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ABSTRACT

With the rapid advancement of Artifical Intelligence (AI), autonomous systems have

gained increasing attention due to their growing potential across both virtual and real-

world applications. Developing embodied agents that can follow human instructions

requires not only semantic understanding but also efficient policy learning. To achieve

further autonomy, an agent must explore its environment and adapt its capabilities

beyond the initial design, which motivates research into world modeling and robotic

self-determination.

This thesis begins by presenting a unified conceptual foundation for autonomous

embodiment, followed by contributions that integrate multiple aspects of this foun-

dation. First, the thesis introduces multimodal cues as intrinsic motivation to enable

reinforcement learning agents to engage in self-determined exploration and rep-

resentation learning, warming up their policies beyond immediate task demands.

Second, the thesis proposes a decision-level interactive perception approach based

on Large Language Models (LLMs), enabling agents to semantically reason about

multimodal inputs for improved exploration and environmental understanding.

Third, to strengthen the reasoning abilities of LLMs, the thesis explores logic-guided

inference exploration to enhance performance on complex reasoning tasks without

requiring additional fine-tuning. Fourth, the thesis addresses long-term embodied

autonomy by enabling agents to reason about affordances in their environment and

discover novel skills through self-determined policy learning. Finally, the thesis con-

cludes with collaborative research on object-centric planning, bimanual coordination,

and explainability in embodied systems, further extending and contextualizing the

contributions within broader research on embodied intelligence.



ZUSAMMENFASSUNG

Mit dem rapiden Fortschritt der Künstlichen Intelligenz (KI) haben autonome Systeme

zunehmende Aufmerksamkeit erlangt, bedingt durch ihr wachsendes Potenzial in

virtuellen und realen Anwendungen. Die Entwicklung von verkörperten Agenten,

die menschlichen Anweisungen folgen können, erfordert nicht nur semantisches

Verständnis, sondern auch effizientes Erlernen der Aktionstrategie, dem sogenannten

Policy-Learning. Um weitergehende Autonomie zu erreichen, muss ein Agent seine

Umgebung erkunden und seine Fähigkeiten über seine ursprünglich gegebenen

hinaus entwickeln, was die Modellierung der Welt und robotische Selbstbestimmung

motiviert.

Diese Dissertation beginnt mit der Vorstellung einer vereinheitlichten konzeptionellen

Grundlage für autonome Verkörperung, gefolgt von Beiträgen, die mehrere As-

pekte mit dieser Grundlage untersuchen. Zunächst führt die Dissertation multi-

modale sensorische Reize als intrinsische Motivation für Agenten ein, die mittels

Verstärkungslernen trainiert werden. Damit können sie selbstbestimmte Exploration

und Repräsentationslernen durchführen, indem sie ihre Aktionsstrategien über

unmittelbare Aufgabenanforderungen hinaus optimieren. Zweitens schlägt die Dis-

sertation eine interaktive Wahrnehmung mittels großen Sprachmodellen (Large

Language Models, LLMs) vor, die Agenten befähigt, semantisch über multimodale

Eingaben zu argumentieren, um Exploration und Umweltverständnis zu verbessern.

Drittens untersucht die Dissertation zur Stärkung der Argumentationsfähigkeiten

von LLMs logikgesteuerte Inferenzexploration, um die Leistung bei komplexen

Argumentationsaufgaben zu verbessern, ohne zusätzliches Feintuning zu benötigen.

Viertens adressiert die Dissertation langfristige verkörperte Autonomie, indem sie

Agenten befähigt, über Möglichkeiten in ihrer Umgebung nachzudenken und neue

Fähigkeiten durch selbstbestimmtes Policy-Learning zu entdecken. Die Dissertation

schließt mit kollaborativen Arbeiten zu objektorientierter Planung, bimanualer Koor-

dination und Erklärbarkeit in verkörperten Systemen ab, die die Beiträge innerhalb

des weiten Forschungsfeldes der verkörperten Intelligenz weiter ausbauen und

kontextualisieren.
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Part I

Foundations and Context



1 INTRODUCTION

1.1 MOTIVATION

1.1.1 Agent, Embodiment, Robot and Autonomy

In establishing a common foundation for our discussion, it is essential to clarify

several key concepts that will recur throughout this thesis. An agent is an entity

that perceives its environment, processes information, and takes actions to achieve

goals, characterized by perception, decision-making, and control. Building on this,

the concept of embodiment emphasizes that cognitive processes are deeply rooted

in the body’s interactions with the world. An embodied agent, therefore, is one that

possesses a body, either physical or virtual, enabling it to interact meaningfully with its

environment. A robot is a specific form of embodied agent: a computational machine

capable of performing physical actions, typically in the real world, based on its

perception and internal decision-making processes. Within the context of this thesis,

autonomy refers to an agent’s ability to operate in complex, dynamic environments

with minimal human intervention. Autonomy is not limited to control or navigation

but encompasses the capacity to learn, operate, and adapt over time. In embodied agents,

particularly robots, this includes the ability to explore environments and develop

capabilities independently, a foundation for applications such as search and rescue,

scientific exploration, industrial automation, and human-robot collaboration.

While all robots are physically embodied agents, the notion of an embodied agent also

includes virtual entities that interact within simulated or digital environments. Thus,

although the term robot is used frequently in this thesis, the proposed methods and

insights are often applicable to a broader class of agents.

1.1.2 Problem Statement

Embodied autonomy spans a spectrum of capabilities, ranging from simple reactive

behaviors to complex decision-making and long-term self-improvement. This thesis

focuses on two intermediate yet foundational forms within this continuum: active
environment exploration and autonomous adaptation. These forms are chosen because

they mark critical transitions, from merely responding to stimuli toward proactively

acquiring knowledge and adjusting behavior over time, which are essential stepping

stones toward achieving full autonomous intelligence.

Environment Exploration entails an agent’s capacity to actively seek and gather

information about its surroundings to uncover future potentialities, such as identifying

new objects, understanding spatial relationships, or identifying useful features for

downstream tasks. These processes are fundamental to intelligent systems, as they
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enable agents to operate in dynamic and uncertain environments without constant

human supervision. Exploration helps build a structured understanding of the world,

reveal hidden information, and improve decision-making.

Autonomous Adaptation is the capability to extend existing knowledge acquired during

exploration, and to acquire novel behavior patterns when necessary, enabling the

agent to adjust its strategies when encountering new challenges, changing conditions,

or unexpected events. This form of autonomy centers on the agent’s ability to adapt

its own capabilities over time, which we also refer to as self-development. This

process may involve adjusting internal estimation of the environment, generalizing

skills to apply them to novel objects, or even learning new capabilities for novel

manipulation.

Together, these capabilities are crucial for developing autonomous robots, particularly

in robotic manipulation, which requires an awareness of how actions impact both the

agent itself and its environment.

1.1.3 Challenges

Achieving effective environment exploration and autonomous adaptation is challeng-

ing, particularly for real-world robots, due to the complexity and unpredictability

of environments. Many robotic systems are designed upon assumptions that the

operations are performed in a known environment. Without this assumption, an

autonomous robot, especially for long-term autonomy, faces many interrelated chal-

lenges such as hardware/software of robot platform design, and, moreover, the

rapidly changing/unpredictable nature of dynamic environments.

From an environment modeling perspective, autonomous robotic systems must

operate reliably in environments that neither they nor their designers have previously

fully anticipated. This necessity arises from the inherent complexity of the real world,

which makes it impractical for robots to fully model all possible scenarios in advance.

From the control perspective, traditional symbolic planning methods explicitly

model tasks and environments, solving the planning problem through optimization.

However, these methods often fail or incur prohibitive computational complexity in

complex and unforeseen environments, making them inflexible. A robust adaptive

learning mechanism during operation is crucial for building autonomy in an open

world, as encoding all necessary knowledge and skills into the system during the

design phase is nearly impractical.

Challenges inevitability arise when dealing with uncertainty
1

that comes from

diverse sources, e.g. noisy sensing, partial observability [LHP23], and instable

learning [Li+23c], making it difficult to construct reliable representations for decision-

1: Uncertainty in machine learning can be categorized into aleatoric and epistemic uncertainty [Mur22].

In the robotic context, aleatoric uncertainty arises from the inherent randomness in stochastic state

transitions, while epistemic uncertainty stems from the agent’s lack of full knowledge about the

consequences of its actions in the environment. Addressing aleatoric uncertainty requires designing

robust policies that can account for stochasticity, such as leveraging probabilistic models. On the other

hand, reducing epistemic uncertainty usually necessitates active exploration strategies that prioritize

information gain, enabling the agent to refine its world model and improve its predictive capabilities.
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making. Adaptation further complicates the problem, as it demands the ability to

generalize learned behaviors across different contexts, transfer knowledge to novel

tasks, or even acquire new skills on demand. Furthermore, achieving long-term

autonomy necessitates minimizing human intervention, meaning robots must develop

self-directed learning strategies that enable continual improvement without explicit

external supervision. Addressing these challenges is key of this thesis to building truly

intelligent robotic systems capable of operating in diverse and evolving real-world

settings.

1.1.4 Research Scope

To tackle the challenges raised by environment exploration and autonomous adapta-

tion, my research focuses on four key fundamental concepts: world model, semantics,
policy, and self-determination (see Figure 1.1):

World 
Models Policy

Semantics

Self-
determination

Figure 1.1: Intelligent Agent Tetrahedron. Conceptual foundation of environment exploration and

autonomous adaptation, structured as a tetrahedron with four core components: world models, semantics,
policy, and self-determination. Each edge represents the interaction between two concepts, while each

triangular face (also shown in the top-left inset) denotes a three-way integration underlying specific

capacities. For example, agentic skill discovery emerges at the intersection of self-determination,

semantics, and policy. See Chapter 3 “Conceptual Foundations” for detailed discussion.

▶ World Models provide an agent with internal representations of its environment

after prior exploration, either through fixed trajectories or active seeking,

allowing it to predict the consequences of its actions, reason about uncertainty,

and plan for future interactions. A robust world model helps mitigate the

limitations of noisy or incomplete sensory data, improving planning and

decision-making in complex environments.

▶ Semantic representations enhance the robustness of autonomy by abstracting

away non-essential low-level details while preserving critical semantic and

topological structures. This abstraction plays a key role in interpreting and

organizing knowledge acquired through exploration. By leveraging semantics,
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an agent can contextualize observations, generalize learned concepts across

different tasks and environments, and communicate its understanding in a

way that aligns with human expectations. Moreover, instructions may come as

being casual, informal, and even incomplete to robot systems using a natural

language interface; it is essential to leverage extensive knowledge and reasoning

capabilities, e.g. from Large Language Models (LLMs), for interpretation and

clarification for robust task planning.

▶ Policy learning enables an agent to develop effective strategies from exploration

to operation by optimizing its actions based on past experiences and objectives.

A well-trained policy controls state transitions through the decision-making

process, allowing the agent to adapt its behavior to dynamic environments and

achieve long-term goals. In the context of autonomous agents, policy learning

bridges perception and action, ensuring that decisions are not only reactive but

also proactive, aligning with both immediate feedback and strategic foresight.

▶ Self-determination in embodied context involves intrinsic motivation and self-

regulated learning, enabling an agent to go beyond human-specified objectives

and engage in open-ended exploration, thereby fostering continual learning

and long-term autonomy. It empowers agents to set internal goals and evaluate

their own progress, gaining abilities that are aligned with their own curiosities

or preferences. By enabling agents to identify and pursue valuable information,

and to acquire novel skills, on their own, self-determination reduces reliance

on human supervision and enhances adaptability.

Together, these four components form a foundation for developing intelligent embod-

ied systems that can explore effectively, operate robustly, and adapt autonomously in

diverse and evolving environments.

1.2 RESEARCH OBJECTIVES AND CONTRIBUTIONS

By investigating the interplay between world modeling, semantic grounding, policy

learning, and self-determination, this thesis aims to contribute to the foundation of

self-developing autonomous embodied agents. Unlike conventional autonomy, which

often prioritizes the efficient execution of predefined tasks, the proposed approach

aims to develop autonomous agents with the following research objectives (O.):

Objective I To construct self-deterministic agents that can leverage non-verbal

multimodal cues to autonomously explore the environment and develop possible

abilities beyond immediate task requirements.

Chapter 4 introduces Intrinsic Sound Curiosity Module (ISCM) to integrate cross-

modal learning cues, specifically visual-auditory signal, for improved representation

learning and exploration (early multimodal fusion) of Reinforcement Learning (RL)

agents, with experiments addressing the following research questions:

▶ Does intrinsic sound curiosity help the agent to explore more actively and learn

effective representations?
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▶ Does unsupervised policy pre-training help the agent to adapt to new tasks?

▶ How does the choice of crossmodal prediction affect the performance?

Objective II To develop an interactive multimodal perception framework in

which the agent actively gathers, integrates, and semantically interprets diverse

sensory inputs, enabling grounded semantic understanding and context-aware

decision-making in complex environments.

ISCM discussed in Chapter 4 investigates a learning-based (early) multimodal fusion

approach to build a crossmodal predictive world model. Chapter 5 further introduces

a Multimodal environment chatting (Matcha) framework that integrates interactive

perception with LLMs to enhance multimodal interpretation and decision-making in

autonomous agents (late, decision-level multimodal fusion). Experiments in simulated

multimodal manipulation scenarios study the following research questions:

▶ Can Matcha integrate multimodal perceptions at the decision level?

▶ How does the level of abstraction in the submodule outputs influence the

performance?

▶ How do different scale LLMs affect the performance?

Objective III To enhance agent reasoning abilities to interpret complex instructions

and make informed decisions.

Matcha discussed in Chapter 5 investigates the use of LLMs for complex reasoning

with proper abstraction and prompting for in-context reasoning. To further improve

the reasoning abilities of LLMs, Chapter 6 introduces Logical Thoughts (LoT), a logic-

based symbolic method to improve zero-shot chain-of-thought reasoning, enabling

improved inference-time reasoning and decision-making abilities of LLMs, with

experiments addressing the following research questions:

▶ Does LoT outperform the original zero-shot CoT, i.e. logic-guided inference

enhances reasoning ability in various domains as well as with LLMs of varying

model scales?

▶ What is the impact of LoT on individual reasoning chains (e.g. revision frequency,

resultant length)?

▶ Do post-hoc explanations help LLM self-check?

Objective IV To construct autonomous agents with an advanced level of self-

determination that can sense environment context verbally and discover meaningful

skills from scratch in the pursuit of long-term embodied autonomy.

Chapter 7 proposes a semantically motivated exploration framework for RL agents,

Agentic Skill Discovery (ASD), that allows agents to autonomously identify and

acquire useful skills from scratch in a self-determined manner, guided by LLMs,

when faced with a novel environment. The accompanying experiments address the

following research questions:

▶ What kind of tasks will be proposed?
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▶ Can skills be acquired automatically?

▶ How do RL and learning context influence the learning efficiency?

▶ Can challenging tasks be completed by chaining learned skills?

1.3 THESIS ORGANIZATION

Part I. Foundations and Context

▶ Chapter 1 “Introduction”: Provides an overview of the research motivation, the

fundamental problem setting, and the methodology adopted in this thesis. It

also outlines the key research contributions and how they address the challenges

of robotic autonomy.

▶ Chapter 2 “Background and Related Work”: Introduces essential concepts in

environment exploration and self-development for robotic autonomy. It also

presents the experimental robot platforms and simulation environments used

in this research, along with a comprehensive review of related work in the field.

▶ Chapter 3 “Conceptual Foundations”: Establishes the core theoretical foun-

dations that facilitate robotic autonomy, including the role of world models

in enabling predictive reasoning, the significance of semantics in representa-

tion, the formulation of policies for behavior control, and the concept of self-

determination as a driver (intrinsic motivation) and examiner (self-regulation)

for exploration and adaptation. These elements form the conceptual backbone

for the research contributions discussed in the following chapters.

Part II. Core Contributions

Building upon the conceptual foundations, this part presents the core research

contributions in detail. Each chapter introduces a key advancement in autonomous

robotic learning:

▶ Chapter 4 “Sound Guides Representations and Explorations”: Investigates how

multimodal sensory feedback, specifically visual-auditory signals, can guide

robotic exploration and improve learned representations of the environment,

as well as a proactive policy for downstream task adaptation. This chapter

addresses O. I with non-verbal motivations, correlating to O. II with learning-

based multimodal fusion during exploration.

▶ Chapter 5 “Interactive Multimodal Perception Using Large Language Models”:

Explores the integration of LLM-based interactive perception to enhance

multimodal understanding, addressing (decision-phase) multimodal fusion

(O. II), and relates to complex reasoning (O. III) with proper prompting.

▶ Chapter 6 “Enhancing Reasoning via Logic-Guided Inference Scaling”: Intro-

duces logic-based symbolic verification of LLM inference to improve zero-shot

chain-of-thought reasoning, enabling improved inference-time reasoning abili-

ties of LLMs (O. III).

▶ Chapter 7 “Agentic Skill Discovery”: Proposes an agentic skill discovery frame-
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work, enabling robots to autonomously identify and acquire useful skills from

scratch in a self-determined manner when faced with a novel environment.

This chapter addresses O. IV with verbal motivations, inherently resembling

the human learning process.

▶ Chapter 8 “Reward Modeling, Embodied Planning, and Explainability”: Dis-

cusses collaborative research efforts that complement the core contributions,

including:

§ 8.1 models intrinsically motivated RL within a unified framework, additionally

addressing O. I by optimizing an information-seeking objectives for diverse

skill exploration.

§ 8.2 addresses O. III with a focus on context-sensitive planning, proposing a

novel planning framework including object-centric planning and advanced

bimanual planning that leverage LLMs.

§ 8.3 further explores the role of explainability in robotic systems, enhancing

the interpretability and trustworthiness of autonomous agents.

The proposed approaches seek to empower robots with the ability to au-

tonomously reason, explore, and adapt, ultimately pushing the boundaries of

embodied intelligence.



BACKGROUND AND RELATED WORK2
2.1 ROBOTIC AUTONOMY

Autonomous systems [LLA21; Kun+18; Azp+23; Jan+24; Wan+23a; Hon+24; Kim+24;

Xi+25; Zen+23b] possess the capability to perceive, reason, and act independently

in dynamic and uncertain environments across various domains, including phys-
ical environments (e.g. space, air, sea, field, and human environments), simulated
environments (e.g. Isaac Sim [NVI25], MuJoCo [TET12], CoppeliaSim [RSF13], and

ThreeDWorld [Gan+21]), and textual environments (e.g. language model generations,

automated office tasks, programming context, etc.), thereby reducing dependence

on human intervention. These systems usually integrate a selective combination of

advanced Artifical Intelligence (AI) techniques (e.g. world modeling, policy learning,

multimodal fusion, etc.) that enable agents to interpret sensory inputs, predict future

states, and generate purposeful actions.

Ultimately, autonomy seeks to bridge low-level control with high-level cognition,

fostering agents that can explore, learn, and operate effectively in virtual- & real-world

settings, resulting in capabilities that are essential for applications such as search and

rescue, autonomous inspection, and planetary exploration, where both understanding

and interacting with the environment are critical for mission success.

2.1.1 Environment Exploration

Within the scope of robotic autonomy, environment exploration is the systematic

process by which agentic systems autonomously perceive, navigate, and interact

with unknown or partially known environments to construct spatial representations

and develop exploration strategies aimed at acquiring knowledge and adaptive

capabilities. This subsection presents an integrated perspective that categorizes the

main exploration approaches into map-based and learning-based methods, and reviews

key works in areas such as representation learning, planning, and exploration that

have shaped these paradigms.

Map-Based Exploration

Environment exploration has evolved from a primary focus on robotic navigation
1

where robots learn to autonomously map and traverse unknown environments [SB03;

Zhu+18; Arm+23]. Traditional map-based methods rely on explicit representations

of the environment, such as grid maps, topological maps, or semantic maps [LLA21].

1: While this thesis primarily focuses on robotic manipulation scenarios, advancements in mobile

robotics will also be discussed, particularly in the context of active perception for map building, which

falls under the broader scope of environment exploration.
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Mapping Planning

Localization

ASLAM

SLAM
Active 

Perception

Exploration

Figure 2.1: A set overlap illustration conceptualizing Active Simultaneous Localization and Mapping

(ASLAM), an active robotic system that simultaneously localizes, plans paths, and builds maps

(adapted from [LLA21]).

These approaches are primarily focused on improving navigation, localization, and

path planning in both known and yet unknown environments. Beyond navigation,

advanced exploration systems integrate manipulation capabilities, allowing robots

to physically interact with their surroundings rather than merely observe. This

interaction facilitates knowledge acquisition and the discovery of hidden information,

such as resolving occlusions [Li+23c; Li24] or identifying invisible properties through

interaction [Zha+23c; Gao+24a]. In such cases, techniques such as scene graphs can

serve as a complement to traditional maps. The followings introduce fundamental

concepts and related work in three key aspects: map building, path planning, and

exploration strategies.
Map Building techniques are concerned with creating a dense representation of the

environment based on sensory data. These methods are fundamental for any form

of autonomous exploration, as they allow agents to build knowledge about their

surroundings.

▶ Simultaneous Localization and Mapping (SLAM) [DB06; BD06] is a fundamental

problem in robotics, enabling an autonomous agent to construct a map of an

unknown environment while simultaneously locating its own position within

the map. SLAM techniques integrate sensor data, typically from cameras,

LiDAR, or other perception systems, with probabilistic estimation methods

such as Kalman filters, particle filters, or graph-based optimization. Traditional

SLAM focuses on geometric consistency and metric mapping, whereas more

recent approaches incorporate semantic understanding to enhance navigation

and interaction. In the context of autonomous exploration, Active Simultaneous
Localization and Mapping (ASLAM) [Mu+15; LLA21] extends SLAM by incorpo-

rating decision-making strategies that guide the agent toward informative areas,

balancing exploration and exploitation. This active approach enables efficient

map construction while improving localization accuracy and adaptability in

dynamic or partially observable environments (cfr. Figure 2.1).

▶ Occupancy grid mapping [ME85; LLA21] refers to approaches that divide the

environment into a grid of cells (or Octree structure [Mea82] for 3D repre-

sentations), each representing the probability of occupancy (i.e. whether the
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cell is occupied or free). Occupancy grids are widely used in mobile robotics

for creating real-time environment maps. This method is particularly effective

for robots with limited computational power and can be enhanced to handle

dynamic objects and obstacles in the environment.

While such approaches have been extensively employed in mobile navigation, they

are equally pertinent to scenarios that demand manipulation-aware representations.

In manipulation contexts, constructing dense 3D maps typically requires the in-

tegration of multimodal sensory inputs, such as visual, auditory, and tactile data,

to generate detailed representations of objects and their properties. This process

introduces increased computational complexity and necessitates a more sophisticated

understanding of the environment than conventional mapping methods provide.

Consequently, there is a heightened need for semantic understanding and, building

upon it, high-level reasoning, both of which are central topics discussed in this thesis

(cfr. Chapter 5, Chapter 6, and Chapter 7).

Figure 2.2: An illustration of path planning, in which the agent navigates toward a target while

avoiding obstacles (shown in gray rectangle). The path is computed using a path planning algorithm,

ensuring the agent avoids obstacles while reaching the target location.

Path Planning is concerned with finding a safe and efficient path through a map. It

uses the built map (constructed through SLAM or other methods) to navigate the

environment (cfr. Figure 2.2).

▶ Sampling-based path planning methods like Rapidly-exploring Random Trees

(RRT) [LaV98], RRT* [KF11], and RRT-Connect [KL00] are used for real-time

path planning in high-dimensional spaces. These methods allow agents to plan

paths while avoiding obstacles, and RRT* guarantees asymptotic optimality,

ensuring the paths are near-optimal. These techniques are particularly useful

in dynamic environments where paths need to be recalculated on the fly.

▶ Grid-based path planning algorithms such as Dĳkstra’s [Dĳ59; LaV06] and A*

algorithm [HNR68; LaV06] are widely used to compute the optimal path from

an agent’s current location to a target position on a discretized map. These

algorithms are particularly efficient in environments where the map is fully

known and can be represented as a grid or graph. Dĳkstra’s algorithm guaran-

tees the shortest path by exploring all possible routes in a breadth-first manner

while considering edge costs. A*, an extension of Dĳkstra’s algorithm, incor-

porates a heuristic function to guide the search more efficiently, significantly

reducing computational overhead. These techniques are extensively applied in

autonomous vehicles, mobile robots, and video games AI for navigation and

path-finding tasks.
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Planning algorithms are extensively utilized in both mobile and manipulation contexts.

In manipulation tasks, planning often involves intricate constraints concerning object

interaction and obstacle avoidance, treated as stringent safety measures. However,

integrating numerous constraints escalates both design and computational com-

plexity, diminishing overall adaptability and compromising real-time performance.

Therefore, in scenarios where high-level decision-making supersedes fine-grained

control, e.g. in Chapter 5, trajectory planning is applied for low-level control, while

high-level decision-making is managed by LLMs to ensure robust reasoning and

generalization.

Map-based Exploration Strategies are methods that guide the agent’s movement within

the environment to efficiently gather information
2
. These methods often rely on

the map being built so far and attempt to maximize the information gained during

exploration.

▶ Frontier-based exploration [Yam97] is one of the most widely used strategies

for exploring unknown environments. The agent identifies the boundaries, or

“frontiers”, between the known and unknown areas of the environment. These

frontiers represent regions where the map is incomplete, and the agent navigates

toward these regions to expand its map. By focusing on these frontiers, the

agent reduces redundant exploration and improves the efficiency of mapping

large, unstructured environments.

▶ Graph-structured exploration, including topological [TB96; Ata15; LLA21; Mu+15]

and semantic mapping [KG15; Yok+24], uses maps that represent the environment

as a graph where nodes capture discrete locations or objects [Gu+24; Joh+15;

Jia+24; Dai+24] at a high abstraction level, and edges encode their connectivity or

relational context. Such graph-based representations not only provide structural

(topological) guidance but also incorporate semantic context (object identities,

affordances), allowing the robot to make more informed decisions during

exploration.

Map-based exploration serves as a foundational strategy for robotic navigation in

both familiar and novel environments, leveraging static or dynamically evolving

maps to guide movement. However, such approaches typically depend on abstract,

computation-intensive representations that often overlook the fine-grained details

essential for precise, low-level manipulation. Environment symbolization has tradi-

tionally been handled through manual programming by domain experts, limiting

adaptability and generalization across diverse environments. Recently, this process

has been revisited through the integration of LLMs [Jia+19; Che+24; Chu+25; Din+23],

as further discussed in § 3.3.3 “Integration: Planning and Learning with Foundation

Models” on page 44 and § 8.2.2 “Bimanual Planning” on page 126, motivated by

the fact that LLM-generated plans are not always reliable on their own but can be

effectively combined with traditional planning methods, leveraging LLM’s strong

code-generation capabilities. Learning-based approaches, in contrast, enable robots

to autonomously acquire and adapt knowledge through interactive experiences and

are mainly studied in this thesis.

2: The exploration strategies discussed here are not mutually exclusive, as they can complement each

other depending on the context and goals of the exploration task.
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Learning-Based Exploration

A prominent learning-based control approach is Reinforcement Learning (RL) [LZZ20;

SB18], which enables autonomous agents to navigate and understand environments

by acquiring knowledge through trial-and-error experience. This approach relies on

learning representations, which encode meaningful features from high-dimensional

sensory data, and learning exploration, which optimizes decision-making policy for

environment exploration.

Learning Representations. Being fundamental to learning-based methods, representa-

tion learning enables autonomous agents to extract, encode, and leverage meaningful

features from raw sensory inputs (e.g. visual, auditory, proprioceptive data). Well-

structured representations help agents generalize across tasks, improve sample

efficiency in RL, and make informed exploration decisions in real or virtual envi-

ronments. With unrolled trajectories of an agent policy, agents are able to learn

representations in self-supervised ways without the requirement of asking for hu-

man annotations. A variety of techniques have been developed to learn these latent

representations, each with its own merits:

▶ Autoencoders and Variational Autoencoders (VAEs) [KW22; KW+19] compress sen-

sory inputs into lower-dimensional embeddings by reconstructing the original

data. Variational autoencoders add a probabilistic framework that encourages

smooth, continuous latent spaces, which can be crucial for generating mean-

ingful interpolations between observed states. These methods allow agents to

capture the underlying structure of their environments, thereby facilitating

more directed exploration.

▶ Contrastive learning methods [vLV18; WL21; LSA20; Eys+22; You+22] leverage

self-supervised objectives to distinguish between similar and dissimilar obser-

vations. By maximizing agreement between augmented views of the same state

while pushing apart representations of different states, contrastive methods

yield embeddings that emphasize the discriminative features necessary for

effective exploration. Such approaches have been shown to improve the sample

efficiency of exploration policies, particularly in environments with sparse

external rewards.

▶ Dynamics Modeling [Moe+23; Pat+17; DGI21] is another line of work that

incorporates forward and inverse dynamics models to predict state transitions.

These models not only provide a mechanism for learning robust representations

but also generate curiosity-driven intrinsic rewards based on prediction errors

(cfr. Figure 2.3). When an agent encounters states where its model poorly

predicts the outcome, the resulting surprise serves as a signal to explore further,

thereby enhancing the overall confidence of the environment model.

Learning effective representations is essential for building policies that generalize

across tasks and environments, enabling agents to explore and adapt efficiently by

capturing relevant features while filtering out irrelevant details. Recent advances

in large-scale multimodal models reflect this principle by training on vast datasets

spanning audio, web videos, images, 3D meshes, and more. Building on this suc-

cess, recent work on Vision-Language-Action Model (VLA) [Bla+24; Int+25; Tea25]
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Curiosity
Figure 2.3: Uncertainty in state transition predictions generates curiosity, serving as an intrinsic

reward signal that motivates the agent to explore further.

demonstrates the potential of pretraining large models on web-scale data and subse-

quently fine-tuning them on robotic data, yielding promising results for initializing

multimodal representations and knowledge in robotics.

Despite these advances, multimodal models remain underexplored in robotics due to

the high cost and complexity of collecting rich, synchronized data across modalities.

Moreover, a significant domain gap exists between large-scale web datasets and the

embodied, interactive settings in which robots typically operate. In such contexts,

multimodal cues are often event-driven, sparse, and highly task-dependent, requiring

more specialized representation learning. These challenges motivate our investigation

into visual-auditory alignment in Chapter 4 and interactive multimodal perception

in Chapter 5.

Learn to Explore. As RL agents learn within a trial-and-error paradigm, a balance

between the exploration-exploitation trade-off is inevitable. While early approaches

relied on simplistic methods like random action selection, modern techniques have

evolved to incorporate more sophisticated strategies designed to cope with chal-

lenges such as sparse rewards, high-dimensional state spaces, and non-stationary

dynamics.

▶ 𝜖-greedy exploration [SB18] involves choosing a random action with probability

𝜖 and the best-known action otherwise. While effective in simple tasks, this

strategy can be inefficient in complex environments where random exploration

may rarely encounter novel states since it fails to utilize collected knowledge.

▶ Curiosity-driven exploration [Pat+17; DGI21; Gro+21; LPO18; Raj+21; Zha+22;

Bur+19a; DTG20] is usually bound to dynamics modeling, whereas the intrinsic

rewards are provided as the prediction error of a learned model (which can be

a forward dynamics model or inverse dynamics that predicts action to make it

less noise-sensitive). When the model’s prediction deviates significantly from

the observed outcome, the resulting “curiosity” signal motivates the agent to

further investigate that region of the state space (cfr. Figure 2.3). [Bou+02; VR23]

maximizes knowledge gain by focusing on areas likely to reduce uncertainty.

Robots evaluate potential exploration targets using metrics such as information

gain, entropy reduction, or reward functions. This strategy can dynamically

prioritize regions based on their expected informational value.

▶ Diversity-driven exploration methods do not necessarily model the environment

dynamics but explicitly “count” the diversity of experienced states. For example,

count-based exploration [Mar+17; Str+22; Li+23c; Lu+22] maintains visitation
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counts to quantify state novelty, and skill discovery methods quantify empower-

ment, or “skill novelty” with information-thoeretic measures [Wan+21; Eys+19;

Li+23c]. As the agent strives to maximize the diversity of its visited states or

skills
3
, the environment becomes thoroughly explored.

In contrast to planning-based exploration, learning-based strategies are better suited

for scenarios where robot skills are not predefined but instead emerge through

interaction. These strategies enable robots to adaptively discover and refine their

abilities through active exploration, thereby extending their capabilities beyond fixed

priors. Traditional learning approaches often operate in non-semantic spaces, relying

on large amounts of data and computation to extract meaningful decision patterns,

which limits their effectiveness and practicality. In comparison, advanced AI methods

increasingly incorporate knowledge from models trained on large-scale datasets.

The role of semantic understanding and reasoning, particularly through language

models, in enhancing autonomous exploration is further examined in later chapters

(see Chapter 5 and Chapter 7).

2.1.2 Autonomous Adaptation

Autonomous adaptation refers to a system’s inherent capacity to modify its behavior,

parameters, or structure in response to dynamic environments or novel stimuli

without requiring explicit human intervention. Unlike environment exploration,

which focuses on gathering and mapping external data, autonomous adaptation

centers on agent self-development: the internal evolution of skills and strategies that

enable the robot to meet unforeseen challenges and optimize its performance.

Learning and Generalization

Traditional machine learning frameworks focus on static datasets and batch training,

where models learn to map inputs to outputs through supervised optimization. While

these systems achieve high accuracy in controlled environments, their generalization

capabilities are limited to the scope of their training data. Generalization focuses on

how robots can extend learning from limited data or demonstrations to novel scenarios

and tasks. This includes methods that allow a robot to learn underlying principles

rather than merely memorizing examples. For autonomous systems operating in

dynamic real-world environments (e.g. autonomous vehicles), this rigidity becomes

a critical bottleneck. Models trained on fixed datasets struggle to adapt to novel

scenarios, distribution shifts, or unseen task variations.

The No Free Lunch Theorem (NFL) [WM97] in the context of machine learning also

indicates that the choice of a model should be problem-specific, considering the data

distribution and assumptions
4
. As a result, approaches to augment existing data

3: In the context of skill discovery, visited states and skills are highly correlated and often inter-

changeable, as skills are typically defined and distinguished by the states they traverse, particularly

the initial and final states.

4: Do LLMs escape these limitations? While LLMs leverage statistical patterns to perform well on many
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[Höf+21; YKF21] and assimilate new data beyond the training distribution [Par+19]

are necessary.

Continual Learning

Continual learning [Par+19] aims to let models learn incrementally from streaming

data while retaining prior knowledge, i.e. avoiding catastrophic forgetting. It focuses

on model and learning paradigm design to tackle the stability-plasticity dilemma,

balancing the maintenance of old knowledge (stability) with the integration of new

information (plasticity).

In robotics, continual learning approaches are valuable for developing models that

support lifelong environment modeling and multi-task policy learning. They are

particularly beneficial for resource-constrained devices and time-sensitive control

scenarios where robots must adapt to changing tasks. A major challenge, however,

emerges when shifting from human-curated task sequences to self-directed learning

(cfr. Chapter 7), where the system must autonomously decide what and when

to learn, and how to integrate new capabilities into existing models. While the

methods explored in this thesis mitigate forgetting by storing and switching between

multiple models, scaling to more complex behaviors, particularly in self-supervised

settings, underscores the importance of continual learning for effective knowledge

management and long-term adaptation. A detailed investigation of such continual

learning mechanisms, however, lies beyond the scope of this thesis.

Skill Discovery

Skill discovery is the process of identifying structured, reusable behaviors that allow

an agent to solve tasks efficiently [Las+21b; Yan+25; BSK21; Rho+25; Kam+22; KPK21;

Las+21a; Sha+20; Eys+19]. These behaviors, often referred to as “skills” or “options”

[SB18], are temporally extended actions that go beyond primitive actions like moving

forward or turning left. It typically involves two key components:

▶ Representation learning, which identifies latent structures in unlabeled data

(e.g. object affordance in a cluttered room).

▶ Policy learning, where optimizing algorithms rapidly acquire new skills by

distinguishing them from accumulated ones. Skills are often encoded as latent

variables in a policy, allowing the agent to generalize across tasks by reusing

learned behaviors.

In a Markov Decision Process (MDP) setting, skill discovery can be modeled as

learning a policy 𝜋(𝑎|𝑠, 𝑧), where 𝑠 ∈ S is the current state, 𝑎 ∈ A is the action, and

𝑧 ∈ Z is a latent variable representing the skill. The objective is to discover diverse

and distinguishable skills by maximizing the mutual information 𝐼(𝜏; 𝑧) between the

latent variable 𝑧 and trajectory 𝜏 = {𝑠, 𝑎}𝑇 , i.e. skills are distinguishable in terms of

problems, their adaptability remains constrained by training data priors. Their emergent abilities do

not exempt them from the NFL theorem; instead, methods like fine-tuning and in-context adaptation

are needed to extend their capabilities beyond their original distribution.
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the state-action pairs visited by the agent:

𝐼(𝜏; 𝑧) = 𝐻(𝑧) − 𝐻(𝑧|𝜏),

where 𝐻(𝑧) is the entropy of the skill distribution (ensuring diversity), and 𝐻(𝑧|𝜏) is
the conditional entropy of the skill given the trajectory (ensuring distinguishability

among skills, cfr. Figure 2.4). Expanding 𝐼(𝜏; 𝑧)with probability integral leads to

𝐼(𝜏; 𝑧) = 𝔼𝜏,𝑧∼𝑝(𝜏,𝑧)
[
log 𝑝(𝑧|𝜏) − log 𝑝(𝑧)

]
,

where 𝑝(𝜏, 𝑧) is the joint distribution of trajectories and skills; 𝑝(𝑧|𝜏) is the posterior

probability of the skill given the trajectory; and 𝑝(𝑧) is the marginal probability of

the skill.

To approximate 𝑝(𝑧|𝜏), a learnable discriminator 𝑞𝜙(𝑧|𝜏)with parameters 𝜙 can be

introduced to optimize the Barber-Agakov lower bound [BA03; Li+23c] of 𝐼(𝜏; 𝑧),
leading to RL objective

J(𝜋) = 𝔼𝑧∼𝑝(𝑧),𝜏∼𝑝(𝜏|𝑧)
[
log 𝑞𝜙(𝑧|𝜏) − log 𝑝(𝑧)

]
,

where 𝑝(𝜏|𝑧) is the trajectory distribution induced by the policy 𝜋(𝑎|𝑠, 𝑧) for a chosen

skill 𝑧.

For long-term autonomy, it is promising for intelligent systems to pursue learning

outcomes that are novel to the initial setting. Techniques like intrinsic motivation

[Pat+17] or compositional skill libraries [Zha+23a] enable agents to autonomously

chain primitive skills into complex behaviors. Skill discovery via Unsupervised Rein-

forcement Learning (URL) presents a promising approach by generating trajectories

and clustering them into distinct skill categories without requiring human supervi-

sion. Despite its appeal, its practical application remains limited due to substantial

data requirements and current feasibility only in simulation, constrained by the

sim-to-real gap. Moreover, the discovered skills often exhibit non-determinism across

training runs and lack direct interpretability, posing challenges for understanding

and systematic reuse. To address these issues, this thesis investigates self-determined

mechanisms (cfr. § 3.4) of robot learning and further explores the integration of LLMs

to support semantic reasoning over environment-centric goals (cfr. Chapter 7), aiming

for more effective and interpretable skill discovery processes.

Figure 2.4: Skill discovery illustration, where the upper red and lower blue trajectories indicate skill

distinction 𝑧𝑖 ≠ 𝑧 𝑗 defined by novel state visiting, which can be unsupervisedly discovered.
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2.2 ROBOT SETTING

This section introduces two robots that are used in later chapters: (1) NICOL (§ 2.2.1), a

robot built by our group Knowledge Technology5
, and (2) Franka Emika Panda (§ 2.2.2),

which has been widely used in research due to its high flexibility.

2.2.1 NICOL

The Neuro-Inspired COLlaborative semi-human robot (NICOL) [Ker+23; Zha+23c]

is a semi-humanoid robot designed to enhance human-robot interaction and collabo-

ration beyond verbal communication. It consists of a head, an upper body with two

arms, and a structured table workspace. See Figure 2.5 for individual robot parts and

Figure 2.6 for the whole robot setting in both real- and virtual environments. Research

works introduced later in Chapter 5 and Chapter 8 mainly rely on this platform.

Cam.

LED

LED
Mic.

LeftRight

Speaker

2 DoF

74 cm

Head Arms Support Frame

Figure 2.5: NICOL’s head, arms and workspace shown as component parts respectively. See also

Figure 2.6 on the facing page for the whole robot, both in the real world and simulation.

Head. NICOL’s head is adapted from iCub [Met+10] and features two Degrees of

Freedom (DoF) for pitch and yaw movements. Being different from iCub, NICOL’s

head is equipped with two See3CAM CU135 cameras for vision and two Soundman

OKM II binaural microphones for auditory perception, along with an internal speaker

for audio output. Stylized facial expressions are displayed using three LED arrays:

two 8x8 arrays behind the eyes and a 16x8 array behind the mouth, facilitating

expressive and interactive visual communication.

Arms. The robot’s upper body incorporates two OpenManipulator-P
6

arms, each with

6 DoF and a payload capacity of 3kg. These arms are fitted with SeedRobotics RH8D

adult-sized robotic hands
7
, which serve as end-effectors with a 750g manipulation

payload. Each hand comprises five tendon-operated fingers, with every three-segment

finger controlled by a single tendon.

Workspace. NICOL is centrally mounted above a 100x200 cm white table, positioned

at a height of 74 cm. An aluminum profile frame securely supports the structure,

ensuring stability and precision.

5: https://www.inf.uni-hamburg.de/en/inst/ab/wtm.html
6: https://github.com/ROBOTIS-GIT/open_manipulator_p
7: https://www.seedrobotics.com/rh8d-adult-robot-hand

https://www.inf.uni-hamburg.de/en/inst/ab/wtm.html
https://github.com/ROBOTIS-GIT/open_manipulator_p
https://www.seedrobotics.com/rh8d-adult-robot-hand
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(a) (b)

(c) (d)

Figure 2.6: Semi-humanoid robot NICOL, the Neuro-Inspired COLlaborator. (a) NICOL in the real world,

displaying various facial expressions with LED lights (image adapted from [Ker+23]); (b) NICOL in the

CoppeliaSim (formerly V-REP) simulator [RSF13]; (c) Bimanual planning with MoveIt2 [Con25], using

both palms as end-effectors for planning; (d) NICOL in Isaac Sim [NVI25] with realistic rendering

(side and top view), communicating with MoveIt2 via ROS2 support [NVI25; Qui+09; Ric22].

(a) (b)

Figure 2.7: Panda robot in simulation. (a) a “push button” task in CoppeliaSim (image adapted from

our work [Chu+24b]); (b) a “pick-place” task in Isaac Sim.

2.2.2 Franka Emika Panda

The Franka Emika Panda [Rob25] is a 7-DoF collaborative robotic arm designed for

precision manipulation and safe human-robot interaction. Each joint is equipped with

integrated torque sensors, enabling compliant control and force-sensitive operations.

With a 3kg payload, 850mm reach, and 0.1mm repeatability, the Panda is well-suited

for tasks requiring dexterity and accuracy. The Panda robot is equipped with the

Franka Hand, a two-finger gripper with a 70N continuous grasping force and 80mm
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stroke length, allowing versatile object handling across research and industrial

applications.

The Panda robot serves as a dedicated platform for manipulation tasks, though it

has limitations in multimodal perception and communication capabilities as seen

in NICOL. It has been widely adopted in research due to its open-source control

interface, comprehensive documentation, and strong community support, all of

which enhance the reproducibility and accessibility of robotics research. Works using

the Panda robot are discussed in Chapter 7 and Chapter 8.

2.3 SIMULATION SETTING

2.3.1 ThreeDWorld

ThreeDWorld [Gan+21]
8

is an advanced, multi-modal simulation platform that blends

near-photorealistic rendering with advanced physics to create highly realistic 3D

environments. ThreeDWorld utilizes the Unity3D engine to generate detailed indoor

and outdoor scenes enriched with dynamic lighting and high-quality textures. Its

physics engines support fast, accurate rigid-body interactions alongside sophisticated

soft-body, cloth, and fluid simulations.

A distinguishing feature that sets ThreeDWorld apart from many other simulators is

its support for physics-based auditory simulation. Its high-fidelity audio subsystem,

powered by tools such as PyImpact [TCM19], enables the real-time synthesis of

realistic impact and environment sounds (e.g. reverberation). This unique support

serves as the simulating foundation for the visual-auditory experiments that will be

introduced later in Chapter 4 on page 55.

Simulating Impact Sound

As impact sound generally exists in reality and provides rich information, integrating it

within simulated environments to guide embodied agents is promising. In Chapter 4,

the research shows how visual-auditory correspondence guides RL in terms of

both representation learning and exploration. The experiment is conducted in the

ThreeDWorld simulator. However, this does not necessarily mean a simulator with

sound-simulating ability is mandatory for such experiments. Below are two possible

alternatives.

Online Simulation. It is also possible to simulate sound in real-time outside the physics

simulator, provided that collision information, such as contact force, object mass, and

geometry, is available. Impact sounds can be computed simultaneously in a separate

thread, independent of the physics simulator. Appendix B “Impact Sound Simulation”

on page 139 presents both the theoretical foundation and practical implementation

of physics-based impact sound synthesis, which underpins sound simulations in

8: See also its webpage https://www.threedworld.org/ for a demo and https://github.com/
threedworld-mit/tdw for partially open-sourced codes.

https://www.threedworld.org/
https://github.com/threedworld-mit/tdw
https://github.com/threedworld-mit/tdw
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environments like ThreeDWorld and can be applied in other systems where the

physics engine lacks native sound support.

Offline Simulation. Pre-recorded audio can be played when collisions are detected.

These recordings may originate from computationally intensive synthesis processes

or real-world datasets. Offline simulation is straightforward to implement and offers

flexibility in controlling data quality. The research experiment in Chapter 5 on page 69

utilizes this approach to simulate audio.

Although ThreeDWorld offers high-fidelity vision and sound simulation, it is not

widely adopted in the robotics community as other simulators introduced in this

section. One reason is its lack of native support for parallel simulation. Additionally,

converting both robot models and scene assets into the Unity3D format can be

cumbersome and error-prone, particularly for large-scale experiments.

2.3.2 CoppeliaSim

CoppeliaSim [RSF13] is a robust robotics simulation platform widely used in academic

research and education. Its intuitive interface and support for multiple physics engines

(Bullet, Mujoco, Newton etc.) provide flexibility for diverse simulation requirements.

Researchers benefit from extensive pre-built assets (and also configured well-known

robots such as UR-series) and various programming interfaces through embedded

scripts and community-supported Python APIs
9
. The platform has proven reliable

through implementation in numerous peer-reviewed studies, while extensions like

RLBench [Jam+20] have created standardized environments for RL research and

easy tools for recording demonstrations. The research works in Chapter 5 and

some in Chapter 8 are conducted in CoppeliaSim, leveraging RLBench’s built-in

motion planning capabilities and straightforward task creation framework. While

maintaining these advantages, the standard Panda robot (§ 2.2.2) is replaced with

the NICOL robot (§ 2.2.1) for this investigation.

CoppeliaSim’s strengths lie in its ease of use, extensive community support, and

compatibility with various physics engines, making it a versatile choice for many

robotics applications. However, CoppeliaSim is limited in rendering photorealis-

tic images compared to modern simulators, posing a constraint as high-fidelity

visuals become increasingly vital for vision-based robotics research. Additionally,

CoppeliaSim was not originally designed for parallel learning with multiple instances,

which constrains its applicability for data-intensive machine learning approaches,

e.g. RL, that require parallel simulation. These limitations may impact its suitability

for certain cutting-edge research applications that demand high visual fidelity or

large-scale parallel training.

2.3.3 Isaac Sim

NVIDIA Isaac Sim [NVI25] is a state-of-the-art robotics simulation platform that

provides photorealistic rendering (cfr. Figure 2.6 and Figure 2.7) and parallel sim-

9: See https://github.com/stepjam/PyRep.

https://github.com/stepjam/PyRep
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ulation capabilities for robotics research and development. For perception tasks, it

supports the simulation of various sensors, including cameras, LiDAR, and depth

sensors, making it highly suitable for perception-based robotics research. Further-

more, it enables large-scale domain randomization and synthetic data generation,

which are particularly beneficial for data-intensive deep-learning applications. Isaac

Sim integrates well with ROS/ROS2, bridging the gap between simulation-based

development and real-world deployment. Additionally, its GPU-accelerated parallel

simulation significantly enhances the efficiency of RL for training robotic agents.

Parallel simulation enables researchers to run numerous training environments

simultaneously, substantially reducing convergence time and improving the overall

efficiency of the development pipeline.

Isaac Sim gains increasing popularity in the robotics community, particularly for RL

and perception tasks, due to its high-fidelity rendering, extensive sensor support, and

parallel simulation capabilities. Parallelization is particularly beneficial for iterative

trial-and-error processes, such as designing and fine-tuning reward functions in RL

tasks. For instance, when reward functions are generated and refined using LLMs

[Ma+24b; ZWW24], rapid testing and evaluation of multiple variations become

essential. The research introduced in Chapter 7 on page 99 leverages Isaac Sim to

study skill learning under various LLM-generated reward functions. Parallel simula-

tion support significantly accelerates training, facilitating exhaustive exploration of

learning parameters.

2.3.4 Other Simulators

Several other simulators are widely used in the robotics and AI research community,

including PyBullet [CB21], MuJoCo [TET12], AI2-THOR [Kol+22; Ehs+21], Gazebo

[KH04], etc.. PyBullet and MuJoCo are particularly known for their efficient physics-

based simulations, making them popular choices for RL tasks. AI2-THOR specializes

in interactive 3D environments, making it well-suited for embodied AI research, such

as navigation and object manipulation at an abstract level. Gazebo, a long-established

simulator, is frequently used in conjunction with ROS for robotics development and

testing. While these simulators offer powerful capabilities and are widely adopted

across various research domains, this thesis focuses exclusively on ThreeDWorld,

CoppeliaSim, and Isaac Sim. Therefore, detailed discussions of other simulators are

beyond the scope of this work. For comprehensive comparisons and analyses of

simulation platforms, readers can refer to existing surveys [Dua+22; Col+21].

2.4 PERSPECTIVES FROM THE LITERATURE

The field of autonomous agents has been extensively studied, resulting in numerous

surveys that categorize existing works based on different embodiments, applied

methodologies, and application domains. The advent of LLMs has significantly

transformed the design and development of autonomous agents. This shift warrants a

reassessment of literature surveys in the field, distinguishing between those conducted
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before and after the integration of LLMs into autonomous systems. This section

categorizes literature surveys accordingly.

2.4.1 Early Conceptualizations

Before the advent of LLMs, research on autonomous agents primarily focused on

classical robotics, RL, and a narrower scope of AI approaches. The following surveys

provide insights into various aspects of autonomous agent design prior to the

emergence of large foundation models:

▶ The survey by Lluvia et al. [LLA21] specifically reviews key SLAM and ASLAM

research for indoor mobile robots.
10

It includes a comparative analysis of

various approaches based on factors such as robot platforms, sensor modalities,

world representations, core contributions, optimization objectives, and testing

environments (real-world or simulated).

▶ Azpurua et al. [Azp+23] summarize robotic exploration techniques, especially

for subterranean environments, with a focus on various sensors used for

localization and SLAM (e.g., event cameras, stereo cameras, and active RGB-D

cameras). Their research provides a taxonomy of exploration methods based on

map representation (2D or 3D) and deployment strategy (single- or multi-robot

systems).

▶ Latyshev et al. [LP23] provide a technical overview of intrinsic motivation in

model-based RL, covering data collection strategies, loss formulations, major

types of intrinsic signals from world models, and the incorporation of intrinsic

rewards into RL frameworks.

▶ Kunze et al. [Kun+18] review the application of AI methods to long-term robot

autonomy—operations lasting days, months, or even years. They introduce key

domains and describe how AI contributes to robotic modules such as navigation

and mapping, perception, reasoning, planning, human-robot interaction, and

learning.

▶ Kroemer et al. [KNK21] formalize the problem of robot manipulation learning

and highlight major challenges. Their survey categorizes manipulation learn-

ing methods across five dimensions: (1) transition models, (2) object-centric

representations, (3) skill learning, (4) hierarchical task decomposition, and (5)

preconditions and postconditions.

Early surveys in the field of autonomous agents primarily focused on classical robotics,

offering valuable insights into the hardware and software aspects of autonomous

system design and development. However, they often lack a comprehensive perspec-

[LLA21]: Lluvia et al. (2021), ‘Active Mapping and Robot Exploration’

10: Discussed also in § 2.1 “Robotic Autonomy” on page 9

[Azp+23]: Azpúrua et al. (2023), ‘A Survey on the Autonomous Exploration of Confined Subterranean

Spaces’

[LP23]: Latyshev et al. (2023), ‘Intrinsic Motivation in Model-Based Reinforcement Learning’

[Kun+18]: Kunze et al. (2018), ‘Artificial Intelligence for Long-Term Robot Autonomy: A Survey’

[KNK21]: Kroemer et al. (2021), ‘A Review of Robot Learning for Manipulation: Challenges, Represen-

tations, and Algorithms’
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tive on the broader implications of advanced AI techniques and their integration into

autonomous agents.

2.4.2 Evolving Perspectives in the Era of LLMs

With the rapid development of LLMs, these models have played an increasingly

central role in the implementation of autonomous agents due to their extensive

knowledge and powerful reasoning capabilities. This has led to a surge of literature

surveys on LLM-based agents. Many of these surveys primarily focus on general

AI agents and may overlook the specific challenges and methodologies relevant to

robotics.

▶ Xi et al. [Xi+25] provide a broad survey on LLM-based agents, covering funda-

mental concepts, system architectures, real-world applications, societal implica-

tions, and emerging trends. They introduce a high-level conceptual framework

for AI agents, structured around three primary components: brain (cogni-

tive processing), perception (sensory input), and action (decision-making and

control).

▶ Jang et al. [Jan+24] explore the integration of foundation models into robotic sys-

tems and their impact on perception, planning, and control. The study discusses

relevant datasets, augmentation strategies, and real versus simulated robot

experiments. Although the survey adopts an application-oriented perspective,

it lacks a detailed discussion of methodological innovations.

▶ Wang et al. [Wan+24b] review recent advancements in applying LLMs to

robotics, particularly in planning, manipulation, and reasoning. They highlight

how LLM-based planning methods leverage general-purpose knowledge and

reasoning to enable embodied agents to generalize across tasks and adapt to

unforeseen challenges.

▶ Zeng et al. [Zen+23b] survey LLM-driven innovations in robotics, introducing

various LLM models and their benefits. Their review focuses on techniques

for developing four core modules: perception, decision-making, control, and

sim-to-real interaction.

These surveys reflect the growing influence of LLMs in the field of autonomous agents,

signaling a paradigm shift in how intelligent systems are designed and deployed.

While existing surveys typically categorize research by agent components and appli-

cations, their conceptual frameworks often remain too abstract for practical robotic

platform development. In contrast, this thesis adopts a more structured approach

focused on environment exploration and autonomous adaptation, establishing a

concrete conceptual foundation built on four key pillars: world modeling, semantic

grounding, policy learning, and self-determination mechanisms.

[Xi+25]: Xi et al. (2025), ‘The Rise and Potential of Large Language Model Based Agents: A Survey’

[Jan+24]: Jang et al. (2024), ‘Unlocking Robotic Autonomy: A Survey on the Applications of Foundation

Models’

[Wan+24b]: Wang et al. (2024), ‘Large Language Models for Robotics: Opportunities, Challenges, and

Perspectives’

[Zen+23b]: Zeng et al. (2023), ‘Large Language Models for Robotics: A Survey’
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Exploration and adaptation are fundamental challenges in robotics, where au-

tonomous agents are typically designed to interact with their environment in order to

learn how to perform specific, predefined tasks. However, in more advanced settings,

exploration is not limited to task execution but extends to uncovering what kinds

of tasks or skills an agent could potentially acquire within a given environment.

For instance, instead of simply learning to push a box to a goal location, a curious

robot might investigate whether it can roll, stack, or throw the box, discovering new

capabilities that were not explicitly programmed or instructed. This shift moves

exploration from being goal-driven to being agentic, where the robot actively probes

the environment to infer its own affordances and latent competencies, enabling

agents to understand spatial structures, identify key features, and adapt to dynamic

conditions.

In this chapter, the four conceptual foundations for autonomous agents, world model,
semantics, policy, and self-determination, will be introduced, both individually and

in terms of their interconnected research overlaps. Collectively, these foundations

offer a theoretical framework that guides agents beyond reactive behaviors toward

deliberate, adaptive interactions with their environment, thereby expanding their

capabilities.

3.1 WORLD MODEL

Environment exploration necessitates the storage of accumulated knowledge for

potential exploitation, which can take distinct forms depending on the task context.

The choice of representation reflects different levels of abstraction suited to the

agent’s operational needs. In navigation scenarios, representations such as occupancy

maps [LLA21; DB06; BD06; Wu+20; Mu+15], potentially enriched with semantic

annotations, enable spatial awareness and efficient path planning. For manipulation,

particularly in cluttered environments, scene graphs provide structured knowledge

representations that facilitate object interaction and task execution [Gu+24; Joh+15;

Ran+23; Jia+24; Dai+24].

At the core of these representations lies the concept of world models [HS18], which

serve as internal frameworks for intelligent agents, ranging from robots and au-

tonomous vehicles to simulated entities, to comprehend, anticipate, and interact with

their environments. By encoding high-dimensional sensory input into compressed,

predictive structures, world models allow agents to simulate possible future states

and make informed decisions. As a result, they have become central to model-based

Reinforcement Learning (RL), autonomous navigation, and complex task planning,

effectively linking perception with action and enhancing an agent’s ability to adapt

and operate autonomously.
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3.1.1 Sensing, Perception and Multimodal Fusion

The capacity to accurately sense and perceive the environment forms the first

crucial step in building effective world models. Modern autonomous systems rely

on a diverse array of sensors, including RGB(-D) cameras, event cameras, lidars,

radars, tactile and proximity sensors, microphones, GPS, and inertial measurement

units (IMUs), to capture rich and complementary data streams. Integrating these

heterogeneous sources of information, a process known as multimodal fusion, is

essential for generating a reliable and complete internal representation of the world.

This subsection discusses the techniques, challenges, and importance of multimodal

sensing and perception in the context of autonomous systems and world models.

Sensing

Autonomous agents utilize various sensors, each offering distinct advantages:

Vision sensors (RGB, RGB-D, event cameras, Lidar, and Radar). RGB cameras provide

high-resolution spatial information with rich color and texture details, serving as the

foundation for object recognition, scene understanding, and visual navigation. RGB-D

cameras extend this capability by adding depth information, enabling more accurate

3D perception and spatial reasoning. Event cameras, on the other hand, operate

asynchronously by detecting changes in brightness at high temporal resolutions.

They offer low-latency, high-dynamic-range data, making them particularly effective

in high-speed or high-contrast environments. Together, these vision sensors offer

complementary strengths for robust and efficient perception in dynamic real-world

settings. Lidar and radar provide precise distance measurements and 3D point clouds.

Lidar excels at detailed spatial mapping, while radar offers robustness in adverse

weather. These sensors complement vision modalities: vision captures rich semantic

details under good lighting, whereas Lidar and radar provide reliable depth and

structure regardless of illumination.

Audio sensors capture auditory cues from the environment, complementing visual

data and aiding in detecting events that might not be visible, such as alarms or verbal

commands, which can be critical in complex navigation [Che+20] or manipulation

[Zha+22; Gan+20a] environments.

Tactile and proximity sensors offer fine-grained feedback about immediate physical

interactions and distances to nearby objects. Tactile sensors enable robots to sense

texture, force, and slip during manipulation tasks, while proximity sensors help in

collision avoidance during close-range operations.

Locating sensors (GPS, IMUs). GPS provides global positioning data essential for large-

scale navigation and localization, especially in outdoor environments. It serves as a

reference to correct drift from other sensors. In contrast, IMUs measure acceleration

and angular velocity, offering high-frequency updates for ego-motion estimation and

stabilization. Combined, GPS and IMUs enable precise and reliable localization of

the robot and its components.

Different sensor modalities provide complementary information, collectively enhanc-
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World 
Models Policy

Semantics

Self-
determination

Figure 3.1: Active Perception = World Models + Self-determination. Embodied agents engage in active

perception by interacting with their environment to construct world models, which are then used to

make predictions and guide exploratory actions. This process is driven by robotic self-determination

(cfr. § 3.4), wherein the agent autonomously selects what information to gather based on intrinsic

motivations and internal measures of relevance or uncertainty.

ing the agent’s perception and understanding of its environment. Each modality

offers a distinct trade-off between information richness and computational or en-

ergy budget. For example, in Chapter 4, visual and auditory sensing are utilized;

Chapter 5 expands this by integrating visual, auditory, and tactile modalities. The

unique aspects of the environment captured by each modality form the foundation

for effective multimodal fusion, enabling the agent to build richer and more robust

representations.

Perception

Perception is the process of transforming raw sensory data into structured representa-

tions that can be used for decision-making and planning. Perception methods can be

categorized into passive perception, where the system passively observes and processes

incoming sensor data, active perception, where the system deliberately perceives what

is deemed important, and interactive perception, where the perception process involves

interactive engagement with the environment to gather information.

Passive perception. Passive perception involves collecting and interpreting sensory

data without adaptive strategies or direct interaction with the environment. It is

well-suited for data-driven learning, enabling large-scale dataset collection without

manual intervention. However, in partially observable settings, passive perception

often suffers from ambiguity due to missing or unreliable information, limiting its

effectiveness on its own.

Active perception involves establishing a data acquisition and interpretation process

that, in turn, leads to the development of a control strategy aimed at maximizing the

most relevant information for a given motivation, usually involving an establishment

of an internal representation of the environment, i.e. a world model (cfr. Figure 3.1).

Active perception has been widely researched in the context of computer vision, where

the objective is usually to choose the next best view for object reconstruction [LLA21].

In the context of manipulation, robots that actively engage in physical interactions

with their environment often achieve more accurate estimates of environmental

states [Zha+23c]
1
.

1: In Chapter 5 on page 69, the robot, guided by LLMs, actively perceives the environment via
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Interactive perception describes the type of perception that requires the robot to

interact with the environment, which entails a modification of environment states,

emphasizing the relation between robot and environment. It extends beyond passive

observation by engaging with objects or the environment to infer properties. For

example, a robot may manipulate an object to determine its weight [Zha+23c] or

shake a container to assess its contents [Epp+18]. This approach enhances perception

by leveraging physical interaction.

While active and interactive perception often overlap, they have distinct focuses.

Active perception involves deliberate sensor adjustments or movement to improve

perception without necessarily interacting with objects. For instance, a robot actively
changing its viewpoint to avoid occlusion [Li+23c] exemplifies active perception but

not interactive perception. Given this distinction, one could conceptualize interactive
perception combined with active learning [Ren+21; Wan+21] as forming active perception
in a broader sense.

The choice of perception strategy depends on the task and environment. In complex

or dynamic settings, active perception enhances the agent’s ability to gather relevant

information, enabling better decision-making and planning through richer world

models. However, interactive perception strategies are less commonly explored in

the literature, as they require more sophisticated control and planning mechanisms

to ensure that the robot’s actions yield informative observations. These strategies

also tend to lack generalizability across different tasks and domains. Recognizing the

importance of active perception as a key component of autonomous exploration and

capability adaptation, this thesis examines it from multiple perspectives, ranging

from Unsupervised Reinforcement Learning (URL), cfr. Chapter 4, to the integration

of language models, cfr. Chapter 5 and Chapter 7.

Multimodal fusion

Multimodal fusion combines diverse sensory inputs, e.g. vision, audio, and tactile

sensing, to enhance perception and decision-making [Atr+10]. Functionally, it can

be categorized as complementary, where each modality contributes unique, non-

overlapping information to mitigate limitations like sensor noise or occlusion, or

redundant, where overlapping modalities reinforce the same information to improve

robustness and reliability. Importantly, learning crossmodal associations from such

overlaps can also lead to the development of rich and generalizable representations.

Fusing Levels. Multimodal fusion occurs at different levels/stages of processing:

▶ Early fusion (sensor-level fusion) combines raw sensory data before feature

extraction, preserving maximum information but requiring precise synchro-

nization and alignment.

▶ Mid-level fusion (feature-level fusion) integrates extracted features from differ-

ent modalities, leveraging shared representations to enhance robustness while

balancing efficiency (see also an example in Chapter 4).

▶ Late fusion (decision-level fusion) merges modality-specific predictions at

multiple cues to uncover hidden object properties.
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the decision stage, often using ensemble methods or probabilistic models to

improve reliability (see also an example in Chapter 5).

Fusing Methods. To implement multimodal fusion strategies, researchers rely on a range

of computational paradigms and techniques. Probabilistic models, such as Bayesian

networks, provide a principled framework for handling uncertainty in sensory

integration. Deep learning-based methods, including transformers [Vas+17] and graph

neural networks, support scalable learning of complex cross-modal representations

and can flexibly model complementary, redundant, or hierarchical relationships.

Within these paradigms, specific techniques such as contrastive learning [vLV18;

Rad+21] are employed to align modality-specific embeddings in a shared space, while

active learning approaches [Rud+19; Wan+21] enable dynamic adjustment of fusion

mechanisms based on task relevance, promoting context-aware integration.

Multimodal fusion is essential in applications such as human-robot interaction, object

property discovery, autonomous navigation, etc., where integrating diverse sensory

inputs enhances situational awareness. Nevertheless, integrating diverse sensory

modalities increases computational demands and requires careful alignment to ensure

compatibility across data sources. Fusion strategies must be tailored to task-specific

needs, balancing integration depth and abstraction. For example, Chapter 4 employs

early fusion of visual and auditory inputs for environmental understanding; Chapter 5

integrates visual, auditory, and tactile cues at the decision stage for complex object

interactions; and Chapter 7 focuses on visual semantics, enhancing scene reasoning

through fusion with language models.

3.1.2 Modeling and Representations

World models serve as internal representations of the environment, enabling artificial

agents to perceive, predict, and interact with their surroundings. The process of

constructing these models involves two key components: (1) world modeling, repre-

senting the world, i.e. state transitions, with appropriate structure, and (2) learning
representations, developing methods for learning effective representations. In this

subsection, we first examine the various ways in which the world can be represented,

ranging from high-level abstractions to low-level sensory data. We then discuss

the methods employed to learn these representations, particularly those based on

self-supervised learning.

World Modeling

World modeling involves constructing internal representations of the environment

that enable an agent to perceive, predict, and interact with its surroundings effectively

[HS18]. These models can vary from low-level details to high-level abstractions, each

tailored to support different tasks and objectives.

Low-level Representations of the world are more detailed and quantitative, capturing

the fine-grained dynamics of the environment. Probability models such as Markov

Decision Processes (MDPs) and occupancy grid maps provide information about
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state transitions and spatial layouts. These models are critical for precise navigation

and control, where the agent must understand both the locations and the dynamics

of obstacles and free space. Representation learning extracts relevant features from

the environment, focusing on task-relevant properties while disregarding irrelevant

ones. It simplifies skill and model learning, enhancing robustness and generalization

to new situations.

High-level Abstraction is beneficial for high-level planning, generalization, and in-

terpretation. At the highest level of abstraction, world models can be represented

using symbolic representations, for example, in graph-based structures where nodes

correspond to key entities in the environment, and edges encode the relationships or

transitions between these entities. Such models are particularly useful for high-level

reasoning and planning, where the environment can be reduced to a network of

interconnected states or objects. Some tasks semantically resemble each other, which

makes it possible for a learned policy to generalize across them with an additional

effort of domain adaptation [KNK21].

Mixed-level Representations. For mobile robots, world representation is typically

structured into two main types: topological maps and metric maps [LLA21; Azp+23].

Each type has its strengths and is suited for different tasks.

▶ Metric maps such as occupancy grid maps and geometric maps, provide denser,

more detailed information about the environment, including the locations of ob-

stacles and free space. While more informative, metric maps are computationally

more expensive to store and process.

▶ Topological maps represent the environment as a network of discrete locations and

their connectivity. This simple representation is efficient and easy to compute,

but lacks detailed information about distances or the layout of the environment.

In practice, a combination of topological and metric maps is often used, allowing

robots to benefit from the simplicity of topological maps while still incorporating the

detailed information provided by metric maps when necessary. This hybrid approach

supports both efficient navigation and detailed environment understanding, which

is essential for tasks like autonomous navigation and exploration.

In manipulation scenarios, the world is composed of separable objects. A hybrid

of high- and low-level representations, object-centric models [KNK21] break the

environment down into distinct objects or entities. There are different levels of

object-centric representations, such as:

▶ Point-level representations (e.g. point clouds, pixels, or voxels) that capture basic

spatial properties of objects.

▶ Part-level representations that break down objects into smaller components or

features.

▶ Object-level representations, where entire objects are represented as discrete

entities with associated properties and relations.

World models, together with planning mechanisms, form the backbone of advanced

decision-making approaches such as model-based reinforcement learning (RL).

However, learning accurate models from high-dimensional data (e.g., images or

videos) is often challenging, time-consuming, and data-intensive. To effectively
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abstract information, these models often integrate prior knowledge about object

properties (e.g. geometry, material) and semantics, which is particularly useful in

tasks such as robotic manipulation. Object-centric representations enable agents

to generalize across tasks involving similar objects by learning the relationships

between objects and their properties. Moreover, in real-world settings, agents often

interact with multimodal sensory data, such as vision, audio, and touch. Multimodal

representations integrate information from these diverse modalities into a unified

latent space. By combining sensory inputs, agents can build richer, more informative

models that support both high-level semantic understanding and low-level action

planning. Incorporating semantic
2

information into scene representations enhances

the agent’s ability to reason about the environment, retrieve object-related information,

and plan actions effectively.

An LLM is sometimes a “secret” world model, with textual representations, that

can mental model agent behaviors [Lu+25; Sch+25] and even forecast/reason about

outcomes (in textual space) using built-in knowledge [Hao+23] (cfr. § 8.3 on page 127).

This thesis investigates crossmodal predictive modeling (cfr. Chapter 4), and also

explores abstracted world representations (cfr. Chapter 5 and Chapter 7) to support

more efficient learning and planning at higher semantic levels.

Learning Representations

The acquisition of comprehensive world representations constitutes a fundamen-

tal prerequisite for autonomous agents to systematically accumulate environment

knowledge. Central to this endeavor are methodological approaches, particularly

predictive modeling and cross-modal learning, which facilitate the extraction of repre-

sentative features from unprocessed sensory input through self-supervised learning

paradigms.

Predictive Modeling. In the context of world models, predictive modeling is essential

for agents to anticipate future states based on past executions and observations. A

world model, at its core, represents the underlying dynamics of an environment,

which can be modeled as either a deterministic function or a stochastic distribution,

depending on the degree of uncertainty in the environment.

▶ Deterministic models predict future states 𝑠𝑡+1 as a direct function of the current

state 𝑠𝑡 and action 𝑎𝑡 , without considering uncertainty or noise in the envi-

ronment. The world model in this case is a deterministic function 𝑓𝜃, where 𝜃
represents the learned parameters:

𝑠𝑡+1 = 𝑓𝜃(𝑠𝑡 , 𝑎𝑡)

This model assumes that the environment’s dynamics are fully predictable

given the current state and action. Deterministic models are often used in

controlled environments where randomness is minimal or can be ignored.

2: This integration will be further discussed soon in § 3.2.2 “Integration: Symbolic Grounding” on

page 37
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▶ Stochastic models take care of uncertainty [KG17; Mur22] where, in many real-

world environments, the future state cannot be predicted correctly. In such cases,

the world model is represented as a probabilistic distribution over possible

future states. It can be often expressed as a conditional distribution 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡),
which describes the likelihood of transitioning to state 𝑠𝑡+1 from state 𝑠𝑡 under

action 𝑎𝑡 :

𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) = N(𝜇𝜃(𝑠𝑡 , 𝑎𝑡),Σ)
Here, the future state is modeled as a Gaussian distribution

3
around the

predicted state, with variance Σ capturing the inherent uncertainty in the

system. Stochastic models are particularly useful when the environment is

noisy or unpredictable, as they allow agents to reason about the distribution of

possible outcomes rather than a single deterministic prediction.

Crossmodal Learning. Crossmodal learning is a crucial technique for developing

comprehensive world models, as it enables an agent to integrate and relate information

from multiple sensory modalities, such as vision, touch, and sound. The aim is to

learn a joint representation that captures the relationships between these modalities,

allowing the agent to perceive and understand its environment in a more holistic

way. By aligning and fusing data from different sensory sources into a shared latent

space, the agent can predict one modality from another, which is especially useful in

fields like multimodal fusion, transfer learning, and scenarios where one modality’s

data is sparse or difficult to obtain (e.g. predicting visual information from textual

descriptions).

As a basis of the research works that will be introduced in later chapters, the following

presents a Bayesian perspective on crossmodal learning, outlining the formulation

and the mathematical framework for predicting one modality based on another.

▶ Bayesian perspective. In crossmodal learning, we aim to model the conditional

probability distribution between different modalities, such that one modality can

be predicted from another. Let X1 and X2 represent two different modalities. The

primary objective is to learn the conditional probability distribution 𝑝(𝑥2|𝑥1),
which describes how modality 𝑥2 can be predicted from modality 𝑥1. In a

Bayesian framework, this can be formulated as:

𝑝(𝑥2|𝑥1) =
∫

𝑝(𝑥2|𝑧)𝑝(𝑧|𝑥1) 𝑑𝑧,

where 𝑝(𝑥2|𝑧) is the likelihood of modality 𝑥2 given a latent representation 𝑧,

𝑝(𝑧|𝑥1) is the posterior distribution of the latent variable 𝑧 given modality 𝑥1,

and 𝑧 represents the shared latent space between modalities X1 and X2. This

integral can be approximated using variational methods if the true posterior

[KG17]: Kendall et al. (2017), ‘What Uncertainties Do We Need in Bayesian Deep Learning for Computer

Vision?’

[Mur22]: Murphy (2022), Probabilistic Machine Learning: An Introduction
3: The Gaussian distribution is commonly used in stochastic models due to its mathematical

convenience and well-understood properties. It allows for efficient learning and inference, especially

when combined with neural networks that output the mean and the covariance.
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𝑝(𝑧|𝑥1) is intractable, leading to the use of a variational distribution 𝑞𝜙(𝑧|𝑥1)
modeled by parameters 𝜙, resulting in the prediction formula:

𝑝(𝑥2|𝑥1) =
∫

𝑝(𝑥2|𝑧)𝑞𝜙(𝑧|𝑥1) 𝑑𝑧.

The joint distribution between the two modalities and their shared latent

representations can be expressed as

𝑝(𝑥1, 𝑥2, 𝑧) = 𝑝(𝑥1|𝑧)𝑝(𝑥2|𝑧)𝑝(𝑧),

where 𝑝(𝑥1|𝑧) and 𝑝(𝑥2|𝑧) are the likelihood functions describing how the

modalities are generated from the shared latent space, and 𝑝(𝑧) is the prior dis-

tribution over the latent variable, typically assumed to be a simple distribution

like a Gaussian. The goal is to optimize the parameters of these functions such

that the model accurately captures the crossmodal relationships.

▶ Encoding & Decoding. Given a learned latent space, the task of crossmodal

prediction involves encoding one modality and decoding it to predict the other

modality. In this framework:

• Encoding. Modality 𝑥1 is encoded into the shared latent space using an

encoding function 𝑔
(1)
𝜙 : X1 → Z, producing a latent representation

𝑧1 = 𝑔
(1)
𝜙 (𝑥1),

• Decoding. The latent representation 𝑧1 is then decoded to predict modality

𝑥2 using a decoding function 𝑓
(2)
𝜓 : Z→ X2, resulting in a predicted value

𝑥̂2 = 𝑓
(2)
𝜓 (𝑧1).

The loss function for this crossmodal prediction is typically a reconstruction

loss
4
, such as mean squared error:

min

𝜓,𝜙
𝔼(𝑥1 ,𝑥2)∼𝑝(𝑥1 ,𝑥2)

[
𝑑
(
𝑓
(2)
𝜓 (𝑔

(1)
𝜙 (𝑥1)), 𝑥2

)]
,

where 𝑑(·, ·) represents the𝕃2 distance between the predicted 𝑥̂2 and the ground

truth 𝑥2.

▶ Variational Inference. To approximate the posterior distribution 𝑝(𝑧|𝑥1) in cross-

modal learning, variational inference is commonly applied. A variational

distribution 𝑞𝜙(𝑧|𝑥1) is introduced to approximate the true posterior. The

model is trained to maximize the Evidence Lower Bound (ELBO):

max

𝜙
𝔼𝑞𝜙(𝑧|𝑥1)

[
log 𝑝(𝑥1|𝑧) + log 𝑝(𝑥2|𝑧)

]
− 𝐷KL

(
𝑞𝜙(𝑧|𝑥1) ∥ 𝑝(𝑧)

)
,

where the first term encourages reconstruction of both modalities 𝑥1 and 𝑥2

from the shared latent representation 𝑧, and the second term regularizes the

encoder 𝑞𝜙(𝑧|𝑥1) to be close to the prior 𝑝(𝑧). This setup enables crossmodal

4: For example, later in Chapter 4 “Sound Guides Representations and Explorations” on page 55, we

reconstruct audio from vision.
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representation learning by using one modality to infer latent structure and

jointly reconstruct both.

Numerous methods have been proposed for learning effective representations, yet

many rely on handcrafted objectives or domain-specific assumptions that limit

generalization across tasks and modalities. Self-supervised learning has emerged as

a scalable alternative, showing strong potential in both unimodal and crossmodal

settings. Chapter 4 explores this direction by leveraging predictive audio-visual

modeling to capture meaningful correlations in sensory data. In parallel, Chapter 5

and Chapter 7 investigate an alternative strategy centered on natural language

representations, utilizing LLMs to encode environmental semantics and reason about

context and potential actions. While differing in modality and abstraction level,

these approaches share the goal of enabling more flexible and interpretable robotic

behavior, addressing key challenges in bridging perception, representation, and

decision-making.

3.1.3 Utilization of World Models

World models are generative models that capture both the static structure and

dynamic evolution of an environment. By simulating the consequences of actions,

they enable autonomous agents to predict the outcomes of their behavior. This

predictive capability allows agents to plan and make decisions without requiring

constant interaction with simulators or the real world [NVI+25], which is especially

valuable for autonomous exploration in unfamiliar or hazardous environments.

Predictive Capability, Planning, and Exploration

World models enable agents to anticipate the future states of the environment based

on their current actions, which is crucial for planning and decision-making during

exploration. By simulating the effects of various actions via a world model, agents

can optimize their exploration strategies, selecting those that maximize the likeli-

hood of achieving exploration goals. This predictive ability reduces the need for

trial-and-error interactions with the environment, ensuring safer and more effective

exploration. Furthermore, world models can decouple physics simulation from per-

ception, enabling efficient data synthesis—for example, a single physical interaction

can generate numerous records under varying visual conditions [NVI+25].

Adaptation, Generalization, and Long-Term Autonomy

World models are inherently task-agnostic, making them versatile and applicable

across various tasks and environments. This allows agents to adapt to uncertainty

and continuously update their models as they acquire new information, ensuring

they remain flexible and capable of responding to changes in the environment.

Additionally, world models facilitate generalization, enabling agents to transfer their

knowledge from one environment to another without starting from scratch. This
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generalization, particularly from the ones trained with large-scale data, enhances

the agent’s ability to explore diverse environments efficiently, reducing the time and

effort required to learn new tasks. Over time, as agents refine their world models

through exploration, they become more autonomous, capable of handling more

complex tasks and responding to novel scenarios without human intervention. This

self-improvement cycle fosters long-term autonomy, empowering agents to operate

independently and adapt to increasingly sophisticated environments.

Despite their advantages, world models face significant challenges. Prediction errors

tend to accumulate over long horizons, undermining planning reliability. Their ability

to generalize across diverse, dynamic environments is often limited by domain-

specific assumptions and insufficient integration of multimodal data. Moreover,

learning robust and transferable representations under partial observability and

sensor noise remains difficult, requiring complementary strategies for effective long-

term autonomy. As environmental complexity grows, world models must capture

increasingly diverse dynamics and interactions, which can increase computational

demands and risk overfitting.

Future progress is expected to focus on developing multimodal world models

that integrate diverse sensory inputs. It is advisable to combine these with Vision-

Language-Action Model (VLA) models to enable large-scale, model-based planning

enriched with reasoning adaptability.

3.2 SEMANTICS

Semantics, a unifying symbolic medium for intelligence, serves as a bridge that

connects perception, reasoning, and action, enabling AI systems to move beyond

raw data processing toward meaningful generalization and decision-making. To

understand its role, we can structure key works in semantics into foundational

concepts and applications.

3.2.1 Abstract Concepts

At the core of semantics lies the ability to represent abstract concepts, i.e. ideas that

are not tied to specific sensory inputs but rather emerge from structured relationships

between entities. AI systems achieve this by embedding meaning into semantic spaces,

where similar concepts are positioned closer together based on their contextual or

relational similarities.

Semantic Spaces

Semantic spaces provide the foundation for how AI systems represent and process

meaning. Early approaches such as Simple Recurrent Network (SRN) [Elm90] focused

on learning temporal patterns in sequential data, while later developments like

Word2Vec [Mik+13] introduced efficient methods for learning dense vector repre-
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sentations of words based on co-occurrence statistics. Transformer-based models

like BERT [Dev+19] and GPT [Rad+18] expanded this by incorporating contextual

embeddings, allowing words to take on different meanings depending on their

surrounding text. Beyond text, knowledge graphs [Hog+21] explicitly encode rela-

tionships between entities, enabling structured reasoning. Together, these approaches

define how AI systems map raw data into a structured, abstract representation of

meaning, forming the basis for higher-level reasoning and decision-making.

Alignment

A key challenge in AI is aligning perceptual data (such as images, video, and audio)

with abstract semantic representations. This multimodal alignment allows AI systems

to connect sensory inputs with meaningful concepts, enabling them to describe,

reason about, and interact with the world in ways that are more akin to human

understanding.

Learning Transferable Visual Models From Natural Language Supervision 2
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Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.

classification datasets by scoring target classes based on
their dictionary of learned visual n-grams and predicting the
one with the highest score. Adopting more recent architec-
tures and pre-training approaches, VirTex (Desai & Johnson,
2020), ICMLM (Bulent Sariyildiz et al., 2020), and Con-
VIRT (Zhang et al., 2020) have recently demonstrated the
potential of transformer-based language modeling, masked
language modeling, and contrastive objectives to learn im-
age representations from text.

While exciting as proofs of concept, using natural language
supervision for image representation learning is still rare.
This is likely because demonstrated performance on com-
mon benchmarks is much lower than alternative approaches.
For example, Li et al. (2017) reach only 11.5% accuracy
on ImageNet in a zero-shot setting. This is well below the
88.4% accuracy of the current state of the art (Xie et al.,
2020). It is even below the 50% accuracy of classic com-
puter vision approaches (Deng et al., 2012). Instead, more
narrowly scoped but well-targeted uses of weak supervision
have improved performance. Mahajan et al. (2018) showed
that predicting ImageNet-related hashtags on Instagram im-
ages is an effective pre-training task. When fine-tuned to
ImageNet these pre-trained models increased accuracy by
over 5% and improved the overall state of the art at the time.
Kolesnikov et al. (2019) and Dosovitskiy et al. (2020) have
also demonstrated large gains on a broader set of transfer
benchmarks by pre-training models to predict the classes of
the noisily labeled JFT-300M dataset.

This line of work represents the current pragmatic middle
ground between learning from a limited amount of super-
vised “gold-labels” and learning from practically unlimited
amounts of raw text. However, it is not without compro-

mises. Both works carefully design, and in the process limit,
their supervision to 1000 and 18291 classes respectively.
Natural language is able to express, and therefore supervise,
a much wider set of visual concepts through its general-
ity. Both approaches also use static softmax classifiers to
perform prediction and lack a mechanism for dynamic out-
puts. This severely curtails their flexibility and limits their
“zero-shot” capabilities.

A crucial difference between these weakly supervised mod-
els and recent explorations of learning image representations
directly from natural language is scale. While Mahajan et al.
(2018) and Kolesnikov et al. (2019) trained their models for
accelerator years on millions to billions of images, VirTex,
ICMLM, and ConVIRT trained for accelerator days on one
to two hundred thousand images. In this work, we close
this gap and study the behaviors of image classifiers trained
with natural language supervision at large scale. Enabled
by the large amounts of publicly available data of this form
on the internet, we create a new dataset of 400 million (im-
age, text) pairs and demonstrate that a simplified version of
ConVIRT trained from scratch, which we call CLIP, for Con-
trastive Language-Image Pre-training, is an efficient method
of learning from natural language supervision. We study
the scalability of CLIP by training a series of eight models
spanning almost 2 orders of magnitude of compute and ob-
serve that transfer performance is a smoothly predictable
function of compute (Hestness et al., 2017; Kaplan et al.,
2020). We find that CLIP, similar to the GPT family, learns
to perform a wide set of tasks during pre-training including
OCR, geo-localization, action recognition, and many others.
We measure this by benchmarking the zero-shot transfer
performance of CLIP on over 30 existing datasets and find

Figure 3.2: Overview of the Contrastive Language-Image Pretraining (CLIP) training objective. The

model jointly trains an image encoder and text encoder to predict the correct pairings of images and

their text descriptions. During pretraining, CLIP learns to maximize similarity between image-text

pairs from the same example while minimizing similarity with other pairings in the batch. (Figure

adapted from [Rad+21].)

Contrastive learning is one of the most influential approaches to align multimodalities,

where models like CLIP [Rad+21] (see Figure 3.2) and BLIP [Li+22] map images and

text into a shared latent space. These models use contrastive loss, an indirect learning

loss function for classification, to minimize the distance between paired text and image

inputs, enabling them to develop a joint embedding that represents both modalities

in the same space. This alignment enables tasks like zero-shot image classification,

where the model can recognize novel objects based on textual descriptions without

additional training. Contrastive models leverage large-scale web data, making them

highly scalable while reducing the dependency on manually labeled datasets.

[Rad+21]: Radford et al. (2021), ‘Learning Transferable Visual Models from Natural Language

Supervision’
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There also exist multimodal transformers [Sin+22; Che+23b] that go a step further,

beyond mapping modalities into a shared space, by enabling the joint processing of

different modalities, allowing for more complex fusions.

3.2.2 Integration: Symbolic Grounding

Autonomous agents require a structured understanding of their environment to make

informed decisions. While world models enable predictive reasoning by capturing

environment dynamics, semantics provide a structured representation of meaning

that enhances decision-making. When integrated, these approaches create systems

that can both predict how the world works and understand what things mean (cfr.
Figure 3.3). Consider a mobile robot navigating with a semantic map versus a purely

geometric one. With semantic understanding, the robot can interpret high-level goals

(e.g., “get an apple”→ “go to the kitchen”) rather than requiring specified low-level

waypoints (e.g. coordinates). This semantic approach offers two key advantages: (1)

enhanced interpretability for human operators and collaborators, and (2) improved

robustness in scene generalization, as the robot can identify functional spaces across

different environments despite visual variations.

World 
Models Policy

Semantics

Self-
determination

Figure 3.3: Symbolic Grounding = Semantics + World Models. Agents ground symbolic representa-

tions by linking abstract semantic concepts to their embodied world models, enabling meaningful

interpretation and interaction with the environment.

Scene Graph

Scene graphs [Joh+15; Che+23a; Ran+23; Gu+24; Jia+24; Dai+24] provide a structured

representation of visual scenes by organizing perceived elements into a graph-based

format where nodes typically represent objects and edges capture relationships

between these objects. This representation serves as a critical bridge between raw

perceptual data processed by world models and higher-level semantic understanding.

Scene graphs formalize visual understanding through several key components:

▶ Objects, which are discrete entities identified in the scene, often with associated

attributes;

▶ Relationships, spatial (e.g. “inside”, “on”), functional (e.g. “containing”) connec-

tions between objects;

▶ Attributes, properties of objects such as color, size, material, or other state

[Sun+24] (see also § 8.2 as an example of object-state sensitive planning).

This hierarchical data structure enables more sophisticated reasoning about visual



38 3 Conceptual Foundations

scenes than flat representations. Scene representations enriched with integrated

semantics enhance informativeness and support a deeper understanding of the

environment. They also enable robots to more effectively retrieve object-related

information, facilitating subsequent planning or responding to human inquiries.

Semantic Affordance

Affordances are the opportunities for action provided by the environment, according

to Gibson’s ecological psychology of development. Semantic affordances extend

Gibson’s ecological theory [GP00] by integrating physical action possibilities with

objects’ functional meanings, enabling intelligent systems to reason about purpose-

ful environment interactions. This framework transcends physical capabilities by

incorporating knowledge about object functions and cultural conventions, allowing

systems to make nuanced decisions based on both physical properties and intended

purposes. Recent research demonstrates that semantic affordance models facilitate

the acquisition of new skills through environment interaction
5

[ZWW24; HFS23;

Rho+25; Li+25c], driven by semantic motivations rather than predetermined task

specifications. The strength of semantic affordance lies in their bidirectional mapping

between perceptual features and functional possibilities, grounding abstract concepts

in physical interactions while elevating these interactions to meaningful, goal-directed

behaviors, which is essential for developing adaptive intelligent systems that can

continuously expand their behavioral repertoire based on semantic understanding of

their environment.

3.3 POLICY

In robotics and RL, a policy refers to decision mapping, a function or rule that maps

states to actions (what action to take in each situation). Built on top of this control

foundation, agents develop versatile capabilities to fulfill various purposes.

3.3.1 Policy Function, Option, and Skill

Policy function is the lowest level of control concepts, among option (mid-level

temporal abstraction) and skill (high-level functional capability).

Policy Function

A policy function is usually denoted as 𝜋(𝑎|𝑠), mapping a state 𝑠 to an action 𝑎

(deterministic) or a distribution of action candidates (stochastic), a strategy under

the MDP assumption. Furthermore, 𝑎𝑡 ⊥ 𝑠<𝑡 | 𝑠𝑡 , i.e. 𝜋(𝑎𝑡 | 𝑠𝑡) = 𝜋(𝑎𝑡 | 𝑠≤𝑡). In

practice, to incorporate temporal information such as velocity, up to 𝑘 previous

5: An example work of semantic affordances will be introduced in Chapter 7 “Agentic Skill Discovery”

on page 99.
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observations, {𝑜𝑡−(𝑘−1), . . . , 𝑜𝑡−1, 𝑜𝑡}, are collected as input for state representation

learning. Empirical evidence
6

suggests that this representation learning with a

concatenation of several history frames improves RL performance.

Action space. The action space for a manipulation robot can be either Cartesian

space for end-effectors or joint space for responsive joint control. The former is

easier to generalize across robot configurations but, however, requires an external

motion planning backend. For LLM-based agents with textual environments
7
, the

action space is in symbols or natural languages but usually linked with symbolic

representations of external utilities such as robot skills
8
.

Option

An option is a formal construct used in Hierarchical Reinforcement Learning (HRL).

It is defined as a triplet (precondition, policy, post-condition9
) [SPS99; SB18; KNK21;

GRW17]:

▶ Precondition: The initiation set, specifying the states in which the option can be

executed.

▶ Policy: A state-action mapping function that governs the agent’s behavior while

the option is active.

▶ Post-condition: Typically similar to the termination condition, defining when the

option should conclude.

An option addresses the temporal abstraction in the pursuit of control reusability.

Preconditions and post-conditions are key characteristics of option execution. Pre-

conditions and postconditions are typically represented abstractly using symbolic

propositions or predicates [KNK21; Hel14; Jia+19]. Reasoning over these symbolic

representations enables a planner to search for solutions by ensuring that the post-

condition of one skill satisfies the precondition of the next.

Skill

In embodied agent systems, a skill is a structured, reusable capability that enables an

agent to interact with its environment in a goal-directed manner (cfr. Figure 3.4). Skills

are often hierarchically composed, integrating low-level primitives into more abstract

behaviors, and can be autonomously acquired through interaction, exploration, or

reinforcement. They are typically parameterized for flexibility and vary in generality,

6: See [Bur+19a] for discussion and also Chapter 4 “Sound Guides Representations and Explorations”

on page 55, where three consecutive frames are concatenated as visual input for neural networks.

7: A physical robot may also have a textual environment for decision making, where the surroundings

and robot capabilities are abstracted in text.

8: In Chapter 5 “Interactive Multimodal Perception Using Large Language Models” on page 69,

multimodal cues from the environment are fed to LLMs as natural language. The actions determined

by the LLM decision module are then converted into symbolic representations of robot skill functions

for execution mapping.

9: Some prefer the term effect over post-condition, as used in the Planning Domain Definition Language

(PDDL). In this thesis, the two terms are used interchangeably.
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Figure 3.4: Conceptual illustration of instructional control and planning with world models. Instruc-

tional Control = Policy + Semantics (left). Planning = Policy + World Models (right), i. e. planning

can be viewed as the process of refining a policy (control) by leveraging a world model (typically in

symbolic representation) to simulate and evaluate the possible future outcomes of its actions.

ranging from task-specific actions to broadly transferable competencies, forming

the foundation for adaptive and intelligent behavior in embodied agents. Key

characteristics of robot skills include:

▶ Task-oriented: Defined by their ability to achieve specific functional objectives.

▶ Modular: Self-contained units of functionality that can be developed, tested,

and deployed independently.

▶ Reusable: Applicable across different scenarios, tasks, and potentially different

robotic platforms.

▶ Parameterized: Configurable through adjustable parameters to adapt to varying

conditions and requirements.

3.3.2 Planning and Learning

Policies define the decision-making processes that guide agents’ actions within their

environments. These policies can be developed through various methodologies, each

offering unique advantages and suitable applications. Below is an overview of the

primary approaches:

Task and Motion Planning

Planning-based methods (cfr. Figure 3.4) involve the creation of control policies

through deliberate design and reasoning. Task and motion planning (TAMP) [SK16] is

a framework in robotics and embodied agents that bridges the gap between high-level

task planning and low-level motion control. It integrates two main components: task

planning and motion planning, enabling an agent to plan and execute complex tasks

in a dynamic environment.

Task Planning. Task planning focuses on determining the sequence of high-level

actions that an agent should take to achieve a particular goal. It is usually built

upon a controlled set of symbolic representations, where actions are abstracted and

reasoned about (often, optimized by efficient searching algorithms). In task planning,

a problem is typically defined by a set of states and actions, with the goal being to

find a valid path from an initial state to a goal state. This is often done using formal

languages, such as Planning Domain Definition Language (PDDL) [Hel14; Jia+19],
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which defines actions, preconditions, and effects.

Motion Planning. Motion planning, on the other hand, deals with the low-level

details of how an agent physically moves in its environment. It focuses on generating

feasible trajectories that avoid collisions with obstacles while respecting the agent’s

physical constraints (e.g. velocity limits, and joint angles for a robot arm). It is often

formulated as a path-finding problem in a continuous configuration space. See also

§ 2.1.1 “Environment Exploration” on page 9 for the introduction of path planning

for map building and exploration.

TAMP systems, which unify both task and motion planning, are becoming more

widely used in complex, real-world robotic tasks, such as household robots, warehouse

automation, assembly lines, and autonomous vehicles, where both high-level decision-

making and low-level movement must work together seamlessly.

Learning for Decision-Making

Traditional task and motion planning methods relied heavily on proper modeling

of tasks and environments, being time-consuming for humans to abstract and

implement. Learning-based methods derive policies from interactively explored data

or human-collected demonstrations.

Reinforcement Learning (RL). RL enables agents to learn optimal behaviors by receiving

feedback from their actions in the form of rewards or penalties (see Figure 3.5). Over

time, agents develop policies that maximize cumulative rewards, effectively learning

from trial and error. The agent interacts with the environment in discrete time steps.

At each step 𝑡, the agent observes the current state 𝑠𝑡 , takes an action 𝑎𝑡 according to

a policy 𝜋(𝑎𝑡|𝑠𝑡), the environment transits to next state 𝑠𝑡+1 and the agent receives

reward 𝑟𝑡+1. The agent’s objective is to maximize the cumulative discounted reward, or

the reward to go, expressed as

𝑅𝑡 =
𝑖=∞∑
𝑖=0

𝛾𝑖𝑟𝑡+1+𝑖 ,

where 𝛾 ∈ [0, 1) is the discount factor, trading off immediate and future rewards.

Agent Environment

Figure 3.5: Illustration of the Reinforcement Learning (RL) paradigm, where an agent interacts with

an environment through actions 𝑎, which are decisions based on the current state 𝑠. The environment

then responds with a new state 𝑠′ and a reward signal 𝑟. This feedback loop continues as the agent

learns to maximize cumulative rewards over time by improving its policy for selecting actions in

different states. The robot figure is adapted from https://www.inf.uni-hamburg.de/en/inst/ab/
wtm/research/neurobotics/nico.html.

https://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/neurobotics/nico.html
https://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/neurobotics/nico.html
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Typically, RL methods can be categorized as model-based and model-free approaches,

with a major distinction of whether to learn and to utilize (in particular, planning

with) a transition model.

▶ Model-based RL methods aim to learn a model of the environment’s dynamics (cfr.
§ 3.1), which can be used to simulate future states and rewards, thus being useful

for imagined planning. This approach can reduce the amount of interaction

required with the environment, as the agent can simulate possible outcomes in

an imagined space before really taking actions. Techniques like Monte Carlo

Tree Search (MCTS) [Sil+16] and Model Predictive Control (MPC) [Ren+22;

KL20] are examples of model-based methods.

▶ Model-free RL methods do not require the agent to explicitly model the envi-

ronment’s dynamics (i.e. it doesn’t learn world models to predict how the

environment transits between states). Instead, the agent directly learns a policy

for optimal decision-making.

• Value-based methods aim to learn the value function for actions and derive

the optimal policy from it. An example of a value-based method is Q-

learning, where the Q-values, 𝑄(𝑠, 𝑎), are iteratively updated using the

Bellman equation, based on the reward feedback:

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼
[
𝑟𝑡+1 + 𝛾 max

𝑎
𝑄(𝑠𝑡+1, 𝑎) −𝑄(𝑠𝑡 , 𝑎𝑡)

]
.

• Policy gradient methods focus directly on learning the policy itself, where the

policy is parameterized and updated in the direction of higher expected

rewards:

∇𝜃𝐽(𝜃) = 𝔼𝜏∼𝜋𝜃

[
𝑇∑
𝑡=0

∇𝜃 log𝜋𝜃(𝑎𝑡|𝑠𝑡)𝑟𝑡

]
,

where the expectation is taken over trajectories 𝜏, sampled from the policy

to learn.

• Actor-Critic methods combine both value-based and policy-based approaches.

The “actor” learns the policy, while the “critic” evaluates the actions taken

by the actor using value functions. This hybrid approach can improve

learning efficiency. The policy gradient update in Actor-Critic is:

∇𝜃𝐽(𝜃) = 𝔼𝜏∼𝜋𝜃

[
𝑇∑
𝑡=0

∇𝜃 log𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐴𝜋(𝑠𝑡 , 𝑎𝑡)
]
,

where 𝐴𝜋(𝑠𝑡 , 𝑎𝑡) = 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) −𝑉𝜋(𝑠𝑡) is the advantage function, which

measures how much better action is compared to the expected value of a

state, i.e. the state-value function 𝑉𝜋(𝑠𝑡) =
∑
𝑎 𝑄

𝜋(𝑠𝑡 , 𝑎).

Besides various aforementioned optimization methods, learning process shaping is

also an effective way to accelerate learning.

▶ Reward shaping accelerates the learning process by modifying the reward

distribution, typically from sparsely distributed to densely distributed, such
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that the agent can easily get positively rewarded while keeping the optimal

policy unchanged. Additionally, certain types of reward shaping apply non-

linear transformations to the reward signals to reduce the impact of noise

and, thus, enhance learning stability [Li+23c]. See also § 8.1 “Reinforcement

Learning with Derived Rewards” on page 119 for details.

▶ Curriculum learning, similarly, eases the learning challenge by presenting a

sequence of tasks with gradually increasing difficulties, making the policy

learning smooth [KNK21].

RL enables agents to learn through trial and error, typically in simulated environments.

However, it is data-hungry, sampling-inefficient, and often unstable during training.

Additionally, the sim-to-real transfer remains challenging due to gaps in both physics

and sensing. While building realistic simulations and applying randomization

techniques can improve generalizability and help bridge this gap (particularly

for sensing), they cannot eliminate it entirely. As a result, learning from human

demonstrations remains the primary method for efficiently training real-world

robots.

Imitation Learning (IL). Also known as learning from demonstrations, with D =

{(𝑠𝑖 , 𝑎𝑖)}𝑁𝑖=1
denoting a dataset consisting of 𝑁 state-action pairs collected from

expert-demonstrated trajectories, IL is a type of machine learning where an agent

learns to perform tasks by observing and mimicking the behavior of an expert. The

goal is for the agent to replicate the expert’s actions, typically with the intent of

solving complex tasks without the need for extensive trial-and-error learning as in RL.

IL dramatically reduces exploration time and bridges a way to incorporate human

preference.

▶ Behavior Cloning (BC) can be viewed as a supervised learning problem, where

the agent learns a policy that maps states to actions by minimizing the difference

between its predicted actions and the expert’s actions. The goal is to learn a

policy 𝜋𝜃(𝑎|𝑠) that approximates the expert’s behavior, typically with a loss

function:

• for discrete actions

𝐿BC(𝜃) = −
1

𝑁

𝑁∑
𝑖=1

log𝜋𝜃(𝑎𝑖|𝑠𝑖),

• and for continuous actions

𝐿BC(𝜃) =
1

𝑁

𝑁∑
𝑖=1

||𝜋𝜃(𝑠𝑖) − 𝑎𝑖||2
2
.

▶ Inverse Reinforcement Learning (IRL) focuses on recovering the reward function

𝑟(𝑠, 𝑎) that the expert is implicitly optimizing, with an assumption that the

expert trajectories are sampled with maximum rewards, rather than directly

mimicking the expert’s actions. The idea is to infer the underlying reward signal

from the expert’s demonstrated behavior, following which the objective can be
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formulated as

max

𝜃
𝔼𝜋∗

𝑇∑
𝑡=0

𝛾𝑡𝑟𝜃(𝑠𝑡 , 𝑎𝑡),

where 𝜋∗ is the expert policy. However, this is an ill-posed problem since

many reward functions can explain the expert’s behavior. This ambiguity is

addressed using various regularization strategies or assumptions, depending

on the specific IRL method [Abb08; Zie+08].

▶ Adversarial Imitation Learning. A min-max formulation arises when considering

IRL as an adversarial game. For example, GAIL [HE16] expresses the objective

function as

J(𝜃, 𝜙) = min

𝜃
max

𝜙
[𝔼𝜋∗ log 𝑝𝜙(𝑒|𝑠, 𝑎) + 𝔼𝜋𝜃 log(1 − 𝑝𝜙(𝑒|𝑠, 𝑎))],

where 𝑝𝜙(𝑒|𝑠, 𝑎) is a learned discriminator to distinguish expert trajectories,

denoted as 𝑒, from generated ones.

▶ Diffusion Policy. Diffusion policies use Denoising Diffusion Probabilistic Models

(DDPMs) to generate actions iteratively. The objective function is based on

reconstructing expert actions from noisy versions, similar to how diffusion

models are trained for image generation. Mathematically, instead of directly

modeling 𝑝(𝑎|𝑠), diffusion policies approximate it via iterative denoising

𝑝𝜃(𝑎|𝑠) =
∫
𝑝𝜃(𝑎|𝑠, 𝑧)𝑝(𝑧|𝑠)𝑑𝑧.

While planning and learning represent two fundamental pillars of autonomous

decision-making, their integration remains a core challenge. Planning methods

offer structure and foresight but often rely on accurate models and handcrafted

representations. Learning-based approaches, particularly those using reinforcement

or self-supervised signals, provide adaptability but can suffer from sample inefficiency

and instability. In relatively simple hierarchical robotic systems e.g. SayCan [Ahn+22]

and subsequent works [Zha+23c; Ran+23], high-level and low-level functionalities

are often modularized, with the high level handling strategic decision-making and

the low level responsible for precise control. In such architectures, symbolic planning

and learning-based methods can be selectively applied at different levels to meet

specific requirements. Closing the gap between planning and learning, whether

by incorporating learned representations into planners or embedding planning

structures into learning algorithms, offers a promising direction for developing more

robust and generalizable robotic policies.

3.3.3 Integration: Planning and Learning with Foundation Models

Rather than relying on exhaustive human demonstrations, a growing trend is to

leverage the knowledge in large foundation models to make high-level decisions

or guide learning-based methods. In recent years, foundation models, particularly

LLMs, have revolutionized the way autonomous systems approach planning and
learning as skills (cfr. Figure 3.6). These models, pre-trained on vast amounts of diverse

[HE16]: Ho et al. (2016), ‘Generative Adversarial Imitation Learning’
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Figure 3.6: Skill Learning = (Policy + World Models) + Semantics. Beyond instructional control, agents

develop reusable and adaptive skills by learning policies that interpret and fulfill semantic goals. This

process optionally leverages (implicit) world models to anticipate outcomes and generalize across

contexts.

data, are capable of understanding, generating, and reasoning about language in

sophisticated ways. This ability allows them to significantly enhance the planning

and learning capabilities of robotic systems, facilitating more flexible, adaptive, and

intelligent behaviors.

Grounded Action Generation

Direct action generation approaches represent a significant advancement in LLM-

based agent systems by establishing a more immediate connection between language

understanding and actionable outputs. SayCan [Ahn+22] pioneered this category by

combining the semantic knowledge of LLMs with grounded affordance functions

that assess action feasibility in physical environments. Grounding LLM into the

specified environment is implemented via prompting with the context of the agent,

task, and environment configurations, thanks to the availability of “emergent abilities”

of large-scale training: in-context learning, instruction following, and step-by-step

reasoning [Zha+23b]. Building on this foundation, many research works emerge

[Kim+24; Zen+23b; Jan+24], including the work in Chapter 5, which studies how

LLMs can reason about multimodal cues with text as medium. The field has further

evolved with models like Palm-E [Dri+23], which directly incorporate multimodal

inputs to generate contextually appropriate actions without requiring intermediate

symbolic representation.

LLM-based approaches have demonstrated remarkable zero-shot generalization

capabilities, enabling agents to perform previously unseen tasks by leveraging

the rich world knowledge embedded in pretraining. They are also able to handle

ambiguities in human language, making them useful in human-robot interaction

scenarios. However, they may face difficulties with long-horizon planning or tasks

that demand real-time reasoning over complex environmental dynamics. Challenges

also remain in ensuring reliability and safety when actions are generated without the

interpretability afforded by explicit symbolic planning stages.

Symbolic Planning Integration

Symbolic planning approaches integrate LLMs into structured reasoning frameworks,

often generating explicit and interpretable plans prior to execution. Traditional
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symbolic definition languages, such as PDDL, along with classical planners, support

LLMs in formulating problems and assessing the feasibility of long-term tasks. For

example, LLM+P [Liu+23] and many similar works [Din+23; Lia+22; Chu+25] convert

a language description of a problem into a Planning Domain Definition Language

(PDDL) file, and then resort to classical symbolic planners to compute a solution, after

which the resulting plan is translated into actions with minimal effort of mapping

(see Figure 3.7) This neuro-symbolic integration benefits from the complementary

strengths of LLMs (flexibility and world knowledge) and symbolic planners (logical

consistency and guarantees).

Initial State

Goal StateAction Description

Object Definition

PDDL  Domain + Problem

Figure 3.7: Symbolic planning with PDDL configurations generated by LLMs. This approach uses

LLMs to create formal planning specifications, bridging natural language understanding with classical

planning frameworks. § 8.2 “LLM-based Embodied Planning” on page 124 will introduce an approach

where LLM is used to generate PDDL configurations for symbolic multi-agent planning.

A key advantage of symbolic planning approaches is their interpretability: researchers

and users can inspect the generated plans, identify potential issues, and understand

the agent’s reasoning process. This transparency becomes particularly valuable

in safety-critical applications where explainability is essential. However, these ap-

proaches often face challenges in precise abstraction and handling the ambiguity

inherent in real-world scenarios, and may struggle with the computational overhead

of formal planning in complex domains.

Guided Learning

LLM-guided learning represents a paradigm shift in how, typically, RL agents acquire

and refine their capabilities, with LLM serving as knowledge-rich guides throughout

the learning process. Learning-based approaches focus on improving agent planning

capabilities through various forms of feedback and experience. Reinforcement

Learning from Human Feedback (RLHF) has emerged as a cornerstone methodology

demonstrating how human annotated trajectories (in the form of paired preference)

can deduce a reward model and thus be applied to train robot policies [Chr+17].

Soon RLHF became a core LLM alignment tuning method, leading to various studies,

among which, Reinforcement Learning from AI Feedback (RLAIF) [Li+23a] releases

the burden of human annotation with auto-generated or LLM-annotated data. In

addition to training LLM agents, the training of robotic agents also benefits from

AI feedback, such as guidance from LLMs or Vision Language Models (VLMs). The

applications may range from motivation to regulation, with outcome or process

guidance, which has been discussed in § 3.4 “Self-Determination” on the facing page

and § 8.1.2 “Reinforcement Learning with Deductive Rewards” on page 123.
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Vision-Language-Action Models

Vision-Language-Action Models (VLAs) [Bro+23; ONe+24; Zit+23; Tea25] represent

the frontier of embodied intelligence research by creating end-to-end architectures that

process visual inputs, understand language instructions, and generate appropriate

actions. Robotic Transformer (RT-1) [Bro+23] and Robotic Transformer 2 (RT-2)

[Zit+23] demonstrated how transformer-based architectures can learn mappings

from visual observations and language commands directly to robotic actions through

large-scale training on demonstration data. Recently, Gemini Robotics [Tea25] is

capable of executing smooth and reactive movements to cover a great range of

long-horizon, dextrous manipulation tasks. The integration of multiple modalities

enables VLAs to ground language understanding in visual perception, addressing

a fundamental challenge in robotics and embodied AI. Despite their impressive

capabilities, VLAs face significant challenges in sample efficiency, often requiring

massive datasets of demonstrations to learn effective policies. Additionally, these

systems must contend with the inherent complexity of real-world visual scenes

and the physical constraints of embodied action, making them among the most

challenging but potentially transformative approaches in the field.

3.4 SELF-DETERMINATION

Self-determination originally refers to the ability of an individual or group to make

choices free from external coercion
10

. In psychology, Self-Determination Theory

(SDT) [RD00] further refines this idea as the capacity to act autonomously, driven

by intrinsic motivation and the satisfaction of basic psychological needs such as

autonomy, competence, and relatedness, and maintained through processes of self-

regulation.

When applied to robotics, self-determination takes on a complementary yet distinct

meaning. Here it translates into the design of systems that can independently govern

their behavior, self-regulate, and optimize their performance through adaptive control

and learning. While intrinsic motivation has been widely studied in the context of

learning-based exploration [Pat+17; LP23], this section, with a stronger emphasis on

robotic self-determination, complements the discussion by highlighting the importance

of both intrinsic motivation and self-regulation [RKD97; RD00]. The latter is usually

implicitly considered with constructing traditional exploration strategies, but its

importance should not be overlooked especially when building agentic entities [Qia+24;

Seq24; Sha+23] where the criteria for assessing whether agents behave well along the

self-motivated goals cannot be always crafted by humans beforehand
11

.

10: A highly related but distinguishable term to “self-determination” is “agency”, which empha-

sizes the power to act as a causal agent and can be seen as a component or prerequisite of self-

determination. The self-determination discussed in this thesis emphasizes intrinsic motivation and

self-regulation. See also definition in dictionary: https://www.merriam-webster.com/dictionary/
self-determination
11: As a concrete example, later in Chapter 7 “Agentic Skill Discovery” on page 99, the skills are

proposed as intrinsically motivated goals, but they also require a mechanism for verification.

https://www.merriam-webster.com/dictionary/self-determination
https://www.merriam-webster.com/dictionary/self-determination
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3.4.1 Intrinsic Motivation

Intrinsic motivation refers to the drive to engage in an activity for its inherent

satisfaction rather than for separable outcomes, i.e. external rewards, suggesting that

intrinsic motivation is a natural inclination or tendency that organisms have [RD00].

It is not directly caused by external factors, but rather it is triggered or enhanced when

individuals find themselves in environments or conditions that encourage or support

this motivation to be expressed
12

. In humans, intrinsic motivation is linked to curiosity,

mastery, and a sense of autonomy, as described in SDT. It fuels learning and exploration

by prompting individuals to seek out novel experiences, solve problems, and improve

their skills. In robotics, intrinsic motivation plays a crucial role in enabling autonomous

agents to explore and interact with their environment beyond predefined tasks. Instead

of relying solely on externally programmed goals, intrinsically motivated robots

generate their own objectives based on factors like novelty, surprise, or empowerment.

For example, an exploration-driven robot may prioritize areas with high uncertainty

or information gain, leading to better world modeling and decision-making. Such

mechanisms are essential for lifelong learning, where a robot continuously refines its

knowledge and adapts to changing environments.

Intrinsic motivation is the internal drive that encourages an agent to explore and learn

for its own sake, independent of any external incentive (e.g. task-related rewards). We

can capture this concept mathematically by introducing an internal interest function 13
,

denoted by I(𝑠, 𝑎, 𝑠′), which, if taking task-agnostic world modeling surprise as an

example of incentive, i.e. a transition is considered interesting if it leads to a significant

prediction error in the agent’s internal model of the environment, regardless of any

specific external task, quantifies how inherently valuable, novel, or informative a

transition (𝑠, 𝑎, 𝑠′) is to the agent. One way to formalize the agent’s intrinsic drive

is to assume that its action choice for preferred state evolution is governed by the

gradient ∇I. Humans adjust behavior based on experience, aligning more with

gradient-like updates. However, defining a smooth yet differentiable function that

accurately captures intrinsic motivation is non-trivial.

While psychology defines intrinsic motivation as behavior driven by inherent satisfac-

tion and autonomous self-determination, RL adapts this concept through “intrinsic

rewards”. They are computational signals that encourage exploration independent

of task-specific goals (but are still “extrinsic” in principle, due to the fact that they

are assigned by a human). RL does not require differentiating a known loss function,

often a discrete reward function 𝑟(𝑠, 𝑎) is sufficient, formulating intrinsic motivation

as an intrinsic reward for RL to maximize is a common choice with replacing 𝑟intr(·)
with I(·), resulting in various optimization approximation of∇Iaccording to the RL

12: Further, extrinsic motivation can be further classified as: external regulation, introjection,

identification, and integration, organized to reflect their differing degrees of autonomy.

13: The term “interest” is adopted here, instead of just using “intrinsic reward” or “curiosity” from

the RL exploration literature [Bur+19a], to represent a broader perspective of intrinsic motivation. It is

a generic measure of how engaging or meaningful a transition (i. e. a change of the agent state resulting

from an action it takes) is, without being required to specify why something is interesting, while

curiosity is usually linked to seeking information or reducing uncertainty and mostly constrained

within RL paradigm in a form of scaler rewards.
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methods applied. In the context of RL, there are many works defining 𝑟intr(𝑠, 𝑎, 𝑠′):
Modeling uncertainty as motivation defines intrinsic reward as the negative likelihood of

the environment dynamics model, i.e. 𝑟intr ∝ − log 𝑝𝜃(𝑠′|𝑠, 𝑎) where 𝜃 parameterizes

a model of transitions (s, a, s’)
14

. Intuitively, the high likelihood of new states to

come indicates a good quality of modeling the dynamics. Rewarding oppositely, i.e.
favoring higher prediction errors, motivates the agent to explore states where its

model of the world, represented by (𝑠, 𝑎) → 𝑠′, is inaccurate, driving curiosity and

exploration to reduce the prediction error. However, maximizing uncertainty alone

can be misleading. A well-known example is the flickering TV environment, where the

screen displays random noise regardless of the agent’s actions. An agent driven purely

by uncertainty-based rewards may be attracted to such inherently unpredictable

dynamics, despite their lack of meaningful structure or learnable value. To address

this, some approaches model inverse dynamics (𝑠, 𝑠′) → 𝑎 [Pat+17], others [Sch+22]

go beyond prediction error and explicitly derive the information gain between model

parameters and expected transitions. Such formulations encourage exploration that

is not only uncertain but also informative, better supporting sample-efficient learning

in model-based RL, especially for robotics.

Environment morphology as motivation includes a series of methods that quantify the

discovery of structural environment properties as a reward [LP23]. For example,

visibility counting as reward introduces measures to count visited states [Mar+17;

Li+23c; Lu+22], usually assigning intrinsic rewards as 𝑟intr(𝑠, 𝑎) = 1/
√
𝑁(𝑠), where

𝑁(𝑠) accounts to the number of times the agent has visited state 𝑠 so far
15

. Intuitively,

this intrinsic reward encourages the exploration of novel states whose 𝑁(𝑠) are

sufficiently small and produce higher rewards. Another representative method,

frontier-based exploration [Yam97] also evaluates explored and unexplored areas to

encourage the agent to achieve greater coverage of the environment.

Empowerment as motivation refers to the kind of methods that maximize the influence

an agent can have over its future states, i.e. skills emerge as structured ways to

maximize control over future states
16

. Mathematically, empowerment is defined as

the mutual information between the agent’s action 𝑎𝑡 and its future state after 𝑘 steps,

denoted as 𝐼(𝑠𝑡+𝑘 ; 𝑎𝑡). By introducing a latent control variable 𝑧, which is uniformly

sampled, the mutual information 𝐼(𝜏; 𝑧) between the trajectory 𝜏 (often simplified

as 𝑠0, 𝑠𝑇 for simplicity and robustness) and the control variable 𝑧 can be used as

an intrinsic reward. This formulation encourages the discovery of diverse skills

[GRW17; Wan+21; Eys+19; Las+21a; BI20; Las+21b], thereby promoting exploration.

See Figure 3.8 (left) and cfr. § 2.1.2 “Autonomous Adaptation” on page 15 for discussion

on adaptive empowerment.

14: In practice, the forward prediction error of the learned dynamics, 𝑟intr/f = ∥𝑠′ − 𝑠′∥ (or the

backward prediction error, 𝑟intr/b = ∥𝑎 − 𝑎̂∥ when modeling (𝑠, 𝑠) → 𝑎 ), usually serve as a measure of

uncertainty [Pat+17; Bur+19a], which can be interpreted under Gaussian distribution assumption

𝑝𝜃(𝑠′|𝑠, 𝑎) = N(𝑠′|𝜇𝜃(𝑠, 𝑎);Σ). Derivations can be found in Appendix A “Prediction Error and

Gaussian Modeling” on page 138.

15: For continuous state setting, state abstraction or pseudo-count, e.g. 𝑁(𝑠) ∝ 1

𝜌(𝑠) where 𝜌(·) is a

density function, is often used to estimate the number of visits to a state.

16: Skills are learned control strategies that reliably lead to predictable and desirable outcomes. In

this sense, skill learning can be framed as the process of increasing empowerment over time.
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Figure 3.8: (Left) Skill Discovery = Self-determination + Policy, i. e. traditional skill discovery focuses

on combining intrinsic motivation (first phase of self-determination) to shape policy learning. (Right)
Agentic Skill Discovery = Self-determination + Semantics + Policy. Agentic Skill Discovery (ASD)

extends this by incorporating semantics, enabling agents to ground learned skills in meaningful

representations and goal structures. It integrates internal motivation, semantic understanding, and

policy learning to support autonomous skill acquisition in novel environments, guided by LLMs that

interpret and shape the learning process.

Semantic motivation represents a recent advancement in the LLM era, driven by

the powerful reasoning and in-context learning capabilities of contemporary LLMs.

When integrated with environment morphology, a scene graph can be established

and motivate an agent to explore the environment assets with semantic guidance

[Jia+24]. Given the basic information of environment and agent setting as context, the

employed LLM is supposed to propose interesting [Cel+23] yet meaningful [Wan+24a;

ZWW24; Ma+24a] semantic goals for the agent to achieve, or, in other words, new

abilities to pursue via determining semantic affordances. As discussed earlier in

§ 3.2.2 “Integration: Symbolic Grounding” on page 37 and further elaborated in

Chapter 7 “Agentic Skill Discovery” on page 99, where robots are semantically

motivated to acquire new abilities grounded in their environments, the emerging

trend of leveraging LLMs to guide agent learning shows great promise due to the

large-scale knowledge embedded in LLMs. Agents empowered with LLM-driven

self-determination can better understand and reason about the world, and formulate

efficient, interpretable motivations to support autonomous adaptation.

3.4.2 Self-Regulation

Self-regulation, often overlooked in earlier, less agentic systems where learning was

entirely controlled by humans through predefined criteria, is the agent’s ability

to monitor, evaluate, and adjust its learning process to achieve desired outcomes,

particularly in alignment with intrinsic motivations. For humans, it allows individuals

to stay focused, resist distractions, and modify their actions based on feedback. For

robots, self-regulation translates into adaptive determination mechanisms that ensure

learning proceeds correctly. Autonomous agents continuously assess their own

performance through built-in sensors and error metrics. This self-monitoring allows

the system to detect failures, gauge success, and identify areas for improvement

without relying solely on pre-programmed responses.

Being complementary to setting goals to motivate agents, self-regulation focuses

on assessing whether agents are on the right track of learning. A self-regulating



3.4 Self-Determination 51

robotic system must evaluate its internal states, predict future conditions, and adjust

its learning accordingly. In this sense, a skill can be viewed as the minimal unit of

learning that necessitates self-regulation, i.e. the awareness and ability to evaluate

whether the outcomes of an agent’s actions align with predefined goals Traditional

works, e.g. RL with intrinsic motivation, usually regulate agents with minimal effort

by manually examining the designed reward or loss function, neglecting a deep

discussion into self-regulation with open purposes. For more complex systems with

hierarchical execution structures, goals can exist at various levels, ranging from

high-level semantic objectives to low-level vision-conditioned control tasks. With the

development of, especially LLM-based, agentic systems, it is not even possible for

humans to exhaustively supervise such complicated, sometimes multi-agent, systems.

Therefore, an explicit higher level of autonomous yet robust regulation design is

essential for the success of the agency. See Chapter 7 for a detailed discussion on the

self-regulation of agentic systems (cfr. Figure 3.8) (right), where LLMs are employed

to supervise the learning process and outcomes of RL agents.

Process Supervision vs Outcome Supervision

Given a goal, the health of the learning status can be evaluated either densely,

during the ongoing process, or sparsely, based on the final outcome, depending on

the availability of supervision signals. For learning-based exploration, this reward

signal is usually predefined as reward functions, e.g. prediction error as a reward in

curiosity-driven exploration. For the former dense assessment, a per-step supervised

signal is usually accessible to guide the learning process, while the sparse one

indicates a post-assessment of the resultant behaviors. In RL for a specified task

learning, this exhibits as dense rewards, where the agent is likely to pursue the

reward frequently, or as sparse rewards, wherein the agent can only receive rewards

upon occasional task completion. In the context of LLM training, this distinction

usually leads to the application of the Process-supervised Reward Model (PRM) or

Outcome-supervised Reward Model (ORM) [Lig+24]. If reliable, the reward model

can be applied to scaling LLM inference. Usually, assessing an outcome is much easier

than assessing the whole process
17

. Complex agentic systems must be evaluated

across diverse subtasks, rendering process supervision of each learning component

intractable. Even outcome-level assessment (i.e. task verification) poses a significant

bottleneck, particularly for LLM-based agents (see [Chu+24b] for an example of

process supervision, and [Cem+25] for observed failure cases in LLM agents).

17: Imagine verifying an LLM-generated solution, which can be considered a subtask within a broader

agentic workflow for a given math problem. Process supervision involves evaluating each reasoning step,

while outcome supervision only requires checking the final extracted answer. In Chapter 6 “Enhancing

Reasoning via Logic-Guided Inference Scaling” on page 83, a method proposed to carry out per-step

verification for LLM inference is discussed in detail. A detailed discussion on process (fast) and

outcome (slow) self-regulation can be found later in Chapter 7 “Agentic Skill Discovery” on page 99,

where LLMs and VLMs are tasked to regulate RL learning process and outcome respectively.
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Termination

Appropriate termination matters much in learning-based approaches, by which the

agent passively (e.g. because of encountering irreversible bad conditions) or actively

(e.g. with explored information being sufficient enough for task requirement, active

termination saves unnecessary further effort
18

) terminates the ongoing learning

process in time and assigns a success or failure status for the happened learning.

Terminating in time. In RL, a terminating signal can be regarded as a special sparse

reward that helps learning with implicit reward shaping [Bur+19a]. As an example,

the strategies of terminating ASLAM exploration are when reaching the following

conditions [LLA21]:

▶ Map Completeness, sufficient map construction with no obvious unexplored ar-

eas (e.g. measured by frontiers [Yam97] or certain information gain/uncertainty)

remain.

▶ Resource Constraints, upon reaching limits in resources such as battery life,

traveled distance, elapsed time, or computational capacity.

Assigning outcome. At the end of each trajectory, a success or a failure status is

assigned, with which the success rate can be computed. Since success rate has been a

very important measure for robot performance, it also serves as a fitness function

for, for example, evolutionary search approaches to find the best-shaped reward

functions [Ma+24b]. In semantic environments, e.g. LLM reasoning
19

, the outcome is

usually more context-rich and can also be fed back to the agent to further refine its

decisions [LBS23; Zha+24c; ZWW24; Ma+24b]. For example, a code-generation LLM

can adjust its outputs based on real-time feedback from an Integrated Development

Environment (IDE).

With the development of LLMs and VLMs, these large-scale models can be leveraged

to regulate an agent’s timely termination and assign appropriate outcomes [Ma+24b;

ZWW24]. By integrating multimodal reasoning capabilities, VLMs enable the agent to

interpret environment cues, assess task completion, and determine when to terminate

execution. Furthermore, VLMs facilitate outcome assignment by associating observed

states with predefined criteria, ensuring coherent decision-making. This approach

enhances the adaptability and efficiency of autonomous systems operating in dynamic

environments.

3.4.3 Integrations

Self-determination, when combined with different foundational concepts such as

world models (§ 3.1), semantics (§ 3.2), and policy (§ 3.3), can lead to distinct research

directions. For example, interactive scene graphs [Jia+24] (see Figure 3.9 left) emerge

at the intersection of self-determination, world models, and semantics, enabling agents

to structure and interpret dynamic environments. Similarly, model-based exploration

18: This is common in the active perception field where “terminate” is a special action of an agent,

resulting in non-fixed steps for each learning episode (see an example of this design in [Li+23c]).

19: Formulating the LLM generation process as an MDP results in prompts being the initial state,

LLM output tokens as actions, and the context so far as the current state.
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Figure 3.9: From left to right: (Left) Model-based Exploration = Self-determination + World Models

+ Policy; Agents explore their environment by leveraging internal motivations (self-determination),

learned world models, and policies that guide action selection to reduce uncertainty and discover

novel states. (Middle) Interactive Scene Graph = Self-determination + World Models + Semantics;

Agents build and update structured, interpretable representations of their environment by grounding

semantic concepts in perceptual models and selectively interacting with relevant entities. (Right)
Reasoning = Self-determination + Semantics; Advanced reasoning emerges as agents use semantic

knowledge to internally simulate, compare, and select among possible actions or explanations, driven

by their own goals or queries.

[Moe+23; LP23] (see Figure 3.9 middle) integrates self-determination, world models,

and policy to guide strategic decision-making in uncertain environments.

In this context, self-determination and semantics together define reasoning [Wei+22a;

YZW23; Zha+24c; Heb+24; Dee+25] (see Figure 3.9 right), which can be regarded

as an exploration occurring solely within the realm of natural language space. This

semantic exploration enables agents to traverse conceptual spaces, infer logical

relationships, and refine their understanding through structured problem-solving

and counterfactual analysis. Discussions on semantic reasoning will be further

elaborated later in Chapter 6 on page 83.

Furthermore, Agentic Skill Discovery (ASD) [ZWW24; Rho+25; Li+25c], which will

also be detailed later in Chapter 7 on page 99, emerges from the combination of

self-determination, semantics, and policy learning, allowing agents to autonomously

explore semantic affordances and develop their capabilities.

An overview of how contributions introduced in later chapters align with the

conceptual foundations is provided in Table 3.1.

Table 3.1: Systematic overview of core contributions and their integration into conceptual foundations.

Ch. World Models Semantics Policy Self-determination

Chapter 4  # G#  
Chapter 5 G#  #  
Chapter 6 #  #  
Chapter 7 G#    
Chapter 8 G#  G# G#
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SOUND GUIDES REPRESENTATIONS

AND EXPLORATIONS 4
Self-determination + World Models + Policy

To fulfill Objective I, i.e. “to construct self-deterministic agents that can leverage non-
verbal multimodal cues to autonomously explore the environment and develop possible
abilities beyond immediate task requirements”, this chapter proposes a model-based

exploration strategy grounded in visual-auditory associations.

Multimodal cues offer complementary information that helps disambiguate goals

and dynamics in complex settings. In particular, impact sounds, as salient indicators

of physical interaction, serve as an internal signal for meaningful change. These

auditory events are treated as sources of intrinsic motivation, the first aspect

of self-determination, enabling the agent to assign value to exploratory behavior

even in the absence of external rewards. By learning to predict and seek out

these informative cues, the agent constructs richer world models that capture both

visual and auditory consequences of its actions. These models, in turn, guide the

development of policies that are not only goal-directed but also proactive in exploring

known knowledge boundaries, resulting in generalizable representations and

policies.

Cross-modal learning is essential for developing representations that are both

meaningful and invariant to variations across modalities, particularly when handling

noisy or incomplete data. While vision is the most commonly used modality for

perception in autonomous agents, it can be ambiguous or insufficient in certain

contexts, e.g. inferring object interactions or detecting events outside the field of

view. In such cases, sound provides a valuable complementary signal, offering

information about physical events like collisions, drops, or movements. Moreover,

sound is naturally abundant in the real world and can be captured without direct

contact, using small, low-cost microphones that are easily integrated into mobile

platforms. These properties make it a practical and informative modality to support

environment understanding and guide exploration beyond what is visible.

Although deep learning has shown strong capabilities in extracting information from

multiple sensory modalities, sound remains underutilized in robotic manipulation

learning. This chapter explores this potential to enhance autonomous exploration

and representation learning within the framework of Unsupervised Reinforcement

Learning (URL), where agents are expected to actively collect experiences and

jointly learn representations and policies in a self-supervised manner. Specifically,

this chapter introduces a framework for constructing realistic robotic manipulation

scenarios that incorporate physics-based sound simulation
1
, alongside a multimodal

Reinforcement Learning (RL) exploration approach termed Intrinsic Sound Curiosity

Module (ISCM). Experiments, with sound enabled during pre-training and disabled

1: See Appendix B “Impact Sound Simulation” on page 139 for details on sound simulation.
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during adaptation, show that representations learned by ISCM outperform the ones

by vision-only baselines, and pre-trained policies can accelerate the learning process

when applied to downstream tasks.

4.1 INTRODUCTION

Research in the field of neuroscience shows that with multiple cues from a diverse

range of sensory modalities comes enhanced behavioral performance towards faster

response, more accurate movement, and a better sense of stimulus [Lau+04]. When

presented with multiple modalities, e.g. a combination of auditory, haptic, and visual

perception, an observer will make the assumption of unity that decides whether the

multimodal information originates from a common source or from some separated

objects and events [WW80]. The perception of unity arises when the perceiver assumes

that a physical event is redundantly expressed and sensed across diverse modalities,

and decisions are commonly made based on the temporal and spatial consistency of

information [VS07], or on semantic congruence factors [Lau+04].

Vision is an exceptionally information-rich modality and one of the most critical

senses through which humans perceive the world. However, it remains challenging

for robots to directly extract structured knowledge from visual input. Although deep

neural networks have significantly improved the quality of visual representations,

such representations often remain difficult to interpret. When agents rely solely on

these learned features, the limited scope of the information they capture can constrain

generalization and restrict the range of tasks the agent can perform. For many vision-

based tasks, a common approach begins by constructing neural networks using

pre-trained models or training them in a self-supervised manner. This is often done

through intra-modal objectives, such as designing simple but diverse sub-tasks within

the visual domain [DZ17]. In contrast, crossmodal learning approaches, e.g. predicting

the consistency between visual and auditory signals [Zha+18; AZ18], go beyond pure

vision and are better suited for preserving the assumption of sensory unity, where

different modalities provide coherent information about shared underlying causes.

These two components are tightly coupled: stable and informative representations are

crucial for effective policy learning [Bur+19a], while a sufficiently exploratory policy

is necessary to collect diverse, non-trivial observations. Humans can benefit from

multiple sensing cues in terms of both perception and behavior. Intuitively, an active

agent who is allowed to explore freely can benefit from multimodal cues in two aspects:

1) learning meaningful representations by crossmodal self-supervision [Eis+21;

Hig+20; Par+18], and 2) being intrinsically motivated to explore the environment

under the unity assumption reflected by the uncertainty of crossmodal predictions.

Sounds are generally much more distinctive compared with visual events. For some

specific tasks related to physical properties estimation, the sound alone is reliable to

guide a robot and measure its performance [Cla+18]. For others, it may be informative

but not sufficient, e.g. a classification of objects that share common auditory properties

[Mir+21], or precise control of a water-pouring robot [Lia+20]. In this case, sounds

are supposed to fuse with other sensory inputs to present a much more robust
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description of states, or to scaffold the agent’s exploration.

Sound is abundantly while hardly considered for general manipulations due to the

facts that 1) vision is content-rich and is thus sufficient for traditional planning-based

robots so the sound is often ignored; 2) the correlation of sound events with a task

goal could be difficult to program or to discover automatically by traditional methods,

which further limits its exploitation. However, things go the other way when a

deep reinforcement learner is deployed to control. 1) Relying exclusively on vision

may lead to exhaustive sampling requirements. Though deep neural networks are

capable of extracting features from high-dimensional inputs, there is no guarantee

of information sufficiency as samples are collected gradually. Representations can

overfit to the trajectories of a non-optimal agent, especially when transferred to new

scenes, where a biased policy could lead to a worse learning process. Moreover,

exploration time for robots is often desired to be minimal for natural wear and safety

concerns, which calls for efficient and robust pixel interpretation. 2) Fortunately,

latent associations among modalities [Jae+21; Kum+19] and behavior consequences

[Sil+21] can be discovered automatically by deep learning, which shows the potential

of crossmodal control.

Therefore, our approach contains two phases: first, to train the image encoder of a

RL agent with visual-auditory correlations, and second, to use the crossmodal error

as an intrinsic reward to encourage meaningful exploration. Contributions in this

chapter include:

▶ The ManipulateSound
2

environment built upon the ThreeDWorld simulator

[Gan+21], detailed in § 2.3.1 “ThreeDWorld” on page 20, that comprises robotic

control with physically generated sound (see Figure 4.1).

▶ A general architecture to utilize sound feedback for unsupervised RL explo-

ration, resulting in more robust representation and active exploration.

Figure 4.1: ManipulateSound environments with different objects that have different physical properties:

(a) a task with three different colorful cubes to push out; (b) a task with a single blue ceramic cube to push

out; (c) a task with a single brown wooden cube to push out; (d) a task with a single red metal cube to

push out; sound intentionally turned off during evaluation.

4.2 RELATED WORK

We introduce sound as a means to enhance both self-supervised representation

learning and the active exploration of URL agents. While the use of impact sound to

guide representation and exploration is a novel integration, the individual components

2: See code link: https://github.com/xf-zhao/ManipulateSound

https://github.com/xf-zhao/ManipulateSound
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have been studied previously. In the following, we briefly review related work in

both areas.

4.2.1 Self-supervised Representation Learning

Self-supervised learning covers methods to learn representations from data that

contains automatically created pseudo-labels according to certain objectives. Based

on the sensory inputs, self-supervised learning can be roughly classified into two

categories: intra-modal and crossmodal self-supervised learning.

A common intra-modal way to create pseudo-labels of images is to perform multiple

parameterized augmentations. Then, neural networks are trained to predict which

transformation has been carried out on each sample [DZ17; ACM15]. Generally,

representations learned with transformations that align with realistic physics make

more sense to a robot than random ones. For instance, to obtain representations

with ego-motion equivariance addressed, images are collected with a camera on

a moving car and grouped into neighbor pairs by driving commands [JG15]. The

forward model in the Intrinsic Curiosity Module (ICM) [Pat+17] predicts the next

state 𝑠′ with the input of a tuple of current state and action (𝑠, 𝑎) so that the agent

can learn to represent the environment dynamics.

Self-supervised representation learning is naturally applicable to scenarios where

multiple modalities are involved. Representations emerge concurrently with different

focuses and biases, but often have strong relations with one another. To jointly model

multiple modalities, such as audio and visual components of videos [Gao+20], a

binary classification model to discriminate whether the visual and auditory input

are aligned [AZ17; DTG20], or a regression model to predict corresponding audio

statistics given vision [Owe+16] can be established. Although these settings are simple

enough, they make use of the unity assumption of events, such that extraordinary

abilities can be acquired, e.g. sound localization, audio-visual retrieval [AZ18], and

speech separation [OE18]. In our case, we train a discriminating model that is easy to

implement and applicable for general usage.

The available sensory perception for robots can be even diverse [Cal+18; Mur+18;

Gan+20b; Che+20]. A work by [Lee+19] shows that fused representations of visual

input, force-torque sensing, and proprioception by self-supervision are beneficial for

sample efficiency. Synchronizing multimodal cues and handcrafting modularized

tasks to align them properly. We keep the complexity low by focusing on the impact

of sound.

4.2.2 Active Exploration

A RL agent can gain remarkable abilities by optimizing the objective of maximizing

the accumulated reward of experiences [Sil+21]. However, for a task with sparse

rewards [Nai+18; Sek+20], which is a common case, the learning process can be quite

slow due to the inefficiency of sampling. Reward-shaping [Hu+20] is a commonly

used method to alleviate this problem, but it requires expert knowledge and human
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effort to tune and is vulnerable to environmental disturbance. Many active exploration

strategies have been investigated to encourage the agent to seek novel states [PGG19;

Eys+19; Pat+17; Bur+19b] among which ICM proves to be robust on many tasks

[Bur+19a; Las+21b]. So we construct our auditory-curiosity module on top of ICM,

building on an existing visual processing pathway.

As an alternative to sound, using haptic sense as feedback and reward [Raj+21]

achieves good performance and active exploration in terms of frequent contacts,

supporting sample-efficient learning. Similar to our work, [Gan+20a] uses vision and

action to predict the next clustered auditory events, and the classification error will

thus be used as the overall intrinsic reward. However, the transferability of learned

representations is not as well studied as in our work. A discriminator is trained

in work [DTG20] to exploit information consistency of aligned image sequences

and audio, and an intrinsic reward is computed according to the uncertainty of the

classifier. Despite the extra efforts required to construct offline data sets, this work is

restricted to Atari games or audio-dense scenarios. When applied to robotic control,

an object will only produce sound when there is contact. Silence or background noise

dominates most of the time. It is even harder to construct misaligned pairs because a

random shuffle strategy fails in cases where silence is capable of being aligned with

most of the visual scenes. Moreover, a cold-starting problem will arise, particularly

when the policy is not sufficiently rewarded to produce collisions. Therefore, we use

intrinsic motivations extracted from both visual and auditory cues.

4.3 METHOD: ISCM

Preliminaries. Typical RL problems are formulated as Markov Decision Processes

(MDPs)
3
, comprised by states S = {𝑠}𝑁 , actions A = {𝑎}𝑁 , transition probability

P𝑎
𝑠𝑠′, and rewards R = {𝑟}. The goal of the agent is to optimize the policy 𝜋𝜃(𝑎|𝑠)

that maximizes the expected discounted sum of rewards 𝔼𝜋𝜃

∑∞
𝑛=0

𝛾𝑛𝑟𝑡+𝑛 , where 𝛾 is

the discount factor. Usually, out of realistic constraints and generality considerations,

we do not have full access to internal states Sbut a series of sensors attached to the

workspace, resulting in partial observations O= {𝑜}. Before being fed into the policy

module, high-dimensional sensory inputs must be compressed to latent states that

can efficiently represent the environment [Mni+15; Bur+19a].

The following subsections describe the proposed ISCM framework, which consists of

visual representation learning with self-supervised crossmodal dynamics modeling

(§ 4.3.1), intrinsic visual-auditory rewarding (§ 4.3.2) with dynamics modeling errors

as the intrinsic motivation, and the joint learning process for both representation and

policy (§ 4.3.3).

3: 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 , 𝑜𝑡 are the state, action, reward, next state, and observation at time step 𝑡, respectively.

Without specification, we use 𝑠, 𝑎, 𝑟, 𝑠′, 𝑜 to simplify the notation.
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Figure 4.2: The Intrinsic Sound Curiosity Module (ISCM) framework comprises dynamics modeling

(as in the vanilla ICM), representation learning, and intrinsic reward computation that leverages both

dynamics-based signals and visual-auditory crossmodal cues.

4.3.1 Visual Representation Learning

Visual exploration is a fundamental task for embodied AI agents, where the agent is

allowed to actively gather visual information about the environment and then distill

knowledge into models such as a topological map or a dynamics model [Dua+22].

Generally, the agent is supposed to explore as many novel states as possible with an

internal encouragement aligned to certain targets, e.g. a measure of the coverage such

as the amount of visited unique states in a navigation scenario [DTG20], a prediction
error of a learned dynamics model [Pat+17; DGI21] or of a reconstruction model when

an agent tries to generate other views of an object than the observed ones [Dua+22].

With a combination of multiple sensory inputs for internal states, the agent is allowed

to have a more comprehensive view of the environment. However, it will require

either a lot of domain-specific assumptions of crossmodal associations or an increase

in model complexity [Jae+21; Jae+22] to derive efficient representations from fused

inputs. To ensure a fair comparison with vision-only baselines, sound is used solely

as a supplementary modality. The agent has access to sound only during the pre-

training stage. The baseline encoder, which we compare our model with, is trained

by modeling the environment dynamics with visual states, while the one of ISCM

(Intrinsic Sound Curiosity Module) additionally fits a visual-auditory sub-task (see

Figure 4.2). Before adaptation to downstream tasks, visual encoders of the agents are

initialized with weights from the ISCM and ICM baseline. The RL agent policy is

trained with Deep Deterministic Policy Gradient (DDPG).

Let the visual and auditory observation at time step 𝑡 be denoted as 𝑜𝑉𝑡 and 𝑜𝐴𝑡 ,

respectively. A visual encoding function 𝜑𝑉(·) comprised of convolutional neural

networks is thus applied on 𝑜𝑉𝑡 to compute the state 𝑠𝑉𝑡 = 𝜑𝑉(𝑜𝑉𝑡 ), which is later used

for both policy learning and dynamic environment modeling. Evidence shows that

a well-pretrained encoder is essential for the generalization of supervised learning

models [PY10; DZ17] and RL agents [Las+21b; Bur+19a]. Hence, the sound-free visual
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encoder and the sound-guided counterpart are trained separately for comparison.

There are two jointly-trained models to model environment dynamics in ICM: a

forward dynamics model 𝑀Fwd

𝜃 (·) and an inverse dynamics model 𝑀Inv

𝜃 (·). The forward

model tries to predict the forward n-step transition 𝑠𝑡+𝑛 (usually, 𝑛 = 1) given the

current state 𝑠𝑡 and action 𝑎𝑡 , i.e. 𝑠𝑡+𝑛 = 𝑀Fwd

𝜃 (𝑠𝑡 , 𝑎𝑡), while the inverse one tries to

predict the action taken between aligned states 𝑎𝑡 = 𝑀Inv

𝜃 (𝑠𝑡 , 𝑠𝑡+𝑛), which encourages

noise-robust representations [Pat+17]. These two dynamics models are optimized

concurrently with respect to 𝐿2 constraints, defined as

𝐿Fwd

𝑡 = ∥𝑠𝑡+𝑛 − 𝑠𝑡+𝑛∥2

2

and

𝐿Inv

𝑡 = ∥𝑎̂𝑡 − 𝑎𝑡∥2

2
.

Note that here we use 𝐿2 loss also for action predictions since we control the continuous

actions of the robot arm; otherwise, a cross-entropy loss can be considered for discrete

actions.

To benefit from sound, a crossmodal prediction model with parameters 𝜔, which

can be either a discriminator (for discrete 𝑠𝐴) or a regression model (for continuous

values), is then trained to learn the associations of concurrent vision and sound, i.e.
𝑝𝜔(𝑠𝐴𝑡 |𝑠𝑉𝑡 ). The crossmodal loss is optimized in latent space, 𝑠𝐴 = 𝜑𝐴(𝑜𝐴), where

𝜑𝐴(·) is a fixed auditory encoder with output suitable for either discrimination or

regression. Typically, to construct auditory features for regression, 𝜑𝐴(·) consists of

randomly initialized neural networks, with no requirements for any further training.

These representations are compact, stable, and generally reliable [Bur+19a; Bur+19b],

especially when dealing with impact sound whose information density could be low

compared to information in speech. Alternatively, 𝜑(·) can be chosen as a threshold

to distinguish valid event sound from background noise, considering the simplicity

and the aforementioned knowledge that even with a simple discriminating task,

surprisingly good abilities can be acquired through cross-modal learning [AZ18;

DTG20; Zha+18]. Much of the time in a manipulation scenario, there is just silence

before any valid collision or friction happens. To avoid the model eagerly collapsing

to zero prediction and causing dying neurons [Lu+20], we use weighted cross entropy

loss by 𝑤+ to amplify the importance of positive samples, i.e. crossmodal prediction
loss:

𝐿𝐶𝑡 = −𝑤+ · 𝑝(𝑠𝐴𝑡 |𝑠𝑉𝑡 ) log 𝑝𝜔(𝑠𝐴𝑡 |𝑠𝑉𝑡 ) −
[
1 − 𝑝(𝑠𝐴𝑡 |𝑠𝑉𝑡 )

]
log

[
1 − 𝑝𝜔(𝑠𝐴𝑡 |𝑠𝑉𝑡 )

]
. (4.1)

For regression, the optimization is similar except for an unweighted 𝐿2 loss

𝐿𝐶𝑡
′
= ∥𝑠𝐴𝑡 − 𝑠𝐴𝑡 ∥2

2
. (4.2)

To summarize, the objectives for visual representation learning in vanilla ICM and

the proposed ISCM are separately written as

arg min

𝜑,𝜃
𝔼
[
𝐿𝐷𝑡

]
(4.3)
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and

arg min

𝜑,𝜃
𝔼
[
(1 − 𝛼)𝐿𝐷𝑡 + 𝛼𝐿𝐶𝑡

]
, (4.4)

respectively, where 𝐿𝐷𝑡 = 𝛽𝐿Fwd

𝑡 + (1 − 𝛽)𝐿Inv

𝑡 is the overall dynamics loss and 𝛼, 𝛽 are

hyper-parameters to mediate the relative importance between modules. Note that

the objective is expected to be minimized over samples with time stamp 𝑡. Therefore,

it is reasonable to encourage the agent to collect informative samples by injecting the

model’s prediction error, as a form of intrinsic reward, into the agent’s exploration

objective.

4.3.2 Intrinsic Visual-Auditory Reward

Unlike typical supervised learning in which the data is drawn from a stationary distri-

bution, RL agents actively seek samples according to the policy that updates towards

reward-weighted maximum likelihood estimation [PMA10]. So when dealing with

the sparse-reward case, the intrinsic reward mechanism helps prevent representations

from focusing too much on non-interesting areas.

The visual-auditory reward in our case is defined as 𝑟𝐶𝑡 = log(𝐿𝐶𝑡 +𝜖), i.e. if the agent’s

(unity) assumption violates its perception, it will be encouraged to experience more,

and vice versa. 𝜖 is a constant added to maintain numerical stability, particularly

for values near zero. With 𝑟𝐷𝑡 = log(𝐿𝐷𝑡 + 𝜖) as the ICM reward when modeling the

environment dynamics, the overall intrinsic reward of ISCM is computed as

𝑟𝑡 = 𝜆𝑟𝐶𝑡 + (1 − 𝜆)𝑟𝐷𝑡 , (4.5)

where 𝜆 controls the relative importance of crossmodal prediction and dynamics

modeling for exploration.

4.3.3 Representation and Policy Learning

The learning process is separated into 1) fully unsupervised pre-training and 2)

task-specific fine-tuning stages with the curiosity mechanism omitted. It begins

with an agent freely exploring an environment, trajectories of {𝑜𝑉𝑡 } and {𝑜𝐴𝑡 } are

accumulated for representation learning; intrinsic rewards are computed for policy

learning. When an exploration budget is reached or when the agent is believed to have

enough knowledge, the pre-trained visual encoder will be fixed, and the actor-critic

networks will be fine-tuned on downstream tasks with only vision and extrinsic

sparse rewards accessible.

4.4 EXPERIMENTS AND RESULTS

We aim to answer the following research questions regarding Objective I:

▶ R.Q. 4.1 Does intrinsic sound curiosity help the agent to explore more actively

and learn effective representations?
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▶ R.Q. 4.2 Does unsupervised policy pre-training help the agent to adapt to new

tasks?

▶ R.Q. 4.3 How does the choice of crossmodal prediction affect the performance?

4.4.1 Experimental Setup

The experiments are carried out in simulation because unsupervised exploration in

the real world is costly, which we leave for future work. One way to manipulate objects

that produce authentic sound is to use a fixed data set with a physics computation

interface [Gao+21]. For generality, we build our multimodal manipulation scenarios,

shown in Figure 4.1, based on ThreeDWorld [Gan+21], cfr. § 2.3.1 “ThreeDWorld” on

page 20, a novel embodied AI simulator [Dua+22] which is built upon the Unity game

engine with multimodal capacities. To the best of our knowledge, it is the only one so

far that supports physically simulated impact and scrape sounds [TCM19; Aga+21] at

run time. The tabletop robot is composed of a 6-DoF OpenManipulator-Pro robotic

arm and a 2-DoF gripper
4
. It is allowed to manipulate cubes with diverse physical

properties that are essential for both dynamics and sound characteristics, e.g. masses,

materials, and bounciness.

Observations. A camera and a single-channel microphone are placed above the

table to capture observations. We focus more on vision and sound, so the robot’s

proprioception is not included, and the robot has no knowledge of the object’s

coordinates.

Task Setting. One or several cubes are randomly placed inside a red circular area,

and the goal is to push them out of the circle within a limited number of steps (cfr.
Figure 4.1). Specifically, each step will have a penalty of -1/50, and an immediate

reward of 1 will be delivered once the task is completed; otherwise, the episode ends

at 50 steps.

4.4.2 Implementations

We use the ICM implementation of Unsupervised Reinforcement Learning Benchmark

(URLB) [Las+21b] as the baseline, and further extend it to our ISCM architecture.

Refer to Algorithm 1 for pseudo code
5
.

Visual observations are processed as follows: a) Raw RGB image observations (𝑜𝑉𝑡−2
,

𝑜𝑉
𝑡−1

, 𝑜𝑉𝑡 ) are stacked to the size of 84 × 84 × 9 pixels. b) Four layers of Convolutional

Neural Network (CNN) with ReLU activation are applied subsequently to encode

vision to a latent state 𝑠𝑡 . c) A model using two fully connected layers with ReLU

activation is constructed for sound prediction. d) Visual inputs are available in both

pre-training and fine-tuning.

Auditory observation processing: a) An auditory observation 𝑜𝐴𝑡 is generated at run-

time by a physical engine; it is then converted to the spectrogram using Short-Time

4: https://github.com/ROBOTIS-GIT/open_manipulator_p

5: See code link: https://github.com/xf-zhao/ISCM

https://github.com/ROBOTIS-GIT/open_manipulator_p
https://github.com/xf-zhao/ISCM
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Algorithm 1: Pseudo code for Intrinsic Sound Curiosity Module (ISCM)

1 Initialize: Replay buffer D← ∅, policy neural networks 𝜋, visual encoder 𝜑𝑉 ,

auditory encoder 𝜑𝐴;

2 for 𝑛 = 1 to 𝑁pre-train do /* Exploration */

3 Observe 𝑜𝑡 = {𝑜𝑉𝑡 , 𝑜𝐴𝑡 };
4 𝑠𝑡 ← 𝜑𝑉(𝑜𝑉𝑡 ), 𝑠𝐴𝑡 ← 𝜑𝐴[STFT(𝑜𝐴𝑡 )];
5 Compute 𝐿𝐷𝑡 and 𝐿𝐶𝑡 ;

6 𝑎𝑡 ← 𝜋(𝑠𝑡);
7 Observe 𝑜𝑡+1 ∼ P𝑎

𝑠𝑠′;

8 Compute intrinsic rewards 𝑟𝑡 ;

9 D← D∪ (𝑜𝑡 , 𝑎𝑡 , 𝑜𝑡+1);
10 Sample Dbatch from D;

11 Update 𝜑𝑉 , 𝜋 using samples in Dbatch with Equation 4.4 and Equation 4.5;

12 Fix visual encoder 𝜑𝑉∗← 𝜑𝑉 for evaluations;

13 Chose task 𝑇;

14 D← ∅;
15 for 𝑛 = 1 to 𝑁fine-tune do /* Adaptation */

16 Observe 𝑜𝑉𝑡 ;

17 𝑠𝑡 ← 𝜑𝑉∗(𝑜𝑉𝑡 );
18 𝑎𝑡 ← 𝜋(𝑠𝑡);
19 Observe 𝑜𝑡+1, 𝑟 ∼ P𝑎

𝑠𝑠′;

20 D← D∪ (𝑜𝑡 , 𝑎𝑡 , 𝑟 , 𝑜𝑡+1);
21 Sample Dbatch from D;

22 Update 𝜋 using samples in Dbatch with extrinsic rewards;

23 Evaluate 𝜋 with the accumulated rewards on task 𝑇 for performance;

Fourier Transform (STFT), i.e. 𝑜𝑆𝑡 = STFT(𝑜𝐴𝑡 ). This is a consideration that complex

sounds that come from objects with distinct materials are more distinguishable in

the frequency domain with the help of the Fourier transform. Since the agent is

updated with samples from a replay buffer and actions are chosen solely based on

the visual input, there is no wait for the computation of STFT in real-time control. b)

Spectrograms (𝑜𝑆𝑡−2
, 𝑜𝑆
𝑡−1

, 𝑜𝑆𝑡 ) are then stacked as the auditory input of 32× 32× 3 size.

c) Finally, 𝑠𝐴𝑡 is obtained by applying a certain threshold for silence discrimination

and by passing through a fixed auditory encoder with 36-dimensional output for

regression. Auditory inputs are available only in pre-training.

ICM Modeling (baseline). ICM modeling steps are as follows: a) Trajectories of (𝑠𝑡 , 𝑎𝑡 ,

𝑠𝑡+𝑛) are fed into the ICM dynamics models for both encoder training (Equation 4.3

with 𝛽 = 0.5) and intrinsic reward 𝑟𝐷𝑡 computation with 𝜖 = 1. b) The sample with 𝑟𝐷𝑡
is thus used to train a DDPG base learner. c) After enough explorations, the DDPG

model will have to adapt to tasks with supervised rewards.

ISCM Modeling (ours). ISCM modeling steps are as follows: a) Paired multimodal

observations (𝑜𝑉𝑡 , 𝑜𝐴𝑡 ) are used to train the visual encoder (Equation 4.1 and Equa-

tion 4.4 with 𝜔, 𝛼, 𝛽 = 100, 0.2, 0.5) and to compute intrinsic crossmodal rewards 𝑟𝐶𝑡 .

b) Overall intrinsic reward (Equation 4.5 with 𝜆 = 0.8, 𝜖 = 1) is thus computed to
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train a DDPG-based learner.

All the mentioned neural networks are optimized by RAdam [Liu+20] with a learning

rate equal to 0.001. For many unsupervised RL approaches, the performance decays

with an excessive number of environment interactions [Las+21b]. There is so far no

general strategy to determine when to early-stop explorations for better generalization.

We empirically choose 200K environment steps to pre-train and 30K steps to fine-tune,

considering the convergence of learning curves. The result is averaged over 4 runs

with different seeds.

4.4.3 Evaluation

The performance of unsupervised agents can be evaluated by means of measuring the

adaptation process on downstream tasks or by statistically analyzing data diversity,

e.g. counting of collisions [Gan+20a], variance in the introduced sensory vector

[Raj+21], or transformations (distance of movement, orientation changes) of objects.

However, the latter method varies from task to task and is not always applicable.

Whereas the main focus of this work is to demonstrate the effectiveness of learned

representations, the tasks are chosen to be simple to master for an agent. In this

case, accumulated reward rather than success rate is more appropriate to compare

the learning efficiency because the former can reflect the consumed steps, under

the setting that the agent is punished for every unfinished step. Following previous

works in URL [Las+21b], task-related (extrinsic) rewards are solely evaluated as

performance metrics rather than being used for training.

▶ During pre-training, the extrinsic reward act as a measurement of agent

activeness, i.e. how often an agent occasionally achieves meaningful events.

▶ In the adaptation stage, the extrinsic reward is used to evaluate the performance

of the agent in a task-specific manner.

4.4.4 Results and Discussion

Research Question 4.1 Does intrinsic sound curiosity help the agent to explore

more actively and learn effective representations?

The activeness of exploration can be heuristically measured by the diversity of

collected states, object interactions, and the incidental accumulation of extrinsic

rewards. Note that these extrinsic rewards are not provided during training but serve

as indicators of accidentally achieving meaningful events. We observe that when

sound is involved, the agent shows increased interest in object interactions, leading

to more frequent accidental completions of such events (see Figure 4.3).

Observations from URLB [Las+21b] suggest that the learned representations are gener-

ally universal and transferable, whereas the behavior policies may not be—particularly

those trained with access to perfect state information (i.e. fully observable MDPs).

We compare episode rewards during fine-tuning for DDPG learners with identical

hyper-parameters but different model initializations: (1) full ICM pre-training; (2)
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Figure 4.3: Monitoring of extrinsic rewards (recorded but never used) in exploration. The ISCM agent

has more chances of accidentally accumulating extrinsic rewards as a result of sound contributing to

additional rewards.

ICM representations with a re-initialized policy (ICM-PR); (3) full ISCM pre-training;

(4) ISCM representations with a re-initialized policy (ISCM-PR); and (5) no pre-

training (just policy learning with DDPG). As is shown in Figure 4.4, we reiterate that

representations learned in unsupervised exploration are essential, and add further

findings:

▶ There is a big performance gap between the DDPG learned from scratch (DDPG,

dashed gray curve) and the other four with pre-trained weights (colored curves),

which suggests that unsupervised exploration is helpful for faster adaptation

to new tasks.

▶ The full pre-trained module (representations and behavior policy) with sound

(ISCM, solid green curve) outperforms the baseline that solely depends on

vision (ICM, solid orange curve).

▶ Without considering pre-trained policies, representations learned with a visual-

auditory prediction (ISCM-PR, dashed green curve) outperform the ones

learned with only vision (ICM-PR, dashed orange curve).

Research Question 4.2 Does unsupervised policy pre-training help the agent to

adapt to new tasks?

By comparing all solid with dashed curves, we find pre-trained policies to have

positive effects on task adaptation, which reveals that skills acquired in unsuper-

vised exploration are also reusable. However, more studies on policy analysis, e.g.
decomposition of the learned policy for abstract behaviors, are required for a clear

view.

Research Question 4.3 How does the choice of crossmodal prediction affect the

performance?

A vision-to-sound regression model using 𝐿2 loss (cf. Equation 4.2) is trained with

the same hyperparameters, replacing the crossmodal prediction module in Figure 4.2

with a regression head. See Figure 4.5 for comparison results. Though a vector (for
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Figure 4.4: Episode rewards in fine-tuning stage accumulated by DDPG learners with all hyper-

parameters configured the same except for the initialization of models: 1) ICM: models with repre-

sentations and policy pre-trained by ICM. 2) ICM-PR: models with ICM pre-trained representations

but a re-initialized policy. 3) ISCM: models with representations and policy pre-trained by ISCM. 4)

ISCM-PR: models with ISCM pre-trained representations but a re-initialized policy. 5) DDPG: models

without pre-training.

Figure 4.5: Episode rewards in fine-tuning stage are accumulated by base DDPG learners that are

initialized differently. 1) ISCM: fully pre-trained module with a discrimination auditory encoder.

2) ISCM/PR: pre-trained representations (but policy re-initialized) with a discrimination auditory

encoder. 3) ISCM/Reg: fully pre-trained module with a regression auditory encoder. 4) ISCM/Reg-PR:

pre-trained representations (but policy re-initialized) with a regression auditory encoder.

regression) rather than a scalar (for discrimination) is believed to have a higher

capacity of information, we find the discriminator setup (green curves) achieves

a comparative performance with a regressor (red curves), while being simple to

implement. Similar findings can also be found in recent works [Gan+20a] where

clustered auditory events are being predicted instead of regressing sound features.

It may result from the following reasons: 1) impact sound presents not much more

information than a deduction of event occurrence; 2) simulated sound is still far

away from perfect, such that vision, sound, and dynamics are not matched well as in

reality. Future work will include construction of more complex environments and

sim-to-real adaptations to investigate more on these research questions.
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4.5 CONCLUSION

Sound is one of the most common and efficient modalities, but is yet less considered

for learning either simulated or real-world robotic manipulations. Unlike many of

the curiosity-driven RL variants, especially the ones combined with audio that pay

attention to non-robotics applications such as playing Atari games, we are focusing

on investigating how robots can benefit from exploring multimodal environments. In

this chapter, the importance of unsupervised representation learning and of active

exploration is addressed. We further propose the ISCM architecture to use physics-

based sound as guidance regarding both aspects. Our experiments demonstrate that

a sound-guided reinforcement learner is more active and excels in forming sufficient

as well as stable representations over vision-only baselines.

4.6 LIMITATIONS AND FUTURE WORK

Although this work employs advanced physics-based sound simulation to evaluate

the proposed ISCM architecture, its applicability and generalizability to real-world

scenarios remain to be explored, as real-world sounds are often complex, noisy, and

uncertain. Due to the simplicity of the current environment, the agent’s capacity for

self-determined exploration and learning is limited. Future work in more complex

settings may foster greater self-determination, allowing agents to move beyond

event-based cues to interpret semantically meaningful signals and discover emergent

behaviors. This research direction will be further discussed in Chapter 7 “Agentic

Skill Discovery” on page 99.



INTERACTIVE MULTIMODAL

PERCEPTION USING LARGE

LANGUAGE MODELS 5
World Models + Semantics + Self-determination

To address Objective II, i.e. “to develop an interactive multimodal perception framework
in which the agent actively gathers, integrates, and semantically interprets diverse sensory
inputs, enabling grounded semantic understanding and context-aware decision-making
in complex environments.”, this chapter introduces an interactive exploration strategy
built on top of LLMs to leverage multimodal cues, including vision, audio, tactile,

and weight.

As discussed in Chapter 4, integrating multimodal cues has been highly effective

for both representation learning and decision-making, enabling agents to interact

more effectively with their environments. However, Reinforcement Learning

(RL) methods applied previously are often data-hungry and require a large

amount of data to learn relevant knowledge of the environment. In contrast,

planning methods based on LLMs leverage off-the-shelf knowledge, e.g. world
modeling in semantic space (i.e. natural language representations), and reasoning

abilities acquired through large-scale training. These models can integrate multiple

modalities and reason about interactions in a self-determined manner, enabling

both intrinsic motivation and self-regulation through closed-loop reasoning based

on environmental feedback. This offers a compelling alternative to conventional

approaches that depend on costly data collection or manually designed structures.

Programming robot behavior in a complex world faces challenges on multiple

levels, from dextrous low-level skills to high-level planning and reasoning. Recent

pre-trained Large Language Models (LLMs) have shown remarkable reasoning

ability in few-shot robotic planning. Advanced knowledge and reasoning abilities

inside large foundation models enable embodied agents to a dramatic degree of

generalization, promising the extendibility to planning in unforeseen environments

and tasks. However, it remains challenging to ground LLMs in multimodal sensory

input and continuous action output, while enabling a robot to interact with its

environment and acquire novel information as its policies unfold. For example, in a

robotic manipulation task, an agent might first use vision to identify an object and

then rely on tactile feedback to assess its texture or stability. By integrating these

sensory signals, e.g. learning a joint representation of them, the agent can make more

accurate predictions and decisions, thereby enhancing its ability to interact with the

environment. Understanding and modeling the physics of the world is crucial for

task completion. Large foundation models, e.g. LLMs and Vision Language Models

(VLMs), trained on vast amounts of knowledge and equipped with reasoning abilities,

exhibit in-context modeling of the environment at a semantic level.

To address these challenges, Multimodal environment chatting (Matcha) agent, an

interactive perception framework, is therefore proposed with an LLM as its backbone,

whose ability is exploited to instruct epistemic actions and to reason over the resulting



70 5 Interactive Multimodal Perception Using Large Language Models

multimodal sensations (vision, sound, haptics, proprioception), as well as to plan

an entire task execution based on the interactively acquired information. Figure 5.1

on the next page shows the conversational interaction process for perception and

decision-making. The framework is verified in a robot interaction scenario built with

multimodal cues being accessible, whereas observations from each modality can only

provide partial information to solve a given task, necessitating a robot to decide on a

range of epistemic actions in order to sample sensory information among multiple

modalities, before being able to execute the task correctly. Our study demonstrates

that LLMs can provide high-level planning and reasoning skills and control interactive

robot behavior in a multimodal environment, while multimodal modules with the

context of the environment state help ground the LLMs and extend their processing

ability. The project website can be found at https://matcha-agent.github.io.

5.1 INTRODUCTION

How do humans perceive the surroundings to uncover latent properties?
Suppose you are presented with an uncommon object in a strange shape and of

unknown material, you may explore its properties in both passive and active ways,

if possible, e.g. by observing the geometry, touching, and even knocking on the

surface in order to deduce its exact functionalities from the feedback. Unnecessary

explorations, which could be essential for other scenarios such as smelling, will not

be performed in this context unless something counterintuitive happens. We humans

naturally perform these multimodal observations and examinations in daily life through

common sense and established knowledge, and over time we adapt with the accumulation

of experience [Bar+06].

In this work, we show that this is also possible for a robot well-equipped with multiple

sensors and LLMs. An environment may be filled with rich content, and the robot

can be overwhelmed with diversified sensory stimuli. An intelligent robot should (i)

selectively attend to relevant stimuli, avoiding unnecessary distraction by irrelevant

details; and (ii) generate appropriate responses to the perceived information within

the context of the task at hand.

Interactive Multimodal Perceptions

Like humans, robots can perceive the environment in either a passive or an interactive

way [KNK21]. Passive perception refers to methods such as visual or auditory moni-

toring, enabling robots to efficiently gather information without actively interacting

with the environment. However, passive perception has inherent limitations, the

most notable being its inability to effectively address epistemic uncertainty, the type of

uncertainty arising from a lack of knowledge [CK23].

Epistemic uncertainty inevitably arises from diverse sources, e.g. from the ambiguity

in human instructions, from low-resolution sensing (e.g. reduced image size for

convolution), or from insufficient modalities. Many of them can only be reduced with

https://matcha-agent.github.io
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pick_up(orange block)

Explain why.

I picked up the orange block
because the sound from knocking
was inconclusive, but the weight
and feel were both consistent with
a plastic cube.

touch(orange block)

It feels hard.

The material cannot be certainly
confirmed according to the impact
sound. It could be plastic with a 47%
chance, or ceramic with a 35%
chance.

knock_on(orange block)

It sounds silent.

knock_on(yellow block)

Pick up the plastic block

visualize(scene)

The scene contains [green block,
orange block, yellow block]

weigh(orange block)

It is lightweight.

1

2

3

4

5

6

MF

LLM

LLM

LLM

LLM

LLM

LLM

LLM

MF

MF

MF
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Figure 5.1: Upon receiving a human instruction, the robot recurrently “chats” with the environment to

obtain sufficient information for task completion. An LLM generates action commands to interactively

perceive the environment and, in response, the environment provides multimodal feedback (MF)

through dedicated multimodal perception modules.

interactive perception, in which a robot actively interrogates the environment to increase

accuracy and even uncover latent information. For example, when being asked to

deliver a steel screw instead of one with a similar color & shape but made of aluminum,

an assistant robot may need to locate possible candidates with passive vision and

further, interactively, resort to a weighing or a magnetic module for confirmation.

Despite the promising advantages, interactive perception is less common than the

passive manner because it entails increased complexity [Li+23c]. Efforts are needed to

design a mediating system to handle various sensory data and to adapt to changes in

the conditions of both the robot and the environment, such as a new robotic module

being available or the involvement of novel objects.

Chatting with the Environment

LLMs have been showing incredible potential in areas besides robotics [Ahn+22;

Cui+23; Lyn+22; Mia+23]. Human knowledge that resides in LLMs can help a

robot abstract and select only suitable features, e.g. relevant to the region of interest
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or informative modalities, to simplify the learning process. Moreover, in terms of

generalizability, the knowledge of LLMs allows a behavioral agent to adapt efficiently

to novel concepts and environment structures. For instance, when being asked to use
one adjective for each to describe how a sponge and a brick feel, ChatGPT

1
will respond

with “soft” and “hard” respectively. This is helpful for a robot with a haptic sensing

module to distinguish between these two novel, never-seen objects.

LLMs are usually generative models that predict tokens to come, but with certain

designs, e.g. conversational prompts, LLMs are capable of generating chat-like texts.

This allows their integration with a robot to not only plan with respect to a robot’s built-

in ability [Zen+23a; Ahn+22] but also respond according to environment feedback.

However, they cannot directly process application-specified raw multimodal data.

We resort to modular perceptions for each modality that are separately trained before

being plugged into the LLM backbone. Each module semantically translates the

resulting multimodal sensations into natural language that can be understood by

LLMs and processed in a unified manner in a semantic space.

Our contributions are threefold. Firstly, we establish a manipulation scenario with

multimodal sensory data and language descriptions. Secondly, we propose Matcha
2

agent, where an LLM is prompted to work in a chatting fashion, thus having

continuous access to environment feedback for contextual reasoning and planning.

Finally, we show that LLMs can be utilized to perform interactive multimodal

perception and behavior explanation. Accordingly, an interactive robot can make

reasonable and robust decisions by resorting to LLMs to examine objects and clarify

their properties that are essential to completing the task (see Figure 5.1 on the

preceding page ).

5.2 RELATED WORK

5.2.1 Multimodal Learning and Robotic Information Gathering

Research in multimodality in robotics nowadays attracts growing attention [Akk+23]

because of its success in, for example, audio-visual learning [Zha+22; Wei+22b;

Zhu+21] and language-visual learning [SMF22a; SMF22b]. It is beneficial and some-

times essential for a robot to learn from multimodality because one modality could

carry some distinct information, e.g. tones in speech, that cannot be deduced from

another [Lee+22].

Capable robots require managing one or several sensors to maximize the information

needed for disambiguation [Bar+06] regarding a specific goal. This problem is known

as active information acquisition [Ata15; WKS21] or, particularly in robotics, robotic
information gathering [RMH21], where robots have to properly select perceiving actions

to reduce ambiguity or uncertainty. Besides handcrafted rules, some information

1: https://openai.com/blog/chatgpt/
2: By the name of a type of East Asian green tea. To fully appreciate matcha, one must engage multiple

senses to perceive its appearance, aroma, taste, texture, and other sensory nuances.

https://openai.com/blog/chatgpt/
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advantage measures, e.g. entropy or information gain, are usually employed to maxi-

mize [Ata15]. However, the combination of multimodal data is usually challenging.

There are studies on fusing multimodal data according to their uncertainties, but

this may face numerical instability and is difficult to transfer from one application to

another [Wan+22]. Instead of directly fusing the multisensory data in a numerical

space, we propose to use multimodal modules to translate them into natural language

expressions that an LLM can easily digest.

5.2.2 Large Language Models in Robotic Planning

Recent works use LLMs to decompose high-level instructions into actionable low-level

commands for zero-shot planning. They use LLMs as a planner to autoregressively

select actions that are appropriate with respect to the instruction according to

application-based prompts [Zen+23a], the semantic similarity between mapped pairs

[Hua+22], or the contextual language score grounded on realistic robot affordances

[Ahn+22]. Other approaches ground LLM knowledge in human interaction [Cui+23]

or various other fields where domain knowledge is distinct and modular frameworks

can be composed via language as the intermediate representation [Pat+19; Mia+23;

Zen+23a]. However, these works design a robot to form a planning strategy with

built-in knowledge, rather than interact with the surroundings and make decisions

based on actively collected information from the environment. There is no feedback loop

for their LLMs to perceive the environmental cues, such that only “blind” decisions

are made in the robotic unrolling process. In contrast, our interactive architecture

allows LLMs to access the environment state from multiple modalities for adaptive

planning.

5.3 METHOD: MATCHA AGENT

5.3.1 Architecture

We propose Multimodal environment chatting (Matcha) agent which is able to inter-

actively perceive (i.e. “chat” with) the environment through multimodal perception

when the information from passive visual perception is insufficient for completing

an instructed task. The epistemic actions are executed autoregressively until the

agent is confident enough about the information sufficiency in that situation. Fig-

ure 5.2 provides an overview of the architecture of Matcha agent. It is a modular

framework of three parts: an LLM backbone, multimodal perception modules, and a

low-level command execution policy. They connect to each other with language as

the intermediate representation for information exchange.

To be specific, given a high-level instruction, especially one that Matcha cannot

directly perform with the command policy alone, the LLM backbone will reason the

situations and select the most contextually admissible perceiving command to gather

information. After the execution of the policy module, the resulting environment

response is processed by a correspondingly evoked multimodal perception module
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Figure 5.2: Overview of Matcha. The framework contains LLMs as backend, multimodal perception

modules, and a language-conditioned control policy implemented with motion planning. These

components communicate with each other with natural language as the intermediate representation.

Three types of language information are involved in composing the prompt: 1) language instruction,

environment context, and robot capabilities, and 2) LLMs’ decisions and resultant feedback from

multimodal perceptions in textual representation. The switch indicates possibly evoking paths of the

interactive perception decided by LLMs.

into semantic descriptions, e.g. “clinking sound” by an auditory module after the

“knock on” action. Finally, the executed command itself as well as the environment

state description are fed back to the LLM for future planning. The LLM is employed in

a few-shot prompting manner without any need for fine-tuning, being independent

of other components. Policy and perception modules can be separately designed

and plugged into the framework whenever needed. Intrinsically linked by natural

language, this framework is flexible and can scale and adapt easily to possible robotic

upgrades or diverse robotic scenarios.

5.3.2 Multimodal Perception and Execution Policy

To demonstrate our framework, we implement a language-conditioned policy using a

set of widely accessible and practical modalities. Other varieties for specific scenarios

can also be easily integrated due to the flexibility of modularity of the framework.

Detailed experimental implementations will be introduced in § 5.4.

Vision. Usually, a monitoring camera is the cheapest option for a robot to passively

perceive such rich information. We employ pre-trained ViLD [Gu+22], an open-

vocabulary visual detection model, as the vision perception module to detect objects

with their categories and positions in the scene. Then, the results will be delivered to

a policy module for identification and execution. Meanwhile, a prompt template “The

scene contains [OBJ1, OBJ2, ...]” is applied to construct a scene description, which

enables the LLM to have an initial impression of the environment. Typically, pre-

trained vision models are not designed to discern attributes that extend beyond those

easily extractable from topology or textures, such as material composition. The use of

low-resolution images for expedited processing exacerbates the loss of information
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concerning such attributes. In our experiments, we prioritize demonstrating the

integration of diverse modalities instead of extensively fine-tuning ViLD to encompass

all aspects.

Impact Sound. Impact sound can provide valuable information for robotic multimodal

learning [Zha+22]. However, passive sound collection, e.g. through an end-effector-

mounted microphone, predominantly captures background noise unless the robot

actively generates informative sounds through intentional actions, such as the "knock

on" behavior in our implementation. This auditory perception module classifies the

consequent impact sound into a description and then wraps it in a natural language

form. Actually, a clip of audio may contain sufficient information for some of the

usage, e.g. to distinguish metal from glass [Dim22]. However, it may not be the case

for other scenarios, for example, to select the only targeted one among a set of similar

“dull” sounds that could indicate either plastic, wood, or hard paper. Therefore,

we showcase both of the designs, i.e. one with a specific material classification

(e.g. “glass”) and another with solely low-level and non-distinct descriptions (e.g.
“tinkling”). The modular output is also wrapped with templates to a full sentence,

such as “It sounds tinkling”, to guarantee processing consistency with LLMs.

Weight. Weight measurements can usually be obtained via the torque exerted on the

robotic arm subsequent to the execution of a “weighing” action. It can be simplified

by its weight in simulation. In simulation, this measurement is simplified by directly

using the object’s mass value. The weight information is directly translated into

natural language like “It is lightweight” or “It weighs 30g”. Note that with implicit

clarification of the scenario and the type of objects that a robot is manipulating, LLMs

can interpret numerical values into contextual meanings.

Haptics. Haptic perception is essential for human interaction with the physical

world and offers valuable potential for robots to infer properties such as hardness,

texture, and compliance. However, high-resolution tactile sensors are often expensive

and impractical for many applications. Therefore, in this work, only highly abstract

descriptions of force-torque feedback are used following a touch action on an object,

e.g. “It feels soft” or “It feels hard and smooth”.

Execution Policy. The execution policy is conditioned on the generated command

by an LLM and the visual information provided by the vision perception module.

Once an actionable command together with an identified target is suggested by the

LLM, the policy module locates the targeted object and executes a certain action.

Meanwhile, the environment feedback will be concurrently collected for multimodal

perception modules for further post-processing as demonstrated above.

5.3.3 Prompt Engineering

An issue of grounding LLMs in robotic scenarios is that some of the suggestions

generated by LLMs are not executable for a specific robot [Ahn+22; Hua+22], which

stems from the fact that LLMs are pre-trained with extremely large open-domain

corpora, while the robot is constrained by its physical capability and application

scenarios, e.g. a tabletop robot is not able to perform a “walk” action.
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In this work, the LLM is applied for few-shot planning [Mia+23; Zen+23a], in which

all the executable commands are defined together with several task examples as the

initial “chat” history. See Table 5.1 for the leading prompt which enables the LLM

to become grounded in the specific scenario and follow the contextual patterns for

commanding the execution policy. We found that only language models that are large

enough can follow the patterns in the prompt strictly, i.e. only generate commands

that have been defined in strictly case-sensitive letters and with the same amount of

allowed parameters for each, while small ones can hardly obey this constraint and

generate unexpected commands, which brings extra demands for tuning. As the

action planning is performed by LLMs constrained by a given prompt, the proposed

Matcha agent demonstrates high flexibility and generalizability upon the possible

incorporation of novel actions or perception modules into the system.

Table 5.1: The snippet of the 5-shot prompt setting. (The other four exemplars are omitted here due

to the high similarity).

The following are conversations with an AI to complete tasks that require active information

gathering from multimodalities. Otherwise, the materials of objects are unknown, and it

will be ambiguous for an AI to choose the right object. AI has the following skills to help

complete a task:

1. “robot.knock_on()”: to knock on any object and hear the sound to determine the material

it consists of. Most of the materials can be determined by this skill.

2. “robot.touch()”: to touch with haptics sensors. It is useful for some of the materials.

3. “robot.weigh()”: to weigh objects if the knocking method is not proper.

4. “robot.pick_up()”: to pick up the targeted object. After this skill is performed, the episode

will terminate with the result.

Note that the tasks are always set to be accomplishable, and the selected skill should start

with a “>” symbol.

...

Human: “pick up the glass block" in the scene contains [yellow block, blue block, green

block]

AI: robot.weigh(yellow block)
Feedback: It weighs light.

AI: robot.weigh(blue block)
Feedback: It weighs a little bit heavy.

AI: robot.knock_on(blue block)
Feedback: It sounds tinkling.

AI: robot.pick_up(blue block)
done()

...

5.4 EXPERIMENTS AND RESULTS

We conduct experiments in simulated multimodal manipulation scenarios to evaluate

the proposed Matcha framework to study the following research questions regarding

Objective II:

▶ R.Q. 5.1 Can Matcha integrate multimodal perceptions at the decision level?

▶ R.Q. 5.2 How does the level of abstraction in submodule outputs influence the

performance?

▶ R.Q. 5.3 How do different scale LLMs affect the performance?
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5.4.1 Experimental Setup

Task and Multimodal Scenario. We evaluate Matcha in an object-picking task: a

robot is instructed to pick up an object that is referred to by a latent property, i.e.
material, which is, however, not visually distinguishable under our settings. Tasks

are intentionally designed such that information from a single modality could be

insufficient to determine object properties, while other perception sources can provide

compensations to reduce or eliminate this ambiguity. For example, glass and metal

surfaces could exhibit similar hard and smooth properties upon contact, in which

case differences in impact sound can aid in further differentiation. Table 5.2 lists

variational multimodal descriptions of the materials. These properties are wrapped

as natural language sentences before being fed back to the LLM.

Robot Setting. Experiments are conducted in CoppeliaSim
3

simulations with the

NICOL robot
4

[Ker+23], where several blocks in various colors, materials, weights,

and surface textures are randomly selected and placed on the table next to a brown

container (see Figure 5.1). The ViLD [Gu+22] model is meant to be easily generalized

to describe complex scenes despite the simplicity of the object setting here. After

detection, the objects are represented universally by their name, which serves as a

parameter for the action function to identify. Objects with the same color will be

distinguished as “.. on the left/right” given the simplicity of avoiding more than

two duplicated colors for the same shape. The desktop robot is equipped with two

Open-Manipulator-Pro arms
5
, but only its right arm is activated to operate. It is capable

of executing actions in [“knock on” “touch” “weigh” “pick up”] with a parameter

to indicate the targeted object. The first three actions correspond to the interactive

perception of impact sound, haptics, and weight, respectively, and the last action

finalizes the task by picking and transporting an object into the box. Each instruction

is guaranteed to be achievable with the capability of the robot.

Multimodal Simulation. Due to the lack of support for physics-driven sound and

deformable object simulation in Coppeliasim, we have implemented reasonable

alternatives. For the haptics of objects, we simplify haptic perception by assigning

variational descriptions regarding their material, e.g. fibrous objects are usually

perceived as “soft” and a plastic object can be either “soft” or “hard”. Note that

advanced implementations can also be achieved using a neural network, as is used in

the sound perception module when haptic data for deformable objects is available.

For the impact sound, we split the YCB-impact-sound dataset [Dim22] into training

and testing sets and augment them with tricks such as shifting, random cropping,

and adding noise. The training set is used to train our auditory classification neural

networks, while the audios in the testing part are randomly loaded as an alternative

3: For further details, refer to § 2.3.2 “CoppeliaSim” on page 21 and visit https://www.
coppeliarobotics.com/. In Chapter 4, impact sound simulation is carried out using ThreeDWorld

(cfr. § 2.3.1) in an online setting where the subtle physics-driven differences matter as the focus is on

joint representation and policy learning. In contrast, this chapter emphasizes decision-level fusion and

multimodal reasoning, employing offline sound simulation with audio recordings from a real-world

robot dataset is sufficient and reliable.

4: See also § 2.2.1 “NICOL” on page 18 for details.

5: https://emanual.robotis.com/docs/en/platform/openmanipulator_p/overview/

https://www.coppeliarobotics.com/
https://www.coppeliarobotics.com/
https://emanual.robotis.com/docs/en/platform/openmanipulator_p/overview/
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to run-time impact sound simulation for the materials mentioned,

Sound can be informative, though not perfect, for determining materials [Dim22].

Besides showing the mediating ability of multiple modalities by the LLM, we further

investigate its reasoning ability by employing indistinct descriptions instead of exact

material labels.

▶ Distinct description: the sound module describes sound feedback by the corre-

sponding material name and its certainty (in percentage) from the classification

model, e.g. “It is probably glass” or “It could be plastic with a 47% chance,

or ceramic with a 35% chance” The distinct description setting is more task-

oriented, and it examines the robot’s ability to mediate multiple sensory data

for disambiguation.

▶ Indistinct description: we listed some commonly used indistinct sound descrip-

tions in human communications in Table 5.2, e.g. using “dull” to describe

the sound from a plastic block and “tinkling” to describe the sound for both

ceramic and glass objects. This setting is more task-agnostic and thus has the

potential for generalization. Moreover, it compels the LLM to infer “professional”

material terminology from ambiguous yet multimodal descriptions.

Language Models. The online OpenAI text-davinci-003 API
6

is applied as the LLM

backend because it demonstrates robust instruction-following ability and outstanding

reasoning performance
7
. We also evaluate with a weaker but far less expensive LLM

text-ada-001, a GPT-3 model which is usually fast and capable of simple tasks,

under the same setting as comparison.

5.4.2 Results

We test the proposed Matcha agent in 50 randomly generated scenarios for each

setting and report the success rate.

Research Question 5.1 Can Matcha integrate multimodal perceptions at the

decision level?

We found that a pre-trained impact sound classification model achieved an average

accuracy of 93.33%. When considering the scenario where the robot randomly knocks

on one of three objects and uses the sound module to identify the target material, the

theoretical success rate is calculated as 89.18% (computed from
1

3
𝑝 + 2

3
𝑝2|𝑝=93.33%%,

where 𝑝 is the accuracy of the sound module). Other modalities are generally less

distinctive than sound, making it impractical for humans to manually craft fusion

rules that significantly improve this baseline. Therefore, this theoretical success rate

with only the sound module serves as both a practical upper bound and a baseline

6: https://platform.openai.com/docs/models/gpt-3
7: The code-davinci-002 is not chosen because it is the common sense instead of the ability of code

completion that matters more to the active perception. At the time this experiment was carried out, the

text-davinci-003 model was the state-of-the-art GPT-3.5 model available; while the later released

ChatGPT or GPT-4 model showcases the impressive improved abilities of reasoning, future works

will explore the potential of these models.

https://platform.openai.com/docs/models/gpt-3
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Table 5.2: Descriptive properties of different materials used by Matcha.

Materials Impact Sound Haptics Weight

Metal • resonant and

echoing

• metallic

• ringing

• hard and cold

• rigid, cold, and smooth

• heavy

• 300g

Glass • tinkling

• tinkling and brittle

• hard

• hard and smooth

• cold and smooth

• a little bit heavy

• 150g

Ceramic • clinking and rattling

• rattling

• tinkling and brittle

• hard

• tough

• average weight

• not too light / heavy

• 100g

Plastic • dull

• muffled

• hard

• soft

• light

• 30g

Fibre • muted

• silent

• soft

• flexible

• lightweight

• underweight

• 10g

for evaluating Matcha’s performance if it were to rely solely on impact sound. From

Table 5.3, Matcha achieves a relatively higher success rate of 90.57% compared to the

ideal theory baseline, indicating its effective utilization of compensatory information

from other modalities in addition to sound.

Research Question 5.2 How does the level of abstraction in submodule outputs

influence the performance?

Even when provided only with indistinct descriptions of impact sounds, Matcha

achieves a success rate of 56.67%, significantly above the chance level of 33.33%

(random selection among three options). This demonstrates the system’s capacity

for few-shot deduction using vague or imprecise language. Failure case analysis

reveals that materials like glass and ceramic are often confused due to their similar

descriptions across modalities such as sound, haptics, and weight. These challenges

are mitigated when using distinct descriptions, where the sound classification network

can directly predict the material, preserving more information in the translation from

perception to language. While Matcha shows strong reasoning capabilities, these

results underscore the importance of carefully designed, sufficiently specific modular

outputs. Excessive abstraction can lead to ambiguity, reducing the effectiveness of

multimodal integration in interactive perception tasks.

Research Question 5.3 How do different scale LLMs affect the performance?

We observe that only strong, large LLMs (GPT-3 text-davinci-003 in our experi-
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Table 5.3: Matcha task success rate with various LLMs.

LLM Type of Description Success Rate

text-ada-001
Indistinct 19.05%

Distinct 28.57%

text-davinci-003
Indistinct 56.67%

Distinct 90.57%

AI: robot.touch(red block)

AI: robot.touch(green block)

AI: robot.knock_on(green block)

AI: robot.weigh(green block)

AI: robot.pick_up(green block)

AI: The object is likely to be made of
fibre due to its weight, flexibility,
muted sound and smooth feeling. Therefore, I selected the green
block as the fibre block and used the robot.pick_up() skill to pick it up.
done()

                                                    in the scene that contains [yellow
block, red block, green block].

Feedback: It feels cold and smooth.

Feedback: It feels flexible.

Feedback: It sounds muted.

Feedback: It weights underweight.

Human: "pick up the fibre block"

Human: Explain why.

Figure 5.3: A successful example in which the robot deduces “fiber” material with indistinct

descriptions of impact sound.

ments)
8

can perform the task following the primary prompt as we defined, while

weak ones possibly generate commands that are not executable and show degraded

performance (see Table 5.3). For example, GPT-3 text-ada-001, a smaller model in

the GPT-3 model series, may generate commands like “robot.knock_on(metal block)”
or “robot.weigh(yellow block, blue block)”, which are not compatible with the design

interface of robot skill functions due to mismatches in parameter types.

5.4.3 Case Studies

We provide case studies to showcase the interactive perception ability of Matcha in

multimodal environments. Following the convention of this chapter, texts containing

information from humans, LLMs, and the environment are indicated in red, green,

and blue, respectively. The case in Figure 5.3 demonstrates that the agent can infer

latent material properties from multimodal yet ambiguous descriptions. During the

planning process, the agent decidedly terminates exploration of the “red block” and

instead engages in interacting with the “green block” exhaustively for a comprehensive

examination. Common sense and, moreover, established knowledge in the LLM

enables Matcha to efficiently interact with the environment. Matcha’s proficient

behaviors provide evidence of effective reasoning, as it aligns with the subsequent

explanation provided by the LLM, namely, that fiber can often be considered “flexible”

rather than “cold and smooth”. The example depicted in Figure 5.4 presents a

fascinating observation: the impact sound of the “orange block” suggests it is more

likely to be plastic than metal, but Matcha accurately distinguishes it from plastics

8: At the time of our experiments, text-davinci-003 was the most advanced GPT model publicly

available.
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                                                     in the scene that contains [orange
block, red block, green block].

Feedback: The material cannot be 
certainly confirmed according to
the impact sound. It could be plastic
with a 30% chance, or metal with a
24% chance.

Feedback: It weighs heavy.

Feedback: It feels rigid, cold, 
and smooth.

AI: robot.knock_on(orange block)

AI: robot.weigh(orange block)

AI: robot.touch(orange block)

AI: robot.pick_up(orange block)

AI: The sound, weight, and feeling of the object all indicate that it is 
a metal object. Therefore, I chose to pick up the orange block.
done()

Human: "pick up the metal block"

Human: Explain why.

Figure 5.4: A successful example with a distinct description of impact sound. This example shows

that by leveraging multimodal perception, LLM rectifies the misclassification that may occur when

relying solely on sound modules.

AI: robot.knock_on(blue block)

AI: robot.knock_on(yellow block)

AI: robot.touch(yellow block)

AI: robot.weigh(yellow block)

AI: robot.pick_up(yellow block)
 
AI: The knocking and touching results suggest that the yellow block
is made of glass. Weighing it confirms this, as glass usually weighs
less than other materials.
done()

Human: "pick up the glass block"

Human: Explain why.

                                                     in the scene that contains [yellow
block, blue block, orange block].

Feedback: It sounds dull.

Feedback: It sounds dull mostly and 
also a little bit clinking and brittle.

Feedback: It feels hard.

Feedback: It weighs 30g.

Figure 5.5: An example in which the agent fails to distinguish glass and ceramic in the setup of using

indistinct descriptions of impact sound.

after engaging in the interactive perception of weight and haptics. This showcases

the potential of multimodal perception to improve classification accuracy. Figure 5.5

provides a failure case with indistinct descriptions where the robot picks up a ceramic

block when asked to pick up the one made of glass. The underlying cause of this

failure is the sensing similarity between glass and ceramic, which creates difficulty in

resolving epistemic uncertainty.

5.4.4 Discussion

Weak LLMs, e.g. ones without fine-tuning on instruction alignment [Ouy+22], may

not have sufficient capability for precise planning, and thus may require carefully

engineered prompts or other grounding techniques. On the other hand, strong

LLMs exhibit impressive in-context learning [Zha+23b] abilities. These observations

highlight the potential of leveraging knowledge within strong LLMs, as it enables

the successful execution of tasks that were previously deemed infeasible. LLMs can

derive significant advantages from utilizing common knowledge, being robust to

various instructions regardless of their changes in synonym, linguistic structure or
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even semantic meanings out of the scope that the robot is initially designed within,

e.g. an instruction variation from “the metal block” to “a block that may be suitable

for cracking a nut”, in which the robot has to establish a meaningful connection

between the object’s multimodal perceptions and the required utility. Nevertheless,

the reasoning trace may not always align with human expectations. There are cases in

which LLMs may prematurely draw conclusions due to their limited logical reasoning

ability, particularly when faced with a task that requires reasoning from a long list of

facts.

5.5 CONCLUSION

The Matcha framework achieves strong generalizability by leveraging the com-

monsense knowledge in LLMs, whereas control algorithms like those trained with

Reinforcement Learning (RL) [Li+23c; Sin+20] require extensive data to learn cross-

modal commonsense [Sin+20] and remain less efficient and generalizable. Their

potential for integration and enhancement with other fields has attracted growing

attention from different research areas. In this work, we demonstrate the feasibility

of using an LLM to realize interactive multimodal perception. We propose Matcha,

a multimodal interactive agent augmented with LLMs, and evaluate it on the task

of uncovering object-latent properties. Experimental results suggest that our agent

can perform interactive multimodal perception reasonably by taking advantage of

the commonsense knowledge residing in the LLM, being generalizable due to its

modularity and flexibility.

5.6 LIMITATIONS AND FUTURE WORK

Abstraction. Representing the real world with natural language can be limited by

environment dynamics and the feasibility of abstracting desired behavior with natural

language. The vision module applied in this work is a separable visual detection

module, which is unable to describe the scene with fine-grained details. This brings

the requirement of vision-enabled LLMs [Zhu+23; Ton+22; Zit+23], built on which

the reasoning can be malleable.

Fine-tuning and Reasoning. While large LLMs excel at complex tasks, their high

computational and memory demands make local deployment costly. Future work

will focus on distilling domain-specific knowledge into smaller, efficient models for

greater flexibility and control. Reasoning, crucial for long-term planning and complex

decision-making, will be further explored in Chapter 6.



ENHANCING REASONING VIA

LOGIC-GUIDED INFERENCE

SCALING 6
Semantics + Self-determination

To address Objective III, i.e. “to enhance agent reasoning abilities to interpret complex
instructions and make informed decisions”, this chapter introduces the application

of logic principles to guide LLM reasoning, trading inference-time compute for

better reasoning performance.

Reasoning is one of the emergent abilities of advanced LLMs when scaled large

enough. It can be regarded as exploration in semantic space, where an agent ac-

tively explores possible solutions with self-determination, since complex reasoning

process often involves diverse sampling and self-verification (the second phase

of self-determination following intrinsic motivation), until reaching a semantic

consistency. Since LLMs become the core of nowadays intelligent agents, the en-

hancement of their reasoning ability directly amplifies the usability and robustness

of AI agents, in no matter virtual or embodied environments. In Chapter 5, LLMs

are utilized to reason and make decisions with the contextual information of the

environment. However, the reasoning ability of LLMs is still limited, especially

when it comes to complex tasks that require multi-step reasoning.

With the impressive performance of reasoning models such as OpenAI-o1 [Ope24]

and DeepSeek-R1 [Dee+25; Dee+24], as well as other emerging counterparts, the

development of advanced large reasoning language models, whether through

fine-tuning or inference-time scaling [Sne+24; Mue+25; Gei+25; Liu+25b], has

become a prominent research focus. The method proposed in this chapter follows

the latter approach.

Advancements in LLMs have demonstrated remarkable generalizability across a wide

range of domains. However, their reasoning capabilities, particularly in complex

tasks requiring multi-step reasoning, remain a significant challenge. Recent work on

enhancing reasoning in LLMs, especially in domains such as mathematical problem

solving, typically follows one of two major approaches:

▶ Large-scale Reinforcement Learning (RL), represented by DeepSeek-R1-Zero

[Dee+25], which deploys solely RL algorithm with rule-based reward functions
1

to explore the reasoning space, resulting in strong reasoning models with an

emergent “aha moment”, where the model presents rethink patterns in an

anthropomorphic tone.

▶ Inference-time scaling (or test-time scaling), which refers to ways of encouraging

LLMs to explore solution space with additional computational resources during

the inference phase (i.e. when the model is used to generate outputs) to improve

1: Instead of using a pre-trained reward model in, for example, Internally Rewarded Reinforcement

Learning (IRRL) [Li+23c], Reinforcement Learning from Human Feedback (RLHF) [Chr+17; Cas+23;

Ouy+22], or Reinforcement Learning from AI Feedback (RLAIF) [Lee+24] paradigms, as a guarantee

of reward signal reliability.
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the quality of responses, without tuning the model itself. A simple yet efficient

example is Chain-of-Thought (CoT) prompting [Wei+22a], which leverages the

in-context learning of LLMs to ability invoke a series of intermediate reasoning

steps before reaching a final answer.

While the RL-based approach is powerful, it demands substantial data and compu-

tational resources. In contrast, inference-time scaling is more efficient and broadly

applicable to existing models. However, a key limitation of current inference-time

methods is their limited integration of symbolic reasoning, such as logic-based prin-

ciples, into the reasoning process. Despite the vast amount of internalized knowledge

in LLMs, they often fail to utilize this knowledge effectively to construct coherent

and logically consistent reasoning chains. Prior research in context distillation has

focused on extracting internal knowledge to enhance preference alignment, typically

by eliciting contrastive responses using specially designed prompts [Yan+24; Li+25b].

Yet, efforts to distill knowledge specifically for improved reasoning remain under-

developed. To address this gap, this chapter introduces Logical Thoughts (LoT), a

method designed to elicit logically contrastive reasoning traces and fuse them into a

coherent, unified reasoning chain.

LoT is an inference-time scaling method built upon CoT, which generates a sequence

of intermediate reasoning steps leading to a final answer. However, longer reasoning

chains are often more susceptible to error propagation [Wu+25]; that is, a single

mistake in an intermediate step can compromise the entire reasoning process. This

vulnerability motivates the incorporation of a self-determined verification mechanism

to assess and refine each step of the chain. Particularly, LoT introduces Reductio

ad Absurdum to systematically verify and correct reasoning steps in a step-by-step

manner. Experimental evaluations conducted on language tasks in diverse domains,

including arithmetic, commonsense, symbolic, causal inference, and social problems,

demonstrate the efficacy of enhanced reasoning by logic. The implementation of LoT

is publicly available at: https://github.com/xf-zhao/LoT.

CoT

LoT

Figure 6.1: An overview of CoT (chain-of-thought prompting, [Wei+22a]) and LoT (ours). In CoT,

the failure of entailment ( ) makes the rest of the deduction untrustworthy ( ), impeding the overall

success of the deduction. In contrast, LoT is designed to think-verify-revise: it adopts those who

pass the verification ( ) and revises ( ) those who do not, thereby effectively improving the overall

reasoning capability.

https://github.com/xf-zhao/LoT
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6.1 INTRODUCTION

LLMs exhibit remarkable capabilities in handling tasks that require common sense

reasoning or specialized domain knowledge, often giving the impression of near-

omniscience. Their effectiveness has been demonstrated across a wide range of do-

mains beyond traditional language processing [Bub+23; Yao+23b; Ahn+22; Zha+23c].

However, one major problem residing in generative LLMs yet to be solved is their

tendency to hallucinate wrong statements in a confident style [Ban+23]. A quick

example can be found by asking a non-internet-based LLM about very recent news,

i.e. it will too easily make up facts without hesitation.

An educated human with expertise in logical reasoning can systematically examine

words before coming to a conclusion. Unlike logical reasoning by humans, the logical

incompetence of deductions by LLMs makes their decisions untrustworthy. LLMs

may have a large number of logical concepts and tricks available, but fail to actively

utilize them in an organized manner. However, principles in logic well-adapted by

humans can leverage the reasoning ability of language models. Take a simple logic

reasoning task as an example: “If Tom plays football outside, then John will also join to
play; if John plays football, then Mary won’t go outside. Knowing that Mary is outside, is
Tom playing football?” Nine out of ten answers from ChatGPT

2
will conclude that

“we cannot conclude whether Tom is playing football or not”. However, with the help of

the knowledge that the contrapositive holds the exact same truth value as the original
proposition, we may prompt ChatGPT to “use contrapositive” to reason in another

way. Then it deduces correctly: “ ... Using the contrapositive of the first statement, if John
does not join to play (which we have deduced), then it implies that Tom does not play football
outside. Therefore, based on the given information and the contrapositives, it can be deduced
that Tom is not playing football.” Even though logical concepts are not new to an LLM,

the model initially struggles to incorporate them. See Figure C.1 in Appendix C.1 for

the full conversation.

By prompting an LLM to utilize logical equivalence, i.e. expressing premises that

are logically equivalent but phrased differently in natural language, the original

statements can be reformulated in diverse ways, effectively fostering the exploration

of potential solutions. Motivated by the reasoning process in logic, we propose the

Logical Thoughts (LoT) prompting framework, a fully automatic reasoning paradigm,

to further self-improve the zero-shot reasoning
3

ability of LLMs, which not only lets

an LLM think step by step but also verify, step by step, according to the guidance via

the principle of Reductio ad Absurdum, and revise the reasoning chain if necessary to

guarantee a sound inference (see Figure 6.1 for an overview).

6.2 RELATED WORK

In order to unleash the power of a pre-trained generative language model, the quality

of the interaction prompts plays an important role.

2: https://openai.com/blog/chatgpt
3: Under the setting where no exemplars are provided in the prompts for in-context learning.

https://openai.com/blog/chatgpt
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6.2.1 Chain-of-Thought Prompting

Prior works show that LLMs have the ability to solve complex tasks but require

a proper strategy to unleash this ability, e.g. human-in-the-loop alignment tuning

[Ouy+22] and Chain-of-Thought (CoT) prompting [Wei+22a]. To generate a chain of

thought that decomposes the original problem into several small parts that a language

model can easily handle, CoT creates few-shot exemplars of a detailed reasoning path

that it lets the model follow. Least-to-most [Zho+23] explicitly prompts the LLM to

divide complex questions into sub-problems and solve them one by one. Moreover,

zero-shot-CoT [Koj+22] showcases the impressive effectiveness of simply attaching

the sentence “Let’s think step by step.” before any reasoning trace starts.

We build our approach under a zero-shot setting and integrate zero-shot-CoT as a

baseline to compare against. While existing CoT-based methods focus on encouraging

the reasoning step to be concrete, but lack supervision of their faithfulness, we

propose a step-by-step verification mechanism.

6.2.2 Variational Prompting

As an auto-regressive model, the output of an LLM can be influenced by its input.

Therefore, there are many research endeavors on prompt variations. Summarizing

existing works, the reasoning procedure benefits from prompts that (1) are relevant to

the reasoning task, (2) are diverse in expression, (3) lead to decomposition of complex

tasks, (4) suggest grounding with known facts, and (5) result in progressive revision of

reasoning steps. In the design of LoT prompting, we selectively adopt these effective

prompt properties.

Relevance

An LLM can be easily distracted by irrelevant words in the prompt. A pre-selection of

context enhances the correctness of reasoning [CSH23; CS22; Lin+23]. Previous works

typically resort to an LLM (which can be either the LLM to train or an independent

one) to evaluate the relevance of facts and infer with the ones that contribute to a

reasoning step [CSH23; Lin+23]. Our verification of each reasoning step is conducted

by prompting LLMs to select relevant premises to deduct from.

Diversity

The collective intelligence from a set of reasoning paths (typically, sampling 𝑁 times)

helps produce a reliable answer that is nearly consistent among these variants. Despite

the 𝑁-times increased cost, this ensemble approach has been widely combined

with other techniques for higher accuracy [Li+23b; Lin+23; Yao+23a; Zhe+23].

A single reasoning trace may be biased. In order to produce a set of reasoning

candidates, previous works resort to generating samples several times with the

same prompt [Wan+23b], or creating diverse prompts in the beginning for variants
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[Li+23b]. However, the ensemble-based approaches are both costly and inefficient.

The performance of their majority voting strategy can be limited since it is not a

guided, in-depth thinking strategy.

Decomposition

Automatically decomposing complex questions into simpler sub-questions enhances

the reliability and interpretability of reasoning processes, reducing reasoning errors

and increasing consistency. This strategy has been shown to significantly improve

performance in LLMs, as evidenced by the success of techniques such as Least-to-

Most Prompting [Zho+23], Zero-shot CoT prompting [Koj+22], and other structured

prompting methods [Yao+23a; Wei+22a]. Decomposition also aligns well with human

problem-solving strategies, where breaking down a problem often leads to a clearer

understanding.

Grounding

External functions, e.g. a third-party calculator for mathematical problems [Sch+23],

information acquisition from Wikipedia [Yao+23b], or an affordance evaluation in

robotics [Ahn+22], can ground the generation to be meaningful. This verification

can be triggered under a specified condition or always be applied to the reasoning

process [Lig+24; Lin+23; Li+23b]. LoT is primarily inspired by a logical standpoint

to ground LLM generations with logical principles, empowering an LLM to argue

different possibilities. It suggests verification and also introduces revisions of the

suspected reasoning steps.

Revision

Revision (or refinement) can be regarded as a special kind of diversity, but it is

conditioned on the previous generation that provides hints. It re-examines the words

with a focus on their quality in terms of, for example, validity and conciseness

[Mad+23; Zhe+23; Wel+23]. It is an iterative generating process conditioned on

previous content. Many previous works actually benefit from this manner, though not

explicitly mentioned. For example, Progressive-Hint Prompting [Zhe+23] generates

consistent answers by progressively guiding the LLM with hints of accumulated

possible answers. It repeats the generation until the answer is deemed consistent with

the previous. Other works generate content conditioned not only on the previous

content but also on extra feedback [Mad+23]. To obtain a revision with high quality,

this guiding feedback should be specific and actionable. LoT avoids unnecessary

duplicating on non-controversial reasoning steps and only revises steps deemed

implausible, resulting in a chain that grows only when required (Figure 6.1 blue

circle). Besides, we employ a post hoc explanation [Jun+22] to provide constructive

suggestions for purposeful revisions.



88 6 Enhancing Reasoning via Logic-Guided Inference Scaling

6.2.3 Neurosymbolic Models

Neurosymbolic models combine neural networks with symbolic representations

and reasoning techniques [WS00b; WS00a; GL20; Sar+22]. Their success stems from

their ability to leverage symbolic (structured) knowledge to enhance learning or

reasoning [Sar+22; GL20; Nye+21]. Unlike end-to-end black-box frameworks, these

neurosymbolic models are more interpretable and explainable because of their

transparency.

There exist works that adopt concepts from symbolic logic [Agl12] to establish a reliable

reasoning path [CSH23; Jun+22]. To solve binary question-answering problems, it

has been proposed to generate a post hoc explanation graph for a statement and

compute the relative relations to formulate a symbolic logic expression [Jun+22]. The

truth of the statement is thereby assigned by solving the satisfiability problem of this

symbolic expression. The LoT framework employs a controlled prompting strategy

that leverages logic rules and post hoc arguments to enhance error detection.

6.3 METHOD: LOT

As demonstrated in the contraposition example presented in § 6.1, when known

logical rules are utilized to achieve a logical equivalence, the resultant distinct natural

language expression affords LLMs a chance to engage in reasoning from an alternative

perspective.

A challenge is that the language model has to identify the inherent logical structures

first to know whether certain prior knowledge can be effectively applied. Moreover,

transforming everything from the real world into a symbolic expression is unrealistic.

The applicable scenario is limited because questions in many reasoning fields beyond

logic, e.g. mathematics problem solving, can hardly be expressed in symbolic logic.

Nevertheless, there is promise in incorporating concepts from logic that contribute

to the process of argument proof in order to construct a neurosymbolic framework

[GL20; CSH23] that facilitates a causal reasoning trace, i.e. the premises and leading

thoughts entail the thoughts that follow. Continuing with the success of “let the model

talk”, e.g. “let’s think step by step” in zero-shot-CoT [Koj+22], we further propose to

guide the conversation with logic for exploration of solutions. See Figure 6.2 for the

guiding diagram.

6.3.1 Reductio ad Absurdum

Self-checking is a challenging task for LLMs [Lin+23; Hua+24], and humans may

also struggle with it. In logic, an effective technique to establish a claim is known

as reductio ad absurdum, which involves an initial assumption and consequent

derivation of absurdity or contradiction.

Let 𝑃 and 𝑄 denote two propositions. The relation between a premise 𝑃 and its

conclusion 𝑄 can be expressed as 𝑃 ⊢ 𝑄. Here “⊢” is a syntactic turnstile which
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Verification passed

Verification failed & Revision

Figure 6.2: A diagram demonstrating the think-verify-revision loop of LoT. The two zoomed-in boxes

display the processes when a thought passes (top-left) and fails (bottom) the verification, respectively.

A thought passing the verification is kept in the reasoning trace, while a thought failing the verification

is revised, and a new chain of thought is generated based on the revision. The symbols in this figure

are introduced in § 6.3.2 and § 6.3.3. See also Figure C.2 in Appendix C.5 with extended details.

means 𝑄 is a syntactic consequence of 𝑃 [Agl12], i.e. there exists a proof that claims

the conclusion 𝑄 given the premise 𝑃. In order to prove 𝑄 using reductio ad absurdum,

let us assume its negation ¬𝑄 is valid and then check the contradiction
4

of the

conjunctive proposition
𝐶 = 𝑃 ∧ ¬𝑄, (6.1)

where “∧” is a binary conjunction operator, meaning the truth of the conjunction

requires the truth of both sides. Upon the contradiction of the co-existence of the

𝑃 and ¬𝑄, 𝑃 ⊢ 𝑄 is thus proved true, and then we can claim the validation of the

conclusion 𝑄 given the premise 𝑃.

Many logic principles, e.g. the contraposition mentioned in § 6.1 (see Appendix C.2

for a proof), can be derived by deductions following this rule. This thinking paradigm

helps humans check arguments carefully before composing a conclusion. As we will

demonstrate later, the reasoning ability of LLMs can also be improved by benefiting

from this paradigm. The next subsection, § 6.3.2, presents the prompting and

verification process for individual reasoning steps. Based on the verification result,

the chain either proceeds (ignoring intermediate verification) or resets (discarding

both the remaining original steps and intermediate verification thoughts).

6.3.2 LoT Prompting

There is evidence that a series of coherent explanations helps an LLM to unleash its

reasoning ability [Wei+22a; Koj+22; Zho+23], while discouragement on its utterance,

e.g. prompts like “just tell me the result without any explanation”, negatively impact

4: A proposition is considered contradictory if and only if it is false under every valuation.
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on an LM’s reasoning ability. So we elaborate on the success of an explicit reasoning

process.

A typical 𝑁-step reasoning trace can be expressed as {𝑃, 𝑇1, · · · , 𝑇𝑁}, where 𝑃 is the

known premise and 𝑇𝑖 is the 𝑖-th step of thoughts that originates from the output of a

vanilla CoT.
5

Usually, 𝑇𝑁 concludes the thoughts and answers the specified question.

Unfortunately, LLMs hallucinate. LLMs usually generate content autoregressively,

which means the generation of 𝑇𝑖 is based on the former content {𝑃, · · · , 𝑇𝑖−1}.
Errors in 𝑇𝑖 will propagate and gradually influence 𝑇𝑖′ for increasing 𝑖′ > 𝑖, making

the successive deductions and ultimately the final conclusion untrustworthy (cfr.
Figure 6.1). Therefore, we propose a verification loop to double-check each reasoning

step. Following Equation 6.1, this double-check procedure unrolls by checking the

validity of 𝑃, · · · , 𝑇𝑖−1 ⊢ 𝑇𝑖 , i.e. the contradiction of

𝐶𝑖 = 𝑃 ∧ 𝑇1 ∧ · · · ∧ 𝑇𝑖−1 ∧ ¬𝑇𝑖 , (6.2)

once 𝑇<𝑖 passed the verification. If any step 𝑇𝑖 fails the verification, this implies that

the premises and previously verified thoughts 𝑇<𝑖 do not entail 𝑇𝑖 . In this case, 𝑇≥𝑖
needs to be revised.

To negate 𝑇𝑖 by an LLM, a straightforward way is to format ¬𝑇𝑖 as “It is false to say
𝑇𝑖” or to give to the LLM an instruction of “Negate 𝑇𝑖”. Then, the LLM has to further

identify possible contradictions in 𝐶𝑖 (Equation 6.2).

We have the following two prompting implementations for the proposal of logic-based

candidates to assist self-verification:

▶ Cmps-LoT. Given that 𝑇𝑖 is articulated in natural language and can span multiple

sentences, we aim to derive a more insightful negation by adopting the chain-

of-thought methodology. Here, we task the model with composing a post hoc

explanation
6
, 𝐸¬

𝑖
of¬𝑇𝑖 [Jun+22], and then prompt the LLM to check the validity

of 𝐶
′
𝑖
= 𝐶𝑖 ∧ 𝐸¬𝑖 instead of just 𝐶𝑖 . We call this simple approach Cmps-LoT.

▶ Adpt-LoT. Considering that a logical error in a text generated by an LLM is hard

to spot by the LLM itself [Hua+24], we additionally propose to alleviate the

difficulty in verifying 𝑇𝑖 by generating a pair of post hoc explanations 𝐸𝑖 and 𝐸¬
𝑖

of 𝑇𝑖 and ¬𝑇𝑖 respectively, and let the LLM decide between 𝑇𝑖 ∧ 𝐸𝑖 and ¬𝑇𝑖 ∧ 𝐸¬𝑖
and adopt one of the two. We call this full approach Adpt-LoT or just LoT7

.

An LLM is then often biased by the prompt and, as a result, generates an explanation

consistent with the prompt. Because of this “compulsory” behavior, once a statement

is deemed false in the leading prompt, the LLM tries hard to discover errors even

if they are less obvious. LoT gains advantages from the mandatory error-detection

5: In practice, we employ the prompt “Let’s think step by step.\n # 1.” to guide an LLM to generate

reasoning steps in a consistent format, each leading with a number “# 1.”, “# 2.”, etc.. Subsequently,

regular expression rules can be easily applied to split these steps into atomic units 𝑇number.

6: A post hoc explanation is an explanation completed by the LLM with a prompt like “𝑇𝑖 is true

because” or “𝑇𝑖 is false because”.

7: This strategy works on the hypothesis that the discrimination choice (from two opposite, post hoc

arguments that are already listed there) is more trustworthy than the one that LLMs compose from

scratch.
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behavior. Additionally, when transitioning from the Cmps- to the Adpt- variant, the

problem transforms into a preference discrimination task [Sau+22], featuring more

balanced reviews for both 𝑇 and ¬𝑇 and being more manageable.

Algorithm 2: Adpt-LoT Reasoning
8

input :Problem/Premise 𝑃, LLM model
output :Verified thoughts collection T

1 Initialize T← {𝑃} ;

2 𝑇1, 𝑇2, · · · , 𝑇𝑁 ← RegEx[LLM(T)], 𝑖 ← 1 ;

3 while 𝑖 ≤ 𝑁 do
4 𝐸¬

𝑖
← PostHocLLM(𝐸|¬𝑇𝑖 ; T) ;

5 𝐸𝑖 ← PostHocLLM(𝐸|𝑇𝑖 ; T) ;

6 𝐸̂← LLM(𝐸𝑖 ;𝐸¬𝑖 |T) ;

7 if 𝐸̂ is 𝐸¬
𝑖

then
8 𝑇

′
𝑖
← LLM(𝑇|T;𝑇𝑖 ;𝐸

¬
𝑖
), 𝑇𝑖 ← 𝑇

′
𝑖

;

9 {𝑇>𝑖}𝑁 ′ ← LLM(T∪ 𝑇𝑖), 𝑁 ← 𝑁
′
;

10 T← T∪ 𝑇𝑖 , 𝑖 ← 𝑖 + 1 ;

6.3.3 Chain Growth

In order to investigate a step 𝑇𝑖 , LoT masks out all of the trailing thoughts 𝑇>𝑖 and

branches out for revision 𝑇
′
𝑖

conditioned on {𝑇≤𝑖 , 𝐸¬𝑖 }. Since precise feedback is

important to the success of revision [Mad+23], we also encourage the LLM to revise

any inappropriate thought with the advice to reason “why it is wrong”, i.e. 𝐸¬
𝑖
.

Then, an adapted chain with a new conclusion can be re-generated based on the

concatenation of the verified thoughts so far, i.e. {𝑇<𝑖 , 𝑇
′
𝑖
}. This loop continues until

the final conclusion passes the verification, which results in a chain with all the

nodes being verified (see Figure 6.2 for an abstract depiction and Figure C.2 for a

detailed example). Note that this chain grows only when required. Algorithm 2 shows

the pseudo-code of the function to compute the reasoning trace of (Adpt-)LoT. The

pseudo-code for Cmps-LoT can be found in Algorithm 5, in Appendix C.3 on page 145,

where the distinct procedure for identifying contradictions is emphasized.

6.4 EXPERIMENTS AND RESULTS

For the following reasons, we carry out the experiments in a zero-shot setting: 1)

Zero-shot-CoT [Koj+22] has a wide task-agnostic application potential, while few-

shot requires domain knowledge; 2) The few-shot prompts heavily influence the

performance even on the same dataset, so it is hard to evaluate fairly, as the prompt

varies. Drawing direct comparisons with other prompting works in the literature is
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challenging due to variations in task settings and backend language models. Many

of these works are specifically under a few-shot setting, which would necessitate

additional modifications to adapt them for zero-shot reasoning. We consider this an

area for future investigation.

Since our work is an enhancement on the chain produced by zero-shot-CoT [Koj+22],

we compare LoT with it as the baseline to demonstrate the benefit of step-wise

verification and revision for zero-shot reasoning. We evaluate the accuracy of tasks

in various domains as the overall performance measure and also report the impact of

the logical revision on the original reasoning chain.

We aim to answer the following research questions regarding Objective III by

conducting experiments:

▶ R.Q. 6.1 Does LoT outperform the original zero-shot CoT, i.e. logic-guided

inference enhances reasoning ability, in various domains as well as with LLMs

of varying model scales?

▶ R.Q. 6.2 What is the impact of LoT on individual reasoning chains (e.g. revision

frequency, length)?

▶ R.Q. 6.3 Do post-hoc explanations help LLM self-check?

6.4.1 Experimental Setup

Dataset

We demonstrate the effectiveness of LoT on diverse language topics:

▶ Math reasoning tasks GSM8K [Cob+21] and AQuA [Lin+17]. The GSM8K

dataset contains grade school mathematics questions that should be responded

to by numerical answers; AQuA has more advanced questions, but has several

optional answers to choose from.

▶ Commonsense reasoning tasks DateUnderstanding and OddOneOut [Sri+23].

The DateUnderstanding task necessitates the utilization of both common sense

and fundamental arithmetic calculations to find out the correct date, making

it sufficiently challenging to prevent it from being solvable through simple

one-step reasoning. The OddOneOut requires common sense to deduce the

unusual object in the context.

▶ Causal inference tasks CauseEffect and ShuffledObjects [Sri+23], where both of

the tasks require reasoning from the context for a correct deduction.

▶ Symbolic reasoning task LastLetter [Sri+23]. In this task, the language model

has to extract the last letter of given candidates and concatenate them in order,

which is simple for humans but challenging for language models because of

tokenization [Mie+21].

▶ Social interaction reasoning task, SocialQA [Sri+23], that measures the model’s

emotional and social intelligence in human daily activities. Completing the task

requires an understanding of human behavior.

To get a formatted answer that can be directly compared with the ground truth in

the aforementioned dataset, a final prompt asking for the final answer is attached
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after the reasoning trace, e.g. for the GSM8K dataset, we simply attach “Therefore,

the final numerical answer is:” at the end. For robustness, this answer is matched

with a regular expression to extract only numerical digits before comparing it with

the ground truth.

Backend LLMs

Previous works show that the performance improvement of the CoT technique

varies when applied to language models of different capabilities [Wei+22a; Koj+22].

Therefore, we conducted an evaluation of the LoT method using a range of models,

including Vicuna-7b, Vicuna-13b, and Vicuna-33b models [Chi+23], as well as GPT-

3.5-turbo and GPT-4. The Vicuna model is an open-sourced language model trained

by fine-tuning LLaMA [Tou+23] on user-shared conversations. It demonstrates strong

performance across various scenarios and offers flexibility in terms of model size

selection. On the other hand, GPT-3.5-turbo and GPT-4 are larger models known for

their state-of-the-art performance in numerous tasks.

To ensure stable results and promote self-error detection within the models, we

set the temperature parameter to 0.1. Additionally, the max_token parameter was

established at 2048, a sufficient limit to accommodate all the datasets employed in

our evaluation.

6.4.2 Analysis

Research Question 6.1 Does LoT outperform the original zero-shot CoT, i.e.
logic-guided inference enhances reasoning ability, in various domains as well as

with LLMs of varying model scales?

To answer the first question, we conduct zero-shot experiments with datasets covering

more diverse topics and with language models of different sizes. The LoT-enhanced

performance is compared with the zero-shot baseline in Table 6.1. The experiment

shows that LoT can enhance the performance of the base CoT in various domains.

The performance benefits are more consistent when the model size gets considerable

(>7B parameters). Moreover, the performance gain becomes more prominent as the

model’s ability increases (e.g. GPT-4).

Research Question 6.2 What is the impact of LoT on individual reasoning chains

(e.g. revision frequency, length)?

We report more insightful case-wise statistics and discussions in this section, includ-

ing

▶ average revision frequency in Table 6.2;

▶ the resultant number of reasoning steps in Table 6.3;

▶ and a case study to illustrate the logical reasoning procedure. More detailed

statistics including the worsening rate (i.e. the ones being originally correct by



94 6 Enhancing Reasoning via Logic-Guided Inference Scaling

CoT but “corrected” to be wrong by LoT) and improvement rate (i.e. the ones

that are originally wrong and being corrected by LoT) can be found in Table C.1,

in Appendix C.4 on page 146.

Revision Frequency. In order to measure the complexity of revisions, we list the average

revisions per chain in Table 6.2 and typical reasoning steps required by CoT and LoT in

Table 6.3. Note that the number of steps is not human-defined or prompted since our

setting is in zero-shot, so the language models decide by themselves the length of a

reasoning chain. The percentage of revisions indicates the frequency of LoT to revise

the candidate’s reasoning chain. We observe that language models with powerful

capabilities (e.g. GPT-4 and GPT-3.5-turbo) are more active in revision than smaller

models, and challenging tasks such as the math reasoning task lead to more revisions.

However, revision does not necessarily alter the final deduction answer. For example,

LoT with GPT-3.5-turbo backend revises several times on SocialQA yet achieves

the same accuracy as CoT. Intuitively, solving one problem may lead to multiple

pathways, and some revisions might aim to enrich the sentence by incorporating

additional known conditions and rhetorical supplements.

Resultant Steps. The average step count is the number of valid reasoning steps in

the final CoT and LoT reasoning paths (i.e. the intermediate verification, refinement,

etc. are not shown). From Table 6.3, we can conclude that 1) larger language models

generally generate longer chains and are also more active in revision; 2) the LoT

refined9
reasoning chain is typically slightly shorter than the original zero-shot CoT

Table 6.1: We evaluate the accuracy of our methods and compare them against baseline approaches

using various models and datasets, with computation based on ground truth annotations. The

percentage difference of CoT [Koj+22] without (✗) and with (✓) LoT enhancement using different

LLMs is shown below each cell group (green if positive, red if negative). CoT generally gains better

performance when being enhanced by LoT. Larger models, such as GPT-4, exhibit strong and robust

self-correction ability.

LoT GSM8K AQuA Date SocialQA Cau.Eff. Objects Letter OddOut

✗ 17.52 21.65 7.24 37.00 52.94 34.00 0.00 25.58

Vicuna-7b ✓ 17.68 20.47 7.24 36.50 52.94 35.00 0.00 25.58

(+0.16) (-1.18) (0.00) (-0.50) (0.00) (+1.00) (0.00) (0.00)

✗ 33.79 22.05 32.31 41.00 68.75 31.00 2.00 29.07

Vicuna-13b ✓ 37.56 23.62 33.15 48.50 68.75 31.50 4.00 45.35

(+3.77) (+1.57) (+0.84) (+7.50) (0.00) (+0.50) (+2.00) (+16.28)

✗ 40.33 26.38 15.70 37.50 52.94 32.00 14.67 40.70

Vicuna-33b ✓ 40.49 29.53 20.35 47.50 68.75 34.50 14.00 43.02

(+0.16) (+3.15) (+4.65) (+10.00) (+15.81) (+2.50) (-0.67) (+2.32)

✗ 78.75 57.09 51.26 72.00 92.16 60.75 67.33 81.40

GPT-3.5-turbo ✓ 80.15 60.63 52.37 72.00 92.16 58.25 67.33 81.40

(+1.40) (+3.54) (+1.11) (0.00) (0.00) (-2.50) (0.00) (0.00)

✗ 94.29 71.56 83.09 77.50 100.00 100.00 92.61 95.35

GPT-4 ✓ 95.71 74.31 85.16 77.50 100.00 100.00 93.14 96.51

(+1.42) (+2.75) (+2.07) (0.00) (0.00) (0.00) (+0.53) (+1.16)

9: Note that LoT ultimately produces a clean reasoning chain containing only valid steps, excluding



6.4 Experiments and Results 95

Table 6.2: The average step-wise revision frequency is presented as a percentage, reflecting how often

a reasoning step is revised by LoT.

Revision ⟲ GSM8K AQuA Date SocialQA Cau.Eff. Objects Letter OddOut

Vicuna-7b 2% 4% 2% 1% 2% 0% 3% 0%

Vicuna-13b 7% 10% 5% 5% 0% 7% 2% 0%

Vicuna-33b 2% 9% 8% 7% 6% 9% 1% 7%

GPT-3.5-turbo 16% 28% 32% 5% 20% 9% 4% 16%

GPT-4 3% 20% 7% 2% 0% 1% 0% 8%

Table 6.3: The average number of resultant reasoning steps without (✗) and with (✓) LoT applied.

LoT GSM8K AQuA Date SocialQA Cau.Eff. Objects Letter OddOut

Vicuna-7b ✗ 1.22 1.16 1.34 1.09 1.00 2.54 3.46 1.00

✓ 1.27 1.21 1.35 1.10 1.02 2.54 3.49 1.00

Vicuna-13b ✗ 2.81 2.89 5.06 2.69 1.00 2.93 1.66 1.00

✓ 2.74 2.87 5.05 2.71 1.00 2.96 1.69 1.00

Vicuna-33b ✗ 1.94 1.99 2.31 3.26 1.00 3.26 1.20 1.70

✓ 1.94 1.91 2.33 3.13 1.06 3.23 1.21 1.64

GPT-3.5-turbo ✗ 4.17 6.83 3.66 2.50 1.73 3.02 4.84 1.57

✓ 4.08 6.24 3.56 2.51 1.92 3.05 4.81 1.70

GPT-4 ✗ 3.42 4.22 2.71 2.33 1.00 3.00 4.05 1.00

✓ 3.41 4.39 2.72 2.33 1.00 3.01 4.05 1.08

output. Our conjecture is that this phenomenon might arise because, during the

refinement process, the language model strives to incorporate additional information,

consequently yielding concise chains of reasoning.

Research Question 6.3 Do post-hoc explanations help LLMs self-check?

In order to examine the error-finding ability, the results of using LoT and its ablated

variants on three challenging tasks are shown in Table 6.4, where “Self-Check” is

an ablation of reductio ad absurdum such that the LLM is only prompted to “double

check the step” without logical hints.

With LoT, the complex examination problem is broken down into two procedures:

1) the post hoc explanation mechanism for rigorous error detection, and 2) a single-

choice preference for selecting the more reasonable opinion from the two candidates.

The better performance of (Adpt-)LoT suggests that when it comes to error detection

in LLM’s reasoning, it is more effective for an LLM to embrace one of two opposing

viewpoints (𝑇, 𝐸 or ¬𝑇, 𝐸¬) rather than composing the verification directly (which is

the case for both “Self-Check” and Cmps-LoT), especially when coping with tasks

that are difficult such as math reasoning.

intermediate self-thoughts.
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Table 6.4: Zero-shot accuracy results (in %) in comparison of LoT (i. e. Adpt-) and its ablated variants.

The underlying LLM is GPT-3.5-turbo.

Method GSM8K AQuA Date

CoT 78.75 57.09 51.26

Self-Check 76.15 56.19 51.57

Cmps-LoT 77.67 57.48 52.37

LoT 80.15 60.63 52.37

Case Study

We show a successful case on the Date Understanding task to demonstrate the

verification and revision procedure applied to the chain of thoughts initialized by

zero-shot-CoT. (See Appendix C.6 on page 147 for detailed prompts and further case

studies.)

Snippet A

Question: Today is Apr 10, 1985. Jane’s appointment will be 3 days later. What is the date 10 days

ago in MM/DD/YYYY?

Let’s think step by step.

Answer:

#1. Today is Apr 10, 1985.

#2. Jane’s appointment will be 3 days later.

#3. So, Jane’s appointment will be on Apr 13, 1985.

#4. To find the date 10 days ago, we subtract 10 days from Apr 13, 1985.

#5. Apr 13, 1985 - 10 days = Apr 3, 1985.

#6. Therefore, the date 10 days ago is Apr 3, 1985.

In Snippet A, there are initialized zero-shot-CoT reasoning steps where step #6

is actually incorrectly inferred (colored in red). Here, black color indicates given

context or fixed prompts; non-black color indicates generated content by the LLM. The

error occurs because zero-shot-CoT is distracted by the irrelevant premise of “Jane’s
appointment will be 3 days later” and concludes with a wrong answer.

Snippet B

Verification of the next step:

#6. Therefore, the date 10 days ago is Apr 3, 1985.

Review X: <review>step #6 is TRUE because we are subtracting 10 days from the given date of Apr

13, 1985. By subtracting 10 days, we go back in time and arrive at Apr 3, 1985. Therefore, the date 10

days ago is Apr 3, 1985. </review>

Review Y: <review>step #6 is FALSE because the reasoning in step #4 is incorrect. To find the date

10 days ago, we need to subtract 10 days from Apr 10, 1985, not from Apr 13, 1985.

The correct calculation would be:

Apr 10, 1985 - 10 days = Mar 31, 1985.

Therefore, the date 10 days ago is Mar 31, 1985. </review>

To verify the 6th step, as shown in Snippet B, the LLM is prompted to generate two

opposite reviews
10

given the question context and the previous five verified steps.

10: In practice, as is shown in the example case, the special language mark “<review></review>” is

applied for the sake of robust separations of different reviews.
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Snippet C

Let’s check two different reviews (X and Y).

Support the more plausible one and criticize the other one.

Review X: ...

Review Y: ...

Let’s start by analyzing one by one.

I. What are the premises and previous steps to support the verification of step #6? (Your answer

should quote the exact quote as support.)

II. Criticise the incorrect review.

(Note the examined step doesn’t have to tackle the whole problem at once.)

Finally, identify whether step #6 is true or false.

Analysis and conclusion:

I. The premises and previous steps to support the verification of step #6 are as follows:

- Today is Apr 10, 1985.

- Jane’s appointment will be 3 days later.

- Jane’s appointment will be on Apr 13, 1985.

- To find the date 10 days ago, we subtract 10 days from Apr 13, 1985.

II. Review Y is correct in criticizing step #4. The reasoning in step #4 is indeed incorrect. To find the

date 10 days ago, we need to subtract 10 days from Apr 10, 1985, not from Apr 13, 1985.

The correct calculation would be:

Apr 10, 1985 - 10 days = Mar 31, 1985.

Therefore, the date 10 days ago is Mar 31, 1985.

Conclusion: Step #6 is false. The correct date 10 days ago is Mar 31, 1985, not Apr 3, 1985.

Due to the content limitation, we omit the long prompt and focus on the resultant

generation. Note that Review Y successfully detects the unobvious error and provides

a correction that can be adopted later for revision.

In Snippet C, the LLM is encouraged to extract and deduct based on relevant premises.

Finally, it ends with adopting Review Y and reaching a correct conclusion.

6.5 CONCLUSION

LLMs have impressive reasoning ability in domains that require commonsense

knowledge, specialized expertise, comprehensive understanding, etc. However, there

is still room to improve their multi-step reasoning capability. Building upon zero-

shot-CoT, we derive the LoT prompting framework from a symbolic logic perspective,

utilizing the widely applicable principle of reductio ad absurdum, resulting in a robust

think-verify-revise framework with plausible prompting properties. Experiments

conducted on a variety of reasoning tasks spanning different domains demonstrate

that enhancing zero-shot Chain-of-Thought (CoT) with LoT leads to improved

reasoning ability, particularly when applied to LLMs of large scale.

6.6 LIMITATIONS AND FUTURE WORK

Prompting, Fine-tuning and Generalizability. LoT establishes a controlled prompting

strategy for self-correction. Nonetheless, it is worthwhile to explore future endeavors

of prompting engineering as well as fine-tuning LLMs for the purpose of spontaneous
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logical reasoning
11

. Moreover, although our approach does not require a complex or

abstract symbolization process, as we use contrastive prompting to elicit contradic-

tions, assigning a binary label (true vs false) to a reasoning step is not always feasible

and may constrain the potential for exploration.

Generation Probability. Rather than letting the LLM choose from different reviews,

another possible method is to access and compare the probability of the generations.

Unfortunately, there is no public access to the generation probability of GPT-3.5-turbo

yet
12

as it is possible for completion models (such as text-davinci-003). Considering

a cheaper price and better performance, we conducted our experiments with the

chatting model and left this possibility for future work.

Zero-shot, Few-shot, and Beyond. Significant potential exists for enhancing the reliability

of the verification-revision procedure, and devoting efforts to the advancement of

prompt engineering may prove to be valuable and worthwhile. Since this work is done

with an aim to be as generalizable as possible, the experiments are all conducted in the

zero-shot setting. Nonetheless, incorporating domain knowledge into the exemplar

prompt proves advantageous for enhancing performance [Koj+22; Wei+22a], it is still

worthwhile to explore the potential when LoT is applied in the few-shot setting in

future work. Furthermore, conducting extensive experiments across diverse domains

would be instrumental in assessing the generalization capability of the proposed

method, especially for those areas that require reliable deduction besides mathematics,

such as legal reasoning, scientific research, ethics moral reasoning, and so on.

While our research primarily focuses on integrating human knowledge into CoT

prompting, further exploration of additional logical deduction principles could

enhance the reasoning process. Moreover, we demonstrate the efficacy of bolstering

the robustness of complex reasoning by discerning between conflicting outputs,

suggesting the potential extension of this approach to prompt and refine LLMs for

self-improvement. This may entail utilizing self-checked outputs for Reinforcement

Learning from AI Feedback (RLAIF) [Li+23a; Lee+24]. Such endeavors show promise,

particularly in situations where a positive “Generation-Discrimination gap” (GD

gap) exists [Sau+22], i.e. language models with promises to be further improved by

discerning the quality of its generation, but we defer the investigation of this avenue

to future research endeavors.

11: Various prompting templates may influence the outcome a lot [Liu+25a]. In our case, for example,

in mathematics problems, a prompt that leads to an active examination of numerical computation can

assist the verification process [Mad+23]. A study of few-shot and of the domain-specific design of

prompts for the verification-revision structure is worthwhile to explore, which we leave for future

work due to the scope of this work.

12: https://platform.openai.com/docs/api-reference

https://platform.openai.com/docs/api-reference


AGENTIC SKILL DISCOVERY 7
Semantics + Policy + Self-determination

To fulfill the final Objective IV, i.e. “to construct autonomous agents with advanced
self-determination that can verbally sense environmental context and discover meaningful
skills from scratch in pursuit of long-term embodied autonomy”, this chapter presents a

highly autonomous robot deployed in a novel environment. It actively explores and

acquires new capabilities, driven by semantic intrinsic motivation and self-regulated

learning, guided by LLMs and Vision Language Models (VLMs), resulting in

self-determined learning of a semantics-grounded policy.

In Chapter 5 and Chapter 6, LLMs are employed to reason about the environment

in pursuit of task completion. This reflects a common paradigm in current robotic

systems that largely depend on predefined objectives and human-provided knowl-

edge. However, the capacity to reason and adapt to novel, unforeseen conditions

holds significant promise for achieving greater autonomy. Such adaptation, or

self-development, entails not only adjusting existing skills but also acquiring

entirely new ones to handle unfamiliar situations, a capability that is essential for

long-term robot autonomy with minimal human supervision.

Language-conditioned robotic skills bridge the high-level reasoning capabilities

of LLMs with low-level robotic control. A remaining challenge is to acquire a

diverse set of fundamental skills. Existing approaches either manually decompose

a complex task into primary robotic actions in a top-down fashion or bootstrap as

many combinations as possible in a bottom-up fashion to cover a wider range of task

possibilities. These decompositions or combinations, however, require an initial skill

library. For example, a “grasping” capability can never emerge from a skill library

containing only diverse “pushing” skills. Existing skill discovery techniques with

Unsupervised Reinforcement Learning (URL) acquire skills by exhaustive exploration

but often yield non-meaningful behaviors. Previous evidence [Ma+24b; Kwo+23]

shows that LLMs are able to program reward functions or optimization objectives for

a learning-based method to optimize over, bridging high-level semantic reasoning

with low-level control. However, challenges inevitably arise: existing methods cannot

be directly applied to robot skill learning because they lack a success determination

mechanism, i.e. the ability to assess whether a task has been successfully completed,

or more broadly, to enable self-regulation in learning novel skills. This chapter

introduces Agentic Skill Discovery (ASD), which addresses this gap by enabling

agents to not only explore their environment but also develop skills that support

their long-term autonomy.

Specifically, a novel learning framework, which is entirely driven by LLMs, for

autonomous robot skill discovery is introduced. The framework begins with an LLM

generating task proposals based on the provided scene description and the robot’s

configurations, aiming to incrementally acquire new skills upon task completion.
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Figure 7.1: Guided by LLMs, Agentic Skill Discovery (ASD) enables robots to explore the environment

and incrementally acquire contextual skills. Tasks proposed by LLMs are learned as skills via parallel

RL. A high-quality VLM verifies success and ensures reliability.

For each proposed task, a series of RL processes is initiated, utilizing reward and

success determination functions sampled by the LLM to develop the corresponding

policy. The reliability and trustworthiness of learned behaviors are ensured by an

independent VLM. This work shows that starting with zero skill, the skill library

emerges and expands to more and more meaningful and reliable skills, enabling the

robot to further propose and complete advanced tasks efficiently.

7.1 INTRODUCTION

“In the beginning was the Word” [CS15]. Can LLMs unleash the generative potential of

words, as implied in this famous quote? In a more practical setting, can an LLM teach

the skills and goals of human actions to a robot that is initialized without any skills

or motivation?

Large Language Models show potential in many fields that require common sense

and reasoning. Large-scale models excel because of their training on human datasets,

and textual or even multimodal reasoning capabilities. LLM-based agents, especially

robots, extend the potential to embodiments, but they still show limitations when

applied to direct robotic control. The reasons are insufficient real-world robot data

for training, as well as the diversity of topologies and physical properties. As

a workaround, abstracting robot control to a certain level and referring to each

abstraction as a specific “skill” helps LLMs to control robots generically [Ahn+22;

Zha+23c; Zha+23a; MJS24; Wu+23; Din+23]. For example, SayCan [Ahn+22] builds

a control framework that lets a robot follow a set of basic language instructions.

When commanded with a complex task, an LLM decomposes the task into actionable

low-level actions.

Acquiring diverse robotic skills with minimal human supervision has garnered

considerable attention. However, previous methods have either attempted to chain
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existing skills, relying heavily on a collection of basic skills [Du+23; Cel+23; Zha+23a],

or explored from scratch but often yielded non-interpretable robot behaviors, es-

pecially those using unsupervised RL [Li+23c; Par+23; Eys+19; Sha+20]. We ask

whether an LLM can encourage a robot to learn novel tasks that consist of entirely

novel yet relevant skills. Imagine a robot being placed in a new environment. The

robot must be motivated to explore the environment in a way to learn applicable

skills before becoming ready to perform further tasks. Given the knowledge about

human actions that resides in LLMs, we expect that an LLM can, by itself, suggest a

variety of contextually meaningful skills for the robot to learn.

We refer to this autonomous exploration as Agentic Skill Discovery (ASD), which

enables robots to interact with their environment through semantically-driven

motivation and autonomously initiate requisite learning procedures. In this research,

we address the challenge of open-skill learning in robotic systems guided by LLMs,

wherein either LLMs or a complementary Vision Language Model (VLM) must

facilitate both the learning process and success/failure evaluation without human

intervention or predetermined assessment criteria (Figure 7.1 on the facing page ).

Our primary contributions encompass a learning approach that incorporates:

▶ Task proposal: an LLM iteratively proposes novel and open tasks that are

suitable for the given environment (§ 7.3.1, Figure 7.2), and collects the resulting

skills.

▶ Task completion for skill learning: existing works such as Eureka [Ma+24b] focus

on solving determined tasks where the success/failure is defined by the human

in advance, and cannot be generalized to automatic learning of open robot

skills. In contrast, we introduce using LLM to propose a success determination

function, which provides a criterion for optimizing the reward functions. To

make open skill learning tractable, we showcase the importance of having a

post-validation VLM for success determination, as a guarantee for reliability

and trustworthiness (§ 7.3.2, Figure 7.4). It is essential to minimize false positives

and false negatives to ensure the skill library remains reliable, avoiding the

inclusion of overtrusted skills and the exclusion of useful ones (Figure 7.7).

Furthermore, we apply the Retrieval Augmented Generation (RAG) technique

to retrieve validated function references for the efficacy of LLM reasoning. We

note that the application of RAG to open-skill learning is novel and progressive

beyond the state of the art.

▶ Reuse of skills: to complete certain sophisticated tasks requiring long-horizon

manipulations, we prompt LLMs to decompose them into a chain of sub-tasks

that are either already explored or are novel to learn on demand, forming a

chain of conditional skills.

7.2 RELATED WORK

Humans and animals engage in active exploration, continuously forming new rep-

resentations of the world and discovering new skills. Autonomous agents must be

capable of assessing not only what exists in the world but also what is learnable
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and useful for future tasks. The challenge of robotic self-development is particularly

relevant in open-ended, unstructured environments, where pre-programmed behav-

iors are insufficient. This raises an important question: Can robots develop applicable
capabilities to explore their environments in an active, self-determined manner? If so, how can

they learn what kinds of skills can be acquired within their surroundings? Inspired

by human developmental processes, many autonomous systems are equipped with

intrinsic motivations that encourage exploration and learning. By generating their

own goals and learning tasks from a curiosity-driven perspective, robots can expand

their skill repertoire beyond what was originally programmed. Despite advances in

RL and self-supervised learning, current methods still struggle with open-ended skill

discovery and long-term adaptation, due to the fact that many exploration techniques

focus on maximizing novelty or information gain but lack mechanisms for deciding

which discoveries are meaningful for future tasks.
This section overviews previous research works in discovering novel skills (or,

maximizing empowerment) and LLM-based advancements relating to this field.

7.2.1 Skill Discovery

Acquiring diverse robotic skills with minimal or no human supervision is a key

challenge in reducing human effort. Unsupervised Reinforcement Learning (URL)

has emerged as a prominent research area for generating diverse behavioral trajec-

tories that are distinguishable from one another [Li+23c; Par+23; Pen+22; Eys+19;

Sha+20]. Typically, URL methods employ information-theoretic objectives during

unsupervised training to maximize behavioral entropy. However, this “bottom-up”

scheme (i.e. clustering various trajectories as skills) often results in non-interpretable

and semantically meaningless skills from a human perspective, making the learned

skills hard to collect and reuse. The trade-off between low costs and meaningful

resulting behavior depends on the amount of human knowledge introduced, i.e.
more supervision (high cost) generally indicates more natural robotic behaviors,

and vice versa. While some works introduce further constraints relating to human

demonstrations to acquire natural behaviors [Pen+22], the scalability is still limited

by the need for domain-specific data collection. Recent works [Rho+25] have sought

to constrain the exploration space to a meaningful subspace, where robot behaviors

align with human-defined language instructions, as evaluated by LLMs. Our work

discovers skills at a higher level of abstraction, i.e. in a “top-down” scheme where the

learning objectives are ensured to be semantically meaningful in advance, producing

a growing repertoire of semantically distinct skills that demonstrate greater diversity

and interpretability.

Chaining known skills into new ones can substantially extend robots’ abilities and

efficiencies. In order to efficiently combine basic skills in a meaningful way and

avoid a combinatorial explosion, LLMs can be utilized to reason the logical ways of

stacking skills to complete new, long-horizon tasks [Zha+23a; Cel+23]. When LLMs

are prompted with environment contexts, such as available robot joints and object

types, they can propose meaningful motivations for the next movement [Du+23;

Zha+23a]. Prompting an LLM to get an “interesting outcome” can yield generally



7.3 Method: ASD 103

meaningful skill combinations [Cel+23]. However, prior works primarily focus on

combining pre-acquired skills to create more complex behaviors. In such approaches,

the so-called “new skills” are assembled from an existing library of basic skills rather

than developed from scratch. Consequently, the potential skill space is constrained

by the foundation of the initial skill set. For example, a robot proficient only in

“pushing” would be unable to acquire the skill of “grasping” within the confines

of skill assembly. In contrast, the concept of agentic environment skill discovery,

where both the expansion of high-level skill libraries and the initiation of necessary

low-level skill training occur autonomously, remains underexplored. To address this

gap, our work employs RL agents, supervised by LLMs and VLMs, to acquire novel

low-level policies that were previously beyond the robot’s capabilities.

7.2.2 Code LLM Control

Most LLM-based robot behavior relies on pre-defined primitives (skills). This inflexible

design makes it difficult to generalize to unseen objects and instructions [Ahn+22;

Zha+23c]. Recent approaches let code-LLMs write programming code to complete

open instructions [Lia+22; Hua+23]. In particular, VoxPoser [Hua+23] uses a VLM

and LLM to construct a 3D cost map to guide a robot engaging with its surroundings.

VoxPoser relies heavily on the quality of the initially composed cost map, limiting its

ability to perform exploratory behaviors. In addition, it depends on a trajectory solver

during inference, which can further constrain its flexibility and scalability. In contrast,

ASD launches RL, letting the agent explore the environment and exploit the learned

language-conditioned policies. As for the automatic learning of low-level control

policies, previous approaches show that LLMs are capable of programming reward

functions to optimize over, achieving remarkable performance even for complex

tasks [Ma+24b; Yu+23]. However, these methods have not yet been applied to robot

skill learning, where tasks are newly proposed. This presents a significant challenge,

as only the language instruction is available, without predefined success or failure

conditions to guide the learning process.

7.3 METHOD: ASD

The Agentic Skill Discovery (ASD) framework introduces a fundamentally different

approach to robotic skill acquisition, where skills emerge purely from the interaction

between a language model, a robot, and its environment, without any pre-structured

human guidance such as demonstrations, reward designs, preferences, or handcrafted

supervision signals. At a high level, ASD enables autonomous exploration through

self-generated task instructions (§ 7.3.1), while at a lower level, it learns to master

these discovered tasks as skills through RL with self-determined success criteria

and reward strategies (§ 7.3.2). The framework then leverages these acquired skills

to tackle long-horizon tasks and further expand its skill repertoire through task
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Figure 7.2: Contextual skill acquisition loop of ASD. Given the environment setup and the robot’s

current abilities, an LLM continually proposes tasks for the robot to learn (see Figure 7.4 for the

learning scheme). Successfully completed skills are collected as acquired skills in the skill library. The

learning process for each target skill may yield multiple viable execution strategies, which we preserve

as distinct skill options. For each option, we store both the learning specifications (including reward

and success functions) and the corresponding trained policy networks, enabling efficient retrieval and

deployment of these skills in future tasks.

decomposition (§ 7.3.3) and on-demand skill learning1
. Unlike traditional approaches

where skill complexity and granularity are carefully engineered, ASD faces the unique

challenge of operating in an unconstrained space where the language model must

discover appropriate skills, determine their complexity, and establish success criteria

without predefined constraints or reward structures. This represents a significant

departure from existing methods, as it removes human scaffolding from the skill

acquisition process while enabling truly autonomous skill discovery and composition.

A pseudo-code of the ASD framework is shown in Algorithm 3 on page 108
2
.

7.3.1 Iterative Task Proposal and Skill Collection

Instead of relying on exhaustive human efforts, ASD utilizes LLMs to propose

meaningful tasks given the description of a certain scene. Those tasks will be assigned

to RL agents to learn corresponding language-conditioned policies (see § 7.3.2).

Figure 7.2 overviews skill acquisition by the propose-learn-collect loop.

To provide the LLM with sufficient information about the environment, we provide it

with the source code of the observation space [Ma+24b]. Also, the robot configuration,

such as robotic arm type and DoF, is prompted as the initial background description.

Due to environment complexity and unpredictable learning challenges, we implement

iterative task proposals and learning rather than allowing the LLM to propose all

tasks at once. In particular, the LLM will be informed about tasks that could not be

completed so that it will have a sense of the limits of the learning agent, influencing

the successive task proposals. For the sake of efficiency and reusability, we encourage

the LLM to propose tasks that are meaningful, atomic, independent, and incremental

(see Figure D.4 in Appendix D.3 for detailed prompts).

1: For example, a new “placing” skill should be learned on demand when instructed to stack two cubes

together, if the skill library contains only primary skills like “pushing” and “picking”.

2: For more implementation details, refer to open-sourced code at: https://github.com/xf-zhao/
Agentic-Skill-Discovery.

https://github.com/xf-zhao/Agentic-Skill-Discovery
https://github.com/xf-zhao/Agentic-Skill-Discovery
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Skill Options

Generally, control with various options for a given task has the potential to be more

robust and generalizable [GRW17; Eys+19]. As will be introduced in § 7.3.2, in the

process of the evolutionary search of diverse reward functions, a given task will be

successfully learned by several options, forming a set of various control policies. A

task will be considered completely learned, or in short complete, if the resultant

agent behavior aligns with expectations; otherwise, it is deemed unsuccessful after

an extended period of learning.

Completed tasks will be considered as “skills”, along with their “options”, to be

stored in the skill library, and the names of attempted but uncompleted tasks will be

added to a failure pool. A summary of the completion status will be generated to

guide LLMs in proposing subsequent tasks, taking into account the learning curve

and potential difficulties. Failed tasks are usually too sophisticated for LLMs to write

reward functions to master at once. Hence, we will decompose and complete them

by combining acquired and on-demand-learned skills (§ 7.3.3). We collect all options

for the same skill, i.e. various policies paired with successful reward functions, as

future execution candidates, and we leave the study of mixing various skill options

for one robust skill control for future research.

7.3.2 Evolutionary Skill Learning with Fast and Slow Success
Determination

LLMs are capable of composing reward functions for RL agents to accomplish

specified tasks [Yu+23; Ma+24b]. We extend this strategy of Eureka [Ma+24b], which

prompts LLMs to program reward functions and evolve them with deterministic

selection where only the best reward function, as assessed by the success rate as a

fitness function, will survive and mutate. See Figure 7.3 for an illustration.

Challenges in Open-Skill Learning

In open-skill learning, where the focus is on optimizing newly proposed tasks rather

than predefined ones, naive Eureka-like methods [Ma+24b] cannot be directly applied

due to the fact that the success criteria cannot be predetermined. This is because the

fitness function, which serves as the ground truth for determining success, is unknown

Reward
Func( )Reward

Func( )Reward
Func( )

 Evolve Success Rate

Select

Learn

Figure 7.3: Evolutionary search of reward functions for defined tasks with deterministic success functions,
where the success rate can be reliably computed and used as a fitness measure. However, this approach

is too simple for novel skill learning, where the absence of prespecified success criteria necessitates a

behavior verification mechanism (cfr. Figure 7.4).
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Figure 7.4: The evolutionary skill learning procedure of ASD. An LLM composes a set of reward

and success functions (left), corresponding RL to train policies (middle), and evolutionary search with

learning statistics (e.g. success rate) and VLM assessment (right).

for each task proposal. As a result, evolutionary selection becomes challenging due

to the absence of a unified golden metric to quantify performance. Traditionally in

RL, the success determination function for a specific task is programmed by humans

into a function that is called at every physics step. Without resorting to human efforts

to exhaustively construct such success conditions, we let LLMs generate success

functions as well. These are being composed similarly to reward functions, but with

a binary output to indicate how the task is completed. Nevertheless, the soundness

of the success function requires investigation. Given that the LLM serves dual roles

as both a “player” (for reward function optimization) and as a “referee” (for success

determination), employing the resultant success rate as the fitness function for

evolution may jeopardize learning stability and trustworthiness. See also Figure 7.7

and Research Question 7.2 for further discussion of the undesired behaviors stemming

from evolution with incorrect fitness measurement. The success function and reward

function form a chicken-egg relation in that 1) the reward function search relies on

reliable success determination, and, meanwhile, 2) it is unfeasible to verify the success

function before the learning. As a result, it is challenging to have an evolutionary

search for both at the same time.

Success Determination: Fast and Slow

Distinguishing whether specific behaviors fulfill a task at each RL step (referred to as

fast success determination), as opposed to assessing after fixed intervals of execution

(as slow success determination), is pivotal in RL. Employing fast success determination

enables the agent to receive sparse rewards (as only success or failure can be notified

by the success function) in real-time and terminate actions promptly to prevent

potentially adverse explorations. Although the success function generated by LLMs

is essential for RL training, it may also be untrustworthy. Therefore, an independent

post-training evaluation is required as a complementary measure to ensure reliability.

For instance, the human examination of learned RL behaviors, especially from a draft

success function to debug, can be regarded as a slow success determination. Intuitively,
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VLMs can be applied to analyze robot behaviors. For example, REFLECT [LBS23] uses

a multimodal structure to explain execution anomaly. To establish a stable learning

cycle, we propose integrating both fast and slow success evaluations, distinguished by

the temporal extent of the underlying processes, to enhance reliability:

fast: sample a set of success functions that are used unchanged throughout skill

learning, based on which an LLM launches RL training and deterministically

selects reward function survivors. The underlying hypothesis is that determining

success is much more attainable than programming an applicable reward

function.

slow: prompt an independent VLM to additionally examine the success of survivor

candidates, before passing them on to the next evolutionary generation. In

particular, with the context of the environment and task, a VLM is tasked to

describe and assess the reinforced robot behaviors that are deemed successful

according to success functions (positives), securing a robust learning loop

without human supervision. Since there are many more unsuccessful behaviors

(negatives), and false negatives are less frequent and less harmful than true

negatives
3
, we do not additionally examine them due to the assessment cost.

Early Misconduct Check

In practice, LLMs may generate unacceptable function designs, e.g. trying to import

unsupported third-party Python modules or producing nonsensical outputs (see

Appendix D.1.3 for an example). Some of the potential bugs can be bypassed by

carefully designed prompts, while others should be examined at runtime by a Python

interpreter. Instead of directly launching RL and feeding back LLMs all kinds of

execution errors at the end, as in Eureka [Ma+24b], we carry out early syntax checks

and loop until the function generations meet certain requirements. This separate

check reduces unnecessary waiting time for simulation preparations and provides an

efficient reward search that focuses only on performance feedback. See Figure 7.4

for an overview of the evolutionary skill-learning procedure. The corresponding

prompts can be found in Appendix D.3.

Retrieving Skill Specification with RAG

The process of providing LLMs with environment knowledge necessitates abstraction,

which inherently results in information loss. For instance, certain environment

parameters, such as the operational constraints of a drawer moving 10 centimeters

along the X-axis, are typically embedded within 3D asset properties rather than explicit

scene establishment code. Certain aspects of the environment can only be understood

through direct interaction. As a result, learning configurations and their associated

outcomes from previous trials provide valuable insights for subsequent experiments.

3: False positives appear only when reward functions are better composed than the success functions,

being less frequent according to the hypothesis above. Besides, failures will not contaminate the existing

skill library, being less harmful than false positives regarding possible future executions.
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Algorithm 3: Agentic Skill Discovery (ASD) for open-skill learning

Input :LLM M, VLM V, Robot R, Environment E, Reinforcement Learning L,

Task proposal prompt 𝑃task
, reward function prompt 𝑃rew

, success

function prompt 𝑃succ
; Max evolutionary search iterations 𝐾;

Output :Discovered skill library 𝑍

1 Initialize 𝑍← ∅,Πpos ← ∅,Πopt ← ∅ ;

2 while 𝑖 ≤ 𝑁𝑇 do
3 T𝑖 ←M (R, E, 𝑃task

) ;

// Fix if check fails: 𝑓 succ
𝑗
← M ( 𝑓 succ

𝑗
, Check Log, R, E,

𝑃succ), same for reward function
4 𝐹succ = { 𝑓 succ

𝑗
}𝑁succ

←M (T𝑖 , R, E, 𝑃succ
) ;

5 for 𝑓 succ
𝑗
∈ 𝐹succ do

6 Initialize 𝑚𝑘 ← −1, 𝑓 rew

𝑚𝑘
← 𝑛𝑢𝑙𝑙 ;

7 while 𝑘 ≤ 𝐾 do
// The ⊕ operator indicates concatenation

8 𝑃rew ← 𝑃rew ⊕ 𝑓 rew

𝑚𝑘
;

9 𝐹rew = { 𝑓 rew

𝑚 }𝑁rew
←M (T𝑖 , R, E, 𝑃rew

) ;

10 for 𝑓 rew
𝑚 ∈ 𝐹rew do

11 𝜋𝑖 , 𝑗 ,𝑚 ←L (T𝑖 , R, E, 𝑓 succ

𝑗
, 𝑓 rew

𝑚 ) ;

12 valid(𝜋𝑖 , 𝑗 ,𝑚)← Score(𝜋𝑖 , 𝑗 ,𝑚 , 𝑓 succ

𝑗
, 𝑓 rew

𝑚 ) > 0 ;

13 𝑚𝑘 ← arg max𝑚 Score(𝜋𝑖 , 𝑗 ,𝑚 , 𝑓 succ

𝑗
, 𝑓 rew

𝑚 ) ;

14 if valid(𝜋𝑖 , 𝑗 ,𝑚𝐾 ) then
15 Π

pos

𝑖
← Π

pos

𝑖
∪ {𝜋𝑖 , 𝑗 ,𝑚𝐾}

16 for 𝜋 ∈ Πpos
𝑖

do
17 if V (T𝑖 , R, E, 𝜋) then
18 Π

opt

𝑖
← Π

opt

𝑖
∪ {𝜋};

19 possible(T𝑖)← {Πopt

𝑖
} ≠ ∅ ;

20 𝑍← 𝑍 ∪ {Πopt

𝑖
};

21 𝑃task ← 𝑃task ⊕ T𝑖 ⊕ 𝑓 succ ⊕ 𝑓 rew ⊕ possible(T𝑖) ;
22 𝑖 ← 𝑖 + 1;

The collection of historical data represents an environment context distillation

process, drawing from both LLMs’ environment awareness and VLMs’ behavioral

assessment capabilities, being able to gradually compensate losses introduced through

abstraction. Despite lacking a dedicated 3D structure interpretation module, our agent

can derive aspects of such environment constraints through iterative experimentation

with various learning specifications. This discovered information is subsequently

encoded within learning parameters, for example, a selected reward function that

incentivizes positive x-coordinate displacement of the drawer handle effectively

facilitates successful drawer-opening task completion.

To reduce redundant exploration and effectively integrate prior knowledge, we
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implement a knowledge accumulation strategy that enables the LLM to retrieve

specifications of previously learned skills relevant to the current learning objective.

Retrieval Augmented Generation (RAG) [Gao+24b], which enhances LLM perfor-

mance by incorporating contextually relevant information from a local data pool

into prompts, has been widely adopted. In our skill learning framework, where

success and reward functions are identified through evolutionary search, and where

many skills within the same environment share common structural patterns, we

apply RAG to enhance LLM prompting. Specifically, we retrieve previously verified

skill specifications, including their associated success and reward functions, from

the evolving skill library and use them to augment the prompt for generating new

functions. This process, which we refer to as skill-RAG, provides the LLM with

concrete, context-relevant examples that guide its output and reduce ambiguity. By

narrowing the evolutionary search space, skill-RAG improves both the efficiency and

reliability of open-ended robot skill acquisition. The impact of this augmentation is

demonstrated through ablation results in Table 7.1 on page 114 .

7.3.3 On-demand Skill Learning with Quest Decomposition

ASD initially learns skills starting from similar environment reset states 𝑠0 ∼ 𝜌0,

where 𝜌0 indicates the initial state distribution with limited randomness, such as

object placement. Consequently, some LLM-suggested skills cannot be trained if the

pre-conditions are not satisfied. For example, the skill “placing an object” requires

the initial state of having the object picked. An intuitive solution is to configure

the learning environment open-ended/reset-free [Gup+21; Wan+24a], where an

LLM continually observes the changes and proposes tasks to complete. However,

it challenges both the dynamic sensing ability of LLM as well as RL in practice,

especially when RL is accelerated by learning in many parallel environments. Another

way is to reset the environment to the final state of executed skills, thereby exploring

sequentially arranged further skills conditioned on already collected skills. Since the

bottom-up bootstrapping of skills leads to an explosion of possibilities, we introduce

a top-down on-demand learning strategy for the complex tasks that RL fails to learn,

which we term quests. Given a quest selected from the failure pool generated during

the skill discovery phase, an LLM is tasked with decomposing it into a sequence

of subtasks, thereby establishing a Hierarchical Reinforcement Learning (HRL)

...

Quest
Decompose

Learn/Query

Execution
Subtask

trainable
frozen

Figure 7.5: Top: By chaining together learned skills, ASD can further learn a new skill 𝜋𝑖 on demand.

This is needed when a complex task is too challenging for RL to learn as a whole. Bottom: ASD solves

quests, namely challenging tasks, with top-down decomposition and skill learning (purple gear),

where the skill library (blue cube) expands for each subtask’s completion.
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framework. This decompose-and-conquer strategy has been successfully verified to

work [Ahn+22; Zha+23c; Din+23].

However, these approaches only allow a decomposition into a limited set of subtasks

that can be completed with known skills (bottom-up for completion). In contrast,

our method, as illustrated in Figure 7.5, allows the LLM to come up with novel and

contextually appropriate skills to be learned on demand. This capability enhances

the framework’s flexibility and generalizability in addressing challenging tasks that

require the LLM to construct sophisticated reward functions.

Algorithm 4: Agentic Skill Discovery (ASD) for quest completion

Input :Quest Q, LLM M, Robot R, Environment Ewith initial state 𝑠0, ASD

skill learning based on (initialized as) state 𝑠: 𝐴𝑆𝐷(·|𝑠), collected skill

library 𝑍0

Output :Quest Completion

1 Initialize 𝑠 ← 𝑠0 ;

// Task decomposition

2 T= {T𝑖}𝑁𝑇 ←M (R, E, 𝑃decompose, Q) ;

3 for T𝑖 ∈ Tdo
4 if T𝑖 ∝ 𝜋𝑖 ∈ 𝑍0 then

// Use the existing skill
5 𝜋∗

𝑖
← Retrieve(𝜋𝑖 ,T𝑖 , 𝑍0) ;

6 else
// Learn the on-demand skill

7 𝜋∗
𝑖
← 𝐴𝑆𝐷(T𝑖|𝑠) ;

8 𝑠 ← Execute(𝜋∗
𝑖
, 𝑠) ;

To avoid the forgetting problem in multitasking policy learning, we learn individual

policy networks for each RL launch, which constitute the skill options, and only

keep the surviving ones according to their performance in the evolution loop. As for

learning of the 𝑖-th on-demand skill, since its initial state is reset as the final state

of the last stacked skill 𝜋𝑖−1
, i.e. 𝑠 𝑖

0
= 𝑠 𝑖−1

𝑇
∼ 𝜌𝜋𝑖−1 , we initialize the policy weights

from the last learned skill rather than randomly, 𝜋𝑖 ← 𝜋𝑖−1
. This maintains 𝑠 𝑖

0
at

the beginning of learning and ensures a smooth transition from there when being

gradually optimized. Algorithm 4 on the current page summarizes the on-demand

skill learning process.

7.4 EXPERIMENTS AND RESULTS

7.4.1 Experimental Setup

Environment. We run the simulation in the Isaac Sim simulator
4

since it supports

parallel environment simulation, which dramatically accelerates the trials of RL with

4: https://docs.omniverse.nvidia.com/isaacsim, cfr. § 2.3.3 “Isaac Sim” on page 21.

https://docs.omniverse.nvidia.com/isaacsim
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Robot: 7-DoF Joint Position Control, 
    with a gripper of 0~1 continuous open size

Objects: 
    - Cube A (colored and texted)
    - Cube B (colored)
    - Plate
    - Drawer
    - Dummy target marker

4096 Envs

Figure 7.6: The simulated scenario setup in Isaac Sim with parallel environments for RL training.

various reward functions. We set up a table scenario with Franka Emika Panda robotic

arm, which has 7 DoF and a two-finger gripper. On the table, several objects are

randomly placed in front of the arm, with a drawer that can be opened. It is a single

scenario, but it enables multiple tasks. See Figure 7.6 for the environment setup,

with all assets
5

available in Isaac Sim. The experiments aim to answer the following

research questions regarding Objective IV:

▶ R.Q. 7.1 What kind of tasks will be proposed?

▶ R.Q. 7.2 Can skills be acquired automatically?

▶ R.Q. 7.3 How do RL and learning context influence the learning efficiency?

▶ R.Q. 7.4 Can challenging tasks be completed by chaining learned skills?

LLMs and VLMs Selection. We employ gpt-3.5-turbo to propose tasks and generate

reward and fast success functions since it shows a good programming ability while

being acceptable regarding cost. For the slow assessment of behaviors generated by

policies that have already been positively evaluated using fast success functions, we

record the resulting behaviors as videos. Keyframes are then extracted from these

videos and analyzed using the advanced VLM GPT-4V(ision)
6
, which verifies the

successful completion of the tasks.

Learning Algorithms. With a temperature of 1.0, the LLM samples three success

functions in each iteration; based on each, three reward functions are further sampled

to launch RL training and to evolve. We set the number of generations of evolutionary

search to three. For RL training, we use coordinate states of objects as the state

input, and the action space is set to be the robot joint position space. Using joint

coordinates instead of Euclidean coordinates avoids control lag caused by inverse

kinematics, which would slow down paralleled environments. For optimization, we

apply the RL framework rsl_rl7
implemented by Orbit [Mit+23], where Proximal

Policy Optimization (PPO) [Sch+17] is applied with the same fixed parameters across

all potential tasks. For each RL iteration, we configure the maximum permissible

physics steps to 250, with 4096 parallel environments, and a total learning duration

of 2000 episodes. We train ASD on 6 NVIDIA GeForce GTX 1080 Ti GPUs, where

each proposed task takes around 6 hours.

5: Under the license: https://docs.omniverse.nvidia.com/isaacsim/latest/common/NVIDIA_

Omniverse_License_Agreement.html.

6: https://openai.com/research/gpt-4v-system-card
7: https://github.com/leggedrobotics/rsl_rl

https://docs.omniverse.nvidia.com/isaacsim/latest/common/NVIDIA_Omniverse_License_Agreement.html
https://docs.omniverse.nvidia.com/isaacsim/latest/common/NVIDIA_Omniverse_License_Agreement.html
https://openai.com/research/gpt-4v-system-card
https://github.com/leggedrobotics/rsl_rl
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Baseline and Ablation. Given the unpredictable nature of ASD tasks, understanding

the learning capabilities of the policy backend is crucial. The ability of code-based

LLMs to complete novel tasks has garnered significant research interest [Lia+22;

Hua+23; Wan+24a]. In ASD, RL agents are trained to accomplish specified tasks.

However, identifying a suitable baseline for evaluating our approach is challenging.

To the best of our knowledge, no existing work on semantic skill discovery exists at

the time of writing. We omit comparison with Unsupervised Reinforcement Learning

(URL)-based skill discovery methods, as they typically produce non-meaningful

trajectories without additional human intervention. For task completion without prior

skills, we use VoxPoser [Hua+23] as a comparative baseline, limited to evaluating

task proposal learning, since, unlike our approach, it is designed for control, not skill
discovery. Moreover, to demonstrate the effectiveness of the skill-RAG technique, we

conducted additional experiments where skill learning is halted upon verification,

allowing us to quantify the minimum number of GPT calls required. The efficiency

gains of skill-RAG are measured through a reduction ratio metric, calculated as the

ratio between the minimum number of GPT calls required to master a task with

skill-RAG versus the baseline approach without the skill specification augmentation

strategy (detailed analysis in Research Question 7.3).

7.4.2 Analysis

Research Question 7.1 What kind of tasks will be proposed?

Given the robotic table manipulation scenario, the LLM could potentially propose

numerous possible tasks. We stop exploring further task proposals after reaching a

number of 24 valid skills. More skill-learning details and statistical reports can be

found in Table D.1 in Appendix D.2 “Skill Learning Reports” on page 161. The first

column of Table 7.1 presents the proposed tasks in sequential order. From this, we

derive the following preliminary observations:

▶ The instructional complexity of tasks increases with successive iterations of the

proposal, but the associated learning challenges do not necessarily align with

this progression.

▶ Most of the proposed tasks are meaningful and completable under the setup.

Some of the tasks are not appropriately proposed due to LLM’s misconception

of the initial environment setup (e.g. No.10 for a wrongly deemed initial state,

since the drawer is always initialized as closed, it is reasonable to learn to close

the drawer) or of the robot’s capabilities (No.19 for difficulties in a guarantee of

“without grasping” requirement).

▶ By design, all of the tasks are parameter-free language instructions. Hence, the

LLM interprets “reach cube A” and “reach cube B” as distinct skills. How-

ever, rather than exhaustively enumerating all possible variable permutations

(e.g. A↔ B), the LLM employs a strategy that prioritizes semantic diversity in

skill proposition.

As can be observed from the task proposal list, the tasks are generally atomic
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and meaningful, but there is still potential for improvement, especially in the

understanding of the given initial status of the environment. Minimal human effort

to examine non-learnable tasks becomes necessary in this case. In this work, we

prompt the coding LLM only with text. Future research involving mixed modalities,

e.g. visual observations or even point clouds [Zha+24b], promises to alleviate this

phenomenon.

Research Question 7.2 Can skills be acquired automatically?

To evaluate whether the proposed tasks have been mastered, we describe the learning

status for each proposed task with the following measures:

▶ 𝑁O, the number of acquired skill options, defined as the count of available

policies that satisfy both fast (LLM-based) and slow (VLM-based) success

criteria.

▶ 𝑁C, the number of acquired skill candidates, i.e. those policies that are falsely

considered positive according to composed fast success functions but failed by

the VLM.

▶ 𝑁HO and 𝑁HC, the number of human-validated options and candidates as ground

truth, respectively, which we define as ground truth.

As shown in the skill option column in Table 7.1, ASD automatically collected

many valid skill options. However, the skill candidates column shows that many

behaviors were falsely positively evaluated by the coding LLM, necessitating an

additional checking mechanism to avoid potential false learning cycles (see Figure 7.7).

Quantitative analysis demonstrates that fast determination achieves an average

precision of
𝑁HO+𝑁HC

𝑁O+𝑁C

= 44.93%, while slow determination yields an average precision

of
𝑁HO

𝑁O

= 73.58%. This substantial improvement in precision through the application

of VLMs for slow success determination reduces false positive outcomes and enhances

the stability of the learning cycle and the reliability of acquired skills.

Research Question 7.3 How do RL and learning context influence learning

efficiency?

By alternatively applying VoxPoser [Hua+23] as the skill learning strategy, we show

the advantages of RL in learning skills from scratch. As shown in Table 7.1, many

tasks can be accomplished using RL but fail when using VoxPoser. This discrepancy

can be attributed to VoxPoser’s reliance on extensive human effort to predefine spatial

hooks and basic motion primitives, coupled with its lack of the exploration capability

inherent to RL. Since the goal of agentic skill discovery is to acquire skills with

minimal or no human involvement, we do not meticulously design primitives for

VoxPoser but instead, provide only basic movement examples. Consequently, this

baseline performs well on tasks requiring simple positional approaches but often fails

when more complex manipulations are needed. In contrast, RL-based skill learning,

driven by its intrinsic exploration capability, successfully adapts to the environment

and masters a broader range of skills.
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Table 7.1: Snippet of task proposals based on the table manipulation scenario. The learning results

are briefly reported by counting the number of skill options (𝑁O), the number of skill candidates (𝑁C),

and the number of corresponding validations by human examination (𝑁H*). The column with RAG

shows the minimal GPT calls (for one skill option acquisition) reduction ratio (the smaller, the better)

of having skill-RAG over previously without skill-RAG. The skill mastering result of RL and a baseline

skill learning strategy VoxPoser (Vox.) are marked as ✓(success, with ≥ 90% success rate) or ✗(failure).

The symbol “-” indicates inappropriately proposed tasks within the environment context.

Task Description 𝑁HO/𝑁O 𝑁HC/𝑁C w/RAG RL Vox.

1 Reach cube A 4/4 2/2 1.00 ✓ ✓

2 Reach cube B 8/8 1/1 0.21 ✓ ✓

3 Reach the plate 7/7 2/2 0.22 ✓ ✓

4 Pick up the cube A 4/5 0/4 0.98 ✓ ✗

5 Pick up the cube B 2/2 0/4 0.30 ✓ ✗

6 Slide cube A from its current
position to a target position on
the table

3/3 0/6 1.20 ✓ ✗

7 Open the drawer 1/2 0/10 0.88 ✓ ✗

8 Pick up the plate 3/3 0/0 0.66 ✓ ✗

9 Place the plate onto a target
position on the table

4/6 0/12 0.88 ✓ ✗

10 Close the drawer -/3 -/6 - - -

11 Align cube A and cube B to target
positions that are apart from each
other.

0/0 0/10 0.00 ✗ ✗

12 Close the drawer with cube A inside. 0/0 0/3 0.00 ✗ ✗

13 Gripper open/close toggle 1/2 0/4 1.20 ✓ ✓

14 Slide cube B to the table edge
without toppling it, aiming for a
target position near the edge.

2/2 0/0 0.83 ✓ ✗

15 Align end-effector center over the
drawer handle without opening or
closing the drawer.

2/2 1/2 0.76 ✓ ✓

16 Navigate the gripper to a target pose
above cube B without touching it.

3/4 1/1 0.44 ✓ ✓

17 Gently push the drawer to a partially
open or closed position.

1/1 0/4 0.88 ✓ ✗

18 Position cube A directly in front of
the drawer handle without blocking
the drawer from opening.

0/2 0/1 0.00 ✗ ✗

19 Swap positions of cube A and cube B
without grasping.

0/0 0/3 0.00 ✗ ✗

20 Move end-effector over cube A. 23/23 7/7 0.21 ✓ ✗

21 Push cube A and cube B close to each
other.

1/2 0/31 0.32 ✓ ✗

22 Move to a target position on the
table without interacting with
objects.

33/33 1/2 0.18 ✓ ✓

23 Put cube A into the drawer. 0/1 0/27 0.00 ✗ ✗

24 Stack cube A on top of cube B. 0/4 0/51 0.00 ✗ ✗
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Figure 7.7: Possible failure modes with unassured evolution fitness measurement. Left: the LLM-

generated success determination may confidently but wrongly assess a task as successful, leading

to an undesired false positive learning cycle with a contaminated skill library and non-accomplishable

future task proposals. Right: negative evaluation of indeed successful behaviors will misguide the

reward function search and prevent skill acquisition, resulting in a false negative learning cycle.

Table 7.1 highlights the advantages of prompting LLMs with previously validated

success and reward functions. By retrieving these evolved functions as design cues

for the current task, the number of GPT calls required to learn the first skill option

is significantly reduced. We argue that, as the complexity of robotic environments

increases, accessing skill specifications with RAG will be essential for enhancing the

efficiency of agentic skill discovery.

Research Question 7.4 Can challenging tasks be completed by chaining skills?

Our empirical analysis reveals that certain proposed tasks necessitate extended

execution horizons and present significant challenges for LLMs in formulating

effective reward functions. These complex tasks, which we term as quests in § 7.3.3,

typically involve multi-step entity manipulations. For instance, a stacking task

requires sequential actions: first grasping one object, and then identifying and

aligning it with another object. In our observations, even the highest-performing

behaviors predominantly focused on various cube-grasping techniques but failed

to progress beyond holding the cube in an elevated position. As illustrated in

Figure 7.5, ASD overcomes this limitation by utilizing LLMs to decompose a quest into

sequential short-horizon subtasks. Table 7.2 showcases two illustrative cases where

ASD initially struggled to master complex tasks as unified objectives but succeeded

by systematically decomposing them and addressing the subtasks individually. This

demonstrates that the policy𝜋𝑖 can be effectively learned and integrated hierarchically

by building on existing skills, underscoring ASD’s potential for solving long-horizon

tasks.
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Table 7.2: Snippet of quest completion demonstrating the integration of accumulated skills from the

library with on-demand learned skills, where the latter are conditionally acquired using the end states

of executed skills as initial states, after a replay of already acquired skills from Table 7.1.

Quest Decomposition 𝑁HO/𝑁O 𝑁HC/𝑁C

Stack cube A on top of cube B

1) Pick up cube A ⊲ replay ⊲ replay
2) Place cube A on top of cube

B carefully, aligning their sur-

faces to stack them

1/2 0/22

Put cube A on top of the plate

1) Pick up cube A ⊲ replay ⊲ replay
2) Place cube A on top of the plate 3/3 0/3

7.5 CONCLUSION

Agentic Skill Discovery (ASD) addresses a broad vision for agentic AI systems

[Sha+23; Seq24; Zha+24a; Qia+24], enabling robots to understand complex embodi-

ments and autonomously pursue intricate goals with minimal human intervention.

By using LLMs to devise, motivate, and improve necessary learning processes, we

have shown that language-conditioned robotic skills can be discovered from scratch,

where RL and RAG techniques are beneficial for the efficacy and efficiency of skill

learning. Using a VLM for third-party behavior assessment prevents the skill library

from being influenced by false positives. Furthermore, ASD also promises to tackle

challenging, long-horizon tasks by dividing and conquering on demand and thereby

further effectively extending the skills.

7.6 LIMITATIONS AND FUTURE WORK

Abstraction and Environment Diversity. As discussed in Research Question 7.1, relying

on text-based LLMs to interpret environmental information inevitably introduces a

level of context abstraction. This abstraction may obscure fine-grained environmental

cues critical for precise behavior learning and evaluation. Moreover, using LLMs

to describe and assess robot behavior introduces potential biases and limitations

in the evaluation process. A valuable future direction would be to develop and

fine-tune specialized robot behavior assessment models [Ma+23], leveraging existing

multimodal robotic datasets to improve precision and reliability. Additionally, while

the current experimental validation focuses on a robotic arm scenario, which effectively

demonstrates the framework’s capabilities, it remains a relatively constrained task

domain. Extending the framework to more complex and diverse scenarios, such as

deformable object manipulation, multi-agent coordination, or long-horizon tasks,

will be important to further evaluate its generality and robustness.

Simulation and Real-World Applicability. In addition, the applicability of this method to
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real-world scenarios and diverse embodiments could be evaluated to fully explore its

agenticness [Sha+23], especially in cases where parallel learning is necessary. Learning-

based methods are typically data-intensive, making direct training on real robots slow,

resource-exhaustive, and often impractical. To address this, ASD relies on parallel

simulation for scalable skill discovery. One emerging direction involves building

digital twin environments to safely and efficiently explore policies before transferring

them to physical systems. Another strategy is to first collect real-world data to build

a simulation model (real-to-sim), then train in simulation, and finally deploy back to

the real robot (sim-to-real [Höf+21; Gäd+22]). These real-to-sim-to-real approaches

[Li+24; Tor+24] are increasingly adopted in recent research to improve transferability

and reduce the cost of real-world trials. Moreover, even in the absence of a physical

robot, the ASD framework remains useful, e.g., in discovering reusable skills for

digital agents, such as virtual character animation or game behavior modeling.

Toward Long-Horizon Autonomy. The current implementation focuses on acquiring

basic skills; however, ASD lays a foundation for scalable autonomy. Future research

should explore mechanisms for chaining acquired skills sequentially or integrating

them into a graph-structured representation of policies to enable long-horizon tasks.

Robustness is another key factor, i.e. learned skills must remain effective across

varying contexts. To this end, methods such as domain randomization and task-level

precondition verification should be investigated to improve skill generalization and

reliable activation.



8 REWARD MODELING, EMBODIED

PLANNING, AND EXPLAINABILITY

Extending Embodied Autonomy

To advance embodied autonomy, a series of collaborative research have been

conducted that explore complementary approaches to learning, reasoning, and

decision-making in robotic systems.

▶ Reward derivation beyond direct environmental signals: Reward models

can be learned from data or inferred through reasoning with generative

models, marking a shift from traditional, hand-designed feedback toward

autonomously constructed objectives.

▶ Grounding LLM planning: Task planning using LLMs is enhanced through

integration with symbolic structures, enabling more systematic reasoning

and long-horizon manipulation. Object-centric environmental representa-

tions provides the semantic grounding needed for effective and generalizable

planning.

▶ Transparency and interpretability for trustworthy autonomy: As autonomy

increases, so does the need for systems that are transparent and interpretable.

These collaborative research contribute to explainable agency through tech-

niques such as reward decomposition, causal abstraction, and post-hoc

reasoning with LLMs, helping observers understand and align with the

agent’s decision-making processes.

Despite the rapid progress in embodied AI and robotic learning, several critical

gaps remain underexplored in the literature. (1) While Reinforcement Learning (RL)

has shown strong potential in autonomous behavior acquisition, many real-world

scenarios lack well-defined or reliable reward functions. This issue is particularly

evident in tasks such as those explored in Chapter 7, where reward functions

emerge through evolutionary search rather than being explicitly specified. Such cases

challenge conventional RL paradigms and call for more systematic investigations into

learning with derived or adaptive reward signals. (2) Although LLM have recently

been adopted for task planning in robotics, their generated plans often lack guarantees

of computational correctness, especially in long-horizon or high-DoF manipulation

tasks. The absence of formal validation or planning consistency presents a significant

bottleneck in deploying these models for reliable control. (3) The pace of advancement

in AI capabilities has far outstripped progress in interpretability and transparency.

As intelligent systems become increasingly autonomous and complex, enhancing

their explainability is crucial to ensure safety and controllability.

Motivated by these limitations, this chapter organizes collaborative research aimed

at broadening the scope of embodied autonomy into the following topics:

▶ Reinforcement Learning (RL) with derived rewards (§ 8.1), i.e. with rewards
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coming from a separate reward model rather than, in a standard form, from

the environment directly, including both inductive reward modeling from

joint learning (§ 8.1.1) and deductive reward modeling as reasoning results by

generative foundation models (§ 8.1.2). See Figure 8.1 for an illustration of this

type of RL.

▶ LLM-based task planning (§ 8.2), where LLMs are used to generate action

plans, especially for bimanual manipulation. This includes both direct controls

via LLMs and hybrid approaches combining LLMs with symbolic planning

frameworks (e.g., PDDL integration). See Figure 8.4 for illustration.

▶ Enhancing transparency, interpretability, and reliability of learning models

(§ 8.3), with a focus on explainable agency. This includes approaches such

as reward decomposition with abstract action spaces, causal state distillation

for uncovering decision rationale, and the use of LLMs for post-hoc mental

modeling of agent behavior. These methods aim to make intelligent systems

more understandable and trustworthy to human users.

8.1 REINFORCEMENT LEARNING WITH DERIVED

REWARDS

As is shown in Figure 8.1, RL with derived rewards extends standard RL to apply on

fields where the oracle reward functions are not available. The derived rewards, 𝑟,

being an estimation of the real rewards, assist an agent to explore and optimize its

policies. Usually, the reward models can be inductive, i.e. jointly learned with the

online collected data by an RL agent, or be deductive, i.e. given by an external, pre-

trained reasoning model. The different usage of inductive vs deductive emphasizes

the distinction of the nature of a learning model (usually jointly trained) with collected

trajectories vs reasoning by a generative model with built-in knowledge. Both ways

introduce noise to the rewards, challenging the stability of RL optimization but may

be from different aspects.

Reward Model

Agent Environment

Figure 8.1: Reinforcement Learning (RL) with derived rewards, i. e. rewards from separate reward

models, cfr. Figure 3.5 “Reinforcement learning paradigm” on page 41.

8.1.1 Reinforcement Learning with Inductive Rewards
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Contribution 8.1 Related resulting publications are

▶ [Li+23c]
a
(on internally rewarded RL and reward denoising): My contributions

in the work mainly reside in the formal formulating this special RL problem

(i.e. RL with inductive reward models), deriving supporting theory of the

formulation, evaluation criteria discussion, and interpretation of experimental

results.

▶ [Zha+25]
b

(on LLM alignment tuning with selective samples): My contri-

bution mainly in bringing active learning to the discussion, explanation for

experimental results, and co-coming up with core algorithms accordingly.

a
[Li+23c]: Li* et al. (2023), ‘Internally Rewarded Reinforcement Learning’

b
[Zha+25]: Zhang et al. (2025), ‘REAL: Response Embedding-Based Alignment for LLMs’

Inductively rewarded RL, or Internally Rewarded Reinforcement Learning (IRRL)

[Li+23c], represents a group of RL algorithms whose rewards come from a jointly

learned reward model, in comparison with standard RL whereas an oracle reward

function is deemed known. This special form of joint learning process may face a slow

cold start challenge
1
: initially, the policy is poor such that the collected trajectories

are non-informative to train a reward model (e.g. training a classifier with noisy

observations), and meanwhile, the reward signals back from the poorly learned

reward model can be very noisy, further misguiding the policy adaptation. See

Figure 8.2 for an illustration of this unstable learning with a cold start.

Reward ModelAgent

noisy rewards

insufficient
 observations

Cold Start

Figure 8.2: The cold start issue in Internally Rewarded Reinforcement Learning (IRRL), i. e. biased

initial learning with inductive rewards, where the randomly initialized policy is poor to get sufficient

observations for the training of reward model, and vice versa, the poorly trained reward model

produces noisy rewards back to the agent to learn a policy.

IRRL encompasses a broad range of applications, including skill discovery, active

vision, and Reinforcement Learning from Human Feedback (RLHF) / Reinforcement

Learning from AI Feedback (RLAIF), where rewards are derived from a learned

reward model rather than provided directly by the environment.

Skill Discovery. A common formulation involves sampling a latent skill 𝑧 ∼ 𝑝(𝑧),
generating a trajectory 𝜏 ∼ 𝜋𝜃, and maximizing the mutual information 𝐼(𝑧; 𝜏)
between the skill and the resulting behavior [Las+21b; Yan+25; BSK21; Rho+25;

1: The phenomenon is less obvious for LLM alignment tuning because the LLM, as a generation

policy, has been pre-trained and supervised fine-tuned before Reinforcement Learning from Human

Feedback (RLHF).
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Kam+22; KPK21; Las+21a; Sha+20; Eys+19]. This objective is typically optimized via

the surrogate:

max

𝜃,𝜓
log 𝑞𝜓(𝑧|𝜏),

where 𝑞𝜓 denotes a learned reward model that approximates the oracle reward.

Active Vision. It involves a target task with classification label 𝑦 ∼ 𝑝(𝑦), where

the prior distribution 𝑝(𝑦) is typically known. The objective is to maximize the

information gain relevant to solving the given task [Baj88; Li24]. Taking a robotic

question-answer task as an example, the robot has a limited observation horizon

each time step, and it is supposed to collect sufficiently minimal observations over

time to answer a, for example, classification problem (see Figure 8.3). The objective to

maximize can be

▶ accuracy-based reward: 1(𝑦̂ = 𝑦), where 𝑦̂ is the predicted classification from

the model with parameters 𝜓;

▶ or similarly to above, estimated posterior 𝑞𝜓(𝑦|𝜏), which can be derived from

an approximation of mutual information objective 𝐼(𝑦; 𝜏), providing a more

smooth estimation of the quality of currently observed information.

RLHF / RLAIF. The problems usually start with paired annotations D= {𝑥, 𝑦+, 𝑦−}𝑁 ,

with 𝑥 being the input prompts, and 𝑦+ and 𝑦− are preferred and dispreferred

responses respectively [Chr+17; Sti+20; Cas+23; Ouy+22; Raf+23; Lee+24; Xio+24],

etc.. With reward modeling [Ouy+22; Raf+23], 𝑝𝜓(𝑦+ ≻ 𝑦−) = 𝜎(Δ𝑟𝜓), where

Δ𝑟𝜓 = 𝑟𝜓(𝑥, 𝑦+) − 𝑟𝜓(𝑥, 𝑦−). Maximizing the log-likelihood of positive-negative

classification leads to a training objective of the reward model (and also a policy

implicitly, see Direct Preference Optimization (DPO) [Raf+23] form):

max

𝜓
log 𝑝𝜓(𝑦+ ≻ 𝑦−) = max

𝜓
log 𝜎(Δ𝑟𝜓).

Starting from the RL objective but with 𝔻𝐾𝐿(𝜋𝜃||𝜋ref) constrain removed for simplic-

ity:

max

𝜃
𝔼𝑥∼D,𝑦∼𝜋𝜃(𝑦|𝑥)𝑟𝜓(𝑥, 𝑦),

it can be derived that 𝑟𝜓(𝑥, 𝑦) ∝ log𝜋𝜃(𝑦|𝑥) [Raf+23], and the final optimization

gradient of Direct Preference Optimization (DPO) is

𝜎(−Δ𝑟𝜓) · [∇ log𝜋(𝑦+|𝑥) − ∇ log𝜋(𝑦+|𝑥)].

This formula for paired data can be further extended as∑ 𝜋(𝑦−
𝑖
|𝑥)

𝜋(𝑦+|𝑥) +∑𝜋(𝑦−
𝑖
|𝑥)[∇ log𝜋(𝑦+|𝑥) − ∇ log𝜋(𝑦+𝑖 |𝑥)]

for one-vs-many contrastive preference.

As is observed, the learning objectives, e.g. the reward format to be maximized, are

quite similar. Some of the rewards reveal the learning process, i.e. via an estimation

of posterior, which can be regarded as an optimization over a weighted likelihood. A
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Internally Rewarded Reinforcement Learning

GT: 9  Predicted: 9 GT: 2  Predicted: 2 GT: 6  Predicted: 6

GT: 0  Predicted: 0 GT: 6  Predicted: 6 GT: 7  Predicted: 7

GT: 2  Predicted: 2

(a) Clipped linear

GT: 9  Predicted: 7 GT: 2  Predicted: 3 GT: 6  Predicted: 2

GT: 0  Predicted: 4 GT: 6  Predicted: 6 GT: 7  Predicted: 7

GT: 2  Predicted: 2

(b) Clipped logarithmic

GT: 9  Predicted: 9 GT: 2  Predicted: 6 GT: 6  Predicted: 3

GT: 0  Predicted: 9 GT: 6  Predicted: 6 GT: 7  Predicted: 7

GT: 4  Predicted: 4 GT: 2  Predicted: 0 GT: 2  Predicted: 2

(c) Accuracy-based

Figure 14: Comparison of DT-RAM models trained by different reward functions. GT: the ground-truth class; Predicted: the
predicted class. Red indicates incorrect predictions.

17

Figure 8.3: Hard attention (a case of active vision) example where the agent can only observe partially

and is tasked to collect sufficient information to answer the question: "Which number is currently

being observed?". This is a RL problem to optimize the observation policy but with rewards coming

from only a jointly trained classification model 𝑞𝜓(𝑦|𝜏). Image adapted from [Li+23c].

similar idea of distinguishing learning challenges can be also found in [Zha+25], where

the learning difficulty of an LLM is controlled by embedding similarity, assuming that

hard pairs are too challenging for LLMs and are also less representative to effectively

deliver information, while easy pairs, or, even better, centroid pairs (out of clustering

centers), are both consumable and informative for LLMs.

One typical challenge resides in IRRL is that, because the reward model is jointly

optimized with the evolvement of a policy, the derived rewards can be noisy and

thus lead to unstable policy learning, possibly resulting in a vicious cycle inside

which both the policy and reward model are poorly optimized [Li+23c]
2
. To mitigate

this issue, we analyze the noise statistics and propose a clipped linear reward

shaping function 𝑓𝑟(·) applied on the original reward signal (from a reward model)

𝑟𝜓(𝜏, 𝑦) = log 𝑞𝜓(𝑦|𝜏) − log 𝑝(𝑦), where 𝑝(𝑦) is a prior uniform distribution for

sampling 𝑦:

𝑟linear

𝜓 = 𝑓𝑟(𝑟𝜓) = 𝑚𝑎𝑥[𝑞𝜓(𝑦|𝜏) − 𝑝(𝑦), 0].

Despite the simplicity, the clipped linear reward shaping turns to be effective for

the IRRL problems mentioned above. Experimental details can be found in [Li+23c].

Note that, the requirement for a consistent optimum is that the function 𝑓𝑟(·) should

be an increasing function. There are countless functions that meet this minimal

requirement, but not all of them are effective. To derive an effective function, a

perspective from general 𝑓 -mutual information [Bel+18; Poo+19; EGI20; Rak+21], as

a replacement of the standard mutual information derived from Kullback-Leibler

divergence [Li+23c].

[Zha+25]: Zhang et al. (2025), ‘REAL: Response Embedding-Based Alignment for LLMs’

2: Evidence can also be found in VIC [GRW17], which resort to an implicit option control to bypass

this learning instability.
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8.1.2 Reinforcement Learning with Deductive Rewards

Contribution 8.2 The related resulting publication is [Chu+24b]
a

(on accel-

erating RL with LLM guidance/feedback): My contributions primarily include

co-developing the core methodology for utilizing LLMs to reason about informative

rewards that guide RL agents in acquiring low-level control.

a
[Chu+24b]: Chu et al. (2024), ‘Accelerating Reinforcement Learning of Robotic Manipulations via

Feedback from Large Language Models’

As is discussed in Chapter 6 on page 83, the reasoning is one of the powerful emergent

abilities of LLMs. When grounded into a specific environment and a given task, LLMs

are able to generalize the internal knowledge and reason about (1) a suitable solution

𝜋LLM(𝑎|𝑠) or (2) the judgment over agent behaviors 𝑟LLM(𝑠, 𝑎) [Chu+24b; Wan+24c],

with which the agent can either, at least partially, imitate or optimize the learning

objective.

Agent Environment

User

LLM

Prompts

Figure 8.4: Reinforcement Learning (RL) with deductive rewards, where the user only provides once

the environment and task context as prompts to the LLM, and the LLM thus deduces proper rewards

𝑟LLM for the agent. It serves as a complementary reward signal to the environment rewards, leading to

an acceleration of the overall learning process.

In previous research studies, the learning guidance for agents is usually provided

by domain experts [Chr+17], which is costly and time-consuming. In [Chu+24b], we

propose Language agent feedback interactive Reinforcement Learning (Lafite-RL)

framework to accelerate RL agent learning with additional corrective and directive
teaching provided by LLMs. The framework starts with a human prompting an LLM

with the environment, robot, and task configurations, conditioned on which, the LLM

deduces proper additional rewards for the agent to optimize with
3
. See Figure 8.4 as

an illustration. The experiments conducted on several robotic manipulation tasks

using RLBench [Jam+20] (details can be found in [Chu+24b]) demonstrate that

the LLM-guided RL, with Vicuna-13B v1.5 model as the language model backend,

outperforms the baseline setting with only environment rewards by a large margin

in terms of higher success rate and shorter episode length. The corresponding results

indicate that large-scale trained foundation models are potentially good interactive

3: There also exists works such as [Wan+24c] using VLMs to annotate preference between two

trajectories, instead of providing direct rewards, similar to RLAIF in LLM training [Lee+24; Li+23a].
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Task Environment

... ...

... ...

Scene
Descriptor

Language
Parser

Lafite-RL Framework

Init user
prompts

Function
Pool

RL Agent

LLM

Figure 8.5: Language agent feedback interactive Reinforcement Learning (Lafite-RL) learning

paradigm, where the user provides the environment and task context as prompts to the LLM, which

then deduces proper rewards 𝑟LLM for the agent. The agent learns from both the environment rewards

and the LLM rewards, leading to an acceleration of the overall learning process.

teachers, i.e. being Process-supervised Reward Model (PRM) rather than just being a

Outcome-supervised Reward Model (ORM), as was applied in many previous works,

for low-level RL training.

8.2 LLM-BASED EMBODIED PLANNING

Contribution 8.3 The related resulting publications are:

▶ [Sun+24]
a

(on object state-sensitive LLM planning): My contributions mainly

reside in co-developing the core methodology, designing the experimental

robotic scenario, and contributing to the design and analysis of the LLM

prompting strategies.

▶ [Chu+24a]
b

(on LLM-based bimanual planning): My contributions include

participating in the system design, implementing key modules for integrating

LLMs with task and motion planning.

▶ [Chu+25]
c

(on LLM + multi-agent PDDL planning for bimanual manip-

ulation): My contributions are in co-leading the core method design and

experimental validation in simulated bimanual manipulation tasks.

a
[Sun+24]: Sun et al. (2024), ‘Details Make a Difference: Object State-Sensitive Neurorobotic Task

Planning’

b
[Chu+24a]: Chu et al. (2024), ‘Large Language Models for Orchestrating Bimanual Robots’

c
[Chu+25]: Chu et al. (2025), ‘LLM+MAP: Bimanual Robot Task Planning Using Large Language

Models and Planning Domain Definition Language’

Previously in § 3.3.3 “Integration: Planning and Learning with Foundation Models”

on page 44 and also in Chapter 5 on page 69, where Matcha agent utilized multimodal

cues to guide planning with large language models, general LLM-based task planning

frameworks was introduced. This section presents several collaborative efforts that

further explore the role of LLMs in planning, with a particular emphasis on object
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state sensitivity and bimanual manipulation.

8.2.1 Object State-Sensitive Agent

Ambiguities appear in many cases including both from the user needs and the

environment status, and minimizing the ambiguities leads to an automatic and

efficient task completion. In [Sun+24], we investigated whether LLMs and Vision

Language Models (VLMs) can generate plans that are sensitive to object states (see

Figure 8.6 as an illustration). This led to the development of Object-State Sensitive

Agent (OSSA), a VLM-based agent that can reason about the states of objects, for

example, a whole intact apple or a sliced apple, in the environment and generate plans

accordingly. This is particularly important for daily-life scenarios where the robot

needs to understand the context of objects and tasks.

To carry out the expriments and bring research focus, we provide a benchmark

dataset
4

involving 40 scenarios with 184 objects for researches in state identification

and planning. To investigate the capabilities of VLMs in this regard, a modular method

(which is comprised of separable vision detection module, GRiT [Wu+24], for dense

captioning) and VLM-only, i.e. monolithic approaches (that incorporate unified VLM,

GPT-4V in this case) are compared to handle state-sensitive planning. Experiments

on tabletop scenarios demonstrate that the monolithic approach outperforms the

modular method in both detection accuracy and manipulation planning. Although the

modular method is specifically trained for object detection, it struggles to accurately

recognize object states. This limitation can be attributed to the lack of diverse

training data covering various object states and its inability to incorporate contextual

information from the table for reasoning. In contrast, VLMs exhibit strong reasoning

capabilities and can effectively interpret the table context, leading to improved object

bitten

fresh

red

solid
...

Object State

User

"Clear the table."

VLM

Figure 8.6: The Object-State Sensitive Agent (OSSA) performs context-aware task planning. On a

real-world, everyday table, various objects exist in different states—such as fresh fruits, leftovers, and

clean plates. The robot must take these object states into account and make conditional decisions

accordingly. For example: “Throw away orange peels, put the remaining half apple in the fridge.”

Figure adapted and rearranged from [Sun+24].

4: See https://github.com/Xiao-wen-Sun/OSSA for open-source dataset.

https://github.com/Xiao-wen-Sun/OSSA
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state recognition and more effective planning.

8.2.2 Bimanual Planning

LLM Prompting for Bimanual Manipulation

In [Chu+24a], for complex embodied tasks, we introduced the framework LAnguage-

model-based Bimanual ORchestration (LABOR), a framework that enables direct

LLM-driven planning for bimanual coordination in long-horizon tasks. With cat-

egorization of bimanual manipulation types and prompting strategies, this work

showcased the ability of LLMs to reason about spatial-temporal relationships (see

Figure 8.7) between two arms. Experiments on tasks requiring coordinated two-arm

execution show that LABOR outperforms the baseline method in task success rate.

These results suggest that coordinated planning, particular for long-horizon tasks,

demands more sophisticated reasoning than what a baseline LLM can provide.

However, this complexity can be effectively addressed using contextual prompts

enriched with domain knowledge of bimanual manipulation (cfr. Figure 8.8).

asynchronous

uni-manualuni-manual

LeftRight

synchronous

Figure 8.7: Bimanual coordination with spatiotemporal control types. Figure adapted from [Chu+24a].

LLM + Symbolic Planning for Bimanual Manipulation

Complementing LABOR, LLM + Multi-Agent Planning with PDDL (LLM+MAP)

[Chu+25] tackled the limitations of LLMs in logical consistency by integrating

them with symbolic planning through PDDL
5
. LLM+MAP, illustrated in Figure 8.9,

leverages GPT-4o’s reasoning abilities to support multi-agent, specifically dual arms

grasp blue cup

move yellow cup to the 
overlap area & move blue
cup above the area

support yellow cup & pour
water from blue cup

grasp yellow cup

put back blue cup

serve

release 

Figure 8.8: An illustration of long-horizon task execution requiring spatial and temporal coordination

between two robotic arms of NICOL. The system leverages LLMs for high-level planning and policy

generation, allocating subtasks to both arms. This showcases the integration of semantic reasoning

with embodied control in dual-arm robotic systems (cfr. Figure 8.7 for coordinating types). Figure

adapted from [Chu+24a].

5: See also Figure 3.7 “Symbolic planning with PDDL” on page 46 for LLM with PDDL integration.
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Initial State

Goal StateAction Description

Object Definition

PDDL  Domain + Problem
Vision

Task

Domain Knowledge

LLM+MAP

Figure 8.9: An illustration of the LLM + Multi-Agent Planning with PDDL (LLM+MAP) architecture.

The framework begins with a vision detection module that provides a description of the scene, which,

combined with a high-level task description and domain knowledge of bimanual embodiment, is used

to prompt LLMs to generate symbolic conditions in PDDL configuration files. These conditions are

then consumed by multi-agent solvers for a bimanual plan. After verification, the symbolic plan is

translated into low-level control commands for execution. Figure adapted from [Chu+25].

in this case, coordination and efficient task decomposition for bimanual manipulation,

significantly improving planning efficiency and robustness.

Experiments compared LLM+MAP with direct LLM-based planning using GPT-4o,

OpenAI-o1 [Ope24], and Deepseek-R1 [Dee+25] as baselines on several tabletop ma-

nipulation tasks requiring bimanual coordination. The results show that integrating

symbolic multi-agent planning with LLMs significantly enhances performance in

long-horizon bimanual task planning, yielding higher success rates, faster planning

times, and shorter execution paths. Besides, we find that strong reasoning models like

Deepseek-R1 and OpenAI-o1 outperform other non-reasoning models, e.g. GPT-4o

and DeepSeek-V3 [Dee+24], a lot, which indicates that, especially for long-horizon

task planning, strong reasoning ability is essential, cfr. Chapter 6 on page 83.

Together, these works on bimanual planning highlight the versatility and growing

maturity of LLMs in planning tasks that demand contextual awareness, multi-step

reasoning, and physical coordination in robotic systems.

8.3 EXPLAINABLILTY IN AI AGENTS

Contribution 8.4 The related resulting publications are:

▶ [Lu+23]
a

(on RL decision visualization): My contributions are in co-proposing

the core method for RL behavior explanation, and developing LLM-based

interface for verbal explanation.

▶ [Lu+24]
b

(on causality disentanglement and reward decomposition): My

contributions are in formulating the disentanglement problem, coming up

with sparsity, orthogonality, and sufficiency as optimization objectives, and

deriving the principal theory support.
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▶ [Lu+25]
c

(on mental modeling RL agent): My contributions are in co-

developing the agent mental modeling paradigm and in-depth discussion on

evaluation criteria.

a
[Lu+23]: Lu et al. (2023), ‘A Closer Look at Reward Decomposition for High-Level Robotic

Explanations’

b
[Lu+24]: Lu et al. (2024), ‘Causal State Distillation for Explainable Reinforcement Learning’

c
[Lu+25]: Lu et al. (2025), ‘Mental Modelling of Reinforcement Learning Agents by Language

Models’

As intelligent robotic agents grow in complexity, particularly those driven by RL,

explaining their behaviors to human users becomes increasingly vital. This section

highlights collaborative efforts toward Explainable AI (XAI) in robotic systems,

focusing on both model-intrinsic and post-hoc interpretability approaches, including

the integration of LLMs for more intuitive human interaction.

Explainability with Q-Map, Statistics and LLMs

In [Lu+23], we addressed the challenge of providing non-ambiguous, human-

understandable explanations of RL agent behavior by reward decomposition within

abstract action spaces. The proposed explainable Q-Map framework grounds decision-

making in task-relevant object properties and provides visual and textual explanations

that align more closely with human reasoning. By extracting statistical features from

the Q-values and embedding them into textual templates, we can generate explana-

tions that are more interpretable to human users. Furthermore, with the integration of

LLMs, we can enhance the explanations by providing a more interactive and natural

language interface, allowing users to query and reason over the agent’s behaviors.

See Figure 8.10 for an illustration of the explainable Q-Map framework.

Color Q-Map Shape Q-Map

Composite Q-MapInput

The highest value of
 ___ is ___ ....

Statistics

Which component dominates 
the choice?

The color ... because ...

....

Interactive Query
Templated Explanation

Figure 8.10: Explainable Q-Map framework for RL agents. The framework provides visual and

textual explanations of the agent’s decision-making process, enhancing interpretability and user

understanding further through interactive query with LLMs. Image adapted from [Lu+23].

Reward Decomposition and Causal State Distillation

In [Lu+24], we further extend reward decomposition with a causal learning framework,

which captures the cause-and-effect relationships between states, actions, and rewards

(see Figure 8.11.), to uncover interpretable latent structures, i.e. causal factors {𝛼𝑖}𝑁 .

The optimization aims to distill causal factors that are



8.3 Explainablilty in AI Agents 129

▶ sparse, with objective max

∑
𝕃(𝑠 → 𝛼𝑖), where 𝕃(·) is the information loss after

masking out information the state 𝑠 to get the i-th causal factor 𝛼𝑖 .
▶ orthogonal, with objective min

∑
𝐼(𝛼𝑖 ; 𝛼 𝑗), 1 ≤ 𝑖 , 𝑗 ≤ 𝑁 , i.e. minimizing mutual

information between pairs of causal factors.

▶ and sufficient, with objective min ||∑ 𝑟𝜃(𝛼𝑖 , 𝑎)− 𝑟||2
2
, where 𝑟 is the total reward

supervision and the causal reward models 𝑟𝜃(·) should be sufficiently enough

to uncover the true rewards, given causal factors {𝛼𝑖}𝑁 and action 𝑎.

After the disentanglement, the framework generates more informative and robust

local explanations, enhancing transparency in RL-driven systems. See Figure 8.11 as

an illustration of reward causal factor disentanglement.

r n

rr 2

...

rr 1

S2

S1

Sn

...

state reward

Figure 8.11: State disentanglement and reward decomposition in RL, where the causal factors are

extracted from the state-action-reward transition, which are then used to generate explanations of the

agent’s decision-making process.

Mental Modeling of RL Agents

In work [Lu+25], we have specifically studied how LLMs can mental model the

environment transition and also an RL agent decision. The mental modeling process

involves prompt LLMs with, similarly, environment information, and additionally

the history of agent behaviors. With such context, an LLM is tasked to reason about

an agent’s internal behavioral logic and its effect on the surroundings, i.e. dynamics

transition. See Figure 8.12 as an illustration of mental modeling. Experiments in

robotic control scenarios and Atari games demonstrate that modern LLMs are unable

{ { reasoning

un
ro

ll

≈

Agent

Mental ModelTrajectory
Figure 8.12: Mental modeling of RL agents by LLMs, where the RL agent unrolls trajectories, and

via which the LLM mental model the agent’s internal decision-making mentalism. After this process,

the LLM becomes a “spokesman” for the RL agent for better human-robot interaction and decision

transparency. Image adapted from [Lu+25].
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to fully construct accurate mental models of RL agents based solely on in-context

learning from behavioral histories. This highlights both the current limitations and

the promising avenues for future research on the use of LLMs for mental modeling.

8.4 CONCLUSION

This chapter extends the core concepts introduced in earlier chapters by addressing

three critical challenges in advancing embodied AI:

▶ Lack of well-specified reward functions or guidance in autonomous robot

learning: We explore RL with derived rewards, leveraging both joint reward

modeling and LLM-based reasoning as guidance.

▶ Unreliability of LLM-generated plans for long-horizon robotic control: We

mitigate this limitation by domain-specific prompting and grounding LLM

planning in symbolic computation frameworks.

▶ Widening gap between AI capabilities and interpretability: We address this

by developing transparent modules and auxiliary mechanisms to enhance

interpretability and trust in decision-making processes.

8.5 LIMITATIONS AND FUTURE WORK

Despite the progress made, several limitations persist. Joint learning of rewards

and policies can lead to instability, and LLM-generated rewards, though creative,

often lack consistency and depend heavily on task-specific prompting. Integrating

LLM planning with symbolic frameworks improves structure but struggles with

scalability, as symbolic abstractions can be brittle and overly simplistic. Interpretability

efforts, such as causal distillation and post-hoc explanations, offer only partial insight

and may trade off performance, limiting their applicability in dynamic real-world

settings.

These limitations highlight the need for continued research toward more reliable,

generalizable, and interpretable embodied autonomy. Future directions include

establishing rigorous evaluation benchmarks, improving the synergy between data-

driven and symbolic methods, and enabling introspection and self-correction in

autonomous agents.



DISCUSSION, FUTURE DIRECTIONS,
AND CONCLUSIONS 9
9.1 DISCUSSION AND FUTURE DIRECTIONS

Building upon the accomplishments detailed in previous chapters, this chapter starts

by reviewing recent advancements, remaining challenges in embodied autonomy,

highlighting key progress, and outlining future research directions.

9.1.1 Advances on Reasoning, Adaptation, and Multi-Agents

AI develops rapidly and quickly, pushing beyond the scope and timeline of the work

presented in this thesis. As discussed in Chapter 6, reasoning remains a central

component in achieving robust and generalizable intelligence, and it continues to

evolve rapidly with emerging methods. In parallel, agentic systems, such as the

autonomous robotic agent explored in Chapter 7, are gaining traction as a promising

paradigm for interactive and adaptive intelligence. While this thesis touches on

dual-arm control capabilities, the broader trend toward sophisticated multi-agent

collaboration underscores the need to further investigate coordination, communica-

tion, and scalability. This section provides an overview of recent developments in

these directions, highlighting their growing importance for future AI systems.

On Advanced Reasoning

In previous chapters of Part II, several key works benefit from the powerful reasoning

ability of advanced AI models. As is also discussed in Chapter 6, ways to improve

LLM reasoning ability currently mainly result in inference-time compute scaling,

either via fine-tuning (e.g. DeepSeek-R1 with RL tuning [Dee+25]) or through

prompting [Wei+22a].

Prolonged reasoning pattern intuitively mimics additional mind effort of human

thinking when facing complex problems, and scaling inference-time compute gen-

erally achieves improved task-solving ability. However, it also leads to increased,

sometimes excessive or unacceptable (in terms of waiting time), consumption of

computational resources, regardless of problem complexity, which necessitates a

long-to-short compression while maintaining overall performance.

Reasoning length compression. Recent efforts aim to reduce reasoning length, especially

a preferred short answer for easy problems, to avoid excessive computing and

user waiting time. For example, O1-Prunner [Luo+25] applies length-aware reward,

along with an accuracy-maintained reward, to fine-tune Marco-o1-7B [Zha+24d]

and QwQ-32B [Qwe+25] models to shorten reasoning thoughts while maintaining

non-decreased accuracy on math problems.
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Inductive vs deductive reward modeling. Since in the process of Reinforcement Learning

from Human Feedback (RLHF)
1
, the reliability of reward models directly influ-

ences the resultant language models. DeepSeek-R1 incentivizes reasoning ability

on math and coding problems based on a rule-based reward function, i.e. without

the dependency on reward modeling. However, for more general problems beyond

such domains in which the result can be verified with rules, (explicit or implicit)

reward models are still mandatory. As a result, the improvement of the reliability of

rewards also attracts research. For example, [Liu+25b] improves reward modeling

performance with scaled inference compute, i.e. via deductive inference rather than

previously commonly applied inductive inference via an end-to-end model with

scalar output.

Multimodal reasoning. The challenge of representing information in text, along with

the lack of domain-specific or environment-attached data for LLM training, constrains

the comprehension of real-world scenarios [Xi+25]. Many works arise to improve the

reasoning ability of multimodal foundation modules [She+25; Pan+25], typically with

RL to incentivize strong reasoning patterns as is applied in DeepSeek-R1 [Dee+25].

On Autonomous Adaptation

Building an autonomous agent capable of adapting to unforeseen environments and

continuously evolving its abilities is an immense challenge [Xi+25].

Traditionally, in skill discovery, the main focus is to maximize options, determined

by 𝑠0, 𝑠𝑇 ,𝜋(𝑠0 → 𝑠𝑇), i.e. initial and final states and a policy 𝜋(·) being learnable to

achieve the transition. The policy is vital, otherwise it will be meaningless if the agent

only knows what can be done but doesn’t know how to. Skill discovery belongs to the

scope of Unsupervised Reinforcement Learning (URL), usually done by incentivizing

an agent with rewards derived from the mutual information between the option 𝑧

and transition states (𝑠0, 𝑠𝑇), being different to the traditional motivation of learning

a set of options for the completion of a given extrinsic task. In other words, skill

discovery works exhaustively to find available states an agent can reach, regardless

of their personal intentions [GRW17].

This can be time-consuming and sometimes excessively redundant for robotic control.

In Chapter 7, a semantically motivated skill discovery framework is introduced

to efficiently explore affordable skills attached to an environment setting, lying

in the scope of bypassing URL, but directly learns semantically meaningful skills.

Besides, there are also other recent works trying to limit the skill-searching space.

For example, works to constrain a semantic subspace for an RL agent to explore

via additional rewarding supervision from foundation models [Rho+25; Yan+25].

Voyager [Wan+24a] expands skills, represented as programming codes, with a

self-verification mechanism in a virtual gaming environment, which may, however,

non-applicable for real robotic environments where spatial reasoning and reward

modeling are required.

To assess agent behaviors, such as determining task success or assigning rewards,

1: cfr. § 8.1.1 “Reinforcement Learning with Inductive Rewards” on page 119.
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some methods require analyzing sequences of states rather than relying on a single

static snapshot [KNK21]. This is essential for capturing dynamic properties, such as

whether an object is "slowly moving," without relying on predefined, task-specific

features like velocity. Robot sensors can be leveraged to detect transitions in predicate

states, providing a richer temporal context for behavior evaluation. As large-scale

self-supervised robot skill learning continues to advance, it becomes increasingly

important to develop mechanisms, whether rule-based [KNK21] or model-based,

e.g. [Ma+23], that can reliably monitor sensor streams and skill executions to assess

learning progress and guide further adaptation.

On Multi-Agent Systems

Effectively allocating long-horizon tasks among multiple agents involves several

critical steps: understanding and decomposing the overall task, assigning subtasks to

individual agents based on their specific capabilities and availability, and sequencing

executions to ensure efficient collaboration and coordination.

In multi-robot systems, either homogeneous or heterogeneous, coordination and

cooperation are essential for successful team performance [Azp+23]. Recent advances

have explored leveraging RL and LLMs for heterogeneous multi-agent robot task

planning, including task decomposition, coalition formation, and task allocation

[KVM24; Cem+25; Hon+24; STT24].

As discussed in § 8.2 “LLM-based Embodied Planning” on page 124, evidence suggests

that for long-horizon tasks involving multiple robotic entities, the overall success and

effectiveness heavily depend on the reasoning capabilities of LLMs. We incorporate

computational search methods, such as symbolic planning, to generate coordinated

solutions [Chu+25]. However, these approaches face limitations in flexibility and may

incur significant computational costs, especially for complex tasks. Consequently,

enhancing the reasoning abilities of LLMs, particularly through exposure to multi-

agent domain data, remains a critical direction for enabling more scalable and effective

robot collaboration, including bimanual and broader team-based scenarios.

9.1.2 Remaining Challenges

Despite promising progress in integrating LLMs with robotics, a number of persistent

challenges, outlined below, along with existing effort and remaining research gaps.

Data Efficiency and Generalization

Learning effective control or reasoning strategies remains highly data-intensive. Self-

supervised learning, goal relabeling, and foundation models pretrained on diverse

tasks aim to reduce reliance on task-specific data. However, generalization across

embodiments and environments remains limited, as most systems lack grounded

inductive biases.

[Ma+23]: Ma et al. (2023), ‘Liv: Language-Image Representations and Rewards for Robotic Control’



134 9 Discussion, Future Directions, and Conclusions

▶ Projects such as Open-X-Embodiment [ONe+24] aim to reduce the barrier to

data access within the robotics community by promoting a universal protocol

for robot data structures and encouraging data availability through a shared

platform. While such efforts support large-scale policy learning, particularly

through imitation learning, current methods still face limitations. Despite

leveraging diverse cross-embodiment datasets, learning detailed and transfer-

able control policies remains inefficient for advanced Vision-Language-Action

Model (VLA). Downstream behaviors typically require substantial fine-tuning

tailored to specific robot configurations and environments, highlighting that

generalization across embodiments and tasks continues to be a major open

challenge.

▶ Sim-to-real transfer is a cheap alternative to collect robot data, but the dis-

crepancies between simulation and the real world hinder policy deployment.

Techniques like domain randomization, dynamics adaptation, and modular

world models such as Cosmos [NVI+25], which separates physics from per-

ception, support transferability. Nonetheless, cross-domain consistency and

embodiment-aligned abstraction learning remain underexplored.

Skill Compositionality

Efficient skill learning where humans train a robot with minimal but sufficient

training effort to make the robot compositionally generalize its skills remains a

challenge to explore [Vĳ+25]. Besides, the learned behaviors are often hard to adapt

or reuse. Efforts like behavior trees, skill graphs [BSK21], and LLM-guided selection

[Ahn+22] aim to modularize action selection. Still, most skills lack clean interfaces or

composable structures. Progress may come from integrating symbolic representations

with neural modules and using programmatic abstractions to support flexible reuse

and transfer.

Reasoning, Planning, and Grounding

The gap between high-level task planning and low-level control still challenges

modern autonomous robots. Despite the aforementioned effort to collect massive data,

integrating reasoning, planning, and grounding across language, perception, and

control from high level to lower is still promising because many of the pre-trained large

foundation models are off-the-shelf to use, as we human control robot motions usually

by a higher level algorithm design through, for example, crafting reward functions for

RL or motion planning objective to optimize, which can be, at least partially, replaced

by agentic AI workflows. VLMs, affordance-based methods, and LLM-guided parsing

provide partial solutions for semantic grounding, enabling robots to interpret and

act on abstract instructions. However, ambiguity handling [Sun+24], spatiotemporal

dependency identification [Chu+25], and dynamic environment contexts, e.g. open-

ended world exploration [Wan+24a; ZWW24], are considered essential to avoid

[ONe+24]: O’Neill et al. (2024), ‘Open X-embodiment’
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misinterpretations or failures. These challenges are amplified in complex, multi-

agent, or long-horizon tasks, where scalable planning and coordination are of the

essence. While Hierarchical Reinforcement Learning (HRL), decentralized policies,

and symbolic decomposition approaches offer some relief, they remain limited in

adaptability and robustness. To enable scalable and generalizable autonomy, future

systems must support real-time, scene-aware grounding and flexible reasoning, e.g. a

generative robot reward model being capable of reasoning about the learning process

with robot and environment status, that adapts to uncertainty, interaction, and task

complexity.

9.1.3 Future Directions

Building on the findings of this thesis and discussion above, several promising

directions are identified for future research to further advance the autonomy and

adaptability of embodied agents:

Transferable simulation. Simulation provides an efficient and flexible means to generate

large-scale data. With improved fidelity and transfer techniques, addressing the

sim-to-real gap can enable robust policy training at scale without extensive real-world

interaction.

Learning from cross-embodiment data. To generalize across different robots and en-

vironments, future work should develop algorithms that can efficiently leverage

heterogeneous datasets. This includes designing architectures and learning strategies

that promote embodiment-agnostic representations and transferable skills.

Planning with VLA. While VLA models demonstrate strong generalist potential, their

integration with model-based planning and safety mechanisms remains limited.

Future research should explore how to align abstract instruction grounding with

reliable action planning and execution.

Self-determined learning. Moving beyond imitation, self-determined learning through

reinforcement is essential for open-ended autonomy. Future directions include

the development of intrinsic motivation, adaptive curricula, and autonomous skill

discovery in complex, dynamic environments. A promising path begins with high-

fidelity simulation, either using external simulators or internally learned world

models, to support efficient exploration and skill acquisition.

9.2 CONCLUSIONS

This thesis has investigated the conceptual foundations and practical advancements

in enabling autonomous embodied agents to explore their environment and engage

in self-development. Central to this work is the integration of world modeling,

semantic grounding, policy learning, and self-determination, which together form

the conceptual paradigm guiding this research. Under this paradigm, a comprehensive

set of research objectives aimed at advancing the capabilities of autonomous agents

has been extensively addressed. Each objective was explored rigorously through
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empirical studies and theoretical contributions.

▶ Firstly, self-deterministic agents capable of leveraging non-verbal multimodal

cues to autonomously explore and develop abilities beyond immediate task

requirements were constructed (Objective I). The introduction of the Intrinsic

Sound Curiosity Module (ISCM) framework demonstrated the effectiveness of

crossmodal learning cues in enhancing exploration and representation learning.

▶ Secondly, an interactive multimodal perception framework was developed,

enabling agents to actively gather, integrate, and semantically interpret di-

verse sensory inputs for context-aware decision-making (Objective II). The

Multimodal environment chatting (Matcha) framework exemplifies this ap-

proach by incorporating Large Language Models (LLMs) and performing

multimodal fusion at the decision level, thereby improving agent performance

in complex environments.

▶ Thirdly, agent reasoning capabilities were enhanced to interpret complex in-

structions and make informed decisions (Objective III). The Logical Thoughts

(LoT) method significantly improved zero-shot Chain-of-Thought (CoT) reason-

ing, boosting inference-time reasoning and decision-making across multiple

domains and model scales.

▶ Finally, autonomous agents with advanced self-determination were constructed,

capable of verbally sensing environmental context and autonomously discov-

ering meaningful skills (Objective IV). The Agentic Skill Discovery (ASD)

framework enabled agents to identify and acquire new capabilities efficiently

in novel environments through self-determined Reinforcement Learning (RL).

Collectively, these achievements mark significant progress toward enabling au-

tonomous agents to explore novel environments and develop independently, advanc-

ing the field of self-developing embodied systems. Recent advancements and future

directions further underscore the growing potential of integrating world modeling,

semantic grounding, policy learning, and robotic self-determination to build more

capable and adaptable agents.
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APREDICTION ERROR AND GAUSSIAN

MODELING

In this appendix, the mathematical connection between practical implementation

of ∥𝑠′ − 𝑠′∥2 (where 𝑠′ = 𝜇𝜃(𝑠, 𝑎),ℝ𝑛 × ℝ𝑚 → ℝ𝑛
, is the regression on next state

in latent space) and general quality measurement with log-likelihood function

log 𝑝𝜃(𝑠′|𝑠, 𝑎) will be discussed, serving as a theoretical complement to § 3.4.1

“Intrinsic Motivation” on page 48 and a foundation for the practice in Chapter 4

“Sound Guides Representations and Explorations” on page 55.

Supposing a Gaussian modeling of 𝑠′|𝑠, 𝑎 ∼N(𝑠′|𝜇𝜃(𝑠, 𝑎),Σ), the Probability Density

Function (PDF) is

𝑝𝜃(𝑠′|𝑠, 𝑎) =
1

(2𝜋)𝑛/2|Σ|1/2
𝑒−

1

2
[𝑠′−𝜇𝜃(𝑠,𝑎)]𝑇Σ[𝑠′−𝜇𝜃(𝑠,𝑎)].

The intrinsic reward is computed as

𝑟intr(𝑠, 𝑎, 𝑠′) = − log 𝑝𝜃(𝑠′|𝑠, 𝑎)

=
𝑛

2

log 2𝜋 + 1

2

log |Σ| + 1

2

[𝑠′ − 𝜇𝜃(𝑠, 𝑎)]𝑇Σ−1[𝑠′ − 𝜇𝜃(𝑠, 𝑎)].

SimplifyingΣ = 𝜎2𝐼with an assumption of the same noise variance across dimensions,

we have |Σ| = 𝜎2𝑛
and Σ−1 = 𝜎−2𝐼, and

𝑟intr(𝑠, 𝑎, 𝑠′) = 𝑛

2

log(2𝜋𝜎2) + 1

2𝜎2

||𝑠′ − 𝜇𝜃(𝑠, 𝑎)||2
2
.

This shows that the log-likelihood is directly linked to the squared prediction error

||𝑠′ − 𝑠′||. If further supposing a fixed, not learned, dynamics modeling variance

𝜎, the intrinsic reward can be assigned as 𝑟intr(𝑠, 𝑎, 𝑠′) = 𝛼||𝑠′ − 𝜇𝜃(𝑠, 𝑎)||2, i.e. the

scaled prediction error in continuous state space.

A similar formulation can be derived using the Mahalanobis distance between the

next state 𝑠′ and the Gaussian prediction N
(
𝑠′|𝜇𝜃(𝑠, 𝑎),Σ

)
:

(𝑠′ − 𝑠′)⊤Σ−1(𝑠′ − 𝑠′),

which serves as a measure of modeling quality, incorporating both prediction error

and the model’s estimated uncertainty.



IMPACT SOUND SIMULATION B
B.1 PHYSICS-BASED SOUND SIMULATION THEORY

This appendix provides a brief overview of the physics-based sound simulation

theory, which is relevant to the sound generation in the context of this thesis (cfr.
§ 2.3.1 “ThreeDWorld” on page 20 for the discussion on simulating impact sound,

and § 4 “Sound Guides Representations and Explorations” on page 55 for relevant

research work).

Impact sounds can be modeled as vibrations in a physical system. When an object is

struck, the impact excites various vibrational modes that produce sound. A mass-

spring-damper system provides a simplified but effective model for these vibrations.

Considering an object with mass 𝑚, which experiences an external impact force 𝐹(𝑡),
this mass is connected to a spring (representing the object’s elasticity) and a damper

(representing energy dissipation during impact). The spring force follows Hooke’s

law: 𝐹𝑠 = −𝑘𝑥(𝑡), where 𝑘 is the spring constant and 𝑥(𝑡) is the displacement on time

step 𝑡. The damper exerts a force proportional to the velocity 𝐹𝑑 = −𝑐 ¤𝑥(𝑡) where 𝑐 is

the damping coefficient. This leads to a motion equation:

𝑚 ¥𝑥(𝑡) + 𝑐 ¤𝑥(𝑡) + 𝑘𝑥(𝑡) = 𝐹(𝑡),

Taking the Laplace transform L{·} [OWN96] of the entire equation leads to

𝑚[𝑠2𝑋(𝑠) − 𝑠𝑥(0) − ¤𝑥(0)] + 𝑐[𝑠𝑋(𝑠) − 𝑥(0)] + 𝑘𝑋(𝑠) = 𝐹(𝑠). (B.1)

m

k

F(t)

x(t)

c

Figure B.1: Mass-spring-damper system illustration with a mass 𝑚, spring with 𝑘 as its spring

constant, and damper with 𝑐 as its damping coefficient. The system is subject to an external force 𝐹(𝑡)
and experiences displacement 𝑥(𝑡).
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Equation B.1 can be simplified by supposing static initial state, i.e. 𝑥(0) = 0 and

¤𝑥(0) = 0, i.e. with free response neglected:

𝑚𝑠2𝑋(𝑠) + 𝑐𝑠𝑋(𝑠) + 𝑘𝑋(𝑠) = 𝐹(𝑠).

Therefore, the forced response is:

▶ In Laplace space, as multiplication

𝑋(𝑠) = 𝐹(𝑠)𝐻(𝑠),

where 𝐻(𝑠) = 1

𝑚𝑠2+𝑐𝑠+𝑘 = 1

𝑚[𝑠2+2𝜂𝜔0𝑠+𝜔2

0
] , 𝜔0 =

√
𝑘
𝑚 is the natural (undamped)

frequency of the system, 𝜂 = 𝑐

2

√
𝑚𝑘

is the damping ratio.

▶ In time domain, as the convolution of ℎ(𝑡) and 𝑓 (𝑡)

𝑥 𝑓 (𝑡) = ℎ(𝑡) ∗ 𝑓 (𝑡)

=

∫ +∞

−∞
ℎ(𝑡 − 𝜏) 𝑓 (𝜏)𝑑𝜏,

In the case of under-damping (most common for real-world impacts), the

solution has an oscillatory form. The inverse Laplace transform of 𝐻(𝑠) gives

the impulse response

ℎ(𝑡) = L−1{𝐻(𝑠)}

=
1

𝑚𝜔𝑑
𝑒−𝜂𝜔0𝑡

sin(𝜔𝑑𝑡),

where 𝜔𝑑 = 𝜔0

√
1 − 𝜂2

is the damped natural frequency.

Finally, the forced response in the time domain can be simulated for a specified force

𝑓 (𝑡):
▶ For 𝑓 (𝑡) = 𝛿(𝑡) (Dirac delta impulse force), the system’s response is a damped

sinusoidal oscillation:

𝑥 𝑓 (𝑡) =
1

𝑚𝜔𝑑
𝑒−𝜂𝜔0𝑡

sin(𝜔𝑑𝑡).

▶ For 𝑓 (𝑡) = 𝑒−𝑡
2/𝜎2 (Gaussian impulse), which models a smooth, bell-shaped force

L{ ¥𝑥(𝑡)} = 𝑠2𝑋(𝑠) − 𝑠𝑥(0) − ¤𝑥(0)
L{ ¤𝑥(𝑡)} = 𝑠𝑋(𝑠) − 𝑥(0)
L{𝑥(𝑡)} = 𝑋(𝑠)

Note that 𝑠 denotes the Laplace variable in this context, rather than the agent’s state used elsewhere.
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applied over time, the response involves a convolution integral:

𝑥 𝑓 (𝑡) =
1

𝑚𝜔𝑑

∫ +∞

−∞
𝑒−𝜂𝜔0(𝑡−𝜏)

sin

(
𝜔𝑑(𝑡 − 𝜏)

)
𝑒−𝜏

2/𝜎2

𝑑𝜏,

which can be computed numerically for a given 𝜎 in practice.

For more complex objects, multiple modes of vibration can exist. This can be modeled

by considering multiple mass-spring-damper systems, each corresponding to a

different vibration mode
1
. Thus, for a realistic sound model, the overall displacement

and sound signal can be computed by summing the contributions from different

modes:

𝑥(𝑡) =
∑
𝑖

𝑥 𝑓 ,𝑖(𝑡) (B.2)

=
∑
𝑖

ℎ𝑖(𝑡) ∗ 𝑓 (𝑡), (B.3)

where the sums run over different modes ℎ𝑖(𝑡) (if more than one is considered).

B.2 SOUND SIMULATION PRACTICE FOR CERAMIC

OBJECTS

In this appendix section, an implementation of impact sound simulation on ceramic

objects will be introduced. Unlike bell-like sounds, which have prolonged ringing,

ceramic impacts exhibit higher resonant frequencies, increased damping, and a

pronounced high-frequency transient. This section presents a modal synthesis

method to generate ceramic-like impact sounds. The Python code is provided to

reproduce this simple demo.

The first step involves modeling the impact force as a short Gaussian pulse as:

𝑓 (𝑡) = 𝑒−𝑡
2/2𝜎2

, if 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝜏 else 𝑓 (𝑡) = 0, with 𝜎 = 𝜏/8, where 𝜏 is the pulse

duration (e.g. 𝜏 = 0.002 s) and 𝑡0 is the impact onset time (e.g. 𝑡0 = 0.01 s).

import numpy as np

import scipy.signal as signal

import sounddevice as sd

import matplotlib.pyplot as plt

fs = 44100

duration = 1.0

t = np.linspace(0, duration, int(fs * duration), endpoint=False)

# Gaussian impact impulse

def generate_impact_impulse(fs, impulse_duration=0.002):

1: Though there exist advanced simulation models [TCM19], further discussion is beyond the scope

of this thesis.
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t_imp = np.linspace(-impulse_duration/2, impulse_duration/2, int(fs *
impulse_duration), endpoint=False)

sigma = impulse_duration / 8

impulse = np.exp(-t_imp**2 / (2 * sigma**2))

impulse /= np.max(impulse)

return impulse

impulse = generate_impact_impulse(fs, impulse_duration=0.002)

impulse_full = np.zeros_like(t)

start_idx = int(0.01 * fs)

impulse_full[start_idx:start_idx + len(impulse)] = impulse

Then, a brief high-pass filtered noise burst 𝑛(𝑡) can be simulated to capture the brittle

transient. The filtered noise 𝑛hp(𝑡) is multiplied by an exponential decay envelope

𝐸burst(𝑡) = exp(−𝜆𝑡), 𝑡 ∈ [0, 𝑇𝑏], where 𝜆 = 50 and 𝑇𝑏 = 0.01 s. The final noise burst

is 𝑛burst(𝑡) = 𝑛hp(𝑡)𝐸burst(𝑡).
# Noise

def generate_noise_burst(fs, burst_duration=0.01):

t_burst = np.linspace(0, burst_duration, int(fs * burst_duration),

endpoint=False)

noise = np.random.normal(0, 1, len(t_burst))

b, a = signal.butter(4, 2000/(fs/2), btype=’high’)

noise_filtered = signal.filtfilt(b, a, noise)

envelope = np.exp(-50 * t_burst)

noise_filtered *= envelope

return noise_filtered

noise_burst = generate_noise_burst(fs, burst_duration=0.01)

noise_full = np.zeros_like(t)

noise_full[start_idx:start_idx + len(noise_burst)] = noise_burst

On the assumption of 𝑁 modes with frequencies 𝑓𝑖 and damped impulse responses,

the system’s characteristics of the 𝑖-th mode can be expressed as

ℎ𝑖(𝑡) = 𝑒−𝛿𝑖 𝑡 sin(2𝜋 𝑓𝑖𝑡 + 𝜙𝑖), 𝑡 ≥ 0,

where 𝛿𝑖 is the damping factor and 𝜙𝑖 is a random phase. The response to the impact

is computed as a convolution 𝑥𝑖(𝑡) = ℎ𝑖(𝑡) ∗ 𝑓 (𝑡), and, thus, the total modal response

is

𝑥(𝑡) =
𝑁∑
𝑖=1

𝐴𝑖𝑥𝑖(𝑡),

where 𝐴𝑖 are modal amplitudes.

# Modes

modes = np.array([1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500,

6000])

damping = np.linspace(0.2, 0.5, len(modes))

amplitudes = np.ones(len(modes))

phases = np.random.uniform(0, 2*np.pi, len(modes))
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Finally, the impact sound can be simulated by combining the noise burst with the

modal response.

# Convolve

def modal_impulse_response(frequency, damping_factor, phase, fs,

resp_duration=1.0):

t_resp = np.linspace(0, resp_duration, int(fs * resp_duration),

endpoint=False)

h = np.exp(-damping_factor * t_resp) * np.sin(2 * np.pi * frequency *
t_resp + phase)

return h

output = np.zeros_like(t)

for f, d_val, amp, phase in zip(modes, damping, amplitudes, phases):

h_mode = modal_impulse_response(f, d_val, phase, fs, resp_duration=

duration)

mode_response = signal.fftconvolve(impulse_full, h_mode, mode=’full’)

[:len(t)]

output += amp * mode_response

mix_ratio = 0.7

output = (1 - mix_ratio) * output + mix_ratio * noise_full

overall_decay = np.exp(-10 * t)

output *= overall_decay

output /= np.max(np.abs(output))

plt.figure(figsize=(10, 4))

plt.plot(t[:1000], output[:1000])

plt.xlabel("Time [s]")

plt.ylabel("Amplitude")

plt.show()

sd.play(output, fs)

sd.wait()

After running the program, a short, simulated impact sound for ceramic materials

should be played.



C LOGICAL THOUGHTS (LOT)
APPENDIX

This appendix provides supplementary information on the LoT prompting method (cfr.
Chapter 6 “Enhancing Reasoning via Logic-Guided Inference Scaling” on page 83),

including pseudo codes for the reasoning process, and a detailed diagram and

prompts for the workflow.

C.1 CHATGPT DEDUCTION EXAMPLE WITH vs
WITHOUT CONTRAPOSITION

Figure C.1 shows the full ChatGPT conversation of the “football” example introduced

earlier in § 6.1 on page 85, indicating the benefits of explicitly prompting LLMs with

deduction knowledge such as logic principles.

C.2 PROOF OF CONTRAPOSITION

We will prove contraposition using reductio ad absurdum:

Known premises 𝑃 → 𝑄 (if 𝑃 is true, then𝑄 is true) and ¬𝑄 (𝑄 is false), prove

¬𝑃.

Proof 𝑃 → 𝑄,¬𝑄 ⊢ ¬𝑃:

1. 𝑃 → 𝑄 P
2. ¬𝑄 P
3. 𝑃 A
4. 𝑄 → E 1, 3

5. X C 2, 4

6. ¬𝑃 ¬I 3–5

Inside the proof, P stands for the known premise, A for assumption,→ E for the

elimination of “→” symbol by following the conditional statement, C for contradiction

assertion (followed by an “X” which indicates the branch with an assumption is

closed) and ¬I for the introduction of negation according to the rule of reductio ad
absurdum.
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Tom football status unclear
February 21, 2024

Anonymous
If Tom plays foot- ball outside, then John will also join to play; if John plays football, then Mary won’t go 

outside. Knowing that Mary is outside, is Tom playing football?

ChatGPT

Based on the given information:

If Tom plays football outside, then John will also join to play.

If John plays football, then Mary won’t go outside.

Given that Mary is outside, we can deduce the following:

Since Mary won't go outside if John plays football, and Mary is outside, it implies that John is not 

playing football.

Since John is not playing football, it doesn't necessarily mean that Tom is playing football, as the first 

statement only establishes a condition for John joining if Tom plays, not vice versa.

Therefore, we cannot conclusively determine whether Tom is playing football or not based solely on the 

given information.

1.

2.

•

•

Anonymous
use contraposition to deduce

ChatGPT

Let's use contraposition to deduce:

If Tom plays football outside, then John will also join to play.

Contrapositive: If John doesn't join to play, then Tom isn't playing football outside.

If John plays football, then Mary won’t go outside.

Contrapositive: If Mary goes outside, then John isn't playing football.

Given that Mary is outside, we can deduce:

According to the contrapositive of the second statement, if Mary goes outside, then John isn't playing 

football.

Since John isn't playing football, according to the contrapositive of the first statement, Tom isn't 

playing football either.

Therefore, if Mary is outside, it implies that Tom isn't playing football.

1.

2.

•

•

Upgrade to Plus
to create your
own GPT

Report content | Terms of use | Privacy policy |

Figure C.1: An example conversation with ChatGPT where the language model fails to correctly

deduce the answer initially, but when being prompted to use the idea of “contraposition”, it successfully

reaches the desired result.

C.3 PSEUDO CODES FOR CMPS-LOT PROMPTING

Algorithm 2 on page 91 and Algorithm 5 are the pseudo-code of the function

to compute the reasoning trace of LoT, where the difference regarding discovering

contradiction is underlined for clarity.

𝑃 is the known premises, e.g. question context, and an LLM is employed with various

purposes in this context. By prompting the LLM to generate post hoc inferences and

subsequently exposing them as discernible options for differentiation, the process

facilitates a more convenient verification of entailment, as opposed to relying on the

model to independently discover contradictions.
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Algorithm 5: Cmps-LoT Reasoning

input :Problem/Premise 𝑃, LLM model
output :Verified thoughts collection T

1 Initialize T← {𝑃} ;

2 𝑇1, 𝑇2, · · · , 𝑇𝑁 ← RegEx[LLM(T)], 𝑖 ← 1 ;

3 while 𝑖 ≤ 𝑁 do
4 𝐸¬

𝑖
← PostHocLLM(𝐸|¬𝑇𝑖 ; T) ;

5 𝐶 ← LLM(𝐸¬
𝑖
|T) ;

6 if 𝐶 is False then
7 𝑇

′
𝑖
← LLM(𝑇|T;𝑇𝑖 ;𝐸

¬
𝑖
), 𝑇𝑖 ← 𝑇

′
𝑖

;

8 {𝑇>𝑖}𝑁 ′ ← LLM(T∪ 𝑇𝑖), 𝑁 ← 𝑁
′
;

9 T← T∪ 𝑇𝑖 , 𝑖 ← 𝑖 + 1 ;

Table C.1: Worsening rate (↓) and improvement rate (↑) when LoT is introduced. Numbers are in %.

Note that the accuracy of the number of candidates can significantly impact the outcome.

Impact GSM8K AQuA Date SocialQA Cau.Eff. Objects Letter OddOut

Vicuna-7b ↑ 0.39 1.51 0.00 3.97 0.00 3.03 0.00 1.56

↓ 0.92 10.91 0.00 8.11 0.00 2.94 0.00 0.00

Vicuna-13b ↑ 3.89 4.88 2.06 3.85 0.00 6.52 2.05 2.67

↓ 0.00 8.89 1.74 8.08 0.00 12.90 0.00 8.84

Vicuna-33b ↑ 0.37 8.02 5.50 20.00 20.83 6.61 0.00 7.84

↓ 0.51 10.45 0.00 6.67 0.00 6.25 4.55 5.71

GPT-3.5-turbo ↑ 12.63 5.71 10.17 1.79 0.00 3.83 0.99 12.50

↓ 2.01 0.67 6.59 0.69 0.00 6.59 2.04 2.85

GPT-4 ↑ 6.67 9.68 21.05 0.00 0.00 0.00 12.50 25.00

↓ 0.10 0.00 1.79 0.00 0.00 0.00 0.00 0.00

C.4 WORSENING AND IMPROVEMENT RATES

The worsening rate computes as

#(correct→wrong)
#(correct→∗) , where “#” means count and “∗”

indicates arbitrary correct/wrong candidates. Similarly, the improvement rate computes

as

#(wrong→correct)
#(wrong→∗) .

From Table C.1, we can have a closer look at the intervention impact of LoT. For

example, for small-sized language models such as Vicuna-7b, it is riskier to exert

extra intervention, as the model may fail to follow. Indeed, larger models generally

benefit from the proposed self-improvement procedure. For instance, GPT-4 exhibited

enhanced accuracy on the Date Understanding, LastLetter, and OddOneOut tasks,

with the improvement rate significantly surpassing the worsening rate, indicating

that the LoT revisions are more trustworthy than the default ones, resulting in better

performance.
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C.5 LOT PROMPTING DIAGRAM IN DETAIL

#1 To find out how long it took
John to drive to his friend's
house, we can use the formula:
time = distance / speed. John
drove 200 miles at a speed of
70 mph, but he had to take a
detour that added 10 miles to
his trip. So, the total distance
he traveled was 200 + 10 = 210
miles.
time = 210 miles / 70 mph
time = 3 hours

Question: John drives to his
friend's house 200 miles away. 
He drives at a speed of 70
mph.  He had to take a detour
that added 10 miles to his trip. 
After he gets there he takes a
route home that is 240 miles
but he goes 80 mph.  How long
did the trip take?

Let's think step by step.
Answer:

#1. First, let's find out how long
it took John to drive to his
friend's house. We can use the
formula: time = distance /
speed.

time = 200 miles / 70 mph
time = 2.86 hours

#2. Next, we need to add the
extra 10 miles from the detour
to his total distance.

total distance = 200 miles + 10
miles
total distance = 210 miles

#3. Now we can find out how
long it took John to drive home.

time = 240 miles / 80 mph
time = 3 hours

#4. Finally, we can add the time
it took to drive to his friend's
house and the time it took to
drive home to find the total trip
time.
total trip time = 2.86 hours + 3
hours
total trip time = 5.86 hours

Therefore, the trip took John
5.86 hours.

#2. To find out how long it took
John to drive home, we can use
the same formula: time =
distance / speed. John drove
240 miles at a speed of 80
mph.

time = 240 miles / 80 mph
time = 3 hours

#3. To find out the total time of
the trip, we just need to add the
time it took John to drive to his
friend's house and the time it
took him to drive home.
total time = 3 hours + 3 hours
total time = 6 hours

Therefore, the trip took John 6
hours.

Review Y: step #1 is false because it
does not take into account the
additional 10 miles that John had to
drive due to the detour. The correct
distance that John drove to his
friend's house is 210 miles, not 200
miles. Therefore, the correct
calculation for the time it took John to
drive to his friend's house is:

time = 210 miles / 70 mph
time = 3 hours

Review X: step #1 is true because
the question states that John drives
to his friend's house 200 miles away
at a speed of 70 mph. Therefore, we
can use the formula time = distance /
speed to calculate how long it took
him to get there.

 
#1. First, let's find out how long
it took John to drive to his
friend's house. We can use the
formula: time = distance /
speed.

time = 200 miles / 70 mph
time = 2.86 hours

Generate post hoc
explanation of the proposition

Generate post hoc 
explanation of the negation

#1 To find out how long it took
John to drive to his friend's
house, we can use the formula:
time = distance / speed. John
drove 200 miles at a speed of
70 mph, but he had to take a
detour that added 10 miles to
his trip. So, the total distance
he traveled was 200 + 10 = 210
miles.
time = 210 miles / 70 mph
time = 3 hours

Revise the
proposition

#1. First, let's find out how long
it took John to drive to his
friend's house. We can use the
formula: time = distance /
speed.

time = 200 miles / 70 mph
time = 2.86 hours

Revision for the next step:
Original next step #1: First, let's find out how long it took John to drive to his
friend's house. We can use the formula: time = distance / speed.

time = 200 miles / 70 mph
time = 2.86 hour

(Hint: It is not good to directly adopt the step #1 because ....)
Let's revise for a better version based on the question premises and on the reasoning
steps so far. Revision of step #1:

Review X: step #1 is true because ...

Review Y: step #1 is false because ...

Let's start by analyzing one by one:
I. What are the premises and previous steps to support the verification
of step #1? (Your answer should quote exact quote as support.)
II. Criticise the incorrect review.
(Note the examined step doesn't have to tackle the whole problem at once.)

Verification & Revision

  

Verify reviews

✗

✓

Figure C.2: Illustration of the LoT workflow applied to an arithmetic task from the AQuA dataset.

Each reasoning step undergoes verification via two independently generated post hoc reviews by the

LLM ( ). In this example, step #1 fails verification ( ) as the discriminator agrees with “Review Y,”

which correctly identifies the error. The LLM then revises the step ( ) and regenerates the subsequent

steps. This process continues until all steps are verified as valid ( ). Dotted boxes highlight key prompt

snippets; full prompts appear in Research Question 6.3 on page 95 and Appendix C.6 on this page.

C.6 PROMPTS AND RESULTS FOR CASES

C.6.1 GSM8K Success Case

Initial Zero-shot-CoT steps:

1 Question: Terry eats 2 yogurts a day. They are currently on sale at 4 yogurts
for $5.00. How much does he spend on yogurt over 30 days?

2
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3 Let’s think step by step.
4 Answer:
5 #1. First, we need to determine how many packs of 4 yogurts Terry will need to

buy over 30 days. To do this, we divide 30 by 4: 30 / 4 = 7.5
6 #2. Since Terry can’t buy a fraction of a pack, we round up to the nearest

whole number: 8
7 #3. Next, we need to determine how many individual yogurts Terry will buy. To

do this, we multiply the number of packs by the number of yogurts per pack:
8 * 4 = 32

8 #4. Finally, we need to determine how much Terry will spend on yogurt. To do
this, we divide the total number of yogurts by the number of yogurts per
dollar: 32 / 4 = 8

9 Therefore, Terry will spend $8.00 on yogurt over 30 days.

Verification of step #1:

1 Question: Terry eats 2 yogurts a day. They are currently on sale at 4 yogurts
for $5.00. How much does he spend on yogurt over 30 days?

2

3 Let’s think step by step.
4 Answer:
5 Verification of the next step:
6 #1. First, we need to determine how many packs of 4 yogurts Terry will need to

buy over 30 days. To do this, we divide 30 by 4: 30 / 4 = 7.5
7

8 Let’s check two different reviews (X and Y).
9 Suport the more plausible one and criticise the other one.

10 Review X: <review> step #1 is TRUE because Terry eats 2 yogurts a day and there
are 4 yogurts in each pack. So, to determine how many packs of 4 yogurts
Terry will need to buy over 30 days, we divide 30 by 4. </review>

11 Review Y: <review> step #1 is FALSE because the question states that Terry eats
2 yogurts a day, not 4. Therefore, we cannot assume that Terry needs to buy
packs of 4 yogurts.

12

13 Instead, we need to calculate how many individual yogurts Terry needs to buy
over 30 days. Since Terry eats 2 yogurts a day, we multiply 2 by 30: 2 * 30
= 60.

14

15 Therefore, Terry needs to buy 60 individual yogurts over 30 days.
16

17 Next, we need to determine the cost of each individual yogurt. The sale price
is 4 yogurts for $5.00, so each yogurt costs $5.00 / 4 = $1.25.

18

19 Finally, we can calculate how much Terry spends on yogurt over 30 days by
multiplying the number of yogurts (60) by the cost per yogurt ($1.25): 60 *
$1.25 = $75.

20

21 Therefore, Terry spends $75 on yogurt over 30 days. </review>
22

23 Let’s start by analyzing one by one:
24 I. What are the premises and previous steps to support the verification of step

#1? (Your answer should quote exact quote as support.)
25 II. Criticise the incorrect review.
26 (Note the examined step doesn’t have to tackle the whole problem at once.)
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27 Finally, identify whether step #1 is true or false.
28

29 Analysis and conclusion:
30 I. The premise to support the verification of step #1 is that Terry eats 2

yogurts a day and the yogurts are on sale at 4 yogurts for $5.00.
31

32 II. The incorrect review (Review X) is incorrect because it misinterprets the
information given in the question. The question clearly states that Terry
eats 2 yogurts a day, not 4. Therefore, the calculation of how many packs
of 4 yogurts Terry needs to buy over 30 days is not relevant to the problem.

33

34 III. Step #1 is false. The correct calculation should be to determine how many
individual yogurts Terry needs to buy over 30 days, which is 2 yogurts per
day multiplied by 30 days, resulting in 60 individual yogurts.

35

36 Therefore, Terry needs to buy 60 individual yogurts over 30 days.

Revision:

1 Question: Terry eats 2 yogurts a day. They are currently on sale at 4 yogurts
for $5.00. How much does he spend on yogurt over 30 days?

2

3 Let’s think step by step.
4 Answer:
5 Original next step #1: First, we need to determine how many packs of 4 yogurts

Terry will need to buy over 30 days. To do this, we divide 30 by 4: 30 / 4
= 7.5

6

7 (Hint: It is not good to directly adopt the step #1 because there is a review
says <review> the question states that Terry eats 2 yogurts a day, not 4.
Therefore, we cannot assume that Terry needs to buy packs of 4 yogurts.

8

9 Instead, we need to calculate how many individual yogurts Terry needs to buy
over 30 days. Since Terry eats 2 yogurts a day, we multiply 2 by 30: 2 * 30
= 60.

10

11 Therefore, Terry needs to buy 60 individual yogurts over 30 days.
12

13 Next, we need to determine the cost of each individual yogurt. The sale price
is 4 yogurts for $5.00, so each yogurt costs $5.00 / 4 = $1.25.

14

15 Finally, we can calculate how much Terry spends on yogurt over 30 days by
multiplying the number of yogurts (60) by the cost per yogurt ($1.25): 60 *
$1.25 = $75.

16

17 Therefore, Terry spends $75 on yogurt over 30 days. </review>.)
18 Let’s revise for a better version based on the question premises and on the

reasoning steps so far.
19 Revision of step #1:
20 First, we need to determine how many individual yogurts Terry will need to buy

over 30 days. Since Terry eats 2 yogurts a day, we multiply 2 by 30: 2 * 30
= 60.

21
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22 Next, we need to determine the cost of each individual yogurt. The sale price
is 4 yogurts for $5.00, so each yogurt costs $5.00 / 4 = $1.25.

23

24 Finally, we can calculate how much Terry spends on yogurt over 30 days by
multiplying the number of yogurts (60) by the cost per yogurt ($1.25): 60 *
$1.25 = $75.

25

26 Therefore, Terry spends $75 on yogurt over 30 days.
27 ...

C.6.2 GSM8K Failure Case

Initial Zero-shot-CoT steps:

1 Question: Mike plays ping pong for 40 minutes. In the first 20 minutes, he
scores 4 points. In the second 20 minutes, he scores 25% more points. How
many total points did he score?

2

3 Let’s think step by step.
4 Answer:
5 #1. In the first 20 minutes, Mike scores 4 points.
6 #2. In the second 20 minutes, he scores 25% more points than in the first 20

minutes.
7 #3. To find 25% more points, we can multiply the number of points in the first

20 minutes by 1.25.
8 #4. 4 points * 1.25 = 5 points.
9 #5. In total, Mike scores 4 points + 5 points = <<4+5=9>>9 points. Answer:

\boxed{9}.
10 ...

Verification of step #4:

1 Question: Mike plays ping pong for 40 minutes. In the first 20 minutes, he
scores 4 points. In the second 20 minutes, he scores 25% more points. How
many total points did he score?

2

3 Let’s think step by step.
4 Answer:
5 #1. In the first 20 minutes, Mike scores 4 points.
6 #2. In the second 20 minutes, he scores 25% more points than in the first 20

minutes.
7 #3. To find 25% more points, we can multiply the number of points in the first

20 minutes by 1.25.
8

9 Verification of the next step:
10 #4. 4 points * 1.25 = 5 points.
11

12 Let’s check two different reviews (X and Y).
13 Suport the more plausible one and criticise the other one.
14 Review X: <review> step #4 is TRUE because 25% more than 4 points is 1.25 * 4 =

5 points. </review>
15 Review Y: <review> step #4 is FALSE because the question states that Mike

scores 25% more points in the second 20 minutes, not 25% more points than
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the first 20 minutes. Therefore, we cannot simply multiply the number of
points in the first 20 minutes by 1.25 to find the number of points in the
second 20 minutes.

16

17 Instead, we need to calculate 25% of the number of points in the first 20
minutes and add that to the number of points in the first 20 minutes.

18

19 25% of 4 points is 0.25 * 4 = 1 point.
20

21 So, in the second 20 minutes, Mike scores an additional 1 point.
22

23 Therefore, the total number of points scored by Mike is 4 + 1 = 5 points.
</review>

24

25 Let’s start by analyzing one by one:
26 I. What are the premises and previous steps to support the verification of step

#4? (Your answer should quote exact quote as support.)
27 II. Criticise the incorrect review.
28 (Note the examined step doesn’t have to tackle the whole problem at once.)
29 Finally, identify whether step #4 is true or false.
30

31 Analysis and conclusion:
32 I. The premise to support the verification of step #4 is that in the second 20

minutes, Mike scores 25% more points than in the first 20 minutes.
33

34 II. The incorrect review (Review Y) criticizes step #4 by stating that we
cannot simply multiply the number of points in the first 20 minutes by 1.25
to find the number of points in the second 20 minutes. Instead, it suggests
calculating 25% of the number of points in the first 20 minutes and adding
that to the number of points in the first 20 minutes.

35

36 After analyzing both reviews, it is clear that step #4 is FALSE. The correct
approach is to calculate 25% of the number of points in the first 20
minutes and add that to the number of points in the first 20 minutes.
Therefore, the total number of points scored by Mike is 4 + 1 = 5 points.

37 ...

Revision and Reduction:

1 Question: Mike plays ping pong for 40 minutes. In the first 20 minutes, he
scores 4 points. In the second 20 minutes, he scores 25% more points. How
many total points did he score?

2

3 Let’s think step by step.
4 Answer:
5 #1. In the first 20 minutes, Mike scores 4 points.
6 #2. In the second 20 minutes, he scores 25% more points than in the first 20

minutes.
7 #3. To find 25% more points, we can multiply the number of points in the first

20 minutes by 1.25.
8 #4. To find the number of points Mike scores in the second 20 minutes, we need

to calculate 25% of the number of points in the first 20 minutes and add
that to the number of points in the first 20 minutes.

9
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10 25% of 4 points is 0.25 * 4 = 1 point.
11

12 So, in the second 20 minutes, Mike scores an additional 1 point.
13

14 Therefore, the total number of points scored by Mike is 4 + 1 = 5 points.
15 #5. Therefore, Mike scored a total of 5 points.

C.6.3 GSM Failure Case

Initial Zero-shot-CoT steps:

1 Question: Jerry is rolling a six-sided die. How much more likely is it
(expressed as a percentage) that he rolls a number greater than 3 than that
he rolls two even numbers in a row?

2 Let’s think step by step.
3

4 Answer:
5 #1. The probability of rolling a number greater than 3 is 3/6 or 1/2, since

there are three numbers (4, 5, and 6) that are greater than 3 out of six
possible outcomes.

6 #2. The probability of rolling two even numbers in a row is (1/2) x (1/2) or
1/4, since the probability of rolling an even number on a single roll is
1/2 and the probability of rolling another even number on the next roll is
also 1/2.

7 #3. To find out how much more likely it is to roll a number greater than 3 than
to roll two even numbers in a row, we need to compare the difference
between their probabilities.

8 #4. The probability of rolling a number greater than 3 is 1/2, and the
probability of rolling two even numbers in a row is 1/4.

9 #5. The difference between these probabilities is 1/2 - 1/4 = 1/4.
10 #6. To express this as a percentage, we can multiply by 100 to get 25%.

\n\nTherefore, it is 25% more likely that Jerry rolls a number greater than
3 than that he rolls two even numbers in a row.

Revision of step #6:

1 ...
2 #6. To express this as a percentage, we need to calculate the ratio of the

difference between the probabilities to the probability of rolling two even
numbers in a row, and then multiply by 100 to get the percentage. \n\nThe
difference between the probabilities is 1/4, and the probability of rolling
two even numbers in a row is 1/4. Therefore, the ratio is 1/4 \u00f7 1/4 =
1. Multiplying by 100 gives us 100%, which means that it is 100% more
likely that Jerry rolls a number greater than 3 than that he rolls two even
numbers in a row.\n

3 #7. Therefore, it is twice as likely that Jerry rolls a number greater than 3
than that he rolls two even numbers in a row.

Revision of step #7:

1 ...
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2 #7. Therefore, it is 100% more likely that Jerry rolls a number greater than 3
than that he rolls two even numbers in a row.\n

3 #8. Final Answer: It is 100% more likely that Jerry rolls a number greater than
3 than that he rolls two even numbers in a row.

The result is not aligned with the ground truth but is acceptable because it presented

the answer with a ratio rather than an absolute value increase.

C.6.4 AQuA Success Case

Initial Zero-shot-CoT steps:

1 Analyze and answer the following single-choice problem.
2 Question: An aeroplane flies along the four sides of a square at the speeds of

200, 400, 600 and 800km/hr. Find the average speed of the plane around the
field?

3 Options:
4 OptA)384 OptB)562 OptC)458
5 OptD)156 OptE)452
6

7 Let’s think step by step.
8 Answer:
9 #1. To find the average speed, we need to find the total distance traveled and

divide it by the total time taken.
10 #2. The distance traveled on each side of the square is equal to the speed

multiplied by the time taken. Let’s assume the length of each side of the
square is "s" km.

11 #3. The time taken to travel each side of the square is equal to the length of
the side divided by the speed. So, the time taken for each side is s/200,
s/400, s/600, and s/800 hours.

12 #4. The total distance traveled is equal to the sum of the distances traveled
on each side of the square. So, the total distance is 4s km.

13 #5. The total time taken is equal to the sum of the times taken for each side
of the square. So, the total time is (s/200) + (s/400) + (s/600) + (s/800)
hours.

14 #6. Now, we can calculate the average speed by dividing the total distance by
the total time. So, the average speed is (4s) / ((s/200) + (s/400) +
(s/600) + (s/800)) km/hr.

15 #7. Simplifying the expression, we get the average speed as (4s) / ((3s + 2s +
(4/3)s + (1/2)s) / 2400) km/hr.

16 #8. Further simplifying the expression, we get the average speed as (4s) /
((19/6)s / 2400) km/hr.

17 #9. Canceling out the common terms, we get the average speed as (4/1) / ((19/6)
/ 2400) km/hr.

18 #10. Simplifying the expression, we get the average speed as (4/1) * (2400 /
(19/6)) km/hr.

19 #11. Further simplifying the expression, we get the average speed as (4 * 2400)
/ (19/6) km/hr.

20 #12. Calculating the expression, we get the average speed as 9600 / (19/6)
km/hr.

21 #13. Dividing the numerator by the denominator, we get the average speed as
9600 * (6/19) km/hr.

22 #14. Simplifying the expression, we get the average speed as 3200 * (2/19)
km/hr.
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23 #15. Calculating the expression, we get the average speed as 6400 / 19 km/hr.
24 #16. Rounding the answer to the nearest whole number, we get the average speed

as 337 km/hr.
25 #17. None of the given options match the calculated average speed.
26 ...

Revision and Re-deduction:

1 Analyze and answer the following single-choice problem.
2 Question: An aeroplane flies along the four sides of a square at the speeds of

200, 400, 600 and 800km/hr. Find the average speed of the plane around the
field?

3 Options:
4 OptA)384 OptB)562 OptC)458
5 OptD)156 OptE)452
6

7 Let’s think step by step.
8 Answer:
9 #1. To find the average speed, we need to find the total distance traveled and

divide it by the total time taken.
10 #2. The distance traveled on each side of the square is equal to the speed

multiplied by the time taken. Let’s assume the length of each side of the
square is "s" km.

11 #3. The time taken to travel each side of the square is equal to the length of
the side divided by the speed. So, the time taken for each side is s/200,
s/400, s/600, and s/800 hours.

12 #4. The total distance traveled is equal to the sum of the distances traveled
on each side of the square. So, the total distance is 4s km.

13 #5. The total time taken is equal to the sum of the times taken for each side
of the square. So, the total time is (s/200) + (s/400) + (s/600) + (s/800)
hours.

14 #6. Now, we can calculate the average speed by dividing the total distance by
the total time. So, the average speed is (4s) / ((s/200) + (s/400) +
(s/600) + (s/800)) km/hr.

15 #7. To simplify this expression, we need to find a common denominator for the
fractions in the denominator. The common denominator is 2400.

16

17 (4s) / ((s/200) + (s/400) + (s/600) + (s/800))
18

19 Now, we can add the fractions:
20 (4s) / ((12s + 6s + 4s + 3s) / 2400)
21 (4s) / (25s / 2400)
22 (4s) * (2400 / 25s)
23 (4s) * 96
24 384s
25

26 Therefore, the correct average speed is 384s km/hr.
27 The correct answer is OptA) 384.

C.6.5 AQuA Failure Case

Initial Zero-shot-CoT steps:
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1 Analyze and answer the following single-choice problem.
2 Question: Roy was suffering from severe headaches. He went to see his doctor

and the doctor gave him 5 tablets asking him to take one tablet every 15
minutes.

3 How much time will it take Roy to consume all the 5 tablets?
4 Options:
5 OptA)45 Min OptB)75 Min OptC)90 Min
6 OptD)120 Min OptE)60 Min
7

8 Let’s think step by step.
9 Answer:

10 #1. Roy needs to take 5 tablets.
11 #2. He needs to take one tablet every 15 minutes.
12 #3. To calculate the total time, we need to multiply the number of tablets by

the time it takes to consume one tablet.
13 #4. 5 tablets x 15 minutes = 75 minutes.
14 Therefore, the correct answer is OptB) 75 Min.

In this case, all of the reasoning steps passed the verification, such that the answer by

LoT is consistent with CoT. However, they are both not correct. The ground truth is

OptE) 60 Min, with an explanation that “Tablet 1 will be taken in 0 min...”. Because

there is no message for this hidden commonsense knowledge, neither CoT nor LoT

can realize it.

C.6.6 Date Understanding Success Case

Initial Zero-shot-CoT steps:

1 Question: Jane and John married on Jan 2, 1958. Today is their golden wedding
anniversary. What is the date one week ago from today in MM/DD/YYYY?

2

3 Let’s think step by step.
4 Answer:
5 #1. First, we need to determine the date of their golden wedding anniversary.
6

7 To do this, we need to add 50 years to their wedding date.
8

9 Jan 2, 1958 + 50 years = Jan 2, 2008
10

11 #2. Next, we need to determine the date one week ago from today.
12

13 To do this, we subtract 7 days from today’s date.
14

15 Today’s date - 7 days = (MM/DD/YYYY)
16

17 Therefore, the date one week ago from today in MM/DD/YYYY format is
(MM/DD/YYYY).

Revision and Re-deduction:

1 Question: Jane and John married on Jan 2, 1958. Today is their golden wedding
anniversary. What is the date one week ago from today in MM/DD/YYYY?
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2

3 Let’s think step by step.
4 Answer:
5 #1. First, we need to determine the date of their golden wedding anniversary.
6

7 To do this, we need to add 50 years to their wedding date.
8

9 Jan 2, 1958 + 50 years = Jan 2, 2008
10 #2. Next, we need to determine the date one week ago from today.
11

12 To do this, we need to subtract 7 days from the date of their golden wedding
anniversary.

13

14 Jan 2, 2008 - 7 days = Dec 26, 2007
15

16 Therefore, the date one week ago from today in MM/DD/YYYY format is 12/26/2007.
17 The date one week ago from today in MM/DD/YYYY format is 12/26/2007.

In this case, CoT successfully applies the commonsense knowledge that a “golden

wedding anniversary” means fifty years. However, the language model fails to

generate a meaningful answer as a conclusion while the revision by LoT leads to a

correct answer.

C.6.7 Date Understanding Failure Case

Initial Zero-shot-CoT steps:

1 Question: The deadline is Jun 1, 2021, which is 2 days away from now. What is
the date tomorrow in MM/DD/YYYY?

2

3 Let’s think step by step.
4 Answer:
5 #1. Today’s date: May 30, 2021
6 #2. Tomorrow’s date: May 31, 2021
7 #3. Convert to MM/DD/YYYY format: 05/31/2021

Verification of step #1:

1 Question: The deadline is Jun 1, 2021, which is 2 days away from now. What is
the date tomorrow in MM/DD/YYYY?

2

3 Let’s think step by step.
4 Answer:
5

6 Verification of the next step:
7 #1. Today’s date: May 30, 2021
8

9 Let’s check two different reviews (X and Y).
10 Suport the more plausible one and criticise the other one.
11 Review X: <review> step #1 is TRUE because the user stated that the deadline is

2 days away from now, and today’s date is May 30, 2021. </review>
12 Review Y: <review> step #1 is FALSE because the given information states that

the deadline is June 1, 2021, which means that today’s date is May 31, 2021.
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13

14 Now, let’s move on to the next step.
15

16 Step #2: Determine the date tomorrow.
17

18 Since today is May 31, 2021, tomorrow will be June 1, 2021.
19

20 Therefore, the date tomorrow in MM/DD/YYYY format is 06/01/2021. </review>
21

22 Let’s start by analyzing one by one:
23 I. What are the premises and previous steps to support the verification of step

#1? (Your answer should quote exact quote as support.)
24 II. Criticise the incorrect review.
25 (Note the examined step doesn’t have to tackle the whole problem at once.)
26 Finally, identify whether step #1 is true or false.
27

28 Analysis and conclusion:
29 I. The premise to support the verification of step #1 is the user’s statement

that the deadline is 2 days away from now, and today’s date is May 30, 2021.
30

31 II. Review Y criticizes step #1 by stating that the given information states
that the deadline is June 1, 2021, which means that today’s date is May 31,
2021.

32

33 Based on the user’s statement and the given information, it can be concluded
that step #1 is FALSE. Today’s date is May 31, 2021, not May 30, 2021.

Revision and Re-deduction:

1 Question: The deadline is Jun 1, 2021, which is 2 days away from now. What is
the date tomorrow in MM/DD/YYYY?

2

3 Let’s think step by step.
4 Answer:
5 #1. Determine the date tomorrow.
6

7 Since today is May 31, 2021, tomorrow will be June 1, 2021.
8

9 Therefore, the date tomorrow in MM/DD/YYYY format is 06/01/2021.
10

11 #2. The date tomorrow in MM/DD/YYYY format is 06/01/2021.

This failure of LoT showcases the importance of correctly identifying the more

plausible review, especially when both reviews claim statements but with established

facts as support. Apparently, there is no clear reason to support “Review Y”, i.e. the

post hoc explanation, in this case, is just a hallucination of the LLM but it sometimes

fools the LLM itself.



D AGENTIC SKILL DISCOVERY (ASD)
APPENDIX

This appendix provides additional details on the ASD framework (cfr. Chapter 7 on

page 99), including the implementation details, prompts, and further skill learning

reports.

D.1 GENERATED FUNCTIONS EXAMPLES

D.1.1 Success Functions

def pick_up_cube_a(env: RLTaskEnv) -> torch.Tensor:
"""Pick up the cube A successfully by determining whether the gripper is closed around the cube.
"""
gripper_open_distance = env.obs_buf["observations"]["gripper_open_distance"].squeeze()
is_pickup_successful = torch.where(gripper_open_distance < 0.01, 1.0, 0.0)
return is_pickup_successful.squeeze()

Evolutionary
Skill Learning

def pick_up_cube_a(env: RLTaskEnv) -> torch.Tensor:
"""Sparse reward the agent for picking up cube A."""
gripper_open_threshold = 0.02
cube_pick_height = 0.2
obs = env.obs_buf["observations"]
gripper_open_distance = obs["gripper_open_distance"].squeeze()
cube_a_height = obs["cube_a_position"][:, 2]
drawer_open_distance = obs["drawer_open_distance"].squeeze()

is_gripper_closed = torch.where(gripper_open_distance < gripper_open_threshold, 1.0, 0.0)
is_cube_a_picked = torch.where(cube_a_height > cube_pick_height, 1.0, 0.0)

is_success = is_gripper_closed * is_cube_a_picked * (1.0 - drawer_open_distance)

return is_success.squeeze()

Figure D.1: Two success function examples generated by gpt-3.5-turbo, and their corresponding

results by RL. Top: an incorrect success determination function can lead to wrongly trusted behaviors.

Bottom: a correct success determination function results in a desired skill.

Taking the task “pick up the cube A” as an example, we show two typical success

functions generated by the LLM in Figure D.1. Given the potential for inaccuracies

in generating success functions, the entire learning process runs the risk of being

futile, with the added possibility of incorporating poor skills into the skill library.

ASD significantly mitigates this risk by employing a coordinated strategy involv-

ing fast success determination (LLM sampling) alongside additional slow success

determination (VLM verification).
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D.1.2 Reward Functions

The evolutionary search (§ 7.3.2) not only revises the reward functions to reduce

execution errors (shown in Table 7.1) but also to provide more informative guidance

for the RL agents. In Figure D.2, we show two reward functions for the same task but

at different iterations (i.e. generations of the evolution). The LLM displays, though not

always, the ability to improve the reward function by reward shaping, i.e. introducing

more reward components to smoothly guide the learning agent, which has proven

very helpful for RL [NHR99].

def appro
ach_cube_

a(env: RL
TaskEnv) 

-> torch.
Tensor:

"""Reward
the agent for approachi

ng cube A with the gripper."
""

obs = env
.obs_buf[

"observat
ions"]

distance 
= torch.n

orm(obs["
cube_a_po

sition"] 
- obs["ee

_position
"], dim=1

)

std = 0.1

return (1
 - torch.

tanh(dist
ance / st

d)).squee
ze()

def lift_
cube_a(en

v: RLTask
Env) -> t

orch.Tens
or:

"""Reward
the agent for successfu

lly lifting cube A."""

obs = env
.obs_buf[

"observat
ions"]

minimal_h
eight = 0

.06

cube_a_he
ight = ob

s["cube_a
_position

"][:, 2]

lifted_re
ward = to

rch.where
(cube_a_h

eight > m
inimal_he

ight, 1.0
, 0.0)

return li
fted_rewa

rd.squeez
e()

class Rew
ardsCfg:

approach_
reward = 

RewTerm(

func=appr
oach_cube

_a,

weight=1.
0,

)

lift_rewa
rd = RewT

erm(

func=lift
_cube_a,

weight=10
.0,

)

def appro
ach_cube_

a(env: RL
TaskEnv) 

-> torch.
Tensor:

"""Reward
the agent for approachi

ng cube A with the gripper."
""

obs = env
.obs_buf[

"observat
ions"]

distance 
= torch.n

orm(obs["
cube_a_po

sition"] 
- obs["ee

_position
"], dim=1

)

std = 0.1

return (1
 - torch.

tanh(dist
ance / st

d)).squee
ze()

def grasp
_cube_a(e

nv: RLTas
kEnv) -> 

torch.Ten
sor:

"""Reward
the agent for grasping

cube A."""

obs = env
.obs_buf[

"observat
ions"]

cube_a_ee
_distance

 = torch.
norm(obs[

'cube_a_p
osition']

 - obs["e
e_positio

n"], dim=
1)

is_near_c
ube = tor

ch.where(
cube_a_ee

_distance
 < 0.02, 

1.0, 0.0)

# Enhanci
ng the emphasis

on grasping

reward = 
is_near_c

ube * (0.
15 - obs[

"gripper_
open_dist

ance"].sq
ueeze())

return re
ward.sque

eze()

def lift_
cube_a(en

v: RLTask
Env) -> t

orch.Tens
or:

"""Reward
the agent for successfu

lly lifting cube A."""

obs = env
.obs_buf[

"observat
ions"]

minimal_h
eight = 0

.06

cube_a_he
ight = ob

s["cube_a
_position

"][:, 2]

lifted_re
ward = to

rch.where
(cube_a_h

eight > m
inimal_he

ight, 1.0
, 0.0)

return li
fted_rewa

rd.squeez
e()

class Rew
ardsCfg:

approach_
reward = 

RewTerm(

func=appr
oach_cube

_a,

weight=1.
0,

)

grasp_rew
ard = Rew

Term(

func=gras
p_cube_a,

weight=8.
0, # Increas

ed weight for improved
emphasis

)

lift_rewa
rd = RewT

erm(

func=lift
_cube_a,

weight=10
.0,

)

+Evolve reward shaping

Initial reward components

Figure D.2: An example of an improved reward function by evolutionary iteration for the task “pick
up the cube A”. Left: a reward function focusing on approaching and lifting the cube; Right: an

evolved reward function to include more detailed guidance of the gripper, leading to efficient RL.

D.1.3 Misconduct

As for many other LLM-based agents, some hallucination risks inevitably arise.

Permitting a system to run LLM-generated code may cause unexpected and possibly

harmful consequences. Figure D.3 showcases an example of misconducting code

generations even with the advanced LLM GPT-4o
1
. We recommend early syntax

1: https://openai.com/index/hello-gpt-4o/

https://openai.com/index/hello-gpt-4o/
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examination (such as the Python syntax check module in ASD) and implementing

system-wide safety guarantees (e.g. a sandbox to run a program). Reports regarding

related error measures can be found in Appendix D.2.

def place_cube_a_in_drawer(env: RLTaskEnv) -> torch.Tensor:
"""Sparse reward for successfully placing cube A in the drawer."""
# Hyper-parameters
minimal_drawer_open_distance = torch.tensor(0.03, device="cuda") # Opened state
drawer_depth_threshold = torch.tensor(0.15, device="cuda") # Minimal x-offset indicating deep i
nside the drawer
drawer_handle_vertical_offset = torch.tensor(0.05, device="cuda") # Assuming visualizing height
above the handle for efx plane.

obs = env.obs_buf["observations"]
gripper_open_distance = obs["gripper_open_distance"].squeeze()
cube_a_position = obs["cube_a_position"]
drawer_open_distance = obs["drawer_open_distance"].squeeze()
drawer_handle_position = obs["drawer_handle_position"]
# Check 1: The drawer should be open beyond a sufficient threshold
cond_drawer_open = drawer_open_distance > minimal_drawer_open_distance
# Check 2: Cube A's position within drawer horizontal border (x values aligned if close enough h
orizontally)
cond_cube_in_horizontal_x = torch.abs(cube_a_position[:, 0] - drawer_handle_position[:, 0]) <= d
rawer_depth_threshold
cond_cube_in_horizontal_y = torch.abs(cube_a_position[:, 1] - drawer_handle_position[:, 1]) <= m
inimal_drawer_open_distance*10
# Check 3: Cube Z is hanging above or depth checking adequately gauged consistently toward cabin
et.
cond_cube_in_depth_z_check =
token_checker_cube

(_releleasing_balenced planes_ anticipating voltrepances).
comb_cube_gripper_opening=is_whend(XYplane).
#plans_marketinf as sufficient overlap_transmittinged okay steps:

(hrz_barcode)*lighting()
# Final check status regarding planner involved only conditions (all_sanity not erg_elongated).
is_success = cond_drawer_open Hz MarkHoriv(C).Priori

* &.load_dist_CC forgedly_matching parejas cond
.Result_ closing=query cond_cube_Inspect_plane_analzt.
#evaluating outcome ensuring eligible

dummy.poly_colleciton("heels negotiation ")
(combined=True_tokpass returns)

constructing(isnudist Both_trans/scissors chart padded-paper_adj|=
_raw_outoutTarget buffering.send/(intern P2.program)))
return post_ surfer_dlag_init.non_keyributes exempted(all-answering trx Nx dining)

is is_fail results_rr return the_native_time_n :=det.trans.if pension_drive)
equals € ret status Notify else {"MaterialsV」。
@configclass Sendavite Dx andIngram_Settings as tab.Basic inertel_as emerg_disstore QueryFunction {}
intended display ease_scaffold):

class_=>
param Heory tactical programs success_fin span.modeSec)
{

New.cong.short as indicated.positionable fore-method_descriptor comparing oversee) successmegen
DX sale**

pr_ver KX net->> beginners place/Return feasible-Key phased {subset.asp MPversions_ }*episodes_ALG c
arry_contsumpt-percent predictable<=CV successLoadSpace={ combined()}} for standard safety: fill.Beh
exitne
}_QuotHR_methods=is.Comtemplate OH_BP_SC optimizer(Refer thoroughlySeg coax QEP compiling ag_known_b
asic outside_empty val)<= Begin_settings}
(Lead task sk/min encode visitorg simply monop criticized remote shot continued.)/.
```
.Exchange normal sequencer informing .prior overtime acute*) [... screen auto-adjusting predict]

Figure D.3: An example of misconducting code generation with the gpt-4o-2024-05-13 model on

the task “put cube A into the drawer”. Top to bottom: the code generation devolves into a chaotic

output of potentially harmful and incoherent text (which continues for approximately 500 more lines

but is omitted here for brevity).
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D.2 SKILL LEARNING REPORTS

In this appendix, we report details of skill learning in Table D.1. To analyze the efficacy

of the success functions, we report the following measures:

▶ Success Positive (S.P.): a less strict measure than success rate. It measures to

what ratio the RL agent can ever succeed (i.e. acquire non-zero success at some

steps, which is basically a binary measure of whether a certain task can be
achieved) according to the composed success functions. This measure reveals

the difficulties of the task according to the LLM’s own standard.

▶ Success Rate (S.R.): the success rate computed by the composed success func-

tions, measures how effective the learning is according to fast success determi-

nation. Differing from S.P., S.R. measures also the efficacy of completions.
▶ Syntax Error (S.E.): a measure of the ratio of misconduct in terms of coding

syntax bugs.

▶ Execution Error (E.E.): similar to S.E. but counts only errors found after executing

the generated codes (codes already passed and revised after syntax check

procedure). Typical errors can be Pytorch tensor inconsistencies or running into

“nan” gradients after some iterations of optimization.

▶ Success Positive for Survivor (S.P.*) and Success Rate for Survivor (S.R.*): the

same calculation as for S.P. and S.R. but with a different basis, i.e. they compute

only for the best selected (surviving) ones of each generation according to the

fitness function. By observing in detail only the best-performing ones, these two

measures show whether there is overtrust stemming from the success functions

for certain tasks. For example, task 1 “reach the cube A” in Table D.1 has very

high S.P.* and S.R.*, indicating the task is confidently completed according to the

success function, and by observing the successfully collected skill options, we

can confirm that the success functions for this task are efficient and trustworthy.

However, in task 12 “Close the drawer with cube A inside”, the S.P.* and

S.R.* reach high scores, but they turn out to be all false positives, examined

by both GPT-4V and human effort. In the latter case, the fast determination of

success is overtrusted.

▶ Success Positive for Survior by GPT-4V (S.P.v): measures the ratio of success

from the GPT-4V’s perspective among those survivors.

▶ Agreement (A.): measures the agreement between fast and slow success determi-

nation among survivors. From the learning report across skills, we observe that

for easier tasks, regarding both manipulation and visual recognition difficulties

(e.g. reaching and picking), the success function is more trustworthy and the

agreement remains at a relatively higher value.

▶ Other statistics (averaged over reward iterations) consistently used as in Ta-

ble 7.1: number of options (𝑁O) (according to ASD), candidates (𝑁C), the

number of human-examined total (𝑁H) and separate validations (𝑁HO and

𝑁HC respectively).

The automatically acquired skills are highlighted in Table D.1, which would further

expand with more proposals. In addition to learning about proposed tasks, we

conducted an ablation study on task descriptions to examine whether the granularity
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of task descriptions influences skill learning. For two long-horizon tasks originally

labeled as tasks 23 and 24, we manually “translated” them into more detailed

instructions while keeping the overall task goals unchanged, resulting in modified

tasks 23* and 24* (highlighted with a blue background). Providing more detailed

instructions alleviates the burden of reasoning about task procedures when composing

reward functions. However, these two tasks remain challenging to complete solely

through evolutionary searching of reward functions. This underscores the necessity

of top-down decomposition for effective skill learning (see § 7.3.3).

Table D.1: Agentic Skill Discovery (ASD) learning reports, where the successfully acquired skills

are highlighted with a light green background; inappropriately proposed tasks (according to the

environment potential) are highlighted with a light red color. We run the learning loop 3 times and

report the results. The blue highlighted tasks are revised variations of some of the selected complex

tasks with detailed subtasks as the instruction, which serve as a reward-shaping hint to LLMs for

easier reward design. However, the RL agent still cannot complete them, necessitating a hierarchical

structure of skill learning (cfr. Research Question 7.4).

No.Task Description S.P. S.R. S.E. E.E. S.P.* S.R.*S.P.vA. 𝑁O 𝑁C 𝑁H 𝑁 𝐻
𝑂

𝑁 𝐻
𝐶

.67 .90 .00 .33 1.0 .90 1.0 1.0 2 0 2

1 Reach cube A .67 .90 .00 .33 1.0 .91 .50 .50 1 1 2 4/4 2/2

.44 .89 .00 .56 1.0 .90 .50 .50 1 1 2

1.0 .79 .00 .00 1.0 .94 1.0 1.0 3 0 3

2 Reach cube B 1.0 .77 .00 .00 1.0 .94 1.0 1.0 3 0 3 8/8 1/1

.89 .79 .11 .11 1.0 .94 .67 .67 2 1 3

1.0 .62 .00 .00 1.0 .63 1.0 1.0 3 0 3

3 Reach the plate .78 .53 .00 .11 1.0 .62 1.0 1.0 3 0 3 7/7 2/2

1.0 .42 .11 .00 1.0 .62 .33 .33 1 2 3

.78 .42 .00 .00 1.0 .33 .67 .67 2 1 2

4 Pick up the cube A 1.0 .36 .00 .00 1.0 .33 .67 .67 2 1 2 4/5 0/4

1.0 .32 .00 .00 1.0 .32 .33 .33 1 2 1

.67 .22 .00 .00 .67 .50 .33 .67 1 1 1

5 Pick up the cube B .50 .29 .00 .38 .67 .51 .00 .33 0 2 0 2/2 0/4

.71 .24 .00 .00 .67 .51 .33 .67 1 1 1

1.0 .27 .00 .00 1.0 .04 .33 .33 1 2 0

6 Slide cube A from its current

position to a target position on

the table

1.0 .22 .00 .00 1.0 .04 .00 .00 0 3 0 3/3 0/6

1.0 .37 .00 .00 1.0 .51 .67 .67 2 1 2

.11 .28 .00 .63 .63 .28 .13 .50 1 4 0

7 Open the drawer .35 .07 .00 .47 1.0 .09 .00 .00 0 4 0 1/2 0/10

.63 .28 .00 .25 1.0 .44 .33 .33 1 2 1

.17 .54 .00 .83 1.0 .78 1.0 1.0 1 0 1

8 Pick up the plate .17 .41 .00 .83 1.0 .79 1.0 1.0 1 0 1 3/3 0/0

.17 .51 .00 .83 1.0 .73 1.0 1.0 1 0 1

.94 .14 .00 .06 1.0 .05 .50 .50 3 3 1

9 Place the plate onto a target po-

sition on the table

.94 .18 .00 .06 1.0 .14 .17 .17 1 5 1 4/6 0/12

.82 .18 .00 .18 1.0 .14 .33 .33 2 4 2

1.0 .99 .00 .00 1.0 .99 .33 .33 1 2 -

10 Close the drawer 1.0 .99 .00 .00 1.0 .99 .67 .67 2 1 - -

/3

-

/6

1.0 .99 .00 .00 1.0 .99 .00 .00 0 3 -

.48 .10 .00 .26 .83 .03 .00 .17 0 5 0
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11 Align cube A and cube B to tar-

get positions that are apart from

each other

.61 .25 .00 .10 .50 .07 .00 .50 0 2 0 0/0 0/10

.72 .28 .00 .00 .75 .05 .00 .25 0 3 0

.04 .99 .00 .96 1.0 .99 .00 .00 0 1 0

12 Close the drawer with cube A

inside

.17 .99 .00 .83 1.0 .99 .00 .00 0 1 0 0/0 0/3

.17 .99 .00 .83 1.0 .99 .00 .00 0 1 0

.16 .96 .00 .72 .67 .97 .00 .33 0 2 0

13 Gripper open/close toggle .11 .95 .00 .78 .50 .98 .00 .50 0 1 0 1/2 0/4

.22 .96 .00 .72 .99 .96 .10 .66 2 1 1

.22 .41 .00 .22 .33 .76 .67 .67 1 2 1

14 Slide cube B to the table edge

without toppling it, aiming for

a target position near the edge

.33 .43 .00 .00 .33 .71 .67 .67 1 2 1 2/2 0/0

.33 .46 .00 .00 .55 .77 .50 1.0 0 0 0

.22 .01 .00 .00 .67 .01 .33 .67 1 2 2

15 Align end-effector center over

the drawer handle without

opening or closing the drawer

.00 .01 .00 .00 .00 .01 .67 .33 0 0 0 2/2 1/2

.33 .01 .00 .00 .33 .01 .67 .67 1 0 1

.44 .39 .00 .44 1.0 .49 .50 .50 1 1 1

16 Navigate the gripper to a tar-

get pose above cube B without

touching it

.50 .53 .00 .00 .50 .98 .50 1.0 1 0 1 3/4 1/1

.67 .39 .00 .00 1.0 .49 1.0 1.0 2 0 2

.11 .57 .00 .56 .50 .57 .00 .50 0 1 0

17 Gently push the drawer to a par-

tially open or closed position

indicated by a target value

.67 .24 .00 .00 1.0 .30 .00 .00 0 2 0 1/1 0/4

.67 .24 .00 .00 1.0 .30 .50 .50 1 1 1

.11 .01 .00 .00 .33 .00 .00 .67 0 1 0

18 Position cube A directly in front

of the drawer handle without

blocking the drawer from open-

ing

.13 .01 .00 .00 .33 .01 .67 .67 1 0 0 0/2 0/1

.11 .01 .00 .00 .33 .01 .33 1.0 1 0 0

.20 .22 .00 .78 1.0 .01 .00 .00 0 1 0

19 Swap positions of cube A and

cube B without grasping

1.0 .28 .00 .00 1.0 .01 .00 .00 0 1 0 0/0 0/3

1.0 .28 .00 .00 1.0 .01 .00 .00 0 1 0

.83 .91 .03 .11 .91 .95 .91 .82 9 1 10

20 Move end-effector over cube A .81 .87 .00 .16 .91 .94 .72 .82 8 2 10 23/237/7

.83 .90 .03 .11 .91 .95 .55 .64 6 4 10

.75 .01 .00 .00 1.0 .02 .07 .07 1 14 0

21 Push cube A and cube B close to

each other

.75 .01 .03 .00 1.0 .01 .00 .00 0 9 0 1/2 0/31

.59 .00 .00 .11 1.0 .01 .11 .11 1 8 1

.85 .78 .00 .13 1.0 .86 .86 .86 12 2 13

22 Move to a target position on the

table without interacting with

objects

.69 .88 .02 .27 1.0 .92 1.0 1.0 13 0 13 33/331/2

.85 .84 .00 .15 1.0 .92 1.0 1.0 8 0 8

.16 .43 .00 .36 .30 .51 .04 .74 1 6 0

23 Put cube A into the drawer .26 .30 .01 .29 .52 .27 .00 .48 0 12 0 0/1 0/27



164 D Agentic Skill Discovery (ASD) Appendix

.23 .22 .00 .27 .64 .18 .00 .36 0 9 0

.86 .61 .00 .04 .96 .81 .04 .07 1 26 0

24 Stack cube A on top of cube B .81 .61 .00 .13 .93 .75 .14 .21 2 11 0 0/4 0/51

.95 .60 .05 .02 1.0 .76 .07 .07 1 14 0

.19 .23 .00 .72 1.0 .39 .00 .00 0 4 0

23* Open the drawer, pick up cube

A and place it inside the drawer

.29 .11 .00 .54 .75 .25 .25 .50 1 2 0 0/1 0/10

.41 .01 .00 .50 1.0 .03 .00 .00 0 4 0

.24 .33 .00 .24 .60 .39 .10 .30 0 6 0

24* Pick up cube A, place onto cube

B to make a stack

.41 .34 .00 .10 .50 .43 .30 .60 2 3 0 0/3 0/12

.52 .28 .14 .10 .67 .43 .33 .33 1 3 0

D.3 PROMPTS

[SYSTEM]:
You are a task designer trying to propose meaningful tasks based on a specific environment in simulati
on.
1. The environment will be described with its source code. Note the comments around codes to understan
d their initial status.
2. These tasks are meant to be used to train a robot to acquire skills in the given environment.
3. Once any task is learned by the robot, it becomes a new skill of the robot.
4. The new proposed tasks should be meaningful, primitive (atomic), incremental to learn, independent
of each other, and diverse.
5. You should avoid proposing the same tasks that were previously either completed or failed.
The following is the known task list, where the "Status" indicates whether the task is scheduled alrea
dy "todo", "doing", "completed", or "failed".
{tasks}

Some helpful tips for writing the tasks:
(1) Make sure can be completed, for example, with no unknown objects involved.
(2) The success of the tasks should be measurable with current observations, e.g. object positions. Th
e environment doesn't support collision detection yet. For simplicity, ignore collision.
(3) Use fewer objects in one atomic task.
(4) Make sure to not mention any joint positions as the task goal.

Let's work this out in a step-by-step way to be sure we have the right answer.

[USER]:
The Python environment is
```python
{env_obs_code_string}
```
Use the given "target position" instead of "random position" or vague "specific position" for clarity.

Figure D.4: A snippet of task proposal prompt, where {tasks} indicates the position to insert

previously explored task instructions, and {env_obs_code_string} holds the place for incoming

source codes for the environment.

In this appendix, we provide the prompt snippets used by ASD for various purposes:

task proposal (Figure D.4, see § 7.3.1) and skill learning (see § 7.3.2), which includes

generating success functions (Figure D.5), generating reward functions (Figure D.6),

feedback iterations (Figure D.7), and GPT-4V behavior assessment (Figure D.8).

When interacting with a conversational LLM, there are typically three roles: system,

user, and assistant.
▶ User: Provides the primary input, usually in the form of queries, requests, or
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instructions for the LLM to process.

▶ System: Serves as a higher-priority input, offering contextual guidelines, con-

straints, or objectives that the LLM should adhere to throughout the interaction.

It sets the overarching rules or tone for the assistant’s behavior.

▶ Assistant: Represents the LLM itself, generating responses based on the given

input and system instructions.

This structured framework ensures the conversation remains coherent and aligned

with the intended goals.

[SYSTEM]:
You are a function engineer trying to write success condition functions to determine the accomplishm
ent of reinforcement learning tasks.
The success condition functions help compute the success of given tasks.
Your success condition function should use useful variables as inputs, according to the scenario and
task instructions.

As an example, the success condition function signature can be:
```python
@configclass
class SuccessCfg:

success = RewTerm(
func=object_is_lifted,
weight=30.0,

)
```
Follow the format of this signature when writing your own for later tasks.
Please make sure that the code is compatible with Pytorch, for example, use torch tensor instead of
NumPy array.
Make sure any new tensor or variable you introduce is on the same device as the input tensors.
You are not allowed to import other Python modules.

[USER]:
The Python environment is
```python
{task_obs_code_string}
```
To prepare for pre-conditions, previously executed skills are:
{precedent_skills}
And, the next subtask is to learn {task_description}.

Knowing this information, now please write a success deterministic function for this task {task_desc
ription}.

- Remember to explicitly configure `SuccessCfg` so that I can directly copy the code.
- Any introduced tensor constant should be on the device GPU, for example `c = torch.tensor([1., 2.]
).cuda()`

Figure D.5: A prompt snippet for generating success functions given the environment information,

where {precedent_skills} holds the preceding executed skills as background information for the

LLM to know the state that the learning will start with.
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[SYSTEM]:
You are a reward engineer trying to write reward functions to solve reinforcement learning tasks as
effectively as possible. Your goal is to write a reward function for the environment that will help
the agent learn the task described in the text. Your reward function should use useful variables fro
m the environment as inputs. As an example,
the reward function signature can be:
```python
@configclass
class RewardsCfg:

reached_reward = RewTerm(
func=to_reach_cube_a,
weight=1.0,

)
```
Follow the format of this signature when writing your own for later tasks. Note that every `func` sh
ould be implemented by yourself.
Please make sure that the code is compatible with PyTorch (e.g., use torch tensor instead of numpy a
rray).
Make sure any new tensor or variable you introduce is on the same device as the input tensors.
You are not allowed to import other Python modules.

To incrementally guide a reinforcement learning agent in a curriculum, you should write many sub-rew
ard functions, encoded individually.
The learning agent will be rewarded by the weighted sum of those sub-reward functions.

Some helpful tips for writing the reward function code:
(1) You may find it helpful to normalize the reward to a fixed range by applying transformations
like torch.exp to the reward components

...

[USER]:
The Python environment is
```python
{task_obs_code_string}
```
To prepare for pre-conditions, previously executed skills are:
{precedent_skills}
Knowing these information, now please write a shaped reward function for the task: {task_description
}.
Let's work this out in a step by step way to be sure we have the right answer.

- Remember to explicitly configure `RewardsCfg` so that I can directly copy the code.
- Any introduced tensor constant should be on device GPU, for example `c = torch.tensor([1., 2.]).cu
da()`

Figure D.6: A prompt snippet for generating reward functions. It is similar to the prompt for the

success function given the environment information.
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[USER]:
Executing the reward function code above has the following error: {traceback_msg}. Please fix the bu
g and provide a new, improved reward function!

[USER]:
We trained a RL policy using the provided reward function code and tracked the values of the individ
ual components in the reward function as well as global policy metrics such as success rates and epi
sode lengths after every {epoch_freq} epochs and the maximum, mean, minimum values encountered: {sta
tistics}

Here is the output from GPT-4v when describing the trained behavior:
```GPT-4v-Caption
{gpt4v_description}
```

Feedback Errors

Feedback Statistics

Figure D.7: A prompt snippet for feeding back learning statistics and GPT-4V response for reward

function iteration. Top: if the code ends with an execution error, e.g. Pytorch tensor shape mismatch,

the error messages will be fed back so the LLM can revise for a better one. Bottom: if the code runs

without bugs, the learning results will be collected for the iteration of reward functions, potentially

resulting in more efficient ones.

[SYSTEM]:
You are a professional expert to analyze robotic behaviors in a simulated environment.
Objects in the environment are:
- Franka robotic arm with a two-finger gripper
- black table as the basic manipulation plane
- white drawer on the table
- cube A (the cube with numbers on the surface)
- cube B (the cube with clean surface)
- plate
- a special "target position" highlighted with RGB color (which indicates x, y, and z respectively).
This position is an imagined point to let the robot play with.

Your job is to determine whether the robot successfully completes the task by observing them.
You will be provided with a recording of the robot activity, but only the starting and ending status
images are provided to reduce the cost.
You have to provide your assessment of whether the robot's behavior matches the given task descriptio
n.
For example, if the robot task is to "Pick up cube A", you have to observe whether the cube is surrou
nded by the robot gripper and picked above the black table in the last frame (which is the second ima
ge).

Analyze the behaviors and finally answer with one flag of either "SUCCESS" or "FAIL" to indicate succ
essfulness.

Here are the starting and ending statuses described by states and images:

1. State

First frame (initial state):
{first_frame}

Last frame (end state):
{end_frame}

2. Image

<<<IMAGE 1>>>
<<<IMAGE 2>>>

Figure D.8: A snippet of prompts for robot behavior assessment using GPT-4V, where the {*_frame}
are state observations of the defined key frames of the recorded behavior video, and «<IMAGE X»>
holds the place for corresponding key frame images.
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NOTATION

The next list describes several symbols that are used within the thesis.

𝕃(·) Information loss

A Action space

D Dataset

I(·) Interest function

J(·) Objective function

L{·} Laplace transform

L−1{·} Inverse Laplace transform

N(·) Normal distribution

S State space

Z Latent space

𝜋ref(·) Reference policy function

𝜋𝜃(·) Policy function

𝜏 Agent trajectory 𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . , 𝑠𝑇)

𝜃 Neural network parameters

𝑎 Or 𝑎𝑡 for the (current) action at time 𝑡

𝐼(·) Information gain

𝐿(·) Loss function

𝑠 Or 𝑠𝑡 for the (current) state at time 𝑡

𝑠′ Or 𝑠𝑡+1 for the (next) state at time 𝑡 + 1

𝑇 Final time step

𝑡 Time step

𝑧 Latent variable, usually being used to denote a latent representation of the

skill



GREEK LETTERS WITH PRONUNCIATIONS

Character Name Character Name

𝛼 alpha AL-fuh 𝛽 beta BAY-tuh
𝛾, Γ gamma GAM-muh 𝜙, Φ phi FEE, or FI (as in hi)
𝛿, Δ delta DEL-tuh 𝜋, Π pi PIE
𝜖 epsilon EP-suh-lon 𝜃, Θ theta THAY-tuh
𝜆, Λ lambda LAM-duh 𝜓, Ψ psi SIGH, or PSIGH
𝜇 mu MEW 𝜔, Ω omega oh-MAY-guh
𝜏 tau TOW (as in cow) 𝜎, Σ sigma SIG-muh

Greek letters that are used within the thesis with pronunciations
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