of ÿ̂ℎ is also important to incorporate the external information in different ways. Consider the 
case where h(z) is linear in the external information, i.e., h(z) = ĥ(z) − e, where e is the value of the external information and 
ĥ(z) is not a function of e. This can be considered as a practically very important case (at least in psychology), since it covers 
externally given means, (co-)variances, and proportions, which are commonly reported in the majority of studies. The first possible 
consistent estimator is ÿ̂ℎ ∶=

1

ÿ

∑ÿ
ÿ=1 h(zÿ)h(zÿ)

ÿ =
1

ÿ

∑ÿ
ÿ=1(ĥ(zÿ) − e)(ĥ(zÿ) − e)

ÿ , already defined above. A second possible estimator 

is the sample covariance matrix Ŝℎ ∶=
1

ÿ−1

∑ÿ
ÿ=1(h(zÿ) −h)(h(zÿ) −h)

ÿ =
1

ÿ

∑ÿ
ÿ=1(ĥ(zÿ) −

1

ÿ

∑ÿ
ÿ=1 ĥ(zÿ))(ĥ(zÿ) −

1

ÿ

∑ÿ
ÿ=1 ĥ(zÿ))

ÿ . It is only 

a consistent estimator of ÿ̂ℎ under the null hypothesis and the (GMM or Wald) regularity conditions, since then 1
ÿ

∑ÿ
ÿ=1 ĥ(zÿ) 

ý
→ e. 

Both approaches are different because Ŝℎ is not a function of the external information, a fact that will play an important role in the 
next section.

However, both estimators lead to test statistics that interpret the external information as fixed, and thus are unable to handle the 
fact that the external information is itself an estimate. To account for this fact, the first step is to consider e as a random variable. 
Under the null hypothesis, 0 = ý(ĥ(z) − e), it follows that ý(ĥ(z)) = ý(e). Under these conditions, ÿℎ depends on the random 
variable e. This is denoted by writing ÿℎ,ÿ in this case. Now, ÿℎ,ÿ can be derived under the null hypothesis as follows:

ÿℎ,ÿ =ý(h(z)h(z)
ÿ )

=ý((ĥ(z) − e−ý(ĥ(z)) +ý(e))(ĥ(z) − e−ý(ĥ(z)) +ý(e))ÿ )

= Var(ĥ(z)) + Var(e) − Cov(ĥ(z),e) − Cov(e, ĥ(z))

Estimating ÿℎ,ÿ requires more external knowledge than just knowing the value of e. First, Var(e) is the entire covariance matrix for
e, so consistent estimates for all variances and covariances are needed. In many psychological papers, however, consistent variance 
estimates are reported or the complete data set is available as open data. For the rest of the paper, assume that consistent variance 
and covariance estimators exist and that their estimates are available from previous studies. Let V̂ar(e) be the combined consistent 
covariance matrix estimator. Second, the terms Cov(ĥ(z), e) and Cov(e, ĥ(z)) need to be treated. They pose a bigger problem for the 
estimation of ÿℎ,ÿ, since e and ĥ(z) are based on different data sets. To solve this problem, assume that the external data and the 
new data are (at least) linearly independent, so that both terms vanish. Third, Var(ĥ(z)) can be estimated consistently by Ŝℎ. Taken 
together, a consistent estimator for ÿℎ,ÿ is ÿ̂ℎ,ÿ = Ŝℎ + V̂ar(e). Note that the derivations made here are based on the linearity of h(z)
in e, and thus linearity is assumed wherever ÿ̂ℎ,ÿ or Ŝℎ are used as estimators for ÿℎ.

3. Extension to external intervals via decision rules

In this section, the restrictive case of point-valued external information is extended to set-valued external information. To illustrate 
the practical relevance, consider the following example.

Example 3 (Meta-analytical scenario). In psychological research, and empirical research in general, there are often multiple studies 
on a particular effect or topic. Therefore, the same statistics are calculated for multiple data sets to see if the effect can be replicated, 
resulting in a set of available external information. This has led to the development of meta-analysis as a method to aggregate the 
variety of results (modern references for meta-analysis are [25] or [26]). Further replication never occurs under exactly the same 
conditions. There will be differences in study design, sampling, or confounding variables, leading to a qualitative uncertainty about 
the comparability of external information and new data.

1 The theory of generalized Wald tests shows under very mild regularity conditions and the rank condition ÿ (rank(ÿ̂) = rank(ÿ)) → 1 if ÿ →∞, that the asymptotic 
ÿ2−distribution holds even if ÿ is singular. For an invertible ÿ, this rank condition can be omitted, as was done in this paper. See Andrews [23], Hadi and 
Wells [24], Xiao [20] for the mathematical details.
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Example 3 shows the presence of two different types of uncertainty, estimation uncertainty and (qualitative) “comparability” 
uncertainty. The first uncertainty can be addressed by using a variance term for the external information and thus using ÿ̂ℎ,ÿ. The 
second uncertainty is addressed in current practice by using a random effects model when conducting a meta-analysis [25, pp. 75 
– 76]. This study uses a different approach to avoid the pitfalls of assuming a single probability distribution as in a random effects 
model.

Let Mÿý be a set representing the external information for which the fit to a data set is to be tested. In the meta-analytical scenario, 
the set Mÿý would be a finite set of points, the observed estimates. In other scenarios, Mÿý might be given by constraints. In general, 
Mÿý is the raw external information. Sometimes this raw information does not have the structure that an applied researcher wants. If 
there is qualitative uncertainty due to design or sampling, it is unlikely that point estimates from other studies will be exactly correct 
in a new study. In this case, the researcher may want to include the intermediate values. Then the Mÿý from the meta-analytical 
scenario could be extended to a convex set, since convexity is precisely the inclusion of the intermediate values. When the set Mÿý
is extended to a convex set, we will call the resulting set Iÿý. To simplify later optimization problems, we will assume that Iÿý can 
be expressed by linear constraints. So if Mÿý is already given by linear constraints, then Iÿý =Mÿý. If Mÿý is given by a finite set, a 
different approach is preferable.

Definition 2. Let Mÿý = {e1, ..., eÿ} be the set of external information with eÿ = (ÿ1,ÿ , … , ÿý2 ,ÿ )
ÿ ∈ ℝ

ý2 for ÿ = 1, ..., ÿ. Then the
interval hull of Mÿý is

ïMÿýðý ∶=
⨉

ÿ=1,...,ý2

[ min
ÿ=1,...,ÿ

ÿÿ,ÿ , max
ÿ=1,...,ÿ

ÿÿ,ÿ ]

For example, the points (0, 1), (0, 4), (−1, 3), and (2, 3) would result in the interval hull [−1, 2] × [1, 4] containing all observed 
points, but no observed point is a vertex.

While the convex hull would be sufficient to include values in between, the interval hull is used here for two reasons. First, 
its complexity scales exponentially in the dimension of the external values, not in the number of external values, which is helpful 
when a large meta-analysis is available. Second, it treats the dimensions separately in terms of maximum and minimum. In our 
example, the maximum of the first component is 2 and the maximum of the second is 4, but the point (2, 4) is only covered by the 
interval hull, not the convex hull. In general, the convex hull is a proper subset of the interval hull. The decision of which hull to use 
depends on whether a researcher wants to treat the dimensions of the external information separately, e.g., based on an independence 
assumption, in which case the interval hull is appropriate. We continue with Iÿý = ïMÿýðý , but the proofs in this paper also work 
with the convex hull.

Note that the decision to extend the set containing the external information to a convex set represents the idea that the true 
value fitting the data should lie within the extremes found so far. This idea is then tested as a hypothesis, i.e., the null hypothesis is 
e0 ∈ Iÿý, where e0 is the true value for the new data. However, the question of which studies to include as external information for 
a given effect (and which to exclude as measuring a different effect) is still qualitative, depends on the applied field, and should be 
answered a priori by inclusion and exclusion criteria [25, p. 5].

When Mÿý is used instead of Iÿý, the null hypothesis is e0 ∈Mÿý. The difference between using Mÿý and Iÿý when Mÿý is a finite 
set of points can be summarized as follows: Iÿý results in a more conservative test that accounts for the presence of qualitative 
uncertainty by including all values between the external values, while Mÿý results in a more liberal test by testing only the observed 
external values point by point. This difference is generally more relevant the fewer points Mÿý contains. Consider the case where 
only two previous studies are known. One study had a large estimate and the other had a small estimate, possibly due to a different 
design. When a new study is conducted, its estimate may be in the middle of these extremes. Using Mÿý would likely reject the fit 
of the external information to the new data, while using Iÿý would not. It is up to the researcher whether the external values should 
be used as a boundary for possible estimates in new studies, allowing for differences due to qualitative uncertainty, or whether the 
estimate should be close to one of the previous studies.

3.1. General results and asymptotics

For the rest of this paper, probability distributions are assumed to be ÿ-additive. The basis for extending the Sargan-Hansen 
test and the generalized Wald test from Section 2.2 is that the null hypotheses e0 ∈ Iÿý and e0 ∈Mÿý include the point-value null 
hypothesis for the unknown value e0. Thus, there is a value in the set Mÿý or in the set Iÿý for which the results of Section 2.2 can 
be applied, but it is unknown for which value this is the case. According to the cautious data completion approach [1], all values in 

the external set must be considered, which leads to a set of test statistics by computing ÿh
ÿ
ÿ̂

+
ℎ
h for each value in the external set. 

Since ÿh
ÿ
ÿ̂

+
ℎ
h is a positive semidefinite quadratic form, this set of test statistics will always be bounded below by zero. However, 

there is no general upper bound, since Iÿý can be arbitrarily large and it can be arbitrarily far away from the corresponding sample 
moment of the new data set. Regarding the distributional properties of each test statistic, multiple distributions are possible, so they 
form a credal set. To emphasize the dependence on e, let ÿ2(e) denote the test statistic based on e. First, if e is the true value, 

then ÿ2(e) 
ý
→ ÿ2

ý2
, since the results of Section 2.2 apply. Second, if e is not the true value, then ÿ2(e) 

ý
→ ∞, this is indicated by 

ÿ̂
+
ℎ

ý
→ ÿ

+
ℎ
= ÿ

−1
ℎ

and h
ý
→ e0 − e ≠ 0, which results in ÿ2(e) = ÿh

ÿ
ÿ̂

+
ℎ
h
ý
→ ÿ(e0 − e)

ÿÿ−1
ℎ
(e0 − e) → ∞ for ÿ → ∞, since all terms 

except ÿ converge to constants [5, p. 248].
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For Mÿý these are all possible asymptotic distributions and thus the asymptotic credal set is ÿ = {ÿ2
ý2
, 1∞}. Here 1∞ denotes 

the indicator function at infinity, which represents the shift of the probability mass to infinity when misspecified external values 
are used (it can be interpreted as a probability measure using the extended real number line). For Iÿý there are also external 
values in a shrinking neighborhood around the true value. These are defined as e = e0 + ÿ∕ÿ, where ÿ is a constant representing 
the bias. For these neighborhood values, the asymptotic distribution of the test statistic is a noncentral ÿ2

ý2
−distribution under 

Wald regularity conditions, using Theorem 2.1 from [24]. Let ÿ2
ý2
(ÿ) denote the noncentral ÿ2

ý2
−distribution with the noncentrality 

parameter ÿ. Taken together, the asymptotic credal set when using Iÿý is ý = {ÿ2
ý2
(ÿ)|ÿ ∈ [0, ∞)} ∪ {1∞}. Note that ÿ2

ý2
(0) is the 

central ÿ2
ý2
−distribution.

In order to derive a valid test for the fit of external information and data based on the set of test statistics and the credal set, it 
is useful to interpret the scenario as a decision making scenario. In the following, the presentation is based on Huntley et al. [27]. 
First, a set of gambles must be defined based on the set of test statistics. The test statistic ÿ2(e) now symbolizes a realized value in a 
data set, not a random variable. For each e∈ Iÿý (or Mÿý) consider the “p-value” event {ÿ

2 > ÿ2(e)}, that for a fixed e a test statistic 
greater than the observed value ÿ2(e) occurs. The indicator functions of these p-value events for all e ∈ Iÿý (or Mÿý) form the set of 
gambles.

Definition 3. Let ÿ (ÿ) denote a one-dimensional test statistic dependent on a parameter ÿ and ý(ÿ) denote a possible value of ÿ (ÿ). 
Let the null hypothesis be ÿ0 ∈ÿ0, where ÿ0 is the true value of the parameter. Then the set of p-value (event) gambles is defined 
to be

 = {1{ÿ (ÿ)>ý(ÿ)}|ÿ ∈ÿ0}.

Since the gambles in  are indicator functions, linear previsions on  reduce to probabilities of the p-value events. Lower and 
upper previsions reduce to lower and upper probabilities, ÿ and ÿ , of the p-value events, hence to lower and upper p-values. In the 
following, it is always assumed that ÿ (ÿ) has the same measurable, closed set ý ⊂ℝ ∪∞ as possible values for each ÿ ∈ÿ0, which 
allows to write {ÿ > ý(ÿ)} for the p-value events. Then  is a totally ordered set by using the set inclusion of the events {ÿ > ý(ÿ)}
as order. The above credal sets have an important property which makes it easier to determine the upper and lower probabilities.

Definition 4. Let ÿ be a family of probability distributions on the real numbers, where ÿ is an one-dimensional real parameter. ÿ
is said to be stochastically ordered in ÿ if for all ý ∈ℝ and all ÿÿ1 , ÿÿ2 ∈ ÿ with ÿ1 ≥ ÿ2 it holds that

ÿÿ1 (ÿ > ý) ≥ ÿÿ2 (ÿ > ý).

While the stochastic ordering assumption may seem very restrictive, the results of this section can be applied to a variety of 
different cases. Many significance tests used in psychology or econometrics are based on families of distributions that are stochasti-
cally ordered in the noncentrality parameter, where the minimum distribution with respect to the stochastic order is the distribution 
under the null hypothesis. Examples are the noncentral ÿ2- and ý -distributions (later proved by references). Thus, the Wald test for 
general linear and nonlinear hypotheses, the likelihood ratio test, and the Langrange multiplier test are candidates for an application 
of the results derived here (see [5] for more details). These and other tests are used in a variety of scenarios of interest in hypothesis 
testing in applied research, goodness-of-fit testing (as in this paper), or model comparison [5,28].

In the proof of Corollary 1, it will be shown that the credal sets ÿ and ý are stochastically ordered in the noncentrality 
parameter ÿ. A trivial but important consequence of the stochastic ordering is that the lower and upper probabilities of the events 
(ÿ > ý) are attained for the lowest and highest parameter values, respectively. To guarantee the existence of minimum and maximum 
values, it is assumed that the parameter space Λ for ÿ is a compact subset of the extended real line with respect to the order topology. 
This assumption is equivalent to the assertion that Λ is closed with respect to the order topology. With this simplification in hand, 
choice functions can be applied while using the implications of Figure 8.1 from Huntley et al. [27]. The choice functions treated here 
are �−maximax, �−maximin, E-admissible, maximal, Hurwicz and Interval dominance. In the following, ý and ý denote the infimum 
and supremum of the elements in a set of observed test statistics ÿ0

, based on ÿ0.

Proposition 1. Let ÿ0
be a set of observed test statistics, based on ÿ0. For each ÿ ∈ÿ0, let the credal set for the test statistic ÿ (ÿ) be the 

same family of probability distributions ÿ stochastically ordered in ÿ. Then every set of optimal p-value gambles chosen by a choice function 
contains 1{ÿ>ý}.

Proof. Using the relations shown in Figure 8.1 from Huntley et al. [27, p. 196], it is sufficient to show that the choice functions 
�−maximax, �−maximin and Hurwicz choose 1{ÿ>ý} as an optimal gamble. Since ÿ is stochastically ordered in ÿ, the lower and 

upper probabilities for each event {ÿ > ý(ÿ)} are attained at ÿ =minÿ and ÿ =maxÿ, where minimum and maximum are taken over 
the possible values of ÿ. Since {ÿ > ý(ÿ)} ⊂ {ÿ > ý} for every ý(ÿ) ∈ ÿ0

, it holds that

ÿ (ÿ > ý) = ÿÿ(ÿ > ý) ≥ ÿÿ(ÿ > ý(ÿ)) = ÿ (ÿ > ý(ÿ)) and

ÿ (ÿ > ý) = ÿ
ÿ
(ÿ > ý) ≥ ÿ

ÿ
(ÿ > ý(ÿ)) = ÿ (ÿ > ý(ÿ)),
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for every ý(ÿ) ∈ ÿ0
. Since the events {ÿ > ý(ÿ)} correspond to the gambles 1{ÿ (ÿ)>ý(ÿ)}, this proves the optimality for �−maximin 

and �−maximax. The optimality of 1{ÿ>ý} for the Hurwicz choice function follows by noting that it is based on a convex combination 
of the two inequalities derived. □

Proposition 1 establishes that 1{ÿ>ý} can always be chosen as an optimal gamble, and the corresponding event forms the basis of 
p-value calculations. In the important case of asymptotic credal sets containing 1∞, there are further simplifications.

Proposition 2. Let  be a set of observed test statistics and  be the corresponding set of p-value gambles. Further, let the credal set contain 
1∞ and ý ∪∞ be the set of possible values of the test statistic. It follows that the choice functions �−maximax, E-admissible, maximal and 
Interval dominance choose all gambles in  as optimal. Furthermore �−maximin and Hurwicz choose the same set of gambles as optimal.

Proof. The first statement only needs to be proved for �−maximax, the rest follows from Figure 8.1 from Huntley et al. [27, p. 
196]. The measure 1∞ assigns the value 1 to all gambles in , since the p-value events include all values greater than a value 
ý(ÿ) ∈  , including ∞ as a value.2 Therefore, the upper probability is 1 for every event, and thus all gambles in  are optimal by the 
�−maximax rule. For the second statement, note that the upper probabilities are again equal to 1, and thus it follows for all ÿ ∈ [0, 1]
and all ÿ, ý ∈ that

ÿÿ (ÿ ) + (1 − ÿ)ÿ (ÿ ) ≥ ÿÿ (ý) + (1 − ÿ)ÿ (ý)⇔

ÿÿ (ÿ ) + (1 − ÿ) ≥ ÿÿ (ý) + (1 − ÿ)⇔ ÿ (ÿ ) ≥ ÿ (ý). □

Now, Proposition 2 implies that there is asymptotically only one choice function, �−maximin, which effectively reduces the set of 
p-value gambles in the case of the credal sets ÿ and ý . While one is tempted to attribute this reduction to infinity and question 
its validity for any finite sample, it is important to note, that for large samples the upper probabilities will generally be close to 
one, by convergence of the test statistic distribution to 1∞ for misspecified values. There is an important relation to the consistency 
of a test statistic, i.e., the property that the power of the test converges to 1 for ÿ →∞ [5, p. 248], since the upper probability 
for the misspecified cases is the maximum power based on the credal set. The consistency of a test is an important property in 
frequentist statistics, and tests are chosen to have the highest power, so upper probabilities will generally tend to be high when the 
basic frequentist scenario is assumed to hold, since then only one value is true and all other values are misspecified. To conclude, the 
test construction will be based on the �−maximin rule, i.e., choosing ÿ (ÿ > ý) as the p-value and comparing it with the significance 
level ÿ.

Definition 5. Let ÿ (ÿ) be a test statistic that is a function of a parameter ÿ. Let ÿ0
be a set of observed test statistics, where ý

denotes its infimum. Let  be a credal set of possible distributions of the test statistics and ÿ be the lower probability based on . 
Under the null hypothesis (ÿ0) ÿ0 ∈ÿ0, a �−maximin test with significance level ÿ ∈ (0, 1) is as follows:

If ÿ (ÿ > ý) < ÿ, then reject ÿ0 ∶ ÿ0 ∈ÿ0,

else maintain ÿ0 ∈ÿ0.

Note that only the lower probability ÿ (ÿ > ý) is important for computing a �−maximin test, and thus it is uniquely defined, even 
if more events than {ÿ > ý} are optimal by the �−maximin choice function.

Aside from arguments from decision making, there are theoretical reasons to justify the use of a �−maximin test. Consider the 
above situation of testing whether an external set Mÿý or its interval hull Iÿý fits new data. One can argue in this situation that a 
rejection of the fit of the external set should also imply a rejection of all subsets of it. For example, if a test rejects the interval [−1, 1]
as unfitting, i.e., not containing the true moment value for this data set, the test should also reject the interval [−1, 0] or the value 1
as unfitting. This argument translates to using {ÿ > ý}, since this event will produce the highest p-value because it is the largest set 
based on the possible test statistics. If this p-value leads to a rejection of the null hypothesis, then all of the other p-values would as 
well. Regarding the use of the lower probability, consider the credal set ÿ, which contains only ÿ

2 and 1∞, it is natural to rely on 
the lower probability in this case.

Furthermore, the external set is seen as a representation of the uncertainty about the true value. A straightforward strategy for 
constructing a test would be to apply only the distribution under the null hypothesis of the single true value. For the Sargan-Hansen 
test, this would be the ÿ2−distribution. This motivates the following property to guarantee the validity of the test.

Definition 6. A �−maximin test with significance level ÿ has ÿ−level under the (asymptotic) distribution of ÿ (ÿ0), if (asymptot-
ically), given the null hypothesis is true,

ÿÿ (ÿ0)(ÿ > ýÿ) ≤ ÿÿ (ÿ0)(ÿ (ÿ0) > ýÿ) ≤ ÿ

2 If the reader is skeptical about using infinity as an element by extending the real line, it should be noted that another approach would be to use a sequence of 
indicator functions that shift mass to infinity and take the supremum to derive ÿ , i.e., the use of {1ÿ|ÿ ∈ℕ} instead of 1∞ , which leads to the same conclusions.
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holds, where ÿ = infÿ0
ÿ (ÿ) and ýÿ is the upper 1 − ÿ−quantile of a distribution in  that constitutes the lower probability ÿ at the 

event {ÿ > ý}.

The property of Definition 6 implies that the �−maximin test “contains” an ÿ−level significance tests for the (unknown) point null 
hypothesis ÿ = ÿ0. Sufficient conditions for this property can be stated as requirements for the credal set, as the following theorem 
shows.

Theorem 2. Suppose that the credal set  is stochastically ordered, contains the (asymptotic) distribution of ÿ (ÿ0), and that this distribution 
is a minimum with respect to the stochastic order of . Under these conditions, a �−maximin test with significance level ÿ ∈ (0, 1) has ÿ−level 
under the (asymptotic) distribution of ÿ (ÿ0).

Proof. Let ÿ denote the minimal ÿ. Using the stochastic order and the minimality of ÿ, it follows that ÿÿ(ÿ > ý) = ÿ (ÿ > ý) for all 
ý ∈ ÿ0

. Now, ÿ can be mapped to the critical value ýÿ , defined as the upper 1 − ÿ−quantile of ÿÿ. For the �−maximin test, rejecting 
the null hypothesis is equivalent to the event ÿ > ýÿ . It holds (asymptotically) that ÿÿ (ÿ0)(ÿ (ÿ0) > ýÿ) ≤ ÿ, since ÿÿ is the minimum 
with respect to the stochastic order and thus equal to ÿÿ (ÿ0). Thus, under the null hypothesis ÿ0 ∈ÿ0 it follows (asymptotically) that

ÿÿ (ÿ0)(ÿ > ýÿ) ≤ ÿÿ (ÿ0)(ÿ (ÿ0) > ýÿ) ≤ ÿ,

because ÿ ≤ ÿ (ÿ0) for all possible realizations. □

Now the Sargan-Hansen test (and the generalized Wald Test) can be extended to a �−maximin test.

Definition 7. Let ÿ2(e) = ÿh
ÿ
ÿ̂

+
ℎ
h be the test statistic of the Sargan-Hansen test, which is a function of the external value e. Let Mÿý

(or Iÿý) be a set of external values (representing the external information) and ý be the set of observed test statistics, based on Mÿý
(or Iÿý). Suppose the credal set is ÿ (or ý in the case of Iÿý). The Sargan-Hansen test for external sets with significance level
ÿ ∈ (0, 1) is defined to be the �−maximin test with significance level ÿ for the null hypothesis e0 ∈Mÿý (or Iÿý) under the above 
conditions.

Finally, the results of this section and Section 2 can be combined to show the validity of the Sargan-Hansen test for external sets. 
Similar to ý, let ÿ2 denote the minimum of the observed test statistics in the case of the Sargan-Hansen test for external sets.

Corollary 1. Under the GMM or Wald regularity conditions of Section 2, the Sargan-Hansen test for external sets with significance level ÿ
has ÿ−level under the asymptotic distribution of ÿ2(e0). It further reduces to the procedure

If ÿÿ2ý2
(ÿ > ÿ2) < ÿ, then reject ÿ0 ∶ e0 ∈Mÿý(or Iÿý),

else maintain e0 ∈Mÿý (or Iÿý).

Proof. The GMM or Wald regularity conditions of Section 2 imply ÿ2(e0) 
ý
→ ÿ2

ý2
, which is contained in the credal sets ÿ and ý . 

The credal set ÿ is trivially stochastically ordered in ÿ by setting ÿ = 0 for ÿ2
ý2
and ÿ = 1 for 1∞. The credal set ý consists of the 

ÿ2
ý2
(ÿ)−distributions for ÿ ∈ [0, ∞) and 1∞. The ÿ

2
ý2
(ÿ)−distributions are stochastically ordered in ÿ [29]. By setting ÿ =∞ for 1∞, 

it follows that ý is stochastically ordered in ÿ. In both cases, the ÿ
2
ý2
-distribution is the minimum with respect to the stochastic 

order. Now, applying Theorem 2 proves the first statement. Since ÿ2
ý2
is the minimum with respect to the stochastic order, it follows 

that ÿ (ÿ > ÿ2) = ÿÿ2ý2
(ÿ > ÿ2). □

3.2. Small sample results

Since the Sargan-Hansen test for external sets is asymptotic in nature, it may not be an appropriate choice for small samples. To 
derive a test for the goodness of fit of the data and an external set in small samples, more assumptions are needed. First, assume 
that h(z) is linear, i.e., h(z) = ĥ(z) − e. Suppose further that ĥ(z) is normally distributed, so that h(z) is normally distributed for 
each e ∈Mÿý (or Iÿý). Then, by the results of Phillips [30, p. 889], the test statistic ÿhŜ

−1

ℎ h has the scaled noncentral F-distribution 
(ÿ−1)ý2
ÿ−ý2

ýý2 ,ÿ−ý2 (ÿ) for a fixed e, where ÿ is again the noncentrality parameter,
3 being only 0 for the true value e0. Since Ŝℎ is a random 

matrix, its invertibility is not certain. However, replacing Ŝ
−1

ℎ with Ŝ
+

ℎ will eventually change the distribution of the test statistic. To 
avoid this change in distribution, it is assumed that Ŝℎ is invertible almost surely.

3 To bridge the different notation of Phillips [30] to the notation of this paper, note that his ÿ is ÿ here, his ý is 1 here, so his ý = ÿ − 1, and his ÿ is ý2 .
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Definition 8. Let ÿ (e) = ÿhŜ
+

ℎh be the test statistic, based on the external value e. Let Mÿý (or Iÿý) be a set of external values 
(representing the external information) and ý be the infimum of the observed test statistics, based on Mÿý (or Iÿý). Finally, the credal 

set  is set to be { (ÿ−1)ý2
ÿ−ý2

ýý2 ,ÿ−ý2 (ÿ)|ÿ ∈ [0, ∞)}. Then the small sample test for external sets with significance level ÿ ∈ (0, 1) is 

defined to be the �−maximin test with significance level ÿ for the null hypothesis e0 ∈Mÿý (or Iÿý) under the above conditions.

The validity of the small sample test for external sets follows directly from the results of the last section.

Theorem 3. Suppose that ĥ(z) is normally distributed and Ŝℎ is invertible almost surely. Then the small sample test for external sets with 
significance level ÿ has ÿ−level under the distribution of ÿ (e0). Further, it can be reduced to the procedure

If ÿýý2 ,ÿ−ý2
(ÿ >

ÿ− ý2
(ÿ− 1)ý2

ý) < ÿ, then reject ÿ0 ∶ e0 ∈Mÿý (or Iÿý),

else maintain e0 ∈Mÿý (or Iÿý).

Proof. From the above considerations, based on the results of Phillips [30], it follows that ÿ (e) has the distribution (ÿ−1)ý2
ÿ−ý2

ýý2 ,ÿ−ý2 (ÿ), 

where ÿ = 0 for e0. Thus, the distribution of ÿ (e0) would be the minimum with respect to the stochastic order if  is ordered in 
ÿ. To prove the stochastic order of  in ÿ, first note that ýý2,ÿ−ý2 (ÿ) is stochastically ordered in ÿ [29]. The scaling by 

(ÿ−1)ý2
ÿ−ý2

is a 

strictly increasing transformation and can be inverted using the definition of pushforward measures, i.e.,

ÿ (ÿ−1)ý2
ÿ−ý2

ýý2 ,ÿ−ý2
(ÿ)
(ý) = ÿýý2 ,ÿ−ý2 (ÿ)

(
ÿ− ý2

(ÿ− 1)ý2
⋅ý) (6)

for all measurable sets ý. Therefore, the stochastic order in ÿ carries over to (ÿ−1)ý2
ÿ−ý2

ýý2 ,ÿ−ý2 (ÿ). Now, the first statement follows from 

Theorem 2. The reduced procedure can be derived by Definition 6, using ÿ (ÿ > ý) = ÿ (ÿ−1)ý2
ÿ−ý2

ýý2 ,ÿ−ý2
(ÿ)
(ÿ > ý) and then using (6). □

Taken together, the small sample test for external sets is an exact small sample version of the Sargan-Hansen test for external sets 
for normally distributed sample moments.

3.3. Computation of the infimum of the test statistics

To apply the �−maximin tests developed in this paper, only the efficient computation of ý is a problem, since the rest of the 
procedures simply consist of computing a p-value under a central ÿ2- or ý -distribution. To represent the dependence on the external 
value e, h is now written as h(e) and ÿ̂ℎ as ÿ̂ℎ(e). If a relatively small discrete set Mÿý is used, a simple way to find the infimum 
of the test statistic is to compute all possible test statistics and compare them. However, this method cannot be used for Iÿý. For 
Iÿý, in the case of a linear moment function h(z) = ĥ(z) − e, efficient methods from quadratic programming are available. Linear 
moment functions cover the important cases where there is a closed-form estimator ĥ(z) for which the moment function h(z) satisfies 
the GMM regularity conditions. This covers means, variances, covariances, regression coefficients, and more. These are the most 
commonly used statistics in psychology and other disciplines. As such, they are the easiest to obtain external information about in 
these disciplines. It is important to note that the GMM regularity conditions are weaker than the typical i.i.d. assumption made in 
statistical inference. For a more detailed discussion of the importance of linear moment functions in psychology, see the work of 
Jann and Spiess [31].

Since Iÿý is compact and h(e) is linear, the objective function is ÿ ⋅ h(e)
ÿ ÿ̂ℎ(e)

+h(e) and attains its minimum on Iÿý, if ÿ̂ℎ(e)
+

is continuous on Iÿý. The simplest example is a ÿ̂ℎ(e) that is not a function of e and therefore constant on Iÿý. This is achieved by 
ÿ̂ℎ(e) = Ŝℎ. In this case, the objective function can be rewritten as h(e)

ÿ (Ŝℎ∕ÿ)
−1h(e) and is thus already in quadratic form on the 

basis of the variable h(e). The corresponding feasible region is h(Iÿý) =
1

ÿ

∑ÿ
ÿ=1 ĥ(zÿ) − Iÿý, the image of Iÿý under h(e), which is again 

an interval. In summary, the optimization problem based on the use of Ŝℎ is a simple quadratic program.
If ÿ̂ℎ(e) is a continuous function on e that is not constant, the optimization problem can be much more complex. A simple 

example is the matrix ÿ̂ℎ(e) = ÿ̂ℎ(e) from Section 2.2. For ÿ̂ℎ(e), the programming problem is not convex (see Fig. 1). However, 
there is a workaround for this case.

Theorem 4. Suppose h(e) is linear in e. Suppose that h(e) is in the column space of Ŝℎ, then

ÿ ⋅ h(e)ÿ ÿ̂ℎ(e)
+h(e) =

ÿ ⋅ h(e)ÿ Ŝ
+

ℎh(e)

1

ÿ
(ÿ− 1 + ÿ ⋅ h(e)ÿ Ŝ

+

ℎh(e))
,

which is a strictly increasing function in ÿ ⋅ h(e)ÿ Ŝ
+

ℎh(e) for ÿ > 1. If h(e) is not in the column space of Ŝℎ, then ÿ ⋅ h(e)
ÿ ÿ̂ℎ(e)

+h(e) = ÿ.
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Fig. 1. Shown are plots of the test statistic ÿ ⋅ h(e)ÿ ÿ̂ℎ(e)+h(e) as a function of the external value e with the moment function ℎ(ÿ) = ÿ − ÿ, using ÿ̂ℎ(e) = Ŝℎ (green 
line), ÿ̂ℎ(e) = ÿ̂ℎ(e) (black line), and ÿ̂ℎ(e) = ÿ̂ℎ,ÿ (red line). In the latter case Var(ÿ) = ÿ2 was chosen. The plots are based on a sample of 30 random variables, 
which are i.i.d. like a normal distribution with mean 4 (true external value) and variance 1. See the R script in the supplementary materials for more details. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Proof. For the sake of brevity, h(e) will be denoted by h throughout this proof. First, note that

ÿ̂ℎ(e) =
1

ÿ

ÿ∑
ÿ=1

h(zÿ)h(zÿ)
ÿ

=
1

ÿ

ÿ∑
ÿ=1

(h(zÿ) − h+ h)(h(zÿ) − h+ h)
ÿ

=
ÿ− 1

ÿ
Ŝℎ + hh

ÿ

(7)

always holds, so the results of Meyer [32] can be applied to ÿ̂ℎ(e)
+. If h(e) is in the column space of Ŝℎ, the Corollary of Meyer [32, 

p. 320] can be applied, since h
ÿ
(
ÿ−1

ÿ
Ŝℎ)

+h is a nonnegative quadratic form and thus 1 + h
ÿ
(
ÿ−1

ÿ
Ŝℎ)

+h > 0, which yields

ÿ ⋅ h(e)ÿ ÿ̂ℎ(e)
+h(e) = ÿ ⋅ (h

ÿ
(
ÿ− 1

ÿ
Ŝℎ)

+h−
(h
ÿ
(
ÿ−1

ÿ
Ŝℎ)

+h)2

1 + h
ÿ
(
ÿ−1

ÿ
Ŝℎ)

+h
)

=
ÿ ⋅ h

ÿ
Ŝ
+

ℎh

1

ÿ
(ÿ− 1 + ÿ ⋅ h

ÿ
Ŝ
+

ℎh)
.

Now, consider the function ÿ (ý) = ý
1
ÿ
(ÿ−1+ý)

, which maps ÿ ⋅ h
ÿ
Ŝ
+

ℎh to ÿ ⋅ h(e)
ÿ ÿ̂ℎ(e)

+h(e). Since ÿ (ý) is strictly increasing in ý for 

ÿ > 1 if ý ≥ 0, and since ÿ ⋅ h
ÿ
Ŝ
+

ℎh ≥ 0 holds, the first statement follows. If h(e) is not in the column space of Ŝℎ, Theorem 1 of 
Meyer [32] leads to

h(e)ÿ ÿ̂ℎ(e)
+h(e) = h

ÿ
(
ÿ− 1

ÿ
Ŝℎ)

+h−
h
ÿ
(
ÿ−1

ÿ
Ŝℎ)

+hh
ÿ
(Iý2 − ŜℎŜ

+

ℎ )h

h
ÿ
(Iý2 − ŜℎŜ

+

ℎ )h

−
h
ÿ
(Iý2 − Ŝ

+

ℎ Ŝℎ)hh
ÿ
(
ÿ−1

ÿ
Ŝℎ)

+h

h
ÿ
(Iý2 − Ŝ

+

ℎ Ŝℎ)h

+ (1 + h
ÿ
(
ÿ− 1

ÿ
Ŝℎ)

+h)
h
ÿ
(Iý2 − Ŝ

+

ℎ Ŝℎ)hh
ÿ
(Iý2 − Ŝ

+

ℎ Ŝℎ)h

h
ÿ
(Iý2 − Ŝ

+

ℎ Ŝℎ)hh
ÿ
(Iý2 − Ŝ

+

ℎ Ŝℎ)h

= 1,

where Iý2 is the corresponding identity matrix. □
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Theorem 4 can be used to efficiently compute the minimum test statistic for ÿ̂ℎ = ÿ̂ℎ(e) by using quadratic programming based 
on Ŝℎ.

Algorithm 1. Suppose h(e) is linear in e. Let A be the matrix and b be the vector, so that h(e) ∈ h(Iÿý) can be equivalently expressed 
as Ah(e) ≤ b (where ≤ is applied component-wise). Then the following algorithm computes ý =mine∈Iÿý ÿ ⋅ h(e)

ÿ ÿ̂ℎ(e)
+h(e):

1. Minimize ÿ ⋅ xÿ Ŝℎx in x∈ℝ
ý2 subject to AŜℎx ≤ b and return the minimum value as ý.

2. Calculate ÿ (ý) =
ý

1
ÿ
(ÿ−1+ý)

and return ý = ÿ (ý).

Proof. First, note that A and b always exist, since h(e) is linear and hence h(Iÿý) is an interval. Theorem 4 distinguishes two cases, 
namely whether h(e) is in the column space of Ŝℎ or not. If it is, then h(e) = Ŝℎx for a x ∈ℝ

ý2 . This leads to

ÿ ⋅ h(e)ÿ Ŝ
+

ℎh(e) = ÿ ⋅ x
ÿ ŜℎŜ

+

ℎ Ŝℎx = ÿ ⋅ x
ÿ Ŝℎx,

and the feasible region transforms analogously. Furthermore, in this case it is valid to compute ý and then transform it to ÿ (ý) =
ý

1
ÿ
(ÿ−1+ý)

, since by Theorem 4 ÿ is strictly increasing in ÿ ⋅ xÿ Ŝℎx and thus preserves the minimum. Now, comparing the minimum 

for the first case with the minimum for the second case, which is ÿ by Theorem 4, gives the minimum test statistic. Since ÿ (ý) cannot 
be greater than ÿ, the proof is complete. □

Besides its importance for computing mine∈Iÿý ÿ ⋅ h(e)
ÿ ÿ̂ℎ(e)

+h(e) in the case of Iÿý, Theorem 4 can also be used to simplify 
computations in the case of a discrete set Mÿý. Naively, one would compute and compare all single test statistics over Mÿý, which 
would require computing a generalized inverse for each element in Mÿý. One could instead check which elements are in the column 
space of Ŝℎ, compute ÿ ⋅ h(e)

ÿ Ŝℎh(e), and transform the minimum by ÿ , using Theorem 4, similar to Algorithm 1.
Another interesting consequence of Theorem 4 is that a small sample test based on ÿ̂ℎ(e) would give the same results as the small 

sample test for external sets if Ŝℎ is invertible. To see this, note that the column space of an invertible Ŝℎ is the whole space, so the 

transformation ÿ can always be used. Since ÿ is strictly increasing, it is injective and so the event ÿ ⋅h(e)ÿ Ŝ
−1

ℎ h(e) > ý is equivalent to 

ÿ ⋅h(e)ÿ ÿ̂ℎ(e)
−1h(e) = ÿ (ÿ ⋅h(e)ÿ Ŝ

−1

ℎ h(e)) > ÿ (ý). Thus, if ý is a critical value, then ÿ (ý) is the critical value for the same significance 
level by means of the pushforward measure, i.e., ÿÿ (ÿ )(ý) = ÿÿ (ÿ

−1(ý)). Taken together, the test decision would almost surely be 
unchanged if ÿ̂ℎ were used instead of Ŝℎ, since the small sample test for external sets assumes that Ŝℎ is invertible almost surely. This 
results in a counterintuitive situation. The two asymptotic tests based on ÿ̂ℎ and Ŝℎ are different (though asymptotically equivalent!) 
because the same ÿ2−distribution is used to determine the p-value, while the observed test statistics are different. But their small 
sample versions are almost surely equivalent.

To conclude this section, the case ÿ̂ℎ,ÿ = Ŝℎ + V̂ar(e), which reflects the estimation uncertainty of the external information, is 
discussed. While for a discrete set Mÿý one can just compute the test statistics and compare them, the case Iÿý is more difficult. The 
estimator ÿ̂ℎ,ÿ was derived by treating e as a random variable. The consequence is that each e ∈ Iÿý must be treated as (the realization 
of) a random variable, and thus a variance estimate must be provided that is generally dependent on e. In practice, only a finite 
number of variance estimates are available from external sources, e.g., from previous studies, possibly based on different sample 
sizes. Thus, further assumption have to be made about the variance structure of the e ∈ Iÿý. The difficulties of simple approaches to 
solve this problem can be illustrated by the meta-analytical scenario.

Example 4. Suppose there are ý independent sources of external information, indexed by ÿ = 1, … , ý. The sources are each assumed 
to be based on an i.i.d. sample of size ÿÿ . Suppose each source provides a mean ēÿ , which is assumed to be an unbiased estimate 
of the true moment value ý(eÿ ) for that particular source, as well as a consistent covariance matrix estimate V̂ar(eÿ )∕ÿÿ . Since a 
new data set may have a slightly different true moment value, the interval hull Iÿý of the ý(eÿ ) is taken to counteract qualitative 

uncertainty. Then all e ∈ Iÿý can be written as e =
∑ý
ÿ=1 ýÿý(eÿ ) for some constants ýÿ . Although the true values are not known, 

an estimator ê =
∑ý
ÿ=1 ýÿ ēÿ can be used to estimate e ∈ Iÿý and plugged into the test statistic. To reflect the estimation uncertainty, 

V̂ar(ê) =
∑ý
ÿ=1

ý2
ÿ

ÿÿ
V̂ar(eÿ ) is a natural candidate for V̂ar(e), since it is a consistent estimator for the variance of ê. However, if there 

are different ways to write e as a linear or even convex combination of the ý(eÿ ), then there are multiple, non-equivalent estimators 
for the variance. Then even the true variance of the estimator is not uniquely defined. A general solution is to write e as a linear 
combination of a fixed basis of the space spanned by the 2ý2 vertices of Iÿý, which is a unique representation based on the coefficients 
ýý . In the one-dimensional case, a convex combination of the two vertices is sufficient, since the interval is a line segment in this case.

In addition to the conceptual difficulties, modeling the variance of the estimator can lead to quite difficult optimization problems. 
In general, the objective function is not convex, see Fig. 1. In Example 4, the ýý are not known, but ê and V̂ar(ê) depend on them. 
Because of the dependency, optimization should be in the ýý variables and not in ê. However, the expected values that make up 
the vertices of Iÿý are not known and must be estimated. Even worse, on the basis of the mean values alone, it is not possible to 
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know which external source is the source of the extremal expected values. This leads to the problem of estimating the minimum and 
maximum of a set of expected values based on given unbiased means.

For the one-dimensional case, attacking this problem using the maximum of the means is known as the optimizer’s curse (see 
[33–35] for an overview). The name is inspired by the fact that the maximum mean maxÿ ēÿ has a nonnegative bias when estimating 
the maximum expected value, independent of any distributional assumption [33]. Using minÿ ēÿ = − maxÿ −ēÿ , the minimum of the 
means has a nonpositive bias when estimating the minimum expected value.

The variance of maxÿ ēÿ is not known analytically, but has the upper bound 
∑ý
ÿ=1 Var(eÿ )∕ÿÿ [34], which also holds for the 

minimum of the means, again by using minÿ ēÿ = − maxÿ −ēÿ . Despite the existence of more sophisticated estimators for the maximum 
expected value, based on distributional assumptions [35], the simple maximum mean estimator is used, to test its bias in the 
simulation study. Based on the maximum mean estimator, a simple method to approximate an optimal value of the test statistic 
despite the nonconvexity of the problem is a grid search algorithm traversing the possible values of ýý . Note that since only the 
one-dimensional case is treated, there are 2 vertices and only one coefficient ý = ýý , so a grid search is feasible with sufficient 
precision.

4. Bayesian methods

In order to have a common ground on which Bayesian methods and the tests developed in Section 3 can be compared in an 
easy way, Example 2 from Bickel [16] will be used and will be referred to as the given scenario in the following. Denote the 
normal distribution with mean ÿ and variance ÿ2 by ý(ÿ, ÿ2). Let the possible sampling distributions be ý(ÿ, 1) with ÿ ∈ ℝ. For 
each ÿ ∈ ℝ, the prior is chosen to be the conjugate prior, ý(ÿ, ÿ2

0
), where ÿ2

0
is known. For ÿ = 1, … , ÿ let ÿÿ be random variables 

identically distributed as ý(ÿ, 1), where for all ÿ ≠ ÿ it is assumed that ÿÿ is conditionally independent of ÿÿ given ÿ. To test the fit 
of the external information to the data, the external information in the form of the set Iÿý is used to constrain the prior parameter ÿ. 
A prior-data conflict criterion can then be applied. The criterion from Walter and Augustin [14] is an example.

Definition 9. Let Iÿý be an interval representing the external information and ÿ̄ be the observed sample mean. In the given scenario, 
the degree of prior-data conflict is

�(ÿ̄; Iÿý) = inf{|ÿ̄− ÿ| ∶ ÿ ∈ Iÿý}
and prior-data conflict is defined by �(ÿ̄; Iÿý) > 0.

This criterion for prior-data conflict is very similar to the Sargan-Hansen test for external sets in the case of linear moment 
functions discussed in Section 2 and 3. The only difference is that the metric used to measure the distance of the sample moment 
from the external value is the absolute value, rather than a metric induced by a matrix ÿℎ. Moreover, this criterion can be much 
more liberal than any test considered so far, since the probability of ÿ̄ ∉ Iÿý can be arbitrarily large for Iÿý short enough. This is 
intended by Walter and Augustin [14], since they developed generalized iLUCK models that compensate for the prior-data conflict 
with imprecision. Therefore, their focus is on minimizing the number of false null hypotheses (not detecting true prior-data conflict), 
while false rejections only lead to slightly more imprecision. Note that this criterion would not work well when used with a discrete 
set Mÿý, since the probability of ÿ̄ being in a particular discrete set is 0 under the given scenario, so the criterion would always reject 
the fit of external information and data in this case. Now a second criterion is developed that is based on the work of Bickel [16].

Definition 10. In the given scenario, let ÿ̄ be the observed sample mean and let ÿÿ,ÿ2
0
denote the density function of ý(ÿ, ÿ2

0
). Then 

for ÿ ∈ℝ a set of a-adequate models is

(ÿ) = {ÿ ∈ℝ ∶ ÿ
ÿ,(ÿ2

0
+

1
ÿ
)
(ÿ̄) ≥ 2ÿÿ

ÿ̄,(ÿ2
0
+

1
ÿ
)
(ÿ̄)}

Sets of a-adequate models represent all models under the given scenario that are in adequate agreement with the data, that is, 
for which the likelihood exceeds a certain threshold. By simple analytic arguments, equality for the condition of (ÿ) is obtained 

for ÿmin = ÿ̄ −
√

−ÿ(2 ln2)(ÿ2
0
+

1

ÿ
) and ÿmax = ÿ̄ +

√
−ÿ(2 ln 2)(ÿ2

0
+

1

ÿ
) if ÿ ≤ 0. Furthermore, in this case (ÿ) can be rewritten as 

{ÿ ∈ ℝ ∶ ÿmin ≤ ÿ ≤ ÿmax}. The value ÿ represents the strictness of the criterion. In the interpretation given by Bickel [16] based on 
Bayes factors, a value of −7 is a low threshold, allowing many ÿ in (−7), while −2 would be moderate and 0 would be a high 
threshold, allowing only ÿ = ÿ̄ to be adequate. So far, (ÿ) is not linked to external information, this can be done by taking the 
intersection.

Definition 11. Let Mÿý (or Iÿý) be a set representing the external information. Then prior-data conflict with threshold a is said to 
occur if (ÿ) ∩Mÿý = ∅ (or (ÿ) ∩ Iÿý = ∅).

Note that prior-data conflict with threshold 0 is equivalent to testing whether the degree of prior-data conflict is greater than 0, 
i.e., for ÿ = 0 both criteria are equivalent. The notion of sets of a-adequate models is more general than presented here (see [16]), 
but Definition 11 could easily be extended to this general notion, since only intersection is required.
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5. Simulation studies

To compare the methods proposed in this paper and to investigate their small sample properties, two simulation studies were 
performed. The first treats the case where an interval Iÿý is given but no variance for the external information, representing the 
case where an interval for the external information is elicited from experts. The second is based on the given scenario of Section 4
and represents the meta-analytical scenario of Example 3, so that Bayesian criteria and the Sargan-Hansen test for external sets can 
be compared. The simulations were performed in R, version 4.3.2 [36]. The R packages quadprog [37] and MASS [38] were used 
to solve the quadratic programs and to compute the Moore-Penrose inverses, respectively. All simulations are implemented in an R 
script, which can be found in the electronic supplementary material.

5.1. The expert opinion scenario

Based on Example 1, a linear regression model is used under Gauss-Markov assumptions and normally distributed errors. The 
slope is set to ÿ2 = 1 and the intercept to ÿ1 = 16. The sample sizes are ÿ = 30 and ÿ = 50. The samples ýÿ and ÿÿ for ÿ = 1, … , ÿ
of the independent variable ý and the dependent variable ÿ are drawn i.i.d. as ý ∼ý(4, 4) and ÿ = ÿ1 + ÿ2ý + ÿ with ÿ ∼ý(0, 60). 
The true ý2 is 0.0625, which is small but common in applied research such as psychology. The moments ý(ÿ), ý(ý), and Var(ÿ)
and any combination of them are chosen as external information, resulting in 7 external moment scenarios. To correct for degrees 
of freedom, the moment function ℎ(ÿ) = ÿ

ÿ−1
(ÿ − ÿ̄)2 − ÿ is used for Var(ÿ). Note that ℎ̄(ÿ) is not normally distributed for Var(ÿ). To 

examine the type I error and the power, two scenarios are chosen regarding Iÿý. The first is Iÿý = [0.95 ⋅ e0, 1.05 ⋅ e0] and the second 
is Iÿý = [1.2 ⋅ e0, 1.3 ⋅ e0]. The second scenario can be motivated by the proximity of Iÿý to the true value e0 in terms of standardized 
mean differences. This is justified by noting that when using a single moment, the square root of the test statistic is simplified as 
follows:

√
ÿ ⋅ h(e)ÿ ÿ̂−1

ℎ
h(e) =

√
ÿ
|ℎ̂− ÿ|√
ÿ̂ℎ

(8)

Since (8) is similar to a t-test statistic, the standardized mean difference ý = |ÿ0−ÿ|√
Var(ℎ(ÿ))

is the typical effect size [39]. To evaluate 

the effect sizes in the second scenario, the value 1.2 ⋅ e0 is used because it is closest to e0 in Iÿý. For ý(ý) it is ý =
|4−1.2⋅4|

2
= 0.4, a 

small effect size, and for ý(ÿ) it is ý =
|20−1.2⋅20|

8
= 0.5, a medium effect size [39]. Therefore, using ý(ÿ) alone will asymptotically 

yield a higher power than using ý(ý) alone. Under the chosen data generating process, ÿ

ÿ−1
(ÿ − ÿ̄)2 has a scaled ÿ2

1
−distribution. 

However, ý is scale invariant, so without loss of generality, ÿ

ÿ−1
(ÿ − ÿ̄)2 can be assumed to have a ÿ2

1
−distribution with mean 1 and 

variance 2. Taken together, ý = 0.2 1√
2
= 0.1414 for Var(ÿ), which does not exceed the threshold for small effects [39]. Note that the 

effect size for Var(ÿ) is independent of any moment value, a consequence of ÿ being normally distributed.
In total, there are 2 (sample sizes) ×7 (moment combinations) ×2 (choice of Iÿý) = 28 scenarios. The null hypothesis rejection 

rates are computed for three tests in each scenario, the Sargan-Hansen test for external sets using Ŝℎ (abbreviated SH(Ŝℎ)), the 
Sargan-Hansen test for external sets with ÿ̂ℎ (abbreviated SH(ÿ̂ℎ)), and the small sample test for external sets (SES). The significance 
level is ÿ = 0.05 for all scenarios. For SH(Ŝℎ) and SES, the test statistic ÿ

2 is computed using quadratic programming as described in 

Section 3.3, and for SH(ÿ̂ℎ) it is computed using Algorithm 1.
For each simulation scenario the rejection rates were calculated twice with 100000 repetitions each to analyze the stability of the 

results. The type I error rate results are summarized in Table 1 and the test power results are summarized in Table 2.

5.2. The meta-analytical scenario

To implement the meta-analytical scenario, three sources of external information are sampled in each iteration of the simulation. 
The true expected values for the three sources are chosen to be ÿ1 = 2, ÿ2 = 3, and ÿ3 = 4. The sample sizes for the three sources 
are chosen to reflect the different estimation uncertainties present in applied fields, so that low (ÿ1 = 20), high (ÿ2 = 1000) and 
medium (ÿ3 = 100) sample sizes are chosen. For the Bayesian methods to be valid, the scenario given in Section 4 is used to generate 
the external samples, i.e., three i.i.d. samples are drawn based on ýÿ ∼ý(ÿÿ , 1) for ÿ = 1, … , 3. Then the external information is 
aggregated by calculating the mean and the variance for each source. After sampling the external information, a new data set is 
generated based on an i.i.d. sample of 50 values distributed like ý(ÿ0, 1), where ÿ0 = 4 (correctly specified scenario) or ÿ0 = 4.5

(misspecified scenario) is chosen. The value ÿ0 = 4 is the maximum of the external expected values and provides a harder test for 
correctness of type I errors than a value in the middle of the external expected values (as in Section 5.1). The value ÿ0 = 4.5 represents 
a medium effect size of ý = 0.5. Then, asymptotic Sargan-Hansen tests for external sets based on Ŝℎ, ÿ̂ℎ, and ÿ̂ℎ,ÿ are conducted.

To analyze the influence of different significance levels, the 13 values 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99 are 
used. It is also tested if the degree of prior-data conflict is greater than 0 and if there is a prior-data conflict with threshold ÿ. To 
analyze the influence of ÿ, the 13 values 0, −0.01, −0.10, −0.5, −1, −1.5, −2, −2.5, −3, −3.5, −4, −4.5, −5 are used. For these 2 (correct 
or misspecified) times (13 × 3 + 13 + 1) (tests and criteria) = 106 scenarios, the null hypothesis / prior-data fit rejection rates were 
calculated based on 100000 simulation iterations each. The results are shown in Fig. 2.
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Table 1
Type I error rates (correctly specified Iÿý).

Moments SH(Ŝℎ) SH(ÿ̂ℎ) SES

sample size ÿ = 30

ý(ÿ) 0.0106; 0.0110 0.0078; 0.0082 0.0081; 0.0086
Var(ÿ) 0.0762; 0.0764 0.0676; 0.0678 0.0690; 0.0693
ý(ý) 0.0159; 0.0155 0.0128; 0.0121 0.0132; 0.0126
ý(ÿ),Var(ÿ) 0.0590; 0.0574 0.0456; 0.0449 0.0488; 0.0475
Var(ÿ),ý(ý) 0.0602; 0.0593 0.0453; 0.0452 0.0485; 0.0482
ý(ÿ),ý(ý) 0.0101; 0.0099 0.0051; 0.0053 0.0063; 0.0061
ý(ÿ),Var(ÿ),ý(ý) 0.0508; 0.0492 0.0330; 0.0318 0.0371; 0.0357

sample size ÿ = 50

ý(ÿ) 0.0052; 0.0053 0.0044; 0.0044 0.0045; 0.0045
Var(ÿ) 0.0541; 0.0536 0.0501; 0.0492 0.0507; 0.0499
ý(ý) 0.0095; 0.0092 0.0080; 0.0078 0.0082; 0.0080
ý(ÿ),Var(ÿ) 0.0345; 0.0336 0.0287; 0.0279 0.0300; 0.0292
Var(ÿ),ý(ý) 0.0357; 0.0353 0.0294; 0.0286 0.0307; 0.0300
ý(ÿ),ý(ý) 0.0043; 0.0044 0.0029; 0.0028 0.0032; 0.0031
ý(ÿ),Var(ÿ),ý(ý) 0.0249; 0.0252 0.0185; 0.0185 0.0198; 0.0198

Note: The two numbers in each cell refer to the two runs of the simulations, 
where the left is from the first run and the right is from the second run.

Table 2
Power (misspecified Iÿý).

Moments SH(Ŝℎ) SH(ÿ̂ℎ) SES

sample size ÿ = 30

ý(ÿ) 0.7803; 0.7785 0.7495; 0.7474 0.7548; 0.7533
Var(ÿ) 0.2532; 0.2536 0.2353; 0.2351 0.2384; 0.2382
ý(ý) 0.5944; 0.5978 0.5549; 0.5588 0.5617; 0.5659
ý(ÿ),Var(ÿ) 0.7348; 0.7373 0.6623; 0.6649 0.6812; 0.6833
Var(ÿ),ý(ý) 0.6080; 0.6114 0.5289; 0.5311 0.5483; 0.5511
ý(ÿ),ý(ý) 0.8148; 0.8144 0.7443; 0.7440 0.7623; 0.7617
ý(ÿ),Var(ÿ),ý(ý) 0.8056; 0.8045 0.6959; 0.6936 0.7267; 0.7252

sample size ÿ = 50

ý(ÿ) 0.9405; 0.9410 0.9331; 0.9338 0.9345; 0.9350
Var(ÿ) 0.2755; 0.2753 0.2629; 0.2624 0.2650; 0.2645
ý(ý) 0.8060; 0.8078 0.7891; 0.7914 0.7918; 0.7943
ý(ÿ),Var(ÿ) 0.9091; 0.9090 0.8857; 0.8858 0.8914; 0.8914
Var(ÿ),ý(ý) 0.7936; 0.7934 0.7551; 0.7550 0.7638; 0.7639
ý(ÿ),ý(ý) 0.9614; 0.9607 0.9486; 0.9476 0.9516; 0.9508
ý(ÿ),Var(ÿ),ý(ý) 0.9491; 0.9494 0.9236; 0.9236 0.9305; 0.9304

Note: The two numbers in each cell refer to the two runs of the simulations, 
where the left is from the first run and the right is from the second run.

6. Discussion

6.1. Summary of the simulation studies

First, the results of the first simulation study are discussed, starting with the type I error rates, followed by the power of the tests. 
Except for the cases where Var(ÿ) was used, all type I error rates were below the significance level. The use of Var(ÿ) alone resulted 
in type I error rates of all tests above 0.05, but improving with sample size, indicating that in this case deviations from the normal 
distribution were not yet compensated by sample size. A possible compensation by increasing Iÿý would result in lower power and 
violate the idea that Iÿý is determined externally. Therefore, increasing the sample size seems to be the only viable solution, since in 
all scenarios increasing the sample size resulted in lower type I error rates and higher power. Using Var(ÿ) in combination with other 
moments reduced type I error rates compared to using Var(ÿ) alone. However, at ÿ = 30 only the tests SH(ÿ̂ℎ) and SES had correct 
type I error rates for moment combinations including Var(ÿ), while at ÿ = 50 all tests had correct type I error rates for moment 
combinations including Var(ÿ). Using ý(ÿ) alone resulted in the smallest type I error rates, as low as 0.0078 for ÿ = 30 and 0.0044
for ÿ = 50, illustrating that the tests are much more conservative than the significance level suggests. On the one hand, this can lead 
to a lower power, but on the other hand, it results in better small sample properties, since the chosen significance level is “reached 
more quickly” with respect to the sample size. In all scenarios, there was a clear order of tests in terms of type I error rate. The test
SH(Ŝℎ) had higher type I error rates than SES and SES had higher rates than SH(ÿ̂ℎ).
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Fig. 2. Graphs of the rejection rates as a function of significance level ÿ or threshold ÿ. Left Image: Shows the rejection rates for the asymptotic Sargan-Hansen 
tests based on Ŝℎ , ÿ̂ℎ , and ÿ̂ℎ,ÿ in the correctly specified case (the lower lines in black, red, and green) and in the misspecified case (the upper lines in blue, cyan 
and, magenta). The dotted line in the left image shows the identity function ÿ = ý (rejection rates in the correctly specified case should be on or below the dotted 
line). Right Image: The solid lines show the proportion of prior-data conflicts with threshold ÿ in the correct (black) and misspecified (red) cases. Also, the dotted 
lines show the proportion of degrees of prior-data conflict greater than 0 in the correct (green) and misspecified (blue) cases. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

Regarding the power of the tests, their order was the same in all scenarios as in the type I error rate. The test SH(Ŝℎ) had 
the highest power, followed by SES and SH(ÿ̂ℎ). As derived from effect size considerations, the use of ý(ÿ) alone resulted in the 
highest power, followed by ý(ý) and Var(ÿ). The high power values for the moment ý(ÿ) for ÿ = 30 and ÿ = 50 show that using 
external intervals instead of point values did not eliminate all the test power in the chosen scenarios. Even for the moment ý(ý)
with a small effect size, the power ranged from 0.7891 to 0.8078 for ÿ = 50. Unfortunately, combinations of moments did not always 
result in higher power than single moments. For example, cases with Var(ÿ) resulted in lower power than the same cases without 
Var(ÿ), except for the combination of Var(ÿ) and ý(ý) with SH(Ŝℎ) and ÿ = 30. This power reduction property can be explained 
by the very small effect size of Var(ÿ). The increase in the critical value due to a higher ý2 (degrees of freedom) may exceed the 
expected increase in the minimum test statistic by including Var(ÿ). However, combining ý(ý) and ý(ÿ) resulted in higher power 
than using either alone, except for ÿ = 30 where SH(ÿ̂ℎ) is used. All the statements made so far are essentially true for both runs of 
the simulations.

Now, the results of the second simulation study are discussed. In both the correctly and the misspecified cases, the null hypothesis 
rejection rates of the three Sargan-Hansen tests were nearly identical, indicating that the estimation uncertainty did not play an 
important role here. Only for ÿ = 0.01 and ÿ = 0.05 were the type I error rates (correctly specified case) higher than 0.01 and 0.05, 
respectively. This indicates that the sample size was not large enough for the asymptotics to hold in this extreme case, where ÿ
is small and the true expected value of the new data is the maximum of the external expected values. Consistent with the first 
simulation study, the power was high even though an external interval is used. Furthermore, the power quickly went to one when 
ÿ was increased. Regarding the Bayesian criteria, the use of the degree of prior-data conflict was, as expected, very liberal, with a 
rejection rate of about 0.5 in the correctly specified case. Thus, it was not ideal for confirming the fit between external information 
and data, but since it had a power of about 0.998, it was a viable detector of the slightest conflict between external information and 
data. However, the three Sargan-Hansen tests also had a power of about 0.998 when ÿ = 0.99 was used, while the type I error rate 
was about 0.49. The results for the prior-data conflict with threshold ÿ are interesting. First, the power and type I error rates were 
above 0 only for ÿ values between 0 and −1. However, in this range, the power and type I error rates were similar to the power and 
type I error rates of the Sargan-Hansen tests. For example, for ÿ = −0.01, the type I error rate was 0.2514 with a power of 0.9843, 
while the Sargan-Hansen test based on Ŝℎ with ÿ = 0.4 had a type I error rate of 0.2471 and a power of 0.9854. Another example is 
ÿ = −0.1, which had a type I error rate of 0.0233 and a power of 0.7405, comparable to the Sargan-Hansen test based on Ŝℎ with 
ÿ = 0.01, which had a type I error rate of 0.0202 and a power of 0.7798.

Taken together, the proposed methods can generally provide good power for low type I error rates, even for small sample sizes 
such as ÿ = 30. However, if one wants to control for the type I error rate by ÿ, as in the classical frequentist approach, there are a few 
things to consider. First, one should avoid moments with highly skewed distributions, such as Var(ÿ), even in combination with other 
moments. Second, one should prefer using ÿ̂ℎ or ÿ̂ℎ,ÿ to using Ŝℎ, since the latter resulted in the highest type I error rates, sometimes 
exceeding ÿ, while the former did not. Third, it is better not to use too small a ÿ when the sample size is small and there are no 
prior assumptions about the location of the true value in the external interval. In general, a good advice for practitioners is to run 
simulations of their own scenario to analyze whether the significance level is exceeded. Regarding the threshold ÿ for the prior-data 
conflict, it is difficult to give an interpretation, since the case here deviates from the interpretation based on Bayes factors as given 
in Bickel [16]. Despite the use of external intervals, the Sargan-Hansen tests (and their small sample version) had good power for 
small sample sizes, even for the small and medium effect sizes used in the simulation studies.
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6.2. Outlook

For the scenarios tested so far, more research is needed on the choice and interpretation of the threshold ÿ. It is unclear whether 
the range of usable values depends on the scenario or whether values slightly below 0 can be recommended in general. It would also 
be helpful to analyze the relationship between ÿ and the type I error rate and power, so that the choice of ÿ can be guided by the 
power or type I error rate one wishes to achieve.

The scenarios tested in the two simulation studies are quite simple, so a natural question is how the proposed methods behave in 
more complex scenarios. While this is straightforward for the Sargan Hansen test, the extension of the Bayesian criteria seems to be 
more analytically challenging. The biggest problem is that the Sargan-Hansen test and the Bayesian criteria generally address slightly 
different questions. While the Sargan-Hansen test tests the fit of external information to the data for certain moment functions, the 
Bayesian criteria are designed to detect a conflict of the data with an entire (prior) distribution. Therefore, it is possible that the 
Bayesian criteria reject prior distributions for which the values of certain moment functions would fit the data (would be accepted by 
the Sargan-Hansen test). Another important issue is the robustness of the methods to small deviations from the normal distribution. 
For moments that are highly skewed in small samples, such as Var(ÿ), it may be helpful to derive the exact distribution of the test 
statistic under the assumption that ÿ is normally distributed.

Although in most cases the model parameters cancel out in the Sargan-Hansen test, there are ways to use external information 
about the model parameters. For example, the OLS estimator can be interpreted as a function based only on the data. This function 
can be used as a moment function that incorporates external knowledge about parameter values. Such “indirect” model moment 
functions would be interesting to study. In addition, there are other tests or frameworks for using external moment-type information 
that could be investigated with respect to using external information about the parameter. An example is the Empirical Likelihood 
framework [40].

Another possible extension is externally informed tests for parameters. These can be realized by using the Cartesian product of 
the external set and the possible parameter values under the null hypothesis, since a Wald test would still have the same asymptotic 
credal set compared to the case where only the external set is used. Assuming the external information is correct, the joint null 
hypothesis reduces to the null hypothesis regarding only the parameter. An advantage could be a reduced variance of the parameter 
estimator (as shown by Imbens and Lancaster [6]) and thus higher power compared to the test without external information. Finally, 
it is crucial to highlight that the proofs of Proposition 1 and Theorem 2 of Section 3.1 primarily depend on the existence of a minimum 
and a maximum cumulative distribution function. These results can be directly extended from stochastically ordered credal sets to 
(ÿ-additive) probability boxes (p-boxes), which have lower and upper cumulative distribution functions by definition. This broadens 
the scope of potential applications.
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EXTERNALLY INFORMED LINEAR HYPOTHESES TESTING 1

Testing linear hypotheses in repeated measures generalized linear

models using external information

Abstract

In this paper we propose three tests for general linear hypotheses in

generalized linear models with repeated measures using external moment

information. To this end we embedded the approach of generalized estimating

equations in the generalized method of moment framework. The developed

method is capable of reflecting both uncertainty of external information due to

estimation by including external variance estimates and uncertainty due to

different designs, populations or procedures by using a set of external values.

For block invariant designs we provide analytic expressions for estimators and

some test statistics. Further, for these designs the dependence structure cancels

out, so that our results are valid for every possible of these structures without

the need to model it. The small sample validity and power of the three tests are

investigated under a variety of conditions in two simulation studies based on

real data scenarios. All three tests show nominal type I error rates when correct

external information is used and in some cases the use of external information

increases the power, even if uncertainties are reflected properly. Despite a gain

in power, the use of external intervals may increase the robustness of validity.

Keywords: external information; general linear hypotheses; generalized

estimating equations; generalized method of moments; imprecise probabilities
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Introduction

The goal of this paper is to derive statistical tests for general linear

hypotheses for parameters of externally informed models developed by Jann

and Spiess (2024) using the Generalized Method of Moments (GMM) (Hansen,

1982). These models allow a researcher to incorporate knowledge of statistical

moments into statistical analysis. External moment information often comes in

the form of means or (co-)variances from other studies. The advantages of using

external information are an increase in robustness (if the external information is

properly represented) and possible efficiency gains in estimators and test

statistics. It is therefore of interest to exploit this effect to increase power in

parameter testing.

There is some literature on testing (general) linear hypotheses in a GMM

framework, offering a variety of aspects to be represented in hypothesis testing.

Starting with the seminal work of Newey and West (1987) comparing test

statistics for the efficient GMM, there are extensions to the case where

parameters are unidentified or weakly identified (Andrews & Guggenberger,

2017; Dufour, 2003) as well as robust extensions of tests (Ronchetti & Trojani,

2001). There are bootstrapping approaches (Brown & Newey, 2002) and tests

that are invariant under hypothesis reformulations and reparameterizations

(Dufour et al., 2017). Furthermore, the performance of tests for (general) linear

hypotheses has been compared for a number of different data scenarios and

designs, ranging from autoregressive panel data (Bond et al., 2001) to

cluster-correlated data (Rotnitzky & Jewell, 1990) to linear panel data (Bond &

Windmeijer, 2005).

In longitudinal designs, the use of repeated measures can increase

estimation efficiency compared to cross-sectional studies (Diggle et al., 2002, pp.
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24–25). In addition, repeated measures are common in clinical and general

psychology, for example, suggesting their relevance in applied psychological

research. The use of externally informed models for longitudinal data offers an

opportunity for synergy in terms of efficiency gains. The focus will be on

population means and thus marginal models, since they allow estimation via

generalized estimating equations (GEE) (Liang & Zeger, 1986), which can be

incorporated directly into GMM (Cameron & Trivedi, 2005, p. 790).

When using external information, one must represent its uncertainties in

order to arrive at a valid statistical test. To properly represent the

uncertainties, one must distinguish between uncertainty due to estimation and

“qualitative uncertainty” due to different designs, sampling mechanisms,

populations, and other aspects of the external data compared to the new data

(Jann, 2024). While the former type of uncertainty can be represented by using

variances of the estimates (the typical case in statistical analysis), the latter can

be represented by using a range of possible values for the external estimates, for

example in the form of external intervals, as was done by Jann and Spiess

(2024). By traversing the external interval, one can construct intervals of

possible estimates and variances or unions of confidence intervals. As

demonstrated by Jann and Spiess (2024), this increases distributional

robustness, leading to valid inference even when, contrary to the assumed

normality, the data are not normally distributed.

However, the extension of these results to significance testing has only

been done for the special case of the Sargan-Hansen test for overidentifying

restrictions (Jann, 2023, 2024). For testing general (linear) hypotheses, there

are three (asymptotically equal) types of tests typically used in the GMM

framework, the Wald test, the Lagrange multiplier test, and criterion-based
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tests (Bond & Windmeijer, 2005). These tests are presented in Section 2.

Section 3 introduces an extension of these tests to the case where external sets

are used. In Section 4, the tests with external sets are applied to generalized

linear models with repeated measures, discussing designs where their

computation is feasible. Section 5 compares the tests in terms of type I error

rate and power in small samples for different scenarios through simulation

studies. To demonstrate the applicability to real data, the tests are applied to

two real psychological datasets.

Testing general linear hypotheses

To emphasize the application to regression analysis, the parameter of

interest is denoted by β throughout the paper.

Definition 1. Let β ∈ Θ ⊂ R
q be a parameter and β0 its true value. Let R be

a (constant) k × q real-valued matrix, representing the linear constraints and r

be a k-dimensional vector of known real constants. If rank(R) = k ≤ q, a

general linear hypothesis is defined by the pair

H0 : Rβ0 = r and H1 : Rβ0 6= r.

Important examples of a general linear hypothesis are main and

interaction effects in ANOVAs. In effect coding, these hypotheses are of the

form β1 = ... = βk = 0 and are thus equivalent to general linear hypotheses

where R has the (k × k) identity matrix as a block at the corresponding

position and all other elements are 0 while r = 0. Other important examples

are tests for single entries of the parameter where R has entry one at the

corresponding position and zero entries elsewhere, and tests for differences of
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parameter values where the only non-zero entries of R are 1 and −1 at the

corresponding positions.

To fix the notation, the presentation from Bond and Windmeijer (2005)

is adopted. Let xi be a vector of observed variables for the i-th unit for

i = 1, . . . , n and g(x, β) be a function that assigns values in R
q to each xi and

β ∈ Θ. The function g represents estimating equations used to estimate the

true parameter value β0. Further define ḡ(β) = 1
n

∑n
i=1 g(xi, β) and

Wn(β) =
(

1
n

∑n
i=1 g(xi, β)g(xi, β)T

)−1
. The function Wn represents a

weighting matrix that balances the influences of the entries of the estimating

equations. The choice of Wn is made to find the efficient GMM estimator (with

respect to all possible weighting matrices) (Hansen, 1982). GMM estimation is

typically carried out in two steps. First, minimize the quadratic form

ḡ(β)T Wḡ(β) with respect to β for some constant (q × q) matrix W, for

example W = I the identity matrix. The resulting minimum value is denoted

by β̂1 and is called a one-step GMM estimator. Second, minimize the quadratic

form ḡ(β)T Wn(β̂1)ḡ(β) with respect to β. Analogously the result is denoted

by β̂2 and is called a two-step GMM estimator. The corresponding variance

estimator is

V̂ar(β̂2) =
1

n

(
(∇βḡ(β)|β̂

2

)T Wn(β̂2)(∇βḡ(β)|β̂
2

)
)
,

where ∇βḡ(β)|β̂
2

denotes the gradient operator with respect to β evaluated at

β̂2 (Cameron & Trivedi, 2005, p. 176).

Now, general linear hypotheses pose a significance testing problem that

we want to address in the GMM framework in order to incorporate external

moment information. The discussion of tests is based on the work of Bond and
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Windmeijer (2005). All of the tests presented below have the same asymptotic

distributions under mild regularity conditions. Under the null hypothesis, they

have an asymptotic χ2
k-distribution with k degrees of freedom (Bond &

Windmeijer, 2005). Under local alternative hypotheses and using the efficient

GMM estimator, they asymptotically follow a non-central χ2
k(λ)-distribution

with k degrees of freedom and the non-centrality parameter λ (Cameron &

Trivedi, 2005, p. 245). Thus, only the test statistic is left to specify the tests.

The standard Wald test is given by the test statistic

TW = (Rβ̂2 − r)T (RV̂ar(β̂2)R
T )−1(Rβ̂2 − r).

The Lagrange multiplier test uses the same test statistic, but with a different

estimator. Let β̂r denote a two-step GMM estimator in which the weighting

matrix Wn is computed in the second step with a one-step GMM estimator β̃1

that is restricted under the null hypothesis, i.e. where the first step quadratic

form optimization is subject to the linear constraints Rβ = r. The resulting

test statistic is

LM = (Rβ̂r − r)T (RV̂ar(β̂r)R
T )−1(Rβ̂r − r).

The criterion-based test uses the difference between the objective function

evaluated at the two-step estimator constrained under the null hypothesis and

at the unrestricted two-step estimator. Let β̃2 be the two-step GMM estimator

obtained under the constraint Rβ = r, then the test statistic is

DRU = n
(
ḡ(β̃2)

T Wn(β̃2)ḡ(β̃2) − ḡ(β̂2)
T Wn(β̂2)ḡ(β̂2)

)
.
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Note that our definitions are slightly different from the one in Bond and

Windmeijer (2005), since the weighting matrices are evaluated at the two-step

estimators and not at the one-step estimators. However, the resulting weighting

matrices have the same limits as those using one-step estimators, so the

asymptotic results remain unaffected.

Regarding small sample performance for linear panel data models, the

Langrange multiplier test and the criterion-based test have been found to be

more reliable than a standard Wald test (Bond & Windmeijer, 2005). In

addition, the standard Wald test appears to have poor small sample

performance for within-subject designs (Spiess et al., 2019). We restrict our

attention to these three tests because results for local alternative hypotheses are

available for them, and the tests involving external sets developed in the next

section depend on the results for local alternative hypotheses.

Hypothesis testing with external sets

The foundations of hypothesis testing when external moment

information is known were developed by Jann (2024) to test whether data and

external information fit. In this section, we extend the results to testing general

linear hypotheses. The presentation here follows the arguments in Jann and

Spiess (2024) and Jann (2024).

The basic idea of incorporating external moment information into GMM

estimation by formulating additional moment conditions was given by

Hellerstein and Imbens (1999) and Imbens and Lancaster (1994). For example,

to include the information that the expected value of a random variable y is 3,

one can use h̄(y) = ȳ − 3. Then one specifies ḡ = (m̄T , h̄
T
)T , where m̄

represents the estimating equations for the model parameters. Now, the three
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tests presented in Section 2 can be applied if the GMM regularity conditions

hold. However, the most critical regularity condition is E(h̄) = 0, i.e., the

moment information must be correct. Since this is unlikely to be true, some

modifications are needed to make this approach applicable. First, it is clear

that the external information is an estimate. Suppose, as in the given example,

that h̄ takes the form of a difference of some function of the data and the

external value. In this case uncertainty due to estimation can be reflected by

adding a corresponding variance (matrix) estimate to the lower right block of

the inverse of the weighting matrix Wn, using the independence of the external

and the new data (Jann, 2024). More precisely, let Vex be a variance (matrix)

estimate for the external moments obtained from external sources, then the

uncertainty due to estimation is reflected by using

W̃n =

[
W−1

n +




0 0

0 Vex



]−1

instead of Wn. See Jann (2024) for a derivation of this expression. This

approach relaxes the assumption of knowing the true value to knowing an

unbiased estimate of the moment. Second, there are often multiple sources of

external information and thus a set Mex of possible estimates. Due to

differences in design, sampling or population, one may even doubt the

assumption of unbiasedness of the estimates. This “qualitative” uncertainty is

more difficult to quantify. The most conservative approach is to not aggregate

the elements of Mex and be agnostic about which element represents the true

expected value. Even further, one could extend Mex to a (multidimensional)

interval by taking element-wise infima and suprema (element by element) of

Mex, as was done by Jann and Spiess (2024). Such an interval extension of Mex
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is denoted by Iex. As a result, the assumption is weakened to knowing bounds

on the true expected value of the moment.

To reflect both uncertainties, the variance matrices of all estimates

should be considered. Since computing the test statistic is a non-trivial

optimization problem, this can be very time consuming, especially if there are

many variance (matrix) estimates. A better solution would be to select a

variance matrix with the lowest Löwner (partial) order (if it exists), separating

the selection from the computation of the test statistic (see (Puntanen et al.,

2011, p. 12) for a definition and technical details regarding the Löwner order).

The rationale is to choose the smallest variance (matrix) estimate to

compensate for the length of the external interval. Even if not all variance

matrices are comparable, this provides a way to exclude at least some, namely

all variance matrices with a Löwner order at least as high as one of the other

variance matrices. While the implementation of uncertainty due to estimation is

straightforward and does not change the tests, the same cannot be said for

qualitative uncertainty since the external information is set-valued. Therefore,

we will discuss its implementation below.

General hypothesis tests based on credal sets

Assume a (not necessarily linear) null hypothesis H0 : β0 ∈ Θ0 is given,

and that a hypothesis test for the null hypothesis is known. Based on the

assumption that Mex (or Iex) contains the true value, the test statistics have a

variety of possible distributions when calculated for different elements of Mex

(or Iex). For the true value it will be a central distribution, all other values it

will be a non-central distribution. However, it is not known which value is the

true one, so for each value only a set of possible distributions for the test
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statistic can be determined. Such sets of probability measures are called credal

sets. A general introduction to credal sets is given by Augustin et al. (2014, p.

19). In our case, a credal set is defined as a family of probability measures

M = {Pθ | θ ∈ Θ} (on the same measure space) indexed by a parameter θ,

consisting of the possible distributions for the random variable of interest, here

the test statistic. Let P be a set-valued function defined by assigning to each

measurable set A the infimum probability with respect to M, i.e.

P (A) = infP ∈M P (A). The function P is called lower probability (based on

M). Based on credal sets and lower probability, there is the following concept

for a hypothesis test:

Definition 2. (Jann (2024)) Let T (β) be a test statistic that is a function of a

parameter β. Let T be a set of observed test statistics, where t denotes its

infimum. Let M be a credal set of possible distributions of the test statistics

and P be the lower probability based on M. Under the null hypothesis

H0 : β0 ∈ Θ0, a Γ−maximin test with significance level α ∈ (0, 1) is as

follows:

If P (T > t) < α, then reject H0 : β0 ∈ Θ0, else maintain H0.

A Γ−maximin test is based on the simple idea that the null hypothesis is

rejected if it is rejected for every possible test statistic, where the lower

probability of the credal set provides the p-value. By Theorem 2 of Jann (2024),

a Γ−maximin test with significance level α “contains” a valid hypothesis test of

level α, if the credal set M is stochastically ordered and its minimum is exactly

the distribution of T (β0). In other words, the Γ−maximin test will have a

significance level of α or (usually) lower if the lower probability is equal to the
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true distribution under the null hypothesis.

The most prominent examples of such credal sets are the families of

non-central χ2- and F -distributions. They are stochastically ordered in the

non-centrality parameter (Ghosh, 1973), so their central versions (with the

non-centrality parameter zero) are the lower probability. Under the null

hypothesis, many test statistics are distributed like the central distribution in

these families. Note that it is still important to show that test statistics follow

the non-central distributions when the null hypothesis is violated. The reason is

that the scale may also be affected. Thus not only non-central but also scaled

distribution families have to be considered, which may not be stochastically

ordered. However, all three tests of Section 2 satisfy this condition, since their

(asymptotic) credal sets consist of the non-central χ2-distributions for local

alternatives and the degenerate distribution 1∞ for fixed alternatives, which sets

all masses to infinity and is therefore the maximum with respect to stochastic

order.

Tests for general linear hypotheses using external sets

We will now extend the tests of Section 2 to the scenario where external

sets are present. This is done by simply combining ḡ with the external moment

function h̄, i.e., define ḡex = (ḡT , h̄
T
)T . Let e0 be the true value of the

considered moments in h̄ for the new dataset. At e0, the regularity conditions

are satisfied, and the derivations and resulting test statistics are the same as in

Section 2, only based on ḡex instead of ḡ. The set of possible test statistics T is

given by computing the test statistic for each value in Mex (or Iex). The credal

set is the non-central χ2-family, where the lower probability is reached by the

central χ2-distribution. The derived tests are summarized below.
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Definition 3. Let Tw(e), LM(e) and DRU(e) be the test statistics for the

standard Wald test, the Lagrange multiplier test and the criterion-based test in

Section 2, based on ḡex and e ∈ Mex (or Iex). The externally informed Wald

test, Lagrange multiplier test and criterion-based test are defined by the

test statistics

Tw = inf
e∈Mex(Iex)

Tw(e), LM = inf
e∈Mex(Iex)

LM(e) and DRU = inf
e∈Mex(Iex)

DRU(e)

respectively, while using critical values from a central χ2-distribution.

Since the tests are constructed based on the minimal test statistic, they

are valid if any element of Mex (or Iex) represents the true moment value.

Regarding robustness there are two different aspects to consider, robustness of

validity and robustness of efficiency (Huber & Ronchetti, 2009). While the

former means that the level of the test is not exceeded when the true

distribution under the null hypothesis differs slightly from the assumed

distribution, the latter means that a test has acceptable power under small

deviations from (distributions under) specified alternatives. In general, the

proposed tests can increase the robustness of validity because they use a

(credal) set of possible distributions and a set of test statistics. The tests are

performed using the minimum of all test statistics, which (as a random

variable) is not expected to be greater than the test statistic at the true

external value, given the null hypothesis and a correctly specified external

variance. Applying the χ2-distribution to the test statistic based on the true

external value would asymptotically lead to a nominal type I error, so applying

it to the minimum test statistic can only reduce the actual type I error or leave

it unchanged. Thus, the inference will be valid for all distributions with
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nominal type I errors at the minimal test statistic, for example distributions

with (slightly) heavier tails.

The robustness of the power of the tests can be discussed on the basis of

the initial “point” test. If the latter has more power, then it is reasonable to

assume that the resulting interval tests may inherit it. The use of external

moments can (strongly) reduce the variance of the estimator, as shown in Jann

and Spiess (2024). However, the small sample performance may differ, and

larger external sets are expected to lead to lower power (compared to smaller

sets). We will explore these issues in the simulation studies in Section 5.

Generalized linear models with repeated measures

We will use these results in the context of marginal generalized linear

models for longitudinal data, following the presentation of Diggle et al. (2002).

The general idea is to specify the expectation of the dependent variable by a

link function and to define additional nuisance parameters to model the

correlation structure of the multiple measurements of the dependent variable on

the same subject or unit. Count data can be modeled by the log link and binary

data by the logit link. Logit models for binary data can be directly extended to

the multinomial case. For example, cumulative logit models can be used for

categorical ordinal dependent variables (Agresti, 2002). An important example

of a correlation structure assumes equal correlations between variables, called

the uniform correlation model or equicorrelation. In the case of a linear model,

this uniform correlation model corresponds to a random intercept model (Diggle

et al., 2002, p.54), which is widely used in applied psychological research.

Another example is an exponential correlation model, where the correlation

decays at a certain rate over time.
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We adopt the notation of Spiess and Hamerle (1996). Let β ∈ R
q denote

the parameter. Let i = 1, . . . , n be the index of the units and j = 1, . . . , t be the

measurement or time index. Note that we assume here that all units have been

measured t times. Let yi = (yi1, . . . , yit)
T be the response vector of participant i

over the t measurements and y = (yT
1 , . . . , yT

n ) denote the vector of all nt

responses. Similarly, xij ∈ R
q denotes the values of the q covariates (including

the constant 1 to represent the intercept, if one is specified) for the ij-th

observation, and the aggregated matrices are

Xi =

(
xi1 · · · xit

)T

and X =

(
XT

1 · · · XT
n

)T

,

where X is assumed to have full column rank. A subscript β indicates that an

expression is a function of the parameter value. Now, define ηij = xT
ijβ and

ηβ = (η11, . . . , ηnt)
T . To specify the marginal generalized linear model for

longitudinal data, suppose that a link function h(·) is known such that

E(y) = µβ = (h(η11), . . . , h(ηnt))
T when evaluated at the true parameter value.

Further, assume that Var(yij) = φV (h(ηij)), where V (·) is a variance function,

usually associated with the link function h(·), and φ is a scale parameter. The

scale parameter φ allows the (co-)variances to be different from what would be

expected based on the regression parameter β alone, allowing a certain type of

underdispersion or overdispersion. This is especially relevant for modeling count

data using the log link. Define the diagonal matrix

Vβ = diag
(
V (h(η11)), . . . , V (h(ηnt))

)
. We assume that the responses are

uncorrelated between units, so we only need to specify the correlations within

units. Suppose that the correlation matrix is the same for all units and that it

can be viewed as a function of a (vector-valued) parameter α. We denote the
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correlation matrix by Rα, where the subscript α again represents the fact that

this expression can be seen as a function of a parameter. Under the present

assumptions, the full “working” covariance matrix over all nt responses, denoted

by Σ, can be expressed as Σφ,α,β = φV
1/2
β (In ⊗ Rα)V

1/2
β . Here In denotes the

(n × n) identity matrix and ⊗ the Kronecker product, so the middle matrix is a

block diagonal matrix with identical blocks equal to Rα. Additional care must

be taken in the case of the cumulative logit model (Agresti, 2002, p.274–275).

Let xT
ij have a 1 as its first entry, representing the intercept, and suppose y can

take values in one of J ordered categories. Then X must be expanded by

replacing each xT
ij by the ((J − 1) × (J − 1)q) matrix Xij = IJ−1 ⊗ xT

i1, where

xT
i1 is repeated J − 1 times. The idea of the cumulative logit model is to use

separate logit models for the J − 1 probabilities P (y ≤ k|x) of y being in

category k or lower for all but the highest category. Therefore, each yij has to

be replaced by a binary vector with J − 1 entries, indicating into which

category yij falls. These extensions introduce new parameters for each category

except the highest, representing the effects of the covariates on the cumulative

probabilities. Taken together, due to the assumptions made here, the model is

fully specified by the parameters φ, α and β. To estimate the model parameter

of interest, β, Generalized Estimating Equations (GEE) can be used (Liang &

Zeger, 1986). Instead of using the likelihood function, which can be difficult to

specify, this approach specifies only moment-type conditions. For our repeated

measures marginal generalized linear model, the estimating equations are

m̄GEE(β) = XT DβΣ
−1
φ,α,β(y − µβ) = 0,

where Dβ = ∂(µβ)/∂(ηβ) = diag(∂h(η11)/∂η11, . . . , ∂h(ηnt)/∂ηnt) is a diagonal
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matrix containing the derivatives of µβ with respect to ηβ.

Adding external information

To estimate an externally informed version of this model, we interpret

m̄GEE(β) as moment conditions (see Cameron and Trivedi (2005, p. 790) for

details) and combine them with the external moment conditions h̄ as mentioned

in Section 3, resulting in ḡ = (m̄GEE(β)T , h̄
T
)T . Assuming the necessary

inverses to exist and using the (Schur) inversion formula for block matrices, the

corresponding weighting matrix has a block form (parameter indices are

suppressed in the following):

Wn = n




XT DΣ
−1Var(y)Σ−1DX XT DΣ

−1Cov(y − µ, h)

Cov(y − µ, h)T
Σ

−1DX Var(h)




−1

=




Ωm Ω
T
r

Ωr Ωh




−1

=




Wm WT
r

Wr Wh


 .

Based on the first-order conditions for minimizing the GMM objective

function (Hansen, 1982) and the block form of Wn, we obtain estimating

equations:

(∇βḡ(β))T Wnḡ(β) = 0 ⇔ (∇βm̄GEE(β))T
(
Wmm̄GEE(β) + WT

r h̄
)

= 0

⇔ m̄GEE(β) − Ω
T
r Ω

−1
h h̄ = 0.

To compute the estimate based on the first-order conditions, an iterative

multistep procedure is used, requiring consistent estimators φ̂ given β and α̂

given φ as well as β (Liang & Zeger, 1986). To avoid this computational

complexity, we use the results of Spiess and Hamerle (1996), who showed that
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GEE estimators are simplified if the covariates are all either invariant across

blocks or block specific. The basic idea is that α and φ cancel out (partially) in

these cases. We will show that for the block-invariant case, this property carries

over to the externally informed tests in the point-valued case, and thus to the

interval case as well.

Covariates are said to be block invariant, if the design matrix can be

written with identical blocks Xi = Z for i = 1, . . . , n. For block invariant

covariates, Spiess and Hamerle (1996) showed that all appearing matrices have

repeated blocks and can therefore be simplified by Kronecker products, i.e.

X = 1n ⊗ Z, D = In ⊗ Dt and Σ = In ⊗ Σt, where 1n is a vector full of ones

with dimension n. To derive simplifications, it is assumed that Dt, Σt and Z are

quadratic and nonsingular. It seems to be a strict requirement that the latter

matrix is quadratic. Therefore, some examples are given to show that it still

covers interesting models.

First, consider a study that is interested only in time effects, for

example, how the effect of a particular intervention evolves over time. This

scenario can be modeled by including an intercept in the model representing the

first measurement and dummy variables for each subsequent measurement

representing the difference from baseline at that measurement. Here Z is given

by changing the first column of It to ones. Since the result is a lower triangular

matrix with ones on the diagonal, it is not singular. Using a generalized linear

hypothesis, any of the differences can be compared, and global tests can be

constructed to test whether a difference is equal to zero. The latter indicates

that saturated analysis of variance models are also possible application

scenarios. Note that X = 1n ⊗ Z has full column rank if and only if Z is

nonsingular. Thus, all within-subject designs that use the same procedure (e.g.,
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stimuli) for all subjects satisfy the above requirement if their design matrix has

full column rank (or can be made to have full column rank by deleting columns).

Second, it’s worth noting that the blocks don’t have to be participants;

they can be (equally sized) groups of participants. Consider a study where

researchers want to examine how the effect of an intervention, measured at

certain points in time, varies between groups. While time is a within factor and

group is a between factor, we can still block format the design matrix under

certain conditions. Assume that the number of participants, N , is equally

divided into k groups, i.e., n = N/k, and that all are measured t times.

Extending the regression model from the first example by k dummy variables

for the k groups, and including the interactions of these group dummies with all

time dummies, we end up with kt parameter values. Now, since N is evenly

distributed across groups, we can form blocks of k participants, each from a

different group, by rearranging X accordingly. The resulting (kt × kt) blocks

are quadratic and not singular. Admittedly, such a balanced design is rare in

practice, but it could easily be constructed by alternating assignments to groups

or by sampling mechanisms. One reason for this is the following simplification

for block invariant designs.

Proposition 1. Let the subscript i indicate that only the values for block i are

considered for the indexed expression. If the covariates are block invariant, the

first-order conditions for the externally informed GEE estimator β̂ex are

1

n
(DtZ)−1

n∑

i=1

(yi − µi − Cov(yi − µi, hi)Ω
−1
h h̄) = 0
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and its variance (matrix) estimator is

V̂ar(β̂ex) =

1

n
(DtZ)−1

(
1

n

n∑

i=1

Var(yi) − Cov(yi − µi, h)Ω−1
h Cov(yi − µi, h)T

)
(ZT Dt)

−1.

Both the first-order conditions and the variance estimator do not contain the

parameters α and φ.

Proof. See Appendix A.

Proposition 1 allows for a discussion of what kind of external

information would be useful. Both the first-order conditions and the variance

estimate differ from those for (uninformed) GEE estimates only by the terms

Cov(yi − µi, hi)Ω
−1
h h̄ and Cov(yi − µi, hi)Ω

−1
h Cov(yi − µi, hi)

T . Thus,

Cov(y − µ, h) is the important term, and if it is expected to be different from 0,

then variance reduction is expected to occur. This is similar to the discussion in

Jann and Spiess (2024). A linear dependence between covariates and errors is

generally not expected (which is positive for the validity of the model), so

information about covariates is not useful per se. Subject of interest is

information about the mean or the variance of the dependent variable, as well

as information about the correlations or covariances between the dependent

variable and the covariates. One example is information about the expected

value of the dependent variable at the baseline. From a technical point of view,

the inclusion of baseline information is possible by defining the corresponding

moment function h to be different from 0 only for j = 1. In this way, the

expected value is 0 for j 6= 1, which satisfies regularity conditions. There will be

examples of external moments and their implementation in the simulation
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studies in Section 5.

The expression Cov(yi − µi, hi) can be estimated by (yi − µi)h
T
i . To

compute V̂ar(β̂ex), the expression Var(yi) can be replaced by

(yi − µi)(yi − µi)
T (Spiess & Hamerle, 1996). Now, to compute an estimate

β̂ex, the first-order condition from Proposition 1 can be solved analytically. The

solution varies depending on whether the estimation procedure is strictly

two-step or not. In a strict two-step procedure, Cov(yi − µi, hi) is computed

based on the first-step estimator and thus is not a function of β, but is constant

in the second step. Hence, the solution is

β̂ex = Z−1h−1

(
1

n

n∑

i=1

(yi − (yi − µi(β̂1))h
T
i Ω

−1
h h̄)

)
,

where h−1 is a vector-valued function containing only the inverse of the link

function h−1 as entries. Note that in the absence of external information the

estimator simplifies to β̂ex = Z−1h−1(ȳ), a generalization of the analytic

solution of Spiess et al. (2019) in the linear case. If β̂1 is computed without

(information about) φ and α, then the estimate is not a function of them at all.

This can always be achieved by choosing a weighting matrix for the first-step

estimator that is not a function of φ and α. In addition to the two-step

approach, the first-order conditions can also be solved in a single step. The

derivation is explained in Appendix B, the result is the one-step estimator

β̂ex = Z−1h−1

(
1

1 − h̄
T
Ω

−1
h h̄

·
1

n

n∑

i=1

(yi − yih
T
i Ω

−1
h h̄)

)
.

Taken together, if the covariates are block invariant, then the estimate

for the parameter of the externally informed generalized linear regression model
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for longitudinal data and its variance are independent of the working correlation

matrix, and thus identical for any possible covariance structure. This property

carries over directly to the test statistic TW , since it is computed using only the

GMM estimator based on the first-order conditions and the variance estimate

derived from Proposition 1. In the following, we will always choose the one-step

estimator to compute TW , as it leads to the most computationally efficient test.

The same holds for LM , using the first approach based on a strict two-step

procedure, the only difference being that Cov(yi − µi, hi) is computed based on

a restricted first-step estimator.

Proposition 2. Let the covariates be block invariant and assume that the

regularity conditions for the externally informed GEE estimator are fulfilled

(especially that it is a solution to the first-order conditons), then the test

statistic of the criterion-based test becomes

DRU =
1

n

n∑

i=1

(yi − µi − Cov(yi − µi, hi)Ω
−1
h h̄)T

×
( n∑

i=1

(yi − µi)(yi − µi)
T − Cov(yi − µi, hi)Ω

−1
h Cov(yi − µi, hi)

T
)−1

×
1

n

n∑

i=1

(yi − µi − Cov(yi − µi, hi)Ω
−1
h h̄),

where all expressions are evaluated at β̃2.

Proof. See Appendix C.

Using Proposition 2, DRU is not a function of φ and α if the restricted

estimator β̃2 can be computed without using φ or α. Details about the

corresponding computation of restricted estimators are described in Appendix

D. Note that Wn is fixed in each step and is recalculated after the new estimate
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is found. In summary, with external point information and block invariant

covariates, it is possible to compute test statistics for general linear hypothesis

testing in generalized linear models with repeated measures without φ and α,

i.e., without having to specify a working covariance matrix. Note that this

applies to repeated-measures designs, such as crossover studies, as well as

longitudinal studies, even when the interval between measurements of the

dependent variable varies. In the latter case, however, one should still be

cautious about the comparability of the slopes of the regression model.

Furthermore, models involving between-subject variables with many values, e.g.

age, generally do not allow the derived simplifications.

When using external sets, the minimum test statistic must be computed

to perform a Γ−maximin test. Even if analytic formulas for estimators and test

statistics are available, this is generally a non-convex optimization problem,

which becomes a problem when an external interval is considered (Jann, 2024).

In addition, calculating the restricted estimates β̃1 and β̃2 is done by an

iterative procedure. If the dimension of the external interval is small, grid

searching on the external interval is a simple procedure to approximate a

solution without further assumptions (Cameron & Trivedi, 2005, p. 337).

So far we have assumed that all matrices are invertible. However, there

is one case where this assumption is certainly not true. If the external variance

matrix Vex is not regular, for example if Vex = 0, it may be that V̂ar(β̂ex) is

singular. To illustrate this, consider the case where h encodes the true external

information about the expected value of y in a particular group, say the k-th

group. Then the k-th entry of Cov(yi − µi, h) is just the variance of y in group

k, and the remaining entries are the covariances with the other groups. Since

Vex = 0, Ωh is also just the variance of y in the k-th group. Thus, the k-th
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column and the k-th row of V̂ar(β̂ex) computed based on Proposition 1 would

be exactly 0, implying that it is singular. This can also apply to matrices

calculated on the basis of V̂ar(β̂ex), and to the restricted estimation.

Fortunately, the simple workaround is to use Moore-Penrose inverses, see

(Lemma 1 and Theorem 1 in) Jann (2024).

Simulation studies and real data application

To analyze the validity and power of the proposed tests, we conducted

simulation studies in two scenarios, both adapted from two published studies

and thus from real data. An example of a within design for count data is

analyzed. Further, we consider a mixed design with a categorical dependent

variable using a cumulative logit model. We will describe the theory behind

these papers very briefly, since we are only using them as examples. The

simulations were performed in the statistical software R, version 4.3.2 (R Core

Team, 2023). The implementation of test functions, simulation studies and data

reanalysis can be found in the R scripts in the electronic supplementary

material. Some technical details of the simulation studies have been omitted to

keep the reading brief. These details can be found in Appendix E.

Count data scenario

The simulations in this section are based on the scenario of Experiment

3 of Schmalbrock and Frings (2022). The corresponding datasets for all three

experiments are open source, see Schmalbrock (2022). Theoretically, the

authors investigate the principle of figure-ground segmentation in an experiment

using sequential distractor-response binding (DRB). Four within factors were

manipulated: response relation (whether the response repeats or not), color
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relationship (whether color repeats or not), prime layer (if color was presented

as figure or background in the prime), and probe layer (if color was presented as

figure or background in the probe). All participants had to complete 32 trials of

each of the 24 = 16 possible factor combinations. Repeated measures ANOVAs

were then used to analyze changes in mean reaction times and mean error rates,

including two-, three-, and four-way interaction terms. Similarly, we focus on

the number of errors as a count variable. We restrict our attention to testing

the basic DRB effect when both colors in the prime and probe are in the

background, i.e., the two-way interaction between response and color relation.

As a source for external information we used experiments 1 and 2 by

Schmalbrock and Frings (2022). They display a good source of external

information because they are based on the same topic, conducted in the same

lab, but with a different design, i.e., in Experiment 1 only the priming layer was

varied and in Experiment 2 only the probe layer was varied. We used two

approaches (a conservative as well as a liberal one, see Appendix E.1) to

calculate external intervals for the number of errors for the condition where

color and response are repeated and color is the background for both prime and

probe, based on the data from Experiments 1 and 2. The resulting external

intervals are [1.1667, 2.5] for the conservative approach and [1.3667, 1.8667] for

the liberal approach. In both cases, the minimum variance of the conditions

over which the range was built was 2.6023. We used these external intervals as

well as the minimum variance for our simulation study.

We simulated the data in a scenario similar to Experiment 3, a

2 × 2 × 2 × 2 within-design with all interactions (resulting in 16 parameters).

The sample size was set to 63. We calculated the mean number of errors for all

16 factor combinations and used these to generate data via Poisson
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distributions. As a reference category, we used the condition where both

response and color change, and color is the background in both prime and

probe. To test validity, a null model where all parameters except the intercept

were set to zero was used to generate the data. Therefore, we used the mean

number of errors of the reference category, 1.7937, in all conditions. To test

power, we used the full vector of the 16 calculated means as an alternative

model. We used a simple third variable reduction approach described by

Barbiero and Ferrari (2015) to generate correlated Poisson data with the

defined means (see Appendix E.2).

To test the influence of external information on the three tests under

different conditions, we created 11 cases: First, no external information was

used as a baseline. Second, the true value based on the model was utilized as a

point to evaluate the best case result. Then, the external intervals calculated

above are applied to evaluate the influence of the interval width (both include

the true value). To analyze the influence of misspecification, we used a false

point value of 2.5 and a false interval of [2.5, 4]. All cases so far do not use

external variance estimates. To test the influence of estimation uncertainty, we

used all cases except the first and introduced estimation uncertainty by

generating samples from a normal distribution in each simulation run. To

accomplish this, the mean was set equal to the (minimum and maximum)

external value of the previously discussed cases. The variance was set to the

value calculated above, 2.6023, and the sample size was 30, as in experiments 1

and 2. The (minimum and maximum) means of these samples were used as

external information and the (minimum) variance of the samples divided by 30

as external variance. During each simulation run, TW (based on the one-step

estimator), LM , and DRU are computed, and it is evaluated whether the tests
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reject the null hypothesis based on α = 0.05. Finally, the null hypothesis

rejection rate is computed over all simulations, and the number of divergences,

i.e., when the Fisher scoring method for the restricted estimates fails to

converge in less than 10000 iterations, is tracked. As a convergence criterion, we

defined that two consecutive estimates have an Euclidean distance less than

10−12. The number of simulation runs was set to 500. The simulation results in

terms of type I error and power are shown in Table 1. There was no divergence

of the Fisher scoring algorithm.

Table 1
Type I error rates and power resulting from the count data simulation.

Type I errors Power
Scenario TW LM DRU TW LM DRU

without external information 0.050 0.050 0.022 0.862 0.862 0.804
external values (without Vex)

true external value 0.072 0.066 0.066 0.928 0.920 0.912
[1.1667, 2.5] (true) 0.002 0.002 0.002 0.430 0.270 0.250

[1.3667, 1.8667] (true) 0.024 0.022 0.018 0.912 0.908 0.886
2.5 (false) 0.416 0.274 0.272 0.430 0.270 0.250

[2.5, 4] (false) 0.416 0.168 0.256 0.058 0.002 0.012
external samples (with Vex)

true external value 0.112 0.080 0.088 0.880 0.864 0.856
[1.1667, 2.5] (true) 0.004 0.004 0.004 0.466 0.364 0.464

[1.3667, 1.8667] (true) 0.058 0.048 0.042 0.860 0.834 0.830
2.5 (false) 0.382 0.238 0.358 0.500 0.366 0.476

[2.5, 4] (false) 0.424 0.142 0.410 0.074 0.002 0.126

Note: The tests are symbolized by the respective test statistic. TW stands for the Wald test,
LM for the Lagrange multiplier test and DRU for the criterion-based test. The significance
level is α = 0.05, so type I errors should be about 0.05 or less.

Categorical data scenario

The simulations in this section are based on the scenario of Zeibig et al.

(2023). The corresponding dataset is open source, see Zeibig et al. (2022). The

authors examined the positive long-term effect of exercise intervention on

mental disorders in a sample of 74 outpatients awaiting psychotherapy.
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Participants were assigned to either a passive control group or an exercise

intervention group. Both groups were measured three times, at baseline,

immediately after treatment, and one year after treatment. Thus, the design is

mixed, including intervention group as a between factor and measurement time

as a within factor. The between factor was originally unbalanced, with 38

participants in the exercise group, but two participants in this group had to be

excluded due to misdiagnosis at baseline, resulting in a balanced between

factor. Therefore, in principle, our approach can be applied as described in

Section 4.1 by pairing participants from both groups. As outcome measure we

only use the affect regulation subscale of the Physical Activity-related Health

Competence Questionnaire (PAHCO). It is calculated as the mean of four

items, each of which has a four-point Likert scale coded from 1 to 4. For our

analysis, we formed three categories [1, 2), [2, 3), and [3, 4] and named them

category 1, 2, and 3. We applied a cumulative logit model to model the effect of

the two factors on the probability of a participant being in category 1 and being

in category 1 or 2 (abbreviated as 1 ∪ 2).

As a source of external information we used a validation study for the

PAHCO based on 1028 patients in rehabilitation facilities at the beginning of

their medical program, see Study A in Sudeck and Pfeifer (2016). Although

they differed from the sample of Zeibig et al. (2023) in types of disorders

(medical vs. mental) and type of upcoming treatment (rehabilitation vs.

psychotherapy), both samples had a similar range of ages and had not started

treatment but were waiting for it. In order to account for these differences, we

planned to construct an interval of possible values for the relative frequencies of

category 1 and 1 ∪ 2. We faced the problem that the dataset of Sudeck and

Pfeifer (2016) is not available online and that the study does not report the
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named frequencies. To approximate these frequencies, we used linear

programming to calculate the possible minimum and maximum frequencies

based on the given information, details are described in Appendix E.3. This

provides another justification for the use of intervals: Not only to reflect the

presence of multiple studies, but also in the case of uncertainty about the

external information from a single study. The resulting intervals are

[0.238, 0.362] for category 1 and [0.692, 0.806] for 1 ∪ 2.

We simulated the data according to the 3 × 2 mixed design with all

interactions (resulting in 12 parameters, 6 for category 1 and 6 for 1 ∪ 2). As

the reference category, we chose category 1 in the control group at baseline.

The sample size was set to 72. To generate data according to the dataset of

Zeibig et al. (2022), we wanted to calculate the frequency of category 1 as well

as 1 ∪ 2 in all 6 factor combinations in the dataset. However, there was a

significant amount of missing data for the PAHCO score. To restore the balance

in the between factor without deleting data, we decided to use the multiple

imputation method implemented by the R package mice (van Buuren &

Groothuis-Oudshoorn, 2011). Specifically, the PAHCO scores were imputed

using predictive mean matching with 5 donors and 100 imputations. The rule of

thumb that longitudinal data require at least as many imputations as the

percentage of missing values accounts for this large number of imputations

Wijesuriya et al. (2025). In each imputed dataset, the 12 frequencies were

calculated and the mean of these frequencies over the 100 datasets were used as

probabilities for the simulation study.

We then used a threshold model based on a joint normal distribution to

induce dependencies across measurements (see Appendix E.4 for details). To

test validity, a null model was applied to generate the data, where all
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parameters except the intercepts for category 1 and for 1 ∪ 2 were set to zero.

Thus, we utilized probabilities of 0.266 for category 1 and 0.482 for category 2.

To test the power, we used the full vector of the 12 calculated frequencies as an

alternative model.

We tested the same 11 external information conditions for both omnibus

hypotheses as in the count data simulations. To analyze the influence of

misspecification, we defined 0.35 and 0.5 as false values and [0.35, 0.4] and

[0.4, 0.5] as false intervals. This time, however, we generated external samples

before the simulation runs to test the influence of reusing the same external

samples. Since external values represent probabilities, we used a Bernoulli

distribution to generate the external samples, using the (minimum and

maximum) external values of the above conditions as probabilities. The sample

size for the external samples was set to 1028, the same as in Sudeck and Pfeifer

(2016). Complete separation may occur because the sample size of 72 is

relatively small. For a discussion of this phenomenon in the context of GEE and

its remedy using a Firth-type penalty term, see Mondol and Rahman (2019).

We restrict ourselves to excluding and counting the number of simulation runs

where complete separation occurred. To maintain a sufficient number of

simulation runs, we increased the number from 500 to 700 after having done

some pilot simulations.

The resulting type I error rates and power of the simulation conditions

are shown in Table 2 and Table 3. For the null model, no complete separation

occurred, for the alternative model, 100 (category 1) and 101 (1 ∪ 2) cases

occurred, leaving over 500 runs in each of these cases. There were divergences

for the simulations with 1 ∪ 2. For the alternative model and DRU there was one

divergence in the no external information condition, one for the external
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Table 2
Type I error rates and power for category 1, categorical data.

Type I errors Power
Scenario TW LM DRU TW LM DRU

without external information 0.063 0.063 0.046 0.633 0.633 0.622
external values (without Vex)

true external value 0.091 0.077 0.067 0.772 0.788 0.943
[0.238, 0.362] (true) 0.046 0.034 0.041 0.665 0.678 0.887

0.35 (false) 0.346 0.277 0.309 0.978 0.985 0.990
[0.35, 0.4] (false) 0.343 0.277 0.307 0.978 0.985 0.990

external samples (with Vex)
true external value 0.094 0.079 0.061 0.767 0.772 0.938
[0.238, 0.362] (true) 0.046 0.036 0.046 0.675 0.688 0.898

0.35 (false) 0.281 0.221 0.259 0.970 0.978 0.990
[0.35, 0.4] (false) 0.249 0.189 0.231 0.960 0.968 0.990

Note: The tests are symbolized by the respective test statistic. TW stands for the Wald test,
LM for the Lagrange multiplier test and DRU for the criterion-based test. The significance
level is α = 0.05, so type I errors should be about 0.05 or less.

interval cases (with or without external variance) and 9 in the false external

point condition, 53 for the false external interval, 9 for the false external point

with external variance, and 51 for the false external interval with (minimal)

external variance. For the alternative model and LM , two divergences occurred

in the cases with false external points, respectively, as well as 5 for the false

external interval without external variance and 4 with external variance. For

the null model, only DRU produced divergences, 2 for false external point, 19 for

false external interval, 2 for false external point with external variance, and 17

for false external interval with (minimal) external variance.

Application to real data

We applied all three hypothesis tests to the real datasets from Sections

5.1 and 5.2, testing the same hypotheses as in the simulation studies using the

specified external intervals and external variance, respectively. To adjust for

missing values in the categorical data, we used the 100 imputations described
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Table 3
Type I error rates and power for category 1 ∪ 2, categorical data.

Type I errors Power
Scenario TW LM DRU TW LM DRU

without external information 0.086 0.086 0.054 0.806 0.806 0.711
external values (without Vex)

true external value 0.109 0.096 0.074 0.995 0.995 0.967
[0.692, 0.806] (true) 0.073 0.064 0.036 0.975 0.943 0.798

0.5 (false) 0.991 0.849 0.747 0.606 0.273 0.145
[0.4, 0.5] (false) 0.991 0.843 0.711 0.593 0.229 0.097

external samples (with Vex)
true external value 0.111 0.100 0.069 1.000 1.000 0.973
[0.692, 0.806] (true) 0.071 0.061 0.034 0.972 0.940 0.788

0.5 (false) 0.993 0.853 0.747 0.608 0.272 0.145
[0.4, 0.5] (false) 0.991 0.840 0.710 0.589 0.229 0.097

Note: The tests are symbolized by the respective test statistic. TW stands for the Wald test,
LM for the Lagrange multiplier test and DRU for the criterion-based test. The significance
level is α = 0.05, so type I errors should be about 0.05 or less.

above and performed the tests based on the D2 test statistic (Li et al., 1991).

The results are shown in Table 4. For the count data case, using the wide

interval resulted in an increase in the p-values, although they are still significant

using 0.05 as the significance level, while using the narrow interval halved the

p-values. For the categorical data, the p-values decreased, leading to significant

results for the category 1 that were not significant before.

Discussion

Summary of simulation results and data reanalysis

In both simulation studies, the three tests led to valid type I errors when

used without external information, except for category 1 ∪ 2, where TW and LM

had slightly increased type I errors, possibly due to the small sample size of 36

pairs. In all cases, using the true external point slightly increased type I errors,

regardless of whether external variance was used or not. Combined with the

fact that using external intervals (with or without external variance) reduced
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Table 4
Resulting p-values from reanalysis for count and categorical data.

Test Count (Count)ex,1 (Count)ex,2 Cat 1 (Cat 1)ex Cat 1 ∪ 2 (Cat 1 ∪ 2)ex

TW 0.0014 0.0132 0.0006 0.1411 0.0338 0.0262 0.0084
LM 0.0014 0.0385 0.0006 0.1411 0.0335 0.0262 0.0092
DRU 0.0099 0.0352 0.0031 0.1363 0.0033 0.0380 0.0202

Note: The tests are symbolized by the respective test statistic. TW stands for the Wald test,
LM for the Lagrange multiplier test and DRU for the criterion-based test. Count, Cat 1,
and Cat 1 ∪ 2 symbolize the tests performed without external information for the hypotheses
specified in the Sections 5.1 and 5.2. A subscript ex indicates that an external interval and an
external variance are used. For the the count data, there were two intervals, so ex, 1 indicates
the use of [1.1667, 2.5] and ex, 2 indicates the use of [1.3667, 1.8667].

type I errors compared to the case where no external information is used, this

provides an argument for using intervals even when a reliable external value is

known. This is supported by the observation that using false external points

significantly increases type I errors, up to 0.993 for category 1 ∪ 2 in the

categorical case using TW . Furthermore, using false external intervals (with or

without external variance) does not prevent increased type I errors. The fact

that spurious external intervals lead to almost the same type I errors as

spurious external points indicates that the width of the interval per se is not as

important as the best case value within the interval. However, for the count

data, the wide true external interval led to significantly lower type I errors than

the narrower true external interval, reducing them from 0.058 to 0.004 in the

case of TW and using external variance. Thus, caution is required to construct

external intervals that contain true values, or an unbiased or consistent estimate

thereof, in order to benefit from the width of the interval in terms of validity. In

both simulations, using external samples based on true external values or

intervals did not greatly increase type I errors. For the categorical data, they

were nearly equal to those using the true external value or interval, suggesting

that the conditional use of external information (i.e., using the same external
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sample each time) was not a problem in our case. However, this may be due to

the large sample size of 1028. For the count data, type I errors doubled

compared to the case without using external samples, but all were close to the

nominal 0.05, suggesting that some caution is needed when interpreting external

information unconditionally, e.g., repeatedly running multiple experiments and

leveraging information from one experiment in the subsequent ones. This may

be due to the small external sample size of 30.

Regarding power in the case of count data, using true external values

without variance led to an increase in power of about 0.06 for TW and LM and

0.11 for DRU . This effect was reduced when external samples were used, to 0.02

for TW , 0.002 for LM , and 0.05 for DRU . Using the wide external true interval

or false point values or intervals resulted in power of 0.5 or less, indicating a

significant loss of power in these cases. Using the narrow true external interval

without external variance reduced power by 0.03 at most compared to using the

true external point, so there is still an increase in power for all tests. When the

external variance is also considered, the power is lower when LM is used, the

same when TW is used, and higher when DRU is used compared to the power

without using external information. In terms of absolute power, not power

reduction, TW always had the highest power values, indicating that TW is the

most powerful test statistic here. Note that although externally informed TW

has lower power and similar type I errors compared to uninformed TW , there

may still be distributional robustness in validity, meaning that the type I errors

may remain nominal in a certain neighborhood of the normal distribution due

to the use of interval probability for test construction.

For the categorical data, the results are different for the categories. For

category 1, the highest gain in power occurred for DRU , which was 0.32. The
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power gain was only slightly affected when external samples were used. Using a

true external interval resulted in a maximum net power gain of only 0.04 for TW

and LM , while it remained above 0.26 for DRU . Furthermore, in the presence of

external information, the power was always highest for DRU . Using false

external values or intervals resulted in power values of 0.96 or higher. While

this seems like a good effect, it is clearly offset by the increased type I errors,

and it only occurred for category 1, so it is not reliable. For 1 ∪ 2 the results

were partly the opposite. Again, DRU led to the highest power gain and using

external samples had no significant effect on power. However, using true

external intervals resulted in a power gain of more than 0.199 for TW , while it

shrank to 0.08 for DRU . Furthermore, TW always led to the highest power.

Finally, with false external information the power was lower than without

external information. These results are reflected in the (reduced) p-values for

the reanalysis of the datasets in Table 4. The test statistic TW was

adavantegous for count data and category 1 ∪ 2, while DRU was adavantegous

for category 1 of the ordinal data. While the simulation study for count data

showed that there are no substantial power gains left when using external

intervals with external variance, the reanalysis showed that the use of external

information can still be useful for particular datasets.

Conclusion and further research

The summary of the results shows that no test is superior in all cases,

and even for the same dataset it can vary which test is more powerful. Despite

type I and type II errors, another important argument for test selection is

computational complexity. Here, TW is clearly advantageous because it can be

calculated analytically, without iterative procedures, thus avoiding the need to
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specify good initial values, which was important for DRU . Further research

could examine the behavior of the three test statistics proposed in this paper,

and perhaps other possible test statistics to provide a more nuanced

recommendation as to which test is best to use in different scenarios. It may be

that no single test is best for the majority of scenarios, but that the choice of

test is highly scenario dependent. It is therefore advisable to perform simulation

studies before applying a test to another scenario.

We have shown that reflecting the uncertainty in the external

information by using external intervals and external variances does not

substantially reduce power. In the categorical case, the substantial increase in

power was preserved, while in the count data case, power was not substantially

reduced when a reasonably narrow external interval was used, so an increase in

robustness of validity may be the net gain here. Further research is needed to

assess whether and to what extent the robustness of validity increases for

various violations of the distributional assumptions when external information is

used. Since the use of false external information in many cases led to more type

I and II errors, we strongly recommend using an external interval and external

variance that are theoretically justified, i.e., constructed on the basis of studies

that are as similar as possible to the present study, to avoid misspecification.

Finally, it would be interesting to extend our results on block invariant

designs to unbalanced designs. The derived estimators can be applied to

unbalanced designs as they are. This is because they are based only on means

for each factor combination, and these are consistent estimates even when

sample sizes vary across factor combinations. Unfortunately, the variance

matrices do not generalize as easily, and additional assumptions may be needed

to compute them for unbalanced designs, as is the case for unbalanced ANOVA.
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A: Proof of Proposition 1

Here we present the proof of Proposition 1:

Proof. By Liang and Zeger (1986, p. 21) ∇βm̄GEE(β) can asymptotically be

expressed by the limit (in probability) − limn→∞

1
n
XT DΣ

−1DX, so to derive

consistent estimators we replace ∇βm̄GEE(β) by G := − 1
n
XT DΣ

−1DX. G is

nonsingular because X has full rank and D as well as Σ
−1 are nonsingular

because they have nonsingular blocks. Under block-invariant covariates, it holds

that G = 1
n
(1T

n ⊗ ZT )(In ⊗ Dt)(In ⊗ Σ
−1
t )(In ⊗ Dt)(1n ⊗ Z). By the properties

of the Kronecker product ( see Puntanen et al. (2011, p. 52) for details) its

inverse is G−1 = 1
n
(1T

n ⊗ Z−1)(In ⊗ D−1
t )(In ⊗ Σt)(In ⊗ D−1

t )(1n ⊗ (ZT )−1).

Since G−1 is nonsingular, multiplying it to the first- order conditions does not

change the solution, so the following equation is also a first-order condition:

0 = G−1(m̄GEE(β) − Ω
T
r Ω

−1
h h̄)

= G−1XT DΣ
−1(y − µ − Cov(y − µ, h))

= G−1(1T
n ⊗ ZT )(In ⊗ Dt)(In ⊗ Σ

−1
t )(y − µ − Cov(y − µ, h)Ω−1

h h̄)

=
1

n
(1T

n ⊗ (DtZ)−1)(y − µ − Cov(y − µ, h)Ω−1
h h̄).

Now the rest follows by evaluating the Kronecker product. Further, using (the

proof of) Corollary 1 in Jann and Spiess (2024),

V̂ar(β̂ex) =
1

n
(G(Ωm − Ω

T
r Ω

−1
h Ωr)

−1G)−1 =
1

n
G−1(Ωm − Ω

T
r Ω

−1
h Ωr)G

−1

=
1

n
G−1(1T

n ⊗ ZT )(In ⊗ Dt)(In ⊗ Σ
−1
t )
(
Cov(y)

− Cov(y − µ, h)Ω−1
h Cov(y − µ, h)T

)
(In ⊗ Σ

−1
t )(In ⊗ Dt)(1n ⊗ Z)G−1,
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which leads to the desired expression of the variance estimator by the same

arguments regarding the Kronecker products when multiplying G−1. Only Σt is

a function of α and φ, and it is cancelled out in both expressions.
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B: Derivation of the one-step estimator

Here we derive the one-step estimator described on page 20. Based on

Proposition 1 the first-order conditions are

1

n
(DtZ)−1

n∑

i=1

(yi − µi − Cov(yi − µi, hi)Ω
−1
h h̄) = 0.

As described on page 19 we estimate Cov(yi − µi, hi) by (yi − µi)(hi)
T .

Further, by multiplying n(DtZ) from the left we get

0 =
n∑

i=1

(yi − µi − (yi − µi)(hi)
T
Ω

−1
h h̄)

=
n∑

i=1

(yi − yih
T
i Ω

−1
h h̄) − n(1 − h̄

T
Ω

−1
h h̄)µ,

because for block invariant designs the µi are equal for all i = 1, . . . , n, so

µi = µ. Simple rearranging yields

1

1 − h̄
T
Ω

−1
h h̄

·
1

n

n∑

i=1

(yi − yih
T
i Ω

−1
h h̄) = µ = h(Zβ).

By inverting h and then Z we finally derived the estimator

β̂ex = Z−1h−1

(
1

1 − h̄
T
Ω

−1
h h̄

·
1

n

n∑

i=1

(yi − yih
T
i Ω

−1
h h̄)

)
,

reported on page 20. �
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C: Proof of Proposition 2

Here we present the proof of Proposition 2:

Proof. Let Gr be the matrix G from the proof of Proposition 1 evaluated at β̃2.

Since β̂2 is assumed to be a solution of the first-order conditions, it follows that

m̄GEE(β̂2) − Ω
T
r Ω

−1
h h̄ = 0. Hence the conditions of Lemma 1 and Theorem 1 of

Jann (2024) are fulfilled and by applying them and inserting G−1
r Gr, we get

DRU = n
(
ḡ(β̃2)

T Wn(β̃2)ḡ(β̃2) − ḡ(β̂2)
T Wn(β̂2)ḡ(β̂2)

)

= n(m̄GEE(β̃2) − Ω
T
r Ω

−1
h h̄)T (Ωm − Ω

T
r Ω

−1
h Ωr)

−1(m̄GEE(β̃2) − Ω
T
r Ω

−1
h h̄)

= n(m̄GEE(β̃2) − Ω
T
r Ω

−1
h h̄)T G−1

r Gr(Ωm − Ω
T
r Ω

−1
h Ωr)

−1GrG
−1
r

× (m̄GEE(β̃2) − Ω
T
r Ω

−1
h h̄)

= (G−1
r m̄GEE(β̃2) − Ω

T
r Ω

−1
h h̄)T (

1

n
G−1

r (Ωm − Ω
T
r Ω

−1
h Ωr)G

−1
r )−1

× (G−1
r m̄GEE(β̃2) − Ω

T
r Ω

−1
h h̄)

= (G−1
r m̄GEE(β̃2) − Ω

T
r Ω

−1
h h̄)T (V̂ar(β̃2))

−1(G−1
r m̄GEE(β̃2) − Ω

T
r Ω

−1
h h̄).

The rest of the proof follows the same arguments as in the proof of Proposition

1 about Kronecker products. Note that (DtZ)−1) then cancels out. Finally, the

above expression is only a function of β̃2, not of φ and α.
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D: Nullspace method for constraint optimization

First, we follow the nullspace approach of Zörnig (2014, pp. 188–189). In our

case, the linear constraints are Rβ = r. Using basic results from linear algebra,

the feasible region can be easily described. Let N be a matrix whose columns

are the basis of the nullspace, then the nullspace can be expressed by Nγ with

γ ∈ R
q−rank(R). Thus, every feasible value can be expressed by β = Nγ + β∗,

where β∗ is a specific solution of Rβ = r, for example β∗ = RT (RRT )−1r. Now

we substitute this expression into the objective function of the GMM, which

leads to an unconstrained optimization problem in γ. After this reduction of

variables, the (reduced) gradient and the Hessian matrix have to be derived

again by applying the chain rule (Zörnig, 2014, p. 189). Consequently, the

first-order conditions are

0 = NT (∇βḡ(β))T Wnḡ(β) = NT (∇βḡ(Nγ + β∗))T Wnḡ(Nγ + β∗)

and the Hessian matrix is H = NT (∇βḡ(Nγ + β∗))T Wn(∇βḡ(Nγ + β∗))N.

Second, to find the restricted estimate, Fisher scoring can be used, as by Spiess

and Hamerle (1996), which leads to the iterative procedure of choosing a

starting value γ̂0 and computing

γ̂j+1 = γ̂j + H−1NT (∇βḡ(Nγ + β∗))T Wnḡ(Nγ + β∗)

until a convergence criterion is met. Similar arguments as in (the proof of)

Proposition 1 can be applied to this procedure, leading to a cancellation of φ

and α. Finally, γ̂0 can always be chosen independently of φ and α. To keep the

number of iterations as small as possible, a starting value γ̂0 is chosen, which is
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heuristically close to the optimal value. To do this, we computed the

unconstrained one-step estimator and projected it into the hyperplane defined

by Rβ = r, resulting in γ̂0 = (NT N)−1NT (β̂ex − β∗), so that Nγ̂0 + β∗ satisfies

the constraints.
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E: Further details of the simulation studies

E.1 Calculation of two Iex for count data

As a first, conservative approach, we computed the range of means of the

number of errors over all factor combinations where color was presented as

background (8 in total). As a second, liberal approach, we assumed that the

mean number of errors in Experiment 3 would be at least as high as in

Experiment 1 or 2, so as a lower bound we used the maximum mean number of

errors in the condition where color and response are repeated and color is the

background across both experiments. As an upper bound, we used the

minimum of the means of all conditions where exactly one of response or color

is changed and color is the background. This assumption is consistent with the

theory provided in the introduction by Schmalbrock and Frings (2022), that if

only some but not all of the information is repeated, the entire event file is

activated, causing a cognitive cost because the file encodes repetition but one

aspect is not repeated.

While calculating the external intervals, we noticed that both datasets

contained too many rows (they should contain only 14400 rows each). Further

investigation showed that the extra rows were exact copies of the previous rows

(which can be easily seen from the participant index), so we deleted them. As a

result, we could not exactly replicate the results of Experiments 1 and 2, there

were differences, but they were very small and did not change the conclusions.

E.2 Further details on the count data simulation

First, we describe our implementation of the approach of Barbiero and Ferrari

(2015) to generate correlated poisson. The idea is to independently sample a
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participant-specific poisson variable (similar to a random intercept) with

parameter λ0 and condition-specific poisson variables with parameter λk for

k = 1, ..., 16 so that their means add up to the computed means or the null

model means, respectively. Thus, the sum of each condition-specific variable

with the person-specific variable is Poisson distributed with the pre-specified

means, and there are positive correlations between conditions. For the null

model, the correlations are all λ0/(λ0 + λ1), imposing an equicorrelation

structure. We specified λ0 = 0.5381 so that the correlations are 0.3, which is

approximately the mean correlation in the data. For the alternative model, the

same λ0 was used, and the condition-specific means were derived by subtracting

λ0 from the calculated means.

Second, during the first test simulation, DRU showed type I error rates of 1

when no external variance was provided. A closer look at the generalized matrix

inversions that occur in the restricted estimation revealed that there seemed to

be a numerical problem with the iterated matrix multiplication and the

function ginv in the R package MASS (Venables & Ripley, 2002) in our case.

This was indicated by the fact that analytically derived generalized inverses and

the ones calculated with ginv differed substantially. We thus used our

analytically derived generalized inverses.

E.3 Approximation of Iex for ordinal data

Our approach to approximating an external interval for the frequencies of

categories 1 and 1 ∪ 2 is inspired by Chapter 4.1 from Weichselberger (2001),

and our solutions will be F-probabilities. Table 4 in Sudeck and Pfeifer (2016)

reports means, standard deviations, skewnesses, excess kurtosis, and item-test

correlations for the four items of the PAHCO Physical activity specific mood
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regulation scale, as well as the scale mean. Cronbach’s alpha is also reported,

but we have omitted it because it only encodes the relationship between the

item and scale mean variances, and these are all given. Unfortunately, no other

measures, especially frequencies, are reported. Based on this information, we

want to approximate the frequencies for our category 1, i.e. scale means in

[1, 2), as well as the frequencies for category 1 ∪ 2, i.e. scale means in [1, 3).

Since 1, 2, 3 and 4 are all the possible values for the four items, the joint

frequency distribution has 44 = 256 cells / dimensions. The frequencies of

certain scale mean values, as well as those of category 1 and category 1 ∪ 2, can

be computed as sums of subsets of these cell frequencies. Furthermore, all the

information given in Table 4 are linear functions in the cell frequencies, which

leads to the following linear system for each item as well as for the mean score

(substituting the cell means x̄i for xi, the grand mean x̄ for the item specific

means x̄j, as well as using the descriptive values for the scale mean value and

omitting the last row)




x1 . . . x256

(x1 − x̄j)
2 . . . (x256 − x̄j)

2

(x1 − x̄j)
3 . . . (x256 − x̄j)

3

(x1 − x̄j)
4 . . . (x256 − x̄j)

4

(x1 − x̄j)(x̄1 − x̄) . . . (x256 − x̄j)(x̄256 − x̄)







f1

...

f256




=




x̄j

n−1
n

s2
j

skewj

kurtj + 3

n−1
n

rjts
2
js

2




,

(1)

where s2 is the sample variance of the scale mean value, s2
j is the sample

variance, skewj is the empirical skewness coefficient, kurtj is the empirical

excess kurtosis, and rjt is the item-test correlation of item j, respectively. We
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have assumed, that the values reported in Table 4 in Sudeck and Pfeifer (2016)

are equal to these statistics. If this is not the case (for example, when

bias-corrected skewness was used), our approximation may be biased. However,

sample size was 1028, so the error should not be too large. Combined with the

typical frequency constraints 0 ≤ fi ≤ 1 and
∑256

i=1 fi = 1, we have a set of linear

constraints and thus the following type of linear optimization problems:

Find a vector (f1, . . . , f256)

that minimizes
∑

i∈category 1

fi

subject to equation (1) for the mean score and for j = 1, 2, 3, 4

and 0 ≤ fi ≤ 1,
256
∑

i=1

fi = 1.

This results in four programs by minimizing and maximizing for category 1 and

for category 1 ∪ 2. Unfortunately, all reported values are rounded to two

decimal places, so we have to account for rounding errors. Therefore,

x̄j, sj, skewj, kurtj, rjt must be thought of as intervals. For the lower bound we

subtracted 0.006, since values like 1.2445 could be represented by the system as

1.245 and thus reported as 1.25, so 0.006 is a safe lower bound. For the upper

bound, we added 0.005, since this is a value where one would round to the next

number on the second digits. We also took into account the fact that the mean

of the item scores should be equal to the mean of the scale scores. Using the

lower and upper bounds of the item means, the upper bound of the mean of the

scale means could be reduced to adding 0.0025 (no higher value is possible

based on the upper bounds of the item means). Inserting the calculated

intervals into equation (1) leads to the problem that both the left and right
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sides of the matrix contain interval entries. If only the right-hand side contained

intervals, one could interpret equation (1) as a set of inequalities, i.e., the

left-hand side is less than or equal to the upper bound of the right-hand side

and greater than or equal to the respective lower bound. To achieve this, we

transformed equation (1) so that there are no item or grand means in the

matrix on the left side, resulting in

























x1 . . . x256

x2
1 . . . x2

256

x3
1 . . . x3

256

x4
1 . . . x4

256

x1x̄1 . . . x256x̄256





































f1

...

f256













=

























x̄j

n−1
n

s2
j + x̄2

j

skewjs
3
j + 3x̄js

2
j + x̄3

j

(kurtj + 3)s4
j + 4skewjs

3
j x̄j + 6s2

j x̄
2
j + x̄4

j

n−1
n

rjts
2
js

2 + x̄jx̄

























.

(2)

Based on the rounding intervals, we calculated lower and upper bounds on the

right side. We did this entry by entry, ignoring the fact that the same values

occur in multiple entries. However, this conservative approach only leads to

slightly wider intervals than necessary, since the expressions are mostly

dominated by the powers of x̄j. We implemented the four linear programs in

the statistical software R (R Core Team, 2023), using equation (2) instead of

(1). The implementation can be found in the R scripts in the electronic

supplementary material. To find the objective values of the four linear

programs, we used the package linprog (Henningsen, 2022). Unfortunately, no

feasible solutions were found for the programs. The reason for this may be

incorrectly reported values or incorrect assumptions about the formulas used for

the reported values (empirical vs. bias-corrected). To resolve this, we tested
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whether relaxing a single inequality constraint (except those that are

mandatory for frequencies) by adding or subtracting it by 1000 leads to feasible

solutions. This was the case for the upper bounds of the item-test correlations

(except the one for item 1) as well as the lower bound of the standard deviation

of the scale mean. For these four constraints, we tested their effects more

precisely by repeatedly adding/subtracting 0.01, relaxing them successively, and

stopping the first time a feasible range could be found. For the upper bounds of

the item-test correlations, the resulting intervals for category 1 frequency were

quite wide, being [0.124, 0.442], [0.118, 0.446], and [0.117, 0.446], while for the

lower bound of the standard deviation, the result was [0.238, 0.362]. Since the

latter was consistent with the other solutions, reasonably large, and the shortest

interval, we used it as an approximation for the external interval. The same

relaxed lower standard deviation constraint was used for the category 1 ∪ 2,

resulting in the external interval [0.692, 0.806]. While reducing the constant

0.01 for successive subtraction would lead to narrower intervals, we decided to

leave it at 0.01 to keep the intervals reasonably large, reflecting the uncertainty

in our approximation approach.

E.4 Further details on the categorical data simulation

Here were describe the details of the threshold model based on a joint normal

distribution that we used to generate correlated categorical data. We calculated

the mean correlations of PAHCO scores between measurements over the 100

imputed datasets, separately for each group. The resulting 6 mean correlations

were used as covariances of the joint normal, with variances equal to 1 and a

mean of 0, so that the marginal distributions were all standard normal. The

correlations between the groups were set to 0 to reflect the independence of the
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two groups. The 12 mean frequencies computed earlier were used to compute

quantiles of the standard normal distribution, 2 for each factor combination, so

that the marginal standard normal distribution of that factor combination is

divided into 3 regions with probability equal to the respective two frequencies of

the factor combination, the lower region representing category 1, the middle

region representing category 2, and the upper region representing category 3.
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Anstöße zur Bewältigung meiner persönlichen Krise während der Promotionszeit gab.

Ich danke Dr. Marlena Mayer und Leslie Förtsch dafür, dass sie mir ermöglicht haben,

meinen Schreibstil und meine Schreibkompetenz in der englischen Sprache durch ihre

Hilfe deutlich verbessern zu können.

Ich danke all meinen aktuellen und ehemaligen Kolleginnen und Kollegen aus beiden

Methoden-Arbeitsbereichen, also Dr. Yasin Altinisik, Dr. Ingmar Böschen, Marcella
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