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ABSTRACT

With the rapid advancement of Artifical Intelligence (Al), autonomous systems have
gained increasing attention due to their growing potential across both virtual and real-
world applications. Developing embodied agents that can follow human instructions
requires not only semantic understanding but also efficient policy learning. To achieve
further autonomy, an agent must explore its environment and adapt its capabilities
beyond the initial design, which motivates research into world modeling and robotic
self-determination.

This thesis begins by presenting a unified conceptual foundation for autonomous
embodiment, followed by contributions that integrate multiple aspects of this foun-
dation. First, the thesis introduces multimodal cues as intrinsic motivation to enable
reinforcement learning agents to engage in self-determined exploration and rep-
resentation learning, warming up their policies beyond immediate task demands.
Second, the thesis proposes a decision-level interactive perception approach based
on Large Language Models (LLMs), enabling agents to semantically reason about
multimodal inputs for improved exploration and environmental understanding.
Third, to strengthen the reasoning abilities of LLMs, the thesis explores logic-guided
inference exploration to enhance performance on complex reasoning tasks without
requiring additional fine-tuning. Fourth, the thesis addresses long-term embodied
autonomy by enabling agents to reason about affordances in their environment and
discover novel skills through self-determined policy learning. Finally, the thesis con-
cludes with collaborative research on object-centric planning, bimanual coordination,
and explainability in embodied systems, further extending and contextualizing the
contributions within broader research on embodied intelligence.



ZUSAMMENFASSUNG

Mit dem rapiden Fortschritt der Kiinstlichen Intelligenz (KI) haben autonome Systeme
zunehmende Aufmerksamkeit erlangt, bedingt durch ihr wachsendes Potenzial in
virtuellen und realen Anwendungen. Die Entwicklung von verkorperten Agenten,
die menschlichen Anweisungen folgen konnen, erfordert nicht nur semantisches
Verstdndnis, sondern auch effizientes Erlernen der Aktionstrategie, dem sogenannten
Policy-Learning. Um weitergehende Autonomie zu erreichen, muss ein Agent seine
Umgebung erkunden und seine Fahigkeiten tiber seine urspriinglich gegebenen
hinaus entwickeln, was die Modellierung der Welt und robotische Selbstbestimmung
motiviert.

Diese Dissertation beginnt mit der Vorstellung einer vereinheitlichten konzeptionellen
Grundlage fiir autonome Verkérperung, gefolgt von Beitrdgen, die mehrere As-
pekte mit dieser Grundlage untersuchen. Zunéchst fiihrt die Dissertation multi-
modale sensorische Reize als intrinsische Motivation fiir Agenten ein, die mittels
Verstarkungslernen trainiert werden. Damit kénnen sie selbstbestimmte Exploration
und Représentationslernen durchfiihren, indem sie ihre Aktionsstrategien {iiber
unmittelbare Aufgabenanforderungen hinaus optimieren. Zweitens schldgt die Dis-
sertation eine interaktive Wahrnehmung mittels groflen Sprachmodellen (Large
Language Models, LLMs) vor, die Agenten befdhigt, semantisch iiber multimodale
Eingaben zu argumentieren, um Exploration und Umweltverstandnis zu verbessern.
Drittens untersucht die Dissertation zur Starkung der Argumentationsfahigkeiten
von LLMs logikgesteuerte Inferenzexploration, um die Leistung bei komplexen
Argumentationsaufgaben zu verbessern, ohne zusétzliches Feintuning zu benétigen.
Viertens adressiert die Dissertation langfristige verkdrperte Autonomie, indem sie
Agenten befdhigt, tiber Moglichkeiten in ihrer Umgebung nachzudenken und neue
Fahigkeiten durch selbstbestimmtes Policy-Learning zu entdecken. Die Dissertation
schliefst mit kollaborativen Arbeiten zu objektorientierter Planung, bimanualer Koor-
dination und Erkldrbarkeit in verkdrperten Systemen ab, die die Beitrdge innerhalb
des weiten Forschungsfeldes der verkorperten Intelligenz weiter ausbauen und
kontextualisieren.
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INTRODUCTION

1.1 MOTIVATION

1.1.1 Agent, Embodiment, Robot and Autonomy

In establishing a common foundation for our discussion, it is essential to clarify
several key concepts that will recur throughout this thesis. An agent is an entity
that perceives its environment, processes information, and takes actions to achieve
goals, characterized by perception, decision-making, and control. Building on this,
the concept of embodiment emphasizes that cognitive processes are deeply rooted
in the body’s interactions with the world. An embodied agent, therefore, is one that
possesses a body, either physical or virtual, enabling it to interact meaningfully with its
environment. A robot is a specific form of embodied agent: a computational machine
capable of performing physical actions, typically in the real world, based on its
perception and internal decision-making processes. Within the context of this thesis,
autonomy refers to an agent’s ability to operate in complex, dynamic environments
with minimal human intervention. Autonomy is not limited to control or navigation
but encompasses the capacity to learn, operate, and adapt over time. In embodied agents,
particularly robots, this includes the ability to explore environments and develop
capabilities independently, a foundation for applications such as search and rescue,
scientific exploration, industrial automation, and human-robot collaboration.

While all robots are physically embodied agents, the notion of an embodied agent also
includes virtual entities that interact within simulated or digital environments. Thus,
although the term robot is used frequently in this thesis, the proposed methods and
insights are often applicable to a broader class of agents.

1.1.2 Problem Statement

Embodied autonomy spans a spectrum of capabilities, ranging from simple reactive
behaviors to complex decision-making and long-term self-improvement. This thesis
focuses on two intermediate yet foundational forms within this continuum: active
environment exploration and autonomous adaptation. These forms are chosen because
they mark critical transitions, from merely responding to stimuli toward proactively
acquiring knowledge and adjusting behavior over time, which are essential stepping
stones toward achieving full autonomous intelligence.

Environment Exploration entails an agent’s capacity to actively seek and gather
information about its surroundings to uncover future potentialities, such as identifying
new objects, understanding spatial relationships, or identifying useful features for
downstream tasks. These processes are fundamental to intelligent systems, as they
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enable agents to operate in dynamic and uncertain environments without constant
human supervision. Exploration helps build a structured understanding of the world,
reveal hidden information, and improve decision-making.

Autonomous Adaptation is the capability to extend existing knowledge acquired during
exploration, and to acquire novel behavior patterns when necessary, enabling the
agent to adjust its strategies when encountering new challenges, changing conditions,
or unexpected events. This form of autonomy centers on the agent’s ability to adapt
its own capabilities over time, which we also refer to as self-development. This
process may involve adjusting internal estimation of the environment, generalizing
skills to apply them to novel objects, or even learning new capabilities for novel
manipulation.

Together, these capabilities are crucial for developing autonomous robots, particularly
in robotic manipulation, which requires an awareness of how actions impact both the
agent itself and its environment.

1.1.3 Challenges

Achieving effective environment exploration and autonomous adaptation is challeng-
ing, particularly for real-world robots, due to the complexity and unpredictability
of environments. Many robotic systems are designed upon assumptions that the
operations are performed in a known environment. Without this assumption, an
autonomous robot, especially for long-term autonomy, faces many interrelated chal-
lenges such as hardware/software of robot platform design, and, moreover, the
rapidly changing/unpredictable nature of dynamic environments.

From an environment modeling perspective, autonomous robotic systems must
operate reliably in environments that neither they nor their designers have previously
fully anticipated. This necessity arises from the inherent complexity of the real world,
which makes it impractical for robots to fully model all possible scenarios in advance.
From the control perspective, traditional symbolic planning methods explicitly
model tasks and environments, solving the planning problem through optimization.
However, these methods often fail or incur prohibitive computational complexity in
complex and unforeseen environments, making them inflexible. A robust adaptive
learning mechanism during operation is crucial for building autonomy in an open
world, as encoding all necessary knowledge and skills into the system during the
design phase is nearly impractical.

Challenges inevitability arise when dealing with uncertainty' that comes from
diverse sources, e.g. noisy sensing, partial observability [LHP23], and instable
learning [Li+23c], making it difficult to construct reliable representations for decision-

1: Uncertainty in machine learning can be categorized into aleatoric and epistemic uncertainty [Mur22].
In the robotic context, aleatoric uncertainty arises from the inherent randomness in stochastic state
transitions, while epistemic uncertainty stems from the agent’s lack of full knowledge about the
consequences of its actions in the environment. Addressing aleatoric uncertainty requires designing
robust policies that can account for stochasticity, such as leveraging probabilistic models. On the other
hand, reducing epistemic uncertainty usually necessitates active exploration strategies that prioritize
information gain, enabling the agent to refine its world model and improve its predictive capabilities.
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making. Adaptation further complicates the problem, as it demands the ability to
generalize learned behaviors across different contexts, transfer knowledge to novel
tasks, or even acquire new skills on demand. Furthermore, achieving long-term
autonomy necessitates minimizing human intervention, meaning robots must develop
self-directed learning strategies that enable continual improvement without explicit
external supervision. Addressing these challenges is key of this thesis to building truly
intelligent robotic systems capable of operating in diverse and evolving real-world
settings.

1.1.4 Research Scope

To tackle the challenges raised by environment exploration and autonomous adapta-
tion, my research focuses on four key fundamental concepts: world model, semantics,
policy, and self-determination (see Figure 1.1):

4 interactive scene graph SELF-

D agentic skill discovery DETERMINATION
/\. model-based exploration
~=- skill learning

WORLD
PoLicy

SEMANTICS

Figure 1.1: Intelligent Agent Tetrahedron. Conceptual foundation of environment exploration and
autonomous adaptation, structured as a tetrahedron with four core components: world models, semantics,
policy, and self-determination. Each edge represents the interaction between two concepts, while each
triangular face (also shown in the top-left inset) denotes a three-way integration underlying specific
capacities. For example, agentic skill discovery emerges at the intersection of self-determination,
semantics, and policy. See Chapter 3 “Conceptual Foundations” for detailed discussion.

» World Models provide an agent with internal representations of its environment
after prior exploration, either through fixed trajectories or active seeking,
allowing it to predict the consequences of its actions, reason about uncertainty;,
and plan for future interactions. A robust world model helps mitigate the
limitations of noisy or incomplete sensory data, improving planning and
decision-making in complex environments.

» Semantic representations enhance the robustness of autonomy by abstracting
away non-essential low-level details while preserving critical semantic and
topological structures. This abstraction plays a key role in interpreting and
organizing knowledge acquired through exploration. By leveraging semantics,
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an agent can contextualize observations, generalize learned concepts across
different tasks and environments, and communicate its understanding in a
way that aligns with human expectations. Moreover, instructions may come as
being casual, informal, and even incomplete to robot systems using a natural
language interface; it is essential to leverage extensive knowledge and reasoning
capabilities, e.g. from Large Language Models (LLMs), for interpretation and
clarification for robust task planning.

» Policy learning enables an agent to develop effective strategies from exploration
to operation by optimizing its actions based on past experiences and objectives.
A well-trained policy controls state transitions through the decision-making
process, allowing the agent to adapt its behavior to dynamic environments and
achieve long-term goals. In the context of autonomous agents, policy learning
bridges perception and action, ensuring that decisions are not only reactive but
also proactive, aligning with both immediate feedback and strategic foresight.

» Self-determination in embodied context involves intrinsic motivation and self-
regulated learning, enabling an agent to go beyond human-specified objectives
and engage in open-ended exploration, thereby fostering continual learning
and long-term autonomy. It empowers agents to set internal goals and evaluate
their own progress, gaining abilities that are aligned with their own curiosities
or preferences. By enabling agents to identify and pursue valuable information,
and to acquire novel skills, on their own, self-determination reduces reliance
on human supervision and enhances adaptability.

Together, these four components form a foundation for developing intelligent embod-
ied systems that can explore effectively, operate robustly, and adapt autonomously in
diverse and evolving environments.

1.2 RESEARCH OBJECTIVES AND CONTRIBUTIONS

By investigating the interplay between world modeling, semantic grounding, policy
learning, and self-determination, this thesis aims to contribute to the foundation of
self-developing autonomous embodied agents. Unlike conventional autonomy, which
often prioritizes the efficient execution of predefined tasks, the proposed approach
aims to develop autonomous agents with the following research objectives (O.):

OsjecTivi I To construct self-deterministic agents that can leverage non-verbal
multimodal cues to autonomously explore the environment and develop possible
abilities beyond immediate task requirements.

Chapter 4 introduces Intrinsic Sound Curiosity Module (ISCM) to integrate cross-
modal learning cues, specifically visual-auditory signal, for improved representation
learning and exploration (early multimodal fusion) of Reinforcement Learning (RL)
agents, with experiments addressing the following research questions:

» Does intrinsic sound curiosity help the agent to explore more actively and learn
effective representations?



6 | 1 Introduction

» Does unsupervised policy pre-training help the agent to adapt to new tasks?
» How does the choice of crossmodal prediction affect the performance?

OsjecTive II To develop an interactive multimodal perception framework in
which the agent actively gathers, integrates, and semantically interprets diverse
sensory inputs, enabling grounded semantic understanding and context-aware
decision-making in complex environments.

ISCM discussed in Chapter 4 investigates a learning-based (early) multimodal fusion
approach to build a crossmodal predictive world model. Chapter 5 further introduces
a Multimodal environment chatting (Matcha) framework that integrates interactive
perception with LLMs to enhance multimodal interpretation and decision-making in
autonomous agents (late, decision-level multimodal fusion). Experiments in simulated
multimodal manipulation scenarios study the following research questions:

» Can Matcha integrate multimodal perceptions at the decision level?

» How does the level of abstraction in the submodule outputs influence the
performance?

» How do different scale LLMs affect the performance?

Osjective III To enhance agent reasoning abilities to interpret complex instructions
and make informed decisions.

Matcha discussed in Chapter 5 investigates the use of LLMs for complex reasoning
with proper abstraction and prompting for in-context reasoning. To further improve
the reasoning abilities of LLMs, Chapter 6 introduces Logical Thoughts (LoT), a logic-
based symbolic method to improve zero-shot chain-of-thought reasoning, enabling
improved inference-time reasoning and decision-making abilities of LLMs, with
experiments addressing the following research questions:

» Does Lol outperform the original zero-shot CoT, i.e. logic-guided inference
enhances reasoning ability in various domains as well as with LLMs of varying
model scales?

» Whatis the impact of LoI' on individual reasoning chains (e. . revision frequency,
resultant length)?

» Do post-hoc explanations help LLM self-check?

Osjective IV To construct autonomous agents with an advanced level of self-
determination that can sense environment context verbally and discover meaningful
skills from scratch in the pursuit of long-term embodied autonomy:.

Chapter 7 proposes a semantically motivated exploration framework for RL agents,
Agentic Skill Discovery (ASD), that allows agents to autonomously identify and
acquire useful skills from scratch in a self-determined manner, guided by LLMs,
when faced with a novel environment. The accompanying experiments address the
following research questions:

» What kind of tasks will be proposed?
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» Can skills be acquired automatically?
» How do RL and learning context influence the learning efficiency?
» Can challenging tasks be completed by chaining learned skills?

1.3 THESIS ORGANIZATION

Part I. Foundations and Context

» Chapter 1 “Introduction”: Provides an overview of the research motivation, the
fundamental problem setting, and the methodology adopted in this thesis. It
also outlines the key research contributions and how they address the challenges
of robotic autonomy.

» Chapter 2 “Background and Related Work”: Introduces essential concepts in
environment exploration and self-development for robotic autonomy. It also
presents the experimental robot platforms and simulation environments used
in this research, along with a comprehensive review of related work in the field.

» Chapter 3 “Conceptual Foundations”: Establishes the core theoretical foun-
dations that facilitate robotic autonomy, including the role of world models
in enabling predictive reasoning, the significance of semantics in representa-
tion, the formulation of policies for behavior control, and the concept of self-
determination as a driver (intrinsic motivation) and examiner (self-regulation)
for exploration and adaptation. These elements form the conceptual backbone
for the research contributions discussed in the following chapters.

Part II. Core Contributions

Building upon the conceptual foundations, this part presents the core research
contributions in detail. Each chapter introduces a key advancement in autonomous
robotic learning;:

» Chapter 4 “Sound Guides Representations and Explorations”: Investigates how
multimodal sensory feedback, specifically visual-auditory signals, can guide
robotic exploration and improve learned representations of the environment,
as well as a proactive policy for downstream task adaptation. This chapter
addresses O. I with non-verbal motivations, correlating to O. II with learning-
based multimodal fusion during exploration.

» Chapter 5 “Interactive Multimodal Perception Using Large Language Models”:
Explores the integration of LLM-based interactive perception to enhance
multimodal understanding, addressing (decision-phase) multimodal fusion
(O. 1I), and relates to complex reasoning (O. III) with proper prompting.

» Chapter 6 “Enhancing Reasoning via Logic-Guided Inference Scaling”: Intro-
duces logic-based symbolic verification of LLM inference to improve zero-shot
chain-of-thought reasoning, enabling improved inference-time reasoning abili-
ties of LLMs (O. III).

» Chapter 7 “Agentic Skill Discovery”: Proposes an agentic skill discovery frame-
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work, enabling robots to autonomously identify and acquire useful skills from
scratch in a self-determined manner when faced with a novel environment.
This chapter addresses O. IV with verbal motivations, inherently resembling
the human learning process.

» Chapter 8 “Reward Modeling, Embodied Planning, and Explainability”: Dis-
cusses collaborative research efforts that complement the core contributions,
including:

§ 8.1 models intrinsically motivated RL within a unified framework, additionally
addressing O. I by optimizing an information-seeking objectives for diverse
skill exploration.

§ 8.2 addresses O. I1I with a focus on context-sensitive planning, proposing a
novel planning framework including object-centric planning and advanced
bimanual planning that leverage LLMs.

§ 8.3 further explores the role of explainability in robotic systems, enhancing
the interpretability and trustworthiness of autonomous agents.

The proposed approaches seek to empower robots with the ability to au-
tonomously reason, explore, and adapt, ultimately pushing the boundaries of
embodied intelligence.



BACKGROUND AND RELATED WORK

2.1 ROBOTIC AUTONOMY

Autonomous systems [LLA21; Kun+18; Azp+23; Jan+24; Wan+23a; Hon+24; Kim+24;
Xi+25; Zen+23b] possess the capability to perceive, reason, and act independently
in dynamic and uncertain environments across various domains, including phys-
ical environments (e.g. space, air, sea, field, and human environments), simulated
environments (e.g. Isaac Sim [NVI25], MuJoCo [TET12], CoppeliaSim [RSF13], and
ThreeDWorld [Gan+21]), and textual environments (e.g. language model generations,
automated office tasks, programming context, etc.), thereby reducing dependence
on human intervention. These systems usually integrate a selective combination of
advanced Artifical Intelligence (AI) techniques (e.g. world modeling, policy learning,
multimodal fusion, etc.) that enable agents to interpret sensory inputs, predict future
states, and generate purposeful actions.

Ultimately, autonomy seeks to bridge low-level control with high-level cognition,
fostering agents that can explore, learn, and operate effectively in virtual- & real-world
settings, resulting in capabilities that are essential for applications such as search and
rescue, autonomous inspection, and planetary exploration, where both understanding
and interacting with the environment are critical for mission success.

2.1.1 Environment Exploration

Within the scope of robotic autonomy, environment exploration is the systematic
process by which agentic systems autonomously perceive, navigate, and interact
with unknown or partially known environments to construct spatial representations
and develop exploration strategies aimed at acquiring knowledge and adaptive
capabilities. This subsection presents an integrated perspective that categorizes the
main exploration approaches into map-based and learning-based methods, and reviews
key works in areas such as representation learning, planning, and exploration that
have shaped these paradigms.

Map-Based Exploration

Environment exploration has evolved from a primary focus on robotic navigation'
where robots learn to autonomously map and traverse unknown environments [SB03;
Zhu+18; Arm+23]. Traditional map-based methods rely on explicit representations
of the environment, such as grid maps, topological maps, or semantic maps [LLA21].

1: While this thesis primarily focuses on robotic manipulation scenarios, advancements in mobile
robotics will also be discussed, particularly in the context of active perception for map building, which
falls under the broader scope of environment exploration.
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Figure 2.1: A set overlap illustration conceptualizing Active Simultaneous Localization and Mapping
(ASLAM), an active robotic system that simultaneously localizes, plans paths, and builds maps
(adapted from [LLA21]).

These approaches are primarily focused on improving navigation, localization, and
path planning in both known and yet unknown environments. Beyond navigation,
advanced exploration systems integrate manipulation capabilities, allowing robots
to physically interact with their surroundings rather than merely observe. This
interaction facilitates knowledge acquisition and the discovery of hidden information,
such as resolving occlusions [Li+23c; Li24] or identifying invisible properties through
interaction [Zha+23c; Gao+24a]. In such cases, techniques such as scene graphs can
serve as a complement to traditional maps. The followings introduce fundamental
concepts and related work in three key aspects: map building, path planning, and
exploration strategies.

Map Building techniques are concerned with creating a dense representation of the
environment based on sensory data. These methods are fundamental for any form
of autonomous exploration, as they allow agents to build knowledge about their
surroundings.

» Simultaneous Localization and Mapping (SLAM) [DB06; BD06] is a fundamental
problem in robotics, enabling an autonomous agent to construct a map of an
unknown environment while simultaneously locating its own position within
the map. SLAM techniques integrate sensor data, typically from cameras,
LiDAR, or other perception systems, with probabilistic estimation methods
such as Kalman filters, particle filters, or graph-based optimization. Traditional
SLAM focuses on geometric consistency and metric mapping, whereas more
recent approaches incorporate semantic understanding to enhance navigation
and interaction. In the context of autonomous exploration, Active Simultaneous
Localization and Mapping (ASLAM) [Mu+15; LLA21] extends SLAM by incorpo-
rating decision-making strategies that guide the agent toward informative areas,
balancing exploration and exploitation. This active approach enables efficient
map construction while improving localization accuracy and adaptability in
dynamic or partially observable environments (cfr. Figure 2.1).

» Occupancy grid mapping [MES5; LLA21] refers to approaches that divide the
environment into a grid of cells (or Octree structure [Mea82] for 3D repre-
sentations), each representing the probability of occupancy (i.e. whether the
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cell is occupied or free). Occupancy grids are widely used in mobile robotics
for creating real-time environment maps. This method is particularly effective
for robots with limited computational power and can be enhanced to handle
dynamic objects and obstacles in the environment.

While such approaches have been extensively employed in mobile navigation, they
are equally pertinent to scenarios that demand manipulation-aware representations.
In manipulation contexts, constructing dense 3D maps typically requires the in-
tegration of multimodal sensory inputs, such as visual, auditory, and tactile data,
to generate detailed representations of objects and their properties. This process
introduces increased computational complexity and necessitates a more sophisticated
understanding of the environment than conventional mapping methods provide.
Consequently, there is a heightened need for semantic understanding and, building
upon it, high-level reasoning, both of which are central topics discussed in this thesis
(cfr. Chapter 5, Chapter 6, and Chapter 7).

Figure 2.2: An illustration of path planning, in which the agent navigates toward a target while
avoiding obstacles (shown in gray rectangle). The path is computed using a path planning algorithm,
ensuring the agent avoids obstacles while reaching the target location.

Path Planning is concerned with finding a safe and efficient path through a map. It
uses the built map (constructed through SLAM or other methods) to navigate the
environment (cfr. Figure 2.2).

» Sampling-based path planning methods like Rapidly-exploring Random Trees
(RRT) [LaV98], RRT* [KF11], and RRT-Connect [KI.0OO] are used for real-time
path planning in high-dimensional spaces. These methods allow agents to plan
paths while avoiding obstacles, and RRT* guarantees asymptotic optimality,
ensuring the paths are near-optimal. These techniques are particularly useful
in dynamic environments where paths need to be recalculated on the fly.

» Grid-based path planning algorithms such as Dijkstra’s [Dij59; LaV06] and A*
algorithm [HHNR68; LaV06] are widely used to compute the optimal path from
an agent’s current location to a target position on a discretized map. These
algorithms are particularly efficient in environments where the map is fully
known and can be represented as a grid or graph. Dijkstra’s algorithm guaran-
tees the shortest path by exploring all possible routes in a breadth-first manner
while considering edge costs. A*, an extension of Dijkstra’s algorithm, incor-
porates a heuristic function to guide the search more efficiently, significantly
reducing computational overhead. These techniques are extensively applied in
autonomous vehicles, mobile robots, and video games Al for navigation and
path-finding tasks.
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Planning algorithms are extensively utilized in both mobile and manipulation contexts.
In manipulation tasks, planning often involves intricate constraints concerning object
interaction and obstacle avoidance, treated as stringent safety measures. However,
integrating numerous constraints escalates both design and computational com-
plexity, diminishing overall adaptability and compromising real-time performance.
Therefore, in scenarios where high-level decision-making supersedes fine-grained
control, e.g. in Chapter 5, trajectory planning is applied for low-level control, while
high-level decision-making is managed by LLMs to ensure robust reasoning and
generalization.

Map-based Exploration Strategies are methods that guide the agent’s movement within
the environment to efficiently gather information’. These methods often rely on
the map being built so far and attempt to maximize the information gained during
exploration.

» Frontier-based exploration [Yam97] is one of the most widely used strategies
for exploring unknown environments. The agent identifies the boundaries, or
“frontiers”, between the known and unknown areas of the environment. These
frontiers represent regions where the map is incomplete, and the agent navigates
toward these regions to expand its map. By focusing on these frontiers, the
agent reduces redundant exploration and improves the efficiency of mapping
large, unstructured environments.

» Graph-structured exploration, including topological [TB96; Atal5; LLA21; Mu+15]
and semantic mapping [KG15; Yok+24], uses maps that represent the environment
as a graph where nodes capture discrete locations or objects [Gu+24; Joh+15;
Jia+24; Dai+24] ata high abstraction level, and edges encode their connectivity or
relational context. Such graph-based representations not only provide structural
(topological) guidance but also incorporate semantic context (object identities,
affordances), allowing the robot to make more informed decisions during
exploration.

Map-based exploration serves as a foundational strategy for robotic navigation in
both familiar and novel environments, leveraging static or dynamically evolving
maps to guide movement. However, such approaches typically depend on abstract,
computation-intensive representations that often overlook the fine-grained details
essential for precise, low-level manipulation. Environment symbolization has tradi-
tionally been handled through manual programming by domain experts, limiting
adaptability and generalization across diverse environments. Recently, this process
has been revisited through the integration of LLMs [Jia+19; Che+24; Chu+25; Din+23],
as further discussed in § 3.3.3 “Integration: Planning and Learning with Foundation
Models” on page 44 and § 8.2.2 “Bimanual Planning” on page 126, motivated by
the fact that LLM-generated plans are not always reliable on their own but can be
effectively combined with traditional planning methods, leveraging LLM’s strong
code-generation capabilities. Learning-based approaches, in contrast, enable robots
to autonomously acquire and adapt knowledge through interactive experiences and
are mainly studied in this thesis.

2: The exploration strategies discussed here are not mutually exclusive, as they can complement each
other depending on the context and goals of the exploration task.
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Learning-Based Exploration

A prominent learning-based control approach is Reinforcement Learning (RL) [LZZ20;
SB18], which enables autonomous agents to navigate and understand environments
by acquiring knowledge through trial-and-error experience. This approach relies on
learning representations, which encode meaningful features from high-dimensional
sensory data, and learning exploration, which optimizes decision-making policy for
environment exploration.

Learning Representations. Being fundamental to learning-based methods, representa-
tion learning enables autonomous agents to extract, encode, and leverage meaningful
features from raw sensory inputs (e.g. visual, auditory, proprioceptive data). Well-
structured representations help agents generalize across tasks, improve sample
efficiency in RL, and make informed exploration decisions in real or virtual envi-
ronments. With unrolled trajectories of an agent policy, agents are able to learn
representations in self-supervised ways without the requirement of asking for hu-
man annotations. A variety of techniques have been developed to learn these latent
representations, each with its own merits:

» Autoencoders and Variational Autoencoders (VAEs) [KW22; KW+19] compress sen-
sory inputs into lower-dimensional embeddings by reconstructing the original
data. Variational autoencoders add a probabilistic framework that encourages
smooth, continuous latent spaces, which can be crucial for generating mean-
ingful interpolations between observed states. These methods allow agents to
capture the underlying structure of their environments, thereby facilitating
more directed exploration.

» Contrastive learning methods [vLV18; WL21; LSA20; Eys+22; You+22] leverage
self-supervised objectives to distinguish between similar and dissimilar obser-
vations. By maximizing agreement between augmented views of the same state
while pushing apart representations of different states, contrastive methods
yield embeddings that emphasize the discriminative features necessary for
effective exploration. Such approaches have been shown to improve the sample
efficiency of exploration policies, particularly in environments with sparse
external rewards.

» Dynamics Modeling [Moe+23; Pat+17; DGI21] is another line of work that
incorporates forward and inverse dynamics models to predict state transitions.
These models not only provide a mechanism for learning robust representations
but also generate curiosity-driven intrinsic rewards based on prediction errors
(cfr. Figure 2.3). When an agent encounters states where its model poorly
predicts the outcome, the resulting surprise serves as a signal to explore further,
thereby enhancing the overall confidence of the environment model.

Learning effective representations is essential for building policies that generalize
across tasks and environments, enabling agents to explore and adapt efficiently by
capturing relevant features while filtering out irrelevant details. Recent advances
in large-scale multimodal models reflect this principle by training on vast datasets
spanning audio, web videos, images, 3D meshes, and more. Building on this suc-
cess, recent work on Vision-Language-Action Model (VLA) [Bla+24; Int+25; Tea25]
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Curiosity

Figure 2.3: Uncertainty in state transition predictions generates curiosity, serving as an intrinsic
reward signal that motivates the agent to explore further.

demonstrates the potential of pretraining large models on web-scale data and subse-
quently fine-tuning them on robotic data, yielding promising results for initializing
multimodal representations and knowledge in robotics.

Despite these advances, multimodal models remain underexplored in robotics due to
the high cost and complexity of collecting rich, synchronized data across modalities.
Moreover, a significant domain gap exists between large-scale web datasets and the
embodied, interactive settings in which robots typically operate. In such contexts,
multimodal cues are often event-driven, sparse, and highly task-dependent, requiring
more specialized representation learning. These challenges motivate our investigation
into visual-auditory alignment in Chapter 4 and interactive multimodal perception
in Chapter 5.

Learn to Explore. As RL agents learn within a trial-and-error paradigm, a balance
between the exploration-exploitation trade-off is inevitable. While early approaches
relied on simplistic methods like random action selection, modern techniques have
evolved to incorporate more sophisticated strategies designed to cope with chal-
lenges such as sparse rewards, high-dimensional state spaces, and non-stationary
dynamics.

» e-greedy exploration [SB18] involves choosing a random action with probability
€ and the best-known action otherwise. While effective in simple tasks, this
strategy can be inefficient in complex environments where random exploration
may rarely encounter novel states since it fails to utilize collected knowledge.

» Curiosity-driven exploration [Pat+17; DGI21; Gro+21; LPO18; Raj+21; Zha+22;
Bur+19a; DTG20] is usually bound to dynamics modeling, whereas the intrinsic
rewards are provided as the prediction error of a learned model (which can be
a forward dynamics model or inverse dynamics that predicts action to make it
less noise-sensitive). When the model’s prediction deviates significantly from
the observed outcome, the resulting “curiosity” signal motivates the agent to
further investigate that region of the state space (cfr. Figure 2.3). [Bou+02; VR23]
maximizes knowledge gain by focusing on areas likely to reduce uncertainty.
Robots evaluate potential exploration targets using metrics such as information
gain, entropy reduction, or reward functions. This strategy can dynamically
prioritize regions based on their expected informational value.

» Diversity-driven exploration methods do not necessarily model the environment
dynamics but explicitly “count” the diversity of experienced states. For example,
count-based exploration [Mar+17; Str+22; Li+23c; Lu+22] maintains visitation



2.1 Robotic Autonomy | 15

counts to quantify state novelty, and skill discovery methods quantify empower-
ment, or “skill novelty” with information-thoeretic measures [Wan-+21; Eys+19;
Li+23c]. As the agent strives to maximize the diversity of its visited states or
skills®, the environment becomes thoroughly explored.

In contrast to planning-based exploration, learning-based strategies are better suited
for scenarios where robot skills are not predefined but instead emerge through
interaction. These strategies enable robots to adaptively discover and refine their
abilities through active exploration, thereby extending their capabilities beyond fixed
priors. Traditional learning approaches often operate in non-semantic spaces, relying
on large amounts of data and computation to extract meaningful decision patterns,
which limits their effectiveness and practicality. In comparison, advanced Al methods
increasingly incorporate knowledge from models trained on large-scale datasets.
The role of semantic understanding and reasoning, particularly through language
models, in enhancing autonomous exploration is further examined in later chapters
(see Chapter 5 and Chapter 7).

2.1.2 Autonomous Adaptation

Autonomous adaptation refers to a system’s inherent capacity to modify its behavior,
parameters, or structure in response to dynamic environments or novel stimuli
without requiring explicit human intervention. Unlike environment exploration,
which focuses on gathering and mapping external data, autonomous adaptation
centers on agent self-development: the internal evolution of skills and strategies that
enable the robot to meet unforeseen challenges and optimize its performance.

Learning and Generalization

Traditional machine learning frameworks focus on static datasets and batch training,
where models learn to map inputs to outputs through supervised optimization. While
these systems achieve high accuracy in controlled environments, their generalization
capabilities are limited to the scope of their training data. Generalization focuses on
how robots can extend learning from limited data or demonstrations to novel scenarios
and tasks. This includes methods that allow a robot to learn underlying principles
rather than merely memorizing examples. For autonomous systems operating in
dynamic real-world environments (e.g. autonomous vehicles), this rigidity becomes
a critical bottleneck. Models trained on fixed datasets struggle to adapt to novel
scenarios, distribution shifts, or unseen task variations.

The No Free Lunch Theorem (NFL) [WM97] in the context of machine learning also
indicates that the choice of a model should be problem-specific, considering the data
distribution and assumptions®*. As a result, approaches to augment existing data

3: In the context of skill discovery, visited states and skills are highly correlated and often inter-
changeable, as skills are typically defined and distinguished by the states they traverse, particularly
the initial and final states.

4: Do LLMs escape these limitations? While LLMs leverage statistical patterns to perform well on many
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[Hof+21; YKF21] and assimilate new data beyond the training distribution [Par+19]
are necessary.

Continual Learning

Continual learning [Par+19] aims to let models learn incrementally from streaming
data while retaining prior knowledge, i.e. avoiding catastrophic forgetting. It focuses
on model and learning paradigm design to tackle the stability-plasticity dilemma,
balancing the maintenance of old knowledge (stability) with the integration of new
information (plasticity).

In robotics, continual learning approaches are valuable for developing models that
support lifelong environment modeling and multi-task policy learning. They are
particularly beneficial for resource-constrained devices and time-sensitive control
scenarios where robots must adapt to changing tasks. A major challenge, however,
emerges when shifting from human-curated task sequences to self-directed learning
(cfr. Chapter 7), where the system must autonomously decide what and when
to learn, and how to integrate new capabilities into existing models. While the
methods explored in this thesis mitigate forgetting by storing and switching between
multiple models, scaling to more complex behaviors, particularly in self-supervised
settings, underscores the importance of continual learning for effective knowledge
management and long-term adaptation. A detailed investigation of such continual
learning mechanisms, however, lies beyond the scope of this thesis.

Skill Discovery

Skill discovery is the process of identifying structured, reusable behaviors that allow
an agent to solve tasks efficiently [Las+21b; Yan+25; BSK21; Rho+25; Kam+22; KPK21;
Las+21a; Sha+20; Eys+19]. These behaviors, often referred to as “skills” or “options”
[SB18], are temporally extended actions that go beyond primitive actions like moving
forward or turning left. It typically involves two key components:

» Representation learning, which identifies latent structures in unlabeled data
(e.g. object affordance in a cluttered room).

» Policy learning, where optimizing algorithms rapidly acquire new skills by
distinguishing them from accumulated ones. Skills are often encoded as latent
variables in a policy, allowing the agent to generalize across tasks by reusing
learned behaviors.

In a Markov Decision Process (MDP) setting, skill discovery can be modeled as
learning a policy 7t(a|s, z), where s € § is the current state, a € d is the action, and
z € Z is a latent variable representing the skill. The objective is to discover diverse
and distinguishable skills by maximizing the mutual information I(7; z) between the
latent variable z and trajectory T = {s, a}r, i.e. skills are distinguishable in terms of

problems, their adaptability remains constrained by training data priors. Their emergent abilities do
not exempt them from the NFL theorem; instead, methods like fine-tuning and in-context adaptation
are needed to extend their capabilities beyond their original distribution.
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the state-action pairs visited by the agent:
I(7;2) = H(z) - H(z|7),

where H(z) is the entropy of the skill distribution (ensuring diversity), and H(z|7) is
the conditional entropy of the skill given the trajectory (ensuring distinguishability
among skills, cfr. Figure 2.4). Expanding I(7; z) with probability integral leads to

I(7;z) = Erzvp(z,2) [108 p(z|T) —log P(Z)] ’

where p(7, z) is the joint distribution of trajectories and skills; p(z|7) is the posterior
probability of the skill given the trajectory; and p(z) is the marginal probability of
the skill.

To approximate p(z|7), a learnable discriminator g, (z|7) with parameters ¢ can be
introduced to optimize the Barber-Agakov lower bound [BA03; Li+23c] of I(1; z),
leading to RL objective

F(1) = Ezop(z) rp(alz) |10 40(2]7) = log p(2)] ,

where p(7|z) is the trajectory distribution induced by the policy 7t(als, z) for a chosen
skill z.

For long-term autonomy, it is promising for intelligent systems to pursue learning
outcomes that are novel to the initial setting. Techniques like intrinsic motivation
[Pat+17] or compositional skill libraries [Zha+23a] enable agents to autonomously
chain primitive skills into complex behaviors. Skill discovery via Unsupervised Rein-
forcement Learning (URL) presents a promising approach by generating trajectories
and clustering them into distinct skill categories without requiring human supervi-
sion. Despite its appeal, its practical application remains limited due to substantial
data requirements and current feasibility only in simulation, constrained by the
sim-to-real gap. Moreover, the discovered skills often exhibit non-determinism across
training runs and lack direct interpretability, posing challenges for understanding
and systematic reuse. To address these issues, this thesis investigates self-determined
mechanisms (cfr. § 3.4) of robot learning and further explores the integration of LLMs
to support semantic reasoning over environment-centric goals (cfr. Chapter 7), aiming
for more effective and interpretable skill discovery processes.

*

Figure 2.4: Skill discovery illustration, where the upper red and lower blue trajectories indicate skill
distinction z; # z; defined by novel state visiting, which can be unsupervisedly discovered.
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2.2 ROBOT SETTING

This section introduces two robots that are used in later chapters: (1) NICOL (§ 2.2.1), a
robot built by our group Knowledge Technology®, and (2) Franka Emika Panda (§ 2.2.2),
which has been widely used in research due to its high flexibility.

2.2.1 NICOL

The Neuro-Inspired COLlaborative semi-human robot (NICOL) [Ker+23; Zha+23c]
is a semi-humanoid robot designed to enhance human-robot interaction and collabo-
ration beyond verbal communication. It consists of a head, an upper body with two
arms, and a structured table workspace. See Figure 2.5 for individual robot parts and
Figure 2.6 for the whole robot setting in both real- and virtual environments. Research
works introduced later in Chapter 5 and Chapter 8 mainly rely on this platform.

Speaker

LED ¢
Cam. :4 ’;/ \
) A Mic.

2 DoF

Right

HEAD ARMS SUPPORT FRAME

Figure 2.5: NICOL'’s head, arms and workspace shown as component parts respectively. See also
Figure 2.6 on the facing page for the whole robot, both in the real world and simulation.

Head. NICOL’s head is adapted from iCub [Met+10] and features two Degrees of
Freedom (DoF) for pitch and yaw movements. Being different from iCub, NICOL’s
head is equipped with two See3CAM CU135 cameras for vision and two Soundman
OKM II binaural microphones for auditory perception, along with an internal speaker
for audio output. Stylized facial expressions are displayed using three LED arrays:
two 8x8 arrays behind the eyes and a 16x8 array behind the mouth, facilitating
expressive and interactive visual communication.

Arms. The robot’s upper body incorporates two OpenManipulator-P® arms, each with
6 DoF and a payload capacity of 3kg. These arms are fitted with SeedRobotics RH8D
adult-sized robotic hands’, which serve as end-effectors with a 750g manipulation
payload. Each hand comprises five tendon-operated fingers, with every three-segment
finger controlled by a single tendon.

Workspace.  NICOL is centrally mounted above a 100x200 cm white table, positioned
at a height of 74 cm. An aluminum profile frame securely supports the structure,
ensuring stability and precision.

5: https://www.inf.uni-hamburg.de/en/inst/ab/wtm.html
6: https://github.com/ROBOTIS-GIT/open_manipulator_p
7: https://www.seedrobotics.com/rh8d-adult-robot-hand


https://www.inf.uni-hamburg.de/en/inst/ab/wtm.html
https://github.com/ROBOTIS-GIT/open_manipulator_p
https://www.seedrobotics.com/rh8d-adult-robot-hand
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Figure 2.6: Semi-humanoid robot NICOL, the Neuro-Inspired COLlaborator. (a) NICOL in the real world,
displaying various facial expressions with LED lights (image adapted from [Ker+23]); (b) NICOL in the
CoppeliaSim (formerly V-REP) simulator [RSF13]; (c) Bimanual planning with Movelt2 [Con25], using
both palms as end-effectors for planning; (d) NICOL in Isaac Sim [NVI25] with realistic rendering
(side and top view), communicating with Movelt2 via ROS2 support [NVI25; Qui+09; Ric22].

Figure 2.7: Panda robot in simulation. (a) a “push button” task in CoppeliaSim (image adapted from
our work [Chu+24b]); (b) a “pick-place” task in Isaac Sim.

2.2.2 Franka Emika Panda

The Franka Emika Panda [Rob25] is a 7-DoF collaborative robotic arm designed for
precision manipulation and safe human-robot interaction. Each joint is equipped with
integrated torque sensors, enabling compliant control and force-sensitive operations.
With a 3kg payload, 850mm reach, and 0.Imm repeatability, the Panda is well-suited
for tasks requiring dexterity and accuracy. The Panda robot is equipped with the
Franka Hand, a two-finger gripper with a 70N continuous grasping force and 80mm
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stroke length, allowing versatile object handling across research and industrial
applications.

The Panda robot serves as a dedicated platform for manipulation tasks, though it
has limitations in multimodal perception and communication capabilities as seen
in NICOL. It has been widely adopted in research due to its open-source control
interface, comprehensive documentation, and strong community support, all of
which enhance the reproducibility and accessibility of robotics research. Works using
the Panda robot are discussed in Chapter 7 and Chapter 8.

2.3 SIMULATION SETTING

2.3.1 ThreeDWorld

ThreeDWorld [Gan+21]® is an advanced, multi-modal simulation platform that blends
near-photorealistic rendering with advanced physics to create highly realistic 3D
environments. ThreeDWorld utilizes the Unity3D engine to generate detailed indoor
and outdoor scenes enriched with dynamic lighting and high-quality textures. Its
physics engines support fast, accurate rigid-body interactions alongside sophisticated
soft-body, cloth, and fluid simulations.

A distinguishing feature that sets ThreeDWorld apart from many other simulators is
its support for physics-based auditory simulation. Its high-fidelity audio subsystem,
powered by tools such as Pylmpact [TCM19], enables the real-time synthesis of
realistic impact and environment sounds (e.g. reverberation). This unique support
serves as the simulating foundation for the visual-auditory experiments that will be
introduced later in Chapter 4 on page 55.

Simulating Impact Sound

Asimpact sound generally exists in reality and provides rich information, integrating it
within simulated environments to guide embodied agents is promising. In Chapter 4,
the research shows how visual-auditory correspondence guides RL in terms of
both representation learning and exploration. The experiment is conducted in the
ThreeDWorld simulator. However, this does not necessarily mean a simulator with
sound-simulating ability is mandatory for such experiments. Below are two possible
alternatives.

Online Simulation. Itis also possible to simulate sound in real-time outside the physics
simulator, provided that collision information, such as contact force, object mass, and
geometry, is available. Impact sounds can be computed simultaneously in a separate
thread, independent of the physics simulator. Appendix B “Impact Sound Simulation’
on page 139 presents both the theoretical foundation and practical implementation
of physics-based impact sound synthesis, which underpins sound simulations in

7

8: See also its webpage https://www.threedworld.org/ for a demo and https://github.com/
threedworld-mit/tdw for partially open-sourced codes.


https://www.threedworld.org/
https://github.com/threedworld-mit/tdw
https://github.com/threedworld-mit/tdw
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environments like ThreeDWorld and can be applied in other systems where the
physics engine lacks native sound support.

Offline Simulation. Pre-recorded audio can be played when collisions are detected.
These recordings may originate from computationally intensive synthesis processes
or real-world datasets. Offline simulation is straightforward to implement and offers
flexibility in controlling data quality. The research experiment in Chapter 5 on page 69
utilizes this approach to simulate audio.

Although ThreeDWorld offers high-fidelity vision and sound simulation, it is not
widely adopted in the robotics community as other simulators introduced in this
section. One reason is its lack of native support for parallel simulation. Additionally,
converting both robot models and scene assets into the Unity3D format can be
cumbersome and error-prone, particularly for large-scale experiments.

2.3.2 CoppeliaSim

CoppeliaSim [RSF13] is a robust robotics simulation platform widely used in academic
research and education. Its intuitive interface and support for multiple physics engines
(Bullet, Mujoco, Newton efc.) provide flexibility for diverse simulation requirements.
Researchers benefit from extensive pre-built assets (and also configured well-known
robots such as UR-series) and various programming interfaces through embedded
scripts and community-supported Python APIs”. The platform has proven reliable
through implementation in numerous peer-reviewed studies, while extensions like
RLBench [Jam+20] have created standardized environments for RL research and
easy tools for recording demonstrations. The research works in Chapter 5 and
some in Chapter 8 are conducted in CoppeliaSim, leveraging RLBench’s built-in
motion planning capabilities and straightforward task creation framework. While
maintaining these advantages, the standard Panda robot (§ 2.2.2) is replaced with
the NICOL robot (§ 2.2.1) for this investigation.

CoppeliaSim’s strengths lie in its ease of use, extensive community support, and
compatibility with various physics engines, making it a versatile choice for many
robotics applications. However, CoppeliaSim is limited in rendering photorealis-
tic images compared to modern simulators, posing a constraint as high-fidelity
visuals become increasingly vital for vision-based robotics research. Additionally,
CoppeliaSim was not originally designed for parallel learning with multiple instances,
which constrains its applicability for data-intensive machine learning approaches,
e.g. RL, that require parallel simulation. These limitations may impact its suitability
for certain cutting-edge research applications that demand high visual fidelity or
large-scale parallel training.

2.3.3 Isaac Sim

NVIDIA Isaac Sim [NVI25] is a state-of-the-art robotics simulation platform that
provides photorealistic rendering (cfr. Figure 2.6 and Figure 2.7) and parallel sim-

9: See https://github.com/stepjam/PyRep.
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ulation capabilities for robotics research and development. For perception tasks, it
supports the simulation of various sensors, including cameras, LiDAR, and depth
sensors, making it highly suitable for perception-based robotics research. Further-
more, it enables large-scale domain randomization and synthetic data generation,
which are particularly beneficial for data-intensive deep-learning applications. Isaac
Sim integrates well with ROS/ROS2, bridging the gap between simulation-based
development and real-world deployment. Additionally, its GPU-accelerated parallel
simulation significantly enhances the efficiency of RL for training robotic agents.
Parallel simulation enables researchers to run numerous training environments
simultaneously, substantially reducing convergence time and improving the overall
efficiency of the development pipeline.

Isaac Sim gains increasing popularity in the robotics community, particularly for RL
and perception tasks, due to its high-fidelity rendering, extensive sensor support, and
parallel simulation capabilities. Parallelization is particularly beneficial for iterative
trial-and-error processes, such as designing and fine-tuning reward functions in RL
tasks. For instance, when reward functions are generated and refined using LLMs
[Ma+24b; ZWW24], rapid testing and evaluation of multiple variations become
essential. The research introduced in Chapter 7 on page 99 leverages Isaac Sim to
study skill learning under various LLM-generated reward functions. Parallel simula-
tion support significantly accelerates training, facilitating exhaustive exploration of
learning parameters.

2.3.4 Other Simulators

Several other simulators are widely used in the robotics and Al research community,
including PyBullet [CB21], MuJoCo [TET12], AI2-THOR [Kol+22; Ehs+21], Gazebo
[KHO4], etc.. PyBullet and MuJoCo are particularly known for their efficient physics-
based simulations, making them popular choices for RL tasks. AI2-THOR specializes
in interactive 3D environments, making it well-suited for embodied Al research, such
as navigation and object manipulation at an abstract level. Gazebo, a long-established
simulator, is frequently used in conjunction with ROS for robotics development and
testing. While these simulators offer powerful capabilities and are widely adopted
across various research domains, this thesis focuses exclusively on ThreeDWorld,
CoppeliaSim, and Isaac Sim. Therefore, detailed discussions of other simulators are
beyond the scope of this work. For comprehensive comparisons and analyses of
simulation platforms, readers can refer to existing surveys [Dua+22; Col+21].

2.4 PERSPECTIVES FROM THE LITERATURE

The field of autonomous agents has been extensively studied, resulting in numerous
surveys that categorize existing works based on different embodiments, applied
methodologies, and application domains. The advent of LLMs has significantly
transformed the design and development of autonomous agents. This shift warrants a
reassessment of literature surveys in the field, distinguishing between those conducted
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before and after the integration of LLMs into autonomous systems. This section
categorizes literature surveys accordingly.

2.4.1 Early Conceptualizations

Before the advent of LLMs, research on autonomous agents primarily focused on
classical robotics, RL, and a narrower scope of Al approaches. The following surveys
provide insights into various aspects of autonomous agent design prior to the
emergence of large foundation models:

» The survey by Lluvia et al. [LLA21] specifically reviews key SLAM and ASLAM
research for indoor mobile robots.!” It includes a comparative analysis of
various approaches based on factors such as robot platforms, sensor modalities,
world representations, core contributions, optimization objectives, and testing
environments (real-world or simulated).

» Azpurua et al. [Azp+23] summarize robotic exploration techniques, especially
for subterranean environments, with a focus on various sensors used for
localization and SLAM (e.g., event cameras, stereo cameras, and active RGB-D
cameras). Their research provides a taxonomy of exploration methods based on
map representation (2D or 3D) and deployment strategy (single- or multi-robot
systems).

» Latyshev et al. [LP23] provide a technical overview of intrinsic motivation in
model-based RL, covering data collection strategies, loss formulations, major
types of intrinsic signals from world models, and the incorporation of intrinsic
rewards into RL frameworks.

» Kunze et al. [Kun+18] review the application of Al methods to long-term robot
autonomy—operations lasting days, months, or even years. They introduce key
domains and describe how Al contributes to robotic modules such as navigation
and mapping, perception, reasoning, planning, human-robot interaction, and
learning.

» Kroemer et al. [KNK21] formalize the problem of robot manipulation learning
and highlight major challenges. Their survey categorizes manipulation learn-
ing methods across five dimensions: (1) transition models, (2) object-centric
representations, (3) skill learning, (4) hierarchical task decomposition, and (5)
preconditions and postconditions.

Early surveys in the field of autonomous agents primarily focused on classical robotics,
offering valuable insights into the hardware and software aspects of autonomous
system design and development. However, they often lack a comprehensive perspec-

[LLA21]: Lluvia et al. (2021), ‘Active Mapping and Robot Exploration’

10: Discussed also in § 2.1 “Robotic Autonomy” on page 9

[Azp+23]: Azptrua et al. (2023), ‘A Survey on the Autonomous Exploration of Confined Subterranean
Spaces’

[LP23]: Latyshev et al. (2023), ‘Intrinsic Motivation in Model-Based Reinforcement Learning’
[Kun+18]: Kunze et al. (2018), ‘Artificial Intelligence for Long-Term Robot Autonomy: A Survey’
[KNK21]: Kroemer et al. (2021), ‘A Review of Robot Learning for Manipulation: Challenges, Represen-
tations, and Algorithms’
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tive on the broader implications of advanced Al techniques and their integration into
autonomous agents.

2.4.2 Evolving Perspectives in the Era of LLMs

With the rapid development of LLMs, these models have played an increasingly
central role in the implementation of autonomous agents due to their extensive
knowledge and powerful reasoning capabilities. This has led to a surge of literature
surveys on LLM-based agents. Many of these surveys primarily focus on general
Al agents and may overlook the specific challenges and methodologies relevant to
robotics.

» Xietal. [Xi+25] provide a broad survey on LLM-based agents, covering funda-
mental concepts, system architectures, real-world applications, societal implica-
tions, and emerging trends. They introduce a high-level conceptual framework
for Al agents, structured around three primary components: brain (cogni-
tive processing), perception (sensory input), and action (decision-making and
control).

» Janget al. [Jan+24] explore the integration of foundation models into robotic sys-
tems and their impact on perception, planning, and control. The study discusses
relevant datasets, augmentation strategies, and real versus simulated robot
experiments. Although the survey adopts an application-oriented perspective,
it lacks a detailed discussion of methodological innovations.

» Wang et al. [Wan+24b] review recent advancements in applying LLMs to
robotics, particularly in planning, manipulation, and reasoning. They highlight
how LLM-based planning methods leverage general-purpose knowledge and
reasoning to enable embodied agents to generalize across tasks and adapt to
unforeseen challenges.

» Zeng et al. [Zen+23b] survey LLM-driven innovations in robotics, introducing
various LLM models and their benefits. Their review focuses on techniques
for developing four core modules: perception, decision-making, control, and
sim-to-real interaction.

These surveys reflect the growing influence of LLMs in the field of autonomous agents,
signaling a paradigm shift in how intelligent systems are designed and deployed.
While existing surveys typically categorize research by agent components and appli-
cations, their conceptual frameworks often remain too abstract for practical robotic
platform development. In contrast, this thesis adopts a more structured approach
focused on environment exploration and autonomous adaptation, establishing a
concrete conceptual foundation built on four key pillars: world modeling, semantic
grounding, policy learning, and self-determination mechanisms.

[Xi+25]: Xi et al. (2025), ‘The Rise and Potential of Large Language Model Based Agents: A Survey’

[Jan+24]: Jang et al. (2024), ‘Unlocking Robotic Autonomy: A Survey on the Applications of Foundation
Models’

[Wan+24b]: Wang et al. (2024), ‘Large Language Models for Robotics: Opportunities, Challenges, and
Perspectives’

[Zen+23b]: Zeng et al. (2023), ‘Large Language Models for Robotics: A Survey’



CONCEPTUAL FOUNDATIONS

Exploration and adaptation are fundamental challenges in robotics, where au-
tonomous agents are typically designed to interact with their environment in order to
learn how to perform specific, predefined tasks. However, in more advanced settings,
exploration is not limited to task execution but extends to uncovering what kinds
of tasks or skills an agent could potentially acquire within a given environment.
For instance, instead of simply learning to push a box to a goal location, a curious
robot might investigate whether it can roll, stack, or throw the box, discovering new
capabilities that were not explicitly programmed or instructed. This shift moves
exploration from being goal-driven to being agentic, where the robot actively probes
the environment to infer its own affordances and latent competencies, enabling
agents to understand spatial structures, identify key features, and adapt to dynamic
conditions.

In this chapter, the four conceptual foundations for autonomous agents, world model,
semantics, policy, and self-determination, will be introduced, both individually and
in terms of their interconnected research overlaps. Collectively, these foundations
offer a theoretical framework that guides agents beyond reactive behaviors toward
deliberate, adaptive interactions with their environment, thereby expanding their
capabilities.

3.1 WORLD MODEL

Environment exploration necessitates the storage of accumulated knowledge for
potential exploitation, which can take distinct forms depending on the task context.
The choice of representation reflects different levels of abstraction suited to the
agent’s operational needs. In navigation scenarios, representations such as occupancy
maps [LLA21; DBO6; BD06; Wu+20; Mu+15], potentially enriched with semantic
annotations, enable spatial awareness and efficient path planning. For manipulation,
particularly in cluttered environments, scene graphs provide structured knowledge
representations that facilitate object interaction and task execution [Gu+24; Joh+15;
Ran+23; Jia+24; Dai+24].

At the core of these representations lies the concept of world models [HS18], which
serve as internal frameworks for intelligent agents, ranging from robots and au-
tonomous vehicles to simulated entities, to comprehend, anticipate, and interact with
their environments. By encoding high-dimensional sensory input into compressed,
predictive structures, world models allow agents to simulate possible future states
and make informed decisions. As a result, they have become central to model-based
Reinforcement Learning (RL), autonomous navigation, and complex task planning,
effectively linking perception with action and enhancing an agent’s ability to adapt
and operate autonomously.
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3.1.1 Sensing, Perception and Multimodal Fusion

The capacity to accurately sense and perceive the environment forms the first
crucial step in building effective world models. Modern autonomous systems rely
on a diverse array of sensors, including RGB(-D) cameras, event cameras, lidars,
radars, tactile and proximity sensors, microphones, GPS, and inertial measurement
units (IMUs), to capture rich and complementary data streams. Integrating these
heterogeneous sources of information, a process known as multimodal fusion, is
essential for generating a reliable and complete internal representation of the world.
This subsection discusses the techniques, challenges, and importance of multimodal
sensing and perception in the context of autonomous systems and world models.

Sensing

Autonomous agents utilize various sensors, each offering distinct advantages:

Vision sensors (RGB, RGB-D, event cameras, Lidar, and Radar). RGB cameras provide
high-resolution spatial information with rich color and texture details, serving as the
foundation for object recognition, scene understanding, and visual navigation. RGB-D
cameras extend this capability by adding depth information, enabling more accurate
3D perception and spatial reasoning. Event cameras, on the other hand, operate
asynchronously by detecting changes in brightness at high temporal resolutions.
They offer low-latency, high-dynamic-range data, making them particularly effective
in high-speed or high-contrast environments. Together, these vision sensors offer
complementary strengths for robust and efficient perception in dynamic real-world
settings. Lidar and radar provide precise distance measurements and 3D point clouds.
Lidar excels at detailed spatial mapping, while radar offers robustness in adverse
weather. These sensors complement vision modalities: vision captures rich semantic
details under good lighting, whereas Lidar and radar provide reliable depth and
structure regardless of illumination.

Audio sensors capture auditory cues from the environment, complementing visual
data and aiding in detecting events that might not be visible, such as alarms or verbal
commands, which can be critical in complex navigation [Che+20] or manipulation
[Zha+22; Gan+20a] environments.

Tactile and proximity sensors offer fine-grained feedback about immediate physical
interactions and distances to nearby objects. Tactile sensors enable robots to sense
texture, force, and slip during manipulation tasks, while proximity sensors help in
collision avoidance during close-range operations.

Locating sensors (GPS, IMUs). GPS provides global positioning data essential for large-
scale navigation and localization, especially in outdoor environments. It serves as a
reference to correct drift from other sensors. In contrast, IMUs measure acceleration
and angular velocity, offering high-frequency updates for ego-motion estimation and
stabilization. Combined, GPS and IMUs enable precise and reliable localization of
the robot and its components.

Different sensor modalities provide complementary information, collectively enhanc-
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Figure 3.1: Active Perception = World Models + Self-determination. Embodied agents engage in active
perception by interacting with their environment to construct world models, which are then used to
make predictions and guide exploratory actions. This process is driven by robotic self-determination
(cfr. § 3.4), wherein the agent autonomously selects what information to gather based on intrinsic
motivations and internal measures of relevance or uncertainty.

ing the agent’s perception and understanding of its environment. Each modality
offers a distinct trade-off between information richness and computational or en-
ergy budget. For example, in Chapter 4, visual and auditory sensing are utilized;
Chapter 5 expands this by integrating visual, auditory, and tactile modalities. The
unique aspects of the environment captured by each modality form the foundation
for effective multimodal fusion, enabling the agent to build richer and more robust
representations.

Perception

Perception is the process of transforming raw sensory data into structured representa-
tions that can be used for decision-making and planning. Perception methods can be
categorized into passive perception, where the system passively observes and processes
incoming sensor data, active perception, where the system deliberately perceives what
is deemed important, and interactive perception, where the perception process involves
interactive engagement with the environment to gather information.

Passive perception. Passive perception involves collecting and interpreting sensory
data without adaptive strategies or direct interaction with the environment. It is
well-suited for data-driven learning, enabling large-scale dataset collection without
manual intervention. However, in partially observable settings, passive perception
often suffers from ambiguity due to missing or unreliable information, limiting its
effectiveness on its own.

Active perception involves establishing a data acquisition and interpretation process
that, in turn, leads to the development of a control strategy aimed at maximizing the
most relevant information for a given motivation, usually involving an establishment
of an internal representation of the environment, i.e. a world model (cfr. Figure 3.1).
Active perception has been widely researched in the context of computer vision, where
the objective is usually to choose the next best view for object reconstruction [LLA21].
In the context of manipulation, robots that actively engage in physical interactions
with their environment often achieve more accurate estimates of environmental
states [Zha+23c]".

1: In Chapter 5 on page 69, the robot, guided by LLMs, actively perceives the environment via
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Interactive perception describes the type of perception that requires the robot to
interact with the environment, which entails a modification of environment states,
emphasizing the relation between robot and environment. It extends beyond passive
observation by engaging with objects or the environment to infer properties. For
example, a robot may manipulate an object to determine its weight [Zha+23c] or
shake a container to assess its contents [Epp+18]. This approach enhances perception
by leveraging physical interaction.

While active and interactive perception often overlap, they have distinct focuses.
Active perception involves deliberate sensor adjustments or movement to improve
perception without necessarily interacting with objects. For instance, a robot actively
changing its viewpoint to avoid occlusion [Li+23c] exemplifies active perception but
not interactive perception. Given this distinction, one could conceptualize interactive
perception combined with active learning [Ren+21; Wan+21] as forming active perception
in a broader sense.

The choice of perception strategy depends on the task and environment. In complex
or dynamic settings, active perception enhances the agent’s ability to gather relevant
information, enabling better decision-making and planning through richer world
models. However, interactive perception strategies are less commonly explored in
the literature, as they require more sophisticated control and planning mechanisms
to ensure that the robot’s actions yield informative observations. These strategies
also tend to lack generalizability across different tasks and domains. Recognizing the
importance of active perception as a key component of autonomous exploration and
capability adaptation, this thesis examines it from multiple perspectives, ranging
from Unsupervised Reinforcement Learning (URL), cfr. Chapter 4, to the integration
of language models, cfr. Chapter 5 and Chapter 7.

Multimodal fusion

Multimodal fusion combines diverse sensory inputs, e.g. vision, audio, and tactile
sensing, to enhance perception and decision-making [Atr+10]. Functionally, it can
be categorized as complementary, where each modality contributes unique, non-
overlapping information to mitigate limitations like sensor noise or occlusion, or
redundant, where overlapping modalities reinforce the same information to improve
robustness and reliability. Importantly, learning crossmodal associations from such
overlaps can also lead to the development of rich and generalizable representations.

Fusing Levels. Multimodal fusion occurs at different levels/stages of processing;:

» Early fusion (sensor-level fusion) combines raw sensory data before feature
extraction, preserving maximum information but requiring precise synchro-
nization and alignment.

» Mid-level fusion (feature-level fusion) integrates extracted features from differ-
ent modalities, leveraging shared representations to enhance robustness while
balancing efficiency (see also an example in Chapter 4).

» Late fusion (decision-level fusion) merges modality-specific predictions at

multiple cues to uncover hidden object properties.
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the decision stage, often using ensemble methods or probabilistic models to
improve reliability (see also an example in Chapter 5).

Fusing Methods. Toimplement multimodal fusion strategies, researchers rely on arange
of computational paradigms and techniques. Probabilistic models, such as Bayesian
networks, provide a principled framework for handling uncertainty in sensory
integration. Deep learning-based methods, including transformers [Vas+17] and graph
neural networks, support scalable learning of complex cross-modal representations
and can flexibly model complementary, redundant, or hierarchical relationships.
Within these paradigms, specific techniques such as contrastive learning [vIV18;
Rad-+21] are employed to align modality-specific embeddings in a shared space, while
active learning approaches [Rud+19; Wan+21] enable dynamic adjustment of fusion
mechanisms based on task relevance, promoting context-aware integration.

Multimodal fusion is essential in applications such as human-robot interaction, object
property discovery, autonomous navigation, etc., where integrating diverse sensory
inputs enhances situational awareness. Nevertheless, integrating diverse sensory
modalities increases computational demands and requires careful alignment to ensure
compatibility across data sources. Fusion strategies must be tailored to task-specific
needs, balancing integration depth and abstraction. For example, Chapter 4 employs
early fusion of visual and auditory inputs for environmental understanding; Chapter 5
integrates visual, auditory, and tactile cues at the decision stage for complex object
interactions; and Chapter 7 focuses on visual semantics, enhancing scene reasoning
through fusion with language models.

3.1.2 Modeling and Representations

World models serve as internal representations of the environment, enabling artificial
agents to perceive, predict, and interact with their surroundings. The process of
constructing these models involves two key components: (1) world modeling, repre-
senting the world, i.e. state transitions, with appropriate structure, and (2) learning
representations, developing methods for learning effective representations. In this
subsection, we first examine the various ways in which the world can be represented,
ranging from high-level abstractions to low-level sensory data. We then discuss
the methods employed to learn these representations, particularly those based on
self-supervised learning.

World Modeling

World modeling involves constructing internal representations of the environment
that enable an agent to perceive, predict, and interact with its surroundings effectively
[H518]. These models can vary from low-level details to high-level abstractions, each
tailored to support different tasks and objectives.

Low-level Representations of the world are more detailed and quantitative, capturing
the fine-grained dynamics of the environment. Probability models such as Markov
Decision Processes (MDPs) and occupancy grid maps provide information about
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state transitions and spatial layouts. These models are critical for precise navigation
and control, where the agent must understand both the locations and the dynamics
of obstacles and free space. Representation learning extracts relevant features from
the environment, focusing on task-relevant properties while disregarding irrelevant
ones. It simplifies skill and model learning, enhancing robustness and generalization
to new situations.

High-level Abstraction is beneficial for high-level planning, generalization, and in-
terpretation. At the highest level of abstraction, world models can be represented
using symbolic representations, for example, in graph-based structures where nodes
correspond to key entities in the environment, and edges encode the relationships or
transitions between these entities. Such models are particularly useful for high-level
reasoning and planning, where the environment can be reduced to a network of
interconnected states or objects. Some tasks semantically resemble each other, which
makes it possible for a learned policy to generalize across them with an additional
effort of domain adaptation [KINK21].

Mixed-level Representations. For mobile robots, world representation is typically
structured into two main types: topological maps and metric maps [LLA21; Azp+23].
Each type has its strengths and is suited for different tasks.

» Metric maps such as occupancy grid maps and geometric maps, provide denser,
more detailed information about the environment, including the locations of ob-
stacles and free space. While more informative, metric maps are computationally
more expensive to store and process.

» Topological maps represent the environment as a network of discrete locations and
their connectivity. This simple representation is efficient and easy to compute,
but lacks detailed information about distances or the layout of the environment.

In practice, a combination of topological and metric maps is often used, allowing
robots to benefit from the simplicity of topological maps while still incorporating the
detailed information provided by metric maps when necessary. This hybrid approach
supports both efficient navigation and detailed environment understanding, which
is essential for tasks like autonomous navigation and exploration.

In manipulation scenarios, the world is composed of separable objects. A hybrid
of high- and low-level representations, object-centric models [KNK21] break the
environment down into distinct objects or entities. There are different levels of
object-centric representations, such as:

» Point-level representations (e.g. point clouds, pixels, or voxels) that capture basic
spatial properties of objects.

» Part-level representations that break down objects into smaller components or
features.

» Object-level representations, where entire objects are represented as discrete
entities with associated properties and relations.

World models, together with planning mechanisms, form the backbone of advanced
decision-making approaches such as model-based reinforcement learning (RL).
However, learning accurate models from high-dimensional data (e.g., images or
videos) is often challenging, time-consuming, and data-intensive. To effectively



3.1 World Model | 31

abstract information, these models often integrate prior knowledge about object
properties (e.g. geometry, material) and semantics, which is particularly useful in
tasks such as robotic manipulation. Object-centric representations enable agents
to generalize across tasks involving similar objects by learning the relationships
between objects and their properties. Moreover, in real-world settings, agents often
interact with multimodal sensory data, such as vision, audio, and touch. Multimodal
representations integrate information from these diverse modalities into a unified
latent space. By combining sensory inputs, agents can build richer, more informative
models that support both high-level semantic understanding and low-level action
planning. Incorporating semantic? information into scene representations enhances
the agent’s ability to reason about the environment, retrieve object-related information,
and plan actions effectively.

An LLM is sometimes a “secret” world model, with textual representations, that
can mental model agent behaviors [Lu+25; Sch+25] and even forecast/reason about
outcomes (in textual space) using built-in knowledge [Hao+23] (cfr. § 8.3 on page 127).
This thesis investigates crossmodal predictive modeling (cfr. Chapter 4), and also
explores abstracted world representations (cfr. Chapter 5 and Chapter 7) to support
more efficient learning and planning at higher semantic levels.

Learning Representations

The acquisition of comprehensive world representations constitutes a fundamen-
tal prerequisite for autonomous agents to systematically accumulate environment
knowledge. Central to this endeavor are methodological approaches, particularly
predictive modeling and cross-modal learning, which facilitate the extraction of repre-
sentative features from unprocessed sensory input through self-supervised learning
paradigms.

Predictive Modeling. In the context of world models, predictive modeling is essential
for agents to anticipate future states based on past executions and observations. A
world model, at its core, represents the underlying dynamics of an environment,
which can be modeled as either a deterministic function or a stochastic distribution,
depending on the degree of uncertainty in the environment.

» Deterministic models predict future states s;11 as a direct function of the current
state s; and action a;, without considering uncertainty or noise in the envi-
ronment. The world model in this case is a deterministic function fg, where 0
represents the learned parameters:

St41 = f@(St, ar)

This model assumes that the environment’s dynamics are fully predictable
given the current state and action. Deterministic models are often used in
controlled environments where randomness is minimal or can be ignored.

2: This integration will be further discussed soon in § 3.2.2 “Integration: Symbolic Grounding” on
page 37
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» Stochastic models take care of uncertainty [KG17; Mur22] where, in many real-
world environments, the future state cannot be predicted correctly. In such cases,
the world model is represented as a probabilistic distribution over possible
future states. It can be often expressed as a conditional distribution p(s¢+1|s¢, a¢),
which describes the likelihood of transitioning to state s¢41 from state s; under
action a;:

p(st+1lst, ar) = N(uo(st, ar), L)

Here, the future state is modeled as a Gaussian distribution® around the

predicted state, with variance X capturing the inherent uncertainty in the
system. Stochastic models are particularly useful when the environment is
noisy or unpredictable, as they allow agents to reason about the distribution of
possible outcomes rather than a single deterministic prediction.

Crossmodal Learning. Crossmodal learning is a crucial technique for developing
comprehensive world models, as it enables an agent to integrate and relate information
from multiple sensory modalities, such as vision, touch, and sound. The aim is to
learn a joint representation that captures the relationships between these modalities,
allowing the agent to perceive and understand its environment in a more holistic
way. By aligning and fusing data from different sensory sources into a shared latent
space, the agent can predict one modality from another, which is especially useful in
fields like multimodal fusion, transfer learning, and scenarios where one modality’s
data is sparse or difficult to obtain (e.g. predicting visual information from textual
descriptions).

As a basis of the research works that will be introduced in later chapters, the following
presents a Bayesian perspective on crossmodal learning, outlining the formulation
and the mathematical framework for predicting one modality based on another.

» Bayesian perspective. In crossmodal learning, we aim to model the conditional
probability distribution between different modalities, such that one modality can
be predicted from another. Let {1 and X, represent two different modalities. The
primary objective is to learn the conditional probability distribution p(x2|x1),
which describes how modality x; can be predicted from modality x;. In a
Bayesian framework, this can be formulated as:

p(alxr) = / p(eal2)p (el dz,

where p(x3|z) is the likelihood of modality x, given a latent representation z,
p(z|x1) is the posterior distribution of the latent variable z given modality x1,
and z represents the shared latent space between modalities X1 and X5. This
integral can be approximated using variational methods if the true posterior

[KG17]: Kendall et al. (2017), “‘What Uncertainties Do We Need in Bayesian Deep Learning for Computer
Vision?’

[Mur22]: Murphy (2022), Probabilistic Machine Learning: An Introduction

3: The Gaussian distribution is commonly used in stochastic models due to its mathematical
convenience and well-understood properties. It allows for efficient learning and inference, especially
when combined with neural networks that output the mean and the covariance.
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p(z|x1) is intractable, leading to the use of a variational distribution q¢(z|x1)
modeled by parameters ¢, resulting in the prediction formula:

p(lexl):/p(x2|z)q¢(z|x1)dz.

The joint distribution between the two modalities and their shared latent
representations can be expressed as

p(x1,x2,2) = p(x1|2)p(x2l2)p(2),

where p(x1|z) and p(x2|z) are the likelihood functions describing how the
modalities are generated from the shared latent space, and p(z) is the prior dis-
tribution over the latent variable, typically assumed to be a simple distribution
like a Gaussian. The goal is to optimize the parameters of these functions such
that the model accurately captures the crossmodal relationships.

» Encoding & Decoding. Given a learned latent space, the task of crossmodal
prediction involves encoding one modality and decoding it to predict the other
modality. In this framework:

* Encoding. Modality x is encoded into the shared latent space using an
encoding function gg) : X1 = Z, producing a latent representation
21 = 8((; \(x1),

* Decoding. The latent representation z; is then decoded to predict modality
x2 using a decoding function ff) : £ — Ay, resulting in a predicted value

X = ff)(zl)-

The loss function for this crossmodal prediction is typically a reconstruction
loss*, such as mean squared error:

: 2, @
min E(x),x2)~p(x1,12) [d (flf, )(82))(351)),962)] ,

where d(-, -) represents the L, distance between the predicted %, and the ground
truth x».

» Variational Inference. To approximate the posterior distribution p(z|x1) in cross-
modal learning, variational inference is commonly applied. A variational
distribution g¢(z|x1) is introduced to approximate the true posterior. The
model is trained to maximize the Evidence Lower Bound (ELBO):

max Eg,(zix) [1og p(x1]2) + log p(x2]2)] = Dxw (4 (zlx1) || p(2)),

where the first term encourages reconstruction of both modalities x1 and x;
from the shared latent representation z, and the second term regularizes the
encoder q(z|x1) to be close to the prior p(z). This setup enables crossmodal

4: For example, later in Chapter 4 “Sound Guides Representations and Explorations” on page 55, we
reconstruct audio from vision.
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representation learning by using one modality to infer latent structure and
jointly reconstruct both.

Numerous methods have been proposed for learning effective representations, yet
many rely on handcrafted objectives or domain-specific assumptions that limit
generalization across tasks and modalities. Self-supervised learning has emerged as
a scalable alternative, showing strong potential in both unimodal and crossmodal
settings. Chapter 4 explores this direction by leveraging predictive audio-visual
modeling to capture meaningful correlations in sensory data. In parallel, Chapter 5
and Chapter 7 investigate an alternative strategy centered on natural language
representations, utilizing LLMs to encode environmental semantics and reason about
context and potential actions. While differing in modality and abstraction level,
these approaches share the goal of enabling more flexible and interpretable robotic
behavior, addressing key challenges in bridging perception, representation, and
decision-making.

3.1.3 Utilization of World Models

World models are generative models that capture both the static structure and
dynamic evolution of an environment. By simulating the consequences of actions,
they enable autonomous agents to predict the outcomes of their behavior. This
predictive capability allows agents to plan and make decisions without requiring
constant interaction with simulators or the real world [NVI+25], which is especially
valuable for autonomous exploration in unfamiliar or hazardous environments.

Predictive Capability, Planning, and Exploration

World models enable agents to anticipate the future states of the environment based
on their current actions, which is crucial for planning and decision-making during
exploration. By simulating the effects of various actions via a world model, agents
can optimize their exploration strategies, selecting those that maximize the likeli-
hood of achieving exploration goals. This predictive ability reduces the need for
trial-and-error interactions with the environment, ensuring safer and more effective
exploration. Furthermore, world models can decouple physics simulation from per-
ception, enabling efficient data synthesis—for example, a single physical interaction
can generate numerous records under varying visual conditions [NVI+25].

Adaptation, Generalization, and Long-Term Autonomy

World models are inherently task-agnostic, making them versatile and applicable
across various tasks and environments. This allows agents to adapt to uncertainty
and continuously update their models as they acquire new information, ensuring
they remain flexible and capable of responding to changes in the environment.
Additionally, world models facilitate generalization, enabling agents to transfer their
knowledge from one environment to another without starting from scratch. This
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generalization, particularly from the ones trained with large-scale data, enhances
the agent’s ability to explore diverse environments efficiently, reducing the time and
effort required to learn new tasks. Over time, as agents refine their world models
through exploration, they become more autonomous, capable of handling more
complex tasks and responding to novel scenarios without human intervention. This
self-improvement cycle fosters long-term autonomy, empowering agents to operate
independently and adapt to increasingly sophisticated environments.

Despite their advantages, world models face significant challenges. Prediction errors
tend to accumulate over long horizons, undermining planning reliability. Their ability
to generalize across diverse, dynamic environments is often limited by domain-
specific assumptions and insufficient integration of multimodal data. Moreover,
learning robust and transferable representations under partial observability and
sensor noise remains difficult, requiring complementary strategies for effective long-
term autonomy. As environmental complexity grows, world models must capture
increasingly diverse dynamics and interactions, which can increase computational
demands and risk overfitting.

Future progress is expected to focus on developing multimodal world models
that integrate diverse sensory inputs. It is advisable to combine these with Vision-
Language-Action Model (VLA) models to enable large-scale, model-based planning
enriched with reasoning adaptability.

3.2 SEMANTICS

Semantics, a unifying symbolic medium for intelligence, serves as a bridge that
connects perception, reasoning, and action, enabling Al systems to move beyond
raw data processing toward meaningful generalization and decision-making. To
understand its role, we can structure key works in semantics into foundational
concepts and applications.

3.2.1 Abstract Concepts

At the core of semantics lies the ability to represent abstract concepts, i.e. ideas that
are not tied to specific sensory inputs but rather emerge from structured relationships
between entities. Al systems achieve this by embedding meaning into semantic spaces,
where similar concepts are positioned closer together based on their contextual or
relational similarities.

Semantic Spaces

Semantic spaces provide the foundation for how Al systems represent and process
meaning. Early approaches such as Simple Recurrent Network (SRN) [EIm90] focused
on learning temporal patterns in sequential data, while later developments like
Word2Vec [Mik+13] introduced efficient methods for learning dense vector repre-
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sentations of words based on co-occurrence statistics. Transformer-based models
like BERT [Dev+19] and GPT [Rad+18] expanded this by incorporating contextual
embeddings, allowing words to take on different meanings depending on their
surrounding text. Beyond text, knowledge graphs [Hog+21] explicitly encode rela-
tionships between entities, enabling structured reasoning. Together, these approaches
define how Al systems map raw data into a structured, abstract representation of
meaning, forming the basis for higher-level reasoning and decision-making.

Alignment

A key challenge in Al is aligning perceptual data (such as images, video, and audio)
with abstract semantic representations. This multimodal alignment allows Al systems
to connect sensory inputs with meaningful concepts, enabling them to describe,
reason about, and interact with the world in ways that are more akin to human
understanding.
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Figure 3.2: Overview of the Contrastive Language-Image Pretraining (CLIP) training objective. The
model jointly trains an image encoder and text encoder to predict the correct pairings of images and
their text descriptions. During pretraining, CLIP learns to maximize similarity between image-text
pairs from the same example while minimizing similarity with other pairings in the batch. (Figure
adapted from [Rad+21].)

Contrastive learning is one of the most influential approaches to align multimodalities,
where models like CLIP [Rad+21] (see Figure 3.2) and BLIP [Li+22] map images and
text into a shared latent space. These models use contrastive loss, an indirect learning
loss function for classification, to minimize the distance between paired text and image
inputs, enabling them to develop a joint embedding that represents both modalities
in the same space. This alignment enables tasks like zero-shot image classification,
where the model can recognize novel objects based on textual descriptions without
additional training. Contrastive models leverage large-scale web data, making them
highly scalable while reducing the dependency on manually labeled datasets.

[Rad+21]: Radford et al. (2021), ‘Learning Transferable Visual Models from Natural Language
Supervision’
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There also exist multimodal transformers [Sin+22; Che+23b] that go a step further,
beyond mapping modalities into a shared space, by enabling the joint processing of
different modalities, allowing for more complex fusions.

3.2.2 Integration: Symbolic Grounding

Autonomous agents require a structured understanding of their environment to make
informed decisions. While world models enable predictive reasoning by capturing
environment dynamics, semantics provide a structured representation of meaning
that enhances decision-making. When integrated, these approaches create systems
that can both predict how the world works and understand what things mean (cfr.
Figure 3.3). Consider a mobile robot navigating with a semantic map versus a purely
geometric one. With semantic understanding, the robot can interpret high-level goals
(e.g., “get an apple” — “go to the kitchen”) rather than requiring specified low-level
waypoints (e.g. coordinates). This semantic approach offers two key advantages: (1)
enhanced interpretability for human operators and collaborators, and (2) improved
robustness in scene generalization, as the robot can identify functional spaces across
different environments despite visual variations.
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Figure 3.3: Symbolic Grounding = Semantics + World Models. Agents ground symbolic representa-

tions by linking abstract semantic concepts to their embodied world models, enabling meaningful
interpretation and interaction with the environment.

Scene Graph

Scene graphs [Joh+15; Che+23a; Ran+23; Gu+24; Jia+24; Dai+24] provide a structured
representation of visual scenes by organizing perceived elements into a graph-based
format where nodes typically represent objects and edges capture relationships
between these objects. This representation serves as a critical bridge between raw
perceptual data processed by world models and higher-level semantic understanding.
Scene graphs formalize visual understanding through several key components:

» Objects, which are discrete entities identified in the scene, often with associated
attributes;

» Relationships, spatial (e.g. “inside”, “on”), functional (e.g. “containing”) connec-
tions between objects;

» Attributes, properties of objects such as color, size, material, or other state
[Sun+24] (see also § 8.2 as an example of object-state sensitive planning).

This hierarchical data structure enables more sophisticated reasoning about visual
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scenes than flat representations. Scene representations enriched with integrated
semantics enhance informativeness and support a deeper understanding of the
environment. They also enable robots to more effectively retrieve object-related
information, facilitating subsequent planning or responding to human inquiries.

Semantic Affordance

Affordances are the opportunities for action provided by the environment, according
to Gibson'’s ecological psychology of development. Semantic affordances extend
Gibson’s ecological theory [GP00] by integrating physical action possibilities with
objects’ functional meanings, enabling intelligent systems to reason about purpose-
ful environment interactions. This framework transcends physical capabilities by
incorporating knowledge about object functions and cultural conventions, allowing
systems to make nuanced decisions based on both physical properties and intended
purposes. Recent research demonstrates that semantic affordance models facilitate
the acquisition of new skills through environment interaction” [ZWW24; HFS23;
Rho+25; Li+25c], driven by semantic motivations rather than predetermined task
specifications. The strength of semantic affordance lies in their bidirectional mapping
between perceptual features and functional possibilities, grounding abstract concepts
in physical interactions while elevating these interactions to meaningful, goal-directed
behaviors, which is essential for developing adaptive intelligent systems that can
continuously expand their behavioral repertoire based on semantic understanding of
their environment.

3.3 POLICY

In robotics and RL, a policy refers to decision mapping, a function or rule that maps
states to actions (what action to take in each situation). Built on top of this control
foundation, agents develop versatile capabilities to fulfill various purposes.

3.3.1 Policy Function, Option, and Skill

Policy function is the lowest level of control concepts, among option (mid-level
temporal abstraction) and skill (high-level functional capability).

Policy Function

A policy function is usually denoted as m(a|s), mapping a state s to an action a
(deterministic) or a distribution of action candidates (stochastic), a strategy under
the MDP assumption. Furthermore, a; L s« | s¢, i.e. m(a; | s¢) = m(a; | s<¢). In
practice, to incorporate temporal information such as velocity, up to k previous

5: An example work of semantic affordances will be introduced in Chapter 7 “ Agentic Skill Discovery”
on page 99.
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observations, {Ot—(k—l)/ ve., 041, ot}, are collected as input for state representation
learning. Empirical evidence® suggests that this representation learning with a
concatenation of several history frames improves RL performance.

Action space. The action space for a manipulation robot can be either Cartesian
space for end-effectors or joint space for responsive joint control. The former is
easier to generalize across robot configurations but, however, requires an external
motion planning backend. For LLM-based agents with textual environments’, the
action space is in symbols or natural languages but usually linked with symbolic
representations of external utilities such as robot skills®.

Option

An option is a formal construct used in Hierarchical Reinforcement Learning (HRL).
It is defined as a triplet (precondition, policy, post-condition”) [SPS99; SB18; KNK21;
GRW17]:

» Precondition: The initiation set, specifying the states in which the option can be
executed.

» Policy: A state-action mapping function that governs the agent’s behavior while
the option is active.

» Post-condition: Typically similar to the termination condition, defining when the
option should conclude.

An option addresses the temporal abstraction in the pursuit of control reusability.
Preconditions and post-conditions are key characteristics of option execution. Pre-
conditions and postconditions are typically represented abstractly using symbolic
propositions or predicates [KINK21; Hell4; Jia+19]. Reasoning over these symbolic
representations enables a planner to search for solutions by ensuring that the post-
condition of one skill satisfies the precondition of the next.

Skill

In embodied agent systems, a skill is a structured, reusable capability that enables an
agent to interact with its environment in a goal-directed manner (cfr. Figure 3.4). Skills
are often hierarchically composed, integrating low-level primitives into more abstract
behaviors, and can be autonomously acquired through interaction, exploration, or
reinforcement. They are typically parameterized for flexibility and vary in generality,

6: See [Bur+19a] for discussion and also Chapter 4 “Sound Guides Representations and Explorations”
on page 55, where three consecutive frames are concatenated as visual input for neural networks.

7: A physical robot may also have a textual environment for decision making, where the surroundings
and robot capabilities are abstracted in text.

8: In Chapter 5 “Interactive Multimodal Perception Using Large Language Models” on page 69,
multimodal cues from the environment are fed to LLMs as natural language. The actions determined
by the LLM decision module are then converted into symbolic representations of robot skill functions
for execution mapping.

9: Some prefer the term effect over post-condition, as used in the Planning Domain Definition Language
(PDDL). In this thesis, the two terms are used interchangeably.
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Figure 3.4: Conceptual illustration of instructional control and planning with world models. Instruc-
tional Control = Policy + Semantics (left). Planning = Policy + World Models (right), i.e. planning
can be viewed as the process of refining a policy (control) by leveraging a world model (typically in
symbolic representation) to simulate and evaluate the possible future outcomes of its actions.

ranging from task-specific actions to broadly transferable competencies, forming
the foundation for adaptive and intelligent behavior in embodied agents. Key
characteristics of robot skills include:

» Task-oriented: Defined by their ability to achieve specific functional objectives.

» Modular: Self-contained units of functionality that can be developed, tested,
and deployed independently.

» Reusable: Applicable across different scenarios, tasks, and potentially different
robotic platforms.

» Parameterized: Configurable through adjustable parameters to adapt to varying
conditions and requirements.

3.3.2 Planning and Learning

Policies define the decision-making processes that guide agents” actions within their
environments. These policies can be developed through various methodologies, each
offering unique advantages and suitable applications. Below is an overview of the
primary approaches:

Task and Motion Planning

Planning-based methods (cfr. Figure 3.4) involve the creation of control policies
through deliberate design and reasoning. Task and motion planning (TAMP) [SK16] is
a framework in robotics and embodied agents that bridges the gap between high-level
task planning and low-level motion control. It integrates two main components: task
planning and motion planning, enabling an agent to plan and execute complex tasks
in a dynamic environment.

Task Planning. Task planning focuses on determining the sequence of high-level
actions that an agent should take to achieve a particular goal. It is usually built
upon a controlled set of symbolic representations, where actions are abstracted and
reasoned about (often, optimized by efficient searching algorithms). In task planning,
a problem is typically defined by a set of states and actions, with the goal being to
find a valid path from an initial state to a goal state. This is often done using formal
languages, such as Planning Domain Definition Language (PDDL) [Hell4; Jia+19],
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which defines actions, preconditions, and effects.

Motion Planning. Motion planning, on the other hand, deals with the low-level
details of how an agent physically moves in its environment. It focuses on generating
feasible trajectories that avoid collisions with obstacles while respecting the agent’s
physical constraints (e.g. velocity limits, and joint angles for a robot arm). It is often
formulated as a path-finding problem in a continuous configuration space. See also
§ 2.1.1 “Environment Exploration” on page 9 for the introduction of path planning
for map building and exploration.

TAMP systems, which unify both task and motion planning, are becoming more
widely used in complex, real-world robotic tasks, such as household robots, warehouse
automation, assembly lines, and autonomous vehicles, where both high-level decision-
making and low-level movement must work together seamlessly.

Learning for Decision-Making

Traditional task and motion planning methods relied heavily on proper modeling
of tasks and environments, being time-consuming for humans to abstract and
implement. Learning-based methods derive policies from interactively explored data
or human-collected demonstrations.

Reinforcement Learning (RL). RL enables agents to learn optimal behaviors by receiving
feedback from their actions in the form of rewards or penalties (see Figure 3.5). Over
time, agents develop policies that maximize cumulative rewards, effectively learning
from trial and error. The agent interacts with the environment in discrete time steps.
At each step ¢, the agent observes the current state s;, takes an action 4; according to
a policy m(a|st), the environment transits to next state s, and the agent receives
reward 7;41. The agent’s objective is to maximize the cumulative discounted reward, or
the reward to go, expressed as

i=co
1
R = E Y Tt+l+is

i=0

where y € [0, 1) is the discount factor, trading off immediate and future rewards.

Agent Environment

Figure 3.5: [llustration of the Reinforcement Learning (RL) paradigm, where an agent interacts with
an environment through actions a, which are decisions based on the current state s. The environment
then responds with a new state s’ and a reward signal r. This feedback loop continues as the agent
learns to maximize cumulative rewards over time by improving its policy for selecting actions in
different states. The robot figure is adapted from https://www.inf.uni-hamburg.de/en/inst/ab/
wtm/research/neurobotics/nico.html.


https://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/neurobotics/nico.html
https://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/neurobotics/nico.html
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Typically, RL methods can be categorized as model-based and model-free approaches,
with a major distinction of whether to learn and to utilize (in particular, planning
with) a transition model.

» Model-based RL methods aim to learn a model of the environment’s dynamics (cfr.
§ 3.1), which can be used to simulate future states and rewards, thus being useful
for imagined planning. This approach can reduce the amount of interaction
required with the environment, as the agent can simulate possible outcomes in
an imagined space before really taking actions. Techniques like Monte Carlo
Tree Search (MCTS) [Sil+16] and Model Predictive Control (MPC) [Ren+22;
KL20] are examples of model-based methods.

» Model-free RL methods do not require the agent to explicitly model the envi-
ronment’s dynamics (i.e. it doesn’t learn world models to predict how the
environment transits between states). Instead, the agent directly learns a policy
for optimal decision-making.

* Value-based methods aim to learn the value function for actions and derive
the optimal policy from it. An example of a value-based method is Q-
learning, where the Q-values, Q(s, a), are iteratively updated using the
Bellman equation, based on the reward feedback:

Qlst, @)  Qst, ) +a [riy1 +y max Qe ) = Qi )|

¢ Policy gradient methods focus directly on learning the policy itself, where the
policy is parameterized and updated in the direction of higher expected
rewards:

V@](G) = [ET~719

T
> Volog ﬂe(at|5t)7’t] ,
t=0
where the expectation is taken over trajectories 7, sampled from the policy
to learn.
¢ Actor-Critic methods combine both value-based and policy-based approaches.
The “actor” learns the policy, while the “critic” evaluates the actions taken
by the actor using value functions. This hybrid approach can improve
learning efficiency. The policy gradient update in Actor-Critic is:

V@](G) = [ET~T(9

T
Z Vo log ﬂ@(at|5t)An(St/ at)‘ ’
t=0

where A™(s¢, a¢) = Q™(s¢,a¢) — V™(s¢) is the advantage function, which
measures how much better action is compared to the expected value of a
state, i.e. the state-value function V™(s;) = >, Q™(s¢, a).

Besides various aforementioned optimization methods, learning process shaping is
also an effective way to accelerate learning.

» Reward shaping accelerates the learning process by modifying the reward
distribution, typically from sparsely distributed to densely distributed, such
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that the agent can easily get positively rewarded while keeping the optimal
policy unchanged. Additionally, certain types of reward shaping apply non-
linear transformations to the reward signals to reduce the impact of noise
and, thus, enhance learning stability [Li+23c]. See also § 8.1 “Reinforcement
Learning with Derived Rewards” on page 119 for details.

» Curriculum learning, similarly, eases the learning challenge by presenting a
sequence of tasks with gradually increasing difficulties, making the policy
learning smooth [KINK21].

RL enables agents to learn through trial and error, typically in simulated environments.
However, it is data-hungry, sampling-inefficient, and often unstable during training.
Additionally, the sim-to-real transfer remains challenging due to gaps in both physics
and sensing. While building realistic simulations and applying randomization
techniques can improve generalizability and help bridge this gap (particularly
for sensing), they cannot eliminate it entirely. As a result, learning from human
demonstrations remains the primary method for efficiently training real-world
robots.

Imitation Learning (IL). Also known as learning from demonstrations, with @ =
{(s;, ai)}f\i | denoting a dataset consisting of N state-action pairs collected from
expert-demonstrated trajectories, IL is a type of machine learning where an agent
learns to perform tasks by observing and mimicking the behavior of an expert. The
goal is for the agent to replicate the expert’s actions, typically with the intent of
solving complex tasks without the need for extensive trial-and-error learning as in RL.
IL dramatically reduces exploration time and bridges a way to incorporate human
preference.

» Behavior Cloning (BC) can be viewed as a supervised learning problem, where
the agent learns a policy that maps states to actions by minimizing the difference
between its predicted actions and the expert’s actions. The goal is to learn a
policy mg(als) that approximates the expert’s behavior, typically with a loss
function:

e for discrete actions
1 XN
Lec(0) = -5 2 log mo(ailsi),
i=1
¢ and for continuous actions
1Y )
Lc(0) = > lIme(si) — aill3.
i=1

» Inverse Reinforcement Learning (IRL) focuses on recovering the reward function
r(s, a) that the expert is implicitly optimizing, with an assumption that the
expert trajectories are sampled with maximum rewards, rather than directly
mimicking the expert’s actions. The idea is to infer the underlying reward signal
from the expert’s demonstrated behavior, following which the objective can be
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formulated as

T
max Ex > y'ro(st, ar),
0 £=0

where 7t* is the expert policy. However, this is an ill-posed problem since
many reward functions can explain the expert’s behavior. This ambiguity is
addressed using various regularization strategies or assumptions, depending
on the specific IRL method [Abb08; Zie+08].

» Adversarial Imitation Learning. A min-max formulation arises when considering
IRL as an adversarial game. For example, GAIL [HE16] expresses the objective
function as

3(01 ¢) = mein mq?X[[En* 108 p(P(elS/ ﬂ) + IET(Q log(l - p¢(e|5/ a))]/

where pg(e|s, a) is a learned discriminator to distinguish expert trajectories,
denoted as e, from generated ones.

» Diffusion Policy. Diffusion policies use Denoising Diffusion Probabilistic Models
(DDPMs) to generate actions iteratively. The objective function is based on
reconstructing expert actions from noisy versions, similar to how diffusion
models are trained for image generation. Mathematically, instead of directly
modeling p(als), diffusion policies approximate it via iterative denoising
polals) = [ po(als, 2)p(z|s)dz.

While planning and learning represent two fundamental pillars of autonomous
decision-making, their integration remains a core challenge. Planning methods
offer structure and foresight but often rely on accurate models and handcrafted
representations. Learning-based approaches, particularly those using reinforcement
or self-supervised signals, provide adaptability but can suffer from sample inefficiency
and instability. In relatively simple hierarchical robotic systems e.g. SayCan [Ahn+22]
and subsequent works [Zha+23c; Ran+23], high-level and low-level functionalities
are often modularized, with the high level handling strategic decision-making and
the low level responsible for precise control. In such architectures, symbolic planning
and learning-based methods can be selectively applied at different levels to meet
specific requirements. Closing the gap between planning and learning, whether
by incorporating learned representations into planners or embedding planning
structures into learning algorithms, offers a promising direction for developing more
robust and generalizable robotic policies.

3.3.3 Integration: Planning and Learning with Foundation Models

Rather than relying on exhaustive human demonstrations, a growing trend is to
leverage the knowledge in large foundation models to make high-level decisions
or guide learning-based methods. In recent years, foundation models, particularly
LLMs, have revolutionized the way autonomous systems approach planning and
learning as skills (cfr. Figure 3.6). These models, pre-trained on vast amounts of diverse

[HE16]: Ho et al. (2016), ‘Generative Adversarial Imitation Learning’
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Figure 3.6: Skill Learning = (Policy + World Models) + Semantics. Beyond instructional control, agents
develop reusable and adaptive skills by learning policies that interpret and fulfill semantic goals. This
process optionally leverages (implicit) world models to anticipate outcomes and generalize across
contexts.

data, are capable of understanding, generating, and reasoning about language in
sophisticated ways. This ability allows them to significantly enhance the planning
and learning capabilities of robotic systems, facilitating more flexible, adaptive, and
intelligent behaviors.

Grounded Action Generation

Direct action generation approaches represent a significant advancement in LLM-
based agent systems by establishing a more immediate connection between language
understanding and actionable outputs. SayCan [Ahn+22] pioneered this category by
combining the semantic knowledge of LLMs with grounded affordance functions
that assess action feasibility in physical environments. Grounding LLM into the
specified environment is implemented via prompting with the context of the agent,
task, and environment configurations, thanks to the availability of “emergent abilities”
of large-scale training: in-context learning, instruction following, and step-by-step
reasoning [Zha+23b]. Building on this foundation, many research works emerge
[Kim+24; Zen+23b; Jan+24], including the work in Chapter 5, which studies how
LLMs can reason about multimodal cues with text as medium. The field has further
evolved with models like Palm-E [Dri+23], which directly incorporate multimodal
inputs to generate contextually appropriate actions without requiring intermediate
symbolic representation.

LLM-based approaches have demonstrated remarkable zero-shot generalization
capabilities, enabling agents to perform previously unseen tasks by leveraging
the rich world knowledge embedded in pretraining. They are also able to handle
ambiguities in human language, making them useful in human-robot interaction
scenarios. However, they may face difficulties with long-horizon planning or tasks
that demand real-time reasoning over complex environmental dynamics. Challenges
also remain in ensuring reliability and safety when actions are generated without the
interpretability afforded by explicit symbolic planning stages.

Symbolic Planning Integration

Symbolic planning approaches integrate LLMs into structured reasoning frameworks,
often generating explicit and interpretable plans prior to execution. Traditional
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symbolic definition languages, such as PDDL, along with classical planners, support
LLMs in formulating problems and assessing the feasibility of long-term tasks. For
example, LLM+P [Liu+23] and many similar works [Din+23; Lia+22; Chu+25] convert
a language description of a problem into a Planning Domain Definition Language
(PDDL) file, and then resort to classical symbolic planners to compute a solution, after
which the resulting plan is translated into actions with minimal effort of mapping
(see Figure 3.7) This neuro-symbolic integration benefits from the complementary
strengths of LLMs (flexibility and world knowledge) and symbolic planners (logical
consistency and guarantees).

PDDL DOMAIN + PROBLEM

context @ Generate 1 Object Definition || Initial State |
e i 'L

' .
Srrrrsrrzssos) execution

Action Description

i
i
i
i

Verification & Feedback

Figure 3.7: Symbolic planning with PDDL configurations generated by LLMs. This approach uses
LLMs to create formal planning specifications, bridging natural language understanding with classical
planning frameworks. § 8.2 “LLLM-based Embodied Planning” on page 124 will introduce an approach
where LLM is used to generate PDDL configurations for symbolic multi-agent planning.

A key advantage of symbolic planning approaches is their interpretability: researchers
and users can inspect the generated plans, identify potential issues, and understand
the agent’s reasoning process. This transparency becomes particularly valuable
in safety-critical applications where explainability is essential. However, these ap-
proaches often face challenges in precise abstraction and handling the ambiguity
inherent in real-world scenarios, and may struggle with the computational overhead
of formal planning in complex domains.

Guided Learning

LLM-guided learning represents a paradigm shift in how, typically, RL agents acquire
and refine their capabilities, with LLM serving as knowledge-rich guides throughout
the learning process. Learning-based approaches focus on improving agent planning
capabilities through various forms of feedback and experience. Reinforcement
Learning from Human Feedback (RLHF) has emerged as a cornerstone methodology
demonstrating how human annotated trajectories (in the form of paired preference)
can deduce a reward model and thus be applied to train robot policies [Chr+17].

Soon RLHF became a core LLM alignment tuning method, leading to various studies,
among which, Reinforcement Learning from AI Feedback (RLAIF) [Li+23a] releases
the burden of human annotation with auto-generated or LLM-annotated data. In
addition to training LLM agents, the training of robotic agents also benefits from
Al feedback, such as guidance from LLMs or Vision Language Models (VLMs). The
applications may range from motivation to regulation, with outcome or process
guidance, which has been discussed in § 3.4 “Self-Determination” on the facing page
and § 8.1.2 “Reinforcement Learning with Deductive Rewards” on page 123.
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Vision-Language-Action Models

Vision-Language-Action Models (VLAs) [Bro+23; ONe+24; Zit+23; Tea25] represent
the frontier of embodied intelligence research by creating end-to-end architectures that
process visual inputs, understand language instructions, and generate appropriate
actions. Robotic Transformer (RT-1) [Bro+23] and Robotic Transformer 2 (RT-2)
[Zit+23] demonstrated how transformer-based architectures can learn mappings
from visual observations and language commands directly to robotic actions through
large-scale training on demonstration data. Recently, Gemini Robotics [Tea25] is
capable of executing smooth and reactive movements to cover a great range of
long-horizon, dextrous manipulation tasks. The integration of multiple modalities
enables VLAs to ground language understanding in visual perception, addressing
a fundamental challenge in robotics and embodied Al Despite their impressive
capabilities, VLAs face significant challenges in sample efficiency, often requiring
massive datasets of demonstrations to learn effective policies. Additionally, these
systems must contend with the inherent complexity of real-world visual scenes
and the physical constraints of embodied action, making them among the most
challenging but potentially transformative approaches in the field.

3.4 SELF-DETERMINATION

Self-determination originally refers to the ability of an individual or group to make
choices free from external coercion'’. In psychology, Self-Determination Theory
(SDT) [RDO00] further refines this idea as the capacity to act autonomously, driven
by intrinsic motivation and the satisfaction of basic psychological needs such as
autonomy, competence, and relatedness, and maintained through processes of self-
regulation.

When applied to robotics, self-determination takes on a complementary yet distinct
meaning. Here it translates into the design of systems that can independently govern
their behavior, self-regulate, and optimize their performance through adaptive control
and learning. While intrinsic motivation has been widely studied in the context of
learning-based exploration [Pat+17; LP23], this section, with a stronger emphasis on
robotic self-determination, complements the discussion by highlighting the importance
of both intrinsic motivation and self-regulation [RKD97; RD00]. The latter is usually
implicitly considered with constructing traditional exploration strategies, but its
importance should not be overlooked especially when building agentic entities [Qia+24;
Seq24; Sha+23] where the criteria for assessing whether agents behave well along the
self-motivated goals cannot be always crafted by humans beforehand''.

10: A highly related but distinguishable term to “self-determination” is “agency”, which empha-
sizes the power to act as a causal agent and can be seen as a component or prerequisite of self-
determination. The self-determination discussed in this thesis emphasizes intrinsic motivation and
self-regulation. See also definition in dictionary: https://www.merriam-webster.com/dictionary/
self-determination

11: As a concrete example, later in Chapter 7 “Agentic Skill Discovery” on page 99, the skills are
proposed as intrinsically motivated goals, but they also require a mechanism for verification.


https://www.merriam-webster.com/dictionary/self-determination
https://www.merriam-webster.com/dictionary/self-determination
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3.4.1 Intrinsic Motivation

Intrinsic motivation refers to the drive to engage in an activity for its inherent
satisfaction rather than for separable outcomes, i.e. external rewards, suggesting that
intrinsic motivation is a natural inclination or tendency that organisms have [RDO0].
It is not directly caused by external factors, but rather it is triggered or enhanced when
individuals find themselves in environments or conditions that encourage or support
this motivation to be expressedu. In humans, intrinsic motivation is linked to curiosity,
mastery, and a sense of autonomy, as described in SDT. It fuels learning and exploration
by prompting individuals to seek out novel experiences, solve problems, and improve
their skills. In robotics, intrinsic motivation plays a crucial role in enabling autonomous
agents to explore and interact with their environment beyond predefined tasks. Instead
of relying solely on externally programmed goals, intrinsically motivated robots
generate their own objectives based on factors like novelty, surprise, or empowerment.
For example, an exploration-driven robot may prioritize areas with high uncertainty
or information gain, leading to better world modeling and decision-making. Such
mechanisms are essential for lifelong learning, where a robot continuously refines its
knowledge and adapts to changing environments.

Intrinsic motivation is the internal drive that encourages an agent to explore and learn
for its own sake, independent of any external incentive (e.g. task-related rewards). We
can capture this concept mathematically by introducing an internal interest function '°,
denoted by J(s, a, s”), which, if taking task-agnostic world modeling surprise as an
example of incentive, i.e. a transition is considered interesting if it leads to a significant
prediction error in the agent’s internal model of the environment, regardless of any
specific external task, quantifies how inherently valuable, novel, or informative a
transition (s, a, s’) is to the agent. One way to formalize the agent’s intrinsic drive
is to assume that its action choice for preferred state evolution is governed by the
gradient V.¥. Humans adjust behavior based on experience, aligning more with
gradient-like updates. However, defining a smooth yet differentiable function that

accurately captures intrinsic motivation is non-trivial.

While psychology defines intrinsic motivation as behavior driven by inherent satisfac-
tion and autonomous self-determination, RL adapts this concept through “intrinsic
rewards”. They are computational signals that encourage exploration independent
of task-specific goals (but are still “extrinsic” in principle, due to the fact that they
are assigned by a human). RL does not require differentiating a known loss function,
often a discrete reward function r(s, a) is sufficient, formulating intrinsic motivation
as an intrinsic reward for RL to maximize is a common choice with replacing pintr(.)
with .¥(+), resulting in various optimization approximation of V.¥ according to the RL

12:  Further, extrinsic motivation can be further classified as: external regulation, introjection,
identification, and integration, organized to reflect their differing degrees of autonomy.

13: The term “interest” is adopted here, instead of just using “intrinsic reward” or “curiosity” from
the RL exploration literature [Bur+19a], to represent a broader perspective of intrinsic motivation. It is
a generic measure of how engaging or meaningful a transition (i.e. a change of the agent state resulting
from an action it takes) is, without being required to specify why something is interesting, while
curiosity is usually linked to seeking information or reducing uncertainty and mostly constrained
within RL paradigm in a form of scaler rewards.
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methods applied. In the context of RL, there are many works defining (s, a, s’):

Modeling uncertainty as motivation defines intrinsic reward as the negative likelihood of
the environment dynamics model, i.e. ™ oc —log pg(s’[s, a) where O parameterizes
a model of transitions (s, a, s") '*. Intuitively, the high likelihood of new states to
come indicates a good quality of modeling the dynamics. Rewarding oppositely, i.e.
favoring higher prediction errors, motivates the agent to explore states where its
model of the world, represented by (s,a) — s’, is inaccurate, driving curiosity and
exploration to reduce the prediction error. However, maximizing uncertainty alone
can be misleading. A well-known example is the flickering TV environment, where the
screen displays random noise regardless of the agent’s actions. An agent driven purely
by uncertainty-based rewards may be attracted to such inherently unpredictable
dynamics, despite their lack of meaningful structure or learnable value. To address
this, some approaches model inverse dynamics (s,s’) — a [Pat+17], others [Sch+22]
go beyond prediction error and explicitly derive the information gain between model
parameters and expected transitions. Such formulations encourage exploration that
is not only uncertain but also informative, better supporting sample-efficient learning
in model-based RL, especially for robotics.

Environment morphology as motivation includes a series of methods that quantify the
discovery of structural environment properties as a reward [LP23]. For example,
visibility counting as reward introduces measures to count visited states [Mar+17;
Li+23c; Lu+22], usually assigning intrinsic rewards as r"%(s, a) = 1/4/N(s), where
N(s) accounts to the number of times the agent has visited state s so far'. Intuitively,
this intrinsic reward encourages the exploration of novel states whose N(s) are
sufficiently small and produce higher rewards. Another representative method,
frontier-based exploration [Yam97] also evaluates explored and unexplored areas to
encourage the agent to achieve greater coverage of the environment.

Empowerment as motivation refers to the kind of methods that maximize the influence
an agent can have over its future states, i.e. skills emerge as structured ways to
maximize control over future states'®. Mathematically, empowerment is defined as
the mutual information between the agent’s action a; and its future state after k steps,
denoted as I(st+k; a;). By introducing a latent control variable z, which is uniformly
sampled, the mutual information I(7; z) between the trajectory t (often simplified
as so, st for simplicity and robustness) and the control variable z can be used as
an intrinsic reward. This formulation encourages the discovery of diverse skills
[GRW17; Wan+21; Eys+19; Las+21a; BI20; Las+21b], thereby promoting exploration.
See Figure 3.8 (left) and cfr. § 2.1.2 “ Autonomous Adaptation” on page 15 for discussion
on adaptive empowerment.

14: In practice, the forward prediction error of the learned dynamics, r™/f = ||s’ — §|| (or the
backward prediction error, r"*/® = ||z — 4|| when modeling (s, s) — a ), usually serve as a measure of
uncertainty [Pat+17; Bur+19a], which can be interpreted under Gaussian distribution assumption
po(s’ls,a) = N(s'|pe(s,a); L). Derivations can be found in Appendix A “Prediction Error and
Gaussian Modeling” on page 138.

15: For continuous state setting, state abstraction or pseudo-count, e.g. N(s) o -~ where p(-) is a

p(s)
density function, is often used to estimate the number of visits to a state.
16: Skills are learned control strategies that reliably lead to predictable and desirable outcomes. In

this sense, skill learning can be framed as the process of increasing empowerment over time.
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Figure 3.8: (Left) Skill Discovery = Self-determination + Policy, i.e. traditional skill discovery focuses
on combining intrinsic motivation (first phase of self-determination) to shape policy learning. (Right)
Agentic Skill Discovery = Self-determination + Semantics + Policy. Agentic Skill Discovery (ASD)
extends this by incorporating semantics, enabling agents to ground learned skills in meaningful
representations and goal structures. It integrates internal motivation, semantic understanding, and
policy learning to support autonomous skill acquisition in novel environments, guided by LLMs that
interpret and shape the learning process.

Semantic motivation represents a recent advancement in the LLM era, driven by
the powerful reasoning and in-context learning capabilities of contemporary LLMs.
When integrated with environment morphology, a scene graph can be established
and motivate an agent to explore the environment assets with semantic guidance
[Jia+24]. Given the basic information of environment and agent setting as context, the
employed LLM is supposed to propose interesting [Cel+23] yet meaningful [Wan+24a;
ZWW24; Ma+24a] semantic goals for the agent to achieve, or, in other words, new
abilities to pursue via determining semantic affordances. As discussed earlier in
§ 3.2.2 “Integration: Symbolic Grounding” on page 37 and further elaborated in
Chapter 7 “Agentic Skill Discovery” on page 99, where robots are semantically
motivated to acquire new abilities grounded in their environments, the emerging
trend of leveraging LLMs to guide agent learning shows great promise due to the
large-scale knowledge embedded in LLMs. Agents empowered with LLM-driven
self-determination can better understand and reason about the world, and formulate
efficient, interpretable motivations to support autonomous adaptation.

3.4.2 Self-Regulation

Self-regulation, often overlooked in earlier, less agentic systems where learning was
entirely controlled by humans through predefined criteria, is the agent’s ability
to monitor, evaluate, and adjust its learning process to achieve desired outcomes,
particularly in alignment with intrinsic motivations. For humans, it allows individuals
to stay focused, resist distractions, and modify their actions based on feedback. For
robots, self-regulation translates into adaptive determination mechanisms that ensure
learning proceeds correctly. Autonomous agents continuously assess their own
performance through built-in sensors and error metrics. This self-monitoring allows
the system to detect failures, gauge success, and identify areas for improvement
without relying solely on pre-programmed responses.

Being complementary to setting goals to motivate agents, self-regulation focuses
on assessing whether agents are on the right track of learning. A self-regulating
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robotic system must evaluate its internal states, predict future conditions, and adjust
its learning accordingly. In this sense, a skill can be viewed as the minimal unit of
learning that necessitates self-regulation, i.e. the awareness and ability to evaluate
whether the outcomes of an agent’s actions align with predefined goals Traditional
works, e.g. RL with intrinsic motivation, usually regulate agents with minimal effort
by manually examining the designed reward or loss function, neglecting a deep
discussion into self-regulation with open purposes. For more complex systems with
hierarchical execution structures, goals can exist at various levels, ranging from
high-level semantic objectives to low-level vision-conditioned control tasks. With the
development of, especially LLM-based, agentic systems, it is not even possible for
humans to exhaustively supervise such complicated, sometimes multi-agent, systems.
Therefore, an explicit higher level of autonomous yet robust regulation design is
essential for the success of the agency. See Chapter 7 for a detailed discussion on the
self-regulation of agentic systems (cfr. Figure 3.8) (right), where LLMs are employed
to supervise the learning process and outcomes of RL agents.

Process Supervision vs Outcome Supervision

Given a goal, the health of the learning status can be evaluated either densely,
during the ongoing process, or sparsely, based on the final outcome, depending on
the availability of supervision signals. For learning-based exploration, this reward
signal is usually predefined as reward functions, e.g. prediction error as a reward in
curiosity-driven exploration. For the former dense assessment, a per-step supervised
signal is usually accessible to guide the learning process, while the sparse one
indicates a post-assessment of the resultant behaviors. In RL for a specified task
learning, this exhibits as dense rewards, where the agent is likely to pursue the
reward frequently, or as sparse rewards, wherein the agent can only receive rewards
upon occasional task completion. In the context of LLM training, this distinction
usually leads to the application of the Process-supervised Reward Model (PRM) or
Outcome-supervised Reward Model (ORM) [Lig+24]. If reliable, the reward model
can be applied to scaling LLM inference. Usually, assessing an outcome is much easier
than assessing the whole process'”. Complex agentic systems must be evaluated
across diverse subtasks, rendering process supervision of each learning component
intractable. Even outcome-level assessment (i.e. task verification) poses a significant
bottleneck, particularly for LLM-based agents (see [Chu+24b] for an example of
process supervision, and [Cem+25] for observed failure cases in LLM agents).

17: Imagine verifying an LLM-generated solution, which can be considered a subtask within a broader
agentic workflow for a given math problem. Process supervision involves evaluating each reasoning step,
while outcome supervision only requires checking the final extracted answer. In Chapter 6 “Enhancing
Reasoning via Logic-Guided Inference Scaling” on page 83, a method proposed to carry out per-step
verification for LLM inference is discussed in detail. A detailed discussion on process (fast) and
outcome (slow) self-regulation can be found later in Chapter 7 “Agentic Skill Discovery” on page 99,
where LLMs and VLMs are tasked to regulate RL learning process and outcome respectively.
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Termination

Appropriate termination matters much in learning-based approaches, by which the
agent passively (e.g. because of encountering irreversible bad conditions) or actively
(e.g. with explored information being sufficient enough for task requirement, active
termination saves unnecessary further effort'®) terminates the ongoing learning
process in time and assigns a success or failure status for the happened learning.
Terminating in time. In RL, a terminating signal can be regarded as a special sparse
reward that helps learning with implicit reward shaping [Bur+19a]. As an example,
the strategies of terminating ASLAM exploration are when reaching the following
conditions [LLA21]:

» Map Completeness, sufficient map construction with no obvious unexplored ar-
eas (e.g. measured by frontiers [ Yam97] or certain information gain/uncertainty)
remain.

» Resource Constraints, upon reaching limits in resources such as battery life,
traveled distance, elapsed time, or computational capacity.

Assigning outcome. At the end of each trajectory, a success or a failure status is
assigned, with which the success rate can be computed. Since success rate has been a
very important measure for robot performance, it also serves as a fitness function
for, for example, evolutionary search approaches to find the best-shaped reward
functions [Ma+24b]. In semantic environments, e.g. LLM reasoning'’, the outcome is
usually more context-rich and can also be fed back to the agent to further refine its
decisions [[LBS23; Zha+24c; ZWW?24; Ma+24b]. For example, a code-generation LLM
can adjust its outputs based on real-time feedback from an Integrated Development
Environment (IDE).

With the development of LLMs and VLMs, these large-scale models can be leveraged
to regulate an agent’s timely termination and assign appropriate outcomes [Ma-+24b;
ZWW24]. By integrating multimodal reasoning capabilities, VLMs enable the agent to
interpret environment cues, assess task completion, and determine when to terminate
execution. Furthermore, VLMs facilitate outcome assignment by associating observed
states with predefined criteria, ensuring coherent decision-making. This approach
enhances the adaptability and efficiency of autonomous systems operating in dynamic
environments.

3.4.3 Integrations

Self-determination, when combined with different foundational concepts such as
world models (§ 3.1), semantics (§ 3.2), and policy (§ 3.3), can lead to distinct research
directions. For example, interactive scene graphs [Jia+24] (see Figure 3.9 left) emerge
at the intersection of self-determination, world models, and semantics, enabling agents
to structure and interpret dynamic environments. Similarly, model-based exploration

18: This is common in the active perception field where “terminate” is a special action of an agent,
resulting in non-fixed steps for each learning episode (see an example of this design in [Li+23c]).
19: Formulating the LLM generation process as an MDP results in prompts being the initial state,
LLM output tokens as actions, and the context so far as the current state.
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Figure 3.9: From left to right: (Left) Model-based Exploration = Self-determination + World Models
+ Policy; Agents explore their environment by leveraging internal motivations (self-determination),
learned world models, and policies that guide action selection to reduce uncertainty and discover
novel states. (Middle) Interactive Scene Graph = Self-determination + World Models + Semantics;
Agents build and update structured, interpretable representations of their environment by grounding
semantic concepts in perceptual models and selectively interacting with relevant entities. (Right)
Reasoning = Self-determination + Semantics; Advanced reasoning emerges as agents use semantic
knowledge to internally simulate, compare, and select among possible actions or explanations, driven
by their own goals or queries.

[Moe+23; LP23] (see Figure 3.9 middle) integrates self-determination, world models,
and policy to guide strategic decision-making in uncertain environments.

In this context, self-determination and semantics together define reasoning [Wei+22a;
YZW?23; Zha+24c; Heb+24; Dee+25] (see Figure 3.9 right), which can be regarded
as an exploration occurring solely within the realm of natural language space. This
semantic exploration enables agents to traverse conceptual spaces, infer logical
relationships, and refine their understanding through structured problem-solving
and counterfactual analysis. Discussions on semantic reasoning will be further
elaborated later in Chapter 6 on page 83.

Furthermore, Agentic Skill Discovery (ASD) [ZWW24; Rho+25; Li+25c], which will
also be detailed later in Chapter 7 on page 99, emerges from the combination of
self-determination, semantics, and policy learning, allowing agents to autonomously
explore semantic affordances and develop their capabilities.

An overview of how contributions introduced in later chapters align with the
conceptual foundations is provided in Table 3.1.

Table 3.1: Systematic overview of core contributions and their integration into conceptual foundations.

Ch. World Models Semantics Policy = Self-determination
Chapter 4 [ O © o
Chapter 5 O L O L
Chapter 6 O o O ®
Chapter 7 () L o o
Chapter 8 () o © 0
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SOUND GUIDES REPRESENTATIONS
AND EXPLORATIONS

Self-determination + World Models + Policy

To fulfill Objective I, i.e. “to construct self-deterministic agents that can leverage non-
verbal multimodal cues to autonomously explore the environment and develop possible
abilities beyond immediate task requirements”, this chapter proposes a model-based
exploration strategy grounded in visual-auditory associations.

Multimodal cues offer complementary information that helps disambiguate goals
and dynamics in complex settings. In particular, impact sounds, as salient indicators
of physical interaction, serve as an internal signal for meaningful change. These
auditory events are treated as sources of intrinsic motivation, the first aspect
of self-determination, enabling the agent to assign value to exploratory behavior
even in the absence of external rewards. By learning to predict and seek out
these informative cues, the agent constructs richer world models that capture both
visual and auditory consequences of its actions. These models, in turn, guide the
development of policies that are not only goal-directed but also proactive in exploring
known knowledge boundaries, resulting in generalizable representations and
policies.

Cross-modal learning is essential for developing representations that are both
meaningful and invariant to variations across modalities, particularly when handling
noisy or incomplete data. While vision is the most commonly used modality for
perception in autonomous agents, it can be ambiguous or insufficient in certain
contexts, e.g. inferring object interactions or detecting events outside the field of
view. In such cases, sound provides a valuable complementary signal, offering
information about physical events like collisions, drops, or movements. Moreover,
sound is naturally abundant in the real world and can be captured without direct
contact, using small, low-cost microphones that are easily integrated into mobile
platforms. These properties make it a practical and informative modality to support
environment understanding and guide exploration beyond what is visible.

Although deep learning has shown strong capabilities in extracting information from
multiple sensory modalities, sound remains underutilized in robotic manipulation
learning. This chapter explores this potential to enhance autonomous exploration
and representation learning within the framework of Unsupervised Reinforcement
Learning (URL), where agents are expected to actively collect experiences and
jointly learn representations and policies in a self-supervised manner. Specifically,
this chapter introduces a framework for constructing realistic robotic manipulation
scenarios that incorporate physics-based sound simulation', alongside a multimodal
Reinforcement Learning (RL) exploration approach termed Intrinsic Sound Curiosity
Module (ISCM). Experiments, with sound enabled during pre-training and disabled

1: See Appendix B “Impact Sound Simulation” on page 139 for details on sound simulation.
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during adaptation, show that representations learned by ISCM outperform the ones
by vision-only baselines, and pre-trained policies can accelerate the learning process
when applied to downstream tasks.

4.1 INTRODUCTION

Research in the field of neuroscience shows that with multiple cues from a diverse
range of sensory modalities comes enhanced behavioral performance towards faster
response, more accurate movement, and a better sense of stimulus [Lau+04]. When
presented with multiple modalities, e.g. a combination of auditory, haptic, and visual
perception, an observer will make the assumption of unity that decides whether the
multimodal information originates from a common source or from some separated
objects and events [WWW80]. The perception of unity arises when the perceiver assumes
that a physical event is redundantly expressed and sensed across diverse modalities,
and decisions are commonly made based on the temporal and spatial consistency of
information [VS07], or on semantic congruence factors [Lau+04].

Vision is an exceptionally information-rich modality and one of the most critical
senses through which humans perceive the world. However, it remains challenging
for robots to directly extract structured knowledge from visual input. Although deep
neural networks have significantly improved the quality of visual representations,
such representations often remain difficult to interpret. When agents rely solely on
these learned features, the limited scope of the information they capture can constrain
generalization and restrict the range of tasks the agent can perform. For many vision-
based tasks, a common approach begins by constructing neural networks using
pre-trained models or training them in a self-supervised manner. This is often done
through intra-modal objectives, such as designing simple but diverse sub-tasks within
the visual domain [DZ17]. In contrast, crossmodal learning approaches, e.g. predicting
the consistency between visual and auditory signals [Zha+18; AZ18], go beyond pure
vision and are better suited for preserving the assumption of sensory unity, where
different modalities provide coherent information about shared underlying causes.

These two components are tightly coupled: stable and informative representations are
crucial for effective policy learning [Bur+19a], while a sufficiently exploratory policy
is necessary to collect diverse, non-trivial observations. Humans can benefit from
multiple sensing cues in terms of both perception and behavior. Intuitively, an active
agent who is allowed to explore freely can benefit from multimodal cues in two aspects:
1) learning meaningful representations by crossmodal self-supervision [Fis+21;
Hig+20; Par+18], and 2) being intrinsically motivated to explore the environment
under the unity assumption reflected by the uncertainty of crossmodal predictions.

Sounds are generally much more distinctive compared with visual events. For some
specific tasks related to physical properties estimation, the sound alone is reliable to
guide a robot and measure its performance [Cla+18]. For others, it may be informative
but not sufficient, e. g. a classification of objects that share common auditory properties
[Mir+21], or precise control of a water-pouring robot [Lia+20]. In this case, sounds
are supposed to fuse with other sensory inputs to present a much more robust
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description of states, or to scaffold the agent’s exploration.

Sound is abundantly while hardly considered for general manipulations due to the
facts that 1) vision is content-rich and is thus sufficient for traditional planning-based
robots so the sound is often ignored; 2) the correlation of sound events with a task
goal could be difficult to program or to discover automatically by traditional methods,
which further limits its exploitation. However, things go the other way when a
deep reinforcement learner is deployed to control. 1) Relying exclusively on vision
may lead to exhaustive sampling requirements. Though deep neural networks are
capable of extracting features from high-dimensional inputs, there is no guarantee
of information sufficiency as samples are collected gradually. Representations can
overfit to the trajectories of a non-optimal agent, especially when transferred to new
scenes, where a biased policy could lead to a worse learning process. Moreover,
exploration time for robots is often desired to be minimal for natural wear and safety
concerns, which calls for efficient and robust pixel interpretation. 2) Fortunately,
latent associations among modalities [Jae+21; Kum+19] and behavior consequences
[Sil+21] can be discovered automatically by deep learning, which shows the potential
of crossmodal control.

Therefore, our approach contains two phases: first, to train the image encoder of a
RL agent with visual-auditory correlations, and second, to use the crossmodal error
as an intrinsic reward to encourage meaningful exploration. Contributions in this
chapter include:

» The ManipulateSound” environment built upon the ThreeDWorld simulator
[Gan+21], detailed in § 2.3.1 “ThreeDWorld” on page 20, that comprises robotic
control with physically generated sound (see Figure 4.1).

» A general architecture to utilize sound feedback for unsupervised RL explo-
ration, resulting in more robust representation and active exploration.
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Figure 4.1: ManipulateSound environments with different objects that have different physical properties:

(a) a task with three different colorful cubes to push out; (b) a task with a single blue ceramic cube to push
out; (c) a task with a single brown wooden cube to push out; (d) a task with a single red metal cube to
push out; sound intentionally turned off during evaluation.

4.2 RELATED WORK

We introduce sound as a means to enhance both self-supervised representation
learning and the active exploration of URL agents. While the use of impact sound to
guide representation and exploration is a novel integration, the individual components

2: See code link: https://github.com/xf-zhao/ManipulateSound
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have been studied previously. In the following, we briefly review related work in
both areas.

4.2.1 Self-supervised Representation Learning

Self-supervised learning covers methods to learn representations from data that
contains automatically created pseudo-labels according to certain objectives. Based
on the sensory inputs, self-supervised learning can be roughly classified into two
categories: intra-modal and crossmodal self-supervised learning.

A common intra-modal way to create pseudo-labels of images is to perform multiple
parameterized augmentations. Then, neural networks are trained to predict which
transformation has been carried out on each sample [DZ17; ACMI5]. Generally,
representations learned with transformations that align with realistic physics make
more sense to a robot than random ones. For instance, to obtain representations
with ego-motion equivariance addressed, images are collected with a camera on
a moving car and grouped into neighbor pairs by driving commands [JG15]. The
forward model in the Intrinsic Curiosity Module (ICM) [Pat+17] predicts the next
state s” with the input of a tuple of current state and action (s, a) so that the agent
can learn to represent the environment dynamics.

Self-supervised representation learning is naturally applicable to scenarios where
multiple modalities are involved. Representations emerge concurrently with different
focuses and biases, but often have strong relations with one another. To jointly model
multiple modalities, such as audio and visual components of videos [Gao+20], a
binary classification model to discriminate whether the visual and auditory input
are aligned [AZ17; DTG20], or a regression model to predict corresponding audio
statistics given vision [Owe+16] can be established. Although these settings are simple
enough, they make use of the unity assumption of events, such that extraordinary
abilities can be acquired, e.g. sound localization, audio-visual retrieval [AZ18], and
speech separation [OE18]. In our case, we train a discriminating model that is easy to
implement and applicable for general usage.

The available sensory perception for robots can be even diverse [Cal+18; Mur+18;
Gan+20b; Che+20]. A work by [Lee+19] shows that fused representations of visual
input, force-torque sensing, and proprioception by self-supervision are beneficial for
sample efficiency. Synchronizing multimodal cues and handcrafting modularized
tasks to align them properly. We keep the complexity low by focusing on the impact
of sound.

4.2.2 Active Exploration

A RL agent can gain remarkable abilities by optimizing the objective of maximizing
the accumulated reward of experiences [Sil+21]. However, for a task with sparse
rewards [Nai+18; Sek+20], which is a common case, the learning process can be quite
slow due to the inefficiency of sampling. Reward-shaping [Hu+20] is a commonly
used method to alleviate this problem, but it requires expert knowledge and human
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effort to tune and is vulnerable to environmental disturbance. Many active exploration
strategies have been investigated to encourage the agent to seek novel states [PGG19;
Eys+19; Pat+17; Bur+19b] among which ICM proves to be robust on many tasks
[Bur+19a; Las+21b]. So we construct our auditory-curiosity module on top of ICM,
building on an existing visual processing pathway:.

As an alternative to sound, using haptic sense as feedback and reward [Raj+21]
achieves good performance and active exploration in terms of frequent contacts,
supporting sample-efficient learning. Similar to our work, [Gan+20a] uses vision and
action to predict the next clustered auditory events, and the classification error will
thus be used as the overall intrinsic reward. However, the transferability of learned
representations is not as well studied as in our work. A discriminator is trained
in work [DTG20] to exploit information consistency of aligned image sequences
and audio, and an intrinsic reward is computed according to the uncertainty of the
classifier. Despite the extra efforts required to construct offline data sets, this work is
restricted to Atari games or audio-dense scenarios. When applied to robotic control,
an object will only produce sound when there is contact. Silence or background noise
dominates most of the time. It is even harder to construct misaligned pairs because a
random shulffle strategy fails in cases where silence is capable of being aligned with
most of the visual scenes. Moreover, a cold-starting problem will arise, particularly
when the policy is not sufficiently rewarded to produce collisions. Therefore, we use
intrinsic motivations extracted from both visual and auditory cues.

4.3 METHOD: ISCM

Preliminaries. Typical RL problems are formulated as Markov Decision Processes
(MDPs)?, comprised by states § = {s}y, actions o = {a}y, transition probability
P2, and rewards R = {r}. The goal of the agent is to optimize the policy rtg(als)
that maximizes the expected discounted sum of rewards E,, .7, " 7¢+u, where y is
the discount factor. Usually, out of realistic constraints and generality considerations,
we do not have full access to internal states § but a series of sensors attached to the
workspace, resulting in partial observations © = {0}. Before being fed into the policy
module, high-dimensional sensory inputs must be compressed to latent states that
can efficiently represent the environment [Mni+15; Bur+19a].

The following subsections describe the proposed ISCM framework, which consists of
visual representation learning with self-supervised crossmodal dynamics modeling
(§ 4.3.1), intrinsic visual-auditory rewarding (§ 4.3.2) with dynamics modeling errors
as the intrinsic motivation, and the joint learning process for both representation and
policy (§ 4.3.3).

3: s¢, a4, 7¢,S¢41, 0p are the state, action, reward, next state, and observation at time step ¢, respectively.
Without specification, we use s, a, ¥, s”, 0 to simplify the notation.
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Figure 4.2: The Intrinsic Sound Curiosity Module (ISCM) framework comprises dynamics modeling
(as in the vanilla ICM), representation learning, and intrinsic reward computation that leverages both
dynamics-based signals and visual-auditory crossmodal cues.

4.3.1 Visual Representation Learning

Visual exploration is a fundamental task for embodied Al agents, where the agent is
allowed to actively gather visual information about the environment and then distill
knowledge into models such as a topological map or a dynamics model [Dua+22].
Generally, the agent is supposed to explore as many novel states as possible with an
internal encouragement aligned to certain targets, e.g. a measure of the coverage such
as the amount of visited unique states in a navigation scenario [DTG20], a prediction
error of a learned dynamics model [Pat+17; DGI21] or of a reconstruction model when
an agent tries to generate other views of an object than the observed ones [Dua+22].

With a combination of multiple sensory inputs for internal states, the agent is allowed
to have a more comprehensive view of the environment. However, it will require
either a lot of domain-specific assumptions of crossmodal associations or an increase
in model complexity [Jae+21; Jae+22] to derive efficient representations from fused
inputs. To ensure a fair comparison with vision-only baselines, sound is used solely
as a supplementary modality. The agent has access to sound only during the pre-
training stage. The baseline encoder, which we compare our model with, is trained
by modeling the environment dynamics with visual states, while the one of ISCM
(Intrinsic Sound Curiosity Module) additionally fits a visual-auditory sub-task (see
Figure 4.2). Before adaptation to downstream tasks, visual encoders of the agents are
initialized with weights from the ISCM and ICM baseline. The RL agent policy is
trained with Deep Deterministic Policy Gradient (DDPG).

Let the visual and auditory observation at time step t be denoted as OY and otA,
respectively. A visual encoding function ¢" (-) comprised of convolutional neural
networks is thus applied on 02/ to compute the state sy = (pV(oy), which is later used
for both policy learning and dynamic environment modeling. Evidence shows that
a well-pretrained encoder is essential for the generalization of supervised learning
models [PY10; DZ17] and RL agents [Las+21b; Bur+19a]. Hence, the sound-free visual
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encoder and the sound-guided counterpart are trained separately for comparison.

There are two jointly-trained models to model environment dynamics in ICM: a
forward dynamics model Mg""d(-) and an inverse dynamics model Mg“’(-). The forward
model tries to predict the forward n-step transition s;;, (usually, n = 1) given the
current state s; and action a;, i.e. ¢4y, = Mg""d(st, a;), while the inverse one tries to
predict the action taken between aligned states d; = Mg“’(st, St+n), which encourages
noise-robust representations [Pat+17]. These two dynamics models are optimized
concurrently with respect to L, constraints, defined as
LYY = (18410 — st4nll3
and
I A 2
Ltnv =|la; - at”z-

Note that here we use L; loss also for action predictions since we control the continuous
actions of the robot arm; otherwise, a cross-entropy loss can be considered for discrete
actions.

To benefit from sound, a crossmodal prediction model with parameters w, which
can be either a discriminator (for discrete s4) or a regression model (for continuous
values), is then trained to learn the associations of concurrent vision and sound, i.e.
pw(§f|s¥). The crossmodal loss is optimized in latent space, s* = p“(0?), where
(pA(-) is a fixed auditory encoder with output suitable for either discrimination or
regression. Typically, to construct auditory features for regression, ¢*(-) consists of
randomly initialized neural networks, with no requirements for any further training.
These representations are compact, stable, and generally reliable [Bur+19a; Bur+19b],
especially when dealing with impact sound whose information density could be low
compared to information in speech. Alternatively, ¢(-) can be chosen as a threshold
to distinguish valid event sound from background noise, considering the simplicity
and the aforementioned knowledge that even with a simple discriminating task,
surprisingly good abilities can be acquired through cross-modal learning [AZ18;
DTG20; Zha+18]. Much of the time in a manipulation scenario, there is just silence
before any valid collision or friction happens. To avoid the model eagerly collapsing
to zero prediction and causing dying neurons [Lu+20], we use weighted cross entropy
loss by w* to amplify the importance of positive samples, i.e. crossmodal prediction
loss:

Ly = ~w* - p(s{s ) log pu(sls)) = [1 = p(s{'1s]) ] log [1 — pu(sflls))] . (41)
For regression, the optimization is similar except for an unweighted L, loss

/ A
LE =184 = s12. (4.2)

To summarize, the objectives for visual representation learning in vanilla ICM and
the proposed ISCM are separately written as

arg min [E [L?] (4.3)
@,0
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and

arg min E [(1 - a)LtD + othC] , (4.4)

®,0

respectively, where LP = BLI'"d + (1 — B)LI"V is the overall dynamics loss and a, B are
hyper-parameters to mediate the relative importance between modules. Note that
the objective is expected to be minimized over samples with time stamp ¢. Therefore,
it is reasonable to encourage the agent to collect informative samples by injecting the
model’s prediction error, as a form of intrinsic reward, into the agent’s exploration
objective.

4.3.2 Intrinsic Visual-Auditory Reward

Unlike typical supervised learning in which the data is drawn from a stationary distri-
bution, RL agents actively seek samples according to the policy that updates towards
reward-weighted maximum likelihood estimation [PMA10]. So when dealing with
the sparse-reward case, the intrinsic reward mechanism helps prevent representations
from focusing too much on non-interesting areas.

The visual-auditory reward in our case is defined as rtC = log(LtC +¢€),i.e. if the agent’s
(unity) assumption violates its perception, it will be encouraged to experience more,
and vice versa. € is a constant added to maintain numerical stability, particularly
for values near zero. With rtD = log(L? + €) as the ICM reward when modeling the
environment dynamics, the overall intrinsic reward of ISCM is computed as

re=Arc +(1-MrP, (4.5)

where A controls the relative importance of crossmodal prediction and dynamics
modeling for exploration.

4.3.3 Representation and Policy Learning

The learning process is separated into 1) fully unsupervised pre-training and 2)
task-specific fine-tuning stages with the curiosity mechanism omitted. It begins
with an agent freely exploring an environment, trajectories of {0} } and {0{'} are
accumulated for representation learning; intrinsic rewards are computed for policy
learning. When an exploration budget is reached or when the agent is believed to have
enough knowledge, the pre-trained visual encoder will be fixed, and the actor-critic
networks will be fine-tuned on downstream tasks with only vision and extrinsic
sparse rewards accessible.

4.4 EXPERIMENTS AND RESULTS

We aim to answer the following research questions regarding Objective I:

» R.Q. 4.1 Does intrinsic sound curiosity help the agent to explore more actively
and learn effective representations?
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» R.Q. 4.2 Does unsupervised policy pre-training help the agent to adapt to new
tasks?
» R.Q. 4.3 How does the choice of crossmodal prediction affect the performance?

4.4.1 Experimental Setup

The experiments are carried out in simulation because unsupervised exploration in
the real world is costly, which we leave for future work. One way to manipulate objects
that produce authentic sound is to use a fixed data set with a physics computation
interface [Gao+21]. For generality, we build our multimodal manipulation scenarios,
shown in Figure 4.1, based on ThreeDWorld [Gan+21], ¢fr. § 2.3.1 “ThreeDWorld” on
page 20, a novel embodied Al simulator [Dua+22] which is built upon the Unity game
engine with multimodal capacities. To the best of our knowledge, it is the only one so
far that supports physically simulated impact and scrape sounds [TCM19; Aga+21] at
run time. The tabletop robot is composed of a 6-DoF OpenManipulator-Pro robotic
arm and a 2-DoF gripper”. It is allowed to manipulate cubes with diverse physical
properties that are essential for both dynamics and sound characteristics, e.g. masses,
materials, and bounciness.

Observations. A camera and a single-channel microphone are placed above the
table to capture observations. We focus more on vision and sound, so the robot’s
proprioception is not included, and the robot has no knowledge of the object’s
coordinates.

Task Setting. One or several cubes are randomly placed inside a red circular area,
and the goal is to push them out of the circle within a limited number of steps (cfr.
Figure 4.1). Specifically, each step will have a penalty of -1/50, and an immediate
reward of 1 will be delivered once the task is completed; otherwise, the episode ends
at 50 steps.

4.4.2 Implementations

We use the ICM implementation of Unsupervised Reinforcement Learning Benchmark
(URLB) [Las+21b] as the baseline, and further extend it to our ISCM architecture.
Refer to Algorithm 1 for pseudo code’.

Visual observations are processed as follows: a) Raw RGB image observations (0}/_2,
0}/_1, oy) are stacked to the size of 84 X 84 X 9 pixels. b) Four layers of Convolutional
Neural Network (CNN) with ReLU activation are applied subsequently to encode
vision to a latent state s;. c) A model using two fully connected layers with ReLU
activation is constructed for sound prediction. d) Visual inputs are available in both
pre-training and fine-tuning.

Auditory observation processing: a) An auditory observation 0{‘ is generated at run-

time by a physical engine; it is then converted to the spectrogram using Short-Time

4: https://github.com/ROBOTIS-GIT/open_manipulator_p
5: See code link: https://github.com/xf-zhao/ISCM
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https://github.com/xf-zhao/ISCM
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Algorithm 1: Pseudo code for Intrinsic Sound Curiosity Module (ISCM)

Initialize: Replay buffer & « 0, policy neural networks 7, visual encoder (pV,
auditory encoder @*;

for n = 1to Ny train do /* Exploration x/

Observe 0; = {o}’, of ;

st — @V (0)), st — @A[STFT(o/)];

Compute LtD and LtC ;

ar < 1(st);

Observe 0441 ~ PL,;

Compute intrinsic rewards r¢;

D — DU (04, at,0t41);

Sample Dpaich from P;

Update ¢V, 7 using samples in Dpaten with Equation 4.4 and Equation 4.5;

Fix visual encoder ¢V « ¢V for evaluations;

Chose task T

D — 0;

for n =1 to Nfye-tune do /* Adaptation x/
Observe OY ;

St GDV*(OY );

a; « m(st);

Observe 0441, 7 ~ PL,;

D — DU (0, a¢,7,0¢41);

Sample Dpaich from P;

Update 7t using samples in @patch with extrinsic rewards;

Evaluate 7t with the accumulated rewards on task T for performance;

Fourier Transform (STFT), i.e. otS = STFT(O?). This is a consideration that complex
sounds that come from objects with distinct materials are more distinguishable in
the frequency domain with the help of the Fourier transform. Since the agent is
updated with samples from a replay buffer and actions are chosen solely based on
the visual input, there is no wait for the computation of STFT in real-time control. b)
Spectrograms (0?_2, of_l, of ) are then stacked as the auditory input of 32 X 32 X 3 size.
c) Finally, sf is obtained by applying a certain threshold for silence discrimination
and by passing through a fixed auditory encoder with 36-dimensional output for
regression. Auditory inputs are available only in pre-training.

ICM Modeling (baseline). ICM modeling steps are as follows: a) Trajectories of (s¢, a¢,
St+n) are fed into the ICM dynamics models for both encoder training (Equation 4.3
with f = 0.5) and intrinsic reward r P computation with € = 1. b) The sample with r tD
is thus used to train a DDPG base learner. c) After enough explorations, the DDPG
model will have to adapt to tasks with supervised rewards.

ISCM Modeling (ours). ISCM modeling steps are as follows: a) Paired multimodal
observations (of, of) are used to train the visual encoder (Equation 4.1 and Equa-
tion 4.4 with w, o, p = 100, 0.2, 0.5) and to compute intrinsic crossmodal rewards rtc.
b) Overall intrinsic reward (Equation 4.5 with A = 0.8, € = 1) is thus computed to
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train a DDPG-based learner.

All the mentioned neural networks are optimized by RAdam [Liu+20] with a learning
rate equal to 0.001. For many unsupervised RL approaches, the performance decays
with an excessive number of environment interactions [Las+21b]. There is so far no
general strategy to determine when to early-stop explorations for better generalization.
We empirically choose 200K environment steps to pre-train and 30K steps to fine-tune,
considering the convergence of learning curves. The result is averaged over 4 runs
with different seeds.

4.4.3 Evaluation

The performance of unsupervised agents can be evaluated by means of measuring the
adaptation process on downstream tasks or by statistically analyzing data diversity,
e.g. counting of collisions [Gan+20a], variance in the introduced sensory vector
[Raj+21], or transformations (distance of movement, orientation changes) of objects.
However, the latter method varies from task to task and is not always applicable.

Whereas the main focus of this work is to demonstrate the effectiveness of learned
representations, the tasks are chosen to be simple to master for an agent. In this
case, accumulated reward rather than success rate is more appropriate to compare
the learning efficiency because the former can reflect the consumed steps, under
the setting that the agent is punished for every unfinished step. Following previous
works in URL [Las+21b], task-related (extrinsic) rewards are solely evaluated as
performance metrics rather than being used for training.

» During pre-training, the extrinsic reward act as a measurement of agent
activeness, i.e. how often an agent occasionally achieves meaningful events.

» Inthe adaptation stage, the extrinsic reward is used to evaluate the performance
of the agent in a task-specific manner.

4.4.4 Results and Discussion

ResearcH QuesTion 4.1 Does intrinsic sound curiosity help the agent to explore
more actively and learn effective representations?

The activeness of exploration can be heuristically measured by the diversity of
collected states, object interactions, and the incidental accumulation of extrinsic
rewards. Note that these extrinsic rewards are not provided during training but serve
as indicators of accidentally achieving meaningful events. We observe that when
sound is involved, the agent shows increased interest in object interactions, leading
to more frequent accidental completions of such events (see Figure 4.3).

Observations from URLB [Las+21b] suggest that the learned representations are gener-
ally universal and transferable, whereas the behavior policies may not be—particularly
those trained with access to perfect state information (i.e. fully observable MDPs).
We compare episode rewards during fine-tuning for DDPG learners with identical
hyper-parameters but different model initializations: (1) full ICM pre-training; (2)
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Figure 4.3: Monitoring of extrinsic rewards (recorded but never used) in exploration. The ISCM agent
has more chances of accidentally accumulating extrinsic rewards as a result of sound contributing to
additional rewards.

ICM representations with a re-initialized policy (ICM-PR); (3) full ISCM pre-training;
(4) ISCM representations with a re-initialized policy (ISCM-PR); and (5) no pre-
training (just policy learning with DDPG). As is shown in Figure 4.4, we reiterate that
representations learned in unsupervised exploration are essential, and add further
findings:

» There is a big performance gap between the DDPG learned from scratch (DDPG,
dashed gray curve) and the other four with pre-trained weights (colored curves),
which suggests that unsupervised exploration is helpful for faster adaptation
to new tasks.

» The full pre-trained module (representations and behavior policy) with sound
(ISCM, solid green curve) outperforms the baseline that solely depends on
vision (ICM, solid orange curve).

» Without considering pre-trained policies, representations learned with a visual-
auditory prediction (ISCM-PR, dashed green curve) outperform the ones
learned with only vision (ICM-PR, dashed orange curve).

ResearcH QuesTiON 4.2 Does unsupervised policy pre-training help the agent to
adapt to new tasks?

By comparing all solid with dashed curves, we find pre-trained policies to have
positive effects on task adaptation, which reveals that skills acquired in unsuper-
vised exploration are also reusable. However, more studies on policy analysis, e.g.
decomposition of the learned policy for abstract behaviors, are required for a clear
view.

ResearcH QuesTioN 4.3 How does the choice of crossmodal prediction affect the
performance?

A vision-to-sound regression model using L, loss (cf. Equation 4.2) is trained with
the same hyperparameters, replacing the crossmodal prediction module in Figure 4.2
with a regression head. See Figure 4.5 for comparison results. Though a vector (for
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Figure 4.4: Episode rewards in fine-tuning stage accumulated by DDPG learners with all hyper-
parameters configured the same except for the initialization of models: 1) ICM: models with repre-
sentations and policy pre-trained by ICM. 2) ICM-PR: models with ICM pre-trained representations
but a re-initialized policy. 3) ISCM: models with representations and policy pre-trained by ISCM. 4)
ISCM-PR: models with ISCM pre-trained representations but a re-initialized policy. 5) DDPG: models
without pre-training.
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Figure 4.5: Episode rewards in fine-tuning stage are accumulated by base DDPG learners that are
initialized differently. 1) ISCM: fully pre-trained module with a discrimination auditory encoder.
2) ISCM/PR: pre-trained representations (but policy re-initialized) with a discrimination auditory
encoder. 3) ISCM/Reg: fully pre-trained module with a regression auditory encoder. 4) ISCM/Reg-PR:
pre-trained representations (but policy re-initialized) with a regression auditory encoder.

regression) rather than a scalar (for discrimination) is believed to have a higher
capacity of information, we find the discriminator setup (green curves) achieves
a comparative performance with a regressor (red curves), while being simple to
implement. Similar findings can also be found in recent works [Gan+20a] where
clustered auditory events are being predicted instead of regressing sound features.
It may result from the following reasons: 1) impact sound presents not much more
information than a deduction of event occurrence; 2) simulated sound is still far
away from perfect, such that vision, sound, and dynamics are not matched well as in
reality. Future work will include construction of more complex environments and
sim-to-real adaptations to investigate more on these research questions.
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4.5 CONCLUSION

Sound is one of the most common and efficient modalities, but is yet less considered
for learning either simulated or real-world robotic manipulations. Unlike many of
the curiosity-driven RL variants, especially the ones combined with audio that pay
attention to non-robotics applications such as playing Atari games, we are focusing
on investigating how robots can benefit from exploring multimodal environments. In
this chapter, the importance of unsupervised representation learning and of active
exploration is addressed. We further propose the ISCM architecture to use physics-
based sound as guidance regarding both aspects. Our experiments demonstrate that
a sound-guided reinforcement learner is more active and excels in forming sufficient
as well as stable representations over vision-only baselines.

4.6 LIMITATIONS AND FUTURE WORK

Although this work employs advanced physics-based sound simulation to evaluate
the proposed ISCM architecture, its applicability and generalizability to real-world
scenarios remain to be explored, as real-world sounds are often complex, noisy, and
uncertain. Due to the simplicity of the current environment, the agent’s capacity for
self-determined exploration and learning is limited. Future work in more complex
settings may foster greater self-determination, allowing agents to move beyond
event-based cues to interpret semantically meaningful signals and discover emergent
behaviors. This research direction will be further discussed in Chapter 7 “Agentic
Skill Discovery” on page 99.



INTERACTIVE MULTIMODAL
PERCEPTION USING LARGE
LANGUAGE MODELS

World Models + Semantics + Self-determination

To address Objective Il, i.e. “to develop an interactive multimodal perception framework
in which the agent actively gathers, integrates, and semantically interprets diverse sensory
inputs, enabling grounded semantic understanding and context-aware decision-making
in complex environments.”, this chapter introduces an interactive exploration strategy
built on top of LLMs to leverage multimodal cues, including vision, audio, tactile,
and weight.

As discussed in Chapter 4, integrating multimodal cues has been highly effective
for both representation learning and decision-making, enabling agents to interact
more effectively with their environments. However, Reinforcement Learning
(RL) methods applied previously are often data-hungry and require a large
amount of data to learn relevant knowledge of the environment. In contrast,
planning methods based on LLMs leverage off-the-shelf knowledge, e.g. world
modeling in semantic space (i.e. natural language representations), and reasoning
abilities acquired through large-scale training. These models can integrate multiple
modalities and reason about interactions in a self-determined manner, enabling
both intrinsic motivation and self-regulation through closed-loop reasoning based
on environmental feedback. This offers a compelling alternative to conventional
approaches that depend on costly data collection or manually designed structures.

Programming robot behavior in a complex world faces challenges on multiple
levels, from dextrous low-level skills to high-level planning and reasoning. Recent
pre-trained Large Language Models (LLMs) have shown remarkable reasoning
ability in few-shot robotic planning. Advanced knowledge and reasoning abilities
inside large foundation models enable embodied agents to a dramatic degree of
generalization, promising the extendibility to planning in unforeseen environments
and tasks. However, it remains challenging to ground LLMs in multimodal sensory
input and continuous action output, while enabling a robot to interact with its
environment and acquire novel information as its policies unfold. For example, in a
robotic manipulation task, an agent might first use vision to identify an object and
then rely on tactile feedback to assess its texture or stability. By integrating these
sensory signals, e.g. learning a joint representation of them, the agent can make more
accurate predictions and decisions, thereby enhancing its ability to interact with the
environment. Understanding and modeling the physics of the world is crucial for
task completion. Large foundation models, e.g. LLMs and Vision Language Models
(VLMs), trained on vast amounts of knowledge and equipped with reasoning abilities,
exhibit in-context modeling of the environment at a semantic level.

To address these challenges, Multimodal environment chatting (Matcha) agent, an
interactive perception framework, is therefore proposed with an LLM as its backbone,
whose ability is exploited to instruct epistemic actions and to reason over the resulting
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multimodal sensations (vision, sound, haptics, proprioception), as well as to plan
an entire task execution based on the interactively acquired information. Figure 5.1
on the next page shows the conversational interaction process for perception and
decision-making. The framework is verified in a robot interaction scenario built with
multimodal cues being accessible, whereas observations from each modality can only
provide partial information to solve a given task, necessitating a robot to decide on a
range of epistemic actions in order to sample sensory information among multiple
modalities, before being able to execute the task correctly. Our study demonstrates
that LLMs can provide high-level planning and reasoning skills and control interactive
robot behavior in a multimodal environment, while multimodal modules with the
context of the environment state help ground the LLMs and extend their processing
ability. The project website can be found at https://matcha-agent.github.io.

5.1 INTRODUCTION

How do humans perceive the surroundings to uncover latent properties?

Suppose you are presented with an uncommon object in a strange shape and of
unknown material, you may explore its properties in both passive and active ways,
if possible, e.g. by observing the geometry, touching, and even knocking on the
surface in order to deduce its exact functionalities from the feedback. Unnecessary
explorations, which could be essential for other scenarios such as smelling, will not
be performed in this context unless something counterintuitive happens. We humans
naturally perform these multimodal observations and examinations in daily life through
common sense and established knowledge, and over time we adapt with the accumulation
of experience [Bar+06].

In this work, we show that this is also possible for a robot well-equipped with multiple
sensors and LLMs. An environment may be filled with rich content, and the robot
can be overwhelmed with diversified sensory stimuli. An intelligent robot should (i)
selectively attend to relevant stimuli, avoiding unnecessary distraction by irrelevant
details; and (ii) generate appropriate responses to the perceived information within
the context of the task at hand.

Interactive Multimodal Perceptions

Like humans, robots can perceive the environment in either a passive or an interactive
way [KNK21]. Passive perception refers to methods such as visual or auditory moni-
toring, enabling robots to efficiently gather information without actively interacting
with the environment. However, passive perception has inherent limitations, the
most notable being its inability to effectively address epistemic uncertainty, the type of
uncertainty arising from a lack of knowledge [CK23].

Epistemic uncertainty inevitably arises from diverse sources, e.g. from the ambiguity
in human instructions, from low-resolution sensing (e.g. reduced image size for
convolution), or from insufficient modalities. Many of them can only be reduced with
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[ Pick up the plastic block ]
O==

The scene contains [green block,
orange block, yellow block]

knock_on(yellow block) } \

|
It sounds silent.

The material cannot be certainly

confirmed according to the impact
sound. It could be plastic with a 47%
chance, or ceramic with a 35%
chance.

@ | picked up the orange block
because the sound from knocking
was inconclusive, but the weight
and feel were both consistent with 6
a plastic cube.

Figure 5.1: Upon receiving a human instruction, the robot recurrently “chats” with the environment to

obtain sufficient information for task completion. An LLM generates action commands to interactively
perceive the environment and, in response, the environment provides multimodal feedback (MF)
through dedicated multimodal perception modules.

interactive perception, in which a robot actively interrogates the environment to increase
accuracy and even uncover latent information. For example, when being asked to
deliver a steel screw instead of one with a similar color & shape but made of aluminum,
an assistant robot may need to locate possible candidates with passive vision and
turther, interactively, resort to a weighing or a magnetic module for confirmation.

Despite the promising advantages, interactive perception is less common than the
passive manner because it entails increased complexity [Li+23c]. Efforts are needed to
design a mediating system to handle various sensory data and to adapt to changes in
the conditions of both the robot and the environment, such as a new robotic module
being available or the involvement of novel objects.

Chatting with the Environment

LLMs have been showing incredible potential in areas besides robotics [Ahn+22;
Cui+23; Lyn+22; Mia+23]. Human knowledge that resides in LLMs can help a
robot abstract and select only suitable features, e.g. relevant to the region of interest
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or informative modalities, to simplify the learning process. Moreover, in terms of
generalizability, the knowledge of LLMs allows a behavioral agent to adapt efficiently
to novel concepts and environment structures. For instance, when being asked to use
one adjective for each to describe how a sponge and a brick feel, ChatGPT' will respond
with “soft” and “hard” respectively. This is helpful for a robot with a haptic sensing
module to distinguish between these two novel, never-seen objects.

LLMs are usually generative models that predict tokens to come, but with certain
designs, e.g. conversational prompts, LLMs are capable of generating chat-like texts.
This allows their integration with a robot to not only plan with respect to a robot’s built-
in ability [Zen+23a; Ahn+22] but also respond according to environment feedback.
However, they cannot directly process application-specified raw multimodal data.
We resort to modular perceptions for each modality that are separately trained before
being plugged into the LLM backbone. Each module semantically translates the
resulting multimodal sensations into natural language that can be understood by
LLMs and processed in a unified manner in a semantic space.

Our contributions are threefold. Firstly, we establish a manipulation scenario with
multimodal sensory data and language descriptions. Secondly, we propose Matcha”
agent, where an LLM is prompted to work in a chatting fashion, thus having
continuous access to environment feedback for contextual reasoning and planning.
Finally, we show that LLMs can be utilized to perform interactive multimodal
perception and behavior explanation. Accordingly, an interactive robot can make
reasonable and robust decisions by resorting to LLMs to examine objects and clarify
their properties that are essential to completing the task (see Figure 5.1 on the
preceding page ).

5.2 RELATED WORK

5.2.1 Multimodal Learning and Robotic Information Gathering

Research in multimodality in robotics nowadays attracts growing attention [Akk+23]
because of its success in, for example, audio-visual learning [Zha+22; Wei+22b;
Zhu+21] and language-visual learning [SMFE22a; SMF22b]. It is beneficial and some-
times essential for a robot to learn from multimodality because one modality could
carry some distinct information, e.g. tones in speech, that cannot be deduced from
another [Lee+22].

Capable robots require managing one or several sensors to maximize the information
needed for disambiguation [Bar+06] regarding a specific goal. This problem is known
as active information acquisition [Atal5; WKS21] or, particularly in robotics, robotic
information gathering [RMH?21], where robots have to properly select perceiving actions
to reduce ambiguity or uncertainty. Besides handcrafted rules, some information

1: https://openai.com/blog/chatgpt/
2: By the name of a type of East Asian green tea. To fully appreciate matcha, one must engage multiple
senses to perceive its appearance, aroma, taste, texture, and other Sensory nuances.
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advantage measures, e.g. entropy or information gain, are usually employed to maxi-
mize [Atal5]. However, the combination of multimodal data is usually challenging.
There are studies on fusing multimodal data according to their uncertainties, but
this may face numerical instability and is difficult to transfer from one application to
another [Wan+22]. Instead of directly fusing the multisensory data in a numerical
space, we propose to use multimodal modules to translate them into natural language
expressions that an LLM can easily digest.

5.2.2 Large Language Models in Robotic Planning

Recent works use LLMs to decompose high-level instructions into actionable low-level
commands for zero-shot planning. They use LLMs as a planner to autoregressively
select actions that are appropriate with respect to the instruction according to
application-based prompts [Zen+23a], the semantic similarity between mapped pairs
[Hua+22], or the contextual language score grounded on realistic robot affordances
[Ahn+22]. Other approaches ground LLM knowledge in human interaction [Cui+23]
or various other fields where domain knowledge is distinct and modular frameworks
can be composed via language as the intermediate representation [Pat+19; Mia+23;
Zen+23a]. However, these works design a robot to form a planning strategy with
built-in knowledge, rather than interact with the surroundings and make decisions
based on actively collected information from the environment. There is no feedback loop
for their LLMs to perceive the environmental cues, such that only “blind” decisions
are made in the robotic unrolling process. In contrast, our interactive architecture
allows LLMs to access the environment state from multiple modalities for adaptive
planning.

5.3 METHOD: MATCHA AGENT

5.3.1 Architecture

We propose Multimodal environment chatting (Matcha) agent which is able to inter-
actively perceive (i.e. “chat” with) the environment through multimodal perception
when the information from passive visual perception is insufficient for completing
an instructed task. The epistemic actions are executed autoregressively until the
agent is confident enough about the information sufficiency in that situation. Fig-
ure 5.2 provides an overview of the architecture of Matcha agent. It is a modular
framework of three parts: an LLM backbone, multimodal perception modules, and a
low-level command execution policy. They connect to each other with language as
the intermediate representation for information exchange.

To be specific, given a high-level instruction, especially one that Matcha cannot
directly perform with the command policy alone, the LLM backbone will reason the
situations and select the most contextually admissible perceiving command to gather
information. After the execution of the policy module, the resulting environment
response is processed by a correspondingly evoked multimodal perception module



74 | 5 Interactive Multimodal Perception Using Large Language Models

—_—
—

- Cons LLMs ACTION MOTION PLANNING
- CONTEXT
- SKILLS |

W

8 VISUAL DETECTION

|

8 SOUND CLASSIFY  —— :

S ® Ve

f— Y}, WEIGHT MobuLE _,

3 ENVIRONMENT

)

= “ HAPTIC MODULE - INTERACTION

Figure 5.2: Overview of Matcha. The framework contains LLMs as backend, multimodal perception
modules, and a language-conditioned control policy implemented with motion planning. These
components communicate with each other with natural language as the intermediate representation.
Three types of language information are involved in composing the prompt: 1) language instruction,
environment context, and robot capabilities, and 2) LLMs’ decisions and resultant feedback from
multimodal perceptions in textual representation. The switch indicates possibly evoking paths of the
interactive perception decided by LLMs.

into semantic descriptions, e.g. “clinking sound” by an auditory module after the
“knock on” action. Finally, the executed command itself as well as the environment
state description are fed back to the LLM for future planning. The LLM is employed in
a few-shot prompting manner without any need for fine-tuning, being independent
of other components. Policy and perception modules can be separately designed
and plugged into the framework whenever needed. Intrinsically linked by natural
language, this framework is flexible and can scale and adapt easily to possible robotic
upgrades or diverse robotic scenarios.

5.3.2 Multimodal Perception and Execution Policy

To demonstrate our framework, we implement a language-conditioned policy using a
set of widely accessible and practical modalities. Other varieties for specific scenarios
can also be easily integrated due to the flexibility of modularity of the framework.
Detailed experimental implementations will be introduced in § 5.4.

Vision. Usually, a monitoring camera is the cheapest option for a robot to passively
perceive such rich information. We employ pre-trained ViLD [Gu+22], an open-
vocabulary visual detection model, as the vision perception module to detect objects
with their categories and positions in the scene. Then, the results will be delivered to
a policy module for identification and execution. Meanwhile, a prompt template “The
scene contains [OB]1, OBJ2, ...]” is applied to construct a scene description, which
enables the LLM to have an initial impression of the environment. Typically, pre-
trained vision models are not designed to discern attributes that extend beyond those
easily extractable from topology or textures, such as material composition. The use of
low-resolution images for expedited processing exacerbates the loss of information
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concerning such attributes. In our experiments, we prioritize demonstrating the
integration of diverse modalities instead of extensively fine-tuning ViLD to encompass
all aspects.

Impact Sound. Impact sound can provide valuable information for robotic multimodal
learning [Zha+22]. However, passive sound collection, e.g. through an end-effector-
mounted microphone, predominantly captures background noise unless the robot
actively generates informative sounds through intentional actions, such as the "knock
on" behavior in our implementation. This auditory perception module classifies the
consequent impact sound into a description and then wraps it in a natural language
form. Actually, a clip of audio may contain sufficient information for some of the
usage, e.g. to distinguish metal from glass [Dim?22]. However, it may not be the case
for other scenarios, for example, to select the only targeted one among a set of similar
“dull” sounds that could indicate either plastic, wood, or hard paper. Therefore,
we showcase both of the designs, i.e. one with a specific material classification
(e.g. “glass”) and another with solely low-level and non-distinct descriptions (e.g.
“tinkling”). The modular output is also wrapped with templates to a full sentence,
such as “It sounds tinkling”, to guarantee processing consistency with LLMs.

Weight. Weight measurements can usually be obtained via the torque exerted on the
robotic arm subsequent to the execution of a “weighing” action. It can be simplified
by its weight in simulation. In simulation, this measurement is simplified by directly
using the object’s mass value. The weight information is directly translated into
natural language like “It is lightweight” or “It weighs 30g”. Note that with implicit
clarification of the scenario and the type of objects that a robot is manipulating, LLMs
can interpret numerical values into contextual meanings.

Haptics. Haptic perception is essential for human interaction with the physical
world and offers valuable potential for robots to infer properties such as hardness,
texture, and compliance. However, high-resolution tactile sensors are often expensive
and impractical for many applications. Therefore, in this work, only highly abstract
descriptions of force-torque feedback are used following a touch action on an object,
e.g. "It feels soft” or “It feels hard and smooth”.

Execution Policy. The execution policy is conditioned on the generated command
by an LLM and the visual information provided by the vision perception module.
Once an actionable command together with an identified target is suggested by the
LLM, the policy module locates the targeted object and executes a certain action.
Meanwhile, the environment feedback will be concurrently collected for multimodal
perception modules for further post-processing as demonstrated above.

5.3.3 Prompt Engineering

An issue of grounding LLMs in robotic scenarios is that some of the suggestions
generated by LLMs are not executable for a specific robot [Ahn+22; Hua+22], which
stems from the fact that LLMs are pre-trained with extremely large open-domain
corpora, while the robot is constrained by its physical capability and application
scenarios, e.g. a tabletop robot is not able to perform a “walk” action.
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In this work, the LLM is applied for few-shot planning [Mia+23; Zen+23a], in which
all the executable commands are defined together with several task examples as the
initial “chat” history. See Table 5.1 for the leading prompt which enables the LLM
to become grounded in the specific scenario and follow the contextual patterns for
commanding the execution policy. We found that only language models that are large
enough can follow the patterns in the prompt strictly, i.e. only generate commands
that have been defined in strictly case-sensitive letters and with the same amount of
allowed parameters for each, while small ones can hardly obey this constraint and
generate unexpected commands, which brings extra demands for tuning. As the
action planning is performed by LLMs constrained by a given prompt, the proposed
Matcha agent demonstrates high flexibility and generalizability upon the possible
incorporation of novel actions or perception modules into the system.

Table 5.1: The snippet of the 5-shot prompt setting. (The other four exemplars are omitted here due
to the high similarity).

The following are conversations with an Al to complete tasks that require active information
gathering from multimodalities. Otherwise, the materials of objects are unknown, and it
will be ambiguous for an Al to choose the right object. Al has the following skills to help
complete a task:

1. “robot.knock_on()”: to knock on any object and hear the sound to determine the material
it consists of. Most of the materials can be determined by this skill.

2. “robot.touch()”: to touch with haptics sensors. It is useful for some of the materials.

3. “robot.weigh()”: to weigh objects if the knocking method is not proper.

4. “robot.pick_up()”: to pick up the targeted object. After this skill is performed, the episode
will terminate with the result.

Note that the tasks are always set to be accomplishable, and the selected skill should start
with a “>" symbol.

Human: “pick up the glass block" in the scene contains [yellow block, blue block, green
block]

ALl robot.weigh(yellow block)

Feedback: It weighs light.

Al robot.weigh(blue block)

Feedback: It weighs a little bit heavy.

Al: robot.knock_on(blue block)

Feedback: It sounds tinkling.

Al robot.pick_up(blue block)

done()

5.4 EXPERIMENTS AND RESULTS

We conduct experiments in simulated multimodal manipulation scenarios to evaluate
the proposed Matcha framework to study the following research questions regarding
Objective II:

» R.Q. 5.1 Can Matcha integrate multimodal perceptions at the decision level?

» R.Q.5.2 How does the level of abstraction in submodule outputs influence the
performance?

» R.Q. 5.3 How do different scale LLMs affect the performance?
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5.4.1 Experimental Setup

Task and Multimodal Scenario. We evaluate Matcha in an object-picking task: a
robot is instructed to pick up an object that is referred to by a latent property, i.e.
material, which is, however, not visually distinguishable under our settings. Tasks
are intentionally designed such that information from a single modality could be
insufficient to determine object properties, while other perception sources can provide
compensations to reduce or eliminate this ambiguity. For example, glass and metal
surfaces could exhibit similar hard and smooth properties upon contact, in which
case differences in impact sound can aid in further differentiation. Table 5.2 lists
variational multimodal descriptions of the materials. These properties are wrapped
as natural language sentences before being fed back to the LLM.

Robot Setting. Experiments are conducted in CoppeliaSim® simulations with the
NICOL robot* [Ker+23], where several blocks in various colors, materials, weights,
and surface textures are randomly selected and placed on the table next to a brown
container (see Figure 5.1). The ViLD [Gu+22] model is meant to be easily generalized
to describe complex scenes despite the simplicity of the object setting here. After
detection, the objects are represented universally by their name, which serves as a
parameter for the action function to identify. Objects with the same color will be
distinguished as “.. on the left/right” given the simplicity of avoiding more than
two duplicated colors for the same shape. The desktop robot is equipped with two
Open-Manipulator-Pro arms”, but only its right arm is activated to operate. It is capable
of executing actions in [“knock on” “touch” “weigh” “pick up”] with a parameter
to indicate the targeted object. The first three actions correspond to the interactive
perception of impact sound, haptics, and weight, respectively, and the last action
finalizes the task by picking and transporting an object into the box. Each instruction
is guaranteed to be achievable with the capability of the robot.

Multimodal Simulation. Due to the lack of support for physics-driven sound and
deformable object simulation in Coppeliasim, we have implemented reasonable
alternatives. For the haptics of objects, we simplify haptic perception by assigning
variational descriptions regarding their material, e.g. fibrous objects are usually
perceived as “soft” and a plastic object can be either “soft” or “hard”. Note that
advanced implementations can also be achieved using a neural network, as is used in
the sound perception module when haptic data for deformable objects is available.
For the impact sound, we split the YCB-impact-sound dataset [Dim22] into training
and testing sets and augment them with tricks such as shifting, random cropping,
and adding noise. The training set is used to train our auditory classification neural
networks, while the audios in the testing part are randomly loaded as an alternative

3: For further details, refer to § 2.3.2 “CoppeliaSim” on page 21 and visit https://www.
coppeliarobotics.com/. In Chapter 4, impact sound simulation is carried out using ThreeDWorld
(cfr. § 2.3.1) in an online setting where the subtle physics-driven differences matter as the focus is on
joint representation and policy learning. In contrast, this chapter emphasizes decision-level fusion and
multimodal reasoning, employing offline sound simulation with audio recordings from a real-world
robot dataset is sufficient and reliable.

4: See also §2.2.1 “NICOL” on page 18 for details.

5: https://emanual.robotis.com/docs/en/platform/openmanipulator_p/overview/
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to run-time impact sound simulation for the materials mentioned,

Sound can be informative, though not perfect, for determining materials [Dim22].
Besides showing the mediating ability of multiple modalities by the LLM, we further
investigate its reasoning ability by employing indistinct descriptions instead of exact
material labels.

» Distinct description: the sound module describes sound feedback by the corre-
sponding material name and its certainty (in percentage) from the classification
model, e.g. “It is probably glass” or “It could be plastic with a 47% chance,
or ceramic with a 35% chance” The distinct description setting is more task-
oriented, and it examines the robot’s ability to mediate multiple sensory data
for disambiguation.

» Indistinct description: we listed some commonly used indistinct sound descrip-
tions in human communications in Table 5.2, e.g. using “dull” to describe
the sound from a plastic block and “tinkling” to describe the sound for both
ceramic and glass objects. This setting is more task-agnostic and thus has the
potential for generalization. Moreover, it compels the LLM to infer “professional”
material terminology from ambiguous yet multimodal descriptions.

Language Models. The online OpenAl text-davinci-003 API° is applied as the LLM
backend because it demonstrates robust instruction-following ability and outstanding
reasoning performance’. We also evaluate with a weaker but far less expensive LLM
text-ada-001, a GPT-3 model which is usually fast and capable of simple tasks,
under the same setting as comparison.

5.4.2 Results

We test the proposed Matcha agent in 50 randomly generated scenarios for each
setting and report the success rate.

ResearcH QuesTioN 5.1 Can Matcha integrate multimodal perceptions at the
decision level?

We found that a pre-trained impact sound classification model achieved an average
accuracy of 93.33%. When considering the scenario where the robot randomly knocks
on one of three objects and uses the sound module to identify the target material, the
theoretical success rate is calculated as 89.18% (computed from %p + §p2|p=93,33%%,
where p is the accuracy of the sound module). Other modalities are generally less
distinctive than sound, making it impractical for humans to manually craft fusion
rules that significantly improve this baseline. Therefore, this theoretical success rate
with only the sound module serves as both a practical upper bound and a baseline

6: https://platform.openai.com/docs/models/gpt-3

7: The code-davinci-002 is not chosen because it is the common sense instead of the ability of code
completion that matters more to the active perception. At the time this experiment was carried out, the
text-davinci-003 model was the state-of-the-art GPT-3.5 model available; while the later released
ChatGPT or GPT-4 model showcases the impressive improved abilities of reasoning, future works
will explore the potential of these models.
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Table 5.2: Descriptive properties of different materials used by Matcha.

Materials Impact Sound Haptics Weight
Metal ¢ resonant and ¢ hard and cold ¢ heavy
echoing ¢ rigid, cold, and smooth ¢ 300g
* metallic
* ringing
Glass ¢ tinkling ¢ hard ¢ a little bit heavy
¢ tinkling and brittle ~ ® hard and smooth * 150g
¢ cold and smooth
Ceramic e clinking and rattling e hard * average weight
* rattling * tough * not too light / heavy
¢ tinkling and brittle * 100g
Plastic ¢ dull ¢ hard ¢ light
¢ muffled * soft * 30g
Fibre * muted * soft ¢ lightweight
® silent ¢ flexible ¢ underweight
¢ 10g

for evaluating Matcha’s performance if it were to rely solely on impact sound. From
Table 5.3, Matcha achieves a relatively higher success rate of 90.57% compared to the
ideal theory baseline, indicating its effective utilization of compensatory information
from other modalities in addition to sound.

ResearcH QuesTioN 5.2 How does the level of abstraction in submodule outputs
influence the performance?

Even when provided only with indistinct descriptions of impact sounds, Matcha
achieves a success rate of 56.67%, significantly above the chance level of 33.33%
(random selection among three options). This demonstrates the system’s capacity
for few-shot deduction using vague or imprecise language. Failure case analysis
reveals that materials like glass and ceramic are often confused due to their similar
descriptions across modalities such as sound, haptics, and weight. These challenges
are mitigated when using distinct descriptions, where the sound classification network
can directly predict the material, preserving more information in the translation from
perception to language. While Matcha shows strong reasoning capabilities, these
results underscore the importance of carefully designed, sufficiently specific modular
outputs. Excessive abstraction can lead to ambiguity, reducing the effectiveness of
multimodal integration in interactive perception tasks.

ResearcH QuesTtion 5.3 How do different scale LLMs affect the performance?

We observe that only strong, large LLMs (GPT-3 text-davinci-003 in our experi-
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Table 5.3: Matcha task success rate with various LLMs.

LLM Type of Description Success Rate
Indistinct 19.05%
text-ada-001 Distinct 28.57%
. Indistinct 56.67%
text-davinci-003 Distinct 90.57%

Figure 5.3: A successful example in which the robot deduces “fiber” material with indistinct
descriptions of impact sound.

ments)® can perform the task following the primary prompt as we defined, while
weak ones possibly generate commands that are not executable and show degraded
performance (see Table 5.3). For example, GPT-3 text-ada-001, a smaller model in
the GPT-3 model series, may generate commands like “robot.knock_on(metal block)”
or “robot.weigh(yellow block, blue block)”, which are not compatible with the design
interface of robot skill functions due to mismatches in parameter types.

5.4.3 Case Studies

We provide case studies to showcase the interactive perception ability of Matcha in
multimodal environments. Following the convention of this chapter, texts containing
information from humans, LLMs, and the environment are indicated in red, green,
and blue, respectively. The case in Figure 5.3 demonstrates that the agent can infer
latent material properties from multimodal yet ambiguous descriptions. During the
planning process, the agent decidedly terminates exploration of the “red block” and
instead engages in interacting with the “green block” exhaustively for a comprehensive
examination. Common sense and, moreover, established knowledge in the LLM
enables Matcha to efficiently interact with the environment. Matcha’s proficient
behaviors provide evidence of effective reasoning, as it aligns with the subsequent
explanation provided by the LLM, namely, that fiber can often be considered “flexible”
rather than “cold and smooth”. The example depicted in Figure 5.4 presents a
fascinating observation: the impact sound of the “orange block” suggests it is more
likely to be plastic than metal, but Matcha accurately distinguishes it from plastics

8: At the time of our experiments, text-davinci-003 was the most advanced GPT model publicly
available.
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Figure 5.4: A successful example with a distinct description of impact sound. This example shows
that by leveraging multimodal perception, LLM rectifies the misclassification that may occur when
relying solely on sound modules.

Figure 5.5: An example in which the agent fails to distinguish glass and ceramic in the setup of using
indistinct descriptions of impact sound.

after engaging in the interactive perception of weight and haptics. This showcases
the potential of multimodal perception to improve classification accuracy. Figure 5.5
provides a failure case with indistinct descriptions where the robot picks up a ceramic
block when asked to pick up the one made of glass. The underlying cause of this
failure is the sensing similarity between glass and ceramic, which creates difficulty in
resolving epistemic uncertainty.

5.4.4 Discussion

Weak LLMs, e.g. ones without fine-tuning on instruction alignment [Ouy+22], may
not have sufficient capability for precise planning, and thus may require carefully
engineered prompts or other grounding techniques. On the other hand, strong
LLMs exhibit impressive in-context learning [Zha+23b] abilities. These observations
highlight the potential of leveraging knowledge within strong LLMs, as it enables
the successful execution of tasks that were previously deemed infeasible. LLMs can
derive significant advantages from utilizing common knowledge, being robust to
various instructions regardless of their changes in synonym, linguistic structure or
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even semantic meanings out of the scope that the robot is initially designed within,
e.g. an instruction variation from “the metal block” to “a block that may be suitable
for cracking a nut”, in which the robot has to establish a meaningful connection
between the object’s multimodal perceptions and the required utility. Nevertheless,
the reasoning trace may not always align with human expectations. There are cases in
which LLMs may prematurely draw conclusions due to their limited logical reasoning
ability, particularly when faced with a task that requires reasoning from a long list of
facts.

5.5 CONCLUSION

The Matcha framework achieves strong generalizability by leveraging the com-
monsense knowledge in LLMs, whereas control algorithms like those trained with
Reinforcement Learning (RL) [Li+23c; Sin+20] require extensive data to learn cross-
modal commonsense [Sin+20] and remain less efficient and generalizable. Their
potential for integration and enhancement with other fields has attracted growing
attention from different research areas. In this work, we demonstrate the feasibility
of using an LLM to realize interactive multimodal perception. We propose Matcha,
a multimodal interactive agent augmented with LLMs, and evaluate it on the task
of uncovering object-latent properties. Experimental results suggest that our agent
can perform interactive multimodal perception reasonably by taking advantage of
the commonsense knowledge residing in the LLM, being generalizable due to its
modularity and flexibility.

5.6 LIMITATIONS AND FUTURE WORK

Abstraction. Representing the real world with natural language can be limited by
environment dynamics and the feasibility of abstracting desired behavior with natural
language. The vision module applied in this work is a separable visual detection
module, which is unable to describe the scene with fine-grained details. This brings
the requirement of vision-enabled LLMs [Zhu+23; Ton+22; Zit+23], built on which
the reasoning can be malleable.

Fine-tuning and Reasoning. While large LLMs excel at complex tasks, their high
computational and memory demands make local deployment costly. Future work
will focus on distilling domain-specific knowledge into smaller, efficient models for
greater flexibility and control. Reasoning, crucial for long-term planning and complex
decision-making, will be further explored in Chapter 6.



ENHANCING REASONING VIA
LOGIC-GUIDED INFERENCE
SCALING

Semantics + Self-determination

To address Objective 111, i.e. “to enhance agent reasoning abilities to interpret complex
instructions and make informed decisions”, this chapter introduces the application
of logic principles to guide LLM reasoning, trading inference-time compute for
better reasoning performance.

Reasoning is one of the emergent abilities of advanced LLMs when scaled large
enough. It can be regarded as exploration in semantic space, where an agent ac-
tively explores possible solutions with self-determination, since complex reasoning
process often involves diverse sampling and self-verification (the second phase
of self-determination following intrinsic motivation), until reaching a semantic
consistency. Since LLMs become the core of nowadays intelligent agents, the en-
hancement of their reasoning ability directly amplifies the usability and robustness
of Al agents, in no matter virtual or embodied environments. In Chapter 5, LLMs
are utilized to reason and make decisions with the contextual information of the
environment. However, the reasoning ability of LLMs is still limited, especially
when it comes to complex tasks that require multi-step reasoning.

With the impressive performance of reasoning models such as OpenAl-ol [Ope24]
and DeepSeek-R1 [Dee+25; Dee+24], as well as other emerging counterparts, the
development of advanced large reasoning language models, whether through
fine-tuning or inference-time scaling [Sne+24; Mue+25; Gei+25; Liu+25b], has
become a prominent research focus. The method proposed in this chapter follows
the latter approach.

Advancements in LLMs have demonstrated remarkable generalizability across a wide
range of domains. However, their reasoning capabilities, particularly in complex
tasks requiring multi-step reasoning, remain a significant challenge. Recent work on
enhancing reasoning in LLMs, especially in domains such as mathematical problem
solving, typically follows one of two major approaches:

» Large-scale Reinforcement Learning (RL), represented by DeepSeek-R1-Zero
[Dee+25], which deploys solely RL algorithm with rule-based reward functions'
to explore the reasoning space, resulting in strong reasoning models with an
emergent “aha moment”, where the model presents rethink patterns in an
anthropomorphic tone.

» Inference-time scaling (or test-time scaling), which refers to ways of encouraging
LLMs to explore solution space with additional computational resources during
the inference phase (i.e. when the model is used to generate outputs) to improve

1: Instead of using a pre-trained reward model in, for example, Internally Rewarded Reinforcement
Learning (IRRL) [Li+23c], Reinforcement Learning from Human Feedback (RLHF) [Chr+17; Cas+23;
Ouy+22], or Reinforcement Learning from AI Feedback (RLAIF) [Lee+24] paradigms, as a guarantee
of reward signal reliability.
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the quality of responses, without tuning the model itself. A simple yet efficient
example is Chain-of-Thought (CoI') prompting [Wei+22a], which leverages the
in-context learning of LLMs to ability invoke a series of intermediate reasoning
steps before reaching a final answer.

While the RL-based approach is powerful, it demands substantial data and compu-
tational resources. In contrast, inference-time scaling is more efficient and broadly
applicable to existing models. However, a key limitation of current inference-time
methods is their limited integration of symbolic reasoning, such as logic-based prin-
ciples, into the reasoning process. Despite the vast amount of internalized knowledge
in LLMs, they often fail to utilize this knowledge effectively to construct coherent
and logically consistent reasoning chains. Prior research in context distillation has
focused on extracting internal knowledge to enhance preference alignment, typically
by eliciting contrastive responses using specially designed prompts [Yan+24; Li+25b].
Yet, efforts to distill knowledge specifically for improved reasoning remain under-
developed. To address this gap, this chapter introduces Logical Thoughts (LoT), a
method designed to elicit logically contrastive reasoning traces and fuse them into a
coherent, unified reasoning chain.

LoT is an inference-time scaling method built upon Col, which generates a sequence
of intermediate reasoning steps leading to a final answer. However, longer reasoning
chains are often more susceptible to error propagation [Wu+25]; that is, a single
mistake in an intermediate step can compromise the entire reasoning process. This
vulnerability motivates the incorporation of a self-determined verification mechanism
to assess and refine each step of the chain. Particularly, Lol introduces Reductio
ad Absurdum to systematically verify and correct reasoning steps in a step-by-step
manner. Experimental evaluations conducted on language tasks in diverse domains,
including arithmetic, commonsense, symbolic, causal inference, and social problems,
demonstrate the efficacy of enhanced reasoning by logic. The implementation of LoT
is publicly available at: https://github.com/xf-zhao/LoT.

LoT

Figure 6.1: An overview of CoI (chain-of-thought prompting, [Wei+22a]) and LoT (ours). In CoT,
the failure of entailment (¢) makes the rest of the deduction untrustworthy (- ), impeding the overall
success of the deduction. In contrast, Lol is designed to think-verify-revise: it adopts those who
pass the verification (©) and revises (o) those who do not, thereby effectively improving the overall
reasoning capability.
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6.1 INTRODUCTION

LLMs exhibit remarkable capabilities in handling tasks that require common sense
reasoning or specialized domain knowledge, often giving the impression of near-
omniscience. Their effectiveness has been demonstrated across a wide range of do-
mains beyond traditional language processing [Bub+23; Yao+23b; Ahn+22; Zha+23c].
However, one major problem residing in generative LLMs yet to be solved is their
tendency to hallucinate wrong statements in a confident style [Ban+23]. A quick
example can be found by asking a non-internet-based LLM about very recent news,
i.e. it will too easily make up facts without hesitation.

An educated human with expertise in logical reasoning can systematically examine
words before coming to a conclusion. Unlike logical reasoning by humans, the logical
incompetence of deductions by LLMs makes their decisions untrustworthy. LLMs
may have a large number of logical concepts and tricks available, but fail to actively
utilize them in an organized manner. However, principles in logic well-adapted by
humans can leverage the reasoning ability of language models. Take a simple logic
reasoning task as an example: “If Tom plays football outside, then John will also join to
play; if John plays football, then Mary won’t go outside. Knowing that Mary is outside, is
Tom playing football?” Nine out of ten answers from ChatGPT? will conclude that
“we cannot conclude whether Tom is playing football or not”. However, with the help of
the knowledge that the contrapositive holds the exact same truth value as the original
proposition, we may prompt ChatGPT to “use contrapositive” to reason in another
way. Then it deduces correctly: “ ... Using the contrapositive of the first statement, if John
does not join to play (which we have deduced), then it implies that Tom does not play football
outside. Therefore, based on the given information and the contrapositives, it can be deduced
that Tom is not playing football.” Even though logical concepts are not new to an LLM,
the model initially struggles to incorporate them. See Figure C.1in Appendix C.1 for
the full conversation.

By prompting an LLM to utilize logical equivalence, i.e. expressing premises that
are logically equivalent but phrased differently in natural language, the original
statements can be reformulated in diverse ways, effectively fostering the exploration
of potential solutions. Motivated by the reasoning process in logic, we propose the
Logical Thoughts (Lol) prompting framework, a fully automatic reasoning paradigm,
to further self-improve the zero-shot reasoning” ability of LLMs, which not only lets
an LLM think step by step but also verify, step by step, according to the guidance via
the principle of Reductio ad Absurdum, and revise the reasoning chain if necessary to
guarantee a sound inference (see Figure 6.1 for an overview).

6.2 RELATED WORK

In order to unleash the power of a pre-trained generative language model, the quality
of the interaction prompts plays an important role.

2: https://openai.com/blog/chatgpt
3: Under the setting where no exemplars are provided in the prompts for in-context learning.
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6.2.1 Chain-of-Thought Prompting

Prior works show that LLMs have the ability to solve complex tasks but require
a proper strategy to unleash this ability, e.g. human-in-the-loop alignment tuning
[Ouy+22] and Chain-of-Thought (CoI) prompting [Wei+22a]. To generate a chain of
thought that decomposes the original problem into several small parts that a language
model can easily handle, CoT creates few-shot exemplars of a detailed reasoning path
that it lets the model follow. Least-to-most [Zho+23] explicitly prompts the LLM to
divide complex questions into sub-problems and solve them one by one. Moreover,
zero-shot-CoT [Koj+22] showcases the impressive effectiveness of simply attaching
the sentence “Let’s think step by step.” before any reasoning trace starts.

We build our approach under a zero-shot setting and integrate zero-shot-CoT as a
baseline to compare against. While existing Col-based methods focus on encouraging
the reasoning step to be concrete, but lack supervision of their faithfulness, we
propose a step-by-step verification mechanism.

6.2.2 Variational Prompting

As an auto-regressive model, the output of an LLM can be influenced by its input.
Therefore, there are many research endeavors on prompt variations. Summarizing
existing works, the reasoning procedure benefits from prompts that (1) are relevant to
the reasoning task, (2) are diverse in expression, (3) lead to decomposition of complex
tasks, (4) suggest grounding with known facts, and (5) result in progressive revision of
reasoning steps. In the design of Lol prompting, we selectively adopt these effective
prompt properties.

Relevance

An LLM can be easily distracted by irrelevant words in the prompt. A pre-selection of
context enhances the correctness of reasoning [CSH23; CS22; Lin+23]. Previous works
typically resort to an LLM (which can be either the LLM to train or an independent
one) to evaluate the relevance of facts and infer with the ones that contribute to a
reasoning step [CSH23; Lin+23]. Our verification of each reasoning step is conducted
by prompting LLMs to select relevant premises to deduct from.

Diversity

The collective intelligence from a set of reasoning paths (typically, sampling N times)
helps produce a reliable answer that is nearly consistent among these variants. Despite
the N-times increased cost, this ensemble approach has been widely combined
with other techniques for higher accuracy [Li+23b; Lin+23; Yao+23a; Zhe+23].
A single reasoning trace may be biased. In order to produce a set of reasoning
candidates, previous works resort to generating samples several times with the
same prompt [Wan+23b], or creating diverse prompts in the beginning for variants
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[Li+23b]. However, the ensemble-based approaches are both costly and inefficient.
The performance of their majority voting strategy can be limited since it is not a
guided, in-depth thinking strategy.

Decomposition

Automatically decomposing complex questions into simpler sub-questions enhances
the reliability and interpretability of reasoning processes, reducing reasoning errors
and increasing consistency. This strategy has been shown to significantly improve
performance in LLMs, as evidenced by the success of techniques such as Least-to-
Most Prompting [Zho+23], Zero-shot Col prompting [Koj+22], and other structured
prompting methods [Yao+23a; Wei+22a]. Decomposition also aligns well with human
problem-solving strategies, where breaking down a problem often leads to a clearer
understanding.

Grounding

External functions, e.g. a third-party calculator for mathematical problems [Sch+23],
information acquisition from Wikipedia [Yao+23b], or an affordance evaluation in
robotics [Ahn+22], can ground the generation to be meaningful. This verification
can be triggered under a specified condition or always be applied to the reasoning
process [Lig+24; Lin+23; Li+23b]. LoT is primarily inspired by a logical standpoint
to ground LLM generations with logical principles, empowering an LLM to argue
different possibilities. It suggests verification and also introduces revisions of the
suspected reasoning steps.

Revision

Revision (or refinement) can be regarded as a special kind of diversity, but it is
conditioned on the previous generation that provides hints. It re-examines the words
with a focus on their quality in terms of, for example, validity and conciseness
[Mad+23; Zhe+23; Wel+23]. It is an iterative generating process conditioned on
previous content. Many previous works actually benefit from this manner, though not
explicitly mentioned. For example, Progressive-Hint Prompting [Zhe+23] generates
consistent answers by progressively guiding the LLM with hints of accumulated
possible answers. It repeats the generation until the answer is deemed consistent with
the previous. Other works generate content conditioned not only on the previous
content but also on extra feedback [Mad+23]. To obtain a revision with high quality,
this guiding feedback should be specific and actionable. LoT avoids unnecessary
duplicating on non-controversial reasoning steps and only revises steps deemed
implausible, resulting in a chain that grows only when required (Figure 6.1 blue
circle). Besides, we employ a post hoc explanation [Jun+22] to provide constructive
suggestions for purposeful revisions.
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6.2.3 Neurosymbolic Models

Neurosymbolic models combine neural networks with symbolic representations
and reasoning techniques [WS00b; WS00a; GL20; Sar+22]. Their success stems from
their ability to leverage symbolic (structured) knowledge to enhance learning or
reasoning [Sar+22; GL20; Nye+21]. Unlike end-to-end black-box frameworks, these
neurosymbolic models are more interpretable and explainable because of their
transparency.

There exist works that adopt concepts from symboliclogic [Agl12] to establish a reliable
reasoning path [CSH23; Jun+22]. To solve binary question-answering problems, it
has been proposed to generate a post hoc explanation graph for a statement and
compute the relative relations to formulate a symbolic logic expression [Jun+22]. The
truth of the statement is thereby assigned by solving the satisfiability problem of this
symbolic expression. The Lol framework employs a controlled prompting strategy
that leverages logic rules and post hoc arguments to enhance error detection.

6.3 METHOD: LOT

As demonstrated in the contraposition example presented in § 6.1, when known
logical rules are utilized to achieve a logical equivalence, the resultant distinct natural
language expression affords LLMs a chance to engage in reasoning from an alternative
perspective.

A challenge is that the language model has to identify the inherent logical structures
tirst to know whether certain prior knowledge can be effectively applied. Moreover,
transforming everything from the real world into a symbolic expression is unrealistic.
The applicable scenario is limited because questions in many reasoning fields beyond
logic, e.g. mathematics problem solving, can hardly be expressed in symbolic logic.
Nevertheless, there is promise in incorporating concepts from logic that contribute
to the process of argument proof in order to construct a neurosymbolic framework
[GL20; CSH23] that facilitates a causal reasoning trace, i.e. the premises and leading
thoughts entail the thoughts that follow. Continuing with the success of “let the model
talk”, e.g. “let’s think step by step” in zero-shot-CoI [Koj+22], we further propose to
guide the conversation with logic for exploration of solutions. See Figure 6.2 for the
guiding diagram.

6.3.1 Reductio ad Absurdum

Self-checking is a challenging task for LLMs [Lin+23; Hua+24], and humans may
also struggle with it. In logic, an effective technique to establish a claim is known
as reductio ad absurdum, which involves an initial assumption and consequent
derivation of absurdity or contradiction.

Let P and Q denote two propositions. The relation between a premise P and its
conclusion Q can be expressed as P + Q. Here “+” is a syntactic turnstile which
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Figure 6.2: A diagram demonstrating the think-verify-revision loop of LoI. The two zoomed-in boxes
display the processes when a thought passes (top-left) and fails (bottom) the verification, respectively.
A thought passing the verification is kept in the reasoning trace, while a thought failing the verification
is revised, and a new chain of thought is generated based on the revision. The symbols in this figure
are introduced in § 6.3.2 and § 6.3.3. See also Figure C.2 in Appendix C.5 with extended details.

means Q is a syntactic consequence of P [Agl12], i.e. there exists a proof that claims
the conclusion Q given the premise P. In order to prove Q using reductio ad absurdum,
let us assume its negation =Q is valid and then check the contradiction* of the
conjunctive proposition

C=PA-Q, (6.1)

where “A” is a binary conjunction operator, meaning the truth of the conjunction
requires the truth of both sides. Upon the contradiction of the co-existence of the
P and —Q, P + Q is thus proved true, and then we can claim the validation of the
conclusion Q given the premise P.

Many logic principles, e.g. the contraposition mentioned in § 6.1 (see Appendix C.2
for a proof), can be derived by deductions following this rule. This thinking paradigm
helps humans check arguments carefully before composing a conclusion. As we will
demonstrate later, the reasoning ability of LLMs can also be improved by benefiting
from this paradigm. The next subsection, § 6.3.2, presents the prompting and
verification process for individual reasoning steps. Based on the verification result,
the chain either proceeds (ignoring intermediate verification) or resets (discarding
both the remaining original steps and intermediate verification thoughts).

6.3.2 LoT Prompting

There is evidence that a series of coherent explanations helps an LLM to unleash its
reasoning ability [Wei+22a; Koj+22; Zho+23], while discouragement on its utterance,
e.g. prompts like “just tell me the result without any explanation”, negatively impact

4: A proposition is considered contradictory if and only if it is false under every valuation.
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on an LM’s reasoning ability. So we elaborate on the success of an explicit reasoning
process.

A typical N-step reasoning trace can be expressed as {P, Tj, - - - , Ty}, where P is the
known premise and T; is the i-th step of thoughts that originates from the output of a
vanilla CoT.” Usually, Ty concludes the thoughts and answers the specified question.
Unfortunately, LLMs hallucinate. LLMs usually generate content autoregressively,
which means the generation of T; is based on the former content {P,--- ,T;_1}.
Errors in T; will propagate and gradually influence T} for increasing i’ > i, making
the successive deductions and ultimately the final conclusion untrustworthy (cfr.
Figure 6.1). Therefore, we propose a verification loop to double-check each reasoning
step. Following Equation 6.1, this double-check procedure unrolls by checking the
validity of P, --- ,T;_1 + T;, i.e. the contradiction of

C,i=PANLA---ANT,_1 AT, (6.2)

once T.; passed the verification. If any step T; fails the verification, this implies that
the premises and previously verified thoughts T<; do not entail T;. In this case, T>;
needs to be revised.

To negate T; by an LLM, a straightforward way is to format —T; as “It is false to say
T;” or to give to the LLM an instruction of “Negate T;”. Then, the LLM has to further
identify possible contradictions in C; (Equation 6.2).

We have the following two prompting implementations for the proposal of logic-based
candidates to assist self-verification:

» Cmps-Lol. Given that T; is articulated in natural language and can span multiple
sentences, we aim to derive a more insightful negation by adopting the chain-
of-thought methodology. Here, we task the model with composing a post hoc
explanation®, E}" of =T; [Jun+22], and then prompt the LLM to check the validity
of C ; =C,NE ; instead of just C;. We call this simple approach Cmps-LoT.

» Adpt-Lol. Considering that a logical error in a text generated by an LLM is hard
to spot by the LLM itself [[Hua+24], we additionally propose to alleviate the
difficulty in verifying T; by generating a pair of post hoc explanations E; and E”
of T; and —T; respectively, and let the LLM decide between T; A E; and =T; AE~
and adopt one of the two. We call this full approach Adpt-LoT or just LoT” .

An LLM is then often biased by the prompt and, as a result, generates an explanation
consistent with the prompt. Because of this “compulsory” behavior, once a statement
is deemed false in the leading prompt, the LLM tries hard to discover errors even
if they are less obvious. Lol gains advantages from the mandatory error-detection

5: In practice, we employ the prompt “Let’s think step by step.\n #1.” to guide an LLM to generate
reasoning steps in a consistent format, each leading with a number “#1.”, “# 2.”, etc.. Subsequently,
regular expression rules can be easily applied to split these steps into atomic units Thumber-

6: A post hoc explanation is an explanation completed by the LLM with a prompt like “T; is true
because” or “T; is false because”.

7: This strategy works on the hypothesis that the discrimination choice (from two opposite, post hoc
arguments that are already listed there) is more trustworthy than the one that LLMs compose from
scratch.



10

6.4 Experiments and Results | 91

behavior. Additionally, when transitioning from the Cmps- to the Adpt- variant, the
problem transforms into a preference discrimination task [Sau+22], featuring more
balanced reviews for both T'and =T and being more manageable.

Algorithm 2: Adpt-LdT Reasoning®
input :Problem/Premise P, LLM model

output: Verified thoughts collection I

Initialize T «— {P} ;
Ti,Tp, -+ ,Tn < RegEX[LLM(F)],i « 1;
whilei < N do
E; « PostHocLLM(E|-T; ) ;
E; < PostHocLLM(E|T;;T) ;
E LLM(E;; ET|T)
if EisE; then
L T — LLM(T|T; T E)), T T ;
{Tsi}yy <« LLM(T UT;), N « N’ ;

T «—IJUT,i—i+1;

6.3.3 Chain Growth

In order to investigate a step T;, Lol masks out all of the trailing thoughts T-; and
branches out for revision Tl./ conditioned on {T<;, E;"}. Since precise feedback is
important to the success of revision [Mad+23], we also encourage the LLM to revise
any inappropriate thought with the advice to reason “why it is wrong”, i.e. E;.
Then, an adapted chain with a new conclusion can be re-generated based on the
concatenation of the verified thoughts so far, i.e. {T.;, Tl.’}. This loop continues until
the final conclusion passes the verification, which results in a chain with all the
nodes being verified (see Figure 6.2 for an abstract depiction and Figure C.2 for a
detailed example). Note that this chain grows only when required. Algorithm 2 shows
the pseudo-code of the function to compute the reasoning trace of (Adpt-)LoI. The
pseudo-code for Cmps-Lol can be found in Algorithm 5, in Appendix C.3 on page 145,
where the distinct procedure for identifying contradictions is emphasized.

6.4 EXPERIMENTS AND RESULTS

For the following reasons, we carry out the experiments in a zero-shot setting: 1)
Zero-shot-Col [Koj+22] has a wide task-agnostic application potential, while few-
shot requires domain knowledge; 2) The few-shot prompts heavily influence the
performance even on the same dataset, so it is hard to evaluate fairly, as the prompt
varies. Drawing direct comparisons with other prompting works in the literature is
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challenging due to variations in task settings and backend language models. Many
of these works are specifically under a few-shot setting, which would necessitate
additional modifications to adapt them for zero-shot reasoning. We consider this an
area for future investigation.

Since our work is an enhancement on the chain produced by zero-shot-Col [Koj+22],
we compare Lol with it as the baseline to demonstrate the benefit of step-wise
verification and revision for zero-shot reasoning. We evaluate the accuracy of tasks
in various domains as the overall performance measure and also report the impact of
the logical revision on the original reasoning chain.

We aim to answer the following research questions regarding Objective III by
conducting experiments:

» R.Q. 6.1 Does Lol outperform the original zero-shot CoT, i.e. logic-guided
inference enhances reasoning ability, in various domains as well as with LLMs
of varying model scales?

» R.Q. 6.2 What is the impact of Lol on individual reasoning chains (e.g. revision
frequency, length)?

» R.Q. 6.3 Do post-hoc explanations help LLM self-check?

6.4.1 Experimental Setup
Dataset

We demonstrate the effectiveness of Lol on diverse language topics:

» Math reasoning tasks GSM8K [Cob+21] and AQuA [Lin+17]. The GSM8K
dataset contains grade school mathematics questions that should be responded
to by numerical answers; AQuA has more advanced questions, but has several
optional answers to choose from.

» Commonsense reasoning tasks DateUnderstanding and OddOneOut [Sri+23].
The DateUnderstanding task necessitates the utilization of both common sense
and fundamental arithmetic calculations to find out the correct date, making
it sufficiently challenging to prevent it from being solvable through simple
one-step reasoning. The OddOneOut requires common sense to deduce the
unusual object in the context.

» Causal inference tasks CauseEffect and ShuffledObjects [Sri+23], where both of
the tasks require reasoning from the context for a correct deduction.

» Symbolic reasoning task LastLetter [Sri+23]. In this task, the language model
has to extract the last letter of given candidates and concatenate them in order,
which is simple for humans but challenging for language models because of
tokenization [Mie+21].

» Social interaction reasoning task, Social QA [Sri+23], that measures the model’s
emotional and social intelligence in human daily activities. Completing the task
requires an understanding of human behavior.

To get a formatted answer that can be directly compared with the ground truth in
the aforementioned dataset, a final prompt asking for the final answer is attached
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after the reasoning trace, e.g. for the GSM8K dataset, we simply attach “Therefore,
the final numerical answer is:” at the end. For robustness, this answer is matched
with a regular expression to extract only numerical digits before comparing it with
the ground truth.

Backend LLMs

Previous works show that the performance improvement of the CoI technique
varies when applied to language models of different capabilities [Wei+22a; Koj+22].
Therefore, we conducted an evaluation of the Lol method using a range of models,
including Vicuna-7b, Vicuna-13b, and Vicuna-33b models [Chi+23], as well as GPT-
3.5-turbo and GPT-4. The Vicuna model is an open-sourced language model trained
by fine-tuning LLaMA [Tou+23] on user-shared conversations. It demonstrates strong
performance across various scenarios and offers flexibility in terms of model size
selection. On the other hand, GPT-3.5-turbo and GPT-4 are larger models known for
their state-of-the-art performance in numerous tasks.

To ensure stable results and promote self-error detection within the models, we
set the temperature parameter to 0.1. Additionally, the max_token parameter was
established at 2048, a sufficient limit to accommodate all the datasets employed in
our evaluation.

6.4.2 Analysis

ResearcH QuesTiOoN 6.1 Does Lol outperform the original zero-shot CoT, i.e.
logic-guided inference enhances reasoning ability, in various domains as well as
with LLMs of varying model scales?

To answer the first question, we conduct zero-shot experiments with datasets covering
more diverse topics and with language models of different sizes. The LoI-enhanced
performance is compared with the zero-shot baseline in Table 6.1. The experiment
shows that Lol can enhance the performance of the base CoT in various domains.
The performance benefits are more consistent when the model size gets considerable
(>7B parameters). Moreover, the performance gain becomes more prominent as the
model’s ability increases (e.g. GPT-4).

ResearcH QuesTion 6.2 What is the impact of Lol on individual reasoning chains
(e.g. revision frequency, length)?

We report more insightful case-wise statistics and discussions in this section, includ-
ing

» average revision frequency in Table 6.2;

» the resultant number of reasoning steps in Table 6.3;

» and a case study to illustrate the logical reasoning procedure. More detailed
statistics including the worsening rate (i.e. the ones being originally correct by
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CoT but “corrected” to be wrong by Lol') and improvement rate (i.e. the ones
that are originally wrong and being corrected by LoT) can be found in Table C 1,
in Appendix C.4 on page 146.

Revision Frequency. In order to measure the complexity of revisions, we list the average
revisions per chain in Table 6.2 and typical reasoning steps required by CoI and LoT in
Table 6.3. Note that the number of steps is not human-defined or prompted since our
setting is in zero-shot, so the language models decide by themselves the length of a
reasoning chain. The percentage of revisions indicates the frequency of Lol to revise
the candidate’s reasoning chain. We observe that language models with powerful
capabilities (e.g. GPT-4 and GPT-3.5-turbo) are more active in revision than smaller
models, and challenging tasks such as the math reasoning task lead to more revisions.
However, revision does not necessarily alter the final deduction answer. For example,
LoT with GPT-3.5-turbo backend revises several times on Social QA yet achieves
the same accuracy as Col. Intuitively, solving one problem may lead to multiple
pathways, and some revisions might aim to enrich the sentence by incorporating
additional known conditions and rhetorical supplements.

Resultant Steps. The average step count is the number of valid reasoning steps in
the final Col' and LoT reasoning paths (i.e. the intermediate verification, refinement,
etc. are not shown). From Table 6.3, we can conclude that 1) larger language models
generally generate longer chains and are also more active in revision; 2) the Lol
refined’ reasoning chain is typically slightly shorter than the original zero-shot CoT
Table 6.1: We evaluate the accuracy of our methods and compare them against baseline approaches
using various models and datasets, with computation based on ground truth annotations. The
percentage difference of CoT [Koj+22] without (X) and with (v') Lol enhancement using different
LLMs is shown below each cell group (green if positive, red if negative). CoI generally gains better

performance when being enhanced by LoI. Larger models, such as GPT-4, exhibit strong and robust
self-correction ability.

LoT GSM8K AQuA Date SocialQA Cau.Eff. Objects Letter OddOut

X 1752 2165 724 3700 5294 3400 000 25.58

Vicuna-7b v 1768 2047 724 3650 5294 3500 0.0 2558
(+0.16) (-1.18) (0.00) (-0.50)  (0.00) (+1.00) (0.00) (0.00)

X 3379 2205 3231 4100 6875 3100 2.00 29.07

Vicuna-13b v 3756 23.62 3315 4850 6875 3150 4.00 45.35
(+3.77) (+1.57) (+0.84) (+7.50) (0.00) (+0.50) (+2.00) (+16.28)

X 4033 2638 1570 3750 5294 3200 14.67 40.70

Vicuna-33b v 4049 2953 20.35 4750 6875 3450 14.00 43.02
(+0.16) (+3.15) (+4.65) (+10.00) (+15.81) (+2.50) (-0.67) (+2.32)

X 7875 57.09 5126 7200 9216 60.75 67.33 8140

GPT-35-turbo v 80.15 60.63 52.37 7200 9216 5825 67.33 8140
(+1.40) (+3.54) (+1.11) (0.00)  (0.00) (-2.50) (0.00) (0.00)
9429 7156 83.09 7750 100.00 100.00 92.61 95.35
9571 7431 8516 77.50 100.00 100.00 93.14  96.51
(+1.42) (+2.75) (+2.07)  (0.00)  (0.00) (0.00) (+0.53) (+1.16)

AN

GPT-4

9: Note that LoT ultimately produces a clean reasoning chain containing only valid steps, excluding
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Table 6.2: The average step-wise revision frequency is presented as a percentage, reflecting how often
a reasoning step is revised by LoT.

Revision O GSMS8K AQuA Date SocialQA Cau.Eff. Objects Letter OddOut

Vicuna-7b 2% 4% 2% 1% 2% 0% 3% 0%
Vicuna-13b 7% 10% 5% 5% 0% 7% 2% 0%
Vicuna-33b 2% 9% 8% 7% 6% 9% 1% 7%
GPT-3.5-turbo  16% 28% 32% 5% 20% 9% 4% 16%
GPT-4 3% 20% 7% 2% 0% 1% 0% 8%

Table 6.3: The average number of resultant reasoning steps without (X) and with (v') LoT applied.

LoT GSMSK AQuA Date Social QA Cau.Eff. Objects Letter OddOut

Vicuna-7b 1.22 116 1.34 1.09 1.00 254 3.46 1.00
1.27 121 1.35 1.10 1.02 2.54 349 1.00
Vicuna-13b 2.81 2.89 5.06 2.69 1.00 293 1.66 1.00
274 2.87 5.05 271 1.00 296 169 1.00
Vicuna-33b 1.94 199 231 3.26 1.00 326 120 1.70

1.94 191 2.33 3.13 1.06 323 121 1.64
4.17 6.83 3.66 2.50 173 3.02 484 1.57
4.08 6.24 3.56 2.51 1.92 3.05 481 1.70
3.42 422 271 2.33 1.00 3.00 4.05 1.00
3.41 439 272 2.33 1.00 3.01 4.05 1.08

GPT-3.5-turbo

GPT-4

N> N X% N\ N\ X \ %

output. Our conjecture is that this phenomenon might arise because, during the
refinement process, the language model strives to incorporate additional information,
consequently yielding concise chains of reasoning.

ResearcH QuEsTioN 6.3 Do post-hoc explanations help LLMs self-check?

In order to examine the error-finding ability, the results of using Lol and its ablated
variants on three challenging tasks are shown in Table 6.4, where “Self-Check” is
an ablation of reductio ad absurdum such that the LLM is only prompted to “double
check the step” without logical hints.

With LoT, the complex examination problem is broken down into two procedures:
1) the post hoc explanation mechanism for rigorous error detection, and 2) a single-
choice preference for selecting the more reasonable opinion from the two candidates.
The better performance of (Adpt-)Lol suggests that when it comes to error detection
in LLM’s reasoning, it is more effective for an LLM to embrace one of two opposing
viewpoints (T, E or =T, E™) rather than composing the verification directly (which is
the case for both “Self-Check” and Cmps-LoT), especially when coping with tasks
that are difficult such as math reasoning.

intermediate self-thoughts.
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Table 6.4: Zero-shot accuracy results (in %) in comparison of Lol (i.e. Adpt-) and its ablated variants.
The underlying LLM is GPT-3.5-turbo.

Method GSMSK AQuA Date

CoT 7875  57.09 51.26
Self-Check 7615  56.19 5157
Cmps-Lol  77.67  57.48 52.37
LoT 80.15 60.63 52.37

Case Study

We show a successful case on the Date Understanding task to demonstrate the
verification and revision procedure applied to the chain of thoughts initialized by
zero-shot-CoT. (See Appendix C.6 on page 147 for detailed prompts and further case
studies.)

Snippet A

Question: Today is Apr 10, 1985. Jane’s appointment will be 3 days later. What is the date 10 days

agoin MM/DD/YYYY?

Let’s think step by step.

Answer:

#1. Today is Apr 10, 1985.

#2. Jane’s appointment will be 3 days later.

#3. So, Jane’s appointment will be on Apr 13, 1985.

#4. To find the date 10 days ago, we subtract 10 days from Apr 13, 1985.

#5. Apr 13,1985 - 10 days = Apr 3, 1985.

#6. Therefore, the date 10 days ago is Apr 3, 1985.

In Snippet A, there are initialized zero-shot-Col reasoning steps where step #6
is actually incorrectly inferred (colored in red). Here, black color indicates given
context or fixed prompts; non-black color indicates generated content by the LLM. The
error occurs because zero-shot-Col is distracted by the irrelevant premise of “Jane’s
appointment will be 3 days later” and concludes with a wrong answer.

Snippet B

Verification of the next step:

#6. Therefore, the date 10 days ago is Apr 3, 1985.

Review X: <review>step #6 is TRUE because we are subtracting 10 days from the given date of Apr
13, 1985. By subtracting 10 days, we go back in time and arrive at Apr 3, 1985. Therefore, the date 10
days ago is Apr 3, 1985. </review>

Review Y: <review>step #6 is FALSE because the reasoning in step #4 is incorrect. To find the date
10 days ago, we need to subtract 10 days from Apr 10, 1985, not from Apr 13, 1985.

The correct calculation would be:

Apr 10,1985 - 10 days = Mar 31, 1985.

Therefore, the date 10 days ago is Mar 31, 1985. </review>

To verity the 6th step, as shown in Snippet B, the LLM is prompted to generate two
opposite reviews!” given the question context and the previous five verified steps.

10: In practice, as is shown in the example case, the special language mark “<review></review>" is
applied for the sake of robust separations of different reviews.
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Snippet C

Let’s check two different reviews (X and Y).

Support the more plausible one and criticize the other one.

Review X: ...

Review Y: ...

Let’s start by analyzing one by one.

I. What are the premises and previous steps to support the verification of step #6? (Your answer
should quote the exact quote as support.)

II. Criticise the incorrect review.

(Note the examined step doesn’t have to tackle the whole problem at once.)

Finally, identify whether step #6 is true or false.

Analysis and conclusion:

I. The premises and previous steps to support the verification of step #6 are as follows:

- Today is Apr 10, 1985.

- Jane’s appointment will be 3 days later.

- Jane’s appointment will be on Apr 13, 1985.

- To find the date 10 days ago, we subtract 10 days from Apr 13, 1985.

II. Review Y is correct in criticizing step #4. The reasoning in step #4 is indeed incorrect. To find the
date 10 days ago, we need to subtract 10 days from Apr 10, 1985, not from Apr 13, 1985.
The correct calculation would be:

Apr 10, 1985 - 10 days = Mar 31, 1985.

Therefore, the date 10 days ago is Mar 31, 1985.

Conclusion: Step #6 is false. The correct date 10 days ago is Mar 31, 1985, not Apr 3, 1985.

Due to the content limitation, we omit the long prompt and focus on the resultant
generation. Note that Review Y successfully detects the unobvious error and provides
a correction that can be adopted later for revision.

In Snippet C, the LLM is encouraged to extract and deduct based on relevant premises.
Finally, it ends with adopting Review Y and reaching a correct conclusion.

6.5 CONCLUSION

LLMs have impressive reasoning ability in domains that require commonsense
knowledge, specialized expertise, comprehensive understanding, etc. However, there
is still room to improve their multi-step reasoning capability. Building upon zero-
shot-ColI, we derive the Lol prompting framework from a symbolic logic perspective,
utilizing the widely applicable principle of reductio ad absurdum, resulting in a robust
think-verify-revise framework with plausible prompting properties. Experiments
conducted on a variety of reasoning tasks spanning different domains demonstrate
that enhancing zero-shot Chain-of-Thought (CoI) with LoT leads to improved
reasoning ability, particularly when applied to LLMs of large scale.

6.6 LIMITATIONS AND FUTURE WORK

Prompting, Fine-tuning and Generalizability. Lol establishes a controlled prompting
strategy for self-correction. Nonetheless, it is worthwhile to explore future endeavors
of prompting engineering as well as fine-tuning LLMs for the purpose of spontaneous
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logical reasoning'!. Moreover, although our approach does not require a complex or
abstract symbolization process, as we use contrastive prompting to elicit contradic-
tions, assigning a binary label (true vs false) to a reasoning step is not always feasible
and may constrain the potential for exploration.

Generation Probability. Rather than letting the LLM choose from different reviews,
another possible method is to access and compare the probability of the generations.
Unfortunately, there is no public access to the generation probability of GPT-3.5-turbo
yet'? as it is possible for completion models (such as text-davinci-003). Considering
a cheaper price and better performance, we conducted our experiments with the
chatting model and left this possibility for future work.

Zero-shot, Few-shot, and Beyond. Significant potential exists for enhancing the reliability
of the verification-revision procedure, and devoting efforts to the advancement of
prompt engineering may prove to be valuable and worthwhile. Since this work is done
with an aim to be as generalizable as possible, the experiments are all conducted in the
zero-shot setting. Nonetheless, incorporating domain knowledge into the exemplar
prompt proves advantageous for enhancing performance [Koj+22; Wei+22a], it is still
worthwhile to explore the potential when LoT is applied in the few-shot setting in
future work. Furthermore, conducting extensive experiments across diverse domains
would be instrumental in assessing the generalization capability of the proposed
method, especially for those areas that require reliable deduction besides mathematics,
such as legal reasoning, scientific research, ethics moral reasoning, and so on.

While our research primarily focuses on integrating human knowledge into CoTl
prompting, further exploration of additional logical deduction principles could
enhance the reasoning process. Moreover, we demonstrate the efficacy of bolstering
the robustness of complex reasoning by discerning between conflicting outputs,
suggesting the potential extension of this approach to prompt and refine LLMs for
self-improvement. This may entail utilizing self-checked outputs for Reinforcement
Learning from Al Feedback (RLAIF) [Li+23a; Lee+24]. Such endeavors show promise,
particularly in situations where a positive “Generation-Discrimination gap” (GD
gap) exists [Sau+22], i.e. language models with promises to be further improved by
discerning the quality of its generation, but we defer the investigation of this avenue
to future research endeavors.

11: Various prompting templates may influence the outcome a lot [Liu+25a]. In our case, for example,
in mathematics problems, a prompt that leads to an active examination of numerical computation can
assist the verification process [Mad+23]. A study of few-shot and of the domain-specific design of
prompts for the verification-revision structure is worthwhile to explore, which we leave for future
work due to the scope of this work.

12: https://platform.openai.com/docs/api-reference


https://platform.openai.com/docs/api-reference

AGENTIC SKILL DISCOVERY

Semantics + Policy + Self-determination

To fulfill the final Objective IV, i.e. “to construct autonomous agents with advanced
self-determination that can verbally sense environmental context and discover meaningful
skills from scratch in pursuit of long-term embodied autonomy”, this chapter presents a
highly autonomous robot deployed in a novel environment. It actively explores and
acquires new capabilities, driven by semantic intrinsic motivation and self-regulated
learning, guided by LLMs and Vision Language Models (VLMs), resulting in
self-determined learning of a semantics-grounded policy.

In Chapter 5 and Chapter 6, LLMs are employed to reason about the environment
in pursuit of task completion. This reflects a common paradigm in current robotic
systems that largely depend on predefined objectives and human-provided knowl-
edge. However, the capacity to reason and adapt to novel, unforeseen conditions
holds significant promise for achieving greater autonomy. Such adaptation, or
self-development, entails not only adjusting existing skills but also acquiring
entirely new ones to handle unfamiliar situations, a capability that is essential for
long-term robot autonomy with minimal human supervision.

Language-conditioned robotic skills bridge the high-level reasoning capabilities
of LLMs with low-level robotic control. A remaining challenge is to acquire a
diverse set of fundamental skills. Existing approaches either manually decompose
a complex task into primary robotic actions in a top-down fashion or bootstrap as
many combinations as possible in a bottom-up fashion to cover a wider range of task
possibilities. These decompositions or combinations, however, require an initial skill
library. For example, a “grasping” capability can never emerge from a skill library
containing only diverse “pushing” skills. Existing skill discovery techniques with
Unsupervised Reinforcement Learning (URL) acquire skills by exhaustive exploration
but often yield non-meaningful behaviors. Previous evidence [Ma+24b; Kwo+23]
shows that LLMs are able to program reward functions or optimization objectives for
a learning-based method to optimize over, bridging high-level semantic reasoning
with low-level control. However, challenges inevitably arise: existing methods cannot
be directly applied to robot skill learning because they lack a success determination
mechanism, i.e. the ability to assess whether a task has been successfully completed,
or more broadly, to enable self-regulation in learning novel skills. This chapter
introduces Agentic Skill Discovery (ASD), which addresses this gap by enabling
agents to not only explore their environment but also develop skills that support
their long-term autonomy.

Specifically, a novel learning framework, which is entirely driven by LLMs, for
autonomous robot skill discovery is introduced. The framework begins with an LLM
generating task proposals based on the provided scene description and the robot’s
configurations, aiming to incrementally acquire new skills upon task completion.
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Figure 7.1: Guided by LLMs, Agentic Skill Discovery (ASD) enables robots to explore the environment
and incrementally acquire contextual skills. Tasks proposed by LLMs are learned as skills via parallel
RL. A high-quality VLM verifies success and ensures reliability.

For each proposed task, a series of RL processes is initiated, utilizing reward and
success determination functions sampled by the LLM to develop the corresponding
policy. The reliability and trustworthiness of learned behaviors are ensured by an
independent VLM. This work shows that starting with zero skill, the skill library
emerges and expands to more and more meaningful and reliable skills, enabling the
robot to further propose and complete advanced tasks efficiently.

7.1 INTRODUCTION

“In the beginning was the Word” [CS15]. Can LLMs unleash the generative potential of
words, as implied in this famous quote? In a more practical setting, can an LLM teach
the skills and goals of human actions to a robot that is initialized without any skills
or motivation?

Large Language Models show potential in many fields that require common sense
and reasoning. Large-scale models excel because of their training on human datasets,
and textual or even multimodal reasoning capabilities. LLM-based agents, especially
robots, extend the potential to embodiments, but they still show limitations when
applied to direct robotic control. The reasons are insufficient real-world robot data
for training, as well as the diversity of topologies and physical properties. As
a workaround, abstracting robot control to a certain level and referring to each
abstraction as a specific “skill” helps LLMs to control robots generically [Ahn+22;
Zha+23c; Zha+23a; M]524; Wu+23; Din+23]. For example, SayCan [Ahn+22] builds
a control framework that lets a robot follow a set of basic language instructions.
When commanded with a complex task, an LLM decomposes the task into actionable
low-level actions.

Acquiring diverse robotic skills with minimal human supervision has garnered
considerable attention. However, previous methods have either attempted to chain
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existing skills, relying heavily on a collection of basic skills [Du+23; Cel+23; Zha+23a],
or explored from scratch but often yielded non-interpretable robot behaviors, es-
pecially those using unsupervised RL [Li+23c; Par+23; Eys+19; Sha+20]. We ask
whether an LLM can encourage a robot to learn novel tasks that consist of entirely
novel yet relevant skills. Imagine a robot being placed in a new environment. The
robot must be motivated to explore the environment in a way to learn applicable
skills before becoming ready to perform further tasks. Given the knowledge about
human actions that resides in LLMs, we expect that an LLM can, by itself, suggest a
variety of contextually meaningful skills for the robot to learn.

We refer to this autonomous exploration as Agentic Skill Discovery (ASD), which
enables robots to interact with their environment through semantically-driven
motivation and autonomously initiate requisite learning procedures. In this research,
we address the challenge of open-skill learning in robotic systems guided by LLMs,
wherein either LLMs or a complementary Vision Language Model (VLM) must
facilitate both the learning process and success/failure evaluation without human
intervention or predetermined assessment criteria (Figure 7.1 on the facing page ).
Our primary contributions encompass a learning approach that incorporates:

» Task proposal: an LLM iteratively proposes novel and open tasks that are
suitable for the given environment (§7.3.1, Figure 7.2), and collects the resulting
skills.

» Task completion for skill learning: existing works such as Eureka [Ma+24b] focus
on solving determined tasks where the success/failure is defined by the human
in advance, and cannot be generalized to automatic learning of open robot
skills. In contrast, we introduce using LLM to propose a success determination
function, which provides a criterion for optimizing the reward functions. To
make open skill learning tractable, we showcase the importance of having a
post-validation VLM for success determination, as a guarantee for reliability
and trustworthiness (§7.3.2, Figure 7.4). It is essential to minimize false positives
and false negatives to ensure the skill library remains reliable, avoiding the
inclusion of overtrusted skills and the exclusion of useful ones (Figure 7.7).
Furthermore, we apply the Retrieval Augmented Generation (RAG) technique
to retrieve validated function references for the efficacy of LLM reasoning. We
note that the application of RAG to open-skill learning is novel and progressive
beyond the state of the art.

» Reuse of skills: to complete certain sophisticated tasks requiring long-horizon
manipulations, we prompt LLMs to decompose them into a chain of sub-tasks
that are either already explored or are novel to learn on demand, forming a
chain of conditional skills.

7.2 RELATED WORK

Humans and animals engage in active exploration, continuously forming new rep-
resentations of the world and discovering new skills. Autonomous agents must be
capable of assessing not only what exists in the world but also what is learnable
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and useful for future tasks. The challenge of robotic self-development is particularly
relevant in open-ended, unstructured environments, where pre-programmed behav-
iors are insufficient. This raises an important question: Can robots develop applicable
capabilities to explore their environments in an active, self-determined manner? If so, how can
they learn what kinds of skills can be acquired within their surroundings? Inspired
by human developmental processes, many autonomous systems are equipped with
intrinsic motivations that encourage exploration and learning. By generating their
own goals and learning tasks from a curiosity-driven perspective, robots can expand
their skill repertoire beyond what was originally programmed. Despite advances in
RL and self-supervised learning, current methods still struggle with open-ended skill
discovery and long-term adaptation, due to the fact that many exploration techniques
focus on maximizing novelty or information gain but lack mechanisms for deciding
which discoveries are meaningful for future tasks.

This section overviews previous research works in discovering novel skills (or,
maximizing empowerment) and LLM-based advancements relating to this field.

7.2.1 Skill Discovery

Acquiring diverse robotic skills with minimal or no human supervision is a key
challenge in reducing human effort. Unsupervised Reinforcement Learning (URL)
has emerged as a prominent research area for generating diverse behavioral trajec-
tories that are distinguishable from one another [Li+23c; Par+23; Pen+22; Eys+19;
Sha+20]. Typically, URL methods employ information-theoretic objectives during
unsupervised training to maximize behavioral entropy. However, this “bottom-up”
scheme (i.e. clustering various trajectories as skills) often results in non-interpretable
and semantically meaningless skills from a human perspective, making the learned
skills hard to collect and reuse. The trade-off between low costs and meaningful
resulting behavior depends on the amount of human knowledge introduced, i.e.
more supervision (high cost) generally indicates more natural robotic behaviors,
and vice versa. While some works introduce further constraints relating to human
demonstrations to acquire natural behaviors [Pen+22], the scalability is still limited
by the need for domain-specific data collection. Recent works [Rho+25] have sought
to constrain the exploration space to a meaningful subspace, where robot behaviors
align with human-defined language instructions, as evaluated by LLMs. Our work
discovers skills at a higher level of abstraction, i.e. in a “top-down” scheme where the
learning objectives are ensured to be semantically meaningful in advance, producing
a growing repertoire of semantically distinct skills that demonstrate greater diversity
and interpretability.

Chaining known skills into new ones can substantially extend robots” abilities and
efficiencies. In order to efficiently combine basic skills in a meaningful way and
avoid a combinatorial explosion, LLMs can be utilized to reason the logical ways of
stacking skills to complete new, long-horizon tasks [Zha+23a; Cel+23]. When LLMs
are prompted with environment contexts, such as available robot joints and object
types, they can propose meaningful motivations for the next movement [Du+23;
Zha+23a]. Prompting an LLM to get an “interesting outcome” can yield generally
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meaningful skill combinations [Cel+23]. However, prior works primarily focus on
combining pre-acquired skills to create more complex behaviors. In such approaches,
the so-called “new skills” are assembled from an existing library of basic skills rather
than developed from scratch. Consequently, the potential skill space is constrained
by the foundation of the initial skill set. For example, a robot proficient only in
“pushing” would be unable to acquire the skill of “grasping” within the confines
of skill assembly. In contrast, the concept of agentic environment skill discovery,
where both the expansion of high-level skill libraries and the initiation of necessary
low-level skill training occur autonomously, remains underexplored. To address this
gap, our work employs RL agents, supervised by LLMs and VLMs, to acquire novel
low-level policies that were previously beyond the robot’s capabilities.

7.2.2 Code LLM Control

Most LLM-based robot behavior relies on pre-defined primitives (skills). This inflexible
design makes it difficult to generalize to unseen objects and instructions [Ahn+22;
Zha+23c]. Recent approaches let code-LLMs write programming code to complete
open instructions [Lia+22; Hua+23]. In particular, VoxPoser [Hua+23] uses a VLM
and LLM to construct a 3D cost map to guide a robot engaging with its surroundings.
VoxPoser relies heavily on the quality of the initially composed cost map, limiting its
ability to perform exploratory behaviors. In addition, it depends on a trajectory solver
during inference, which can further constrain its flexibility and scalability. In contrast,
ASD launches RL, letting the agent explore the environment and exploit the learned
language-conditioned policies. As for the automatic learning of low-level control
policies, previous approaches show that LLMs are capable of programming reward
functions to optimize over, achieving remarkable performance even for complex
tasks [Ma+24b; Yu+23]. However, these methods have not yet been applied to robot
skill learning, where tasks are newly proposed. This presents a significant challenge,
as only the language instruction is available, without predefined success or failure
conditions to guide the learning process.

7.3 METHOD: ASD

The Agentic Skill Discovery (ASD) framework introduces a fundamentally different
approach to robotic skill acquisition, where skills emerge purely from the interaction
between a language model, a robot, and its environment, without any pre-structured
human guidance such as demonstrations, reward designs, preferences, or handcrafted
supervision signals. At a high level, ASD enables autonomous exploration through
self-generated task instructions (§ 7.3.1), while at a lower level, it learns to master
these discovered tasks as skills through RL with self-determined success criteria
and reward strategies (§ 7.3.2). The framework then leverages these acquired skills
to tackle long-horizon tasks and further expand its skill repertoire through task



104 | 7 Agentic Skill Discovery

» Environment
Q @ Propose Task Learn

Observations

f Configuration @D
Collect =,
Robot | iz Skill Library @l Skill Options

Figure 7.2: Contextual skill acquisition loop of ASD. Given the environment setup and the robot’s
current abilities, an LLM continually proposes tasks for the robot to learn (see Figure 7.4 for the
learning scheme). Successfully completed skills are collected as acquired skills in the skill library. The
learning process for each target skill may yield multiple viable execution strategies, which we preserve
as distinct skill options. For each option, we store both the learning specifications (including reward
and success functions) and the corresponding trained policy networks, enabling efficient retrieval and
deployment of these skills in future tasks.

decomposition (§ 7.3.3) and on-demand skill learning'. Unlike traditional approaches
where skill complexity and granularity are carefully engineered, ASD faces the unique
challenge of operating in an unconstrained space where the language model must
discover appropriate skills, determine their complexity, and establish success criteria
without predefined constraints or reward structures. This represents a significant
departure from existing methods, as it removes human scaffolding from the skill
acquisition process while enabling truly autonomous skill discovery and composition.
A pseudo-code of the ASD framework is shown in Algorithm 3 on page 108 2.

7.3.1 Iterative Task Proposal and Skill Collection

Instead of relying on exhaustive human efforts, ASD utilizes LLMs to propose
meaningful tasks given the description of a certain scene. Those tasks will be assigned
to RL agents to learn corresponding language-conditioned policies (see § 7.3.2).
Figure 7.2 overviews skill acquisition by the propose-learn-collect loop.

To provide the LLM with sufficient information about the environment, we provide it
with the source code of the observation space [Ma+24b]. Also, the robot configuration,
such as robotic arm type and DoF, is prompted as the initial background description.
Due to environment complexity and unpredictable learning challenges, we implement
iterative task proposals and learning rather than allowing the LLM to propose all
tasks at once. In particular, the LLM will be informed about tasks that could not be
completed so that it will have a sense of the limits of the learning agent, influencing
the successive task proposals. For the sake of efficiency and reusability, we encourage
the LLM to propose tasks that are meaningful, atomic, independent, and incremental
(see Figure D.4 in Appendix D.3 for detailed prompts).

1: For example, a new “placing” skill should be learned on demand when instructed to stack two cubes
together, if the skill library contains only primary skills like “pushing” and “picking”.

2: For more implementation details, refer to open-sourced code at: https://github.com/xf-zhao/
Agentic-Skill-Discovery.


https://github.com/xf-zhao/Agentic-Skill-Discovery
https://github.com/xf-zhao/Agentic-Skill-Discovery
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Skill Options

Generally, control with various options for a given task has the potential to be more
robust and generalizable [GRW17; Eys+19]. As will be introduced in § 7.3.2, in the
process of the evolutionary search of diverse reward functions, a given task will be
successfully learned by several options, forming a set of various control policies. A
task will be considered completely learned, or in short complete, if the resultant
agent behavior aligns with expectations; otherwise, it is deemed unsuccessful after
an extended period of learning.

Completed tasks will be considered as “skills”, along with their “options”, to be
stored in the skill library, and the names of attempted but uncompleted tasks will be
added to a failure pool. A summary of the completion status will be generated to
guide LLMs in proposing subsequent tasks, taking into account the learning curve
and potential difficulties. Failed tasks are usually too sophisticated for LLMs to write
reward functions to master at once. Hence, we will decompose and complete them
by combining acquired and on-demand-learned skills (§ 7.3.3). We collect all options
for the same skill, i.e. various policies paired with successful reward functions, as
future execution candidates, and we leave the study of mixing various skill options
for one robust skill control for future research.

7.3.2 Evolutionary Skill Learning with Fast and Slow Success
Determination

LLMs are capable of composing reward functions for RL agents to accomplish
specified tasks [Yu+23; Ma+24b]. We extend this strategy of Eureka [Ma+24b], which
prompts LLMs to program reward functions and evolve them with deterministic
selection where only the best reward function, as assessed by the success rate as a
fitness function, will survive and mutate. See Figure 7.3 for an illustration.

Challenges in Open-Skill Learning

In open-skill learning, where the focus is on optimizing newly proposed tasks rather
than predefined ones, naive Eureka-like methods [Ma+24b] cannot be directly applied
due to the fact that the success criteria cannot be predetermined. This is because the
fitness function, which serves as the ground truth for determining success, is unknown

A
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Fu Reward
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Figure 7.3: Evolutionary search of reward functions for defined tasks with deterministic success functions,
where the success rate can be reliably computed and used as a fitness measure. However, this approach
is too simple for novel skill learning, where the absence of prespecified success criteria necessitates a
behavior verification mechanism (cfr. Figure 7.4).
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Figure 7.4: The evolutionary skill learning procedure of ASD. An LLM composes a set of reward
and success functions (left), corresponding RL to train policies (middle), and evolutionary search with
learning statistics (e. g. success rate) and VLM assessment (right).

for each task proposal. As a result, evolutionary selection becomes challenging due
to the absence of a unified golden metric to quantify performance. Traditionally in
RL, the success determination function for a specific task is programmed by humans
into a function that is called at every physics step. Without resorting to human efforts
to exhaustively construct such success conditions, we let LLMs generate success
functions as well. These are being composed similarly to reward functions, but with
a binary output to indicate how the task is completed. Nevertheless, the soundness
of the success function requires investigation. Given that the LLM serves dual roles
as both a “player” (for reward function optimization) and as a “referee” (for success
determination), employing the resultant success rate as the fitness function for
evolution may jeopardize learning stability and trustworthiness. See also Figure 7.7
and Research Question 7.2 for further discussion of the undesired behaviors stemming
from evolution with incorrect fitness measurement. The success function and reward
function form a chicken-egg relation in that 1) the reward function search relies on
reliable success determination, and, meanwhile, 2) it is unfeasible to verify the success
function before the learning. As a result, it is challenging to have an evolutionary
search for both at the same time.

Success Determination: Fast and Slow

Distinguishing whether specific behaviors fulfill a task at each RL step (referred to as
fast success determination), as opposed to assessing after fixed intervals of execution
(as slow success determination), is pivotal in RL. Employing fast success determination
enables the agent to receive sparse rewards (as only success or failure can be notified
by the success function) in real-time and terminate actions promptly to prevent
potentially adverse explorations. Although the success function generated by LLMs
is essential for RL training, it may also be untrustworthy. Therefore, an independent
post-training evaluation is required as a complementary measure to ensure reliability.
For instance, the human examination of learned RL behaviors, especially from a draft
success function to debug, can be regarded as a slow success determination. Intuitively,
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VLMs can be applied to analyze robot behaviors. For example, REFLECT [LBS23] uses
a multimodal structure to explain execution anomaly. To establish a stable learning
cycle, we propose integrating both fast and slow success evaluations, distinguished by
the temporal extent of the underlying processes, to enhance reliability:

fast: sample a set of success functions that are used unchanged throughout skill
learning, based on which an LLM launches RL training and deterministically
selects reward function survivors. The underlying hypothesis is that determining
success is much more attainable than programming an applicable reward
function.

slow: prompt an independent VLM to additionally examine the success of survivor
candidates, before passing them on to the next evolutionary generation. In
particular, with the context of the environment and task, a VLM is tasked to
describe and assess the reinforced robot behaviors that are deemed successful
according to success functions (positives), securing a robust learning loop
without human supervision. Since there are many more unsuccessful behaviors
(negatives), and false negatives are less frequent and less harmful than true

negatives’, we do not additionally examine them due to the assessment cost.

Early Misconduct Check

In practice, LLMs may generate unacceptable function designs, e.g. trying to import
unsupported third-party Python modules or producing nonsensical outputs (see
Appendix D.1.3 for an example). Some of the potential bugs can be bypassed by
carefully designed prompts, while others should be examined at runtime by a Python
interpreter. Instead of directly launching RL and feeding back LLMs all kinds of
execution errors at the end, as in Eureka [Ma+24b], we carry out early syntax checks
and loop until the function generations meet certain requirements. This separate
check reduces unnecessary waiting time for simulation preparations and provides an
efficient reward search that focuses only on performance feedback. See Figure 7.4
for an overview of the evolutionary skill-learning procedure. The corresponding
prompts can be found in Appendix D.3.

Retrieving Skill Specification with RAG

The process of providing LLMs with environment knowledge necessitates abstraction,
which inherently results in information loss. For instance, certain environment
parameters, such as the operational constraints of a drawer moving 10 centimeters
along the X-axis, are typically embedded within 3D asset properties rather than explicit
scene establishment code. Certain aspects of the environment can only be understood
through direct interaction. As a result, learning configurations and their associated
outcomes from previous trials provide valuable insights for subsequent experiments.

3: False positives appear only when reward functions are better composed than the success functions,
being less frequent according to the hypothesis above. Besides, failures will not contaminate the existing
skill library, being less harmful than false positives regarding possible future executions.
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Algorithm 3: Agentic Skill Discovery (ASD) for open-skill learning

Input :LLM Jil, VLM 7, Robot R, Environment €, Reinforcement Learning &,
Task proposal prompt P'%, reward function prompt P™", success
function prompt P*"“‘; Max evolutionary search iterations K;

Output: Discovered skill library Z

Initialize Z « 0, TIP% « @, TI°Pt «— ( ;
while i < Nt do

I «— M (9{, g, Ptask);

// Fix if check fails: f]:"“cc — M (f].succ, Check Log, R, €,

PsYc¢), same for reward function
PSUCC — {f'jSllCC}NSUCC «— ‘/“ (9‘;, gl, Cg, PSLICC) ,
f r gucc c PSMCC
! {rjﬁtiahze mkd<i =1, fW «— null ;
7 ) my 7
while k < K do
// The @& operator indicates concatenation
Prew «— Prew @ f’fqiw ,
Frew — {fr}‘/leW}Nrew «— /#[/ (GJ"ZI g{, Cg’ PreW) ,
for f,7 € F"*” do
t T jm — P (cjz/ R,E, f]'succ’ freW),.

m

valid(7t; j,m) < Score(Tt; j m, f].succ, W) >0;

succ .
My < argmax,, Score(ni,j,m,]fj , frewy

if valid(1t; ; ;) then
L H?OS - H?OS U {ni,j,mK}
form € Hfas do
if V (J;, R, €, n)then

t H?pt — H?pt U {m};

possible(T;) « {H?pt} #0;

Z — ZU{II™);

Ptask — Ptask fay sz D fsucc D frew oy pOSSiblG(?Ti) ;
1e—i+1;

The collection of historical data represents an environment context distillation
process, drawing from both LLMs’ environment awareness and VLMs’ behavioral
assessment capabilities, being able to gradually compensate losses introduced through
abstraction. Despite lacking a dedicated 3D structure interpretation module, our agent
can derive aspects of such environment constraints through iterative experimentation
with various learning specifications. This discovered information is subsequently
encoded within learning parameters, for example, a selected reward function that
incentivizes positive x-coordinate displacement of the drawer handle effectively
facilitates successful drawer-opening task completion.

To reduce redundant exploration and effectively integrate prior knowledge, we
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implement a knowledge accumulation strategy that enables the LLM to retrieve
specifications of previously learned skills relevant to the current learning objective.
Retrieval Augmented Generation (RAG) [Gao+24b], which enhances LLM perfor-
mance by incorporating contextually relevant information from a local data pool
into prompts, has been widely adopted. In our skill learning framework, where
success and reward functions are identified through evolutionary search, and where
many skills within the same environment share common structural patterns, we
apply RAG to enhance LLM prompting. Specifically, we retrieve previously verified
skill specifications, including their associated success and reward functions, from
the evolving skill library and use them to augment the prompt for generating new
functions. This process, which we refer to as skill-RAG, provides the LLM with
concrete, context-relevant examples that guide its output and reduce ambiguity. By
narrowing the evolutionary search space, skill-RAG improves both the efficiency and
reliability of open-ended robot skill acquisition. The impact of this augmentation is
demonstrated through ablation results in Table 7.1 on page 114 .

7.3.3 On-demand Skill Learning with Quest Decomposition

ASD initially learns skills starting from similar environment reset states sgp ~ po,
where pg indicates the initial state distribution with limited randomness, such as
object placement. Consequently, some LLM-suggested skills cannot be trained if the
pre-conditions are not satisfied. For example, the skill “placing an object” requires
the initial state of having the object picked. An intuitive solution is to configure
the learning environment open-ended /reset-free [Gup+21; Wan+24a], where an
LLM continually observes the changes and proposes tasks to complete. However,
it challenges both the dynamic sensing ability of LLM as well as RL in practice,
especially when RL is accelerated by learning in many parallel environments. Another
way is to reset the environment to the final state of executed skills, thereby exploring
sequentially arranged further skills conditioned on already collected skills. Since the
bottom-up bootstrapping of skills leads to an explosion of possibilities, we introduce
a top-down on-demand learning strategy for the complex tasks that RL fails to learn,
which we term quests. Given a quest selected from the failure pool generated during
the skill discovery phase, an LLM is tasked with decomposing it into a sequence
of subtasks, thereby establishing a Hierarchical Reinforcement Learning (HRL)

1 = g2 ; i-1 = gi i
So Tl Sk 30 T2 i—1 SlT eH i

d[qeuren @

Decompose
Quest @ Subtask Learn/Query i

o5l
]
Wi

Execution

Figure 7.5: Top: By chaining together learned skills, ASD can further learn a new skill 7t/ on demand.
This is needed when a complex task is too challenging for RL to learn as a whole. Bottom: ASD solves
quests, namely challenging tasks, with top-down decomposition and skill learning (purple gear),
where the skill library (blue cube) expands for each subtask’s completion.
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framework. This decompose-and-conquer strategy has been successfully verified to
work [Ahn+22; Zha+23c; Din+23].

However, these approaches only allow a decomposition into a limited set of subtasks
that can be completed with known skills (bottom-up for completion). In contrast,
our method, as illustrated in Figure 7.5, allows the LLM to come up with novel and
contextually appropriate skills to be learned on demand. This capability enhances
the framework’s flexibility and generalizability in addressing challenging tasks that
require the LLM to construct sophisticated reward functions.

Algorithm 4: Agentic Skill Discovery (ASD) for quest completion

Input :Quest Q, LLM J(, Robot R, Environment € with initial state sy, ASD
skill learning based on (initialized as) state s: ASD(:|s), collected skill
library Zy

Output: Quest Completion

Initialize s « s ;
// Task decomposition
g = {gji}NT — (9{’ %/ Pdecompose’ @)I
forJ; € 9 do
if J; oc 11; € Z then
// Use the existing skill
T Retrieve(nt;, i, Zo) ;
else
// Learn the on-demand skill
L T — ASD(Ti|s) ;

s « Execute(r}, s) ;

To avoid the forgetting problem in multitasking policy learning, we learn individual
policy networks for each RL launch, which constitute the skill options, and only
keep the surviving ones according to their performance in the evolution loop. As for
learning of the i-th on-demand skill, since its initial state is reset as the final state
of the last stacked skill '~ i.e. s(i) = s%‘l ~ pri-1, we initialize the policy weights
from the last learned skill rather than randomly, 7' « 7'~!. This maintains Sé at
the beginning of learning and ensures a smooth transition from there when being
gradually optimized. Algorithm 4 on the current page summarizes the on-demand
skill learning process.

7.4 EXPERIMENTS AND RESULTS

7.4.1 Experimental Setup

Environment. We run the simulation in the Isaac Sim simulator* since it supports
parallel environment simulation, which dramatically accelerates the trials of RL with

4: https://docs.omniverse.nvidia.com/isaacsim, cfr. § 2.3.3 “Isaac Sim” on page 21.
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Robot: 7-DoF Joint Position Control,
with a gripper of 0~1 continuous open size

Objects:
- Cube A (colored and texted)
- Cube B (colored)
- Plate
- Drawer
- Dummy target marker

4096 Envs.
Figure 7.6: The simulated scenario setup in Isaac Sim with parallel environments for RL training.

various reward functions. We set up a table scenario with Franka Emika Panda robotic
arm, which has 7 DoF and a two-finger gripper. On the table, several objects are
randomly placed in front of the arm, with a drawer that can be opened. It is a single
scenario, but it enables multiple tasks. See Figure 7.6 for the environment setup,
with all assets” available in Isaac Sim. The experiments aim to answer the following
research questions regarding Objective IV:

» R.Q.7.1 What kind of tasks will be proposed?

» R.Q.7.2 Can skills be acquired automatically?

» R.Q.7.3 How do RL and learning context influence the learning efficiency?
» R.Q.7.4 Can challenging tasks be completed by chaining learned skills?

LLMs and VLMs Selection. We employ gpt-3.5-turbo to propose tasks and generate
reward and fast success functions since it shows a good programming ability while
being acceptable regarding cost. For the slow assessment of behaviors generated by
policies that have already been positively evaluated using fast success functions, we
record the resulting behaviors as videos. Keyframes are then extracted from these
videos and analyzed using the advanced VLM GPT-4V(ision)®, which verifies the
successful completion of the tasks.

Learning Algorithms. With a temperature of 1.0, the LLM samples three success
functions in each iteration; based on each, three reward functions are further sampled
to launch RL training and to evolve. We set the number of generations of evolutionary
search to three. For RL training, we use coordinate states of objects as the state
input, and the action space is set to be the robot joint position space. Using joint
coordinates instead of Euclidean coordinates avoids control lag caused by inverse
kinematics, which would slow down paralleled environments. For optimization, we
apply the RL framework rs1_rl” implemented by Orbit [Mit+23], where Proximal
Policy Optimization (PPO) [Sch+17] is applied with the same fixed parameters across
all potential tasks. For each RL iteration, we configure the maximum permissible
physics steps to 250, with 4096 parallel environments, and a total learning duration
of 2000 episodes. We train ASD on 6 NVIDIA GeForce GTX 1080 Ti GPUs, where
each proposed task takes around 6 hours.

5: Under the license: https://docs.omniverse.nvidia.com/isaacsim/latest/common/NVIDIA_
Omniverse_License_Agreement.html.

6: https://openai.com/research/gpt-4v-system-card

7: https://github.com/leggedrobotics/rsl_rl


https://docs.omniverse.nvidia.com/isaacsim/latest/common/NVIDIA_Omniverse_License_Agreement.html
https://docs.omniverse.nvidia.com/isaacsim/latest/common/NVIDIA_Omniverse_License_Agreement.html
https://openai.com/research/gpt-4v-system-card
https://github.com/leggedrobotics/rsl_rl
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Baseline and Ablation. Given the unpredictable nature of ASD tasks, understanding
the learning capabilities of the policy backend is crucial. The ability of code-based
LLMs to complete novel tasks has garnered significant research interest [Lia+22;
Hua+23; Wan+24a]. In ASD, RL agents are trained to accomplish specified tasks.
However, identifying a suitable baseline for evaluating our approach is challenging.
To the best of our knowledge, no existing work on semantic skill discovery exists at
the time of writing. We omit comparison with Unsupervised Reinforcement Learning
(URL)-based skill discovery methods, as they typically produce non-meaningful
trajectories without additional human intervention. For task completion without prior
skills, we use VoxPoser [Hua+23] as a comparative baseline, limited to evaluating
task proposal learning, since, unlike our approach, it is designed for control, not skill
discovery. Moreover, to demonstrate the effectiveness of the skill-RAG technique, we
conducted additional experiments where skill learning is halted upon verification,
allowing us to quantify the minimum number of GPT calls required. The efficiency
gains of skill-RAG are measured through a reduction ratio metric, calculated as the
ratio between the minimum number of GPT calls required to master a task with
skill-RAG versus the baseline approach without the skill specification augmentation
strategy (detailed analysis in Research Question 7.3).

7.4.2 Analysis

ResearcH QuesTtion 7.1 What kind of tasks will be proposed?

Given the robotic table manipulation scenario, the LLM could potentially propose
numerous possible tasks. We stop exploring further task proposals after reaching a
number of 24 valid skills. More skill-learning details and statistical reports can be
found in Table D.1in Appendix D.2 “Skill Learning Reports” on page 161. The first
column of Table 7.1 presents the proposed tasks in sequential order. From this, we
derive the following preliminary observations:

» The instructional complexity of tasks increases with successive iterations of the
proposal, but the associated learning challenges do not necessarily align with
this progression.

» Most of the proposed tasks are meaningful and completable under the setup.
Some of the tasks are not appropriately proposed due to LLM’s misconception
of the initial environment setup (e.g. No.10 for a wrongly deemed initial state,
since the drawer is always initialized as closed, it is reasonable to learn to close
the drawer) or of the robot’s capabilities (No.19 for difficulties in a guarantee of
“without grasping” requirement).

» By design, all of the tasks are parameter-free language instructions. Hence, the
LLM interprets “reach cube A” and “reach cube B” as distinct skills. How-
ever, rather than exhaustively enumerating all possible variable permutations
(e.g. A & B), the LLM employs a strategy that prioritizes semantic diversity in
skill proposition.

As can be observed from the task proposal list, the tasks are generally atomic
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and meaningful, but there is still potential for improvement, especially in the
understanding of the given initial status of the environment. Minimal human effort
to examine non-learnable tasks becomes necessary in this case. In this work, we
prompt the coding LLM only with text. Future research involving mixed modalities,
e.g. visual observations or even point clouds [Zha+24b], promises to alleviate this
phenomenon.

ResearcH QuEesTioN 7.2 Can skills be acquired automatically?

To evaluate whether the proposed tasks have been mastered, we describe the learning
status for each proposed task with the following measures:

» No, the number of acquired skill options, defined as the count of available
policies that satisfy both fast (LLM-based) and slow (VLM-based) success
criteria.

» Nc, the number of acquired skill candidates, i.e. those policies that are falsely
considered positive according to composed fast success functions but failed by
the VLM.

» Npo and Nyc, the number of human-validated options and candidates as ground
truth, respectively, which we define as ground truth.

As shown in the skill option column in Table 7.1, ASD automatically collected
many valid skill options. However, the skill candidates column shows that many
behaviors were falsely positively evaluated by the coding LLM, necessitating an
additional checking mechanism to avoid potential false learning cycles (see Figure 7.7).
Quantitative analysis demonstrates that fast determination achieves an average

precision of NuotNue _ 44 93

No+Nc
of % = 73.58%. This substantial improvement in precision through the application
(@)

of VLMs for slow success determination reduces false positive outcomes and enhances
the stability of the learning cycle and the reliability of acquired skills.

%, while slow determination yields an average precision

ResearcH QuesTioN 7.3 How do RL and learning context influence learning
efficiency?

By alternatively applying VoxPoser [Hua+23] as the skill learning strategy, we show
the advantages of RL in learning skills from scratch. As shown in Table 7.1, many
tasks can be accomplished using RL but fail when using VoxPoser. This discrepancy
can be attributed to VoxPoser’s reliance on extensive human effort to predefine spatial
hooks and basic motion primitives, coupled with its lack of the exploration capability
inherent to RL. Since the goal of agentic skill discovery is to acquire skills with
minimal or no human involvement, we do not meticulously design primitives for
VoxPoser but instead, provide only basic movement examples. Consequently, this
baseline performs well on tasks requiring simple positional approaches but often fails
when more complex manipulations are needed. In contrast, RL-based skill learning,
driven by its intrinsic exploration capability, successfully adapts to the environment
and masters a broader range of skills.
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Table 7.1: Snippet of task proposals based on the table manipulation scenario. The learning results
are briefly reported by counting the number of skill options (Np), the number of skill candidates (N¢),
and the number of corresponding validations by human examination (Ng+). The column with RAG
shows the minimal GPT calls (for one skill option acquisition) reduction ratio (the smaller, the better)
of having skill-RAG over previously without skill-RAG. The skill mastering result of RL and a baseline
skill learning strategy VoxPoser (Vox.) are marked as v/(success, with > 90% success rate) or X(failure).
The symbol “-” indicates inappropriately proposed tasks within the environment context.

Task Description NHO/NO NHC/NC W/RAG RL  Vox.
1 Reach cube A 4/4 2/2 1.00 | v V
2 Reach cube B 8/8 1/1 021 | v V
3 Reach the plate 7/7 2/2 022 | v V
4 Pick up the cube A 4/5 0/4 098 | v X
5 Pick up the cube B 2/2 0/4 030 | v X
6 Slide cube A from its current 3/3 0/6 120 |V X
position to a target position on
the table
7 Open the drawer 1/2 0/10 088 | v X
8 Pick up the plate 3/3 0/0 066 | v X
9 Place the plate onto a target 4/6 0/12 088 | v X
position on the table
10 Close the drawer -/3 -/6 - - -
11 Align cube A and cube B to target 0/0 0/10 0.00 | X X
positions that are apart from each
other.
12 Close the drawer with cube A inside. 0/0 0/3 0.00 | X X
13 Gripper open/close toggle 1/2 0/4 120 | v V
14 Slide cube B to the table edge 2/2 0/0 083 |v X

without toppling it, aiming for a
target position near the edge.

15 Align end-effector center over the 2/2 1/2 076 | v V
drawer handle without opening or
closing the drawer.

16 Navigate the gripper to a target pose 3/4 1/1 044 | v V
above cube B without touching it.

17 Gently push the drawer to a partially 1/1 0/4 088 | v X
open or closed position.

18 Position cube A directly in front of 0/2 0/1 0.00 | X X

the drawer handle without blocking
the drawer from opening.

19 Swap positions of cube A and cube B 0/0 0/3 0.00 | X X
without grasping.

20 Move end-effector over cube A. 23/23 7/7 021 |v X

21 Push cube A and cube B close to each 1/2 0/31 032 | v X
other.

22 Move to a target position on the 33/33 1/2 018 | v V
table without interacting with
objects.

23 Put cube A into the drawer. 0/1 0/27 0.00 | X X

24 Stack cube A on top of cube B. 0/4 0/51 0.00 | X X
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Figure 7.7: Possible failure modes with unassured evolution fitness measurement. Left: the LLM-
generated success determination may confidently but wrongly assess a task as successful, leading
to an undesired false positive learning cycle with a contaminated skill library and non-accomplishable
future task proposals. Right: negative evaluation of indeed successful behaviors will misguide the
reward function search and prevent skill acquisition, resulting in a false negative learning cycle.

Table 7.1 highlights the advantages of prompting LLMs with previously validated
success and reward functions. By retrieving these evolved functions as design cues
for the current task, the number of GPT calls required to learn the first skill option
is significantly reduced. We argue that, as the complexity of robotic environments
increases, accessing skill specifications with RAG will be essential for enhancing the
efficiency of agentic skill discovery.

ResearcH QuesTtion 7.4 Can challenging tasks be completed by chaining skills?

Our empirical analysis reveals that certain proposed tasks necessitate extended
execution horizons and present significant challenges for LLMs in formulating
effective reward functions. These complex tasks, which we term as quests in § 7.3.3,
typically involve multi-step entity manipulations. For instance, a stacking task
requires sequential actions: first grasping one object, and then identifying and
aligning it with another object. In our observations, even the highest-performing
behaviors predominantly focused on various cube-grasping techniques but failed
to progress beyond holding the cube in an elevated position. As illustrated in
Figure 7.5, ASD overcomes this limitation by utilizing LLMs to decompose a quest into
sequential short-horizon subtasks. Table 7.2 showcases two illustrative cases where
ASD initially struggled to master complex tasks as unified objectives but succeeded
by systematically decomposing them and addressing the subtasks individually. This
demonstrates that the policy 7t can be effectively learned and integrated hierarchically
by building on existing skills, underscoring ASD’s potential for solving long-horizon
tasks.
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Table 7.2: Snippet of quest completion demonstrating the integration of accumulated skills from the
library with on-demand learned skills, where the latter are conditionally acquired using the end states
of executed skills as initial states, after a replay of already acquired skills from Table 7.1.

Quest Decomposition Nuo/No Nuc/Nc
Stack cube A on top of cube B
1) Pick up cube A >replay v replay
2) Place cube A on top of cube 1/2 0/22

B carefully, aligning their sur-

faces to stack them

Put cube A on top of the plate
1) Pick up cube A >replay v replay
2) Place cube A on top of the plate 3/3 0/3

7.5 CONCLUSION

Agentic Skill Discovery (ASD) addresses a broad vision for agentic Al systems
[Sha+23; Seq24; Zha+24a; Qia+24], enabling robots to understand complex embodi-
ments and autonomously pursue intricate goals with minimal human intervention.
By using LLMs to devise, motivate, and improve necessary learning processes, we
have shown that language-conditioned robotic skills can be discovered from scratch,
where RL and RAG techniques are beneficial for the efficacy and efficiency of skill
learning. Using a VLM for third-party behavior assessment prevents the skill library
from being influenced by false positives. Furthermore, ASD also promises to tackle
challenging, long-horizon tasks by dividing and conquering on demand and thereby
further effectively extending the skills.

7.6 LIMITATIONS AND FUTURE WORK

Abstraction and Environment Diversity. As discussed in Research Question 7.1, relying
on text-based LLMs to interpret environmental information inevitably introduces a
level of context abstraction. This abstraction may obscure fine-grained environmental
cues critical for precise behavior learning and evaluation. Moreover, using LLMs
to describe and assess robot behavior introduces potential biases and limitations
in the evaluation process. A valuable future direction would be to develop and
fine-tune specialized robot behavior assessment models [Ma+23], leveraging existing
multimodal robotic datasets to improve precision and reliability. Additionally, while
the current experimental validation focuses on a robotic arm scenario, which effectively
demonstrates the framework’s capabilities, it remains a relatively constrained task
domain. Extending the framework to more complex and diverse scenarios, such as
deformable object manipulation, multi-agent coordination, or long-horizon tasks,
will be important to further evaluate its generality and robustness.

Simulation and Real-World Applicability. In addition, the applicability of this method to



7.6 Limitations and Future Work | 117

real-world scenarios and diverse embodiments could be evaluated to fully explore its
agenticness [Sha+23], especially in cases where parallel learning is necessary. Learning-
based methods are typically data-intensive, making direct training on real robots slow,
resource-exhaustive, and often impractical. To address this, ASD relies on parallel
simulation for scalable skill discovery. One emerging direction involves building
digital twin environments to safely and efficiently explore policies before transferring
them to physical systems. Another strategy is to first collect real-world data to build
a simulation model (real-to-sim), then train in simulation, and finally deploy back to
the real robot (sim-to-real [HH6f+21; Gdd+22]). These real-to-sim-to-real approaches
[Li+24; Tor+24] are increasingly adopted in recent research to improve transferability
and reduce the cost of real-world trials. Moreover, even in the absence of a physical
robot, the ASD framework remains useful, e.g., in discovering reusable skills for
digital agents, such as virtual character animation or game behavior modeling.

Toward Long-Horizon Autonomy. The current implementation focuses on acquiring
basic skills; however, ASD lays a foundation for scalable autonomy. Future research
should explore mechanisms for chaining acquired skills sequentially or integrating
them into a graph-structured representation of policies to enable long-horizon tasks.
Robustness is another key factor, i.e. learned skills must remain effective across
varying contexts. To this end, methods such as domain randomization and task-level
precondition verification should be investigated to improve skill generalization and
reliable activation.



REWARD MODELING, EMBODIED
PLANNING, AND EXPLAINABILITY

Extending Embodied Autonomy

To advance embodied autonomy, a series of collaborative research have been
conducted that explore complementary approaches to learning, reasoning, and
decision-making in robotic systems.

» Reward derivation beyond direct environmental signals: Reward models
can be learned from data or inferred through reasoning with generative
models, marking a shift from traditional, hand-designed feedback toward
autonomously constructed objectives.

» Grounding LLM planning: Task planning using LLMs is enhanced through
integration with symbolic structures, enabling more systematic reasoning
and long-horizon manipulation. Object-centric environmental representa-
tions provides the semantic grounding needed for effective and generalizable
planning.

» Transparency and interpretability for trustworthy autonomy: As autonomy
increases, so does the need for systems that are transparent and interpretable.
These collaborative research contribute to explainable agency through tech-
niques such as reward decomposition, causal abstraction, and post-hoc
reasoning with LLMs, helping observers understand and align with the
agent’s decision-making processes.

Despite the rapid progress in embodied AI and robotic learning, several critical
gaps remain underexplored in the literature. (1) While Reinforcement Learning (RL)
has shown strong potential in autonomous behavior acquisition, many real-world
scenarios lack well-defined or reliable reward functions. This issue is particularly
evident in tasks such as those explored in Chapter 7, where reward functions
emerge through evolutionary search rather than being explicitly specified. Such cases
challenge conventional RL paradigms and call for more systematic investigations into
learning with derived or adaptive reward signals. (2) Although LLM have recently
been adopted for task planning in robotics, their generated plans often lack guarantees
of computational correctness, especially in long-horizon or high-DoF manipulation
tasks. The absence of formal validation or planning consistency presents a significant
bottleneck in deploying these models for reliable control. (3) The pace of advancement
in Al capabilities has far outstripped progress in interpretability and transparency.
As intelligent systems become increasingly autonomous and complex, enhancing
their explainability is crucial to ensure safety and controllability.

Motivated by these limitations, this chapter organizes collaborative research aimed
at broadening the scope of embodied autonomy into the following topics:

» Reinforcement Learning (RL) with derived rewards (§ 8.1), i.e. with rewards
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coming from a separate reward model rather than, in a standard form, from
the environment directly, including both inductive reward modeling from
joint learning (§ 8.1.1) and deductive reward modeling as reasoning results by
generative foundation models (§ 8.1.2). See Figure 8.1 for an illustration of this
type of RL.

» LLM-based task planning (§ 8.2), where LLMs are used to generate action
plans, especially for bimanual manipulation. This includes both direct controls
via LLMs and hybrid approaches combining LLMs with symbolic planning
frameworks (e.g., PDDL integration). See Figure 8.4 for illustration.

» Enhancing transparency, interpretability, and reliability of learning models
(§ 8.3), with a focus on explainable agency. This includes approaches such
as reward decomposition with abstract action spaces, causal state distillation
for uncovering decision rationale, and the use of LLMs for post-hoc mental
modeling of agent behavior. These methods aim to make intelligent systems
more understandable and trustworthy to human users.

8.1 REINFORCEMENT LEARNING WITH DERIVED
REWARDS

As is shown in Figure 8.1, RL with derived rewards extends standard RL to apply on
fields where the oracle reward functions are not available. The derived rewards, 7,
being an estimation of the real rewards, assist an agent to explore and optimize its
policies. Usually, the reward models can be inductive, i.e. jointly learned with the
online collected data by an RL agent, or be deductive, i.e. given by an external, pre-
trained reasoning model. The different usage of inductive vs deductive emphasizes
the distinction of the nature of a learning model (usually jointly trained) with collected
trajectories vs reasoning by a generative model with built-in knowledge. Both ways
introduce noise to the rewards, challenging the stability of RL optimization but may
be from different aspects.

A J
&

Figure 8.1: Reinforcement Learning (RL) with derived rewards, i.e. rewards from separate reward
models, cfr. Figure 3.5 “Reinforcement learning paradigm” on page 41.

8.1.1 Reinforcement Learning with Inductive Rewards
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ConTtrisuTiON 8.1 Related resulting publications are

» [Li+23c]? (oninternally rewarded RL and reward denoising): My contributions
in the work mainly reside in the formal formulating this special RL problem
(i.e. RL with inductive reward models), deriving supporting theory of the
formulation, evaluation criteria discussion, and interpretation of experimental
results.

» [Zha+25]” (on LLM alignment tuning with selective samples): My contri-
bution mainly in bringing active learning to the discussion, explanation for
experimental results, and co-coming up with core algorithms accordingly.

#[Li+23c]: Li* et al. (2023), ‘Internally Rewarded Reinforcement Learning’
b [Zha+25]: Zhang et al. (2025), ‘/REAL: Response Embedding-Based Alignment for LLMs’

Inductively rewarded RL, or Internally Rewarded Reinforcement Learning (IRRL)
[Li+23c], represents a group of RL algorithms whose rewards come from a jointly
learned reward model, in comparison with standard RL whereas an oracle reward
function is deemed known. This special form of joint learning process may face a slow
cold start challenge': initially, the policy is poor such that the collected trajectories
are non-informative to train a reward model (e.g. training a classifier with noisy
observations), and meanwhile, the reward signals back from the poorly learned
reward model can be very noisy, further misguiding the policy adaptation. See
Figure 8.2 for an illustration of this unstable learning with a cold start.

I insufficient :
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Figure 8.2: The cold start issue in Internally Rewarded Reinforcement Learning (IRRL), i.e. biased
initial learning with inductive rewards, where the randomly initialized policy is poor to get sufficient
observations for the training of reward model, and vice versa, the poorly trained reward model
produces noisy rewards back to the agent to learn a policy.

IRRL encompasses a broad range of applications, including skill discovery, active
vision, and Reinforcement Learning from Human Feedback (RLHF) / Reinforcement
Learning from AI Feedback (RLAIF), where rewards are derived from a learned
reward model rather than provided directly by the environment.

Skill Discovery. A common formulation involves sampling a latent skill z ~ p(z),
generating a trajectory 7 ~ mg, and maximizing the mutual information I(z; 7)
between the skill and the resulting behavior [Las+21b; Yan+25; BSK21; Rho+25;

1: The phenomenon is less obvious for LLM alignment tuning because the LLM, as a generation
policy, has been pre-trained and supervised fine-tuned before Reinforcement Learning from Human
Feedback (RLHF).
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Kam+22; KPK21; Las+21a; Sha+20; Eys+19]. This objective is typically optimized via
the surrogate:

1 ,
maxlog qy(z|7)

where gy, denotes a learned reward model that approximates the oracle reward.

Active Vision. Tt involves a target task with classification label y ~ p(y), where
the prior distribution p(y) is typically known. The objective is to maximize the
information gain relevant to solving the given task [Baj88; Li24]. Taking a robotic
question-answer task as an example, the robot has a limited observation horizon
each time step, and it is supposed to collect sufficiently minimal observations over
time to answer a, for example, classification problem (see Figure 8.3). The objective to
maximize can be

» accuracy-based reward: 1(§ = y), where 7 is the predicted classification from
the model with parameters 1;

» or similarly to above, estimated posterior g (y|7), which can be derived from
an approximation of mutual information objective I(y; 7), providing a more
smooth estimation of the quality of currently observed information.

RLHF /RLAIF. The problems usually start with paired annotations @ = {x, y*, y " }n,
with x being the input prompts, and y* and y~ are preferred and dispreferred
responses respectively [Chr+17; Sti+20; Cas+23; Ouy+22; Raf+23; Lee+24; Xio+24],
etc.. With reward modeling [Ouy+22; Raf+23], py(y*™ > y~) = o(Ary), where
Ary = ry(x,y") — ry(x, y~). Maximizing the log-likelihood of positive-negative
classification leads to a training objective of the reward model (and also a policy
implicitly, see Direct Preference Optimization (DPO) [Raf+23] form):

max logpy(y™ > y7) = max log o(Ary).
Starting from the RL objective but with Dy (7g]| 7tref) constrain removed for simplic-
ity:
max Eyg y~ro(yl) ' (X, 1),

it can be derived that ry(x, y) o log 7g(y|x) [Raf+23], and the final optimization
gradient of Direct Preference Optimization (DPO) is

o(~Ary) - [Viog n(y*|x) - V log m(y*|x)].

This formula for paired data can be further extended as

DI y+|x7;(fiz"2( TV 108 - Viog(y7 1)

for one-vs-many contrastive preference.

As is observed, the learning objectives, e.g. the reward format to be maximized, are
quite similar. Some of the rewards reveal the learning process, i.e. via an estimation
of posterior, which can be regarded as an optimization over a weighted likelihood. A
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Figure 8.3: Hard attention (a case of active vision) example where the agent can only observe partially
and is tasked to collect sufficient information to answer the question: "Which number is currently
being observed?". This is a RL problem to optimize the observation policy but with rewards coming
from only a jointly trained classification model gy (y|7). Image adapted from [Li+23c].

similar idea of distinguishing learning challenges can be also found in [Zha+25], where
the learning difficulty of an LLM is controlled by embedding similarity, assuming that
hard pairs are too challenging for LLMs and are also less representative to effectively
deliver information, while easy pairs, or, even better, centroid pairs (out of clustering
centers), are both consumable and informative for LLMs.

One typical challenge resides in IRRL is that, because the reward model is jointly
optimized with the evolvement of a policy, the derived rewards can be noisy and
thus lead to unstable policy learning, possibly resulting in a vicious cycle inside
which both the policy and reward model are poorly optimized [Li+23c]*. To mitigate
this issue, we analyze the noise statistics and propose a clipped linear reward
shaping function f,(-) applied on the original reward signal (from a reward model)
ry(T,y) = logqy(y|t) — logp(y), where p(y) is a prior uniform distribution for
sampling y:
rg e = fr(ry) = max[qy(ylt) - p(y), 0l.

Despite the simplicity, the clipped linear reward shaping turns to be effective for
the IRRL problems mentioned above. Experimental details can be found in [Li+23c].
Note that, the requirement for a consistent optimum is that the function f,(-) should
be an increasing function. There are countless functions that meet this minimal
requirement, but not all of them are effective. To derive an effective function, a
perspective from general f-mutual information [Bel+18; Poo+19; EGI20; Rak+21], as
a replacement of the standard mutual information derived from Kullback-Leibler
divergence [Li+23c].

[Zha+25]: Zhang et al. (2025), ‘REAL: Response Embedding-Based Alignment for LLMs’
2: Evidence can also be found in VIC [GRW17], which resort to an implicit option control to bypass
this learning instability.
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8.1.2 Reinforcement Learning with Deductive Rewards

ContriBuTIiON 8.2 The related resulting publication is [Chu+24b]* (on accel-
erating RL with LLM guidance/feedback): My contributions primarily include
co-developing the core methodology for utilizing LLMs to reason about informative
rewards that guide RL agents in acquiring low-level control.

?[Chu+24b]: Chu et al. (2024), ‘Accelerating Reinforcement Learning of Robotic Manipulations via
Feedback from Large Language Models’

Asis discussed in Chapter 6 on page 83, the reasoning is one of the powerful emergent
abilities of LLMs. When grounded into a specific environment and a given task, LLMs
are able to generalize the internal knowledge and reason about (1) a suitable solution
nizrm(als) or (2) the judgment over agent behaviors riim(s, a) [Chu+24b; Wan+24c],
with which the agent can either, at least partially, imitate or optimize the learning
objective.

{  Tum @ s,a, s’
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Figure 8.4: Reinforcement Learning (RL) with deductive rewards, where the user only provides once
the environment and task context as prompts to the LLM, and the LLM thus deduces proper rewards
rLim for the agent. It serves as a complementary reward signal to the environment rewards, leading to
an acceleration of the overall learning process.

In previous research studies, the learning guidance for agents is usually provided
by domain experts [Chr+17], which is costly and time-consuming. In [Chu+24b], we
propose Language agent feedback interactive Reinforcement Learning (Lafite-RL)
framework to accelerate RL agent learning with additional corrective and directive
teaching provided by LLMs. The framework starts with a human prompting an LLM
with the environment, robot, and task configurations, conditioned on which, the LLM
deduces proper additional rewards for the agent to optimize with®. See Figure 8.4 as
an illustration. The experiments conducted on several robotic manipulation tasks
using RLBench [Jam+20] (details can be found in [Chu+24b]) demonstrate that
the LLM-guided RL, with Vicuna-13B v1.5 model as the language model backend,
outperforms the baseline setting with only environment rewards by a large margin
in terms of higher success rate and shorter episode length. The corresponding results
indicate that large-scale trained foundation models are potentially good interactive

3: There also exists works such as [Wan+24c] using VLMs to annotate preference between two
trajectories, instead of providing direct rewards, similar to RLAIF in LLM training [Lee+24; Li+23a].
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Figure 8.5: Language agent feedback interactive Reinforcement Learning (Lafite-RL) learning
paradigm, where the user provides the environment and task context as prompts to the LLM, which
then deduces proper rewards 711 for the agent. The agent learns from both the environment rewards
and the LLM rewards, leading to an acceleration of the overall learning process.

teachers, i.e. being Process-supervised Reward Model (PRM) rather than just being a
Outcome-supervised Reward Model (ORM), as was applied in many previous works,
for low-level RL training.

8.2 LLM-BASED EMBODIED PLANNING

ConTtrisuTioN 8.3 The related resulting publications are:

» [Sun+24]" (on object state-sensitive LLM planning): My contributions mainly
reside in co-developing the core methodology, designing the experimental
robotic scenario, and contributing to the design and analysis of the LLM
prompting strategies.

» [Chu+24a]’ (on LLM-based bimanual planning): My contributions include
participating in the system design, implementing key modules for integrating
LLMs with task and motion planning.

» [Chu+25]° (on LLM + multi-agent PDDL planning for bimanual manip-
ulation): My contributions are in co-leading the core method design and
experimental validation in simulated bimanual manipulation tasks.

#[Sun+24]: Sun et al. (2024), ‘Details Make a Difference: Object State-Sensitive Neurorobotic Task
Planning’

b [Chu+24a]: Chu et al. (2024), ‘Large Language Models for Orchestrating Bimanual Robots’

¢ [Chu+25]: Chu et al. (2025), 'LLM+MAP: Bimanual Robot Task Planning Using Large Language
Models and Planning Domain Definition Language’

7

Previously in § 3.3.3 “Integration: Planning and Learning with Foundation Models
on page 44 and also in Chapter 5 on page 69, where Matcha agent utilized multimodal
cues to guide planning with large language models, general LLM-based task planning
frameworks was introduced. This section presents several collaborative efforts that
turther explore the role of LLMs in planning, with a particular emphasis on object
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state sensitivity and bimanual manipulation.

8.2.1 Object State-Sensitive Agent

Ambiguities appear in many cases including both from the user needs and the
environment status, and minimizing the ambiguities leads to an automatic and
efficient task completion. In [Sun+24], we investigated whether LLMs and Vision
Language Models (VLMs) can generate plans that are sensitive to object states (see
Figure 8.6 as an illustration). This led to the development of Object-State Sensitive
Agent (OSSA), a VLM-based agent that can reason about the states of objects, for
example, a whole intact apple or a sliced apple, in the environment and generate plans
accordingly. This is particularly important for daily-life scenarios where the robot
needs to understand the context of objects and tasks.

To carry out the expriments and bring research focus, we provide a benchmark
dataset” involving 40 scenarios with 184 objects for researches in state identification
and planning. To investigate the capabilities of VLMs in this regard, a modular method
(which is comprised of separable vision detection module, GRiT [Wu+24], for dense
captioning) and VLM-only, i.e. monolithic approaches (that incorporate unified VLM,
GPT-4V in this case) are compared to handle state-sensitive planning. Experiments
on tabletop scenarios demonstrate that the monolithic approach outperforms the
modular method in both detection accuracy and manipulation planning. Although the
modular method is specifically trained for object detection, it struggles to accurately
recognize object states. This limitation can be attributed to the lack of diverse
training data covering various object states and its inability to incorporate contextual
information from the table for reasoning. In contrast, VLMs exhibit strong reasoning
capabilities and can effectively interpret the table context, leading to improved object

OBJECT STATE

"Clear the table."

‘ bitten
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Figure 8.6: The Object-State Sensitive Agent (OSSA) performs context-aware task planning. On a
real-world, everyday table, various objects exist in different states—such as fresh fruits, leftovers, and
clean plates. The robot must take these object states into account and make conditional decisions
accordingly. For example: “Throw away orange peels, put the remaining half apple in the fridge.”
Figure adapted and rearranged from [Sun+24].

4: See https://github.com/Xiao-wen-Sun/0SSA for open-source dataset.
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state recognition and more effective planning.

8.2.2 Bimanual Planning
LLM Prompting for Bimanual Manipulation

In [Chu+24a], for complex embodied tasks, we introduced the framework LAnguage-
model-based Bimanual ORchestration (LABOR), a framework that enables direct
LLM-driven planning for bimanual coordination in long-horizon tasks. With cat-
egorization of bimanual manipulation types and prompting strategies, this work
showcased the ability of LLMs to reason about spatial-temporal relationships (see
Figure 8.7) between two arms. Experiments on tasks requiring coordinated two-arm
execution show that LABOR outperforms the baseline method in task success rate.
These results suggest that coordinated planning, particular for long-horizon tasks,
demands more sophisticated reasoning than what a baseline LLM can provide.
However, this complexity can be effectively addressed using contextual prompts
enriched with domain knowledge of bimanual manipulation (cfr. Figure 8.8).

RIGHT LEFT
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Figure 8.7: Bimanual coordination with spatiotemporal control types. Figure adapted from [Chu+24a].

LLM + Symbolic Planning for Bimanual Manipulation

Complementing LABOR, LLM + Multi-Agent Planning with PDDL (LLM+MAP)
[Chu+25] tackled the limitations of LLMs in logical consistency by integrating
them with symbolic planning through PDDL°. LLM+MAP, illustrated in Figure 8.9,
leverages GPT-40’s reasoning abilities to support multi-agent, specifically dual arms
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Figure 8.8: An illustration of long-horizon task execution requiring spatial and temporal coordination
between two robotic arms of NICOL. The system leverages LLMs for high-level planning and policy
generation, allocating subtasks to both arms. This showcases the integration of semantic reasoning
with embodied control in dual-arm robotic systems (cfr. Figure 8.7 for coordinating types). Figure
adapted from [Chu+24a].
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5: See also Figure 3.7 “Symbolic planning with PDDL” on page 46 for LLM with PDDL integration.
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LLM+MAP

PDDL DOMAIN + PROBLEM

TASK

Bimanual Plan

Figure 8.9: An illustration of the LLM + Multi-Agent Planning with PDDL (LLM+MAP) architecture.
The framework begins with a vision detection module that provides a description of the scene, which,
combined with a high-level task description and domain knowledge of bimanual embodiment, is used
to prompt LLMs to generate symbolic conditions in PDDL configuration files. These conditions are
then consumed by multi-agent solvers for a bimanual plan. After verification, the symbolic plan is
translated into low-level control commands for execution. Figure adapted from [Chu+25].

in this case, coordination and efficient task decomposition for bimanual manipulation,
significantly improving planning efficiency and robustness.

Experiments compared LLM+MAP with direct LLM-based planning using GPT-4o,
OpenAl-ol [Ope24], and Deepseek-R1 [Dee+25] as baselines on several tabletop ma-
nipulation tasks requiring bimanual coordination. The results show that integrating
symbolic multi-agent planning with LLMs significantly enhances performance in
long-horizon bimanual task planning, yielding higher success rates, faster planning
times, and shorter execution paths. Besides, we find that strong reasoning models like
Deepseek-R1 and OpenAl-ol outperform other non-reasoning models, e.g. GPT-40
and DeepSeek-V3 [Dee+24], a lot, which indicates that, especially for long-horizon
task planning, strong reasoning ability is essential, cfr. Chapter 6 on page 83.

Together, these works on bimanual planning highlight the versatility and growing
maturity of LLMs in planning tasks that demand contextual awareness, multi-step
reasoning, and physical coordination in robotic systems.

8.3 EXPLAINABLILTY IN AI AGENTS

ContrisuTiON 8.4 The related resulting publications are:

» [Lu+23]" (on RL decision visualization): My contributions are in co-proposing
the core method for RL behavior explanation, and developing LLM-based
interface for verbal explanation.

» [Lu+24]° (on causality disentanglement and reward decomposition): My
contributions are in formulating the disentanglement problem, coming up
with sparsity, orthogonality, and sufficiency as optimization objectives, and
deriving the principal theory support.
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» [Lu+25]° (on mental modeling RL agent): My contributions are in co-
developing the agent mental modeling paradigm and in-depth discussion on
evaluation criteria.

#[Lu+23]: Lu et al. (2023), ‘A Closer Look at Reward Decomposition for High-Level Robotic
Explanations’
b [Lu+24]: Lu et al. (2024), ‘Causal State Distillation for Explainable Reinforcement Learning’

¢[Lu+25]: Lu et al. (2025), ‘Mental Modelling of Reinforcement Learning Agents by Language
Models’

As intelligent robotic agents grow in complexity, particularly those driven by RL,
explaining their behaviors to human users becomes increasingly vital. This section
highlights collaborative efforts toward Explainable AI (XAI) in robotic systems,
focusing on both model-intrinsic and post-hoc interpretability approaches, including
the integration of LLMs for more intuitive human interaction.

Explainability with Q-Map, Statistics and LLMs

In [Lu+23], we addressed the challenge of providing non-ambiguous, human-
understandable explanations of RL agent behavior by reward decomposition within
abstract action spaces. The proposed explainable Q-Map framework grounds decision-
making in task-relevant object properties and provides visual and textual explanations
that align more closely with human reasoning. By extracting statistical features from
the Q-values and embedding them into textual templates, we can generate explana-
tions that are more interpretable to human users. Furthermore, with the integration of
LLMs, we can enhance the explanations by providing a more interactive and natural
language interface, allowing users to query and reason over the agent’s behaviors.
See Figure 8.10 for an illustration of the explainable Q-Map framework.
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Figure 8.10: Explainable Q-Map framework for RL agents. The framework provides visual and
textual explanations of the agent’s decision-making process, enhancing interpretability and user
understanding further through interactive query with LLMs. Image adapted from [Lu+23].

Reward Decomposition and Causal State Distillation

In [Lu+24], we further extend reward decomposition with a causal learning framework,
which captures the cause-and-effect relationships between states, actions, and rewards
(see Figure 8.11.), to uncover interpretable latent structures, i.e. causal factors {a;}N.
The optimization aims to distill causal factors that are



8.3 Explainablilty in Al Agents | 129

» sparse, with objective max > L(s — «;), where L(:) is the information loss after
masking out information the state s to get the i-th causal factor a;.

» orthogonal, with objective min 3, I(a;; j), 1<1,j £ N,i.e minimizing mutual
information between pairs of causal factors.

» and sufficient, with objective min || X, ro(a;, a) — ||, where 7 is the total reward
supervision and the causal reward models 7g(-) should be sufficiently enough
to uncover the true rewards, given causal factors {a;} N and action 4.

After the disentanglement, the framework generates more informative and robust
local explanations, enhancing transparency in RL-driven systems. See Figure 8.11 as
an illustration of reward causal factor disentanglement.
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Figure 8.11: State disentanglement and reward decomposition in RL, where the causal factors are
extracted from the state-action-reward transition, which are then used to generate explanations of the
agent’s decision-making process.

state reward

Mental Modeling of RL Agents

In work [Lu+25], we have specifically studied how LLMs can mental model the
environment transition and also an RL agent decision. The mental modeling process
involves prompt LLMs with, similarly, environment information, and additionally
the history of agent behaviors. With such context, an LLM is tasked to reason about
an agent’s internal behavioral logic and its effect on the surroundings, i.e. dynamics
transition. See Figure 8.12 as an illustration of mental modeling. Experiments in
robotic control scenarios and Atari games demonstrate that modern LLMs are unable

@ Agent

Trajectory Mental Model

Figure 8.12: Mental modeling of RL agents by LLMs, where the RL agent unrolls trajectories, and
via which the LLM mental model the agent’s internal decision-making mentalism. After this process,
the LLM becomes a “spokesman” for the RL agent for better human-robot interaction and decision
transparency. Image adapted from [Lu+25].
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to fully construct accurate mental models of RL agents based solely on in-context
learning from behavioral histories. This highlights both the current limitations and
the promising avenues for future research on the use of LLMs for mental modeling.

8.4 CONCLUSION

This chapter extends the core concepts introduced in earlier chapters by addressing
three critical challenges in advancing embodied Al:

» Lack of well-specified reward functions or guidance in autonomous robot
learning: We explore RL with derived rewards, leveraging both joint reward
modeling and LLM-based reasoning as guidance.

» Unreliability of LLM-generated plans for long-horizon robotic control: We
mitigate this limitation by domain-specific prompting and grounding LLM
planning in symbolic computation frameworks.

» Widening gap between Al capabilities and interpretability: We address this
by developing transparent modules and auxiliary mechanisms to enhance
interpretability and trust in decision-making processes.

8.5 LIMITATIONS AND FUTURE WORK

Despite the progress made, several limitations persist. Joint learning of rewards
and policies can lead to instability, and LLM-generated rewards, though creative,
often lack consistency and depend heavily on task-specific prompting. Integrating
LLM planning with symbolic frameworks improves structure but struggles with
scalability, as symbolic abstractions can be brittle and overly simplistic. Interpretability
efforts, such as causal distillation and post-hoc explanations, offer only partial insight
and may trade off performance, limiting their applicability in dynamic real-world
settings.

These limitations highlight the need for continued research toward more reliable,
generalizable, and interpretable embodied autonomy. Future directions include
establishing rigorous evaluation benchmarks, improving the synergy between data-
driven and symbolic methods, and enabling introspection and self-correction in
autonomous agents.



DISCUSSION, FUTURE DIRECTIONS,
AND CONCLUSIONS

9.1 DISCUSSION AND FUTURE DIRECTIONS

Building upon the accomplishments detailed in previous chapters, this chapter starts
by reviewing recent advancements, remaining challenges in embodied autonomy,
highlighting key progress, and outlining future research directions.

9.1.1 Advances on Reasoning, Adaptation, and Multi-Agents

Al develops rapidly and quickly, pushing beyond the scope and timeline of the work
presented in this thesis. As discussed in Chapter 6, reasoning remains a central
component in achieving robust and generalizable intelligence, and it continues to
evolve rapidly with emerging methods. In parallel, agentic systems, such as the
autonomous robotic agent explored in Chapter 7, are gaining traction as a promising
paradigm for interactive and adaptive intelligence. While this thesis touches on
dual-arm control capabilities, the broader trend toward sophisticated multi-agent
collaboration underscores the need to further investigate coordination, communica-
tion, and scalability. This section provides an overview of recent developments in
these directions, highlighting their growing importance for future Al systems.

On Advanced Reasoning

In previous chapters of Part II, several key works benefit from the powerful reasoning
ability of advanced Al models. As is also discussed in Chapter 6, ways to improve
LLM reasoning ability currently mainly result in inference-time compute scaling,
either via fine-tuning (e.g. DeepSeek-R1 with RL tuning [Dee+25]) or through
prompting [Wei+22a].

Prolonged reasoning pattern intuitively mimics additional mind effort of human
thinking when facing complex problems, and scaling inference-time compute gen-
erally achieves improved task-solving ability. However, it also leads to increased,
sometimes excessive or unacceptable (in terms of waiting time), consumption of
computational resources, regardless of problem complexity, which necessitates a
long-to-short compression while maintaining overall performance.

Reasoning length compression. Recent efforts aim to reduce reasoning length, especially
a preferred short answer for easy problems, to avoid excessive computing and
user waiting time. For example, Ol-Prunner [Luo+25] applies length-aware reward,
along with an accuracy-maintained reward, to fine-tune Marco-o0l-7B [Zha+24d]
and QwQ-32B [Qwe+25] models to shorten reasoning thoughts while maintaining
non-decreased accuracy on math problems.
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Inductive vs deductive reward modeling. Since in the process of Reinforcement Learning
from Human Feedback (RLHF)!, the reliability of reward models directly influ-
ences the resultant language models. DeepSeek-R1 incentivizes reasoning ability
on math and coding problems based on a rule-based reward function, i.e. without
the dependency on reward modeling. However, for more general problems beyond
such domains in which the result can be verified with rules, (explicit or implicit)
reward models are still mandatory. As a result, the improvement of the reliability of
rewards also attracts research. For example, [Liu+25b] improves reward modeling
performance with scaled inference compute, i.e. via deductive inference rather than
previously commonly applied inductive inference via an end-to-end model with
scalar output.

Multimodal reasoning. The challenge of representing information in text, along with
the lack of domain-specific or environment-attached data for LLM training, constrains
the comprehension of real-world scenarios [Xi+25]. Many works arise to improve the
reasoning ability of multimodal foundation modules [She+25; Pan+25], typically with
RL to incentivize strong reasoning patterns as is applied in DeepSeek-R1 [Dee+25].

On Autonomous Adaptation

Building an autonomous agent capable of adapting to unforeseen environments and
continuously evolving its abilities is an immense challenge [Xi+25].

Traditionally, in skill discovery, the main focus is to maximize options, determined
by so, st, (sg — st), i.e. initial and final states and a policy 7t(-) being learnable to
achieve the transition. The policy is vital, otherwise it will be meaningless if the agent
only knows what can be done but doesn’t know how to. Skill discovery belongs to the
scope of Unsupervised Reinforcement Learning (URL), usually done by incentivizing
an agent with rewards derived from the mutual information between the option z
and transition states (s, st), being different to the traditional motivation of learning
a set of options for the completion of a given extrinsic task. In other words, skill
discovery works exhaustively to find available states an agent can reach, regardless
of their personal intentions [GRW17].

This can be time-consuming and sometimes excessively redundant for robotic control.
In Chapter 7, a semantically motivated skill discovery framework is introduced
to efficiently explore affordable skills attached to an environment setting, lying
in the scope of bypassing URL, but directly learns semantically meaningful skills.
Besides, there are also other recent works trying to limit the skill-searching space.
For example, works to constrain a semantic subspace for an RL agent to explore
via additional rewarding supervision from foundation models [Rho+25; Yan+25].
Voyager [Wan+24a] expands skills, represented as programming codes, with a
self-verification mechanism in a virtual gaming environment, which may, however,
non-applicable for real robotic environments where spatial reasoning and reward
modeling are required.

To assess agent behaviors, such as determining task success or assigning rewards,

1: cfr. § 8.1.1 “Reinforcement Learning with Inductive Rewards” on page 119.
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some methods require analyzing sequences of states rather than relying on a single
static snapshot [KNK21]. This is essential for capturing dynamic properties, such as
whether an object is "slowly moving," without relying on predefined, task-specific
features like velocity. Robot sensors can be leveraged to detect transitions in predicate
states, providing a richer temporal context for behavior evaluation. As large-scale
self-supervised robot skill learning continues to advance, it becomes increasingly
important to develop mechanisms, whether rule-based [KNK21] or model-based,
e.g. [Ma+23], that can reliably monitor sensor streams and skill executions to assess
learning progress and guide further adaptation.

On Multi-Agent Systems

Effectively allocating long-horizon tasks among multiple agents involves several
critical steps: understanding and decomposing the overall task, assigning subtasks to
individual agents based on their specific capabilities and availability, and sequencing
executions to ensure efficient collaboration and coordination.

In multi-robot systems, either homogeneous or heterogeneous, coordination and
cooperation are essential for successful team performance [Azp+23]. Recent advances
have explored leveraging RL and LLMs for heterogeneous multi-agent robot task
planning, including task decomposition, coalition formation, and task allocation
[KVM24; Cem+25; Hon+24; STT24].

Asdiscussedin § 8.2 “LLM-based Embodied Planning” on page 124, evidence suggests
that for long-horizon tasks involving multiple robotic entities, the overall success and
effectiveness heavily depend on the reasoning capabilities of LLMs. We incorporate
computational search methods, such as symbolic planning, to generate coordinated
solutions [Chu+25]. However, these approaches face limitations in flexibility and may
incur significant computational costs, especially for complex tasks. Consequently,
enhancing the reasoning abilities of LLMs, particularly through exposure to multi-
agent domain data, remains a critical direction for enabling more scalable and effective
robot collaboration, including bimanual and broader team-based scenarios.

9.1.2 Remaining Challenges

Despite promising progress in integrating LLMs with robotics, a number of persistent
challenges, outlined below, along with existing effort and remaining research gaps.

Data Efficiency and Generalization

Learning effective control or reasoning strategies remains highly data-intensive. Self-
supervised learning, goal relabeling, and foundation models pretrained on diverse
tasks aim to reduce reliance on task-specific data. However, generalization across
embodiments and environments remains limited, as most systems lack grounded
inductive biases.

[Ma+23]: Ma et al. (2023), ‘Liv: Language-Image Representations and Rewards for Robotic Control’
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» Projects such as Open-X-Embodiment [ONe+24] aim to reduce the barrier to
data access within the robotics community by promoting a universal protocol
for robot data structures and encouraging data availability through a shared
platform. While such efforts support large-scale policy learning, particularly
through imitation learning, current methods still face limitations. Despite
leveraging diverse cross-embodiment datasets, learning detailed and transfer-
able control policies remains inefficient for advanced Vision-Language-Action
Model (VLA). Downstream behaviors typically require substantial fine-tuning
tailored to specific robot configurations and environments, highlighting that
generalization across embodiments and tasks continues to be a major open
challenge.

» Sim-to-real transfer is a cheap alternative to collect robot data, but the dis-
crepancies between simulation and the real world hinder policy deployment.
Techniques like domain randomization, dynamics adaptation, and modular
world models such as Cosmos [NVI+25], which separates physics from per-
ception, support transferability. Nonetheless, cross-domain consistency and
embodiment-aligned abstraction learning remain underexplored.

Skill Compositionality

Efficient skill learning where humans train a robot with minimal but sufficient
training effort to make the robot compositionally generalize its skills remains a
challenge to explore [Vij+25]. Besides, the learned behaviors are often hard to adapt
or reuse. Efforts like behavior trees, skill graphs [BSK21], and LLM-guided selection
[Ahn+22] aim to modularize action selection. Still, most skills lack clean interfaces or
composable structures. Progress may come from integrating symbolic representations
with neural modules and using programmatic abstractions to support flexible reuse
and transfer.

Reasoning, Planning, and Grounding

The gap between high-level task planning and low-level control still challenges
modern autonomous robots. Despite the aforementioned effort to collect massive data,
integrating reasoning, planning, and grounding across language, perception, and
control from high level to lower is still promising because many of the pre-trained large
foundation models are off-the-shelf to use, as we human control robot motions usually
by a higher level algorithm design through, for example, crafting reward functions for
RL or motion planning objective to optimize, which can be, at least partially, replaced
by agentic Al workflows. VLMs, affordance-based methods, and LLM-guided parsing
provide partial solutions for semantic grounding, enabling robots to interpret and
act on abstract instructions. However, ambiguity handling [Sun+24], spatiotemporal
dependency identification [Chu+25], and dynamic environment contexts, e.g. open-
ended world exploration [Wan+24a; ZWW24], are considered essential to avoid

[ONe+24]: O’Neill et al. (2024), ‘Open X-embodiment’
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misinterpretations or failures. These challenges are amplified in complex, multi-
agent, or long-horizon tasks, where scalable planning and coordination are of the
essence. While Hierarchical Reinforcement Learning (HRL), decentralized policies,
and symbolic decomposition approaches offer some relief, they remain limited in
adaptability and robustness. To enable scalable and generalizable autonomy, future
systems must support real-time, scene-aware grounding and flexible reasoning, e.g. a
generative robot reward model being capable of reasoning about the learning process
with robot and environment status, that adapts to uncertainty, interaction, and task
complexity.

9.1.3 Future Directions

Building on the findings of this thesis and discussion above, several promising
directions are identified for future research to further advance the autonomy and
adaptability of embodied agents:

Transferable simulation. Simulation provides an efficient and flexible means to generate
large-scale data. With improved fidelity and transfer techniques, addressing the
sim-to-real gap can enable robust policy training at scale without extensive real-world
interaction.

Learning from cross-embodiment data. To generalize across different robots and en-
vironments, future work should develop algorithms that can efficiently leverage
heterogeneous datasets. This includes designing architectures and learning strategies
that promote embodiment-agnostic representations and transferable skills.

Planning with VLA. While VLA models demonstrate strong generalist potential, their
integration with model-based planning and safety mechanisms remains limited.
Future research should explore how to align abstract instruction grounding with
reliable action planning and execution.

Self-determined learning. Moving beyond imitation, self-determined learning through
reinforcement is essential for open-ended autonomy. Future directions include
the development of intrinsic motivation, adaptive curricula, and autonomous skill
discovery in complex, dynamic environments. A promising path begins with high-
fidelity simulation, either using external simulators or internally learned world
models, to support efficient exploration and skill acquisition.

9.2 CONCLUSIONS

This thesis has investigated the conceptual foundations and practical advancements
in enabling autonomous embodied agents to explore their environment and engage
in self-development. Central to this work is the integration of world modeling,
semantic grounding, policy learning, and self-determination, which together form
the conceptual paradigm guiding this research. Under this paradigm, a comprehensive
set of research objectives aimed at advancing the capabilities of autonomous agents
has been extensively addressed. Each objective was explored rigorously through
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empirical studies and theoretical contributions.

» Firstly, self-deterministic agents capable of leveraging non-verbal multimodal
cues to autonomously explore and develop abilities beyond immediate task
requirements were constructed (Objective I). The introduction of the Intrinsic
Sound Curiosity Module (ISCM) framework demonstrated the effectiveness of
crossmodal learning cues in enhancing exploration and representation learning.

» Secondly, an interactive multimodal perception framework was developed,
enabling agents to actively gather, integrate, and semantically interpret di-
verse sensory inputs for context-aware decision-making (Objective II). The
Multimodal environment chatting (Matcha) framework exemplifies this ap-
proach by incorporating Large Language Models (LLMs) and performing
multimodal fusion at the decision level, thereby improving agent performance
in complex environments.

» Thirdly, agent reasoning capabilities were enhanced to interpret complex in-
structions and make informed decisions (Objective III). The Logical Thoughts
(LoT) method significantly improved zero-shot Chain-of-Thought (CoT’) reason-
ing, boosting inference-time reasoning and decision-making across multiple
domains and model scales.

» Finally, autonomous agents with advanced self-determination were constructed,
capable of verbally sensing environmental context and autonomously discov-
ering meaningful skills (Objective IV). The Agentic Skill Discovery (ASD)
framework enabled agents to identify and acquire new capabilities efficiently
in novel environments through self-determined Reinforcement Learning (RL).

Collectively, these achievements mark significant progress toward enabling au-
tonomous agents to explore novel environments and develop independently, advanc-
ing the field of self-developing embodied systems. Recent advancements and future
directions further underscore the growing potential of integrating world modeling,
semantic grounding, policy learning, and robotic self-determination to build more
capable and adaptable agents.
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PREDICTION ERROR AND GAUSSIAN
MODELING

In this appendix, the mathematical connection between practical implementation
of |[s” = §8’||2 (where 5" = pg(s,a), R" x R™ — R", is the regression on next state
in latent space) and general quality measurement with log-likelihood function
log pe(s’|s, a) will be discussed, serving as a theoretical complement to § 3.4.1
“Intrinsic Motivation” on page 48 and a foundation for the practice in Chapter 4
“Sound Guides Representations and Explorations” on page 55.

Supposing a Gaussian modeling of s’|s, a ~ N (s’|ue(s, a), L), the Probability Density
Function (PDF) is

1

L o ue @IS (s )]
(2m)n/2| )1/ |

po(s’s,a) =

The intrinsic reward is computed as
r"(s,a,s") = —logpe(s’ls, a)
1 1
= glog2n +5 log|Z| + E[s' —up(s, )" L 7s" — uo(s, a)].

Simplifying £ = ¢°I with an assumption of the same noise variance across dimensions,
we have |Z| = 6% and 27! = 6721, and

i / n 1 ’
r"(s,a,s’) = 5 log(Znaz) + 2—02||s - [.lg(S,El)H%.

This shows that the log-likelihood is directly linked to the squared prediction error
||s” — &’||. If further supposing a fixed, not learned, dynamics modeling variance
o, the intrinsic reward can be assigned as r"(s, a,s’) = a||s’ — pg(s, a)||2, i.e. the
scaled prediction error in continuous state space.

A similar formulation can be derived using the Mahalanobis distance between the
next state s’ and the Gaussian prediction ¥ (s'|po(s, a), X):

(S/ _ §/)TZ—1(S/ _ §/),

which serves as a measure of modeling quality, incorporating both prediction error
and the model’s estimated uncertainty.



IMPACT SOUND SIMULATION

B.1 PHYSICS-BASED SOUND SIMULATION THEORY

This appendix provides a brief overview of the physics-based sound simulation
theory, which is relevant to the sound generation in the context of this thesis (cfr.
§ 2.3.1 “ThreeDWorld” on page 20 for the discussion on simulating impact sound,
and § 4 “Sound Guides Representations and Explorations” on page 55 for relevant
research work).

Impact sounds can be modeled as vibrations in a physical system. When an object is
struck, the impact excites various vibrational modes that produce sound. A mass-
spring-damper system provides a simplified but effective model for these vibrations.
Considering an object with mass 1, which experiences an external impact force F(t),
this mass is connected to a spring (representing the object’s elasticity) and a damper
(representing energy dissipation during impact). The spring force follows Hooke’s
law: F; = —kx(t), where k is the spring constant and x(t) is the displacement on time
step t. The damper exerts a force proportional to the velocity F; = —cx(t) where c is
the damping coefficient. This leads to a motion equation:

mi(t) + cx(t) + kx(t) = F(t),
Taking the Laplace transform Z£{-} [OWN96] of the entire equation leads to

m[s*X(s) — sx(0) — %(0)] + c[sX(s) — x(0)] + kX(s) = E(s). (B.1)

\ F(t)

3,

S

== — -

x(t)

Figure B.1: Mass-spring-damper system illustration with a mass m, spring with k as its spring
constant, and damper with ¢ as its damping coefficient. The system is subject to an external force F(f)
and experiences displacement x(t).
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Equation B.1 can be simplified by supposing static initial state, i.e. x(0) = 0 and
x(0) = 0, i.e. with free response neglected:

ms?X(s) + csX(s) + kX(s) = F(s).

Therefore, the forced response is:

» In Laplace space, as multiplication

X(s) = F(s)H(s),

where H(s) = 1 = 1 wo = \/% is the natural (undamped)

ms2+cs+k _-;nbz+2qams+w§y

frequency of the system, = —

2Vmk

» In time domain, as the convolution of /() and f(t)
xp(t) = h(t) = f(t)
+0o0
= / h(t —7)f(7)dr,

o

is the damping ratio.

In the case of under-damping (most common for real-world impacts), the
solution has an oscillatory form. The inverse Laplace transform of H(s) gives
the impulse response

h(t) = 2 {H(s)}

1
= ——e 1 gin(wgyt),
mayg

where wg = wp+/1 — n? is the damped natural frequency.
Finally, the forced response in the time domain can be simulated for a specified force
fb):

» For f(t) = 0(t) (Dirac delta impulse force), the system’s response is a damped
sinusoidal oscillation:

1
xf(t) = m—wde_”“’ot sin(wgt).

» For f(t) = e’/ (Gaussian impulse), which models a smooth, bell-shaped force
p P

2L{#(t)} = 52X (s) — sx(0) — x(0)
L{x(t)} =sX(s) — x(0)
L{x(t)} = X(s)

Note that s denotes the Laplace variable in this context, rather than the agent’s state used elsewhere.
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applied over time, the response involves a convolution integral:

1 oo
xf(t) = P / e~ wo(t=1) sin(wgq(t — T))e‘Tz/“2 dr,

[00]

which can be computed numerically for a given ¢ in practice.

For more complex objects, multiple modes of vibration can exist. This can be modeled
by considering multiple mass-spring-damper systems, each corresponding to a
different vibration mode'. Thus, for a realistic sound model, the overall displacement
and sound signal can be computed by summing the contributions from different
modes:

x(t) = D xy,ilt) (B.2)

= > hil)« £, (B.3)

where the sums run over different modes /;(t) (if more than one is considered).

B.2 SOUND SIMULATION PRACTICE FOR CERAMIC
OBJECTS

In this appendix section, an implementation of impact sound simulation on ceramic
objects will be introduced. Unlike bell-like sounds, which have prolonged ringing,
ceramic impacts exhibit higher resonant frequencies, increased damping, and a
pronounced high-frequency transient. This section presents a modal synthesis
method to generate ceramic-like impact sounds. The Python code is provided to
reproduce this simple demo.

The first step involves modeling the impact force as a short Gaussian pulse as:
ft) = e~t120% ifty < t <ty + T else f(t) = 0, with 0 = /8, where 7 is the pulse
duration (e.g. T = 0.002 s) and £ is the impact onset time (e.g. to = 0.01 s).

import numpy as np

import scipy.signal as signal
import sounddevice as sd

import matplotlib.pyplot as plt

fs = 44100
duration = 1.0
t = np.linspace(0, duration, int(fs * duration), endpoint=False)

# Gaussian impact impulse
def generate_impact_impulse(fs, impulse_duration=0.002):

1: Though there exist advanced simulation models [TCM19], further discussion is beyond the scope
of this thesis.
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t_imp = np.linspace(-impulse_duration/2, impulse_duration/2, int(fs x
impulse_duration), endpoint=False)

sigma = impulse_duration / 8

impulse = np.exp(-t_imp**x2 / (2 * sigmaxx*2))

impulse /= np.max(impulse)

return impulse

impulse = generate_impact_impulse(fs, impulse_duration=0.002)
impulse_full = np.zeros_like(t)

start_idx = int(0.01 * fs)

impulse_full[start_idx:start_idx + len(impulse)] = impulse

Then, a brief high-pass filtered noise burst () can be simulated to capture the brittle
transient. The filtered noise nnp(t) is multiplied by an exponential decay envelope
Epurst(t) = exp(=At), t €[0,Tp], where A = 50 and Tj, = 0.01 s. The final noise burst
is Npurst(t) = nhp(t)Eburst(t)~

# Noise
def generate_noise_burst(fs, burst_duration=0.01):
t_burst = np.linspace(0, burst_duration, int(fs * burst_duration),
endpoint=False)
noise = np.random.normal(®, 1, len(t_burst))
b, a = signal.butter(4, 2000/ (fs/2), btype="high’")
noise_filtered = signal.filtfilt(b, a, noise)
envelope = np.exp(-50 * t_burst)
noise_filtered *= envelope
return noise filtered

noise_burst = generate_noise_burst(fs, burst_duration=0.01)
noise_full = np.zeros_like(t)
noise_full[start_idx:start_idx + len(noise_burst)] = noise_burst

On the assumption of N modes with frequencies f; and damped impulse responses,
the system’s characteristics of the i-th mode can be expressed as

hi(t) = e %t sin2rfit + ¢;), =0,

where 0, is the damping factor and ¢; is a random phase. The response to the impact
is computed as a convolution x;(t) = h;(t) * f(t), and, thus, the total modal response
is

N
x(t) = D Aixi(t),
i=1

where A; are modal amplitudes.

# Modes

modes = np.array([1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500,
60001])

damping = np.linspace(0.2, 0.5, len(modes))

amplitudes = np.ones(len(modes))

phases = np.random.uniform(0, 2*np.pi, len(modes))
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Finally, the impact sound can be simulated by combining the noise burst with the
modal response.

# Convolve

def modal_impulse_response(frequency, damping_factor, phase, fs,
resp_duration=1.0):
t_resp = np.linspace(0, resp_duration, int(fs * resp_duration),
endpoint=False)
h = np.exp(-damping_factor * t_resp) * np.sin(2 * np.pi * frequency x
t_resp + phase)
return h

output = np.zeros_like(t)

for f, d_val, amp, phase in zip(modes, damping, amplitudes, phases):
h_mode = modal_impulse_response(f, d_val, phase, fs, resp_duration=
duration)
mode_response = signal.fftconvolve(impulse_full, h_mode, mode='full’)
[:len(t)]
output += amp * mode_response

mix_ratio = 0.7

output = (1 - mix_ratio) * output + mix_ratio * noise_full
overall_decay = np.exp(-10 * t)

output *= overall_decay

output /= np.max(np.abs(output))

plt.figure(figsize=(10, 4))
plt.plot(t[:1000], output[:1000])
plt.xlabel("Time [s]")
plt.ylabel("Amplitude")
plt.show()

sd.play(output, fs)
sd.wait()

After running the program, a short, simulated impact sound for ceramic materials
should be played.



LOGICAL THOUGHTS (LOT)
APPENDIX

This appendix provides supplementary information on the Lol prompting method (cfr.
Chapter 6 “Enhancing Reasoning via Logic-Guided Inference Scaling” on page 83),
including pseudo codes for the reasoning process, and a detailed diagram and
prompts for the workflow.

C.1 CHATGPT DEDUCTION EXAMPLE WITH vs
WITHOUT CONTRAPOSITION

Figure C.1 shows the full ChatGPT conversation of the “football” example introduced
earlier in § 6.1 on page 85, indicating the benefits of explicitly prompting LLMs with
deduction knowledge such as logic principles.

C.2 PROOF OF CONTRAPOSITION

We will prove contraposition using reductio ad absurdum:

Known premises P — Q (if P is true, then Q is true) and —Q (Q is false), prove
=-P.

Proof P — Q,-Q + —P:

1. P->Q P

2. =Q P

3 P A

4. Q —EL3
5 X C2,4

6. —-P -I13-5

Inside the proof, P stands for the known premise, A for assumption, — E for the
elimination of “—" symbol by following the conditional statement, C for contradiction
assertion (followed by an “X” which indicates the branch with an assumption is
closed) and —I for the introduction of negation according to the rule of reductio ad
absurdum.
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g Anonymous
If Tom plays foot- ball outside, then John will also join to play; if John plays football, then Mary won’t go
outside. Knowing that Mary is outside, is Tom playing football?

ChatGPT

Based on the given information:

1. If Tom plays football outside, then John will also join to play.

2. If John plays football, then Mary won't go outside.
Given that Mary is outside, we can deduce the following:

* Since Mary won't go outside if John plays football, and Mary is outside, it implies that John is not
playing football.
* Since John is not playing football, it doesn't necessarily mean that Tom is playing football, as the first

statement only establishes a condition for John joining if Tom plays, not vice versa.

Therefore, we cannot conclusively determine whether Tom is playing football or not based solely on the

given information.

g Anonymous
use contraposition to deduce

ChatGPT

Let's use contraposition to deduce:

1. If Tom plays football outside, then John will also join to play.
Contrapositive: If John doesn't join to play, then Tom isn't playing football outside.
2. If John plays football, then Mary won’t go outside.

Contrapositive: If Mary goes outside, then John isn't playing football.
Given that Mary is outside, we can deduce:

* According to the contrapositive of the second statement, if Mary goes outside, then John isn't playing
football.
* Since John isn't playing football, according to the contrapositive of the first statement, Tomisn't

playing football either.

Therefore, if Mary is outside, it implies that Tom isn't playing football.

Figure C.1: An example conversation with ChatGPT where the language model fails to correctly
deduce the answer initially, but when being prompted to use the idea of “contraposition”, it successfully
reaches the desired result.

C.3 PSseuDO CODES FOR CMPS-LOT PROMPTING

Algorithm 2 on page 91 and Algorithm 5 are the pseudo-code of the function
to compute the reasoning trace of Lol, where the difference regarding discovering
contradiction is underlined for clarity.

P is the known premises, e.g. question context, and an LLM is employed with various
purposes in this context. By prompting the LLM to generate post hoc inferences and
subsequently exposing them as discernible options for differentiation, the process
facilitates a more convenient verification of entailment, as opposed to relying on the
model to independently discover contradictions.
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Algorithm 5: Cmps-LoTl Reasoning
input :Problem/Premise P, LLM model

output: Verified thoughts collection T

Initialize T « {P} ;

T, Ty, - , Ty < RegEX[LLM(F)],i <« 1;
while i < N do

E; < PostHocLLM(E|-T;; ) ;

C <« LLMET|T) ;

if C is False then
I, « LLM(T|T; T E7), Tt < T
(T} < LLM(T UT}), N « N';

I —JUT,i—i+1;

Table C.1: Worsening rate (]) and improvement rate (T) when LdT is introduced. Numbers are in %.
Note that the accuracy of the number of candidates can significantly impact the outcome.

Impact GSM8K AQuA Date SocialQA Cau.Eff. Objects Letter OddOut

Vicuna-7b 0.39 151 0.00 3.97 0.00 3.03 0.00 1.56
092 1091 0.00 8.11 0.00 294 0.00 0.00
Vicuna-13b 3.89 4.88 2.06 3.85 0.00 6.52 205 2.67
0.00 8.89 174 8.08 0.00 1290 0.00 8.84
Vicuna-33b 0.37 8.02 550 20.00 20.83 6.61 0.00 7.84

0.51 10.45 0.00 6.67 0.00 6.25 4.55 571
1263 571 1017 179 0.00 3.83 099 12.50
2.01 0.67 6.59 0.69 0.00 6.59 204 285
6.67 9.68 21.05 0.00 0.00 0.00 1250 25.00
0.10 0.00 179 0.00 0.00 0.00 0.00 0.00

GPT-3.5-turbo

GPT-4

D e e e —

C.4 WORSENING AND IMPROVEMENT RATES

. #(correct—wron
The worsening rate computes as M, where “#” means count and “*”
#(correct—+)

indicates arbitrary correct/wrong candidates. Similarly, the improvement rate computes
#(wrong—correct)
#(wrong—)

From Table C.1, we can have a closer look at the intervention impact of LoI. For
example, for small-sized language models such as Vicuna-7b, it is riskier to exert
extra intervention, as the model may fail to follow. Indeed, larger models generally
benefit from the proposed self-improvement procedure. For instance, GPT-4 exhibited
enhanced accuracy on the Date Understanding, LastLetter, and OddOneOut tasks,
with the improvement rate significantly surpassing the worsening rate, indicating
that the Lol revisions are more trustworthy than the default ones, resulting in better
performance.
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C.5 LOT PROMPTING DIAGRAM IN DETAIL
Question: John drives to his /ﬁ r ~,

friend's house 200 miles away.
He drives at a speed of 70 #1. First, let's find out how long

#4. Finally, we can add the time
it took to drive to his friend's

et Mo e & EGDT it took John to drive to his #2. Next, we need to add the house and the time it took to
- . L i extra 10 miles from the detour #3. Now we can find out how drive home to find the total trip
that added 10 miles to his trip. friend's house. We can use the ) . . .
T to his total distance. long it took John to drive home. time.
After he gets there he takes a formula: time = distance / M
. ) total trip time = 2.86 hours + 3
route home that is 240 miles speed. . _ . _ .
total distance = 200 miles + 10 time = 240 miles / 80 mph hours
BIRIDECESEDIER N miles time = 3 hours total trip time = 5.86 hours
did the trip take? time = 200 miles / 70 mph P -

s & 2B ES total distance = 210 miles

!

#1 To find out how long it took
John to drive to his friend's
house, we can use the formula:
time = distance / speed. John
drove 200 miles at a speed of
70 mph, but he had to take a
detour that added 10 miles to
his trip. So, the total distance
he traveled was 200 + 10 = 210
miles.

time = 210 miles / 70 mph

time = 3 hours

Therefore, the trip took John

Let's think step by step. 5.86 hours.

Answer:

_l—d

#3. To find out the total time of
the trip, we just need to add the
time it took John to drive to his
friend's house and the time it
took him to drive home.

total time = 3 hours + 3 hours
total time = 6 hours

#2. To find out how long it took
John to drive home, we can use
the same formula: time =
distance / speed. John drove
240 miles at a speed of 80
mph.

time = 240 miles / 80 mph

g Therefore, the trip took John 6

hours.

_l—/

evision for the next step:
riginal next step #1: First, let's find out how long it took John to drive to his
' riend's house. We can use the formula: time = distance / speed.

=200 miles / 70 mph
v Review X: step #1 is true because :: =2 86?:_4? P!
Generate post hoc the question states that John drives .
explanation of the proposition to his friend's house 200 miles away ! (Hint: Itis not good to directly adopt the step #1 because ....)

at a speed of 70 mph. Therefore, we

—> can use the formula time = distance /
speed to calculate how long it took
him to get there.

et's revise for a better version based on the question premises and on the reasoning
o p#1:

#1 To find out how long it took
John to drive to his friend's
house, we can use the formula:

#1. First, let's find out how long #1. First, let's find out how long

it took John to drive to his it took John to drive to his Revise the time = distance / speed. John
friend's house. We can use the friend's house. We can use the proposition drove 200 miles at a speed of
formula: time = distance / Verify reviews formula: time = distance / 70 mph, but he had to take a
speed. speed. detour that added 10 miles to
A his trip. o, the total distance
time = 200 miles / 70 mph \ time = 200 miles / 70 mph he traveled was 200 + 10 = 210
time = 2.86 hours Review Y: step #1 is false because it | *, time = 2.86 hours miles.
does not take into account the i time = 210 miles / 70 mph
additional 10 miles that John had to time = 3 hours
drive due to the detour. The correct
distance that John drove to his ‘-‘
friend's house is 210 miles, not 200 '
"~ miles. Therefore, the correct :
Generate post hoc calculation for the time it took John to .

explanation of the negation drive to his friend's house is:

et's start by analyzing one by one:
. What are the premises and previous steps to support the verification

time = 210 miles / 70 mph i
f step #1? (Your answer should quote exact quote as support.) |

time = 3 hours

1. Criticise the incorrect review.
Note the examined step doesn't have to tackle the whole problem at once.)

Figure C.2: Illustration of the Lol workflow applied to an arithmetic task from the AQuA dataset.
Each reasoning step undergoes verification via two independently generated post hoc reviews by the
LLM (v). In this example, step #1 fails verification (¢) as the discriminator agrees with “Review Y,”
which correctly identifies the error. The LLM then revises the step (¢) and regenerates the subsequent
steps. This process continues until all steps are verified as valid (©). Dotted boxes highlight key prompt
snippets; full prompts appear in Research Question 6.3 on page 95 and Appendix C.6 on this page.

C.6 PROMPTS AND RESULTS FOR CASES

C.6.1 GSMS8K Success Case

Initial Zero-shot-CoT steps:

1 Question: Terry eats 2 yogurts a day. They are currently on sale at 4 yogurts
for $5.00. How much does he spend on yogurt over 30 days?
2
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= W

Let’'s think step by step.

Answer:

#1. First, we need to determine how many packs of 4 yogurts Terry will need to
buy over 30 days. To do this, we divide 30 by 4: 30 / 4 = 7.5

#2. Since Terry can’t buy a fraction of a pack, we round up to the nearest
whole number: 8

#3. Next, we need to determine how many individual yogurts Terry will buy. To
do this, we multiply the number of packs by the number of yogurts per pack:
8 x 4 =32

#4. Finally, we need to determine how much Terry will spend on yogurt. To do
this, we divide the total number of yogurts by the number of yogurts per
dollar: 32 / 4 = 8

Therefore, Terry will spend $8.00 on yogurt over 30 days.

Verification of step #1:

1

NG = W

O 0

10

11

12
13

14
15
16
17

18
19

20
21
22
23
24

25
26

Question: Terry eats 2 yogurts a day. They are currently on sale at 4 yoqurts
for $5.00. How much does he spend on yogurt over 30 days?

Let’s think step by step.
Answer:
Verification of the next step:
#1. First, we need to determine how many packs of 4 yogurts Terry will need to
buy over 30 days. To do this, we divide 30 by 4: 30 / 4 = 7.5

Let’'s check two different reviews (X and Y).

Suport the more plausible one and criticise the other one.

Review X: <review> step #1 is TRUE because Terry eats 2 yogurts a day and there
are 4 yogurts in each pack. So, to determine how many packs of 4 yogurts
Terry will need to buy over 30 days, we divide 30 by 4. </review>

Review Y: <review> step #1 is FALSE because the question states that Terry eats
2 yogurts a day, not 4. Therefore, we cannot assume that Terry needs to buy
packs of 4 yogurts.

Instead, we need to calculate how many individual yogurts Terry needs to buy
over 30 days. Since Terry eats 2 yogurts a day, we multiply 2 by 30: 2 * 30
= 60.

Therefore, Terry needs to buy 60 individual yogurts over 30 days.

Next, we need to determine the cost of each individual yogurt. The sale price
is 4 yogurts for $5.00, so each yogurt costs $5.00 / 4 = $1.25.

Finally, we can calculate how much Terry spends on yogurt over 30 days by
multiplying the number of yogurts (60) by the cost per yogurt ($1.25): 60 *
$1.25 = $75.

Therefore, Terry spends $75 on yogurt over 30 days. </review>

Let’s start by analyzing one by one:

I. What are the premises and previous steps to support the verification of step
#1? (Your answer should quote exact quote as support.)

ITI. Criticise the incorrect review.

(Note the examined step doesn’t have to tackle the whole problem at once.)
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27 Finally, identify whether step #1 is true or false.

28

29 Analysis and conclusion:

30 I. The premise to support the verification of step #1 is that Terry eats 2
yogurts a day and the yogurts are on sale at 4 yogurts for $5.00.

31

32 1II. The incorrect review (Review X) is incorrect because it misinterprets the
information given in the question. The question clearly states that Terry
eats 2 yogurts a day, not 4. Therefore, the calculation of how many packs
of 4 yogurts Terry needs to buy over 30 days is not relevant to the problem.

33

34 1III. Step #1 is false. The correct calculation should be to determine how many
individual yogurts Terry needs to buy over 30 days, which is 2 yogurts per
day multiplied by 30 days, resulting in 60 individual yogurts.

35

36 Therefore, Terry needs to buy 60 individual yogurts over 30 days.

Revision:

1 Question: Terry eats 2 yogurts a day. They are currently on sale at 4 yogurts
for $5.00. How much does he spend on yogurt over 30 days?

2

3 Let's think step by step.

4 Answer:

5 Original next step #1: First, we need to determine how many packs of 4 yogurts
Terry will need to buy over 30 days. To do this, we divide 30 by 4: 30 / 4
=7.5

6

7 (Hint: It is not good to directly adopt the step #1 because there is a review
says <review> the question states that Terry eats 2 yogurts a day, not 4.
Therefore, we cannot assume that Terry needs to buy packs of 4 yogurts.

8

9 Instead, we need to calculate how many individual yogurts Terry needs to buy
over 30 days. Since Terry eats 2 yogurts a day, we multiply 2 by 30: 2 * 30
= 60.

10

11 Therefore, Terry needs to buy 60 individual yogurts over 30 days.

12

13 Next, we need to determine the cost of each individual yogurt. The sale price
is 4 yogurts for $5.00, so each yogurt costs $5.00 / 4 = $1.25.

14

15 Finally, we can calculate how much Terry spends on yogurt over 30 days by
multiplying the number of yogurts (60) by the cost per yogurt ($1.25): 60 *
$1.25 = $75.

16

17 Therefore, Terry spends $75 on yogurt over 30 days. </review>.)

18 Let’'s revise for a better version based on the question premises and on the
reasoning steps so far.

19 Revision of step #1:

20 First, we need to determine how many individual yogurts Terry will need to buy

21

over 30 days. Since Terry eats 2 yogurts a day, we multiply 2 by 30: 2 x 30
= 60.
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22 Next, we need to determine the cost of each individual yogurt. The sale price
is 4 yogurts for $5.00, so each yogurt costs $5.00 / 4 = $1.25.

23

24 Finally, we can calculate how much Terry spends on yogurt over 30 days by
multiplying the number of yogurts (60) by the cost per yogurt ($1.25): 60 *

$1.25 = $75.
25
26 Therefore, Terry spends $75 on yogurt over 30 days.
27

C.6.2 GSMSK Failure Case

Initial Zero-shot-CoT steps:

1 Question: Mike plays ping pong for 40 minutes. 1In the first 20 minutes, he
scores 4 points. 1In the second 20 minutes, he scores 25% more points. How
many total points did he score?

Let’s think step by step.

Answer:

#1. In the first 20 minutes, Mike scores 4 points.

#2. In the second 20 minutes, he scores 25% more points than in the first 20
minutes.

7 #3. To find 25% more points, we can multiply the number of points in the first

20 minutes by 1.25.

8 #4. 4 points * 1.25 = 5 points.

9 #5. In total, Mike scores 4 points + 5 points = <<4+5=9>>9 points. Answer:

\boxed{9}.

NGl = W IN

10

Verification of step #4:

1 Question: Mike plays ping pong for 40 minutes. In the first 20 minutes, he
scores 4 points. In the second 20 minutes, he scores 25% more points. How
many total points did he score?

Let’s think step by step.

Answer:

#1. In the first 20 minutes, Mike scores 4 points.

#2. In the second 20 minutes, he scores 25% more points than in the first 20
minutes.

7 #3. To find 25% more points, we can multiply the number of points in the first

20 minutes by 1.25.

NGl = W N

9 Verification of the next step:

10 #4. 4 points * 1.25 = 5 points.

1

12 Let’s check two different reviews (X and Y).

13 Suport the more plausible one and criticise the other one.

14 Review X: <review> step #4 is TRUE because 25% more than 4 points is 1.25 * 4 =
5 points. </review>

15 Review Y: <review> step #4 is FALSE because the question states that Mike
scores 25% more points in the second 20 minutes, not 25% more points than
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the first 20 minutes. Therefore, we cannot simply multiply the number of
points in the first 20 minutes by 1.25 to find the number of points in the
second 20 minutes.

Instead, we need to calculate 25% of the number of points in the first 20
minutes and add that to the number of points in the first 20 minutes.

25% of 4 points is 0.25 * 4 = 1 point.
So, in the second 20 minutes, Mike scores an additional 1 point.

Therefore, the total number of points scored by Mike is 4 + 1 = 5 points.
</review>

Let’s start by analyzing one by one:

I. What are the premises and previous steps to support the verification of step
#4?7 (Your answer should quote exact quote as support.)

ITI. Criticise the incorrect review.

(Note the examined step doesn’t have to tackle the whole problem at once.)

Finally, identify whether step #4 is true or false.

Analysis and conclusion:
I. The premise to support the verification of step #4 is that in the second 20
minutes, Mike scores 25% more points than in the first 20 minutes.

IT. The incorrect review (Review Y) criticizes step #4 by stating that we
cannot simply multiply the number of points in the first 20 minutes by 1.25
to find the number of points in the second 20 minutes. Instead, it suggests
calculating 25% of the number of points in the first 20 minutes and adding
that to the number of points in the first 20 minutes.

After analyzing both reviews, it is clear that step #4 is FALSE. The correct
approach is to calculate 25% of the number of points in the first 20
minutes and add that to the number of points in the first 20 minutes.
Therefore, the total number of points scored by Mike is 4 + 1 = 5 points.

Revision and Reduction:

1

N Ul = W IN

Question: Mike plays ping pong for 40 minutes. In the first 20 minutes, he
scores 4 points. In the second 20 minutes, he scores 25% more points. How
many total points did he score?

Let’s think step by step.

Answer:

#1. In the first 20 minutes, Mike scores 4 points.

#2. In the second 20 minutes, he scores 25% more points than in the first 20
minutes.

#3. To find 25% more points, we can multiply the number of points in the first
20 minutes by 1.25.

#4. To find the number of points Mike scores in the second 20 minutes, we need
to calculate 25% of the number of points in the first 20 minutes and add
that to the number of points in the first 20 minutes.
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of 4 points is 0.25 * 4 = 1 point.

So, in the second 20 minutes, Mike scores an additional 1 point.

Therefore, the total number of points scored by Mike is 4 + 1 = 5 points.

#5.

Therefore, Mike scored a total of 5 points.

C.6.3 GSM Failure Case

Initial Zero-shot-CoT steps:

1 AQuestion: Jerry is rolling a six-sided die. How much more likely is it

Q= W N

10

(expressed as a percentage) that he rolls a number greater than 3 than that
he rolls two even numbers in a row?

Let’s think step by step.

Answer:

#1.

#2.

#3.

#4.

#5.
#6.

The probability of rolling a number greater than 3 is 3/6 or 1/2, since
there are three numbers (4, 5, and 6) that are greater than 3 out of six
possible outcomes.

The probability of rolling two even numbers in a row is (1/2) x (1/2) or
1/4, since the probability of rolling an even number on a single roll is
1/2 and the probability of rolling another even number on the next roll is
also 1/2.

To find out how much more likely it is to roll a number greater than 3 than
to roll two even numbers in a row, we need to compare the difference
between their probabilities.

The probability of rolling a number greater than 3 is 1/2, and the
probability of rolling two even numbers in a row is 1/4.

The difference between these probabilities is 1/2 - 1/4 = 1/4.

To express this as a percentage, we can multiply by 100 to get 25%.
\n\nTherefore, it is 25% more likely that Jerry rolls a number greater than
3 than that he rolls two even numbers in a row.

Revision of step #6:

1

2 #6. To express this as a percentage, we need to calculate the ratio of the

#7 .

difference between the probabilities to the probability of rolling two even
numbers in a row, and then multiply by 100 to get the percentage. \n\nThe
difference between the probabilities is 1/4, and the probability of rolling
two even numbers in a row is 1/4. Therefore, the ratio is 1/4 \u00f7 1/4 =
1. Multiplying by 100 gives us 100%, which means that it is 100% more
likely that Jerry rolls a number greater than 3 than that he rolls two even
numbers in a row.\n

Therefore, it is twice as likely that Jerry rolls a number greater than 3
than that he rolls two even numbers in a row.

Revision of step #7:

1




C.6 Prompts and Results for Cases | 153

. Therefore, it is 100% more likely that Jerry rolls a number greater than 3

than that he rolls two even numbers in a row.\n

. Final Answer: It is 100% more likely that Jerry rolls a number greater than

3 than that he rolls two even numbers in a row.

The result is not aligned with the ground truth but is acceptable because it presented
the answer with a ratio rather than an absolute value increase.

C.6.4 AQuA Success Case

Initial Zero-shot-CoT steps:

1
2

O 0 N3 O U1 = W
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Analyze and answer the following single-choice problem.
Question: An aeroplane flies along the four sides of a square at the speeds of

200, 400, 600 and 800km/hr. Find the average speed of the plane around the
field?

Options:
OptA)384 0ptB)562 OptC)458
OptD)156 OptE)452

Let’s think step by step.

Answer:

#1. To find the average speed, we need to find the total distance traveled and
divide it by the total time taken.

#2. The distance traveled on each side of the square is equal to the speed
multiplied by the time taken. Let’s assume the length of each side of the
square is "s" km.

#3. The time taken to travel each side of the square is equal to the length of
the side divided by the speed. So, the time taken for each side is s/200,
s/400, s/600, and s/800 hours.

#4. The total distance traveled is equal to the sum of the distances traveled
on each side of the square. So, the total distance is 4s km.

#5. The total time taken is equal to the sum of the times taken for each side
of the square. So, the total time is (s/200) + (s/400) + (s/600) + (s/800)
hours.

#6. Now, we can calculate the average speed by dividing the total distance by
the total time. So, the average speed is (4s) / ((s/200) + (s/400) +
(s/600) + (s/800)) km/hr.

#7. Simplifying the expression, we get the average speed as (4s) / ((3s + 2s +
(4/3)s + (1/2)s) / 2400) km/hr.

#8. Further simplifying the expression, we get the average speed as (4s) /
((19/6)s / 2400) km/hr.

#9. Canceling out the common terms, we get the average speed as (4/1) / ((19/6)
/ 2400) km/hr.

#10. Simplifying the expression, we get the average speed as (4/1) * (2400 /
(19/6)) km/hr.

#11. Further simplifying the expression, we get the average speed as (4 x 2400)
/ (19/6) km/hr.

#12. Calculating the expression, we get the average speed as 9600 / (19/6)
km/hr.

#13. Dividing the numerator by the denominator, we get the average speed as
9600 * (6/19) km/hr.

#14. Simplifying the expression, we get the average speed as 3200 *x (2/19)

km/hr.
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23 #15. Calculating the expression, we get the average speed as 6400 / 19 km/hr.

24 #16. Rounding the answer to the nearest whole number, we get the average speed
as 337 km/hr.

25 #17. None of the given options match the calculated average speed.

26

Revision and Re-deduction:

1 Analyze and answer the following single-choice problem.

2 Question: An aeroplane flies along the four sides of a square at the speeds of
200, 400, 600 and 800km/hr. Find the average speed of the plane around the
field?

Options:

OptA)384 OptB)562 OptC)458

OptD)156 OptE)452

Let’s think step by step.

Answer:

#1. To find the average speed, we need to find the total distance traveled and

divide it by the total time taken.

10 #2. The distance traveled on each side of the square is equal to the speed
multiplied by the time taken. Let’s assume the length of each side of the
square is "s" km.

11 #3. The time taken to travel each side of the square is equal to the length of
the side divided by the speed. So, the time taken for each side is s/200,
s/400, s/600, and s/800 hours.

12 #4. The total distance traveled is equal to the sum of the distances traveled
on each side of the square. So, the total distance is 4s km.

13 #5. The total time taken is equal to the sum of the times taken for each side
of the square. So, the total time is (s/200) + (s/400) + (s/600) + (s/800)
hours.

14 #6. Now, we can calculate the average speed by dividing the total distance by
the total time. So, the average speed is (4s) / ((s/200) + (s/400) +
(s/600) + (s/800)) km/hr.

15 #7. To simplify this expression, we need to find a common denominator for the

fractions in the denominator. The common denominator is 2400.

O 00 3 O Ul = W

16

17 (4s) / ((s/200) + (s/400) + (s/600) + (s/800))
18

19 Now, we can add the fractions:

20 (4s) / ((12s + 6s + 4s + 3s) / 2400)
21 (4s) / (25s / 2400)

22 (4s) x (2400 / 25s)

23 (4s) x 96

24 384s

25

26 Therefore, the correct average speed is 384s km/hr.
27 The correct answer is OptA) 384.

C.6.5 AQuA Failure Case

Initial Zero-shot-CoT steps:
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Analyze and answer the following single-choice problem.

Question: Roy was suffering from severe headaches. He went to see his doctor
and the doctor gave him 5 tablets asking him to take one tablet every 15
minutes.

How much time will it take Roy to consume all the 5 tablets?

Options:

OptA)45 Min OptB)75 Min OptC)90 Min

OptD)120 Min OptE)60 Min

Let’s think step by step.

Answer:

#1. Roy needs to take 5 tablets.

#2. He needs to take one tablet every 15 minutes.

#3. To calculate the total time, we need to multiply the number of tablets by
the time it takes to consume one tablet.

#4. 5 tablets x 15 minutes = 75 minutes.

Therefore, the correct answer is OptB) 75 Min.

In this case, all of the reasoning steps passed the verification, such that the answer by
LoT is consistent with CoI. However, they are both not correct. The ground truth is
OptE) 60 Min, with an explanation that “Tablet 1 will be taken in 0 min...”. Because
there is no message for this hidden commonsense knowledge, neither CoI nor Lol
can realize it.

C.6.6 Date Understanding Success Case

Initial Zero-shot-CoT steps:

1

O 0 NI O U1 = W N
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Question: Jane and John married on Jan 2, 1958. Today is their golden wedding
anniversary. What is the date one week ago from today in MM/DD/YYYY?

Let’s think step by step.

Answer:

#1. First, we need to determine the date of their golden wedding anniversary.
To do this, we need to add 50 years to their wedding date.

Jan 2, 1958 + 50 years = Jan 2, 2008

#2. Next, we need to determine the date one week ago from today.

To do this, we subtract 7 days from today’s date.

Today's date - 7 days = (MM/DD/YYYY)

Therefore, the date one week ago from today in MM/DD/YYYY format is
(MM/DD/YYYY) .

Revision and Re-deduction:

1

Question: Jane and John married on Jan 2, 1958. Today is their golden wedding
anniversary. What is the date one week ago from today in MM/DD/YYYY?
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Let’s think step by step.
Answer:
#1. First, we need to determine the date of their golden wedding anniversary.

To do this, we need to add 50 years to their wedding date.

Jan 2, 1958 + 50 years = Jan 2, 2008
#2. Next, we need to determine the date one week ago from today.

To do this, we need to subtract 7 days from the date of their golden wedding
anniversary.

Jan 2, 2008 - 7 days = Dec 26, 2007

Therefore, the date one week ago from today in MM/DD/YYYY format is 12/26/2007.
The date one week ago from today in MM/DD/YYYY format is 12/26/2007.

In this case, CoT successfully applies the commonsense knowledge that a “golden
wedding anniversary” means fifty years. However, the language model fails to
generate a meaningful answer as a conclusion while the revision by LoT leads to a
correct answer.

C.6.7 Date Understanding Failure Case

Initial Zero-shot-CoT steps:

1

N OOk W

Question: The deadline is Jun 1, 2021, which is 2 days away from now. What is
the date tomorrow in MM/DD/YYYY?

Let’s think step by step.

Answer:

#1. Today's date: May 30, 2021

#2. Tomorrow's date: May 31, 2021

#3. Convert to MM/DD/YYYY format: 05/31/2021

Verification of step #1:

1

—_
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Question: The deadline is Jun 1, 2021, which is 2 days away from now. What is
the date tomorrow in MM/DD/YYYY?

Let’s think step by step.
Answer:

Verification of the next step:
#1. Today's date: May 30, 2021

Let’'s check two different reviews (X and Y).

Suport the more plausible one and criticise the other one.

Review X: <review> step #1 is TRUE because the user stated that the deadline is
2 days away from now, and today'’s date is May 30, 2021. </review>

Review Y: <review> step #1 is FALSE because the given information states that
the deadline is June 1, 2021, which means that today'’'s date is May 31, 2021.
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Now, let’s move on to the next step.

Step #2: Determine the date tomorrow.

Since today is May 31, 2021, tomorrow will be June 1, 2021.

Therefore, the date tomorrow in MM/DD/YYYY format is 06/01/2021. </review>

Let’s start by analyzing one by one:

I. What are the premises and previous steps to support the verification of step
#1? (Your answer should quote exact quote as support.)

IT. Criticise the incorrect review.

(Note the examined step doesn’t have to tackle the whole problem at once.)

Finally, identify whether step #1 is true or false.

Analysis and conclusion:
I. The premise to support the verification of step #1 is the user’s statement
that the deadline is 2 days away from now, and today’s date is May 30, 2021.

ITI. Review Y criticizes step #1 by stating that the given information states
that the deadline is June 1, 2021, which means that today’s date is May 31,
2021.

Based on the user’s statement and the given information, it can be concluded
that step #1 is FALSE. Today’s date is May 31, 2021, not May 30, 2021.

Revision and Re-deduction:

1

O 0 NI O U1 = W N

—_
— o

Question: The deadline is Jun 1, 2021, which is 2 days away from now. What is
the date tomorrow in MM/DD/YYYY?

Let’s think step by step.

Answer:

#1. Determine the date tomorrow.

Since today is May 31, 2021, tomorrow will be June 1, 2021.

Therefore, the date tomorrow in MM/DD/YYYY format is 06/01/2021.

#2. The date tomorrow in MM/DD/YYYY format is 06/01/2021.

This failure of Lol showcases the importance of correctly identifying the more
plausible review, especially when both reviews claim statements but with established
facts as support. Apparently, there is no clear reason to support “Review Y”, i.e. the
post hoc explanation, in this case, is just a hallucination of the LLM but it sometimes
fools the LLM itself.



AGENTIC SKILL DISCOVERY (ASD)
APPENDIX

This appendix provides additional details on the ASD framework (cfr. Chapter 7 on
page 99), including the implementation details, prompts, and further skill learning
reports.

D.1 GENERATED FUNCTIONS EXAMPLES

D.1.1 Success Functions

def pick_up_cube_a( : RLTaskEnv) -> torch.Tensor:
"""Pick up the cube A successfully by determining whether the gripper is closed around the cube.
gripper_open_distance = env.obs_buf["observations"]["gripper_open_distance"].squeeze()
is_pickup_successful = torch.where(gripper_open_distance < 0.01, 1.0, 0.0)
return is_pickup_successful.squeeze()

def pick_up_cube_a( : RLTaskEnv) -> torch.Tensor:
"""Sparse reward the agent for picking up cube A."""
gripper_open_threshold = 0.02
cube_pick_height = 0.2
obs = env.obs_buf["observations"]
gripper_open_distance = obs['"gripper_open_distance"].squeeze()
cube_a_height = obs['"cube_a_position"][:, 2]
drawer_open_distance = obs["drawer_open_distance"].squeeze()

is_gripper_closed = torch.where(gripper_open_distance < gripper_open_threshold, 1.0, 0.0)
is_cube_a_picked = torch.where(cube_a_height > cube_pick_height, 1.0, 0.0)

is_success = is_gripper_closed * is_cube_a_picked * (1.0 - drawer_open_distance)

return is_success.squeeze()

Figure D.1: Two success function examples generated by gpt-3.5-turbo, and their corresponding
results by RL. Top: an incorrect success determination function can lead to wrongly trusted behaviors.
Bottom: a correct success determination function results in a desired skill.

Taking the task “pick up the cube A” as an example, we show two typical success
functions generated by the LLM in Figure D.1. Given the potential for inaccuracies
in generating success functions, the entire learning process runs the risk of being
tutile, with the added possibility of incorporating poor skills into the skill library:.
ASD significantly mitigates this risk by employing a coordinated strategy involv-
ing fast success determination (LLM sampling) alongside additional slow success
determination (VLM verification).
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D.1.2 Reward Functions

The evolutionary search (§ 7.3.2) not only revises the reward functions to reduce
execution errors (shown in Table 7.1) but also to provide more informative guidance
for the RL agents. In Figure D.2, we show two reward functions for the same task but
at different iterations (i.e. generations of the evolution). The LLM displays, though not
always, the ability to improve the reward function by reward shaping, i.e. introducing
more reward components to smoothly guide the learning agent, which has proven
very helpful for RL [NHR99].
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Figure D.2: An example of an improved reward function by evolutionary iteration for the task “pick
up the cube A”. Left: a reward function focusing on approaching and lifting the cube; Right: an
evolved reward function to include more detailed guidance of the gripper, leading to efficient RL.

D.1.3 Misconduct

As for many other LLM-based agents, some hallucination risks inevitably arise.
Permitting a system to run LLM-generated code may cause unexpected and possibly
harmful consequences. Figure D.3 showcases an example of misconducting code
generations even with the advanced LLM GPT-40'. We recommend early syntax

1: https://openai.com/index/hello-gpt-40/


https://openai.com/index/hello-gpt-4o/
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examination (such as the Python syntax check module in ASD) and implementing
system-wide safety guarantees (e.g. a sandbox to run a program). Reports regarding
related error measures can be found in Appendix D.2.

def place_cube_a_in_drawer(env: RLTaskEnv) —-> torch.Tensor:
"""Sparse reward for successfully placing cube A in the drawer."""
# Hyper—parameters
minimal_drawer_open_distance = torch.tensor(0.03, device="cuda") # Opened state
drawer_depth_threshold = torch.tensor(0.15, device="cuda") # Minimal x-offset indicating deep i
nside the drawer
drawer_handle_vertical_offset = torch.tensor(0.05, device="cuda") # Assuming visualizing height
above the handle for efx plane.
obs = env.obs_buf["observations"]
gripper_open_distance = obs["gripper_open_distance"].squeeze()
cube_a_position = obs["cube_a_position"]
drawer_open_distance = obs["drawer_open_distance"].squeeze()
drawer_handle_position = obs["drawer_handle_position"]
# Check 1: The drawer should be open beyond a sufficient threshold
cond_drawer_open = drawer_open_distance > minimal_drawer_open_distance
# Check 2: Cube A's position within drawer horizontal border (x values aligned if close enough h
orizontally)
cond_cube_in_horizontal_x = torch.abs(cube_a_position[:, @] - drawer_handle_position[:, 0]) <= d
rawer_depth_threshold
cond_cube_in_horizontal_y = torch.abs(cube_a_position[:, 1] - drawer_handle_position[:, 1]) <= m
inimal_drawer_open_distancex10
# Check 3: Cube Z is hanging above or depth checking adequately gauged consistently toward cabin
et.
cond_cube_in_depth_z_check =
token_checker_cube
(_releleasing_balenced planes_ anticipating voltrepances).
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Figure D.3: An example of misconducting code generation with the gpt-40-2024-05-13 model on
the task “put cube A into the drawer”. Top to bottom: the code generation devolves into a chaotic
output of potentially harmful and incoherent text (which continues for approximately 500 more lines
but is omitted here for brevity).
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D.2 SKILL LEARNING REPORTS

In this appendix, we report details of skill learning in Table D.1. To analyze the efficacy
of the success functions, we report the following measures:

» Success Positive (S.P.): a less strict measure than success rate. It measures to
what ratio the RL agent can ever succeed (i.e. acquire non-zero success at some
steps, which is basically a binary measure of whether a certain task can be
achieved) according to the composed success functions. This measure reveals
the difficulties of the task according to the LLM’s own standard.

» Success Rate (S.R.): the success rate computed by the composed success func-
tions, measures how effective the learning is according to fast success determi-
nation. Differing from S.P,, S.R. measures also the efficacy of completions.

» Syntax Error (S.E.): a measure of the ratio of misconduct in terms of coding
syntax bugs.

» Execution Error (E.E.): similar to S.E. but counts only errors found after executing
the generated codes (codes already passed and revised after syntax check
procedure). Typical errors can be Pytorch tensor inconsistencies or running into
“nan” gradients after some iterations of optimization.

» Success Positive for Survivor (S.P.*) and Success Rate for Survivor (S.R.*): the
same calculation as for S.P. and S.R. but with a different basis, i.e. they compute
only for the best selected (surviving) ones of each generation according to the
fitness function. By observing in detail only the best-performing ones, these two
measures show whether there is overtrust stemming from the success functions
for certain tasks. For example, task 1 “reach the cube A”in Table D.1 has very
high S.P* and S.R.*, indicating the task is confidently completed according to the
success function, and by observing the successfully collected skill options, we
can confirm that the success functions for this task are efficient and trustworthy.
However, in task 12 “Close the drawer with cube A inside”, the S.P.* and
S.R.* reach high scores, but they turn out to be all false positives, examined
by both GPT-4V and human effort. In the latter case, the fast determination of
success is overtrusted.

» Success Positive for Survior by GPT-4V (S.P.v): measures the ratio of success
from the GPT-4V’s perspective among those survivors.

» Agreement (A.): measures the agreement between fast and slow success determi-
nation among survivors. From the learning report across skills, we observe that
for easier tasks, regarding both manipulation and visual recognition difficulties
(e.g. reaching and picking), the success function is more trustworthy and the
agreement remains at a relatively higher value.

» Other statistics (averaged over reward iterations) consistently used as in Ta-
ble 7.1: number of options (No) (according to ASD), candidates (N¢), the
number of human-examined total (Ny) and separate validations (Ngo and
Nhc respectively).

The automatically acquired skills are highlighted in Table D.1, which would further
expand with more proposals. In addition to learning about proposed tasks, we
conducted an ablation study on task descriptions to examine whether the granularity
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of task descriptions influences skill learning. For two long-horizon tasks originally
labeled as tasks 23 and 24, we manually “translated” them into more detailed
instructions while keeping the overall task goals unchanged, resulting in modified
tasks 23* and 24* (highlighted with a blue background). Providing more detailed
instructions alleviates the burden of reasoning about task procedures when composing
reward functions. However, these two tasks remain challenging to complete solely
through evolutionary searching of reward functions. This underscores the necessity
of top-down decomposition for effective skill learning (see § 7.3.3).

Table D.1: Agentic Skill Discovery (ASD) learning reports, where the successfully acquired skills
are highlighted with a light green background; inappropriately proposed tasks (according to the
environment potential) are highlighted with a light red color. We run the learning loop 3 times and
report the results. The blue highlighted tasks are revised variations of some of the selected complex
tasks with detailed subtasks as the instruction, which serve as a reward-shaping hint to LLMs for
easier reward design. However, the RL agent still cannot complete them, necessitating a hierarchical
structure of skill learning (cfr. Research Question 7.4).

No. Task Description SP. SR. SE. EEE. SP*SR*SPvA. Npo Nc Ny N% N%
.67 90 .00 33 1.0 9 10 10 2 0 2
1 Reach cube A 67 90 00 33 1.0 91 50 50 1 1 2 4/4 2/2
44 8 .00 56 1.0 90 50 50 1 1 2
1.0 79 .00 .00 1.0 94 1.0 1.0 3 0 3
2 Reach cube B 1.0 77 .00 .00 1.0 94 10 10 3 0 3 8/8 1/1
89 79 11 11 1.0 94 67 67 2 1 3
10 .62 .00 .00 1.0 63 1.0 1.0 3 0 3
3 Reach the plate 78 53 00 11 1.0 62 10 10 3 0 3 7/7 2/2
1.0 42 11 .00 1.0 62 33 33 1 2 3
78 42 00 .00 1.0 33 67 67 2 1 2
4 Pick up the cube A 10 36 .00 .00 1.0 33 67 67 2 1 2 4/5 0/4
10 .32 .00 .00 1.0 32 33 33 1 2 1
.67 22 .00 .00 67 50 33 67 1 1 1
5 Pick up the cube B 50 29 00 38 67 51 .00 33 0 2 0 2/2 0/4
71 24 00 .00 67 51 33 67 1 1 1
1.0 27 00 .00 1.0 .04 33 33 1 2 0
6 Slide cube A from its current 1.0 .22 .00 .00 1.0 .04 .00 .00 O 3 0 3/3 0/6
position to a target position on
the table
10 .37 .00 .00 1.0 51 67 67 2 1 2
A1 28 00 63 63 28 13 50 1 4 O
7 Open the drawer 35 .07 .00 47 1.0 .09 00 00 O 4 0 1/2 0/10
63 28 00 25 1.0 44 33 33 1 2 1
17 54 00 83 1.0 78 10 1.0 1 0 1
8 Pick up the plate 17 41 00 83 1.0 79 10 1.0 1 0 1 3/3 0/0
17 51 00 .83 1.0 73 10 1.0 1 0 1
94 14 00 .06 1.0 .05 50 50 3 3 1
9 Place the plate onto a targetpo- .94 18 .00 .06 10 14 17 17 1 5 1 4/6 0/12
sition on the table
.82 18 00 .18 1.0 .14 33 33 2 4 2
10 99 .00 .00 1.0 99 33 33 1 2 -
10 Close the drawer 1.0 99 .00 .00 1.0 99 67 67 2 1 - - -
/3 /6

1.0 99 .00 .00 1.0 99 .00 .00 0O 3
48 10 00 26 .83 .03 00 17 0 5 O
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Align cube A and cube Bto tar- .61 .25 .00 .10 .50 .07 .00 .50 0 2 0 0/0 0/10
get positions that are apart from
each other

72 .28 00 .00 75 05 .00 25 0 3 O

04 99 00 9 10 .99 .00 .00 0 1 0
Close the drawer with cube A 17 99 .00 .83 1.0 .99 00 00 0 1 0 0/0 0/3
inside
17 99 00 83 10 99 .00 .00 0 1 O
16 96 00 72 67 97 00 33 0 2 0
Gripper open/close toggle 1 9 00 78 50 98 .00 50 0 1 O 1/2 0/4
22 96 00 72 99 96 10 66 2 1 1
22 4 00 22 33 76 67 67 1 2 1
Slide cube B to the table edge .33 .43 .00 .00 .33 71 67 67 1 2 1 2/2 0/0

without toppling it, aiming for
a target position near the edge
33 .46 .00 .00 55 77 50 1.0 O

S
o

22 .01 .00 .00 67 .01 .33 .67
Align end-effector center over .00 .01 .00 .00 .00 .01 67 33 0 0 0 2/2 1/2
the drawer handle without
opening or closing the drawer

—_
N
N

33 .01 .00 00 33 01 67 67 1 0 1

44 39 00 44 10 49 50 50 1
Navigate the gripper to a tar- .50 .53 .00 .00 .50 98 50 1.0 1 0 1 3/4 1/1
get pose above cube B without
touching it

—_
—_

.67 39 00 .00 1.0 49 10 10 2 0 2

A1 57 .00 .56 .50 .57 .00 .50 O
Gently push the drawer toa par- .67 .24 .00 .00 1.0 .30 .00 00 0 2 0 1/1 0/4
tially open or closed position
indicated by a target value

—_
(e)

.67 24 00 .00 1.0 30 50 50 1 1 1

A1 .01 .00 .00 .33 .00 .00 .67
Position cube A directly in front .13 .01 .00 .00 .33 .01 67 67 1 0 0 0/2 0/1
of the drawer handle without
blocking the drawer from open-

—_

ing
J1 .01 .00 .00 33 .01 33 10 1 0 O
20 22 00 .78 1.0 .01 .00 0O O 1 O
Swap positions of cube A and 10 .28 .00 .00 1.0 .01 .00 00 O 1 0 0/0 0/3
cube B without grasping
1.0 .28 .00 .00 1.0 .01 .00 .00 0O 1 ©0
83 91 03 11 91 95 91 82 9 1 10
Move end-effector over cube A .81 .87 .00 .16 91 94 72 82 8 2 10 23/z7/7
83 90 03 11 91 95 55 64 6 4 10
75 .01 .00 .00 1.0 .02 07 07 1 14 0
Push cube A and cube B closeto .75 .01 .03 .00 1.0 .01 .00 .00 0 9 0 1/2 0/31

each other
59 00 00 11 10 01 11 11 1 8 1

85 78 00 13 10 .86 .86 .86 12 2 13
Move to a target positionon the .69 .88 .02 .27 1.0 92 10 1.0 13 0 13 33/ 1/2
table without interacting with

objects
.85 84 .00 15 1.0 92 10 1.0 8 0 8
d6 43 00 36 30 51 04 741 6 0
Put cube A into the drawer 26 30 .01 29 52 27 00 48 0 12 0 0/1 0/27
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23 22 00 27 64 18 .00 36 0 9 0
86 61 .00 .04 96 81 .04 07 1 26 0
24 Stack cube AontopofcubeB 81 .61 .00 13 93 75 14 21 2 11 0 0/4 0/51
95 60 05 .02 1.0 76 07 07 1 14 0
19 23 00 72 1.0 .39 .00 .00 O 4 O
23 Open the drawer, pick upcube .29 11 .00 54 75 25 25 50 1 2 0 0/1 0/10
A and place it inside the drawer
41 01 .00 50 1.0 .03 .00 .00 0 4 0
24 33 00 24 60 39 10 30 0 6 O
24 Pick up cube A, place ontocube 41 .34 .00 10 50 43 30 60 2 3 0 0/3 0/12

B to make a stack
b2 28 14 10 67 43 33 33 1 3 0

D.3 PROMPTS

[SYSTEM] :

You are a task designer trying to propose meaningful tasks based on a specific environment in simulati

on.

1. The environment will be described with its source code. Note the comments around codes to understan
d their initial status.

2. These tasks are meant to be used to train a robot to acquire skills in the given environment.

3. Once any task is learned by the robot, it becomes a new skill of the robot.

4. The new proposed tasks should be meaningful, primitive (atomic), incremental to learn, independent

of each other, and diverse.

5. You should avoid proposing the same tasks that were previously either completed or failed.

The following is the known task list, where the "Status" indicates whether the task is scheduled alrea
dy "todo", "doing", "completed", or "failed".

{tasks}

Some helpful tips for writing the tasks:

(1) Make sure can be completed, for example, with no unknown objects involved.

(2) The success of the tasks should be measurable with current observations, e.g. object positions. Th
e environment doesn't support collision detection yet. For simplicity, ignore collision.

(3) Use fewer objects in one atomic task.

(4) Make sure to not mention any joint positions as the task goal.

Let's work this out in a step-by-step way to be sure we have the right answer.

[USER] :
The Python environment is

{env_obs_code_string}

Use the given "target position" instead of "random position" or vague "specific position" for clarity.

Figure D.4: A snippet of task proposal prompt, where {tasks} indicates the position to insert
previously explored task instructions, and {env_obs_code_string} holds the place for incoming
source codes for the environment.

In this appendix, we provide the prompt snippets used by ASD for various purposes:
task proposal (Figure D.4, see § 7.3.1) and skill learning (see § 7.3.2), which includes
generating success functions (Figure D.5), generating reward functions (Figure D.6),
teedback iterations (Figure D.7), and GPT-4V behavior assessment (Figure D.8).

When interacting with a conversational LLM, there are typically three roles: system,
user, and assistant.

» User: Provides the primary input, usually in the form of queries, requests, or
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instructions for the LLM to process.

» System: Serves as a higher-priority input, offering contextual guidelines, con-
straints, or objectives that the LLM should adhere to throughout the interaction.
It sets the overarching rules or tone for the assistant’s behavior.

» Assistant: Represents the LLM itself, generating responses based on the given
input and system instructions.

This structured framework ensures the conversation remains coherent and aligned
with the intended goals.

[SYSTEM] :

You are a function engineer trying to write success condition functions to determine the accomplishm
ent of reinforcement learning tasks.

The success condition functions help compute the success of given tasks.

Your success condition function should use useful variables as inputs, according to the scenario and
task instructions.

As an example, the success condition function signature can be:

@configclass
class SuccessCfg:
success = RewTerm(
=object_is_lifted
=30.0

Follow the format of this signature when writing your own for later tasks.

Please make sure that the code is compatible with Pytorch, for example, use torch tensor instead of
NumPy array.

Make sure any new tensor or variable you introduce is on the same device as the input tensors.

You are not allowed to import other Python modules.

[USER] :
The Python environment is

{task_obs_code_string}

To prepare for pre-conditions, previously executed skills are:
{precedent_skills}
And, the next subtask is to learn {task_description}.

Knowing this information, now please write a success deterministic function for this task {task_desc
ription}.

- Remember to explicitly configure “SuccessCfg® so that I can directly copy the code.
- Any introduced tensor constant should be on the device GPU, for example ‘¢ = torch.tensor([1., 2.]
).cuda()"’

Figure D.5: A prompt snippet for generating success functions given the environment information,
where {precedent_skills} holds the preceding executed skills as background information for the
LLM to know the state that the learning will start with.
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[SYSTEM] :
You are a reward engineer trying to write reward functions to solve reinforcement learning tasks as
effectively as possible. Your goal is to write a reward function for the environment that will help
the agent learn the task described in the text. Your reward function should use useful variables fro
m the environment as inputs. As an example,
the reward function signature can be:
" python
@configclass
class RewardsCfg:
reached_reward = RewTerm(
func=to_reach_cube_a,
weight=1.0,

Follow the format of this signature when writing your own for later tasks. Note that every "func' sh
ould be implemented by yourself.

Please make sure that the code is compatible with PyTorch (e.g., use torch tensor instead of numpy a
rray).

Make sure any new tensor or variable you introduce is on the same device as the input tensors.

You are not allowed to import other Python modules.

To incrementally guide a reinforcement learning agent in a curriculum, you should write many sub-rew
ard functions, encoded individually.
The learning agent will be rewarded by the weighted sum of those sub-reward functions.

Some helpful tips for writing the reward function code:
(1) You may find it helpful to normalize the reward to a fixed range by applying transformations
like torch.exp to the reward components

[USER] :
The Python environment is
“python

{task_obs_code_string}

To prepare for pre-conditions, previously executed skills are:

{precedent_skills}

Knowing these information, now please write a shaped reward function for the task: {task_description
I

Let's work this out in a step by step way to be sure we have the right answer.

- Remember to explicitly configure ‘RewardsCfg' so that I can directly copy the code.
- Any introduced tensor constant should be on device GPU, for example ‘¢ = torch.tensor([1., 2.]).cu
da()"

Figure D.6: A prompt snippet for generating reward functions. It is similar to the prompt for the
success function given the environment information.
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Feedback Errors
[USER] :

Executing the reward function code above has the following error: {traceback_msg}. Please fix the bu
g and provide a new, improved reward function!

Feedback Statistics
[USER] :

We trained a RL policy using the provided reward function code and tracked the values of the individ
ual components in the reward function as well as global policy metrics such as success rates and epi
sode lengths after every {epoch_freq} epochs and the maximum, mean, minimum values encountered: {sta
tistics}

Here is the output from GPT-4v when describing the trained behavior:

{gpt4v_description}

Figure D.7: A prompt snippet for feeding back learning statistics and GPT-4V response for reward
function iteration. Top: if the code ends with an execution error, e.g. Pytorch tensor shape mismatch,
the error messages will be fed back so the LLM can revise for a better one. Bottom: if the code runs
without bugs, the learning results will be collected for the iteration of reward functions, potentially
resulting in more efficient ones.

[SYSTEM] :

You are a professional expert to analyze robotic behaviors in a simulated environment.
Objects in the environment are:

- Franka robotic arm with a two-finger gripper

- black table as the basic manipulation plane

- white drawer on the table

- cube A (the cube with numbers on the surface)

- cube B (the cube with clean surface)

- plate

- a special "target position" highlighted with RGB color (which indicates x, y, and z respectively).
This position is an imagined point to let the robot play with.

Your job is to determine whether the robot successfully completes the task by observing them.

You will be provided with a recording of the robot activity, but only the starting and ending status

images are provided to reduce the cost.

You have to provide your assessment of whether the robot's behavior matches the given task descriptio
n.

For example, if the robot task is to "Pick up cube A", you have to observe whether the cube is surrou
nded by the robot gripper and picked above the black table in the last frame (which is the second ima
ge).

Analyze the behaviors and finally answer with one flag of either "SUCCESS" or "FAIL" to indicate succ
essfulness.

Here are the starting and ending statuses described by states and images:
1. State

First frame (initial state):
{first_frame}

Last frame (end state):
{end_frame}
2. Image

<<<IMAGE 1>>>
<<<IMAGE 2>>>

Figure D.8: A snippet of prompts for robot behavior assessment using GPT-4V, where the {*_frame}
are state observations of the defined key frames of the recorded behavior video, and «<IMAGE X»>
holds the place for corresponding key frame images.
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NOTATION

The next list describes several symbols that are used within the thesis.

L(-) Information loss

d Action space

D Dataset

J() Interest function

F(-) Objective function

Z{-} Laplace transform

£71{-} Inverse Laplace transform
N(-) Normal distribution

N State space

E2 Latent space

Tiref(+) Reference policy function

1te(+) Policy function

T Agent trajectory 7 = (so, a0,81,a1,...,8T)
0 Neural network parameters
a Or a; for the (current) action at time ¢

I(-) Information gain

L(-) Loss function

S Or s; for the (current) state at time ¢

s’ Or s;4+1 for the (next) state at time t + 1

T Final time step

t Time step

z Latent variable, usually being used to denote a latent representation of the

skill



GREEK LETTERS WITH PRONUNCIATIONS

Character Name Character Name

a alpha AL-fuh B beta BAY-tuh

y, T gamma GAM-muh ¢, D phi FEE, or FI (as in hi)
o, A delta DEL-tuh 7, I1 pi PIE

€ epsilon EP-suh-lon 0,0 theta THAY-tuh

A A lambda LAM-duh Y,V psi SIGH, or PSIGH

i mu MEW w, (2 omega oh-MAY-guh

T tau TOW (as in cow) o,x sigma SIG-muh

Greek letters that are used within the thesis with pronunciations
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