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Abstract

The search for Majorana zero modes has been a major undertaking in the field
of solid state physics in recent years, as they have potentially promising appli-
cations in fault-tolerant quantum computing. On the theory side, tight-binding
models combining magnetism, Rashba spin-orbit coupling, and superconduc-
tivity have been on the forefront of this quest. They feature all ingredients
necessary for experimental realization of Majorana zero modes.

In this thesis, we take such a model, adapt and apply it to vastly different
problems and geometries, while leaving its core intact. We explore its magnetic
ground state in one and two dimensions, showing a surprisingly rich magnetic
phase space. By self-consistently calculating the magnetic ground states be-
fore identifying electronic topological phases, we demonstrate in one dimension
that, for a significant portion of the phase space, spin-spirals and topologically
non-trivial states naturally coexist. We develop a computationally highly effi-
cient approach to find the magnetic ground states of tight-binding models with
a fitted classical spin model that is not inherently limited by assumptions, like
RKKY being limited to weak magnetic couplings, and also grants additional
insight into the driving magnetic forces of the system. With this method, we
completely characterize the magnetic parameter space of our two-dimensional
tight-binding model, showing that also 2D systems feature a rich magnetic
phase diagram with many exotic magnetic phases despite the simplicity of the
model at first glance. As the amount of data points is quite large and the
magnetic phases are too complex to be classified by a simple algorithm, we
employ an artificial neural network to classify the magnetic phases, thereby
demonstrating that artificial neural networks can be a useful tool for the clas-
sification of magnetic ground states.

Additionally, we provide theoretical support for the first experimental measure-
ment of simultaneous zero-bias-peaks at both ends of an atomic chain, which

marks a milestone in the search for Majoranas. In the experiment, an atomic



Mn chain was constructed on Nb(110) in the [110]-direction to build hybridiz-
ing Yu-Shiba-Rusinov states in a bottom-up approach. To model this, we adapt
our tight-binding model to three dimensions. Replicating the experimental ge-
ometry, we are able to predict the chain length at which the found zero-modes
are expected to evolve into isolated Majorana zero modes and demonstrate the
crucial role of the strength of Rashba spin-orbit coupling.

Finally, we provide a geometrically correct model for experiments on quan-
tum dots caged by a box of Ag adatoms on a Ag island on superconducting
Nb. With these experiments, the existence of energetically sharp non-magnetic
in-gap states has been shown for the first time. This confirms theoretical pre-

dictions of Machida and Shibata on spin-degenerate Andreev bound states from

1972.



Zusammenfassung

Die Suche nach Majorana-Nullmoden ist seit Jahren eine der groflien Unterneh-
mungen der Festkorperphysik, da sie potenziell vielversprechende Anwendun-
gen in fehlertoleranten Quantencomputern besitzen. Auf der Theorieseite kom-
men Tight-Binding-Modelle mit Magnetismus, Rashba-Spin-Bahn-Kopplung
und s-Wellen-Supraleitung vielfach zum Einsatz, da sie alle Zutaten beinhal-
ten, die fiir die experimentelle Realisierung von Majorana-Nullmoden notwen-
dig sind.

In dieser Arbeit betrachten wir ein solches Modell und adaptieren es fiir die
Anwendung auf eine Vielzahl von Problemen und Geometrien, wahrend wir
seinen Kern unveréndert lassen. Wir untersuchen die magnetischen Grund-
zustinde dieses Modells in ein und zwei Dimensionen und entdecken einen
iiberraschend vielseitigen magnetischen Phasenraum. In einer Dimension zei-
gen wir durch magnetisch selbstkonsistente Rechnungen, dass in einem grofien
Anteil des Parameterraums Spinspiralen und elektrisch nicht-triviale Zustande
natiirlich koexistieren. Wir entwickeln eine rechnerisch hocheffiziente Methode
zur Ermittlung der magnetischen Grundzustdnde von Tight-Binding-Modellen
durch angenéherte klassische Spin-Modelle, die nicht inherent durch Annahmen
limitiert sind. Beispielsweise ist das Tight-Binding-Modell im Gegensatz zu der
verbreiteten RKKY-Methode nicht auf schwache magnetische Austauschterme
limitiert. Dariiber hinaus bietet unsere Methode durch das genéherte klassi-
sche Modell zusétzliche Einsichten in die magnetischen Kréfte innerhalb des
Systems. Mit dieser Methode charakterisieren wir die magnetischen Grund-
zustande im vollstdndigen Parameterraum unseres 2D-Modells und entdecken
auch hier einen Reichtum an exotischen magnetischen Phasen trotz der schein-
baren Simplizitdt des zugrundeliegenden Tight-Binding-Modells. Aufgrund der
groflen Menge an Datenpunkten und der Komplexitat der magnetischen Pha-
sen, nutzen wir ein kiinstliches neuronales Netzwerk zur Unterstiitzung bei

der Klassifizierung der magnetischen Phasen. Damit demonstrieren wir die
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Niitzlichkeit von kiinstlichen neuronalen Netzwerken als Werkzeug zur Sor-
tierung von magnetischen Grundzusténden.

Dariiber hinaus liefern wir unterstiitzende Rechnungen zu der ersten experi-
mentellen Messung simultaner Nullmoden an beiden Enden einer atomaren
Kette, einen Meilenstein auf der Suche nach Majoranas. In dem Experiment
wurde eine atomare Mn-Kette auf Nb(110) in der [110]-Richtung konstruiert,
um hybridisierende Yu-Shiba-Rusinov-Zustédnde hervorzurufen. Um dies zu mo-
dellieren, erweitern wir unser Modell auf drei Dimensionen. Mit unserem Modell
sind wir in der Lage vorherzusagen, ab welcher Kettenlédnge sich die Nullmoden
zu gut isolierten Majorana-Nullmoden entwickeln, und zeigen dariiber hinaus,
wie essentiell die Rashba-Spin-Bahn-Kopplung dabei ist.

Abschlieflend prasentieren wir ein geometrisch korrektes Modell von Experi-
menten zu Zustanden innerhalb einer Ag-Box auf einer Ag-Insel auf supralei-
tendem Nb. Durch diese Experimente wurden erstmalig energetisch scharfe,
nicht-magnetische Zustande innerhalb einer supraleitenden Liicke gezeigt, wo-
durch die theoretischen Vorhersagen von Machida und Shibata von 1972 zu

spin-entarteten Andreev-Bound-States bestétigt wurden.
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Chapter 1

Introduction

Majorana zero modes occurring in topological superconductors have potential
applications in fault-tolerant quantum computing, since they are largely im-
mune to local perturbations because of their topological protection [5H7|. The-
oretical models that contain s-wave superconductivity, magnetism and Rashba
spin-orbit coupling find wide use, as those are considered to be the main ingre-
dients to make the experimental realization of Majorana zero modes possible
[8HI0]. In this thesis, we focus on a minimalist tight-binding model that con-
tains all three of these. While the core of the model remains unchanged, we
apply it to vastly different geometries and a variety of questions. Going from
pure one-dimensional models over two-dimensional systems to three dimen-
sional replications of experimental setups, we demonstrate the versatility of
the model.

One-dimensional systems in proximity to s-wave superconductors have re-
cently been extensively investigated as candidates for topological superconduc-
tivity [B, [IT),12]. This includes experiments and calculations on semiconducting
nanowires in magnetic fields [9], 10 [I3HI5], self-organized atomic chains [16],
and atomically constructed magnetic chains on superconducting substrates [17-
20], e.g., Fe on Re [17, 18] and Mn on Nb [I9]. These systems are furthermore
promising platforms for odd-frequency and triplet superconductivity [21H23)].
A central model for analyzing the electronic and magnetic properties of the
above-mentioned systems is the spinful one-band model with proximity-induced
s-wave superconductivity, including local magnetic Zeeman fields and Rashba
spin-orbit coupling [8, 9, 24H28]. This model describes 1D systems that can
exhibit topological superconductivity and host Majorana zero modes at their

ends. Despite its simplicity, there is an ongoing discussion about the magnetic
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ground state of such systems in dependence on its parameters. Klinovaja et al.
[24] and Vazifeh et al. [25] found via an effective spin model that the system self-
organizes into a topological state in the limit of weak magnetic interactions. Hu
et al. [27] assumed harmonic spin spirals and identified the energetically most
favorable ones among them. In contrast to this approach, Minami et al. [28]
performed Monte-Carlo simulations with an effective spin model at vanishingly
small temperature and additionally found ground state spin configurations in
non-superconducting systems that are not represented by harmonic spirals, but
either by collinear or by non-coplanar configurations. Furthermore, there are
models including electron-electron interactions and continuum electron models
to predict the magnetic phases in one-dimensional superconductors with mag-
netic impurities and Rashba spin-orbit coupling, which point towards a stable,
self-organized spiral magnetic phase giving rise to one-dimensional topological
superconductivity [29-32].

In Chapter [4] we present Monte-Carlo calculations of the magnetic ground state
of one-dimensional magnetic chains with proximity-induced s-wave supercon-
ductivity. On each atomic site, our model contains quasi-classical spins whose
interactions are mediated by itinerant electrons, which is an approximation for
atoms with large total spin (e.g, 7/2). We show that non-spiral non-collinear
phases exist, and analyze how they are affected by superconductivity and how
they affect the topological electronic phases of the system in return. For weak
and vanishing superconductivity, we identify magnetic phases of complex order
as well as complex collinear phases in addition to previously known harmonic
spirals and collinear phases. Our calculations are first performed in a tight-
binding model, where we consider the magnetization as a free parameter and
do not limit it by any assumption about the magnetic ground state. Secondly,
we introduce a computationally efficient method for approximately determin-
ing the magnetic ground states of large tight-binding systems, which we use
to gain an understanding of the driving forces behind the complex magnetic
states. To this end, we fit the parameters of a classical Heisenberg spin model
to our tight-binding model, showing that four-spin interactions become rele-
vant to reproduce the magnetic phases. Our new approximative method is

categorically faster with agreeable deviations, which inspires us to move to
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larger systems and investigate the magnetism of two-dimensional interfaces.

There is a plethora of magnetic phases in the physics of interfaces. Along-
side ferromagnetic and anti-ferromagnetic spin orientations in the ground state,
recently non-collinear phases including spirals, multi-q states [33H35], canted
AFMs [36], bubbles, and topological magnetism including skyrmions [37] and
merons [38], as well as further exotic phases like altermagnets [39] have been
theoretically and experimentally discovered. Magnetic phases form a corner-
stone of today’s and future storage technology [40-42] and are fundamentally
interesting because of exotic classical and quantum quasiparticle excitations
that could be hosted in frustrated or correlated magnets [43], [44]. For model-
ing purposes and for detecting yet novel magnetic phases, the question arises
which conceptionally simple models host a large number of magnetic phases
that can be tuned by experimentally accessible parameters. Particularly inter-
esting in this regard are systems that combine magnetism and superconductiv-
ity, where the competition between both effects creates a rich phenomenology.
While numerous studies of one-dimensional magnetic systems in proximity to
s-wave superconductors exist, motivated by the interest in Majorana physics
[1, 13, 45, 46], the data on phase diagrams of their two-dimensional counterparts
have been very limited up to now [47, [4§]. Ground state studies on quantum
and classical magnetic moments coupled to itinerant electrons found evidence
of chiral order [49], topological electronic order [50} 51|, and multi-spin interac-
tions [52] in frustrated triangular lattices without superconductivity. Motivated
by the results on superconducting 1D systems and the new method presented in
Chapter [ we therefore consider a two-dimensional square lattice tight-binding
model with local magnetic moments, Rashba spin-orbit coupling, and super-
conductivity. Our model is effectively describing localized classical magnetic
moments that are coupled by the itinerant electrons of a surface state, not
specifically bound to a parameter regime. The knowledge of possible ground
states in those complex structures is required for several reasons. First, exotic
topological states have been found in 2D itinerant magnets in proximity to a
superconductor (SC) [47, [48]. Second, interesting multi-spin interactions can

be present in such systems [33], 53] that might lead to unexpected magnetic and
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electronic phases. Due to big datasets in the study of magnetic systems, ma-
chine learning has been applied extensively in this field, which we make use of
as well. In particular, corresponding techniques have been employed to predict
the parameters of the magnetic Hamiltonian [54], to retrieve the topological
charge from dynamic chiral magnetic structures [55], and to construct phase
diagrams for skyrmionic systems [56, 57]. Additionally, unsupervised learning
has found a variety of applications in the field of microscopic magnetism [58-60)]
and the identification of topological phases [61], [62].

In Chapter 5], we analyze the ground states of magnetic moments coupled by
a spinful tight-binding model with proximity-induced s-wave superconductiv-
ity, local magnetic Zeeman moments and Rashba spin-orbit coupling (RSO).
The resulting approximately 20,000 magnetic configurations are too diverse
to be reliably classified by a simple algorithm. We therefore use contrastive
learning [63], [64], a recent unsupervised machine learning technique, which can
be adapted to the physical symmetries. While contrastive learning was used
to classify phases in the Ising, Compass, and Su-Schrieffer-Heeger models [65]
using the scheme of Ref. [63], we used Contrastive Clustering [66] to obtain
the phases directly from the network. Our results show that this technique
is highly effective for the classification of complex phase spaces of magnetic

systems on SC.

In this thesis, we also present theoretical calculations that have been done
to support experimental findings, which is the focus of the Chapters [6] and [7]}
There are many theoretical proposals to combine superconductivity, magnetism
and Rashba spin-orbit coupling in effective 1D systems in proximity to an s-
wave superconductor to create experimentally realizable platforms that host
Majorana zero modes [8HIOL 30 [67H69]. Examples for experimental systems
containing these features are semiconducting nanowires with proximity-induced
superconductivity in an external magnetic field [13, [14], and magnetic adatom
chains with ferromagnetic [16], [45, [70} [71] or spin-spiral orientation [17, [I§] on
superconducting substrates. Majorana zero modes (MMs) are immune to per-
turbations that are local compared to the system size, due to their topological

protection stemming from the non-trivial bulk band structure. Many atomic
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chains studied before only consist of tens of atoms, though [I6HIS]. At these
lengths, MMs on the ends of the chain may still interact, which results in the
zero-bias-peaks splitting away from zero energy in an oscillatory manner. This
is considered one of the key signatures of precursors of MMs (PMMs) in short
chains [72H74]. Previous experiments, using Coulomb blockade spectroscopy
on InAs nanowires coupled to Al, found an oscillatory energy splitting as a
function of the magnetic field, that was reduced in long wires, but could not
continuously vary the length of the wire [72]. In InSb nanowires coupled to
NbTiN, zero-bias-peaks have been observed, but could only be detected on one
end, while the signature on the other end was different [75]. Zero-bias peaks at
the ends of atomic spin chains have also been observed in various experiments
[16, 45, [70] [7T], but they all came with a few caveats. They were not detected
on both ends of a defect-free chain simultaneously, and only some chains con-
tained zero-bias-peaks, while other chains in the same systems did not show
any zero-bias-peaks. Additionally, the chain length could also not be varied
continuously in these experiments.

In Chapter [6] we present the measurements and calculations of energy os-
cillations of PMMs in Mn chains on Nb(110) along the chain, including both
ends, as a function of chain length, which is continuously varied atom by atom.
The experiments done with STM and STS techniques have been performed by
Lucas Schneider and Philip Beck. From the extensive experimental dataset,
we are able to adjust all the parameters of a three-dimensional tight-binding
model. Through this model, we deepen our understanding of the experimental
system and are able to predict a critical chain length, above which the PMMs
evolve to isolated topologically well protected Majorana zero modes. Addition-
ally, we discuss the effect of the dimensionality on the localization, and how
much the critical chain length is affected by the precise value of the Rashba

coupling constant.

Many interesting states of matter are created from inducing superconduc-
tivity by proximity in otherwise non-superconducting materials |76l [77]. In
these heterostructures, superconductivity needs to be scattered into the sur-

face states [30, [78, [79], but the surface states are typically well decoupled from
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the bulk bands. This is why it is often unclear whether enough superconducting
pairing is acquired if there are more than a few nanometers between the surface
and the superconducting substrate [78-80]. To study this effect, the problem is
downscaled as much as possible by investigating only a single resonance mode
of the surface state, which is laterally confined in a quantum corral, forming
a so-called quantum dot (QD). This can occur in naturally formed nano-scale
islands [81], [82] or in tunable artificially constructed adatom arrays [83], 84],
where the walls are built atom by atom using an STM tip. Typically, surface
states are well decoupled from the bulk states, but scattering at step edges and
adatoms is known to introduce a measurable coupling between bulk and surface
state |85, 86]. Coupled QDs with tunable interactions are used as a platform
to simulate quantum materials [87, [88], but ways to induce superconductivity
in their eigenmodes have not been studied before.

In Chapter [, we present experimental and theoretical results on artifi-
cial QDs that have been designed by constructing a box of Ag adatoms on a
Ag(111) island on superconducting Nb(110), using atom manipulation to con-
tinuously vary the size of the box. The experiments were performed by Lucas
Schneider and Khai That-Toén, using STM and ST'S techniques. Showing non-
magnetic in-gap surface states, the measurements provide experimental proof
for a 50 years old theoretical prediction for spin-degenerate Andreev bound
states made by Machida and Shibata [89]. In contrast to the more widely
studied semiconductor or molecular QDs [00], the metallic QDs investigated
here feature electron screening orders of magnitudes larger, thereby suppress-
ing electron-electron interactions. This allows us to describe the system with a
three-dimensional tight-binding model, in which we replicate the experimental

results, using the actual geometry of the experiment.

Before we discuss our scientific results, we begin with an introduction to
the theoretical concepts that this thesis is built upon in Chapter 2] Then,
we continue with the models and methods used in this thesis in Chapter [3]
Thereafter, we present our results in the Chapters[d] [5} [0, and [, We summarize

our results and present an outlook on future research in Chapter [§
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Chapter 2

Theory

In this chapter, we introduce the fundamental theories and physical principles
that this thesis builds upon. We begin by introducing the Bloch theorem in
Sec.[2.1] the tight-binding model in Sec.[2.2] and the classical Heisenberg model
for spins in Sec. Then, we introduce a few physical phenomena important
for this thesis, namely skyrmions in Sec. superconductors in Sec. 2.5 and
Rashba spin-orbit coupling in Sec. [2.6] Thereafter, we discuss the concept of
topology and how to apply it to physics in Sec. 2.7 Following up on that,
we introduce Majorana zero modes and the Kitaev chain in Sec. [2.8.1] Lastly,
we discuss how to adapt the Kitaev chain to a model with experimentally
achievable conditions in Sec. 2.8.2

2.1 Bloch Theorem

The Bloch theorem [91] is one of the most fundamental theorems of solid state
physics. Essentially, it is the idea that a large lattice system can be described

in terms of small periodic unit cells.

Consider a lattice potential U () with
U(7) = U(F+ R) (2.1)

for all Bravais lattice vectors K. Lowercase 7 can denote any point in space.
We keep this notation throughout the theory section of this thesis. When we
neglect electron-electron interaction, a single-particle Hamiltonian is sufficient

to describe the system. Therefore, the wavefunctions of the many electron
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system can be described by the product state of single-electron wavefunctions.

Consider the stationary Schrodinger equation
HY(7) = BU(7), (2.2)

with the Hamiltonian

H= (_Z;Vz + U(F)) : (2.3)

where U(7) is the lattice periodic potential introduced in Eq. (2.1). We also

consider a translation operator T that acts on a function f(7) as
Tsf(r) = f(r+ R). (2.4)
Two translation operators combine
TiTs =
and translation operators commute with themselves

[T T = 0. (2.6)

If the system is translationally symmetric under Bravais lattice vectors ﬁ, then

and only then the Hamiltonian commutes with the translation operator
[H, Tz =0. (2.7)
Thus, we can choose simultaneous eigenvectors
HU(7) = EU(7) and TzU(7) = c(R)U(F). (2.8)
From Eq. , it follows that

((R+R)=c(R)e(R) and ¢(R)e(—R)=1. (2.9)
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As the wavefunctions W(7) are normalized, ¢(R) must be normalized, too.

1= [ s B = [ @ATOP = [P = o f)?
(2.10)
for D dimensions. From Eq. (2.9) and (2.10) we can conclude that we can

—

write ¢(R) as
¢(R) = e*f (2.11)

with some wavevector lg
We can now formulate the Bloch Theorem: Given that the translation vector

R leaves the overall system invariant, the eigenfunctions of H have the form

W( W (7) (2.12)

1 -
7)) = ——e
") VN
with the normalization \/LN and the lattice-periodic Bloch factor

—

up(7) = ug(7+ R). (2.13)

With the Bloch theorem, we can describe the whole system by infinitely re-
peating a single unit cell.

Band Structures

Assume a general stationary Schrédinger equation

E(k)U(7) = HU(7)

= (_hQVQ + U(F)) 7

2m

_ (_Z;VZ + U(F)) \/—%e”z%(ﬁ (2.14)

(7)

e}
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with
2

N —h .
h(k) = <—(V +ik)? + U(f’)) : (2.15)
2m
For fixed /;, this gives us a new differential equation
h(k)yuz(P) = E(k)ug(7). (2.16)

The solutions un,g(f’) indexed by n and their respective eigenvalues En(/;) are
lattice periodic. For the reciprocal vector k only N discrete values are allowed,
where N is the size of the system. For large systems, the values of k are so
fine that they can be assumed to be continuous. From the periodicity of the
wavefunctions and their eigenvalues, it follows that k can be restricted to the
first Brillouin zone in reciprocal space. The eigenvalues En(lg) as continuous
functions of k form so-called energy bands through the first Brillouin zone. The
set of these bands is called the band structure and the Fermi energy Er denotes
the energy up to which these bands are occupied. A common convention is to

set the Fermi energy as the zero energy level of the system, Er = 0.

2.2 Tight-Binding Model

The tight-binding model, originally introduced by Slater and Koster in 1954
[92], is a model for electron behavior in solid state systems, that is based on
the idea that a solid state system can be described by atomic orbitals and the
interactions between them.

First, we introduce Wannier functions w, (7, ﬁ) [93], which are superpositions
of Bloch functions ¥, ()

:UL

Wy (77,

\/—1_ Z —1kR\pnkm Z R (F=R)y u, 7 (7). (2.17)

The Wannier functions form an orthonormal basis and can be closely local-

ized around the atomic sites R by tuning the phase of the Bloch states. The
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Hamiltonian in a basis of Wannier functions reads

H,= Y |n,R)(nR|HnR)(n R with w,(7R)=[nFR), (218

n,R,R’

where the sum over R indicates summation over all atomic site positions. We
now make the approximation that (£'| H |R) is negligible for distances greater
than the nearest neighbors. Additionally, we define (R'| H |R) =: ¢ s for R+
R and (R|H |R) = u - With this, we can write the tight-binding Hamiltonian

Hy, = Z n, Ry g (n, R| + Z n, R) tﬁﬁ+g<n,]§+ | (2.19)

n,R n,R,8

with the vector & pointing to nearest neighbors. The hopping ¢ describes the en-
ergy associated with the tunneling of an electron between two lattice sites. The
chemical potential p is the energy required to bring an electron into a lattice
site. Generally, longer distance hoppings can be included in a tight-binding
model but we restrict ourselves to nearest neighbor hopping here, since the

models used in this thesis do not consider hopping over longer distances.

So far, we derived the tight-binding model. Let us now focus on why it is
useful. In the tight-binding model, electrons are assumed to occupy discrete
lattice sites or orbitals located at the sites. We can write the complete wave-
function as a weighted sum of the wavefunctions |a) that, respectively, describe

an electron to be in orbital a
W) =t la) (2:20)

with the wavefunction coefficients ¢,. This allows us to write the Hamiltonian

as

H=> Hyla) (|, (2.21)

where H,, are the components of a matrix that describes how the electrons in

orbitals a and b are coupled. This approach turns the stationary Schrodinger
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equation into a matrix eigenvalue problem from linear algebra. We can con-
struct a system by only considering how each orbital should be coupled to each
other orbital and how much energy is required to place an electron in each
orbital. Then, the Schrodinger equation can be solved, finding its eigenval-
ues and eigenvectors, with known algebraic methods by diagonalizing a matrix

with the components H,, .

2.2.1 Tight-Binding Model in Second Quantization

Throughout this thesis, we will mostly use the language of second quantization.
Because of this, here, we derive the tight-binding model again, but in second
quantization. This section loosely follows Ref. [04]. In second quantization
the Hamiltonian is written in terms of creation operators ¢! and annihilation
operators ¢;, which create and annihilate an electron in state .

In first quantization, a generic Hamiltonian can be written
— ]' — —

where T' = T'(Z;) is the kinetic energy of the i-th particle at position #; and
V = V(%;,7;) is the potential energy of the interaction between the i-th and
j-th particle at positions Z; and Z;. We can rewrite the Hamiltonian in second

quantization

o 1 .
H:ZCZT <1|T|j>cj+§ZczTc; (ij| V' |kl) crey, (2.23)
ij ijkl

where the states ¢ and j form a complete basis of the Hilbert space. We
now make the approximation of neglecting electron-electron interactions, which

simplifies the Hamiltonian to

H= Z tiicle; with the hopping term  t;; = (i| T'|j) . (2.24)
ij
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With the additional approximation that any hopping longer than nearest neigh-
bor hopping can be neglected

i for 1 = j
tij = ti; for nearest neighbors (2.25)
0 else,

we write the tight-binding Hamiltonian in second quantization as
th = Z ,uicici + Z tijC:-er, (226)
g (i.5)

where (i,j) denotes that the sum is running over all combinations of nearest

neighbors.

2.2.2 Common Notations and Useful Tricks

To conclude this section, we discuss some common notations and calculation
tricks used in this thesis. The tight-binding Hamiltonians shown so far focused
on systems with only one orbital per site, but we can also construct tight-
binding Hamiltonians for systems with multiple orbitals per site. For this, we
use creation and annihilation operators c;a, ¢io With an additional index a,
that create/annihilate particles in orbital a at site ¢. In this notation, it is
often useful to define a basis such as ¢ = (¢;1,¢i2,...)T. It should be noted
here that some annihilation operators in the basis can also be replaced by
creation operators to consider holes. For example, the basis most commonly
used throughout this thesis is ¢ = (¢;t, ¢y, ¢iy, —¢ig). Using such a basis, we

can write a generic tight-binding Hamiltonian as
N N-1
H =3 &lhonsiela + D [@nopss +hc.| (2.27)

where ﬁonsite is a matrix that denotes the potential energy of an electron on a
given site and iLhop couples orbitals of different sites. In one dimension, when

the Hamiltonian is written in this notation, we can construct the k-dependent
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Hamiltonian of the corresponding bulk system by writing
H(k) = & (ﬁonsite + Fnope ¥ + Bjmpe"f) G = Glh(k)a, (2.28)

where the operators create/annihilate electrons with wavevector k. The bands
can then be computed by calculating the k-dependent eigenvalues of the matrix
h(k).

The matrices hopsite, izhop and ﬁ(k) are also commonly written in terms of sums

and Kronecker products of Pauli matrices.

2.3 Classical Spin Models

In 1928, Werner Heisenberg introduced the Heisenberg model to describe fer-
romagnetism [95]. Over three decades later, in 1964, Fischer introduced an
approximation of the Heisenberg model for infinite spin, which uses three-
dimensional vectors instead of operators to describe spins [96]. This approx-
imation became known later as the classical Heisenberg model. Seven years
later, in 1971, the first rigorous proof that this approximation is indeed correct
in the limit of infinitely large spins, was provided by Millard and Leff [97].
In the classical Heisenberg model, spins S are written as three-dimensional
real vectors living on each atomic site. The spins are coupled by an exchange

interaction J.
HHeisenberg = - Z ng : gja (229)
(4.4)

where (i, 7) indicates that the summation runs over all pairs of nearest neigh-
bors. The exchange interaction prefers parallel or antiparallel alignment of
spins, depending on the sign of J.

This model can be expanded to include more complex interactions and also
more neighbors. Throughout this thesis, we use (i, 7), to indicate that the
summation runs up to the n-th nearest neighbor. When only nearest neigh-
bors are considered, we write (i,j) = (i,7);. One such additional interaction
is the Dzyaloshinskii-Moriya interaction (DMI), also known as anti-symmetric

exchange [98]. It has the form ﬁij -(S; x S;) and favors canted spins, where,
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at interfaces, ﬁij has the form l_jij = Ty X D with a material dependent vector
D and the connecting positional vector 77;, resulting in ﬁij = —ﬁjz-. DMI
typically occurs on surfaces due to symmetry breaking and is the driving force
behind skyrmions [99]. With both interactions, exchange and DMI, up to the
n-th neighbor the classical spin model becomes

Heassical = Z ~JuS; - S;+ Dy - (S; x 8§,

()

). (2.30)

<

We can generalize this model, allowing anisotropic exchange interactions, by

writing all interaction terms into a 3 x 3-matrix J,

Hclassical - Z S;ZszgS_:j (231>

<i1j>7l

2.4 Skyrmions

Skyrmions are non-collinear, localized, particle-like spin textures that are topo-
logically protected. The key interaction behind the formation of skyrmions is
the Dzyaloshinskii-Moriya Interaction (DMI), which originates from spin-orbit
coupling at surfaces. In 1962, T. H. R. Skyrme created a model in high-energy
physics that describes baryons as topological solitons, thereby establishing the
concept of a topological charge that is conserved regardless of the symmetries
of the Hamiltonian [I00]. In 1989, A. N. Bogdanov et al. first linked this
concept to condensed matter physics [99]. They theoretically predicted that
DMI can stabilize skyrmions in chiral magnetic materials. Later, Rofller et
al. expanded on this by predicting stable skyrmion lattices as possible ground
states in systems with DMI [TI01]. In 2009, the first experimental confirmation
of a skyrmion lattice was provided by Miihlbauer et al. in MnSi [102], while
individual skyrmions were first observed and locally manipulated in 2013 by
Romming et al. [37]. Fig. shows an example structure of a Néel type (a) and
a Bloch type (b) skyrmion. In Néel type skyrmions, the spin rotation is always
radial [34], while in Bloch type skyrmions, the spin rotation is perpendicular
[102].
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(a)

Figure 2.1: Visualization of a skyrmion of (a) Néel type and (b) Bloch
type. This illustration was created by Karin Everschor-Sitte and Matthias
Sitte, licensed under CC BY-SA 3.0 [I03]. The figure has been rearranged.

Skyrmions can be identified by calculating their topological invariant, the

skyrmion number [34]

1 [~ (oM oM
Nsk = E M - <% X a_y> , (232)

with the unit vector of the local magnetization M. The skyrmion number is
an integer-valued topological invariant that denotes the number of skyrmions
in a system.

One of the most promising usages of skyrmions is the miniaturization of mag-
netic storage devices. Current storage devices need hundreds of thousands of
atoms per bit, whereas nano-scale skyrmions only consists of a few hundred
atoms. Due to their topological protection, skyrmions can be stable despite

their small size, presenting a possible use as extremely small bits.

2.5 Superconductors

Superconductors are materials that exhibit zero electronic resistance when they
are below a critical temperature 7.. Additionally, they expel magnetic flux lines
when below this temperature. Superconductivity was first experimentally dis-
covered in mercury in 1911 by Heike Kamerlingh Onnes, for which he received
the Nobel Prize in 1913 [104]. The first microscopic explanation of supercon-
ductivity was provided by Bardeen, Cooper and Schrieffer in 1957 [105]. Their

theory became famous under the name BCS theory, and they received the
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Nobel Prize in 1972 [I06]. Further major theoretical contributions to the un-
derstanding of superconductivity have been made by Abrikosov, Ginzburg and
Leggett, for which they received the Nobel Prize in 2003 [107]. Interestingly,
although being the first discovered superconductor, the first correct theoretical
prediction of mercury’s critical temperature and full theoretical explanation
of its superconductivity has only recently been provided in 2022 [I0§], using

superconducting density functional theory.

2.5.1 BCS Theory

The fundamental idea behind the BCS theory [105] is, that pairs of electrons
form so-called Cooper pairs, which are bosonic quasiparticles. As bosons are
not affected by the fermionic exclusion principle, they can form a collective
quantum mechanical ground state, leading to perfect conductance. According
to the BCS theory, an arbitrarily weak attractive interaction between electrons
near the Fermi surface is sufficient for the formation of Cooper pairs. In con-
ventional superconductors, this attractive interaction is mediated by phonons
between electrons of opposite spins and momenta +k. The attractive inter-
action causes the fermionic ground state to become instable and favor the
formation of Cooper pairs for energies close to the Fermi level Ep. As the
electrons close to Er become Cooper pairs, a gap in the electronic density of
states from —A to +A (for Er = 0) occurs, where A is the minimal energy
needed to break a Cooper pair. Additionally, at £A, so-called coherence peaks
with a very large density of states occur. These peaks stem from a singularity
in the density of states that gets smeared out in realistic systems due to the
finite lifetime of Cooper pairs, as they are quasi-particles. An example of the
density of states (DOS) of a superconductor is shown in Fig. [2.2]

2.5.2 Conventional and Unconventional Superconductiv-
ity
In conventional superconductors, the pairing is mediated by phonons and fol-

lows an s-wave symmetry, giving them the name s-wave superconductors. Elec-
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Figure 2.2: Example of the density of states of a superconductor as a
function of energy.

trons of opposite spins and momenta form Cooper pairs, leading to spin singlet
states with S = 0 and orbital momenta of the Cooper pairs of L = 0.

But there are also more exotic mechanisms leading to superconductivity, where
Cooper pairs are in a spin-triplet S = 1 state with identical spin and non-zero
angular momenta L # 0, like in p-wave and d-wave superconductors, with the
names stemming from the symmetry classification of the superconducting gap.
Here, we focus on p-wave superconductors, as they can exhibit topologically
non-trivial phases. They are rare in nature, but indications for intrinsic p-wave
superconductivity have been found in SroRuOy [109], UTe, [110], NdFeAs(O,F)
[111], and AuSn, [112]. Additionally, structures with magnetic materials on
top of conventional superconductors can exhibit unconventional superconduc-
tivity with spin-triplet pairing [8], as the combination of s-wave superconduc-
tivity and spin-orbit coupling can generate effective p-wave pairing. The latter
mechanism lays the groundwork for large parts of this thesis, and is discussed
in more detail in Sec. 2.8.2
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2.5.3 Proximity-Induced Superconductivity

The proximity effect, also known as Holm-Meissner effect [I13|, describes the
effect that when a superconducting (SC) material is brought into close contact
with a non-superconducting material, superconductivity gets induced into the
non-superconducting material over small distances and the critical temperature
of the system gets reduced. The microscopic origin of the proximity effect lies in
the Andreev Reflection [I14) 115]. Depending on the combination of materials,
the thickness of both the SC and the non-SC material, and the amount of
impurities, the size of the induced superconducting gap can be highly variable.
In later chapters of this thesis, we discuss systems of thin layers and atomic

chains with proximity-induced superconductivity.

2.5.4 YSR States

Large magnetic fields usually suppress conventional s-wave superconductiv-
ity. But what happens when the magnetic perturbation is minimal, like in
the smallest possible case of a single magnetic impurity atom in proximity
to a superconductor? This question has been answered independently in the
late 1960s by Yu, Shiba and Rusinov [II6HIT8]. When placing a single mag-
netic impurity in proximity to an s-wave superconductor, a pair of additional
sub-gap solutions with energies |E| < |A| emerges. These states are called Yu-
Shiba-Rusinov (YSR) states or Shiba states. Both names are common in the
literature, but here, we will refer to them as YSR states. They are caused by
a local breaking of Cooper pairs, as the exchange with the magnetic impurity
lowers the energy required to break a Cooper pair to less than A. YSR states
are particle-hole symmetric and appear in pairs at energies +Fvygg around
Er = 0. When the magnetic coupling to the impurity is weak, the YSR state’s
energies +Fyggr merge with the coherence peaks, as weak magnetic coupling
only has a minimal effect on the breaking of Cooper pairs. For increasing cou-
pling strength, Eysg shifts towards Er until the energies of the particle-hole
symmetric pair cross. YSR states are expected to be spin-polarized [119, 120],

which has also been shown experimentally [121] 122]. They are bound states
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localized around the impurity with an extent on the scale of the superconduc-
tor’s coherence length. In realistic systems, the magnetic impurity atom can
have multiple spin-polarized orbitals which can contribute, each producing a

pair of YSR states, potentially at different energies.

2.6 Rashba Spin-Orbit Coupling

Rashba spin-orbit (RSO) coupling is created by the breaking of mirror symme-
try through the xy-plane at a surface, i.e., by the fact that there is a bulk in
one z-direction and a vacuum or gas in the opposite direction at the surface.
It owes its name to the influential paper of Rashba and Sheka [123] where they
showed that under certain symmetry conditions a relativistic Hamiltonian con-
tains energy terms that are linear in momentum. This linear coupling between
the spin and the momentum is the central feature of RSO coupling and causes
a momentum dependent splitting of spin bands.

Traditionally, RSO coupling is derived as follows. At the surface, the inversion
symmetry in the z-direction is broken. From the electric fields of the nuclei,

this symmetry breaking introduces an electric field E, in z-direction.
Hp=-E.-¢e-z, (2.33)

with the electron charge —e. Given that an electron is moving with momentum

E, relativistic corrections let the electron experience a magnetic field B.
B=—(kx E)/(mc®) (2.34)

This magnetic field couples to the spin of the electron

guB 7 =y
HRSO = o2 (/{Z X E) + 0 (235)
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Figure 2.3: Effect of Rashba spin-orbit coupling on the band struc-
ture. Band structure from the eigenvalues calculated in Eq. (2.39) for
a=0.0t, 0.3¢t, 0.6¢.

with the magnetic moment %22 and the vector of Pauli matrices . Knowing
the direction of the E-field, we can write the RSO Hamiltonian as

gupk;
2mec? ’

Hgrso = —a(e, x /;) -0 with a = (2.36)

with the unit vector €, in z-direction and the Rashba constant «, which is a
material parameter. Qualitatively, this approach yields a good description of
RSO coupling and has been confirmed in experiments on Ag(111) and Au(111)
with angular resolved photoemission spectroscopy (ARPES), where the pre-
dicted spin splitting and the expected spin structure of the surface states have
been observed [124, [125]. Quantitatively though, this approach provides val-
ues for o which are orders of magnitude too low. A detailed discussion on the
microscopic origin of RSO coupling can be found in the review article [126],

for example.

Example of RSO coupling in Tight-Binding

To gain a better understanding of RSO coupling, let us discuss an example of
the effect of RSO on the band structure. Consider a tight-binding Hamiltonian
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with nearest neighbor hopping and RSO coupling

H= Z —tog + ozay)cﬁ—hc) (2.37)

with & = (¢;1,¢i)7, the hopping parameter ¢, RSO coupling constant «, and
the Pauli matrices o, (m = 0, z,y, z). Using the approach from Eq. (2.28]), we
find the k-dependent Hamiltonian

H(k) = &l (=2t cos(k)oy — asin(k)a,)é, (2.38)
with ¢, = (¢4, cxy)” and the eigenvalues
Ei (k) = —2t cos(k) £+ asin(k). (2.39)

These bands are shown in Fig.[2.3]for & = 0.0¢, 0.3¢, 0.6¢. The RSO coupling
splits the spin bands, but leaves their values for k = 0 and k£ = 47 unaffected.

2.7 'Topology - Topological Numbers and Why
They Affect Physics

Topology is a field of mathematics that describes which geometrical properties
of objects are unaffected by smooth deformations. Smooth, in this context,
means without cutting or gluing. This can be visualized by the difference be-
tween a donut and sphere. The sphere can be smoothly deformed into many
objects, like a plate, a book or a table. But it cannot be deformed into a donut
without cutting a hole. The donut in turn can only be deformed into objects
that have exactly one hole like a bagel or a mug with a handle. Thus, the donut
and the sphere are not topologically equivalent. They can be differentiated by
an integer topological invariant called genus ¢, i.e., the number of holes. A
topological invariant or topological number is a number that cannot change
under smooth deformation, and thus is the same for topologically equivalent

objects. In the following, we discuss how we can apply this concept to Hamil-
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tonians in physics, loosely following the pedagogical approach of the online
lecture in Ref. [127].

2.7.1 Topological Equivalence

In physics, the concept of topological equivalence can be applied to understand
quantum phase transitions that do not break any symmetries. Historically, the
quantum Hall effect was the first physical quantum phenomenon that has been
described with topological order [128] [129].

Here, we focus on how to apply topological invariants to topological insulators,
which have a bulk energy gap which separates the highest occupied electronic
state from the lowest unoccupied state. It should be noted here that super-
conductors belong into this category, as they exhibit a superconducting gap
around the Fermi edge, even though the naming naively suggests the opposite.
In a gapped system, there is a finite energy cost to excite the system above
its ground state, since there are no eigenvalues within a finite energy interval
around zero energy. Two gapped systems are considered to be topologically
equivalent if there is a continuous transformation from one Hamiltonians to
the other without the system leaving the ground state, i.e., without closing the
gap.

Let us assume two random Hamiltonian H; and H, and a continuous transfor-

mation between them:
H(a) =aH; + (1 — a)H,, (2.40)

where « is a number running from 0 to 1. We can define a topological invariant
 to be the number of states below the Fermi edge Er = 0. Naturally, this
number cannot change without a state crossing Fr. Fig. (a) shows the
eigenvalues of H(«) and the respective topological number ). As the topolog-
ical number () changes with «, we find multiple different topological phases,
which are not invariant towards each other, since their number of states below

the Fermi edge differs.

32



(a) 151 (b) 1.5
1.0] 1.0-y

o5 T—™—m

w 00t == ==

-05{ ——u T @ —

/_//\\
_1.0_/_\

-1.5

QsdG
o

1 : : . ; -1 : . ; ;
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.4: Eigenvalues and topological numbers () of Hamiltonians H ()
with respect to «, see Eq. . In (a), H; and H; are created by generating
random hermitian matrices. In (b), random Bogoliubov Hamiltonians are
created using Eq. by generating random hermitian H and A matrices.

2.7.2 Superconductors

Let us now look at superconductors and add particle-hole symmetry to our
Hamiltonian and see what happens. We construct a generic superconducting

Hamiltonian that has a term to create and annihilate Cooper pairs

1
H = Z H,ynch e + §(An7mc;flcjn + Ay CnCm), (2.41)

with the electronic creation and annihilation operators ¢! and ¢,. The H term
defines the electron dynamics and the A term the creation and annihilation
of Cooper pairs. For the Hamiltonian H the total number of electrons is not
conserved, but the parity of the electrons, i.e., whether the number of electrons
is odd or even, is still conserved because the creation and destruction of Cooper
pairs affect pairs of electrons, not singular electrons. We can write H in the

Bogoliubov-de Gennes formalism using the vector C' = (¢, ..., ¢y, CJ{, ...c}r\,)T

1
H = 5(JT HpacC, (2.42)
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with

H A
Hpac = . (2.43)
A* —H

Because of the codified relation between electrons and holes in Hgqg, it auto-

matically fulfills particle-hole symmetry
PHgacP " = —Hgqc, (2.44)

with the anti-unitary operator P = 7,./C, with the complex conjugation opera-
tor IC, and the Pauli matrix TxE The particle-hole symmetry is the symmetry
under the exchange of particles and holes. Since this symmetry operator anti-
commutes with Hgqg, and thus introduces a minus sign, it follows that the
spectrum of Hpgg must be symmetric around zero. For each particle eigen-
state | W) with energy E of Hpgg, we find a hole eigenstate P |¥) with energy
—FE. Let us generate a set of two random Bogoliubov-de Gennes Hamiltonians
and continuously transform them as above, see Fig. [2.4] (b). Crossings at zero
energy still appear, but, because of the added symmetry, the number of states
below the Fermi edge can never change. However, the number of particle states
below Er = 0 still changes at the crossings, as one electron and one hole state
cross zero. Thus, there is still a topological phase transition at the zero energy
crossings, but it cannot be seen in the total number of states below zero. So,
we need to define another topological invariant to classify Hgqg.

By switching to Hgqg, we doubled the degrees of freedom. Because of this, £ F
does not refer to two distinct states, but rather a single quantum state with a
superposition of particles and holes, referred to as a Bogoliubov quasiparticle.
When a pair £ F,, crosses the Fermi edge, F,, changes sign, reflecting the change
of the respective Bogoliubov quasiparticle between being energetically favorable
or not. Thus, at these crossings, the ground state fermion parity switches be-
tween even and odd. The ground state fermion parity is conserved unless a Bo-
goliubov quasiparticle crosses zero. Thus, we can use the ground state fermion

parity as our new topological number. But how do we access it efficiently?

IThroughout this thesis, we use 7 for Pauli matrices that connect particles and holes, and
o for Pauli matrices that connect spin up and spin down.
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The Pfaffian Invariant

To access the ground state fermion parity, we use the Pfaffian. For our concerns,
its most notable property is that it is the square root of the determinant. For

a Hamiltonian Hgyg with the eigenvalues £F,,, generally

Det(H) = [ —(En)>. (2.45)

n
Since the Pfaffian is the square root of the determinant, it is £ [, (¢£,). From
this, we can already see that the Pfaffian switches signs when an F,, crosses
zero, i.e., when the ground state fermion parity switches. The Pfaffian is only
defined for anti-symmetric matrices A” = —A. To calculate it, we first must
bring the Hamiltonian into an anti-symmetric form. We can do so with the

unitary transformation

- 1/1 1 1 —i
Hpac =7 |. .| Hsac - (2.46)
2\ —i 1 1

. H—-H"+A—-A* —iH —iH*+iA +iA*
Hpac = | | . N (2.47)
iH +iH* +1iA +1A* H—-—H*+A— A"

H + H* is symmetric and H — H* anti-symmetric because H is Hermitian.
The superconducting pairing A is anti-symmetric in nature. Thus, Hgac is

anti-symmetric. Using this, we can calculate our new topological invariant as
Qpac = sign(Pf(ipac)), (2.48)

with the Pfaffian Pf where the factor i is added to guarantee that QQpqq is a real
number for any size of the Hamiltonian. (pgq is a Z, topological invariant,
which is either +1 or —1 and changes signs at the crossings. In Fig. (b)
the spectrum of a smooth transition between two random BdG Hamiltonians

and their respective Qg are shown.
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2.7.3 Band Theory

The concept of topological equivalence can be translated from finite systems
to quasi-infinite bulk systems. For this, we define the notion of topological
equivalence in momentum space, i.e., via the band structure. Insulators have
an energy gap that separates the ground state and excited states. We can
introduce a concept of topological equivalence based on adiabatic continuity.
Two Hamiltonians are equivalent if and only if they can be slowly changed to
one another with the system remaining in the ground state as defined above. As
insulators have a band gap Ag around the Fermi edge Fr = 0, two insulators
are topologically equivalent if their Hamiltonians can be transformed into one
another without closing the band gap Ag. Thus, at phase transitions between

two topologically inequivalent phases, the energy gap vanishes.

2.7.4 Bulk-Boundary Correspondence

Imagine an interface between two topologically inequivalent phases. A param-
eter slowly changes spatially from one side to the other, ultimately causing a
topological phase transition and thus a gap closing somewhere along the inter-
face, as the energy gap has to go to zero at the phase transition. This results in
an electronic state at zero energy that is bound to where the phase transition
happens. These zero-energy states can be classified topologically. According
to the bulk-boundary correspondence [130, [131] the bulk topological invariant

relates to the presence of these edge states.

2.7.5 The Tenfold Way

The tenfold way is a method to categorize all gapped single-particle Hamilto-
nians into one of ten classes based on three symmetries [132]. In combination
with the dimensionality of a given system, the tenfold way can predict what
type of topological number the system has.

The first symmetry is the particle-hole symmetry. If a system is particle-hole
symmetric, it is symmetric under the exchange of particles and holes. If this

symmetry is present, the particle-hole exchange operator P anti-commutes with
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the Hamiltonian H
{P,H} =0. (2.49)

This symmetry is usually present in superconducting systems. P is anti-unitary
and can square to —1 or +1.

The second symmetry is the time-reversal symmetry. A system with time-
reversal symmetry will act the same when the time runs backwards: ¢t — —t¢.

This symmetry is present if the time-reversal operator 7 commutes with H
[T,H] =0. (2.50)

Typically, time-reversal symmetry is broken by magnetic fields. 7 is also anti-
unitary and can square to —1 or +1.

The third symmetry is the chiral symmetry C, which is equivalent to the sym-
metry under simultaneous reversal of the time and exchange of particles and
holes. When only one of these symmetries is present but the other is absent,
there is no chiral symmetry. But when neither is present on its own, it is
still possible that the system is symmetric under simultaneous particle-hole
exchange and time-reversal. This gives us a tenth type of matter. The chiral

symmetry is present when its operator C anti-commutes with the Hamiltonian
{C,H}={P-T,H}=0. (2.51)

C is a unitary operator and thus can only square to 1.
By combining these symmetries with the dimensionality, we can predict the

type of topological number as shown in Table
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class | 72 P? C?| D=1 D=2 D=3
A Z
AIIl 1 Z Z
Al |1
BDI |1 1 1 Z
D 1 Zs Z
DIIT -1 1 1 Zs Zs Z
All | -1 Zs Zs
ciam (-1 -1 1 12z Zs
C -1 Z
CI 1 -1 01 Z

Table 2.1: The tenfold way. The table shows which type of topological
number a system has, based on the squares of its time-reversal symmetry T,
particle-hole symmetry P, and chiral symmetry C, in combination with its di-
mension D. An empty field in the table means the absence of a given symmetry
or the lack of a topological number. Z, describes a binary topological number,
e.g., one that can take the values 41 like the Pfaffian introduced above. Z
refers to an integer topological number like the Chern number [133].

2.8 Majoranas and Where to Find Them

2.8.1 The Kitaev Chain and Majorana Zero Modes

In this section, we introduce the Kitaev chain. The Kitaev chain is the most
minimalist known 1D model that can host so-called Majorana zero modes which
we will also introduce in this section. The pedagogical approach in this section

is inspired by the online lecture notes [127].

We define fermionic creation and annihilation operators ¢/ and ¢ that satisfy
the anticommutator relation cfc + cc’ = 1 and square to zero ¢ = (c)? = 0.
They connect the vacuum state |0) and the filled state with one particle |1) as
follows:

0y =1y, c|1)=10), c|0y=0, c'|1)=0. (2.52)
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Y1 V2 Y3 Va Vs Ve Y7 Vs Yo V1o

Figure 2.5: Sketch of Majorana pairing for N = 5. The black dots represent
Majoranas. The black circles represent electronic sites. Within an electronic
site, the Majoranas are coupled by . Between two neighboring electronic sites,
the Majoranas are coupled by ¢.

They can also be written as

1 . 1 :
CT = 5(71 + 172)7 c= 5(71 - 172)7 (253>
with the Majorana operators ; and 7,. The inverted transformation
n=c+c, y=ilc—d), (2.54)

shows that v, = ’yI and v, = ’y;r . The Majorana operators owe their name to
this property, in reference to proposed Majorana particles, which are their own
anti-particles [134) [135]. In the framework of solid state physics, this property
means that a Majorana mode cannot be ‘empty’ or ‘filled’. Using the properties

of ¢, we can calculate that

7Y2 + 7271 = 0, ’Yf =1, ’V; =1L (2.55)

The Majorana operators still act on the states |0) and |1). For example, a

Hamiltonian H = ecfc, which describes an energy difference of ¢ between the
two states, can be written as H = (1 — iy172).

Now that we represent a single fermion with two Majorana modes, the question

occurs whether it is possible to have a single isolated Majorana mode not close

to its partner Majorana mode. Naively, one might guess ‘no’ as condensed
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matter systems are made out of electrons corresponding to pairs of Majoranas.
But, we can engineer a Hamiltonian that makes this possible.

To construct this Hamiltonian, we consider N fermionic sites with creation
and annihilation operators ¢/ and ¢,. This is equivalent to each site having
two Majorana modes 7o,_1 and 7s,, see Fig. 2.5] We can pair the Majoranas
by adding an energy cost for each fermionic site to be occupied, resulting in

the Hamiltonian

. N
1
H = 5/}, nE:1 ")/277‘71’}/2”. (256)

This leads to no unpaired Majoranas. All excitations have an energy of +|u|/2,
the bulk spectrum is gapped and there are no zero-energy edge states.

Now, we instead only pair Majorana operators from neighboring sites with a
coupling factor i-t. In the electron basis, this means that we assign an energy
difference of 2t between an empty state and a neighboring filled state, i.e., the

energy associated with an electron going from one site to the next.

N-1 N—-1
H=it Z Yon1Y2n = 0 - Y1vyen + it Z Yan+1Y2n (2.57)
n=1 n=1

The end modes do not appear in this Hamiltonian, which is equivalent to them
being associated with zero energy. All other excitations have an energy of +|¢|.
This results in a gapped bulk spectrum with zero-energy states at the ends of

the chain.

The Kitaev Model

We combine the Eq. (2.56) with Eq. (2.57) and add superconducting pairing

using Yo,1 = (¢}, + ¢,) and o, = —i(c! — ¢,) to construct the Kitaev model
1
H=—pu Xn: (cqtcn — 5) - tzn: <CL+1cn + h.c.) +A zn: (cnt16n +hec.),
(2.58)

with the onsite energy u, the hopping term ¢, and the superconducting pairing

A. For t = A = 0, this Hamiltonian is identical to the completely trivial case
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in Eq. (2.56). For p = 0 and A = ¢, it is identical to the case with edge mode
from Eq. (2.57)).

Now, we bring the Kitaev model into the Bogoliubov-de Gennes formalism.
1
H = 50" HpaC, (2.59)
with C' = (¢, ...,cN,cJ{, ...c},)T and a 2N x 2N-matrix Hgqg. We can write
Hpgac in a compact form with Pauli matrices 7; (i = 0, x,y, z) and basis vectors
In) = (0,...,1,0,...)T with the 1 on the n-th site of the chain. For example, we
can write 2clc, — 1 = CT (7, ® |n) (n]) C with the Kronecker product ®. In

this form Hpgg reads

N-1

Hpge = — Y _p(r.® |n) (n]) = > [(tr. +iA7,) ® |n) (n + 1| + h.e]. (2.60)

n

For the researchers getting into this field, it should be noted that it is very
common in the literature to not write a Kronecker product and merely imply
it to make equations more compact. Often, this is done without ever noting
that a Kronecker product was used at all, which can lead to confusion. When
reading literature in the field, and matrix sizes seemingly make no sense, it
is often a good first step to check, whether the equation makes sense when
adding Kronecker products. So with this more common compact notation the
BdG-Hamiltonian reads

Hpyg = — Z[LTZ In) (n| — i [(t7. +iAT,) |n) (n + 1] + h.c.]. (2.61)

The BAG Hamiltonian is particle-hole symmetric with PHgqeP ! = —Hpag
with P = 7./, i.e., exchanging particles and holes changes the sign of Hpqg.

Now, it might be objected that the zero modes so far only appeared for exactly
tuned parameters, and that if a specific solution only exists for exact param-
eters with no room for error, it will be extremely unlikely to actually occur
in experiments. To counteract this argument, Fig. [2.6] shows the eigenvalue

spectrum of a chain with length N = 100 and A = 0.5¢ with respect to u. For
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E/t

Figure 2.6: Eigenvalue spectrum of Eq. (2.60)) with respect to p for N = 100
and A = 0.5¢.

i < 2t, we find Majorana zero modes. Around p ~ 2t the bulk gap closes and
for larger p no zero modes are to be found. Note that the eigenvalue spectrum
is mirrored for negative . To make sense of this, we need to remember a few
things. First, the Hamiltonian is particle-hole symmetric. Thus, the spectrum
is mirrored at zero energy. Second, for p = 0, there are two zero-energy states,
each localized at one end of the chain and thus far away from each other. Be-
cause of the particle-hole symmetry, they cannot be moved from zero energy
individually (one has to shift down, while the other is shifting up). In the pres-
ence of an energy gap, they can only be moved from zero energy when they
couple to each other, but this coupling is suppressed by the distance between
the two ends. Thus, the two zero energy modes cannot split away from zero
energy unless the bulk gap closes, which happens at © = 2¢. In conclusion,

Majorana modes are protected by the symmetry of the spectrum and absence
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of zero-energy excitation. This sudden change in behavior at zero energy cross-
ings (gap closings) reminds us of the discussion on topology in the previous
section. In the following, we show how to apply topological methods to predict

the occurrence of Majorana zero modes from the bulk Hamiltonian.

Kitaev Chain in Momentum Space

To discuss the bulk properties, we first go to momentum space. We connect
the last site of the chain to the first site, turning the Kitaev chain into a Kitaev
ring. This introduces translational symmetry [n) — |n+ 1). With a Fourier
transformation, we bring the Hamiltonian to momentum space. For this, a

state with momentum £ is given by

1 Y ikn
k) = i ;e—l |n) (2.62)

with the periodic boundary condition (kln =0) = (k|n = N). We consider
very large N for the bulk system. Thus, we can consider k to be continuous
and limited to the interval [—m, 7] with periodic boundaries. We can write the
k-dependent BAG Hamiltonian

H(k) = (k| Hpac |k) = ( — p — 2t cos(k)) 7. + 2Asin(k),. (2.63)
The full momentum space BAG Hamiltonian can be obtained by

Hyac = Y H(k) |k) (K], (2.64)

where the sum becomes an integral in the limit of an infinite chain.
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Band Structure

The band structure can be calculated by diagonalizing the 2x2 matrix Eq. (2.63)),

which yields the eigenvalue spectrum

(k) = £/ (1 + 2t cos(k) + 442 sin? (k). (2.65)

From this, we can see that the spectrum is gapped for all £ in both, the non-
trivial regime (e.g., p = 0, ¢ = A) and the trivial regime (e.g., u = 3t, t = A).
This is unsurprising, since there are no ends in the bulk system. So, it cannot
have end states. From the bands, we can identify two gap closings, one at
i = 2t and k = 7, the other at p = —2¢t and k¥ = 0. These gap closings
mark the topological phase transitions. The band structure itself looks very
similar in the trivial and non-trivial phase. So, we cannot easily identify the
topological phase by just looking at the band structure. Therefore, we need a
more sophisticated method to distinguish the topological phases. This is where

the Majorana number comes into play.

The Majorana Number

The Majorana number is the bulk topological invariant of the Kitaev chain and
similar systems and can be calculated from the k-dependent bulk Hamiltonian
(Eq. (2.63)). The full derivation can be found in Kitaev’s original paper [5].
Here, we will only focus on how to calculate the Majorana number and present
arguments to make it plausible.

The Majorana number M is calculated as the sign of the product of the Pfaf-
fians of the k-dependent Hamiltonian H (k) at the points k =0 and k =7

M = sgn(Pf[iH (k = 0)|Pf[iH (k = 7)]). (2.66)

To calculate the Pfaffian, H(k = 0) and H(k = m) must first be brought
into anti-symmetric form. Particle-hole symmetry means that PH(k)P~! =

—H(—k). In 1D, the points k = 0 and k = 7 are the symmetry points of the
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Brillouin zone and reflected onto themselves, thus
PH(0)P™' = —H(0) and PH(7)P~' = —H(n). (2.67)

Because of this, it is always possible to bring H(0) and H (7) into anti-symmetric

form via a unitary transformation

H(0) = % C _11> (=2t — p)7s G _11> =i (%iu _Qto_ “) :

(2.68)
N 1(1 1 1 —i 0 2t —
Hm=o (o |et-pn( ) =-i .
2\i —i 1 i —2t+ 1 0
The Pfaffians are then
Pf(iH(0)) = —2t —
(H(0) s (2.69)
Pf(iH (7)) = 2t — p.
and the Majorana number of the Kitaev chain is
M = sgn[(—2t — p)(2t — p)] = sgn [p* — 4¢7] . (2.70)

Therefore, the sign of M changes at y = £2¢, which lines up with the previous
findings on the gap closings and the topological phases.

As we discussed in Sec. 2.7.2] a change in sign of the Pfaffian indicates a parity
switch and thus a pair of eigenvalues passing the Fermi energy. So it intuitively
makes sense to make use of the Pfaffian. But why do we calculate the product
of the Pfaffians for £ = 0 and k¥ = 7 instead of, for example, constructing
some formula that employs all possible values of k7 The points £ = 0 and
k = m are the symmetry points of the Brillouin zone. They are the only points
that are mirrored onto themselves, and the k-points between them effectively
contain the complete information of the Brillouin zone, as the Brillouin zone
itself is mirrored at these points. If M is positive/negative, we know that there
is an even/odd number of (avoided) crossings. When M changes, an (avoided)

crossing is added or removed. To add or remove a crossing by a continuous
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transformation, the band gap must momentarily close, indicating a topological
phase transition. Thus, the Majorana number cannot change under continuous
transformations without a gap closing.

Finally, we find that the system is in the non-trivial phase for M = —1 and in
the trivial phase for M = +1.

2.8.2 From the Kitaev Chain to Realistic Chains with

Proximity-Induced s-Wave Superconductivity

The Kitaev chain is the simplest model that can host Majoranas, but it is
somewhat far away from realistic systems. Here, we show how to adapt the
Kitaev chain to a model with more realistic assumptions step by step.

We start with the Kitaev chain

N-1

Hyitaey = ZCTMTzcn Z [E1(tT. +1AT,)G0tr + hoc] (2.71)

n

with &, = (¢, cl)?, the chemical potential 1, the hopping parameter ¢, the su-
perconducting order parameter A, and the Pauli matrices 7; with ¢ € {0, x,y, z}.
First, we shift our chemical potential © — p — 2t to make it easier to define u
with respect to the band bottom. With this, the topological phase transition
between trivial and non-trivial states occurs at p = 0. So far, this is only a
change in definitions and no functional change.

The Kitaev chain is formulated for spinless fermions. To make the model more
realistic, we add spin to all electrons and holes, and add an interaction in spin
space, mediated by an additional set of Pauli matrices o; with ¢ € {0, z,y, z}.

This expands our bases to &, = (¢t Cnys CLT, el e

N-1

H = Z (2t — p) (1, ® 00)Ep — Z [E1(t(r. ® 00) +1A(Ty ® 00))Gns1 + huc.]

(2.72)
with the Kronecker product ® and oy as the unity matrix. From here on, we
will use a simplified notation common in literature. 7; and o; both represent

the same Pauli matrices with i € {0, x,y, z}, where the 0-th Pauli matrix is a
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2 X 2 unity matrix. The Kronecker product ® will not be explicitly written
and is implied between a 7; and a ;. The only difference between 7; and o; is
whether they are on the left (7;) or right (o;) of the Kronecker product, which
is non-commutative. Given our choice of basis, this implies that 7; describe
how electrons and holes interact, while o; describe how spin up and spin down
interact. Lastly, we should note here that it is also common in literature to not
explicitly write 79 and oy and just imply them instead. We specifically choose
to keep the unitary matrices for easier readability. So, with this notation, the

above Hamiltonian reads

N N-1

H = Z el(2t — u)T.008, — Z [Ej(trzag +iATy00)Cpp1 + hc] . (2.73)
So far, this just added an extra degeneracy, but this already creates the first
problem. The reason why the Kitaev chain is interesting to us is that it can
host unpaired Majorana modes. With a fully twofold degenerate spectrum,
each end of the chain would host two Majorana modes, which combine to just
a regular fermion tuned to zero energy. So, how can we lift this degeneracy?
One way is to apply an external magnetic field and Zeeman coupling —BZ(C%T—

cici - c¢c$ + CWD = cﬁ B.o.7.¢,, which results in the Hamiltonian

N N-1
H = Z cl (2t — p)1.00 — B1,0.) G, — Z (&1 (tT.00 + 1AT,00)Cps1 + hoc] .

n

(2.74)
With sufficiently large Zeeman splitting, the electrons of different spin can be
separated, which allows us to make one spin species trivial and the other non-
trivial. Thus, we can find unpaired Majorana modes at the ends of the chain
again.
Now, the Hamiltonian contains spin information, but we still rely on p-wave
superconductors, since the A-term creates spin-triplet Cooper pairs with iden-

tical spin

grj(iATy%)gnH =A <CL,¢CL+1,¢ + CL,¢CL+1,¢ — CnCnt1t — Cn,¢0n+1,¢> . (2.75)
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Even though some experimental indications for p-wave superconductors have
been found, they appear to be extremely rare in nature [I09-112]. Given that
there are many known s-wave superconductors, a good next step is to change
the pairing to s-wave. It should be noted here that s-wave superconductivity in
a pure 1D system is not fully realistic, but we can work around that by assuming
that the superconductivity is proximity-induced and stems from a supercon-
ducting substrate. For s-wave pairing, we need a term to create Cooper pairs
in spin-singlet states Hy yave = A(crcy — cj¢y) + h.c.. Before we introduce this
term to our Hamiltonian, we change the basis to &, = (¢u1t, Cn, cjw, —CLT)T.
This basis mostly makes the Hamiltonian more convenient to read and write.
The s-wave pairing is just A7,0q in this basis. The Hamiltonian of holes can be
calculated directly from the Hamiltonian of electrons by changing the sign of
all terms that respect time-reversal symmetry, while leaving the signs of terms
that break time-reversal symmetry, such as the Zeeman term. In this basis,

the Hamiltonian reads

N—-1

N
H = Z EJ((Qt — p)1.00 — Broo, + ATxO'())E;L — Z [EJ(tTZUO)5n+1 + h.c.] )

(2.76)
Now, we have a new problem. For this Hamiltonian, there is no parameter set
that leads to an open band gap that is simultaneously non-trivial. The above
Hamiltonian only has one Pauli matrix interacting with the spin, which is o,.
Thus, the spin of each electron is conserved. So when bands cross zero energy
from tuning B, they have opposite spin and do not couple. Therefore, the gap
closes.
To find non-trivial states, we need to open the gap again. One way to reopen
the gap, is to include Rashba spin-orbit (RSO) coupling Hrso = i§7.0, (see.

Sec.

N
H = Z 5;((2t - M)TZUO — Bryo, + ATxdo)En
! (2.77)
+ [cn (—tT,00 + Z§Tzdy)cn+1 + h,c_] ,
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The RSO coupling causes the spin of each electron to not be conserved any-
more and therefore couples crossing bands. This causes the gap to open again.
It has been shown by Oreg et al. [9] and Lutchyn et al. [10] that, with the
interplay of the s-wave superconductivity, a magnetic field, and RSO coupling,
effective p-wave pairing can occur even though we use a conventional s-wave
superconductor. This allows us to find Majoranas. Perge et al. have shown
that this effective p-wave pairing can also be achieved by a spin spiral state in
proximity to a superconducting host without explicit spin-orbit coupling [§].
Summarizing the above, we need a magnetic field plus Rashba spin-orbit cou-
pling or a spin spiral state in addition to s-wave pairing to make a topologically
non-trivial state possible in a realistic system. It should be noted that this list
of ingredients is specific to one- and two-dimensional class D and class BDI

materials. In the following, we explain how the effective p-wave pairing occurs.

Effective p-Wave Pairing

The Kitaev chain features p-wave superconducting pairing and requires a ‘spin-
less’” system, i.e., a system with one pair of Fermi points. Following the deriva-
tion of Oreg et al. [9], we consider a wire in z-direction, with a magnetic Zeeman
field in z-direction, Rashba spin-orbit coupling in y-direction, and proximity-

induced superconductivity

H— / U2y MU (x)dy with O = (], o], vy, —r)

H = (k*/2m — p)T.00 + iakt,0, + B1yo, + AT,00

(2.78)

where 14(z) annihilates an electron with spin up at position x. The energy

spectrum of this Hamiltonian can be calculated as follows:

Eip34= i\/32 + A2+ &+ ok £ 2\/32A2 + B2 + o?k282,  (2.79)

with & = % — . The resulting dispersion relation is shown in Fig.
for a few sets of parameters. First, we consider the case of B = A = 0.

The dispersion relation consists of two shifted parabolas (mirrored because
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Figure 2.7: Dispersion relation for a model with effective p-wave pair-
ing. For the calculation, we set m = 1 and o = 1 and use ma as our unit
of momenta, and ma?/2 as our unit of energy. (a) B = A = p = 0, (b)
B=02 A=0, u=0,(c) B=02, A=0.1, n=0.

of the system’s particle-hole symmetry). Since there are four Fermi points, no
‘spinless’ regime is possible for this case. Increasing the magnetic field B causes
a band gap opening proportional to |B| at k = 0. When p lies within that gap,
there is a single pair of Fermi points as desired for the ‘spinless’ system. When
we now turn on A, we effectively get p-wave pairing in the lower bands, because
spin-orbit coupling favors opposite spins when pairing opposite momenta k£ and
—k. Looking at the bands with a minus within the square root, we find that

the size of the gap at k =0 is

SE(k=0)=|B — /A2 + 12|. (2.80)

At B? = A? + 12, the gap closes and a band crossing occurs, resulting in a
topological phase transition. For B* < A%+ 2, both gaps are dominated by the
superconducting pairing, and the system is in a trivial state. For B2 > A% 412,
the gap at £k = 0 is dominated by the magnetic field B, and the system is in
a topologically non-trivial state with Majorana zero modes at the ends of the

wire.
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Chapter 3

Models and Methods

In this chapter, we introduce the models and methods used in this thesis. In
Sec. we begin by introducing the tight-binding model for a one-dimensional
chain featuring magnetism, Rashba spin-orbit coupling, and proximity-induced
s-wave superconductivity. In Sec [3.2] we discuss how to identify magnetic
ground states with the Metropolis Monte-Carlo method. Following up on that,
we describe how to adapt this method to different systems in Sec. [3.3] There-
after, we discuss how to calculate the total energy of all occupied states in a
tight-binding model in Sec. [3.4] In Sec. [3.5 we calculate the analytical eigen-
values of the model presented in Sec. for the case of harmonic spin spirals.
In Sec. and [3.7, we show how we calculate the Majorana number for bulk
and finite-size systems, respectively. In Sec. we give a brief introduction to
scanning tunneling microscopy to explain the methods used in the experiments
that are the basis for the calculations presented in Chapters [6] and [7]

3.1 Tight-Binding Model for a Spinful 1D Chain

with Proximity-Induced Superconductivity

The Kitaev chain, see Sec. has a problem for experimental realization.
It is a p-wave superconductor, and p-wave superconducting materials appear
to be rare and difficult to find, although experimental evidence for p-wave
superconductivity has been found in a handful of sample systems recently [L09-
I12]. Since most known superconductors are s-wave superconductors, building
an s-wave superconducting model system which can host Majoranas is a natural

step towards the realization of Majorana zero modes. This can be achieved by
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adding magnetic interactions with local magnetic Zeeman-fields to an s-wave
superconducting system, when combined with a spin spiral structure or Rashba
spin-orbit coupling, which leads to an effective p-wave pairing [8]. Using this

knowledge, we construct the following Hamiltonian

L
H= Z EJT[ — J195; - 0 4+ (2t — p)T200 + ATQ;O'O]E}' (3.1)
j=1
1 ey o
+ C; [ —tr.00 + ZETZO'y] Cj,

with the Nambu spinor ¢ = (¢j, ¢, c}’i, —c}T) [136], the coupling strength
J between a magnetic moment on a given site and the spin of a conducting
electron, the orientation 5; of the local magnetic moment on the j-th site,
the chemical potential p, the hopping amplitude ¢, the length of the chain
L, the Rashba spin-orbit coupling constant «, and the superconducting order
parameter A, which we assume to be constant along the chain. The local
magnetic moments on each atomic site represent quasi-classical spins whose
interactions are mediated by itinerant electrons, which is an approximation
for atoms with large total spin (e.g, 7/2). The Pauli matrices o and 7 are
connected by a Kronecker product and operate in spin and particle-hole space,
respectively. This Hamiltonian effectively includes spin interactions mediated
by the itinerant electrons and neglects direct interactions between the spins.
We choose a Rashba spin-orbit coupling in the o, direction without loss of
generality. As this is the only non-isotropic term in the Hamiltonian, i.e.,
the only term that is not invariant under global rotation, this choice can be
made freely as long as we make sure that the RSO coupling is perpendicular
to the direction of the chain. By the local gauge transformation ¢ = €% ¢/
[31], the Rashba spin-orbit coupling can be rotated into the magnetic moments
5" = R(2j0)5;, where R is the rotation matrix around the y-axis by an angle
of 2560. To fully rotate Rashba spin-orbit coupling of strength « into the local
magnetic moments, one has to set § = arctan(«//t), which rescales the hopping
term to t' = t4/1+ i‘—; and rotates the magnetic moments around the y-axis

by an angle of 2j - arctan(c/t). In Chapter [4] where we identify the magnetic
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ground states of this model, we therefore restrict our analysis to a« = 0 and t =
1. The results for non-vanishing Rashba spin-orbit coupling can be obtained

from the presented results by a backrotation of each magnetic moment s; by

—1
—2j - arctan(«/t) and rescaling of all energies by /1 + Ct“—j .

3.2 Finding Magnetic Ground States with the
Metropolis Monte-Carlo Algorithm

In this section, we describe how to find the magnetic ground state of a given
system with Metropolis Monte-Carlo algorithms. Monte-Carlo simulations are
a broad class of methods that use randomness and probability theory to find nu-
merical solutions. In general, a Metropolis algorithm iterates evolving samples
accepting or rejecting changes to the samples based on a probability distri-
bution. Here, we focus specifically on the application of the Metropolis algo-
rithm to magnetic systems with three-dimensional classical or quasi-classical
spins, utilizing the Boltzmann distribution as the aforementioned probability
distribution [137, 138]. Assume a system with N spins §; and a total energy
E(51, ..., $ny) which depends on the alignment of those spins, e.g., classical spins
as introduced in Sec. or quasi-classical spins as in the model introduced in
Sec. 3.1} First, a random spin configuration is generated and the respective
total energy calculated. Then, the following steps are applied:

1. One random spin §; is chosen.

2. The chosen spin is changed by picking a random value from a continuous

distribution of vectors on the unit sphere.

3. The total energy of the new configuration FE.., is calculated and com-

pared to the total energy of the previous configuration F,q.
(a) If Epew < Eou, the new configuration is accepted.
(b) If Epew > Folg, the new configuration is either accepted with a prob-

ability equal to the Boltzmann distribution exp(%) or de-

clined.
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Performing these steps N times is called a Monte-Carlo step [137]. These
steps are repeated while the temperature T is progressively reduced in a slow
annealing approach to the equilibrium, which in turn lowers the probability of
accepting new states with a higher energy. Occasionally accepting states with
a higher than previous energy, allows the system to get out of local minima.
As the system approaches the ground state, updating spins by picking from a
full unit sphere becomes very inefficient. For example, the system might be
already almost ferromagnetically aligned, but most spins are off by only a few
degrees. In that scenario, picking fully random spins would lead to testing
primarily less favorable configurations. To circumvent that, we update the
spins only by small random rotations, randomly rotating them by up to 0.037
in each rotational direction, at low temperatures. We consider a simulation
to be convergent when a large increase in the total number of steps shows no
further reduction in total energy of the final state, using spot checks with up

to 10 times more steps.

Example of a Simple System

To illustrate the method described above, we use it to find the ground state of
a very simple magnetic model. Let us consider a system of 10 x 10 Heisenberg
spins §; which are coupled only by first neighbor exchange interactions, so that

the total energy of the system is
E=YJs5-5, (3.2)
(4,5)

with the magnetic exchange J and the summation over nearest neighbors (i, 7).
We choose J = —1 meV, which means that F is minimal when all §; are iden-
tical, i.e., when the system is ferromagnetically aligned. In Fig. (a), we
visualize how the system begins in chaos and slowly approaches its ground
state. In the panels (b,c,d), we show the corresponding temperature chosen
for each step, the absolute value of the magnetization |M| = |)_.5;/N|, and
the total energy F, respectively. In this example, the temperature is chosen to
fall logarithmically from 7" = 10 °K to 7" = 0.03 °K. With falling temperature,
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Figure 3.1: Example of a Metropolis Monte-Carlo simulation. The
figures illustrate a Metropolis Monte-Carlo simulation of the 10 x 10 classical
Heisenberg model given in Eq. for J = —1 meV. (a) Visualization of the
Heisenberg spins at different steps of the simulation. (b) Temperature 7', (c)
absolute value of the magnetization |M|, and (d) total energy F in units of .J
with respect to the Monte-Carlo steps. The orange dots mark the simulation
step at which the snapshots in (a) are taken.

the system approaches its ground state energy first quickly, but needs a lot
of additional steps for the last remaining optimizations. In the fourth panel
of Fig. [3.1] (a), the system is already almost fully ferromagnetic after 100,000
Monte-Carlo steps, but then still needs about 60,000 additional Monte-Carlo
steps, to become fully ferromagnetic (within a small error margin). In the
case of this example, the cause of this behavior can be explained as follows.
Since the total energy only takes nearest neighbors into account, in the begin-
ning a randomly chosen spin is likely in an unoptimized state compared to its
neighbors. Therefore, there is a good chance of picking a spin that needs to
be further optimized. In addition to that, the longer the simulation runs, the
closer the system is to a fully ferromagnetic configuration. When changing a
spin that is already almost parallelly aligned to its neighbors to a fully random
spin from the whole unit sphere, it is very unlikely to pick a spin, such that the
new spin is an improvement. The latter issue can be solved by restricting the
spin updates to small changes at low temperatures when the system is already
close to its ground state. We do this in all other Monte-Carlo simulations which

use 3D spins throughout this thesis.
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3.3 Adapting Metropolis Monte-Carlo to Differ-
ent Models

Throughout the thesis, we adapt the Metropolis Monte-Carlo method to mul-
tiple different models to find their magnetic ground states. Here, we give a

brief overview over these adaptations.

3.3.1 Classical Heisenberg Spins

For the case of classical Heisenberg spins, the Metropolis algorithm func-
tions as described above. The total energy is calculated from a classical spin
model which, in the later chapters, contains exchange interactions, Dzyaloshin-
skii-Moriya interaction (DMI) and 4-spin interactions up to the n-th neigh-
bor. All of these interactions can be calculated by vector multiplications, and
changes in total energy can be calculated by local changes. As each spin only
interacts with other spins up to their n-th nearest neighbor, energy updates can
be done by only calculating the energy change in the vicinity of the updated
spin. This means that the computation time of the energy calculation itself
does not scale with system size. Only the number of required updates increases

with system size. This makes this model very efficient for large systems.

3.3.2 Tight-Binding Models

We also use the Metropolis Monte-Carlo algorithm to find the magnetic ground
states of finite tight-binding models with quasi-classical spins like Eq. (3.1

In these models, the spin interactions are mediated by itinerant electrons. To
calculate the total energy, one needs to solve the complete eigenvalue problem
(see Sec. for details on the total energy calculation). As the complete
Hamiltonian matrix needs to be solved, the energy updates cannot be done by
just solving the vicinity of the changed spin. Therefore, the calculation time

of each update scales heavily with the size of the system.
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3.3.3 Monte-Carlo Method for Magnetic Ground States
of Quasi-Infinite One-dimensional Isotropic Tight-
Binding Models

While Metropolis Monte-Carlo methods are usually employed to identify ground
states of finite magnetic systems, here, we develop a method to apply a Metropo-
lis Monte-Carlo algorithm to effectively infinite tight-binding bulk systems. For
this method the tight-binding Hamiltonian needs to be isotropic, i.e., invariant
under a global rotation. If the 1D model is isotropic, we can limit all spins to
a single rotational plane without loss of generality except for excluding spon-
taneous symmetry breaking into non-coplanar magnetic structures. Here, we
choose the z-y-plane for a chain along the x-axis. Later, in Sec. 1.1, we show
that this limitation is justified for our model with finite-size calculations that
are not limited to a single plane, but produce only coplanar magnetic ground
states. Using the model introduced in with o = 0, we consider N sites to
be a unit cell, which gets repeated infinitely. On each site j of the unit cell, we

employ a j-dependent spin basis rotation

Re. — <09s(@j/2) —sin(@j/2)> | (3.3)
! sin(©,/2)  cos(©;/2)

representing a rotation with the angle ©; of the magnetization within the xy-
plane, where ©); is the sum of relative angles along the chain up to the j-th site
0; = )" 0, with the relative angle 6, between the n-th and the (n + 1)-th
site of the unit cell. This rotation removes the spin direction from the onsite
potential and adds a relative change in spin direction to the hopping terms
between the j-th and (j + 1)-th site. Carrying out the calculations, we start

with the isotropic Hamiltonian

N
H— Z e (=Jm0(8; - &) + (2t — p) T200 + ATe00) G

]
J

N-1
—i—ZEZT tr.00) C; + h.c.
(i.7)
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which is Eq. (3.1)) for @« = 0 where we limit the spin to rotations around the
y-axis without loss of generality. We can then write the spin on the j-th site
as a rotation of a spin pointing in z-direction, where the angle of rotation is

the sum of the relative angles leading up to the j-th site.

0 cos©; 0 sin©O; 0 sin ©
§=RE" o] = 0 1 0o |-|lol= o |, (35
1 —sin®; 0 cosO; 1 cos O
where ©; = 3271 ,, with the relative angle 6,, between the n-th and (n 4 1)-th

site. We apply the site-dependent basis rotation

Fo <09s(@j/2) —sin(@j/2)>’ 36)
’ sin(©;/2)  cos(©;/2)

to the Hamiltonian. Because of
RT@jUQR@j = 0y, (37)

the onsite chemical potential and superconducting terms are not affected by
the rotation. With

Sin@j
RY, 0 |-&|Re,=0., (3.8)

cos O);

we get a site-independent magnetic onsite term. Finally, for the hopping term
we get

R, ooRe,., = R! (3.9)

Jj+1 J

Zy L QnRZizl On — R,

Putting everything together, the Hamiltonian in the rotated basis reads

(3.10)

N
Z —J10, + (2t — p) T.00 + AT,00) Cj
J
Z t'TZ (%9 RQ j'
(3,9
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To calculate the total energy of the quasi-infinite chain, we assume infinitely
repeating unit cells, find the k-dependent Hamiltonian using Eq.[2.28] calculate
the k-dependent eigenvalues to find the bands, and then numerically integrate
over all bands below Er = 0. As the magnetic behavior is now fully represented
by relative rotation of neighboring spins, the Hamiltonian can represent spin
systems via much smaller unit cells, as the onsite terms are translationally
invariant. For example, let us assume a system where the ground state consists
of spins with two alternating angles #; = 2° and 6, = 5° between them. With
the non-rotated Hamiltonian, one would need a unit cell of exactly N = 2520
sites or an integer multiple of that to fit a whole rotation into a unit cell, which
is required to expand it to infinity. Additionally, one would need to check
all possible sizes of unit cells to assure that there is no better combination of
angles that does not fit in this unit cell. And even that would not account for
irrational angles. Thus, one would need to run an infinite number of Monte-
Carlo simulations to converge. Using the rotated basis, N = 2 is enough to
represent any combination of two relative angles. To correctly identify the
ground states, it is still necessary to run multiple simulations with different
unit cell sizes N, but a handful of simulations can account for a much larger
amount of possible states.

For our calculations in Chapter [, we test unit cells of size N =1,2,...,8. We
calculate the bands and sample 11000 k-points for the numerical integration
to find the total energy. We then use a Metropolis Monte-Carlo method, see
Sec. to optimize the sets of relative angles 6; for each size of unit cell. As
a last step, we choose the unit cell with the lowest total energy per site. To
account for numerical precision, we additionally check for repeating sequences
in the chosen unit cell. For example, if a unit cell of N = 4 repeating angles
is chosen with 6; ~ 03 and 0, ~ 6, within a tolerance of 0.0157, we reduce the

system to a unit cell of N = 2 repeating angles.
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3.4 Total Energy of a Superconducting
Tight-Binding Model

To calculate the total energy of a superconducting tight-binding model, we start

from a generic superconducting Hamiltonian in the BCS mean field description
H = ¢Thé + éAc+ cTATET, (3.11)

T

where h and A are hermitian matrices and ¢ = (¢, ¢a,...,cny)" is a vector

containing all fermionic annihilation operators. In the Bogoliubov-de Gennes

formalism, this is transformed to

H=p" (Z{/Qg _Ah%) P+ % Tr(h), (3.12)

with o= (¢,¢")T and the trace Tr.

We then use a unitary transformation U to diagonalize the Hamiltonian

h/2  AJ2 1
H = (Up)'U (N/z _h*/2> UN(Up) + 5 Tr(h)

—, 2 —
=d7 <Eé 0/2> d+ %Tr(h),
—€

where € is a matrix that contains all positive eigenvalues and d = (b, b1)7 with

(3.13)

the Bogoliubov quasiparticles b. Using fermionic algebra, the Hamiltonian

becomes

H=Fld+ %(Tr(h) ~ Tr(e). (3.14)

In this representation, all Bogoliubov quasiparticles have positive energies and

the ground state energy is

€ —
Etotal = Z 9 /L (315)

7
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3.5 Analytical Eigenvalues for the Case of Har-

monic Spirals

Investigating the system introduced in Sec. for the case of harmonic spi-
rals, i.e., spirals with a fixed rotational angle # between all nearest neighbors
along the chain, we can compute the analytical energy eigenvalues. Using the
Hamiltonian with a rotated spin basis from Eq. for the case N = 1, and
the method to find the k-dependent Hamiltonian H (k) from Eq. (2.28)), we can

construct the k-space Hamiltonian matrix A(k) for a harmonic spiral

b—J ic A 0
~ —1i b A
= | ]
A 0 —-b—J —ic

with b = 2t — u — 2 cos(0/2) cos(k)
and ic = 2it - sin(6/2) sin(k).

From this, we can calculate the k-dependent eigenvalues, i.e., the bands

Mpgalk) = i\/b2 + 2+ A2+ J2 £ 2V022 4+ b2J2 + A2J2, (3.17)

We later use these eigenvalues to efficiently calculate the total energy of har-

monic bulk spiral systems by integrating over the bands below the Fermi edge.

3.6 Majorana Number for Infinite Systems

A 1D material in class D (time-reversal symmetry being broken by the magnetic
moments and the particle-hole symmetry squaring to +1) has a Z, topological

invariant [132]. We employ the Majorana number M [5] for the topological
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classification of infinitely long chains, which is
M = sgn(Pf(H(k = 0))) - sgn(Pf(H (k = 7))), (3.18)

with the Pfaffian Pf and the k-space Hamiltonian H in a Majorana basis. As-
suming the basis ¢; = (¢j1, ¢y, c} b —C}T>, which we use throughout this thesis,
the Hamiltonian is brought into a Majorana basis via the unitary transforma-
tion H = UTHU with

0 0 i
1o 1 i 0

U= — " (3.19)
V210 1 —i 0
10 0 i

The system is topologically non-trivial when it has a non-zero spectral gap and
M= -1.

3.7 Majorana Number for Finite Systems

As the standard Majorana number is calculated through k-space, it can only
be calculated for translationally invariant systems, for which one can perform
a Fourier transform to reach k-space. When one wants to find out if a given
finite system without translation invariance hosts Majoranas, an alternative
approach is needed. Here, we explain such a method, following Ref. [139].

To calculate the topological number of finite-size chains, we use the reflection
matrix r which is defined as the matrix that connects an incoming mode at
zero energy from an infinite lead with the reflected outgoing mode. The lead

is defined by the Hamiltonian

Hioa = Y &' (t7.00) &, (3.20)
(4,3)

and connects to the first site of the chain via E’llad (t7,00) Cchainj=1 Where the

symbols have the same meaning as in Sec. [3.1] The topological number is then
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calculated as

Q = sgn(det(r)) (3.21)

in a Majorana basis by using the same unitary transformation as in Eq. (3.19).
This approach converges to the Majorana number as defined by Kitaev for
clean infinite systems, but can also be applied to finite systems with impurities
[139].

3.8 Scanning Tunneling Microscopy

In this section, we explain the concepts behind scanning tunneling microscopy
(STM) and scanning tunneling spectroscopy (STS). We focus on explaining the
basic principles needed to understand the results presented in Chapters [6] and
[7, rather than details of experimental realization.

Scanning tunneling microscopy (STM) is a measurement technique that uti-
lizes the tunneling effect to measure surfaces and their electronic properties at
subatomic resolution [140} T4T]. The first STM was invented by Binnig, Rohrer
et al. [I41], for which Binnig and Rohrer received the Nobel Prize in 1986 [142].
In an STM, a tip and a sample are separated by a small vacuum gap of a few
A. When a bias voltage V' on the order of mV to V is applied between the tip
and the sample, a tunneling current I on the order of pA to several nA flows
through the vacuum barrier. The tunneling through a vacuum decays expo-
nentially with the distance, which allows for a precise measurement of relative
distances between tip and sample. The tip can be moved in all three spatial
dimensions with piezoelectric elements, i.e., by using materials which deform
when a voltage is applied to them due to the reverse piezoelectric effect. With
this, the tip can be moved across the surface in a scanning manner to create
a topography of the surface. The resolution in the xy-plane is dependent on
the sharpness of the tip, which ideally has a single atom apex. In the vertical
direction, subatomic resolution is obtained due to the exponential decay of I.
To model the tunneling current, following the approach of J. Bardeen [143],
we assume that the eigenstates of the tip and the sample are the solutions

to their individual Schrédinger equations. Their eigenstates are coupled by a
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tunneling junction, which can be understood as a weak perturbation. With
Fermi’s golden rule, the transition rates between tip and sample can be calcu-
lated and the matrix elements can be obtained with a perturbative approach.
Additionally, we simplify the tip apex to a spherical s-orbital as suggested by

Tersoff and Hamann [144]. With this, we receive the tunneling current

Ae [+o°
](‘/a T) = 7 / psample(E - EF7 €, Y, Z)ptip(E - EF +e- V)T(E7 V7 d)
[f(E—Er+e-V.T)~ f(E ~ Ep,T)]dE,

(3.22)

where pyip, is the density of states at the tip apex, psampie i the energy-dependent

local density of states (LDOS) of the sample in the vacuum at the tip location,

1

T is the temperature, 7 is the transmission coefficient, and f(E,T) = TIETET

is the Fermi-Dirac distribution with the Boltzmann constant kg, accounting
for the thermal population of fermionic states. From this equation, we can see
that the tunneling current scales with the amount of available states in the tip
and the sample to tunnel into. The term [f(E — Ep+e¢-V,T)— f(E— Ep,T)]
accounts for the fact that tunneling is only possible between an occupied and
an unoccupied state. A shift in the bias voltage V' causes a relative shift in the
occupation numbers and energy-dependent LDOS between tip and sample.

Using a few realistic assumptions, Eq. can be heavily simplified. When
the bias voltage V' is small compared to the work functions of tip and sample,
the transmission coefficient 7 (E,V, d) becomes independent of E and V, turn-
ing it into a constant within the integration. For metallic tips, it is valid to
assume that py;, is constant for small energy ranges around Ep. Additionally,
for low temperature experiments, we can approximate low 7" ~ 0 °K. This

simplifies the proportionality of the tunneling current to

EF+6V
I(V) x / peample(E)dE. (3.23)

Er

Thus, the tunneling current is approximately proportional to the vacuum den-

sity of states of the sample integrated from Er to Fp +¢- V.
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Constant-Current and Constant-Height Mode

When scanning in the xy-plane, STMs can switch between two main measuring
modes, which come with their own advantages and disadvantages. These two
modes are the constant-current and the constant-height modes.

In constant-current mode, a feedback loop between the piezoelectric element
in z-direction and the tunneling current is used to automatically adjust the
distance to the tip, so that the tunneling current is kept constant. Thus,
when moving the tip in the xy-plane, the height of the tip is adjusted to the
topography and the LDOS. The relative tip height is measured to create an
image of the surface.

In constant-height mode, the tip is fixed in z-direction and moved only in z- and
y-direction. Thus, the tunneling current changes dependent on the LDOS and
topography. This mode is particularly useful when investigating atomically flat
surfaces, as it avoids artifacts introduced by the feedback loop of the constant-
current mode. But it is unreliable on surfaces with step edges, as the resolution
and tip distance can only be adjusted to one of the terraces in constant-height
mode. Additionally, in constant-height-mode the tip can potentially crash into

higher surface features.

Atom Manipulation

An STM can also be used as a tool to move adatoms on the surface. There
are various forces acting between the tip apex and the adatoms on the sample
surface. By bringing the tip very close to the sample, a semi-stable bond
between tip and adatom can be created. Then, moving the tip in the xy-plane
can push or drag the adatom if the bond is strong enough. When the tip
is retracted from the surface in z-direction, the bond is broken, leaving the
adatom at the new position. This technique is called lateral manipulation and
was first demonstrated by Eigler and Schweizer in 1990 [145].

An alternative technique is called vertical manipulation [146, 147]. Here, the
tip is brought into close proximity with the adatom. Then a short voltage
pulse is applied, which causes the adatom to transfer from the surface to the

tip. The tip is then moved to a new position, where the adatom is transferred
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back to the surface with another voltage pulse. It should be noted that, for any
manipulation technique, the adatom will only remain at energetically favorable
adsorption sites.
Atom manipulation allows to build precise atomic structures and is widely used
when investigating atom-scale nanostructures [4] [83] 148-H154] or atomic chains
I3, (17, [155-161].

Scanning Tunneling Spectroscopy

Scanning tunneling spectroscopy is a technique that allows to access the energy
dependence of the LDOS directly with an STM.
The tunneling current [ is related to the LDOS integrated from Er to Ep+e-V.

In turn, the differential tunneling conductance % is related to the energy-

dependent LDOS. We differentiate Eq. (3.22)) by the bias voltage V, assuming
constant-height mode and that T (F,V,d) is a constant,

dr +oo Opiin(E +e-V
WVT) / peampre(B) 2P EXC V) e vy (B, T)]aE
dv . ov
oo Of(E+e-V,T) (3:24)
+ / psample<E)ptip(E +e- V) av ’ dFE.

Here, we set Er = 0 for simplicity. If needed, it can be reintroduced by setting
E +— E— Ep. As before, we assume py;p, to be constant around Ep = 0 for a few
meV for metallic tips, and we assume very low temperatures T =~ 0 °K, reaching

the simplified proportionality of the differential tunneling conductance

df

W(V) X Psample(E =€ - V). (3.25)

Thus, the energy dependence of the sample LDOS pgampie(E) is directly acces-
sible through the bias voltage dependence of the differential tunneling conduc-
tance. The main limiting factor for the resolution of STS is the finite temper-
ature. As thermal tunneling processes cause a broadening of the Fermi-Dirac
distribution, the % curves get smeared out. For a temperature of T' ~ 0.32 °K
(the temperature used in the experiments described in Chapters |§] and , the

resolution is limited to 85 peV.
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STS with Superconducting Tips

The precision of STS can be significantly improved by using superconducting
tips. Looking at Eq. , if pup(E) was a Dirac delta function, we could
measure pPsample With optimal energy resolution, independent of the temperature
T. In that case, only tunneling from a single discrete tip state to the sample
and vice versa would be possible. The coherence peaks of a superconductor
can be extremely sharp, to the point where they are a good approximation to
this idea.

When the sample and the tip both are superconducting, a few details need
to be considered for analyzing the measurement data. At e-V = £(Agyp, +
Agample) @ massive conductance channel occurs due to the tunneling from one
occupied coherence peak to the other unoccupied coherence peak. For finite
temperatures, another peak can be measured at e - V = £(Agup — Asample),
because thermally excited particles are in the coherence peak that would be
unoccupied at zero temperature [162, 163]. The latter effect is not visible at
very low temperatures, however. For small distances between tip and sample,
direct tunneling of Cooper pairs is also possible, which causes peaks at zero
bias voltage. This effect is known as Josephson tunneling [I64H167|. Electrons
can also tunnel into the superconductor and be reflected as a hole, which leads
to peaks at an energy below eV = (A, + Agample) being known as Andreev
reflection [162, 163, 168, 169]. However, both of these effects can be avoided
by measuring % spectra at sufficiently large tunneling gap resistances, i.e.,

sufficiently large distances between tip and sample.
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Chapter 4

Magnetic Ground States and Topo-
logical Phases of One-Dimensional

Chains

In this chapter, we investigate the electronic topological phases of one-dimensional
chains of atoms with local magnetic moments, proximity-induced superconduc-
tivity, and self-consistently found magnetic ground states. For this, we employ
the tight-binding model

L

H =Y &l[—Jns; &+ (2t — p)r.00 + AT,00] (4.1)

j=1
+ Z 5’: [thao + iaTzay]Ej +h.c.,
(4,901

which has been introduced in detail in Sec. Large parts of the results
presented in this section are published in the article [1]

Jannis Neuhaus-Steinmetz, Elena Y. Vedmedenko, Thore Posske, and
Roland Wiesendanger

Complex magnetic ground states and topological electronic phases of atomic
spin chains on superconductors

Phys. Rev. B 105, 165415 — Published 13 April, 2022
Copyright 2022 by the American Physical Society.

We start by calculating the ground state of a number of finite-size trial config-
urations in Sec. and use the information gathered from those as a starting

point to determine the magnetic phases of quasi-infinite chains in Sec. 1.2 We
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first investigate the magnetic phases with vanishing superconductivity. Then,
we slightly increase the superconducting order parameter, enough to open a
small spectral gap, but not enough to significantly affect the magnetic states.
From this, we calculate the Majorana number. Following that, further in-
creasing the superconducting order parameter, we investigate how increased
superconductivity affects the magnetic phases and in turn changes the topo-
logical phases. As physical systems in many STM experiments are often finite
and small, e.g., on the order of tens of atoms [3, I7HI9], we choose to also
investigate the magnetic ground states and resulting electronic topology under
increased superconductivity of short finite chains in Sec. £.3] Following up
on these two sections, we compare the results for finite and infinite chains in
Sec. [4.4] Additionally, in Sec. .5, we introduce a new approximative method
to identify magnetic ground states of tight-binding models by fitting a classical
spin model. We reproduce some of the results presented in this chapter with
this new method to investigate the reliability of our approximative method and
discuss its advantages and disadvantages. Finally, in Sec. [1.6] we summarize
our results on the one-dimensional systems and provide an outlook for future

research directions.

4.1 'Trial Configurations from Finite Chains

We begin by identifying finite trial configurations using a Metropolis Monte-
Carlo algorithm (see Sec. and Sec. to gain a better understanding
of the possible magnetic states of this system before determining the magnetic
phasesE] We find that all ground states are invariant under a global rotation,
i.e., rotating all spins around the same axis by the same angle simultaneously
will result in no changes for the electronic system and thus no changes in total
energy. A few examples for the magnetic grounds states are shown in Fig. [4.1]

Besides typical collinear states like ferromagnetic and anti-ferromagnetic states,

1To achieve convergence we use 100,000 Monte-Carlo steps (MCS) in the first part of
the cooling with a logarithmic temperature function, then 50,000 MCS further cooling the
system with only small changes to the spins and finally 10,000 MCS at zero temperature
with only small changes (see Sec. .
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Figure 4.1: Ground state spin configurations of finite-size chains. Rel-
ative angles between neighboring spins along the chain for representative ex-
amples of ground states of finite-size chains with open boundary conditions
with A = 0 and L = 30. The periodic parts that can be used as a unit cell
are marked in orange. The insets show a 2D projection of the spins. The color
denotes the relative angle between the j-th spin and the first spin 6, ;. (a)
J =14t p = 0.5t (b) J =02t p = 1.0t (c) J =0.6¢t, p = 14¢t, (d)
J=16t, n=0.6¢.

we also find more exotic collinear states: In the transition region between
the ferromagnetic and anti-ferromagnetic phase, we find structures that follow
patterns like 1114, T4l or 111). The shorthand notation 111 describes a
ground state in which a magnetic unit cell can be formed by three parallelly
aligned spins followed by one spin anti-parallel to the previous three. We also
find structures that host configurations close to harmonic spin spiralsﬂ in the
inner part of the chain and strong boundary effects in the form of almost
collinear spins at the ends of the chain, e.g., Fig. 4.1 (a). There are also
states which are completely dominated by boundary effects, e.g, Fig. [4.1] (b).
Additionally, we find structures that can be described by a repeating sequence
of relative angles, e.g, Fig. (c,d). Furthermore, we find that all ground

states are coplanar.

2A harmonic spin spiral is a spin spiral which can be described by the repetition of a
single relative angle
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4.2 Infinite Chains

Phase Diagram of Infinite Chains

Here, we investigate the magnetic phase diagram of the quasi-infinite bulk
chain. To determine the magnetic phase for a given set of parameters, we
employ multiple methods of calculating the ideal magnetic configuration and
compare the total energies of each. Let us start by providing an overview over
the employed methods.

For all methods, the total energy is calculated in k-space using 11000 k-points
for the numerical integration, which is equivalent to a periodic chain with 11000
atoms. First, we calculate the total energy for all collinear unit cells identified
from the finite trial configurations. Second, we determine the energetically
most favorable harmonic spin spiral by integrating over the analytically found
eigenvalues (see Sec. , trying all 6 in steps of Af = 55. Third, we employ
a Metropolis Monte-Carlo method based on unit-cells of repeating angles as
described in Sec. to identify non-harmonic non-collinear phasesE] As a
last step, we compare the total energies of the ground states identified by these
three methods and pick the one with the lowest energy per site. The main
reason for using these three methods here instead of fully relying on the third
is that the first two are computationally faster allowing for a higher resolution.
The identified magnetic phases are shown in Fig. [4.2] We find that most of the
phase space is either ferromagnetic (A) or anti-ferromagnetic (B). The system is
anti-ferromagnetic for all J 2 —% w4+ %t. The magnetic phase space is mirrored
at pu = 2t, which is why it is only shown for p < 2t here. For J < 3.0t, we
find a rich and complex magnetic phase diagram between the ferromagnetic
(FM) and anti-ferromagnetic (AFM) phases. Within this transition region, for
J < 2.0t, we find non-collinear harmonic spin-spirals (C) as the background,
which is interrupted by two other phases. First, there is an 11J/-phase around
p = 0.6t (D). Second, between the 11]]-phase and the AFM phase, we find

3For this method we use 10,000 MCS in the first part of the cooling with a logarith-
mic temperature function, and then 1,000 MCS further cooling the system with only small
changes to the relative angles.
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Figure 4.2: Magnetic phases for vanishing superconductivity in depen-
dence on J and p for infinite chains. The shades from white to dark blue
denote a spiral, where color saturation describes the spiral pitch Ogpiral, see left
color bar. The right color bar labels magnetic phases. The shortened notation
31 refers to T11. In the hatched area, we find a negative Majorana number
M = —1 and an opening of a spectral gap for infinitesimal superconductivity,
calculated with A = 0.001¢, while the other regions remain gapless or have a
positive Majorana number M = +1.

a phase that is characterized by repeating sequences of relative angles (H)
like those found in the trial configurations. When compared to the energy of
the most favorable harmonic spiral for the respective parameter set, the total
energy of those states is lower by a value between 0.002 J per atom (close to the
11JJ-phase) and 0.03 J per atom (close to the AFM phase). For J > 2.0¢, we
find complex collinear structures, namely ™M1, (E), 114 (F) and T
(G). The latter is an extremely narrow phase, which leads to speculations that
there might exist even more complex phases which one could only identify with

a higher resolution of the parameter space. The total energy of those structures
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is on average 0.005 J per atom lower than the most favorable harmonic spiral,
which includes FM and AFM as possible harmonic spirals. Note that the 11J.]-
and 711)J/-phase as well as the harmonic phases have been previously reported
by Minami and Kawamura [28]. Lastly, for 4 < —|J|, no bands are occupied,
which is why that region is blacked out.

Adding Superconductivity as a Small Perturbation

To investigate, which of the magnetic phases shown in Fig. coincide with
non-trivial electronic topological phases, we increase the superconducting order
parameter to A = 0.001¢, which is enough to open a small spectral gap, but
does not affect the magnetic ground states in a significant manner. The system
at hand is a class D material with time-reversal symmetry broken by magnetic
moments and a particle-hole symmetry which squares to +1 [132]. Thus, this
system has a Zy-invariant. To determine whether a phase is topologically trivial
or non-trivial, we employ the Majorana number M [5] introduced in Sec. [3.6]
The system is non-trivial if and only if M = —1 while the spectral gap is open.
The hatched area in Fig. shows where M = —1 and a spectral gap is open.
With this, we can conclude that the electronic topology is only non-trivial when

the magnetic ground state is a non-collinear harmonic spiral.

Further Increasing Superconductivity

We further increase the superconducting order parameter A, using the method
introduced in Sec. to investigate how the magnetic phases change under
enhanced superconductivity. To gain a better understanding of the magnetic
ground states, we introduce three measures to describe it. First, we introduce
the periodicity, which is corresponding to the size of the unit cell L. that
achieved the lowest total energy. To account for numerical precision, we check
for repeating sequences and allow a tolerance of 0.0157. Second, we introduce
the number of collinear spins N, in a unit cell, which is the number of pairs
of spins in a unit cell with relative angles equal to 0 or 7. Here, we consider an
angle to be collinear when | cos(f)| > 0.995 to account for numerical precision.

Third, we introduce a parameter that measures how much a given structure
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deviates from a harmonic spin spiral. This parameter is the average of the

absolute difference of neighboring relative angles 6;

1
Ootanse = 7—— > 16— 6y (42)
Lcell —1 (6,)
Z7j

where we sum over neighboring relative angles assuming periodic boundaries.
To visualize this parameter, one can follow the relative angles given in Fig. [4.1],
note the difference between each point, sum their absolute values and then nor-
malize for a given chain length L. A harmonic spin spiral, i.e., a chain where
all relative angles ¢; are the same, would result in Ocpange = 0.

These three measures along with the product of the band gap and the Majo-
rana number M (see Sec. on how M is calculated) are shown in Fig. 4.3
for increasing A. The size of the complex order region, which is defined by
a periodicity of angles greater than 1 and non-collinear neighbors, decreases
with increasing A. At A = 0.4¢, it only remains at the transition from the
ferromagnetic to the anti-ferromagnetic phase. Thus, larger parts of the phase
space can be represented by harmonic spirals. The 11]|-phase can be identi-
fied by Ochange = 7. It shrinks for increasing A and vanishes between A = 0.2¢
and A = 0.3¢. We find that the quotient of N., and the periodicity is almost
always 0 or 1. Thus, for infinite chains either all or no angles in a unit cell
are collinear. The electronic system can only be topologically non-trivial when
the magnetic state is neither collinear nor of complex order. As both of these
states take a lower portion of the phase space for increasing A, the non-trivial
region grows until its size settles at around A =~ 0.3¢. Further increasing A
mostly deforms the topological phase and moves it towards larger J, as for

J < A the system is always trivial.
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Figure 4.3: Magnetic properties and topological phases of infinite
chains for non-vanishing superconducting order parameters A > 0
with respect to J and p. The chosen values of A are noted in the panels. (a)
Periodicity, (b) Ochange, (¢) Percentage of collinear spins in a magnetic unit cell
Neot/ P, (d) Majorana number multiplied with the band gap. Negative values
(blue) indicate that the system is in a non-trivial state.
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4.3 Finite Chains

Going back to finite chains, we first adapt the measures for the number of
collinear pairs of spins and the change of the relative angle to finite chains.
First, we change the number of collinear spins N, in a unit cell to the number
of collinearly aligned pairs of neighbors along a given chain. Here, we consider
two spins to be collinear when |5;-5;| > 0.995 to account for numerical precision.

Second, Ochange is calculated along the finite chain for neighboring spins 5, 541,

Sit2 by
=
Ochange = T3 Z | arccos (8} - §j11) — arccos (541 - Sjt2) |- (4.3)
j=1

Fig. shows Neo and Ocpange for a chain of length L = 40 with open boundary
conditions along with the topological number calculated by the determinant of
the reflection matrix r as introduced in Sec. 3.7, Here, we show the determi-
nant instead of its sign, because numerical precision causes the sign to become
almost random when det(r) ~ 0. We consider the system to be topologically
trivial when det(r) ~ 0 because this indicates that the spectral gap is closed,
since the phase transition happens when det(r) crosses zero and is associated
with a gap closing. For small A, large parts of the phase space between the
FM and AFM phases are non-harmonic, even though they are harmonic in the
infinite chain. Most states have at least some collinear neighboring spins which
are located at the ends of the chain. The exotic collinear phases, as found in
the infinite case, persist with small changes to the shape of their phases. In
Fig.[4.4] they can be identified by having a maximal N, = 39 with a non-zero
Ochange- Further increasing A causes larger parts of the parameter space to
become harmonic or show at least a smaller Ochange. The amount of collinear
spins at the ends of the chains is also significantly reduced, as we find that
enhanced superconductivity lowers the relevance of boundary effects. We also
find that the exotic collinear states vanish with increasing superconductivity.
The 11 J-phase vanishes around A 2 0.35¢, and the T11]- and T1]]|-phases

vanish at A = 1.5¢. Concerning the electronic topological phase, we find that
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Figure 4.4: Magnetic properties and topological phases of finite-size
chains for non-vanishing superconducting order parameters A > 0
with respect to J and pu, calculated for a chain of length L. = 40 with open
boundary conditions. The chosen values of A are noted in the panels. (a)
Ochange- () Number of collinear spins N, . (c¢) The determinant of the re-
flection matrix det(r) in the magnetic ground state. Negative values (blue)
indicate that the system is in a non-trivial state.

for A = 0.1t large parts of the parameter space are trivial in the finite system
even though they are non-trivial in the infinite system. This can be attributed
to the boundary effects. While pure boundary effects usually do not prevent
the formation of Majoranas, here, they cause such a significant change to the
magnetic structure, even in the inner parts of the chains, that chains of the
given length (L = 40) are pushed into the trivial regime. Spot checks show

that this effect diminishes with increased system size. Thus, the topological
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phase space for the finite system eventually approaches that of the infinite sys-
tem for long chains. For further increased A, the magnetic boundary effects
appear to have a weaker butterfly effect on the rest of the magnetic structure.
Fig. (a,b) shows two examples of ground states for the same J and pu, but
different A. For infinitely long chains (see Sec. [4.2), we find harmonic spirals
as the magnetic ground state for both parameter sets. For chains of length
L = 40, in the case of A = 0.2¢, the inner part is a harmonic spiral despite
hosting a few collinear aligned spins at the ends of the chains. In a structure
like this, the Majoranas are pushed into the chain and smeared out, but still
occur. For A = 0.1¢, the boundary condition has a ripple effect causing the
magnetic structure to strongly deviate from the structure found for continuum
chains, ultimately causing a magnetic structure that does not host Majoranas
anymore. For increasing chain lengths, this ripple effect decreases. In the ex-
ample given in Fig. (a,c,d), the inner parts of the chain are similar enough
to a harmonic spiral state for L = 60 and L = 80 to host Majoranas, but not
for L = 40. We confirmed for up to L = 100 with spot checks that the inner
part of the chain does not become harmonic when the calculations for infinite
chains predict a non-harmonic ground state, see Fig. (e). It is also known
that in these kinds of systems Majoranas appear only with non-collinear spin
structures or non-vanishing Rashba spin-orbit coupling. It should be noted
though that the absence of collinear spins does not guarantee that the elec-
tronic system is non-trivial.

When increasing A further, a larger part of the parameter space becomes
topologically non-trivial as the 1] |-state vanishes and the weakened butterfly
effect from the boundary conditions allows for more harmonic spirals. Around
A =~ 0.35t, the size of the non-trivial portion of the parameter space is not
significantly changing further for further increases in A. Further increasing
A mostly deforms the topological phase and shifts it towards larger J, as for
J < A the system is always trivial, which is in agreement with our results for
infinitely long chains.

Overall, these results suggest that systems with large superconducting order pa-
rameters might naturally stabilize magnetic structures that support Majorana-

zero-modes better than systems with a small spectral gap. Our results also
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suggest that in some systems short chains might not lead to the magnetic

structures required for Majoranas, whereas longer chains could.

(a) J=0.5t, u=1.0t, A=0.1t (b) J=0.5t, u=1.0t, A=0.2t
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Figure 4.5: Boundary effects on magnetic ground states with non-
vanishing superconductivity. Relative angle between neighboring spins
along finite-size chains with open boundary conditions for J = 0.5t and
1 = 1.0t for different length L and superconducting order parameters A. The
insets show a 2D projection of the spins. The color denotes the relative angle
between the j-th spin and the first spin 6 ;. (a) L =40, A =0.1¢, (b) L = 40,
A =02t (c) L=60,A=0.1¢,(d) L =80, A=0.1¢, (e) L =80, A =0.1¢,
J=1.0t, p=1.0¢.
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4.4 Comparison of Infinitely Long and Finite
Chains

Here, we compare the results from the finite and infinite chains to discuss which
effects are caused by the finite size and open boundaries. In contrast to infinite
chains, in finite chains we find states that consist of a mixture of collinear and
non-collinear neighbors. In these states the collinear neighbors are found at the
ends of the chains. When increasing A, the 11]/-phase and the complex order
phase shrink slower for finite chains than for infinite chains. Due to boundary
effects, the relative angles along a given chain vary more for finite chains. But in
contrast to infinite chains, fchange does not have to be 0 to find electronic non-
trivial states in finite chains. Overall, the superconducting order parameter
needs to be larger in finite chains in order to fully push out the magnetic states
which prevent the formation of non-trivial electronic states in the transition
region. This shows that, for magnetically self-consistent calculations, it is
important to also consider how boundary effects can change the dynamics of

the system.

4.5 Tight-Binding based Classical Spin Monte-
Carlo

In this section, we introduce an alternative method for approximating the
magnetic ground states of tight-binding models with quasi-classical magnetic
moments. First, we start by explaining how this method works and what
problems it aims to solve. Second, we compare the results gained from this
approximative method to the results from Sec.[4.3] demonstrating its reliability.

Third, we discuss the advantages and disadvantages of this method.

Tight-Binding based Classical Spin Monte-Carlo

We developed a new and numerically efficient method to calculate the magnetic
ground state of a tight-binding model like the one used in Sec. 4.3} Using a

80



Monte-Carlo method directly on a tight-binding model is numerically very
demanding for large systems. This is mainly caused by the fact that one has
to find all eigenvalues in every step of the calculation, causing each iteration
of the calculation to scale with O(N?). For illustration how this scales to
larger systems, in Sec. we investigate chains of length L = 40. If we
wanted to investigate a 2D system with 40 x 40 sites instead, that would
require 64000 times more computation time for each step and approximately
40 times more steps. Considering that the calculation time needed for the 1D
system is roughly 20 hours (single-threaded calculations for each data point)
on the CPUs available to us (Lenovo Dataplex Servers based on Intel Xeon
Processors), without further optimization the calculations would require 5840
years, i.e., not feasible within reasonable time constraints. The other problem
of finding the magnetic ground state directly within the tight-binding model
is that we gain very little insight into the underlying magnetic forces beyond
a few reasonable assumptions. Our method aims to solve both of these issues

simultaneously. It works by following these steps:

1. We generate a large set of random magnetic configurations, typically
103 — 10* configurations are required. These magnetic configurations
are generated by choosing the magnetic moments on each site uniformly

randomly from a unit sphere. (Done in milliseconds).

2. We calculate the total energy of the tight-binding Hamiltonian for each
configuration as explained in Sec. (Scaling with O(N?)).

3. We construct a classical magnetic Hamiltonian H, which can reproduce
the magnetism of the tight-binding system. Hereby, the energy param-
eters of this Hamiltonian serve as fitting parameters. (Between minutes
and months of human work, depending on the complexity of the system

and the human trying to solve it).

4. We find the constants of H by fitting them to the total energies and their
respective magnetic configurations. For this, we employ the Levenberg-

Marquardt algorithm as implemented in Scipy [170]. (Scaling primarily
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with the number of trial configurations and the complexity of the classical

Hamiltonian).

5. Finally, we employ a Metropolis Monte-Carlo method, as explained in
Sec. [3.2] to identify the magnetic ground states of the fitted classical
Hamiltonian Hq [ (Scaling with O(NY)).

The most difficult part of this process is to identify a good classical magnetic
Hamiltonian. This Hamiltonian needs to capture all magnetic interactions im-
portant to the system while still being simple enough to be fittable, since too
many fitting parameters may cause overfitting. Tight-binding systems can in-
herently cover complex multi-spin interactions. For example, the 11]]-state
found in Sec. indicates the existence of multi-spin interactions, as a pure
translationally invariant two-spin Hamiltonian would always result in harmonic
spirals [I71]. If those complex interactions are relevant, they need to be in-
cluded to obtain a high fitting quality. But one cannot simply add all imagin-
able multi-spin interactions, as this would result in hundreds or even thousands
of fitting parameters. Thus, one needs to make educated guesses and some tri-
als to identify a good classical Hamiltonian, identified by a low fitting variance.
In general, a good first step is to look into the symmetries of the tight-binding
system. For example, without Rashba spin-orbit coupling, the tight-binding
system introduced in Eq. is completely isotropic, i.e., it is symmetric un-
der a global rotation of all spins. Thus, one can conclude that H, should only
include isotropic terms. This already excludes Dzyaloshinskii-Moriya interac-
tion (DMI) and anisotropic exchange interactions. Effectively, this assumption
reduces the number of fitting parameters for two-spin interactions from 9 (a
3 x 3-matrix connecting two spins) to 1 per considered neighbor. One can also
check if natural assumptions for the fitted parameters hold true. For exam-
ple, it is reasonable to assume that, averaged over many sets of tight-binding
parameters, long-range interactions should be less significant than short-range

interactions.

“Here, we use 2,000,000 MCS in the first part of the cooling with a logarithmic tempera-
ture function, then 600,000 MCS further cooling the system with only small changes to the
spins and finally 200,000 MCS at zero temperature with only small changes (see Sec. .
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Figure 4.6: Ratio of the 4-spin interaction Ry, for L = 40, (a) A =0
and (b) A =1.0t¢.

To approximate the model used in Sec. [£.3], we employ the classical Hamiltonian

CI—ZJZJSZ SJ+ZAZJ

(1,9)5

+ Z By k(5 - (55 % §5))
(i,5,k)5

+ > Cigua([5i - 5[5k - 8] + (5 - 8[5; - 5] + [5: - 5[5 - 5))
(1,3,k,0)5

+ 3 Digaal[5 5[5 8]+ (5 58 5] - 205 85 - 5l).
<i7j7k7l>5

(4.4)

This Hamiltonian contains all isotropic two-, three- and four-spin interactions
up to the fifth neighbor. The summation over (i, j, k, )5 runs over all combi-
nations up to the fifth neighbor that include at least three different sites. The
two-site four-spin interactions are covered by A; ;. All constants J; ;, A; ;, B jk,
Cijki> Dijrg are translationally invariant, i.e., Jiyqjra = Jij. We find that
the constants before the three-spin interaction, i.e., the scalar triple product
of three spins, is consistently fitted to zero. This aligns well with our findings
that the system only hosts coplanar states, as a non-zero scalar triple product

would incentivize non-coplanar structures. We find that the four-spin interac-

83



tions are non-vanishing in a significant part of the phase space. The ratio of

four-spin interactions

2.i(ICi| + | Dil)

4.5
S+ A + [B] + G+ D) (4.5)

R4Spin -

is shown in Fig. [£.6] In the AFM-phase, two-spin interactions are dominant,

while in all other phases two- and four-spin interactions are of similar strength.

Benchmarking

Here, we discuss how well our approximative method performs when compared
to calculations done directly in tight-binding. For this comparison, we choose
a 1D system with L = 40. To ensure that we do not overfit the classical model,
we increase the sample size until the fitting parameters do not change anymore.
Here, we set N = 3000. Increasing the sample size to N = 50000 results only

in minimal changes to the fitting parameters. We find

var(F(N = 3000) — F(N = 50000)
var(F(N = 50000))

<0.01 (4.6)

for all tested J, p and A, where F is a vector that contains all fitting parame-
ters.

To judge the quality of the fits, we use a normalized variance calculated as

Val"(EHB — Etb)

V= var(Ey,)

(4.7)

where Egg and Ey, are vectors containing the energies calculated via the clas-
sical Heisenberg spin-Hamiltonian and the tight-binding model for the same
spin configurations, respectively. The variance for A = 0 and A = 1 is shown
in Fig. [4.7 For J = —pu the fitting process fails at A = 0, because for many
spin configurations no electronic states are occupied. Within the potentially
topologically non-trivial region (see Fig. , the fitting quality is the lowest.
The magnetism in that region appears to be highly complex and might require

even larger order spin interactions to be fully captured by a classical Heisen-
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Figure 4.7: Variance V of the total energy difference between the tight-binding
and the classical Heisenberg model with respect to J and p for L = 40, (a)
A =0and (b) A=1.0¢t.

berg model. Yet, regarding the general structure of the magnetic ground states,
we find good agreement with the tight-binding calculations in this parameter
region as well. A direct comparison of @change, Neol, the average angle Gyverages
and the topological phase between the two methods is shown in Fig. [£.8] The
average angle shows a good agreement between the fitted classical model and
the tight-binding model. The most notable difference is in an artifact, where
the ground state should be ferromagnetic or anti-ferromagnetic, but deviates
from that for small sections of the parameter space, showing harmonic spirals
with angles close to 0 or 7, respectively. It is most recognizable when com-
paring Fig. (a) and (b). Notably, this artifact does not occur if we leave
out 4-spin interactions. A direct comparison of total energies shows that these
non-collinear structures are indeed energetically favorable in the fitted model,
excluding convergence problems in the Monte-Carlo simulations as a potential
cause. The fitting quality is also high in that region, showing that the fitting
quality alone is not a fully reliable tool to check how good the classical model
represents the quantum model. A non-zero fcpange OCcurs in the same general
parameter regions in both models. The fitted model is also able to reproduce

the 11]-region, albeit with a slight deformation. For low A, we see significant
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Figure 4.8: Detailed comparison of our approximative method and
Monte-Carlo directly done with the tight-binding model. For a chain
of length L = 40, with respect to J and p, the panels show (a,b,c,d) the
average angle Gayerage between neighboring spins, (e,f,g,h) Oohange, (1,3,k,1) Neol,
(m,n,o,p) the determinant of the reflection matrix det(r) for (a,b,e,f,i,j,m,n)
A =0.1t and (c,d,g,h,k,1,0,p) A = 1.0¢ with magnetic ground states obtained
(a,c,e,g,i,k,m,0) directly in the tight-binding model, and (c,d,f,h,j,l,;n,p) with
the fitted classical spin model.

differences in the number of collinear spins N.,. In the fitted model, some
non-collinear complex order ground states instead appear as collinear complex
order, and some collinear states instead appear as spirals with an average angle

close to either zero or 7 in the otherwise ferro- or anti-ferromagnetic regions,

86



respectively, as discussed above. The topological phase shows a good agree-
ment between both models, albeit with small deviations for A = 0.1¢. Overall,
the fitted model replicates general trends and forms of the magnetic phases
well, but deviates when looking at exact parameters. Thus, this approximative
method is good to explore the magnetic behavior of a system qualitatively, but

should not be used for precise quantitative predictions.

Advantages and Disadvantages

As every approximation, our method of finding the magnetic ground state via
a fitted classical Heisenberg model has advantages and disadvantages. Sum-
marizing them, this approximative method is computationally very efficient,
grants insight into the magnetic behavior and shows a good qualitative agree-
ment for general trends in the parameter space. It comes with the disadvan-
tage that it is not reliable when inspecting the outcomes for specific param-
eters. Hence, it should not be used for a quantitative analysis of a specific
parameter set when high parameter precision is needed. Analyzing the vari-
ance of the fit can grant an understanding of how well the classical model is
capable of replicating the magnetism of the tight-binding model, but should
not be understood as an end-all be-all guarantee for reliable results on the
magnetic states. The main advantage of this method is that it is multiple or-
ders of magnitude faster than calculations directly done in the tight-binding
model, especially when it comes to larger models. While the energy calcula-
tion after changing a single spin in a tight-binding model requires solving the
complete eigenvalue problem in every step, scaling with O(N?), in the fitted
classical model each new spin can be tested locally. Thus, the cost per en-
ergy calculation does not scale at all with system size. Compared to other
approximative models, our approach has very little limitations to the model.
Ruderman—Kittel-Kasuya—Yosida (RKKY) approximations, for example, are
limited to small values of J. In theory, our model is capable of capturing any
kind of complex magnetism like the 4-spin-interactions shown here. In that
regard, it is only limited by what a researcher is willing to implement and test.

One can even use this method to test if a specific kind of magnetic interaction
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plays a relevant role in the system, e.g., we showed that DMI does not play a
role in the system presented above when Rashba spin-orbit coupling is turned
off.

4.6 Discussion and Conclusions

We numerically determine the magnetic ground state of finite and infinite
suspended magnetic chains with proximity-induced s-wave superconductivity,
finding a number of complex collinear, complex non-harmonic, and harmonic
spin spiral ground states. For finite Rashba spin-orbit coupling the magnetic
ground states are superposed by a non-coplanar conical spiral with the y-axis
as rotation axis. For vanishing Rashba spin-orbit coupling, all ground states
are coplanar with a uniformly random axis of rotation, reflecting the rotational
symmetry of the chains. Contrary to previous results, our investigations show
that harmonic spirals are not the magnetic ground state for small to medium
values of the superconducting order parameter in large regions of the parame-
ter space. Only for very large superconducting order parameters A > 1.5¢, the
assumption of harmonic spirals as ground states holds. While the harmonic
spiral phases lead to a non-trivial electronic topological phase, the other mag-
netic ground states result in trivial electronic topological phases. We also show
that for chains on the order of tens of atoms, i.e., typical chain length in atomic
spin chain experiments [3], the length of the chain can play a crucial role for
the structure of the magnetic ground state due to finite-size effect and thereby
indirectly for the formation of Majorana zero modes. Additionally, we present
an approximative method to find the magnetic ground state of tight-binding
models, which scales better with system size than tight-binding calculations
and grants physical insights into the magnetic interactions by setting up a
classical Heisenberg model that reconstructs the system’s energy from random
spin configurations. We find that 4-spin interactions play an important role
for the formation of the complex collinear phases.

The demonstration that simple tight-binding models host complex magnetic
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structures motivates further research on magnetic tight-binding models and
experiments on atomic magnetic chains. Parametric regions where a small
change in parameters leads to large changes in the magnetic and electronic
topological phases might be of special interest for additional research regarding
the control of the location of topological boundary modes. Furthermore, our
findings on magnetic ground states facilitate experiments with spin-polarized
scanning tunneling microscopy, as knowledge about the structure of expectable
magnetic states helps in identifying magnetic states experimentally. Finally,
the presented classical Heisenberg approximation allows us to investigate the
magnetic ground state of more complex and larger tight-binding models. As
long as the tight-binding model can be solved often enough to generate a sam-
ple for the fit (Ngample &~ 10® — 10?) in reasonable computation times, it can
be well approximated with the presented method. Possible systems include
magnetic chains on non-magnetic 3D-bulk systems, models that account for
large numbers of electronic orbitals, or two-dimensional surfaces. The latter is

investigated in the following chapter.
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Chapter 5

Magnetic Ground States of a

Two-Dimensional Spin Lattice

In this chapter, we shift our focus to two-dimensional systems. We apply
the method introduced in Sec. to a two-dimensional square lattice and
investigate the resulting magnetic states. This chapter is built on our published
article [2]

Jannis Neuhaus-Steinmetz, Tim Matthies, Elena Y. Vedmedenko, Thore
Posske, and Roland Wiesendanger

Large diwversity of magnetic phases in two-dimensional magnets with spin-
orbit coupling and superconductivity

Phys. Rev. B 110, 155427 — Published 15 October, 2024
Copyright 2024 by the American Physical Society.

First, we introduce the two-dimensional system and tight-binding model in
Sec. and discuss how we apply our approximative method to calculate
its magnetic ground state in Sec. [5.1.2l Then, in Sec. [5.1.3] we discuss the
Heisenberg parameters acquired from the fits. To categorize the large param-
eter space with many complex magnetic states, we employ an artificial neural
network (ANN). This categorization procedure is explained in Sec. . In
Sec. [b.1.5, we discuss the fitting quality and reliability of the magnetic model.
In Sec. 5.2 we discuss our findings on the magnetic ground states. In Sec. [5.3]

we summarize our results and give an outlook to possible future research.

Work Sharing

The ANN presented in Sec. has been programmed and run by Tim
Matthies, who also created Fig. and Fig. .5 The calculations of the
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magnetic ground state, manual sorting of ANN results, additional criteria for

classification, and analysis of the data have been done by myself.

5.1 Model and Method

5.1.1 System

We investigate a two-dimensional electron square lattice with classical local
magnetic moments, proximity-induced s-wave superconductivity, Rashba spin-
orbit coupling (RSO), and periodic boundary conditions. The system is de-
scribed by the Hamiltonian

N

H = Z 5’;( — thToé’j -0 — B,m90, — ut,00 + ATx(Io)gj
J=1 (5.1)
+ Z a (tTZUO +ia [dy (4, )10y — dy(i, j)T204] )EJ + h.c.,

<i7j>1

with the Nambu spinor ¢; = (¢, ¢jy, ch, —C}T) [136], the coupling J*® between
the spin of an electron and a magnetic moment on a given site j, the orientation
of the local magnetic moments on the j-th site 5}, the chemical potential z, the
hopping amplitude ¢, the superconducting order parameter A, the strength of a
magnetic field B, perpendicular to the lattice, and the strength of the Rashba
spin-orbit coupling .. The difference in - and y-position of the sites 7 and j is
given by d, (i, j) = x;—x; and dy (i, j) = y; —y;, respectively, assuming a lattice
constant of unity and respecting the periodic boundaries. The Pauli matrices o
and 7 operate in spin and particle-hole-space, respectively, and are connected
by a tensor product. N is the number of sites in the system. The summation
over (i, ), runs over all combinations up to the m-th nearest neighbor. In
the above Hamiltonian m = 1, meaning that only hopping between nearest

neighbors is included.
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Figure 5.1: Spin interactions used in Eq. . The gray dots represent
spins on atomic sites. The filled lines mark 2-spin interactions with the 1st
(yellow), 2nd (red), 3rd (black), 4th (green), and 5th (orange) nearest neighbor.
The dotted lines show the two considered 4-spin interactions with 1 and 2
denoting the smaller and larger square, respectively.

5.1.2 Ground State Calculations

We consider the local magnetization § as a free parameter, not limited by a pri-
ori assumptions about the magnetic ground state, and identify the energetically
most favorable configuration of the magnetizations §; for a given set of tight-
binding parameters J*, u, A, B,, and . Subsequently, we find the ground
state in the framework of the Metropolis Monte-Carlo algorithm [137, [138] (see
Sec. . Finding the magnetic ground state, i.e., the magnetic configuration
that minimizes the total energy of all occupied states, with a Monte-Carlo
procedure directly in the tight-binding framework is computationally very ex-
pensive, as the time required to calculate the total energy scales as O(N?3)
with the system size N. To address this problem, we use the approximative
approach introduced in Sec. [1.5] First, we generate 8000 random magnetic
configurations by choosing each spin 5; independently from a random uniform
distribution on the unit sphere. Then, we calculate the total energy of the elec-

tronic system, i.e., the sum of all eigenvalues of the Hamiltonian in Eq. (5.1])
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below the Fermi energy Ep, using the Kwant code [I72]. Following that, we
fit the obtained energies to a classical Heisenberg type Hamiltonian, using a
least square method, obtaining the constants of the classical model. To take
into account the itinerant nature of electrons in 2D systems, we pay particular
attention to multi-spin interactions on the order of S*. In the last step, we
use the fitted classical spin model in a Metropolis Monte-Carlo simulation to
identify the zero temperature magnetic ground state. The employed classical
Heisenberg Hamiltonian on a square lattice with periodic boundary conditions

is given by
T SIS S
<'7j>5 i
+ Z CL([5 - Sira0llSta - Siton))
+ Z Cy (55 - Siv))[Si+0) * Sitr0,0)])
+ Y C3([5 - Siron)[Firao - Frran)) (5.2)
+ Z CH([5: - S ][Sir0) - Sva,-1))
+ Z s ([gl +Sireo)][Sira - §¢+(1,—1)])

+ 3 G Siva-lEiean - Sieeo))s

where the indices ¢ and j are vector valued, containing the z-y-coordinate. Jflj
is a 3x3-matrix that includes all possible linear 2-spin interactions. The 4-spin
terms C}' build a complete linearly independent basis for all isotropic 4-site-4-

spin interactions [I73]. We exclude otherwise considered 3- and 2-site-4-spin

interactions for the sake of simplicity [I74]. The interaction strengths Jiflj-, T
5, C% are translationally invariant, e.g., Jf}rw o= Ji‘ilj, but not a priori direc-

tionally invariant. B is a vector that represents an external magnetic field and is
constant over the whole lattice. The spin interactions are visualized in Fig. [5.1]
The summations for 2-spin interactions run over all combinations of spins up to

the 5th nearest neighbor, which are induced in multi-hopping processes of the
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tight-binding model. The 4-spin interactions consider the two smallest possi-
ble squares of sites, i.e., (0,0),(1,0),(1,1),(0,1) and (0,0), (1,1),(2,0), (1, —1)
and all translationally equivalent ones. The index n denotes which of these
two square types is chosen. To find all J,{ilj, i, and B , we fit the Heisenberg
model to the energy dependence of the tight-binding model Eq. using
the Levenberg-Marquardt algorithm implemented in SciPy [170]. The result-
ing classical Heisenberg Hamiltonian is then used in a Metropolis Monte-Carlo
simulation to determine the zero temperature ground statel] To generate the
input for the fit, we use a 15 x 15 site system. We confirmed with spot checks
that further increasing the system size does not lead to a significant change in
fitting constants in Eq. . As we are able to calculate the fitting input from
a smaller system, and the change in energy from changing a singular spin in the
Metropolis Monte-Carlo simulation can be calculated locally in a classical spin
model, the required calculation time for each energy calculation does not scale
with system size. Thus, this provides a very efficient method to find ground

states of large systems, such as the one at hand.

5.1.3 Heisenberg Parameters

In the following, we discuss our results of the fitted classical magnetic parame-
ters. First, we can describe the components of ijl as exchange and Dzyaloshin-
skii-Moriya interaction (DMI):

J Dyy —D,.
— 7cl = ~ = —
SiJZ»'Sj ~ S; —ny J Dyz Sj

J
. _p. (5.3)

=J8 -5+ D 5 %8

with the DMI-vector D = (Dyz, Dy, Dzy)T and the classical exchange J where
negative J correspond to ferromagnetic coupling. The coupling constant J and

the components of D depend on the combination of sites ¢ and j, which is left

'Here, we use 6,400,000 MCS in the first part of the cooling with a logarithmic tempera-
ture function, and then 1,600,000 MCS further cooling the system with only small changes

to the spins (see Sec. .
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Figure 5.2: Two-spin interactions. Absolute values of diagonal and off-
diagonal elements of ijl for « = 0.2¢t, A = 0.5t and B, = 0 with respect to
the neighbors averaged over J% and p, where the variance of the fit is lower
than 0.2.

out in Eq. for better readability. Notably, exchanging ¢ and ;5 changes
the sign of D. Fig. m shows the average of the absolute values of J and D
with respect to the distance between i and j, averaged over all J* and yu for
a = 02t, A =05t and B, = 0. Changing the superconducting order pa-
rameter A and the magnetic field B within the considered parameter range
only causes minimal changes to these averages. Setting the spin-orbit coupling
a = 0 removes the off-diagonal elements and increases the strength of the di-
agonal elements. In this case, we find that the diagonal elements of a given
matrix ijl are always nearly identical, i.e., their variance is around 0.01%.
Therefore, we find no anisotropy for the diagonal elements and they can be
understood as the classical exchange interaction with a scalar product 3; - 5; as
in Eq. , which is consistent with the symmetry of the initial tight-binding
model. We also observe that the exchange interaction becomes significantly
smaller on average with increasing distance, showing that long distance in-
teractions are less important than short distance interactions as one would
naturally expect, see Fig. for representative parameters. The off-diagonal

elements can be mapped to DMI-vectors, which are oriented perpendicular to
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Figure 5.3: Relative strength of 4-spin interactions for «a = B, = A =0
in dependence on J* and y, calculated by the sum of the absolute values of
all C" divided by the sum of the absolute values of all parameters in Eq. .
White denotes regions with largely unoccupied bands. In the hatched area, the
variance of the fit exceeds 15%, which we consider unreliable, see Sec. [5.1.5

the vector between the respective sites and mostly lie in the xy-plane, i.e.,
the D,, component is very small. We also find that B, in the tight-binding
model directly translates to a B-field in z-direction in the classical model, as
expected. In Fig. [5.3] the relative strength of the 4-spin interaction is shown,
which is calculated as the sum of the absolute values of all C' divided by the
sum of the absolute values of all fitted parameters in Eq. . We found
a small, but still significant contribution of 4-spin interactions in well-fitted
regions. This indicates that this simple seeming tight-binding system hosts
complex multi-spin interactions beyond 2-spin interactions. The largest 4-spin
contribution is found in a region, where the fitting quality is insufficient. Since
the addition of 4-spin interactions improves the fitting quality in that region,
we speculate that this region is dominated by higher order or further reaching
multi-spin interactions. Adding non-vanishing RSO of a = 0.2t causes only
minimal changes in the pattern of 4-spin interactions. The relative strength is
lowered by ~28% on average, mostly due to an absolute increase in the strength

of 2-spin interactions due to the addition of DMI.
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5.1.4 Classification of Magnetic Phases using Contrastive

Clustering

Our model hosts a rich and complex magnetic phase diagram. With over 20,000
data points, manual classification by hand would be a time-consuming task,
and algorithmic classification using if-statements has the disadvantage of po-
tentially missing unexpected magnetic configurations. We solve this issue by
combining Contrastive Clustering via an artificial neural network (ANN) with
manual spot checks and additional criteria. First, we use Contrastive Cluster-
ing [66] to cluster our 20,000 data points into 40 clusters. Then, the clusters
are categorized into magnetic phases by spot checks. This highlights the main
advantage of using Contrastive Clustering to cluster our data. Instead of cat-
egorizing 20,000 data points by hand, we only need to perform a few hundred
spot checks. Additionally, skyrmion phases are identified by calculating the
skyrmion number. In the following, we explain our categorization process in
detail.

To gain a better overview of the magnetic ground states, we employ Con-
trastive Clustering [66], an unsupervised learning technique where the learning
of a latent representation and cluster assignment are performed simultane-
ously by comparing different samples. The samples get encoded into points in
a representation space, called the latent space. The goal is to attract points
in this space if they correspond to the same phase and repel them if they
come from different phases. To achieve this, we apply symmetry transforma-
tions to magnetic configurations. Two transformed images attract each other
if they originate from the same configuration or else they repel, as visualized
in Fig. 5.4l The details of the implementation of Contrastive Clustering follow
Ref. [66]. We use Resnet18 [I77] as the encoder network, Adam [I78] to train
the network, and train our network for 2000 cycles over the whole dataset, en-
suring sufficient convergence of our loss function. To deal with the unbalanced
nature of our dataset, we adapt an oscillating computational temperature in
the contrastive loss, as this has been shown to perform better with long-tail
data [179], i.e., data where a small part of classes have a large number of sample

points, but the others are associated with only a few samples [180]. We imple-
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Figure 5.4: Visualization of the transformations used for the con-
trastive learning procedure. The top row shows two samples from the
dataset, a spin spiral, and a skyrmionic configuration. We apply four different
transformations to each sample: A random rotation in real space by 0°, 90°,
180°, or 270°, a random translation, and a random SO(3) rotation of all spins.
All transformations are chosen uniformly randomly and are equally likely. The
objective of contrastive learning is to put transformed samples from the same
original configuration close together in a latent space and repel samples that
do not come from the same configurations.

ment the best-performing parameters of Ref. [I79]. For the transformations,
we use intrinsic symmetries of the magnetic structure identification, which are
a rotation of the whole lattice by either 0°, 90°, 180°, or 270°, a shift of the
lattice by a random amount in the x- and y- directions, and rotation of all spins
together in a random direction. This last step violates the axial anisotropy of
the system when the Rashba spin-orbit coupling a or the magnetic field B is
non-zero. We successfully classify the unlabeled spin data into different phases.
Hence, we create a phase diagram without having to specify the phases in ad-
vance, which allows the detection of unexpected phases. The latent space after

the training procedure can be seen in Fig. 5.5l We provide an online tool for a
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Figure 5.5: Similar magnetic configurations identified by Contrastive
Clustering and their location in latent space. Each point in the scat-
ter plot (center) corresponds to a configuration in the dataset. The 128-
dimensional latent space is reduced to a two-dimensional space by t-distributed
stochastic neighbor embedding (t-SNE) [I75] for visualization. Each point is
colored in accordance with the assigned phase, with the colors being the same
as in Fig. The color map for the configurations is the same as in Fig. [5.4]
Arrows indicate the locations of ten representative configurations in the latent
space. More samples can be viewed and explored online [176].

LN

more in-depth exploration of the latent space and the data [176].

We use the Contrastive Clustering to split the magnetic ground states into 40
clusters. Those clusters are then manually assigned to 11 magnetic phases,
which we identify by spot checks. Often, multiple clusters belong to the same
magnetic phase, e.g., there are multiple clusters with harmonic spin spirals but
different ranges of relative angles. Using more clusters than the number of
magnetic phases is necessary because an ANN can only differentiate different-
looking states without knowledge of the physical interpretation. For example,

when limited by too few clusters, the ANN might wrongly assign a 177°-spiral to
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anti-ferromagnets instead of spirals. When a cluster cannot be clearly assigned
to a single magnetic phase, i.e., when we identify multiple different magnetic
phases within one cluster, we label that cluster as mized. Three of the clusters
initially labeled as mixed could be separated by adding an additional condition.
For one of those, all states with © < —2.0¢ belong to a magnetic 2x2-pattern,
while the rest belong to AFM spin spirals. The other two contain harmonic
spin spirals and 2qg-spin-spirals, but for o = 0 only contain harmonic spin spi-
rals. Additionally, the ANN often combines skyrmion lattices and spin spirals
with a periodicity that is similar to the skyrmion size into one cluster. To re-
liably identify skyrmionic phases, we employ the skyrmion number Ny, which
is calculated by

NskzﬁéM(%—j\fx%—]\j), (5.4)
where M is the local magnetization and where we calculate the derivatives
of the continuum extrapolation by the inverse Discrete Fourier Transform
(DFT) of the product of the DFT frequencies and the DEFT of the spins using
() = &3, €% (ik) Y, e*2 f(2). This avoids numerical artifacts for anti-
ferromagnetic states that can appear with lattice adapted invariants [I81] at
the cost of deviations from the integer quantization of the skyrmion number.
We assign all states with |Ng| > 0.95 as part of a skyrmionic phase, giving

some tolerance for numerical precision.

5.1.5 Discussion on the Fitting Quality and Reliability of
the Magnetic Model

To judge the quality of the fits, we employ the normalized variance

V _ Var(E_:C] : E_:tb)7 (55>
var(FEp)

where Ed and Etb contain the total energies calculated with the fitted clas-
sical model and the original tight-binding model, respectively. The resulting

variance is shown in Fig. for the datasets used in the main text. For simul-
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Figure 5.6: Normalized variance as a measure for fitting quality for
() a =0,B, =0,A=0,(b)a=0B, =0A =05t (c) a = 0.2¢,
B, =0.02t,A =0and (d) « =0.2¢, B, =0.02¢, A = 0.5t in dependence on
J® and p. White denotes regions with largely unoccupied bands.

taneously small 4 and J, no bands reach below the Fermi energy for A = 0,
and for A > 0 the spin structure has no significant contribution to the total
energy. At the edge of this region, bands are only occupied for some mag-
netic configurations, which results in bad fits. The variance has a large peak
next to the AFM region towards lower p. In this region the fitting quality
is not good enough to make reliable assessments. However, we did observe
that the fitting quality significantly increased (lowering the peak variance from
0.96 to 0.78) by including 4-spin-interactions, while adding more long-range
2-spin-interactions, i.e., 6th to 10th neighbor 2-spin-interactions, did not lead
to any improvements. This suggests that higher-order interactions are required
to fully understand the magnetism in this region. This is also in line with our
results from the one-dimension model (see Sec. , where a parameter region
left of the AFM phase could only be fitted by including 4-spin-interactions.
We also observe a high variance for small values of J when A = 0. In Sec. [5.2]

we crossed out regions where the variance is larger than 0.2 to display that the

101



results in these regions are not reliable. Similarly, data close to the crossed-out
regions should also considered with caution, as the variance changes smoothly
with the parameters of the tight-binding model.

Regarding the sample size, we settled for a value of Ngymple = 8000. For larger
sample sizes the variance does not increase further, showing that 8000 is suffi-

cient to prevent overfitting.

5.2 Magnetic Ground States

For the sake of clarity, we limit ourselves to two distinct values for each of the
parameters A, B, and «, representing the presence or absence of the corre-
sponding physical properties, while scanning for a wide range of J* and p. We
start by providing an overview of the kinds of magnetic ground states found in
our calculations. Then, we describe systems with vanishing Rashba spin-orbit
coupling and vanishing magnetic fields, with and without non-vanishing super-
conductivity. Afterwards, we show the influence of non-vanishing RSO in com-

bination with an external magnetic field, which typically stabilizes skyrmions.

5.2.1 Vanishing Rashba Spin-Orbit Coupling

We calculate the magnetic ground states of a 32x32 system with periodic
boundary conditions in real space. The ANN-classified magnetic states as de-
scribed in Sec. With respect to the magnetic coupling J** and the chemical
potential p are shown in Fig. for A = 0 and A = 0.5¢ without RSO, i.e.,
a = 0. Fig. (b) and (c) show phase diagrams for A = 0 and A = 0.5¢,
respectively. Examples of ground states are presented in Fig. (a).

Let us first provide an overview over the types of identified magnetic ground
states. The ferromagnetic (FM) state describes a state in which all spins are
parallel. In the case of z/y-row-wise spirals and spin spirals, the spins are
aligned parallelly in one direction and as a harmonic spin spiral in the perpen-
dicular direction, i.e., the relative angle between spins remains constant in the
propagation direction of the harmonic spin spiral. In the case of the z/y-row-

wise spin spirals, the propagation direction of the spin spiral is either the z- or
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Figure 5.7: Magnetic ground states for « = 0, B, = 0 with (b) A =0
and (c) A = 0.5¢ with respect to u and J®™. The color white denotes regions
with largely unoccupied bands. The hatched area leaves the validity regime
of the model (see Fig. [5.3)). The colorbar for (b) and (c) is given in (a) with
examples for each type of magnetic ground state, where the color denotes the
orientation of the spins with each pixel representing one spin. For spin spirals
and 2q-spin-spirals and mized, no examples are given.

y-axis, while the other spin spirals summarize all other spiral directions and
clusters that were mixed between the x/y direction and other directions. The
checkerboard AFM phase is defined by all spins being aligned anti-parallelly
to all of their nearest neighbors. The row-wise AFM has parallel spins along
one direction and anti-parallel nearest neighbors along the perpendicular di-
rection. AFM spin spirals correspond to the spins being aligned as harmonic
spin spirals in one direction and anti-parallel in the perpendicular direction.
The Rashba AFM states are specific AFM spin spirals that can be described
as a superposition of a checkerboard AFM and a harmonic spin spiral with

an angle that is characteristic for the chosen RSO strength «, i.e., constant
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for a chosen a. We observe no inherent preference for the orientation within
the z-y-plane for the Rashba AFM, row-wise AFM and AFM spin spiral. We
also identify a phase with a 2x 2 pattern, where we find a repeated structure
of 2 times 2 spins with the following two additional properties. First, along
the x- and the y-axis the relative angles are constant in their absolute value
but alternating in sign along each axis, e.g., the relative angle along the z-axis
alternates between 4+80° and —80°. Second, all spins are anti-parallel to their
next-nearest, i.e., diagonal, neighbor. We label a phase as skyrmions if we
find a skyrmion number |Ng| > 0.95, see Eq. (5.4). In most skyrmionic cases,
we observe a skyrmion lattice, while in some cases singular skyrmions appear
in a ferromagnetic background. In 2¢-spin-spirals, we observe parallel spins
in one direction and following a pattern of two alternating relative angles 6,
and 0, in the perpendicular direction. For o = 0, these two angles average to
(01 +05)/2 =m/240.01 in 85% of cases. While in the harmonic FM and AFM
spin spiral phases, the magnetization rotates with a wave-vector ¢ along high
symmetry crystallographic directions, the multi-g-spin-structures are superpo-
sitions of several rotations with high symmetry q-vectors [33|. Spin spirals
and 2q-spin-spirals denote that the ANN cannot differentiate between 2q-spin-
spirals and harmonic spin spirals, which only occurs for a = 0.2. Mized denotes
that the ANN creates a label which we could not assign a definite magnetic
state to.

Before discussing the influence of superconductivity, we start with A =
0, i.e., vanishing superconductivity. For large J* > 5.0¢, we only observe
ferromagnetic and anti-ferromagnetic phases. For smaller J*®, we observe rich
magnetic phases between the FM (A) and AFM (D) phase shown in Fig.[5.7/(b).
For chemical potentials —1.7¢t < p < —0.9¢, we find AFM spirals (F). At
p < —1.7t, this phase transitions into row-wise AFMs (E). For lower chemical
potentials, we find harmonic spin spirals with varying propagation directions
other than the z- or y-axis (C). Lowering the chemical potential further results
in x-y-row-wise spin spirals (B) and then in a FM phase. For J*®* > 1.2¢, the
row-wise AFM phase first transitions into a 2x2 pattern (H) and then into the
FM phase. Additionally, around p = —3.0¢ and J* < 0.4¢, there is a small

region in parameter space with 2q-spin-spirals (J).
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Figure 5.8: Absolute value of the skyrmion number |Ny| (denoted by
the color) with respect to J*® and u for o = 0.2¢, B, = 0.02¢ with (a) A =0
and (b) A = 0.5¢t. The blacked out regions leaves the validity regime of the
model and is equivalent to the hatched area in Fig. [5.3]

For non-vanishing superconductivity, A = 0.5¢, the position and the shape of
the magnetic phases change slightly as shown in Fig. (¢). The AFM (D)
and AFM spiral (F) phases remain mostly unchanged. The area of the 2x2
pattern (H) becomes slightly smaller, being replaced by row-wise AFMs (E)
for J* < 2.2¢. The x/y-row-wise spin spiral phase (B) grows considerably
and within it, the 2q-spin-spiral phase (H) moves towards larger J* and also
expands. As large parts of the latter follow an 11]|-pattern, this stands in
contrast to our results from a very similar Hamiltonian in 1D (Chapter [4)),
where increased superconductivity causes this phase to vanish. The spin spiral
phase (C) moves towards larger J remaining at the transition between the FM

(A) and the x/y-row-wise spin spirals (B).

5.2.2 Non-Vanishing Rashba Spin-Orbit Coupling

Skyrmion lattices can be stabilized by an external magnetic field perpendicular
to the lattice [99) 102] [182]. We therefore add RSO coupling o = 0.2¢ and a
small magnetic field B, = 0.02¢ and succeed in finding a parameter region with
skyrmion lattices. The magnetic field breaks the rotational symmetry of the
Hamiltonian. Fig. shows the skyrmion number with respect to the mag-
netic coupling strength J* and the chemical potential p for superconducting

order parameters A = 0 and A = 0.5¢t. An extended large skyrmionic phase
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Figure 5.9: Magnetic ground states in systems with Rashba spin-orbit cou-
pling @ = 0.2¢ and an additional out-of-plane magnetic field B, = 0.02¢ and
(a) A =0, (b) A =0.5¢ with respect to u and J*. The color white denotes
regions with largely unoccupied bands. The hatched area leaves the validity
regime of the model (see Fig. [5.3)).

emerges, which gradually moves to larger J* when the superconducting order
parameter A is increased.

The effect of RSO coupling and a magnetic field on the other phases is displayed
in Fig. Besides the appearance of a new skyrmionic and spin spiral phase
for low p within the FM phase, the overall shape of the phases remains largely
unchanged, but the magnetic structures within the phases change. The previ-
ous checkerboard AFM phase becomes a checkerboard AFM in superposition
with a spin spiral with a characteristic angle of 0.1247, which we called Rashba
AFM here. Most parts of the FM phase remain ferromagnetic, but towards
lower p, an additional skyrmionic and spin spiral phase occurs. The inner parts
of the row-wise AFM phase is replaced by spin spirals, only some of which are
AFM spirals. The 2x2 pattern does not occur anymore. For A = 0.5¢, the 2g-
spin-spiral phase still exists, but the ANN fails to differentiate it from harmonic

row-wise spin spirals.
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5.3 Conclusions and Outlook

Our results show that a simple effective model for magnetic moments coupled
to a superconducting substrate with Rashba spin-orbit coupling accommodates
an unexpectedly rich phase diagram, helping with the search for exotic and
non-collinear phases at magnetic surfaces, which can be effectively categorized
by an ANN with a contrastive learning algorithm. The combination of the 2D
tight-binding model with Monte Carlo simulations permits us to comprehen-
sively categorize the magnetic ground states in the SC and non-SC regimes.
In addition to the collinear FM and AFM configurations as well as harmonic
non-collinear states known from one-dimensional models, 2D systems accom-
modate multi-q collinear structures and non-trivial non-collinear configurations
like Rashba-AFM or 2qg-spin-spirals. An interesting property of an ultrathin
film on a square lattice is the appearance of multi-spin interactions that have
been predicted to exist in itinerant magnets but are only important in few
experimental studies so far like the nanoskyrmion lattice in Fe/Ir(111) [34].
Our phase diagrams assist researchers working with ultrathin magnetic films
by showing them what types of magnetic ordering they can expect in their sys-
tem or, vice versa, to estimate model parameters from the observed magnetic
ordering. Generally, superconductivity decreases the area of the FM phase in
favor of non-collinear structures, and Rashba coupling favors non-collinearity.
Given that chiral structures are promising candidates to induce non-trivial
electronic topological states, one could further explore the electronic proper-
ties of the presented magnetic systems with the described self-consistent model.
This includes skyrmionic, multi-Q, and spiral magnetism in combination with a
non-vanishing superconducting order parameter and potentially topological in-
sulators [35, [I83-185]. This finding prompts to look further into the electronic
topological properties of the described system in external magnetic fields and
for different anisotropy types. Specifically, an investigation of the electronic
topology of a magnetic island with open boundary conditions instead of pe-
riodic boundaries could reveal whether skyrmions and Majorana modes can
occur naturally in the same sample without a preset magnetization [I85]. The

presented method of finding magnetic ground states of tight-binding models
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can also be applied to more complex systems. One possible direction is to
create a model of a complex artificial array of magnetic atoms on a supercon-
ducting surface [30], and find the dependence of magnetic ground states on the
symmetries of this array by using the proposed method of reducing the system
to a model containing only the magnetic moments, which is especially efficient

when only a small fraction of the total system is magnetic.
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Chapter 6

Precursors of Majoranas -

Mn Atomic Chains on Superconduct-
ing Bulk Nb

In this chapter, we discuss the modeling of a Mn atomic chain on a supercon-
ducting bulk Nb substrate with a three-dimensional tight-binding model. The
model is specifically crafted and adjusted to replicate STM experiments on this
system, performed by Lucas Schneider and Phillip Beck. Large parts of this
chapter closely follow our joint publication [3]

Lucas Schneider, Philip Beck, Jannis Neuhaus-Steinmetz, Levente Rézsa,
Thore Posske, Jens Wiebe, and Roland Wiesendanger

Precursors of Majorana modes and their length-dependent energy oscil-
lations probed at both ends of atomic Shiba chains

Nature Nanotechnology 17, pages 384-389 - Published 07 March 2022

Reproduced with permission from Springer Nature,

although some additional theoretical calculations not covered in the original
publication are provided here. By exploring this model, we aim to gain a
deeper understanding of the experimental system at hand. First, we begin
with a short summary of the experimental results in Sec. to provide context
for the calculations. Then, we introduce the tight-binding model in Sec. [6.2]
In that section, we begin by replicating the main findings of the experiment.
Thereafter, we explore the system beyond the experimental limitations, like in-
vestigating chains much longer than experimentally realized. Lastly, in Sec.

we summarize our findings and provide an outlook for future research.
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Work Sharing

The experimental measurements in this chapter were done by Lucas Schnei-
der and Phillip Beck. I performed the tight-binding calculations presented in
Sec.[6.2] The original publication [3] also contains results on theoretical models
created by Dr. Levente Rézsa and Dr. Thore Posske, which are not presented

here.

6.1 Experimental Results

In this section, we summarize the results of experiments on Mn chains on
superconducting bulk Nb to provide context for calculations on this system.
The experimental results are remarkable, because this is the first time that zero-
bias peaks in a hard SC gap have been measured simultaneously on both ends
of a defect-free adatom chain on the surface of an elemental superconductor.
In previous experiments, such peaks have only been found on some chains in
the system, i.e., not consistently on all similar chains, and only on one of the
ends of the chains [16].

At the heart of the experiment lies the idea to design an effective one-band
system from a single hybridizing YSR state in a bottom-up approach. To
do so, microscopic insights into the low-energy band formations are exploited.
Short Mn chains are constructed on Nb(110) in the [110] direction atom by
atom up to 45 atoms in length by tip-assisted atom manipulation with an
STM. While doing so, the dI/dV spectrum is measured along and around the
chain for each length, using STM and STS with a superconducting tip.

To understand the building blocks of this system, we start by discussing the
states resulting from a single Mn atom on clean Nb(110). Fig. (a) shows
the density of states measured on the added Mn atom and on the bare Nb(110)
substrate. There are multiple YSR states induced by the magnetic Mn atom
inside the SC gap. The LDOS of the lowest energy YSR state (called J-state
from here on) is shown in Fig. (c,d). The J-state shows a strong spatial
anisotropy and extends into the [110] direction. This anisotropy facilitates

different hybridizations in different directions. The Mn chains are constructed
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Figure 6.1: Single Mn impurity on Nb(110). (a) DOS of a single Mn atom
on Nb(110) and DOS measured on bare Nb(110). (b) Topographic map of a
single Mn atom on Nb(110). (c,d) LDOS maps of the §-states at £ = d_ (c)
and F =6, (d).

in the [110] direction, since this is expected to lead to dominant hybridization
of the 4-YSR state with weak coupling of all the higher-energy YSR-states like
the a-state in Fig. |6.1] (a), as the interatomic distance d = 0.467 nm of the
chain atoms is large in this direction compared to other directions.

With this knowledge, Mny chains of N atoms are constructed along the
[110] direction (Fig. by controlled lateral manipulation of the Mn atoms
using the STM tip as a tool. The constructed chain’s magnetic moments
are ferromagnetically aligned along the [110] direction. With the proximity-
induced superconducting gap from the Nb substrate, this gives us all neces-
sary ingredients for topological superconductivity in the presence of any non-
vanishing RSO [I86]. The Fermi wavevector is experimentally determined to
be kr = (0.6 & 0.1)w/d by identifying a peak in the Fourier transformation
of the LDOS map of the surface around a single Mn impurity at the energy
of the §-YSR state. The topography of the constructed Mngs, chain is shown
in Fig. 6.2 (b), and Fig. [6.2 (c) shows the spatially resolved deconvoluted dif-
ferential tunneling conductance (d//dV’) maps on and around the chain for
multiple different energies centered on the energies of different in-gap states.
The states at zero energy are well localized at the ends of the chain with an

additional small LDOS oscillation in the interior of the chain. In contrast, the
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Figure 6.2: In-gap states of Mn chains on Nb(110) along the [110]-
direction. (a) Geometry of the experimentally assembled Mn atoms (red) on
top of the atoms of the superconducting Nb substrate (brown). (b) Constant-
current STM image (topography) of a Mnsy chain. The white scale bar corre-
sponds to 1 nm. (c) Corresponding deconvoluted d//dV maps at the indicated
energies. The brown dashed lines mark the position of the chain. (d) Single
deconvoluted dI/dV spectra measured on the chain’s end, in the center, and
on the Nb(110) substrate. The zero-energy peak is marked by the red arrow.

higher-energy states are distributed over the whole chain, presumably stem-
ming from the a-YSR state. The spectra at the chain’s end, the chain’s center
and on bare Nb(110) are shown in Fig. (d). There is a narrow zero-energy
peak localized at the ends of the chain. Peaks from finite energy states are dis-
tributed over the entire chain, as shown in Fig. (c). Such clearly resolved
zero-energy end states are typically considered as an indication for isolated
Majorana modes (MMs) [13], 14}, 16, I8, [45, [70} [71].

Since the chains were constructed atom by atom, all measurements could
be repeated and tracked for each chain length N to probe the robustness of the
zero-energy end state. From this, in Fig. (a-f), the dI/dV along the chain
(called dI/dV line profile from here on) is shown for N = 14,15,16. Similar
zero-energy end states were found for N = 14 and N = 16, clearly separated
from higher-energy states by a large gap Apg = 400 peV. But for N = 15, two
states of similar strong localization, split by Eyy, = 300 peV symmetrically
around Ey, are found instead. The observation that both ends of the chain are
affected symmetrically by the addition of single atoms on one end shows that
the energies of the two end modes on both sides are intertwined, and thus that

the end modes are a single coherent quantum state of the chain. To further
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Figure 6.3: Chain length dependence of in-gap states. (a-c) STM to-
pography images of Mny chains with N = 14 (a), N = 15 (b), and N = 16
(c). (d-f) Corresponding deconvoluted dI/dV line profiles acquired along the
longitudinal axis through the center of the three chains (as indicated by the
dashed line in (a)). The edge states are marked with white arrows. (g) Se-
quence of dI/dV spectra measured on one end of the Mny chains for different
values of V. The spectral features associated with bands from hybridizing a-
and O-states are marked on the right side. (h) Data set from (g) with even
and odd length chains plotted into separate panels.

investigate this energy splitting, Fig. [6.3] (g) shows the deconvoluted dI/dV
signal at the end of another, structurally identical chain with varying chain
length N, where Mn atoms were added to one end of the chain and the d//dV
signal was measured at the opposite end of the chain. The same deconvoluted
dI/dV is shown in Fig. (h) but split into two images, one showing only
even and the other only odd length chains. The energy of the state closest
to Er is modulated by a period of AN = 2, but not exactly 2. This trend
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continues up to the longest constructed chains of N = 45. Due to remaining
oxygen impurities on the surface, the maximum length of ordered magnetic
chains is limited to 20-25 nm. The sub-gap energies appear to change as a
continuous function of N. For certain chain lengths (N = 13,31,32,42), the
energy of the end state is tuned to zero within the experimental peak width
AFE = 50 pneV. In contrast, the a-states evolve into a completely narrow
band, irrelevant to the topological properties. The modulation of AN = 2 lets
us suspect a Fermi wavevector of kr ~ 0.57/d, but importantly not exactly
0.57/d, which is inline with the experimentally determined Fermi wavevector
discussed above. As shown in the following Sec. these oscillating energy
modes develop into isolated Majorana modes with increasing chain length N.
Thus, we can interpret them as precursors of Majorana modes (PMMs) with a
residual MM coupling due to finite length. In this section, we also show though
that the topological protection for these end modes is weak due to a small bulk
topological gap.

Next, we discuss the exclusion of other topologically trivial explanations.
First, disorder is frequently discussed as a source of zero-energy states |75, 187+
189]. This can be ruled out by the geometrically perfect structure of our chains.
Second, generally speaking, end states can be caused by zero-dimensional fea-
tures induced by local defects or localized YSR states [I16-118, 190]. In our
case, both ends change equally when perturbing only one end of the chain.
Thus, the end state must be a collective mode of the 1D structure. The obser-
vation of this correlation is a key advantage over previous experiments, where
only one end was probed [13], 14} 16, [45] [70H72]. Third, it is possible that the
localization of the wavefunction closest to Er is less pronounced than the ex-
periment suggests. Both YSR states are predominantly located in the SC host.
The measurement signal of the LDOS above the Mn chain could be suppressed
in the interior of the chain and amplified at the ends of the chain [45]. In this
case, the topological phase would still be non-trivial in the infinite case, though.
A trivial band structure would only be compatible with the experimental data
in the presence of additional low-energy bands, but experimentally all features
from additional bands are well separated. This results in strong evidence that

our chains indeed realize an effective one-band model in the low-energy limit.
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6.2 Tight-Binding Model for Min Chains on Nb(110)

To improve our understanding of the experimental results described above, we
create a tight-binding toy model that replicates the low energy band structure
and geometry of the experiment. We construct a one-dimensional ferromag-
netic chain on top of two layers of a superconducting substrate, using the Kwant

code. The Bogoliubov-de Gennes Hamiltonian of the chain reads

o =T -
Hchain - E (63 (_JCTOO_Z — UcT200 + Ac7—:(300)ci
)

+ Z ¢ (—tet00 + éacTzay)E} +h.c.
(3,9)

with the magnetic interaction strength J between a magnetic moment on a
given site and the spin of a conducting electron, the chemical potential g,
the hopping amplitude ¢, the superconducting order parameter A, and the
Nambu spinor ¢; = (cj,T,cj7¢,c;7¢, —C;[’T) [136]. Here, C;g and ¢;, are creation
and annihilation operators of fermionic states with spin o at site i. The Pauli
matrices o and 7 are connected by a Kronecker product and operate in spin
and particle-hole space, respectively. Summation over nearest neighbor sites is
indicated by (i, 7). The two layers of a substrate with 350 x 15 sites in a cubic

lattice structure are represented by

Hbstrate = Z E;-T(—/LSTZO'O + AgT,00)Ci + Z @T(—tSTZUO)Ej +h.c., (6.2)
i (i.)
and the hopping between the chain and the substrate
Hyop = Z EZ.T(—tCSTZUO)Ej +h.c., (6.3)
(ic,ds)

with the hopping parameter between chain and substrate ¢.;. The parameter

indices ¢ and s denote whether a parameter corresponds to the chain ¢ or
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Figure 6.4: Even-odd modulation in a magnetic chain on a substrate.
(a) Band structure of an infinite chain on a substrate that is infinite in the
direction of the chain, with and without RSO coupling «. in the chain as
indicated on the right. (b) LDOS along a chain of 32 sites using the parameters
from (a) and a. = 0.055¢. (c) LDOS on the first chain site in Mny chains of
different number of sites N using the parameters from (b). (d) Dataset from
(c) with chains of odd- and even-N plotted in separate panels.

the substrate s. The complete Hamiltonian of our system is H = Hpaim +
Hgupstrate + Hiop-

To calculate the energy-dependent LDOS at site x around the Fermi edge, we
calculate the 200 eigenvalues closest to Fr = 0 and their eigenvectors with
a sparse matrix solver. Then we sum over all pairs of eigenvalues F, and

eigenvectors v,

—9f(E — E,, T = 320 mK)) (6.4

LDOS(E,z) ~ Y _ [thu(x)[? ( OF

with the Fermi-Dirac function f(F,T) simulating the experimental thermal
broadening at 7" = 320 mK [I91]. Including both the particle and the hole
component of the eigenvectors is justified by the particle-hole mixing value of
P(A, B) ~ 0.5 in the experiment for the 6-YSR state, i.e., the dI /dV amplitude
below and above the Fermi edge is almost identical for the §-YSR state in the
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experiment.

Reproducing the Even-Odd Effect

We begin by reproducing the even-odd modulation of the sub-gap states, which
results in a band structure with kr = 0.577/d for a. = 0. For this, we use the

following set of parameters

pe = —0.5515, A, =0, J. =0.7205t5, t. = 0.551,,

(6.5)
e = —2t,, Ay = 0.134,, tes = 0.7t,.

Calculating the topological invariant of the system [5], we find that the system
is non-trivial for any non-vanishing RSO coupling a.. By adding an explicit
RSO term a. = 0.55t; = 0.42 A4 in the chain, the band structure becomes
gapped (Fig. (a)). We calculate the band structure by taking a vertical
slice as a unit cell, employing periodic boundaries in the chain direction and
changing to k-space with a Fourier transformation. As shown in Fig. (b),
we find localized PMMs in a chain of N = 32. As in the experiment, these
PMMs show a strong energy splitting with varying chain length as shown in
Fig. (c,d), which is modulated by a period of AN & 2 as in the experiment.

Difference in Localization between One- and Three-Dimensional Mod-

els

The good localization of the PMMs despite strong, chain-length dependent
energy splitting is counterintuitive. To gain a better understanding of this
phenomenon, we compare our 3D model to a pure 1D model. When setting
tes = 0, we get an effective 1D model, as the chain is decoupled from the
substrate. To account for the lack of proximity-induced superconductivity, we
set A, = Ay = 0.13%, only in the 1D model. The other parameters remain
the same as above. To quantify the localization of the low-energy modes, we
introduce the ratio of the LDOS on the first site and the average LDOS in the
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Figure 6.5: Localization for the 1D and 3D model with increasing
RSO. (a,b) Wavefunctions of the lowest energy state in the (a) 1D model
and (b) 3D model for multiple different ... (c) Localization ¢ with respect to
the RSO coupling strength a.. The parameters for the tight-binding models
are J. = 0.7205 t5, t. = 0.55 g, pe = —0.55 t5, pus = —2 t5, and Ay = 0.13 t.
The effective 1D model uses t.s = 0 and A, = 0.13 ¢, to account for the lack
of proximity-induced superconductivity due to vanishing interaction with the
superconducting substrate. The 3D model uses t., = 0.7 t.

chain’s bulk,
LDOS(E =0, z=1)

" 2LDOS(E =0, 8 < < 25)
of a chain with N = 32. The LDOS is symmetric. Thus, it is equivalent
to using the last site of the chain instead of the first one. Fig. [6.5] shows

¢

(6.6)

the wavefunctions of the low-energy modes for the effective 1D model (t.s =
0) and the 3D model (ts = 0.7t5) and how their localization ( scales with
respect to increased RSO coupling constant a.. The localization for chains
coupled to the substrate is consistently better than for those that are purely
1D. Similar findings were reported using a model for Fe chains on Pb [67]. For
the 3D model, some localization even happens for vanishing RSO «a. = 0. The
stronger localization for the 3D model can be explained by the broken inversion

symmetry at the surface [192].
Chain Length Dependence and Influence of RSO on Majorana Split-
ting

It is important to note that the energy scale of the topological protection of
MMs in an infinitely long chain is only of the size of the bulk topological gap A,

which is very small compared to the bulk substrate energy gap A in this system
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Figure 6.6: LDOS of very long chains for (a) even length chains and (b)
odd length chains, using the parameters from Eq. and a. = 0.055t,. The
temperature for the Fermi-Dirac function has been halved to T = 160 mK to
increase visibility. The red arrow marks the apparent avoided crossing. In the
calculations, only the 200 eigenvalues closest to the Fermi energy Er = (0 were

considered to save computation time. This is the cause for the empty areas for
N > 160.

(A, = 0.0048ts = 0.037 Ay). Most importantly, it is smaller than the observed
energy splitting Eyy, of the PMMs, which is smaller than the finite-size gap
Aps. In this case, the p-wave pairing A, manifests as an apparent avoided
crossing of the lowest- and second-lowest-energy states (see arrows in Fig. .
These avoided crossings are too small to be detected within the experimental
energy resolution. It has been shown that the long-range interactions of MMs
are inversely related to A, [193], i.e., larger bulk topological gaps lead to a faster
exponential decay of the Majorana wavefunction. Our results imply that the
observation of a well-localized zero-energy end state in a finite-size topological

superconductor does not directly imply that the corresponding MMs are non-
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Figure 6.7: Energy splitting Fy,, in long chains. Same parameters as in
Fig.[6.4] The energy splitting Eiy, is plotted with respect to the chain length
and compared to the topological gap A,,.

interacting under the influence of small perturbations. As shown in Fig. [6.7], we
expect the energy oscillation of the end modes to converge to energies below A,
only for N > 227 (~ 106 nm), which could not be experimentally realized due
to remaining oxygen on the Nb(110) surface. It is important to note, however,
that this convergence length is highly dependent on «., as an increase in a.
causes the convergence to speed up and increase A, at the same time. For
example, for a, = 0.11%s, Eyyp converges to below A, at N ~ 100. As o,
cannot be directly measured in this experiment, it is difficult to make definitive
conclusions on the critical chain length, but we can rule out the case of a, = 0,
since previous studies on Mn/Nb(110) found significant RSO coupling with
observable effects in this system [19, [194]. Thus, isolated Majorana modes are
expected in long chains.

The effect of increasing RSO coupling a. in the chain is shown for chain
length up to N = 150 in Fig. [6.8 For vanishing a. = 0, only conventional
bulk states are present. The topological index is not well defined in this case,
as the system is entirely gapless. For increasing a., the lowest energy states

separate more and more clearly from the higher energy states. This separation
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Figure 6.8: Influence of RSO coupling. Same parameters as in Fig. (6.4
besides changes in a, as noted in the panels. (a-e) even and (f-j) odd length
chains. The temperature for the broadening reduced to 7' = 160 mK to increase
visibility.

is already visible for very small values of a., in agreement with the bulk-
boundary correspondence [195]. Larger values for a. lead to an increase in
the topological gap A, and faster convergence to zero energy for the lowest-
energy states. This inverse correlation between A, and the convergence length
is expected [193]. Larger superconducting gaps A, lead to faster convergence
of the lowest-energy states towards zero energy.

Lastly, we investigate the overlap of the Majorana modes. For this, we
transform the wavefunction into the standard Majorana basis

1 1
Vg = E(CE +¢) and ;= m@ —¢). (6.7)

The absolute value of the wavefunction and the Majorana decomposition of
the lowest energy state along the chain are shown in Fig. for multiple chain
lengths. For very short chains with an energy peak close to zero (N = 32),
we find strongly delocalized Majorana modes with peaks at both ends of the
chain. Similarly, there is still a strong overlap of the Majorana wavefunctions

for N = 100. This strong overlap is the cause for the weak protection of
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Figure 6.9: Majorana overlap. Upper row: Absolute square of the lowest-
energy (Ehy,) wavefunction along finite chains of length 32, 100, and 300.
Lower row: Separation of the wavefunction into the standard Majorana basis
74 (blue) and y_ (orange). (a-c, e-g) Same parameters as in Fig.[6.4] In (d)
and (h) the RSO coupling in the chain a, has been doubled.

the Majorana modes against changes in chain length. For long chains (N =
300), the two Majorana wavefunctions can be well separated into two isolated
Majorana modes. Finally, in Fig.[6.9)(d,h) a larger a is used (double compared
to the previous data), which causes the Majorana wavefunctions to decay much

faster and lead to much more isolated Majorana modes.

6.3 Conclusions and Outlook

In this chapter, the first simultaneous measurement of zero-bias peaks in a hard
SC gap on both ends of defect-free chains has been analyzed. The experimental
data is well aligned with the theoretical models and strongly indicates the
presence of hybridizing Majorana modes in Mn chains on Nb(110) in the [110]
direction. The theoretical modeling allows us to gain insight into what happens
beyond the maximal chain length achieved in the experiment and strongly
indicates that these precursors of Majorana modes will eventually converge to
well isolated Majorana modes for sufficient chain lengths. Despite that, only a
small topological gap is predicted for the infinite system, which would lead to
only weakly protected Majorana modes even in the limit of very long chains

with isolated Majorana modes. Our calculations show that enhancing the
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RSO coupling would lead to further improvements in the localization, reduced
interactions of the MMs, and an increased topological gap A,. Experimentally,
this could be achieved in numerous ways. A different superconducting host
might yield larger spin-orbit coupling in the chains, heavy-metal interlayers
are known to enhance spin-orbit coupling, and there are also proposals for
synthetic spin-orbit interactions [8, B1], 196, 197]. The presented results mark
a milestone in the quest for the experimental realization of isolated Majorana
zero modes, but also demonstrate the importance of a large topological gap A,
for realizing strongly protected Majorana modes, which adds a constraint on

future experiments.
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Chapter 7

Machida-Shibata States in
Ag Corrals on a Ag Island with

Proximity-Induced Superconductiv-
ity from Bulk Nb

In this chapter, we focus on tight-binding models that assist the understanding
of experimental findings on Ag corrals on Ag islands on bulk Nb [4]. Parts of
the material presented in this section are published in the article [4]:

Lucas Schneider, Khai That-To6n, Ioannis loannidis, Jannis Neuhaus-
Steinmetz, Thore Posske, Roland Wiesendanger, and Jens Wiebe

Prozimity superconductivity in atom-by-atom crafted quantum dots
Nature 621, pages 60-65 - Published 16 August 2023

Reproduced with permission from Springer Nature.

We begin by briefly summarizing the experimental findings in Sec. [7.1] Then,
in Sec. [7.2] we focus on a simple tight-binding model with a single impurity
to qualitatively reproduce the central experimental finding. After that, in
Sec. |7.3, we move to a 3D model that correctly resembles the geometry of the

experiment. Lastly, we summarize our results and provide an outlook for future
research in Sec. [.4

Work Sharing

The experimental measurements in this chapter were done by Lucas Schneider

and Khai That-Ton. I performed the tight-binding calculations presented in
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this chapter. The original publication [4] also contains calculations done by

Ioannis Ioannidis and Dr. Thore Posske, which are not shown here.

7.1 Experimental Results

Here, we summarize the experimental results to provide context for the calcu-
lations done in the following sections. In the experiment, thin Ag(111) islands
with a thickness of 12 nm are grown on bulk Nb(110) as depicted in Fig.[7.1] (a).
On top of these islands, rectangular walls made out of Ag adatoms are con-
structed using the tip of an STM as a tool as depicted in Fig. (c) and (d).
The system is investigated with scanning tunneling microscopy and scanning
tunneling spectroscopy (see Sec. . For the measurement, a superconducting
Nb tip is used to enhance the energy resolution. This causes a shift in spectral
features to higher energies of the superconducting gap Ay, of the tip. Thus,
states at the sample’s Fermi energy Ep are found at a bias voltage e-V' = £Ay;p.
The islands are about da, = 12 nm thick and the proximity to the supercon-
ducting Nb(110) opens a SC gap of 2A; = 2.7 meV in the bulk Ag(111). On
top of the Ag(111) islands, surface electrons are scattered, forming a visible
wavy pattern with a wavelength of a few lattice constants. These surface elec-
trons are laterally confined by the wall of Ag atoms to a corral mode, which
we refer to as a quantum dot (QD), here. Within these walls, spin degenerate
eigenmodes of energy F are found, which can be pitched by adjusting the size
of the Ag box. In this experiment the size adjustment is done by keeping the
width L, = 9.1 nm fixed while tuning the length L, by pushing one of the
walls inwards using the STM tip as depicted in Fig. (c,d). The eigenmodes

are mapped in Fig. (e) by measuring the differential tunneling conductance
dr
av
resemble the eigenmodes of a 2D rectangular box potential with infinite walls.

(x,y, E) at particular bias voltages e-V = E. The resulting patterns closely

As L, is changed, the confinement conditions of the eigenmodes change, caus-
ing a shift in the eigenenergies of the QD. When shortening the box from 24 nm
to 16.4 nm, individual states are shifted to higher energies, and the linewidth
I of the eigenmodes, and thus their coupling V; o v/T to the bulk SC electrons
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Figure 7.1: Experimental setup. (a) 3D rendering of the constant-current
STM topography of a Ag island with a thickness of 12 nm, where the simulta-
neously measured d/ /dV signal is used as the texture of the model. (b) Sketch
of the experimental setup with the QD walls laterally confining the surface-
state electrons into QD eigenmode energies F,.. The eigenmodes couple to the
SC substrate A, with a coupling strength V o V/T. (c) Constant-current STM
image of a rectangular QD with side lengths L, and L, consisting of 44 atoms.
(d) Constant-current STM image of the same structure with one of the walls
moved as indicated by the arrow. (e) Constant-height dI/dV maps at bias
voltages indicated in the respective panels, measured in the interior of the QD
in panel (d) (area marked by the dashed yellow line). All panels are 15 x 7.5

nm? in size.

increases. This is a well-known effect caused by an increase in surface-bulk
scattering because of the smaller corral [86, 198]. By further tuning L., these
effects are used to continuously push the QD eigenmodes with different cou-
plings V. through Fr. When measuring the d//dV spectrum, as shown in
Fig.[7.2| (a), at the spatial position of a minima of a low energy eigenmode, i.e.,
an eigenmode close to Er (gray cross in Fig. [7.1] (e)), sharp peaks are observed

at bias voltages at e - V = £(A; + Ayp), and an absence of conductance at

lower energies confirms that the bulk gap of Ag(111) is fully developed. When
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Figure 7.2: In-gap states of near-zero-energy pitched QD eigenmodes.
(a) dI/dV spectra measured at two different positions (gray and blue crosses
in Fig. (e). The values of the tip’s superconducting gap £4,; and the sum
(A; + Ag) with the proximity-induced Ag bulk gap Ay are marked by dashed
orange and purple lines, respectively. In-gap states with energies +(A; + €4)
are marked by black arrows. (b) Evolution of averaged dI/dV spectra from
dZ/dV line profiles measured along the central vertical axis (dashed orange
line in Fig. (c,d)) of differently sized QDs as a function of L,. The dashed
white lines mark the evolution of eigenmodes with n, = 1 and n, = {1,2,3,4}
obtained from fitting the d7/dV spectra at energies outside the gap [4]. The
blue arrow marks the length of the QD used in (a). (c) Linewidths I" of different
QD eigenmodes extracted from fitting data from different QDs to Lorentzian
peaks at energies outside the gap [4], which are compared with the minimal
energies of in-gap states found when E, ~ 0 (error bars are the standard
deviations extracted from fitting the data). The dashed gray line shows the
expected theoretical relation for a spin-degenerate level coupled to a SC bath
[89].

measuring the d//dV spectrum on a maximum of the QD eigenmode closest
to Er (blue cross in Fig. (e)), a pair of sharp electronic states is found
at particle-hole symmetric energies (A, + €4 ) between the coherence peaks.
Fig. (b) shows the spectra of eigenmodes with respect to L,. Eigenmodes
with quantum numbers [n,, 1] follow well-known L_? behavior outside of the
superconducting gap. The peaks at +(Ag + Ayip) remain the same for all L,.

In-gap states of varying energies £(Ay,+€4 ) appear whenever a QD eigenmode
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energy F, approaches Er. We observe the lowest . (i.e. in-gap state furthest
into the gap) when F, would cross FEf if extrapolated from outside the gap.
We take this minimum value €,,;, and compare it with the estimated energetic
broadening I' outside of the gap in Fig. (c), which shows that the I' of the
eigenmodes closest to Fr decreases with increased QD size, as n, relates to
the QD size. As one of the main experimental results, this experiment shows a
clear correlation between €, and I' oc V2. Thus, for increased couplings I' of
a zero-energy eigenmode to the substrate SC, ey, is shifted towards the gap
edge As.

The observation of these in-gap states is surprising. Usually one would
expect in-gap states to either stem from magnetic atoms or unconventional
superconductivity. Ag is a non-magnetic material, Nb is a conventional super-
conductor, and the proximity effect induced in a normal metal with negligible
spin-orbit coupling is not expected to cause unconventional pairing. But the-
oretically, it has been shown in 1972 by Machida and Shibata that there is
always a sub-gap solution for a spin-degenerate level coupled to a supercon-
ducting bath due to resonance scattering [89) [119]. Machida and Shibata used

the Hamiltonian

H = Z GECTIZ,UCE70+Z Vc(cggdg—i-dir —l—ZE d de—Ag Z cx chki ~¢c,;7T),

(7.1)
where ¢;; , (cﬁ ) and dy (dl) are the annihilation(creation) operators of the su-
perconductlng bath electrons and the localized level with spin o, respectively.
€;; denotes the normal electronic dispersion of the superconductor, V. o VT
is the coupling strength of the localized level to the bath, and Ay is the or-
der parameter of the s-wave superconductivity in the bath. They showed that
there is always an Andreev bound state at in-gap energies for non-vanishing
V.. In the following, we refer to this special kind of Andreev bound states
as Machida-Shibata states (MSSs). MSSs have not been observed previously,
mostly because they are expected to be found very close to the coherence peaks,
rendering it impossible to be experimentally detected. In the system at hand
though, the coupling of the surface is so small that the MSSs move far enough

into the gap to be distinguishable from the coherence peaks.
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For the particle-hole-mixing, we find that maximal particle-hole mixing
is achieved exactly when €1 = €y;,. This further supports that €,;, can be
interpreted as proximity-induced superconducting pairing Aj,q in the QD res-
onance level. Moving away from €., by either increasing or decreasing L,
lowers particle-hole mixing.

In Ag on Ag(111) on Nb(110), we find a negligible electron-electron inter-
action energy U, U < Ay ~ I' < §E, with dE, being the energy separation
of the QD eigenmodes, due to electron-electron interactions being largely sup-
pressed by screening in metallic QDs. Thus, the QD can be described by
spin-degenerate single-particle eigenmodes and we can reasonably model the

system with a spin-degenerate single-particle tight-binding model.

7.2 Replicating Machida-Shibata States with a
Single Quantum Dot

In this section, we gain a first understanding of the experiment by qualita-
tively reproducing non-magnetic in-gap states in a geometrically simplified
tight-binding model. We model a triangular monolayer SC with 20 x 20 atoms
and a single quantum dot (or adatom) connected to three surface atoms in the
middle, like for a hollow-site adsorption. This quantum dot represents a surface
state inside of the corral. It is coupled to the SC layer with a hopping term
tqp that is weaker than the intralayer hopping ¢, and its chemical potential
fqp is varied, representing the change in eigenenergies of the particle-in-a-box
state by changing the size of the box. For the monolayer, we use a chemical
potential of ;1 = 0. For the quantum dot, we scan the chemical potential pqp
through energies close to the Fermi energy Er = 0. We use a gap of A = 0.5¢,
which is significantly larger than in the experiments to account for the limited

energy resolution caused by the small bulk. The employed Hamiltonians are

Hevfoce = Z 5;(—#7'2(70 + A7,00)C + Z E;-T(tTZUO)E;H +h.c (7.2)

i 2
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for the surface and

Hqop = E;(TQD<—,U,QDTZO'0)EQD + Z EiT(tQDTZUO>5QD +h.c (7.3)
1€QD’s n.n.

for the quantum dot and its coupling to the SC monolayer with the basis
G = (¢, Ciys cjv, b c;T)T, and the Pauli matrices 7 and ¢ connecting particle-
hole and spin space, respectively. The sum in Eq. runs over the nearest
neighbors of the QD in the surface.

In Fig.[7.3] the spectrum with respect to the chemical potential of the quan-
tum dot pqgp is shown for different coupling strengths tqp. For tqp = 0.3¢,
we find a good agreement with the experimental results. This demonstrates
that in-gap states can indeed be found without magnetic adatoms as predicted
by Machida and Shibata [89]. We observe an anti-crossing behavior close to
tqp = Er and find a proximity-induced gap in the QD state. Like in the ex-
periment, we find maximal particle-hole mixing when E = FE,,;,. The multiple
states experimentally found in a single corral cannot be represented by a single
QD, as it does not have multiple eigenmodes like the particle-in-a-box states
found in the experiment. For strong coupling, the in-gap state is energetically
very close to the coherence peak of the superconducting bulk.

While this model is extremely simplified compared to the experiments, it
still demonstrates that sharp in-gap states can be produced by non-magnetic
adatoms. Similar findings have been made by Machida and Shibata [89], who
predicted these kinds of in-gap states but also predicted that they are invisible
in experimental settings due to large couplings to the bulk causing them to be

too close to the SC peaks to be measurable.
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Figure 7.3: Energy spectrum of a single quantum dot. The color denotes
the density of states with respect to the energy F and the chemical potential
of the QD pqp for different coupling strength between the QD and the surface
tqp as denoted at the top of each panel. The DOS is summed over (a) all sites
of the system and (b) only considering the QD. The color intensity in (b) is
five times higher than in (a) for better readability. The DOS is also calculated
only considering electronic states, i.e., discarding hole states.
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7.3 Geometrically Correct Model for Ag on Ag

Next, we introduce a geometrically correct model of the experiment at hand.
We employ a 3D tight-binding model following the sketch in Fig. (a). We
have one superconducting triangular lattice layer (dark gray), modeling the
SC substrate with 150 x 150 sites and a lattice constant of a = 0.25 nm.
On top of that, another triangular lattice of normal conducting sites with
no intrinsic superconducting pairing (light gray) is placed, representing the
Ag(111) surface states, also with 150 x 150 sites, with each atom being placed
on hollow-sites of the underlying layer. On top of the surface layer, a rectangle
of non-magnetic adatoms (dark blue) is arranged, representing the Ag adatoms
of the experimental setup. The dimensions of the box are described by L, x L,
and the adatoms are chosen to occupy the nearest hollow-adsorption sites along
the rim of the rectangle. The SC layer is weakly coupled to the surface layer
by a hopping term ty. s (blue lines). Other than that, all nearest neighbors
are coupled by the same hopping strength, including the hopping between the
adatoms and the surface layer.

Our tight-binding model is described by the Hamiltonian
H = Hsc + Hss + Had + Hsc—ss + Had—ss (74>
with

H,. = Z CI(_MSCTZUO + AgeTp00)C + Z (Cj(_tscTzaO)Cj + h-C-) (7.5)

isc <isc 7jsc>

for the SC layer,

Hy = Z Cj(—ﬂsstag)ci + Z (CI(—tSSTZUO)Cj + h.c.) (7.6)

Isurface <7:ss 7,jss>

for the surface state layer,

Hy o = Z CI(—tSC_SSTZO'O)Cj + h.c. (7.7)

<isc 7jss>
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for the coupling between the SC and the surface state layer,

ad - Z C; /J/adeo'O C; (78>

tad

for the onsite potential of the adatoms, and

H,ogos = Z cj(—tsstao)cj + h.c. (7.9)

<iad 7jss>

for the coupling between the adatoms and the surface. The employed basis is

the Nambu spinor ¢ = (¢4, ¢y, ch, CZT)T, where c;rﬂ

and ¢;, are creation and
annihilation operators of fermionic states with spin ¢ at site 7. Summation over
nearest neighbor sites is indicated by (7, j). The variables of the system are the
chemical potential u, the hopping strength ¢, and the superconducting order
parameter A with the indices sc, ss, and ad to denote the respective layer.
Attached to an index i, these indices denote the summation over the sites of
the respective layer. The Pauli matrices 7,, and o, operate in particle-hole-
and spin-space, respectively, and are connected by a Kronecker product. The
Hamiltonian is built using kwant [172].

To calculate the energy-dependent local density of states LDOS(FE, x) around
the Fermi edge, we calculate the 2200 eigenvalues and eigenvectors of H closest
to the Fermi edge with a sparse matrix solver. To simulate thermal broaden-

ing present in the experiment, we sum over the pairs of eigenvalues F, and

eigenvectors W,

LDOS(E, z) Z\qf ()] 26~ (B=EBn)*/GBunorma)? (7.10)

with 0 Fipermal = 0.025 Ag.. From this, we calculate the DOS of the surface
state by summing over the surface layer sites within the rectangle which are at

least three sites away from the rectangle.
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Figure 7.4: Tight-binding modeling of proximity-induced pairing in
QDs. (a) Sketch of the geometry of the tight-binding model for Ag corrals
on Ag islands on superconducting Nb. Each sphere represents one atomic site.
While the SC layer features finite SC pairing terms, the surface state layer
is a normal metal. Pairing in the surface state layer is proximity-induced via
coupling t.. ss between the layers (indicated by blue lines). The QD is built by
scattering sites on the surface aligned in a rectangular geometry of length L,
and width L,. (b,c) Evolution of the energy-dependent DOS evaluated within
the QD for varying length L, and fixed width L, of 7.5 nm (30 sites) for (b)
zero coupling to the SC layer and (c) finite coupling ts.s = 0.034 ¢4 to the SC
layer. (d) Spatially resolved LDOS patterns in the surface state layer evaluated
at in-gap energies and integrated over the energy ranges as indicated above the
two panels for QDs of 25 x 30 (6.25 x 7.5 nm?) in the left panel and 40 x 30
sites (10.0 x 7.5 nm?) in the right panel (again t,.s = 0.034t). The frame
colors of the panels correspond to the solid ellipses in panel (c), highlighting
which of these eigenstates are shown. (e) Spatially resolved LDOS at energies
outside the superconducting gap (integrated from —2.00 Ag to —1.12 Ay) for
zero coupling (left panel) and finite coupling (right panel) to the SC layer. The
frame colors of the panels correspond to dashed ellipses in panels (b) and (c).

Adjusting Parameters

We need to find a set of parameters that reproduces the experimental data.
First, we set t,, = 1 as our unit of energy without loss of generality. Later, we

estimate the value of ti in eV from the experimental data to make it more acces-
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sible. In the experiment, a Fermi wavevector of kr ~ 0.57/nm has been found
with a Fourier transformation of a spectroscopic line profile on the Ag(111)
island. Using periodic boundaries in Hg, we can calculate the respective band
structure of the surface layer. We adjust s to reproduce the Fermi wavevector
of the experiment as a starting point for ue. Then we use a finite-size model
with a single adatom as a disturbance. In that model, we adjust s to re-
produce the same surface wavelength as in the experiment, using experimental
data of a single Ag adatom on Ag(111). This results in pg = —5.95 .

To relate tg to natural units of energy, we calculate the band structure again.
In the experiment, a band bottom of -55 meV has been found, which corre-
sponds to the band bottom of 0.05ts in our model. Thus, we can estimate
tss = 1.1 eV and pg = —6.545 eV.

For p,q we choose a value that is multiple ts away from pg. We find that the
specific value of p,q bears very little difference as long as it is different enough
from g to be a disturbance. We choose pgs = —0.11 €V.

For the superconducting order parameter, we choose Ay, = 25 meV, which is
roughly 10 times larger than in the experiment. This is done to account for the
limited energy resolution caused by the limited size of the bulk in the tight-
binding model, which results in a limited number of eigenvalues. If the gap
was not chosen larger than in the experiment, one would need a much larger
tight-binding system to resolve the gap. As our system already requires us to
solve matrices of roughly 180000 x 180000 in size, it would not be reasonable
to further increase the system size by another order of magnitude. For the SC
layer, we choose to use the same values for ¢t and p as in the surface state layer.

Summarizing the above, the full list of parameters is

tse =t =116V, paq=—0.11 €V,

(7.11)
lse = Hss = —6.545 eV, Ay = 25 meV.

Discussion of the Results

The energy-dependent DOS evaluated inside of the QD for varying L, with
a fixed L, = 30 sites (= 7.5 nm) is shown in Fig. (b), where we set the
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coupling to the SC layer to zero in order to clearly resolve the QD’s eigenmodes.
The eigenmodes follow the well-known L_? trend through the Fermi energy Ep
as a function of the length of the QD. When a small coupling to the SC layer
is added (Fig. [7.4] (c)), the eigenmodes acquire particle-hole mixing and show
an anticrossing behavior close to Er. This shows that the QD’s eigenmodes
acquire superconducting pairing with an induced superconducting gap. Within
the 3D tight-binding model, we are additionally able to depict the spatial
distribution of the QD’s eigenstates. Two examples for the LDOS in QDs of
different lengths (L, = 25 sites and L, = 40 sites, corresponding to 6.25 nm
and 10.0 nm, respectively) are shown in Fig. [7.4] (d), where the energy is
integrated over an energy window centered around the respective eigenenergies
of the QD’s eigenmodes as indicated above the panels. Here, the eigenmodes
of the QD are clearly visible.

It can also be shown that level broadening manifests in the tight-binding
model. When the coupling to the SC layer is set to zero ts.ss = 0, the
[N, ny] = [1,1] eigenmode in a corral of 25 x 30 sites only has a non-zero
spectral density at in-gap energies (Fig. [7.4] (b)), but not at energies outside
of the gap. Fig. [7.4] (e) shows the integrated LDOS outside of the SC gap
integrated from —2.00 Ag to —1.12 A for ts.ss = 0 and t4.ss = 0.034 1. For
zero coupling, this integrated LDOS is zero inside of the QD, showing that
the states are energetically sharp. For non-zero coupling (Fig. [7.4] (e), right
panel), this LDOS is non-zero and shows the same shape inside the QD as in
the case of integrating over energies close to the eigenenergy (Fig. ﬂ (d), left
panel). This shows that the energy of the QD eigenmodes is broadened by the
coupling to the superconducting host, which is in agreement with the interpre-
tation of the experimental results that the original eigenmode is broadened by
finite coupling to a host (Fig. |7.2| (¢c) showing the coexistence of sharp MSSs

and the broader resonance level outside of the gap).
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7.4 Conclusions and Outlook

The experimental observations of MSSs invalidate the idea that an appearance
of sharp in-gap states in STM experiments on superconductors must stem from
either magnetic impurities [119, T90] or unconventional SC pairing [199, 200].
The sharp linewidth I' found here can be understood as a consequence of neg-
ligible scattering into the gapped bulk states. The energy of MSSs depend on
the ratio of I' and A,. For single-atomic impurities in experiments, this ratio
is I'/Ay > 1, which causes the bound states to be very close to the coherence
peaks of the bulk SC, which makes them hardly detectable. The linewidth of
the eigenmodes studied here are of similar magnitude as the SC gap, causing
low-energy states to be well split off from the coherence peaks, marking the
first experimental confirmation of these spin-degenerate Andreev bound states
50 years after they have been predicted by Machida and Shibata [89]. The
strongest coupling is observed for the narrowest QD, when scattering of the
walls is maximal, which has previously been speculated [78] [79]. As I" can be
controlled by tuning L,, the induced gap A;,q is tunable as well. The exper-
imentally observed peaks behave like Bogoliubov excitations, carrying a frac-
tional charge which lays the groundwork for potentially studying quasiparticles
with fractional charge on the atomic scale. The concept of impurity-supported
proximity-induced Cooper pairing could be helpful to induce superconductivity
into arbitrary surface states, potentially combined with non-trivial topology,
creating a potential pathway to unconventional SCs and Majorana bound states
[201]. Building patterns in the surface states of (111) noble-metal surfaces by
precise positioning of scattering centers has evolved to one of the most promis-
ing platforms in the direction of artificial lattices. These systems have shown to
host Dirac fermions [202, 203], flat bands [I58| 204 205], wave-functions in frac-
tal geometries [206] and topological non-trivial states [205], 207]. Our results
facilitate studying interactions of these exotic phenomena with SC pairing in a
simple and tunable platform. Additionally, it would be interesting to move to
a platform with reduced screening, potentially enabling atomic-scale studies of

the crossover from spin-degenerate to spinful QDs coupled to superconductors.
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Chapter 8

Conclusions and Outlook

In this thesis, we studied various magnetic systems on top of superconductors
in one- and two-dimensional systems. Additionally, we provided theoretical
support to experiments which discovered precursors of Majorana zero modes
in chains on clean superconductors and Machida Shiba states. In the following,
we go through these projects individually, highlighting the most important re-
sults and providing outlooks for future research.

We numerically determine the magnetic ground states of a tight-binding model
for one-dimensional chains with magnetism and proximity-induced s-wave su-
perconductivity, which are typical ingredients for the experimental realization
of Majorana zero modes [§]. We do so without any limiting a priori assump-
tions about the magnetic states and find a much richer magnetic phase space
than in previous results [24 25 27, 28|, identifying complex collinear and non-
collinear states. Analyzing the topological electronic phases, we find that the
model can only host Majorana zero modes self-consistently in the harmonic
spiral regime, which is smaller than previously believed for small and medium
values of the superconducting order parameter. Additionally, we find that the
length of the chain can crucially influence the magnetic ground state due to
finite-size effects, potentially determining whether the system hosts Majorana
zero modes. This effect is most prominent on chain lengths on the order of
tens of atoms, i.e., the chain length typically used in experiments on atomic
spin chains on superconductors [3].

Furthermore, we present a new approximative and computationally efficient
method to identify the magnetic ground states of tight-binding models by fit-
ting a potentially complex classical spin model. This method is not only orders

of magnitudes more efficient than performing the Monte-Carlo simulations di-
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rectly in the tight-binding model, but also grants insights into the driving
magnetic forces by producing a classical model for the system’s magnetism.
Using this method, we reproduce the previous results in order to demonstrate
its effectiveness and reliability.
We proceed to apply this new method to a two-dimensional square lattice with
periodic boundary conditions. We fully characterize the magnetic phase dia-
gram of a 2D model featuring superconductivity, Rashba spin-orbit coupling,
magnetism, and an external magnetic field. In doing so, we find a surprisingly
rich phase diagram that features 2q-spin-spirals, skyrmions, superpositions of
an AFM with a spiral of characteristic angle for RSO coupling, and a 2x2-
pattern next to the usual ferromagnetic, checkerboard anti-ferromagnetic, row-
wise anti-ferromagnetic, spin-spiral, and anti-ferromagnetic-spin spiral states.
Since chiral structures are promising candidates for non-trivial electronic topo-
logical states |35, [183HI85], it would be interesting to analyze the electronic
topological structure of this system in future research.
Our results on the magnetic ground states of one- and two-dimensional systems
facilitate experiments on spin-polarized tunneling spectroscopy, since knowl-
edge about the structure of expectable magnetic states helps in identifying
magnetic states experimentally. Our new method of identifying the magnetic
ground states of tight-binding models allows us to explore the magnetism of
highly complex tight-binding models. As long as the complete eigenvalue prob-
lem of the tight-binding system can be solved within reasonable computation
times, this method can be used to approximate the magnetic ground state,
capturing complex magnetic behaviors that might be lost in more limited ap-
proximations. The method is especially efficient when only a portion of the
system is magnetic. This invites future researchers to apply it to magnetic
chains, islands or complex adatom arrays on superconducting substrates, us-
ing three-dimensional tight-binding models that resemble actual experimental
setups that might potentially host Majorana zero modes.

We create a tight-binding model in support of the first experiment that
shows the simultaneous measurement of zero-bias peaks in a hard SC gap on
both ends of defect-free chains, marking a major milestone in the quest for

Majorana zero modes. With our calculations, we show that the hybridizing
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low-energy states are expected to evolve into isolated Majorana zero modes for
long chains. We could also identify a critical chain length and show that it is
heavily influenced by the precise value of the Rashba spin-orbit coupling, sug-
gesting that enhancing the RSO coupling would lead to further improvements
in the localization, reduced interactions of the MMs and an increase in the
topological gap A,. There are numerous ways to achieve this experimentally,
for example, with a different SC host, heavy-metal interlayers, or synthetic
spin-orbit interactions [8, 31, 196 197], prompting further experiments into
this direction.

In support of another experiment that was the first measurement of what
we call Machida-Shibata states and proof of a 50 years old theoretical pre-
diction of spin-degenerate Andreev bound state by Machida and Shibata [89],
we replicate the experimental results in a geometrically correct tight-binding
model. Moreover, this is the first time that energetically sharp non-magnetic
in-gap states in the gap of an s-wave superconductor have been measured.
Within our model, we could show that the quantum dot’s eigenmodes acquire
superconducting pairing with an induced superconducting gap. The concept
of impurity-supported proximity-induced Cooper pairing could be helpful to
induce superconductivity into arbitrary surface states, possibly combined with
non-trivial topology, creating a potential pathway to unconventional supercon-
ductors and Majorana bound states [30, [78], 208, 209].
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