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Abstract

Free-electron lasers (FELs) require high-quality electron beams with low energy spread, small
emittance, and high peak current to enable coherent amplification of light. Laser-plasma accelerators
(LPAs) could offer compact and cost-efficient drivers for FELs. However, the electron beams from
state-of-the-art LPAs do not yet meet all FEL beam quality requirements simultaneously as they exit
the plasma. Percent-level energy spread, micrometer-scale normalized emittance, and shot-to-shot
fluctuations in beam quality pose significant challenges for FEL operation.

In this thesis, a dedicated 25m-long beamline was designed, constructed, and commissioned
to demonstrate free-electron lasing at the LUX laser-plasma accelerator. The combination of
decompression and chromatic focusing of the electron beams reduces the effective slice energy spread
and removes limitations by the beam emittance. Applying both schemes increases the gain in a two
meter short ideal undulator from a factor of 5 to a factor of 100 over the spontaneous undulator
radiation. FEL simulations with the unaveraged code Puffin, suited for ultrashort beams and complex
phase-spaces, extended for measured field profiles, predict a factor of 25 in gain in the experiment.
Spectrally resolved detection of the FEL pulses increases the contrast by another order of magnitude,
which should provide sufficient FEL signal for first lasing experiments at LUX.

Beyond numerical validation, experiments were carried out to characterize and refine the beam
transport from the plasma-source to the undulator. This included precise quadrupole positioning,
determination and correction of strength errors, and undulator alignment to ensure an optimal beam
trajectory and matching. These measures provide the necessary beam properties required for future
FEL operation at LUX and establish a foundation for exploring compact, plasma-based light sources.
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Zusammenfassung

Freie-Elektronen-Laser (FELs) benötigen Elektronenstrahlen hoher Qualität mit geringer Energieb-
reite, geringer Emittanz und hohen Spitzenströmen. Zukünftig könnten diese durch kompakte und
kosteneffiziente Laser-Plasma-Beschleuniger (LPAs) angetrieben werden. Die Stabilität und Qualität
der im Plasma erzeugten Strahlen sind mit Energiebreiten im Prozentbereich und gleichzeitigen
Emittanzen von Mikrometern nicht ohne weitere Strahlmanipulation zum Treiben eines FELs geeignet.

Im Rahmen dieser Arbeit wurde eine 25m lange Elektronen-Beamline am LUX-Experiment mit dem
Ziel der Demonstration eines Plasma-getriebenen FELs entworfen, gebaut und charakterisiert. Die
gleichzeitige Verwendung einer Dekompressionsschikane und einer chromatischen Fokussierung in
den Undulator reduziert den Slice-Energyspread und erlaubt eine konstante effektive Strahlgröße
unterhalb der Emittanzgrenze entlang eines zwei Meter kurzen Undulators. Im Idealfall kann diese
Kombination die Verstärkung des Lichtfelds von einem Faktor 5 auf einen Faktor 100 im Vergleich
zur spontanen Undulatorstrahlung erhöhen. Realistische Simulationen mit Puffin, einem FEL code,
der komplexe Strahleigenschaften erlaubt und um die Fähigkeit erweitert wurde, gemessene Felddaten
zu verwenden, versprechen eine Verstärkung um den Faktor 25. Der Kontrast zur spontanen Strahlung
kann um einen weiteren Faktor 10 erhöht werden, wenn die Messung der FEL Pulse spektral aufgelöst
wird. Dies sollte genügend Signal für erste FEL-Experimente bei LUX liefern.

Zusätzlich wurden Experimente durchgeführt, um die Elektronen-Beamline feinzujustieren. Die
Quadrupol-Magnete wurden zur Elektronenstrahlachse ausgerichtet, ihre Fokussierstärke kalibriert,
der Undulator justiert und automatische Strahllagekorrekturen implementiert. Diese Maßnahmen
sollten zukünftige FEL-Experimente bei LUX ermöglichen.
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CHAPTER 1

Introduction

Over the past century, the development of particle accelerators has profoundly influenced numerous
fields of science, ranging from materials science, over health, to fundamental physics. A crucial
byproduct of particle accelerators, synchrotron radiation, initially considered an unwanted emission ,
has evolved into a cornerstone technology for studying the structure and dynamics of matter across
various scales. This transformation began with the first-generation synchrotron radiation sources in
the mid-20th century, which utilized bending magnets within circular accelerators primarily designed
for high-energy physics experiments.

As the applications of synchrotron light broadened, subsequent generations of synchrotron sources
emerged, increasingly optimized for light production rather than particle physics. By the third
generation, facilities were employing advanced insertion devices such as undulators and wigglers to
enhance the quality of emitted radiation. These devices manipulate the path of electrons through
a periodic magnetic field, allowing for the interference of waves emitted over individual periods.
This process significantly increases the emitted radiation’s flux and brightness, compared to earlier
generations that relied solely on simple bending magnets. The fourth generation of synchrotron
radiation sources, including free-electron lasers (FELs) [1], has pushed capabilities further, operating
in the ultraviolet and X-ray spectrum to provide unprecedented insights into molecular and atomic
structures through coherent and intense light pulses.

Free-electron lasers represent a pinnacle in light source technology, utilizing long undulator sections
that allow electrons to interact coherently with their own previously emitted radiation. This interaction
results in an energy modulation of the electron beams at the scale of the light wavelength, which
translates into a density modulation, while passing through the undulator magnetic field, enhancing
the radiation’s coherence and intensity dramatically. However, these advanced facilities, such as the
European XFEL [2], FLASH [3], LCLS [4], FERMI [5], PAL-XFEL [6], and SACLA [7], embody a
significant limitation due to their immense scale and cost, typically stretching over kilometers and
costing billions to construct and maintain. This restricts their availability, confining access to a few
facilities worldwide.
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Chapter 1 Introduction

To enable the coherent amplification and driving a free-electron laser requires an electron beam with
exceptionally high beam quality. The key requirements include a low relative energy spread, typically
sub-permille, a small normalized emittance, on the order of micrometer, and a high beam current,
often exceeding kiloamperes.

Amid these constraints, laser-plasma acceleration (LPA) [8] presents a transformative approach,
promising to significantly downscale the physical and financial footprint of accelerator technology.
LPA harnesses the intense radiation pressure of a laser pulse to create a charge separation in a plasma
medium, forming a wakefield that accelerates electrons to relativistic speeds within a fraction of
the distance required by conventional radio-frequency accelerators. This technique, which achieves
accelerating gradients on the order of 100GV/m, three orders of magnitude greater than those
possible with radiofrequency accelerators, has marked a pivotal shift towards compact, cost-efficient
accelerators. The performance of LPAs was improved over the recent years in terms of energy to
multi-GeV [9], percent-level energy spread [10–12], micrometer-level normalized emittance [13] and
long-term operation at Hz-rate repetition [14], opening the door to ultra-compact electron accelerators.
These properties make LPA beams prime candidates for use as drivers for FELs, although not yet
meeting the stringent requirements simultaneously out of the plasma. Further, these developments
hint at the possibility of integrating LPA technology with other applications, like novel concepts for
light sources [15–17], injectors [18, 19] or linear colliders [20]. Such a combination could potentially
overcome the traditional barriers of size and cost of such machines.

Despite these promising advancements, significant challenges remain. Compared to conventional
accelerators, state-of-the-art LPAs face difficulties such as the percent-level energy spread and shot-to-
shot instabilities in beam quality. Nevertheless, advances in controlling the laser-plasma interaction,
particularly the electron injection into the plasma wake [21], pave the way for more stable and reliable
electron beams.

The first demonstration of SASE free-electron lasing from an LPA at 27 nm [22] shows that LPAs are
able to provide the necessary beam quality to meet the requirements for FEL experiments.

Nevertheless, utilizing LPA beams for FEL applications presents a complex set of challenges. The
primary difficulty lies in the transport of an ultra-relativistic electron beam through the beamline
without significant degradation of its properties. The unique characteristics of plasma-accelerated
beams, such as their broad energy spread and potential for high beam divergence, make this task
particularly demanding. In addition to being problematic for driving an FEL itself, the energy
variability within plasma-accelerated beams causes significant chromatic aberrations and dispersion,
which have to be corrected for. The shot-to-shot jitter in beam quality further complicate the
commissioning of the beamline and optimizing the beam transport.

One advanced technique to enhance FEL performance is the decompression scheme [23]. This method
involves manipulating the longitudinal phase space of the electron beam, trading increased pulse length
for decreased local slice energy spread. A tapered undulator is then used to enhance the coherence of
the emitted light, thereby improving the FEL interaction.

In addition to this, advanced focusing schemes can significantly boost the FEL performance. The
design and application of a chromatic focusing scheme that makes use of the chirped beams after
decompression is content of this thesis. The improvements collectively enable the use of shorter
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total undulator lengths on the scale of meters. However, implementing such schemes requires precise
control over beam dynamics, has to be supported by diagnostics, and relies on a well-characterized and
well-calibrated beamline to ensure that the electron beam is optimally prepared for FEL experiments.

The laser-plasma accelerator LUX [24], built at the Deutsches Elektronen-Synchrotron (DESY), is
dedicated to reliably and reproducibly deliver high-quality electron beams. LUX operates at 1Hz-level
repetition rate and generates electron beam with energies of about 300MeV, emittances on the
micrometer-scale and percent-level relative energy spread. It is capable of stable day-long operation,
providing high statistics [14].

In the frame of this thesis a 25m long beamline was designed, built and commissioned, with the goal
to demonstrate free-electron lasing from laser-plasma accelerated beams. It features a chicane in
combination with a variable-taper undulator and a sophisticated transport beamline with 11 quadrupole
magnets for phase space manipulations to bridge the gap to conventional FELs. By utilizing a
decompression and a chromatic matching scheme, reducing the impact of energy spread and emittance,
it aims to show the startup of FEL amplification within a 2m short undulator. At LUX, several
diagnostics are installed to characterize the drive laser, the plasma-source and the electron beams, to
tune their individual properties and stabilize crucial parameters.

This work includes theoretical considerations on required beam and longitudinal beam slice properties
to enable lasing with the electron beams measured at LUX. Potential sources of degradation of beam
quality during transport were analyzed and strategies to mitigate these are developed. Simulations of
the FEL process with ideal and measured field profiles were performed for the optimized electron
beams. Various experiments to characterize and improve the electron beam transport were carried
out. Particular attention is given to mitigating beam degradation effects, and to maximize the gain by
implementing advanced focusing and decompression schemes.

Thesis Overview

Chapter 2 provides an overview of laser-plasma acceleration, the laser system and plasma source used
at LUX. The critical beam properties from the accelerator relevant for subsequent beam transport and
FEL applications are discussed.

Chapter 3 focuses on the challenges associated with transporting LPA beams. The chapter covers
theoretical aspects of beam dynamics, including chromatic effects, emittance growth, and trajectory
deviations due to alignment errors. It also presents the beam decompression technique and an analysis
of degrading effects such as space charge forces and synchrotron radiation, which influence beam
quality during transport.

Chapter 4 discusses the theory of free-electron lasing, outlining the fundamental principles governing
FEL interaction, high-gain theory, and microbunching dynamics. The impact of LPA beam properties
on FEL performance is analyzed, along with methods to counteract degrading effects such as energy
spread and emittance. Strategies for optimizing FEL gain, including undulator tapering and phase-
space matching, are examined to assess the feasibility of achieving coherent amplification with
plasma-accelerated beams in a short undulator.

3



Chapter 1 Introduction

Chapter 5 presents the final LUX beamline setup and details its individual components, including
the quadrupoles, chicane dipoles, correctors, and diagnostics systems. The design considerations for
FEL operation are discussed, particularly the implementation of a chromatic focusing scheme and the
requirements necessary to maintain beam quality.
Chapter 6 focuses on FEL simulations to evaluate the expected performance of the LUX beamline.
The simulations incorporate realistic beam properties and undulator field errors to predict FEL gain
and radiation characteristics at LUX. Comparisons between idealized and experimentally measured
undulator fields are made to assess their impact on FEL amplification.
Chapter 7 reports on experimental results obtained with the upgraded beamline. The chapter covers the
beamline characterization, including quadrupole positioning, strength calibration, and orbit correction.
The positioning and alignment of the undulator are discussed, along with measurements of spontaneous
undulator radiation. These results represent a crucial step to validating the beam transport and focusing
strategies implemented in the LUX beamline.
The thesis closes with a conclusion and outlook in Chapter 8
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CHAPTER 2

Laser-Plasma Acceleration at LUX

Laser-plasma acceleration (LPA) utilizes strong electric fields within a plasma generated by high-
intensity laser pulses to accelerate electrons to high energies over short distances. This approach
provides a viable alternative to conventional particle accelerators, offering the potential for compact,
lab-scale setups due to its capability to achieve significantly higher acceleration gradients. This
chapter offers an overview of laser-plasma acceleration and its application in the LUX experiment.
A theoretical introduction to LPA will be provided in section 2.1. Given that the primary focus of
this thesis is on the transport and shaping of the electron beam for application in a free-electron laser,
only a foundational introduction to LPA is included here. This chapter aims to provide the essential
background necessary to comprehend the critical aspects of LPA and their implications for beam
transport and beamline design.

The general concept of LPA is divided into two categories: laser-driven and beam-driven plasma
acceleration. This chapter will specifically focus on laser-driven acceleration, as used at LUX, omitting
discussion of beam-driven methods.

Transitioning from the broader context of LPA, the subsequent sections focus on the specific setup
at LUX, which is divided into three parts: The laser system that generates the high-intensity light
pulse is described in section 2.2; the plasma target is discussed in section 2.3; and the properties of the
electron beams expected at LUX are outlined in section 2.4.

2.1 Laser-Plasma Interaction and Acceleration Principle

A plasma is a state of matter formed by ionized atoms, thus separated into free electrons and ions.
This ionization results in a quasi-neutral medium that is electrically conductive and highly responsive
to electromagnetic fields. Quasi-neutrality means that despite local fluctuations in charge density,
the large-scale balance of charge ensures that plasma behaves as a neutral entity. Introducing an
external charge into a plasma distorts the distribution of the surrounding electrons and ions, leading to
a concentration of opposite charges that effectively screens the external charge’s electric field beyond
a certain distance. This phenomenon is known as Debye shielding [25]. The Debye length defines the
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Figure 2.1: Properties of a wakefield generated from a temporally short (< 𝜆𝑝/𝑐) gaussian
laser pulse in the 1𝑑 limit. The laser pulse propagates to the right and is centered at 𝜁 = 0.
The spatial scale is normalized to the plasma wavelength 𝜆𝑝 . Displayed are the electric
potential 𝜙, the electron density modulation 𝑛 − 1, the normalized longitudinal electric
field 𝐸𝑧/𝐸0 and the normalized laser intensity

〈
𝑎2

〉
for two cases: (a) Non-relativistic

case with laser peak amplitude 𝑎0 = 0.3 (b) Relativistic case with 𝑎0 = 2.

scale over which electric fields significantly influence particle dynamics. It is given by

𝜆𝐷 =

√︄
𝜖0𝑘𝐵𝑇𝑒

𝑒2𝑛𝑒
, (2.1)

with the vacuum permittivity 𝜖0, the Boltzmann constant 𝑘𝐵, the electron temperature 𝑇𝑒, the electron
number density 𝑛𝑒 and the elementary charge 𝑒. Further, the neutrality guides how the contributing
forces manifest on a macroscopic scale. The behavior of individual particles and collective effects are
not independent but are rather dynamically coupled through the plasma’s response to perturbations.
Therefore, unlike solid, liquid, or gas, plasma often exhibits collective behavior due to the long-range
Coulomb forces between charged particles, allowing it to support phenomena such as electric currents,
magnetic fields, and waves [26]. Consider a perturbation by some external disturbance, displacing a
slice of electrons from its initial position. This creates an electric field with a restoring force causing
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Laser propagation axis z

ion
electron

laser
Ez

(a)
(b)

e- beam

≃ Plasma wavelength λp

Figure 2.2: Illustration of laser-plasma acceleration. Electrons of the plasma are expelled
from high intensity regions of the laser pulse. In response to this expulsion, the electrons
oscillate about the propagation axis with a frequency approximately equal to ∼ 𝜔𝑝,
generating a density modulation in the plasma with a corresponding electric field trailing
the laser pulse. Possible trajectories for electrons getting accelerated in the plasma wake
are illustrated for (a) self-injection and (b) ionization injection.

an oscillation with the plasma frequency

𝜔𝑝 =

√︄
𝑒2𝑛𝑒
𝜖0𝑚𝑒

' 56.4√𝑛𝑒 m3/2s−1 , (2.2)

with the electron mass 𝑚𝑒. In the context of Debye shielding, this is also connected to the timescale
𝑡𝐷 for the plasma to adjust to a perturbation and recover quasi-neutrality. Comparing the thermal
velocity 𝑣𝑡ℎ =

√︁
𝑘𝐵𝑇𝑒/𝑚𝑒 to the Debye length shows

𝑡𝐷 ' 𝜆𝐷
𝑣𝑡ℎ

= 𝜔−1
𝑝 . (2.3)

If an external electromagnetic wave that changes slowly compared to the response of the plasma, i.e.
has lower frequency than 𝜔𝑝, interacts with the plasma, it gets reflected, as the field is effectively
shielded from penetrating the plasma. Putting this into context with eq. (2.2), a critical plasma density

𝑛𝑐 ' 1015𝜆−2m−1 (2.4)

is found. Electromagnetic pulses with wavelength 𝜆 can pass through the plasma, if it is underdense,
i.e., its density is less than the corresponding critical plasma density 𝑛𝑒 < 𝑛𝑐, which then behaves
like a refractive medium. Exciting the plasma with such an electromagnetic field can give rise to
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Chapter 2 Laser-Plasma Acceleration at LUX

accelerating fields of [27]

𝐸0 =
𝜔𝑝𝑚𝑒𝑐

𝑒
' 96 × 10−3√𝑛𝑒 Vm1/2 , (2.5)

referred to as the cold non-relativistic wave breaking [28]. Using a typical value for a plasma density
𝑛𝑒 ' 1018 cm3 yields an accelerating field of up to 𝐸0 ' 100GV/m, about 3 orders of magnitude
larger than accelerating radio-frequency cavities which operate at levels of several 10 to 100MV/m
[29]. Thus, maintaining the acceleration process over a short distance on the scale of cm can yield
electron beam energies of hundreds of MeV to several GeV.

In order to describe how an external electromagnetic wave interacts with plasma and propagates
through it, a starting point is the Lorentz force: d𝒑d𝑡 = −𝑒 (𝑬 + 𝒗 × 𝑩). For simplicity assume a linearly
polarized wave with 𝑬 = 𝐸0 sin (𝜙) 𝒆̂⊥ with the phase 𝜙 = 𝑘𝑧𝑧 − 𝜔𝑡 + 𝜙0. The magnetic field is
linked to this via the electromagnetic wave equation and relates to this as 𝐵 = (𝒌 × 𝑬)/𝜔. Here
𝑧 is the propagation axis, 𝒌 the wave vector perpendicular to 𝑘 , and 𝜔 the waves frequency. The
magnetic component is suppressed by 𝜔𝑘 = 1/𝑐 and therefore only relevant for relativistic particle
speeds. In the non-relativistic limit, the dominant motion is oscillatory along the polarization axis
of the electromagnetic field with momentum 𝒑 = 𝒂𝑚𝑒𝑐, referred to as the quiver motion. 𝑎 is the
dimensionless normalized magnetic vector potential 𝒂 = 𝑒𝑨/(𝑚𝑒𝑐) for the corresponding magnetic
vector potential 𝑨. The amplitude 𝑎0, representing the amplitude of this normalized vector potential,
is given by

𝑎0 =
𝑒𝐸0
𝑚𝑒𝜔𝑐

' 8.5 × 10−6
√︁
𝐼0𝜆 W

−1/2 , (2.6)

where the relation 𝐼0 = 𝜖0𝑐
〈
𝐸2

〉
= 𝜖0𝑐𝐸

2
0/2 was used for the intensity. As 𝑎0 approaches or exceeds

unity (𝑎0 & 1), electron velocities can become relativistic. Consequently, interactions with the
magnetic field 𝑩 become more significant.

Apart from the quiver motion the electrons experience another acceleration driven by

𝑭𝑝 = −𝑚𝑒𝑐
2

2
∇𝒂2 , (2.7)

known as the ponderomotive force. It effectively repels particles from areas of high intensity to
areas of lower intensity. This force is fundamental in shaping the behavior of particles under the
influence of high-intensity fields, influencing the dynamics in plasma-based acceleration systems. As
the ponderomotive force scales with the gradient of the Intensity 𝑭𝑝 ∝ ∇𝐼, it is most influential for
electromagnetic pulses with steep spatial variation. Another thing to note is that the ponderomotive
force is proportional to the inverse of a particle’s mass. It will therefore primarily act on electrons and
not the much heavier ions. This validates the focus on electrons in the above discussion.

From the previous considerations, it becomes evident that for high intensity lasers with 𝑎0 & 1, the
combined effects of 𝐸 and 𝐵 result in both transverse and longitudinal acceleration. Due to the
plasma’s intrinsic restoring forces aiming to restore quasi-neutrality, the electrons are accelerated back
to the propagation axis and an oscillatory motion is induced. The frequency of this oscillation is on
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2.1 Laser-Plasma Interaction and Acceleration Principle

the order of the plasma frequency 𝜔𝑝, resulting in a density modulation trailing the laser pulse, whose
periodicity is about the plasma wavelength

𝜆𝑝 =
2𝜋𝑐
𝜔𝑝

' 3.3 × 10
7

√
𝑛𝑒

m−1/2 . (2.8)

Those plasma density modulations that follow the laser pulse are commonly referred to as the plasma
wakefield, hence the laser-driven interaction also being called laser-wakefield acceleration (LWFA). At
an electron density 𝑛𝑒 ' 1018cm−3 the length scale of these modulations is approximately 𝜆𝑝 ' 33 µm.
Further, the electric potential and associated electric field generated by the density modulation have an
axial gradient, which is crucial for particle acceleration. Figure 2.1 shows the interaction of a gaussian
laser pulse with plasma under two conditions: a non-relativistic, weak intensity regime 𝑎0 = 0.3 shown
in (a) and a relativistic, high intensity regime with 𝑎0 = 2 depicted in (b), based on a 1𝑑 model [30].
In the weak intensity scenario, the resulting density modulation, electric potential, and longitudinal
electric field exhibit a sinusoidal pattern. The energy transferred to the electrons’ momentum and
their displacement are minimal, leading to weak density modulation and low accelerating fields. In
contrast, the high-intensity scenario features strong modulation and significant accelerating fields,
which trail the laser pulse with a periodicity approximately equal to 𝜆𝑝. As the electrons return to the
axis and accumulate in the high density region, some undergo scattering and eventually end up with
just the right amount of forward momentum to get into the accelerating phase of the electric field
trailing the laser pulse. A schematic of this laser-plasma interaction is shown in fig. 2.2 with this type
of injection, called self-injection, illustrated by a dashed line (a). While this self-injection mechanism
is straightforward to implement, requiring only a high 𝑎0, the inherent randomness of the scattering
process results in beams with only moderate properties [31].

In addition to the longitudinal and the ponderomotive forces, radially (de-)focusing forces play a
crucial role, arising from the finite transverse profiles of the laser pulse. These forces are shifted
in phase by 𝜋/2 relative to the accelerating gradient. Consequently, only those electrons that are in
proper phase with both the accelerating and focusing fields can be trapped and accelerated. The region
where an electron simultaneously experiences both, acceleration and focusing, spans approximately
∼ 𝜆𝑝/4 [27]. As a result, particle beams accelerated in such fields are inherently short, typically on a
length scale of µm [32–34]. Moreover, the finite transverse extension of the wakefield and spot size of
the laser pulse constrain the spatial distribution of electrons within the accelerating field. With a laser
focus size on the order of 100 µm2, the expected electron beam cross-section is on a similar scale of
. (10 µm)2.

While the generation of plasma was not previously discussed, note that the intensity threshold required
to ionize a material is typically ≤ 3.5 × 1016W/cm2[30]. Therefore, a laser capable of exciting the
plasma will also inevitably ionize the gas prior to this excitation. Modern laser systems can deliver
pulse power exceeding > 100 TW. When such a high power laser is focused to a small spot size on
the order of 100 µm2, intensity levels of 1020W/cm2 are achievable, sufficient to ionize a gas and
accelerate short electron bunches to high energies. At these high intensities, particularly when using
gases with higher atomic number 𝑍 , multiple ionization can occur. Electrons from inner shells are
stripped off at the most intense regions of the laser pulse. These electrons can then be directly trapped
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right in the wakefield. This process is known as ionization injection. The mechanism is depicted
as a dotted line (b) in fig. 2.2. On one hand, with increased laser intensity, ionization can occur
off-peak of the laser electric field. In such cases, electrons may experience undesirable amounts
of transverse acceleration. On the other hand, if laser and gas parameters are properly tuned, the
ionization of inner-shell electrons occurs just at the peak of the laser pulse, avoiding the gain of
transverse momentum [35]. Consequently, electrons accelerated this way can have low transverse
momentum, resulting in a beam with reduced divergence and enhanced beam quality in terms of
emittance, i.e., occupied phase space volume, when exiting the plasma.

Another aspect to consider is the choice of gases used in laser-plasma acceleration. Utilizing a high
atomic number 𝑍 for the whole plasma source can result in continuous ionization-injection and
acceleration, which often leads to a large energy spread among the accelerated electrons. However, by
combining a mixed gas (high and low 𝑍) and a pure gas (low 𝑍), the ionization process can be localized
[36]. The benefits of this approach are twofold: Firstly, compared to the self-injection scheme, it offers
a highly controllable and tunable method of injection. This control allows for precise adjustments to
the ionization dynamics, enhancing the reproducibility and consistency of the acceleration process.
Secondly, by transitioning to a lower atomic number along the laser propagation axis, the process of
ionization by this method can be intentionally stopped. This action ensures that only the electrons
already trapped are available for subsequent acceleration, effectively reducing the energy spread of the
accelerated beam.

This might be feasible, as more electrons trail the laser pulse in the wake. Due to their charge the
shape of the electric field is modified up to cancellation, at which no more charge is accelerated. This
process, called beam loading, sets an upper limit to the number of electrons. As investigated in [37]
this limit is given by

𝑁𝑒,max ' 31 × 106𝜆
√
𝑃W−1m−1 , (2.9)

with the laser power 𝑃. For a 100 TW laser at 800 nm, it would be possible to inject up to 400 pC
before the accelerating field vanishes. However, it is often more viable to operate at a fraction of the
maximum possible charge to ensure that all trapped electrons are accelerated evenly to high energies
[21]. Considering electron bunches of length 𝜎𝑧 < 𝜆𝑝/4 ' 8 µm and charge 𝑄 & 40 pC, or 10% of
the maximum, the resulting current can exceed 𝐼 > 1.5 kA.

Another consequence of the laser passing through the plasma is the temporary nature of the density
modulation, which dissipates some time after the laser has passed. Consequently, the accelerating
cavity must be formed anew for every shot. Variations in the laser or plasma parameters lead to
inconsistencies in beam properties from shot to shot, resulting in beams of varying quality.

Concluding from this section, electron beams produced by laser-plasma acceleration are expected to
reach energies in the range of hundreds of MeV to several GeV. These beams are characterized by their
short duration, on the order of µm or fs, resulting in high peak currents of several kA. Additionally,
they can exhibit low emittance, typically on the order of nm.
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2.2 Laser System

2.2 Laser System

To drive the LPA process outlined above, a high power, short pulse laser is required. At DESY the
ANGUS laser system provides such for the laser-wakefield accelerator LUX. ANGUS operates on the
principle of chirped pulse amplification [38] and utilizes titanium-doped sapphire [39] as gain medium.
It has been designed for the generation of 25 fs pulses with high peak powers up to 200 TW level at a
repetition rate of up to 5Hz. When focused down to small spot sizes of (25 µm)2 FWHM, intensity
levels up to 𝑎0 ' 4 could be achieved.

However, due to limitations from heating related degradation at high pulse energies and intensities
[40], typical operation is limited to . 100 TW, i.e. ∼ 3 J at 30 fs pulse duration, operating at 1Hz.
Under these reduced conditions compared to its initial design, ANGUS can still deliver laser intensities
of 𝑎0 ' 2, sufficient to drive a non-linear wake-field and accelerate electrons to relativistic energies.

The initial seed is provided by the seed laser MALCOLM, which works on the principle of optical
parametric chirped pulse amplification, providing a pulse of high spatio-temporal quality and stability
[41]. It combines a mode-locked oscillator and regenerative amplifier in one device, and replaced
individual systems used in ANGUS before. It delivers pulses of 40 µJ energy and 200 fs duration.

Before entering the amplifier chain, the pulse is stretched to 400 ps and 4 µJ after shaping its spectral
phase in an acousto-optical programmable dispersive filter (AOPDF) [42], which pre-compensates
gain-narrowing and red-shifting in the later amplifier stages [40]. The energy lost in these processes
is recovered to 100 µJ using a two-pass booster amplifier. A pulse picker reduces the repetition rate
further to the final value of 1Hz. Three multi-pass amplifiers are used to raise the energy to 45mJ,
then to 1.3 J and finally up to 6 J. The repetition rate of these amplifiers is limited to 5Hz, as their
pump lasers, which are driven by gas discharge flash lamps with large heat dissipation, cannot operate
at higher rates.

After amplification, the pulse energy can be attenuated to desired energy levels with a motorized
waveplate and thin-film polarizers. Before sending the laser to the plasma source, it is magnified to
∼ 80mm in order to reduce the fluence and prevent damage to optical components. Finally, the laser
pulse is compressed using gold-coated diffraction gratings to its final length to achieve the desired
power. The compressed pulse is then transported over a distance of 35m to the LUX target chamber,
where it is focused into the plasma target using an off-axis parabolic mirror. The pulse is polarized in
the horizontal 𝑥-plane at the target.

An adjustable lens in the final magnifier telescope is used to tune the laser focus position. Further, a
deformable mirror (DM) before the compressor corrects for wavefront aberrations. These aberrations
are measured while operating LUX by utilizing mirror leakage through the final focusing off-axis
parabolic mirror.

Diagnostics are placed after each amplifier to monitor the laser performance, enabling the operation of
a feedback loop that stabilizes the input to the subsequent amplifier. This setup ensures stable and
reliable day-long operation for driving the LUX accelerator [14].
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Figure 2.3: Overview of the ANGUS amplifier stages from top to bottom. Pump laser
energies are indicated in green on the left. The temporal shape of the laser pulse is
schematically depicted on the right. The color gradient should illustrate the temporal chirp
of the pulse. The pulse is provided by the optical parametric chirped pulse amplification
(OPCPA) frontend and stretched in time before being amplified to higher energy levels in
the subsequent amplifier stages. Finally, before the beam is sent to LUX and the plasma
source, it is recompressed to achieve the targeted power levels and short pulse duration.
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2.3 Plasma Source

This section describes the basic properties of the plasma source. For a detailed discussion on shaping
the density profile at LUX, please refer to [36, 43].

The plasma source at LUX consists of a capillary milled into a sapphire crystal. Unlike gas jets,
which provide short bursts of highly pressurized gas [44], a capillary provides continuous flow of gas
through dedicated inlets and outlets. The continuous flow within the capillary prevents rapid changes
in pressure or velocity, which benefits the stability of the laser-plasma interaction. Furthermore, this
steady state allows for measurement of the pressure, and consequently the plasma density. This is
done at LUX via pressure gauges attached to the plasma source. The gas mixing and gas flow, and
thus the plasma density are controlled by regulation valves and monitored with mass flow meters. A
mixture of hydrogen and nitrogen, with typically up to 10% nitrogen, is supplied to the first gas inlet,
while the other inlets are fed with pure hydrogen gas.

The injection method indicated in section 2.1 and employed at LUX is called localized ionization
injection [36]. A mixed gas consisting of hydrogen and a small percentage of nitrogen is introduced at
that side of the capillary, where the laser pulse enters. Ionization injection is triggered only in this
region of high nitrogen concentration. The length of this region controls the duration of ionization
injection and the amount of trapped electrons. Beyond this, a longer section contains pure hydrogen gas,
where no further ionization injection occurs, allowing the already trapped electrons to be accelerated.
The structure of the capillary is illustrated in fig. 2.4 (a). On the lower and upper side of the graphic
the gas inlets and an outlet are indicated respectively. The total length of the capillary is 5mm and
features a rectangular channel of 500 µm × 500 µm. A possible configuration of gas distribution is
shown in fig. 2.4 (b). In addition to the previously discussed properties, the dip in plasma density
between the mixed gas and pure hydrogen sections causes a change in plasma wavelength according
to eq. (2.8). As a result, the wakefield gets elongated and then shortened again during the transition
to pure hydrogen. This enhances electron injection in the mixed-gas region while suppressing it
in the pure hydrogen region, thereby improving the localization of the ionization injection process.
This approach can reduce the energy spread and separate electrons injected via ionization from those
self-injected in the pure hydrogen region based on their energy. At the end of the plasma, a smooth
transition to the surrounding vacuum is essential. An abrupt change to zero density would cause
immediate transverse expansion of the beam. By allowing the plasma density to gradually decrease to
zero, the transverse focusing forces also diminish progressively. This gradual transition helps preserve
beam quality and provides a lensing effect that reduces the divergence of the beam as it exits the
plasma [45]. By fine-tuning the interplay between the laser parameters of the ANGUS system and the
plasma properties of the source, high-quality electron beams can be produced.

2.4 Electron Beams

A particle distribution from a particle-in-cell (PIC) simulation [46] is used as a reference for
optimizations, estimations and tracking throughout this thesis. The initial beam was generated with
FBPIC [47] by S. Jalas, with laser and plasma properties as expected in the experiment [43]. The
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Laser e-

Figure 2.4: Illustration of (a) showing gas inlets at the bottom, an outlet at the top (in
the experiment on the side), and the laser envelope propagating to the right, and (b) the
longitudinal plasma density profile. Shown are pure hydrogen gas H2 (blue), mixed gas
doped with nitrogen N2 + H2 (orange) and resulting plasma density (grey).

particle distribution and its corresponding quantities were matched to the experimental data from
previous work at LUX [21, 48, 49]. This involved rescaling the projected transverse beam sizes
and divergences, charge, energy, and projected energy spread to their observed values. The exact
structure of the 6𝐷 distribution, particularly the longitudinal profile, bunch length, and current, are not
experimentally accessible and are kept as obtained from PIC simulations. Based on the discussion in
section 2.1, these values are plausible, and effects related to energy stability, which scale with the bunch
length, were observed experimentally and found to align with simulation results [50]. These beam
properties represent what is referred to in this thesis as LUX beam reference parameters, summarized
in table 2.1. The corresponding distribution is shown in fig. 2.5, with projections onto the horizontal
and vertical position and divergence displayed in (a) and (b), and longitudinal position and energy
as relativistic gamma factor shown in (c). It is important to note that the usual measure of spread,
the second central moment, is sensitive to the presence of tails in the energy distribution. Therefore,
to accurately assess the energy spread, the aforementioned rescaling for the energy was performed
using robust measures of scale [51], to avoid artificially inflating the energy spread. This method is
also used in the experiment to determine the energy spread. Parameters were confirmed with the
upgraded setup at LUX, where applicable, and are presented later in chapter 7. The current profile is
approximately given by a flat top distribution of about 6.8 µm length with an average current of 2 kA.
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Figure 2.5: Transverse and longitudinal distributions from a particle-in-cell simulation
with laser and plasma properties matching those used at LUX. (a) Horizontal position
and angle, (b) Vertical position and angle, (c) Longitudinal position and total energy.
Raw data from simulation was provided by S. Jalas. The beam distribution was rescaled
to match experimentally observed parameters. The curves represent the projected 1𝐷
distributions to each individual coordinate.

Table 2.1: LUX beam reference parameters. Values were obtained from measurements, if
possible and else taken from simulations.

parameter symbol value

mean kinetic energy 𝐸0 300 MeV
relative total energy spread 𝜎𝐸/𝐸0 1.0 %
rms transverse beam sizes 𝜎𝑥 , 𝜎𝑦 3.5 µm

rms transverse beam divergences 𝜎𝑥′, 𝜎𝑦′ 0.5 mrad
rms transverse normalized emittance 𝜖𝑛,𝑥 , 𝜖𝑛,𝑦 1.0 mmmrad

rms bunch length 𝜎𝜁 1.8 µm
rms bunch duration 𝜎𝑡 6 fs

charge 𝑄 45 pC
beam peak current 𝐼𝑝 2.5 kA

This reference case represents electron beams that are considered to be of good quality from the LUX
experiment, characterized by low energy spread, small emittance and high charge (see chapter 3 for
definitions of these quantities). Naturally, beams from LPA exhibit fluctuations in their parameters,
and not all beams are expected to be suitable for driving an FEL with the setup used at LUX. After
tuning the laser system and the plasma source parameters, approximately the best 10% of the beams
can deliver such quality [21, 48–50]. These high-quality beams are the primary focus for the beamline
setup and FEL estimations. While beams of lesser quality may still be used for FEL applications,
they would likely result in lower performance. The objective is not to demonstrate that every beam
from LUX can drive an FEL, but rather that the reasonably good beams, which occur frequently, are
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suitable for this purpose. Overall, achieving high statistics through stability and long-term operation
[14] is a key characteristic of the LUX experiment. At an operating rate of 1Hz, a sufficient number of
beams are expected to meet the required parameters.

2.5 Conclusion

This chapter provided an overview of the fundamental principles of Laser-Plasma Acceleration,
emphasizing the role of high-power, short-pulse lasers in driving the acceleration process. The
ANGUS laser system, with its capability to deliver intense pulses, serves as the driver for generating
high-quality electron beams at LUX. The expected beam properties, including percent-level energy
spread, mmmrad emittance, and above-kA current, make these beams promising candidates for
applications such as Free-Electron Lasers. While the inherent variability of LPA beams presents
challenges, optimizing laser parameters and plasma conditions can produce beams with the desired
characteristics. This chapter also highlighted the importance of stability and long-term operation.
The insights provided here lay the groundwork for a more detailed exploration of beam manipulation
and optimization in subsequent chapters, where the potential of LPA-driven beams and their suitability
for FEL applications will be examined.
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CHAPTER 3

Electron Beam Dynamics

High-quality electron beams produced by laser-plasma acceleration have potential applications in
various fields, including medical imaging, materials science, high-energy physics or light sources.
However, these beams cannot be used directly as they emerge from the plasma. They need to be
properly shaped and directed to their intended applications while preserving their quality.

The field of beam transport can bridge the gap between the plasma source and the target applications.
However, transporting LPA beams presents unique challenges due to their inherent properties, as
outlined in the previous chapter. These characteristics complicate the transport process and potentially
degrade beam quality. Understanding the potential degrading effects, whether stemming from the
beam itself or the beamline, is essential for refining theoretical models and optimizing transport
strategies.

This chapter gives an overview about the basic concepts of particle beam transport. It contains a
brief introduction to the mathematical approach used to derive the accelerator equations of motion in
section 3.1. The basic properties of beams are described in section 3.2 and section 3.3. Given the
importance of bunch stretching in the demonstration scheme for an FEL used in this thesis, this concept
is explained in detail in section 3.4. Potential effects that may degrade beam quality during transport
from the plasma source to the undulator are examined in section 3.5, which describes the impact of
beamline components on the beam, and section 3.6, focusing on collective beam effects. Finally, a
method for refining the transport model from measured field profiles is presented in section 3.7.

3.1 Beam Optics

The field of beam optics in accelerators addresses a wide range of topics. Here, only aspects relevant
to this thesis and transport of laser-plasma accelerated electron beams are covered.

3.1.1 Equations of Motion

In accelerators, a primary interest is the control and transport of particle beams. A fundamental starting
point to describe the beam dynamics in an accelerator is the Lorentz force equation. It expresses the
behavior of individual charged particles within an accelerator due to electric and magnetic fields 𝑬

17



Chapter 3 Electron Beam Dynamics

Figure 3.1: Illustration of a curved reference orbit with local bending radius 𝜌 (not to scale
for better visualization). The position of a particle is given relative to a local reference
frame moving along with the reference orbit.

and 𝑩 acting upon them by the relation

d 𝒑
d𝑡

= 𝑞 (𝑬 + 𝒗 × 𝑩) . (3.1)

While this equation fully describes the force on and the motion of a single charged particle in an electric
field, it cannot be solved analytically for arbitrary fields, but only for specific configurations. Further,
solving the equation by numerical integration for a large number of particles is often impracticable
and offers limited conceptual insight into how specific components influence a particle beam in an
accelerator as a whole. To enhance understanding, it is more practical to find a transformationM,
that describes the propagation through an accelerator component and maps the initial coordinates of
a particle to its final coordinates. These transfer maps characterize how each beamline component
influences particle trajectories. A common approach to deriving these transformations involves
rewriting the Lorentz force into a power series expanded around a reference orbit, a technique
well-documented in classical accelerator physics literature [52]. The reference orbit, defined by a local
co-moving coordinate system and typically aligned with the local curvature of the motion, traces the
path of a reference particle characterized by momentum 𝑝0 = 𝛽0𝛾0𝑚𝑒𝑐 with the Lorentz factor 𝛾0 and
the velocity 𝛽0𝑐. An illustration for such reference orbit is shown in fig. 3.1, with a local co-moving
coordinate system being aligned to it at any position 𝑠 along this orbit in the accelerator. For a purely
magnetic field, the curvature of this orbit is derived by equating eq. (3.1) to the centripetal force,
defining the (signed) bending radius 𝜌 as:

1
𝜌
=
𝑞𝐵

𝑝0
= − 𝑐𝐵[T]

𝑝0 [eV/c]
, (3.2)
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This expression indicates that a curved reference trajectory is inherent whenever the path traverses
through a magnetic field. Without loss of generality, the curvature can be assumed to be in one plane
only, for example the horizontal direction 𝑥, as other configurations only differ from this by rotations.
In this frame, positions and momenta of particles may be defined relative to the reference particle with
coordinates

𝒓 (𝑠) =
(
𝑥(𝑠) , 𝑥 ′(𝑠) , 𝑦(𝑠) , 𝑦′(𝑠) , 𝑙 (𝑠) , 𝛿(𝑠)

)T
. (3.3)

Here, 𝑥 ′ = d𝑥/d𝑠 = 𝑝𝑥/𝑝𝑠 and 𝑦′ = d𝑦/d𝑠 = 𝑝𝑦/𝑝𝑠 represent the changes in transverse position. The
path length difference is denoted by 𝑙, and the relative deviation in energy by 𝛿, where 𝑝 = 𝑝0(1 + 𝛿)
describes the momentum in terms of the reference momentum 𝑝0.

At LUX, 𝑥 and 𝑦 denote the horizontal and vertical position, respectively. Given that LUX is a linear
accelerator, the coordinate 𝑠 follows a straight trajectory, except when the reference particle takes
intended detours from such straight path in a magnetic chicane. To distinguish this path from the
longitudinal distance measured from the plasma source in a Cartesian coordinate system, the latter is
referred to as 𝑧.

By assuming that the transverse coordinates and the momentum deviation in eq. (3.3) remain small,
i.e. |𝑥 |, |𝑦 | � |𝜌 |, |𝑥 ′ |, |𝑦′ | � 1, and |𝛿 | � 1, the transfer mapM for any beam optical element is
approximated using a Taylor series [53]:

𝑟𝑖 (𝑠) = 𝐶 𝑗 (𝑠) +
6∑︁
𝑗=1

𝑅𝑖 𝑗 (𝑠)𝑟 𝑗 (0) +
6∑︁

𝑗 ,𝑘=1
𝑇𝑖 𝑗𝑘 (𝑠)𝑟 𝑗 (0)𝑟𝑘 (0) + . . . . (3.4)

In this expansion 𝐶, 𝑅 and 𝑇 represent the zeroth, first and second order elements of the Taylor
expanded transfer map, respectively. The zeroth order contribution 𝐶 is often dismissed, as the
reference orbit is defined to have 𝐶 𝑗 = 0. It is mentioned here, due to its appearance if the on-axis
field does not coincide with the field defining the reference trajectory, such as in cases of misalignment
or component errors that introduce an unexpected kick to the trajectory. Similarly, magnetic fields of
accelerator components are expanded as a series about the reference axis to provide an analytical form
useful for beam dynamics calculations:

𝐵𝑥 = 𝐵𝑥,0 +
𝜕𝐵𝑥
𝜕𝑥

����
𝑥=0

𝑥 + 𝜕𝐵𝑥
𝜕𝑦

����
𝑦=0

𝑦 + . . . (3.5)

and the other coordinates accordingly. The constant magnetic field 𝐵𝑦,0 relates to the horizontal
deflection of a particle from a dipole field component and the bending radius according to eq. (3.2).
The first derivatives in eq. (3.5) along transverse directions correspond to focusing and defocusing
field components associated with magnetic quadrupole fields with gradient 𝑔 = 𝜕𝐵𝑥/𝜕𝑦. To facilitate
a formulation that is independent of the reference momentum, these components are normalized using
the ratio 𝑏𝑖 = 𝑞/𝑝0𝐵𝑖 , analogous to the bending radius.
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Chapter 3 Electron Beam Dynamics

For electrons with negative charge 𝑞 = −𝑒, this defines a normalized gradient 𝐾1 = 𝜕𝑏𝑥/𝜕𝑦 = 𝜕𝑏𝑦/𝜕𝑥,
also referred to as quadrupole strength. With this notation the equations of motion derived from
eq. (3.1), expanded up to first order in the particle coordinates, become the linear ordinary differential
equations [54]:

𝑥 ′′(𝑠) = −(𝐾1 +
1
𝜌2

)𝑥(𝑠) + 𝛿
𝜌

(3.6)

𝑦′′(𝑠) = 𝐾1𝑦(𝑠) (3.7)

These differential equations incorporate effects solely from dipole and quadrupole fields, along with
energy deviations. Typical magnetic field configurations imply that specific terms in the expansions
are negligible, such as the 𝐵𝑧 field component, and therefore omitted. The inhomogeneous part 𝛿/𝜌 of
eq. (3.6) introduces a deviation in the motion for particles with energies different from the reference.
The deviation to the reference orbit introduced by this term is referred to as the dispersion. It is of
particular interest for laser-plasma accelerators like LUX, whose beams commonly show percent-level
variations in particle energy.

3.1.2 First Order Matrix Elements

Under the assumptions used, the 𝑥 and 𝑦 components do not mix at first order, permitting the
independent treatment of the transverse planes (𝑥, 𝑥 ′) and (𝑦, 𝑦′). First-order solutions to the equations
of motion can be concisely represented as a matrix equation with the coordinate vector from eq. (3.3)
as 𝒓 (𝑠) = 𝑅(𝑠)𝒓 (0) [55]. In the following the entries of 𝑅 will be shown for free drift, quadrupoles,
and dipoles of a given length 𝐿.

Drift Element

For a free drift, where there is no magnetic field 1/𝜌 = 𝐾1 = 0, the first order transfer matrix is

𝑅drift =

©­­­­­­­­­­«

1 𝐿 0 0 0 0
0 1 0 0 0 0
0 0 1 𝐿 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

ª®®®®®®®®®®¬

. (3.8)

Quadrupoles and Thin Lenses

For quadrupoles, with 1/𝜌 = 0 and no energy dependent terms appearing at first order, the motion is
dictated by the normalized gradient 𝐾1. With the previously chosen sign convention a quadrupole is
focusing in the horizontal plane and a defocusing in the vertical plane for 𝐾1 > 0. This corresponds to
oscillatory and diverging motion respectively. The equations are symmetric in 𝐾1 in that sense, that
𝐾1 → −𝐾1 switches the behavior in the two planes. The resulting matrix that describes the transport
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3.1 Beam Optics

through a quadrupole is found to be:

𝑅quad =

©­­­­­­­­­­­­­­«

cos
(√︁
𝐾1𝐿

) sin
(√
𝐾1𝐿

)
√
𝐾1

0 0 0 0

−√︁
𝐾1 sin

(√︁
𝐾1𝐿

)
cos

(√︁
𝐾1𝐿

)
0 0 0 0

0 0 cosh
(√︁
𝐾1𝐿

) sinh
(√
𝐾1𝐿

)
√
𝐾1

0 0

0 0
√︁
𝐾1 sinh

(√︁
𝐾1𝐿

)
cosh

(√︁
𝐾1𝐿

)
0 0

0 0 0 0 1 0
0 0 0 0 0 1

ª®®®®®®®®®®®®®®¬

(3.9)

By letting 𝐿 → 0 the matrix for the thin lens approximation with a focal length 1/ 𝑓 = −𝐾1𝐿 is
obtained:

𝑅thinlens =

©­­­­­­­­­­«

1 0 0 0 0 0
− 1𝑓 1 0 0 0 0
0 0 1 0 0 0
0 0 1

𝑓 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

ª®®®®®®®®®®¬

(3.10)

The thin lens approximation proves especially useful for deriving straightforward analytical estimates.

Dipole and Kick Elements

For a pure dipole field, 𝜌 ≠ 0 and 𝐾1 = 0, the beam is bent depending on its initial position, transverse
momentum and energy deviation. A practical quantity for the description of a dipole is its bending
or kick angle, which relates to the arc length of the kick 𝜃 = 𝐿arc/𝜌 . With this the matrix of a
horizontally deflecting (sector) dipole matrix is

𝑅dipole =

©­­­­­­­­­­«

cos(𝜃) 𝜌 sin(𝜃) 0 0 0 𝜌(1 − cos(𝜃))
− sin(𝜃)𝜌 cos(𝜃) 0 0 0 sin(𝜃)
0 0 1 𝐿arc 0 0
0 0 0 1 0 0

sin(𝜃) 𝜌(1 − cos(𝜃)) 0 0 1 𝜌 (𝜃 − sin(𝜃))
0 0 0 0 0 1

ª®®®®®®®®®®¬

(3.11)
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It should be noted here, that a similar matrix for a rectangular dipole in a straight reference frame is
given by

𝐶kick =

©­­­­­­­­­­«

𝐿 tan
(
𝜃
2
)

tan(𝜃)
0
0
0
0

ª®®®®®®®®®®¬

𝑅kick =

©­­­­­­­­­­«

1 𝐿 sec(𝜃) 0 0 0 −𝐿 tan (
𝜃
2
)
sec(𝜃)

0 sec3(𝜃) 0 0 0 − sin(𝜃) sec3(𝜃)
0 0 1 𝐿 0 0
0 0 0 1 0 0
0 𝐿 tan

(
𝜃
2
)
sec(𝜃) 0 0 1 𝐿

(
sinc−1(𝜃) − sec(𝜃)

)
0 0 0 0 0 1

ª®®®®®®®®®®¬

. (3.12)

Contrary to eq. (3.11), the kick angle is determined from the insertion length 𝐿 using the relation
𝜃 = arcsin(𝐿/𝜌), with 𝜃 ' 𝐿/𝜌 for short dipoles 𝐿 � |𝜌 |. This representation is particularly useful
to describe deviations from a straight path. For small angles 𝜃 � 1 a weak kick element is obtained as

𝐶corr '

©­­­­­­­­­­«

𝐿𝜃
2
𝜃

0
0
0
0

ª®®®®®®®®®®¬

𝑅corr '

©­­­­­­­­­­«

1 𝐿 0 0 0 − 𝐿𝜃2
0 1 0 0 0 −𝜃
0 0 1 𝐿 0 0
0 0 0 1 0 0
0 𝐿𝜃

2 0 0 1 0
0 0 0 0 0 1

ª®®®®®®®®®®¬

. (3.13)

The constant elements 𝐶 are explicitly given here, since a deviation from the reference orbit is applied.

Multiple Elements

To understand the behavior of particles as they pass through multiple elements of a beamline, their
individual transfer maps are combined into one map describing the transport from its start to its end as

M0→𝑛𝒓 = M (𝑛−1)→𝑛 · · · M0→1𝒓 (3.14)

The transformation through two consecutive elements, for instance, is computed by applying the maps
in sequence to the particle coordinates

𝑟𝑖 (𝑠2) = 𝐶𝑖 + 𝑅𝑖 𝑗𝑟 𝑗 (𝑠1) (3.15)

𝑟𝑖 (𝑠2) = 𝐶𝑖 + 𝑅𝑖 𝑗𝐶 𝑗 + 𝑅𝑖 𝑗𝑅 𝑗𝑘𝑟𝑘 (𝑠0) (3.16)

Summation over repeated indices is implied. For the typically assumed system where the reference
particle trajectory coincides with the coordinate system, all constant terms vanish,𝐶𝑖 = 0 . The
composition of a first-order transfer matrices from two consecutive elements is expressed through
matrix multiplication:

𝑅0→2 = 𝑅1→2𝑅0→1 (3.17)
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3.2 Particle Beams and Beam Envelope

Transverse Shift Element

In addition to modeling real transport elements, the framework also describes transformations such as
transverse shifts. These are useful for modeling the effects of magnet offsets, or rotations. The map
for a transverse shift, representing a translation in the horizontal or vertical plane, is a zeroth-order
transformation expressed as

𝐶shift =
(
Δ𝑥 0 Δ𝑦 0 0 0

)T
. (3.18)

For this transformation, the linear matrix 𝑅 and higher order elements are equivalent to the identity
map. Consequently, this shift reflects a lateral displacement, horizontally by Δ𝑥 and vertically by
Δ𝑦, without otherwise altering the other coordinates. When a component is offset by some value Δ𝑥,
applying shift operations before and after the transfer map of the componentMshiftMcomponentM−shift
effectively integrates the offset into the transfer matrix.

3.1.3 Internal Bunch Coordinate

Alternatively to using the path length difference 𝑙, an internal bunch coordinate 𝜁 is defined as the
longitudinal position relative to a reference particle. 𝜁 is derived from the relationship between
time, position, and velocity. The time of flight for a particle traveling a distance 𝐿 is given by
𝑡 = 𝐿/(𝛽𝑐). The change in internal bunch coordinate is then obtained from the change in time of
flight by d𝜁 = −𝛽𝑐 d𝑡. Integrating this equation, keeping again only terms up to first order, yields the
internal bunch coordinate

𝜁 ' 𝜁0 − 𝑅51𝑥 − 𝑅52𝑥 ′ −
(
𝑅56 −

𝐿

𝛾20

)
𝛿 , (3.19)

where 𝜁0 is the initial coordinate. Here, relativistic motion was assumed with 𝛽0 ' 1 and 𝛾0 � 1. The
additional term 𝐿

𝛾20
expresses the difference in velocity of the particles with respect to the reference

particle.

3.2 Particle Beams and Beam Envelope

The methods discussed in the previous section for single particles are equally applicable to an ensemble
of particles, forming a particle bunch. The fundamental properties of such a bunch, including its
spatial extent and correlations, are described by the statistical properties of the ensemble. For example,
by using the expectation value 〈·〉, the mean horizontal position is given by 〈𝑥〉, the mean direction, or
beam pointing, by

〈
𝑥 ′

〉
and the bunch length 𝜎𝜁 . Similarly, the second central moment is a measure

for the transverse size 𝜎𝑥 =
√︂〈

𝑥2
〉
, and defined analogously as the divergence 𝜎𝑥′, and the absolute

and relative energy spread 𝜎𝛾 and 𝜎𝛿 = 𝜎𝛾/〈𝛾〉. The same applies for the other coordinates. Mixed
terms, like

〈
𝑥𝑥 ′

〉
represent a measure of the correlation between the two coordinates. The transverse
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Chapter 3 Electron Beam Dynamics

plane (𝑥, 𝑥 ′) is illustrated in fig. 3.2, indicating the corresponding size 𝜎𝑥 and divergence 𝜎𝑥′, as
well as their correlation

〈
𝑥𝑥 ′

〉
. These statistical properties can be determined experimentally and are

therefore useful to describe the beam.

By using the expectation value on eq. (3.4), the initial statistical properties
〈
𝑟𝑖𝑟 𝑗

〉
0 evolve accordingly

as
〈
𝑟𝑖𝑟 𝑗

〉
= 𝑅𝑖𝑘𝑅 𝑗𝑙

〈
𝑟𝑘𝑟𝑙

〉
0 , (3.20)

where summation over repeated indices 𝑘 and 𝑙 is assumed. The index 0 denotes the initial value,
before applying the transfer map. This transformation is concisely expressed in matrix notation as

Σ𝑖 𝑗 = (𝑅 · Σ0 · 𝑅T)𝑖 𝑗 , (3.21)

where Σ is the covariance or sigma matrix with elements Σ𝑖 𝑗 =
〈
𝑟𝑖𝑟 𝑗

〉
. The entries of Σ(𝑠)

describe the beam’s extent and correlations in all its coordinates. Therefore eq. (3.21) represents the
transformation of the statistical beam properties through a transfer map 𝑅. This can be understood
as an envelope representing the particle ensemble via its statistical properties. A mathematically
equivalent formulation to eq. (3.21) is given by a single matrix-vector product. Assuming no coupling
between the planes, this formulation reads

©­­«
𝜎2𝑥〈
𝑥𝑥 ′

〉
𝜎2𝑥′

ª®®¬
=

©­­«
𝑅211 2𝑅11𝑅12 𝑅12

𝑅11𝑅21 𝑅12𝑅21 + 𝑅11𝑅22 𝑅12𝑅22
𝑅221 2𝑅21𝑅22 𝑅222

ª®®¬
©­­«
𝜎2𝑥,0〈
𝑥𝑥 ′

〉
0

𝜎2𝑥′,0

ª®®¬
(3.22)

for the horizontal plane and analogous for the other planes. This representation emphasizes the
evolution of the horizontal plane’s projected size, correlation and divergence, describing the beam
envelope for this plane.

3.3 Phase Space and Emittance

An essential characteristic of particle beams in accelerator physics is the emittance, which measures
the occupied volume in phase space. The most fundamental definition of emittance derives from
Hamiltonian mechanics. In a system that obeys the Hamiltonian equations of motion, the phase-space
volume is preserved, as stated by Liouville’s theorem. However, this phase space is spanned by the
canonical coordinates of the system, which involve the momenta and electromagnetic potentials. Both
are usually not accessible in the experiment.

Another definition of emittance is based on the statistical properties of the particle distribution [56].
Similarly to the phase-space emittance, the “trace-space” emittance of a beam is a measure for the
occupied volume in the trace space, using 𝑥 ′ and 𝑦′ instead of the momenta. Throughout this thesis,
when using the term emittance, it refers to the trace-space emittance unless specified otherwise.
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Figure 3.2: Illustration of (red, solid) the equivalent ellipse with area proportional to the
emittance 𝜋𝜖𝑥 of (blue, circles) a particle distribution in (𝑥 − 𝑥 ′) space. (Red, dashed)
Extent of the ellipse is 𝜎𝑥 =

√︃
𝜖𝑥𝛽 and 𝜎𝑥′ =

√︃
𝜖𝑥 𝛾̌. (Red, dotted) The slope is given by

𝑚 =
〈
𝑥𝑥 ′

〉 /𝜎2𝑥 and connects the points of horizontal extent.

The full six-dimensional emittance 𝜖 of a bunch is defined by the square root of the determinant of the
sigma matrix

𝜖 =
√︁
det(Σ) . (3.23)

This 6𝐷 emittance considers the correlations and variations across all trace-space coordinates.
However, if the coupling between the planes can be neglected, they may be treated independently. In
such scenarios, the cross-plane terms in the sigma matrix are negligible, and the emittance factorizes
into the product of 2𝐷 emittances for each individual plane 𝜖 = 𝜖𝑥𝜖𝑦𝜖𝜁 . While treating each transverse
plane as independent is a simplification, it is justified in systems where mixing between the planes is
negligible. The emittance for each plane is determined by the determinant of its corresponding 2 × 2
sub-matrix. For the horizontal plane, the squared emittance is

𝜖2𝑥 = det

(
𝜎2𝑥

〈
𝑥𝑥 ′

〉
〈
𝑥𝑥 ′

〉
𝜎2𝑥′

)

= 𝜎2𝑥𝜎
2
𝑥′ −

〈
𝑥𝑥 ′

〉2 (3.24)

If there are correlations between the planes, eq. (3.24) yields the projected emittance, which reflects
the behavior of the beam in a specific plane by integrating out the contributions from other planes.
However, even though projected emittances are typically used to describe the properties of the beam
in these individual planes, they are not inherently conserved properties.
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From the previous considerations, the emittance is also a measure of the relation between divergence
and beam size. It defines how strong a beam has to be focused to achieve a tight beam waist and of
how well it is collimated at a specific size. In cases where there is no coupling between the planes and
emittance is conserved, the minimum beam size achievable at a focal point is dictated by 𝜎𝑥 = 𝜖𝑥/𝜎𝑥′ .
This relationship underscores the inherent limitation that the beam’s size cannot become indefinitely
small and its expansion is inherently governed by the emittance. In summary, a low emittance is
beneficial for achieving effective beam transport, enabling smooth focusing and compact beam sizes
throughout the accelerator.

Related to the emittance is the normalized emittance. Again, considering only a transverse plane, it is
written as [57]

𝜖𝑛,𝑥 '
𝑝𝑠
𝑚𝑒𝑐

𝜖𝑥 '
𝑝0
𝑚𝑒𝑐

𝜖𝑥 ' 𝛾0𝜖𝑥 . (3.25)

with the average longitudinal momentum 𝑝𝑠. The normalized emittance remains constant during
acceleration processes, which increase the longitudinal momentum 𝑝𝑠 and consequently the Lorentz
factor 𝛾, while decreasing the transverse divergences 𝑥 ′ and 𝑦′. Therefore, utilizing the normalized
emittance is particularly useful for comparing the quality of beams at different energies. Moreover, for
a more granular analysis, one can consider a slice emittance. This refers to the emittance computed for a
narrow longitudinal slice of the beam, allowing for a detailed characterization of the beam’s properties
at different positions within the bunch. This measure is particularly insightful for understanding the
dynamics and quality of beams where internal variations along the beam are of interest. Additionally
to being a measure volume, the emittance allows for comparisons between differently shaped particle
distributions, by representing them through an equivalent area. A practical and common choice for
such representation is an ellipse defined by the implicit equation

𝛾̌𝑥2 + 2𝛼̌𝑥𝑥 ′ + 𝛽𝑥 ′2 = 𝜖𝑥 . (3.26)

By constraining 𝛽𝛾̌ − 𝛼̌2 = 1, the parameters 𝛽, 𝛼̌, and 𝛾̌ align with 𝜎𝑥 ,
〈
𝑥𝑥 ′

〉
, and 𝜎𝑥′, respectively.

With this choice the ellipse encloses an area of 𝜋𝜖𝑥 . Figure 3.2 illustrates the emittance as such ellipse
in the horizontal plane. Although derived differently, 𝛽, 𝛼̌, and 𝛾̌ match with the ones derived by
Courant and Snyder for periodic systems [58], therefore usually called Courant-Snyder parameters1.
The following relations hold between the statistical properties, the Courant-Snyder parameters and the
emittance:

𝛽𝑥 =
𝜎2𝑥
𝜖𝑥

𝛼̌𝑥 = −
〈
𝑥𝑥 ′

〉
𝜖𝑥

𝛾̌𝑥 =
𝜎2𝑥′

𝜖𝑥
. (3.27)

These parameters effectively describe the beam dynamics, encompassing various beam sizes, di-
vergences, and correlations, differing merely by a scaling of the emittance. Therefore, they are
interchangeable with the measures used in the discussions on beam envelopes in section 3.2.

1 Throughout this thesis, the Courant-Snyder parameters are denoted by 𝛽, 𝛼̌, and 𝛾̌ to distinguish them from the relativistic
Lorentz factor 𝛾 and the velocity 𝛽𝑐.
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3.4 Bunch Decompression

Figure 3.3: Schematic layout of a C-chicane showing trajectories of different energies.
Reference energy (black solid) is deflected by an angle 𝜃. Lower energy particles (red,
dotted) have a larger detour and higher energy particles (blue, dashed) a shorter one. In
the symmetric case, all magnets have same length 𝐿mag and kick angle 𝜃, and the spacing
from first to second and third to fourth dipole are equal 𝐿space.

3.4 Bunch Decompression

The percent level energy spreads associated with laser-plasma accelerated electron beams, as outlined
in section 2.4, typically exceed the tolerances required for many applications. For free-electron lasers,
particularly, a low energy spread is crucial [59], and typically on the order of 10−3 to 10−4 [60]. The
energy spreads from LPA beams are significantly larger, being on the percent-level. Consequently,
a reduction of the effective energy spread is essential for the utilization of LPA beams in FEL
applications, see section 4.3.4.

One strategy to address this is through use of a magnetic chicane to stretch the bunch. This technique
specifically targets the reduction of local energy spread, which pertains to the energy variation
within smaller longitudinal segments of the beam [23]. While this method effectively narrows the
effective energy spread, it simultaneously results in a decrease in beam current. This reduction in both
parameters represents a trade-off that must be balanced to optimize the performance of the FEL, see
section 4.3.4.

In its simplest form, the path length a particle travels through the chicane only depends on the matrix
element 𝑅56, neglecting other and higher order effects of beam transport. Assuming that the path
length difference after passing the chicane is independent from the initial position or direction, the
corresponding elements in the transfer map reading 𝑅51 = 𝑅52 = 0, and the internal bunch coordinate
from eq. (3.19) simplifies to:

𝜁 ' 𝜁0 +
(
𝐿

𝛾20
− 𝑅56

)
𝛿 = 𝜁0 + 𝑅𝜁56𝛿 (3.28)
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Figure 3.4: Longitudinal (𝜁 − 𝛿) space of a bunch with length 𝜎𝜁 = 2 µm and energy
spread of 𝜎𝛿1%. Shown are (a) the initially uncorrelated bunch and (b) after stretching
the bunch to 5× its initial length. The (blue, solid) projected energy distribution and
therefore the energy spread do not change, but (orange, dotted) a single slice can have
(orange, solid) lower local energy spread.

𝑅
𝜁
56 represents the combined effect of relative position changes due to path length and velocity
differences. Note that 𝑅56 and 𝑅

𝜁
56 usually have different signs. The superscript 𝜁 is used to distinguish

this matrix element for the internal bunch coordinate from that used previously for the path length
difference2. For LUX, operating at energies 𝛾 ' 600, the energy dependent time of flight difference
contributes approximately 𝐿/𝛾20 ' 3 µm per meter of beam transport to 𝑅𝜁56. For a short beamline
this only slightly modifies the required decompression by the chicane, but has to be considered if the
applied stretching is small.

The primary contribution comes from 𝑅56, which depends on the detour introduced by the magnetic
chicane. An ideal magnetic chicane only increases the path length dependent on energy, and acts like
a drift on the other coordinates. In the following, the beam dynamics of a symmetric C-chicane as
implemented at LUX will be discussed. A schematic of the C-layout is shown in fig. 3.3, illustrating
the varied path lengths traversed by particles of different energies resulting in longitudinal stretching
of the beam. This elongation also introduces a correlation between longitudinal position and energy,
while simultaneously reducing the local energy spread, as depicted in fig. 3.4. The total bunch length

2 Both versions are used in literature about beam optics and commonly referred to as 𝑅56, with the specific designation
dependent on the choice of the longitudinal coordinate. The distinction here serves to enhance clarity in the context of
this discussion.
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Figure 3.5: Change of longitudinal beam parameters with varying 𝑅𝜁56 for a beam with
initially 𝜎𝜁 = 2 µm, 𝜎𝛿 = 1%, and no chirp 〈𝜁𝛿〉 = 𝑚 = 0. Results obtained from (blue,
solid) the full formulas eqs. (3.32) to (3.34) and (orange, dashed) approximations for
expanding about 𝑅𝜁56 → ∞ are shown for (a) bunch length, (b) linear energy chirp, and
(c) slice energy spread.
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and correlation after some transport is then be described by

𝜎2𝜁 = 𝜎2𝜁 ,0 + 2𝑅𝜁56 〈𝜁𝛿〉0 +
(
𝑅
𝜁
56

)2
𝜎2𝛿,0 (3.29)

〈𝜁𝛿〉 = 〈𝜁𝛿〉0 + 𝑅𝜁56𝜎
2
𝛿,0 (3.30)

𝜎2𝛿 = 𝜎
2
𝛿,0 = const . (3.31)

Assuming that the beam initially is longitudinally only linearly correlated is a reasonable approximation,
since the beams from LPA only occupy a small region in the accelerating field within the plasma,
see section 2.1. Therefore, each particle’s energy deviation 𝛿𝑛 is modeled as a linear function of
its position as 𝛿𝑛 = 𝑚𝜁𝑛 + Δ𝑛, where 𝑚 represents the linear slope crossing the points of maximum
extent in 𝜎𝜁 in the (𝜁 − 𝛿) plane, and Δ is the deviation from this linear relation. In linear beam
optics it is uncorrelated with the position, i.e. 〈Δ𝜁〉 = 〈Δ〉 〈𝜁〉 = 0. The corresponding local or
uncorrelated energy spread is here denoted by 𝜎Δ. The slope𝑚 is derived from the statistical properties
as 𝑚 = 〈𝜁𝛿〉 /𝜎2𝜁 and is also indicated in fig. 3.2. Therefore, the total energy spread is expressed by
𝜎2𝛿 = 𝑚

2𝜎2𝜁 + 𝜎2Δ. Although the formulas provide the correlation of position and energy, this slope is
typically the quantity of interest, because it characterizes the (linear) energy chirp of the beam in the
easily accessible unit %/m. Under this assumption, eqs. (3.29) to (3.31) take the form

𝜎2𝜁 =
(
1 + 𝑚0𝑅𝜁56

)2
𝜎2𝜁 ,0 +

(
𝑅
𝜁
56

)2
𝜎2Δ,0 (3.32)

〈𝜁𝛿〉 =
(
1 + 𝑚0𝑅𝜁56

)
𝑚0𝜎

2
𝜁 + 𝑅𝜁56𝜎

2
Δ,0 (3.33)

𝜎2Δ =
𝜎2Δ,0(

1 + 𝑚0𝑅𝜁56
)2

+
(
𝑅
𝜁
56
𝜎Δ,0
𝜎𝜁 ,0

)2 = 𝜎Δ,0
𝜎𝜁 ,0

𝜎𝜁
. (3.34)

In contrast to the initial equations, eqs. (3.29) to (3.31), the equations eqs. (3.32) to (3.34) provide
insights into the evolution of chirp and the uncorrelated energy spread within the beam.

The following approximations for an initially unchirped bunch hold for cases with large decompression
𝑅
𝜁
56 � 𝜎𝜁 /𝜎𝛿:

𝜎𝜁 ' 𝑅𝜁56𝜎𝛿 〈𝜁𝛿〉 ' 𝑅𝜁56𝜎
2
𝛿

𝜎Δ '
𝜎𝜁 ,0

𝑅
𝜁
56𝜎𝛿

𝑚 ' 1
𝑅
𝜁
56

(3.35)

For the beam parameters at LUX, these approximations are applicable for 𝑅𝜁56 & 500 µm. Figure 3.5
shows the change in (a) bunch length, (b) the slope 𝑚, and (c) the local energy spread with respect to
the applied 𝑅𝜁56. For an initially uncorrelated and short beam, a significant reduction in local energy
spread is already achieved with moderately small 𝑅𝜁56. For example, in this scenario it decreases to a
third of its initial value for 𝑅𝜁56 ' 500 µm. It’s noteworthy that the slope 𝑚 increases from zero until
the highest energy particles overtake the former head and the lowest energy particles similarly fall
back behind the former tail of the bunch. Another useful metric in this context is a bunch stretching
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3.4 Bunch Decompression

factor 𝑛𝐵, that is defined as the ratio of the final to initial bunch length

𝑛𝐵 =
𝜎𝜁

𝜎𝜁 ,0
=

√√√√
1 +

(
𝑅
𝜁
56𝜎𝛿

𝜎𝜁 ,0

)2
' 𝑅

𝜁
56𝜎𝛿

𝜎𝜁 ,0
, (3.36)

which links initial bunch length, energy spread and 𝑅𝜁56, and where the second equality is valid for
initially uncorrelated bunches.

Using this quantity, the current of a longitudinally gaussian shaped beam changes as 𝐼 = 𝐼0/𝑛𝐵.
However, as shown in fig. 2.5, the initial current distribution is expected to approximately be of flat
top shape. As there is no correlation expected between the internal bunch coordinate and the local
energy spread at the core of the bunch, the current distribution will change as the beam is stretched. If
𝑅
𝜁
56 · 𝜎𝛿 � 𝜎𝜁 ,0 the shape of the energy spread dominates eq. (3.32). For a short beam and gaussian
distributed energy spread, the longitudinal distribution will also converge to a gaussian shape, as
high energy particle from the tail catch up and low energy particles at the tail fall back. For the LUX
reference beam the left hand side becomes larger than the initial bunch length for 𝑅𝜁56 & 200 µm, i.e.
where high energy particles from the tail overtake the low energy particles from the bunch head,
indicating that this scenario is easily achieved. In that case the initial current can be expressed by
an equivalent peak current 𝐼0,gauss =

√︁
12/(2𝜋)𝐼0,flat ' 1.4𝐼0,flat, slightly higher than the provided

current in the flat-top beam. The uncorrelated energy spread according to eq. (3.34) then also scales
as 𝜎Δ ' 𝜎Δ,0/𝑛𝐵.

The transfer map elements contributing to the longitudinal particle position at first order for a symmetric
C-chicane can be derived from the elements discussed in section 3.1. Specifically, the 𝑅56 of the
chicane that is relevant to the discussion of decompression is given by [61]

𝑅56 = −2
(
𝐿mag

𝜌0

)2 (
2
3
𝐿mag + 𝐿space

)
, (3.37)

where 𝜌0 is the bending radius of a particle with reference energy. 𝐿mag represents the lengths of the
individual dipole magnets, and 𝐿space the drift between the first and second, as well as the third and
fourth dipole magnets. This configuration is also illustrated in fig. 3.3. As indicated by eq. (3.37)
a pure magnetic chicane yields a negative 𝑅56 < 0. At conventional accelerators and FELs, the
objective is often to compress the beam to increase the beam current. This is typically accomplished
by introducing an energy chirp via a cavity before the chicane and with opposite sign to the discussed
case, i.e. 〈𝜁𝛿〉 < 0. The cumulative effect of the cavity and the chicane results in a positive overall
𝑅56 > 0, which decreases the bunch length and therefore increases the current, in trade for an increase
in energy spread. Here, the opposite is intended, thus no cavity is required.

As worked out in this section, instead of compressing the beam, the strategy to reduce the energy
spread involves stretching it to achieve parameters comparable to those of conventional accelerators.
This stretching is critical for matching the operational characteristics necessary for successful FEL
applications.
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3.5 Trajectory and Focusing Errors

The beam optics formalism from the previous sections not only describes ideal beam transport, but
also quantifies how deviations in accelerator components affect beam dynamics. Any Magnet in the
system can be subject to such deviations in position or strength. Especially for quadrupole magnets,
discrepancies from the desired parameters can have significant impact on the beam transport. They
can affect both the trajectory of the beam through the accelerator and the focusing properties, which is
of particular interest when shaping the beam for applications such as an FEL.

3.5.1 Quadrupole Offsets

Transverse offsets 𝛿𝑥 and 𝛿𝑦 of a quadrupole are equivalent to an overlap with a dipole field.
Considering the reference particle, in the focusing plane it experiences an additional oscillatory
motion, while in the defocusing plane it is subjected to a lateral displacement from the beam axis. The
introduced changes in position 𝑥 and pointing 𝑥 ′ after passing through the quadrupole are

Δ𝑥 = 𝛿𝑥(1 − cos
(√︁
𝐾1𝐿

)
) (3.38)

Δ𝑥 ′ = 𝛿𝑥
√︁
𝐾1 sin

(√︁
𝐾1𝐿

)
, (3.39)

and similarly for the defosing plane using sinh and cosh. In the short lens approximation for short
quadrupoles, this results in a weak kick originating from the magnet’s center

Δ𝑥 ′ ' 𝐿𝐾1𝛿𝑥 . (3.40)

A 10 cm quadrupole magnet operated at 𝐾1 = 100m
−2 introduces a kick of approximately 10 µrad per

1 µm of positional offset. Thus, even small transverse offsets will significantly deviate the beam from
its intended path.

The effect is more severe if two consecutive quadrupoles kick the beam towards the same direction.
Considering two thin quadrupoles of 10 cm length, operating at 𝐾1 of about 100m

−2 and −50m−2, and
spaced by 20 cm (center-to-center), the resulting kicks in the horizontal and vertical planes would be
approximately Δ𝑥 ′1 ' 20𝛿𝑥1 − 5𝛿𝑥2 and Δ𝑦′1 ' 2.5𝛿𝑦1 + 4𝛿𝑥2. The indices denote to which of the two
quadrupoles the offset is applied. Following this doublet, the beam’s trajectory is mainly influenced by
the kick angle, with offsets directly after the doublet being less than 5 µm. The alignment should be
primarily performed in the focusing plane of the first quadrupole due to its more pronounced impact,
followed by the vertical alignment of the second quadrupole. If the polarity of the quadrupoles is
reversed the procedure has to be adapted accordingly. While the relative position of the plasma source
to the first doublet is adjustable during operation, aligning it precisely is challenging. Any residual
misalignment has to be corrected using dipole magnets to realign the beam along the desired axis.
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For later quadrupoles in the beamline, where the beam is already captured, the focusing strength is
typically lower with 𝐾1 . 10. The total impact of offsets by these quadrupoles accumulates if they all
kick the beam to the same direction. However, these quadrupoles are not intentionally positioned to
maximize the kick, which suggests that the overall effect might be smaller than the sum of individual
contributions.

When considering a beamline comprised of quadrupoles with varying polarity and randomly distributed
offsets relative to the reference orbit, the particle beam’s trajectory will not constantly move away
from, but move around the unperturbed reference orbit due to the varying directions of the kicks. To
get an estimate on the overall effect of the beamline, the complete transport is here condensed to a
single matrix

𝑅bl =

(
𝑚 0
− 1𝑓 1

𝑚

)
(3.41)

representing a magnifying system characterized by its magnification 𝑚 and focusing strength 1/ 𝑓 . To
achieve an imaging with focus at the end of the beamline, it is necessary for 1/ 𝑓 to vanish. However,
this matrix is particularly chosen considering the initial size and divergence of laser-plasma accelerated
beams, being on the order of micrometer and milliradian respectively, thus the focus position being
predominantly influenced by the divergence. By setting 𝑅12 = 0, the focus will already be close to the
desired position.

Applying the same offset 𝛿𝑥bl to the entire beamline, implying that all quadrupoles share a common
axis, results in the position and slope of the beam being 𝑥 = (1 − 𝑚)𝛿𝑥bl and 𝑥 ′ = − 𝑓 𝛿𝑥bl. To achieve
a magnification of about 10, see section 5.1.2, and limit the positional offset of the beam at the end of
the transport beamline to below 100 µm, thereby requiring only a minor kick with a corrector magnet,
the beamline offset has to be smaller than 𝛿𝑥bl . 10 µm. Simultaneously requiring pointing change of
less than 𝑥 ′ < 0.01mrad due to the positional offset, sets a rather relaxed upper limit to the overall
focusing strength of the beamline |1/ 𝑓 | < 10. A focus shift due to correlation 〈

𝑥𝑥 ′
〉
= 𝑓 𝜎2𝑥,0 ' 10−5

is negligible.

Combining the thoughts, the impact of quadrupole offsets is kept on a feasible level if the quadrupoles
are aligned within . 10 µm to a common axis. Larger deviations have to be compensated with corrector
magnets. The first two quadrupoles, crucial for capturing the beam directly after the plasma source
and typically the strongest quadrupole magnets, should be placed with greater precision, ideally within
∼ 1 µm to this axis. During operation, the plasma source is adjusted to align with this established
axis. However, since these requirements are difficult to meet, steering magnets are utilized to correct
any deviations, ensuring the beam remains on course, particularly after passing through the capturing
doublet.

Another note has to be made, that the transverse position of beams from the plasma source show
shot-to-shot fluctuations. Therefore, the alignment process must be performed to the average position
of these fluctuations. To ensure a significant proportion of the beams remain within the desired
positional and angular specifications at the final focus, initial positional fluctuations from the source
should not exceed a few µm. The stability in source position is primarily dictated by the positional

33



Chapter 3 Electron Beam Dynamics

jitter of the driving laser at the plasma source. The ANGUS laser system, including the laser transport
to the plasma source, typically maintains a focus position with shot-to-shot fluctuations of less than
. 5 µm [36], therefore able to deliver the required properties.

3.5.2 Quadrupole Strength Errors

Variations in the focusing strength of quadrupoles represent another source of error. A measure to
quantify the deviation from the desired beam parameters after passing a quadrupole is the mismatch
parameter 𝑀 [62]. It evaluates the discrepancy between the actual and desired trace space ellipses at a
given point in the beamline [63]:

𝑀 =
1
2

(
𝛽𝛾̌0 − 2𝛼̌𝛼̌0 + 𝛾̌𝛽0

) ≥ 1 (3.42)

Here, the Courant-Snyder parameters without subscripts denote the actual conditions resulting from
focusing errors, while those with subscript ’0’ are the design parameters. The mismatch parameter,
𝑀 , assesses the fit between the actual and the intended focusing properties, with 𝑀 = 1 indicating a
perfect match.

An acceptable level of mismatch is determined by the maximum allowed difference in beam size in
the undulator. It should be small enough to keep the degrading in FEL performance on a considerably
low level. By allowing a maximum deviation in beam size by about 20% (see section 4.5.1 that this
corresponds to a change in beam size by approximately 5 µm does not significantly impact the gain
length), i.e. allow the corresponding 𝛽 to be about 45% too large or 30% too small, the limit on the
mismatch parameter is found to be 𝑀 − 1 ' 7%. Note, that changing 𝛼̌ does neither change 𝑀 nor
the beam size, since the position of interest is a focus with 𝛼̌0. Distributing this total mismatch evenly
across all quadrupoles according to 𝑀𝑞 − 1 = (𝑀total − 1)/

√
𝑁 [63], the allowable mismatch for each

of a total of 𝑁 = 11 quadrupole magnets (see section 5.2) is 𝑀𝑞 − 1 ' 2%.
However, the deviation in mismatch parameter must be translated to an allowed deviation in quadrupole
strength for practical interpretation. The latter depends on the targeted quadrupole strength and the
beam size within it. Using the same equation eq. (3.42), the mismatch of a single thin lens quadrupole
is obtained by substituting the appearing Courant-Snyder parameters by the corresponding transfer
maps applied to the parameters before the quadrupole magnet. For the mismatched parameters, the
quadrupole strength is altered to 𝐾1(1 + Δ𝐾1), where Δ𝐾1 is the relative deviation in magnet strength.
This yields an upper limit for the allowed relative deviation in quadrupole strength [63]:

Δ𝐾1 <

√︃
2(𝑀𝑞 − 1)��𝐾1�� 𝐿 ·min

(
𝜖𝑥

𝜎2𝑥
,
𝜖𝑦

𝜎2𝑦

)
(3.43)

For LUX, the expected beam sizes throughout the transport and in the quadrupoles are approximately
200 µm to 400 µm. Further, using a normalized emittance of 𝜖𝑛 ' 1mmmrad, i.e. emittance of
𝜖 ' 1.7 µmmrad, and a quadrupole magnet of 10 cm length and strength of about 𝐾1 ' 10m−2, the
allowed deviation for the quadrupoles can be estimated to be about 0.5%. Note, that the limit of the
first quadrupole is larger, due to the small beam size directly after the target, although its 𝐾1 is larger.
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However, the large beam size expected in the second quadrupole, after defocusing the beam in one
plane, requires to set its strength on the 0.1% level. Since this is challenging, after setting up the
beamline, the strength of the second quadrupole has to be scanned to obtain a proper focusing size.

3.5.3 Magnetic Background Field

The environmental magnetic fields where the beamline is situated must also be considered, particularly
due to their potential effects on beam trajectory. At the DESY campus in northern Germany, the
Earth’s magnetic field is estimated to exert an influence of about 50 µT. Specifically, this includes a
radial component of approximately 45 µT, which points vertically, and an azimuthal component of
about 20 µT, of which 2 µT is oriented horizontally due to the alignment of the beamline [64]. Natural
deviations or the presence of magnetic materials in the accelerator tunnel or its vicinity may alter this
field, but the aforementioned values provide a basis for assessing the need for compensatory measures.
Assuming a constant transverse field, the displacement 𝑥 of a beam after traveling a drift distance 𝐿 is
estimated by the bend of a pure dipole field:

|𝑥 | =
����� 𝑐

𝑝 [eV/c]
𝐵0𝐿

2

2

����� (3.44)

For the predominant strength of the radial component of the Earth’s magnetic field, this results in a
displacement of about 5mm for a beam freely drifting over 15m. For shorter distances, such as 3m
between quadrupoles, a displacement of about 200 µm are expected. To mitigate such displacement
and the associated dispersion along the beamline, particularly within the quadrupoles inducing position
and energy dependent kicks, the background field should be minimized. Helmholtz coils have been
installed along the entire distance from the plasma source to the undulator to compensate for the
Earth’s magnetic field and reduce the reliance on corrector dipoles for beam steering. Furthermore,
the quadrupole magnets have to be aligned to this corrected orbit with minimized background field,
which can in fact still show deviations from a straight one.

3.6 Degrading Effects During Beam Transport

As pointed out in section 3.3, the projected emittance is only conserved if the planes are decoupled.
However, in a real accelerator this condition is rarely met and mixing between the planes occurs. This
is particularly pronounced in laser-plasma accelerated electron beams, where high energy spreads
and divergences facilitate the coupling of the longitudinal with the transverse planes. Moreover,
collective effects, that do not obey Liouville’s theorem when considering the electron beam in isolation
from radiation processes, can alter the properties of the LPA beams. As a result, neither emittance
nor its projected or slice variants are preserved under these processes. First considerations of LPA
experiments for FELs assumed beam currents of 10 kA to 100 kA and normalized emittances as low
as 0.1mrad [15, 17]. Such extreme beam properties make the beam highly susceptible to space charge
and synchrotron radiation effects, which have the potential to significantly degrade beam quality
during transport [65, 66]. Given the beam parameters at LUX differ significantly from those estimates,
their impact will be reevaluated. Comparing the beam parameters from LUX, from section 2.4, with
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Figure 3.6: Example of emittance increase after the plasma source for (a) horizontal plane
and (b) vertical plane. Beam is captured with two quadrupoles of 10 cm length each
(grey boxes). The first quadrupole focuses and the second defocuses in the horizontal
plane. Shown are the (blue solid) projected normalized emittance without chromatic
contribution eq. (3.25), (orange dashed) exact projected normalized emittance eq. (3.45),
and (red dotted, diamonds) the approximation including a chromatic contribution eq. (3.46)
yielding an upper limit and evaluated before and after drift spaces. Beam simulated with
ASTRA.

previous assumptions for LPA beams suggests that space charge effects at LUX may be an order of
magnitude less severe. Nonetheless, given the short bunch lengths and high currents typical for LPA
beams, both space charge fields and synchrotron radiation remain critical factors that could undesirably
alter the beam quality. Their influence will be discussed in the following sections.

3.6.1 Chromatic Emittance Growth

In the presence of a non-negligible energy spread, the relationship between emittance and normalized
emittance becomes more complex. Reevaluating eq. (3.25) under this condition reveals an additional
contribution by the longitudinal momentum [67]:

𝜖2𝑛,𝑥 =
1

𝑚2𝑒𝑐
4

(〈
𝑥2

〉 〈
𝑥 ′2𝑝2𝑧

〉
− 〈
𝑥𝑥 ′𝑝𝑧

〉2) (3.45)

' 𝛾20
(
𝜖2𝑥 + 𝜎2𝑥𝜎2𝑥′𝜎2𝛿

)
, (3.46)

where the correlation of 𝛿 and the transverse coordinates 𝑥 and 𝑥 ′ was dropped in the second equation,
as those correlations between transverse and longitudinal coordinates are usually not accessible in the
experiment. However, those terms reduce eq. (3.45), therefore Equation (3.46) offers an upper limit to
the normalized emittance in the present of non-negligible energy spread. The additional term can be
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3.6 Degrading Effects During Beam Transport

considered as a chromatic contribution, extending the previously shown definition of the normalized
emittance:

𝜖2𝑛,𝑥 = 𝜖
2
𝑛,𝑥,0 + 𝜖2𝑛,𝑥,chr . (3.47)

Both definitions eq. (3.46) and eq. (3.25) have their respective applications. The inclusion of the
chromatic term offers a closer alignment with the definition of phase space emittance by acknowledging
that there is a mixing between the longitudinal and transverse planes. However, the normalized
emittance without chromatic contribution still resembles the projected 2𝐷 distribution into the 𝑥 − 𝑥 ′
plane.

If only considering linear beam optics, the chromatic contribution offers to estimate the effects from
the chromaticity introduced by quadrupoles without tracking. Equation (3.46) shows the growth in
projected normalized emittance for a tracking performed with ASTRA. It illustrates the differences
between phase space and trace space emittance for a beam that is captured and collimated with a
quadrupole doublet within 40 cm behind the plasma source. In the horizontal plane, where the first
quadrupole focuses and the second defocuses, the emittance increases to 1.05mmmrad. In the vertical
plane, the increase is more pronounced, reaching approximately 2.5mmmrad. Additionally, eq. (3.46)
was used to estimate the projected normalized phase space emittance using only linear beam optics
combined with the energy spread, evaluated at the start and end of the quadrupoles and drift elements.
The two definitions of projected emittance agree and in the case of very small divergence 𝜎𝑥′ ' 0, i.e.
when the beam is close to being collimated, or if the beam is close to a waist where

〈
𝑥𝑥 ′

〉 ' 0 [57].
While it is possible to reverse the emittance growth with a sufficient number of quadrupoles and
adequate drift space [68] , this approach increases the length and complexity of the beamline, potentially
introducing new sources of error. It is thus preferable to minimize chromatic emittance growth from
the beginning.

For applications like an FEL, the emittance within a smaller longitudinal fraction might be more
relevant than the projected emittance. Similar to the uncorrelated energy spread, the decompression
counteracts the local emittance within such a slice, see section 6.1, hence rendering the effects of
chromatic emittance growth less severe if sufficient decompression is applied.

3.6.2 Slice Energy Spread Degradation

In addition to chromatic effects, a possible increase in slice energy spread due to path length differences
has to be considered. Except for deliberate detours in a chicane, particles deviating from the reference
trajectory by traveling at an angle will inevitably follow a longer path. This leads to a delayed arrival
at a subsequent position along the beamline, resulting in their repositioning within the bunch, i.e., they
fall back relative to the reference particle. This phenomenon is not apparent at the first order in matrix
theory but emerges due to higher order matrix elements such as 𝑇522 and 𝑇544. Particularly, these
two elements account for quadratic contributions from the transverse angles relative to the reference
trajectory contribute to the increase in path lengths. Consequently, maintaining minimal divergence
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Figure 3.7: Gaussian distributed chirped bunchwith 1.5mrad divergence in both transverse
directions, 𝜎𝛿 = 1.5% projected energy spread, and an initially 𝜎Δ = 1% uncorrelated
energy spread. (a) Local energy spread 𝜎Δ of 1 µm long slices for (orange dashed) the
initial bunch and (solid blue) the bunch propagated by 50 cm in a free drift. The region
for calculating the slice parameters was shifted by 0.1 µm for individual data points. (b)
Longitudinal (𝜁 − 𝛿) space, overlaid for (orange) the initial position 𝑠 = 0 and (blue) after
propagating the beam to 𝑠 = 50 cm.

throughout the beam transport is essential to minimize these differences. This is possible by keeping
the first order matrix elements 𝑅21, 𝑅22, 𝑅43, and 𝑅44 low, that map the initial coordinates to the
divergence.

A large contribution to the path length differences originates from the initial drift after the plasma
source, where the beam diverges freely before being captured and collimated by the quadrupoles. These
effects are more pronounced for a chirped bunch. For example, Figure 3.7 illustrates a gaussian bunch
with a large divergence of 1.5mrad. The normalized emittance is therefore increased to 3mmmrad.
The higher divergence is chosen here for better visualization of the effect and should highlight the
significance of keeping the divergence low. This scenario assumes a projected energy spread of 1.5%,
a chirp of 𝑚 = 0.87%/µm and a bunch length of 2 µm. This corresponds to an uncorrelated energy
spread of 𝜎Δ = 1%, which is the same as the projected energy spread of the reference bunch. Such
chirped bunches can be produced from the plasma by beam loading during the acceleration process
[21, 50]. Over a drift of 50 cm, such beam lengthens to 2.4 µm and the slice energy spread increases to
1.2% at the core and reaching up to 2% at the tail. Although the effect is about ten times smaller for
beams with 0.5mrad divergence, it highlights the necessity of requiring a low divergence at all stages
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of the beam transport. Moreover, the effect scales with the length of the beamline, as a comparison
with the elements of a free drift 𝑇522 = 𝑇544 = 𝐿/2 reveals. This suggests that sections where the
bunch is expected to be chirped or has significant divergence should be as compact as possible.

For an unchirped bunch, these dynamics primarily result in an increase in bunch length rather than
slice energy spread. However, addressing increased bunch length and slice energy spread might
require more extensive bunch stretching, potentially leading to reduced current, which is undesirable.
An initial chirp potentially reduces the required 𝑅56, but this advantage holds only when comparing
two bunches with the same projected energy spread. In such cases, the chirped beam would exhibit
a lower slice energy spread, making it more suitable for certain applications where beam quality is
critical.

Ideally, initial beam conditions from the plasma target should feature the lowest divergence possible to
mitigate these effects. Since the higher order elements scale quadratically with changes in transverse
position, any reduction in divergence can remarkably decrease both the amount of bunch lengthening
and the potential increase in slice energy spread. Moreover, capturing the beam earlier would be
beneficial, but this would demand higher gradients that are difficult to achieve with electro-quadrupole
magnets and not applicable due to space constraints after the plasma source in the current setup.

3.6.3 Transverse Space Charge

The electrons within a bunch exert repulsive Coulomb forces on each other, accelerating them
away from the charge center. This force is counteracted by the attractive force between parallel
currents, generated by an angular magnetic field component. The repulsive force is stronger, although
increasingly compensated when approaching the speed of light. Here, the evaluation of the resulting
forces is divided into two parts, beginning with the transverse charge force.

For simplicity, a cylindrically symmetric charge distribution within the bunch, defined as 𝜌(𝑟, 𝑧) =
𝑄𝜆̃𝑟 (𝑟)𝜆̃𝜁 (𝜁) is assumed. Here, 𝜆̃ represents normalized radial and longitudinal charge density
profiles. For an electron inside a bunch moving with 𝛾 � 1 , the radial space charge force acting on it
is derived to be [69]

𝐹𝑟 (𝑟, 𝜁) =
𝑒𝑄

𝛾2𝜀0

𝜆̃𝜁 (𝜁)
𝑟

∫ 𝑟

0
𝑟 ′𝜆̃𝑟 (𝑟 ′) d𝑟 ′ . (3.48)

The radial space charge force scales with the 𝐼/𝛾2 and depends only on the charges at the same
longitudinal position, requiring integration over the radial profile only, but not over the longitu-
dinal profile. For example, if assuming a gaussian distribution for 𝜆𝑟 the integral evaluates to
(exp

(
−𝑟2/(2𝜎2𝑟 )

)
− 1)/(2𝜋). To estimate the impact of this force on beam transport, a radially

defocusing strength 𝐾SC, analogous to the quadrupole strength 𝐾1, is determined.
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Figure 3.8: Strength and impact of transverse space charge forces expected for a gaussian
shaped beam with LUX parameters 𝐼peak = 2.5 kA and 𝛾 ' 600. Beam radii are
𝜎𝑟 = 3.5 µm (blue) and𝜎𝑟 = 100 µm (orange, scaled×100 for better visual representation).
Dashed lines represent the linear approximations of the force. (a)Normalized space charge
force at the bunch center directly after the plasma source, alongside the corresponding
linear defocusing strength. The linear model holds for 𝑟/𝜎𝑟 ' 1. (b) Evolution of
transverse beam size in free drift, assuming linear space charge force. For typical
divergences of 0.5mrad, transverse space charge effects are negligible. An effect becomes
visible only if the divergence is reduced by approximately an order of magnitude.

This (first order) defocusing strength is calculated from the force to be

𝐾SC ' 1
𝑚𝑒𝑐

2𝛾

d𝐹𝑟
d𝑟

����
𝑟=0

= − 𝑒𝑄

4𝜋𝜀0𝑚𝑒𝑐
2

𝜆̃𝜁 (𝜁)
𝛾3𝜎2𝑟

(3.49)

𝐾SC ' −6 × 10−5 𝐼

𝜎2𝑟 𝛾
3 A−1 , (3.50)

and using the peak current 𝐼 = 𝐼peak ' 𝑐𝑄𝜆̃𝜁 ,max to calculate the space charge effects at the core of the
bunch. At the source, where the beam is small with a size of approximately 𝜎𝑟 ' 3.5 µm and has a
peak current of about 2.5 kA, the radial space charge force imposes a defocusing effect with a strength
parameter of 𝐾SC ' −50m−2.

A comparison between the radial force dependent on the radial position and its linear expansion are
illustrated in fig. 3.8(a), where the latter is showing a good agreement up to 𝜎𝑟/𝑟 ' 1, effectively
validating this model for the core of the beam. However, at the source, the beam dynamics are
predominantly governed by emittance, meaning changes in transverse size due to factors other than
space charge play a more significant role in shaping the beam. The transition energy to differentiate
between space charge or emittance dominated beams is given by 𝛾tr = 𝐼𝜎

2
𝑟 /(2𝐼𝐴𝛾𝜀2𝑛) [69], where

𝛾 < 𝛾tr indicates space charge dominated behavior. The initial divergence being 𝜎𝑟 ′ & 0.5mrad
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Figure 3.9: Rate of change in energy due to longitudinal space charge forces per unit length
propagated in the beam transport. Amplitude depends on a particle’s position within the
bunch, illustrated for a gaussian beam with LUX parameters: (blue solid) 𝛾 ' 600 after
the source with 𝐼peak = 2.5 kA, 𝜎𝑟 = 3.5 µm, (orange dashed) after transverse expansion
𝐼peak = 2.5 kA, 𝜎𝑟 = 100 µm, (green dash-dotted, magnified ×10 for visual representation)
and after being stretched with a chicane by a factor of 5 to 𝐼peak = 500 kA, 𝜎𝑟 = 100 µm.

causes a much faster expansion than the space charge at 𝛾 ' 600. Due to this rapid expansion of the
beam, the influence of 𝐾SC decreases sharply, and decreases to less than 0.1m

−2 when reaching a
transverse size of > 50 µm within the first 10 cm. Figure 3.8(a) illustrates that the effects of transverse
space charge would only become significant at the source if the divergence were reduced by an order
of magnitude, highlighting the dominance of divergence over transverse space charge effects under
conditions expected at LUX.

Furthermore, transverse beam properties are typically measured well after any potential space charge-
induced expansions at the source, incorporating their influence into the measurements. Downstream
the beamline, where beam sizes are significantly larger than at the plasma source, ranging from 0.1 to
1mm, space charge effects become markedly less significant, although the beam being considered
as space charge dominated with 𝛾 < 𝛾tr ' 104. Here, the space charge strength diminishes to
𝐾SC < 0.01m

−2, rendering it negligible compared to the focusing strengths of the quadrupoles, which
range from 𝐾1 ' 1m−2 to 𝐾1 ' 100m−2. Only for long drift sections 𝐿𝑑 &

√︁
2/𝐾SC, space charge

effects remain non-negligible. For the typical beam parameters at LUX, such changes would only be
noticeable in drifts exceeding about 10 to 15m, a scenario that might only occur if all quadrupoles
were turned off.
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3.6.4 Longitudinal Space Charge

Similarly to the transverse space charge, a longitudinal force acts on the electrons, accelerating those
at the head of the bunch and decelerating those at its tail. This difference in acceleration can be crucial
because it directly alters the energy distribution along the bunch. The longitudinal force is derived
from the electrostatic potential of a three-dimensional charge distribution. However, in this case it
is more instructive to calculate the change in energy. In the following gaussian beam profiles in all
spatial dimensions are assumed. The momentary energy change along the beam’s longitudinal axis,
where a particle experiences maximum acceleration, is modeled by [70]:

1
𝛾

dΔ𝛾(𝜁)
d𝑧

=
𝑒𝑄

4𝜋𝜖0𝑚𝑒𝑐
2

√︂
2
𝜋

𝜁

𝜎2𝑟𝜎
3
𝑧 𝛾
3

∫ ∞

0
d𝜆 𝜆2

exp

(
− 𝜆2𝛾2𝜁 2

2
(
𝜆2𝛾2𝜎2𝑧+1

)
)

√︂(
𝜆2 + 𝜎−2

𝑟

)2 (
𝜆2 + 𝛾−2𝜎−2

𝑧

)3 (3.51)

The relative rate of change due to longitudinal space charge forces is shown in fig. 3.9. Directly after
the plasma source, for LUX parameters, see section 2.4, the formulas predict a strong longitudinal
space charge force. There, the chirp imprinted onto the beam by this force is approximately 0.25%/𝜎𝑧
per meter of beamline, which constitutes a substantial portion of the total energy spread of 1%.
However, since the beam diverges quickly, the charge density and therefore the longitudinal space
charge forces decrease, similar to the transverse space charge case. Nevertheless, they accumulate until
the bunch is stretched in the chicane and the charge density is reduced. Therefore, the longitudinal
space charge forces were evaluated for conditions after propagation with increased transverse size and
after stretching with longer bunch length. Following the initial expansion, these space charge effects
rapidly decrease. Once the beam is stretched, the influence of these forces becomes negligible. It
is evident that the most substantial space charge effects occur immediately post-plasma source and
swiftly diminish.

Moreover, while these forces predominantly modify the total energy spread, they are not expected to
significantly alter the local uncorrelated energy spread, as they primarily affect a particle’s energy in
relation to its longitudinal position. Thus, longitudinal space charge primarily modifies the beam’s
chirp. The linear contribution by this additionally introduced chirp can be accounted for by adjustments
to the chicane strength, thereby compensating for these changes.

3.6.5 Synchrotron Radiation

Charged particles emit electromagnetic radiation, when they are accelerated. For relativistic particles,
it is called synchrotron radiation (SR) [55]. The total power emitted via this radiation by an electron
bunch scales with the current and energy of an particle beam [55]. Inevitable it occurs in any magnetic
component present in the beamline, but particularly when the beam is bent strongly over a short
distance at high currents. Although there are dedicated applications for SR [71], a place where it is not
desired to generate large amounts of SR are magnetic chicanes and bunch compressors in accelerators
[72]. The same is true for the decompression scheme, where the concept is inverted and the beam is
initially short. The emitted radiation in return can then interact with the bunch and transfer energy
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Figure 3.10: Illustration of an (blue ellipses) electron beam following a curved trajectory
through a dipole magnet. (Red dashed line) Synchrotron radiation emitted early in the
bend from the tail of the bunch (position (1)) overtakes the electron bunch as it progresses
along the bend. Parts of this radiation then interact with particles at the head of the bunch
at a later position in the bend (position(2)).
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Figure 3.11: Rate of change in energy along the beam due to coherent synchrotron
radiation as predicted by eq. (3.53). The beam has a charge of 45 pC. Particles at the
bunch tail and center are decelerated and particles at the head accelerated. (a) Influence
of bunch length with (blue solid) 𝜎𝜁 ,0 = 2 µm , (orange dashed) 2.5 × 𝜎𝜁 ,0, and (green
dash-dotted) 5×𝜎𝜁 ,0. The deflection angle 𝜃0 = 25mrad corresponds to a bending radius
of 13.7m for a 35 cm long dipole magnet. (b) Variations in the rate of energy change at
different kick angles for an initially short bunch of 𝜎𝜁 ,0 = 2 µm, ranging from (orange
short-dashed) 0.5𝜃0 to (purple long-dashed) 1.5𝜃0. The blue solid line represents the
same parameters across both plots.
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Figure 3.12: Relative increase in horizontal normalized emittance from CSR for a beam
with 𝛾0 = 587 and a kick angle of 𝜃0 = 25mrad dependent on horizontal and longitudinal
beam size, calculated according to eqs. (3.55) to (3.57). The markers highlight specific
transverse beam sizes for a bunch length of 𝜎𝜁 = 2 µm, where the emittance growth is
limited to (green circle) 20%, (black diamond) 50%, and to (blue triangle) 100%.

between its particles. In this process the light is following a straight line of length 2𝜌 sin(𝜃/2), and the
electron bunch is traveling on an arc of length 𝜌𝜃. As illustrated in fig. 3.10, this path length difference
allows radiation emitted from the tail of the bunch to overtake it and act on the head. Parts of this
interaction causes coherent emission, therefore called coherent synchrotron radiation (CSR), where
the emitted power scales quadratically with the number of electrons in the bunch 𝑃c ∝ 𝑁2𝑒[73]. This
phenomenon can imprint significant position-dependent energy variations onto high-current beams as
they pass through a magnetic chicane. The maximum fraction of the bunch that is overtaken by the
radiation, and hence contribute to this effect, is given by:

Δ𝑧 ' 𝜌𝜃 − 2𝜌 sin(𝜃/2) ' 𝜌𝜃3

24
(3.52)

The approximation holds true when the magnet length 𝐿mag is much smaller than the bending radius
𝜌. The rate of energy exchange due to synchrotron radiation for electrons in the bunch is calculated in
the 1𝐷 limit [74]:

d𝐸SR(𝑧)
d𝑠

' − 1
4𝜋𝜖0

𝑒𝑄

31/3𝜌2/3

[
𝜆̃(𝜁 − Δ𝜁) − 𝜆̃(𝜁 − 4Δ𝜁)

Δ𝜁1/3
+

∫ 𝜁

𝜁−Δ𝜁

1
(𝜁 − 𝜁)1/3

d𝜆̃(𝜁)
d𝜁

d𝜁

]
(3.53)

The first addend and the integration limits in the formula account for the fact that only a fraction of the
bunch is affected by radiation that overtakes and interacts with it.

In cases where the bunch is shorter than the overtaken distance and taking the limit Δ𝑧 → ∞, only the
integral remains as a steady-state solution.
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For a 35 cm dipole magnet, any kick lower than 12mrad reduces the path length difference below the
initial bunch length of approximately ' 2 µm. Therefore, for the setup under consideration with kick
angles above this value, the effect of CSR can be estimated from the steady state limit.

The resulting relative change in energy, as per eq. (3.53), is illustrated in fig. 3.11 for a 45 pC bunch
at 300MeV with different bunch lengths. The chosen reference kick angle is 𝜃0 = 25mrad in a
35 cm dipole magnet, see section 5.3.2, corresponding to a bending radius of 13.7m. For the initially
short bunch of 𝜎𝜁 ' 2 µm, the rate of change in energy at the center of the bunch is approximately
d𝐸
d𝑠 ' 0.6%/m. As the bunch length increases, such as in later dipole magnets of a chicane used for
decompression, the rate of energy change decreases. The corresponding dependence on a particle’s
position within the bunch is shown in fig. 3.11(a). At the core of the bunch near 𝜁 = 0, the rate of
energy change scales near-linear with the kick angle 𝜃, as depicted in fig. 3.11 (b). In the 0.35m
chicane dipoles of LUX, the anticipated energy loss at the bunch’s core is estimated to be about 0.2%
from the first dipole. This loss is predominantly at the core and slightly towards the tail of the bunch,
thereby imprinting a small additional chirp towards the head. The highest energy loss is expected in
the first dipole, significantly reducing in subsequent dipoles due to the increased bunch length.

To compensate this energy loss, later chicane dipoles might require a slight reduction in field strength or
the implementation of additional corrector dipoles to adjust for any positional and angular discrepancies
after the chicane.

An additional note should be made to the considered 1𝐷 limit for the energy exchange. This
model assumes that all radiation interacts with every particle within a specific longitudinal distance,
disregarding the transverse size, dispersion, or the radiation’s opening angle. The underlying
assumption for the derivation of these formulas is [75]

𝜎𝑥 �
(
𝑅𝜎2𝑧

) (1/3)
' 350 µm . (3.54)

If this criterion is not met, the 1𝐷 model may overestimate the effects of CSR [76]. However, this
criterion is likely to be fulfilled in the first and most important dipole, where the bunch is still short.
Therefore the 1𝐷 estimations are applicable.
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The energy exchange induced by synchrotron radiation affects the particles’ trajectories, potentially
leading to emittance growth. The increase in horizontal normalized emittance due to synchrotron
radiation may be quantitatively assessed through [77, 78]

Δ𝜖𝑛,𝑥 = Δ𝜖 (𝑠)𝑛𝑥 + Δ𝜖 (𝑥)𝑛𝑥
(3.55)

Δ𝜖 (𝑠)𝑛,𝑥 ' 7.5 × 10−3
𝛽𝑥
𝛾0

©­«
𝑟𝑒𝑁𝑒𝐿

2
mag

𝜌5/3𝜎4/3𝜁

ª®¬
2

(3.56)

Δ𝜖 (𝑥)𝑛,𝑥 ' 6.2 × 10−3
𝛽𝑥
𝛾0

(
Λ𝑥𝑟𝑒𝑁𝑒𝐿mag

𝜌𝜎𝜁

)2
(3.57)

with Λ𝑥 = ln
©­­«

(
𝜌𝜎2𝜁

)2/3
𝜎𝑥

(
1 + 𝜎𝑥

𝜎𝜁

)ª®®¬
with the classical electron radius 𝑟𝑒. Δ𝜖

(𝑠)
𝑥 and Δ𝜖 (𝑥)𝑥 represent the contributions to the emittance

growth from the longitudinal or transverse electric fields acting on the bunch, respectively.

The impact of emittance growth on the bunch, dependent on its length and horizontal beam size, is
illustrated in fig. 3.12. For the same bunch and dipole magnet as previously considered, maintaining
a horizontal beam size below 155 µm in the first dipole magnet limits the normalized emittance to
double its initial value of 1mmmrad, while reducing it below 105 µm and 65 µm keeps the increase
below 50% and 20% respectively.

Emittance growth in the vertical plane is significantly less and orders of magnitude smaller [79]. For
this case, the relative increase in vertical normalized emittance has been estimated to be only about
10−5, therefore being negligible. Utilizing an S-shaped chicane, as opposed to a C-shaped one, could
mitigate emittance growth, since the transverse forces in the two halves of such a setup act in opposing
directions [80]. However, this configuration would extend the length of the beamline, presenting its
own set of challenges.

3.7 Transfer Map Calculation for LUX Magnets

Not every magnetic field configuration yields equations of motion that can be analytically solved. This
often involves addressing the fringe fields of magnets, which naturally occur as the magnetic field
does not abruptly drop to zero at a magnet’s boundary. Instead, it transitions smoothly to the field-free
region, adhering to Maxwell’s equations. Further, to accurately describe the motion in more complex
field configurations, higher order transfer maps are required. The discussion of fringe field effects and
higher orders was intentionally omitted in the analytical discussions in section 3.1 for clarity of the
basic concept, and should be briefly addressed here.
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Figure 3.13: Comparison of (black solid) a realistic quadrupole field profile with models
for simplification, which include (blue box) the usual hard-edge model, (orange box) a
modified hard-edge-model to improve accuracy of the matrix elements, and (green dotted)
a step-wise approximation with 20 subdivisions.

Fringe Fields and Non-Analytical Models

A way to find the transfer matrix elements for arbitrary field profiles is by solving the equations of
motion numerically, i.e. by tracking a substantial number of particles through the magnetic field, and
fit the matrix elements to the final coordinates [81–83]. However, this requires the exact 3𝐷 field to be
known.

A simpler approach, that is applicable to many beam optics elements, is the use of an equivalent field
with the same integrated field. For this purpose consider the matrix eq. (3.9) for a pure quadrupole
field. The commonly used "hard-edge" model [84] simplifies the field profile to a constant gradient,
determined by the peak gradient at the center of the magnet 𝑔0, and an effective length obtained by
dividing the integrated field by this gradient

𝐿eff =

∫
𝑔(𝑧) d𝑧
𝑔0

, (3.58)

where the integration is performed over the full field profile.

The peak gradient 𝑔0 and the effective length are then used in eq. (3.9) to describe the transport though
the quadrupole. The use of the peak field is justified by the fact that it is the most influential part of
the magnet onto the beam dynamics. This model gives a reasonable approximation for the transfer
matrices and can be used as a first educated guess for the beam optical properties when designing a
beamline.
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While the peak field provides a approximation for transfer matrices and aids in initial beamline design,
its accuracy reduces with shorter magnet lengths 𝐿 . 𝑑 [85],where 𝑑 is the bore diameter, and large
quadrupole strengths 𝐾1 � 1 [86]. As LUX targets to be a compact accelerator, the used components
were chosen to be of short length. However, this results in the requirement of high gradients to
transport the beam at the expected energies. Such high gradient electromagnet quadrupoles with a
yoke length of 10 cm are used at LUX. With typical 𝐾1 values on the order of 10 to 100m

−2, a more
precise calculation of matrix elements, including fringe fields and their impact on the beam transport,
has to be considered.

Enhancing the accuracy of matrix elements can be approached in several ways. Onemethod is to rescale
the peak field and effective length in the hard-edge model to better match the true matrix elements
[84]. Alternatively, the field profile could be divided into smaller segments, each characterized by its
own field strength and shape [87], or the fringes could be parametrized using integrals to incorporate
their influence more accurately [88, 89].

For an improved hard-edge model a modified effective length and a corresponding effective field
strength is calculated as [84, 90]

𝐿eff,S =

(
12
𝐿eff

∫
𝑧2
𝑔(𝑧)
𝑔0
d𝑧

)1/2
, 𝐾1,𝑆 =

𝐿eff
𝐿eff,S

𝐾1 . (3.59)

The increased effective length at lower peak field better reflects the impact of the fringes and improves
the accuracy of the used matrices [86]. Therefore, using this modified effective length ensures that
both routine operations and detailed studies benefit from enhanced modeling precision of fringes.
For optimizations and simulations conducted with the accelerator code Elegant [83], the modified
hard-edge model was utilized.

Additionally to this approach, an in-house matrix code is used, that either uses a hard-edge model with
the values obtained by eq. (3.58) and eq. (3.59), or matrices from the numerical integration of the
equations of motion, including the measured fringe fields. The latter is used to increase the accuracy
further.

For the two electron spectrometers at LUX, addressing the challenges posed by the large deflection
angles, energy-dependent path lengths through fringe regions, and screen rotation relative to the beam
axis requires tracking and cannot be described by a normal dipole model [48, 91]. To accurately model
these transfer maps, particle trajectories were numerically tracked through measured 3𝐷 field maps of
the magnets using ASTRA[92]. Subsequently, the relationship between initial coordinates of particles
entering the spectrometers and their final positions on the spectrometer screens were determined by
fitting the matrix elements that describe the transformation from the input to the output states. These
matrices are incorporated into the in-house code to accurately describe the imaging into the electron
spectrometers, while taking into account their geometry and the specifics of their magnetic field.
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Energy Deviations

The equations of motion handle particles that deviate in energy from the reference particle by their
relative energy offset 𝛿. To increase the accuracy of the beam transport calculations, especially
when dealing with larger energy deviations, the utilization of higher-order elements is necessary.
While a first-order transport model suffices for basic understanding, most accelerator simulation
codes incorporate higher-order contributions for increased accuracy in particle tracking and lattice
optimization. However, this approach lacks the ability to easily address and optimize the properties of
individual energies within the beam other than the reference energy.

An approach to extend the formalism to more accurately describe such deviating energies, is to use
individual matrices with exact momentum 𝑝 for each energy of interest. Every energy considered this
way then has its individual set of transport matrices with the normalized field components 𝑏𝑖 adjusted
accordingly.

This approach becomes particularly useful when dealing with changes in the beam size at energies
different from the reference energy, as these variations are not readily available from standard transport
matrices. Further, it allows to optimize the beamline for multiple energies simultaneously in an easy
and direct way. An algorithm to utilize this property was developed and used in section 5.2, to focus
different energies contained in the beam at different positions in the beam line.

3.8 Conclusion

The properties of laser-plasma accelerated beams can pose a challenge to their transport and therefore
their utilization in an FEL experiment. Degrading effects have to be limited and beam quality preserved
during transport. This chapter explored various effects that can impact beam quality during transport
and decompression, including collective phenomena like longitudinal space charge and coherent
synchrotron radiation. However, their impact depends on the actual beam parameters and has to be
mitigated by proper beam manipulation. Consequently, the beamline design has to account for this.
Within the beamline, the quadrupoles have to be well aligned and their strengths accurately known, to
properly focus the beam at the proper position, longitudinally and transversely.

For successful integration into an FEL setup, the beamline must adhere to some requirements to
control and minimize adverse influences:

• Capturing the beam early is essential to reduce initial divergence, thereby preventing a growth
of emittance and potentially slice energy spread.

• Maintaining a small divergence on the level of 0.1mrad divergence throughout transport avoids
reintroducing those detrimental effects.

• A shorter beamline reduces cumulative adverse effects, enhancing overall beam quality.

• While maintaining small transverse beam sizes increases tolerance for magnet errors, overly
small sizes should be avoided to prevent significant space charge effects.
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• Achieving a minimal horizontal beam size in the decompression chicane, particularly in the first
dipole, limits emittance growth due to coherent synchrotron radiation.

• Transverse positioning of beam optical elements within 10 µm relative to a common axis ensures
that transverse offsets within the undulator are kept below 100 µm, reducing the need of corrector
dipoles.

• Reducing external magnetic fields minimizes unwanted kicks and dispersion.

• Installation of corrector dipoles can effectively compensate for residual misalignments and
external field influences.

These considerations are incorporated in optimizing the beam transport and have to be balanced with
the needs and space requirements of diagnostics.
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CHAPTER 4

Free-Electron Lasers

A free-electron laser is a source of intense, coherent synchrotron radiation, able to generate wavelengths
over a wide range from the microwave regime down to sub-nanometer hard X-rays of short pulse
duration. Following previously available synchrotron radiation sources, such as parasitic or dedicated
generation in bends of storage rings, or wigglers, FELs are referred to as 4th generation light sources
[1]. Several FELs are currently operational worldwide, with more under construction or proposed [93,
94].

Early theoretical considerations of generating intense light pulses at below cm to sub-mm wavelength
in a periodic electromagnetic oscillator structure [95] were followed by the description [96] and first
operation of an undulator [97]. The free-electron lasing process, based on the stimulated emission
in undulators, was predicted [98, 99] and later experimentally demonstrated [100, 101]. Originally,
FELs utilized optical cavities for amplification of the radiation over multiple passes. However,
subsequent theoretical developments showed that saturation could be reached from spontaneous
emission alone, leading to the concept of self-amplified spontaneous emission (SASE) for single-pass
FELs, eliminating the need for optical cavities [102, 103]. Dropping the requirement to reflect the
radiation and achieving high intensities in a single pass is especially important for developing X-ray
FELs due to the lack of mirror materials for nm-scale wavelengths. The formulation of the high-gain
theory [104] further enhanced the understanding of the FEL process, laying the groundwork for the
modern understanding, design and operation of FELs.

This chapter summarizes the fundamental concepts important to the understanding of an undulator and
a free-electron laser, and their application to the LUX experiment. The basic motion in the undulator
is described in section 4.1, followed by properties of the undulator radiation in section 4.2 and the
1𝐷 FEL theory in section 4.3. Implications by 3𝐷 and degrading effects relevant to LUX are treated
separately in section 4.4. The optimization of the beam properties and interaction of the beam with the
FEL pulse is discussed in section 4.5. Finally, simulations with the obtained parameters to estimate
the expected performance are presented in section 4.6.
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Figure 4.1: Schematic view of an undulator structure with alternating polarity of the
magnets, guided by iron pole shoes towards the gap and creating a periodic vertical
magnetic field along (green line) the central axis. The electron beam moves on a (red line)
sine trajectory in the horizontal plane about this central axis. Figure adapted from [105].

4.1 Electron Motion in the Undulator

An undulator is a device, which produces an alternating magnetic field, to accelerate the electrons
perpendicular to their axis of motion, causing them to emit radiation. Due to its periodicity an
increasing amount of radiation is generated, which eventually in return can interact with the electrons.
A schematic illustration of this motion is shown in fig. 4.1 and will be briefly presented in the following.

4.1.1 Magnetic Field of an Undulator

A magnetic field that represents a perfect undulator structure and satisfies Maxwell’s equations can be
found by solving the Laplace equation 4𝜙𝐵 = 0 for a scalar potential 𝜙𝐵 in absence of electric fields
and currents. At LUX a plane pole undulator is used, that has the main field component in vertical
𝑦 direction. For the discussion of the motion of the particles in the field, it is sufficient to consider
an horizontally infinitely wide magnetic structure, neglecting the influence of finite pole width. The
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4.1 Electron Motion in the Undulator

solution for the corresponding magnetic field 𝑩 = ∇𝜙𝐵 in cartesian coordinates 𝑥, 𝑦, 𝑧 is [106]:

𝐵𝑥 = 0
𝐵𝑦 = 𝐵0 cosh

(
𝑘𝑢𝑦

)
cos

(
𝑘𝑢𝑧

)
𝐵𝑧 = −𝐵0 sinh

(
𝑘𝑢𝑦

)
sin

(
𝑘𝑢𝑧

)
(4.1)

with 𝑘𝑢 being the undulator wave number of the field and linked to the period length 𝜆𝑢 = 2𝜋/𝑘𝑢.
Here, the field is chosen such that the main component points in the 𝑦-direction and the periodic
structure goes along the 𝑧-axis.

As trajectories of interest are close to the central axis, where |𝑘𝑢𝑦 | � 1, the field is expanded about
small vertical offsets to first order:

𝐵𝑥 = 0
𝐵𝑦 ' 𝐵0 cos

(
𝑘𝑢𝑧

)
𝐵𝑧 ' −𝐵0𝑘𝑢𝑦 sin

(
𝑘𝑢𝑧

)
. (4.2)

4.1.2 First Order Motion

Plugging the vertical field component into eq. (3.6) yields an equation of motion for a particle without
energy deviation in the horizontal plane

𝑥 ′′ =
𝑒𝐵0
𝛾𝑚𝑒𝑐

cos
(
𝑘𝑢𝑧

)
, (4.3)

where relativistic motion 𝛽 ' 1 is assumed. Integration with respect to the longitudinal position 𝑧 in
the undulator gives the horizontal position and its change

𝑥 ′ =
∫

𝑥 ′′ d𝑧 =
𝐾

𝛾
sin

(
𝑘𝑢𝑧

) + 𝑥 ′0 (4.4)

𝑥 =
∫

𝑥 ′ d𝑧 = − 𝐾

𝛾𝑘𝑢
cos

(
𝑘𝑢𝑧

) + 𝑥 ′0𝑧 + 𝑥0 , (4.5)

where the undulator strength parameter 𝐾 = 𝑒𝐵0
𝑚𝑒𝑐𝑘𝑢

' 0.934𝐵[T]𝜆𝑢 [cm] is introduced. It defines the
maximum change in horizontal position 𝑥 ′ ≤ 𝐾/𝛾 and also the angular width of the radiation cone of
the radiation emitted along one undulator period 𝜃max ' 𝐾/𝛾 as the electron sweeps over this angular
region [106]. The magnetic structure and the oscillatory motion in the horizontal plane are depicted in
fig. 4.1.

53



Chapter 4 Free-Electron Lasers

Similarly the transverse velocity 𝛽𝑥 (𝑧) = (𝐾/𝛾) sin(𝑘𝑢𝑧) + 𝛽𝑥,0 is directly computed by rewriting the
Lorentz force eq. (3.1) in terms of the velocity and integrating 𝛽′𝑥 , having the same form as eq. (4.4).
Using this the momentary (for 𝛽𝑥,0 = 0) and average longitudinal velocities are given by

𝛽𝑧 =
√︃
𝛽2 − 𝛽2𝑥

𝛾�1' 1 − 1
2𝛾2

(
1 + 𝐾2 sin2(𝑘𝑢𝑧)

)
(4.6)

= 𝛽𝑧 +
𝐾2

4𝛾2
cos

(
2𝑘𝑢𝑧

)
(4.7)

𝛽𝑧 =
1
𝜆𝑢

∫ 𝜆𝑢

0
𝛽𝑧 d𝑧 ' 1 −

1
2𝛾2

(
1 + 𝐾

2

2

)
. (4.8)

The longitudinal motion is slowed down by (𝐾/2𝛾)2 on average due to the detour and performs small
oscillations with the same amplitude. This longitudinal oscillation is twice as fast as the transverse
oscillation.

4.1.3 Undulator Focusing

In addition to the average movement in the undulator, the methods presented in chapter 3 can be
utilized to calculate the transport elements for the undulator. Although the wiggling motion at any
longitudinal position 𝑧 is important to describe the emission of and interaction with radiation, as
explored in the next sections, the focusing properties of an undulator are well described by a smooth
period-averaged motion, considering only slow changes [107]. Following this approach using the
above result for 𝑥 ′ in the undulator and averaging the right hand side over one period, the equation of
motion to first order for the 𝑦 component becomes [106]

𝑦′′(𝑧) = −𝑒𝐾
2𝑘2𝑢

2𝛾20
𝑦 . (4.9)

The corresponding first order transport matrix in this smoothed sense, neglecting the influence of the
oscillations over individual undulator periods, is given by

𝑅und,𝑦 =
©­«
cos

(
𝜔𝑦𝐿

)
1
𝜔𝑦
sin

(
𝜔𝑦𝐿

)
−𝜔𝑦 sin

(
𝜔𝑦𝐿

)
cos

(
𝜔𝑦𝐿

) ª®¬
with 𝜔2𝑦 =

𝐾2𝑘2𝑢

2𝛾20
(4.10)

In the averaged motion, variations in the horizontal plane vanish and the undulator only focuses the
beam in the non-wiggling plane, similar to a magnetic quadrupole with focusing strength 𝜔2𝑦 . This is
due to particles that are vertically offset see a longitudinal field component between the poles that
couples to the horizontal wiggling motion. For the infinitely wide undulator model, no change from a
free drift is obtained at first order, except for the oscillatory motion with no influence on the averaged
horizontal envelope.
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4.1.4 Beam Size in the Undulator

The obtained matrix and the formalism shown in section 3.1 is used to calculate the transport through
the undulator. Focusing effects are taken into account to still achieve the desired beam focus position
and size for non-negligible ratios (𝐾𝑘𝑢𝐿𝑢)/𝛾0. Further it allows to determine the smallest achievable
minimum and average beam sizes. This is done to maximize the current density available throughout
the undulator and additionally keep all particles close to the center to avoid off-axis field deviations.

First, the average beam size in the horizontal plane without focusing and neglecting any field
imperfections is minimized. The beam envelope is expected to behave like in a free drift. Therefore,
the beta function inside the undulator is given by

𝛽𝑥 (𝑧) = 𝛽𝑥,in − 2𝛼̂𝑥,in𝑧 +
1 + 𝛼̂2𝑥,in
𝛽𝑥,in

𝑧2 (4.11)

with the average beta function

𝛽𝑥,avg = 𝛽𝑥,in − 𝛼̂𝑥,in𝐿𝑢 +
1 + 𝛼̂2𝑥,in
𝛽𝑥,in

𝐿2𝑢
3

(4.12)

In the symmetric case with a waist at the undulator center, i.e. 𝛼̂𝑥,min = 0 at that position, the beta
function along the undulator is expressed as

𝛽𝑥 (𝑧) = 𝛽𝑥,min +
1

𝛽𝑥,min
𝑧2 , (4.13)

and the average value reformulated as

𝛽𝑥,avg = 𝛽𝑥,min +
1

𝛽𝑥,min

𝐿2𝑢
3

. (4.14)

Minimizing the average beta function shows that indeed the symmetric case yields the smallest average
beam size. In that case the beam size is matched at the undulator entrance with

𝛼̂𝑥,in =
√
3 and 𝛽𝑥,in =

√︁
4/3𝐿𝑢 . (4.15)

The average and minimum beta-function for a 2m undulator follows from this as

𝛽𝑥,avg = 𝐿𝑢/
√
3 ' 1.15m (4.16)

and

𝛽𝑥,min = 𝐿𝑢/(2
√
3) ' 0.58m . (4.17)

The average beam size for LUX parameters with a geometric emittance of 𝜖𝑥 ' 1.75 nm is then found
by averaging over 𝜎𝑥 (𝑧) =

√︁
𝜖𝑥𝛽𝑥 (𝑧) to be 𝜎𝑥,avg ' 45 µm.
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For the LUX reference beam and an undulator 𝐾 = 2, the focusing strength 𝜔𝑦 ' 1 which
corresponds to the beam covering about a third of the focusing oscillation over 2m undulator
length. In a similar fashion to the horizontal beam size, the vertical average beta function is
optimized including the oscillatory behavior with a minimum beta function at the undulator center
𝛽𝑦,min =

√︃
(1 − sinc(𝐿𝑢𝜔𝑦)/(1 + sinc(𝐿𝑢𝜔𝑦))/𝜔𝑦 . The resulting average beta function is

𝛽𝑦,avg =
1
𝜔𝑦

√︂
1 − sinc2

(
𝐿𝑢𝜔𝑦

)
, (4.18)

which gives a similar average vertical beam size of 𝜎𝑦,avg ' 40 µm. Again, minimizing the beam size
directly instead of the beta function, also does not significantly alter the average beam size for the
assumed 𝐾 and 𝜔𝑦 .

Another useful solution appears when matching into the undulator with 𝛽𝑦,in = 1/𝜔𝑦 and 𝛼̂𝑦,in = 0,
which balances the divergence and the focusing force of the undulator, such that the beam size stays
constant and 𝛽𝑦,avg = 𝛽𝑦,in. For the LUX reference beam and undulator parameters both these solutions
yield similar beam.

The average beam sizes cannot be reduced further than those values. Typically, they are larger either
due to degrading effects during transport or chromatic aberration from the quadrupoles’ combined
imaging into the undulator, if not compensated. Therefore, the beam size and in consequence the
current density may change along the bunch. On the other hand proper beam manipulation might
utilize this to improve the FEL output [108]. However, the obtained parameters for the beam sizes
provide a reference for the typical values available in the undulator.

4.2 Basic Radiation Properties

During the electrons’ motion through the undulator spontaneous undulator radiation is emitted. Since
it is part of the startup of a SASE FEL, both share some properties like the fundamental wavelength,
and they have to be differentiated from each other at low FEL amplification. During the sinusoidal
motion of the relativistic electrons, with 𝛾 � 1, in the magnetic field of the undulator, they constantly
emit synchrotron radiation into a cone with opening half-angle of about 1/𝛾 [106]. This can be
understood from the distribution of emitted power in a moving frame with the instantaneous velocity
at the position of a bend. In that frame the radiation is emitted in a dipole pattern according to the
Larmor equation. By Lorentz-transforming the radiation to the laboratory frame, causing relativistic
aberration, the forward cone is contained within 𝜃 = ± arcsin(1/𝛾) ' ±1/𝛾. Therefore a common
distinction between an undulator and a wiggler is made if 𝐾 � 1, as the opening angle of the radiation
is then dominated by the previously found radiation cone due to the electrons’ instantaneous direction
of movement. However, the exact value of 𝐾 where this distinction is made is arbitrary and different
values of 𝐾 can be found in literature, also in combination with device length or energy [106, 109].
The main distinction criterion is their different spectra in the observed frequency range.

In the following the observable properties of the radiation from electrons in the undulator are described.
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Figure 4.2: (a) Fundamental wavelength of undulator radiation for different electron
energies dependent on undulator strength given by eq. (4.20). Gray shaded area indicates
transmission window of an aluminum filter ≈ 17 to 80 nm in the reasonably accessible
range for the undulator strength of 0.5 < 𝐾 < 2.55. (b) Transmission of a 250 nm
aluminum filter.

Wavelength

To obtain the fundamental wavelength, the electrons’ motion in a frame moving along with the bunch
with 𝛽𝑧𝑐 from eq. (4.8) is considered. The magnetic structure is Lorentz-contracted by 𝛾𝑧 , acting like
a traveling electromagnetic wave, with an electric field pushing the electron transversely. In that frame
the transverse velocity of the electrons oscillates with a frequency 𝜔∗ = 2𝜋𝑐𝛽𝑧𝛾𝑧/𝜆𝑢 and they emit
dipole radiation as mentioned before. Looking at the radiation in the laboratory frame from an angle 𝜃
to the longitudinal axis, another Lorentz transformation can be applied to get a relation between the
observed photon energy 𝐸ph = ℎ𝜔𝑙 = 2𝜋𝑐/𝜆𝑙 and the photon energy in the moving frame 𝐸∗

ph = ℎ𝜔
∗.

From these relations, the observable radiated wavelength 𝜆𝑙 from the undulator is calculated as as

𝜔∗ = 𝛾𝑧𝜔𝑙
(
1 − 𝛽𝑧 cos 𝜃

)
⇔ 𝜆𝑙 =

𝜆𝑢

𝛽𝑧

(
1 − 𝛽𝑧 cos 𝜃

)
. (4.19)

Substituting 𝛽𝑧 from eq. (4.8) and approximating for small angles cos 𝜃 ' 1 − 𝜃2/2 the fundamental
wavelength of undulator radiation is given by

𝜆𝑙 '
𝜆𝑢

2𝛾2

(
1 + 𝐾

2

2
+ 𝛾2𝜃2

)
, (4.20)

where terms containing 𝜃2/𝛾2 were dropped. The 𝜃2 dependence indicates the red shift of photons
with an angle to the longitudinal undulator axis in the observer frame. This is due to less momentum
towards the forward direction in the moving frame. Due to the apparent transverse motion not being
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sinusoidal in time due to the oscillating longitudinal velocity eq. (4.6), higher harmonics appear
naturally in the emitted radiation. Although not being sinusoidal, the motion is symmetric about a half
period. Therefore a Fourier expansion only yields odd harmonics towards the forward direction [110].
This distortion from a sinusoidal motion and therefore higher harmonics are suppressed for 𝐾 � 1.
Increasing 𝐾 � 1 leads to stronger higher harmonics in the spectrum, reasoning the above mentioned
distinction between undulators and wigglers. Further, when looking at the motion from non-forward
direction moving away from the axis, the symmetry is broken and even harmonics are observable.

The fundamental wavelengths for different electron energies 𝛾 with respect to the undulator parameter
𝐾 are shown in fig. 4.2. The electron beam energies at LUX generate wavelengths in the range of the
extreme ultraviolet [111] when passing through an undulator with typical values of 𝐾 on the order of
1 . In this wavelength range, an aluminum filter with transmission window of approximately ≈ 17
to 80 nm [112, 113] is used to block the laser that drives the laser-plasma acceleration, which could
otherwise mask the FEL signal.

For the LUX reference beam with an energy 𝐸 = 300MeV, staying within the observable wavelength
range requires a 𝐾 < 2.3 for an undulator period length of 𝜆𝑢 ' 15mm. Conversely, considering a
reasonable range of undulator strengths from 𝐾 > 0.5 to the maximum 𝐾 < 2.55 at room temperature
[114] in principle allows for a wide accepted energy range of the electron beam from 175MeV to
650MeV.

Interference and Opening Angle

As indicated in fig. 4.3, constructive interference requires that the radiation emitted by an electron
at different positions along the undulator has the same phase, which is dependent on the angle of
emission. To have the phase matched, the traveled time of the bunch along the undulator and that of
a wavefront from previously emitted radiation must only differ by a multiple of the wavelength per
speed of light

𝜆𝑢 cos 𝜃 + 𝑛𝜆𝑙
𝑐

=
𝜆𝑢

𝛽𝑧𝑐
, (4.21)

which is the same as eq. (4.19) to eq. (4.20) if re-arranged for 𝑛𝜆𝑙 and expanded about 1/𝛾 ' 0. Higher
harmonics with wavelength 𝜆𝑙/𝑛 also interfere constructively, which is the coherence condition for
undulator radiation. Similarly the opening angle of the radiation of a given wavelength from the
undulator is obtained by finding the angle 𝜃∗ where full destructive interference first occurs. This is
when the advance of the light wave compared to the electron beam is one wavelength over the full
undulator [106]. From the picture shown in fig. 4.3 the condition for destructive interference at the
fundamental wavelength is deduced to be

𝑁𝑢𝜆𝑢 cos 𝜃
∗ + (𝑁𝑢 + 1)𝜆𝑙 =

𝑁𝑢𝜆𝑢

𝛽𝑧
. (4.22)
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Figure 4.3: Illustration of the coherence condition for undulator radiation. An electron
travels one undulator period 𝜆𝑢 from A to B in 𝑡 = 𝜆𝑢/(𝛽𝑧𝑐), therefore radiation of
wavelength 𝜆𝑙 emitted at A under an angle 𝜃 is traveling a distance 𝜆𝑢/(𝛽𝑧 in the same time.
Radiation emitted at B in the same direction interferes constructively if the wavefront is
shifted by an integer multiple of 𝜆𝑙 . Figure adapted from [106].

Equating this with the constructive interference, the opening angle of the cone about the central axis
𝜃 = 0 containing the fundamental radiation is

𝜃∗ '
√︄
2𝜆𝑙
𝑁𝑢𝜆𝑢

=
1
𝛾

√√
1 + 𝐾 2

2
𝑁𝑢

, (4.23)

where cos 𝜃∗ ' 1−𝜃∗2/2 was expanded. It should be noted that an undulator parameter 𝐾 ≥ 1 broadens
the radiation cone, while for values 𝐾 � 1 the approximation 𝜃∗ ' 1/(𝛾√︁𝑁𝑢) is commonly used. For
LUX at 300MeV and 𝐾 = 2, this corresponds to an approximate half-angle of 𝜃∗ = 0.25mrad of the
on-axis radiation cone for the fundamental wavelength. The angular distribution can be approximated
by a Gaussian with standard deviation [106]

𝜎∗
𝑟 ′ =

𝜃∗√
2
=

√︄
𝜆𝑙
𝐿𝑢

. (4.24)

59



Chapter 4 Free-Electron Lasers

−#D_D/2 0 #D_D/2
Time 2C

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

el
ec

tri
c

fie
ld

�
/�

0

(a)

−1/#D 0 1/#D

Frequency Δl/l;

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

in
te

ns
ity

�(l
)/
�(l

;)(b)

Figure 4.4: (a) Finite wave train of 𝑁𝑢 = 10 cycles and (b) corresponding spectrum with
minima at Δ𝜔/𝜔𝑙 = ±1/𝑁𝑢 .

Further assuming the radiation from the undulator behaves as the fundamental mode of an optical
resonator, the source size is obtained from the relation of the phase space volume 𝜆𝑙/2 = 2𝜋𝜎∗

𝑟𝜎
∗
𝑟 ′ to

be [115]

𝜎∗
𝑟 =

1
4𝜋

√︁
𝜆𝑙𝐿𝑢 . (4.25)

Bandwidth

To estimate the spectrum of the (single particle) on-axis radiation, a finite light pulse consisting of a
sinusoidal wave train is considered, neglecting higher harmonics. During the motion in the undulator
one oscillation of the wave train is emitted per undulator period, yielding 𝑁𝑢 cycles and a pulse
duration of 𝑇 = 𝑁𝑢𝜆𝑙/𝑐 = 𝑁𝑢2𝜋/𝜔𝑙. The (intensity) spectrum is obtained as the squared Fourier
transform of the light pulse

𝐼 (𝜔)
𝐼 (𝜔𝑙)

= sinc2
(
𝜋𝑁𝑢Δ𝜔

𝜔𝑙

)
(4.26)

with Δ𝜔 = 𝜔 − 𝜔𝑙. The wave train and the spectral shape is shown in fig. 4.4. The position
of the first zeros of the sinc2-function appear at an argument of ±𝜋, resulting in a spectral half-
width of Δ𝜔/𝜔𝑙 = 1/𝑁𝑢 of the central peak. The FWHM can be (numerically) determined to be(
Δ𝜔/𝜔𝑙

)
FWHM ' 0.89/𝑁𝑢 . It should be noted that this derivation only considers the on-axis radiation

at the fundamental wavelength. Collecting the radiation from a wide range of angles shows a broader
spectrum due to the angle dependent Doppler frequency shift in eq. (4.20).
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Emitted Power

The energy loss of a single electron passing through a magnetic structure is given by [106]

Δ𝐸 =
𝑒4𝐸2

6𝜋𝜖0𝑚
4
𝑒𝑐
6

∫ 𝐿𝑢

0
𝐵(𝑧)2 d𝑧 . (4.27)

Assuming a purely sinusoidal magnetic field the total emitted instantaneous power from an electron
beam follows from the product of the energy loss and the beam current [116]

𝑃sp =
Δ𝛾𝑚𝑒𝑐

2

𝑒
𝐼 (4.28)

=
𝜋𝑒

3𝜖0
𝛾2𝐼𝐿𝑢

(
𝐾

𝜆𝑢

)2
. (4.29)

For LUX, a 300MeV beam with a current of 1 kA passing through a 2m undulator of 𝐾 ' 2 therefore
emits spontaneous radiation with a power level of about 𝑃sp ' 230 kW. However, this characterizes
the power over all angles and frequencies. Considering only the power emitted at the fundamental
within the opening angle eq. (4.23) and relative spectral bandwidth 1/𝑁𝑢 [116]

𝑃sp,cen =
𝜋𝑒

𝜖0

𝛾2𝐼

𝜆𝑢

𝐾2 [𝐽𝐽]2(
1 + 𝐾 2

2

)2 ' 0.5 kW . (4.30)

The modification [𝐽𝐽]to the undulator parameter 𝐾 has its origin in the longitudinal velocity of the
electrons following eq. (4.6). For planar undulators this “Bessel 𝐽𝐽-Factor” is given by

[𝐽𝐽] = 𝐽0(𝜉) − 𝐽1(𝜉) with 𝜉 =
𝐾2

4 + 2𝐾2
, (4.31)

where 𝐽0 and 𝐽1 are Bessel functions of the first kind. The values from eq. (4.29) and eq. (4.30)
were compared to a numerical calculation using the synchrotron radiation tool SPECTRA [117]. The
opening angle was chosen slightly larger than eq. (4.23) to be 𝜃 = ±2.5mrad to collect all the radiation
that would fit through the beam pipes available at LUX. Within this angle the total emitted radiation
is expected to have a power of about 150 kW. Again considering only the frequencies about the
fundamental, as would be available from a spectrally resolved measurement, the power drops to a
value close to eq. (4.30) of 𝑃sp, 𝜃 ' 1 kW. This power level has to be exceeded by the FEL radiation to
outperform the spontaneous radiation and is in the following considered as the lower threshold.

4.3 High-Gain Theory

The methods and formulas described in the previous section only considered the emission from the
electrons, but not the interaction between the radiated light and the electrons. However, due to energy
transfer from the electrons to an electric field, either the spontaneous emission by the electron bunch
or generated from an external source to seed the process, the field amplitude can grow by large factors.

61



Chapter 4 Free-Electron Lasers

4.3.1 Energy Transfer and Microbunching

The energy transferred between the electric field and an electron (indexed 𝑛) is given by the zeroth
component of the covariant form of the Lorentz force

d𝛾𝑛
d𝑡

=
−𝑒
𝑚𝑒𝑐

𝜷𝑛 · 𝑬 . (4.32)

An electron loses energy to the field when its velocity points in the same direction as the electric field,
and otherwise gains energy from the field. This energy exchange occurs depending on the relative
position of an electron to the light field. Assuming that the bunch is longer than the electric wave
train 𝜆𝑙 < 𝜎𝑧 , longitudinal energy modulations will be imprinted onto the bunch. Depending on their
energy, the particles then follow a longer or shorter detour in the undulator field, scaling with 𝛾−1

according to eq. (4.4). Therefore, particles gaining energy catch up to preceding ones, while those
losing energy fall back, causing a density modulation.

Utilizing the transverse and longitudinal velocities obtained in the previous section and the Ansatz of
an oscillating electric field 𝐸𝑥 into eq. (4.32), the energy transfer is described by [105]

d𝛾𝑛
d𝑡

= −𝑒𝐾 [𝐽𝐽]𝐸𝑥
2𝛾0𝑚𝑐

2 (cos(𝜓) − cos(𝜒)) (4.33)

with the arguments 𝜒 = (𝑘𝑙 − 𝑘𝑢)𝑧 − 𝜔𝑙𝑡, a fast oscillation, and 𝜓 = (𝑘𝑙 + 𝑘𝑢)𝑧 − 𝜔𝑙𝑡. 𝜓, called
ponderomotive phase. The latter describes the position of a particle relative to the electric field.

Here, [𝐽𝐽], as defined in eq. (4.31), accounts for the reduction of the interaction of the electrons with
the light field due to their longitudinal velocity, see eq. (4.6). To obtain an energy transfer to the field
that (on average) grows, either of the phases must be constant in time, i.e. d𝜒/d𝑡 = 0 or d𝜓/d𝑡 = 0,
therefore

𝛽𝑧
!
=

𝑘𝑙
𝑘𝑙 ± 𝑘𝑢

, (4.34)

where 𝜔𝑙 = 𝑘𝑙𝑐 and the average longitudinal electron velocity d𝑧/d𝑡 = 𝑐𝛽𝑧 were used. The minus
solution is ignored due to requiring superluminal speed, keeping only the one obtained from the
ponderomotive phase. This condition is fulfilled if 𝑘𝑙 = 2𝜋/𝜆𝑙 and is the same as eq. (4.19). This means
that the radiation wavelength required to induce a resonant energy modulation with unidirectional
energy transfer on average is identical to the wavelength of the spontaneous undulator radiation emitted
by the electrons. The cause is again attributed to the requirement of the light wave “slipping” over the
electron beam by one wavelength 𝜆𝑙 per undulator period 𝜆𝑢 .

The resulting density and current profiles form a periodic structure with high particle counts separated
by one wavelength of the electric field, called microbunches. During their formation they develop the
proper spacing to increasingly emit at the same phase, therefore interfering constructively.
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Figure 4.5: Gain curve obtained from eqs. (4.37a) to (4.37c) starting from a small initial
field. Insets (a)-(d) show the microbunching process at different stages of the amplification
process up to saturation, where the average energy transfer between electrons balances
and the power level starts to oscillate.

To describe this process, the change in phase for a single electron along the undulator is further
expressed via the longitudinal velocity from eq. (4.8) as

d𝜓𝑛
d𝑧

=
(
𝑘𝑙 + 𝑘𝑢

) − 𝜔𝑙

𝑐𝛽𝑧,𝑛
'

(
𝛾2𝑛 − 𝛾20
𝛾2𝑛

)
𝑘𝑢 , (4.35)

If the distribution of the electrons over the phases 𝜓 is exactly uniform, all particles having the exact
same energy with no spread, and there is no initial (external) field, there will be no energy transfer on
average. If all three conditions apply simultaneously, all contributions cancel out exactly in eqs. (4.33)
and (4.35) due to the conservation of energy. Thus, there must be some initial driver, such as statistical
noise in the spread of 𝜓 or 𝛾, or radiation to seed the FEL process, for amplification to happen.

4.3.2 Coupled First Order Equations

In addition to the change in electron energy, the next step is to also account for a change of the electric
field and the resulting effects of the microbunching process. These effects are incorporated through
the inhomogeneous wave equation(

∇2 − 1
𝑐2
𝜕

𝜕𝑡

)
𝑬̃ = 𝜇0

𝜕 𝒋

𝜕𝑡
+ 1
𝜖0
∇𝜌 , (4.36)

with the current density 𝒋 and the charge density 𝜌. The 𝑬̃ denotes that the field is described as
a complex valued wave. The fundamental aspects of the FEL theory are covered by 1𝐷 theory,
dropping variations in the charge density, 𝜕𝜌/𝜕𝑥 = 0, and transverse dependencies of the electric field,
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𝐸̃𝑥 = 𝐸̃𝑥 (𝑧, 𝑡). The highest order derivatives in 𝐸̃𝑥 are dropped, assuming that the amplitude and
phase change slowly, therefore called the slowly varying envelope approximation (SVEA). In this case
the second order derivatives are neglected while advancing one light wavelength in the undulator, i.e.��𝜕2𝐸̃𝑥/𝜕𝑧2�� � ��𝜕𝐸̃𝑥/𝜕𝑧�� /𝜆𝑙 � ��𝐸̃𝑥 �� /𝜆2𝑙 and ��𝜕2𝐸̃𝑥/𝜕𝑡2�� � ��𝜕𝐸̃𝑥/𝜕𝑡��𝜔𝑙 � ��𝐸̃𝑥 ��𝜔2𝑙 . Further, fast
oscillations shorter than the undulator period are replaced by their respective average contribution
over that range. Together with the found equations for the change in phase and electron energy, the set
of coupled first order differential equations describing the FEL interaction is [105]:

d𝐸̃𝑥
d𝑧

= −𝜇0𝑐𝐾 [𝐽𝐽]
4𝛾0

𝑗1 (4.37a)

d𝜂𝑛
d𝑧

=
−𝑒

𝛾0𝑚𝑒𝑐
2 Re

((
𝐾 [𝐽𝐽]𝐸̃𝑥
2𝛾0

− 𝑖𝑐
2𝜇0
𝜔𝑙

𝑗1

)
exp

(
𝑖𝜓𝑛

))
(4.37b)

d𝜓𝑛
d𝑧

= 2𝑘𝑢𝜂𝑛 (4.37c)

𝑗1 = 𝑗0
2
𝑁𝑒

𝑁∑︁
𝑛=1
exp

(−𝑖𝜓𝑛) ,

with the modulated current density 𝑗1. Instead of the absolute energy the deviation from the resonant
energy 𝜂𝑛 = (𝛾𝑛 − 𝛾0)/𝛾0 is used after an expansion about 𝛾𝑛 ' 𝛾0 to first order. The additional term
in eq. (4.37b) is the repelling space charge force between the electrons.

The set of equations describes the repeating and self-enhancing process fundamental to the FEL:

Equation (4.37a): Density modulations and bunching produce coherent radiation

Equation (4.37b): Coherent radiation induces energy modulations

Equation (4.37c): Energy modulations cause density modulations

A solution to the coupled first order equations is shown in fig. 4.5. During the FEL process the electric
field amplitude and the microbunching increase as energy is transferred from the electrons. In return
the energy spread increases and their phase changes. At some point energy is extracted back from
the light field and transferred to the electrons, when their phases do not align anymore. The process
comes to a saturation after amplifying the electric field by several orders of magnitude.

For self-amplified spontaneous emission (SASE) without an externally applied field, as it is the case
for LUX, the initial field is provided by the spontaneous undulator radiation, produced over the first
few undulator periods. The non-vanishing statistical noise of the finite particle distribution further
allows for a non-zero energy transfer to the field, as not all contributions to the bi-directional energy
transfer cancel.

4.3.3 Third-Order Equation and Fundamental FEL Scaling

A drawback of the coupled first order equations is, that for a system of 𝑁𝑒 electrons 2𝑁𝑒 + 1 equations
have to be solved. This restricts their analytical treatment and limits their applicability to numerical
calculations. By replacing the individual electrons by a distribution function, eq. (4.37a) may be

64



4.3 High-Gain Theory

0 2 4 6 8 10 12
Normalized length I/!6,0

100

101

102

103

104

N
or

m
al

iz
ed

po
w

er
ga

in
%
(I)

/%
in

Solution to third order equation
Approximation for I � !6

Figure 4.6: Gain power curve according to (blue solid) eq. (4.43) and (orange dashed) the
approximation for 𝑧 � 𝐿𝑔 for the first 12 gain lengths.

rewritten to a single integro-differential equation describing the increase in electric field amplitude
depending solely on the initial conditions [118]. For a mono-energetic beam with deviation 𝜂0 from
the resonance energy and assuming only small periodic density modulations, it reduces to a third order
differential equation in 𝐸̃𝑥[105]

𝐸̃ ′′′
𝑥

Γ3
+ 2𝑖 𝜂0

𝜌FEL

𝐸̃ ′′
𝑥

Γ2
+

(
𝑘2𝑝

Γ2
−

(
𝜂0
𝜌FEL

)2) 𝐸̃ ′
𝑥

Γ
− 𝑖𝐸̃𝑥 = 0 , (4.38)

with the gain parameter Γ =
(
𝜇0𝐾

2 [𝐽𝐽]2𝑒2𝑘𝑢𝑛𝑒/
(
4𝛾30𝑚𝑒

))1/3
and the space charge parameter 𝑘 𝑝 =√︃

2𝑒2𝜇0𝑛𝑒𝜆𝑙/(𝛾0𝑚𝑒𝜆𝑢), and the FEL scaling parameter (also called pierce parameter) 𝜌FEL = Γ/(2𝑘𝑢).
𝑛𝑒 denotes the electron number density. Due to the restriction to small modulations, eq. (4.38) describes
only the build-up and amplification process of the FEL, but not saturation.

The FEL parameter may be written in the more convenient form [104, 118]

𝜌FEL =
1
4𝛾𝑟

(
𝐼peak

𝐼𝐴

𝐾2 [𝐽𝐽]2𝜆2𝑢
𝜋2𝜎2𝑟

)1/3
(4.39)

with the non-relativistic Alfvén-current 𝐼𝐴 = 4𝜋𝑚𝑒𝑐/(𝜇0𝑒) ' 17 kA. The FEL parameter is a useful
quantity as it appears as a scaling in many quantities related to the high-gain FEL process. The
most obvious one from eq. (4.38) is the relation to the electron energy deviation, since if all energy
deviations 𝜂 � 𝜌FEL the contribution of the respective terms to the FEL process are strongly reduced.
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For the initial current of the LUX reference beam from section 2.4, an average beam size of
𝜎𝑟 ' 45 µm, as determined in section 4.1.4, and for an undulator strength of 𝐾 = 2 the FEL parameter
is 𝜌FEL ' 0.7%. This value is at least one order of magnitude larger than for conventional FELs,
where 𝜌FEL ' 0.01% – 0.1% [2, 4, 5, 119].

By scaling the quantities in the differential equation eq. (4.38) by 𝜌FELand using the Ansatz
𝐸̃𝑥 ∼ exp(−𝑖𝛼𝑧), a cubic polynomial equation

𝛼̂3 − 2𝜂0𝛼̂2 −
(
𝑘̂2𝑝 − 𝜂20

)
𝛼̂ − 1 = 0 (4.40)

is obtained that can be solved analytically. The scaled quantities are given 𝜂 = 𝜂/𝜌FEL = (𝛾 −
𝛾0)/(𝛾0𝜌FEL), 𝛼̂ = 𝛼/Γ and 𝑘̂ 𝑝 = 𝑘 𝑝/Γ. To describe the basic process of increase in the electric field
due to the FEL process, the case of negligible space charge 𝑘̂ 𝑝 → 0 and operation at resonance 𝜂 → 0
are considered. Then eq. (4.40) simplifies to

𝛼̂3 − 1 = 0⇔ 𝐸̃ ′′′
𝑥

Γ3
− 𝑖𝐸̃𝑥 = 0 . (4.41)

The three complex roots correspond to a growing (Im(𝛼1) < 0), a decaying (Im(𝛼2) > 0) and an
oscillating mode (Im(𝛼3) = 0). For some initial conditions 𝐸̃𝑥 (0) = 𝐸in and 𝐸̃ (𝑛)

𝑥 (0) = 0 the electric
field is given by

𝐸̃𝑥 (𝑧) =
𝐸𝑖𝑛
3

©­­«
exp

©­­«

(
𝑖 + √

3
)
Γ𝑧

2
ª®®¬
+ exp

©­­«

(
𝑖 − √

3
)
Γ𝑧

2
ª®®¬
+ exp (−𝑖Γ𝑧)

ª®®¬
, (4.42)

The radiated power is then given by

𝑃(𝑧) ∝
��𝐸̃𝑥 (𝑧)��2 = 𝐸2𝑖𝑛

9

(
3 + 4 cos

(
3
2
Γ𝑧

)
cosh

(√
3
2
Γ𝑧

)
+ 2 cosh

(√
3Γ𝑧

))
. (4.43)

For large Γ𝑧 → ∞, the growing mode dominates and the power increases as

𝑃(𝑧) ∝ exp
(√
3Γ𝑧

)
= exp

(
𝑧

𝐿𝑔,1𝐷

)
. (4.44)

Here the (power) gain length was introduced:

𝐿𝑔 =
𝑃(𝑧)
𝑃′(𝑧) (4.45)

𝐿𝑔,1𝐷 =
1√
3Γ

=
𝜆𝑢

4𝜋
√
3𝜌FEL

, (4.46)

66



4.3 High-Gain Theory

with the latter being the 1𝐷 gain length for the ideal conditions in which the power 𝑒-folds3, i.e.
small density modulation; no energy spread; no space charge, and being on resonance. Comparing to
eq. (4.42), the field gain length in 𝐸̃𝑥 , which is important for estimation of coherence properties of the
radiation, is half of the power gain length.

Further, the power gain is defined as [120]

𝐺 (𝑧) = 𝑃(𝑧)
𝑃in

=

��𝐸̃𝑥 ��2
𝐸2in

. (4.47)

Expanding the power gain about small 𝑧 ' 0 using eq. (4.43) yields the power gain during the startup
𝐺 (𝑧) ' 1 + (𝑧/(3.2𝐿𝑔,1𝐷))6. This indicates the lethargy regime, where the gain stays about unity
over the first ≈ 3.2𝐿𝑔. The power gain curve according to the solution to the third order equation is
shown in fig. 4.6 for 12 gain lengths.

For SASE FELs, including LUX, there is no initial or external electromagnetic wave to amplify.
However, since the spontaneous undulator radiation satisfies the resonant condition it can serve
as a seed radiation for the FEL process. The input power can be understood as the power of the
spontaneous undulator radiation emitted over the first few undulator periods, where no exponential
FEL amplification is expected, and which is emitted within the appropriate solid angle and couples into
the exponentially growing mode [121, 122]. This “shot noise” is used to estimate an equivalent input
power as [120] 𝑃sn ' 𝜌FEL𝛾𝑚𝑒𝑐

2/(𝑁𝑐𝑒
√︁
𝜋 ln 𝑁𝑐), with 𝑁𝑐 = 𝐼/(𝜌FEL𝑒𝜔𝑙) the number of interacting

electrons, and being on the level of about 𝑃sn ' 10W for LUX parameters. The exact position of
startup may vary due to statistical fluctuations in the distribution of the finite number of electrons
in the beam. The initial radiation consists of discrete spikes at the electrons’ locations, creating a
white noisy spectrum, from which a narrow portion is amplified. It should be noted here, that due
to the averaging in the SVEA the initial radiation is uniformly small, in contrast to those stronger
radiation spikes that occur in the spontaneous emission and increase the interaction with the light
field early in the undulator. Consequently, the SVEA overestimates the length of the lethargy regime
and the startup process [123]. However, to exceed the power levels determined for the undulator
radiation in section 4.2, the required number of gain lengths to fit into the undulator has to be larger
than ln

(
9 · 𝑃sp, 𝜃/𝑃sn

)
' 6, where the factor 9 is the fraction of the shot noise that couples into the

growing mode in eq. (4.43).

The bandwidth of a SASE FEL in the exponential gain regime following the startup decreases as [105]

𝜎𝜔 (𝑧) = 3
√
2𝜔𝑙𝜌FEL

√︄
𝐿𝑔,1𝐷

𝑧
(4.48)

along the undulator. Comparing with spontaneous radiation in section 4.2 which decreases as
1/𝑁𝑢 ∝ 1/𝑧, the bandwidth of a SASE FEL scales slower with 1/√𝑧. It is estimated to drop from
about 2.5% at the start of the exponential gain regime to 1% relative bandwidth at the end of the 2m
undulator.
3 Some authors define 𝐿𝑔,1𝐷 = Γ−1 corresponding to an additional factor of

√
3 in the definitions of and relations to other

quantities.
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Figure 4.7: (a) Change of growth parameter −Im (𝛼̂) for Gaussian distributed energy
spread, obtained from eq. (4.49). Only the root that corresponds to an increase in
𝐸̃𝑥 is shown for (orange) being on resonance and (blue) at optimal energy detuning.
Different space charge parameter 𝑘̂ 𝑝 are (solid) 0.0, (dotted) 0.2, and (dashed) 0.5. Values
are normalized to the growth rate of a monoenergetic beam and no space charge. An
approximation for the growth rate at optimum detuning is also shown (black, solid). (b)
Optimal detuning at which largest growth rate is achieved.

Concluding from the 1𝐷 theory, for LUX the estimated 1𝐷 power gain length is 𝐿𝑔,1𝐷 ' 10 cm,
therefore fitting 𝐿𝑢/𝐿𝑔,1𝐷 ' 20 gain length into the 2m undulator. Nevertheless, the 1𝐷 theory does
not cover all aspects, and the true gain length might be higher. Those effects are discussed in the next
sections.

4.3.4 Energy Spread and Space Charge in the 1𝑫 Limit

Before considering more effects, the energy and space charge terms in eq. (4.38) are further investigated,
as they appear already in the 1𝐷 theory. Keeping the distribution of energy deviation of eq. (4.40) the
electrons in the derivation of shows that this equation can be written in a more general form [105, 118,
124] as

𝛼̂ =
(
1 + 𝑘̂2𝑝𝛼̂

) ∫
𝑉 (𝜂)

(𝛼̂ − 𝜂)2
d𝜂 . (4.49)

with𝑉 being the distribution function of the electron energieswith
∫
𝑉 d𝜂 = 1. Setting𝑉 (𝜂) = 𝛿(𝜂−𝜂0)

again yields eq. (4.40) as the limit of no energy spread.

The increase of the gain length 𝐿𝑔 ∝ −Im(𝛼̂) in the 1𝐷 case can be obtained analytically for some
energy distributions, like an uniform or Cauchy distribution. However, the growth rate for a Gaussian
distribution, which is better suited to describe spread in energy of real electron beams, can only
be obtained numerically. The relative decrease in growth rate due to Gaussian distributed energy
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Figure 4.8: Increase in gain length relative to the initial 1D gain length as a function of
applied (de)compression, considering different initial scaled uncorrelated energy spreads:
Δ0 = 𝜎Δ,0/𝜌FEL (blue, solid) 0.2, (green, dash-dotted) 1.0, and (purple, long dashed)
2.0. The case where neither compression nor decompression improves the gain length is
indicated by (orange, dashed) 1/√3 ' 0.6. The LUX parameters (red, dotted) correspond
to Δ0 ' 1.4, suggesting a benefit from decompression. Additionally, (black, solid) the
locations of minima is indicated, representing the optimal stretching factor 𝑛𝐵,opt. Note
that the scaling of the 𝑛𝐵-axis changes depending on whether 𝑛𝐵 is greater or smaller
than 1, reflecting that compression and decompression are reciprocal operations.

spread and finite space charge parameter is shown in fig. 4.7(a) for operating at the resonance energy
𝜂 = 0 and a detuned beam with 𝜂 = 𝜂opt to maximize the growth rate for 𝑘̂ 𝑝 ∈ {0, 0.2, 0.5}. The
corresponding optimum energy detuning is shown in fig. 4.7(b).

The space charge parameter has only minor influence if either 𝑘̂ 𝑝 � 1 or 𝑘̂ 𝑝 � 𝜎𝛿/𝜌FEL. The
assumption 𝑘 𝑝 → 0 is typically justified by low electron density or large 𝛾. Specifically, for typical
beam and undulator parameters at LUX 𝑘̂ 𝑝 ' 0.25. It is close to the value of 𝑘̂ 𝑝 ' 0.19 for the
XUV and soft X-Ray FEL FLASH, where space charge forces are negligible [105]. As indicated in
fig. 4.7(a), the expected increase in gain length for LUX is on the order of 2%. Also a larger value of
𝑘̂ 𝑝 = 0.5 would only cause an increase by 10%. Therefore, space charge effects will not be considered
in the following discussion, but might be relevant for future LPA based FELs.

Note that in the case of a mono-energetic beam and no space charge, being on resonance 𝜂opt = 0
yields the fastest growth rate. For increased energy spread 𝜎𝛿 & 𝜌FEL/3, the optimum detuning scales
approximately linear. With finite energy spread a slightly off-resonant wavelength contained in the
spectrum of the spontaneous emission will be amplified more than the resonant one. Therefore with
increased energy spread a shift of the central wavelength is observed.
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Considering a beam with only Gaussian distributed energy spread as a degrading influence on FEL
performance, an approximation for the increase in gain length at optimum detuning is given by [120]

𝐿𝑔, 𝛿 = 𝐿𝑔,1𝐷

(
1 +

(
𝜎𝛿
𝜌FEL

)2)
. (4.50)

Optimizing at the initial value of LUX with𝜎𝛿/𝜌FEL ' 1.4 and a Gaussian energy spread, shows amaxi-
mum growth rate of Im(𝛼̂)/Im(𝛼̂1) ' 0.3 at a detuning of 𝜂opt ' 1.5 compared to Im(𝛼̂)/Im(𝛼̂1) ' 0.1
at resonance. Thus, at this energy spread a slightly detuned energy shows a gain length that is a
factor of 3 shorter than the resonant one. This also translates to a wavelength shift of about 2.1% at
𝜌FEL ' 0.7%. However, when reducing the gain length by improving the effective energy spread,
for example with the decompression scheme as considered in [23] and discussed in section 3.4, the
optimal detuning is closer to resonance and the wavelength shift is reduced.

If the energy spread should not reduce the growth rate significantly, e.g. less than a factor of 2, an
upper limit to the energy spread can be justified to be

𝜎𝛿 < 𝜌FEL , (4.51)

defining an energy acceptance for a FEL. Depending on the energy spread distribution shape or less
acceptable reduction in growth rate, a stronger limit, e.g. 𝜎𝛿 . 𝜌FEL/2, might be used. This condition
is obviously not fulfilled in the initial LUX case with 𝜎𝛿/𝜌FEL ' 1.4. This does not mean, that such
large energy spread prevents FEL interaction to happen at all, but strongly suppresses it. In addition,
the achievable gain might be reduced. Further, the SASE startup process might be obstructed for
𝜎𝛿/𝜌FEL & 1 as no proper density modulation and microbunching can build up [125]. In such cases
only seeded FELs might operate in the high gain regime.

Therefore, the ratio 𝜎𝛿/𝜌FEL has to be significantly reduced, to trigger the SASE startup and achieve
sufficient FEL gain within the 2m undulator.

Using these first estimations, an optimum decompression for an energy spread dominated beam can be
found by comparing the scaling of the 1𝐷 and the gain length with energy spread contributions [126,
127]. As decompression reduces the uncorrelated (slice) energy spread 𝜎Δ, it will be used instead of
the total energy spread in eq. (4.50). Plugging in the above scalings for the current and energy spread,
i.e. 𝐿𝑔,1𝐷 = 𝐿𝑔,1𝐷,0 · 𝑛1/3𝐵 and Δ = 𝜎Δ,0𝑛

−1
𝐵 /(𝜌FEL𝑛−1/3𝐵 ) = Δ0𝑛

−2/3
𝐵 , into this formula gives a scaling

for the gain length with only energy spread contributions after decompression compared to the 1𝐷
gain length without decompression

𝐿𝑔
(
Δ0

)
𝐿𝑔,1𝐷,0

= 𝑛1/3𝐵
(
1 + 𝑛−4/3𝐵 Δ20

)
, (4.52)

where 𝐿𝑔,1𝐷,0 is the 1𝐷 gain length before decompression at the equivalent current 𝐼0,gauss, see
section 3.4. Minimizing for smallest gain length gives an estimate on the optimum (de)compression of

𝑛𝐵,opt = 3
3/4Δ3/20 . (4.53)
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The threshold of 𝑛𝐵,opt > 1, where bunch decompression is favorable over compression, as used by
conventional radio-frequency accelerator based free-electron lasers, is achieved at initial values of
normalized energy spread Δ0 > 1/

√
3 ' 0.6. This is also compatible with the previous considerations

of 𝜎𝛿 . 𝜌FEL/2 for having only a small increase of the gain length. The increase in gain length for
different normalized initial energy spreads dependent on the bunch stretching factor is depicted in
fig. 4.8. For LUX beam parameters with Δ0 ' 1.4 the optimum decompression can be estimated to be
𝑛𝐵 ' 3.9 or 𝑅56 ' 700 µm.

4.4 3𝑫 and Degrading Effects

Previously, only 1𝐷 effects were considered to highlight the physics of an FEL and describe its
underlying process. However, 3𝐷 effects impact the FEL performance and lead to an increase in
the gain length. These effects include beam-related factors such as energy spread, transverse size,
and emittance, as well as radiation properties like diffraction. Additionally, interactions between the
electron beam and radiation, such as their spatial overlap, further influence FEL dynamics. The 1𝐷
theory is still approximately applicable, if the beam satisfies some conditions concerning its quality
[59]. In the following the limiting factors for the 1𝐷 theory will be discussed.

4.4.1 Limits of the 1𝑫 Theory

First constraints on the beam properties and the conditions under which the 1𝐷 theory remains
applicable are directly derived from the emitted wavelength eq. (4.20). The deviations in 𝛾, 𝜃 and
𝐾 should induce wavelength shifts smaller than the (approximate) FWHM natural line half-width
(Δ𝜆/𝜆𝑙)FWHM/2 ' 1/(2𝑁𝑢) of the forward radiation 𝜃 = 0, as obtained from eq. (4.26) [128]. This
means that any radiation contributing to the FEL has to be close to the resonant wavelength to avoid
a degradation in performance. Expanding eq. (4.20) to the lowest order of appearance about small
relative deviations in energy, angle and undulator strength, the maximum allowed broadening is
estimated to be (

Δ𝜆
𝜆𝑙

)
br
' −2Δ𝛾

𝛾
+ 𝐾Δ𝐾

1 + 𝐾2/2
+ 𝛾2 (Δ𝜃)2
1 + 𝐾2/2

.
1
2𝑁𝑢

. (4.54)

By rewriting the term for the undulator strength deviation by the field expansion eq. (4.2) as
Δ𝐾/𝐾 ' Δ𝐵𝑦/𝐵𝑦 ' 𝑘2𝑢𝑟2/2, neglecting errors in the undulator period, and wanting the beam size 𝜎𝑟
to be contained in this region, a constraint on the latter is obtained. Further Δ𝜃 sets the limit for the
beam divergence 𝜎𝑟 ′ in the same way. Also not holding strictly on their own, the constraints on each of
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those parameters is individually formulated to the following set, with the numbers for the LUX case, as

𝜎𝛿 .
1
4𝑁𝑢

' 0.2% (4.55)

𝜎𝑟 .

√√
1

𝑘2𝑢𝑁𝑢

1 + 𝐾2/2
𝐾2

' 180 µm (4.56)

𝜎𝑟 ′ .

√√
1 + 𝐾2/2
2𝛾2𝑁𝑢

=

√︄
𝜆𝑙
𝐿𝑢

' 180 µrad (4.57)

Δ𝐾
𝐾
.
1
2𝑁𝑢

1 + 𝐾2/2
𝐾2

' 0.3% . (4.58)

The strongest limitation for the applicability of the 1𝐷 theory obtained from this consideration is the
energy spread, which causes a broadening beyond the natural line width. The other equations put a
rather weak constraint on the beam size and divergence for LUX parameters, which are easily fulfilled
when focusing into the undulator as found in section 4.1.4. In addition, eq. (4.58) sets a limit on the
(global) undulator field quality before possibly degrading the FEL performance. As found in [114], for
the used undulator Δ𝐵/𝐵 ' 0.5%, mainly caused by local field deviations only weakly affecting the
absolute line broadening on the order of 0.01% and corresponding to ' 1% relative line broadening.
However, as this value is violating the condition eq. (4.58), the influence of the field should be checked
in simulations.

Additionally to emitting at the same wavelength, the radiation has to be transversely coherent, to
interfere constructively while propagating through the electron beam. As the amplified radiation
follows the electron beam size, to not spoil the coherence by electron beam properties it has to satisfy
the diffraction limited criteria [110]

𝜎𝑟 .

√︁
2𝜆𝑙𝐿𝑢
4𝜋

' 40 µm (4.59)

𝜎𝑟 ′ .

√︄
𝜆𝑙
2𝐿𝑢

' 130 µrad (4.60)

𝜖𝑛 .
𝛾𝜆𝑙
4𝜋

' 3mmmrad . (4.61)

However, this criteria are not strict and especially for SASE FELs, where the fundamental mode is
expected to dominate over higher order modes, those values can be exceeded and the FEL operated in
an intermediate regime with contributions from diffraction and emittance effects [129]. However, the
limits should not be exceeded drastically. In addition, to keep diffraction losses on a low level, the
expansion of the radiation per gain length due to diffraction should be smaller than the beam area,
giving a lower limit for the beam size [118, 130]

𝜎𝑟 >

√︄
𝜆𝑙𝐿𝑔

2𝜋
' 30 µm (4.62)
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corresponding to the gain guiding condition of a Rayleigh range greater than the field gain length, i.e.
twice the power gain length, 𝑍𝑅 > 2𝐿𝑔 [131]. Here the 1𝐷 gain length was used to estimate of the
minimum beam size to fulfill the guiding condition. However, eq. (4.62) increases with a longer gain
length caused by effects not covered by the 1𝐷 theory. Consequently, eq. (4.62) and eq. (4.59) are
two competing conditions that cannot be generally fulfilled. Usually this means that contributions
from emittance and diffraction effects can not be completely suppressed and 3𝐷 effects should be
considered when either of the two is not satisfied.

Another thing to consider is the distribution of a particle’s momentum into the longitudinal and
transverse components. Particles of same energy entering the undulator under different angles do
have a different longitudinal momentum. Therefore a spread in incident angle is equivalent to a smear
out in energy and adds to an effective energy spread. Due to the relation between transverse size,
divergence and emittance, this effective energy spread is therefore linked to the former, and a limit on
the emittance can be formulated. Depending on the upper tolerable contribution of this effect on the
energy spread, which is here chosen to be < 𝜌FEL/2 to not dominate the natural energy spread of the
beam, the normalized emittance has to fulfill [105]

𝜖𝑛 < 𝜎𝑟

√︂
𝜌FEL

2
√
2
' 2.2mmmrad , (4.63)

where LUX parameters of 𝜌FEL = 0.7% and 𝜎𝑟 = 45 µm from above considerations where used, and
putting a slightly stronger condition on the allowed emittance. The spread in transverse momentum
and therefore the demands on the emittance could be reduced by increasing the beam size, due to the
weaker scaling on the beam size in 𝜌FEL. However, this counteracts the need for small current densities
to obtain a high 𝜌FELand at some point violate the above criteria for small spectral broadening and
diffraction to not decrease the FEL performance.

For LUX, this discussion highlights that the consideration of 3𝐷 effects is relevant in almost all aspects,
since it operates at most limits for beam size, emittance and energy spread, even when considering the
decompression scheme.

4.4.2 Ming Xie Fit

To include the discussed effects and estimate the increase in gain length, their contributions are written
as an additional factor to the idealized 1𝐷 gain length as

𝐿𝑔 = (1 + Λ)𝐿𝑔,1𝐷 . (4.64)

Since Λ is a general factor combining all effects that increase the gain length, there is no exact
analytical form for arbitrary beams. It is convenient to write it as a combination of scaling parameters
to include the relevant effects. A common choice are contributions of radiation diffraction, emittance
and energy spread. A parametrization with the respective parameters 𝜂𝑑 , 𝜂𝜖 and 𝜂𝛾 was formulated
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Table 4.1: Xie fitting parameters for formula eq. (4.66)

𝑎1 = 0.45 𝑎5 = 3 𝑎9 = 2.4 𝑎13= 5.4 𝑎17= 2.2
𝑎2 = 0.57 𝑎6 = 2 𝑎10= 51 𝑎14= 0.7 𝑎18= 2.9
𝑎3 = 0.55 𝑎7 = 0.35 𝑎11= 0.95 𝑎15= 1.9 𝑎19= 3.2
𝑎4 = 1.6 𝑎8 = 2.9 𝑎12= 3 𝑎16= 1140

by Ming Xie [132]. Those scaling parameters are given by

𝜂𝑑 =
𝐿𝑔,1𝐷

𝑍𝑅
=
𝐿𝑔,1𝐷𝜆𝑙

4𝜋𝜎2𝑟

𝜂𝜖 =

(
𝐿𝑔,1𝐷

𝛽

) (
4𝜋𝜖
𝜆𝑙

)
= 4𝜋

(
𝐿𝑔,1𝐷

𝜆𝑙

) (
𝜖2

𝜎2𝑟

)
(4.65)

𝜂𝛾 = 4𝜋
(
𝐿𝑔,1𝐷

𝜆𝑢

) (
𝜎𝛾

𝛾0

)
=

𝜎𝛿√
3𝜌FEL

,

and define similar conditions as stated above, under which 3𝐷 effects become important, i.e. gain
guiding and diffraction limitation, transverse coherence and beam size, and energy spread relative to
the FEL parameter. One can identify the scaling parameters from eqs. (4.51), (4.62) and (4.63), and
their values should be well below unity to fulfill the requirements formulated for the corresponding
effects to not significantly spoil the FEL process.

Further, the parametrization is used to estimate the 3𝐷 gain length. For this purpose Xie [133] gave a
fit for Λ with 19 parameters and under the assumption of no space charge 𝑘̂ 𝑝 = 0. The function to be
fitted is

ΛXie(𝜂𝑑 , 𝜂𝜖 , 𝜂𝛾) =𝑎1𝜂𝑎2𝑑 + 𝑎3𝜂𝑎4𝜖 + 𝑎5𝜂𝑎6𝛾
+ 𝑎7𝜂𝑎8𝜖 𝜂𝑎9𝛾 + 𝑎10𝜂𝑎11𝑑 𝜂

𝑎12
𝛾 + 𝑎13𝜂𝑎14𝑑 𝜂

𝑎15
𝜖

+ 𝑎16𝜂𝑎17𝑑 𝜂
𝑎18
𝜖 𝜂

𝑎19
𝛾 (4.66)

and the fit parameters found by Xie are listed in table 4.1. Each term is positive and corresponds to
a contribution deviating from the optimum 1𝐷 case, increasing the gain length. Therefore the gain
length is shortest when there are no 3𝐷 contributions at all.
The fit was performed at the ideal detuning 𝜂opt to obtain the highest growth rate. If 𝜂𝜖 < 1, 𝜂𝛾 < 1
and 𝜂𝑑 � 1 the fit gives a good approximation to the exact solution, whereas an increasing 𝜂𝑑 � 0
has the largest influence on its inaccuracy. For the LUX case, all parameters stay within the parameter
range well below unity, therefore the fitting formula should give a reasonable estimate on the 3𝐷 gain
length.

In the case of only energy spread being relevant, i.e. 𝜂𝜖 = 𝜂𝑑 = 0, eq. (4.64) matches the previously
considered approximation eq. (4.50).
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Again using LUX parameters from table 2.1 and the previously found values for the beam size in the
undulator in section 4.1, the expected 3𝐷 gain length for the initially uncompressed beam with LUX
parameter according to eq. (4.66) results in

𝐿𝑔,Xie ' 1m . (4.67)

Since this is too long with respect to the experimental setup, the gain length has to be reduced,
such that 𝐿𝑔 � 𝐿𝑢. This can be done in the context of the decompression scheme, where the
uncorrelated energy spread 𝜎Δ is used instead of the total 𝜎𝛿 , because it represents the local
contribution to the gain length from the interacting electrons [23]. The initially uncompressed beam
parameters yield 𝜂𝑑 ' 0.25, 𝜂𝜖 ' 0.03, 𝜂𝛾 ' 0.8 and a well decompressed beam with 𝑛𝐵 = 10
yields 𝜂𝑑 ' 0.55, 𝜂𝜖 ' 0.06, 𝜂𝛾 ' 0.2. The evolution of the scaling parameters with respect to the
decompression is shown in fig. 4.9(a). The slice energy spread and therefore 𝜂𝛾 reduces significantly
as the bunch is stretched. The increase in the other parameters comes from the reduced current and
therefore an increasing 𝐿𝑔,1𝐷 contributing to their magnitude. The resulting evolution of the scaling
parameter ΛXie is shown in fig. 4.9(b). It drops rapidly for moderate decompressions, but only shows
small improvements for larger values of 𝑛𝐵.

The resulting gain length and the impact of the individual scaling parameters is shown in fig. 4.10.
For a beam with LUX parameters 3𝐷 effects mainly arise from a combination of energy spread and
diffraction. The individual contributions on their own only show a small increase compared to the 1𝐷
gain length. Especially emittance effects have a minor contribution to the 3𝐷 gain length for the used
parameters. An increased emittance mainly limits the achievable average beam size, therefore also
having an impact on the other parameters via 𝐿𝑔,1𝐷 . Consequently, a moderate increase of 𝜂𝜖 while
fixing 𝜂𝑑 and 𝜂𝛾 would only have a minor impact. For example, an increase of the gain length by a
factor of two is obtained when increasing the emittance, and the corresponding achievable average
beam sizes accordingly, to the values marking the transition from the diffraction to emittance limited
regime from eq. (4.61).

Summing up the effects, on the one hand, decreasing the (slice) energy spread by decompressing the
beam the 3𝐷 gain length decreases due to reduction of the scaling parameters, but on the other hand,
the 1𝐷 gain length increases, due to the reduction in current. This has to be balanced to obtain the
lowest total gain length and highest growth rate.

For LUX beams the gain length is reduced to 30 cm with a stretching factor of 𝑛𝐵 & 5, having about
6.5 gain length in the undulator and consequently an expected power gain of about 100 when following
eq. (4.43). Thus, this might be on par or just above the power level of spontaneous undulator radiation.
In the following sections more aspects will be considered that further influence the gain length.

4.4.3 Effects of Short Bunch Length and Superradiance

Presented formulas are valid for the steady-state regime, which assumes the electron beam to be
infinitely long and of uniform current density in the region where the radiation interacts with the
electrons. However, for short bunches, as expected from LPA, those assumptions might not hold.
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Figure 4.9: Change of scaling parameters for 3𝐷 gain length at LUX parameters with
varying decompression 𝑛𝐵. (a) Values of (blue, solid) 𝜂𝑑 , (orange, dashed) 𝜂𝜖 , and
(green, dash dotted) 𝜂𝛾 related to the change in 𝐿𝑔,1𝐷 and slice energy spread 𝜎Δ. (b)
Total change of ΛXie.
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Figure 4.10: Scaling of 3𝐷 gain length for LUX parameters at varying decompression
𝑛𝐵. The 1𝐷 gain length (purple, long dashed) increases due to 3𝐷 effects (blue, solid).
Neglecting either contributions from emittance (orange dashed), diffraction (green, dash
dotted), or energy spread (red, dotted) reveals, that a combination of the latter two have
largest impact.
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Figure 4.11: (a) Increase in gain length due to short electron bunch lengths 𝜎𝜁 compared
to the steady state cooperation length 𝐿𝑐,0. (Blue triangle) In the 3𝐷 case the gain
length is expected to be almost increased by 200% while (orange square) in the 1𝐷
case the influence of the short bunch would be insignificant for LUX parameters. (b)
With decompression the ratio 𝜎𝜁 /𝐿𝑐,0 is shifted to more favorable values and therefore
reducing the impact from short bunches on the gain length.

A length scale to quantify a bunch as long or short is the cooperation length [134]

𝐿𝑐 =
𝜆𝑙
𝜆𝑢
𝐿𝑔 . (4.68)

It is the slippage of the radiation relative to the bunch within one gain length. The electrons can
self-organize within this distance to radiate cooperatively, meaning the radiation emitted from these
electrons can coherently interact within this range. Therefore, it defines a scale of longitudinal
coherence. This is seen as growing spikes that develop in the longitudinal structure of a SASE FEL
pulse built up from noise with distances on the order of 2𝜋𝐿𝑐 [135, 136]. Typically for FELs operating
at nm-scale wavelengths and few m gain lengths, therefore having 𝐿𝑐 � 1 µm, the electron bunch is
long compared to the cooperation length 𝜎𝜁 � 𝐿𝑐 . For such beams with 𝜎𝜁 & 10𝐿𝑐 radiation pulses
originating at the bunch tail can reach saturation before completely slipping over the whole electron
bunch. Then no significant influence from the bunch length is expected.

However, if the electron bunch is on the scale of only a few or shorter than the cooperation length 𝐿𝑐 ,
a radiation pulse slips over the whole electron bunch before achieving full amplification. In that case,
photons can escape the beam before interacting with electrons and any radiation that overtakes the
whole bunch already within the undulator does not contribute to the exponential amplification process
anymore. This leads to a decrease in interaction time of electrons and light wave, partially suppressing
the FEL process. Consequently, the growth rate is reduced and therefore the gain length is increased.
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This regime is referred to as “weak” superradiance4. It is called weak, since the emitted power is lower
than the steady-state FEL regime [137]. This short bunch regime could be present, since the bunches
from laser plasma acceleration are intrinsically short. Indeed, using the initial LUX parameters and
the previously obtained gain length of 1m from the M. Xie fit formula, a cooperation length of
𝐿𝑐 ' 4.3 µm ' 2.4𝜎𝜁 ,0 is obtained.
For short bunches the increase in power of the growing mode can be estimated analytically by assuming
a rectangular bunch shape with length 𝐿𝑏 . 2𝜋𝐿𝑐 in the 1𝐷 limit to be [138]

𝑃short(𝑧) ∝ exp ©­«
3
22/3

(
𝑧

𝐿𝑔,0

)2/3 (
𝐿𝑏
𝐿𝑐,0

)1/3ª®¬
(4.69)

where 𝐿𝑔,0 and 𝐿𝑐,0 are the values of the steady-state solution. The growth rate reduces with smaller
𝐿𝑏 and does not follow an exponential scaling with 𝑧, but slower with 𝑧

2/3. Since the growth rate is
smaller and the power level is lower it could be favorable to operate at bunch lengths significantly
larger than 𝐿𝑐,0.

Considering more realistic longitudinal bunch shapes, changes in the current possibly dropping to
values significantly below 𝐼peak can occur within the range of a few 𝐿𝑐. Similar to eq. (4.64), the
gain length can be modified to take this into account and model the reduced growth rate under these
conditions. A heuristic formula obtained for a Gaussian current distribution is given by [139]

𝐿𝑔,𝜁 = 𝐿𝑔,1𝐷
(
1 + 𝜂𝜁

)

𝜂𝜁 = 𝑏1 exp

(
𝑏2

(
𝜎𝜁

𝐿𝑐,0

)𝑏3)
(4.70)

with the fit parameters 𝑏1 = 16.7512, 𝑏2 = −3.0420 and 𝑏3 = 0.3267. Note that in return the total
cooperation length is again defined as eq. (4.68).

For example, the estimated increase in the gain length from eq. (4.70) is less than 10% for 𝜎𝜁 /𝐿𝑐,0 > 5.
The increase of the corresponding scaling factor to the gain length with respect to the ratio of bunch
length to the cooperation length is shown in fig. 4.11(a). For LUX parameters a significant increase
in the bunch length scaling is expected when considering 3𝐷 effects and their influence on the gain
and cooperation lengths. For cases, where 3𝐷 effects would be negligible, e.g. by improved beam
properties and especially very small energy spread, also the effects from short bunch lengths are
reduced, as indicated by the 1𝐷 case in fig. 4.11. By decompressing the beam, 𝜎𝜁 /𝐿𝑐,0 = 5 is already
achieved for a moderate value of 𝑛𝐵 ' 4. Further, the ratio of bunch length to cooperation length
scales almost linearly increasing for LUX parameters with the bunch stretching factor as shown in
fig. 4.11(b). This takes into account the changes in 3𝐷 gain length and cooperation length due to
reduction in beam current and uncorrelated energy spread while the bunch length is increased. Under
the assumption, that the bunch length effects solely depend on the ratio of bunch length to cooperation
4 In contrast to the “weak” superradiance a “strong” superradiance can occur for long bunches, where a radiation spike
originating from the tail of the bunch continuously extracts energy while slipping over the electron bunch end eventually
exceeds the power of the FEL after saturation.
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length, a combined scaling with the previously found contribution from 3𝐷 effects is given by [139]

𝐿𝑔,𝜁 =
(
1 + 𝜂𝜁

) (
1 + Λ

)
𝐿𝑔,0 , (4.71)

where in 𝜂𝑧 the cooperation length with respect to the 3𝐷 scaling 𝐿𝑐 = (1 + Λ)𝐿𝑐,0 has to be used.
ThereforeΛ has to be determined first from the Xie scaling. Using initial parameters for LUX including
the short bunch length, the 3𝐷 gain length is further increased from the previously determined 1m to
about 2.5m. If using a decompression of 𝑛𝐵 & 5, the ratio 𝜎𝜁 /𝐿𝑐,0 increases to values above 7. The
impact of the bunch length on the gain length is consequently reduced to below 5% and becoming
negligible.

Nevertheless, another effect should be discussed related to superradiance when considering the LUX
case, where the FEL gain within the short undulator is crucial. For longer bunches exceeding 𝐿𝑐,
dynamics exhibit characteristics of both steady-state and superradiant instabilities: superradiance still
manifests near the bunch’s trailing edge, while steady-state behavior dominates towards the leading
edge5. The absence of forward-propagating radiation from behind means electrons emit spontaneously
without the influence of an accumulating radiation field. Its generation is less affected by energy
spread or beam detuning and essentially represents coherent spontaneous emission, resonant with
the electrons emitting at the bunch tail [141, 142]. It can emerge under conditions beyond those
supporting the FEL instability as derived in the steady-state regime [143]. Therefore, it can already
grow before the usual SASE startup allowing for an early startup. Especially at the bunch tail when
entering the undulator, this might be further supported by either a large gradient in the current density
or features on the scale of the emitted wavelength [144, 145]. However, amplification of such a
pulse primarily occurs when interacting with unperturbed electrons [146] and it stops growing when
slipping over electrons that have already interacted with previous radiation spikes that have left them
micro-bunched and with a large amount of energy spread [135]. Consequently, after the initial phase,
steady-state dynamics and exponential growth predominate. It’s important to note that typical FEL
simulation codes, applying the slowly varying envelope approximation, might not accurately represent
the influence of coherent radiation at the bunch tail on the startup phase [123, 147].

The discussion highlights, that the effects due to the initially short bunch length on the gain length are
reduced by decompressing the beam and only a minor increase in gain length, but on the other hand
possibly lead to earlier startup.

4.4.4 Undulator and Alignment Errors

Any variation in undulator peak strength and period length cause the beam to deviate from its design
orbit. This causes the beam to either leave the radiation cone partially or completely. Further, due to
detours and path length differences, the electrons lose their phase relation to the light field. Both can
cause severe reduction of the amount of energy they can gain from the field.

5 The presence of a superradiant contribution in the radiation is not to be confused with the superradiant regime, increasing
the FEL power output beyond the exponential regime [140].
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If the electron beam is being kicked away from the axis due to a local error in 𝐾 , the gain length will
be reduced. In that case the direction of the electrons does not coincide with the orientation of the
longitudinal microbunching and the wavefront normals of the radiation. Similarly, this is the case if
the beam enters the undulator under an an angle. The reduction in gain length of a beam traveling
with an angle with respect to the undulator axis is given by the formula [148]

𝐿𝑔,𝜃 =
𝐿𝑔

1 − (
𝜃/𝜃𝑐

)2 , (4.72)

with the critical angle 𝜃𝑐 =
√︃
𝜆𝑙/𝐿𝑔, at which no amplification happens anymore. For LUX parameters

with a wavelength at about 65 nm and 3𝐷 gain length of 30 cm the critical angle is rather large
𝜃𝑐 ' 0.5mrad. To limit the influence to a 10% increase in gain length to still have enough gain
lengths fit into the undulator, any local kicks in the undulator as well as the alignment of the beam
through the undulator must be smaller than 0.3𝜃𝑐 ' 0.15mrad.

If microbunching has already built up, a kick potentially leads to debunching due to spoiled coherence,
which has more impact on the gain length increase given by eq. (4.72). The latter can be reformulated
to [148]

𝐿𝑔,𝜃 =
𝐿𝑔

1 − 𝜋 (
𝜃/𝜃𝑐

)2 , (4.73)

thus the kick must be smaller than about 0.1mrad to keep the gain length increase below 10%. Further,
due to the quadratic dependence on 𝜃𝑐 in the denominator the gain length quickly grows, and a kick of
0.15mrad would already increase the gain length by 50%.

In contrast to a single kick, the orbit within the undulator can be distorted by the accumulating effects
of variations in 𝐾. This includes longitudinal misalignment of the undulator magnet poles, thus
changing 𝜆𝑢, peak field errors in 𝐵, and polarization or field orientation errors [149]. One effect of
these errors is their impact on the proper slippage between radiation and electron beam and therefore
the resonance condition, thus reducing the energy transfer. Assuming a random distribution of these
errors over the whole undulator, a measure for combined amplitude of errors is given by the root mean
square phase shake introduced by the undulator [150]

𝜎Φ =

√√√
1
2𝑁𝑢

2𝑁𝑢∑︁
𝑛=1

Φ2𝑛 , (4.74)

where the Φ𝑛 = 𝑘𝑙Δ𝑧𝑛 give the deviation of the phase from the resonance up to each of the 2𝑁𝑢 half
periods from the cumulated path length difference Δ𝑧𝑛, i.e. the slippage error. The deviation in phase
has a similar effect as a path length difference due to energy detuning of an electron. To estimate
whether the phase spread from the electron beam’s energy spread dominates over undulator errors
both values are compared against each other. In that case the gain length remains well described by
the electron beam parameters only. According to eq. (4.37c) an electron with an energy deviation
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from the design energy has a change in phase 𝜓 relative to the resonant phase of

ΔΨ𝑛 =
d𝜓𝑛
d𝑧

𝐿𝑔 = 2𝑘𝑢𝜂𝐿𝑔 (4.75)

over one gain length 𝐿𝑔. Consequently, the resulting phase spread for an ensemble of particles is
given by the energy spread

𝜎ΔΨ =
4𝜋
𝜆𝑢
𝜎𝛿𝐿𝑔 . (4.76)

Using the expected uncorrelated energy spread 𝜎Δ = 𝜎𝛿/𝑛𝐵 ' 0.3% after decompression with 𝑛𝐵 = 3
results in a phase spread of 𝜎ΔΨ ' 48°, therefore being significantly larger than the undulator phase
shake. Both values would be only at the same level after decompressing the beam by 𝑛𝐵 > 10 to less
than 0.1% uncorrelated energy spread. Thus, the contribution from phase shake is not the dominant
factor, if 𝜎Ψ < 𝜎ΔΨ. For cases where the 1𝐷 theory describes the interaction and gain length well,
this is more conveniently written as 𝜎Φ < 𝜎𝛿/(

√
3𝜌FEL) [149]. Nevertheless, any contribution from

the undulator phase shake should be kept low.

The expected increase in gain length for the high-gain FEL by only the phase shake eq. (4.74) is given
by [151]

𝐿𝑔,Ψ '
(
1 + 𝜎

2
Ψ√
3

)
𝐿𝑔 . (4.77)

To limit the increase in the gain length from only the phase shake of the undulator to less than 10%, it
has to stay below 𝜎Ψ ' 23°. Note that to this point, only the effect of phase shake on the phase of the
electrons to the light field was considered.

In addition, field errors cause a transverse motion of the beam away from the design trajectory. This
beam wander reduces the overlap of electron beam and the radiation field. Therefore the interaction
between the two is also decreased and consequently the gain length increased. Similar to eq. (4.74)
the root mean square beam wander is given by [150]

𝜎𝑥,w =

√√√
1
2𝑁𝑢

2𝑁𝑢∑︁
𝑛=1

𝑥2𝑛 , (4.78)

where 𝑥𝑛 =
∫
𝑥 ′(𝑧) d𝑧 is the second field integral of the motion up to the 𝑛th half-period. Note, that

𝑥𝑛 is evaluated at the poles and therefore includes the extent of the wiggling motion of the electrons.

An estimate on the increase in gain length from the beam wander in relation to the beam size is given
by [149]

𝐿𝑔 '
𝐿𝑔

1 − 𝑅2
(4.79)
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Figure 4.12: Scaling of the gain length 𝐿𝑔 from Xie fit and including bunch length effects
dependent on the bunch stretching factor 𝑛𝐵 for LUX beam parameters. Different lines
represent different spot sizes 𝜎𝑟 in the undulator from (blue, solid) 7.5 µm to (purple,
long dashed) 75 µm. The average achievable beam size in the undulator coincides with
the curve for (red, dotted) 45 µm and is the same as given before in fig. 4.10.

with

𝑅 = 𝜎Ψ + 1
2


(
Δ𝑥
𝜎𝑥

)2
+

(
Δ𝑦
𝜎𝑦

)2
. (4.80)

As seen from this, the beam wander has to be smaller than the beam size, due to their ratio contributing
to the increase in gain length with the fourth power. Therefore, a small beam size sets stricter limits to
the field quality of the undulator. If the contribution from the beam wander in one plane is dominant
over the contribution of the other plane and the phase shake, for example due to the main magnetic
field component being much larger than the other components and errors form there having larger
impact, the increase in gain length is limited to 10% if the beam wander stays below Δ𝑥 ' 0.8𝜎x.

4.5 Parameter Optimization

In order to achieve substantial gain in the short undulator, the beam parameters at the undulator’s
position have to be optimized, including 3𝐷 and short bunch effects. Further, the undulator strength
has to be adapted to the electron beam chirp to keep the radiation resonant by changing 𝐾 along the
propagation axis.
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Figure 4.13: Scaling of (a) the gain length 𝐿𝑔 from Xie fit and including bunch length
effects, and (b) the corresponding optimum bunch stretching 𝑛𝐵,opt dependent on the
transverse beam spot size 𝜎𝑟 for LUX beam parameters. Different lines represent
differences in the normalized emittance 𝜖𝑛 in the undulator for (blue, solid) 1mmmrad,
(orange, dashed) 1.5mmmrad, and (green, dash dotted) 2mmmrad. Additionally the
gain length for (red, dotted) zero emittance is shown, corresponding to a beam of constant
size.
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Figure 4.14: (a)Minimum gain length 𝐿𝑔 from Xie fit and including bunch length effects.
(b) The corresponding (blue, solid) optimum bunch stretching 𝑛𝐵,opt and (orange, dashed)
beam spot size 𝜎𝑟 dependent on the normalized emittance 𝜖𝑛 for LUX beam parameters.
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4.5.1 Gain Length Minimization

Based on the previous considerations, the beam parameters at the position of the undulator are
optimized. This is done by numerically minimizing eq. (4.71) for the shortest gain length, including the
3𝐷 and bunch length scalings. It is performed by varying the bunch stretching from 𝑅𝜁56, as the rest is
determined by the undulator or initial parameters of the beam. In a first step, the beam size is assumed
to be matched to the undulator according to section 4.1 with all energies being focused at the undulator
center and following the same envelope, thus using the average beam size with 𝜎𝑟 ,avg = 45 µm. The
optimized decompression is obtained to be 𝑛𝐵 ' 7.7 or equivalently 𝑅𝜁56 ' 1.5mm and yields a gain
length of 𝐿𝑔 ' 32 cm. However, the 3𝐷 gain length does not drastically increase if going away from
the optimum decompression and still yields a gain lengths below 35 cm for any 𝑛𝐵 ' 5 to 13.5 or a
𝑅
𝜁
56 ' 0.9 to 2.6mm.
A parameter that was kept fixed for optimization is the beam size, since the average size inside the
undulator is limited by its length, see section 4.1.4. However, in a chirped bunch after decompression,
properly matching the optics to focus the energies in the bunch that deviate from the design energy, i.e.
synchronize the focused part of the beam with the position of a FEL pulse as it travels though the
electron beam, allows for the scaling of the gain length with the focused instead of the average beam
size [108]. The focus spot size achieved by the different energies throughout the undulator can be
tuned to balance emittance, diffractive and energy spread effects. In the following only the impact of
varying the beam’s transverse spot size is discussed and the actual realization with beam optics will be
presented in section 5.2.

Figure 4.12 shows the comparison of several beam sizes and stretching factors according to eq. (4.71)
and the achievable 3𝐷 gain length. The main contribution from reducing the transverse beam size is
the increase in current density and therefore a decrease in 𝐿𝑔,1𝐷 . In return this affects the scaling
parameters in the Xie fit and a reduction in the 3𝐷 gain length. Additionally, the cooperation length
and therefore the impact of a short bunch length and requirement for large stretching factors reduces.
If reducing the beam size too much, the impact of diffraction and emittance effects start to dominate
over the improvement from the higher current density and the gain length increases again. This limits
the benefit of further decreasing the beam focus size in the undulator. However, if operating at a beam
size above this threshold, a wide range of bunch stretching can be used without significant impact on
the gain length. Further, variations on the order of 20% in transverse size have an impact on the gain
length of less than 5 cm. With LUX parameters, slightly decreasing the focus size and operating at
smaller values than 45 µm is expected to improve the FEL performance and reduce the gain length
below 30 cm.

In addition to the LUX reference beam with initially 1mmmrad normalized emittance, the gain length
for beams with larger emittance are also of interest, because of the possible increase of its value during
beam transport caused by the effects discussed in chapter 3. Further, as pointed out in section 2.4, the
reference beam represents only the 10% best beams at LUX, but could be slightly worse from day to
day operation and also fluctuate from shot to shot. The gain lengths for normalized emittances of 1,
1.5, and 2mmmrad are shown in fig. 4.13(a) for varying transverse beam sizes. It was obtained for
optimum decompression at each beam size, which is shown in fig. 4.13(b). At higher emittances the
minimum achievable gain length increases and the lower limit of acceptable beam sizes is shifted to
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higher values. As the impact of slightly increased focus size on the gain length is less severe than a
too small one, it might be favorable to operate at slightly larger beam sizes, if the exact emittance is
not known.

The minimum achievable gain length is shown in fig. 4.14(a) from zero normalized emittance up
to 5mmmrad. The corresponding optimum transverse beam size and bunch stretching are given in
fig. 4.14(b). The gain length can be kept below 30 cm, or equivalently having > 6.5 gain length in
the undulator for sufficient amplification, if the normalized emittances in both planes are at or below
𝜖𝑛 . 2mmmrad. Furthermore, the emittance has to remain below this value only within a longitudinal
slice, i.e. the fraction of the bunch that interacts with the FEL pulse, which can be achieved with the
LUX beams in the presence of chromatic effects and possible influence of CSR in the decompression
chicane.

Another interesting effect appears if the initial emittance would be about a factor of 5 smaller at
0.2mmmrad, which is in principle achievable from laser plasma accelerators [13], but otherwise
unchanged parameters from LUX. In that case, reducing the focus size to 𝜎𝑟 < 10 µm with an
appropriate beam optics increases the FEL parameter 𝜌FELto a level surpassing the initial energy
spread. For compact LPA based FELs, where such focusing schemes are applicable, improving the
transverse beam properties from the plasma source would similarly reduce the strong requirement for
decompression as a reduction in initial energy spread.

Concluding from the above, at 1 to 2mmmrad normalized emittance and a spot size of 30 to 35 µm,
although being slightly above the optimum, a gain length of just below 30 cm can be achieved with a
moderate decompression of 𝑛𝐵 > 3 or 𝑅

𝜁
56 > 500 µm. Note, that this beam size is still larger than the

expected beam wander from the undulator presented in section 4.4.4.

4.5.2 Undulator Tapering

A linear change in the undulator strength 𝐾 along the longitudinal axis, known as tapering, can
be utilized for several use cases [152]. For example, standard tapering, which is a decrease in 𝐾,
can increase the power output as post-saturation taper [153] or compensate beam energy loss due
to radiating [154], and reverse tapering, for afterburners to control polarization [155]. Here, it is
employed in combination with the decompression to keep the radiation at resonance as it travels
through the electron beam [23, 156]. The concept is illustrated in fig. 4.15. After a 𝑅56 is applied
the beam is chirped in the longitudinal phase space. The wavelength emitted at each longitudinal
position inside the bunch differs dependent on the energy and scales as 1/𝛾2 according to eq. (4.20).
Therefore, as the radiation slips over the bunch, the resonant wavelength decreases towards the bunch
head if 𝐾 is constant. Consequently, to compensate this, the undulator strength 𝐾 has to be increased
along the undulator and keep 𝜆𝑙 constant.

To vary 𝐾 either the undulator period 𝜆𝑢 or the magnetic 𝐵-field has to be changed. However, the
latter is simpler to implement, since the 𝐵-field depends on the undulator gap, which is motorized.
Requiring a constant wavelength to be emitted along the bunch while passing the undulator d𝜆𝑙d𝜁 = 0
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Figure 4.15: Schematic illustration for the use of a tapered undulator to keep the radiation
resonant. From left to right: The (green, circle) initially short and unchirped bunch passes
a (blue, triangles) decompression chicane and is stretched and chirped afterwards. The
taper of the (white and blue) undulator is set to have (yellow parts) different fractions of
the electron bunch emit at the same wavelength. As the (orange, waves) radiation passes
through the bunch it is amplified.

and solving for d𝐾d𝑧 yields [156]

d𝐾
d𝑧

=

(
1 + 𝐾 2

2

)2
𝐾𝛾3

d𝛾
d𝜁

. (4.81)

Note that d𝐾d𝜁 = d𝐾
d𝑧

𝜆𝑙
𝜆𝑢
was used, which reflects that the bunch and radiation travel along the undulator

and slip by one radiation wavelength per undulator period relative to each other. In the limit of a
small relative energy chirp

��� 𝜎𝑧

𝛾0

d𝛾
d𝜁

��� � 1 and small relative taper ��� 𝐿𝑢𝐾0 d𝐾d𝑧
��� � 1 over the respective length

scales, the values 𝛾(𝜁) and 𝐾 (𝑧) on the right hand side can be replaced by the mean values 𝛾0 and 𝐾0
[156, 157]. In that case the solution is a linear taper only depending on 𝛾0, 𝐾0, and linear energy chirp
𝑚 of the bunch. For LUX this criterion is fulfilled as the changes are typically on the order of percent.

Using the expected values at LUX with 300MeV, a 𝐾0 = 2, and a linear energy chirp from a
𝑅
𝜁
56 = 500 µm of 𝑚 = d(𝛾/𝛾0)/d𝜁 ' 1/𝑅𝜁56 ' 2 000/m = 0.2%/µm the required taper to compensate
the chirp is estimated to be

1
𝐾0

d𝐾
d𝑧

=

(
1 + 𝐾 20

2

)2
𝐾20𝛾

2
0

𝑚 ' 1.3 %
m

. (4.82)
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4.5 Parameter Optimization

Although the optimum taper is non-linear, the linear taper approximation deviates by less than
0.01%/m at the undulator entrance and exit. Additionally a detuning of the electrons from energy loss
to the gaining field occurs. However, this becomes only relevant close to saturation, as it is much
smaller than 𝜌FELin the exponential gain regime [158]. Since both effects are expected to be small,
applying a linear taper is sufficient for LUX.

Note, that either a slightly chirped bunch or a small undulator taper already decrease gain length on
their own [159]. Therefore chirp and taper might be slightly compensated against each other and the
optimum value might be different, but close to the obtained value. When applying more decompression
and therefore decreasing the chirp, the required taper also decreases. As seen previously, applying
slightly more decompression than required might be favored, and therefore a taper of about 1%/m is
reasonable. Previous estimations for the decompression scheme assumed a much shorter initial bunch
length, which suggested a stronger chirp of the electron beam and consequently a taper of over 5%/m
[23].

The Frosty Undulator at LUX can therefore go up to a taper of 5.7%/m at maximum 𝐾 , which gives
enough room to adjust the taper to the required value.

4.5.3 Phase and Group Velocities

The velocities of the electromagnetic waves constituting the radiation during amplification. They
propagate with less than 𝑐, since the electrons act as a medium, and determine which part of the
electron beam the radiation interacts with as they move through the undulator together.

In the exponential gain regime, the fundamental wave travels at a phase velocity of [105]

𝑣𝑝ℎ

𝑐
= 1 − 𝜆𝑙

𝜆𝑢
𝜌FEL , (4.83)

which is just barely smaller than 𝑐. Note, that this causes just a small slippage of the radiation field
(relative to an electromagnetic wave in vacuum) of about 𝜆𝑙 until saturation, allowing for the extraction
of energy when operating a high-gain FEL at resonance.

More important for theLUX case is the group velocity 𝑣𝑔, describing the envelope and the corresponding
amplitude of the growing FEL pulse and is relevant to slippage effects in short bunches. At the
beginning of the interaction, the spontaneous radiation dominates and 𝑣𝑔 ' 𝑐. When reaching the
regime of exponential grow after a few gain lengths and a FEL pulse develops, the group velocity, i.e.
velocity of the emerging spikes, reduces to [105]

𝑣𝑔

𝑐
= 1 − 1

3𝛾20

(
1 + 𝐾

2

2

)
. (4.84)
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Comparing this with the average longitudinal velocity of the electrons due to their detour from a
straight line in the undulator eq. (4.8) yields [105]

𝑣𝑔

𝑐
− 𝛽𝑧 =

1
6𝛾20

(
1 + 𝐾

2

2

)
(4.85)

or similarly [120, 136]

𝑣𝑔/𝑐 − 𝛽𝑧
1 − 𝛽𝑧

=
1
3

. (4.86)

This shows that also the wave packet moves faster than the electron beam, but their difference and the
slippage of the pulse relative to the beam are reduced to a third in the exponential regime.

Methods to increase the FEL gain that are linked to the propagation of the wave packet, like the
previously mentioned focusing schemes to locally increase the current density [108], have to be
matched to this reduced pulse slippage per undulator period of 𝜆𝑙/(3𝜆𝑢). However, note that this only
applies to the exponential gain regime and not during the startup, where 𝑣𝑔 ' 𝑐 [105]. An intermediate
value between the two might be favorable for an experiment like LUX, where the exponential gain
regime is expected to just begin halfway through the single undulator used.

4.6 Numerical Estimation

To investigate if the optimized parameters show improvement over the initial values and are in principle
sufficient to grow beyond spontaneous undulator radiation, some simplified FEL simulations were
performed with the time-dependent SVEA code SIMPLEX [160]. Although not covering all aspects
from laser-plasma accelerated beams and the decompression scheme, and their impacts on FEL
operation, it gives an estimation on whether the beam properties are sufficient to drive an FEL at all.

The considered cases are:

1. Initial beam parameters for LUX with the average beam size in the undulator of 𝜎𝑟 ' 45 µm.
The horizontal focus is at the center of the undulator and the vertical beam size is matched to
the natural focusing of the undulator and therefore constant.

2. Bunch length, current and (uncorrelated) energy spread are set to values expected after
decompression with 𝑛𝐵 = 3, but electron beam chirp and undulator taper are set to zero.
Focusing is the same as for 1.

3. Same as 2, except for fixing the beam size to a constant value of 𝜎𝑟 = 35 µm.

4. Same as 3, but added a chirp of 2 000/m and an undulator taper of 1.3%/m.

In all cases the beams were assumed to be Gaussian shaped in all dimensions.

The last two were realized by using a continuous focusing along the undulator to keep the beam of
non-zero emittance from diverging. This simplified setup closely resembles an energy dependent
focusing scheme to that sense, that in both cases the propagating light pulse sees an electron beam of
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0.0 0.5 1.0 1.5 2.0
Position in undulator I (m)

102

103

104

105

106

Po
w

er
%

(W
)

(a)

0.0 0.5 1.0 1.5 2.0
Position in undulator I (m)

102

103

104

105

106

Fi
lte

re
d

po
w

er
%

fil
t

(W
)

(b)Initial LUX beam
Decompressed beam
Decompressed beam
+ constant size
+ chirp & taper

Figure 4.16: Emitted power from SVEA FEL simulations for (a) the power emitted
to all frequencies and (b) the power filtered about ±2% relative bandwidth about the
fundamental. Power is shown for (blue, solid) initial LUX parameters, focus at the
undulator center in the horizontal and matched to natural focusing in the vertical plane,
(orange, dashed) energyspread as after decompression with 𝑅𝜁56 = 500 µm, but no chirp
or taper, (green, dash-dotted) same as before, but with constant beam size of 35 µm, and
(red, dotted), constant beam size, but with chirp and taper included.

finite emittance, but constant beam size throughout the undulator. The idea is, that gain length then
scales with the effective size given by the focus spot size in such a scheme. Therefore, if a radiating
pulse only encounters fractions of the beam with constant size while it propagates through the bunch,
a gain length lower than achievable with the lowest average beam size limited by the emittance can be
reached.

The simulations were performed for 5 random seeds in the beam generation. Two power curves
were calculated for all four cases. The first includes the full radiation collected over all angles and
frequencies available from the simulation. The second is filtered about the opening angle of ±2.5mrad
from available beam pipe apertures at LUX and about ±2.5(𝜎𝜔/𝜔𝑙) times the SASE bandwidth
eq. (4.48) at the end of the undulator or about ±2% about the fundamental. This corresponds to a
window of about ±1 nm, which on one hand covers the full FEL pulse, and on the other hand is also
assumed to be reasonably above the resolution limit for a spectrally resolved measurement.

Note that the power levels of the spontaneous radiation for the initial bunch are larger than for the
other cases due to the shorter bunch length without decompression, or equivalently a higher current.

The total power emitted into all frequencies is shown Figure 4.16(a). As expected, for the initial LUX
beam the energy spread is too large to drive an FEL. Just applying decompression is not enough to
grow beyond the spontaneous radiation, although the hint of growth is visible. In the filtered power
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about the opening angle and frequency range, the decompressed beam shows some power above
spontaneous undulator radiation. However, the power gain is still small in this case. At these levels
any degrading effects would likely suppress the small signal.

Only the constant beam size cases show a visible increase in power of about 1 order of magnitude
above the spontaneous radiation already in the unfiltered case seen in fig. 4.16(a). This might be
just enough to detect the FEL pulse. Using the last 20 cm where exponential growth is visible, the
gain length is estimated to be about 𝐿𝑔 ' 23 cm, which is lower than expected from the Xie fit for a
beam with 1mmmrad normalized emittance and 35 µm beam size. However, it is compatible with
the considered scenario of a zero emittance beam in section 4.5.1. Further, if applying the filters in
opening angle and frequency in fig. 4.16(b), the spontaneous undulator radiation is decreased by more
than 1 order of magnitude. A focusing scheme, that is able to provide a constant beam size at the
position of the FEL pulse, combined with a spectrally resolved measurement of the radiation, should
provide sufficient growth beyond the undulator radiation to be detectable in an experiment.

4.7 Conclusion

The electron beams right from the plasma are not of sufficient quality, especially in terms of energy
spread, to generate FEL gain and power levels beyond spontaneous undulator radiation. However,
through proper beam manipulation, the expected gain length can be reduced. The power from an FEL
pulse from such a beam should then grow sufficiently beyond the power levels of the spontaneous
radiation within the 2m undulator to be observable in an experiment.

The following points should all be implemented at LUX to achieve this

• Stretching the beam with a decompression chicane with a 𝑅56 & 500 µm to reduce the
uncorrelated energy spread and weaken effects of short bunch length.

• Taper the undulator to compensate the chirp introduced during bunch stretching to match the
change in energy and the undulator strength, therefore keep the radiation at resonance.

• Implement a focusing scheme that matches the beam size along the undulator to the propagation
of the radiation pulse to increase the current density and mitigate emittance effects.

• Measure the radiation spectrally resolved to isolate the FEL pulse from spontaneous undulator
radiation and enhance the signal.

Including a focusing scheme with constant beam size at the position of the radiation pulse is expected
to decrease the gain length by approximately 10 cm and consequently increase the power in the
FEL pulse at the exit of a 2m undulator by about one order of magnitude compared to only using
decompression and a tapered undulator. The expected achievable gain length from such an optimized
setup is 𝐿𝑔 ' 20 to 30 cm, fitting 6.5 to 10 gain lengths into the 2m undulator.
Isolating the signal in a small window about the fundamental wavelength further improves the signal
over the spontaneous undulator by another order of magnitude. Therefore, detecting FEL amplification
over the spontaneous radiation should be possible, at least in such a spectrally resolved measurement.

90



4.7 Conclusion

Based on these considerations the LUX beamline was designed. FEL simulations including effects
that were not considered here, such as the full 6𝐷 distribution after beam transport, are presented after
explaining the LUX beamline setup in the next chapter.
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CHAPTER 5

LUX Beamline

During the period of this thesis, and based on the methods presented in the previous chapter to improve
the FEL signal, the LUX beamline was upgraded from an existing setup, as described in [24]. Both
the previous and the upgraded setups described in this chapter were used for several experiments and
studies [36, 48, 49, 114, 161, 162]. The laser system was independently modified [41, 163].

Laser-plasma acceleration, with its high accelerating gradients, allows for the construction of short
accelerator beamlines. As discussed in chapter 2, such high accelerating gradients remove the need for
long accelerating structures. In combination with a short-period, high-𝐾 undulator, a Free-Electron
Laser beamline could be scaled down from hundreds of meters to only a few tens of meters. Other
emerging technologies could further shorten the beamline, for example high-gradient permanent
magnet quadrupoles [164, 165] or plasma lenses [166, 167]. However, these elements add complexity
and could make it more difficult to understand and tune the accelerator for a given goal. Therefore,
at LUX, the beam transport of the laser-plasma accelerated electron beams is performed using only
well-understood and well-established transport elements, namely electromagnetic quadrupoles and
dipoles of the type used in conventional accelerators. Transport through these components is described
by linear elements, such as the matrices shown in section 3.1. Higher-order nonlinear elements like
sextupoles or octupoles are avoided to keep the setup simple.

From the previous beamline setup, the plasma source area for the generation and acceleration of the
electron beam, as well as the post-plasma-target laser diagnostics, were retained, because they had
been tested and used extensively before the upgrade. The first quadrupole doublet was replaced by
revised models, maintaining the same geometry and available gradients as in the previously installed
prototypes. The new 25m FEL beamline components were then installed after the plasma source and
the first meters of electron beam capture.

The following chapter provides an overview of the design considerations derived from the FEL
estimations in the previous chapter section 4.5. The procedure to optimize the beam optics and the
resulting transport are presented in section 5.2. The final setup and the actual components used therein
are described in section 5.3.
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Figure 5.1: Schematic illustration of chromatic matching scheme showing transverse
beam sizes 𝜎𝑥 for (red, dashed) a lower energy 𝐸− than (black, solid) the central energy
𝐸0 focused in the front, and (blue, dotted) a higher energy 𝐸+ focused in the back of
(position indicated by grey box) the undulator. A radiation pulse is shown below, starting
with an initial group velocity 𝑣𝑔 ' 𝑐. It slows down in the exponential gain regime at
later positions in the undulator, slipping by 𝜆𝑙/(3𝜆𝑢) relative to the electron bunch.

5.1 Design Considerations for the LUX FEL Beamline

The beamline upgrade is intended to provide the beam properties to gain enough FEL power in the
undulator to be detectable. To provide the parameters described in section 4.5, several components are
required. This included a magnetic chicane to stretch the beam and reduce the local energy spread,
and a set of magnetic quadrupoles to transport the electron beam and match it into the undulator.
At the same time, diagnostics are needed to measure the beam properties and provide feedback for
accelerator tuning.

5.1.1 Chromatic Matching scheme

As discussed in the previous chapter, the FEL growth rate in the undulator is high when the radiation
pulse interacts with an electron beam of high current density throughout the whole undulator. However,
focusing the beam to the center of the undulator to minimize the average beam size is constrained by
the beam emittance and the undulator length. Matching a beam to the natural undulator focusing, for
a planar undulator in its non-wiggling plane, can keep the transverse size constant, but this is also
limited by the emittance and the undulator strength.
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5.1 Design Considerations for the LUX FEL Beamline

Basic Concept

A scheme that only focuses the fraction of the beam interacting with a FEL radiation pulse is not
bound by the same restrictions. The focus spot size, focus position and focus slip, i.e. the shift of a
longitudinal focus position within the bunch, are tuned independently of the undulator length and can
be adapted to the undulator’s strength and focusing properties. The main limitations are geometric,
such as apertures or regions of good field quality.

A key difficulty in implementing such a scheme is deliberately focusing only a part of the beam
longitudinally. For beams where all particles behave (nearly) independently of their longitudinal
position during transport through static elements, this would normally require time-dependent
structures. However, the energy spread in laser-plasma accelerated electron beams are exploited to
focus just the desired energy slice at a given position, using the energy-dependent focusing properties
of magnetic quadrupole lenses.

In a chirped bunch, for example, a bunch after passing through a magnetic chicane, the longitudinal
position of an electron is correlated with its energy. Consequently, the concept of “focus slippage” is
realized by combining beam decompression with a suitable chromatic dependence from the quadrupole
focusing. A scheme that utilizes the latter to impose a focus slippage matched to the FEL pulse is
called a “chromatic matching scheme”. This is illustrated in fig. 5.1. Here, a positive focus slippage is
defined by a beam waist moving forward through the bunch as it propagates, and a negative one if the
waist moves backward.

A partially similar approach was presented in [108], relating the focus slippage to energy-dependent
beam expansion in a free drift. However, that particular strategy is limited to the wiggling plane of a
planar undulator, or any undulator with weak natural focusing, (𝐾𝑘𝑢𝐿𝑢)/𝛾0 � 1.
In contrast, for LUX a different approach was explored that makes use of the anticipated focus slip,
includes the undulator’s focusing, and requires only linear beam optics (though it is not restricted to
linear optics). The key idea is to address the properties of each relevant energy component within the
bunch and tune its parameters individually, i.e., to optimize multiple beamline lattices simultaneously,
all sharing the same geometry.

Focus Slippage for a Chirped Bunch in an FEL

Synchronizing focus slippage with an FEL pulse in the exponential gain regime requires matching it
to the pulse’s group velocity eq. (4.84). The pulse slips through the bunch at a rate of 1/3 that of the
single-photon slippage (see section 4.5.3). The mean energy of electrons located at the pulse position
is set by the beam’s chirp 𝑚. Hence, the rate at which the focused energy has to change along the
undulator depends on the chirp and the pulse slippage [108]

d𝛿 𝑓
d𝑧

= 𝑚
𝜆𝑢
3𝜆𝑙

' 1
𝑅
𝜁
56

𝜆𝑢
3𝜆𝑙

. (5.1)

After the chicane, the beam is chirped with lower energies at the tail and high energies at the head,
𝑚 > 0. Consequently, lower-energy electrons should be focused at the undulator entrance, and
higher-energy electrons at the exit. For LUX parameters with 𝑚 ' 2 000/m, this implies an optimum
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focus slippage of 𝛿 𝑓 ' 0.3%/m in the exponential gain regime. Early in the undulator, before
exponential gain sets in, 𝑣𝑔 ' 𝑐 [105]. Thus, the optimum focus slippage is three times larger, around
0.9%/m, over the first few gain lengths.

Increasing the focus slippage broadens the range of energies brought to a waist within the undulator.
This can be achieved, for instance, by chromatic correction with sextupoles or in a suitably designed
apochromatic drift-quadrupole beamline [68]. However, such correction eventually focuses all energies
at a single point, e.g., at the center of the undulator, reverting to a situation where the FEL scaling
depends on the average beam size.

Reducing the focus slippage, in turn, keeps the waist close to the peak current region, but only focuses
a smaller fraction of the beam’s energy spread, leaving the rest with a larger size.

Moreover, for a fixed chicane 𝑅56 and therefore beam chirp, aiming for a tighter waist implies an
increase in the lowest achievable focus slippage [108].

It is also worth recalling that rapid changes in the current density, particularly at the tail, can support
an early startup [144, 145], see section 4.4.3. For a Guassian distributed current profile, the steepest
slope is located at ±𝜎𝜁 , corresponding to electrons whose energies deviate by about the projected
relative spread 𝜎𝛿 from the central energy. Consequently, a focus slippage near 2𝜎𝛿/𝐿𝑢 ' 1%/m
could boost startup.

In summary, once the 𝑅56 and the magnification from plasma source to the undulator haven been
chosen based on section 4.5, a focus slippage value in or close to the range d𝛿 𝑓

d𝑧 = 0.3%/m to 0.9%/m
is applied. For LUX parameters, FEL amplification emerges from lethargy roughly one-third to halfway
along the undulator, see section 4.6. For a longer undulator operating primarily in the exponential
regime, a value closer to eq. (5.1) might be favored.

5.1.2 Requirements to Beam Optics Lattice

Implementing the above focusing scheme requires enough degrees of freedom in the lattice to shape the
beam’s phase space appropriately to match the parameters for a FEL. Consider first a monoenergetic
slice of the beam in the horizontal plane (the same principle applies in the vertical). The condition for
bringing the beam to a waist is to have the beam-envelope correlation term

〈
𝑥𝑥 ′

〉
vanish

〈
𝑥𝑥 ′

〉 !
= 0 = 𝑅11𝑅21𝜎

2
𝑥,0 + 𝑅22𝑅12𝜎2𝑥′,0 . (5.2)

Because initial beam parameters in laser-plasma acceleration can fluctuate, it helps to have either
𝑅11 = 𝑅22 = 0 or 𝑅12 = 𝑅21 = 0. This way, the focus position is independent from the initial beam
parameters. This ensures the waist location does not depend on the initial beam parameters. Other
combinations of two zero elements conflict with the det(𝑅) = 1 constraint for linear transport to
preserve the phase space volume [55]. To magnify the transverse beam size by a factor of 10 from
initially 3.5 µm to 35 µm, see section 4.5, a |𝑅11 | = 10 is targeted, with then |𝑅22 | = 1/10. This
requires three parameters per transverse plane to set the focus for the reference energy at the undulator
center.
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Since the initial beam size is on the order of 5 µm and the divergence of 1mrad, having 𝑅12 = 0 is
important so that any change in the initial divergence does not significantly shift the waist position or
size. Further, beam pointing could displace the beam from the undulator’s good-field region or cause
vertical offset and therefore oscillations of the beam’s centroid due to natural undulator focusing.

Applying focus slippage adds two more constraints per plane [108]. The first sets the rate of focus
slippage, and the second governs how the beam size evolves for off-crest energies during the slip.
Here, we fix it to remain constant, although it can in principle grow or shrink. In practice, additional
focal points are imposed at the undulator entrance and exit for the respective energies.

These constraints translate into at least ten adjustable parameters. Since LUX does not always operate
at a fixed 300MeV but rather in the 250 to 350MeV range, the lattice has to contain sufficient
quadrupole magnets to focus the beam over that range. The optimization thus focuses primarily on
tuning quadrupole gradients, not drift lengths. Once determined, the latter are fixed and any changes
in the transport have to be achieved by adjusting the quadrupole strengths. However, the drift between
quadrupoles has to be sufficient to provide the focusing, but avoid excessive beam size and divergence,
and keep required magnet strengths within feasible limits.

At the very start, the beam is captured within 40 cm behind the plasma target with a quadrupole
doublet, thus reducing the divergence to . 0.1mrad and minimizing slice degradation from chromatic
effects, see sections 3.6.1 and 3.6.2. In total, 11 quadrupoles are used from the plasma source to the
undulator.

In addition to quadrupoles, the beamline has to include a chicane providing sufficient 𝑅56 to decompress
the bunch. The chicane’s length and dipole angles are chosen carefully so that it does not exceed the
limited tunnel space or induce excessive coherent synchrotron radiation (CSR). For the anticipated kick
angles, a small horizontal beam size 𝜎𝑥 . 100 µm in the first dipole of the chicane is also important
for limiting CSR-induced emittance growth to about 0.5mmmrad, see section 3.6.5. Although larger
emittance may be partly mitigated by the chromatic focusing scheme, it is still desirable to keep
it small enough for the downstream transport after the chicane. Finally, an undulator with a taper
matched to the beam’s chirp maintains the resonance condition and enhances the output power. A
variable-gap, variable-taper undulator was designed and built at LUX for this purpose [114].

5.2 Beam Optics Optimization

Based on the requirements found before, an optics lattice with 11 quadrupoles up to the undulator was
set up. It includes the initial two quadrupole magnets to capture the beam, followed by drift space for
laser diagnostics inherited from the pre-upgrade beamline. The remaining quadrupoles are arranged
as two doublets before the chicane and a quintet between the chicane and the undulator. Their effective
lengths are 113mm for the first magnet, 121mm for the second, and 135mm for the rest, reflecting
the available magnet types for LUX, see section 5.3.1.

The intent of the second and third doublets is to keep the beam sufficiently small throughout the
chicane and provide the right transport matrix elements for the quintet to implement the chromatic
focusing into the undulator. Further, this setup allows for installing additional diagnostics and the
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Table 5.1: Magnet strength for optimized LUX lattice with chromatic focusing into the
undulator.

Quadrupole No. 𝐾1 (1/m
2) Quadrupole No. 𝐾1 (1/m

2)
1 107.10 7 -12.60
2 -40.15 8 12.60
3 10.25 9 -11.35
4 -14.67 10 11.27
5 4.92 11 -12.57
6 -6.90

decompression chicane in the drift between the quadrupole magnets. This arrangement also leaves
room for additional diagnostics and the decompression chicane. For instance, an electron spectrometer
is installed early in the line, which can be matched using the first or second doublet (or both). The
lattice incorporates the magnets and undulator positions as they are physically installed at LUX. In the
optimization, the undulator has a fixed parameter 𝐾 = 2, providing vertical focusing. A small taper in
the range of a few %/m is neglected here.

Because of the large number of quadrupoles involved and the desire to avoid beam degradation, a
systematic search was performed to find suitable sets of quadrupole gradients. To avoid local minima
caused by poor initial guesses, the 11-dimensional space of quadrupole gradients was sampled with
a large number of points from a Halton sequence, a low-discrepancy sequence that evenly explores
parameter space. Each quadrupole’s gradient was limited by its technical maximum: about 180 T/m
for the first quadrupole, 70 T/m for the second, and 23 T/m for the others. At each sample point,
a minimization was performed against a cost function measuring deviation from the target matrix
elements.

The matrix elements at the undulator center were evaluated for a reference energy of 300MeV, as well
as for ±1% energy deviations at the undulator entrance and exit, aiming for a focus slippage of 1%/m.
Off-energy beam sizes were assigned a lower weight so that the central energy waist is prioritized,
while still permitting some variation in the slippage and waist size, close to the goals in section 4.5.1.

Optimized Lattice

The resulting lattice solution is listed in table 5.1. As expected, the first two quadrupoles require high
gradients, while the following transport is realized with quadrupole magnets with strengthw about
𝐾1 ' 10 /m2. The best matching was obtained when the quadrupoles of the second and third doublets,
as well as those in the quintet, were spaced at the maximum allowed center-to-center distance of 50 cm,
giving the largest possible drift between them. fig. 5.2(a) and (b) show the horizontal and vertical
beam sizes, respectively, through the beamline for the reference energy and ±1% energy deviation
from that. The initial size is 3.5 µm size and 0.5mrad divergence in both planes, see section 2.4
for comparison. These plots show the individual mono-energetic energy slices rather than the full
projection, highlighting how the chromatic matching yields smaller spot sizes only in the relevant
slices that are expected to interact with the FEL pulse.
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Figure 5.2: Optimized beamline layout for LUX with beam sizes for the (a) horizontal
plane and (b) vertical plane. Energies are focused along the undulator according to a
chromatic matching with about 1%/m focus slippage over the undulator. The reference
energy (black, solid) is focused at the center of the undulator, whereas (red, dash-dotted)
−1% lower energies are focused at the undulator entrance and (blue, dashed) 1% higher
energies are focused at its exit. Initial beam size and divergence are 3.5 µm and 0.5mrad
in both planes. Colored boxes indicate (red) quadrupole magnets with 𝐾 > 0, (green)
quadrupole magnets with 𝐾 < 0, (blue) chicane dipole magnets, and (grey) the undulator.
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Chapter 5 LUX Beamline

At the undulator center, the horizontal and vertical magnifications are about 10 and 8, respectively.
The vertical plane’s magnification decreases to about 5 near the undulator ends, having beam sizes of
roughly 35 µm horizontally and 15 µm to 30 µm in the vertical plane. The resulting focus slippage for
this optics is about 0.8%/m in the horizontal and 1.0%/m in the vertical plane, close to the target
range. These slightly different values in size and focus slippage to the targeted ones are mainly
attributed to the set constraints in the optimization, like the length or maximum divergence. However,
the parameters are in the parameter range that was aimed for. The slightly smaller size in the vertical
plane is not expected to have a negative impact on the FEL performance, see section 4.5.1.

Overall, the beam remains at about 200 µm on average in transverse size with a divergence near
0.1mrad in the longer drift sections, and up to 0.3mrad in the shorter drifts between the closely spaced
quadrupoles of the individual doublets and the quintet. The beam size in the first dipole magnet of
the chicane is kept at about 120 µm, mitigating the effects of CSR-induced emittance growth, see
section 3.6.5.

Hence, this optimized setup fulfills the main requirements: low divergence during transport, sufficiently
small beam size in the chicane’s first dipole, and implementation of chromatic focusing in the undulator.
It is therefore adopted as the baseline layout of the LUX beamline.

5.3 Beamline Components and Diagnostics at LUX

Building on the optimized layout, the LUX beamline has to accommodate the components discussed
above, as well as correction elements for beam alignment and diagnostics to characterize both
the electron beam and the undulator radiation. The full setup is shown in fig. 5.3. It contains a
total of 13 quadrupoles. Two additional quadrupoles after the undulator refocus the beam into a
permanent-magnet electron spectrometer at the beamline end. Another electromagnetic spectrometer
is installed earlier, after only a few meters of transport. A dark-current and charge monitor is placed
upstream of this first spectrometer. A total of 10 corrector dipoles are used. 4 are located after the
initial doublet and allow to steer beams exiting the plasma at an angle back onto the nominal axis, 4
more are placed after the chicane to correct any residual dispersion or kick due to chicane magnet
errors, and 2 are installed directly before the undulator to steer the beam through the undulator. The
chicane is a 4-dipole C-chicane, as considered in section 3.4, with a collimator at its center to possibly
remove particles at large transverse offsets or with large energy deviations.

To measure transverse beam profiles, 6 screens are distributed along the beamline. 4 of them are
preceded by beam-position monitors (BPMs) that measure the charge and the beam’s centroid position.
2 BPMs are installed immediately before and after the FROSTY undulator to track the beam’s position
and angle. Finally, a radiation spectrometer for the extreme ultraviolet (EUV) range is mounted at the
end of the beamline to measure the undulator radiation. An overview of these components is given in
table 5.2, and their individual properties are detailed in the following subsections.
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5.3 Beamline Components and Diagnostics at LUX

Table 5.2: Installed components at LUX and their center positions in the beamline. Based
on their position the components are categorized in one of three sections: The capturing
section from the plasma target to the first electron spectrometer, the chicane section from
the quadrupoles after the first spectrometer to the profile screen behind the chicane, and
the undulator section from the quintet to the end of the beamline. Used abbreviations:
Quad. = quadrupole, Cor. H. = horizontal corrector, Cor. V. = vertical corrector,
𝑒−-Spec. = Electron Spectrometer, Dip. = Chicane Dipole.
Capturing Section Chicane Section Undulator Section

Component Position (mm) Component Position (mm) Component Position (mm)
Source 0 Quad. 5 7169 Quad. 7 13669
Quad. 1 151 Quad. 6 7670 Quad. 8 14169
Quad. 2 352 BPM2 8187 Quad. 9 14668
Cor. H. 1 552 Screen2 8611 Quad. 10 15169
Cor. V. 1 739 Dip. 1 9320 Quad. 11 15668
Cor. H. 2 2109 Dip. 2 9820 BPM 3 16191
Cor. V. 2 2307 Collimator 10500 Cor. V. 5 16464
BPM 1 2655 Screen3 10796 Screen 4 16609
Screen 1 3160 Dip. 3 11546 Cor. H. 5 16919
Quad. 3 3623 Dip. 4 12046 Undulator 18526
Quad. 4 4122 Cor. H. 3 13206 BPM 4 20417
DCM 4472 Cor. V. 3 12660 Quad. 12 20908

𝑒−-Spec. 1 4990 Cor. H. 4 12756 Quad. 13 21259
Cor. V. 4 12855 Screen 6 21598
Screen 4 12955 𝑒−-Spec. 2 22317

101



Chapter5
LU

X
Beam

line

Figure 5.3: Schematic LUX beamline layout with all components and diagnostics shown.
Modified figure, original by P. Winkler.
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5.3 Beamline Components and Diagnostics at LUX

5.3.1 Quadrupoles

Figure 5.4: Photos of quadrupoles of the type installed as third to eleventh magnet for the
beam transport. Left: Measurement setup with Hall Probe Right: Third doublet installed
before the chicane.
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Figure 5.5: Measured profiles for the (blue, solid) quadrupole magnet 1 (orange, dashed)
quadrupole magnets 2, 12, 13, and (green, dash-dotted) quadrupole magnets 5–11 used at
LUX.

To provide beam capture, transport, and transverse shaping of the beams at LUX, three types of
quadrupole magnets are used. In the region immediately following the plasma target, where the beam
is initially small but highly divergent, high field gradients are necessary. Because adverse effects on
emittance and slice properties can accumulate over longer drifts, see section 3.6, this initial capture
has to happen as early as possible in the beamline.

For this purpose, two magnet types are used, each with a geometric length of 10 cm and small bore
radii of 6mm and 11mm, respectively, providing gradients up to 180 T/m and 70 T/m. The remaining
quadrupoles, also of only 10 cm length, have a larger 20mm radius to accommodate wider beam pipes
for improved transmission.

Measured field profiles for all three magnet types, obtained using a Hall probe, are shown in fig. 5.5.
From these measurements, the classical and modified effective lengths, eqs. (3.58) and (3.59), are
determined for use in tracking and optimization. The achievable peak gradients per applied current
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Figure 5.6: Measured relation between applied current 𝐼 and peak gradient 𝑔0 for the (a)
first, (b) second and last two, and (c) first, all other quadrupole magnets used at LUX.

Table 5.3: Properties of quadrupole magnets used at LUX.
Quad. 1 Quad. 2, 12, 13 Quad. 3–11

Yoke length (mm) 102 102 100
Bore radius (mm) 6 11 20
Max. current (A) 160 160 200

Max. peak gradient 𝑔max (T/m) 180 70 23
Effective length 𝐿eff (mm) 110.5 115.6 118.3

Mod. effective length 𝐿eff,S (mm) 112.8 121.1 134.7

set in the experiment are depicted in fig. 5.6 (a)-(c). Because of technical limits, the current in the
first two quadrupoles is restricted to 160A, which is sufficient to capture electron energies up to
approximately 500MeV. In principle, the remaining quadrupoles can be driven up to 300A, but the
available power supplies provide only 200A. Consequently, the same energy limit applies throughout.
In this range, only the first quadrupole shows saturation above 100A or 160 T/m. A summary of these
magnet properties is given in table 5.3.

5.3.2 Chicane Dipoles

The chicane dipole magnets were designed to provide a large tunable range of 𝑅56 over the expected
energies at LUX, while maintaining a compact overall length of the chicane. At least a 𝑅56 ' −1mm
was targeted for energies that can be transported by the available quadrupoles, with additional margin
towards higher values. Existing HERA CV/CH dipole magnets were modified for this purpose. After
reducing their gap to 20mm, their effective field length is approximately 350mm. With a minimum
center-to-center distance of 500mm between dipoles, the overlap of their fringe fields occurs only
where the field amplitude falls to less than 5% of its peak, making the resulting cross-talk negligible
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Figure 5.7: (a) Peak magnetic field 𝑔0 of chicane dipole magnets dependent on the applied
current and (b) field profile of chicane dipole magnets.
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Figure 5.8: (a) 𝑅56 dependent on the applied current for a 300MeV beam. The quadratic
increase is reduced by saturation effects in the magnets toward higher currents. (b)
Maximum (absolute) 𝑅56 in the chicane. Magnet pole width and apertures limit the value
at energies below 180MeV. Maximum value of the left plot is indicated by a red square.

for the intended purpose. Magnet dimensions and spacing considerations show that a kick angle of
about 50mrad, corresponding to 240mT peak field at 500MeV, is required to achieve the desired
range of 𝑅56. This field is reached by reducing the magnet gap to 30mm.

Figure 5.7(a) displays the peak field dependence on the applied current, while fig. 5.7(b) shows the
measured field profile. Saturation effects set in starting at approximately 2A. For the reference energy
of 300MeV , a theoretical maximum kick angle of 90mrad is thus possible, providing 𝑅56 ' −6mm.
This corresponds to a maximum decompression factor of 𝑛𝐵 ' 30 for an initially 2 µm long beam.
The resulting relationship between 𝑅56 and the magnet current at 300MeV is plotted in fig. 5.8(a). At
the maximum setting, the horizontal beam displacement at the chicane center is about 45mm. The
pole width and vacuum chamber are dimensioned to accommodate offsets up to 80mm.
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Table 5.4: Properties of chicane dipole magnets used at LUX.
Yoke length (mm) Effective length (mm) Full gap (mm) Max. peak 𝐵0 (mT)

300 350 30 255

For the anticipated decompression of about 𝑛𝐵 & 3, corresponding to 𝑅56 ' −500 µm, a kick angle
of approximately 25.5mrad is required, which corresponds to the value used for CSR estimations
in section 3.6.5. The maximum achievable (absolute) 𝑅56 for given energies is shown in fig. 5.8(b).
At energies below 180MeV the limit arises from the maximum allowable horizontal displacement,
whereas at higher energies the limitation is set by the available magnet current.

A summary of the dipole parameters and their performance is provided in table 5.4.

5.3.3 Corrector Dipoles

Figure 5.9: (a)Measured dependence of peak field on applied current and (b) field profiles
for the corrector dipole magnets: (blue, solid) correctors 1, 3, 4, (orange dashed) corrector
2, (green dash-dotted) correctors 5–8, and (red dotted) 10 and 11.

Corrector dipoles are installed to steer the beam back to the nominal axis when offsets arise from
factors such as initial beam pointing, magnet misalignment, or ambient fields. 4 correctors are placed
after the capturing quadrupole to compensate horizontal position and angle, 4 are positioned behind
the chicane to correct any residual dispersion or misalignment, and 4 are located just upstream of the
undulator to fine-tune the beam trajectory through it.

The peak fields as functions of the current and the field profiles were measured and shown in
fig. 5.9(a)–(b). In standard operation, the beamline should be configured such that these correctors are
rarely needed. A summary of their properties is provided in table 5.5.
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Table 5.5: Properties of corrector dipoles at LUX.
Yoke length (mm) Effective length (mm) Full gap (mm) Max. peak 𝐵0 (mT)

Cor. 1, 3, 4 100 165 40 160
Cor. 2 100 175 50 130
Cor. 5 − 8 20 90 40 40
Cor. 9, 10 20 110 50 25

5.3.4 Spectrometers
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Figure 5.10: (a) Relative resolution dependent on the electron energy for (blue, solid)
the first spectrometer and (orange, dashed) the second spectrometer. (b) 2𝐷 field
map of central (𝑦–𝑧)-plane for the second spectrometer with trajectories of (orange,
dashed) 100MeV, (blue, solid) 300MeV, and (green, dash-dotted) 500MeV leaving the
spectrometer magnet through the fringe field at the bottom or rear edge.

To measure the energy and the energy spread of the electron beams, 2 electron spectrometers are
installed in the LUX beamline. The first spectrometer, using an electromagnetic dipole, is located
about 5m behind the plasma source for measurements without utilizing the full beam transport. It is
used to optimize the electron beams from the plasma targeting low energy spread, small mean energy
jitter, and high charge. After tuning the laser to achieve the desired electron beam properties, this
spectrometer is switched off to transport the beam further downstream the beamline to the undulator
and finally to the second spectrometer at the end of the electron beamline. The second spectrometer
allows to correlate the properties of the radiation emitted from the undulator to the electron properties
on a shot-to-shot basis. Both spectrometers deflect and disperse the beam vertically, mapping the
energy onto a positional offset on a scintillating screen, which is then recorded by a camera. They
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Table 5.6: Properties of spectrometer dipoles at LUX.
Yoke length (mm) Full gap (mm) Max. peak 𝐵0 (mT)

𝑒−-Spec. 1 500 55 245
𝑒−-Spec. 2 400 40 950

provide relative resolutions of about 0.1% at the typical beam energy of 300MeV, determined by
the amount of dispersion, the granularity of the screen material and the camera resolution. The
dependence of the resolution on the beam energy is shown in fig. 5.10(a).

Basic properties of the spectrometer dipoles are listed in table 5.6. Dependent on their energy, electrons
take different paths through the spectrometer and either exit the spectrometers at the rear or bottom
edge, passing through extended regions of fringe fields. This is illustrated in fig. 5.10(b). Along these
paths, the respective fractions of the beam experience either focusing or defocusing effects, therefore a
normal dipole transport matrix is not sufficient to describe the orbit. Instead, matrices for each energy
are derived by fitting tracked particle distributions. A detailed description of the spectrometers and
the calculation of their matrix elements is provided in previous work [48, 91].

5.3.5 Charge and Beam Position Measurement

In the LUX beamline the beam position can be measured in two different ways. The first is by means
of transverse profile screens, which additionally offer the ability to measure the transverse extent
and shape of the beam at a resolution of about 30 µm per pixel. However, such a screen blocks the
electron beam and therefore cannot be used as diagnostics simultaneously to operating the undulator.
The second method is the use of cavity beam position monitors (BPMs) [168], which provide a
non-invasive measurement. As the beam traverses the cavity, the 𝑇𝑀01 and 𝑇𝑀11 modes are measured,
providing a signal proportional to the bunch charge and transverse positions. However, they cannot
measure the beam size or profile. Therefore, both are used in combination to measure the charge and
transverse beam properties along the beamline. In addition, a charge monitor6 is installed in front of
the first spectrometer.

The BPMs and profile screens are positioned along the beamline to measure position and charge of the
beams at crucial positions. Most importantly they are placed in front and behind the undulator, to be
able to measure and correct the trajectory through the undulator. The other two are installed behind
the first doublet and correctors, to measure the charge from the plasma source after capturing the
beam, and in front of the chicane, to be able to correct the trajectory through the chicane and detect
charge losses during the beam transport.

Four of the six screens are positioned behind the four BPMs, to also be able to measure the transverse
beam size and calibrate both devices against each other. With the known pixel size of the screen, the
linear response of the 𝑇𝑀01 and 𝑇𝑀11 signals of the BPM and hence the position measurement is
calibrated, and the zero reading of the BPM is used to locate the center position of the screen.

6 A dark current monitor with integrated charge measurement.
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Figure 5.11: Strength parameter 𝐾 for the FROSTY undulator dependent on the gap. (red,
square) A 𝐾 of 2 is achieved with a gap of 3mm.

5.3.6 Undulator

Design and construction of the FROSTY undulator was done by M. Trunk. Only a few aspects relevant
to the FEL are addressed here and detailed information is given in [114].

FROSTY , initially designed as a cryogenic undulator, has a period length of 𝜆𝑢 ' 15.08mm with
variable gap and taper. At room temperature, it can reach a magnetic peak field of 𝐵 ' 1.81 T,
corresponding to a 𝐾 of 2.55, at a gap of 2mm. The magnetic good field region, with relative peak
field deviation less than 10−3, was found to be of size of about ±900 µm horizontally and ±140 µm
vertically [114].

Undulator Peak Field

The on-axis peak field of a planar undulator is described by an exponential function of the form [106]

𝐵0(𝑔) = 𝑎 exp
(
𝑏

(
𝑔

𝜆𝑢

)
+ 𝑐

(
𝑔

𝜆𝑢

)2)
, (5.3)

where 𝑔 is the undulator gap and 𝑎, 𝑏, 𝑐 are parameters dependent on the undulator that have to be
determined. They were obtained from a fit to data taken at various gaps to be [114]

𝑎 = 3.007 𝑏 = −3.944 𝑐 = 0.833 . (5.4)

The corresponding undulator strength is shown in fig. 5.11. For a targeted value of 𝐾 = 2, the undulator
gap has to be set to 𝑔 ' 3mm. There, a change in K of 1% corresponds to a difference in gap of
26 µm. In principle the gap can be increased or decreased in steps of 0.13 µm, which is the resolution
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Figure 5.12: (a) Second field integral of the measured horizontal magnetic field of the
FROSTY undulator. (b) Corresponding average horizontal electron movement for an
energy of 300MeV. A pointing of −80 µrad at the undulator entrance was chosen such
that the average motion up to the local kick at 1.3m is about the central axis of the
undulator. (c) Root mean square beam wander along the undulator.
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of the step motors driving the gap. However, the accuracy is limited by the gap measurement systems
[169] and was determined to be approximately 3.2 µm [114]. Therefore, the undulator strength can be
set to approximately 0.13% accuracy. The gap measurement systems are mounted 1.87m apart, close
to the entrance and exit of the undulator. Therefore, changing the gap at only one side of the undulator,
the taper can be set in steps smaller than 0.1%/m. Consequently, both the targeted 𝐾 and taper can
be set precisely to the targeted values of 2 and 1.3%/m respectively, as used in the previous chapter.
Further it is possible to scan the taper about this value to tune it to an optimum value in the experiment.

Transverse Field Quality

After having determined the accuracy of 𝐾 and taper, the field profile and connected to that the field
quality is of main interest. As outlined in section 4.4.4 it can be used to estimate the influence of the
real field properties on the FEL process. The field was tuned for low field errors at a 𝐾 = 2 and the
corresponding field measurements were performed and reported in [114]. A constant offset in the
field magnitude, originating from the amplification of background fields in the poles, is compensated
by a Helmholtz coil built around the undulator chamber. It removes a quadratic contribution to the
second field integral and therefore reduces the corresponding beam wander. The second field integral
of the vertical field component, i.e. the main component, of FROSTY , measured in the accelerator
tunnel, is shown in fig. 5.12(a). The change in the slope in the second field integral at about 1.3m
appeared after installing the periodic magnetic structure into the vacuum chamber after the field was
tuned. The corresponding horizontal motion of the electrons with an energy of 300MeV is shown in
fig. 5.12(b). An entrance angle of 80 µrad was used to keep the electron motion about the design axis
at the center of the undulator.

For FROSTY , the phase shake was determined to be about 𝜎Φ ' 11° [114]. This results in an estimated
increase in gain length of about 2% from the phase mismatch to the light field according to eq. (4.77),
and is therefore negligible compared to the phase spread contributed by the energy spread of the
electron beam. However, the local kick at 1.3m imprints an average transverse motion onto the
electron beam, then moving at an angle of about 80 µrad to the central axis and being displaced by
about 60 µm at the end of the undulator. The corresponding root mean square beam wander, plotted
in fig. 5.12(c), increases from about 15 µm, originating from the wiggling motion, to 35 µm at the
end of the undulator. Considering the beam wander limit from eq. (4.79) and the debunching effect
from eq. (4.73) for the optimized FEL case, the gain length is expected to double. To the end of the
undulator, the horizontal displacement is about one beam radius 𝜎𝑥 ' 35 µm. Nevertheless, this only
happens at the end of the undulator, losing only about one gain length over the whole 2m length of the
undulator compared to an ideal undulator. To account for these effects, the measured undulator field
profile is compared to an ideal field for the FEL simulations in chapter 6.

Note, that the beamwander limit requires the horizontal beam size inFROSTY to be at least𝜎𝑥 ' 10 µm
up to the local kick at 1.3m and at least 𝜎𝑥 ' 20 µm for the remaining undulator length. For smaller
beam sizes the beam and radiation would not sufficiently overlap and the FEL process stops.
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Figure 5.13: Efficiencies of the EUV spectrometer components dependent on the wave-
length. (a) Reflectivity of the gold mirror. (b) Transmission of 250 nm aluminum filter
[112]. (c) Grating reflectivity to the (blue, solid) first, (orange, dashed) second, and
(green, dash-dotted) third diffraction order𝐺1–𝐺3. (d) CCD camera spectral responsivity.
Figures (a),(b),(d) adapted from [114].
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Figure 5.14: Signal on CCD including the effects of the components in the EUV
spectrometer at LUX. Wavelength corresponds to the position in the image plane of
the first diffraction order of the grating. Signal is normalized to the counts of the total
spontaneous radiation in the first three diffraction orders of the grating at 65 nm (a)
Spontaneous undulator radiation for (orange, dashed) first, (green, dash-dotted) second,
and (red, dotted) third diffraction order 𝐺1–𝐺3. (Black, solid) their combined signal.
(b) Total signal for undulator radiation (same is in (a)) and FEL signal for the (red,
solid) highest signal and (blue, dotted) lowest signal from 5 simulations. Raw spectrum
shows same photon count for wavelength ranges of only spontaneous undulator radiation.
Lower signal level in the FEL case comes from the absence of lower wavelengths in the
simulation and their higher diffraction orders.
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5.3.7 Undulator EUV Radiation Spectrometer

The beamline and the FROSTY undulator are designed to show the startup of an FEL, but not saturation.
Therefore, the FEL signal is expected to be only a small factor larger than the spontaneous undulator
radiation. As already seen from the estimations in section 4.6 (and shown later with the full transport
in section 6.4), the FEL signal, considering all wavelengths, is expected to be only about one order
of magnitude larger than the background. To improve this ratio to about two orders of magnitude, a
spectrally resolved measurement about the fundamental wavelength with resolution better than the
FEL bandwidth after the 2m undulator (see eq. (4.48)) is required. The wavelengths expected at LUX
are in the extreme ultraviolet (EUV) range. They range from about 20 nm, for electron energies of
350MeV at a undulator 𝐾 = 0.5, to 130 nm, for 250MeV at the maximum 𝐾 = 2.55. At the tuned
𝐾 = 2 and typical beam energy of 300MeV the fundamental wavelength is 65 nm.

Efficiencies

To detect the FEL signal within this range, a EUV radiation spectrometer is installed at LUX. The
radiation from the undulator is collected by a toroidal gold mirror onto a diffraction grating and
from there dispersed onto a CCD camera. For best resolution, the setup images the exit of the
undulator, where most FEL radiation is generated, onto the camera chip. In this setup, the CCD chip
of 13 × 13mm2 at 1024 × 1024 pixel can cover a range of 11.7 nm at a resolution of 0.01 nm [114].
To cover the full wavelength range, the camera can be moved from the on axis position to 120mm,
where 120 nm are still detectable. However, to block any signal from the LPA drive laser while being
able to detect the EUV radiation, a 250 nm aluminum foil is installed, which limits the transmission
window to the range from 17 nm to 80 nm.

The efficiency curve for the gold mirror, the transmission of the aluminum filter, the grating reflectivity
for the first three diffraction orders, and the CCD spectral responsivity are shown in fig. 5.13(a)–(d)
respectively. The camera signal including all the above contributions for a spontaneous undulator
radiation spectrum, obtained with the synchrotron radiation code SPECTRA, was calculated and is
shown in fig. 5.14(a) for all three diffraction orders and their combined signal. Note, that the individual
diffraction orders are reflected at different angles and are therefore mapped to different positions in the
image plane. Therefore, the diffraction orders overlap at the same position for different wavelengths.
All signals are normalized to the total signal at the position of the fundamental wavelength at about
65 nm. Due to the broad spectrum and the higher spectral responsivity and the higher efficiency of the
higher diffraction orders at lower wavelengths, peaks larger than the signal of the fundamental can be
seen at 17 nm, 34 nm and 51 nm. Further, the signal from the higher diffraction orders is expected to
overlay the signal at 65 nm.

Detection of FEL Signal

In addition the signal from the SVEA FEL simulations performed with SIMPLEX in section 4.6 is
shown in fig. 5.14(b). The used beam, stretched by 𝑛𝐵 ' 3, a constant beam size of 35 µm, and a
undulator with 𝐾 = 2 and taper of 1.3%/m, showed a power level of one order of magnitude over the
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spontaneous undulator radiation for the full spectrum, and two orders of magnitude within a spectral
window of ±2% of the fundamental. Here, the signal level will be compared including the effects of
the LUX EUV spectrometer.

It was checked that the number of photons obtained for the spontaneous undulator spectrum is the same
in SPECTRA and SIMPLEX, i.e. for all simulated wavelengths except the FEL signal, before applying
the effects of the mirror, aluminum filter, grating, and CCD. Both spectra are normalized to the same
value, the signal of the spontaneous undulator radiation at 65 nm. Note, that the higher diffraction
orders from lower wavelengths are not included in the FEL simulation, due to only simulating a 50%
frequency window, i.e. the wavelength range of 45 nm to 130 nm. However, this does not impact the
FEL signal level.

About the fundamental wavelength the signal on the CCD is about 40–80 times larger for the FEL
cases than from the spontaneous undulator radiation alone.

Since the spontaneous undulator signal scales linearly with the charge, if the changes, the signal on
the CCD changes by the same factor. Charge fluctuations therefore cause a charge fluctuation in the
camera signal. Further the signal is subject to camera noise, for example thermal, shot, and read noise.
Combined fluctuations from these in the signal from spontaneous undulator radiation of an electron
beam in this setup were found to be on the order of a factor of 2 [114].

Consequently, a beam, that is properly stretched and focused into the 2m undulator, and reaches FEL
power levels of one order of magnitude over the spontaneous undulator radiation over all wavelengths,
will show about a factor of & 20 signal over the undulator radiation background in the spectrally
resolved measurement with the EUV spectrometer at LUX.

5.3.8 Magnetic Background Field Compensation

Additionally to the desired magnetic fields from the dipole and quadrupole magnets, that were
placed on purpose, the beam is influenced by any magnetic fields along beam path. Due to the
percent-level energy spread of the laser-plasma accelerated electron beams and the 300MeV beam
energy, compensating those fields is relevant for LUX. The magnetic fields cause energy-dependent
detours of the electron beam, which lead to undesired dispersion and potentially lower the performance
of the chromatic matching scheme.

A major contribution has been identified to be the earth magnetic field with about 50 µT, see
section 3.5.3, bending the beam trajectory over the whole transport. Further, the field can be influenced
by material in the accelerator tunnel or its surroundings, therefore not being constant along the beam
transport.

As possible local influences on the trajectory the magnetic holders for alignment devices were identified.
They are used along the beamline for proper positioning of the components and their field amplitude
follows a 𝑟−3 dipole law [170]. For those closest to the beam pipe, a local variation in the magnetic
field of about 100 µT to 200 µT at the position of the beam pipe was measured, which would cause a
kick of about 30 µrad. Consequently all magnetic holders close to the beam pipe were removed.
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Figure 5.15: Magnetic background field along the accelerator for (a) the horizontal,
(b) vertical, and (c) longitudinal field components. The horizontal and vertical field
component are compensated with correction coils spanning the range 0.5m to 17m to
minimize the (d) (blue, solid) horizontal and (orange, dashed) vertical second field integral
at the last corrector before the undulator. Beamline lattice shown for (red) quadrupole
magnets, (green) corrector magnets, (purple) electron spectrometer, and (blue) chicane
dipoles.

116



5.4 Conclusion

To compensate the remaining magnetic background field in the accelerator tunnel, pairs of large
rectangular Helmholtz coils were installed. One for each, the horizontal and the vertical field
component. The longitudinal field component is not corrected, since its effect on the beam transport is
small. The magnetic background field along the beam pipe was measured at 48 longitudinal positions
for different currents applied to the compensation coils. The individual field components at the
optimum coil current are shown in fig. 5.15(a)–(c). The remaining background field is not constant
over the accelerator and also shows different compensation for the applied coil currents at some
positions. This can be due to magnetizable material guiding the field. For example, the beam dump
behind the first spectrometer at 5m is known to contain such material.

The compensation coils are set such that the mean transverse beam positions are on axis in front of the
undulator for a freely drifting beam after the initial capture with the first doublet. A residual mean
beam pointing is compensated by the correctors installed directly in front of the undulator.

The second field integrals at the optimum compensation, which are proportional to the beam
displacement, are shown in fig. 5.15(d). The trajectory of particles with an energy of 300MeV defines
the reference trajectory.

5.4 Conclusion

To shorten the gain length and increase the FEL signal, the initially percent-level energy spread beam
is stretched in a decompression chicane, thus decreasing the uncorrelated energy spread. However,
the expected gain with LUX parameters would not be sufficient to show significant signal above the
spontaneous undulator radiation level. Therefore a chromatic focusing scheme is implemented, that
uses the longitudinal sorting of the electrons by their energy to allow for a constant beam size at the
position of the FEL radiation pulse. A setup that realizes such a focusing scheme has been designed
and optimized. Further, the used focus slippage should benefit the startup of the FEL process in the
short undulator.

The beamline setup features a total of 13 magnetic quadrupole lenses, of which 11 are used to
transport the electron beam at a low divergence towards and to apply the focusing scheme into the
undulator. A magnetic chicane allows for a decompression of a beam with an energy of 300MeV up
to 𝑅56 ' −6mm. For a targeted decompression of about −0.5mm in the chicane, the CSR effects are
expected to be on a tolerable level, which is achieved by keeping the beam size small with the optics
provided by the quadrupoles. Compensation coils to reduce the average magnetic background field
are installed along the accelerator tunnel and 10 corrector dipole magnets provide the capability to
tweak the trajectory, if required.

The beamline was built with additional diagnostics, including 6 screen stations, 4 non-invasive beam
position monitors, 1 non-invasive charge measurement, 2 electron spectrometers, to characterize and
control the electron beam, and an EUV spectrometer to measure radiation from the FROSTY undulator.
Using beam parameters from LUX, the decompression and chromatic focusing scheme, power levels
of one order of magnitude above the undulator radiation over all frequencies can be achieved. These
pulses result in signal levels in the spectrally resolved measurement of 20–40 times larger than the
undulator background and noise.
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Consequently, the beamline setup is capable to demonstrate the startup of an FEL from the 2m
FROSTY undulator for the electron beam properties as provided by LUX.
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CHAPTER 6

Free-Electron Laser Simulations

For the correct simulation of the FEL interaction in the undulator the time-dependent 3D FEL code
Puffin [171, 172] is used. Unlike many other codes, it does not apply the slowly varying envelope
approximation, period-averaging of electron motion, or periodic slicing of the electron bunch. While
codes incorporating some or all of these approximations describe most FELs accurately and agree
well with experimental results from existing facilities [173, 174], they impose constraints on resolving
sub-wavelength scale and short-bunch effects.

In contrast, Puffin can accurately model broadband radiation, the spontaneous background, coherent
spontaneous emission potentially present at the bunch tail, and shot-noise effects over a broad
frequency range. It self-consistently models the longitudinal dynamics of beams with large energy
spread, enabling electron redistribution within the bunch over regions larger than the resonant
wavelength. These capabilities are particularly important for laser-plasma accelerators like LUX
and its decompression scheme, where the total energy spread is large and the mean energy changes
rapidly along the bunch due to the energy chirp. Effects related to these properties are not captured
by SVEA-based codes, making them less suitable for accurately simulating the FEL process with
laser-plasma accelerated electron beams [156, 175].

The general setup and the preparation of the input beam are outlined in section 6.1. Simulation results
are discussed in section 6.3 for an undulator without errors using the original Puffin code, and in
section 6.4 for the measured FROSTY undulator field, employing a modified version of Puffin that
allows for user-defined field profiles.

6.1 Beam Properties

The setup and beam optics described in the previous chapter was used to track the LUX reference
beam to the undulator, accounting for decompression and the implemented focusing scheme. The
tracking was performed with the particle tracking code 𝑒𝑙𝑒𝑔𝑎𝑛𝑡 [83] with 1𝐷 CSR effects in the
chicane (see section 3.6.5 for comparison). The beam was decompressed with a total 𝑅𝜁56 of 550 µm.
The chicane was set for a kick angle of 𝜃 ' 25.5mrad contributing 500 µm to this value, and the
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Figure 6.1: (a) Longitudinal phase space of the LUX reference beam after transport to the
undulator entrance with a bunch stretching of 𝑅𝜁56 = 550 µm. The bunch is stretched to a
bunch length of 5.3 µm. The (red line) current profile peaks at about 1.1 kA and shows a
slight asymmetry with higher currents towards the bunch tail compared to (blue, dotted) a
gaussian fit. (b) Slice energy spread along the beam evaluated over a slice length of 1 µm,
matching the estimated cooperation length.

beamline itself contributes 𝐿/𝛾20 ' 50 µm due to time of flight differences. The resulting bunch length
is 𝜎𝜁 ' 5.3 µm with a peak current of about 𝐼peak ' 1.1 kA, close to the estimations obtained from an
equivalent gaussian shaped beam.

The longitudinal phase space and current distribution of the resulting beam are shown in fig. 6.1(a).
The distribution is stretched with long tails towards the front and back of the bunch, which arises
mainly from the path length difference of high and low energy particles in the chicane. Note that those
high and low energy particles were initially located at the other sides of the bunch and overtook the
bunch or fell back. Further, the beam shows a slight asymmetry with larger current towards the tail.

The slice energy spread along the bunch, presented in fig. 6.1(b), varies in the range of 0.25% to
0.5%. Here, a slice corresponds to the expected cooperation length of 𝐿𝑐 ' 1 µm, assuming a gain
length of 23 cm as estimated from the simplified SVEA simulations section 4.6. The slice energy
spread at the core of the bunch matches the estimated 0.3% from decompression of an equivalent
gaussian beam. It is not spoiled in the process of decompression, since leading and trailing particles
with large energy deviations passed through this region and are now located far to the head and tail.
However, note that the initially large slice energy spread in the leading and trailing regions also causes
two spikes in the slice energy spread of the transported beams at about 𝜁 ' ±6 µm.
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Asymmetries that originate from the initial beam and effects in tracking primarily affect
particles at the head and tail

��𝜎𝜁 �� & 6 µm, outside the core region.

The chirp over the whole bunch matches the estimated value of 2 000/m. However, at the core of the
bunch it is slightly reduced to about 1 700/m, lowering the ideal estimated taper to about 1.1%/m.
This is also due to the redistribution of the particles within the bunch.

Still looking at longitudinal slices, the effect of the focusing scheme can be evaluated for the LUX
reference beam. The transverse beam sizes along the bunch are shown in fig. 6.2(a)-(c) for the
horizontal and in fig. 6.2(d)-(f) for the vertical plane at the undulator entrance, center and exit. The
part of the beam, that has a deviation of about −1% from the design energy and is located at about
𝜁 ' −𝜎𝜁 , is focused at the undulator entrance and shows small transverse sizes. Similarly, the core
and tail of the bunch are focused at the undulator center and end respectively. The spot sizes are about
31 µm in the horizontal and 15 µm in the vertical plane, again close to what was estimated from an
equivalent Gaussian beam and in the region that is aimed for.

Due to the chromatic contributions to the emittance, which only vanish at a waist, see section 3.6.1 and
[57], and minor contributions from CSR in the horizontal plane, the slice emittance along the bunch is
also increased. Again, the width of slices is chosen to be of length 𝐿𝑐 . In the horizontal plane, shown
in fig. 6.3(a), it follows closely to the focusing scheme along the undulator, where the focused fraction
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Figure 6.3: Normalized slice emittances along the bunch for the (a) horizontal and (b)
vertical plane. It changes from (blue, solid) the undulator entrance, via (orange, dashed)
the undulator center to (green, dash-dotted) the undulator end. Each slice is about the
estimated cooperation length of 1 µm.

of the bunch goes down to 1.1mmmrad. In the vertical plane, shown in fig. 6.3(b), the situation is
slightly more complex due to the natural focusing of the undulator. However, at the core of the bunch
the normalized slice emittance stays at about 1 to 2mmmrad over the whole undulator. Especially,
the fractions that are intended to be focused at the very front or back of the undulator undergo a
partial oscillation and show two minima. Note that the slice emittance can be smaller than the initial
projected value of 1mmmrad due to variations in the bunch.

For completeness, the projected normalized emittances of the full beam are

𝜖𝑥,tot = 3.8mmmrad 𝜖𝑦,tot = 1.2mmmrad . (6.1)

As pointed out, this is expected and can be explained by the different energies in the beam intentionally
not focused close together, but stretched and distributed over the whole undulator range with the
focusing scheme. However, as the electrons only cooperatively interact within 𝐿𝑐 , the slice quantities
evaluated before are of more interest for the FEL interaction.

6.2 Simulation Setup

The beam that is obtained this way is not yet suitable to be used by an FEL code. The number of
macroparticles in the initial beam is about 65000 and they conceivably fill the phase space unevenly.
This is suitable for particle tracking, but the proper simulation of a FEL requires higher macroparticle
counts. With low macroparticle number, there might be spurious coherent contribution to the radiation,
resulting in an overestimation of spontaneous undulator radiation, shot noise and FEL signal [176].
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6.3 Simulation with Idealized Undulator Field

Therefore, the distribution must be resampled to a higher macroparticle count and the electron
shot-noise has to be properly modeled for the correct simulation of the startup of a SASE FEL. There
exist different algorithms and realizations to achieve this [177–179], and is done here with the Puffin
companion tool JDF [180], which implements the method described in [179]. Here, within each
radiation wavelength, 20 slices of 800 macroparticles each, i.e. 16000 per 𝜆𝑙 , were placed and proper
Poissonian shot-noise statistics and particle weights are added. The method consequently removes
artificial shot-noise that is contained in the initial beam.

The processed beam has an increased macroparticle number that obeys the same statistical properties
as the beam from particle tracking. For this case, each macroparticle in the resulting beam represents
about 15 electrons on average. The resampling was performed with 10 different seeds for the random
number generator in JDF to obtain beams with the same properties, but different shot noise. All
simulations were performed for all 10 seeds and then averaged.

To avoid issues in the pre-processing and the simulation, for example a poor resolution, i.e. a too
coarse grid, or a too large bounding box, the outer 0.1% of the charge was removed in all projections
of the 6𝐷 distribution. These are typically macroparticles with low weight that increase the simulation
volume without contributing to the simulation.

Note that Puffin does not employ any data reduction of the radiation field, but stores and calculates the
electric field amplitude and orientation on a 3𝐷 grid. For the calculation of the power when writing
the output, integration is performed with a trapezoidal rule. This can lead to a slight reduction in
the calculated power, but affects all radiation equivalently. It was verified that this only results in the
power value being scaled, but does not affect the simulation by any other means. Particularly, the ratio
of the power from simulations with FEL interaction turned on and off is unaffected, therefore yielding
the correct gain.

Further, Puffin has absorbing boundaries in the outer 8 grid nodes on each side implemented [181] to
remove artificial reflections in the diffraction step [175]. This removes the fraction of the radiation
that would travel outside the bounding box and decreases the energy in the simulation volume. This
means that the simulation domain must be large enough to only affect the fraction of spontaneous
undulator radiation that is emitted under a large angle and would not be detected in the experiment
anyway, for example due to beam pipe apertures.

The simulations were consequently set up to have a reasonably large bounding box and a sufficient
number of grid nodes to resolve the radiation field and the electron beam.

6.3 Simulation with Idealized Undulator Field

As a first step, to get the maximum possible gain, the FEL simulations were performed for an ideal
sinusoidal undulator field. For this case, the undulator strength is 𝐾 = 2, has a period length of 15mm
and a taper of 1%/m. It contains 130 undulator periods, and therefore the simulation stops at 1.95m.
The power curve is shown in fig. 6.4 and shows a clear increase in power above the spontaneous
undulator radiation and growth beyond that level at about 1m. The total power reaches values of about
2.5GW. This is about 2 orders of magnitude larger than that obtained from the spontaneous undulator
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radiation. As expected when including all aspects for the FEL interaction for the parameters at LUX by
using a non-SVEA code, the startup and consequently the growth beyond undulator radiation happens
earlier.

In both, the simulation and the experiment the pure FEL signal is not available but overlapped with
the spontaneous undulator radiation. However, it is possible to switch off the FEL interaction in
the simulation to simulate spontaneous radiation only. In the experiment the FEL interaction could
be suppressed by detuning the undulator taper, or changing the focusing or trajectory through the
undulator such that no FEL interaction can occur. Therefore, different from section 4.3.3, here the
power gain is not given as a ratio to some initial power level. Instead the ratio of the full signal to the
spontaneous undulator background. It is shown in fig. 6.5.

The gain length obtained from a fit to the last 50 cm of this power ratio, averaged over all 10 simulations
with different seeds, is

𝐿𝑔 = (21.3 ± 0.7) cm , (6.2)

similar to the value found before from the SVEA estimations in section 4.6. Further, the gain length
is lower than normally achievable by a beam of 1mmmrad normalized emittance, which would be
limited by the average beam size in the undulator. Here, the gain length scales with the effective size
of the electron beam as seen by the radiation pulse, i.e. the size of the slipping focus.

6.4 Simulation with Measured Undulator Field

To capture the influences of field imperfections, Puffin was modified to allow the use of user-defined
undulator field profiles. The measured and tuned FROSTY undulator field section 5.3.6 was used
for the simulations in this section. To cover the whole region of the field, a few centimeters were
added in front and at the back of the simulation, totaling slightly more than 2m. The beam enters the
undulator such that it oscillates about the central axis at the center of the undulator, thus respecting the
incoupling periods and a small kick at the beginning of the undulator. However, the later local kick at
about 1.3m is already in the exponential gain regime. Here, the 0.1mrad kick is expected to increase
the gain length more significantly due to smearing out the micro-bunching.

The gain curve for the measured undulator field at 𝐾 = 2 and with 1%/m taper is shown in fig. 6.5.
Its initial behavior is similar to the perfect undulator field. After the kick the gain length for the last
60 cm of the undulator increases to

𝐿𝑔 = (41.8 ± 0.7) cm . (6.3)

Therefore, after the initial growth only 2 more gain lengths fit into the undulator after the kick. The
ratio of FEL power to spontaneous undulator radiation is reduced to a factor of about 20. Nevertheless,
this would still be significant power gain, considering that this is the unfiltered power and not spectrally
resolved.

125



Chapter 6 Free-Electron Laser Simulations

−15 −10 −5 0 5 10 15
Arrival time C (fs)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

Po
w

er
%
(C)

/%
pe

ak

(a) Envelope
Mean

64 65 66 67 68
Wavelength _ (nm)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
.p

ow
er

sp
ec

tra
ld

en
sit

y
%̃
(_
)/
%̃

pe
ak

(b)

Figure 6.6: (a) Temporal profile of normalized power of one simulation. (Red, solid)
Envelope of the maximum and minimum instantaneous power and (Red, Dashed) the
average power. (Blue) The instantaneous power shows oscillations twice as fast as the
electric field with frequency 𝑓 = 2𝑐/𝜆𝑙 . (b) Corresponding normalized power spectral
density.

6.5 Radiation Pulse Properties

The radiation emitted from an electron beam in the SASE FEL has a noisy structure in the time
domain from the discrete nature of the single electrons. From this noise a fraction is amplified in
the FEL process. However, the noisy structure is kept within the amplified envelope. As mentioned
in section 4.4.3, during the FEL process these envelopes emerge as spikes of high amplitude in the
electric field. They are separated by about 2𝜋𝐿𝑐 ' 6 µm or 𝜏𝑐 = (2𝜋𝐿𝑐)/𝑐 ' 20 fs. Since the electron
bunch is rather short with 𝜎𝜁 ' 5.3 µm ' 15 fs, here only a single intense spike is amplified.

The emitted radiation power of one of the simulations is shown in fig. 6.6(a). The pulse length is
about 𝜎𝜏 ' 3.5 fs or in terms of FWHM 𝜏FWHM ' 7.1 fs. The corresponding power spectral density
is obtained from the Fourier transform of the electric field and shown in fig. 6.6(b). The central
wavelength is 𝜆𝑙 ' 65 nm and the FWHM bandwidth is (Δ𝜆/𝜆𝑙)FWHM ' 0.7%.

A transverse radiation profile at the end of the undulator is shown in fig. 6.7(a) and its corresponding
projections to the transverse axes in fig. 6.7(b). It has a transverse horizontal size of 𝜎𝑥,rad ' 51 µm
and vertical size of 𝜎𝑦,rad ' 39 µm. This is consistent with the extent of the focused fraction of the
electron beam in the sense that the recently emitted radiation over the last gain length already increased
in size due to the Rayleigh range being on the same length scale as 𝐿𝑔.
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Figure 6.9: (a) Ratio of total emitted power to spontaneous undulator radiation only
filtered within a window about ±2% of the fundamental, (blue solid) averaged over 10
simulations with different shot-noise seeds and (orange, dashed) a gaussian fit applied of
the central region to estimate the best taper. (b) Averaged spectra about the fundamental
for (blue, solid) a taper of 1%/m, close to the optimum, and detuned tapers of (orange,
dashed) −1%/m and (green, dash dotted) 3%/m

6.6 Taper Scan

To validate the optimum taper, it was scanned in the region ±5%/m. For the ideal field the scan was
performed in steps of 0.5%/m. For the FROSTY field the step size was increased to 1%/m, since the
evaluation of the interpolated field data at runtime is computationally more expensive than evaluating
the hard coded and compiled ideal field profile. The results for both, the ideal case and the measured
frosty field, are shown in fig. 6.8 respectively. Both curves are qualitatively similar, and are mainly
scaled by the previously found reduction in gain.

To find the optimum taper, a gaussian fit is applied to the highest power ratio in a window of ±2%/m.
For the ideal field it is found to be about 0.8%/m, slightly lower than estimated. For the FROSTY
field a slight asymmetry is found, with less decrease in power to negative tapers. Consequently, the
ideal taper is slightly shifted to a lower value of 0.6%/m, which, however, can also be attributed to the
lower sampling about the optimum.

For both considered cases, a detuning of the taper by about 0.5%/m decreases the FEL gain by less
than 10%. Considering this to be acceptable in the experiment, the taper has to be met within this
range. This is possible with FROSTY, whose taper can be set with high accuracy and precision and
allows for fine scans [114].

Finally, the radiation is filtered within a range of ±2% about the fundamental to estimate the
improvement from a spectrally resolved measurement in the non-SVEA code, here done for the ideal
undulator field. The taper scan for the filtered signal is shown in fig. 6.9(a). Some individual spectra
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for different taper settings are shown in fig. 6.9(b) for comparison. Although the peak position slightly
shifts with the taper setting, the same range about the fundamental is amplified. Further, the signal
drops faster with detuned taper, dropping by 10% of its peak value when going away from the optimum
of 0.7%/m by 0.3%. Nevertheless, about the same ratio of FEL power to spontaneous radiation seen
in the signal collected over all wavelengths can be achieved with a highly detuned undulator of 3%/m.
The improvement to the unfiltered signal is about one order of magnitude, highlighting once again the
importance of the spectrally resolved measurement for possibly showing FEL gain with the LUX setup.

6.7 Conclusion

Comparing to the basic simulations with SVEA approximation section 4.6, the gain length is similar,
but an earlier startup is encountered. As pointed out before in this chapter and in section 4.4.3, this
is expected for three reasons: Firstly, the non-averaged code respects the individual spikes from the
electrons in the current density, causing a slightly higher initial bandwidth, and therefore shot-noise,
for beams with energy spread [123, 147]. Secondly, the pulse building up in the bunch tail is only
weakly disturbed by trailing radiation [146], compare section 4.4.3, benefiting the startup. Thirdly, a
slightly stronger focus at the bunch tail in the vertical plane at the undulator start increases the current
density to levels similar to those at the bunch center, see section 5.2.

The simulations suggest that an FEL signal two orders of magnitude above spontaneous undulator
radiation is in principle achievable in spectrally resolved measurements with the 2m undulator at
LUX, if utilizing bunch decompression, a tapered undulator, and the implemented focusing scheme.
Although field imperfections of the undulator are expected to degrade the gain length and the FEL
performance, the simulations suggest still one order of magnitude difference between FEL and
spontaneous radiation at the end of the undulator. If measuring the signal spectrally resolved, the
increase in signal about the fundamental should be clearly visible.

Further, applying an undulator taper to an optimum value of approximately 0.7%/m increases the
FEL signal by about a factor of 2 in the spectrally resolved measurement compared to the untapered
measurement. However, the signal is not sensitive to a small taper mismatch of up to 0.3%/m.

The next steps to show FEL gain are the proper setup and control of the beamline. For this, the
beamline itself and the electron beam have to be characterized, to be able to tune the machine towards
the desired parameters. This includes the proper transport to and through the undulator by means of
the focusing properties and the beam pointing.
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CHAPTER 7

Experimental Results

After construction and commissioning of the beam line, the beam transport was characterized in terms
of trajectory errors and focusing errors. To stay in the good field region of the undulator and not
degrade the FEL process by beam pointing, the quadrupole magnets have to be well aligned to the
design axis. On the one hand, they steer the beam if misaligned, and, on the other hand, detours are
to be avoided to not disperse the percent level energy spread beams unintentionally and spoil their
phase space. Further, the actual quadrupole strengths for a given applied current and their focusing
properties have to be well known. Finally, it has to be made sure that the beam travels centered through
the undulator.

In this chapter, the results of beam based measurements are presented. Section 7.1 and section 7.2
cover the measurements of transverse positional offsets and the deviation in focusing strength for the
quadrupole magnets. This is followed by the recorded position in the BPMs with an algorithm running
to correct the trajectory along the beamline and through the undulator in section 7.3. A method used
to determine the vertical undulator position and rotation with data recorded from BPMs is presented
in section 7.4. Lastly, a recorded undulator spectrum is shown in section 7.5.

7.1 Quadrupole Positioning

In principle, the goal is to position the magnets as accurately as possible to this axis to avoid the use of
the corrector dipoles. A threshold for this was estimated in section 3.5.1 to be on the level of 10 µm
Since residual offsets can be compensated with corrector dipole magnets by steering the beam back on
the design axis, the required positioning accuracy might be slightly less strict. However, corrector
magnets are not installed between all individual quadrupole magnets. With the determined level
of quadrupole strengths 𝐾1 ' 10 /m2 for all of the quadrupole magnets between the first capturing
doublet and the undulator, and an effective field length of 135mm, a displacement by 1 µm results in a
kick of 1.35 µrad according to eq. (3.40). For a displacement of a magnet by 10 µm, the offset in the
following magnet in a doublet or the quintet is 7 µm, which is on the same order of magnitude as the
offset itself. Consequently, two consecutive magnets without corrector magnets in between should
still be positioned to a common axis.
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Figure 7.1: Line foci with single quadrupole magnet. Unprocessed camera image. (a)
Focus in the horizontal axis and (b) focus in the vertical axis only.
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Figure 7.2: Transverse positions of quadrupole magnets at LUX for (a) the horizontal and
(b) the vertical axis. (Red) Initial position after commissioning and (blue) after measuring
the magnetic axes and re-positioning. Lines between the measured data points for the
offset positions are added for better visualization.
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7.2 Quadrupole Strength Calibration

Initially, the quadrupole magnets were positioned according to their geometric center with about
100 µm to 200 µm accuracy. This neither has to coincide with their magnetic center nor does it fulfill the
positioning requirements. Therefore, a beam based measurement to determine the discrepancy between
the magnetic axes and the reference trajectory was conducted, and the magnets were re-positioned
accordingly.

To obtain the position, the electron beams are allowed to freely drift up to the magnet of interest.
This is set to focus the beam in just one plane onto a profile screen further downstream. Here, the
screen directly in front of the FROSTY undulator was chosen, since it is downstream of all quadrupole
magnets in the transport. The signal on the screen is a thin line, since the electron beams are defocused
in the other plane. Examples are shown for both polarizations of a quadrupole magnet in fig. 7.1
with (a) showing a horizontal focus and (b) a vertical focus. The misalignment is calculated from
the displacement of the line, i.e. the peak position of its projection along the dispersed axis, to the
corresponding central axis of the screen. By using the quadrupole strength, and the spacing between
quadrupole magnet and profile screen, the offset is

𝛿𝑥 '
𝑥sp

𝐿drift𝐿mag𝐾1
(7.1)

for the horizontal axis, and for the vertical axis equivalently. Here, the subscript "sp" denotes the
position on the screen. Since the screen has a resolution of about 30 µm, the quadrupole offsets can be
determined to an accuracy of about 0.5 µm for the quadrupole magnets early in the beamline and about
3 µm for those closer to the screen. Here, the required 𝐾1, for the distance 𝐿drift between magnet and
screen, to focus the beam in one plane was used for each magnet. The initially determined transverse
quadrupole offsets are listed in table 7.1 and visualized in fig. 7.2. The quadrupoles were then shifted
according to the found positions. The process was repeated iteratively, by repositioning the magnets
between measurement campaigns. Consequently, the beam line alignment was improved over time.
The latest determined positions are shown in the same table 7.1 and fig. 7.2 for comparison.

Up to now the positional offset was reduced from the 100 µm-level to the 10 µm-level. Only a few are
positioned at offsets larger than 10 µm. Any residual kicks originating from the quadrupole magnets
are compensated with the installed corrector magnets.

7.2 Quadrupole Strength Calibration

A crucial step in the presented concept is the proper setting of the optimized beam optics and the
focusing. To be able to apply it in the experiment, the strength of the quadrupole magnets has to be set
accurately. Therefore, it is important to verify that the strengths of the magnets match the expected
value when applying a current. This cannot be done by a focus scan on a profile screen, as the large
energy spread would cause every energy-fraction to be of different size and consequently the full
beam would be their (charge-weighted) average. The observable beam size would barely change,
rendering this method not applicable. Instead, the beam is focused from the plasma source to the final
spectrometer with only two quadrupoles, while all other quadrupoles in the transport are turned off.
This way, the energy focused onto the spectrometer screen in the horizontal plane can be recorded.
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Table 7.1: Transverse position of quadrupole magnets at LUX after commissioning and
after the latest re-positioning.

Quad. No. Initial position Latest position
𝛿𝑥 µm 𝛿𝑦 µm 𝛿𝑥 µm 𝛿𝑦 µm

1 −9 ± 3 −34 ± 3 −2 ± 3 1 ± 2
2 9 ± 3 34 ± 3 2 ± 3 0 ± 3
3 119 ± 3 191 ± 11 23 ± 4 −2 ± 11
4 125 ± 4 199 ± 9 0 ± 5 −19 ± 13
5 189 ± 8 372 ± 14 20 ± 16 −13 ± 11
6 182 ± 8 471 ± 18 8 ± 14 3 ± 14
7 100 ± 9 110 ± 49 −6 ± 3 −11 ± 7
8 122 ± 10 94 ± 43 −50 ± 4 0 ± 6
9 118 ± 8 132 ± 37 −36 ± 2 2 ± 5
10 121 ± 8 27 ± 41 39 ± 2 −3 ± 5
11 238 ± 6 7 ± 20 13 ± 3 4 ± 4

This is done for both combinations of polarities, where one of the quadrupole magnets is focusing in
the horizontal plane and the other in the vertical. The deviation of the strengths of the magnets from
the design value is found by comparing the recorded focused energies with the ones that were targeted.

An example for such a measurement is shown in figure fig. 7.3(a) and (b), performed with the second
doublet set to focus an energy of 295MeV. If the quadrupole strengths were correct, the waist positions
for both polarizations of the quadrupole magnets were located at the position where 295MeV hit the
spectrometer screen. For this particular configuration the focused energy is lower than the targeted
value for one polarity setting and larger for the other polarity setting. It was made sure that this is
not caused by an angle or position offset at the electron spectrometer entrance. In fact, the average
position in the BPMs (BPM3 and BPM4) between the quadrupole magnets and the spectrometer was
close to zero, and the estimated impact on the energy measurement less than 0.1%. The difference in
focused energy indicates that the focusing strengths of these two quadrupole magnets do not match
their assumed values, obtained from the mapping from applied current to field gradient.

An upper limit for the allowed deviation in focusing strength was estimated in section 4.5, by only
allowing the focus size to deviate by about 5 µm. The deviations in 𝐾1 to still properly match into
the undulator are estimated by using the mismatch parameter from eq. (3.43) and are approximately
0.5% for all quadrupole magnets, except for the second in the capturing doublet. The focus position is
particularly sensitive to its strength due to the combination of a large 𝐾1, short magnet length and a
large beam size in the vertical plane.

To find the deviation in the quadrupole strengths from their design value, the beam was focused with
different combinations of quadrupoles onto the spectrometer. Here, the first doublet is excluded from
the measurements. Its focusing properties are strongly affected by changes in distance to the plasma
source. The position from which the electrons originate in the plasma is dependent on the drive laser
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Figure 7.3: Electron beams focused on the second spectrometer with the second quadrupole
doublet. The quadrupole magnets were set to focus the beam in both planes by (a) focus
horizontally in quadrupole No.3 and defocus in quadrupole No. 4, resulting in (red,
dashed) 307.8MeV being focused on the spectrometer, and (b) vice versa, resulting in
(red, dashed) 292.9MeV being focused on the spectrometer. (Blue, dotted) The focused
energy was set to 295MeV. Camera counts are averaged over 100 shots to not be affected
by shot-to-shot fluctuations. The waist position remains unaffected by averaging.

and plasma properties, which are tuned at the beginning of every operation of LUX. Therefore, to
properly capture the beam, their strength, especially for the second quadrupole, has to be individually
tuned in the experiment with the first spectrometer, before transmitting the beam towards the undulator
and applying the focusing scheme.

During the first measurements, deviations of up to 4% were determined. Since this is a rather large
discrepancy and above the obtained limit, the cause was investigated. The measurements were repeated
over several measurement campaigns. The average electron energies in these measurements ranged
from 270MeV to 320MeV. Their results are presented in figure fig. 7.4.

The exchange of two power supplies and two pole flippers of the quadrupole magnets had no effect
and were ruled out as a cause for the deviation in magnet strength. However, the exchange of magnets,
replacing the second doublet with spare quadrupole magnets from the same manufacturing batch,
showed that the newly installed magnets had different strengths of approximately 1% and 3%. To
verify the assumption, that the difference in magnet strength is a property inherit to the individual
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Figure 7.4: Quadrupole strengths relative to their design value, determined with beam
based measurements at different energies, and therefore changing gradient. Required
gradient to focus onto the spectrometer screen increases up to about 13m and then
decreases again. Markers show (green, diamond) 180MeV, (orange, square) 270MeV,
(red, up triangle) 275MeV, (blue, circle) 300MeV, (brown, star) 315MeV, and (purple,
down triangle) 318MeV. Arrow and filled markers show quadrupole magnets, that were
replaced in between measurement campaigns.

magnets, one magnet from the third doublet and one of the quintet were interchanged. As a result, the
deviation of the first magnet from the design value decreased by approximately 1%, while the second
magnet’s deviation increased by a similar amount.

Additionally to the individual correction for each magnet, a dependence on the magnetic field gradient,
and hence the applied current, was found. This is seen from two aspects in fig. 7.4. On the one
hand, the deviation between expected to measured gradient is larger for the measurements, where
beams with higher energy were used, which required higher gradients to focus the beam. On the other
hand, the deviation decreases from the second doublet to the quintet, but then increases within the
latter. Apparently, to focus into the spectrometer, the required gradients decrease towards the seventh
quadrupole, which is close to the central point between plasma target and spectrometer, and increase
again when going further downstream the beamline. Although not verified, a possible reason is that
the measured hysteresis of peak gradient at the magnet center with respect to the applied current does
not reflect all aspects of the magnet, for example changes in the shape and extent of the fringe field.

As a consequence, correction factors for each magnet are applied to compensate for the found deviations
in gradient.
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Figure 7.5: Beam position monitor readouts along the beamline with (white background)
trajectory correction off and (gray background) trajectory correction on. From the top
to the bottom panels, the individual BPM readouts are shown for BPM1 to BPM4, with
the horizontal readouts shown in the left and the vertical readouts in the right panels,
respectively. (Blue, solid) The rolling mean and (blue, shaded) corresponding rolling
standard deviation over 30 shots. Individual shots going through the beamline and
recorded in all 4 BPM are shown as dots in each panel. When the trajectory correction
was not running, the corrector magnets were turned off.
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7.3 Trajectory Correction

To remove the remaining trajectory offsets, either from residual positional offsets of the quadrupoles,
or originating from initial beam position offset or pointing from the plasma source, a routine was
implemented to steer the beam back on axis in the experiment. It aims to minimize the transverse
offsets during the transport and to remove any beam pointing through the FROSTY undulator. The
method utilizes the readings of the beam position monitors and sets the corrector dipole magnets
accordingly to center the beam trajectory.

This is done by first correcting the position in the first two BPMs with the first 4 corrector dipoles.
The newly imprinted offset and angle are considered when calculating the necessary steering. The
corrector dipoles, located behind the chicane, are then used to adjust the position at the third BPM
accordingly. Taking into account all offsets, angles and readings from the previous corrector dipoles
and BPMs, the trajectory is then centered in the last BPM. This way, the electron beams travel on the
axis defined by the last two BPMs through the undulator. Since there are shot-to-shot fluctuations
from the plasma source, the correction works with the average of multiple shots (in the default
configuration) and is continuously updating the corrector dipole strengths. The algorithm tunes the
settings with a simulation of the trajectory through the beamline and applies all corrector dipole
strengths simultaneously to the real machine, allowing for a fast convergence.

An example for running the trajectory correction, showing the BPM position readouts, is presented in
fig. 7.5. The beam initially showed transverse position offsets of about 1 millimeter in all BPMs. The
algorithm was then turned on and it tuned the correctors automatically to center the beam in the BPMs.
In addition to centering the beams on average, the positional jitter was reduced by a factor of two.
This improvement results from the presence of both energy and transverse jitters, and their coupling to
each other. Variations in energy cause the beam to follow different trajectories through the beamline,
if it has an offset or pointing relative to a quadrupole magnet’s axes. Consequently, correcting the
trajectory mitigates the combined effect of energy fluctuations and transverse positional and pointing
jitters.

In this particular case, the initial jitter in the 𝑦 plane originating from the plasma source, as seen
in fig. 7.5(b), directly translates to a jitter behind the undulator, fig. 7.5(h). This corresponds to a
beam pointing through the undulator, since the positional jitter in BPM3 is small. From the difference
in position readings from BPM3 and BPM4 and their spacing of 4.2m the beam pointing jitter of
𝜎Δ𝑦′ ' 0.3mrad is estimated. To achieve more consistent transport through the undulator, lower
shot-to-shot fluctuations from the plasma source would be beneficial.

With this algorithm the beam trajectory offset is reduced throughout the beam line and aligns the
beams on average to the design axis through the undulator.

7.4 Undulator Positioning

During the measurement campaigns, it was noticed, that the beam was steered in the vertical plane,
when the undulator gap was changed. This indicates that the central axis between the upper and lower
magnet arrays of FROSTY does not match the axis defined by the adjacent beam position monitors.
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Figure 7.6: Steering of electron beam when closing the gap. Numbers (1)–(4) mark
individual datasets where the undulator axis was measured. (a) Before the undulator
was aligned to the design axis with (blue, circles) and (orange, squares) the beam being
centered to the beam axis defined by BPM3 and BPM4 prior to closing the undulator gap,
and (green, diamonds) after steering the beam to be aligned to the undulator axis instead
of the design axis (b) After repositioning the undulator, the gap was again scanned twice
with the beam being on the design trajectory defined by BPM3 and BPM4 prior to closing
the gap.

This could be caused by either a positional offset, or a rotation, i.e. a tilt downwards or upwards along
the beam trajectory, or a combination of both. In that case, the undulator focusing steers the beam
away, whereas the steering depends on the undulator strength 𝐾 , and consequently on the gap, and the
amount of misalignment. Figure 7.6(a) shows the change of position in the BPM behind the undulator
while changing the gap. The beam moves downwards when reducing the gap until reaching a gap of
about 3mm, indicating that the beam encountered a change in angle and position due to the natural
undulator focusing. However, just from this, one cannot determine if the undulator is shifted or rotated
to the design axis.

To determine the kind of misalignment, positional or rotational, and its amount, a procedure was
performed that tunes two vertical corrector dipoles until a trajectory is found that does not change
when changing the undulator gap. Before this procedure, the beam was centered through the undulator
at fully opened gap to show zero readings on average in the BPMs in front and behind the undulator.
Then the following steps were executed in a loop:

• The undulator gap is set to 6mm, with a 𝐾 ' 1, which changes the position in the BPM behind
the undulator. The vertical position in the BPM behind the undulator is recorded.
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• The undulator gap is fully opened again. A vertical corrector before the quintet is used to create
a small offset and angle through the undulator. The strength is chosen such, that the beam has
the same position in the BPM behind the undulator as found in the previous step. This way
moving closer to the undulator axis.

• The undulator gap is closed again, but to a smaller value of 2.3mm, with a 𝐾 ' 2.5. The
position is again recorded.

• Again the undulator is fully opened. This time a corrector dipole directly in front of the
undulator is tuned to match the position in the BPM to correct only the angle, that might have
been detuned at step 2.

This approach iteratively corrects position and angle through the undulator until a change in gap does
not change the position in the BPM behind the undulator anymore. Two different gaps are used to
avoid arriving at a state, where the positional offset and rotation of the undulator just cancel their
contribution to a change in the vertical position at the BPM location. To confirm that the found
trajectory matches the undulator axis, the gap was scanned and it was checked that the transverse
position after the undulator is unaffected by the change in gap. This is also shown in fig. 7.6(a), where
the trajectory through the undulator is such that the beam does not move vertically when closing
the undulator gap. Using the BPM3 and BPM4 positional readouts of about −50 µm and −600 µm,
and the distance between BPM3 and BPM4 of about 4.2m, the angle of the trajectory is found to be
−130 µrad, coinciding with the rotation of the undulator. Since the undulator is longitudinally centered
between these two BPM, its vertical positional offset is −340 µm.

It is assumed that the floor sank after positioning FROSTY in the accelerator tunnel, due to its weight
of 6 tons.

Following the measurements, the undulator was shifted and rotated according to these values.

Finally, the measurement was repeated with the re-positioned undulator. As seen in fig. 7.6(b), the
beam stays close to the central axis when closing the undulator gap. This confirms that the new
position of the undulator matches the design axis more closely. However, the re-positioned undulator
was not used for FEL experiments yet.

7.5 Undulator Radiation

The previous measures presented in this chapter were implemented one by one and improved over
time. There were several measurement campaigns aiming to show free-electron lasing. However,
up to the current date only spontaneous undulator radiation was observed at LUX. An exemplary
image of recorded undulator radiation at a 𝐾 ' 2 at an electron energy of 𝐸 ' 320MeV is shown in
fig. 7.7(a). The corresponding spectrum, normalized to the signal at the fundamental wavelength for
this setting, 57.7 nm, is shown in fig. 7.7(b). The steps in the spectrum match to the expected cut-off
of the aluminum filter at 17 nm and its higher diffraction orders from the diffraction grating.

Here, the camera of the spectrometer was driven to different positions and recorded parts of the
spectrum. The images were then individually calibrated and stitched to obtain the full spectrum.
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Figure 7.7: Undulator radiation recorded with the EUV spectrometer for a 𝐾 ' 2 and
electron energy of 𝐸 ' 320MeV. (a) Images taken for the range of 10–80 nm. Edges of
aluminum filter can be seen for multiple diffraction orders of the grating. (b) Spectrum
normalized to the signal at the fundamental wavelength, which is marked by an arrow.

Still, all radiation measurements with the FROSTY undulator were done prior to the re-positioning of
the undulator to the beamline design axis, shown in the previous section section 7.4.

7.6 Conclusion

Over the course of several measurement campaigns, the beamline was characterized in terms of
trajectory and beam optics. The positions and the strengths of the quadrupole magnets were determined
by beam based measurements. Following this, they were iteratively aligned and re-calibrated to provide
an improved trajectory and focusing. Additionally, a trajectory correction routine was implemented to
align the beam to the design axis, going on a straight trajectory and centered through the undulator,
and reduce positional jitters during transport. Lastly, the undulator was re-positioned to have its
gap and magnetic axis aligned to the beam axis. It is still open for verification that these combined
measures meet the strict requirements for free-electron lasing.
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CHAPTER 8

Conclusion and Outlook

Free-electron lasers (FELs) require high quality electron beams. As of today, operating an FEL with
laser-plasma accelerated (LPA) electron beams remains challenging. Although providing kilo-amperes
of current, the beams out of the plasma do not meet the stringent requirements for free-electron
lasing. This is primarily due to the simultaneous presence of a percent-level energy spread, mrad-level
divergences with transverse emittances on the order of mmmrad, and shot-to-shot instability in
the beam quality of today’s laser-plasma accelerators. Consequently, advanced beam manipulation
and transport strategies are required to overcome current limitations and adapt state-of-the-art LPA
beams for successful FEL operation. In addressing these challenges, a 25m long beamline, capable
of demonstrating free-electron lasing at the laser-plasma accelerator LUX, was designed, built and
commissioned, based on the detailed conceptual layout developed in this thesis.

Challenges associated with preserving beam quality are analyzed, and strategies to limit degradation
during beam transport are evaluated. This includes effects stemming from the beam itself, like
chromatic emittance growth or coherent synchrotron radiation, and those introduced by beam optics,
such as focusing and alignment errors.

The beam parameters were optimized to max out the number of gain lengths in the two meter short
FROSTY undulator. By combining a magnetic decompression chicane and a tapered undulator, the
slice energy spread in the beam is lowered to the level required by an FEL, while maintaining the
resonance condition. This thesis extends this concept by implementing a chromatic focusing scheme
that leverages the energy-dependent longitudinal position of electrons within a chirped bunch after
decompression. It provides a constant transverse electron beam size at the position of the FEL radiation
pulse by selectively focusing the portion of the beam that contributes to the FEL interaction. This
effective beam size is not constrained by the emittance of the beam.

An algorithm was developed to optimize the full beamline for the chromatic focus slippage, which is
required for an early startup in the short undulator. In contrast to previous methods, it includes the
natural undulator focusing, thereby applying chromatic focusing in both transverse planes.

A beamline comprising a decompression chicane, consisting of 4 dipole magnets, and the necessary
optics, provided by 11 quadrupole magnets, to implement the chromatic focusing scheme while
limiting degrading effects was set up. It provides diagnostics to characterize the beam in terms of
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transverse size, transverse position, and energy. The FROSTY undulator has been installed for studies
of undulator radiation and free-electron lasing. The emitted radiation is recorded with a spectrometer
that provides spectrally resolved measurements for wavelengths in the extreme ultraviolet.

A beam from particle-in-cell simulations, with properties as measured at LUX, was tracked through
the optics lattice and then passed to the unaveraged free-electron laser code Puffin to investigate the
FEL gain in the presence of a short bunch length, the longitudinal chirp with a percent-level projected
energy spread, and the complex phase space provided by the focusing scheme. In an ideal case, it was
shown that a signal two orders of magnitude larger than spontaneous undulator radiation is possible
with the combination of the decompression and chromatic focusing schemes. Adding the chromatic
focusing increases the gain from a factor of 5 for the decompression scheme alone to a factor of 100,
and therefore greatly improves the detectability of first lasing. A spectrally resolved measurement
improves the ratio of FEL to undulator radiation signal by an additional order of magnitude.

As a further step, Puffin was modified to handle undulator field profiles loaded from files, in particular
measurement data. This enabled simulation of the influence of the real field errors of the 2m FROSTY
undulator on the FEL process. It was found that, although the growth rate is reduced toward the exit
of the undulator due to a local field error, a power gain exceeding the spontaneous undulator radiation
by a factor of 25 is possible with FROSTY when applying the chromatic focusing scheme. Further
enhanced by the spectrally resolved measurement, such an FEL signal would be detectable in the
experiment.

The individual beamline components were designed, assembled and commissioned within the frame
of this thesis. The dipole magnets for the chicane were modified specifically to provide the required
decompression for the LUX experiment. All magnets were measured and diagnostics calibrated.
To reduce the impact of magnetic background fields on the beam trajectory and the beam quality,
Helmholtz coils for their compensation were installed in the accelerator tunnel. An algorithm to
calculate and apply the required currents to the accelerator magnets, as well as stabilization and
feedback loops, was developed.

Using beam-based measurements, the transverse positional misalignments of the quadrupole magnets
were determined and reduced, and their calibration, and hence the focusing, was refined using the
obtained correction factors. An orbit correction routine was implemented to align the electron beam
at runtime with the accelerator design trajectory when passing through the undulator. Finally, the
natural undulator focusing was used to determine and correct the vertical displacement and rotation of
the undulator. The experimental results indicate that the measures taken have remarkably improved
beam transport and alignment, and demonstrate the critical role of precise beam control in achieving
the stringent requirements of free-electron lasing.

In summary, this thesis addresses themultifaceted challenges of demonstrating free-electron lasing from
laser-plasma accelerated beams by integrating advanced beam manipulation techniques, sophisticated
beamline design, and rigorous simulation and experimental validation. Beginning with an in-depth
exploration of the unique properties and limitations of LPA beams, the work methodically develops
solutions to mitigate beam degradation during transport and to optimize the conditions for FEL
operation. The combination of bunch decompression, undulator tapering, and the chromatic focusing
scheme effectively counterbalances the intrinsic energy spread and emittance limitations, thereby
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reducing the FEL gain length and enhancing the output signal. Furthermore, the conducted simulations
underscore the feasibility of achieving and demonstrating FEL gain with the LUX setup and the
FROSTY undulator.

Outlook

Following the characterization of the beamline and subsequent improvements to the positioning of
components, the focusing strength of the quadrupole magnets, and the beam trajectory through the
undulator, no dedicated FEL experiment has been conducted at LUX since the repositioning of the
FROSTY undulator. Therefore, demonstrating FEL amplification with this setup, or a further optimized
configuration, remains an open task for future experimental campaigns.

A straightforward improvement to the current system would be the installation of motorized linear
stages to enable remote adjustment of beamline components during accelerator operation. In particular,
real-time tuning of quadrupole magnet positions with immediate feedback on the electron beam
trajectory would significantly reduce the time required for precise alignment. This approach would
improve both the speed and accuracy of beamline adjustments compared to the current routine, which
relies on dedicated measurement campaigns and manual repositioning.

A key long-term objective is not only to demonstrate the startup of FEL amplification but also to
achieve saturation. Reaching this regime requires additional undulator length to accommodate more
gain lengths, necessitating the installation of additional undulator modules. However, if the chromatic
matching scheme presented in this thesis is to be implemented, the focus slippage would likely need to
be adjusted to match the exponential gain regime rather than the startup phase. Consequently, such an
extension would require modifications to the beamline design.

Ongoing advancements in laser systems and plasma sources may further improve the energy spread
and emittance of laser-plasma accelerated electron beams, bringing them closer to the stringent
requirements of FEL operation. These improvements could narrow or even eliminate the remaining
gap between LPA-generated beams and the beam quality needed for lasing. Additionally, modern
accelerator components, such as radially focusing plasma lenses, could facilitate early beam capture
and enhance beam transport, potentially mitigating degrading effects while simplifying the beamline
layout.

A substantial improvement could be achieved by reducing the delay between successive drive laser
pulses at the plasma target. Increasing the repetition rate from the current 1Hz operation to 100Hz
or even 1 kHz would allow for active stabilization of laser parameters, effectively suppressing both
long-term drifts and pulse-to-pulse fluctuations. By minimizing temporal and spatial variations in the
laser and the laser-plasma interaction, positional, pointing, and energy jitters in the electron beam
would be significantly reduced, leading to enhanced stability and quality of the generated electron
beams. DESY’s new flagship laser system KALDERA, a successor to the ANGUS laser system, has
been designed precisely for this purpose and aims to operate at repetition rates on the 1 kHz-level.
The KALDERA laser system is a prime candidate to demonstrate a laser-plasma based free-electron
laser in saturation.
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3.2 Illustration of (red, solid) the equivalent ellipse with area proportional to the emittance
𝜋𝜖𝑥 of (blue, circles) a particle distribution in (𝑥 − 𝑥 ′) space. (Red, dashed) Extent
of the ellipse is 𝜎𝑥 =
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𝜖𝑥 𝛾̌. (Red, dotted) The slope is given by
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〉 /𝜎2𝑥 and connects the points of horizontal extent. . . . . . . . . . . . . . . 25
3.3 Schematic layout of a C-chicane showing trajectories of different energies. Reference

energy (black solid) is deflected by an angle 𝜃. Lower energy particles (red, dotted)
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symmetric case, all magnets have same length 𝐿mag and kick angle 𝜃, and the spacing
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3.4 Longitudinal (𝜁 − 𝛿) space of a bunch with length 𝜎𝜁 = 2 µm and energy spread of
𝜎𝛿1%. Shown are (a) the initially uncorrelated bunch and (b) after stretching the
bunch to 5× its initial length. The (blue, solid) projected energy distribution and
therefore the energy spread do not change, but (orange, dotted) a single slice can have
(orange, solid) lower local energy spread. . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Change of longitudinal beam parameters with varying 𝑅𝜁56 for a beam with initially
𝜎𝜁 = 2 µm, 𝜎𝛿 = 1%, and no chirp 〈𝜁𝛿〉 = 𝑚 = 0. Results obtained from (blue,
solid) the full formulas eqs. (3.32) to (3.34) and (orange, dashed) approximations for
expanding about 𝑅𝜁56 → ∞ are shown for (a) bunch length, (b) linear energy chirp,
and (c) slice energy spread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Example of emittance increase after the plasma source for (a) horizontal plane and
(b) vertical plane. Beam is captured with two quadrupoles of 10 cm length each (grey
boxes). The first quadrupole focuses and the second defocuses in the horizontal plane.
Shown are the (blue solid) projected normalized emittance without chromatic contri-
bution eq. (3.25), (orange dashed) exact projected normalized emittance eq. (3.45),
and (red dotted, diamonds) the approximation including a chromatic contribution
eq. (3.46) yielding an upper limit and evaluated before and after drift spaces. Beam
simulated with ASTRA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Gaussian distributed chirped bunch with 1,5mrad divergence in both transverse
directions, 𝜎𝛿 = 1,5% projected energy spread, and an initially𝜎Δ = 1% uncorrelated
energy spread. (a) Local energy spread 𝜎Δ of 1 µm long slices for (orange dashed)
the initial bunch and (solid blue) the bunch propagated by 50 cm in a free drift. The
region for calculating the slice parameters was shifted by 0,1 µm for individual data
points. (b) Longitudinal (𝜁 − 𝛿) space, overlaid for (orange) the initial position 𝑠 = 0
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3.8 Strength and impact of transverse space charge forces expected for a gaussian shaped
beam with LUX parameters 𝐼peak = 2,5 kA and 𝛾 ' 600. Beam radii are 𝜎𝑟 = 3,5 µm
(blue) and 𝜎𝑟 = 100 µm (orange, scaled ×100 for better visual representation). Dashed
lines represent the linear approximations of the force. (a) Normalized space charge
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linear defocusing strength. The linear model holds for 𝑟/𝜎𝑟 ' 1. (b) Evolution of
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expansion 𝐼peak = 2,5 kA, 𝜎𝑟 = 100 µm, (green dash-dotted, magnified ×10 for
visual representation) and after being stretched with a chicane by a factor of 5 to
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3.10 Illustration of an (blue ellipses) electron beam following a curved trajectory through
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4.1 Schematic view of an undulator structure with alternating polarity of the magnets,
guided by iron pole shoes towards the gap and creating a periodic vertical magnetic
field along (green line) the central axis. The electron beam moves on a (red line) sine
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transmission window of an aluminum filter ≈ 17 to 80 nm in the reasonably accessible
range for the undulator strength of 0.5 < 𝐾 < 2.55. (b) Transmission of a 250 nm
aluminum filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Illustration of the coherence condition for undulator radiation. An electron travels one
undulator period 𝜆𝑢 from A to B in 𝑡 = 𝜆𝑢/(𝛽𝑧𝑐), therefore radiation of wavelength
𝜆𝑙 emitted at A under an angle 𝜃 is traveling a distance 𝜆𝑢/(𝛽𝑧 in the same time.
Radiation emitted at B in the same direction interferes constructively if the wavefront
is shifted by an integer multiple of 𝜆𝑙. Figure adapted from [106]. . . . . . . . . . . 59

4.4 (a) Finite wave train of 𝑁𝑢 = 10 cycles and (b) corresponding spectrum with minima
at Δ𝜔/𝜔𝑙 = ±1/𝑁𝑢 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Gain curve obtained from eqs. (4.37a) to (4.37c) starting from a small initial field.
Insets (a)-(d) show the microbunching process at different stages of the amplification
process up to saturation, where the average energy transfer between electrons balances
and the power level starts to oscillate. . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Gain power curve according to (blue solid) eq. (4.43) and (orange dashed) the
approximation for 𝑧 � 𝐿𝑔 for the first 12 gain lengths. . . . . . . . . . . . . . . . . 65

4.7 (a) Change of growth parameter −Im (𝛼̂) for Gaussian distributed energy spread,
obtained from eq. (4.49). Only the root that corresponds to an increase in 𝐸̃𝑥 is shown
for (orange) being on resonance and (blue) at optimal energy detuning. Different
space charge parameter 𝑘̂ 𝑝 are (solid) 0,0, (dotted) 0,2, and (dashed) 0,5. Values are
normalized to the growth rate of a monoenergetic beam and no space charge. An
approximation for the growth rate at optimum detuning is also shown (black, solid).
(b) Optimal detuning at which largest growth rate is achieved. . . . . . . . . . . . . 68

4.8 Increase in gain length relative to the initial 1D gain length as a function of applied
(de)compression, considering different initial scaled uncorrelated energy spreads:
Δ0 = 𝜎Δ,0/𝜌FEL (blue, solid) 0.2, (green, dash-dotted) 1.0, and (purple, long dashed)
2.0. The case where neither compression nor decompression improves the gain length
is indicated by (orange, dashed) 1/√3 ' 0.6. The LUX parameters (red, dotted)
correspond to Δ0 ' 1.4, suggesting a benefit from decompression. Additionally,
(black, solid) the locations of minima is indicated, representing the optimal stretching
factor 𝑛𝐵,opt. Note that the scaling of the 𝑛𝐵-axis changes depending on whether
𝑛𝐵 is greater or smaller than 1, reflecting that compression and decompression are
reciprocal operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

166



List of Figures
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