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Abstract

String theory compactifications generically predict the existence of a rich spectrum of axion-
like fields, the so-called Axiverse, whose masses and couplings are determined by the geometry
and flux structure of the compactification. In this thesis, we explore the cosmological and
phenomenological implications of such axions, combining insights from both Type IIB orientifold
and heterotic E8 ⇥ E8 Calabi-Yau compactifications.

We initiate the characterization of the generic structure of the heterotic axiverse, mapping the
axion mass spectrum and the e↵ective couplings of axions to gauge fields. This analysis reveals
model-independent constraints on their role in solving the strong CP problem, contributing to
dark matter, and mediating hidden-visible sector interactions.

We further investigate inflationary scenarios where spectator axions couple to hidden gauge sec-
tors via Chern-Simons interactions, leading to distinctive multi-peak features in the scalar and
tensor spectra. We study axion-gauge field models with transient fast-roll phases, showing how
they can enhance spectral distortions while satisfying large-scale CMB bounds, and identifying
the challenges of controlling such dynamics in non-Abelian scenarios. These models can pro-
duce a “gravitational-wave forest” spanning several decades in frequency, with the nHz band
potentially explaining recent pulsar timing array signals. We analyze the complementary role of
CMB spectral distortions in constraining the scalar sector, and identify the details of the string
theory compactification that naturally realize the required couplings in the string landscape.

Finally, we examine non-perturbative dynamics in the early universe, focusing on axion produc-
tion via parametric resonance during preheating in string inflation models. Kinetic couplings
and moduli-dependent masses lead to generalized Mathieu equations, enabling e�cient produc-
tion of heavy axions that can overclose the universe unless inflationary parameters are suitably
constrained.

Taken together, these results demonstrate how string theory provides a natural framework for
embedding rich axion sectors, and how their cosmological dynamics o↵er unique observational
windows, from gravitational waves to spectral distortions, into the high-energy physics of the
early universe.
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Zusammenfassung

Die Kompaktifizierungen der Stringtheorie sagen im Allgemeinen die Existenz eines reichen
Spektrums axionähnlicher Felder – des sogenannten Axiversums – voraus, deren Massen und
Kopplungen durch die Geometrie und die Flussstruktur der Kompaktifizierung bestimmt werden.
In dieser Arbeit untersuchen wir die kosmologischen und phänomenologischen Implikationen
solcher Axionen und kombinieren Erkenntnisse sowohl aus Typ-IIB-Orientifolds als auch aus
heterotischen E8 ⇥ E8-Calabi-Yau-Kompaktifizierungen.

Wir beginnen mit der Charakterisierung der generischen Struktur des heterotischen Axiversums,
indem wir das Axion-Massenspektrum sowie die e↵ektiven Kopplungen der Axionen an Eich-
felder abbilden. Diese Analyse liefert modellunabhängige Einschränkungen hinsichtlich ihrer
Rolle bei der Lösung des starken CP-Problems, ihres Beitrags zur Dunklen Materie und ihrer
Vermittlung von Wechselwirkungen zwischen sichtbarem und verborgenem Sektor.

Weiterhin untersuchen wir Inflationsszenarien, in denen Spektatoraxionen über Chern-Simons-
Wechselwirkungen an verborgene Eichsektoren koppeln, was zu charakteristischen Mehrgipfel-
strukturen in den Skalar- und Tensor spektren führt. Wir analysieren Axion-Eichfeld-Modelle
mit transienten Fast-Roll-Phasen und zeigen, wie diese Spektralverzerrungen verstärken können,
während gleichzeitig großskalige CMB-Beschränkungen eingehalten werden, und identifizieren
die Herausforderungen bei der Kontrolle solcher Dynamiken in nichtabelschen Szenarien. Solche
Modelle können einen “Gravitationswellenwald” erzeugen, der sich über mehrere Größenord-
nungen in der Frequenz erstreckt und im nHz-Bereich möglicherweise aktuelle Signale von
Pulsartiming-Arrays erklären könnte. Wir analysieren die komplementäre Rolle von CMB-
Spektralverzerrungen bei der Einschränkung des Skalarsektors und identifizieren die Details
der Stringtheorie-Kompaktifizierung, die die erforderlichen Kopplungen im String-Landscape
auf natürliche Weise realisieren.

Abschließend betrachten wir nichtperturbative Dynamiken im frühen Universum, wobei wir
uns auf die Axionproduktion durch parametrische Resonanz während der Vorwärmephase in
String-Inflationsmodellen konzentrieren. Kinetische Kopplungen und modulabhängige Massen
führen zu verallgemeinerten Mathieu-Gleichungen, die eine e�ziente Produktion schwerer Ax-
ionen ermöglichen, welche das Universum überdichten könnten, sofern die Inflationsparameter
nicht entsprechend eingeschränkt werden. Zusammengefasst zeigen diese Ergebnisse, wie die
Stringtheorie einen natürlichen Rahmen zur Einbettung reicher Axionsektoren bereitstellt und
wie deren kosmologische Dynamik einzigartige Beobachtungsfenster, von Gravitationswellen bis
zu Spektralverzerrungem, in die Hochenergiephysik des frühen Universums erö↵net.
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Chapter 1

Introduction

Big questions often have small beginnings, sometimes as small as a string.

The largest scales in the universe, galaxies, clusters, and the cosmic web, are shaped by
physical processes that occurred at the tiniest length scales and at the highest energies
in the earliest moments after the Big Bang. This connection between the largest and
smallest is at the heart of modern theoretical physics: to understand the laws governing
the phenomena we explore nature at increasingly fundamental layers. This has led us to
smaller and smaller length scales, where the familiar picture of particles and forces gives
way to more abstract, but more unified, frameworks.

And yet, there is a limit to how closely we can look. Probing smaller length scales requires
ever higher energies, a principle that defines the domain of high-energy physics. Particle
colliders like the LHC act as microscopes, smashing particles together at extremely high
energies to break apart composite structures and reveal the fundamental ones. This
endeavor has culminated in the development of the Standard Model of particle physics,
a theory unifying three of the four fundamental forces, electromagnetism and the weak
and strong interactions, into a consistent quantum theory through the symmetry group
SU(3)⇥SU(2)⇥U(1)Y and mediated by particles known as gauge bosons. The discovery
of the Higgs boson confirmed the mechanism by which particles acquire mass and marked
a major triumph for the SM [1–4].

Gravity, the fourth fundamental interaction, is conceptually di↵erent. Rather than being
mediated by gauge bosons, it emerges from the geometry of spacetime itself. Formulated
by Einstein in 1915, general relativity has withstood a century of experimental scrutiny
and remains the accepted description of gravitational phenomena on large scales. How-
ever, attempts to incorporate gravity into a quantum framework, by treating it as me-
diated by a hypothetical graviton, leads to non-renormalizable divergent quantities. A
consistent quantum theory of gravity at this level does not seem required or feasible.

General relativity also lays the foundation for cosmology, i.e., the study of the origin of
the universe, its evolution, and its large-scale structure. The currently accepted cosmo-
logical model, known as ⇤CDM, is remarkably successful in explaining a broad range of
observations. It describes a Universe composed of roughly 5% ordinary matter, 25% cold
dark matter (CDM), and 70% dark energy (⇤), with dynamics governed by Einstein’s
equations. It accurately accounts for the primordial abundances of light elements, the
structure of the cosmic microwave background (CMB), and the accelerated expansion of

1



2 Chapter 1. Introduction

the Universe. A crucial component of this model is inflation [5–7], a brief epoch of ac-
celerated expansion in the early Universe, occurring around 10�36 to 10�32 seconds after
the Big Bang. Inflation addresses several puzzles of the standard cosmological model,
including the horizon, flatness, and monopole problems, and provides a mechanism for
generating the primordial perturbations that seeded cosmic structure and ultimately the
world we live in. These fluctuations, quantum in origin, were stretched to cosmic scales
and are imprinted in the CMB anisotropies we observe today.

Despite their remarkable successes, both the Standard Model and the ⇤CDM framework
have significant shortcomings. The Standard Model fails to explain the origin of neutrino
masses and the matter/antimatter asymmetry of the universe, and lacks a viable dark
matter candidate. ⇤CDM, while highly predictive, fails to account for the microscopic
nature of inflation and the nature of dark energy and dark matter. These unresolved
questions motivate the search for a more fundamental theory. Furthermore, the energy
scales relevant during inflation are expected to be near the grand unification or Planck
scale, regimes where all fundamental forces become comparable in strength and must be
treated on equal footing. Therefore, gravity needs to be quantized similarly to the other
three forces, motivating the need for a quantum theory of gravity.

Among the candidate frameworks, string theory stands out as one of the most promising.
It replaces point particles with one-dimensional objects, the strings, whose di↵erent vibra-
tional modes correspond to the spectrum of particles, including the graviton. It provides
a consistent ultraviolet (UV) completion of gravity and unifies all known interactions
within a single coherent theoretical structure. Moreover, string theory naturally incorpo-
rates many features of high-energy physics beyond the Standard Model: supersymmetry,
extra dimensions, gauge unification, and mechanisms for symmetry breaking [8–12].

Yet theoretical consistency alone is not su�cient as physical theories must be tested.
While particle accelerators such as the LHC have pushed the boundaries of terrestrial
experiments, they remain far from the energy scales characteristic of quantum gravity.
Indeed, colliders failed to observe supersymmetry, which was thought to be the smoking
gun of string theory. This calls for exploring energies not reachable by colliders.

Cosmology o↵ers a way forward. As the early universe is sensitive to extremely high en-
ergies, by observing the largest structures and oldest light in the cosmos we gain indirect
access to the physics governing the smallest scales. Then, cosmological observables can
be used to probe and drive theories that go well beyond known particle physics, an other-
wise impossible task with current collider technologies. This fundamental idea underlies
the field of string cosmology. String theory, as a candidate for a consistent ultraviolet
completion of gravity, is expected to leave imprints on cosmological observables. Con-
versely, precision cosmology provides a window into aspects of string theory that may be
otherwise inaccessible.

One of the most intriguing links between string theory and cosmology comes through
axions. Axions are particles originally introduced as a consistent way to explain the strong
CP (charge conjugation and parity) problem in quantum chromodynamics (QCD), i.e.,
the puzzling absence of CP violation in the strong interactions, despite it being allowed
by the QCD Lagrangian. Peccei and Quinn proposed a mechanism introducing a new
symmetry and a particle, the QCD axion, naturally cancelling the CP-violating term in
QCD [13]. Beyond their original motivation, axions have emerged as promising candidates
for dark matter. The QCD axion is produced non-thermally in the early universe via
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the misalignment mechanism, potentially accounting for the observed cold dark matter
abundance for decay constants in the appropriate range. More generally, theories beyond
the Standard Model, especially string theory, predict the existence of axion-like particles
(ALPs). These share the shift symmetry characteristic of the QCD axion, but not their
energy scale, often spanning many orders of magnitude. In this thesis, we will refer to
ALPs simply as axions.

String theory is formulated in spaces with dimension higher than the canonical four di-
mensional space-time. Axions arise naturally as lower dimensional fields upon compacti-
fication of the extra dimensions [14]. Their properties and their multiplicity are dictated
by the topological data of the compactification and their dynamics are encoded in the
e↵ective four-dimensional action. The result is the so-called string axiverse [15–19], a
landscape of axions with a broad spectrum of masses and decay constants. Many of
these fields can remain light over cosmological timescales, making them viable candidates
for dark matter or mediators of new forces. Others may have been active in the early
universe, sourcing observables such as isocurvature fluctuations or gravitational waves.

Experimental detection of even a single axion would constitute undeniable evidence of
new physics beyond the Standard Model. Observing more than one could point directly
to the structure of extra dimensions, providing empirical support for the string theoretic
origin of the Universe.

Outline

In this thesis we study the phenomenology of spectator string axions, by which we mean
a light axion present during inflation whose energy density is subdominant to that of
the inflaton, but which can nevertheless source scalar and tensor perturbations through
derivative or Chern–Simons couplings.

We review the basics of string phenomenology in chapter 2, with a focus on the intercon-
nection of string theory and cosmology. We emphasize inflation, where the relevant scales
approach those investigated by string theory, and review the basics of string compactifi-
cations and their 4D phenomenology.

We then review the type IIB string axiverse in chapter 3. The axiverse has been exten-
sively explored in type IIB settings, where many complexities, such as moduli stabilization,
have been addressed (even if not fully resolved) [20].

In chapter 4 we investigate axion physics in heterotic string compactifications, focus-
ing on the spectrum and couplings of both model-independent and model-dependent ax-
ions. Starting from the e↵ective four-dimensional theory, we analyse the kinetic structure,
Chern–Simons couplings, and non-perturbative potentials generated by gauge and stringy
instantons, including gaugino condensation and worldsheet e↵ects. We examine how ax-
ions acquire masses through these non-perturbative e↵ects and under what conditions
one linear combination remains su�ciently light and dominantly aligned with the QCD
direction to solve the strong CP problem. Particular attention is given to the alignment
of non-perturbative terms and the role of kinetic mixing, showing that successful axion
phenomenology in string compactifications depends not only on the presence of instanton
corrections, but also on their relative alignment in axion field space. These constraints
impose non-trivial requirements on the geometry and gauge-bundle data of the compact-
ification. We illustrate these features with explicit heterotic constructions on Calabi–Yau
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manifolds with h1,1 = 1, 2. These examples highlight how decay-constant hierarchies and
physical axion couplings can be engineered in principle, but also emphasize that achieving
a light axion typically requires additional structure. Upon diagonalizing the mass and
kinetic matrices, we extract the physical decay constants and recast the Chern–Simons
couplings in the mass basis, identifying the surviving light states and their coupling struc-
ture. Altogether, our results show that the heterotic axiverse provides a compelling yet
constrained setting for axion phenomenology: while multiple axions are generic, realizing
light axions, particularly those able to solve the strong CP problem or play a cosmological
role, is not automatic.

We next analyse spectator-axion inflation models in chapter 5, particularly those involv-
ing multiple axions coupled to Abelian gauge fields (MASA models). These scenarios
o↵er a rich phenomenology of sourced scalar and tensor fluctuations, leading to local-
ized features, peaks, in the power spectrum of primordial curvature perturbations and
gravitational waves. Crucially, they predict a correlated forest of signals across scales,
which can be probed by gravitational-wave observatories and cosmological surveys. We
study the impact of axion-induced scalar and tensor fluctuations on the CMB, especially
through spectral distortions. Our analysis reveals that in rolling-axion scenarios, scalar
perturbations often dominate the spectral-distortion signal and can already be constrained
by FIRAS data in certain parameter regimes. We provide explicit examples, including
both U(1) and SU(2) axion–gauge models, demonstrating how localized features in the
primordial spectra can shift distortions to observable scales. These results motivate a
multi-channel approach, where gravitational-wave and spectral-distortion measurements
work in tandem to constrain the underlying dynamics.

In chapter 6 we emphasize that, within string theory, realizing even a single visible
spectator-axion sector requires satisfying non-trivial consistency conditions, such as avoid-
ing Stückelberg masses, achieving su�ciently large Chern–Simons couplings (e.g. via
D7-brane magnetic flux), and maintaining tadpole cancellation. Nevertheless, viable con-
structions exist, especially in setups where odd-sector axions from C2 survive as specta-
tors, o↵ering a concrete path to test string theory through cosmological observations.

Finally, in chapter 7 we turn to the non-perturbative dynamics of axions during and
after inflation, focusing on particle production via parametric resonance in string-inspired
inflationary models. Using a framework inspired by fibre inflation, we show that the
exponential moduli dependence of axion masses leads to a modified version of resonance
dynamics governed by the Whittaker–Hill equation. This alters the usual criteria for
resonance and enhances the production of heavy axions, depending on the nature of their
coupling (kinetic versus instanton-induced). We classify the cosmological implications
into distinct regimes, including light relics contributing to dark radiation (�Ne↵), massive
dark-matter candidates, and decay products that contribute to the matter content of the
Universe. These findings highlight how even subleading stringy e↵ects, such as worldsheet
instantons, can control the viability of preheating and the production of cosmic axion
backgrounds.

In the last chapter, chapter 8, we present our conclusions, highlight open questions (and
those newly raised by our analysis), and propose research directions based on our findings.
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Chapter 2

Foundations of String Cosmology

This chapter reviews the key cosmological motivations for inflation and outlines the core
ingredients of string theory that will be relevant throughout this thesis. We begin with the
standard cosmological framework and the case for inflation, then introduce the structure
of string theory, including its compactifications, branes, and moduli. Finally, we sketch
how these elements give rise to inflationary models.

2.1 Early-Universe Cosmology

To understand the interplay between string theory and cosmology, we begin by review-
ing the key features of the standard cosmological model. In particular, we focus on the
large-scale dynamics of the Universe, its expansion history, and the evolution of perturba-
tions. In this section, we briefly review the standard cosmological model, focusing on the
Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetime and its evolution under dif-
ferent matter contents. We then turn to the shortcomings of the hot Big Bang scenario,
which are solved by a period of accelerated expansion known as inflation.

The evolution of our universe on large scales is successfully described by General Relativity
coupled to a nearly homogeneous and isotropic fluid. The dynamics are governed by
Einstein’s field equations,

Gµ⌫ = 8⇡GTµ⌫ , (2.1)

where Gµ⌫ = Rµ⌫ � 1

2
Rgµ⌫ is the Einstein tensor and Tµ⌫ the energy–momentum tensor.

Under the assumptions of spatial homogeneity and isotropy (cosmological principle), the
most general spacetime metric is the Friedmann–Lemâıtre–Robertson–Walker (FLRW)
metric:

ds2 = �dt2 + a2(t)


dr2

1� kr2
+ r2(d✓2 + sin2 ✓d�2)

�
, (2.2)

where a(t) is the scale factor and k denotes the spatial curvature. The corresponding
Einstein equations reduce to the Friedmann equations:

H2 =
8⇡G

3
⇢� k

a2
,

ä

a
= �4⇡G

3
(⇢+ 3p) ,

(2.3)

7
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with H = ȧ/a the Hubble parameter, and ⇢, p the total energy density and pressure,
respectively.

The evolution of ⇢ is governed by the continuity equation,

⇢̇+ 3H(⇢+ p) = 0 , (2.4)

which, under a constant equation of state p = w⇢, yields ⇢ / a�3(1+w). This leads to
power-law behaviors for the scale factor: a(t) / t2/3 during matter domination (w = 0)
and a(t) / t1/2 during radiation domination (w = 1/3). A cosmological constant (w =
�1) leads to exponential expansion: a(t) / eHt.

The spatial curvature is conveniently parametrized by the density parameter ⌦ ⌘ ⇢/⇢c,
where

⇢c =
3H2

8⇡G
(2.5)

is the critical density for a flat universe. The Friedmann equation then reads

⌦� 1 =
k

a2H2
, (2.6)

so that ⌦ = 1 corresponds to flat geometry, while ⌦ > 1 or ⌦ < 1 indicate closed or open
universes, respectively. Observations [21] show that today’s universe is spatially flat to
high precision: ⌦0 = 1.0007± 0.0037.

2.1.1 The Need for Inflation

While general relativity and the hot Big Bang model describe much of the Universe’s
history with remarkable precision, they do not explain the fine-tuning required for large-
scale homogeneity and spatial flatness. These shortcomings are naturally resolved by a
brief epoch of accelerated expansion, known as inflation. Here, we review the foundational
motivations for inflation from both theoretical and observational perspectives.

Flatness problem.

The deviation of ⌦ from 1 grows with time in decelerating universes, making the observed
near-flatness today highly unnatural without extreme fine-tuning of the initial conditions.
During accelerated expansion, however, ⌦ ! 1 dynamically. This makes inflation a
compelling solution.

Horizon problem.

In standard cosmology, causally disconnected regions of the cosmic microwave background
(CMB) appear to be in thermal equilibrium. The comoving particle horizon,

rh(t) =

Z
t

0

dt0

a(t0)
, (2.7)

is finite for a(t) / t↵ with ↵ < 1 (i.e., w > �1/3), which characterizes both radiation and
matter domination. This means many regions of the observable universe were never in
causal contact.
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Inflation, with ä > 0, leads to a decreasing comoving Hubble radius rH = (aH)�1, allowing
initially small, causally connected regions to grow and encompass the entire observable
universe.

To solve the horizon problem, inflation must last long enough to stretch the initial causal
patch to today’s horizon size. This condition requires at least N & 60 e-folds of expansion.

Monopole problem.

Grand Unified Theories generically predict heavy, stable relics such as magnetic monopoles,
which are overproduced at high temperatures (T ⇠ 1016 GeV). These relics are not ob-
served. Inflation solves this by diluting their number density to negligible levels and
suppressing their regeneration if reheating occurs below the GUT scale.

2.1.2 Dynamics of Inflation

Inflation is typically modeled as a quasi-de Sitter phase driven by a scalar field with
a slowly varying potential. In this section, we review the dynamics of inflationary ex-
pansion, focusing on the background evolution of the inflaton and its associated slow-roll
parameters. These concepts will be essential when we later discuss string-theoretic models
of inflation driven by moduli or axions.

Acceleration requires ä > 0, which from the second Friedmann equation implies

p < �1

3
⇢ . (2.8)

This condition can be realized by a scalar field ', the inflaton, whose equation of state
satisfies w < �1/3 when its potential energy dominates over its kinetic energy. While
many models have been proposed [22, 23], we restrict to single-field slow-roll inflation,
which captures the essential physics of inflationary dynamics.

The action for a real scalar field minimally coupled to gravity is

S =

Z
d4x

p
�g


M2

Pl

2
R +

1

2
gµ⌫@µ'@⌫'� V (')

�
. (2.9)

The corresponding energy–momentum tensor reads

Tµ⌫ = @µ'@⌫'� gµ⌫

✓
1

2
@�'@�'+ V (')

◆
. (2.10)

Assuming spatial homogeneity, the energy density and pressure are

⇢' =
1

2
'̇2 + V (') , p' =

1

2
'̇2 � V (') , (2.11)

and the equation of state becomes

w' =
p'
⇢'

=
1

2
'̇2 � V

1

2
'̇2 + V

< �1

3
if '̇2 ⌧ V . (2.12)

The equation of motion for ' in a FLRW background is

'̈+ 3H'̇+ V 0(') = 0 , (2.13)

where ()0 ⌘ @

@'
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Slow-Roll Approximation

Inflation requires the potential to dominate the energy density and to vary slowly. This
corresponds to the so-called slow-roll regime, characterized by the conditions

'̇2 ⌧ V (') , '̈⌧ 3H'̇ . (2.14)

Under these approximations, the dynamics simplify to

'̇ ' � V 0

3H
, H2 ' 8⇡G

3
V (') . (2.15)

We define the slow-roll parameters

" ⌘ � Ḣ

H2
' 1

16⇡G

✓
V 0

V

◆2

, (2.16)

⌘H ⌘ � '̈

H'̇
' ⌘V � " , with ⌘V =

V 00

3H2
. (2.17)

The slow-roll approximation holds as long as " ⌧ 1 and |⌘H | ⌧ 1, and inflation ends
when " ' 1.

The number of e-folds of inflation between a given time t and the end of inflation is

N =

Z
tend

t

H dt ' 8⇡G

Z
'

'end

V

V 0 d' , (2.18)

and must satisfy N & 60 in order to solve the flatness and horizon problems.

2.1.3 Primordial Fluctuations

Inflation not only solves horizon-scale problems but also provides a compelling origin for
the primordial inhomogeneities that seeded cosmic structure. Quantum fluctuations of
light fields during inflation are stretched to cosmological scales and imprinted as scalar and
tensor perturbations. These fluctuations form the basis of the temperature anisotropies
in the CMB and the large-scale structure observed today. Because they originated from
quantum e↵ects at high energies, their properties encode information about the early
universe, and potentially about UV completions.

Scalar (Curvature) Perturbations

We begin by considering scalar perturbations in single-field inflation. Expanding the
inflaton around its homogeneous background value,

'(~x, t) = '0(t) + �'(~x, t) , (2.19)

and linearizing the equation of motion in a flat FLRW background, we obtain:

�̈'+ 3H ˙�'� r2�'

a2
= �V 00('0)�' . (2.20)

We promote �' to a quantum field, expanded in Fourier modes:

�'̂(⌧, ~x) =
1

(2⇡)3

Z
d3k

h
uk(⌧) âk ei

~k·~x + u⇤
k
(⌧) â†

k
e�i~k·~x

i
, (2.21)
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where ⌧ is conformal time, and âk, â
†
k
are annihilation and creation operators satisfying

the standard commutation relations. The vacuum state |0i is defined by âk|0i = 0 for all
k.

The mode functions uk(⌧) obey the equation (where now the prime denotes the derivative
with respect to conformal time)

u00
k
+ 2Hu0

k
+

✓
k2 + a2

@2V

@'2
('0)

◆
uk = 0 , (2.22)

which in suitable gauges or variables (e.g., the Mukhanov–Sasaki variable) becomes sim-
pler.

In curved spacetime, there is no unique notion of vacuum. However, for modes well inside
the horizon (k � aH), spacetime locally resembles flat Minkowski space. The equivalence
principle then motivates choosing initial conditions for uk such that

uk(⌧) !
1p
2k

e�ik⌧ as � k⌧ ! 1 , (2.23)

which is known as the Bunch–Davies vacuum. This condition ensures that modes start
as positive-frequency fluctuations deep inside the horizon.

The quantum fluctuations of the inflaton are described statistically. For a free scalar field,
the two-point function in Fourier space is

h�'~k �'~k0i = (2⇡)3 �3(~k + ~k0)P�'(k) , (2.24)

where P�'(k) = |�'k|2 = |uk|2
a2

is the power spectrum of inflaton fluctuations. The dimen-
sionless power spectrum is defined as

�2

�'
(k) =

k3

2⇡2
P�'(k) , (2.25)

which represents the contribution to the variance per logarithmic interval in k.

To connect inflaton fluctuations to observables, we must consider gauge-invariant quan-
tities. One such variable is the comoving curvature perturbation:

⇣ =  + H
�'

'̇
, (2.26)

which remains constant on superhorizon scales for adiabatic perturbations. In the New-
tonian (longitudinal) gauge, the perturbed FLRW metric reads

ds2 = a2(⌧)
⇥
�(1 + 2�) d⌧2 + (1� 2 ) �ijdxidxj

⇤
, (2.27)

and in single-field inflation with no anisotropic stress, we have � =  .

Another useful expression for ⇣ is in terms of the density on uniform density hypersurfaces:

⇣ = ��� H
�⇢

⇢̇
. (2.28)

On superhorizon scales, ⇣ is conserved, enabling us to relate the curvature perturbation
at horizon exit during inflation to the energy density fluctuations at horizon re-entry:

⇣|
t
(1)
H

(k)
= ⇣|

t
(2)
H

(k)
, (2.29)
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with

� H
�'

'̇

����
t
(1)
H

(k)

=
1

4

�⇢�
⇢�

����
t
(2)
H

(k)

, (2.30)

where the right-hand side corresponds to the temperature fluctuations observed in the
CMB, since ⇢� / T 4.

The power spectrum of the curvature perturbation is defined via:

h⇣(~k) ⇣(~k0)i = (2⇡)3�3(~k + ~k0)P⇣(k) , �2

⇣
(k) =

k3

2⇡2
P⇣(k) . (2.31)

During slow-roll inflation, one finds the approximate relation:

�2

⇣
(k) '

✓
H2

2⇡'̇

◆2

' 1

24⇡2M4

Pl

V

"
, (2.32)

where " = 1

2
M2

Pl

⇣
V

0

V

⌘2
is the slow-roll parameter defined in the previous subsection.

Observations of the CMB temperature anisotropies suggest �2

⇣
⇠ 2 ⇥ 10�9, fixing the

overall scale of inflation.

Deviations from scale invariance are captured by the scalar spectral index:

ns � 1 ⌘
d ln�2

⇣

d ln k
= 2⌘V � 6" . (2.33)

Tensor (Gravitational Wave) Perturbations

Tensor perturbations hij describe a stochastic background of primordial gravitational
waves. The perturbed metric takes the form

ds2 = �dt2 + a2(t)(�ij + hij)dxidxj , (2.34)

with hij transverse and traceless.

These modes obey the wave equation

ḧij + 3Hḣij �
r2hij

a2
= 0 , (2.35)

identical in form to a massless scalar field in an expanding background.

The tensor power spectrum sourced during slow roll inflation is

�2

T (k) =
2

⇡2
H2

M2

Pl

✓
k

aH

◆�2"

, (2.36)

with spectral tilt

nT =
d ln�2

T

d ln k
= �2" . (2.37)

A detection of tensor modes would give a direct estimate of the Hubble scale during
inflation, H ⇠ E2

inf
/MPl, and hence of the energy scale of inflation Einf = V 1/4.

Observational constraints on �T are often stated in terms of the tensor-to-scalar ratio:

r =
�2

T

�2

⇣

= 16" . (2.38)
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Observational Constraints

The scalar power spectrum is often parametrized as

P⇣(k) = As

✓
k

k⇤

◆
ns�1

, (2.39)

with k⇤ a pivot scale. From Planck [21], the best-fit values are

As = (2.10± 0.03)⇥ 10�9 , (2.40)

ns = 0.9649± 0.0042 , (2.41)

indicating a nearly—but not exactly—scale-invariant spectrum. This deviation reflects
the slow evolution of the inflaton potential during inflation.

The tensor-to-scalar ratio is constrained by BICEP/Keck [24] to be

r < 0.036 (95% C.L.) . (2.42)

These measurements provide stringent constraints on inflationary models and their em-
bedding in high-energy frameworks. In particular, many string-theoretic models predict
specific relations between r, ns, and the inflationary energy scale.

Beyond Vacuum Fluctuations

The scalar and tensor perturbations discussed so far arise from vacuum fluctuations am-
plified by the background expansion. However, additional contributions can arise from
field or metric couplings during inflation. These are referred to as sourced perturbations.

For instance, if the inflaton couples to a gauge field via a Chern–Simons term, the amplified
vector field fluctuations can source additional scalar or tensor modes. These contributions
are non-Gaussian and scale-dependent, and provide a promising observational signature
for distinguishing between di↵erent high-energy models.

We will explore these e↵ects in more detail in later chapters, particularly in the context
of axion-like spectator fields coupled to gauge sectors.

2.2 Ingredients of the String Theory Framework

Cosmology and string theory address vastly di↵erent regimes: the former concerns the
largest observable scales in the universe, while the latter focuses on the microscopic ingre-
dients of quantum gravity. Yet, the early universe provides a unique setting in which these
domains intersect. Inflation, in particular, is believed to have occurred at energy scales
close to the GUT scale, and possibly even near the string scale. This makes inflationary
observables valuable probes of Planck-scale physics.

From a bottom-up perspective, the inflationary paradigm is formulated as an e↵ective
field theory. However, the nature of the inflaton, the origin of its potential, and the
mechanisms that ensure slow-roll conditions are all sensitive to UV physics. One promi-
nent example is the so-called ⌘-problem: Planck-suppressed corrections generically induce
large contributions to the inflaton potential, spoiling the slow-roll conditions unless spe-
cial symmetries or cancellations are invoked. This suggests that a consistent embedding of
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inflation requires a UV-complete theory, and string theory o↵ers the most well-developed
candidate.

In the reverse direction, cosmological data can act as a filter on the vast landscape of
string theory vacua. Requirements such as producing a viable inflationary phase, achiev-
ing successful reheating, and generating the correct spectrum of primordial perturbations
while ensuring a stable four-dimensional vacuum, constrain the structure of allowed com-
pactifications. String theory compactifications naturally give rise to numerous scalar
fields (e.g. moduli and axions) which are promising candidates for key cosmological roles.
These fields can drive inflation, constitute dark matter or dark radiation, and influence
reheating or structure formation. Their abundance motivates a top-down approach to
identifying distinctive dark sector signatures arising from string theory, and matching
them to observables.

In this section, we introduce the essential ingredients of string theory relevant to cos-
mology. These include the structure of 10d string theories and their interrelations via
dualities, the compactification of extra dimensions (typically on Calabi–Yau manifolds),
and the emergence of branes, fluxes, and moduli fields. We then turn to mechanisms of
moduli stabilization such as the KKLT and Large Volume Scenarios. We will use notation
and concepts which are summarized in Appendix A.1

2.2.1 String Theories

String theory proposes that the fundamental building blocks of nature are not point par-
ticles but one-dimensional extended objects: strings. As a string propagates through
spacetime, it traces out a two-dimensional surface called worldsheet. The classical dy-
namics are governed by the Nambu-Goto action, proportional to the area of this surface
A:

S = T ⇥ A = �T

Z
d2�

p
� deth↵� , (2.43)

where h↵� = @↵Xµ@�X⌫⌘µ⌫ is the induced metric on the worldsheet, The string tension
T is given by

T =
1

2⇡↵0 = m2

s =
1

`2s
, (2.44)

where `s is the string length and ms the string scale. Although typically near the Planck
scale, `Pl ⇠ 10�33 cm, it can be lower in specific compactifications.

Upon quantization, a closed string exhibits an infinite tower of excitations with masses
spaced by the string scale:

M2

m2
s

= �1, 0, 1, 2, . . . (2.45)

The lowest-lying massless modes include the graviton gµ⌫ , an antisymmetric two-form
bµ⌫ , and the dilaton �, while the presence of a tachyon in the M2 = �m2

s state signals
an instability in bosonic string theory. A consistent vacuum requires a supersymmetric
extension to remove this instability and to ensure anomaly cancellation.

Introducing supersymmetry on the worldsheet leads to superstring theory, which is con-
sistent only in ten spacetime dimensions. There are five of such theories:

• Type IIA: oriented closed strings, non-chiral;

• Type IIB: oriented closed strings, chiral;
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• Type I: unoriented open and closed strings;

• Heterotic SO(32) and Heterotic E8 ⇥ E8: hybrid constructions with closed
strings whose left- and right-movers obey di↵erent constraints.

Although these theories were initially viewed as distinct, they are now known to be
connected through a rich network of dualities:

• T-duality exchanges momentum and winding modes and relates Type IIA and
Type IIB upon compactification;

• S-duality relates strong and weak coupling regimes (e.g., Type IIB is self-dual;
Type I is S-dual to Heterotic SO(32));

• U-duality unifies T- and S-dualities in a broader non-perturbative framework.

These dualities reveal that the five superstring theories are perturbative expansions of a
single underlying theory. In particular, the strong coupling limit of Type IIA gives rise to
an emergent 11th dimension and a new theory, M-theory, which includes not only strings
but also higher-dimensional extended objects like membranes and five-branes.

An important conceptual feature of string theory is that its coupling constants are dy-
namical: the string coupling gs is determined by the expectation value of the dilaton field
via

gs = eh�i . (2.46)

An equivalent formulation for the propagation of strings in curved spacetime, more con-
venient especially for quantization, is described by a two-dimensional sigma model with
the Polyakov action:

SP = �T

2

Z
d2�

p
�� �↵�@↵Xµ@�X⌫⌘µ⌫ =

=
1

4⇡↵0

Z
d2�

p
h
h
h↵�@↵Xµ@�X⌫gµ⌫(X) + "↵�@↵Xµ@�X⌫Bµ⌫(X) + ↵0R(2)�(X)

i
, ,

(2.47)
where �↵� is an auxiliary worldsheet metric. Varying with respect to �↵� enforces that it
equals the induced metric h↵� , recovering the Nambu-Goto action. The Polyakov form is
manifestly invariant under worldsheet di↵eomorphisms and Weyl transformations, making
it the standard starting point for covariant quantization. Xµ describe the embedding into
spacetime, and R(2) is the worldsheet Ricci scalar. Perturbative expansions in the string
coupling correspond to summing over worldsheet topologies: a genus-g surface contributes
with weight g2g�2

s .

Because coupling constants are set by scalar vevs, string theory naturally explores regimes
where the e↵ective field theory changes qualitatively due to strong coupling or geometric
transitions. Dualities often allow such strongly coupled regions to be mapped to weakly
coupled dual descriptions with di↵erent e↵ective degrees of freedom. This interconnected
web of dualities implies a deep unifying structure: all consistent string theories, and their
M-theoretic extensions, are thought to describe di↵erent limits of a single underlying
framework. Each compactification defines a point in this “string landscape,” with low-
energy physics governed by geometric data and background fields.

One of the most important features of string theory from a cosmological viewpoint is
the existence of extra spatial dimensions. To obtain a four-dimensional e↵ective theory,
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these must be compactified on a suitable internal manifold. The geometry and topology
of the compact space, together with the inclusion of background fluxes, D-branes, and
orientifold planes, determine the e↵ective field content and interactions in four dimensions.
Compactifications typically give rise to a large number of scalar fields that arise either
from deformations of the compact geometry or from integrating higher-form gauge fields
over internal cycles. These scalars are not arbitrary additions to the theory: they are
unavoidable consequences of compactification and thus carry a predictive structure. Such
fields are natural candidates for cosmological roles. Moduli and axions may drive inflation,
act as dark matter or dark radiation, or source isocurvature perturbations. Because their
properties are determined by the underlying compactification, studying them o↵ers a rare
opportunity for a top-down approach to cosmology.

2.2.2 Basics of compactification

Let us now explain what we mean by the term compactification. String theory requires
additional spatial dimensions for consistency: ten in superstring theory and eleven in
M-theory. Yet, the observable universe is e↵ectively four-dimensional at accessible energy
scales. Reconciling this discrepancy leads to the concept of compactification, in which
the extra dimensions are curled up into a compact internal manifold of small size and
non-trivial geometry. This process yields an e↵ective four-dimensional theory describing
the light degrees of freedom at low energies.

In a compactified theory, fields originally defined in ten dimensions are expanded in eigen-
modes on the internal space. The resulting four-dimensional spectrum includes an infinite
tower of Kaluza–Klein excitations, but only the lightest modes, the zero modes, remain
relevant below the compactification scale. These include the four-dimensional graviton
and a number of massless scalar fields, or moduli, which encode the geometry of the
compact space. The structure of the compactification manifold: its topology, metric,
and the presence of background fluxes, determines the e↵ective spectrum, interactions,
and symmetries of the resulting 4D theory. Over the past decades, a rich landscape of
compactifications has been uncovered, many of which feature ingredients of interest to cos-
mology, including scalar fields suitable for inflation, axion-like particles, and mechanisms
for dark matter or dark radiation. Among these, due to their many computable features,
Calabi–Yau compactifications have emerged as a particularly useful framework for
connecting string theory to low-energy phenomenology.

Calabi–Yau Manifolds

To reduce ten-dimensional string theory to an e↵ective four-dimensional theory, we seek
solutions to the 10D equations of motion with a factorized spacetime geometry:

M10 = M1,3 ⇥ X6 , (2.48)

where M1,3 denotes 4D Minkowski space, and X6 is a compact internal manifold. Requir-
ing a maximally symmetric 4D vacuum and satisfying the 10D vacuum Einstein equations
RMN = 0 imposes Ricci-flatness on X6.

A natural class of Ricci-flat manifolds is given by Calabi–Yau (CY) threefolds: compact,
complex, Kähler manifolds of complex dimension three with vanishing first Chern class.
Yau’s theorem guarantees the existence of a Ricci-flat Kähler metric on such manifolds.
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The decomposition of the Lorentz group under this factorization is SO(9, 1) ! SO(3, 1)⇥
SO(6). Preserving supersymmetry in four dimensions requires the existence of a globally
defined, nowhere-vanishing spinor on X6. This condition restricts the holonomy of the
internal manifold to SU(3) ⇢ SO(6), a defining feature of CY threefolds.

This spinor structure implies the existence of two key geometric objects:

• A Kähler form J , a closed (1, 1)-form that defines the Hermitian metric via gmn̄ =
@m@̄n̄K.

• A holomorphic (3, 0)-form ⌦, unique up to rescaling, which satisfies h3,0 = 1 and is
related to J via

J ^ J ^ J =
3i

4
⌦ ^ ⌦̄ , J ^ ⌦ = 0 . (2.49)

Together, J and ⌦ define the complex and symplectic structure of X6 and determine its
moduli space.

Moduli and Metric Deformations.

Fluctuations of the internal metric gmn that preserve Ricci-flatness correspond to massless
scalar fields in 4D—moduli. These arise as zero modes of the Lichnerowicz operator:

rqrq�gmn + 2Rq
m

r
n�gqr = 0 . (2.50)

In a Kähler manifold, deformations decompose into:

• (1, 1)-forms �gmn̄ 2 H1,1(X) → Kähler moduli;

• (2, 1)-forms �gm̄n̄ 2 H2,1(X) → complex structure moduli,

where H(1,1)(X) and H(2,1) are cohomology groups defined in Appendix A.2. These defor-
mations are counted by the Hodge numbers h1,1 and h2,1, which determine the dimension
of the moduli space. The Hodge diamond symmetries (e.g., hp,q = hq,p, hi,j = hD�i,D�j)
imply only h1,1 and h2,1 are independent for a CY threefold. The Euler characteristic is
then:

�(X) = 2(h1,1 � h2,1) . (2.51)

Kähler Moduli

The Kähler form can be expanded in a basis of harmonic (1, 1)-forms {!i}:

J = ti(x) !i , ti = Kähler moduli . (2.52)

The moduli ti correspond to the volumes of 2-cycles. The volume of a 4-cycle ⌃4 is given
by

⌧i =
1

2
Kijkt

jtk , (2.53)

where Kijk =
R
X
!i ^ !j ^ !k are the triple intersection numbers. The total volume is

V =
1

6
Kijkt

itjtk , (2.54)

and must lie inside the Kähler cone to ensure positivity:
Z

⌃2

J > 0 ,

Z

⌃4

J ^ J > 0 ,

Z

X

J ^ J ^ J > 0 . (2.55)
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Complex Structure Moduli

Deformations of the complex structure change how holomorphic coordinates are defined.
These are parametrized by za and can be expanded in a basis {↵a} ⇢ H2,1(X):

⌦n̄

kl
�gm̄n̄ = za(↵a)klm̄ . (2.56)

The (3, 0)-form ⌦ depends holomorphically on za. One defines a symplectic basis of
3-forms (↵a,�b) dual to 3-cycles (Aa,Bb):

Z

X

↵a ^ �b = �a
b

, (2.57)

and expands

⌦ = za↵a � Fa(z) �
a , Fa =

@F
@za

. (2.58)

Here, F(z) is the prepotential. The Kähler potential on the complex structure moduli
space is

Kcs = � ln

✓
i

Z

X

⌦ ^ ⌦̄
◆

= � ln(iz̄aFa � izaF̄a) , (2.59)

and defines the metric g
ab̄

= @a@b̄Kcs.

Moduli Space Geometry.

The moduli space locally factorizes as

M = MCS ⇥MK , (2.60)

where both are Kähler manifolds of dimensions h2,1 and h1,1 respectively. The Kähler
moduli space metric reads

gij =
3

2K

Z

X

!i ^ ?!j = �3

2

✓
Kij

K � 3

2

KiKj

K2

◆
, (2.61)

with Ki =
R
X
!i ^ J ^ J and Kij =

R
X
!i ^ !j ^ J .

Massless moduli are problematic: they mediate long-range forces and destabilize cosmol-
ogy. Fifth-force constraints require m� & 10�3 eV, mandating mechanisms for moduli
stabilization. As we will see, this is typically achieved by introducing background fluxes,
branes, and non-perturbative e↵ects, which generate potentials for the moduli fields. Sta-
bilizing these moduli in a controlled way is a central task of string phenomenology and
string cosmology alike.

2.2.3 Branes and Fluxes

D-branes are dynamical extended objects in string theory on which open strings can end.
A Dp-brane traces out a (p + 1)-dimensional worldvolume in spacetime. Their inclusion
as non-perturbative states was crucial for completing the web of string dualities [25], and
their discovery marked a turning point in both formal and phenomenological developments
in string theory [26].

From a phenomenological viewpoint, D-branes o↵er a natural setting to embed gauge
theories within string theory. The endpoints of open strings attached to a D-brane carry
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gauge degrees of freedom, giving rise to a U(1) gauge field. When N D-branes coincide,
the gauge symmetry is enhanced to U(N), and the low-energy dynamics is governed by a
(p + 1)-dimensional supersymmetric Yang–Mills theory. This enables D-branes to realize
non-Abelian gauge sectors and chiral matter, making them key ingredients in string model
building [27].

D-branes are electrically charged under the Ramond–Ramond (RR) sector and couple to
RR (p + 1)-form gauge potentials Cp+1 via the Wess–Zumino term in the brane action:

SCS = µp

Z

⌃p+1

C ^ eF , F = B2 + 2⇡↵0F , (2.62)

where C is the sum of all RR forms, B2 is the NS-NS 2-form, and F is the worldvolume
gauge field strength. This coupling implies that D-branes act as sources for RR fluxes.

Global consistency of string compactifications requires cancellation of these RR charges—a
condition known as tadpole cancellation. To achieve this, one must often include orien-
tifold planes (O-planes): non-dynamical, negatively charged fixed loci under involutive
symmetries of the theory. For example, O7-planes carry negative charge under C8 and
must be compensated by D7-branes to ensure charge neutrality.

Fluxes.

String theories contain various higher-form gauge potentials, whose corresponding field
strengths can be turned on as background fluxes. Similar consequences can be traced
out in the di↵erent string theories, but let us focus on type IIB as it is the most useful
example. Take Cp+1, with field strengths Fp+2 = dCp+1. These fluxes are quantized over
internal cycles: Z

⌃p+2

Fp+2 = n 2 Z , ⌃p+2 2 Hp+2(X,Z) . (2.63)

Such fluxes are topological, analogous to magnetic monopole flux in Maxwell theory, and
obey Dirac quantization. The NS-NS sector also includes a 2-form potential B2 whose
3-form field strength is

H3 = dB2 , S �
Z

d10x
p
�g

✓
R � 1

2 · 3!HMNPHMNP

◆
. (2.64)

In compactifications, fluxes such as H3 and F3 can thread non-trivial 3-cycles in the
internal manifold. Their combined contribution defines a complexified 3-form:

G3 = F3 � ⌧H3 , ⌧ = C0 + ie�� . (2.65)

Supersymmetric flux vacua require G3 to be imaginary self-dual (ISD) on the compact
space:

?6G3 = iG3 , (2.66)

which implies that G3 must be of Hodge type (2, 1) or (0, 3). Only the (2, 1) part pre-
serves supersymmetry, while the (0, 3) component leads to spontaneous supersymmetry
breaking. The ISD condition also ensures that G3 contributes positively to the D3-brane
charge.
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Tadpole Cancellation and O-Planes.

The total D3-brane charge must vanish in a consistent compactification. This leads to
the tadpole cancellation condition:

1

(2⇡)4↵02

Z

X

H3 ^ F3 + ND3 �
1

4
NO3 = 0 , (2.67)

where ND3 counts the number of localized D3-branes, and NO3 is the number of orientifold
O3-planes. Similar tadpole constraints arise for higher-dimensional branes such as D7-
branes and O7-planes.

D-brane Dynamics and Moduli Dependence.

The low-energy dynamics of a Dp-brane is governed by two contributions:

SDBI = �Tp

Z

⌃p+1

dp+1⇠ e��
p
� det(g + B2 + 2⇡↵0F ) , (2.68)

SCS = µp

Z

⌃p+1

C ^ eF . (2.69)

The DBI action describes the kinetic terms and coupling to background fields, while the
Chern–Simons term encodes the topological charge.

D-branes can also carry worldvolume fluxes, which a↵ect the e↵ective four-dimensional
theory by modifying the definitions of Kähler and axionic moduli. These fluxes induce
potentials for the moduli and contribute to supersymmetry breaking or stabilization.
Moreover, open strings stretching between D-branes introduce additional light states,
which correspond to position moduli or gauge fields, enriching the low-energy spectrum.

The inclusion of fluxes and branes plays a dual role in compactifications. On the one
hand, they are needed to satisfy consistency conditions such as charge cancellation. On
the other, they give rise to potentials for the moduli fields, thereby helping to stabilize
previously flat directions in the e↵ective theory. This is especially important in cosmo-
logical contexts, where runaway directions or massless scalars are phenomenologically
problematic.

2.2.4 Moduli Stabilization

As we have seen, string compactifications generically give rise to massless scalar fields
known as moduli, associated with deformations of the compactification geometry and
background fields. Although these moduli parametrize legitimate vacuum configurations
from the higher-dimensional point of view, they must be stabilized to yield a viable four-
dimensional e↵ective theory. Unstabilized moduli can mediate long-range fifth forces,
induce variations in physical couplings, or trigger runaway behaviour, all of which are in
conflict with observations.

A central challenge in connecting string theory to particle physics and cosmology is thus
the construction of vacua where all moduli are stabilized by controlled, computable po-
tentials. This typically requires breaking the no-scale structure that emerges at leading
order in many compactifications.
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Flux-Induced Potentials.

One of the most robust mechanisms for moduli stabilization relies on background fluxes.
In particular, Type IIB Calabi–Yau orientifolds allow for the inclusion of NS-NS and RR
3-form fluxes, H3 and F3, which can thread internal 3-cycles. These combine into the
complex 3-form

G3 = F3 � ⌧H3 , ⌧ = C0 + ie�� , (2.70)

where ⌧ is the axio-dilaton. As shown in [28], these fluxes generate a tree-level contribution
to the four-dimensional N = 1 superpotential, known as the Gukov–Vafa–Witten (GVW)
superpotential [29]:

Wflux =

Z

X

G3 ^ ⌦ . (2.71)

This superpotential depends holomorphically on the complex structure moduli and ⌧ , and
leads to their stabilization via the F-term conditions DIW = 0.

The resulting scalar potential is of the standard N = 1 supergravity form:

V = eK
⇣
KIJ̄DIWD

J̄
W̄ � 3|W |2

⌘
, (2.72)

where K is the Kähler potential, and DIW = @IW + (@IK)W are the Kähler covariant
derivatives. At tree level, the Kähler potential satisfies the no-scale identity

Kij̄@iK @j̄K = 3 , (2.73)

implying that the scalar potential is positive semi-definite and the Kähler moduli remain
flat directions. Breaking this no-scale structure is necessary for full stabilization.

Non-Perturbative Stabilization: KKLT.

A well-studied mechanism to stabilize the Kähler moduli is the KKLT scenario [30]. In
this setup, one adds non-perturbative contributions to the superpotential from e↵ects such
as D3-brane instantons or gaugino condensation on D7-branes wrapped on rigid 4-cycles:

W = W0 + A e�aT , (2.74)

where T denotes a Kähler modulus. The combination of the flux-induced W0 and the non-
perturbative term stabilizes T in a supersymmetric AdS vacuum. This vacuum can be
uplifted to a metastable de Sitter (dS) vacuum by including, for example, anti-D3-branes
at warped throat tips.

The Large Volume Scenario (LVS).

An alternative approach is the Large Volume Scenario (LVS) [31], which uses perturbative
↵0 corrections to the Kähler potential along with non-perturbative terms in the superpo-
tential. In this framework, one finds exponentially large compactification volumes:

V ⇠ A

V3
� B e�a⌧s

V2
+

C e�2a⌧s

V , (2.75)

where V is the overall volume modulus, and ⌧s denotes a blow-up 4-cycle. This potential
yields a non-supersymmetric AdS vacuum at large volume and can be uplifted to a dS
vacuum with small positive cosmological constant. This is the stabilization mechanism
we will adopt in the Type IIB examples throughout this thesis.



22 Chapter 2. Foundations of String Cosmology

Open Challenges and Conceptual Issues.

Despite these advances, moduli stabilization remains one of the most delicate aspects of
connecting string theory to low-energy physics. Non-perturbative e↵ects like instantons
or gaugino condensation depend sensitively on the detailed geometry and global brane
embeddings, which are often only partially under control. The construction of metastable
dS vacua remains controversial. In KKLT, the uplift via anti-D3-branes breaks super-
symmetry explicitly, and concerns have been raised about their backreaction [32–34].
In LVS, uplift mechanisms often invoke ingredients—such as D-term potentials or non-
SUSY branes—whose consistency in string theory is debated [35]. The swampland de
Sitter conjecture [36–38] suggests that scalar potentials consistent with quantum gravity
must satisfy a condition of the form |rV |/V � c ⇠ O(1) in asymptotic regions of moduli
space, thereby disfavoring meta-stable dS vacua in such asymptotic regimes. While re-
finements and counterexamples have been proposed [39–41], the issue remains unsettled.
Even when stabilized with large masses, moduli may decay late and interfere with Big
Bang Nucleosynthesis or matter domination. This places constraints on the allowed pa-
rameter space. Full moduli stabilization typically breaks supersymmetry. However, the
mechanism for SUSY breaking and its mediation to the visible sector are not universally
understood and may involve sequestering or anomaly mediation scenarios. Most stabi-
lization mechanisms assume static backgrounds, neglecting cosmological backreaction and
time-dependent moduli evolution.

2.3 Inflationary Models in String Theory

While the mechanism of inflation is simple and e↵ective, its microphysical origin remains
elusive. Inflation is commonly modeled by the dynamics of one or more scalar fields, the
inflaton, whose potential must be su�ciently flat to support slow-roll conditions over a
su�cient number of e-folds. However, the required flatness of the inflaton potential makes
it vulnerable to higher-dimensional operators suppressed by the Planck scale. This sensi-
tivity suggests that inflation cannot be fully understood without reference to ultraviolet
(UV) physics, in particular quantum gravity.

String theory provides a natural setting in which to study such UV completions of infla-
tion. Indeed, it has been argued that consistency with quantum gravity imposes stringent
constraints on low-energy scalar potentials, including those relevant for inflation [42]. De-
spite these challenges, several mechanisms for realizing inflation within string theory have
been proposed. These include axion monodromy inflation [43–46], fibre inflation [47], and
other constructions [48,49]. These scenarios typically arise only in specific corners of the
string landscape, suggesting that the requirement of successful inflation may serve as a
filter on viable compactifications.

In the following, we briefly review three main classes of string inflation models: axion
inflation, moduli inflation, and brane inflation.

2.3.1 Axion Inflation

Axion inflation refers to models in which the inflaton is an axion-like field, typically
arising from the dimensional reduction of higher-form gauge potentials in string theory.
Thanks to their approximate shift symmetry, axions are natural inflaton candidates: the
symmetry protects the flatness of their potential against quantum corrections, helping to
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maintain slow-roll conditions.

The simplest example is natural inflation, where the potential is given by

V (�) = ⇤4

✓
1� cos

✓
�

f

◆◆
. (2.76)

Successful natural inflation requires a super-Planckian decay constant, f > MPl, which
is di�cult to achieve in well-controlled regions of string theory. This has motivated
extensions such as axion monodromy inflation, in which the axion traverses multiple
cycles of its fundamental domain due to a softly broken shift symmetry [43–45]. This
leads to approximately linear or polynomial potentials over large field ranges, enabling
large-field inflation without requiring a trans-Planckian decay constant.

Another proposal is N-flation [50], in which a large number of axions participate in
inflation simultaneously. Collectively, their dynamics can support slow-roll inflation even
when individual decay constants are sub-Planckian. This is natural in string theory, where
compactifications on Calabi–Yau manifolds often yield many axions due to the abundance
of internal cycles.

Axion inflation can imprint distinctive signatures in the cosmic microwave background
(CMB), such as oscillatory features in the power spectrum, non-Gaussianities, and isocur-
vature perturbations. The latter are particularly interesting, as they can place strong
observational constraints on models with light axions surviving after inflation.

2.3.2 Moduli Inflation

In moduli inflation models, the inflaton is identified with a geometric modulus of the com-
pactification, such as a Kähler, complex structure, or dilaton modulus. Since moduli fields
are generically present in string compactifications, they are natural inflaton candidates.
However, to realize inflation, their potential must exhibit an extended flat direction, which
is not generic and typically arises only after subleading corrections are included.

The best-known examples are fibre and blow-up inflation models arising in the Large
Volume Scenario (LVS) [47]. In these scenarios, the volume of a fibre or blow-up cycle
plays the role of the inflaton. The inflationary potential emerges from subdominant
e↵ects, such as ↵0 corrections and string loop corrections, while the overall volume remains
stabilized. These models are often characterized by small-field inflation and predict a low
tensor-to-scalar ratio r, typically outside the reach of current experiments.

Because the inflaton is itself a modulus, ensuring consistent stabilization of the remaining
moduli during inflation is challenging. If the evolution of the inflaton destabilizes the
compactification or induces large kinetic mixing with other fields, the inflationary dy-
namics may fail or become unpredictable. Therefore, successful moduli inflation requires
a hierarchy in the moduli masses such that the inflaton is light, while the others are
su�ciently heavy and decoupled.

2.3.3 Brane Inflation

Brane inflation refers to scenarios where the inflaton corresponds to the position of a
D-brane moving in a compact internal space [51–53]. The potential energy driving in-
flation arises from interactions between the mobile brane and other ingredients in the
compactification, such as antibranes, fluxes, or localized curvature.
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A prototypical example is D3/D̄3 inflation, where a D3-brane moves toward an anti-D3-
brane located at the bottom of a warped throat, such as the Klebanov–Strassler geometry.
The attractive force between the branes drives inflation, and their annihilation at the end
of inflation provides a natural reheating mechanism.

Warped throats play a crucial role by flattening the potential and suppressing higher-order
corrections, thereby facilitating slow-roll inflation even over short brane displacements.
In some variants, such as Dirac–Born–Infeld (DBI) inflation, the kinetic term becomes
non-canonical, leading to characteristic non-Gaussian signatures.

Howewver, controlling the backreaction of moving branes on the compactification geom-
etry is highly nontrivial, and preserving moduli stabilization during inflation requires
tuning. These scenarios are also sensitive to initial conditions and often require careful
engineering to ensure all constraints are satisfied.

2.3.4 Modular Inflation

Modular inflation refers to inflationary scenarios where the inflaton is a modulus that
transforms non-trivially under modular transformations. These include, for example,
moduli fields in heterotic or Type IIB string compactifications that parameterize shapes
of tori or orbifolds and transform under SL(2,Z) duality groups.

In these setups, the inflaton potential must respect (or softly break) the modular sym-
metry, leading to constraints on its functional form. For instance, the scalar potential
is often built from modular forms, such as Dedekind eta functions or Eisenstein series,
ensuring invariance under modular transformations. This approach can naturally sup-
press dangerous higher-dimensional operators and control the inflaton dynamics through
symmetry considerations.
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The String Axiverse

Axions, by which we mean axion-like particles (ALPs), are among the most generic and
phenomenologically relevant predictions of string theory [14]. They arise in vast numbers
in typical compactifications and play a central role in modern discussions of dark matter,
inflation, and the structure of the vacuum landscape. They originate as the zero modes
from dimensional reduction of p-form fields [54], degrees of freedom of open strings at-
tached to D-branes, and even as the lowest lying Kaluza-Klein states in extremely warped
compactifications [55–57]. The number of axions in a compactification is tied to the topol-
ogy of the compactification manifold via the Hodge numbers and can vary from a few to
O(102), all the way to O(105) in extreme cases [58,59]. This potentially huge number of
axions is the basis for the so-called string axiverse [15–19]. The presence of multiple axions
can significantly shape the dynamics of the early Universe, depending on their coupling
to other fields in the EFT. More specifically, these axions tend to couple to hidden gauge
sectors and gravity via Chern-Simons (CS) couplings.

3.1 The strong CP problem and the QCD axion

The original motivation for introducing axions in quantum field theory stems from the
strong CP problem in Quantum Chromodynamics (QCD). The QCD Lagrangian admits
a CP-violating term of the form

L✓ = ✓QCD

g2s
32⇡2

tr(Gµ⌫G̃
µ⌫) , (3.1)

where Gµ⌫ is the gluon field strength, G̃µ⌫ = 1

2
"µ⌫⇢�G⇢� its dual, and ✓QCD a dimen-

sionless parameter that quantifies CP violation in the strong sector. This term induces a
nonzero electric dipole moment (EDM) for the neutron, which is tightly constrained by
experiments. The current bound |dn| < 1.8 ⇥ 10�26 e cm translates into the extremely
small limit |✓QCD| . 10�10 [60], suggesting a fine-tuning problem.

This is puzzling from a theoretical standpoint, as there is no symmetry in the Standard
Model that enforces ✓QCD = 0. Moreover, ✓QCD receives contributions from the complex
phase of the quark mass matrix, leading to the e↵ective combination

✓̄ = ✓QCD + arg detMq , (3.2)
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where Mq is the quark mass matrix. The observed smallness of ✓̄ thus requires a cancel-
lation between two unrelated terms, constituting the strong CP problem.

A compelling solution was proposed by Peccei and Quinn [13], who promoted ✓̄ to a
dynamical field. By introducing a spontaneously broken global U(1)PQ symmetry, an
axion field #a emerges as the pseudo–Nambu–Goldstone boson. Its coupling to the QCD
topological term reads

LPQ � #a
fa

g2s
32⇡2

tr(Gµ⌫G̃
µ⌫) , (3.3)

where fa is the axion decay constant. Non-perturbative QCD e↵ects generate a potential
for #a that dynamically minimizes the e↵ective ✓̄ at zero:

V (#a) ⇠ ⇤4

QCD

✓
1� cos

✓
#a
fa

+ ✓̄

◆◆
, ) h#ai = �fa✓̄ . (3.4)

As a result, the axion field dynamically cancels the CP-violating term, thereby solving
the strong CP problem.

Various realizations of the Peccei–Quinn mechanism exist, including the original Wein-
berg–Wilczek axion [61, 62], which is now experimentally excluded, and the so-called
“invisible” axion models such as KSVZ [63, 64] and DFSZ [65, 66], which remain viable.
These models typically predict fa & 109GeV to evade astrophysical and laboratory con-
straints, implying a light and weakly coupled axion.

In string theory, axions often couple to tr(G^G) terms, raising the possibility of realizing
the QCD axion as one of the closed string axions [14,67]. However, constructing a viable
stringy QCD axion is nontrivial. One must ensure that the axion couples dominantly
to QCD, has a su�ciently high-quality potential (i.e., is not spoiled by other instanton
e↵ects), and possesses an appropriate decay constant. These requirements place strong
constraints on the geometry, instanton spectrum, and gauge embedding of the Standard
Model in the compactification [15,19,68].

3.2 Closed string axions

Axions are a generic and ubiquitous prediction of string theory, arising as the four-
dimensional zero modes of higher-dimensional antisymmetric tensor fields present in the
string spectrum. In particular, closed string axions descend from the dimensional re-
duction of bulk p-form fields, whose origins lie in the NS-NS and R-R sectors of the
ten-dimensional supergravity theories that describe the low-energy limit of string theory.

Let us denote the ten-dimensional spacetime as R1,3 ⇥ X, where X is a compact six-
dimensional manifold. A p-form field Cp propagating in ten dimensions can be expanded
along a basis of harmonic p-forms on X. Each non-trivial p-cycle ⌃p

i
supports a Kaluza-

Klein (KK) zero mode:

#i(x) =

Z

⌃
p

i

Cp , (3.5)

giving rise to a four-dimensional pseudoscalar field #i(x). The number of such axions is
topologically determined by the Betti numbers of the compactification manifold, specifi-
cally bp(X).
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These axions inherit a continuous shift symmetry from the gauge invariance of the higher-
dimensional p-form:

Cp ! Cp + d⇤p�1 ) #i ! #i + const. (3.6)

This symmetry is broken by non-perturbative e↵ects, such as Euclidean brane instan-
tons or gaugino condensation, which generate periodic potentials of the form V (#i) ⇠
⇤4 cos(#i/fi), where fi is the axion decay constant.

Importantly, closed string axions couple naturally to gauge fields and curvature via Chern-
Simons (CS) terms, e.g.,

LCS � #

f
tr(F ^ F ) or

#

f
R ^ R . (3.7)

These couplings originate from the dimensional reduction of Green–Schwarz terms and
play a central role in anomaly cancellation. Anomalous U(1)s typically become massive
via the Stückelberg mechanism, with the axion providing the longitudinal component.

Axions have been extensively studied in the context of Type IIB orientifold compactifica-
tions [17,19,56,57,69–72]. IIB models o↵er many advantages since moduli stabilization is
relatively well-understood and concrete model-building tools like flux compactifications,
KKLT, and the Large Volume Scenario are readily available. Direct couplings of IIB
string axions were studed in [17, 70] while spectator axions and their CS couplings were
examined in [73]. Furthermore, the QCD axion in IIB and its potential quality problem
were studied at length in [19]

3.2.1 The Axion Quality Problem in String Theory

While the Peccei–Quinn mechanism elegantly solves the strong CP problem, its suc-
cessful implementation requires the axion potential to be dominated by QCD instan-
tons. However, in generic e↵ective field theory (EFT) models, the axion is simply a
pseudo–Nambu–Goldstone boson of a global U(1)PQ symmetry, and global symmetries
are expected to be explicitly broken by Planck-suppressed operators. This leads to the
so-called axion quality problem [74–76].

Higher-dimensional operators of the form

L � �n

Mn�4

Pl

+ h.c. (3.8)

can break the Peccei–Quinn symmetry explicitly and generate additional contributions to
the axion potential, schematically of the form

Vgrav(#a) ⇠ ⇤4

grav cos

✓
#a
fa

+ �

◆
, (3.9)

where ⇤grav depends on the dimension and coe�cient of the operator. If ⇤grav � ⇤QCD,
the axion will not relax ✓̄ to zero, and the strong CP problem remains unsolved. To satisfy
|✓̄e↵| . 10�10, the gravitational corrections must be highly suppressed, implying that the
PQ symmetry must be of extraordinarily high quality.

This is a serious issue in field-theoretic axion models, as there is no reason in generic
EFTs to expect Planck-suppressed PQ-violating operators to be absent or suppressed to
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the required level. While symmetry-based solutions exist — such as using discrete gauge
symmetries, extra dimensions, or accidental symmetries — they often require significant
model-building e↵ort and tuning.

In contrast, string theory naturally provides axions with protected shift symmetries that
descend from gauge symmetries of higher-dimensional p-form fields. These symmetries
are exact at the perturbative level and can only be broken by specific non-perturbative
e↵ects, such as brane instantons or gaugino condensation. Crucially, these e↵ects are
exponentially suppressed and under detailed control in compactification scenarios. As
a result, string axions are often associated with extremely high-quality PQ symmetries,
where unwanted potential terms are naturally absent or strongly suppressed.

Moreover, in many string compactifications, the instanton zero-mode structure constrains
which axions appear in the non-perturbative superpotential, e↵ectively preventing dan-
gerous contributions from arising. This feature has been explored in the context of the
so-called “stringy QCD axion,” where one closed-string axion couples dominantly to QCD
and is shielded from other significant non-perturbative corrections [14, 19,67,68].

Therefore, while constructing a viable QCD axion in string theory still requires careful
engineering — such as localizing the Standard Model on D-branes, aligning couplings,
and stabilizing moduli — the quality problem is much less severe than in generic field-
theoretic setups. This motivates the search for the QCD axion within the string axiverse
and adds another layer of theoretical appeal to this framework.

3.3 Type IIB axiverse

Let us now focus on Type IIB string theory, one of the five consistent ten-dimensional
superstring theories. Type IIB is a chiral theory with N = 2 supersymmetry in ten
dimensions and contains the following bosonic fields:

• The graviton gMN ,

• The dilaton �,

• The NS-NS 2-form B2,

• The R-R 0-form C0 (the axion),

• The R-R 2-form C2,

• The R-R 4-form C4, with self-dual field strength F5.

Here M, N = 0, . . . , 9 are ten-dimensional indices. The axions of interest arise from the
R-R sector, namely C0, C2, and C4, and from the NS-NS field B2. Each of these fields
can produce axionic zero modes in the four-dimensional theory upon compactification on
a Calabi-Yau threefold X.

To connect with phenomenology, we are interested in N = 1 supersymmetry in four
dimensions. This requires breaking half of the original N = 2 supersymmetry preserved
by the Calabi-Yau compactification. The standard approach is to introduce an orientifold
projection. In particular, compactifying Type IIB string theory on an orientifold of a
Calabi-Yau threefold, X/�, where � is an involutive symmetry combined with worldsheet
parity ⌦p, leads to either O3- and O7-planes or O5- and O9-planes and preserves N = 1
supersymmetry in four dimensions.
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We work here with the O3/O7 case. The orientifold projection splits the cohomology of
X into even and odd parts under �:

Hp,q(X) = Hp,q

+ (X)� Hp,q

� (X) . (3.10)

The fields survive the orientifold projection according to their transformation properties.
The axionic fields that survive the projection come from the following expansions:

B2 = b↵(x)!↵ , !↵ 2 H2

�(X) , (3.11)

C2 = c↵(x)!↵ , !↵ 2 H2

�(X) , (3.12)

C4 = ⇢i(x) !̃i ^ vol4 , !̃i 2 H4

+(X) , (3.13)

C0 = ✓0(x) , (3.14)

where ↵ = 1, . . . , h1,1

� and i = 1, . . . , h1,1

+ . The fields b↵, c↵, ⇢i, and #0 are four-dimensional
pseudoscalars which enjoy continuous shift symmetries at the perturbative level:

✓ ! ✓ + const. (3.15)

These originate from the ten-dimensional gauge redundancies of the p-form potentials
and protect the axions from perturbative mass terms. At the same time, the number of
axions is topologically controlled by the Hodge numbers of X, and in concrete setups can
range from a handful to O(102) or more.

These axions become dynamical fields in the four-dimensional e↵ective theory and appear
in the kinetic Lagrangian as

L � 1

2
gij@µ✓

i@µ✓j , (3.16)

where gij is the axion field space metric. This metric is derived from the Kähler potential
K of the e↵ective N = 1 supergravity:

gij = 2
@2K

@✓i@✓̄j
. (3.17)

Some of these axions may also participate in Stückelberg couplings with anomalous U(1)
gauge bosons. These terms take the form (@µ✓ + MAµ)

2 and provide a mass to the gauge
boson while removing one axionic degree of freedom from the low-energy spectrum. The
remaining axions, orthogonal to the eaten directions, remain physical and may contribute
to dark matter or inflationary dynamics.

To move to a physical basis, we diagonalize gij and define canonically normalized fields
as

✓phys
i

=
p
�iMPl #i , (3.18)

where �i are the eigenvalues of gij and #i the corresponding eigenvectors. The decay
constants then follow as

fi =

p
�iMPl

ai
, (3.19)

with ai the coe�cient in the non-perturbative potential V (#i) ⇠ ⇤4
i
cos(ai#i). These

potentials are generated by non-perturbative e↵ects such as Euclidean D3-brane (E3) in-
stantons or gaugino condensation on D7-branes. E3 instantons wrap rigid, holomorphic
four-cycles in the Calabi–Yau, while gaugino condensation arises on stacks of D7-branes
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wrapping divisors supporting pure N = 1 super Yang–Mills gauge theories. Both mecha-
nisms break the continuous axionic shift symmetries down to discrete subgroups and gen-
erate periodic potentials for the corresponding axions. Specifically, for a non-perturbative
contribution to be generated, the E3 instanton must satisfy certain zero-mode conditions.
In particular, it must be rigid and O(1)-invariant under the orientifold projection, with
no additional charged zero modes.

The dynamically generated scales ⇤i are exponentially sensitive to the moduli, typically
scaling as

⇤4

i ⇠ e�Sinst ⇠ exp

✓
�Vol(⌃)

gs

◆
, (3.20)

where ⌃ is the internal cycle wrapped by the instanton or brane stack.

In the simplest case, where the kinetic matrix is approximately diagonal and only a single
instanton contributes, the periodicity of the canonically normalized field is directly related
to the decay constant:

#phys
i

! #phys
i

+ 2⇡fi . (3.21)

This structure—the presence of many light, weakly coupled pseudoscalars descending
from compactification—is what defines the string axiverse. In the Type IIB context, the
axions arise from the rich cohomological structure of the compactification manifold and
couple via Chern-Simons terms to gauge fields and curvature. Their masses and couplings
span a wide range of scales, depending on the stabilization mechanism and geometry. In
large volume compactifications, for instance, the decay constants scale as

f ⇠ MPl

V1/2
, (3.22)

where V is the (dimensionless) volume of the Calabi–Yau in string units. This setup
generically leads to logarithmic hierarchies among axion masses and naturally predicts
ultra-light fields, some of which may be cosmologically active today.

3.3.1 Statistics of the IIB Axiverse.

Systematic scans of Calabi–Yau hypersurfaces in the Kreuzer–Skarke list reveal that the
Hodge number h1,1 ranges from 1 up to 491 [77]. After the orientifold projection, this
typically translates into hundreds of closed-string axions once the universal C0 mode is
included [59]. Their masses are set by instanton actions that scale with the volumes
of the wrapped cycles, and large ensembles show a quasi-log-flat spectrum spanning
O(10�33 eV) . ma . O(10�10 eV) when h1,1 & 25 [18, 78]. The axion field-space radius
extracted from the kinetic matrix shrinks mildly with h1,1, roughly as R / (h1,1)�1/2,
making trans-Planckian excursions statistically rare. More recent surveys of ⇠ 2⇥105 IIB
orientifolds confirm this picture and uncover an additional trend: as h1,1 grows, the inter-
section matrices become sparse, which suppresses kinetic mixing and pushes photon/gluon
couplings down to ga�� ⇠ 10�4/fa for the bulk of the spectrum [79].

3.3.2 Phenomenological roles of axions

The presence of many axions in string compactifications, combined with their light masses
and weak couplings, makes them compelling candidates for a range of phenomena in
early- and late-time cosmology. Their rich phenomenology stems from the underlying
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shift symmetry, which protects them from perturbative mass terms and allows them to
remain light, as well as from their coupling to gauge fields and gravity.

Dark matter. The most extensively studied role of axions is as dark matter candidates.
When produced via the misalignment mechanism, ultra-light axions with masses in the
range 10�22 eV . ma . 10�18 eV can form a type of fuzzy dark matter (FDM) [69,80,81],
which suppresses structure formation below the corresponding de Broglie wavelength.
Heavier axions in the µeV to meV range can behave as cold dark matter and are actively
searched for via their coupling to photons in haloscope and helioscope experiments [82,83].

Inflation and dark energy. Axions have also been proposed as inflaton candidates in
models such as natural inflation [84] and aligned or multi-axion inflation [85–89]. Their
protected flat potentials and periodic structure make them ideal for large-field inflationary
models, though realizing trans-Planckian field ranges in string theory remains challenging.
On the other end of the energy spectrum, axions with extremely light masses ma ⇠ H0 ⇠
10�33 eV have been considered as quintessence fields driving cosmic acceleration [90,91].

Gravitational waves and spectral signatures. The axionic coupling to gauge fields
and curvature tensors can lead to observable signatures in primordial perturbations. For
instance, rolling axions coupled via #FF̃ can produce gauge field quanta, which source
scalar and tensor modes, leading to potentially detectable levels of non-Gaussianity or
parity-violating gravitational waves [73, 86, 87, 92, 93]. Alternatively, axion decays in the
post-inflationary era may leave imprints in the form of spectral distortions in the CMB [94,
95].

Early-universe dynamics and dark radiation. In the presence of many light axions,
energy may be distributed among a large number of fields during reheating, potentially
contributing to the e↵ective number of relativistic species Ne↵. This so-called dark ra-
diation can be probed by precision cosmology and provides a constraint on the reheat
temperature and axion couplings [96, 97].

Axion-photon and axion-gluon couplings. The low-energy interactions of axions
with photons and gluons o↵er both phenomenological constraints and discovery channels.
The QCD axion, originally introduced to solve the strong CP problem [13, 62], remains
the most motivated single-field scenario. In string theory, realizing a high-quality QCD
axion is nontrivial due to the ubiquity of additional couplings and instanton e↵ects. Still,
specific compactifications and alignment mechanisms can suppress unwanted terms and
allow for viable solutions [19, 98].

In all these contexts, the string axiverse o↵ers a framework that naturally accommodates
a variety of axion masses and couplings. Their roles depend sensitively on the compactifi-
cation geometry, moduli stabilization, and the cosmological history of the early Universe.
Later in this thesis, we will explore some of these phenomenological directions in more
detail within concrete string-motivated scenarios.

In summary, the string axiverse scenario, especially in the context of Type IIB orientifold
compactifications, predicts a large number of axions with hierarchically distributed masses
and decay constants. Geometry, moduli stabilization, and non-perturbative e↵ects all play
a role in the phenomenology of the string axiverse, with potential signatures ranging from
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early Universe cosmology to astrophysical observations. In the next chapter, we will
explore how specific axions from this landscape can play a role in concrete cosmological
scenarios such as inflation, dark radiation, or the generation of gravitational waves.

3.4 Axions in heterotic string theory

Despite the powerful moduli stabilization techniques and computational control o↵ered
by Type IIB compactifications, one of their major limitations lies in the construction of
realistic gauge sectors. The Type IIB spectrum lacks non-Abelian gauge fields at the
perturbative level, requiring the introduction of localized sources such as D-branes to
engineer viable particle physics. These ingredients, while e↵ective, introduce additional
model-building constraints and complications, especially when aiming for unification or
detailed cosmological dynamics.

In contrast, heterotic string theories o↵er a compelling alternative. Both the E8 ⇥ E8

and SO(32) heterotic strings contain non-Abelian gauge groups in the ten-dimensional
perturbative spectrum, allowing one to construct unified gauge theories and Standard
Model–like spectra without the need for branes or localized defects. The compactifica-
tion of the heterotic string on a Calabi–Yau threefold with a suitable gauge bundle can
lead to four-dimensional N = 1 supersymmetric models with chiral matter and GUT
structures [99, 100].

Axions naturally arise in heterotic compactifications as well. They originate from the
ten-dimensional NS–NS 2-form B2, which gives rise to both:

• A model-independent axion, descending from the dual of the 4d two-form Bµ⌫ after
dimensional reduction. This universal axion is present in all heterotic compactifica-
tions and couples to both the gauge and gravitational Chern–Simons terms via the
Green–Schwarz mechanism.

• Model-dependent axions, associated with the internal components of B2 integrated
over harmonic two-forms of the Calabi–Yau. Their number is controlled by the
Hodge number h1,1(X) and depends on the topology of the compactification mani-
fold.

These axions enjoy perturbative shift symmetries inherited from the gauge symmetry of
B2, and can develop potentials via non-perturbative e↵ects such as worldsheet instantons
and gaugino condensation [101,102]. The universal axion plays a central role in anomaly
cancellation through the Green–Schwarz mechanism and often mixes with other moduli
through the Kähler potential.

Despite their attractive particle physics features, fully realistic and controlled cosmological
scenarios in heterotic string theory, incorporating both moduli stabilization and inflation,
remain underdeveloped. Many standard techniques from Type IIB, such as flux-induced
superpotentials or large volume compactifications, are less straightforward to implement
in the heterotic context due to the absence of RR fluxes and the restricted set of al-
lowed background fields. Nevertheless, recent progress has opened new avenues. Vacuum
stabilization using gaugino condensation and worldsheet instantons has been revisited in
detail [103–105], including its implications for inflation and dark sectors.

While the heterotic axiverse is less explored than its Type IIB counterpart, early works
have studied the possibility of realizing a QCD axion and the conditions for suppress-
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ing Planck-suppressed PQ-violating operators [16, 106–109]. In particular, the model-
independent axion was among the earliest candidates proposed to solve the strong CP
problem in string theory. However, its decay constant is typically of order fa ⇠ MPl

and its coupling to QCD is often too small to satisfy observational bounds. More refined
constructions involving model-dependent axions have since been proposed to circumvent
these issues.

More recently, work has begun to systematically explore the heterotic axiverse, includ-
ing the structure of axion kinetic terms, their decay constants, and their couplings to
gauge and gravitational sectors. The lack of warping and the absence of localized sources
in heterotic models imply that kinetic mixings are generally significant, and alignment
mechanisms may be required to obtain phenomenologically viable axions. This will be
the subject of the following chapter.
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Chapter 4

Heterotic axiverse

Despite the impressive tools available in type IIB compactifications, a major drawback
of these models arise from realizing gauge theory sectors. As the type IIB perturbative
spectrum lacks non-Abelian gauge theories, one must introduce non-perturbative objects
such as D-branes that will furnish viable particle physics sectors. In contrast, heterotic
string theories display the highly attractive feature of containing non-Abelian gauge fields
even at the perturbative level, which facilitates the construction of GUTs and Standard
Model-like spectra without the need for D-branes or localized sources. Axions also ap-
pear in heterotic compactifications, descending from the 10d NS-NS 2-form either as the
universal, model-independent axion dual of the 4d 2-form or as model-dependent axions
associated with the internal cohomology of the compactification manifold. However, a
fully controlled cosmological setup, particularly one incorporating inflation and moduli
stabilization, is still lacking in this framework. Recent progress, including mechanisms
invoking NS-NS 3-form flux, gauge bundles, worldsheet instantons and gaugino condensa-
tion [105,110–117] as well as perturbative ↵0, string loop, and non-perturbative corrections
to the Kähler potential [118–122], suggests new possibilities for vacuum stabilization and
cosmological model-building.

Despite the above attractive features, the heterotic sector of the axiverse is largely unex-
plored. Early studies of axions in heterotic theories focused on realizing the QCD axion
and situations to avoid the quality problem [16, 106–109]. More recent works [123, 124]
as well as a forthcoming work [125] study the realization of a QCD axion in heterotic
CY compactifications from a linear combination of the universal 4D axion and the NS-NS
2-form axions of heterotic string theory, establishing that with very few limited exceptions
such a heterotic QCD axion will acquire values in the ga�� �ma-plane above the so-called
QCD axion line.

In this chapter, we will extend these studies and focus on the heterotic string axiverse
and its discovery potential. In particular, we are interested in axions that couple to
hidden gauge fields via CS couplings and may thereby produce gravitational waves during
inflation, realizing the spectator axion mechanism. To that end, we characterize the
generic structure of the axion mass spectrum and the e↵ective couplings of heterotic axions
beyond the QCD axion candidate to Abelian and non-Abelian gauge fields and discuss
their implications for both cosmology and particle phenomenology. We also discuss the
impact of generating non-perturbative potentials for the the non-QCD axions onto the
CP quality problem of the QCD axion candidate.

35
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GC v1 ⇠ v2 Masses CP FDM
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⇠ "⇤4
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'2
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'3
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ws X X
X X m2

'2
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gc ⌧ m2
'1

, m2
'3

⇠ ⇤4
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X ⇥ m2
'1

⇠ ⇤4

QCD
⌧ m2

'2
⇠ ⇤4

gc ⌧ m2
'3

⇠ ⇤4
ws (X) ⇥

Table 4.1: Three-axion scenarios summarizing presence of gaugino condensation (GC), mass hier-
archies, strong CP resolution, and dominant gauge couplings.

table 4.1 summarizes the upshot of our results: it combines the structure of the non-
perturbative quantum e↵ects providing the axion mass with the QCD instanton contri-
bution and the constraints from maintaining CP quality as well as the rather strict upper
bound on the compactification volume imposed by heterotic perturbativity. The resulting
axion mass spectrum is quite di↵erent compared to the type IIB or M-theory axiverses
- most of the 2-form axions here stay rather heavy, while typically the axion responsible
for solving the QCD CP problem (if possible) is the lightest axion state with a mass scale
proportional to ⇤4

QCD
. The only exception arises for fibred CY compactifications which

break the hidden E8 gauge group completely via gauge bundle choice and/or Wilson lines,
and with their two dominant Kähler moduli stabilized in a highly anisotropic regime. For
this rather special case, a suppressed world-sheet instanton direction can arise providing
a single fuzzy-dark matter (FDM) candidate among the heterotic string axions.

4.1 Review of the Heterotic String

Of the five perturbative superstring theories, weakly coupled heterotic string theory is
particularly appealing from a phenomenological perspective as it naturally accommodates
key features of the Standard Model within a consistent high-energy framework. Its gauge
sector arises from either a ten-dimensional (E8 ⇥ E8) o Z2 or Spin(32)/Z2

1 symmetry,
allowing for grand unified theories (GUTs) and the embedding of realistic gauge groups
after compactification. Compactifications on Calabi-Yau threefolds with suitable vector
bundles can yield chiral spectra, which are essential for reproducing the observed particle
content. From its discovery [128,129] there have been many works constructing a 4D low-
energy EFT which matches the minimal supersymmetric standard model (MSSM) [130–
134].

The heterotic worldsheet conformal field theory is built by combining left-moving modes of
the 26-dimensional bosonic string with right-moving modes of the 10-dimensional super-
string, in such a way that the resulting theory is consistent in ten spacetime dimensions.
Concretely, the right-moving (antiholomorphic) sector describes ten-dimensional super-
symmetric fields: spacetime bosons Xµ(z̄) and their superpartners  µ(z̄) for µ = 0, . . . , 9.
The left-moving (holomorphic) sector, instead, includes only the bosonic coordinates
Xµ(z), and to fill the mismatch in central charges and ensure conformal invariance,
one introduces an internal set of 16 extra left-moving degrees of freedom, ⌅I(z), where
I = 1, . . . , 16. One can write them as real fermionic coordinates, corresponding to 32 real
left-moving worldsheet fermions, or as 16 complex fermions. Regardless of this choice,

1Sometimes refered to as SemiSpin(32) [126,127].



4.1. Review of the Heterotic String 37

these are the fields which generate the gauge sector excitations of the heterotic string.

Modular invariance restricts the allowed choices for the compactification lattice of these
internal degrees of freedom. The only even self-dual lattices in 16 Euclidean dimensions
are the E8⇥E8 and Spin(32)/Z2 lattices. These yield two consistent heterotic string theo-
ries, both living in D = 10 dimensions: the E8⇥E8 heterotic string, and the Spin(32)/Z2

heterotic string. Upon compactification to four dimensions, these internal gauge symme-
tries give rise to non-Abelian gauge groups and moduli.

To preserve N = 1 supersymmetry in four dimensions, the compactification manifold
is required to be a Calabi-Yau threefold: a compact Kähler manifold with vanishing
first Chern class and SU(3) holonomy. This ensures the existence of a single covariantly
constant spinor, which is necessary for a single unbroken 4D supersymmetry. In such
compactifications, the ten-dimensional spacetime decomposes as

R1,3 ⇥ CY3 , (4.1)

and the gauge bundle is chosen to satisfy the Hermitian Yang-Mills equations. Super-
symmetry and anomaly cancellation constrain this bundle: its field strength F must obey
F(0,2) = F(2,0) = 0 and gij̄Fij̄ = 0, known as the DUY equations (Donaldson-Uhlenbeck-
Yau) [135,136], and the Bianchi identity for the NS-NS three-form H reads

dH =
↵0

4
(trR ^ R � trF ^ F ) , (4.2)

requiring a non-trivial relation between geometry and gauge flux.

The simplest examples of CYs arise as hypersurfaces in toric varieties. One common
construction is that of smooth hypersurfaces X in complex projective space CPd+1 defined
by the vanishing of a homogeneous polynomial of degree k = d+2. These are sections of
the line bundle OPd+1(k). For X to be Calabi-Yau, it must have trivial canonical bundle,
even if the ambient toric variety does not. This ensures the existence of a globally defined
holomorphic (d, 0)-form ⌦ which is equivalent to the demands of Ricci flatness and SU(3)
holonomy.

The canonical bundle K is the line bundle of holomorphic top forms

⌦U (z1, ..., zd)dz1 ^ · · · ^ dzd

on a patch U . On a smooth variety, K is trivial if and only if the first Chern class vanishes.
For hypersurfaces, this can be verified using the adjunction formula. Consider X as a
hypersurface in an ambient space A of dimension d. The tangent bundle TA|X splits as:

0 ! TX ! TA|X ! NX ! 0, (4.3)

where NX
⇠= OA(X)|X is the normal bundle. The Chern classes satisfy:

c(TX) =
c(TA)

c(NX)
. (4.4)

If the ambient space is CPd+1, each homogeneous coordinate zi corresponds to a divisor
H with line bundle O(1), so c(TA) = (1 + H)d+2. A degree-k hypersurface corresponds
to O(k), so:

c(TX) =
(1 + H)d+2

1 + kH
= (1 + (d + 2)H + · · · )(1� kH + k2H2 � · · · ). (4.5)
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We then find:
c1(TX) = (d + 2� k)H. (4.6)

Requiring c1 = 0 gives k = d + 2, the Calabi-Yau condition.

4.1.1 Gauged Linear Sigma Models (GLSMs)

The low energy e↵ective worldsheet theory of the heterotic string compactified on a CY
three-fold X is a nonlinear sigma model (NLSM) with N = (0, 2) supersymmetry, describ-
ing maps from the string worldsheet into the target space M1,3 ⇥ X [137]. The internal
geometry and gauge bundle data appear in the NLSM through the metric G, the 2-form
gauge field B and couplings to worldsheet fermions. While phyiscally relevant, the NLSM
is strongly coupled in the UV, which makes it complicated to deal with. Therefore, we
use gauged linear sigma models (GLSMs) as UV completions, which are 2d supersym-
metric gauge theories that flow in the IR to NLSMs. For compactifications preserving
N = 1 supersymmetry in four dimensions, we need to look at N = (0, 2) GLSMs on the
worldsheet. The field content includes the following multiplets:

• Chiral multiplets �i = (�i, i
�) containing a complex scalar and a right-moving

fermion,

• Vector multiplets V for each gauged Abelian symmetry (U(1)m), that contain gauge
fields A, gauginos, and a complex scalar �.

• Fermi multiplets ⇤↵ = (�↵, F↵) with a left-moving fermion and an auxiliary field
F .

• Twisted chiral multiplets that encode the gauge field strengths and couple to Fayet-
Illiopoulos parameters and theta angles.

The �i fields can be viewed as coordinates on CN . The scalar potential includes F-
and D-terms, that impose moment map constraints that define a symplectic quotient
CN/U(1)m:

U(�,�) =
X

I

1

2e2
I

D2

I +
X

i

|Fi|2 + 2
X

I

|�I |2
X

i

QI2

i |�i|2, (4.7)

with D- and F-terms given by:

DI =
X

i

QI

i |�i|2 � aI , F ⇤
i =

@W

@�i

����
✓=0

. (4.8)

The moduli space of the classical vacuum is then a toric variety, while adding a gauge-
invariant transverse superpotential defines a hypersurface within the ambient space. To
ensure that the resulting target space is a Calabi-Yau, the gauge charges Qi must sum
to 0:

P
i
Qi = 0, guaranteeing that the first Chern class of the tangent bundle vanishes.

This also enforces conformal invariance of the IR theory, in the absence of anomalies.

In N = (0, 2) theories, the Fermi multiplets are subject to chiratility constraints

D̄+⇤
↵ =

X

i

E↵

i (�) 
i , (4.9)

where E↵

i
(�) are holomorphic functions of the chiral superfields. These functions encode

the geometry of a holomorphic vector bundle V over the CY, where the cohomology of
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V is described by the surviving massless fermions (the ones that are not gauged away
or become massive). These bundles usually are usually encoded in a so-called monad
construction expressed as an exact sequence of holomorphic vector bundles [138,139]:

0 ! O�p M�!
M

↵

O(Q↵)
N�!
M

m

O(�qm) ! 0 . (4.10)

In the above equation, O�p denotes a trivial bundle of tank p, corresponding to uncharged
Fermi multiplets, O(Q↵) and O(�qm) are direct sums of the line bundles over the CY
characterized by integer charge vectors Q↵ and qm under the GLSM gauge symmetries.
The maps M and N encode the holomorphic data determined by the superpotential
couplings and the chirality constraints.

The vector bundle defined this way reads as the cohomology of the complex:

V =
ker(N)

Im (M)
. (4.11)

When p = 0 we have a minimal monad, and V = ker(N), while p > 0 allows for more
general structures. This construction is used in heterotic compactifications to construct
stable bundles. To ensure c1(V ) = 0 (consistent with supersymmetry) we need to impose
the condition X

↵

Q↵ =
X

m

qm , (4.12)

while to ensure that c1(TX) = 0 (CY condition), we require

X

i

Qi = 0 . (4.13)

4.1.2 The gauge group

For simplicity, we focus on the E8 ⇥E8 heterotic string as the the ten-dimensional gauge
symmetry has the attractive feature of factorizing cleanly into two separate E8 sectors.
Upon compactification, realistic gauge groups can be engineered by appropriately em-
bedding the internal gauge bundle into one of the E8 factors. Specifically, one chooses a
structure group G1 ⇢ E8 for the internal bundle V1, and the unbroken gauge symmetry
in four-dimensions is given by the commutant of G1 in E8

E8 � G1 ⇥ H4 (4.14)

where H4 is the visible 4d gauge group. The choice of structure group thus determines
the visible gauge group [134], as well as the matter content, which is encoded in the
decomposition of the adjoint representation of E8 under G1 ⇥H4, and the cohomology of
the associated bundle-valued representation.

Typical embeddings used to get 4d gauge groups that resemble out universe are:

• SU(5) GUT:
Structure group: G1 = SU(5)
Commutant: H4 = SU(5)
This yields a grand unified theory with the usual 10 � 5 matter content. Further
breaking to the Standard Model can occur via Wilson lines.
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• SO(10) GUT:
Structure group: G1 = SU(4)
Commutant: H4 = SO(10)
This setup has the advantage of allowing each SM generation to fit into a single 16
spinor of SO(10).

• E6 :
Structure group: G1 = SU(3)
Commutant: H4 = E6

Here, the visible gauge group is large, which requires additional breaking mecha-
nisms.

• Pati-Salam:
Structure group: G1 = SU(4)⇥ SU(2)R
Commutant: H4 = SU(2)L ⇥ SU(2)R ⇥ SU(4)
These models unify quarks and leptons at an intermediate scale.

• Standard Model-like:
Structure group: G1 = SU(3)⇥ SU(2)⇥ U(1)n or more elaborate constructions.
Commutant: H4 � SU(3)c ⇥ SU(2)L ⇥ U(1)Y
The low energy group resembles the SM group, though careful engineering (e.g., via
fluxes or Wilson lines) is needed to obtain the correct spectrum and couplings.

The low-energy chiral spectrum is determined by decomposing the adjoint representation
248 of E8 under G1 ⇥ H4, and computing the cohomology associated with the resulting
bundle-valued representations.

To realize these constructions, we take a Calabi-Yau threefold X described by a complete
intersection in a toric variety, with h1,1 = k independent Kähler parameters. A line
bundle L on X is completely specified by its first Chern class c1 2 H2(X,Z), which can
be expanded in a basis {!i} of H2(X,Z), as

c1(L) =
h
1,1X

i

ni!i , L = O(n1, . . . , nk) = O
 
X

i

ni!i

!
. (4.15)

where ni 2 Z. More general vector bundles can be constructed as cohomologies of com-
plexes, as reviewed above. A vector bundle V of rank r can be defined via

0 ! O�p M�!
r1M

↵=1

O(n↵

i )
N�!

r2M

m=1

O(mm

i ) ! 0. (4.16)

This defines the vector bundle V with rank rk(V ) = r1 � r2, as V = Ker(N)

Im(M)
with p � 0.

The total Chern class is given by:

c(V ) =
Y

↵,m

1 +
P

i
n↵

i
!i

1 +
P

i
mm

i
!i

. (4.17)

In particular, the first Chern class reads:

c1(V ) =
h
1,1X

i=1

 
r1X

↵=1

n↵

i �
r2X

m=1

mm

i

!
!i. (4.18)
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For an SU(N) vector bundle, supersymmetry requires c1(V ) = 0. Given this setup, one
can compute the massless spectrum by evaluating the cohomology groups associated to
the bundle-valued representations.

Bianchi identity In addition, consistency of the string background imposes the Bianchi
identity eq. (4.2), which relates the geometry of the compactification to the topology of
the gauge bundle. Upon integration over compact 4-cycles in the Calabi–Yau, this identity
translates into a topological condition involving second Chern classes [140]:

X

i

c2(Vi) = c2(TX) , (4.19)

for non-Abelian bundles. In models with Abelian bundles, the condition generalizes to:

KX

i=1

ch2(Vni
) +

MX

m=1

amc21(Lm) = �c2(TX). (4.20)

The constants am appearing in the Bianchi identity for Abelian bundles are not arbitrary:
they are group-theoretic coe�cients that depend on how the Abelian U(1)m factors are
embedded in the ten-dimensional gauge group. To determine them, we expand the internal
gauge field in the Cartan subgroup of E8, so that the embedding of each Abelian factor
is specified by a charge operator Qm 2 e8, and fields carry charges qm 2 Z under this
generator. The normalization of the trace is defined through

tr(F 2

m) = am c21(Lm), (4.21)

where tr is the trace in the adjoint representation of E8. The value of am is given by:

am =
1

4
Tradj(Q

2

m), (4.22)

where the trace sums the squared charges of the adjoint representation. Alternatively,
we can relate am to the level of embedding k of the U(1) into E8 by expressing the
normalization in terms of the Kac-Moody level, as

am =
km
30

, (4.23)

reflecting the standard trace identity in E8:

tr248(T
aT b) = k�ab . (4.24)

The Kac-Moody level km counts how the U(1) charges appear in the decomposition of the
adjoint of E8 and determines the normalization of kinetic terms and anomaly coe�cients.

DUY equations In addition to the topological constraints from the Bianchi identity,
the D-term equations, derived from supersymmetry, impose the so called DUY conditions,
which require that each slope-stable vector or line bundle has vanishing slope

Z

X

J ^ J ^ c1(Vni
) = 0,

Z

X

J ^ J ^ c1(Lm) = 0, (4.25)

with one-loop corrections when c1(V ) 6= 0. These constraints further restrict the allowed
moduli, freezing some combinations of the Kähler moduli and the dilaton. The axions
dual to those directions become longitudinal components of massive U(1) gauge bosons
via the Green-Schwarz mechanism, and the e↵ective theory retains only anomaly-free
gauge symmetries.
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4.1.3 Heterotic EFT in 10D and 4D

Axions in heterotic string theory come from the Kalb-Ramond 2-form B2 [54]. The
relevant part of the 10D heterotic action is

L10D =
1

22
10

p
�gR � 1

42
10

H ^ ?H � ↵0

82
10

tr(F ^ ?F )

=
2⇡

g2s`
8
s

p
�gR � 2⇡

g2s`
4
s

· 1
2
H ^ ?H � 1

4(2⇡)g2s`
6
s

F ^ ?F ,

(4.26)

where H = dB + !3L � !3Y and the trace refers to the adjoint of E8 ⇥ E8 or SO(32).

Compactifying to four dimensions and integrating over the internal manifold X with
physical volume Vol(X) = V`6s yields the e↵ective action

S4D �
M2

Pl

2

Z
d4x

p
�gR � 1

4g2
YM

Z
d4x F ^ ?F � 2⇡V

g2s`
4
s

Z
1

2
H ^ ?H , (4.27)

with the four dimensional parameters M2
p = 4⇡Vol(X)

g2s`
8
s

= 4⇡ V
g2s`

2
s

and g2
YM

= 4⇡ g
2
s`

6
s

Vol(X)
=

4⇡ g
2
s

V . Therefore, we can write ↵YM = g2
YM

/4⇡ as

↵YM =
g2s
V . (4.28)

If we allow for a non-standard embedding of the SM into the heterotic string at Kac-
Moody level k > 1, then in general (see Witten for more)

↵GUT =
↵YM

k
=

g2s
kV . (4.29)

The string scale Ms = 1/`s can be evaluated to be Ms = (k↵G/4⇡)1/2Mp, where ↵G is
the strong coupling constant, such that if ↵G ⇠ 1/25, then Ms ⇠ Mp

p
k/18 which is the

usual perturbative heterotic string scale.

We emphasize here a direct consequence of the above relation between the 4D gauge
coupling, the CY volume and the string coupling gs. Namely, the restriction to perturba-
tive heterotic string theory gs . 1 (implying the absence of e.g. M5-branes of heterotic
M-theory) in combination with phenomenological requirement ↵YM ' 1/25 of gauge cou-
pling unification of the the MSSM gauge couplings into the E8 GUT structure implies a
stringent upper bound on the compactification volume [117,141]

V . 20� 30 . (4.30)

As we will see below, this crucially limits h1,1 if we demand that all 2-cycle volumes
satisfy vi & 1 to ensure control over the worldsheet instanton expansion. In highly
anisotropic fibred CY compactifications, eq. (4.30) still places constraints by bounding
the largest curve volume as v . 50 (modulo the numerical values of the intersection
numbers appearing in the volume form).

4.1.4 Heterotic axions in 4D

Next, we discuss the top-down axion content of the theory. The heterotic string generically
contains both: one model-independent axion a, which is the 4D dual of Bµ⌫ and univer-
sally present in all compactifications, and many model-dependent axions bi, arising from
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the internal components of the B-field, with i = 1, . . . , h1,1. The model-independent
axion is defined via dualization as

a = 2⇡

Z

CY

B6 , with dB6 = ?dB2 , (4.31)

while model-dependent axions arise from expanding B in a basis of harmonic 2-forms
{�i}:

B =
1

2⇡

X

i

bi(x)�i , with

Z

⌃j

�i = �ij . (4.32)

We now analyze the couplings of these axions to gauge fields through the modified Bianchi
identity for H. In four dimensions, we can enforce this identity by treating a as a Lagrange
multiplier:

S �
Z

a

✓
dH +

1

16⇡2
(trR ^ R � trF ^ F )

◆
. (4.33)

Integrating out H yields an e↵ective action for a:

S(a) =

Z
d4x


�1

2
f2

a (@a)2 +
a

16⇡2
(trF ^ F � trR ^ R)

�
, (4.34)

where the axion decay constant is

f2

a =
g4s
2⇡V . (4.35)

This reproduces the expected structure of an axion with a Chern-Simons coupling, where
the coe�cient is determined by the underlying string parameters and internal geometry.

Themodel dependent axions arise as the 0-form valued coe�cients of the B2 expansion
in the basis of harmonic 2-forms {�i} as in eq. (4.32). The kinetic terms arise from
dimensional reduction of the H ^?H term in the 10D action. Defining the Kähler metric:

�ij =

Z

CY

�i ^ ?�j , (4.36)

the 4D kinetic action becomes:

Skin = � 1

2⇡g2s

Z
d4x

1

2
�ij@µbi@

µbj . (4.37)

These axions acquire couplings to gauge fields via the 10D Green-Schwarz anomaly can-
cellation mechanism [54,140], as described in the following section.

4.1.5 Anomalies, Axions and Green-Schwarz

In string theory, irreducible anomalies cancel due to group-theoretic identities, while fac-
torizable (Abelian or mixed) anomalies cancel via a generalized Green-Schwarz mechanism
that involves axionic couplings to Chern-Simons terms

SGS =
1

48(2⇡)5↵0

Z
B ^ X8 , (4.38)

with

X8 =
1

24
trF 4 � 1

7200
(trF 2)2 � 1

240
(trF 2)(trR2) +

1

8
trR4 +

1

32
(trR2)2 . (4.39)
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Using tadpole cancellation condition from the Bianchi Identity, separating the two gauge
sectors, the action dimensionally reduced reads

SGS =
1

64(2⇡)5↵0

Z
B ^

�
trF 2

1

�✓
tr1 F̄ 2 � 1

2
tr R̄2

◆

� 1

768(2⇡)5↵0

Z
B ^

�
trR2

� �
tr R̄2

�

+
1

48(2⇡)5↵0

Z
B ^

⇥
tr1
�
FF̄
�⇤2

+
1

32(2⇡)5↵0

Z
B ^ tr1

�
FF̄
�✓

tr1 F̄ 2 � 1

2
tr R̄2

◆
+ (1 $ 2) ,

(4.40)

where the overlined quantities refer to the internal ones, while the others are the 4D
ones. We are interested in the first line of the Green-Schwarz action eq. (4.40), which,
after expanding the B-field in harmonic forms, gives us the Chern-Simons coupling for
the model dependent axions [142],

� 1

2⇡24!

X

i

Z

X

�i


�trR ^ R

2
+ 2 tr1 F ^ F � tr2 F ^ F

� Z
bi
tr1F ^ F

16⇡2
+(1 $ 2) . (4.41)

We make use of the Bianchi identity, eq. (4.2),whose integral over any compact 4-cycle
in the internal manifold vanishes due to Stokes’ theorem, assuming no boundaries or
localized sources, to rewrite:

�
X

i

Z

X

�i ^
1

16⇡2

✓
tr1 F ^ F � 1

2
trR ^ R

◆Z
bi

✓
tr1 F ^ F

16⇡2
� tr2 F ^ F

16⇡2

◆
. (4.42)

The e↵ective 4D CS couplings can be written as:

LCS =
X

i

ni

16⇡2
bi(x) (tr1F ^ F � tr2F ^ F ) , (4.43)

where the coe�cients ni depend on the internal geometry and background fluxes through:

ni =

Z

X

�i ^
1

16⇡2
�
tr1F ^ F � 1

2
trR ^ R

�
. (4.44)

Diagonalizing the Kähler metric and canonically normalizing the axions as bi ! #i = fibi
with

f2

i =
�i

2⇡g2s
, (4.45)

we arrive at the Chern-Simons couplings:

LCS =
1

16⇡2
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fa

+
X

i

ni

fi
#i

!
tr1F ^ F +

1

16⇡2
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fa

�
X

i

ni

fi
#i

!
tr2F ^ F . (4.46)

Canonically normalizing the gauge field F ! gYM ⇥ F , we find

LCS =
X

i

�i
4fi

#i (tr1F ^ F � tr2F ^ F ) , �i =
nikRe[f ]

2⇡2
, (4.47)

where k is the current algebra level coming from the definition of the traces trF ^ F =
2ktrF ^ F .
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At tree level, the gauge kinetic function determined from the kinetic terms of F and the
CS coupling with a is [143]

f =
V

4⇡g2s
+ i

a

4⇡2
. (4.48)

However, at one-loop, di↵erent choices of internal gauge bundles V embedded into the
first and second E8 factor yield distinct threshold corrections from the model dependent
axion CS couplings. Since we expanded the B2 in a basis of harmonic two-forms {�i} of
the Calabi-Yau manifold as in eq. (4.32), we can do the same for the Kähler form:

J = 2⇡
h
1,1X

i=1

vi �i , (4.49)

then the bi, as dimensionless axions with periodicity bi ⇠ bi + 2⇡, and the vi are the
volumes of the associated two-cycles, can be combined in the complexified Kähler moduli
Ti:

Ti = vi + ibi . (4.50)

Then the one-loop corrected gauge kinetic function at large T i is (see e.g. [111,144])

f =
V

4⇡g2s
+ i

a

4⇡2
± 1

4⇡2

X

i

T ini, , (4.51)

where the ± depends if we’re looking at the visible or hidden gauge sector. Thus, the
e↵ective CS coupling reads:

�i,visible ⌘ �i,v = k
8nig2s

(V⇡ + g2svini)
,

�i,hidden ⌘ �i,h = �k
8nig2s

(V⇡ � g2svini)
.

(4.52)

This way di↵erent couplings of the axions with the visible and with the dark sector can
arise.

4.1.6 Volume bound and axion multiplicity

To reproduce phenomenologically viable values for the unified gauge coupling as given in
eq. (4.29), the Calabi–Yau volume in string units must satisfy

V =
1

6
ijkv

ivjvk . 20 , (4.53)

where the vi denote the Kähler parameters measuring volume of the 2-cycles in the internal
manifold, and ijk denote the triple intersection numbers. This volume bound can have
di↵erent implications depending on the topology of the internal space.

In isotropic compactifications, where all 2-cycle volumes are of similar size vi ⇠ v . 3,
the number of non-vanishing intersection numbers grows as ⇠ 1

6
O((h1,1)3) [145]. Approx-

imating ijk ⇠ O(1), the volume constraint implies a bound on the combination of h1,1

and v

V ' 1

36
(h1,1)3v3 . 20 . (4.54)
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Figure 4.1: Volume bound for di↵erent values of the 2-cycle volume. The pink line shows the
maximum allowed volume eq. (4.53).

This scaling arises because the triple intersection number is a rank-three totally symmetric
tensor, which can have at most

�
n+3�1

3

�
independent number of components, where n =

h1,1 is the dimension of the vector space n which the tensor is defined (H1,1).

Suppression of non-perturbative corrections, which is equivalent to control of the instanton
series, requires vi & O(1). This puts an upper bound on the number of sizable 2-cycles
which we show in fig. 4.1. There can be at most 8 axions with v ⇠ 1, 4 axions if v = 2,
and so on. Extrapolating this would bound the number of axions to be less than 1 for
v ⇠ 8, however when we have  2 axions the combinatorial property that gives us the 1

6

scaling no longer applies as it comes to compensate the identical permutations. We note
that these are loose bounds, as intersection numbers can be as large as ⇠ 10. Hence an
isotropic heterotic compactification can support at most a handful of axions.

One might hope to evade this restriction in a highly anisotropic compactification, such as
a “Swiss Cheese” Calabi-Yau with volume [146]

V = ⌧3/2
b

�
X

s

⌧3/2s , (4.55)

where ⌧b denotes the volume of a large 4-cycle and the ⌧s are small blow-up cycles.
Because the ⌧s appear with negative signs, taking ⌧b ⇡ ⌧s can keep the volume small
while individually sending both ⌧b and ⌧s to large values. However, it seems unnatural to
allow for this strategy to be unconstrained. We can provide several arguments suggesting
that 4-cycle volumes cannot be arbitrarly large even if they keep the overall volume fixed.
First, consider a compactification with h1,1 = 2, with ⌧b = bbbv2b and ⌧s = sssv2s , such
that the volume reads

V =
�
bbb v3

b
� sss v3s

�
, (4.56)

Now impose the requirement V . 20. If one tries to take both ⌧b and ⌧s parametrically
large while keeping their di↵erence small, which forces

vb ' (sss/bbb)
1/3 vs + O

✓
1

3
V v�2

s

◆
! rvs , (4.57)
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i.e. the two Kähler parameters must approach each other with scaling given by the ratio

r ⌘
⇣
sss

bbb

⌘1/3
. We now define a divisor class

L = Db � �Ds , with � > 0 . (4.58)

whose self intersection is L3 = bbb � �sss = 0 if � = 1

r
. Geometrically, this means that

L lies on the boundary of the Kähler cone, as it is nef but not ample. In order words,
L · C � 0 for every e↵ective curve C but it does not lie in the interior of the cone since
there will be one intersection with an e↵ective curve that vanishes. By duality of the
nef and the Mori cone, any nef divisor on the boundary must have zero intersection with
some e↵ective curve class: there exists an e↵ective curve C s.t. L · C = 0. (Indeed L2 is,
intersecting two divisors which cuts out a holomorphic curve so basically L2 is dual to C).

Now take an e↵ective curve C, with divisor intersections

a = Db · C > 0, b = �Ds · C > 0 � ⌘ a

b
, (4.59)

which will have the volume

J · C = bvs


�

vb
vs

� 1

�
. (4.60)

Therefore, in the limit eq. (4.57), the volume vanishes when � = vs/vb ! 1/r.

This is the curve whose existance is guaranteed by L3 = 0, as it shrinks to zero volume in
the large two-cycle limit. The above illustrates that one cannot send both 4-cycle volumes
to infinity with fixed overall volume without hitting a boundary of the Kähler cone where
an e↵ective curve collapses.

A similar argument can be made for more general swiss cheese structure manifolds. Such
a swiss cheese CY may have an intersection number structure such that we have ⌧b =
bijvivj = bbbv2b +bbsvbvs+bssv

2
s . In order to then rewrite the volume form in terms of

⌧b and ⌧s then one adds and subtracts an appropriate term cv2s to complete the squares
in the volume form, such that in terms of ⌧b = (avb + bvs)2 and ⌧s = �cv2s the volume
takes the swiss cheese form. The same result apply to this case, except that the linear
relation between vb and vs gets modified

V ⇠ (avb + bvs)
3 � cv3s ⇠ const , vb = vs

(c � b)

a
+O(Vv�2

s ) . (4.61)

We now provide a simple explicit example illustrating this qualitatively. Consider the
blow-up of P2 at a point, with divisor basis {H, E}, where H denotes the pullback of the
hyperplane class and E is the exceptional divisor: a (�1) curve satisfying E · E = �1.
Let the Kähler form be parametrized as

J = vHH � vEE, vH , vE > 0, (4.62)

ensuring positivity of volumes for all e↵ective curves. An important e↵ective curve class
on this surface is

C = H � E, (4.63)

which corresponds to the proper transform of a line through the blown-up point. Although
this class appears as a formal di↵erence in the chosen basis, it is indeed an e↵ective, rigid
curve in the del Pezzo surface.
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The volume of this curve is given by

Vol(C) = J · C = (vHH � vEE) · (H � E) = vH � vE . (4.64)

This shows that C becomes small as vH ! vE from above, and shrinks completely at the
boundary vH = vE of the Kähler cone. While C is a genuine e↵ective curve class, its
volume depends on the di↵erence of two Kähler parameters.

Now take the case of multiple Kähler fields. Take ⌧b = bjkvjvk, and ⌧si = sijkv
jvk, and

take

⌧b ⇠
X

i

⌧si ! 1 . (4.65)

Implying

bjkv
jvk ⇠

X

i

sijkv
jvk . (4.66)

This means that imposing the volume bound but keeping the four cycles big imposes
one quadratic relation on the direction of growth of the 2-cycles: they must blow up
proportionally with fixed ratios set by the intersection numbers.

The structure of the string loop corrections to the moduli Kähler potential provides an-
other, and correlated, signal indicating a shrinking 2-cycle. Namely, sending 4-cycles to
large volumes breaks down the EFT which comes from string loop corrections to the
Kähler potential, �K(gs), which behave as homogeneous functions of degree �2 in the
2-cycle volumes [147]. This implies that if one sends a Kähler modulus ⌧ ! 1 while
keeping the overall volume V fixed, the corresponding 2-cycle volume t also diverges,
and hence �K(gs) ⇠ v/V ⇠ ⌧1/2/V grows without bound. Although the scalar potential
exhibits an extended no-scale structure that ensures the cancellation of leading order con-
tributions from such corrections when �K(gs) is of degree �2, the subleading contribution
�V2 remains sensitive to their magnitude. Therefore, in this limit, the loop corrections to
the scalar potential become large and the e↵ective field theory breaks down.

A note on geometry and bundles

The structure of the gauge bundle in heterotic compactifications is intimately linked
to the topology of the internal Calabi–Yau manifold, particularly its non-trivial cycles.
For vector bundle V of rank n, the topological data is encoded in the chern classes
ci(V ). A holomorphic, stable in the sense of the slope, bundle, must satisfy the anomaly
cancellation condition which related the second Chern class c2(V ) to that of the CY
c2(TX). When talking about line bundles, we only need c1(V ) 2 H2(X) ⇠ divisors,
counted by h1,1. If h1,1 is small, the options for embedding the gauge bundle are limited
and you can’t construct too complicated bundles.

In many explicit constructions, especially those based on line bundles, the gauge bundle
is written as a direct sum of line bundles over divisors: V =

L
i
O(Di). Here, each divisor

Di corresponds to an element of H2(X), whose dimension is counted by h1,1. Thus, the
number of available divisors directly limits the flexibility in defining such bundles. When
h1,1 is small, the space of line bundle configurations is highly constrained, making it
di�cult to construct bundles that satisfy anomaly cancellation and supersymmetry. Con-
versely, a larger h1,1 provides more geometric freedom to define richer bundle topologies.
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Therefore, while the rank of the bundle is not directly constrained by h1,1, construct-
ing more intricate gauge bundles typically requires a compactification geometry with a
greater number of independent cycles.2

4.2 Heterotic axion EFT: CP problem & axion mass spec-
trum

4.2.1 A short recap on heterotic moduli stabilization

Discussion of an axion EFT in string theory requires addressing moduli stabilization
within a given class of string compactifications. The strategies employed in type IIB string
theory for compactification on warped conformal CY orientifolds with 3-form fluxes and
7-branes is of no use for the E8⇥E8 perturbative heterotic string. Namely, we cannot avail
ourselves of the presence of an RR-sector 3-form flux F3 jointly with the NSNS 3-form
flux H3 in order to produce a flux discretuum by which we can fix both the c.s. moduli
and the axio-dilaton and at the same time fine-tuning the resulting flux superpotential
W0 to be of small magnitude.

Heterotic moduli stabilization in CY compactifications (including their orbifold limits
in CY moduli space) has to proceed from the e↵ective action determined by a Kähler
potential and superpotential:

K = � ln(S + S̄)� lnV(Tt, T̄i)� ln

✓
�i

Z

X

⌦(za) ^ ⌦̄(z̄ā)
◆
+�Knon�/pert.

W =

Z

X

H3 ^ ⌦(za) +
X

i

Aie
�aifi(S,Tj ,zb) +

X

n

Bke
�2⇡Tk .

(4.67)

Recalling the results of [105,110–117], the first sum in W parametrizes non-perturbative
e↵ects from gaugino condensation driven by unbroken non-Abelian gauge group factors
surviving from the hidden E8-factor. The second sum describes the contribution from
worldsheet instantons. The contributions from gaugino condensation depend on the
Kähler and c.s. moduli through the 1-loop threshold corrections which for largish values
of the Ti and za depend linearly on those moduli, but are e.g. for simple toroidal orbifold
limits of CYs dictated by modular invariance to appear in the form of the logarithm of the
Dedekind eta function [144]. �Knon�/pert. in turn represents perturbative ↵0 and string
loop as well as non-perturbative corrections to the Kähler potential [118–122].

In heterotic CY compactifications we can only use H3-flux to fix the c.s. moduli. Its
quantization produces either a VEV W0 = |h

R
H3 ^ ⌦i| & O(1) in the case of standard

integer-quantized 3-form flux H3, or at best W0 = |h
R

Hfract.

3
^⌦i| & O(0.1) in the case of

H3-flux due to the fractional CS term contribution e.g. from discrete Wilson lines [111].

In the absence of H3-flux, generically a part of the c.s. moduli stabilization can happen
at the SUSY Minkowski level (DzW = W = 0) by turning on a non-trivial gauge bundle,
already needed to break the visible E8 towards the SM gauge group, as part of the
background fields of the compactification. The resulting unbroken subgroup of E8 ⇥ E8

typically contains anomalous U(1)-factors whose D-terms will have the structure

D =
c

S + S̄
� qC |C|2 (4.68)

2We thank Fabian Ruehle for explaining the content of section 4.1.6 to us and for reminding us the
existence of shrinking curves in anisotropic limits of CY compactifications.
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where c denotes the coe�cient of the field-dependent FI term and C are a summarily
representation of the gauge bundle moduli which appear as SM gauge single chiral mul-
tiplets in the 4D EFT. Assume now that the dilaton S is stabilized at a non-zero VEV
with Re hSi ' 2 consistent with MSSM gauge coupling unification (more on this below).
Then, the D-term scalar potential from the anomalous U(1)-s’ D-terms will now drive
some bundle moduli to acquire non-zero VEVs. It was shown that the combined moduli
space of the c.s. moduli and bundle moduli has a partial cross structure [104, 114, 148]
following an observation in [149]. Hence, once the bundle moduli acquire non-zero VEVs
from the D-terms, at least some of the c.s. moduli will be stabilized at zero VEV in turn.
For certain CY manifold,s and in particular orbifolds, this mechanism can be su�cient to
stabilize all of the c.s. moduli at the SUSY Minkowski level [104,114,117,148].

A variant of this situation arises if the 4D EFT of the given heterotic CY or orbifold
compactification possesses a higher-order discrete R-symmetry ZN under which one the
D-term chiral fields C is charged. In this case, the superpotential may contain R-invariant
high-order monomial terms �W ⇠ CN . As C acquires a VEV of typical size |hCi| ⇠p

c/Re hSi ⇠ 0.1, this induces an e↵ective W0 ⇠ hCiN ⇠ 10�N which can be as small as
O(10�10) for ZN with N as large as 10 [115].

Next comes stabilizing the dilaton. Here, we can discriminate between two classes.

GC There is gaugino condensation [150, 151] from unbroken non-Abelian gauge group
factors surviving the breaking of the hidden E8-factor [152,153].

• W0 ' 0.1 from fractional CS-invariants. The hidden E8 now needs to remain
unbroken, as only the Coxeter number of E8 is large enough to stabilize the
dilaton against W0 in DSW = 0 at hSi ' 2 required for gauge coupling unifi-
cation [111,117].

• W0 ⌧ 0.1 from gauge bundle driven and D-term induced cs. moduli stabiliza-
tion, producing high-order R-symmetry protected e↵ectively constant terms in
the superpotential. In this case, a lower-rank gauge group gaugino condensate
surviving from the hidden E8 can stabilize S again near the phenomenologically
desired value [115,117].

• W0 = 0 after gauge bundle driven c.s. moduli stabilization. Dilaton stabi-
lization via gaugino condensation now requires a racetrack (RT), i.e. two con-
densing non-Abelian gauge group factors surviving from breaking the hidden
E8 [110,154].

noGC The hidden E8 gets completely broken by a combination of gauge bundle choice and
additional Wilson lines to a surviving subgroup containing just several U(1)-factors.
Gaugino condensation is now absent.

• Dilaton stabilization has to proceed by a combination of perturbative and/or
non-perturbative quantum corrections to the dilaton Kähler potential (such
as the universally present ‘Shenker-like’ terms [118]) which may produce a
generically SUSY breaking S-minimum [105,112].

Finally, stabilization of Kähler moduli needs to proceed along similar lines classified by
the presence or absence of gaugino condensation and a possible constant contribution W0

to the superpotential.
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GC Gaugino condensation occurs.

• Stabilization of the Kähler moduli can proceed either via the dependence of
the gaugino condensate on compactification moduli through threshold correc-
tions to the gauge kinetic function [144], or similar to the KKLT scenario, via
worldsheet instanton corrections �Wws ⇠ e�2⇡Ti balancing against W0 in the
F-term condition DTi

W = 0.

• Including the leading ↵0-corrections to the volume moduli Kähler potential
from 10D R2 and R4 curvature correction [119, 121, 122], we can engineer an
`VS-scenario like stabilization scheme for the Kähler moduli on CY manifolds
whose CY volume takes the Swiss-Cheese form [117]. Here, the ` in `VS
refers to the fact, that the total CY volume can at most be of O(20 . . . 30) for
perturbative (gs < 1) heterotic string compactification which maintain MSSM
gauge coupling unification, so the CY volume can at best be ’large-ish’ but not
Large.

noGC No gaugino condensation.

• Kähler moduli stabilization would now require at least one racetrack-like con-
figuration of at two di↵erent worldsheet instantons for one volume modulus Ti

generating a minimum for it with non-vanishing �WRT(hTii). This part of the
superpotential can now act as an e↵ectively constant W0 against single world-
sheet instantons for the remaining Kähler moduli to stabilize them similar to
the KKLT scenario.

• Alternatively, if W0 6= 0 one can stabilize the Kähler moduli perturbatively
given su�ciently many string loop and/or ↵0-corrections to the volume moduli
Kähler potential.

4.2.2 Sources of Axion Masses

Axions in heterotic string compactifications generally acquire masses via three non-perturbative
mechanisms:

1. QCD instantons in the visible sector;

2. Hidden sector gaugino condensation;

3. Worldsheet instantons wrapping internal two-cycles.

Assuming the visible sector is embedded in the first E8, the QCD anomaly induces an
axion potential:

VQCD = �⇤4

QCD cos

 
#a
fa

+
X

i

ni

fi
#i + �

!
, (4.69)

where � arises from the complex phase of the quark mass determinant. We assume a
superpotential of the form

W = W0 + Wnp , (4.70)

where W0 is a constant tree-level flux superpotential, and Wnp is the contribution coming
from either worldsheet instantons or some condensing gauge group.
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If the second E8 contains a non-Abelian subgroup G confining in the IR, gaugino conden-
sation generates a superpotential in N = 1 SUGRA:

Wnp ⇠ Ae
� 8⇡2

c(G)fG (4.71)

where fG and c(G) are the gauge kinetic function and the dual Coxeter number of G,
respectively. In heterotic compactifications, one typically has Re(f) ⇠ V/(g2s). For G =
SU(N), c(G) = N , This leads to the potential:

Vgc = �⇤4

gc cos

 
#a
fa

�
X

i

ni

fi
#i

!
, (4.72)

with

⇤4

gc = µ4 exp

✓
�2⇡

N

V
g2s

◆
. (4.73)

Worldsheet instantons wrapping holomorphic two-cycles generate non-perturbative con-
tributions to the superpotential of the form

Wnp = A e�2⇡T (4.74)

where T = v + ib is the complexified Kähler modulus, with v the volume (in string units)
of the wrapped cycle and b its associated axion. These contributions induce a scalar
potential for axions of the general form

Vws = �⇤4 cos

 
X

i

ci#i
fi

!
, ⇤4 ⇠ µ4 e�2⇡v, (4.75)

where the ci are coe�cients that depend on the specific instanton and its coupling to
the axions. In the later sections we will restrict to the simplified case where each in-
stanton only contributes to lifting one model dependent axion. The scale µ4 depends
on the compactification and moduli stabilization data. In supergravity, the potential
typically includes cross-terms of the form V ⇠ eKW0Ae�T , so µ4 often scales as W0A.
The flux superpotential W0 typically lies between 10�13 and 10�1M3

Pl
, depending on the

compactification, tuning, and origin of W0.

We now explore how these contributions determine the mass spectrum in two- and three-
axion systems, and how they a↵ect the coupling structure. We begin with a general
framework for understanding the hierarchy and role of each contribution:

1. The QCD potential always contributes and generates a mass for the axion combi-
nation coupled to tr1 F ^ F .

2. Gaugino condensation contributes when non-Abelian hidden sector gauge groups
are present. If the hidden E8 is broken entirely to U(1) factors, this contribution is
absent.

3. The internal Calabi-Yau volume V controls both ↵0 corrections and gauge couplings.
Realistic models require moderately large V (e.g., V ⇠ O(10 � 20)), limiting the
emergence of ultra-light axions.
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4.2.3 Strong CP problem

To address the Strong CP problem arising from the CP-violating term in the QCD La-
grangian,

L✓ =
✓e↵
32⇡2

tr(G ^ G) , (4.76)

we invoke the Peccei–Quinn mechanism through a combination of axions that couple to
the first E8, which contains the visible-sector QCD gauge group. This specific linear com-
bination of axions enters the QCD Chern-Simons term and therefore receives a potential
from QCD instantons. The resulting potential dynamically minimizes the e↵ective angle
✓e↵, driving it to zero. In this way, the axion field adjusts to cancel the CP-violating
phase, providing a dynamical solution to the Strong CP problem.

It is important to emphasize, however, that the axion direction lifted by QCD instantons
generally overlaps with those lifted by other non-perturbative e↵ects, such as gaugino
condensation or worldsheet instantons. These directions are not, in general, orthogonal
in axion field space. To illustrate this, consider the following scalar potential:

V =� ⇤4

QCD cos

 
#a
fa

+
X

i

ni

#i
fi

+ �

!
� ⇤4

gc cos

 
#a
fa

�
X

i

ni

#i
fi

!

�
h
1,1X

j=1

⇤4

j cos

 
X

i

c(j)
i

#i
fi

!
,

(4.77)

where the scales ⇤QCD,⇤gc,⇤j are defined in the previous subsection, and the #i denote
model-dependent axions with decay constants fi. In general, additional contributions from
higher-order instanton e↵ects, such as multi-instanton corrections, may also be present.
These are typically suppressed by double exponentials and are therefore subleading com-
pared to the single-instanton terms shown above. For the purposes of this analysis, we
will neglect such higher-order corrections.

The theory described by eq. (4.77) contains N = h1,1 + 1 axions and N + 1 leading
terms in the potential. In the regime where ⇤QCD is the smallest scale, all axion vacuum
expectation values are already fixed by the larger contributions from gaugino condensation
and worldsheet instantons. As a result, the QCD-induced term is no longer able to
dynamically relax ✓e↵ to zero, and the Peccei–Quinn mechanism fails to solve the Strong
CP problem.

Let us consider an isotropic compactification, where all worldsheet instanton contributions
are of comparable magnitude, and the non-perturbative scales exhibit the hierarchy

⇤4

ws � ⇤4

gc � ⇤4

QCD . (4.78)

In this setup, the worldsheet instanton potential Vws generically lifts N = h1,1 axion direc-
tions. The remaining axionic degree of freedom is then fixed by the gaugino condensation
term. As a result, by the time the QCD contribution becomes relevant, all axion vacuum
expectation values are already stabilized, leaving no freedom to dynamically minimize
the e↵ective angle ✓e↵ = #a +

P
i
ni#i + �. In this case, the Strong CP problem is not

solved dynamically, and the cancellation of ✓e↵ would require a fine-tuning of the axion
vevs, which is no better than tuning the original ✓ angle itself. The resolution lies in
freeing one axion vev so that it remains unfixed until the QCD contribution becomes
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dominant, allowing it to adjust and cancel the e↵ective ✓-angle. To achieve this, we must
ensure that only N = h1,1 axion directions are lifted by e↵ects stronger than QCD, while
one direction remains light enough to be fixed by the QCD potential. This requires at
least one non-perturbative contribution, either from gaugino condensation or a worldsheet
instanton, to be more suppressed than ⇤QCD.

Before turning to explicit scenarios, let us comment on the constraints imposed by phe-
nomenology. If the additional contribution is present but only slightly lighter than QCD, it
can still interfere with the axion dynamics and shift the vev away from the CP-conserving
minimum. To ensure that the Strong CP problem is reliably solved, the QCD contri-
bution must dominate over any other source of explicit shift symmetry breaking for the
axion. In particular, any subleading potential term must be suppressed relative to the
QCD term by at least ten orders of magnitude, so that the induced shift in remains be-
low current experimental bounds on the neutron electric dipole moment [14, 19, 75, 155]:
✓eff ' ✓QCD +�✓ < 10�10.

Let us now consider the case in which a hidden-sector non-Abelian gauge group undergoes
gaugino condensation at a scale below ⇤QCD. The associated contribution to the scalar
potential takes the form

⇤4

gc ⇠ W0M
3

s e
� 2⇡

N

V
g
2
s ⌧ 10�10 ⇥ ⇤4

QCD ⇠ 10�85M4

pl , (4.79)

where W0 is the flux superpotential, V = Vol(X)/`6s is the dimensionless Calabi-Yau
volume in string units, and we take ⇤4

QCD
⇠ 10�75M4

pl
. Relating the string scale to the

Planck scale via Ms ⇠ gsV�1/2Mpl, we can express the gaugino condensation scale entirely
in Planck units as

⇤4

gc ⇠ W0

g3s
V3/2

e
� 2⇡

N

V
g
2
s . (4.80)

Demanding ⇤4
gc ⌧ 10�85 imposes a stringent bound on the volume. Even taking opti-

mistic values to minimize the contribution, such as W0 ⇠ 10�13, gs ⇠ 1, and a minimal
confining group with N = 2, one finds

⇤4

gc & 10�48 � 10�10⇤4

QCD , (4.81)

showing that gaugino condensation occurs at a scale vastly exceeding the QCD scale.
As a result, any axion combination involved in this term will be stabilized well before
the QCD potential becomes relevant. Thus, the axion vev is no longer free to adjust in
response to the QCD contribution, and the Strong CP problem remains unsolved. The
only viable resolution in this case is to ensure that the hidden-sector gauge group does not
confine. This can be achieved by breaking it to its Cartan subgroup, leaving only Abelian
U(1) factors, which do not undergo gaugino condensation and hence do not generate
non-perturbative axion potentials.

Let us now consider the case here gaugino condensation occurs at a scale above QCD but
the nearly free axion direction arises from a su�ciently low-scale worldsheet instanton
contributing to the axion potential. Performing an analysis analogous to the gaugino
condensation case, we find that the contribution takes the form

⇤4

ws ⇠ W0

g3s
V2/3

e�2⇡v ⌧ 10�85 () v & 25 , (4.82)
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Figure 4.2: E↵ective ✓ angle arising from the inclusion of worldsheet instanton contributions,
plotted as a function of the overall volume. The shaded regions correspond to parameter values
that are excluded. The red curve corresponds to  = 1, with the associated exclusion region
determined by the bound in eq. (4.84); the purple and blue curves represent  = 2 and  = 3,
respectively. Higher values of the triple intersection number shift the curves upward, entering
regions already excluded by observational and consistency constraints. The pink vertical line
marks the upper bound on the volume, V < 25, while the light blue horizontal line corresponds
to the observational upper limit on the e↵ective ✓ angle.

where v denotes the volume of the wrapped two-cycle in string units. Achieving such
a large suppression requires v & 25, which is only possible in highly anisotropic com-
pactifications, specifically, when one two-cycle is significantly larger than the others and
dominates the total volume. This situation can naturally arise in fibred Calabi–Yau com-
pactifications, where the base cycle is large and the fibre cycles remain small (of order
unity). We can translate this in a bound on the volume, and so the total volume V is
therefore bounded from both above and below. Since the 2-cycle volume v scales as

v = 2
V


<
50


, (4.83)

we obtain the following constraint on the total volume:

25

2
 V  25 . (4.84)

In fig. 4.2, we plot this angle as a function of V for di↵erent values of the triple intersection
number . Compactifications with  > 2 are already excluded by this analysis, as they
would generate a ✓e↵ exceeding observational bounds. While the plot explicitly shows the
allowed region for  = 1, we omit the forbidden region for  = 2 to avoid overshadowing
the rest of the figure: in this case, the viable parameter space reduces essentially to a
single point.

In the following subsections we will analyze the system in the simplest cases, when h1,1 = 1
and h1,1 = 2, where there are respectively, two or three axions. The first case, the
simplest, can be analytically solved, and we can find the CS couplings of the physical
axions, whereas the three-axion case is more complicated and cannot be solved fully
analytically. We then provide examples for both cases, specifying when the Strong CP
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problem can be solved, when there can by a fuzzy dark matter axion candidate, and when
the couplings between the hidden and the visible sector can be made di↵erent. We note
that the examples we give are not complete models, as this would require more model
building and case by case anlysis.

4.2.4 Two-Axion System

We now consider a system of two axions: a model-independent axion #a and a model-
dependent axion #1, with decay constants fa and f1, respectively.

Their kinetic terms and Chern-Simons couplings take the form:

Lkin =
1

2
(@#a)

2 +
1

2
(@#1)

2, (4.85)

LCS =
1

16⇡2

✓
#a
fa

+
n1

f1
#1

◆
tr1F ^ F +

1

16⇡2

✓
#a
fa

� n1

f1
#1

◆
tr2F ^ F. (4.86)

We consider two subcases: one where we only consider QCD and gaugino condensation
contributing to the potential and one where we only consider QCD and worlsheet instan-
tons. This is because we have two axions, and in order to align their vevs to solve the
Strong CP problem we cannot have more than two contributions.

GC We first consider the case where gaugino condensation is present, and the world-
sheet instanton contribution is so small it can be safely neglected. We note that this case
is merely a toy model, as for h1,1 = 1 we are by definition in an isotropic compactifica-
tion, where all two-cycles have similar volume, and thus there cannot be one single large
two-cycle, e↵ectively suppressing the worldsheet instanton contribution. We also note
that in the realistic setup, where the worldsheet instanton case cannot be neglected, and
gaugino condensation happens, the strong CP problem cannot be solved. However, we
still analyze this as it is an instructive case. This setup allows for a rotated field basis
that diagonalizes the couplings:

'1 =
1

2
(#a + ↵#1), (4.87)

'2 =
1

2
(#a � ↵#1), (4.88)

with the field space ‘squashing parameter’

↵ = n1

fa
f1

. (4.89)

In this rotated basis, the CS couplings become:

LCS =
1

8⇡2fa
('1tr1F ^ F + '2tr2F ^ F ) . (4.90)

The kinetic terms contain cross-terms proportional to ↵:

Lkin =
1

2

✓
1 +

1

↵2

◆
[(@'1)

2 + (@'2)
2] +

✓
1� 1

↵2

◆
@'1@'2. (4.91)

For ↵ ⇡ 1, these can be approximately diagonalized and normalized by a rescaling 'i !
'i

q
1+↵2

↵2 .
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In this limit, the visible and hidden sector couplings are aligned with orthogonal axion
directions: '1 couples to the visible sector (QCD), and '2 to the hidden sector. The
decay constants can be estimated as

fa ⇠ 1p
V

, f1 ⇠
1

v
, (4.92)

and for n1 ⇠ 2, we find ↵ ⇠ 1, rendering the basis approximately orthonormal. In the case
where ↵ 6= 1, we need to rotate back to the original basis, but shift the decay constant of
the model dependent axion in order to keep the axion periodicity:

f̃1 =
f1
↵

. (4.93)

The Chern-Simons couplings in this basis then read as

�'1,v = k
8nig2s

V⇡ � g2svini

,

�'2,h = �k
8nig2s

V⇡ � g2svini

.

(4.94)

noGC We now consider the case in which the hidden sector is broken to Abelian gauge
groups only, so that no gaugino condensation occurs. In this case, axion masses arise solely
from QCD instantons and worldsheet instantons. The relevant axion potentials are:

VQCD = �⇤4

QCD cos
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+
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#1 + �

◆
, (4.95)

Vws = �⇤4

ws cos

✓
#1
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◆
. (4.96)

The QCD term breaks the shift symmetry along the direction

'QCD / f1#a + n1fa#1, (4.97)

which we normalize to define an orthonormal basis:
✓
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◆
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Here, '1 is the QCD axion, while '2 is orthogonal and receives a dominant mass from
worldsheet instantons. Expanding the potential to quadratic order, the mass eigenvalues
are approximately:

m2

'1
'
⇤4

QCD

f2
a

, m2

'2
'

n2
1
⇤4

QCD

f2
1

+
⇤4
ws

f2
1

. (4.99)

The anomaly coe�cients and thus the CS couplings in the new basis become:

#a
fa

+
n1#1
f1

=
F

faf1
'1, (4.100)

#a
fa

� n1#1
f1

=
f2
1
� n2

1
f2
a

faf1F
'1 �

2n1

F '2. (4.101)
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GC Masses CP CS

⇥ m2
'1

⇠ ⇤4

QCD
⌧ m2

'2
⇠ ⇤4

ws X �'11,v/h
,�'2,h

X m2
'2

⇠ ⇤4
gc ⌧ m2

'1
⇠ ⇤4

ws ⇥ �'1,v, �'2,h

Table 4.2: Two-axion scenarios summarizing presence of gaugino condensation (GC), mass hier-
archies, and Strong CP resolution, and dominant gauge couplings.

This implies:

LCS =
1

16⇡2

✓
�'1,v

'1

f'1

◆
tr1F ^ F +

1

16⇡2

✓
�'1,h

'1

f'1

+ �'2,h

'2

f'2

◆
tr2F ^ F, (4.102)

where the e↵ective decay constants are defined by demanding that the total cosine ar-
gument of the worldsheet instanton potential is periodic under simultaneous shifts of '1

and '2
3

f'1 =
faf1
F , (4.103)

f'2 =
n1f2

a

F . (4.104)

After canonical normalization, the CS couplings become:

�'1,v = k · 8n1g2s
V⇡ + g2svn1

, (4.105)

�'1,h = �k · 8n1g2s
V⇡ � g2svn1

· f2
1
� n2

1
f2
a

f2
1
+ n2

1
f2
a

, (4.106)

�'2,h = +k · 16g2sn
2
1
f2
a

(V⇡ � g2svn1)(n2
1
f2
a + f2

1
)
. (4.107)

These expressions determine how axions couple to the gauge sectors once gaugino con-
densation is absent and worldsheet e↵ects dominate the hidden sector axion mass. The
details of the two-axion system are summarized in table 4.2.

Illustrative example

Consider now the setup introduced in [14] where the CY is X = C ⇥ Y where C is a
Riemann surface with volume VC and Y a four-manifold with volume VY . The integral
therefore reduces to

� 1

16⇡2

Z

C

�

Z

Y

✓
tr1F ^ F � 1

2
trR ^ R

◆Z

M

bC
tr1F ^ F

16⇡2
(4.108)

� 1

16⇡2

Z

Y

✓
tr1F ^ F � 1

2
trR ^ R

◆Z

M

bC
tr1F ^ F

16⇡2
. (4.109)

where the last equality we used
R
C
� = 1. Therefore, we need to evaluate the integer

n =
1

16⇡2

Z

Y

✓
tr 1F ^ F � 1

2
trR ^ R

◆
. (4.110)

3The worldsheet contribution is ⇠ cos(A '1
f'1

+ B'2) where A = f2
an1/F2 and B = F�1, such that

f'2 = A/B
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Let us compute first the decay constant from the kinetic term: if we only have one axion,
the only entry of the � matrix reads:

� =

Z

X

� ^ ?� =

Z

C

�2dVolC

Z

Y

dVolY = V�1

C
VY =

V
V2

C

, (4.111)

since
R
C
� =

R
C
V�1

C
dVolC = 1. From the kinetic energy term, we find

f2

b
=

�

2⇡g2s
=

V
2⇡g2sV2

C

. (4.112)

This setup is only a toy-model, however we can consider the case where the CY is a
fibration with Y = K3 over C = CP1. This toy example cannot have h1,1 < 2, so to
qualitively mimic scenarios with a single model-dependent axion, we will consider only
the axion arising from the base. Let us now look at the CS couplings of that axion. The
instanton numbers N1, N2 for the two factors of the E8⇥E8 gauge bundle over Y , defined
as

N =
1

16⇡2

Z
trF ^ F , (4.113)

are required to be N1, N2 � 0 to satisfy SUSY constraints. The Bianchi identity requires
N1 + N2 = 24 since

1

16⇡2

Z

K3

(trR ^ R � trF ^ F ) = �(K3)� 1

16⇡2

Z

K3

trF ^F = 24� 1

16⇡2

Z

K3

trF ^F = 0 ,

(4.114)
where �(K3) = 24 is the Euler’s characteristic. Thus, from eq. (4.110),

n = N1 �
1

2
�(K3) = N1 � 12 ! |n|  12 . (4.115)

Let us now consider the two di↵erent cases: the absence of worldsheet instantons or the
absence of gaugino condensation. In the absence of worldsheet instantons, the value for
the mixing parameter reads eq. (4.87)

↵ = n
6g2s
v2

⇠ 0.1 , (4.116)

Therefore, we need to go back to the canonical basis #, with decay constants fa and f1/n1,
where the CS couplings read eq. (4.52), which, if taking n = 12, v ⇠ 3, and gs ⇠ 0.7,
become �v ⇠ 0.5, �h ⇠ 1.1.

In the case of absence of gaugino condensation instead, we go to the mass basis ', defined
in eq. (4.98), where, taking the same values as before, the CS couplings read �1,v ⇠ 0.5,
�1,h ⇠ �0.47, �2,h ⇠ 0.03.

Example: Quintic

To illustrate the general mechanism, we consider a more concrete example based on the
quintic Calabi-Yau threefold CP4[5] with h1,1 = 1. We define a two-axion model with one
model-independent axion #a and one model-dependent axion #1.

The quintic is reviewed in Appendix B.0.1. The triple intersection number reads 111 = 5,
such that that the internal volume is given by

V =
1

6
111v

3 =
5

6
v3, (4.117)
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where v is the volume of the single 2-cycle. The decay constants are estimated as

fa =
gsp
2⇡V

=

r
3

5
· gsp

⇡v3
, (4.118)

f1 =
vp
2⇡gs

. (4.119)

Let us now compute the Chern class of the Calabi-Yau, denoting H as the hypersurface
corresponding to the single divisor of the quintic:

c(TX) = c(TA)/c(NX) =
(1 + H)5

(1 + 5H)
= = 1 + 10H2 + .. (4.120)

Therefore c1(TX) = 0, consistently with the CY condition, and c2(TX) = 10H2.

Following [156] we consider the gauge bundle W = V1 + V2 + L, where V1, V2 are SU(4)
gauge bundles and L is a line bundle. V1 and L are embedded in the hidden E8 whereas
V2 is in the visible one. The bundle V1 is defined via the cohomology of the short exact
sequence, known here as a monad,

0 �! O
��
X

M�! O(1)�5 �O(3)
N�! O(8) �! 0 , (4.121)

where O(1)�5 = O(1)� · · ·�O(1). The bundle is then

V =
ker(N)

Im(M)
. (4.122)

Its rank is
rk(V ) = rk

�
O(1)�5 �O(3)

�
� rk

�
O|X

�
� rk

�
O(8)

�
= 4 , (4.123)

confirming that it is an SU(4) gauge bundle.

The total Chern class is

c(V ) =
c
�
O(1)�5 �O(3)

�

c
�
O|X

�
c
�
O(8)

� =
(1 + H)5(1 + 3H)

(1 + 8H)

= (1 + H)5(1 + 3H)
�
1� 8H + 64H2 + . . .

�

= 1 + 25H2 + . . .

(4.124)

so that c2(V ) = 25H2. We can now compute the topological CS coupling:

n1 =

Z

X

� ^ 1

16⇡2


tr1(F ^ F )� 1

2
tr(R ^ R)

�

=

Z

X

� ^

c2(V1)�

1

2
c2(TX)

�

=

✓
25� 1

2
· 10
◆Z

X

� ^ H2

= 20

Z

X

� ^ H2 .

(4.125)

Since PD[�] = ⇧4 is a 4-cycle and h1,1(X) = 1, every 4-cycle is homologous to H, so
[⇧4] = m[H]. With the normalization

R
⌃
� = 1, we set m = 1, hence

n1 = 20H3 = 20⇥ 5 = 100 . (4.126)

This is the Chern-Simons coe�cient coupling the axion to the gauge sector.
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GC The squashing parameter defined in eq. (4.87) becomes:

↵ = n · g2s ·
6

5v2
. (4.127)

To remain within the perturbative regime V . 20, we bound v . 2.5, leading to

↵ & 40g2s & 20 for gs ⇠ 0.7. (4.128)

This implies large kinetic mixing:

Lkin =
1

2
(@'1)

2 +
1

2
(@'2)

2 + @'1@'2. (4.129)

We then rotate to the mass basis

�1 = '1 + '2 = #a, �2 = '1 � '2 = ↵#1, (4.130)

with decay constants

f�1 = fa, f�2 =
f1
↵

, (4.131)

e↵ectively lowering the model dependent axion decay constant by a factor of ↵. The
Chern-Simons couplings in this basis are

��1,v = ���2,v = 8ng2s ·
 

1
5⇡v3

6
+ g2svn

!
, (4.132)

��1,h = ���2,h = �8ng2s ·
 

1
5⇡v3

6
� g2svn

!
. (4.133)

For example, taking plausible values v = 3, n = 100, and gs = 0.7 gives

��1,v ⇡ 1.8, ��1,h ⇡ �5.2, (4.134)

showing a visible/hidden hierarchy induced by the large anomaly coe�cient.

noGC Let us now consider the possibility of no gaugino condensation. In this case
there will be one axion only coupled to the dark sector, and one coupled to both dark
and visible sector. The CS couplings are defined in eq. (4.105). In this case, by taking
k = 1 and gs = 0.7, we can also estimate the decay constants as

fa =
gsp
2⇡V

=

r
3

5

gsp
⇡v3

, f1 =
vp
2⇡gs

(4.135)

The Chern-Simons coupling read

�'1,v ⇠ 1.8, �'1,h ⇠ �0.1 , �'2,h ⇠ �4.7 . (4.136)

One axion is coupled only to the hidden sector, whereas the first one is coupled to both
sectors but mainly to the visible one.
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4.2.5 Three-Axion System

We now extend our setup to include three axions: two model-dependent axions #1,#2
and one model-independent axion #a, with respective decay constants f1, f2, and fa. The
Chern-Simons couplings take the form:

LCS =
1

16⇡2

✓
#a
fa

+
n1

f1
#1 +

n2

f2
#2

◆
tr1F ^ F +

1

16⇡2

✓
#a
fa

� n1

f1
#1 �

n2

f2
#2

◆
tr2F ^ F.

(4.137)
The resulting potential receives contributions from QCD, gaugino condensation, and
worldsheet instantons:

Vmass =� ⇤4

QCD cos
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◆

� ⇤4

ws,1 cos

✓
#1
f1

◆
� ⇤4

ws,2 cos

✓
#2
f2

◆
.

(4.138)

Expanding the potential to second order gives the mass matrix:
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4
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4
QCD+⇤

4
gc)+⇤

4
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f
2
2

1

CCCA
. (4.139)

We now analyze this system in di↵erent limiting cases.

noGC - Isotropic We begin with the case where gaugino condensation is absent, and
the axion potential receives contributions only from QCD and worldsheet instantons. In
isotropic compactifications with v ⇠ V1/2 ⇠ 3, the worldsheet instanton contribution can
dominate: even if W0 ⇠ 10�13MP l,

⇤4

ws ⇠ 10�22M4

Pl � ⇤4

QCD ⇠ 10�75M4

Pl. (4.140)

Assuming ⇤ws,1 ⇡ ⇤ws,2 � ⇤QCD, and f1 ⇠ f2, one axion (aligned with QCD) which is
mostly #a remains light, while the other two become heavy.

The mass basis ' in this case will be the original # one, at first order, where the light
axion will be mainly #a while the model dependent axions will get contributions mainly
from worldsheet instantons:

'1

f'1

=
#a
fa

, m2

'1
'
⇤4

QCD

f2
a

, (4.141)

'2

f'2

=
#1
f1

, m2

'2
=
⇤4
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f2
1

, (4.142)

'3

f'3

=
#2
f2

, m2

'3
=
⇤4
ws

f2
1

. (4.143)

All axions couple to both visible and hidden sectors, and the CS couplings can be evaluated
by separating the contribution from the

�'i,hv
= ±�̃'i

· ±8nikg2s
⇡V ± g2svini

, (4.144)
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with leading-order expressions for the �̃'i
⇠ 1. In the absence of gaugino condensation,

one QCD axion is light, while the others may be much heavier, especially in isotropic
compactifications.

noGC - Anisotropic In anisotropic compactifications, one worldsheet instanton term
can be exponentially suppressed, allowing a second axion to remain light. In this regime,
we obtain a light axion '1 orthogonal to the heavier combinations lifted by dominant
worldsheet e↵ects. Taking v ⇠ 30 and small remaining cycles, we can still ensure

V =
1

6
ijkv

ivjvk < 25, (4.145)

so that only one worldsheet instanton is suppressed. We model this by setting

⇤4

ws,2 = "⇤4

ws,1, with "⌧ 1, (4.146)

with small " parameter. The axion mass basis is:

'1 =
#2
f2

� n2#a
f2

,

'2 =
f2
2
#a + #2n2f2

a

n2f2
af2

,

'3 =
#2
f2

+

#1(n2
2f

2
a+f

2
2 )(n2

1⇤
4
gc�⇤

4
ws,1)

f2n1f
2
a⇤

4
ws,1

� f2#a

f2
a

+
f2#1

✓
⇤4
ws,1

⇤4
gc

+n
2
1

◆

f
2
1n1

n2

,

(4.147)

with masses

m2

'1
=
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2
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1
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◆
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ws,1
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1
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(4.148)

Thus, the axion '1 becomes ultra-light, '2 is at the QCD scale, and '3 is heavy. This
hierarchy is only achievable in anisotropic scenarios. The CS couplings again take the
form eq. (4.144) and the leading �̃'i

are given by a combination of the decay constants
and the ni. We report them in Appendix B.0.3 as they are lengthy and their functional
form is not instructive. In anisotropic compactifications, therefore, an ultralight axion
with visible couplings can arise in the absence of gaugino condensation.

GC - Isotropic When gaugino condensation is present, its associated scale typically
dominates over QCD and may compete with worldsheet instantons depending on the
compactification and the rank of the condensing gauge group. We first consider the
isotropic limit. The scale of gaugino condensation is given by

⇤4

gc ⇠ µ4e
� 2⇡

Ng2
V

. (4.149)

Assuming similar µ for Vgc and Vws, the hierarchy becomes in the isotropic case:

⇤4

ws ⌘ ⇤4

ws,1 ' ⇤4

ws,2 � ⇤4

gc � ⇤4

QCD . (4.150)
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As a result, no axion remains at the QCD scale, and observable axions are generically
heavy. The axion mass basis is:

'1 = �#2
f2

� #1n2
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with masses
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(4.152)

GC - Anisotropic In this regime, one worldsheet instanton is exponentially sup-
pressed, allowing one axion to remain light (at the QCD axion mass scale) despite the
presence of gaugino condensation.
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with masses
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(4.155)

Example: Bi-cubic CICY

Let us consider the bi-cubic CICY defined as a degree-(3,3) hypersurface P2 ⇥ P2 with
Hodge numbers (h1,1, h2,1) = (2, 83).

P2

P2


3
3

�
, (4.156)
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Its Chern class and intersection numbers are computed in Appendix B.0.2 Following [157],
we consider a vector bundle V defined as

0 ! V ! O(1, 0)�3 �O(0, 1)�3 ! O(1, 1)�O(2, 2) ! 0 (4.157)

which gives a bundle with structure group G = SU(4), such that in 4D the gauge group
is a SO(10) GUT, which reproduces an MSSM-like spectrum after a suitable Wilson line
breaks the SO(10) ! SU(3) ⇥ SU(2) ⇥ U(1)Y ⇥ U(1)B�L. In the original example in
order to satisfy anomaly cancellation they considered M5-branes, such that the hidden
sector bundle Ṽ could remain trivial. If c2(TX) � c2(V ) is an e↵ective class on the CY,
then the anomaly and the e↵ectiveness conditions are automatically satisfied for a trivial
hidden bundle and a five brane class W = c2(TX) � c2(V ) [139], as the actual anomaly
cancellation condition reads

c2(TX)� c2(V )� c2(Ṽ ) = [W ] , (4.158)

where [W ] in an e↵ective five-brane class. However, we are interested in the hidden gauge
sector, and therefore we chose a non-Abelian vector bundle with structure group SU(N)
in the hidden sector, such that the resulting 4D gauge group is its commutant inside E8.
Using the basis of divisors H1, H2 corresponding to the two P2 factors, the second Chern
class of the tangent bundle reads

c(TX) =
(1 + H1)3(1 + H2)3)

(1 + 3H1 + 3H2)
c2(TX) = 3H2

1 + 3H2

2 + 9H1H2 , (4.159)

while the second Chern class of the monad bundle reads

c(V ) =
(1 + H1)3(1 + H2)3)

(1 + H1 + H2)(1 + 2H1 + 2H2)
c2(V ) = H2

1 + H2

2 + 5H1H2 . (4.160)

To satisfy the anomaly cancellation condition, taking [W ] = 0, we need

c2(Ṽ ) = 2H2

1 + 2H2

2 + 4H1H2 c1(Ṽ ) = 0 . (4.161)

Take
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sM
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O (cj , dj) �! 0 (4.162)

and ask to satisfy the conditions eq. (4.161). This translates into

X
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X
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X
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2

�
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1 + 2cjdjH1H2 + d2jH
2

2

�
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(4.163)

One example of monad construction that satisfies this is

0 �! Ṽ �! O (1, 0)�6 �O (0, 1)�4 f�! O (2, 0)�2 �O (1, 2)�2 �! 0 (4.164)

which is a rank 6 gauge bundle giving an SU(2) hidden gauge sector in 4D. This can
be further broke down to abelian U(1)s via Wilson lines. The tree level DUY equation
is satisfied, as c1(V ) = 0. The bundle’s stability is assured if any subsheaf F 2 V with
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0 < rk(F) < rk(V ) has µ(F) < µ(V ) = 0. Therefore, one would need to check that for
every subsheaf the slope is negative. One way to ensure this is to check that H0(X, V ) = 0,
which would be su�cient [139].

Another possibility is instead to have the line bundle L = O(2, 2), for which the second
Chern character reads ch2(L) = 1

2
c2
1
= 1

2
(2H1 + 2H2)

2. This would result in a 4D gauge
group that looks like E7⇥U(1), where the U(1) would be anomalous as it is there also in
the structure group, and thus becomes massive by eating one of the two model dependent
axions. This will always happen when there is a line bundle in the structure group. In
this case we are e↵ectively back to the two-axion scenario, with

n1 = n2 =

Z
H1

✓
c2(V )� 1

2
c2(TX)

◆
= 3 . (4.165)

Example: CICY with U(4) Bundle

Let us take a U(4) bundle on the CICY studied in [156]

P3

P1


4
2

�
, (4.166)

which has h1,1 = 2 and h2,1 = 86. Calling ⌘1 the 2-form defined on P3 and ⌘2 the two-form
defined on P1, the Stanley-Reissner ideal, which contains those coordinates that cannot
be set to zero simultaneously (or equivalently, those divisors which do not intersect) can
be read from the D-terms to be

SR = {⌘41, ⌘22} . (4.167)

The intersection form reads
I3 = 2⌘31 + 4⌘21⌘2 . (4.168)

Therefore, there exist 2 possible 4-forms on the CY:

{⌘21, ⌘1⌘2} . (4.169)

The Chern classes can be computed via

c(TX) =
(1 + ⌘1)2(1 + ⌘2

2
)

(1 + 4⌘1 + 2⌘2)
= ... = 1 + 6⌘21 + 8⌘1⌘2 + ... (4.170)

The second Chern class can be read from the equation above to be c2(TX) = 6⌘2
1
+8⌘1⌘2.

The gauge bundle chosen to reproduce the SM-like sector in the first E8 reads

W = V � L�1 (4.171)

where the line bundle is taken to be L = O(�2, 2) and the U(4) bundle V is defined via

0 ! V ! O(1, 0)�2 �O(0, 1)�2 �O(1, 1)�2
��
CY

f�! O(4, 1)�O(2, 1)
���
CY

! 0 (4.172)

such that it satisfies the tadpole condition

c2(V )� c21(L) = c2(TX) , (4.173)

and the map f is chosen to not degenerate at any point. One can indeed check that

c(V ) =
(1 + ⌘1)2(1 + ⌘2

2
)(1 + ⌘1 + ⌘2)2

(1 + 4⌘1 + ⌘2)(1 + 2⌘1 + ⌘2)
, (4.174)
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such that
c2(V ) = ⌘22 + 10⌘21 = 10⌘21 , (4.175)

since ⌘2
2
= 0 as for the SR. Taking the two axions defined as the dimensional reduction

of the B2 as
B = b1⌘1 + b2⌘2 , (4.176)

we can compute the ni as

n1 =

Z
⌘1 ^

✓
c2(V )� c21(L)�

1

2
c2(TX)

◆
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Z
⌘1 ^
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1

2
c2(TX)

◆

= 3

Z
⌘31 + 4

Z
⌘21⌘2 = 6 + 16 = 22

n2 =

Z
⌘2 ^

✓
1

2
c2(TX)

◆
= 3

Z
⌘21⌘2 = 6 .

(4.177)

Since W was taken such that there is no gauge bundle embedded in the hidden sector,
the 4D gauge group remains E8.

noGC To arrive at cases where the hidden E8 is fully broken down to just U(1)-
factors, we may need to turn on non-trivial Wilson lines if the gauge bundle is insu�cient
to do the full breaking on its own. Getting such Wilson lines requires the CY to have a
non-trivial first homotopy group. Besides a very small number directly existing within
known sets of CYs such as the CICYs, such CY manifolds can be obtained by modding
out a freely acting discrete involution from an original CY possessing the required discrete
symmetry [158–160].

Given that we only have two non vanishing intersection numbers, 111 and 112, we find
that the volume reads

V =
1

6

�
2v31 + 4v21v2

�
. (4.178)

In this case, let us look at the possible CS couplings. In the isotropic case, we take
v1 ⇠ v2 ⇠ 3, we find that the CS couplings read

�'1,v ⇠ 2.5 , �'2,v ⇠ 1.2 , �'3,v ⇠ �0.02

�'1,h ⇠ 1.4 , �'2,h ⇠ 0.7 , �'3,v ⇠ 0.01
(4.179)

In this example it is di�cult to construct an anisotropic case: knowing the intersection
numbers from the expression of the volume, we see that if we take the limiting case v1 ⇠ 1,
in order to maintain the volume smaller than ⇠ 20, we have to take at most v2 ⇠ 5. In
this case we find

�'1,v ⇠ 8.2 , �'2,v ⇠ 6.1 , �'3,v ⇠ 0.5

�'1,h ⇠ 29.4 , �'2,h ⇠ 40.1 , �'3,h ⇠ �2.4 .
(4.180)

4.2.6 Three-Axion Summary

Let us summarize our findings by recalling that " is a small parameter used in the
anisotropic case relating the two worldsheet instanton scales, and the hierarchy:

⇤4

ws � ⇤4

gc � ⇤4

QCD � "⇤4

ws . (4.181)
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Table 4.3: Summary of Mass Matrices in Di↵erent Regimes. The last column refers to the possi-
bility of having a fuzzy dark matter candidate. This is available only in the noGC anisotropic
case, where the FDM candidate aligns with '1.

We find that a fuzzy dark matter candidate can arise only in the noGC anisotropic
configuration. In all other setups, the hierarchy of the contirbutions to the scalar potential
prevents the presence of an extremely light axion.

Our analysis covered both two- and three-axion systems. A compactification with larger
h1,1, and thus a greater number of axions, would proceed analogously, so higher-h1,1 cases
are not discussed here as they would not be illustrative. The general conclusion is that
at least one potential term must be absent (as in the noGC case) or strongly suppressed
(as in the anisotropic case) to address the Strong CP problem. Achieving a fuzzy dark
matter candidate requires both the absence of gaugino condensation and the presence of
a highly suppressed worldsheet instanton, which requires a fibred CY.

The relevant physical description is given in the mass basis, where the Chern–Simons cou-
plings become nontrivial combinations of the decay constants and topological quantities.
In certain compactifications, it is possible to achieve a clean separation between couplings
to the visible and hidden sectors. In special cases, some couplings vanish entirely, allowing
for axions that interact exclusively with one of the two sectors. Such configurations must,
however, be examined on a case-by-case basis.

4.3 Remarks

We have investigated axion physics in Calabi-Yau compactifications of the heterotic string,
with a focus on the mass spectrum and couplings of both the model-independent and
model-dependent axions. Starting from the e↵ective four-dimensional theory, we an-
alyzed the kinetic structure, Chern–Simons couplings, and non-perturbative potentials
generated by gauge and stringy instantons, including gaugino condensation and world-
sheet e↵ects. We examined how axions acquire masses through these non-perturbative
e↵ects and under what conditions one linear combination remains su�ciently light and
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dominantly aligned with the QCD direction to solve the strong CP problem. Particular
attention was given to the alignment of non-perturbative terms and the role of kinetic
mixing, showing that successful axion phenomenology in string compactifications depends
not only on the presence of instanton corrections, but also on their relative alignment in
axion field space. These constraints impose nontrivial requirements on the geometry and
gauge bundle data of the compactification. We illustrated these features with explicit
heterotic construction on Calabi-Yau manifolds with h1,1 = 1, 2. These example highlight
how decay constant hierarchies and physical axion couplings can be engineered in princi-
ple, but also emphasizes that achieving a light axion typically requires some work. Upon
diagonalizing the mass and kinetic matrices, we extracted the physical decay constants
and recast the Chern–Simons couplings in the mass basis, identifying the surviving light
states and their coupling structure.

Altogether, our results show that the heterotic axiverse provides a compelling and highly
constrained setting for axion phenomenology. While the presence of multiple axions is
generic, realizing light axions, particularly those that can solve the strong CP problem or
play a role in cosmology, is not automatic. This observation has important implications
for the landscape of viable string models with axionic dark matter or observable axion
couplings.
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Chapter 5

Spectator Axions and Inflation

Axions coupled to gauge fields via CS couplings are common in string theory. At a generic
point in the string Landscape viable for cosmology, one could expect the EFT to contain an
inflationary sector and a spectator sector consisting of multiple axions and their hidden
gauge theories. Such scenarios are multi-spectator generalizations of the rolling axion
models of [161, 162] and of spectator chromonatural inflation (SCNI) models [93, 163],
themselves related to natural inflation [84, 86, 87, 164–174]. We will refer to such models
as Multiple Abelian Spectator Axion (MASA) and Multiple non-Abelian Spectator Axion
(MnASA) inflationary models, depending on the nature of the hidden gauge groups.

During inflation, spectator axions roll down their potential and, as a result of the CS cou-
plings, dissipate into hidden gauge bosons. The enhanced gauge quanta can then source
significant gravitational waves and, depending on the specific setup, scalar fluctuations.
Among the most interesting features that ensue is a large chiral GW spectrum, which may
also exhibit a blue or bump-like structure. Multi-spectator models support a rich peak
structure for the gravitational wave signal, giving rise to what we call a “gravitational
wave forest”1. What makes this class of models particularly compelling is the realistic
prospect of testing significant portions of their parameter space via upcoming cosmologi-
cal probes. Chirality of the GWs may be put to the test at CMB scales [176,177] as well as
at interferometers [177–180]. We emphasize that this specific feature, which can be traced
back to the parity breaking CS term (including the gravitational CS [181–183]), is a very
distinctive signature of this class of models2. Large GW non-Gaussianities [184–187] are
yet another testable feature of such scenarios. In the case of Abelian gauge sectors the
sourcing mechanism for scalar curvature and tensor perturbations, the former being me-
diated by the axion field, are analogous. This makes for peaked scalar and GW spectra,
a possibility that has been investigated also in the context of primordial black holes as a
dark matter candidate [188,189].

Thus, a potentially generic signature of inflationary models descending from string the-
ory is a gravitational wave forest from a plethora of spectator axions during inflation.
Observations of the corresponding peak-like structure in the GW spectrum would shed
light on the number of axions in the EFT as well as their properties – thus constituting

1This term was used in [175] for gravitational waves from the axiverse, where a di↵erent mechanism
was in play with respect to the one we shall employ here.

2One should add, vis-à-vis birefringence, that at CMB scales low multiples are more e↵ective at con-
straining primordial chirality [176].
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a form of gravitational spectroscopy of the axiverse. As there is no guarantee in string
constructions that additional axions beyond the QCD axion will couple to the Standard
Model3, gravitational wave signals may represent one of the very few observables to test
the axiverse. For other discussions on observing the axiverse, see [17,192–202]. Note that
an axion-driven GW forest can have two sources. One is comprised of the spectators we
are discussing here. The second arises from the inflationary sector itself if it occurs in
several shortly interrupted epochs [174] of slow-roll axion inflation [86,87].

In general the salient features of the spectator models GW signal depend heavily on the
specifics of the gauge group, the axion initial conditions and mass, and the strength of the
axion-gauge coupling. The latter is particularly relevant. As axions enjoy a (perturbative)
continuous shift symmetry, they couple to gauge fields via the usual Chern-Simons terms
with a coupling we denote by � (see eq. (5.1) below). To get a sizable GW signal, one
requires that � ' O(10), or larger still, in the non-Abelian case. Superficially this appears
to be an innocuous demand, but in truth it is non-trivial and challenging to realize from
a UV perspective [203,204]. The fundamental challenge is that � / m↵, where m is some
integer and ↵ is the fine-structure constant of the hidden gauge group coupled to the
spectator axion. For non-Abelian spectators, the models in the literature require small
values of ↵, and so attaining � & 10 requires a large integer m. The primary di�culty
of UV embeddings of SCNI models lies in realizing a su�ciently large m. In contrast,
spectator axions coupled to Abelian gauge fields do not self-interact, one can take larger
values of ↵ and thereby reduce the demand on the integer m. That is not to say that
Abelian spectators are without constraints - attempts to boost the Chern-Simons coupling
can result in issues such as the descent of Landau poles. We will revisit constraints on
both Abelian and non-Abelian spectator models.

If one wishes to make deeper connections between spectator models and the string axi-
verse, one must explore how to realize spectator sectors within string compactifications.
For SCNI models, this task was considered in [205, 206]. The axionic portion of the
spectator sector can arise from dimensional reduction of p-forms in the 10d string theo-
ries. The gauge sector of spectator models depends greatly on which corner of the string
landscape one works in. We will largely focus on type IIB string theory compactified
on orientifolded Calabi-Yau (CY) manifolds with quantized 3-form fluxes, D7-branes and
O7-orientifold planes. In this setting, 4d axions arise as KK zero modes of the 4-form
C4 and 2-form C2 gauge fields. As mentioned above, the number of axions is governed
by the number of compact n-dimensional sub-manifolds (n-cycles) of the 6d CY mani-
fold chosen, as well as the structure of the orientifold projection: some number of 4-form
axions are always present, while 2-form axions arise from a non-trivial ‘projection-odd’
sector of the orientifold action. Gauge sectors are realized by the worldvolume theory of
D7-branes wrapping 4-cycle submanifolds of the CY and permeating our 4d spacetime.
The two types of closed string axions di↵er in the way they couple to the D7-brane world-
volume gauge fields via Chern-Simons terms: the 4-form axions intrinsincally couple to
the worldvolume theory, while 2-form axions only acquire such a coupling in the pres-
ence of a particular type of quantized magnetic flux on the D7-brane. The “intrinsic”
size of these CS couplings turns out to be too small to generate GW signals detectable
with current or planned experiments. However, both CS couplings increase linearly with
the number of times the D7-brane stack “wraps” a 4-cycle, and the 2-form axion CS

3Although such a coupling can be induced if the axiverse solves the QCD axion quality problem via
the mechanism in [190,191].
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coupling in addition increases with the amount of magnetic flux on the stack. A non-
trivial obstacle to realizing Abelian spectator sectors in this construction is the presence
of Stückelberg couplings between axions and U(1) gauge bosons, which cause the Abelian
gauge boson and axion degrees of freedom to combine into that of a massive spin-1 boson.
This is a generic issue for 2-form axions, whose Stückelberg couplings arise geometrically.
In contrast, 4-form axions acquire Stückelberg couplings only in the presence of certain
magnetic fluxes. Under certain assumptions on the topology of the CY compactification
manifold, both Stückelberg couplings can be avoided.

5.1 Spectator mechanism

The study of axion-like particles in inflationary physics has a rich history, with the natural
inflation model [84] being perhaps the most well-known example. Coupling the axion
with a gauge sector is the next logical step given that the symmetries of the theory are
preserved and the great interest and motivation in exploring the inflationary particle
content. The simplest realization is that of coupling the axion-inflaton to U(1) vector
fields [165] via a Chern-Simons term, thereby e↵ectively flattening the potential without
resorting to a trans-Planckian axion decay constant4. The multi-field nature of these
models and the parity violation originating from the CS term makes for an interesting
inflationary phenomenology with very distinct, testable, signatures: from the non-trivial
spectral shape of scalar and tensor degrees of freedom to chiral gravitational waves, from
large non-Gaussianities to primordial black holes.

The interest in exploring the broader class of axion - gauge fields models together with
the formidable power of cosmological probes to constrain our models has led to a flurry
of (on-going) research activity. Relaxing the requirement that the axion be the inflaton
opens up new intriguing directions. Spectator axions make these models more malleable
in terms, for example, of the scales at which their key signatures are most pronounced.
For specific models, the spectator nature of the axion is dictated by the need to overcome
the possible tensions with CMB observations. The Lagrangian encompassing the case of
spectator axions reads

L � Linf + LS ,

Linf = �1

2
(@')2 � Vinf(') ,

LS = �1

4
Faµ⌫F

aµ⌫ � 1

2
(@#)2 � VS(#)�

�

4f
# Faµ⌫F̃

aµ⌫ .

(5.1)

In the above expressions we have defined Vinf(') and VS(#) as the inflaton ' potential
and the spectator axion # one, respectively. The spectator gauge boson is coupled to
the axion via a Chern-Simons coupling term with eF aµ⌫ = 1

2
p
�g
"µ⌫⇢�F a

⇢� and f the axion

decay constant. The Chern-Simons coupling typically takes the form of

� = q
↵

⇡
, (5.2)

where ↵ = g
2

4⇡
is the fine structure constant with g the gauge coupling and q is a con-

stant that varies from model to model. Both Abelian [161, 162, 188, 208, 209] and non-
Abelian [93,177,184–186,210–212] gauge fields have been considered in the literature.

4The latter is hard to implement in string theory constructions [14,207].
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A key compelling feature of the above spectator models lies in their gravitational wave
signature. In single-field slow-roll inflation, the gravitational waves are vacuum modes
of the metric that are amplified through the inflationary expansion. A slightly red-tilted
GW spectrum ensues, with the planned BBO experiment [213] as the only probe which
may be able to detect such a signal. Multi-field scenarios can support a much richer GW
spectrum but it remains non-trivial to realize mechanisms for which the tensor modes can
be significant: any source of GWs must produce curvature perturbations through an un-
avoidable gravitational coupling to the inflaton field. The sourced perturbations generally
obey a non-Gaussian statistics so that the existing strong limits on non-Gaussianity of
the primordial perturbations force the sourced scalar modes to be subdominant at large
scales. This necessarily limits the strength of the sourcing mechanism and its signal. As
we shall see, axion - gauge field models and in particular spectator models are able to
evade these constraints while providing detectable signals.

The dynamics common to all5 models goes as follows. The axion rolls down its relatively
steep potential. Its coupling to the gauge sector acts as friction and excites the gauge
modes. Due to the parity breaking nature of the CS term, the solution for the left and
right-handed polarization of the (vector or tensor) gauge quanta have a di↵erent equation
of motion, one of them being temporarily amplified. This amplification is transmitted on
to scalar curvature fluctuation and gravitational waves, with the details depending on the
specific model. The sourced gravitational wave spectrum is chiral and is typically blue in
the case of an axion-inflaton whilst bump-like features6 are possible for a spectator axion.
These features make such models attractive from both the experimental and theoretical
standpoint, as they may evade potential constraints from quantum gravity [42].

Models where the axion acts as the inflaton and is driven by the standard cosine poten-
tial are naturally much more constrained. This is true for the Abelian case, whilst ob-
servational constraints directly rule out [214, 215] the well known chromo-natural (CNI)
model [170], at least in its simplest realization. There are manifold ways to render axion-
gauge field models viable while preserving their tantalizing GW signatures. One may
consider a di↵erent potential or remain completely agnostic as to the nature of the po-
tential altogether. Another possibility is spontaneous symmetry breaking of the gauge
symmetry [216]. Yet another natural step is to ask the axion(s) to be a spectator field
and let another field be the inflaton [93, 163, 208]. This, as may be expected, relaxes
the constraints on the axion dynamics: it is true that GW signatures remain tied to
the axion rolling-down its potential, but it is now the slow-roll of another field along
another potential that is directly related to observables such as the scalar spectral index
ns. Advocating a spectator axion pays o↵ in the case of an SU(2) gauge sector: the
spectator model of [93], SCNI, has a viable cosmology. This comes at a not insignificant
cost from the top-down perspective: the required values of the Chern-Simons coupling
� are � ⇠ O(102) when ↵ ⇠ O(10�12), and this gives an unnaturally high integer q in
eq. (5.2). This has been argued to be problematic for embedding the models in an ultra-
violet completion, at least for some model-building techniques [203,204]. The same issues
are not in place for Abelian models.

As we shall see below, in both Abelian and non-Abelian models with spectator axions,
the latter are typically taken to be heavy, such that their energy density washes away

5By that we mean here models where the the inflaton is (not) an axion and models whose gauge sector
is (non)-Abelian. These features apply to all the four possible combinations.

6The latter are of particular interests vis-à-vis primordial black holes.
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after they reach their minimum, and the curvature perturbations can be identified with
that of the inflaton. However, in general, inflationary constructions can accommodate
both heavy and light axions, fully in accordance with the expectations of the axiverse.

In the following, we will first study these models considering one spectator axion, and
then generalize to multiple spectators. The non-Abelian spectator model of [93] will not
generally, in the weak backreaction regime (see [217] for strong backreaction7), exhibit
distinctive peaks in the GW spectrum but a rather broad profile. This is due to the
constraining power of stability and consistency conditions [95] the model ought to satisfy.
When generalizing to multiple spectator sectors, we find it convenient to focus on the
Abelian case (MASA) given that this configuration shows distinctive peak-like structures
whose detection is less taxing on the values of the Chern-Simons couplings.

5.1.1 Inflation with Abelian Spectators

We first consider the Abelian models of [162, 208]: these are described by Eq. (5.1), the
trace over the gauge sector being trivial in this case. The inflaton potential Vinf(') is
assumed to be su�ciently flat to grant a nearly constant Hubble rate H. A simple cosine
potential characterizes the spectator axion,

VS(#) =
⇤4

2


cos

✓
#

f

◆
+ 1

�
, (5.3)

with f the axion decay constant, and the mass of the axion being m2

#
= ⇤

4

2f2
8, where in

the slow roll regime ⌘V ⌘ M2

P
|V 00/V | / m2

#
' ⇤

4

2f2 cos(#/f). Such a periodic potential
is relatively steep, so much so that it has been necessary to postulate a trans-Planckian
decay constant to avoid the tension between natural inflation [84, 164] and CMB data,
until recent observations [21, 24] ruled out the model altogether. An e�cient mechanism
to e↵ectively flatten the potential is to couple the axion to a gauge sector via a Chern-
Simons term: the rolling axion “dissipates” energy into the gauge sector. Even if the
axion plays merely a spectator role, the following dynamics is still in play: the rolling
field excites gauge quanta that are non-linearly coupled to tensor modes thus engendering
an intriguing GW phenomenology. By virtue of its spectator nature9, the axion does
not directly provide a significant contribution to scalar curvature perturbations. It is
nevertheless gravitationally coupled to the inflaton field: the axion will then mediate an
interaction between gauge fields and the inflaton, thus sourcing the curvature fluctuation
⇣.

If the curvature of its potential is tuned to be O(H) during inflation, the axion rolls from
(nearly) the maximum at # = 0 down to (nearly) the minimum of the potential at # = ⇡ f
in a few e-folds, of the order of O

�
H2/m2

�
. The slow roll solution to the # equation of

motion derived from eq. (5.1) is [162]

# = 2f arctan(e�H(t�t⇤)) ,

#̇ =
fH�

cosh(�H(t � t⇤))
,

(5.4)

7There also exists a rich literature on strong backreaction in Abelian models, see e.g. [218–224].
8In Sec. ?? we will be using µ4 ⌘ ⇤4

2 for consistency with conventional notation in string theory.
9Strictly speaking one ought to also require that its energy density becomes negligible by the end of

inflation or, at least, that it stays sub-leading. This is in contradistinction, for example, to the well-know
curvaton scenario [225].
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with � ⌘ ⇤
4

6H2f2 and t⇤ the moment when #

f
= ⇡

2
, corresponding to the time when the

axion is at its maximal velocity. The resulting power spectra will show a peak in the
vicinity10 of k = k⇤ [162], which can be deduced from the previous equation in terms of
the initial conditions

k⇤ = kin tan

✓
#in
2f

◆�1/�

, (5.5)

where we identify kin ' 1

3
⇥10�4Mpc�1 as the CMB scale, and #in is the initial condition

given to the axion. In order for slow roll to hold, we require

#̈

3H#̇
= ��

3
tanh(�H(t � t⇤)) ⌧ 1 ! � ⌧ 3 . (5.6)

It turns out to be very useful to define, for both Abelian and non Abelian models, the
parameter

⇠ ⌘ �#̇

2Hf
. (5.7)

In the Abelian case one finds ⇠⇤ = � �

2
, which is independent of the axion decay constant f .

During its brief roll, the axion sources gauge fields, with an amplitude that is exponentially

proportional to the parameter ⇠ ⌘ ��̇

2fH
. In the following, we denote with ⇠⇤ the maximum

value attained by ⇠ while the roll of the axion is fastest, which occurs when # ' ⇡

2
f

(the small time variation of H can be disregarded for these considerations). The highly
amplified gauge fields source perturbations of the axion (via inverse decay) as well as
inflaton perturbations and gravitational waves (through gravitational interaction)

�A + �A ! �# , ��, h� , (5.8)

where � = ± denotes the two circular GW polarizations. In turn, the axion perturbations
can “convert” into inflaton perturbations through their linear coupling due to gravity
(which arises while the two fields are both rolling). Due to its significant mass during
inflation, the energy density in the axion rapidly dilutes away after the field has reached
the minimum, so that the primordial scalar density perturbations ⇣ in this model can be
identified with the inflaton perturbations (more precisely, we work in spatially flat gauge,
in which ⇣ = �H

�̇
��). The choice of a decoupled axion and inflaton potential guarantees

a minimum amount of production of the primordial scalar perturbations, which was one
of the motivations of [162] for constructing this model.

The scalar and tensor perturbations sourced by the gauge field add up incoherently to
the standard vacuum modes (those amplified by the inflationary expansion), so that the
total scalar and tensor power spectra, namely

P⇣(k)�
(3)(~k + ~k0) ⌘ k3

2⇡2
h⇣(~k)⇣(~k0)i , (5.9)

(and analogously for h±) are obtained from the sum of the vacuum and sourced contri-
butions

Pi(k) = P (0)

i
(k) + P (1)

i
(k) , i = ⇣, h+, h� . (5.10)

10A more accurate estimate would amount to kpeak = O(a few)⇥ k⇤ .
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Figure 5.1: Scalar (solid blue line) and tensor (dashed pink line) power spectra produced in
the model in which an axion, coupled to a U(1) gauge field, experiences a momentary phase
of significant roll during inflation. The results are shown for ⇠⇤ = 4.56 (the peak value of the
parameter that controls the gauge field production) and � = 0.2 (the inverse of this parameter is
approximately the number of e-folds during which the axion roll is significant). The wavenumber
k⇤ is a model parameter.

We employ the standard parametrization of the scalar vacuum power spectrum:

P (0)

⇣
= As

✓
k

k0

◆
ns�1

, (5.11)

and we assume that the axion is still (nearly) at rest when the CMB modes were produced,
so that the CMB data are directly mapped only to the vacuum signal. We then take
As = e3.047 ⇥ 10�10, ns = 0.9665 at the Planck pivot scale k0 = 0.05Mpc�1, according
to the central values given in Table 2 of [226]. We also take " = 0.002 for the slow roll

parameter " ⌘ M
2
Pl
2

⇣
1

V

dV

d�

⌘2
(where MPl is the reduced Planck mass), which saturates

the current bound r = 16" . 0.03 on the tensor-to-scalar ratio [227, 228]. For simplicity,
we also take this ratio to be scale independent,

P (0)

T
= r ⇥ P (0)

⇣
, (5.12)

at all (comoving) wavenumbers k. Relaxing this assumption (that is immediately done
for any specific choice of the inflationary potential, given the two di↵erent dependences of
the scalar and tensor tilt on the slow-roll paramters) has no consequence on our results,
since in slow-roll inflation the vacuum tensor modes are too small to generate appreciable
SDs.

The rolling of the axion that takes place after the CMB modes have been produced leads
to a bump in the scalar and tensor power spectra at scales smaller than the CMB ones,
that can be parametrized as [162]

P (1)

⇣
(k) =

h
"P (0)

⇣
(k)
i2

f2,⇣ , P (1)

T
(k) =

h
"P (0)

⇣
(k)
i2

(f2,+ + f2,�) , (5.13)

where the dimensionless functions f2,j are well fitted by [162]

f2,j ' f c

2,j [⇠⇤, �] exp

"
� 1

2�2
2,j

[⇠⇤, �]
ln2
 

k

k⇤xc

2,j
[⇠⇤, �]

!#
, j = ⇣, h+, h� . (5.14)



78 Chapter 5. Spectator Axions and Inflation

The three functions f c

2,j
, �2

2,j
, xc

2,j
control, respectively, the height, the width, and the

location of the bump. Ref. [162] provided an analytic fit for the dependence of these
functions on ⇠⇤, for the two specific values � = 0.2, 0.5. The quantity k⇤ in eq. (5.14)
is the comoving wavenumber of the modes that exit the horizon while the axion roll is
the fastest. As xc

2,j
is an order one quantity, this is parametrically the scale at which the

sourced modes have maximum amplitude. The scale k⇤ is a free parameter of the model,
which we vary in the following analysis of the SDs produced by the scalar and tensor
modes.

Having defined some of the key background quantities, we can briefly discuss the axion
mass. Very light axions are certainly possible in the string theory context11 with ultralight
axions having a mass that can be as low as m# ⇠ 10�12 eV. However, in the context
of this work we shall deal with much heavier axions. This higher mass range arises
from conditions we impose on the roll duration of the axion, in particular from requiring
that the rolling last (i) more than a few e-folds and (ii) (indicatively) less than 60 e-
folds. The lower bound holds on account of stringent CMB bounds on scalar and tensor
spectra: longer rolling ensures the peak of the signal is at smaller, less constrained, scales.
Conversely, the upper bound guarantees that the most interesting phenomenology takes
place during the last sixty e-folds of inflation. Upon recalling that the axion rolls for
about �N ⇠ 6H2/m2

#
e-folds, we ought to require that

m# & Hp
10

, (5.15)

thus identifying a minimum value for the axion mass in terms of the proxy inflationary
scale H and highlighting the di�culty in fitting a light axion within these setups.

5.1.2 Inflation with non-Abelian Spectators

The Lagrangian in eq. (5.1) includes non-Abelian scenarios such as the model in [93], with
the proviso that this time the trace goes over gauge indices. We focus on the SU(2) case
given the rich literature on this model (see e.g. [229]) and the fact that the key features
of its dynamics and observables are shared by a much larger class of theories [230]. The
axion potential is the same as in Eq. (5.3), but without the overall 1/2 factor, removed
in order to conform to the existing literature. One may choose the vector field vacuum
expectation value (vev) components as hAa

0
(t)i = 0 and hAa

i
(t)i = �a

i
a(t)Q(t). Contrary

to the Abelian case, the SU(2) setup can accommodate an isotropic background solution
upon identifying the gauge and rotation indices [231]. It turns out the isotropic one is
an attractor solution [232], further motivating our starting out already in FLRW. The
background quantity ⇠ is defined according to Eq. (5.7) and it is convenient to introduce
also

11Axion masses arise from instanton-like non-perturbative potentials that break the continuous sym-
metry down to a discrete one. In QFT, maintaining this shift symmetry to a high order in perturbation
theory requires explicit imposition, as there is no inherent reason for it to naturally hold. Higher-order
operators could therefore potentially disrupt the symmetry and contribute to the axion mass. In contrast,
in string theory, closed string axions originate from the compactification of higher-dimensional p-form
gauge potentials. These axions inherit their shift symmetry from the 10d gauge symmetry of the p-form
fields, resulting in an exact shift symmetry to all orders in perturbation theory. This exact symmetry
prevents any higher-order operator from spoiling it, making the existence of light axions more naturally
explained if they are string axions.
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mQ ⌘ g
Q(t)

H
, (5.16)

directly associated with the gauge field vev. The two parameters are identical in the large
mQ limit12. Examination of the perturbations at the linear level shows that this model
is unstable for mQ <

p
2 [214].

One of the polarizations of the gauge tensor perturbations is amplified and sources GWs.
By solving the background equations of motion in slow roll dynamics for Q(t) and #(t),
one can find a good approximation for mQ that reads

mQ /
VS,#(#)1/3

H4/3
=

m2/3

#
f1/3

H4/3
sin1/3

✓
#

f

◆
, (5.17)

where m2

#
⌘ ⇤4/f2 is the axion mass. Given the instability for mQ <

p
2, we can lower

the axion mass only as long as the opposite of this inequality holds. One simple possibility
is to lower the value of H, which has been the subject of a thorough investigation in [233].
It turns out one may indeed lower the Hubble rate by many orders of magnitude without
trespassing into the strong backreaction regime. This is done by simultaneously acting on
g. On the other hand, if we also require that the GW signal be detectable by upcoming
experiments we are forced to tie the value of H to that of mQ (for a fixed r, the smaller is H
the larger becomes mQ). Given how the power spectra scale with the two quantities, when
exploring larger and larger mQ values one soon hits e.g. PBH bounds [234], which implies
that mQ is limited from above (and, correspondingly, H from below). It follows that
plausible detectability confines us to a large H & 1010GeV and therefore (via Eq. (5.17))
to a relatively heavy spectator mass.

5.2 Spectral Distortions

Since the measurements taken by COBE/FIRAS [235] in the 1990s, the Cosmic Microwave
Background (CMB) radiation is a remarkable example of a nearly perfect blackbody spec-
trum at the temperature T0 = (2.726 ± 0.001)K today [236], representing a cornerstone
in modern cosmology. This striking agreement arises from the thermal equilibrium be-
tween matter and radiation during the early stages of the universe. However, as the
universe evolves, various mechanisms come into play, potentially leading to modifications
in the CMB frequency spectrum. The thermalization process of the CMB in the early
universe has been extensively studied. In the early stages (redshift z � 2⇥ 106), a black-
body spectrum is maintained through ongoing processes, such as Compton scattering,
Bremsstrahlung, and double Compton scattering. As the universe expands, these inter-
actions become less e�cient, allowing for deviations from the blackbody spectrum. These
deviations, known as CMB spectral distortions (SDs), are induced by energy injections
occurring at epochs with z  106, and therefore represent a yet unexplored new win-
dow into both the early and the late universe physics. A guaranteed mechanism of early
SDs, predicted by the standard ⇤CDM cosmological model, is that due to the so called
Silk-damping e↵ect [237]. Additionally, there are other numerous processes, occurring at
a variety of redshifts, known to potentially disturb the thermal distribution, including
reionization and structure formation [238], energy injection from annihilating or decaying

12For completeness we should add that in the strong backrection regime there exists a di↵erent attractor
solution [217] that does not satisfy this identity.
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particles [239], the presence of small-scale primordial magnetic fields [240], and cosmic
strings [241], among others. These diverse mechanisms provide intriguing avenues to in-
vestigate and understand the origins of SDs as signatures of new physics. Also, spatial
anisotropies of CMB SDs (and their cross-correlations with CMB temperature and polar-
ization fields) provide further ways to exploit SDs as a valuable observable to have a new
insight into both early and late time physics (including, but not limited to primordial
non-Gaussianity), see, e.g., [242–254].

CMB distortions are classified into two main types based on the epoch of the energy
release: µ-type and y-type distortions. The µ-distortion exhibits a frequency dependent
chemical potential, and it is generated after the decoupling of the double Compton scat-
tering (z ⇠ 106), while the Compton scattering is still active, guaranteeing kinetic equi-
librium. Conversely, the y distortion is produced as the Compton scattering is no longer
e�cient in maintaining this equilibrium (z ⇠ 105). Measurement of these CMB distor-
tions provides a powerful tool for investigating the thermal history of the Universe. The
most precise measurement of the CMB spectrum to date is provided by COBE/FIRAS,
which constrained the distortions to µ  9⇥10�5 and y  1.5⇥10�5 at a 95% C.L. [255].
A later analysis by [256] improved the µ-distortion constraint to µ  4.7 ⇥ 10�5 at a
95% C.L., thanks to an improved component separation and Bayesian analysis approach.
The last decade has witnessed an intense ongoing discussion regarding potential future
missions (PIXIE [257], PRISM [258], COSMO [259], BISOU [260]) that could detect µ�
and y�distortions down to the 10�9 � 10�8 range [94,261].

Interestingly, CMB spectral distortion observations would let us venture into much smaller
scales than those available by CMB anisotropy measurements, which range from our
horizon scale k ' 2 ⇥ 10�4 Mpc�1 to k ' 0.2 Mpc�1. Indeed, any scalar fluctuation in
the CMB temperature will be erased by Silk damping around the dissipation scale kD,
which, for z ' 2⇥ 106, is of the order kD ' 2⇥ 104 Mpc�1 � 0.2 Mpc�1 [237]. Even in
conventional cosmology (for example, even without assuming entropy injection from some
long-lived species), entropy release associated to cosmological perturbations produced
during inflation and that re-enter the horizon at z < O

�
106
�
, generates distortion. Under

assumption of (approximate) scale invariance of primordial perturbations, a curvature
power spectrum of P⇣ ⇠ 2 ⇥ 10�9 guarantees a signal of µ, y ⇠ 10�8, that could be a
target for Voyage 2050 [94]. Moreover, improving on the experimental results can play
a vital role in constraining various inflationary models that involve a breaking of scale
invariance after CMB scales, leading to enhanced power at smaller scales than the CMB.

Inflation, however, gives rise not only to scalar modes, but also to tensor modes (Grav-
itational Waves, GWs). Recent detections of GWs by the ground-based LIGO [262],
Virgo [263], and KAGRA [264] (LVK) observatories, as well as evidence from the pulsar
timing arrays (PTA) [265, 266], have expanded the field of GWs, leading to significant
advancements in theory and observation. With the advent of new experiments, from PTA
to astrometry [267], from laser interferometer space antennas (LISA) [268] to new ground
based detectors (such as Einstein Telescope [269] and Cosmic explorer [270]) we are en-
tering an era of unprecedented opportunities to explore the cosmos through gravitational
wave signals. It has been shown that CMB SDs can also play a part in the observation
of GWs [271, 272]. Indeed, tensor modes can generate SDs at their horizon re-entry, just
like scalar modes. The e↵ect of this contribution to SDs has been quantified in [271]. The
authors of [273] investigated the spectral distortions from tensor and scalar fluctuations
arising in post-inflationary scenarios that lead to production of GWs, finding that the
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contribution from the tensor modes were highly suppressed with respect to the scalar
ones.

We study the SDs from scalar and tensor modes in a specific context, namely in infla-
tion models where rolling axions are coupled to gauge fields as explained above. This
includes one of the scenarios considered in previous works by [272], that focused on the
tensor-induced SDs. As we show below, our results agree with [272]. In addition to the
generation of tensor modes leading to CMB distortions in these models, we also inves-
tigate the generation of scalar modes leading to CMB distortions. The latter e↵ect is
generally present, as we have seen that scalar modes are generated gravitationally, along
with tensor modes. In fact, these models produce a significantly higher scalar signal as
compared to the tensor one, making it qualitatively inevitable and in need of quantitative
assessment. The production of scalar modes gives a higher hope for a detection of SDs or
a possibility to constrain these model, compared to relying only on tensor-induced SDs.
The issue of scalar production that limits the detectable signatures of tensor production
has been a long-standing concern in various mechanisms that generate additional tensor
modes beyond the standard quantum-vacuum tensor fluctuations. For instance, models
designed to enhance the tensor-to-scalar ratio r = PT

P⇣

at CMB scales by generating an

additional contribution of gravitational waves also unavoidably produce scalar modes.
This not only a↵ects the denominator of the ratio, but also can encounter strong bounds
from the non-Gaussian character of the sourced scalar modes [208, 274]. Moreover, the
production of observable GWs, as might be detected by future missions like LISA or the
LVK collaboration, encounters a delicate trade-o↵: if too many fields are involved in gen-
erating the GWs, the excessive energy injection can lead to the formation of primordial
black holes (PBHs) at undesired levels [275,276]. As such, careful considerations of both
scalar and tensor modes are essential, as their coexistence necessitates a comprehensive
evaluation of their mutual e↵ects on cosmological observables.

Firstly, we explore the U(1) model designed [162] to maximize the relative production
of tensor versus scalar modes. By avoiding any direct coupling in the potential, the two
sectors are coupled only by the unavoidable gravitational interactions. Although this can
result in an increased tensor signal, while suppressing to a minimum level the production
of scalar modes, we find that the tensor contribution to SDs is still significantly smaller
than the scalar one. Therefore, isolating and probing the much subdominant tensor
contribution to SDs is extremely challenging. Next, we turn our attention to the SU(2)
version of this model, introduced in [93], and already discussed in [272] as a concrete
model for SDs from tensor modes. The linearized study of the primordial perturbations
leads to the conclusion that the production of additional tensor modes in this model
can be significantly greater than that of additional scalars. This is due to the existence
of an unstable gauge field mode, that experiences significant growth while the axion
is rolling, and that couples linearly to GWs but not to the curvature perturbation ⇣.
However, the unstable gauge mode sources a significant amount of scalar perturbations
nonlinearly [161]. We find that also in this model the SDs generated by tensor modes are
much smaller than those due to the nonlinearly produced scalar perturbations. We also
find that generating a localized signal in the primordial tensor and scalar perturbations in
the SU(2) model is more challenging than in the U(1) case. 13 This is due to additional

13This can only be seen from evolving the background equations for the model (with parameters ap-
propriately chosen so to generate a roll of the axion only for a limited amount of e-folds during inflation),
and not from the parametrization of the peaked signal adopted in some literature [177].
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interactions present in the SU(2) case, that make it more di�cult to keep the gauge
field/axion sector in a ‘dormant’ phase, so to obtain a fast axion roll at some specific
desired time. We present a possible way out to this problem, by relating the onset of the
fast axion roll to a sudden change of the coupling between the axion and the gauge fields.

5.2.1 Spectral distortions from primordial perturbations

Photons in the early universe have the Bose-Einstein distribution function

f (x) = B (x) ⌘ 1

ex � 1
, x ⌘ p

T
, (5.18)

where p is the physical momentum of the photons and T their temperature. The expansion
of the universe modifies this distribution function through a rescaling of the temperature
T , so that the primordial photons retain this blackbody spectrum in absence of inter-
actions. Such interactions, and, in general, energy transfers to or from the photon field
will cause a distortion of this spectrum [239,277–279]. To linear order in the parameters
�T/T, µ, y, the modifications are typically of the form 14

�f (x) =
�T

T
G (x) + µ M (x) + y Y (x) . (5.19)

Only the last two terms in this expression represent a distortion of a blackbody distribu-
tion. The first term,

G (x) ⌘ �x
@B (x)

@x
=

x ex

(ex � 1)2
, (5.20)

represents instead a change of temperature of the photon distribution without altering
its blackbody shape. This is the only modification introduced by any entropy injection
that occured at early redshifts, z >⇠ zdc ⌘ 2⇥ 106 [239, 279], when processes that change
the number (double Compton and bremsstrahlung) and energy (Compton scattering)
of photons requilibrate the distortion into a new blackbody spectrum with a modified
temperature. Below this redshift, and up to approximately the redshift z ⌘ zµy = 6 ⇥
104 [239, 285], double Compton and bremsstrahlung processes progressively go out of
equilibrium, while Compton scattering is still active and guarantees kinetic equilibrium.
Any entropy release then results in both a change of temperature and of chemical potential
of the photon distribution, with the latter e↵ect given by

M (x) ⌘ �G (x)

✓
1

x
� 0.4561

◆
. (5.21)

For an entropy injection below this redshift, and up to recombination (z = zrec ' 1100),
Compton scatterings of the photons with the electrons (assumed to have a Maxwellian
phase-space distribution) take place with a progressively decreased e�ciency, giving rise
to a so called Compton y-distortion, with shape

Y (x) ⌘ G (x)

✓
x
ex + 1

ex � 1
� 4

◆
. (5.22)

To linear order, an entropy release Q̇ (where Q (z) is the energy density injected at the
redshift z in the thermal bath, and dot denotes derivative with respect to time) produces

14We refer the readers to ref. [280] for a pedagogical derivation of the expressions reported here. For a
more detailed study of modifications beyond the modelization in eq. (5.19) see for instance refs. [281–284].
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distortions that can be parametrized as

µ = 1.4

Z 1

0

J̃µ (z)
d (Q/⇢�)

dz
dz , y =

1

4

Z 1

0

J̃y (z)
d (Q/⇢�)

dz
dz , (5.23)

where ⇢� is the energy density of the thermal distribution (without the injection) and
the two visibility functions J̃µ,y account for the particle physics processes that we have
summarized above.

The visibility functions have been studied with increasing accuracy in the literature, see
for instance the discussion in ref. [286]. The simplest approach is to take two square top
hat functions evaluating to 1 in the redshift intervals zµy < z < zdc (for the µ�distortion)
and zrec < z < zµy (for the y�distortion) and to 0 outside these intervals. Improvements
have been obtained by noting that the e�ciency does not abruptly vanish at zdc [239,

278,279,287], which can be accounted for by a e�(z/zdc)
5/2

factor, and by considering the
fact that the transition between µ� and y�distortions is not abrupt at zµy. We employ
the analytic approximation [285]

y ' 1

4

Z 1
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dz0e�(z
0
/zdc)

5/2 d(Q/⇢�)

dz0
Jy(z

0) , µ ' 1.4

Z 1
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0
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0) ,

(5.24)

with

Jy(z) '
 
1 +


1 + z

zµy

�2.58!�1

, Jµ(z) ' 1� Jy(z) . (5.25)

Let us discuss the entropy injections of interest for our work. A guaranteed source of
distortions is from the energy release due to the Silk-damping [237] of primordial small-
scale perturbations after their horizon re-entry [288–291]. This gives rise to CMB SDs that
are directly related to the shape and amplitude of the primordial scalar power spectrum
P⇣ . Defining the latter as in eq. (5.9), 15 the injection of energy from the scalar modes
can be approximated as [285] (see also refs. [238,280,294])

d(Q/⇢�)

dz

����
⇣

' �3.25

Z
d ln k P⇣ (k) sin

2 (krs) @z e
�2k

2
/k

2
D , (5.26)

where, assuming radiation domination, the sound horizon is rs ' cs ⌘ ' 2.7⇥105 (1 + z)�1,

while the damping scale is kD ' 4.0⇥ 10�6 (1 + z)3/2Mpc�1. 16

Combining eqs. (5.23) and (5.26), it is customary to write the distortions as

µ⇣ =

Z 1

kmin

d ln k P⇣ (k) W ⇣

µ (k) , y⇣ =

Z 1

kmin

d ln k P⇣ (k) W y

⇣
(k) , (5.27)

with kmin ' 1Mpc�1. We show the scalar window functions obtained in this way with
solid lines in Figure 5.2. 17

15This definition corresponds to the one of ref. [292] times a k
3

2⇡2 factor. In our notation, a scale-invariant
power spectrum corresponds to a constant P⇣ . The same applies to the tensor power spectrum that we
consider below. We only consider the e↵ect of an adiabatic primordial perturbation. Ref. [293] studied
the distortions due to scalar isocurvature modes.

16In writing the numerical coe�cient of eq. (5.26) and the following relations for the heating rates and
window functions taken from the literature we set the fractional contribution of neutrinos to the energy
density of relativistic species to R⌫ ⌘ ⇢⌫/ (⇢� + ⇢⌫) ' 0.41.

17Analytic approximations for the scalar window functions can be found in Ref. [293].
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Figure 5.2: Window functions for (left) µ� and (right) y�distortions. They encode the e↵ect
of primordial modes on the distortions as in eq. (5.27). The solid (respectively, dashed) line
corresponds to the scalar (respectively, tensor) window function.

Primordial tensor modes can also source CMB distortions [295]. Contrary to scalar modes,
they create a local quadrupole anisotropy without the need of photon di↵usion. Scatter-
ings between photons and electrons in presence of this anisotropy then cause nearly scale
independent dissipation [271, 295], giving rise to the distortions. Ref. [271] provided an-
alytical relations for the heating rate from tensors and for the resulting distortions. The
heating rate can be expressed as

d(Q/⇢�)

dt

����
T

' 4H2

45⌧̇

Z 1

0

d ln k PT (k) T✓
✓

k

a⌧̇

◆
Th (k⌘) e���⌘ , (5.28)

where ⌧̇ = �TNe = 4.4⇥ 10�21(1+ z)3 s�1 is the Thomson scattering rate, ⌘ is conformal
time, and a is the scale factor. In this relation, PT (k) is the tensor power spectrum
(summed over the two polarizations), defined analogously to eq. (5.9). The gravitational
wave transfer function [296]

Th (x) ' 2

8
<

:

6X

n=0,even

an[njn(x)� xjn+1(x)]

9
=

;

2

, (5.29)

(where the jn are the spherical Bessel functions, and a0 = 1, a2 = 0.243807, a4 =
5.28424 ⇥ 10�2, a6 = 6.13545 ⇥ 10�3) accounts for the damping due to neutrino free
streaming [297, 298], while the rate �� accounts for the damping due to photons, and
�� ⌘ ' 5.9 a as derived in eq. (D.6) of [271]. Finally, the photon transfer function encodes
how the distortion is produced by the tensor mode, and it can be approximated by [271]

T✓ (x) '
1 + 4.48x + 91x2

1 + 4.64x + 90.2x2 + 100x3 + 55.0x4
. (5.30)

From these expressions, we can express the distortions analogously to eq. (5.27), namely
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in terms of the tensor power spectrum and the tensor window functions
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that we show with dashed lines in fig. 5.2.

The comparison between the tensor and scalar window functions shown in this fig-
ure allows for the following observation: while the scalar window functions are signifi-
cantly greater than the tensor ones at large scales, the tensor window functions become
greater than the scalar ones at smaller scales, approximately at k & 7.5 ⇥ 104 Mpc�1

for µ�distortions and at k & 102 Mpc�1 for y-distortions. This phenomenon aligns with
expectations, considering that the scalar window function starts to decrease around the
di↵usion scale due to Silk damping e↵ects. In contrast, as already mentioned, tensor
modes directly induce a quadrupole anisotropy, and a consequent CMB distortion, with-
out relying on photon di↵usion. Accordingly, the damping process for tensor modes is
significantly less scale-dependent, as the figure shows. When comparing the e↵ects of
scalar vs. tensor modes it is also important to recall that the window functions multi-
ply the primordial scalar and tensor power spectra, and that tensor modes are typically
produced with a significantly lower amplitude than scalars in vanilla slow-roll inflation.
Therefore, in hope to have a visible distortion from tensors (which is not overshadowed
by that from scalars), one needs to resort to specific inflationary models that can gen-
erate enhanced tensor perturbations at the scales relevant for the distortions [272]. In
the following, we consider one class of models that have been proposed in the literature
for this purpose, namely enhanced tensor perturbations from gauge fields amplified by a
rolling axion during inflation. In addition to the existing literature, we consider also the
e↵ect of scalars that are also unavoidably produced by the gauge fields.

5.2.2 SD from U(1)

Here, we study the application for SDs of the analogous (and earlier) model of [162], 18

in which the rolling spectator axion is coupled to a U(1) gauge field.

We begin this analysis with the scalar and tensor heating rate, shown in fig. 5.4. We
plot the heating rates (obtained after integration over k) as a function of k⇤ for various
relevant redshifts. We observe that, the greater the redshift, the greater is the value k⇤ at
which the heating rate is maximum. This is due to the fact that modes mostly contribute
to the heating when they re-enter the horizon, and that the comoving horizon is smaller
in the past (hence, greater k = (aH)�1). We also observe that, at any given redshift,
the scalar heating rate strongly decreases at scales that are smaller than the di↵usion
scale kD (z) at that redshift. A similar e↵ect is not found for the tensor heating rate,
which shows a plateau that extends for a greater range of wavenumbers. This agrees with
the large-k behaviour of the window functions shown in fig. 5.2 and with the discussion
we had after eq. (5.32). We also observe that the heating rate caused by tensor modes
decreases at high redshifts. On the contrary, the heating rate due to scalars reaches a
similar maximum level across the three redshifts examined. Since µ�distortions occur
at higher redshifts compared to y�distortions, the diminishing e↵ect of tensor heating at
high redshifts implies that the ratio between the peak amplitudes of µ� and y�distortions
is smaller for tensor contributions compared to scalar contributions, as Figure 5.5 shows.

We note that the CMB data already constrain part of the parameter space by placing
strong bounds on the strength of the curvature power spectrum up to k⇤ ⇠ 5 Mpc�1.
fig. 5.3 shows the maximum value of ⇠⇤ as a function of k⇤ that satisfies the 2� bound

18SDs in this model were considered in association to primordial scalar perturbations that can result in
primordial black hole dark matter [188].
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Figure 5.3: Maximum allowed value of ⇠⇤ as a function of k⇤. Parameters above the curve result
in a sourced power spectrum that exceeds the one inferred from CMB [21].
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Figure 5.4: Left (respectively, right) panel: scalar heating rate (5.26) (respectively, tensor heating
rate (5.28)) due to the primordial perturbations produced in the Abelian model and shown in
Figure 5.1. The rates are shown as a function of k⇤ (which is the comoving momentum, of the
modes that leave the horizon when the evolution of the axion is fastest). In each panel, the curves,
from left to right, show the heating rates at three increasing redshift: z = 5 ⇥ 103 (solid line),
z = 5 ⇥ 104 (dashed line), and z = 2 ⇥ 106 (dotted line). In the left panel the thin vertical lines
correspond to the damping wavenumber kD(z) for each redshift, beyond which the distortions
from scalar modes are reduced.

reported in Figure 20 (bottom panel) of Ref. [21]. We note that the limit loosens (greater
values of ⇠⇤ are allowed) for progressively increasing k⇤, as this corresponds to progressively
smaller scales (eventually becoming smaller than the scales probed by the CMB). This
limit excludes the left portion of fig. 5.5, which is shaded in the Figure.

We begin this analysis with the scalar and tensor heating rate, shown in fig. 5.4. We
plot the heating rates (obtained after integration over k) as a function of k⇤ for various
relevant redshifts. We observe that, the greater the redshift, the greater is the value k⇤ at
which the heating rate is maximum. This is due to the fact that modes mostly contribute
to the heating when they re-enter the horizon, and that the comoving horizon is smaller
in the past (hence, greater k = (aH)�1). We also observe that, at any given redshift,
the scalar heating rate strongly decreases at scales that are smaller than the di↵usion
scale kD (z) at that redshift. A similar e↵ect is not found for the tensor heating rate,
which shows a plateau that extends for a greater range of wavenumbers. This agrees with
the large-k behaviour of the window functions shown in fig. 5.2 and with the discussion
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Figure 5.5: Solid (respectively, dashed) lines: SDs from the scalar (respectively, tensor) perturba-
tions produced by the model (??) and shown in fig. 5.1. The distortions are shown as a function
of the parameter k⇤, which controls the wavenumber at which the perturbations are peaked. The
horizontal lines correspond to the current bounds from COBE/FIRAS [235]. The two panels
correspond to di↵erent values of the parameter ⇠⇤, that controls the amplitude of the sourced per-
turbations. The shaded region in the left part of the two panels show the parameters that result
in a sourced power spectrum that exceeds that inferred from the CMB (see the previous figure).
The flat tails at small and large k⇤ are due to the vacuum modes and the choice of parameters
discussed above eq. (5.12).

we had after eq. (5.32). We also observe that the heating rate caused by tensor modes
decreases at high redshifts. On the contrary, the heating rate due to scalars reaches a
similar maximum level across the three redshifts examined. Since µ�distortions occur
at higher redshifts compared to y�distortions, the diminishing e↵ect of tensor heating at
high redshifts implies that the ratio between the peak amplitudes of µ� and y�distortions
is smaller for tensor contributions compared to scalar contributions, as Figure 5.5 shows.

We note that the CMB data already constrain part of the parameter space by placing
strong bounds on the strength of the curvature power spectrum up to k⇤ ⇠ 5 Mpc�1.
fig. 5.3 shows the maximum value of ⇠⇤ as a function of k⇤ that satisfies the 2� bound
reported in Figure 20 (bottom panel) of Ref. [21]. We note that the limit loosens (greater
values of ⇠⇤ are allowed) for progressively increasing k⇤, as this corresponds to progressively
smaller scales (eventually becoming smaller than the scales probed by the CMB). This
limit excludes the left portion of fig. 5.5, which is shaded in the Figure.

Finally, in support of our earlier claim that computing only the tensor contribution would
significantly underestimate the CMB distortions from this mechanism, we observe that
the scalar heating rate reaches values that are much greater than the tensor ones. This
is also in agreement with the window functions shown in fig. 5.2 and with the fact that
the tensor modes produced by this mechanism are smaller than the scalar ones. 19

The SDs for this specific model are shown in fig. 5.5. 20 In agreement with the above
discussions and results, we observe that indeed the distortions due to tensor modes pro-
duced in this model are much smaller than the scalar-induced ones. We also observe the

19Although we do no perform a full parameter search for the model, we do not expect to obtain tensor
modes of many orders of magnitude greater than the scalar ones, so to compensate the hierarchy in the
scalar vs. tensor window functions shown in fig. 5.2, due to the fact that the gauge field is coupled with
comparable (gravitational) magnitude to both sectors.

20We stress that fig. 5.4 and fig. 5.5 are not spectra, but they show the heating rates and the distortions
after integration over k. The horizontal axis k⇤ is the comoving momentum at which the spectra of the
primordial perturbations are peaked.
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relative size between the maximum value attained by the µ� vs. y�distortions is greater
for the scalar contribution than for the tensor one, in agreement with what discussed
in the context of the previous figure. Finally, we note that, after the peak, the tensor
contributions have a milder decrease with k⇤ than the scalar ones, and so they reach
the baseline minimum value (due to the nearly scale invariant vacuum modes) at greater
values of k⇤. This is also something that we already discussed above.

In conclusion, the model can result in significant CMB distortions. As already dis-
cussed, the amplitude of the signal is exponentially proportional to the parameter ⇠⇤.
The left panel of fig. 5.5 corresponds to a value of ⇠⇤ that is compatible with the present
limits for all choices of k⇤. The right panel shows instead the results for the maxi-
mum estimated value of ⇠ that is compatible with perturbativity (in this case the range
6 ⇥ 10�3Mpc�1 <⇠ k⇤ <⇠ 104Mpc�1 is already excluded by COBE/FIRAS). We stress
that in all cases, the distortions produced in this model are strongly dominated by the
primordial scalar modes.

5.2.3 SD from non-Abelian

Let us now move our attention to the model of ref. [93], which is essentially an analogous
version of the model of the previous section, with the U(1) field replaced by an SU(2)
multiplet.

The model is governed by the action

L = �1

2
(@�)2 � V (�)� U(#)� 1

2
(@#)2 � 1

4
F a

µ⌫F
aµ⌫ +

�#

4f
F a

µ⌫F̃
aµ⌫ , (5.33)

where � is the inflaton and # is the spectator axion, coupled to the SU(2) field of field
strength

F a

µ⌫ = @µAa

⌫ � @⌫A
a

µ + gfabcAb

µAc

⌫ , (5.34)

where g is the gauge coupling constant and fabc are the structure constants of the SU(2)
algebra. As in the previous model, the inflaton and the axion-gauge sector are decou-
pled (apart from gravity), and therefore the inflaton and axion have the separate po-
tentials V (�) and U(#), respectively. The SU(2) triplet has vacuum expectation values
(vevs) [170]

Aa

0 = 0, Aa

i = �ai a(t)Q(t) , (5.35)

which allows for a statistically isotropic phenomenology.

One component of the SU(2) multiplet is strongly amplified due the rolling of the axion,
similar to the instability of the U(1) field studied in the previous section. The instability
is controlled by the combination

mQ ⌘ gQ(t)

Hinf

, (5.36)

which plays an analogous role to the parameter ⇠ introduced in the U(1) case. Indeed, it
can be shown that mQ ' ⇠ in the mQ � 1 limit, see eq. (5.44) below.

Di↵erently from the U(1) case, the amplified SU(2) component is linearly coupled to one
GW polarization, due to the vevs (5.35). Therefore, the latter is significantly sourced
already at the linearized level, with the power spectrum [93]

PGW,sourced(k) =
"BH2

⇡2M2

Pl

F2(mQ) , (5.37)
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is a parameter that roughly indicates the energy fraction of

the SU(2) gauge fields. The function F(mQ) was evaluated in Ref. [93], and reported in
their eqs. (3.6)-(3.9). This is the expression that we use in our computations. Ref. [177]
obtained a much simpler approximate fitting function:

F(mQ) ' exp
⇥
2.4308mQ � 0.0218m2

Q � 0.0064m3

Q � 0.86
⇤

, 3  mQ  7 . (5.38)

As in the U(1) model, also the scalar perturbations need to be computed to provide the
phenomenology of the model. The power spectrum of the linear modes is given by (see
Appendix F of [299] for a derivation)

P (0)

⇣
' H2

8⇡2M2
p

"�
("� + "B)2

' P⇣,CMB ·
"2
�

("� + "B)2
, (5.39)

where "� ⌘ �̇
2

2H2M2
Pl

is the standard slow-roll parameter associated with the motion of the

inflaton. As in the previous section, we consider a model characterized by negligible axion
roll when CMB perturbations are produced, and therefore standard vacuum signals at
CMB scales, which justifies the last expression in eq. (5.39), where P⇣,CMB is the power
observed at CMB scales, with the amplitude As reported in the previous section. We
employ the results of Ref. [299], which, in addition to the scalar perturbations from linear
theory, also computed the scalar perturbations sourced at nonlinear order by two amplified
gauge modes. The power spectrum of these sourced scalar modes is approximately given
by

P⇣,sourced ' 1.1P 2

⇣,CMB

"4
�

("B + "�)2
N2

k
m11

Q e7mQ , 2.5 . mQ . 4 , (5.40)

where Nk is the number of inflationary e-folds during which the axion rolls.

While Ref. [93] studied this model in a regime in which the axion rolls continuously
all throughout inflation, Ref. [177] was interested in the case in which the axion moves
significantly for only a few e-folds during inflation, analogous to the model considered in
the previous section. 21 Ref. [177] did not study a concrete dynamical evolution for the
axion in a specific model. They considered the typical cosine axion potential and Taylor
expanded the evolution of the axion about the time t⇤ when it is at the steepest part of
the potential, and therefore #̇ (t = t⇤) ⌘ #̇⇤ is maximum,

# (t) =
⇡

2
f + #̇⇤ (t � t⇤) + O

⇣
(t � t⇤)

2

⌘
. (5.41)

Then, inserting this expansion in eqs. (5.37) and (5.38), they obtained an analytically
approximate expansion for the top of the bump of the tensor modes produced while the
axion is rolling.

21The implementation of [177] was then employed by [272] as a model for SDs from tensors, which is
the main motivation for this section. Strictly speaking, the relations (5.37) and (5.38) used in these two
works for the tensor signal, as well as the relation (5.40) for the source scalars were obtained for constant
mQ, and then evalauted for a time varying mQ in Refs. [177,272] (specifically, for any wavenumber k, the
relations (5.37) and (5.38) are evalauted at the time at which that mode left the horizon). As our goal is
to compare the results of [272] for the case in which also the scalar modes are considered, we employ in
this work the same methodology used in Refs. [177, 272]. However, we caution that the relations. (5.37),
(5.38) and (5.40) can only be considered as approximations in the case in which mQ varies too quickly.
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As we study in the next subsection, realizing such a bump in the SU(2) case is more
di�cult than in the U(1) model considered in the previous section. This cannot be seen
from the analytical approximation (5.41) that only describes the evolution around the
moment of fastest roll, but it emerges from the study of the full dynamical background
equations in concrete models. We discuss this di�culty in the next subsection, where we
outline a possible construction that can indeed produce a fast roll of the axion restricted
to the scales that are relevant for the CMB distortions.

5.2.4 Background evolution for localized peaks beyond the CMB scales

Let us study the background evolution for the model (5.33). Concerning the dominant
inflaton sector, we consider for definiteness the so called ↵-attractor potential

V = V0 tanh

✓
�p

6↵MPl

◆
, (5.42)

which has the advantage of providing a nearly constant H during inflation, and of ad-
mitting an analytic solution for the evolution of the inflaton and of the expansion rate
(in the limit of negligible energy in the axion/gauge sector that we are considering), see
e.g. Ref. [300]. For definiteness, we choose V0 = 1⇥ 10�9M4

Pl
, ↵ = 1, and �in = 6.24MPl

(leading to 60 e-folds of inflation). Other inflaton potentials might have been considered
without a↵ecting our results.

The background evolution of the axion/gauge sector is instead controlled by

#̈+ 3H#̇+
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,
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Q + 2g2Q3 =
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f
#̇Q2 . (5.43)

In the limit of constant or adiabatically evolving Q, and provided the parameters satisfy
3f2H2 ⌧ g2�2Q4 and �2Q2 � 2f2, these equations are approximately solved by [93,170]
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. (5.44)

We are not interested in a solution with constant Q, as we want to obtain a peaked
signal. As shown in fig. 5.2, the tensor window function can dominate over the scalar one
at relatively smaller scales. Consequently, an ideal scenario for obtaining visible distortion
from tensor modes involves tailoring the model to produce a peak in mQ at these relatively
small scales, e↵ectively minimizing the scalar contribution.

The tensor (as well as the scalar) signal is generated by the gauge fields, whose amplifi-
cation is directly linked to the velocity of the axion. For the cosine potential, using the
relations (5.44) in the mQ � 1 limit, we can estimate the value of mQ at the peak

mQ,peak ⇠
✓

g2 ⇤4

3�H4

◆1/3

, (5.45)

as well as the width of the peak (namely, the number of e-folds for which the axion rolls)
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Figure 5.6: Evolution of the axion # (left panel) and of the combination mQ (right panel) in the
SU(2) case for the values of parameters indicated in the main text. Continuous blue lines show
the exact numerical solution. The dashed red line in the right panel is based on the approximation
of eq. (5.44), and it presents gaps after the peak since this approximation results in an imaginary
Q whenever # > ⇡f (where the approximation is invalid).

The order two factor in the last expression comes from the numerical factors and from the
fact that we have estimated mQ at its maximum (at # = ⇡

2
f), while in fact mQ is smaller

at the beginning and at the end of the peak. For definiteness, we choose g = 5.5⇥ 10�3,
� = 40, f = 9 ⇥ 10�3MPl, ⇤ = 2.3 ⇥ 10�3MPl, and #in = 10�2⇡ f . This leads to
�Npeak ⇠ 10 in the estimate (5.46), and it ensures that the conditions leading to (5.44)
are satisfied.

In fig. 5.6 we show the evolution of the axion and of the parameter mQ (5.36) for this choice
of parameters. As mentioned, we start from #in = 10�2⇡ f , and the initial conditions for
#̇ and Q are then set according to (5.44), while Q̇in = 0). This results in a bump of #̇, and
hence of mQ (and a consequent peak in the primordial scalar and tensor perturbations)
right at the start of the evolution, as obtained from an exact numerical integration of
eqs. (5.43), shown by a continuous blue line in the figure. At the beginning of the evolution
and all throughout the bump the approximation (5.44), indicated by a dashed red line, is
well satisfied.

We notice that the bump of particle production occurs when # = ⇡

2
f , and the axion roll is

fastest. As mentioned, we wish to delay the moment at which this takes place, so to have
the bump at scales smaller than the CMB one. Achieving this in the U(1) model is rather
simple, as it only requires taking the initial value of the axion su�ciently close to the
maximum of the potential, where the potential is flat and therefore the classical value of
#̇ can be made arbitrarily small. This is no longer the case now, due to the nonvanishing
right hand side in the first of eqs. (5.43). We performed an evolution of the system for
#in = 10�4⇡ f (without changing the other parameters) obtaining a qualitatively similar
evolution to the one shown in fig. 5.6, with no delay of the onset of the peak. Further
decreasing the initial value of #in breaks the conditions reported before eq. (5.44).

Eqs. (5.45) and (5.46) suggest an alternative, and more successful, route to attempt to
delay the onset of the peak. We note that the height and the duration of the peak are,
respectively, decreasing and increasing as � increases. If therefore � is decreased for an
intermediate stage during inflation, a higher and narrower peak in mQ can be obtained
during this stage, on the top of a slowly evolving baseline (that in turn corresponds to
the much smaller and wider peak that occurs while � is large). This is visible in the
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Figure 5.7: Evolution of the axion # (left panel) and of the combination mQ (right panel). As
compared to the previous figure, � is decreased by a factor of 10 in the interval 48 & N & 43,
resulting in peak in mQ during this stage. The red-dashed curve in the right panel is based on
the approximations (5.44), which are invalid at the peak.

evolution shown in fig. 5.7, where � is initially (at #in = ⇡

5
f) taken to be � = 400, and

it is suddenly decreased by a factor of 5 between N ' 48 and N ' 43 e-folds before the
end of inflation (more precisely, the evolution in the figure corresponds to N = 48.3 and
N = 43.1). We are implicitly assuming that the value of � is controlled by some other
field, that experiences a sudden transition at the beginning and the end of this stage
(presenting a complete model is beyond the scope of this work).

This successfully delays the onset of the main peak. We note that, for the sole purpose
of delaying the peak it is not necessary that � grows back to relatively large values after
the peak. However, if this does not occur, mQ rapidly decreases after the peak, becoming
smaller than

p
2. When this happens, the system of scalar perturbations in this model

has a strong instability in the sub-horizon regime [214]. The evolution shown in fig. 5.7
is exempt from this problem.

We note that the dashed red line in the right panel of fig. 5.7 departs from the solid blue
curve during the peak, indicating the approximation (5.44) is invalid during this stage.
These relations are therefore not used in the computation of the scalar and tensor modes,
to which we turn next.

5.2.5 Spectral Distortions for a localized peak in the SU(2) model

Let us now compute the primordial scalar and tensor modes produced in the model. We
consider the background evolution shown in fig. 5.7. We then evaluate the spectrum
of the scalar modes from the sum of eqs. (5.39) and (5.40) and the spectrum of the

tensor modes from the sum of the vacuum term P (0)

T
= 2

⇡2
H

2

M
2
Pl

and of eq. (5.37). The

resulting spectra are shown in the left panel of fig. 5.8. We observe that in this case one
can obtain a tensor power spectrum of comparable or greater amplitude than the scalar
power spectrum. Inserting the scalar spectrum in eq. (5.27) we then obtain the peak
values of the CMB distortions y⇣ ' 3.1⇥ 10�7 and µ⇣ ' 2.7⇥ 10�6. Inserting the tensor
spectrum in eq. (5.31) we instead obtain yT ' 3.8⇥10�11 and µT ' 3.3⇥10�11. We note
that the scalar contribution strongly dominates the distortions, due to their much greater
window function, despite the parameters of the model resulting in scalar and tensor modes
of comparable power at the peak.

To shift the position of the peak, we simply change the value of the number of e-folds N
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Figure 5.8: Left panel: scalar (solid line) and tensor (dashed line) power spectrum produced in the
model (5.33) for the background evolution shown in the previous figure. Right panel: SDs from
the scalar (solid lines) and tensor (dashed lines) modes. The distortions are shown as a function
of the parameter k⇤, which controls the wavenumber at which the perturbations are peaked. This
is varied by shifting the position of the peak shown in the left panel, as explained in the text. The
vertical line in the right panel corresponds to the value of k⇤ obtained for the evolution leading to
the spectra shown on the left panel. The shaded region on the left portion of the panel is excluded
since it leads to an induced scalar power in excess to what inferred from the CMB.

at which the decrease of � takes place (we keep the duration of the stage of low � fixed),
while all the other parameters are unchanged. We then compute the primordial scalar
and tensor modes produced also in these cases, and the corresponding CMB distortions.
This allows us to plot in the right panel of fig. 5.8 the distortions as a function of the
scale of the peak k⇤.

We note that the scalar contribution dominates the distortions for all values of k⇤. The
distortions obtained in this model are slightly smaller than those shown in fig. 5.5 in the
U(1) case. To increase the distortions generated by this model requires increasing mQ

to values for which the fitting formula (5.40) is no longer valid. Given the functional
dependence of the tensor and scalar signal on mQ, and the fact that the nonlinear scalar
production involves more unstable modes than the linear tensor one we do not expect
that increasing mQ would lead to a drastic increase of the ratio between the tensor and
scalar sourced modes.

Similar to the U(1) case, the parameter space at relatively small k⇤ visible in fig. 5.8 is
excluded as it produces a scalar power spectrum in excess to that inferred by the CMB
data. The limit shown in the figure has been computed identically to what done in the
previous section for the Abelian case.

5.3 A Multitude of Spectators & Their Power Spectra

The previous two subsections featured only a single spectator axion coupled to a gauge
sector. As argued above, a natural expectation from string compactifications is the exis-
tence of a whole axiverse, with the surfeit of axions that it entails. This serves as a strong
motivation to extend the above axion gauge field constructions to allow for multiple ax-
ionic (and gauge) spectators22. Of course, there are plentiful possibilities, including those
where the spectator gauge group is a semi-simple sum of both non-Abelian and Abelian

22See [301] for a related discussion regarding CNI models.
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groups. The class of theories we will explore stems from generalizing eq. (5.1) as follows
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(5.47)

where #i and F a

i
are the spectator axions and gauge field strengths, respectively, with

i = 1, ..., NS . We have also defined the Chern-Simons couplings �i, the axion decay
constants fi, and the scalar potentials VSi

(#i), the explicit form of the latter being that
of Eq. (5.3). For the sake of simplicity, we will focus here on the Abelian case. Note
that we are not pursuing the possibility of a direct coupling between the inflaton and
the spectators. We are also neglecting mixing between axions and/or gauge fields from
di↵erent spectator sectors. Such possibilities are of course permitted and can be included
to further enrich the landscape of MASA models.

We shall now study the gravitational wave spectrum of MASA models. First, let us revisit
the gravitational waves generated in the single spectator case.

When # is rolling, #̇ 6= 0 and gauge fields are produced via

�#! �A + �A , (5.48)

then, in turn, gauge perturbations source scalar and tensor perturbations via

�A + �A ! �� (via �#)

�A + �A ! �h� .
(5.49)

The interaction between the gauge field and the inflaton is purely gravitational so that
the direct channel �A + �A ! �� is negligible. By assumption, # in this model has
an energy density much smaller than that of the inflaton and thus we can identify the
scalar curvature perturbation ⇣ with the perturbation of the inflaton. A linear coupling
of gravitational nature however still remains between the perturbations of # and of � as
long as #̇ 6= 0, which leads to the partial conversion �# ! ��. Feynman diagrams in
Figs.5.9 & 5.10 help in identifying the interactions involved.

Figure 5.9: Left : the pictorial representation of the (quadratic) interaction between �� (black
propagator) and �# (blue). Center : the cubic interaction between �# and the gauge field quanta
Aµ (dashed line) Right : the cubic interaction between tensor modes (wiggly propagator) and the
gauge field quanta.

The power spectrum of curvature perturbations ⇣ is defined as

P⇣(k)�
(3)(~k + ~k0) :=

k3

2⇡2
h⇣(~k)⇣(~k0)i , (5.50)
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Figure 5.10: Left : the sourced scalar power spectrum mediated by �#. The fluctuation of the
inflaton � are linearly related to ⇣. Right : the sourced tensor power spectrum. One may use the
in-in formalism to calculate these observables. However, in what follows we employ the equally
valid Green’s function method.

and analogously for h± (where + and � denote the two gravitational wave polarizations).
The power spectra receive contributions from vacuum fluctuations (superscript “vac”)
and the sources (superscript “src”), i.e.:

Pi(k) = P vac

i (k) + P src

i (k) , i = ⇣, h+, h� . (5.51)

The vacuum power spectrum is parametrized as

P vac

⇣
= As

✓
k

k0

◆
ns�1

, (5.52)

and the tensor to scalar ration r is defined as

r ⌘ P total

T /P total

⇣
. (5.53)

Let us specialize our discussion of eq. (5.47) to the case with NS = 2. For both axions we
take #̇i 6= 0 and the slow roll solutions will be analogous to the case with one spectator
sector

#i = 2fi arctan(e
�iH(t�t⇤))

#̇i =
fiH�i

cosh (�iH(t � ti⇤)
,

(5.54)

with �i =
⇤
4
i

6H2f2
i

and ti⇤ is again the moment when #i =
⇡f

2
. The validity of the slow-roll

approximation requires

#̈i

3H#̇i
= ��i

3
tanh(�iH(t � ti⇤)) ⌧ 1 ! �i ⌧ 3 . (5.55)

As before, we define

⇠i =
�i#̇i
2Hfi

=
⇠i⇤

cosh(�iH(t � ti⇤))
=

2⇠i⇤⇣
a

ai⇤

⌘
�i

+
⇣
ai⇤
a

⌘
�i

, (5.56)

with ⇠i⇤ =
�i#̇

i
⇤

2Hfi
= �i�i

2
.

Tensor Perturbations

Let us move on to tensor perturbations. The amplification w.r.t. the vacuum comes from
the standard kinetic term of the gauge fields in eq. (5.47). Indeed, the Chern-Simons
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term does not contain the metric tensor directly as the indices of F̃ are raised with the
antisymmetric tensor "µ⌫⇢�. Naturally, the CS coupling is still crucial in light of its e↵ect
on gauge fields at the level of their wavefunction. Following e.g. [162], we employ the
Coulomb gauge and perform the mode expansion

Âi

m(⌧, ~x) =

Z
d3k

(2⇡)3/2
ei
~k·~xÂi

m(⌧,~k) =

=
X

�=±

Z
d3k

(2⇡)3/2

h
"(�)m (~k)Ai

�
(⌧,~k)âi

�
(~k)ei

~k·~x + h.c.
i
,

(5.57)

where i = 1, 2 refers to the spectators while m is the space index. In a spatially flat,
inflating, Universe with Hubble parameter H and scale factor a(⌧) = �1/(H⌧), the mode
functions satisfy (for both l = 1, 2)

Ai00
± +

0

@k2 ± 4k⇠i⇤

⌧
h
(⌧/⌧ i⇤)

�i + (⌧ i⇤/⌧)
�i

i

1

AAi

± = 0 , (5.58)

where the prime indicates a derivative with respect to the conformal time ⌧ . Taking
⇠⇤ � 0, only the positive helicity mode is amplified. Dropping the index l for the moment,
we can solve eq. (5.58) using the WKB approximation:

A+(⌧, k) '


�⌧
8k⇠(⌧)

�1/4
Ã(⌧, k),

A0
+(⌧, k) '


k⇠(⌧)

�2⌧

�1/4
Ã(⌧, k) ,

(5.59)

where

Ã(⌧, k) ⌘ N [⇠⇤, x⇤, �] exp

"
�4⇠1/2⇤
1 + �

✓
⌧

⌧⇤

◆
�/2

(�k⌧)1/2
#

, (5.60)

with N a time-independent normalization factor. The electric and magnetic field can be
defined as

Êm ⌘ � 1

a2
Â0

m, B̂m ⌘ 1

a2
"mnp@nÂp . (5.61)

The mode expansion for the transverse, traceless tensor perturbations of the metric ĥmn

defined in chapter C reads

ĥmn(⌧,~k) =
2

Mp a(⌧)

Z
d3k

(2⇡)3/2
ei
~k·~x

X

�=+,�
⇧⇤

mn,�
(k̂)Q̂�(⌧,~k) , (5.62)

with ⇧⇤
mn,�

(k̂) = "(±)

m (k̂) "(±)

n (k̂) the polarization operators. The tensor modes equation
of motion reads

✓
@2

@⌧2
+ k2 � 2

⌧2

◆
Q̂�(~k, ⌧) = Ŝ1

�
(⌧,~k) + Ŝ2

�
(⌧,~k) , (5.63)

where

Ŝi

�
(⌧,~k) ⌘ � a3

Mp

⇧mn,�(k̂)

Z
d3x

(2⇡)3/2
e�i~k·~x

⇣
ÊmÊn + B̂mB̂n

⌘
i
�

, (5.64)
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and where we have re-introduced the spectator label l. The sourcing explicit in Eq. (5.64)
is the one represented23 in the right panel of Fig. 5.10. Decomposing the solution into
homogeneous and sourced parts, the vacuum mode is given by

Q̂vac

�
(~k) = h�(⌧, k)â�(~k) + h⇤

�
(⌧, k)â†

�
(�~k),

h�(⌧, k) =
e�ik⌧

p
2k

✓
1� i

k⌧

◆
.

(5.65)

The inhomogeneous solution is given by the source terms

Q̂src

�
(⌧,~k) =

Z
⌧

d⌧ 0Gk

�
⌧, ⌧ 0

� h
Ŝ1

�
(⌧,~k) + Ŝ2

�
(⌧,~k)

i
, (5.66)

where the Green’s function is defined in chapter C. The power spectrum P is defined as

P�(k)���0�(3)
⇣
~k + ~k0

⌘
=

k3

2⇡2

D
ĥ�(~k)ĥ�0(~k0)

E
. (5.67)

Given that in our case the two source terms are to a good approximation uncorrelated,
one may compute the two corresponding inhomogeneous solutions separately and sum
them to obtain the resulting spectrum. The calculation of the sourced scalar spectrum is
a bit more involved in that the inflaton is only gravitationally coupled to the axion. As a
result, the e↵ect of the gauge quanta on the scalar curvature ⇣ is mediated by the field #.

Scalar Perturbations

We take the spatially flat gauge, such that the scalar sector of the metric can be written
solving for the non dynamical variables ', B as:

ds2 = a2(⌧)[�(1 + 2')d⌧2 + 2@iBdxid⌧ + �ijdxidxk] . (5.68)

The remaining physical modes can be decomposed as

�̂(x, ⌧) = �(⌧) +

Z
d3k

(2⇡)3/2
e�

~k·~x Q̂�(~k)

a(⌧)

#̂i(x, ⌧) = #i(⌧) +

Z
d3k

(2⇡)3/2
e�

~k·~x Q̂#i
(~k)

a(⌧)
.

(5.69)

We can then rewrite24 the action of eq. (5.47) paired with the Einstein-Hilbert action as

S = Sfree + S1

int + S2

int

Sfree

h
Q̂i

i
=

1

2

Z
d⌧d3k

h
Q̂0†

i
Q̂0

i � Q̂†
i

⇣
k2�ij + M̃2

ij

⌘
Q̂j

i
(5.70)

S i

int = �
Z

d4x
p
�g �i

#i
4fi

F i

µ⌫F̃
lµ⌫ =

Z
d4xa4�i

#i
fi
Ei ·Bi ,

where we have defined (Q̂1, Q̂2, Q̂3) ⌘ (Q̂�, Q̂#1 , Q̂#2) and (�1,�2,�3) ⌘ (�,#1,#2). The
electric Ei and magnetic Bi field vectors are those of eq. (5.61) and one finds

M̃2

ij ⌘ �a00

a
�ij + a2V,ij +

✓
3�

�0
l
�0
l

2M2
p

a2

a02

◆
�0
i
�0
j

M2
p

+
a3

M2
pa0

�
�0iV,j + �0jV,i

�
, (5.71)

23There is one such diagram for each value run by the spectator label “l”.
24Note that we are omitting the kinetic term of gauge fields as these do not play a key role in sourcing

scalars.
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with V,i ⌘ @V/@�i. Introducing slow-roll parameters for each of the fields �i as in chap-
ter C, we obtain, to leading order, the following equations of motion

✓
@

@⌧2
+ k2 � 2

⌧2

◆
Q̂� ' 6

⌧2
p
"�"#1Q̂#1 +

6

⌧2
p
"�"#2Q̂#2 ,

✓
@

@⌧2
+ k2 � 2

⌧2

◆
Q̂#i

' �i
a3

fi

Z
d3x

(2⇡)3/2
e�i~k·~xEi ·Bi ⌘ Ŝ#i

(⌧,~k) .

(5.72)

Considering the dominant terms in the mass matrix and in the equations leads us to
the two independent equations of motion for the axions. Given that we assume that the
two axions’ energy densities will vanish after CMB, in the spatially flat gauge the scalar
curvature perturbation are given just by the perturbations of the inflaton,

⇣̂(⌧,~k) ' �H

�̇
�̂�(⌧,~k) =

H⌧p
2"�Mpl

Q̂�(⌧,~k) . (5.73)

It turns out to be convenient to write the solution as

Q̂� = Q̂vac

�
+ Q̂src

�
, (5.74)

where Q̂vac

�
is the homogeneous solution to the inflaton equation of motion and Q̂src

�
is

the particular solution. Expanding the homogeneous solution operator as

Q̂vac

�
(⌧,~k) = Qvac

�
(⌧, k)a(~k) + Q⇤ vac

�
(⌧, k)a†(�~k) , (5.75)

and imposing Bunch-Davis initial conditions, we find

Qvac

�
(⌧, k) =

e�ik⌧

p
2k

✓
1� i

k⌧

◆
. (5.76)

The particular solution is found, using the retarded Green’s function from chapter C, to
be given by

Q̂src

�
= 6

p
"�

Z
d⌧ 0Gk(⌧, ⌧

0)
✓p
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⌧ 02

Z
d⌧ 00Gk(⌧
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.
(5.77)

The corresponding solution for the curvature perturbation is

⇣̂src =
3
p
2H⌧

Mpl

Z
d⌧ 0Gk

✓p
"#1

⌧ 02

Z
d⌧ 00GkŜ#1 +

p
"#2

⌧ 02

Z
d⌧ 00GkŜ#2

◆
, (5.78)

where the source functions Ŝ#i
(⌧,~k) are defined in eq. (5.72). The standard definition of

the power spectrum is

P⇣(k)�
(3)(~k + ~k0) =

k3

2⇡2
h⇣(k)⇣(k0)i . (5.79)

Much like for the tensor power spectrum, the sourcing is such that the scalar power
spectrum is also additive, so that we can write

P⇣ = P vac

⇣
+

NX

i=1

P i src

⇣
,

PGW = P vac

GW +
NX

i=1

P i src

GW .

(5.80)
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Axion and Gauge Field Mixing

In the next section we will rely on the notion that both (i) the coupling between di↵erent
axions and (ii) the coupling between di↵erent gauge sectors are only gravitational and can
therefore be disregarded. The coupling comes with a slow-roll suppression in the scalar
sector (see e.g. Eq. (5.72)) and turns out to be negligible also in the case of gauge fields
mixing.

One may intuitively arrive at the latter conclusion as follows. First of all, in the Abelian
case any coupling between gauge sectors starts out at the level of the cubic Lagrangian,
so we are already in the realm of loop corrections. Secondly, the CS terms is not directly
involved given that the field strengths are not contracted through the metric. In solving
the constraint equation no one gauge sector plays a leading role with respect to the other
one(s). It follows that neglecting mixing across sectors is tantamount to neglecting the
sub-leading gauge self-interactions as routinely done in models with only one gauge sector.

In neglecting the mixing between the di↵erent axions extra care needs to be exerted. The
leading contribution to the �#i power spectra comes from the non-linear interaction with

the gauge fields A(i)

µ , where “i” is the index that runs through the various axion sectors,
and is schematically proportional to �2

i
. If we want to probe the contribution of another

A(j 6=i)

µ gauge sector to the power spectrum of a given field �#i, we need the mediation of
the field �#j . The price to pay is, as mentioned, a suppression25 of order "2. The �#j-
mediated contribution to the �#i power spectrum will have to then be compared to the
contribution due directly to the Ai

µ sector. In other words we have �2
i
$ "2�2

j
. So long

as there is not a significant hierarchy in place for the values of the coupling constants �k,
one can safely neglect the contribution coming from mixing the axion and gauge sectors.

5.4 Detecting the Spectator Axiverse

In the previous sections, we introduced MASA models and explored their gravitational
wave spectrum. A key point is that the lack of direct mixing between axions implies that
the total gravitational wave spectrum is, to a good approximation, a superposition of the
spectrum from each spectator axion. This raises interesting possibilities for signals arising
from MASA models, namely multiple peaks and signal boosting.

Specific initial conditions and parameter choices lead to di↵erent features in the power
spectra. For example, if we examine axions with comparable initial conditions and param-
eter values, the resulting power spectra will lead to an amplified signal strength within a
specific range of scales. In principle, the number of spectator sectors NS can then serve
as another handle for signal enhancement, independent of values of the Chern-Simons
couplings. However, the crucial question is whether such a scenario is plausible or if it is
too finely tuned to be regarded as compelling and relevant for cosmological model build-
ing. In fact, when considering random initial conditions and parameters, we can expect
to observe a mix of signals at distinct wavelengths, some of which may exhibit greater
enhancements than others. These enhanced signals could arise from scenarios involving
stronger Chern-Simons couplings or the stacking described above.

25Note that here "2 is a placeholder for a suppression of the order of slow-roll parameters and is to be
understood, conservatively, as satisfying " < 10�2.
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Once the number of e-folds for which the axion “i” rolls is fixed, the amplitude of the peaks
in the power spectra will primarily depend on the Chern-Simons coupling parameter �i,
which is encoded in ⇠i⇤. The signal strength depends exponentially on �i whilst in contrast
the stacking of axions, although capable of boosting the signal, is approximately only
linear. Given a su�cient number of axions the outcome for the signal becomes essentially
stochastic thus motivating the use of statistical methods in this context, akin to [302] for
multi-field inflation.

5.4.1 Primordial Power Spectra

As we showed above in eq. (5.5), the position of the peak of the GW signal (k⇤) is
set by the initial phase of the axion, #in/f , and the number of e-folds during which it
rolls, 1/�. Further analysis (see Fig. 5.11) shows the existence of a preferred range in k⇤
corresponding to a higher degeneracy in the initial conditions. This is the most favorable
domain for axion stacking.

Figure 5.11: k⇤ as a function of the initial axion phase, for each choice of � considered: red for
� = 0.2, pink for � = 0.3, blue for � = 0.5 and turquoise for � = 0.6. k⇤ peaks for small values of
#in/f . The domain with the lowest absolute value of the slope is the most favorable to stacking.

The power spectra can be parameterized through [162,303]

P src

⇣
(k) =

⇥
"P vac

⇣
(k)
⇤2

f2,⇣ , P src

T (k) =
⇥
"P vac

⇣
(k)
⇤2

(f2,+ + f2,�) , (5.81)

An analytic fit for the dependence of these functions on ⇠⇤ was described in [162], for
the two given values � = 0.2, 0.5. We compute these functions for � = 0.3 and � = 0.6
(tables 5.1 and 5.2 ).

We also compute the second order scalar induced gravitational waves, given by:

P ind

T (k) = 1.4

Z 1

0

dv

Z
1+v

|1�v|
du

T (u, v)

u2v2
P⇣(vk)P⇣(uk) (5.82)

where the transfer function T (u, v) is standard (see e.g. [304]). The total GW power
spectrum then amounts to the sum of the following contributions:

PT (k) = P vac

T (k) + P src

T (k) + P ind

T (k) . (5.83)
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{2, i} ln
���f c

2,i

��� ' xc

2,ij
' �2,i '

{2, ⇣} �4.926 + 9.339⇠⇤ + 0.0839⇠2⇤ �28.747 + 12.37⇠⇤ � 1.0989⇠2⇤ �3.584 + 1.633⇠⇤ � 0.155⇠2⇤
{2,+} �4.516 + 8.882⇠⇤ + 0.108⇠2⇤ �1.324 + 1.619⇠⇤ � 0.041⇠2⇤ 1.242� 0.227⇠⇤ + 0.017⇠2⇤
{2,�} �9.515 + 8.781⇠⇤ + 0.115⇠2⇤ �0.279 + 0.526⇠⇤ � 0.009⇠2⇤ 1.081� 0.135⇠⇤ + 0.010⇠2⇤

Table 5.1: ⇠⇤ dependence of the functions appearing in eq. (5.14), for � = 0.3.

{2, i} ln
���f c

2,i

��� ' xc

2,ij
' �2,i '

{2, ⇣} �8.819 + 9.662⇠⇤ � 0.076⇠2⇤ 0.434 + 0.962⇠⇤ � 0.020⇠2⇤ 0.969� 0.180⇠⇤ + 0.015⇠2⇤
{2,+} �0.759 + 7.005⇠⇤ + 0.118⇠2⇤ �0.216 + 1.096⇠⇤ + 0.006⇠2⇤ 0.670� 0.085⇠⇤ + 0.005⇠2⇤
{2,�} �6.010 + 6.743⇠⇤ + 0.136⇠2⇤ 0.536 + 0.214⇠⇤ + 0.025⇠2⇤ 0.414 + 0.058⇠⇤ � 0.006⇠2⇤

Table 5.2: ⇠⇤ dependence of the functions appearing in eq. (5.14), for � = 0.6.

When it comes to axion masses in the Axiverse the expectation is that these are homoge-
neously distributed on a log scale [15]. However, in the present context we are to negotiate
with two additional constraints. We randomly draw �, which is related to the axion mass

through � =
m

2
#

6H2 . Assuming that the inflationary scale does not vary more than three
orders of magnitude, � no longer follows the logarithmic distribution. The aforementioned
constraints stem from, on the one hand, operating in the slow-roll regime, which enforces
� ⌧ 3 (see Eq. (5.6)). As we shall see below, avoiding PBH overproduction also requires
� & 0.2. Given the rather limited interval of allowed values, we draw them from a flat
distribution.

By performing random draws of the parameters, ⇠⇤ 2 [2.5, 5], � 2 {0.2, 0.3, 0.5, 0.6}, and
xin ⌘ #in/f 2 [0, ⇡/4], we can generate the signal corresponding to specific numbers of
spectator sectors in fig. 5.12. For the sake of simplicity, we randomly draw using flat
distributions. In fig. 5.12 one can notice how, as the number of axions increases, non-
regular patterns on and between the peaks become more visible as a result of the sum
and stacking of the signals from multiple spectators.

We report here the predictions for the average distortions arising from the dissipation of
curvature perturbations in the cases illustrated in fig. 5.12. One obtains the following
values:

µ = 2.7⇥ 10�7 , y = 2.3⇥ 10�9 for Ns = 5 spectators ,

µ = 1.5⇥ 10�5 , y = 1.2⇥ 10�4 for Ns = 10 spectators ,

µ = 1.2⇥ 10�3 , y = 3.2⇥ 10�9 for Ns = 50 spectators .

(5.84)

Notice that there are striking di↵erences in the results for spectral distortions correspond-
ing to the di↵erent profiles of Fig. 4. This is entirely due to the fact that, besides the
changes in the number of spectator fields, in order to generate the three profiles we have
drawn di↵erent values for both the parameters #in and �. The first quantity controls the
position of the peak(s) whilst the height of the peak(s) is very sensitive to the value of �.
The Ns = 10 and Ns = 50 scenarios are at odds with existing constraints. This shows how
spectral distortion constraints have the ability to limit the allowed range for the Chern-
Simons coupling, in conjunction with the number of axions in the model, whenever the
signal reaches its peak within the spectral distortions window. An exhaustive analysis
of these constraints would involve accounting for the interplay of several elements of the
theory, including the number of axions, their initial conditions, and parameters in the



102 Chapter 5. Spectator Axions and Inflation

Figure 5.12: Typical power spectra for a number of spectator sectors n = 5, 10, 50. Continuous
turquoise lines indicate the total curvature power spectrum, while dashed pink lines show the
total PT . Light pink and light turquoise lines mark the sourced contributions alone, without the
vacuum term. The values for �, ⇠⇤ and #in/f have been drawn randomly as described in the text.
One can notice that not all the spectator sectors contribute in a significant way: some will indeed
have a Chern-Simons coupling such that the sourced signal is weaker than its vacuum counterpart.

potential. Undertaking such an exhaustive analysis goes beyond the scope of the present
paper and is deferred to future work. Our goal here is rather to underscore the necessity
of taking spectral distortion into account when investigating predictions of the axiverse,
both as a constraining factor and as a signature itself.

5.4.2 Detectability of Gravitational Wave Signals

In this section, we will investigate the conditions on the model parameters that ensue
from requiring a GW signal be at the level of the recent PTA observations of a stochastic
background [266,305,306], or above the sensitivity limits of planned interferometers.

Let us begin at PTA scales and consider for simplicity the scenario with one spectator
sector. We present in table 5.3 a representative sample parameters set that delivers a
GW signal with a strength comparable to the one observed, corresponding to a primordial
power spectrum of order PT ⇠ 10�3 26.

Here q is related to the Chern-Simons coupling via � = q↵/⇡, with the fine structure
constant taken to be ↵ = 0.1. For every chosen value of � and for a given target value of

26We verified that the chosen parameters fall within the constraints posed by working in a regime of (i)
weak backreaction for the spectator fields, and of (ii) perturbative control for the theory. See Appendix C.3
for details.
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� #in ' ⇠⇤ ' � ' q '
0.2 1.9⇥ 10�2 5 50 1570
0.3 1.9⇥ 10�3 5.2 35 1089
0.5 1.8⇥ 10�5 5.5 22 691
0.6 1.8⇥ 10�5 5.9 20 617

Table 5.3: Set of parameters used to reproduce, for each given �, the PTA signal in single-spectator
MASA models.

PT , a value of ⇠⇤ will follow (and, from there, a value for �). Given the relation ⇠⇤ = ��/2,
higher values of � require a lower � to reach a given amplitude of the signal. One can
construct, keeping the power spectrum amplitude fixed and interpolating the parameters
found above, an approximate relation between the duration of the rolling for the axion,
encoded in �, and the parameter �, finding:

� = 90.2� 246.3� + 216.7�2 , (5.85)

a description valid for � values ranging between 0.2 and 0.6.
The scalar and tensor power spectra corresponding to the benchmark values in table 5.3
are plotted in fig. 5.13. The plots show that smaller values of � correspond to increasingly
high values of P⇣ and to a lower value of the tensor-to-scalar ratio (r = PT /P⇣). We note
that a change in � a↵ects the scalar fluctuations more strongly than the tensor fluctu-
ations. This can be easily understood as follows: by increasing � one is decreasing the
time during which # rolls, thus lowering the amplitude of the produced signal as well its
width (the smaller �N ⇠ 1/�, the fewer the modes that exited the horizon while #̇ was
non negligible). Inflaton perturbations are sourced by the �# modes only while #̇ 6= 0,
therefore a decrease of �N a↵ects the sourced scalar modes more than the tensor modes
because it decreases both the number of modes that are sourced, and the time interval
during which the �# modes can be converted into inflaton perturbations.
We find that, for the set value of PT , P⇣ is slightly above the PBH bound in the � = 0.2
case, while larger values of � are viable. The left tail of the peak falls within SDs scales,
producing a µ distortion of order 10�8, possibly at reach for future probes.
The range considered for � (and, as a result, for ⇠⇤, � and q) corresponds to the extent of
parameter space supporting a signal compatible with PTA observations: we are working
under the condition � ⌧ 3 (hence the chosen maximum, � . 0.6), while values of � . 0.2
are ruled out by constraints on P⇣ . A value of q of order 102�103 (see Table 5.3) is there-
fore a prerequisite for a signal compatible with PTA observations. The authors of [203]
discussed the UV embedding of spectator-axion models pointing out that the previously
defined q (as opposed to �) should be the parameter of choice in that context. We will
address the feasibility of a q of the order of 102� 103 in the next sections, where we com-
pute the restrictions on � and q from UV embeddings. The scalar-induced second order
GWs encoded in P ind

T
are visible on the left tail of the spectrum in Fig. 5.13. Fig. 5.13

shows how the profile of SIGW is broader around the peak as compared to the other
contributions to the GW signal. The SIGW signal is also asymmetric around the peak
skewing towards lower frequencies (the domain immediately to the left of the peak). One
may get a glimpse of such e↵ects in the total GW power spectrum by inspecting the first
peak of Fig. 5.12 where these features are somewhat discernible in the n = 5 and n = 10
cases, while they are not visible for n = 50.
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Figure 5.13: Curvature perturbation (solid line) and GW (dashed line) power spectra for � = 0.2
(top left), � = 0.3 (top right), � = 0.5 (bottom left) and � = 0.6 (bottom right). The dotted line
corresponds to the induced gravitational waves computed in eq. (5.82)

Let us now discuss what would be the requirements on the model parameters for the
signal to be visible by GW detectors at smaller scales.

We provide in fig. 5.14 the values of � that are needed, for fixed � = 0.5, in order for the
signal to reach the sensitivity limits of a number of experiments. These values have been
derived under the simplifying assumption of one spectator sector (or, which is e↵ectively
equivalent, of one spectator sector whose signal dominates over those from other sectors).
One can notice how strongly sensitive the signal is to �: a small change in this parameter
can produce a dramatic change in the spectrum amplitude. As an example, for � = 0.5, at
LISA scales (1010 � 1013Mpc�1) one requires ⇠⇤ & 4, so � & 16 and q ⇠ 6⇥ 102, to reach
the minimum detectable amplitude of PT ⇠ 10�9. The BBO sensitivity limit (matched
up by PT ⇠ 10�13 around scales of k ⇠ 1013Mpc�1) would require ⇠⇤ ⇠ 3.1, corresponding
to � ⇠ 12.4 and q ⇠ 4 ⇥ 102. It is also worth stressing that from the argument o↵ered
in Sec. 5.4.1, a k⇤ at interferometer scales may not be favoured if parameters are drawn
randomly and assuming, as we did, a flat distribution.

As we will elaborate further in the following sections, when embedding these models in
string theory, one would like to lower the required CS coupling in order to broaden, as
much as possible, the parameter space. To this aim, one can exploit the stacking of the
signals: assigning multiple axions initial conditions and parameters in such a way as to
have similar k⇤ leads to peaks at similar scales which then add up. The simplest possibil-
ity is to have spectators with similar parameters and initial conditions. As an example,
for a detectable signal by BBO with � = 0.5 and one axion, the required CS coupling is
� ⇠ 12.4. On the other hand, incorporating ten spectator axions with comparable initial
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BBO

DECIGO

NANOGrav

SKA

THEIA

LISA

Figure 5.14: Sensitivity and observations of stochastic GW backgrounds of current and future
detectors, such as LISA [307], SKA [308], THEIA [309], BBO [310] and DECIGO [311]. Next to
the sensitivity curves we show the values of � necessary for the signal in our model to reach those
amplitudes when � = 0.5. The black curve shows what a typical signal may look like for n = 10
spectator sectors with ⇠⇤ 2 [3.5, 5].

conditions reduces the necessary CS coupling to � ⇠ 11.4. While stacking undeniably
helps reduce the required CS coupling for signal observation, it introduces the need for
rather specific initial conditions. In the absence of a precise distribution of initial con-
ditions, one may question the naturalness of requiring ten di↵erent axions with identical
initial field values. Moreover, requiring ten distinct axions with a CS coupling signifi-
cantly greater than one might prove to be more challenging than having a single axions
with a slightly higher CS coupling.

The general feature of any ”stringy” inflationary model is the presence of axions, or more
precisely ALPs, that can couple to dark U(1) sectors through CS coupling. The number
of these axions and their precise properties depend on the model and the compactification
considered. However, regardless of the specifics of the UV properties, one can arrive at
a general feature: the presence of a gravitational wave forest. Indeed, the natural end
point of the above discussion is to expect GWs signals and curvature perturbation peaks
throughout the whole frequency spectrum. We refrain from giving a specific shape of
the signal as this depends on the number of axions, the CS coupling, and the amount
of e-folds for which the axions roll. Instead, we want to emphasize that we expect to
find a gravitational wave forest by searching for GWs and ⇣-peaks at di↵erent scales.
However, it is essential to acknowledge a significant challenge posed by our analysis. To
detect this signal today, a su�ciently large Chern-Simons coupling value is required. This
observation raises valid concerns from the perspective of UV physics, as it complicates
the integration of these models into a coherent UV framework. We will address these
questions in the following chapter.
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5.5 Remarks

Inflationary models with spectator axions are an interesting framework for primordial cos-
mology, potentially allowing for observable signals from sectors that are highly sequestered
from the Standard Model. In the context of string theory, a natural expectation is that
the spectators may consist of multiple axions coupled to gauge fields. With this motiva-
tion, in the present paper we have extended the typical spectator models to account for
multiple such fields, proposing the study of what we refer to as “Multiple (non-)Abelian
Spectator Axion” inflationary models. Our primary objective has been to investigate
the cosmological predictions from these models, exploring also their viability in string
constructions and their connection to the axiverse. In this respect, models with Abelian
gauge groups (MASA models) appear easier to realize in controlled string settings with
respect to their non-Abelian (MnASA) counterpart.

Our analysis, focused on the Abelian case, reveals distinct signatures in both the curvature
and GWs power spectra, manifesting as multiple peaks at di↵erent scales. We stress
that our considerations and finding do not necessarily apply to scenarios involving axions
coupled to multiple gauge fields, or to cases where Abelian gauge fields interact via kinetic
mixing. There is some indication that the former scenario may be rather rare in the type
IIB landscape [70], while the latter may be entirely absent or quite suppressed [312].

The many possibilities granted by the choice of initial conditions, the number of spectators
and their couplings chart an intriguing map of cosmological signatures, with multi-peaked
spectra of varying width, amplitude, and position. Such map includes the possibility of
a primordial GW signal at PTA scales, fully compatible [313] with the recently detected
stochastic background in the nHz range and satisfying both perturbativity and backre-
action constraints. Naturally, the presence of multiple spectator sectors has much more
to o↵er: a gravitational wave forest which is ripe for the testing via existing as well as
forthcoming GW probes. The sourcing mechanism for scalar and tensor fluctuations is
analogous: the gauge fields non-linearly source both two-point functions. As a result,
there is a scalar counterpart to the GW forest which, as we show, can be tested and
constrained via CMB anisotropies, spectral distortions, and PBH bounds, depending on
the scales involved. Scalar fluctuations also serve as a non-linear source of gravitational
waves, something that provides a rather unique fingerprint that can potentially di↵eren-
tiate MASA models from other inflationary scenarios.



Chapter 6

Spectator Sectors from the
Landscape

In the preceding chapter, we have described MASA inflationary models and their ex-
perimental signatures. To tie these observables to the string axiverse, we must discuss
embeddings of spectator models within string theory. In this section we consider this
task, as well as the constraints on such embeddings and their implications for observable
signals.

Since MASA models are Abelian variations of the SCNI model, we first review previous
attempts to embed this model in a UV framework. Inclusion at the level of N = 1
supergravity was discussed in [314]. Constructions within type IIB orientifold compact-
ifications were pursued in [205, 206]. In particular, [206] sought to embed SCNI models
in a Large Volume Scenario (LVS) [31] with the inflaton itself as either a blow-up mode
that realizes Kähler inflation or the fibre modulus in fibre inflation [47]. The non-Abelian
spectator sector is realized by a stack of magnetized D7-branes with an axion arising from
dimensional reduction of the 2-form gauge potential C2.

In the following we will mimic and extend this construction. We will largely focus on
realizing Abelian spectator sectors due to their distinctive signals discussed above. How-
ever, we shall start broadly and attempt a categorization and analysis of axionic spectator
candidates and constructions to realize the gauge theory of the spectator sector.

Before proceeding into the details of string models, it is worth considering to what extent
one should expect to be able to embed models with large Chern-Simons couplings into
string theory. As briefly discussed above, there have been several arguments restricting
possibilities to realize large Chern-Simons couplings [203,204]. To motivate the di�culty,
recall that in the typical quantum field theory perspective of the QCD axion, the Chern-
Simons coupling to electromagnetism has a coe�cient � / Tr(QPQQ2

EM
)↵EM , where the

trace runs over the charged fermions in the EFT. Naively, a large CS coupling can then
be realized by one of the following strategies: a). large Peccei-Quinn charges QPQ, b).
large electromagnetic charges QEM , or c). a large number of fermions. These latter two
options are problematic since the charged fermions also contribute to the self-energy of
the photon and a large number of fermions or large charges will bring down the scale of
the QED Landau pole [315]. The issue with large PQ charges is more subtle, but involves
the exponential suppression of fermion masses – see the appendix of [315] for further
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discussion.

However, this is not to say that it is impossible to increase CS couplings beyond naive
expectations. With the strategies above, one may obtain an O(10 � 102) enhancement.
From the QFT perspective, several other model-building strategies have been utilized to
boost CS couplings, mostly in the context of the electromagnetic coupling of the QCD
axion [315–318] and ultralight axion dark matter [319]. Such strategies involve models
with (i) kinetic mixing of axions [320], (ii) KNP alignment [88] or clockworking [321–323],
and (iii) introduction of a discrete symmetry [324].

While these mechanisms can indeed enhance the CS coupling of an axion to gauge fields,
they typically induce unpleasant side e↵ects into the EFT, akin to the descent of the
Landau pole. Discrete symmetries introduce many new degrees of freedom, leading to
a non-trivial cosmological history. Kinetic mixing appears unrestricted apart from the
necessary inclusion of an additional light axion in the EFT, but it remains unclear if
su�cient mixing can be realized in a string construction [315]. However, we will address
this mechanism below. In the context of spectator models, [203, 204] argue that EFT
restrictions and cosmological observations completely rule out the possibility of utilizing
clockwork to realize SCNI models .

Given the above arguments restricting the possibilities of realizing large CS couplings in
QFT, and therefore spectator models with observable signals, we may wonder if string
theory somehow evades these arguments. Such a statement would be surprising given that
the ongoing swampland program posits broad restrictions on EFTs coupled to gravity1.
Indeed, in alignment with the swampland paradigm, we will find that methods to realize
MASA/MnASA models in string theory are extremely restricted.

6.1 Spectator Sectors from D7-branes

6.1.1 States and Couplings

We will consider 4d e↵ective field theories obtained by compactifying 10d type IIB string
theory on a 6d space eX3. To maintain N = 1 supersymmetry, we take eX3 to be an
orientifold defined via the action of a holomorphic involution on a Calabi-Yau 3-fold X3.
Below the string scale, the theory is described by a supergravity e↵ective field theory.
This EFT contains moduli fields and, in the presence of Dp-branes, gauge sectors. While
we will not be concerned with realizing the particle physics of our Universe, we assume
that there exists some stack of branes that contain the Standard Model or some suitable
unified gauge theory extension (for review, see [329]).

We are primarily interested in the axionic content of the EFT. From dimensional reduction
of the higher-form gauge potentials C4, C2, and B2, the EFT inherits the “even axions”
⇢↵ as well as the “odd-axions” ca, and ba. The span of the indices is determined by the
topology of the orientifold via the Hodge numbers as ↵ = 1, .., h1,1

+ and a = 1, .., h1,1

� .
For more details, see section A.5. There is also the C0-axion that descends from the
10d 0-form. These axions are organized in N = 1 chiral supermultiplets with scalar

1For reviews, see [325–328].
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components [330,331]

S = C0 + ie�� ,

Ga = ca � Sba ,

T↵ = ⌧↵ + i

✓
⇢↵ � 1

2
↵bcc

bbc
◆
+

i

2(S � S̄)
↵bcG

b(Gc � Ḡc)

= ⌧↵ + i(⇢↵ � ↵bcc
bbc) +

i

2
S↵bcb

bbc .

(6.1)

Here we have introduced the dilaton � as well as the real scalars ⌧↵. The dilaton vev
determines the string coupling gs = he�i while h⌧↵i are the volumes of 4-dimensional
submanifolds (4-cycles) e⇧↵ in eX3. In addition to the above axion content, there are
also open string axions arising from the worlvolume theory of branes, but we will not be
concerned with these.

The {⇢↵, ca, ba} fields are candidates for the axionic content of the spectator sector, but
they must couple to gauge fields via a Chern-Simons coupling to furnish examples of the
MASA models described in the previous sections of this paper. As in [205, 206], we can
realize the gauge theory portion of the spectator sector by wrapping ND7 D7-branes on a
divisor eD of eX3

2. The worldvolume theory of such a stack contains a gauge theory with
a unitary, orthogonal, or symplectic gauge group. The particular group realized by the
brane stack depends on further details of the compactification.

The action of the 4d EFT descends from dimensional reduction (and orientifold projection)
of the Dirac-Born-Infeld (DBI) and Chern-Simons actions of the D7-branes as well as the
10d bulk type IIB action. It has the schematic form

SEFT � Smoduli + Saxions + Sgauge + Spotential . (6.2)

Here Smoduli, Saxions, and Sgauge correspond to contributions to the EFT action from
moduli, axions, and the D7-brane stack worldvolume gauge theory, respectively. In par-
ticular, Smoduli contains the kinetic terms of the ⌧↵ whereas Saxions contains the kinetic
terms for the axions ⇢↵, ca, and ba. We will discuss the contributions to the scalar po-
tential of the EFT, encoded in Spotential, in a subsequent section. For the worldvolume
gauge theory, we have

Sgauge �
Z

d4x
p
�g


�1

4
Re[f eD]F

A

µ⌫F
Aµ⌫ � 1

4
Im[f eD]F

A

µ⌫
eFAµ⌫

�
, (6.3)

where FA
µ⌫ are the gauge fields arising from the D7-brane stack. The holomorphic gauge

kinetic function f eD depends on the chiral superfields, and so the worldvolume gauge theory
coupling and fine structure constant are determined by moduli vevs as

g�2

eD
= hRe[f eD]i ↵ eD =

g2eD
4⇡

. (6.4)

In the absence of magnetic flux, the tree-level gauge kinetic function is determined by the
fields in eq. (6.1) as

f (1)

eD
=

w
↵

2⇡
T↵ , (6.5)

2A divisor eD is a formal sum of 4-cycles e⇧↵ in eX3 whose coe�cients are the wrapping numbers of the
branes. For more formal details, see section A.5.
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where w
↵ corresponds to the wrapping number of the D7-brane stack on the divisor eD

in eX3 (see section A.5). In particular, we note that Im[f (1)

eD
] � (2⇡)�1

w
↵⇢↵, so we could

already identify the C4-axions ⇢↵ as candidate spectator axions whose couplings to gauge
fields can be potentially be increased by wrapping the D7-brane stack multiple times.

A distinct candidate spectator axion can be identified in compactifications with h1,1

� > 0
by allowing magnetic flux in the D7-branes. This is done by turning on quantized field
strength units of FA

2
on a 2-cycle of the extra dimensions [331–334]. This 2-cycle must be

non-trivial in homology either with respect to the full CY (and thus exist as a pullback

from eX3 to eD) or at least in relative homology with respect to the divisor wrapped by
the D7-brane itself. Suppressing the gauge index, the quantization condition of FA

2
-flux

reads Z

⇧A
2

`2s
2⇡

F2 +
1

2

Z

⇧A
2

c1(⇧
A ) = m

A 2 Z . (6.6)

Here `s = 2⇡
p
↵0 is the string length and A labels the set of 2-cycles on which gauge

flux can be put, such that A = ↵, a, r_ splits into the orientifold-even pullback 2-cycles
↵ = 1...h1,1

+ , orientifold-odd pullback 2-cycles a = 1...h1,1

� and the 4-cycle-local 2-cycles r_
which are trivial in the CY.3 We can then expand such a F2-flux in terms of the relevant
2-forms

`2s
2⇡

F2 = m
↵!↵ +m

a!a +m
r_!r_ . (6.7)

Such gauge flux induces couplings between the 2-form axions ca and ba and the 4d gauge
field strength FA

µ⌫ .
These additional couplings are captured by extending the gauge kinetic function be-
yond eq. (6.5) to

f (2)
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(6.8)

where w↵ 2 Z are once again the wrapping numbers of the D7-brane stack. Here we have
assumed that quantized flux is placed only on odd 2-cycles. Plugging this into eq. (6.3)
we acquire additional CS couplings

SEFT �
Z

M4

d4x
p
�g4


�1

4

✓
w

↵

2⇡
↵bcm

c

◆
cbFµ⌫

eFµ⌫

�
. (6.9)

Thus we can increase the e↵ective CS coupling of a C2-axion to 4d gauge fields by turning
on internal quantized F2 gauge flux on the D7-brane stack, as well as increasing the
wrapping number of the stack.

From the discussion above, we see that type IIB orientifolds with D7-branes do indeed
provide the particle content for spectator models. However, there is a restriction on these
constructions that must be taken into account - the axions and massless gauge bosons

3The half-integer shift of the 2nd term of the LHS is controlled by the 1st Chern class c1 of the 4-cycle
in question, and it is zero unless the 4-cycle is not spin, in which case it accounts for the Freed-Witten
quantization condition, see [335].
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may gain large masses via the Stückelberg mechanism [336]. This can occur with both
the C2- and C4-axions, but the nature of the mechanism is distinct between the two
types of axions. To be concrete, let us imagine a stack of ND7 D7-branes on eD giving
rise to a U(ND7) = SU(ND7) ⇥ U(1) gauge theory in the EFT. From section A.5, the

C4- and C2-axions associated with eD will have kinetic terms determined by the covariant
derivatives

rca = dca � qaA , qa =
ND7

2⇡
w

a ,

r⇢↵ = d⇢↵ � iq↵A , q↵ = �ND7

2⇡
↵bcm

b
w

c .
(6.10)

Where A is the 1-form gauge potential of the diagonal U(1) gauge interaction and we
have again omitted some terms by forbidding flux on even 2-cycles. Appearing here is
the magnetization on odd 2-cycles, mb, as well as odd wrapping numbers w

a defined
in eq. (A.18). From these expressions, we see that the C4-axions have a flux-induced
Stückelberg mechanism in that the gauging of the axion shift symmetry only occurs in
the presence of non-zero magnetic flux. On the other hand, C2-axions have a geometric
Stückelberg mechanism that arises purely from the details of the orientifold eX3 in the
form of the odd wrapping number wa. In either case, the U(1) factor of the gauge group
becomes massive by eating an axion.

For stringy spectator models with non-Abelian gauge fields, the Stückelberg mechanism is
only dangerous insofar as a candidate spectator axion may be lost. For Abelian spectator
sectors, the Stückelberg couplings above present a major obstacle that must be evaded
to ensure that both axions and massless U(1)s exist in the spectrum of the EFT. This
requirement furnishes our first restriction on spectator models in string theory. Thus we
will focus on Abelian spectators here and classify potential models via di↵erent methods to
realize U(1) gauge theories in the EFT. We also describe how to ensure a viable candidate
spectator axion appears in the EFT. We do not claim that this list is exhaustive, but we
merely outline schematic requirements.

From the form of eq. (6.10), we see that the general strategies to fulfill this task are to
i). ensure that the odd wrapping numbers w

a vanish ii). require that certain intersec-
tion numbers ↵bc vanish and/or iii). assume a structure that leads to cancellation of
Stückelberg couplings. To implement these strategies, we must refine our discussion of
the divisor wrapped by the D7-branes. The divisor eD of eX3 descends from a divisor D of
X3 and its image divisor D0 under the orientifold involution. Adopting the organization
scheme of [337], the classes of spectator models depends on the precise relation between
D and D0 as we now describe.

• Class I Spectators:
The most naive approach to realizing an Abelian spectator model is to place a
single D7-brane on a divisor eD that does not lie on top of an orientifold plane. This
yields a U(1) gauge theory in the 4d EFT and one can consider C4- or C2-axions as
spectators. However, there is a danger that the Stückelberg mechanisms described
above remove the Abelian gauge boson from the massless spectrum.

To avoid this, eD must be chosen such that the divisors D and D0 in X3 are in
the same homology class of X3, i.e. [D] = [D0]. If this condition is fulfilled, then
the odd wrapping numbers in eq. (6.10) vanish and the Stückelberg couplings are
eliminated.
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A generalization of this setup can be achieved by considering NU(1) D7-branes, all
wrapping distinct 4-cycles ⇧↵ of X3, where ↵ = 1, .., NU(1). Naively this gives NU(1)

Abelian gauge sectors, labelled as U(1)↵, but some will become massive due to the
Stückelberg mechanism. The linear combinations that do not become massive are
those that mimic the mechanism just described: any linear combination

P
↵

p↵U(1)↵
such that the corresponding homology element maps to itself under the orientifold
involution [338]. Mathematically, the criterion is

P
↵

p↵([⇧↵] � [⇧↵
0
]) = 0. In this

class, we avoid both the geometric and flux Stückelberg mechanisms and both C4-
and C2- are candidates spectator axions.

• Class II Spectators:
In Class I, the Stückelberg couplings are circumvented through a judicious choice of
eD such that [D] = [D0]. An alternative scenario is a divisor eD such that [D] 6= [D0].
Branes on such divisors can interact with both C4- and C2-axions in the EFT, but
the odd wrapping number is necessarily non-zero and the geometric Stückelberg
mechanism is active. Thus in the absence of flux, a C2-axion is eaten and the
U(ND7) gauge theory realized by the ND7 D7-branes wrapping eD loses its U(1)
factor and becomes SU(ND7). In the case of ND7 = 1, the gauge theory is replaced
by a massive gauge boson.

To realize a U(1) gauge factor in the EFT for such scenarios, we consider two options.
The first is by breaking the SU(ND7) via flux to a subgroup containing a U(1)
factor. However, care must be taken since flux may induce Stückelberg couplings
that remove the new Abelian gauge bosons from the massless field content. Thus
one may have to assume the vanishing of certain intersection numbers in eq. (6.10)
or simply obtain a su�ciently large number of U(1) factors from the breaking of
SU(ND7).

The second possibility depends on the topology of the orientifold space itself. We
can consider a scenario where eD corresponds to a solitary 4-cycle e⇧ in eX3 such that
the homology class of e⇧ has additional volume-minimizing representatives. In other
words, there exists two or more distinct e⇧(i) 2 [e⇧]. D7-branes can be wrapped on
the various e⇧(i), and each stack produces a U(1) factor in the EFT gauge group. One
linear combination of the U(1)s eats the C2-axion of [e⇧] and becomes massive. If
magnetic flux is turned on, another linear combination of U(1)s may gain a mass by
eating the C4-axion of [e⇧] . This can be circumvented if certain intersection numbers
vanish. Alternatively, one could consider scenarios with at least 3 homologous cycles,
as was used to realize aligned natural inflation in [334].

We label the above possibilities as Class IIa and Class IIb, respectively.

As for the axionic state of the spectator sector, in the absence of flux, one could
consider the C4-axions as spectators. To have a C2-axion as a spectator candidate
requires a bit of care as the geometric Stückelberg coupling is present. For both
sub-classes, we can consider a C2-axion that is associated to some other divisor,
eDalt, in eX3. There are two obvious possibilities.

The first is that there exists a divisor and image-divisor pair in X3 such that the
even combination eDalt is rigid and is stabilized by an ED3 instanton. If we assume
that such a eDalt has certain trivial intersection numbers with divisors that support
D7-branes, then the geometric Stückelberg mechanism can be avoided. For this
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U(1)

Class I

U(1)
SU(ND7)

Class IIa

U(ND7)

U(1)

Class IIb

Figure 6.1: Pictorial representation of the D7-brane(s) configurations giving rise to spectator
sector classes discussed in the text. Class III has a representation similar to Class IIa but with a
di↵erent gauge group.

C2-axion to couple to the worldvolume theory of e⇧, we must also assume that
appropriate intersection numbers between eD and eDalt exist.

The second possibility is that eDalt arises from a cycle and image-cycle pair that are
homologous in X3, as in the Class I spectator theories. Then the C2-axion could
couple to the worldvolume theory of e⇧ assuming appropriate intersection numbers
are non-trivial.

• Class III Spectators:
The final class corresponds to the case where D is invariant under the orientifold
involution so that D = D0 pointwise. This class shares certain features with both
of the previous classes. First, the odd wrapping numbers wa of eD vanish, so both
the geometric and flux Stückelberg mechanism are absent. However, eD sits on top
of an orientifold plane, and local D3-tadpole cancellation gives rise to orthogonal
or symplectic gauge groups [339] and there is no diagonal U(1) factor. To obtain a
U(1) factor in the EFT, we must implement flux to break the gauge group.

Once again C4-axions are candidate spectators. To obtain C2-axion spectators, one
must assume the existence of a separate 4-cycle eDalt with the properties outlined
in Class II above.

There is an important caveat to the above discussion - namely, the vevs of the ba axions.
Magnetization on the brane induces a D-term [333,340]

D eD / ↵bcv
↵(bc �m

c)wb , (6.11)

where the v↵ determine 2-cycle volumes and the wb are wrapping numbers on odd cycles,
as explained in section A.54. If these D-terms are non-zero, one can set hbai = m

a to
cancel them. In doing so, we see from eq. (6.8) that the CS coupling of the C2-axion
is set to zero. This is not an issue for Class I or Class III models as the odd wrapping
numbers w

a automatically vanish. For Class II models, demanding a coupling of the
C2-axions to the gauge field may require vacua with some hbai 6= m

a or manifolds that
have certain intersection numbers set to zero. As a side note, typically, Kähler modulus
stabilization enforces hbai = 0. Cancellation of D-terms then becomes a construction-
dependent question on the charged matter in the brane.

4Here we have excluded contributions from charged matter fields.
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From this section, we see that even demanding the existence of spectator sectors is non-
trivial from the string theory viewpoint and many restrictions are already enforced. Our
first restrictions arose from demanding the necessary field content and led to our discussion
on the classes above. The second restriction here arises from demanding that a CS
coupling exist between axions and gauge fields. There are also constraints from D3-
tadpoles and control of the compactification, which we outline below.

6.1.2 Axion Decay Constants

In this and the subsequent sub-section, we outline the origin of spectator model parameters
in string constructions. The decay constants for the axion states described in the previous
section are determined by their kinetic terms

Saxions � M2

p

Z
d4x

p
�g

✓
� K↵� @µ⇢↵@

µ⇢� � Kab @µca@µcb
◆

, (6.12)

where again ↵,� = 1, .., h1,1

+ and a, b = 1, .., h1,1

� . For more explicit formulae for the Kähler
metrics, see section A.5.

For simplicity, we consider an orientifold with h1,1

� = 1 and/or h1,1

+ = 1, then the kinetic
terms of the even C4-axion, �K11(@⇢)2 , and only odd C2-axion ,�K11(@c)2, allows us to
identify the axion decay constants

Fo = h2K11i1/2Mp , Fe = h2K11i1/2Mp , (6.13)

then the re-scaled axions
#o = Foc , #e = Fe⇢ , (6.14)

have canonical kinetic terms.

The above steps can be generalized for orientifolds with h1,1

� > 1 and/or h1,1

+ > 1. The
only complication is that one must implement orthogonal transformations to diagonalize
the metrics K↵� and Kab before re-scaling the axions. The orthogonal transformation
in principle a↵ects the coupling of the axion to the spectator gauge fields, but without a
specific compactification manifold we cannot determine their precise impact.

6.1.3 Axion Masses

The shift symmetries of the C4- and C2-axions have their origins in the gauge symmetries
of the corresponding 10d gauge potentials and are thereby protected at all orders in string
perturbation theory. Thus, to give a mass to these potential spectator axions, which break
the shift symmetries, we must introduce non-perturbative e↵ects via either Euclidean or
Lorenztian objects.

From Euclidean objects, axion potentials can be generated by Euclidean D3-branes (ED3s),
Euclidean D1-branes (ED1s), or bound states thereof. An ED3 brane wrapping a 4-cycle
of eX3 gives a contribution to the superpotential of the form

WED3 ⇠ Ae�2⇡T . (6.15)

Here we neglect the typical dependence of the 1-loop Pfa�an factor A on other fields of
the theory, such as the complex structure moduli. Such a superpotential yields a periodic
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potential for the C4-axion ⇢ embedded in the T supermultiplet of the 4-cycle5:

�VED3 ⇠ µ4e�2⇡⌧ cos(2⇡⇢) = µ4e�2⇡⌧ cos

✓
2⇡
#e
Fe

◆
. (6.16)

To obtain a mass for a C2 spectator axion, we turn to ED1-branes wrapping the orientifold-
even 2-cycles. As an illustration, consider a scenario with intersection numbers such that
the volume of the wrapped 2-cycle v and the volume of its dual 4-cycle ⌧ are related
as ⌧ = 1

2
+++v2. We also let the 2-cycle have a non-zero intersection number +��

with an orientifold-odd combination 2-cycle supporting the 2-form axion chiral multiplet
G. Such an object contributes to the Kähler potential and schematically might take the
form [44,341]

K = �3 ln

"
T + T̄ � 3

2(S � S̄)
+��(G + Ḡ)2 + e

�2⇡

r
T+T̄

+++ cos

✓
2⇡

G + Ḡ

2

◆#
. (6.17)

If this ED1-brane instanton contributes to the scalar potential of G, its contribution from
the path integral has to scale as

�VED1 ⇠ µ4 Re e�SED1 = µ4 Re e�2⇡v�2⇡ic

= µ4e�2⇡v cos

✓
2⇡
#o
Fo

◆
,

(6.18)

by direct evaluation of SED1 (eq. (A.20) with `s = 1). In the second line, we have rewritten
the argument in terms of the axion with canonically normalized kinetic term.

It is possible that a single instanton e↵ect can give masses to both C4- and C2-axions. The
full contribution of an ED3 instanton includes summing over all possible magnetic fluxes of
the divisor wrapped by the ED3, which can be thought of as a sum over ED3-ED1 bound
states. This requires a modification of eq. (6.15) to WED3 ! WED3/ED1 ' ⇥(G)e�2⇡T ,
where ⇥(G) is a holomorphic theta function from the theory of modular forms [342,343].
In the presence of D7-branes such that axion shift symmetries are gauged due to the
presence of a Stückelberg mechanism, the sum over fluxes defining ⇥(G) must be suitably
restricted to include only gauge-invariant instantons [333]. Setting aside this subtlety, the
ED3-ED1 bound states gives rise to terms with the schematic form WED3/ED1 ⇠ e2⇡(G+T ).
Such a term contributes to mass-mixing between the even and odd axions. This mixing
forces one to rotate into the mass eigenbasis, which introduces some coe�cient in the
Chern-Simons coupling. In the following, we will neglect this complication and consider
C2-axion masses arising only from ED1 contributions to the Kähler potential.

Alternatively, spectator axions could obtain potentials from Lorentzian branes via gaugino
condensation. This requires that the spectator axion couples to both the spectator U(1)
as well as a condensing hidden non-Abelian gauge sector. We will take this to be the case
and assume that there is a stack of D7-branes wrapping a 4-cycle e⇧G of eX3 realizing a non-
Abelian gauge group G. The gaugino condensate then contributes to the non-perturbative
part of the superpotential as

Wnp ⇠ Ae
� (2⇡)2

c(G) fG , (6.19)

5Here and below we assume the superpotential has the standard type IIB flux compactification structure
of W = W0 +Wnp, where W0 is a constant and Wnp is the non-perturbative contribution.
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Case Axion(s) Mass Mechanism
1 C4 ED3 Instantons
2 C2 ED1 Instantons
3 C4 Gaugino Condensation
4 C2&C4 Gaugino Condensation

Table 6.1: Spectator axions organized by mass generation mechanism.

where fG and c(G) are the gauge kinetic function and the dual Coxeter number of G,
respectively. For G = SU(NG), c(G) = NG . If we are considering a scenario without
worldvolume flux, then fG / Te⇧G = ⌧G + i⇢G + · · · and the C4-axion in Te⇧G obtains a
potential similar to that of eq. (6.16) but with an extra factor of c(G)�1 in the argument
of the cosine.

If instead the D7-brane stack is magnetized and has a non-zero intersection number G ⌘
G�� with the odd cycle supporting an odd chiral supermultiplet G, then fG can take the

form of f (2)

D7
in eq. (6.8). Then the scalar potential will have a contribution

�Vcond ' µ4e
� 2⇡wG

c(G) ⌧G cos

✓
2⇡

wG
c(G)


⇢G + GmGc

�◆

= µ4e
� 2⇡wG

c(G) ⌧G cos

✓
2⇡

wG
c(G)


#e
Fe

+ GmG
#o
Fo

�◆
.

(6.20)

where wG and mG are the wrapping number and magnetization on e⇧G . Such a potential
introduces mass mixing between the two axions. The masses and eigenstates are

#1 =
1p

1 + "2

✓
#0 � "#e

◆
m2

1 = 0 ,

#2 =
1p

1 + "2

✓
#e + "#o

◆
m2

2 =

✓
2⇡wG
c(G)Fe

◆2

(1 + "2) .

(6.21)

We have also defined the parameter " = GmGFe/Fo, which tracks the mixing between
the axions. Below we will take GmG ' 1 so that " ' Fe/Fo, which is generally expected
to be less than unity due to the natural hierarchy between the decay constants of even
and odd axions – see section A.5 for more details. If we assume that both #e and #o
couple to a U(1) gauge sector, then the mass eigenstates couple as

S � �1

4

Z ✓
�e
Fe

#e +
�o
Fo

#o

◆
Fµ⌫

eFµ⌫

= �1

4

Z ✓
Fe�o � "Fo�e

FoFe

p
1 + "2

◆
#1Fµ⌫

eFµ⌫ � 1

4

Z ✓
Fo�e + "Fe�o

FeFo

p
1 + "2

◆
#2Fµ⌫

eFµ⌫ .

(6.22)

To classify the spectator axion(s) and their mass generation mechanism, we introduce the
cases displayed in table 6.1.

Finally, we note that we have made several assumptions on the structure of eX3 in order
to permit the above non-perturbative e↵ects. For example, a 4-cycle must be rigid to
support ED3 instantons [344], which places requirements on the sheaf cohomology of the
divisor. More precisely, a su�cient (but not necessary) condition for generation of a
superpotential by an ED3 instanton is that the 4-cycle D is rigid, and in addition D 6= D0
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pointwise but [D] = [D0]. The Hodge numbers of the divisor determine the number of
chiral fields charged under the worldvolume theory of a non-Abelian D7-branes stack,
which in turn could a↵ect the existence of a gaugino condensate. In the following we will
assume the required structures whenever necessary and leave a detailed study of their
abundance for our scenarios to future work.

6.1.4 From Strings to Spectators

We now combine all of the above to make contact with the spectator Lagrangian eq. (5.1).
First, let us consider a single C4- or C2-axion coupled to a hidden U(1) gauge theory. From
the discussion of the previous sections, we have contributions to the EFT Lagrangian of
the form

LEFT � ⇤4 cos

✓
2⇡J #

F

◆
�

g2eD
8⇡

M #

F
Fµ⌫

eFµ⌫ . (6.23)

Note that we have re-scaled the worldvolume gauge field from eq. (6.4) as Aµ ! g eDAµ to
canonically normalize the gauge field kinetic term. We have also re-scaled the axion as
per eq. (6.14) to obtain a canonically-normalized axion #. Here M depending on the 10d
origin of # and encodes either just the wrapping number w of the brane or combinations
from eq. (6.9) such as w+��m1. The factor J specifies extra information on the non-
perturbative e↵ect giving the axion a mass:

J =

(
1
w

c(G)

ED1 or ED3 Instantons

Gaugino Condensation (only C4) .
(6.24)

For the second line above, we assume that any C2-axions in the EFT do not couple to
the condensing gauge group G. If C2-axions do couple via magnetic flux, then J becomes
matrix-valued. We address this general case below.

For now, we define a re-scaled decay constant

f =
F

2⇡J , (6.25)

such that the axion has the conventional periodicity #! #+2⇡f . The spectator param-
eters in eq. (5.47) and then given by

m =
2⇡J⇤2

F
=
⇤2

f
,

� =
g2eD

4⇡2J M =
↵ eD
⇡J M .

(6.26)

The above can be generalized to cases with multiple spectators and more complicated
gaugino condensation scenarios. We can consider the following subset of terms in the
EFT Lagrangian

LEFT � �
NnpX

a=1

⇤4

a cos


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NaxX

b=1

Jab

#b
Fb

�
�

NU(1)X

c=1

NaxX

b=1

↵c
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Mcb

✓
#b
Fb

◆
F(c) ^ F(c) . (6.27)

where we have included Nax axions that couple to NU(1) Abelian gauge sectors via a cou-
pling matrix Mcb, and Nnp non-perturbative e↵ects giving cosine potentials that include



118 Chapter 6. Spectator Sectors from the Landscape

mass-mixing via the matrix Jab. The potential in eq. (6.27) defines a mass matrix for the
axions

(M2)ij =
X

a

⇤4

a

✓
4⇡2

Fi

◆
JaiJaj . (6.28)

This can be diagonalized via an orthogonal matrix Ojb such that (OT )aiMijOjb = m2
a�ab

and so the axion mass eigenstates are given by

#0a =
X

i

(OT )ai#i . (6.29)

These states have Chern-Simons couplings

L �
X

c,b

↵c

⇡
McbObi

#0
i

Fb

F(c) ^ F(c) . (6.30)

With this, all the parameters defined a spectator model has been identified from our
D7-brane constructions. What remains to be shown is that the parameters necessary
for an observable signal can be generated. First however, we must consider the inherent
limitations of these setups.

6.2 Constraints on Spectator Models in String Theory

In the previous subsection, we discussed how to realize spectator model parameters in
string theory, in particular how the large Chern-Simons coupling can potentially be re-
alized by magnetizing D7-branes and/or a su�ciently high wrapping number. However,
this enhancement comes at a price.

Focusing on C2 spectators, a boosted Chern-Simons coupling can be achieved by mag-
netized D7-branes. However, such a flux induces an e↵ective D3-brane charge that con-
tributes to the D3-brane tadpole cancellation condition. This is reviewed in section A.5,
here we merely list the e↵ective charge from the magnetized branes, which reads as6:

QD3,ind = w+��(m1)
2ND7 , (6.31)

where we have made the simplifying assumptions of considering branes on particular 4-
cycle and flux m1 on an odd 2-cycle that insects only with this wrapped 4-cycle. Other
contributions to the D3-tadpole include the number of D3-branes as well as the spacetime
curvature contributions from the D7-branes and O7-planes. The cancellation of the D3-
tadpole is non-trivial and involves an interplay between the number of branes, their
magnetizations, and the cycles they wrap. In the absence of a detailed compactification,
we instead take an approximate approach and argue for an upper bound on the allowed
D3-tadpole that a spectator model can induce. This is not a strict requirement, but
nonetheless a spectator model that violates the bound would be hard pressed to find a
home in the string landscape.

To get an estimate for the allowed amount of magnetization, we turn to F-theory com-
pactified on an elliptically fibred Calabi-Yau 4-fold Y4. In such scenarios, the D3-tadpole
cancellation condition takes the form [345]

ND3 +

Z

Y4

G4 ^ G4 =
#(Y4)

24
. (6.32)

6For simplicity we still assume work with a single pair of even and odd cycles.
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On the left hand side of the above relation, ND3 is the total number of D3-branes while
the second term is a 4-form flux that contains eq. (6.31) in the type IIB limit. On the
right hand side, #(Y4) is the Euler characteristic of Y4

7 and in the type IIB limit this
encodes the curvature D3-charge from the D7-branes and O7-planes [346].

eq. (6.32) implies an absolute upper bound on the amount of magnetic flux allowed in a
CY 4-fold Y4 as QD3,ind < #(Y4)/24. Thus the size of CS couplings on a given 4-fold are
inherently limited by the topology. However, this is too lax a constraint. For a working
type IIB string compactification, we must also stabilize the complex structure moduli of
the CY 3-fold and the axio-dilaton via the 3-form fluxes H3, F3. These contribute to the
D3-charge as well, taking the form

QD3,H3&F3 ⇠
Z

X3

F3 ^ H3 . (6.33)

Therefore, to maintain a su�cient amount of tadpole to allow moduli stabilization, we
take a conservative approach and estimate that the amount of flux that can be used
to generate large CS couplings is ⇠ O(0.1) ⇥ #(X4)

24
. Thus we will enforce the following

e↵ective constraint

QD3,ind. < Qeff (Y4) := 0.1⇥ #(Y4)

24
. (6.34)

A related but distinct question to the one above is if there is a universal upper bound on
the Euler characteristics of elliptically fibred CY 4-folds. Such a bound would provide a
universal constraint on CS couplings. No such upper bound currently exists, but we can
consider the 4-fold with the largest known characteristic. In terms of the Hodge numbers
of a CY 4-fold, one has

#(Y4) = 6(8 + h1,1 + h3,1 � h2,1) . (6.35)

There exists a CY 4-fold Ŷ4 with Hodge numbers [347]

(h1,1, h2,1, h3,1) = (303148, 0, 252) , (6.36)

which gives #(Ŷ4)/24 = 75852 ' 105. If we take this CY 4-fold as representing an estimate
for the largest possible #(Y4), then in analogy with eq. (6.34) we can bound spectator
models by the e↵ective usable charge

Q̂eff := 0.1⇥ #(Ŷ4)

24
' 104 , (6.37)

as
Constraint I: QD3,ind  Q̂eff . (6.38)

We now consider the implications of the above arguments on attempts to embed non-
Abelian spectator models into type IIB compactifications [206]. The authors consider two
separate scenarios within the LVS framework – Kähler inflation [48] and fibre inflation.
In both examples, the spectator sector is given by the EFT of a stack of magnetized,
multiply-wound D7-branes, with the spectator axion given by one of the descendents of
C2. In particular, [206] give the required model parameters as a triplet (m, ND7, w).

(m, ND7, w) ⇠
(
(104, 105, 25)

(102, 103, 1)

Kähler Inflation

Fibre Inflation .
(6.39)

7In F-theory models with non-Abelian gauge groups, Y4 is singular and one must calculate the Euler
characteristic of Ȳ4, the resolution of Y4.
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With these parameters, one can utilize eq. (6.31) to get an estimate of the required
tadpole for the models in [206]. However, there is a degeneracy in their parameter m and
the product of intersection numbers and D7-brane magnetization, +��m1 as described
above.

Therefore, we must make some assumptions to estimate the tadpole. One can imagine
two scenarios for the models of [206]. In the first scenario, the intersection numbers are
O(1) and m1 ' m. Then we have

Scenario I: QD3,ind '
(
25(104)2105 ⇠ 1014

(102)2103 ⇠ 107
Kähler Inflation

Fibre Inflation .
(6.40)

Alternatively, one could consider a cycle with large intersection numbers so that +�� '
m and m1 ' O(1),

Scenario II: QD3,ind '
(
25(104)105 ⇠ 1010

(102)103 ⇠ 105
Kähler Inflation

Fibre Inflation .
(6.41)

In both scenarios, Kähler inflation requires a tadpole orders of magnitude larger than
#(Ŷ4)/24 ' 105. This is also true for fibre inflation in Scenario I. In Scenario II, fibre
inflation is borderline consistent with tadpole cancellation, but if we incorporate moduli
stabilization and enforce QD3,ind < Q̂eff , then even this case is problematic.

While the above not does constitute a proof that the SCNI models of [206] are inconsis-
tent, it does provide a strong hint that such models may be impossible to realize given
our current understanding of string models. One may therefore be tempted to place them
in the string swampland as opposed to the landscape.

Turning back to MASA models, we also supplement eq. (6.38) with conditions to ensure
control of the stringy MASA construction. First, we require that the various U(1) gauge
factors are under perturbative control below the string scale. Since the gauge field theory
loop expansion parameter is ↵U(1)/2⇡, we impose

Constraint II:
↵U(1)

2⇡
. 1 (6.42)

for each U(1) gauge theory factor. We must also demand that the expansions of non-
perturbative e↵ects giving the spectator axions masses remain under control, i.e. the
higher-order terms are suppressed relative to the leading order one.

For spectator axion masses obtained via ED1 instantons, the scale of the non-perturbative
e↵ect is controlled by the wrapped 2-cycle volume as e�2⇡v. To ensure that the next higher
order instanton is su�ciently suppressed that it can be ignored, we demand 2⇡v & 2.
Assuming a simple intersection structure such that ⌧ = 1

2
+++v2, this translates into a

bound

Constraint III:
⇡2

+++w1↵1

& 1 (6.43)

where we have replaced ⌧ with the fine-structure constant of the U(1) gauge theory
wrapped on the 4-cycle associated with ⌧ . For ED3 instantons, we place a similar con-
straint to the previous one except that the relevant exponential depends on 4-cycle vol-
umes controlled by the Kähler moduli ⌧ . Thus we impose 2⇡⌧ & 2 for any 4-cycle
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supporting an ED3 instanton, which translates to a bound

Constraint IV:
⇡

2w1↵1

& 1 (6.44)

Where we have again replaced ⌧ with the Abelian fine-structure constant of the world-
volume theory of the D7-brane that is also wrapping the 4-cycle.

Finally, for cases that include gaugino condensation arising from a non-Abelian gauge
group G we impose

Constraint V:
⇡

2

1

c(G)↵G
& 1 (6.45)

to suppress high-order gauge instanton e↵ects.

Concerning the axion sector, we should raise a final issue which arises from boosting the
CS coupling of these axions by increasing the wrapping number w of the relevant D7-
branes. This concerns specifically the even axions, as a large w could be the unique way
in which the CS coupling could be boosted, but is valid also for the C2 CS couplings. The
point is that a D7-brane which is wrapping a given 4-cycle e⇧ several times, in a certain
sense can be thought of as ‘partitioning’ the cycle volume Ve⇧ among its wrappings. For an

isotropically shaped 4-cycle with a single size L⌃ = Re⇧/
p
↵0 ⇠ V

1/4

e⇧
we can interpret this

as an average distance between two adjacent wrapping loops dw = (Ve⇧/w)1/4 ⇠ Le⇧/w1/4.
As long as SUSY is unbroken, a multi-wrapped D7-brane is still a BPS object and as such
has no potential energy change associated with the wrapping number and its associated
wrapping distance dw. However, once SUSY is broken at high scales during inflation
where our scenario takes place, the SUSY breaking will communicate at some level to
the D7-brane in question as well. In that situation, stretching the single D7-brane over
multiple wrappings costs energy, and thus we expect a potential energy which increases
with w and shows a potential barrier as a function of the adjacent loop distance dw.
Hence, in this regime we expect a tunneling instability toward recombination of adjacent
loops of the wrapped-up D7-brane. While the strength of this barrier is clearly dependent
on the amount of SUSY breaking communicated to the D7-brane, a very first conservative
guess may be that suppressing the tunneling instability requires separating the wrappings
by more than a string length which implies a constraint dw > 1. Imposing this, by the
above scaling argument, implies an upper bound on the wrapping number

w < Ve⇧ = ReT = O(10 . . . 100) . (6.46)

We can now insert this bound into the relation determining the D7-brane U(1) gauge
coupling g�2 = wReTe⇧/2⇡ = wVe⇧/2⇡ = wL4

e⇧
/2⇡, which gives the following bound

once inserted in eq. (6.46)
w < 1/

p
2↵1 . (6.47)

For values of the gauge coupling ↵1 = O(1 . . . 5) picked out by the constraint plots below,
enforcing this constraint rigorously would restrict us to having only singly wrapped D7-
branes. Consequently, this would eliminate the even axions from the spectrum of axions
detectable by GW emission, presenting a qualitative argument against the viability of
the C4 axions as potential spectators. However, as elaborated further below, even axions
face elimination as candidates for observable GW signals already due to the detrimental
impact of a strong CS coupling on control of the EFT. In the case of odd axions instead,
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their viability remains more resilient. Since they do not depend solely on multiple winding
to enhance their CS coupling and typically only require a wrapping factor w ⇠ O(1) to
PTA amplitudes, we do not view this constraint as overly stringent.

6.3 Type IIB MASA Models

We now examine possibilities to realize MASA models in compactifications of type IIB
string theory. To this end, we will not consider a concrete compactification manifold, but
instead examine potential scenarios by assembling the above ingredients. E↵ectively, this
will provide us with a set of selection rules for the existence of viable MASA models in
type IIB string theory on CY orientifolds.

The pairing of a specific class with a corresponding case establishes the essential ground-
work, delineating the minimum set of physical parameters needed to formulate a viable
spectator model. It is imperative, however, to ensure the compatibility of these pairings
by addressing additional considerations. In the subsequent discussion we delve into these
intricacies while also incorporating the constraints described of the previous subsection.

Intuitively from the QFT-centric arguments of [203, 204], one may expect that realizing
spectator models with large signals in string theory would be quite challenging. Indeed it
is. In fact, it is simple to show that visible spectator models utilizing C4-axions are quite
di�cult to realize. The crucial point is that for a stack of D7-branes wrapping a 4-cycle
e⇧, the Chern-Simons coupling of the C4-axion is entirely determined by the vev of the
related Kähler modulus

�C4 ' 1

h⌧i . (6.48)

In particular, the CS coupling is independent of both the wrapping and magnetization
of the precise D7-brane configuration one is considering. To have a visible GW signal
in the near-term future, we would need �C4 = O(10), which implies h⌧i ' 0.1. If we
assume that the C4-axion gets a mass from an ED3 instanton, then control of the EFT
is encapsulated by eq. (6.44). This requires h⌧i & 0.3, rendering visible GWs and EFT
control mutually exclusive. An identical argument can be made for C4-axions that obtain
masses via gaugino condensation.

Of course the details of the above can be complicated by kinetic or mass mixing between
axions. However, it seems unlikely that su�cient kinetic mixing can exist. Naively, if one
has a two-axion model of the form

L � 1

2

✓
(@a1)

2 + (@a2)
2 + 2"@µa1@

µa2

◆
+ ⇤4 cos

✓
a2
f2

◆
� �1

4f1
a1Fµ⌫

eFµ⌫ , (6.49)

up to O("2) corrections, the kinetic terms can be diagonalized by a shift a1 ! a1 � "a2,
which induces a Chern-Simons coupling for the a2 axion as

L � "f2
f1

�1
4f2

a2Fµ⌫
eFµ⌫ . (6.50)

If f2/f1 � "�1, then the a1 axion would have a CS coupling �2 = "�1f2/f1 that would
be boosted relative to �1.

Nevertheless, achieving a boosting e↵ect in type IIB compactifications appears to be a
challenging prospect. From the orientifold kinetic terms displayed in section A.5, we see
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that C4- and C2-axions do not mix directly via the tree-level Kähler metric. Therefore,
if our goal is to have a C4- spectator axion realized via the kinetic mixing outlined in
eq. (6.49), we might consider the kinetic mixing of two C4-axions arising from a non-
diagonal term in the Kähler metric. Broadly speaking, C4-axions can be classified as either
local or non-local, depending on whether they arise from blow-up cycles or cycles that
determine the overall compactification volume, respectively. Typically, local axions have
decay constants that scale as f ⇠ MpV�1/2 while the decay constants of non-local axions
scale as either f ⇠ MpV�2/3 (isotropic compactifications) or f ⇠ MpV�1 (anisotropic
compactifications) [17], where V is the compactification volume in string units.

To get a handle on some possibilities, let us consider a Swiss cheese CY with volume form

V = ↵0⌧
3/2

b
� ↵1⌧

3/2

s1
� ↵2⌧

3/2

s2
� �1⌧s1⌧

1/2

s2
� �2⌧s2⌧

1/2

s1
. (6.51)

Here ⌧b controls the size of the CY volume V ' V0 = ↵0h⌧3/2b
i while ⌧1 and ⌧2 determine

the size of blow-up cycles. This CY gives 3 C4-axions: two local axions {⇢s1 , ⇢s2} and a
non-local axion ⇢b. The Kähler metric is determined by derivatives of K = �2 ln(V). We
have ↵1,↵2 > 0 and we need h⌧s1i � h⌧s2i for arbitrary |�1| . ↵1 and 0  �2 ⌧ ↵2 or
�2 < 0 to retain positive kinetic terms for both axions from the two small blow-up cycles.
There are three mixing scenarios one can consider from eq. (6.51).

• The first is a mixing between the non-local axion and one of the local ones. We
set �1 = �2 = ↵2 = 0 and discard the second blow-up cycle and associated axion.
To allow for an enhancement factor, we wrap branes on a 4-cycle e⇧b of eX3 so that
⇢b has a CS coupling with the worldvolume gauge fields. If we assume that ⇢s1
obtains a mass from some non-perturbative e↵ect, then we have an action of the
form eq. (6.49) with {⇢b, ⇢s1} corresponding to {a1, a2}. The mixing parameter
of eq. (6.49) is " ⇠ h⌧s1/⌧bi3/4 so that after unmixing the axions, ⇢s1 couples to
the gauge fields with CS coupling �s1 / h⌧s1/⌧bi1/2�b. Since we must have the
hierarchy h⌧bi � h⌧s1i, the CS coupling of ⇢s1 is suppressed relative to that of ⇢b,
not enhanced.

• We can also consider the mixing between the two local axions ⇢s1 and ⇢s2 . First
we consider the “strong” Swiss-cheese scenario which corresponds to the volume
form in eq. (6.51) with �1 = �2 = 0. Since the decay constants of the local axions
are inversely proportional to the size of the cycle they are supported on, we can
wrap branes on e⇧s1 and assume a hierarchy h⌧s1i � h⌧s2i to obtain a setup akin
to eq. (6.49) with ⇢s1 and ⇢s2 playing the roles of a1 and a2, respectively. The
mixing parameter is then " ⇠ h⌧s1⌧s2i3/4/V0 and diagonalization gives ⇢s2 a CS

coupling �s2 ' h⌧s1⌧
1/2

s2 /Vi�s1 . Since hVi � h⌧s1i, h⌧s2i, we again have suppression
as opposed to enhancement.

• Finally, we can consider the mixing of the two local axions but including the �i terms
in eq. (6.51). We again consider the hierarchy h⌧s1i � h⌧s2i and branes wrapping
e⇧s1 . If �1 & ↵1 we get for the kinetic mixing parameter " ⇠ h⌧s2/⌧s1i1/4 ⌧ 1 and
a CS coupling for ⇢s2 of strength �s2 ' h⌧s1/⌧s2i1/2 �s1 . Thus with the assumed
hierarchy in the sizes of the blow-up cycles, we do see an enhancement of the ⇢s2 CS
coupling relative to that of ⇢s1 . However, there is an important caveat in that �s1 /
h⌧s1i�1 so that �s2 / h⌧s1⌧s2i�1/2. Thus attempting to increase the enhancement
factor "fs2/fs1 by enlarging h⌧s1i will in truth drive the gauge coupling down and
spoil any attempts to realize a large CS coupling.
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Note that this last case was considered by [315] in the context of the QCD axion and the
authors found that an enhancement of axion coupling to QED may be possible. Their
scenario works as discussed because they fix the fine structure constant to that of QED.
In our scenario, the strength of the gauge coupling is determined by the size of the 4-
cycles and the enhancement factor is rendered ine↵ectual. While the above arguments
do not entirely forbid enhancement of C4-axion CS couplings in the type IIB orientifold
landscape, it suggests that achieving enhancement via kinetic mixing is not simple to
realize.

We end this discussion on C4-axions with some caveats. First, we have discussed very
simple scenarios, and one could consider more complicated setups, such as more general
divisors. This would involve multiple wrapping numbers and C4-axions. However, it
is not clear that this complication helps. The worldvolume gauge theory will couple to
some linear combination of C4-axions, and the gauge coupling will also be determined by a
linear superposition of ⌧↵ also determined by the wrapping numbers. Thus, an attempt to
create a large CS coupling by boosting wrapping numbers will simply alter the dominant
fields in the superpositions and cancel out when determining the CS coupling, similar
to the discussion around eq. (6.48) above. Next, in arguing against C4-axions as viable
spectators, we are more specifically referring to the impossibility of observing GWs at
near-term detectors as summarized in fig. 5.14. If �C4 ' 1, which is more reasonable from
the standpoint of control of the EFT, then PT = O(10�22). This is far below the reach
of any proposed detector, but we do not exclude the possibility of extremely advanced
detection methods that would be able to reach this level and see peaks arising from C4-
axion spectators. We also note that the above argument only rules out visible C4-axions
due to demanding an approximation scheme that permits one to neglect higher-order
non-perturbative e↵ects. If one could reliably calculate an infinite number of instanton
terms, then this constraint could be neglected and the possibility of more visible GWs
from C4 spectators opens up. A caveat to these statements is that one still requires small
values of h⌧i, which could result in a tower of states becoming light and ruining the EFT,
as predicted by the Swampland Distance and Emergent String conjectures [42,348]. The
precise statement then is that visible GWs from C4 axions requires one to live near the
center of Kähler moduli space and far from asymptotic regions.

A similar argument can be made to rule out C2-axion spectators in certain compactifi-
cations. For simplicity, let us assume a construction with h1,1

� = 1 and where the vev
of the sole B2-axion vanishes in a particular vacuum. Then from eq. (6.8), we see that

the gauge coupling constant is g�2 = w

2⇡

✓
h⌧e⇧i �

+��
2gs

(m1)2
◆
, where we have used a

shorthand for the relevant intersection number. As is evident from this expression, the
sign of +�� plays an essential role in the viability of a controlled spectator model. If
+�� < 0, then increasing magnetization leads to a decrease in the gauge coupling con-
stant. Since � / ↵ ' g2, this increases the di�culty of realizing a large CS coupling. In
fact, from eq. (6.9) the CS coupling has the form

�C2 =
+��
⇡

gsm1

(2gsh⌧e⇧i � +��m2
1
)
. (6.52)

For +�� < 0 and fixed h⌧e⇧i, |�C2 | increases with the magnetization m as long as
m < mmax and then starts to decrease with further increasing m1. At the maximum

mmax ⇠
q
�gsh⌧e⇧i/+�� we find |�C2 |max ⇠ 1/mmax. Hence, even by tuning gs and

h⌧e⇧i to arrange for a long regime of |�C2 | growing linearly with m1, its magnitude will be
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driven deeper into the region |�C2 | ⌧ 1. In fact, since |�C2 |max is inversely proportional
to h⌧e⇧i

1/2, satisfying the control constraints of the previous section drives one inexorably
to small CS coupling, similar to the above discussion on C4-axions. Thus the associated
GW signal is far too small to be observed in the near future and we see there is a general
tension between observable spectator axions and models with h1,1

� = 1 and +�� < 0.
To avoid this issue, one has two obvious paths. The first is to consider compactifications
with h1,1

� > 1. In such cases, it may be possible to have intersection numbers such that
one C2-axion obtains a large CS coupling without introducing the quadratic flux terms
if certain intersection numbers are zero or if opposing fluxes can be placed to cancel the
quadratic terms. The second option is to consider compactifications with +�� > 0. For
+�� > 0, the magnitude of eq. (6.52) can be increased significantly for fixed gs and m

assuming some tuning of h⌧e⇧i is permitted. This may even occur in such a way that the
control conditions discussed in the previous subsection are easily satisfied.

Having discussed the severe limitations on realizing spectator models in type IIB models,
we now discuss two potentially viable scenarios.

• Class I Spectators: Case 2
This scenario contains a single U(1) gauge factor and a C2 axion. We allow the
D7-brane to have multiple wrappings parametrized by w1 and magnetic flux m1 in
its worldvolume8. The axion receives a mass via ED1 instantons wrapping a 2-cycle.
The Chern-Simons coupling is given by eq. (6.26) with J = 1 and M = w1+��m1

so that � =
↵U(1)

⇡
w1+��m1.

We now want to consider observable GW signals in this setup while keeping in mind
the induced D3-charge of the brane stack. To this end, we can fix the CS coupling to
a value required to produce a specific GW peak, i.e. � = �GW. Then we can trade
one microscopic parameter, say the flux m1, for �GW . We can use this to replace
m1 in the expression for induced D3-brane charge, and arrive at a scaling relation
for the D3-charge necessary to produce a desired GW peak amplitude. Choosing
reference parameters

(�GW,↵D7,+��,w1) = (22, 0.8, 1, 1) , (6.53)

we obtain a D3-charge “Drake Equation” (DDE)9:

QD3,ind. ' 7.5⇥ 103
✓

1

w1 +��

◆✓
0.8

↵D7

◆2✓�GW

22

◆2

. (6.54)

To motivate a string embedding of this scenario, we demand that eq. (6.54) satis-
fies eq. (6.38). We also enforce constraints on perturbativity eq. (6.42) and ED1
control eq. (6.43). An example parameter space including these bounds is displayed
in fig. 6.2 below.

• Class IIb Spectators: Case 4
We now consider a scenario that involves both C4- and C2-axions. We consider
homologous 4-cycles e⇧(1) and e⇧(2) in eX3 such that e⇧(1) supports a stack of ND7

D7-branes and e⇧(2) has a single D7-brane wrapped on it. We also consider a third

8Here we will neglect the term in the gauge kinetic function that is quadratic in the flux. As described
in the preceding paragraphs, such a term will either completely invalidate this model, or greatly relax
control restrictions.

9Named in analogy with the Drake equation [349].
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cycle e⇧(3) 2 eX3 that is the even combination of cycles ⇧(3)

4
and ⇧0(3)

4
in X3. We

assume that e⇧(3) supports an ED3 instanton that stabilizes its Kähler modulus and
provides a mass for the associated C4-axion. We will also assume there is a non-
trivial even-odd-odd intersection number (called here � for convenience) such that
the C2-axion from the odd cycle associated to e⇧(3) couples to the gauge theories
on e⇧(1) and e⇧(2). For ease of discussion, we also assume that certain intersection
numbers of e⇧(1) vanish to avoid a flux-induced Stückelberg coupling.

The EFT of this configuration again contains an SU(ND7) ⇥ U(1)1 ⇥ U(1)2 gauge
sector. There are also three axions - a C4- and a C2-axion from [e⇧(1)], and an
additional C2-axion from e⇧(3). A linear combination of U(1)1 ⇥ U(1)2 will eat the
C2 associated to [e⇧(1)]. The surviving U(1) boson couples to the [e⇧(1)] C4-axion as
well as the C2-axion c from e⇧(3):

SEFT � �
Z p

�g d4x

⇢
⇢+

�(w1mN + N2

D7
wNm1)

w1 + N2

D7
wN

c

�
2w1↵1

4
X(2)

µ⌫
eX(2)µ⌫ .

(6.55)

Here X(2)

µ⌫ is the field strength of the surviving U(1) and its Chern-Simons couplings
to the axions ⇢& c are obtained by rotating the original gauge fields. In the above
we have allowed for a non-zero magnetization m1 of the e⇧(2) D7-brane, and we have
also used the relation wN↵N = w1↵1. We assume that the D7-brane stack on e⇧(1)

undergoes gaugino condensation. If we allow for magnetization mN on this stack,
then both axions appear in the potential as in eq. (6.20) with {wG ,mG,c(G)} =

{wN ,mN , ND7}. Defining decay constants fe = ND7
2⇡wN

Fe and fo = ND7
2⇡wN

Fo

mN

the
scalar potential reads:

V = �⇤4

N cos


#e
fe

+
#o
fo

�
. (6.56)

The masses and eigenstates are those of eq. (6.21) with " = �mNFe/Fo = fe/fo.
For the massive axion #2 we define a re-scaled axion decay constant

f2 =
fep
1 + "2

. (6.57)

Using fe and fo we can define Chern-Simons coupling parameters

�e =
↵NND7

⇡

�o =
↵NND7

⇡

⇢
(w1/wN ) + N2

D7
(m1/mN )

w1 + N2

D7
wN

�
.

(6.58)

The coupling of the massive axion #2 to the massless gauge field X(2) in the form
of eq. (5.47), with decay constant f2 will therefore read:

�2 =
�e + "2�o
1 + "2

. (6.59)

Since �o is proportional to the magnetization m1 of the brane wrapping e⇧(2), we see
that increasing m1 will boost the Chern-Simons coupling of the axion #2. However,
there is a hurdle to overcome – we expect " < 1, and the magnetization must
overcome this suppression in order to achieve the desired coupling strength. The #1
axion couples to X(2), with strength

�1 ' �o � �e , (6.60)
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where we are approximating 1+"2 ' 1 and f1 ' fo. Thus one can boost the Chern-
Simons coupling of #1 without having to overcome suppression by ". Unfortunately,
#1 in the model above is massless and is not a viable spectator.

This can be remedied by the inclusion of an ED1 instanton that gives rise to a
potential of the form eq. (6.18) for the C2-axion c. In terms of #1 and #2, we have
a contribution to the potential of the form

V � �⇤4

ED1 cos


ND7

�wNmN

#1 + "#2

fo
p
1 + "2

�
. (6.61)

The ED1 introduces a mixing between #1 and #2, but to lowest order in " this
potential simply provides a mass for #1. If we also take �wNmN ' 1, then indeed
f1 ' fo defines the periodicity of #1.

With the above ingredients, we see that we have two spectator axions coupled to the
U(1) gauge field X(2). The induced D3 tadpole depends on the string parameters
as

QD3,ind = �w1m
2

1 + �wNm
2

NND7 . (6.62)

From here, one can replace m1, derive a DDE equation in analogy with eq. (6.54),
and look for a valid region in parameter space. We can then imagine that #1 is
the spectator axion associated with an observable peak, while #2 produced a lower
signal. While there is a valid parameter space for �1 = 22, it lies dangerously close
to saturating our tadpole condition and can therefore be realized only in the most
extreme of compactifications.

We note here an observation relevant for future GW experiments: given that the GW
peak amplitude is exponentially sensitive to �, the CS coupling reacts only logarithmi-
cally to increasing the sensitivity of future GW detection experiments. Compared to the
peak amplitude corresponding to the recently reported evidence for a nanoGRAV/PTA
stochastic GW signal, even the most futuristic GW detection experiment currently envi-
sioned – DECIGO/BBO – would increase sensitivity only such, that the required value
of � for a matching axion-generated signal lowers only by a factor of two.

6.4 Remarks

From the viewpoint of string theory, MASA models can provide a glimpse into the axionic
content of a given compactification. However, this is not to say that observable MASA
models are simple to realize. We have found that there are numerous restrictions that
must be satisfied to have a viable spectator sector. One of the largest challenges is
simply ensuring a suitable U(1) factor exists in the gauge group of the EFT. The primary
di�culty here is avoiding Stückelberg couplings that would pair an axion and U(1) gauge
boson into a massive vector boson. Ostensibly, type IIB compactifications have two
natural spectator axion candidates from dimensional reduction of the 10d p-forms C4

and C2. However, as argued above, it is quite di�cult to generate su�ciently large CS
couplings for the C4-axions. This leaves C2-axions as the sole viable spectator candidates.

On top of the di�culty in simply realizing the field content for spectator sectors, string
constructions place further limitations on the parameters of the models. Boosting the
CS coupling of C2-axions requires non-zero magnetic flux in the worldvolume theory of
D7-branes, which induces an e↵ective D3-tadpole. This tadpole must be cancelled by
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Figure 6.2: Example parameter space for Class I: Case 2 MASA models. The excluded shaded
regions arise from constraints on control of the instanton expansion for ED1s (in blue), pertur-
bativity of the U(1) gauge theory (in red), and the tadpole constraint eq. (6.38) (in orange).
The dashed (dotted) contours correspond to parameter values with fixed magnetization m1 (D3-
tadpole QD3). We chose parameters �GW = 22 and +�� = 10.

other sources in the compactification manifold, such as orientifold planes, and is inher-
ently limited. Furthermore, demanding perturbative and non-perturbative control of the
construction places additional restrictions on the viable parameter space.

Despite all the above constraints, there still appears to be viable scenarios. By far the
least constrained scenarios are Class I: Case 2 models, where the Stückelberg mechanism
is sidestepped by appropriate features of the divisor wrapped by a D7-brane. An example
of the parameter space of such models is presented in fig. 6.2. An interesting feature
of this plot is that a viable spectator model can survive with relatively little magnetic
flux - simply m ' O(1) can su�ce so long as the fine-structure constant is su�ciently
large. The root of this feature lies in the fact that Abelian spectators are not required
to have extremely small gauge couplings to be viable. On the other hand, non-Abelian
spectator models do feature small gauge couplings, which brings them in tension with
tadpole cancellation as discussed above.

So far, in the string context we have discussed only single-axion spectator models. To
have multiple spectators, one needs several copies of the constructions that realize the
Abelian gauge bosons and axions. Furthermore, one must heed the constraint of D3-
tadpole cancellation. Since the parameter space in fig. 6.2 allows for O(10) D3-tadpoles,
it is not inconceivable that some compactifications may yield multiple visible spectator
sectors. A distinct possibility is to stack a multitude of spectator sectors such that the
collective signal is enhanced relative to that of a single constituent. This would require
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similar initial conditions for all axions involved, making it perhaps less generic. A precise
distribution of initial conditions for the axions would be required to make this statement
more precise.

One might interpret the above restrictions as an indication that visible spectator models
are highly disfavored in string theory. An alternative viewpoint is that visible specta-
tors serve as a powerful superselection rule in string vacua. If one is able to see a GW
peak from a spectator axion, then one has learned valuable information regarding the
topological structure of the manifold. For example, since C4-axions are poor spectator
candidates, a spectator GW peak is a direct probe of the odd moduli content of a type
IIB compactification. Previous studies [17] considered the experimental signals of even
axions. If we take the optimistic viewpoint that we will be able to probe some features
of the string compactification underlying our Universe, then direct coupling experiments
will most likely probe even axions. Thus our MASA models provide a means to go beyond
this and probe odd axions, which would reveal new information on the string embedding
of our Universe. For example, a very optimistic scenario would be the future detection
of several PTA-strength peaked GW signals at di↵erent frequencies. In this situation, by
the argument above, we need to attribute all of them to odd sector string axions with
GW signals increased su�ciently by choosing large enough magnetizing D7-brane fluxes.
However, this potentially runs into the D3-brane charge tadpole bound, because for each
odd sector string axion the induced D3-brane charge contribution on coupled D7-branes
increases quadratically in m. Hence, generating several strong GW peaks all by using
odd sector string axions tends to use a significant fraction of the background D3-brane
charge tadpole. This observational outcome would thus point us towards the F-theory
compactifications on elliptic CY 4-folds with the largest Euler numbers, and may limit the
number of strong GW wave peaks which we can explain using odd sector string axions.
It is in this sense that a future “wideband spectroscopy” of GW signals may provide us
with observational clues about the underlying topological structure and flux choices of
the string compactification describing our Universe.

Another interesting aspect of MASA models is that the GW signal is not directly depen-
dent on the decay constants of the spectator axions, but is encoded in other parameters,
such as �. On one hand, for fixed � this removes the possibility of boosting the signal by
lowering the decay constants. However, this feature is actually a boon from the string
theory perspective. A persistent issue in probing string axions is that the axion decay
constants are O(1016) GeV or above, making direct detection via terrestrial experiments
extremely di�cult, even if they couple to the Standard Model. Some haloscope exper-
iments [350–353] will probe this interesting parameter space, but only for axions that
i). couple directly to the Standard Model, ii). have sub-eV masses, and iii). constitute
some non-trivial fraction of the observed dark matter. In contrast, MASA models more
naturally probe heavier axions that need not couple to the Standard Model nor be present
in dark matter. Thus one should consider searching for spectator GW signals as com-
plementary to probing lighter elements of the type IIB string axiverse that could be the
QCD axion [17] or fuzzy dark matter [69].
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Chapter 7

Post-Inflationary Dynamics

For every model of inflation embedded into string theory, it is essential to verify that
the predicted cosmological observables are consistent with current data. Usually, one
tries to construct the inflationary model such that the spectral index, the tensor-to-scalar
ratio, and the non-Gaussianities, are consistent with current data. Beyond that, a viable
reheating mechanism must be identified. In particular, one must ensure that perturbative
reheating is available and e�cient in transferring energy from the inflaton field to the
matter content of the universe. Inflation ends once the inflaton begins its descent to the
minimum of its potential leading to an epoch of damped oscillations. In simple models,
these oscillations cease as the inflaton perturbatively decays into either standard model
particles directly or dark sector states that eventually reheat the universe.

This scenario of perturbative reheating changes significantly upon the inclusion of a pre-
heating era [354–358]. During this period, the inflaton can produce its own quanta and/or
spectator1 scalar particles via the non-perturbative phenomena of parametric resonance
and tachyonic preheating. In this paper, we restrict ourselves to preheating via para-
metric resonance. This mechanism requires scalar particles whose masses vary with the
inflaton oscillations. If active, parametric resonance leads to explosive growth of scalar
particle modes that are in resonance with the inflaton oscillations. In many cosmological
models, this behavior is captured by the Mathieu equation [359], whose secular dynamics
are described via Floquet theory [360], or its generalization for expanding spacetimes.

The population of spectator particles produced during preheating can significantly alter
the naive cosmology of an inflationary scenario. If this population becomes non-relativistic
soon after its production, it can serve as a component of dark matter. Indeed this mech-
anism has been used as a production mechanism for axions [361–364] and ultralight dark
photon dark matter [365–369]. Instead, if this population remains relativistic until to-
day, it will contribute to current dark radiation. Both outcomes can lead to constraints
on inflationary models — if too many non-relativistic particles are produced, parametric
resonance can eventually overclose the universe. Conversely, if too much dark radiation
is produced, one will run afoul of the current bound on �Ne↵ .

The dynamics of preheating have been well-studied in the cosmology literature, but it
has not yet been as widely explored in string models of inflation. There are several mo-

1Spectator here referring to scalar particles that do not appreciably contribute to inflationary back-
ground dynamics.
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tivating reasons to amend this. First, string theory provides a natural setting to study
inflation since one begins from a valid theory of quantum gravity and can therefore address
fundamental issues of cosmic inflation directly. Among these are the role of protective
symmetries for trans-Planckian field ranges tied to high-scale inflation with a detectable
level of primordial direct tensor mode production and the structure and size of inflaton-
dark sector cross couplings [22,370]. Furthermore, in contrast to simple QFT models, the
masses of all states in a string compactification arise from the vacuum expectation values
(vevs) of scalar fields. If some subset of these scalar fields participate in inflation, one
expects that many fields have masses that vary as the inflaton oscillates at the end of in-
flation. A natural question then is to understand the prevalence of parametric resonance
in the string landscape. The utility of this is twofold. First, models of string cosmol-
ogy are known to su↵er from issues of overproduction of dark radiation [96, 97, 371–374].
As mentioned above, parametric resonance can contribute to �Ne↵ and thereby exacer-
bate dark radiation issues for string models. Second, if parametric resonance produces
a non-relativistic spectator, avoiding dark matter overproduction provides an additional
constraint. In both cases, the resulting condition can be used to constrain the spaces
of underlying microscopic parameters controlling the string theory constructions of in-
flation and spectator sectors. Studies of parametric resonance in the string cosmology
literature include the self-production of the inflaton in blow-up inflation [375] and fibre
inflation [376].

We will instead be focused on the non-perturbative production of axions during inflation in
string cosmology. Axions are believed to be a general feature of string compactifications,
an expectation enshrined in the notion of the String Axiverse [15, 17, 18]. As a generic
prediction of string theory, the string axiverse is one of the most important tools to
tie string theory to experiments, both through standard model couplings and through
secondary primordial gravitational wave production [73, 86, 87] based on the mechanism
first established in [165,167,377,378]. Preheating of axions in string-inspired models where
the inflaton ' is coupled to the axion # via a quartic coupling �'2#2 to the axions was
studied in [379]. Such a coupling is commonly considered in typical preheating models
in cosmology. Naively, one might then consider that the usual treatment of parametric
resonance in the literature is su�cient to understand the non-perturbative production of
axions in string cosmology. However, in this paper we show that this to be insu�cient due
to the fact that string theory features non-perturbative e↵ects that have no analogue in
EFT models. Namely, the extended objects in string theory, such as Euclidean Dp-branes,
can wrap sub-manifolds of the compactification manifold and rise to axion potentials not
normally considered in the field theory context.

To motivate this statement, we note that closed string axions have distinguished properties
that set them apart from their field-theoretic analogues. In particular, the perturbative
shift symmetry of a closed string axion is preserved to all orders in string perturbation
theory. Therefore, axion potentials can only be generated via non-perturbative e↵ects.
These can include field-theoretic e↵ects, such as gauge instantons, but also wormholes and
purely stringy e↵ects such as worldsheet or Euclidean D-brane instantons. The strength of
such stringy e↵ects is controlled by the size of the sub-manifold wrapped by the Euclidean
object, which in turn is governed by the vev of a modulus. This gives rise to the general
leading-order potential for the axions:

Lp
�g

� �
X

a

⇤4

ae
�q

a

i
⌧
i

cos(qai ✓
i) . (7.1)
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Here the {✓i} are non-canonically normalized axions while the {⌧ i} are the moduli control-
ling the strength of the non-perturbative e↵ects. The {qa

i
} denote the instanton charges,

and the {⇤a} are overall scales that will depend on the ⌧ i and may additionally depend on
other moduli via 1-loop determinants. In general there are higher-order instanton e↵ects
correcting eq. (7.1) which we have omitted.

In a viable compactification, the terms in eq. (7.1) will be supplemented in the total
Lagrangian by a potential for the moduli {⌧i} that will ensure that they obtain vevs.
This in turn provides a mass for the axions via the potential in eq. (7.1). Therefore, if
we identify a subset of the {⌧i} with the fields responsible for inflation, it follows that
the masses of at least some axions will vary with time as the inflaton(s) oscillate at the
end of inflation. Hence all of the ingredients for parametric resonance can be present in
string cosmology. However, the equation of motion that follows from eq. (7.1) is not the
Mathieu equation, but rather a generalization of the Hill equation [380] (see also [381])
called the Whittaker-Hill equation. Hence, the standard approximations used to study
parametric resonance are not su�cient to completely determine the behavior of preheating
from string inflation once considering the expanding background.

7.1 The Mathematics of Preheating

In this section, we review the mathematics of parametric resonance and its application
to cosmology via preheating. To motivate this study, we start by considering models
described by the general Lagrangian

Lp
�g

� gµ⌫Ki|̄@µT i@⌫ T̄
|̄ � V (T i, T̄ ı̄)

= gµ⌫Ki|̄(@µ⌧
i@⌫⌧

|̄ + @µ✓
i@⌫✓

|̄)� V (⌧ i, ✓i) ,

(7.2)

where the {T i = ⌧ i + i✓i} are a collection of i = 1, . . . , N complex scalar fields and the
noncanonical kinetic terms depend on functions Ki|̄ of the {⌧ i}. In subsequent sections
we will consider N = 1 supersymmetric theories obtained from Calabi-Yau orientifold
compactifications of Type IIB string theory. In this context, the {T i} will be the com-
plexified Kähler moduli fields representing the scalar components of their associated chiral
supermultiplets and Ki|̄ the Kähler metric. Generally, the scalar potential V will have an
expansion for the inflaton modulus ⌧' of the form

V (T i, T̄ ı̄) 'Vinf(⌧', h⌧ ii|i 6= 1) + VN (⌧', ⌧ i � h⌧ ii|i 6= 1)

+�Vnon-pert(⌧', ✓, ⌧ i, ✓i|i 6= 1) ,
(7.3)

where Vinf(⌧', h⌧ ii|i 6= 1) is the inflation-driving potential of the inflaton Kähler modulus
⌧', VN (⌧', ⌧ i � h⌧ ii|i 6= 1) the perturbative potential of all the remaining Kähler moduli,
and �Vnon-pert(⌧', ✓, ⌧ i, ✓i|i 6= 1) denotes the whole instanton-generated non-perturbative
contribution which couples the moduli ⌧ i to the axions ✓j which appear in the T k ⌘
⌧k + i✓k.

From hereon, T ⌘ T 1 = ⌧' + i✓ denotes the complex scalar field containing the infla-
ton ⌧' ⌘ ⌧1 and its partner axion ✓ ⌘ ✓1. As these fields will share a non-canonical
⌧'-dependent kinetic term, we will call ' and # the canonically normalized fields corre-
sponding to ⌧' and ✓, respectively. We consider the generic case where, after the end
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of inflation, the inflaton is oscillating around its minimum, so that the potential can be
approximated as

Vinf(') =
1

2
m2

''
2 . (7.4)

The equations of motion

'̈(t) + 3H'̇(t) + V 0('(t)) = 0, with H2(t) =
1

3M2

Pl

✓
'̇2(t)

2
+ V ('(t))

◆
, (7.5)

are solved by

'(t) = '0 +�'
1

t
cos(m't) . (7.6)

If there is an additional (pseudo)scalar field ✓ coupled to ', the inflaton field can decay
non-perturbatively through parametric resonance in the time interval between the end of
inflation and the beginning of reheating. The equation of motion for ✓ reads

@L
@✓

� @µ
@L

@(@µ✓)
= 0 . (7.7)

If the kinetic terms are diagonal, the equation becomes
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Therefore, the equation of motion in a flat expanding universe where
p
�g = a3, reads

K
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✓
✓̈ + 3H ✓̇ � r2✓

a2

◆
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@✓
= 0 . (7.9)

It is convenient to decompose the axion field ✓ into a spatially homogeneous background
and fluctuations as ✓(t, ~x) = ✓0(t) + �✓(t, ~x). We can then write the coupled di↵erential
equations for the axion by expanding the potential up to linear term in the fluctuations
V (✓ + �✓) = V (✓) + V 0(✓)�✓ +O(�✓2),

8
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(7.10)

We retain terms only up to linear order in the fluctuations �✓ because they are su�cient
to capture the quantum process of particle production, as reflected in the growth of the
occupation numbers of the quantum fluctuations. We canonically normalize the axion as

L � K
T T̄
@µ✓@

µ✓ =
1

2
@µ#@

µ# , (7.11)

where # ⌘ ✓
p
2K

T T̄
. We denote (· · · )0 = @

@✓
(· · · ) =

p
2K

T T̄

@

@#
(· · · ). By setting the

initial homogeneous background field to #0 ' 0, we can ignore the background equation
of motion and focus on the second line in eq. (7.10), which now reads
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The fluctuation field can be expressed in terms of time dependent mode functions for the
individual Fourier modes

#(t, ~x) = #0 + �#k(t, ~x) , �#k(t, ~x) =

Z
d3k

(2⇡)3

h
âk#k(t)e

i~k·~x + â†
k
#⇤
k
(t)e�i~k·~x

i
. (7.13)

Since the absolute direction of momenta is not important when assuming homogeneity
and isotropy, we are interested only in the absolute values of ~k, and in the following we
will use k ⌘ |~k|. eq. (7.12) finally becomes

#̈k +
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K
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◆
#̇k +
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+ 2

@2V

@#2
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7.1.1 The Mathieu Equation and Preheating

Let us first consider the simple example of parametric resonance where the kinetic term
of the axion is canonical, and the inflaton is coupled to # via the operator

V1(',#) = g#2'2 . (7.15)

Neglecting the expansion of the universe (i.e. H = 0), the inflaton oscillations are sim-
ply given by ' = '0 + �' cos(m't). We can then plug this expression and eq. (7.15)
into eq. (7.14). The resulting axion fluctuation dynamics can be analyzed via application
of Floquet theory [360]. In this simple case, the fluctuation equation of motion can be
rewritten as the Mathieu equation

#00
k
+ (Ak � 2q cos(2s))#k = 0 , (7.16)

where s = m't/2, q = 4g�'/m2
', and Ak = 4k2/m2

'. Solutions to this equation strongly
depend on the parameters q and Ak, and exhibit an exponential instability #k ⇠ eµks

when the modes enter a specific frequency band. The first and strongest of these bands
is determined by �k = m'

2
± q. The µk are called Floquet exponents: they determine the

growth of the solution, and in the present case they can be found analytically. These
instabilities correspond to exponential growth of the occupation numbers of quantum
fluctuations nk, which is computed as

nk =
!k

2

 
|#̇k|2

!2

k

+ |#k|2
!

� 1

2
. (7.17)

It can be easily shown that the occupation number is exponentially sensitive to the Floquet
exponents, as nk / e2µks. When µk > H, the solution will have an exponential instability
even when the expansion of the universe is taken into account, as we will see below.

7.1.2 The Hill Equation and Preheating

We can now generalize the previous section to more complicated potentials. One such
example are the potentials discussed in section 7.2 describing the inflating saxion coupled
to the axion with a string theory-inspired potential. In this case, one must use the Hill
equation [380,381]

#00
k
+ (Ak + qF (t))#k = 0 , (7.18)
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with F (t) a periodic function. This system can be treated again with Floquet theory: we
can write the above di↵erential equation as

(
#0
k
= �⇡k ,

�⇡0
k
= � (Ak + qF (t))#k .

(7.19)

We will not exploit the details of the Floquet theory here, instead we will just outline the
steps required to determine the Floquet indices. For further details, we refer the reader
to e.g. [382].

First, we derive the period T of the zero mode, which can be found by energy conservation
of a periodic oscillation, and computed numerically; then we solve the system @tO(t, t0) =
U(t)O(t, t0) from t0 to t0+T to obtain O(t0+T, t0). We can now diagonalize O(t0+T, t0)
to obtain the eigenvalues os

k
= |os

k
|ei✓sk , where s = 1, 2. Explicitly,
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with the initial condition O(t0, t0) = 1. This is equivalent to solving eq. (7.18) for the
two sets of initial conditions {#1

k
(t0) = 1, �'̇1

k
(t0) = 0} and {#1

k
(t0) = 0, �'̇1

k
(t0) = 1}

from t0 to t0 + T . The eigenvalues of eq. (7.20) are given by
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with all quantities evaluated at t0 + T . Since O(t0 + T, t0) = exp[TM], where M is a
time-independent matrix whose eigenvalues are the Floquet exponents
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We have exponentially growing solutions if

Re(µ±
k
) =

1

T
ln(|o±

k
|) > 0 . (7.23)

After finding the solutions, one can construct an adiabatic invariant, which has the in-
terpretation of the comoving occupation number of particles nk in the mode k in an
expanding universe:
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where ⇥k ⌘ a3/2#k. The total number of particles created will then be given by

n#(t) =
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while the energy density of the produced particles is

⇢# =
1

(2⇡)3a4
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Once the growth of the quantities n# and ⇢# will come to halt once parametric resonance
ceases, they will start redshifting, respectively like matter and radiation.
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7.1.3 Cosmological Impact of Preheating

The axions produced via parametric resonance do not necessarily couple to the standard
model, and could reside in a hidden sector. Such particles can be so light that they
remain relativistic until today, hence behaving as dark radiation and contributing to the
e↵ective number of relativistic species Ne↵ . If instead they become non-relativistic during
the evolution of the universe, they contribute to the dark matter abundance ⌦#.

In any case, if they become non-relativistic after reheating (their mass is lower than the
reheating scale m# < Treh), the energy transferred to the axions is given by the inflaton,
which in turn loses its energy and hastens the onset of reheating.

Inflation ends once slow roll conditions are violated, and the inflaton starts oscillating
around its minimum, around Hinf ⇠ m'. We assume that the decay of the inflaton into
SM particles occurs perturbatively through the two-body decay processes, such that we
can take the decay rate �' to be constant in time. However, reheating does not start
immediately, as the perturbative decay of the inflaton to SM particles becomes active
only when 3H ⇠ 2�'. We write the total inflaton decay rate as

�' = (chid + cvis)
⇡2

48

m3
'

M2

Pl

⌘ (chid + cvis)�0 , (7.27)

where cvis and chid are the coe�cients giving the visible and hidden sector decays, re-
spectively. In this part of the work, we shall approximate �' ' �0. Therefore, given
m' < MPl, then Hinf � �'.

After inflation ends, the inflaton field starts to oscillate around its minimum and behaves
as pressureless matter, so that the Hubble parameter falls o↵ as H / a�3/2 = t�1. When
H reaches the order of the inflaton decay rate, it starts decaying perturbatively and
reheating begins. We can then write

3Hreh = 2�' . (7.28)

To find the reheating temperature, we can use the relation between the dominant contri-
bution to the energy density and temperature:
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Tracing the inflaton energy density from its value at the end of inflation ⇢end' ' 3H2
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all the way to reheating, if we assume that the inflaton only decays perturbatively, then
⇢reh' ' 3H2

reh
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Pl
' 4

3
�2
0
M2

Pl
. However, before the inflaton starts decaying perturbatively,

when H > �0, there is a period of preheating when parametric resonance takes place. This
has to be taken into account when computing the inflaton energy density at reheating, as
some energy has been taken up by the excited axion quanta. This can be encapsulated
by

⇢reh' = ⇢max
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where ⇢reh
#

is the axion energy density evaluated at reheating. Therefore, simplifying the
above expression,
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where rPR ⌘ ⇢
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The scale factor areh denotes the moment at which H reaches �0. Prior to this moment,
the scale factor goes as a ⇠ t2/3 like the inflaton (which we take to be the dominant
contribution to the energy budget of the universe). Thus H scales as H ⇠ a�3/2. From
the value of H at the end of inflation, we can assess its value at the onset of reheating via
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Thus, areh
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. The reheating temperature can then be computed

via
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Given that we are taking the Hubble rate as though the inflaton is dominating the energy
budget of the universe, Hreh will not change, as it is determined by the decay rate of the
inflaton field. What changes in the end will be the scale factor at reheating while, maybe
a bit surprisingly, the reheat temperature stays unchanged: the scale factor decreases due
to the loss of energy density of the inflaton just as to compensate for the lower inflaton
energy density after preheating. This keeps the reheat temperature fixed at the value
dictated by eq. (7.28).

E↵ective number of relativistic species

We now assume that the parametric resonance will produce axions that are light enough to
remain as dark radiation up to the modern era. In such a scenario, the axions contribute
to the number of relativistic degrees of freedom. We now estimate their contribution.

The total radiation energy density after electron-positron annihilation reads
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where g⇤(T ) =
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In the absence of particle states beyond the standard model, the total radiation energy
density comes from photons and neutrinos. Neutrinos remain in thermal equilibrium with
the CMB until their interaction rate with other SM particles drops below the expansion
rate. After decoupling, the neutrino temperature T⌫ remains approximately equal to
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the CMB temperature until electron-positron annihilation, which causes the CMB tem-
perature to rise, while it leaves the neutrino temperature nearly una↵ected. Assuming
instantaneous neutrino decoupling, T⌫/T = (4/11)1/3. The radiation energy density can
be written as
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where N⌫ the number of neutrinos species and
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quantifies the e↵ective number of relativistic degrees of freedom that are not the pho-
ton. With three active neutrino species, N⌫ is slightly larger than 3 if one accounts for
relic interactions between electrons and neutrinos during the time of electron-positron
annihilation. The resulting value is Ne↵ ' 3.046, which also incorporates finite tempera-
ture QED corrections to the electromagnetic plasma and flavor oscillations e↵ects [383].
Various factors constrain the number of e↵ective species. These include the predictions
of BBN, paired with observations of light elements abundances [384], CMB temperature
and polarization anisotropies [385], and the large scale structure (LSS) of matter distri-
bution [386]. Within current experimental bounds, all the aforementioned probes show
agreement with the standard prediction of Ne↵ = 3.046. On the other hand, current limits
allow for deviations from the SM prediction (i.e. for a non-zero �Ne↵ ⌘ Ne↵ � 3.046)
which would signal new physics. Current bounds constraint �Ne↵ < 0.226 [387]. Future
observations are expected to greatly improve on the present bounds (see e.g. [388]).

Taking into account the presence of relativistic axions, the total amount of energy density
of the universe reads
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By comparing it to

⇢R =

"
1 +

7

8

✓
4

11

◆4/3

(Ne↵ +�Ne↵)

#
, (7.39)

we find
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where ⇢� is the energy density given by photons. We can then write the equation as [389]
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After inflation, when tend < t < treh, the inflaton oscillations redshift approximately
as pressureless matter, ⇢'(t) / a(t)�3. Furthermore, we can use adiabaticity in the
expansion after reheating, so that arehTreh = aT . Thus,
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T 4
. (7.42)
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The inflaton energy density during reheating is ⇢reh' = g ⇡
2

30
T 4

reh
, which once substituted

in the previous equation gives
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✓
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⇢end'
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Treh
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◆4
#1/3✓
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#

⇢end'
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aend

◆4

. (7.43)

Note that our computation relies on the assumption that we are operating in a regime
where the inflaton energy density dominates. A natural question arises when parti-
cle production reaches such significant levels that the primary contributor to the uni-
verse’s energy content becomes the generated particles themselves. Yet, as previously
discussed, once the energy density of these particles approaches that of the inflaton, ef-
fects like backreaction and inflaton fragmentation come into play and can no longer be
overlooked [357, 358]. These phenomena act to halt parametric resonance, slowing down
the growth of the axion energy density. Therefore, eq. (7.43) is a valid approximation for
the analysis of this work.

Dark matter

Parametric resonance gives rise to relativistic particles during preheating. However, they
can be heavy enough that they become non-relativistic during the evolution of the uni-
verse, and therefore will not contribute to the e↵ective number of relativistic species Ne↵ .
These axions will then constitute some portion of dark matter.

The relic abundance of dark matter today is given by

⌦# =
m#n#(a0)

⇢c
, (7.44)

where ⇢c is the critical energy density at the present time. We can compute the number
density via eq. (7.25); it grows until nmax

#
and then redshifts as a�3. Therefore, assuming

entropy conservation after reheating, we find

n#(a0) = nmax
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. (7.45)

Using T0 ' 10�31MPl, the number density evaluated today is

n#(a0) ' 10�93nmax
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Hence

⌦#h
2 ' 3.8⇥ 1023

✓
amax

aend

◆3✓ m#

MPl

◆✓
m'

MPl

◆4✓MPl

Treh

◆3✓nmax

#

M3

Pl

◆
. (7.47)

If we take the inflaton mass to be m' ' 5 ⇥ 10�5MPl, and taking into account that
parametric resonance ends after the end of inflation so that amax > aend, we find a lower
bound for the value of the dark matter abundance:

⌦#h
2 & 107

✓
m#

MPl

◆✓
MPl

Treh
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#
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Pl

◆
. (7.48)
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The above is valid only as long as the produced dark matter does not overcome radiation
before matter-radiation equality. It can indeed happen that the amount of dark matter
produced overcloses the universe: if the produced particles become non-relativistic soon
after or around reheating, their energy density will redshift like ⇠ a�3, whereas the
radiation produced by reheating redshifts like ⇠ a�4. At some point, the two will be
comparable. If the ratio of the two energy densities ⇢#/⇢r becomes comparable before
matter-radiation equality, the evolution of the universe changes and the above estimate
is no longer valid. Let us then evaluate when this will happen by taking the following
equality, assuming it stays relativistic until anr:
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(7.49)

Assuming all the remaining energy density of the inflaton goes into the radiation bath,
⇢reh' = ⇢rehr , then
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(7.50)

Therefore
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. (7.51)

This formula encapsulates also the possibility that the produced axions become non-

relativistic before the end of reheating by simply taking anr = amax and aeq =
⇢
max
'

⇢
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#

areh.

We want to compare this with a⇤CDM
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(7.52)

If ↵0 � 1 the history of the universe is in agreement with ⇤CDM. If, instead, ↵0 ⌧ 1 the
produced axions are overclosing the universe, and changing its history with respect to Big
Bang cosmology. There are three di↵erent possible scenarios, which we shortly delineate
here.

First, if the axions do not interact with other particles and remain stable, they contribute
to the dark matter density of the universe. In this case, if their density is too high, it



142 Chapter 7. Post-Inflationary Dynamics

could lead to the overclosure of the universe, thus imposing stringent constraints on the
model parameters to avoid such a scenario, as in the case above. We can use eq. (7.52)
to find the maximum value of the axion mass such that we are not obtaining an early
matter radiation equality by imposing aeq < a⇤CDM

eq .

The second case is when the axions can decay into other massive particles. The corre-
sponding cosmological implications depend on whether these decay products are relativis-
tic or non-relativistic at the time of decay. If the decay products are non-relativistic, they
e↵ectively behave like cold dark matter, similar to the stable axion scenario, and the uni-
verse may still face the risk of overclosure. On the other hand, if the decay products are
relativistic, they will initially redshift as radiation. As they become non-relativistic, they
transition to behaving like matter, modifying the redshift dynamics and slightly relaxing
the constraints on the model since the energy density redshifts more rapidly when the
particles are relativistic.

We can modify eq. (7.52) to bound the axion mass assuming instantaneous decay and
assuming that all the energy density in the axion decays into the heavy fields ⇢dec

�
= ⇢dec

#
.

The new matter-radiation equality condition, distinguishing the case where the axion
decays after reheating (and after becoming non-relativistic) or before reheating (being
still relativistic),2 reads
8
>>><

>>>:
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(7.53)

where now adec defines the time at which the axion decays into the heavy bosons, and
aNR corresponds to when the latter become non-relativistic. The two cases are actually
the same if we readjust the scale factors. We can then write:
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(7.54)
Therefore we can find the matter-radiation equality scale factor via:
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This will place a bound on the mass of the axion, but it will be less constraining with
respect to the case in which the axions do not decay at all. We can define, similarly to
eq. (7.52),
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2We should also consider the cases where the axion decays remaining relativistic, but it can be encap-
sulated in the first case by choosing anr = adec and in the second anr = areh.
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Comparing this with ↵0 we find
↵1

↵0

=
aNR

adec
. (7.57)

The ratio on the right hand side is always greater than one, and so ↵1 > ↵0.

The third case is when the decay products are so light that they remain relativistic.
They will not contribute to the matter density but will increase the e↵ective number of
relativistic species, �Ne↵ . The contribution to �Ne↵ can be computed as before:
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, (7.58)

where we identified ⇢� with the energy density of the decay products of the axion. If
the decay happens instantaneously, and all energy density is transferred to the latter,
⇢dec
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. Therefore,
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such that
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(7.60)

In the above we used the fact that s1/3aT = const, where s corresponds to the entropy
density of the universe, defined as s ⌘ ⇢+p

T
. In principle, the entropy density will change if

the degrees of freedom present in the universe will change. However, we will not take that
into account, and as a first approximation we consider it constant. All these possibilities
depend on the axion decay rates through adec, and therefore on the coupling of the axions
and on their mass, and in general are very model dependent.

If we compare this with the e↵ective number of relativistic degrees of freedom one would
obtain in the case where the axion remains relativistic and never decays �N rel

e↵
, we have

�Ne↵

�N rel

e↵

=
adec
anr

✓
s2
s1

◆1/3

. (7.61)

7.2 String axions and preheating

In this section, we examine parametric resonance in string-inspired cosmological models.
Our main focus will be on type IIB O3/O7 orientifold compactifications, which are defined
by first compactifying type IIB on a 6-dimensional Calabi-Yau manifold X6 with Hodge
numbers {h1,1, h2,1}. To obtain a theory with N = 1 SUSY, we must quotient by a
combination of worldsheet parity and a holomorphic involution � of X6. The Hodge
numbers of the quotient eX6 ⌘ X6/� are split into positive and negative subspaces as
h1,1 = h1,1

+ + h1,1

� and h2,1 = h2,1

+ + h2,1

� . For simplicity, we will assume h1,1

� = h2,1

+ = 0.

The resulting 4D N = 1 EFT will consist of the graviton, axiodilaton, h2,1

� complex
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structure moduli, h1,1

+ Kähler moduli, and the supersymmetric partners of these fields.
Gauge sectors then arise from the inclusion of spacetime filling D3- and D7-branes.

We will assume that fluxes fix the complex structure moduli and axiodilaton at a high
scale [28] and so the moduli of the EFT consist of the Kähler moduli and their axionic
superpartners, which form chiral supermultiplets with scalar components T j = ⌧ j + i✓j .
The e↵ective Lagrangian takes the general form of eq. (7.2) with N = h1,1

+ and the kinetic
terms determined by the Kähler metric

Ki|̄ = @T i@T̄ |̄K , (7.62)

where K is the Kähler potential. The scalar potential in eq. (7.2) is then identified as the
F-term scalar potential determined by K and the superpotential W as

V = eK
⇣
Ki¯̄|DiWD|̄W � 3|W |2

⌘
, (7.63)

where Kij̄ is the inverse of the Kähler metric and the Kähler covariant derivative is
DiW ⌘ @iW + KiW .

As discussed in the introduction, the axions {✓i} obtain potentials only via non-perturbative
e↵ects. These can enter either the superpotential or the Kähler potential. In the present
work we focus non-perturbative contributions to the superpotential as these are currently
better controlled. If D is a divisor of eX6, then non-perturbative e↵ects can arise from
a stack of D7-branes or from a Euclidean D3-brane wrapping D. In either case, the
superpotential takes the form

W = W0 + ADe�aDTD , (7.64)

where TD is the complex Kähler modulus where ReTD is the volume of D and aD is a
constant. W0 and AD are constants after the axio-dilaton and complex structure moduli
are fixed by fluxes.

Inserting this superpotential into eq. (7.63) one obtains a scalar potential for the axion
✓D of the form

V � ⇤4

De�aD⌧D cos (aD✓D) . (7.65)

This potential has the general form displayed in eq. (7.1) of the Introduction if we choose
qiD = aD�

i

D. To obtain the usual EFT Lagrangian, we must canonically normalize the
axions. This is done by diagonalizing the Kähler metric and rescaling the axions. Approx-
imating the Kähler metric to be diagonal with diagonal entry KDD̄, one has a canonically
normalized axion

#D := aDfD ✓D , (7.66)

where

fD =
1

aD

p
2KDD̄ (7.67)

is the decay constant of the axion #D such that the axion has periodicity #D ⇠= #D+2⇡fD.
If one now takes ⌧D to be the inflaton, then this setup has the necessary ingredients for
parametric resonance.

The setup above realizes the general discussion in the Introduction and will serve as the
working example in the subsequent subsections. However, that is not to say that it is the
only example of parametric resonance in string compactifications. For example, axions
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that are not the scalar superpartner of the inflaton may nonetheless obtain masses that
vary with time during inflation. This can occur, for example, via kinetic mixing in Ki|̄

or multi-instanton contributions to the superpotential that furnish the full instanton lat-
tice. There can also be high-order mixing terms in the scalar potential. At larger h1,1

parametric resonance arising from such higher-order terms will necessarily be suppressed
compared to the typically handful of axions with leading-order couplings to a given infla-
ton Kähler modulus furnished by the sparseness structure in the intersection matrices of
CY compactifications [18,390]. Furthermore, it is not necessary that the non-perturbative
e↵ects must appear only in the superpotential. ED3 instantons may wrap non-rigid cycles
and instead contribute to the Kähler potential.

Finally, these considerations can be applied to compactifications of the other perturbative
string sectors. For example, in the Type I or Heterotic theories, axions descending from
the 10D 2-forms obtain worldsheet instanton superpotentials from Euclidean F-strings.
The strength of such e↵ects are controlled by the volume of 2-cycles given by the vevs
of the Kähler moduli. If the inflaton arises from the Kähler moduli, then once again
parametric resonance can arise.

7.2.1 Structure & dynamics of the Hill equation for string axions

Building on the preceding discussion, we now focus on the chiral multiplet T ⌘ ⌧' + i✓
containing the inflaton ⌧' (vis a vis its canonically normalized pendant ') and its partner
axion ✓ (whose canonical normalization is #). Starting from eq. (7.65), after canonical
normalization of the axion field, the string theory inspired axion potential can be written
as:

Vax = ⇤4(⌧')e
�a'⌧' cos

✓
#

f#

◆
, (7.68)

the equation of motion eq. (7.14) can be written as:
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◆
#k = 0 , (7.69)

where ' is associated to the inflaton direction. In general, at first order, the entry of
the Kähler metric is K

T T̄
/ 1

h⌧'i2 if the inflaton is associated to the “big” modulus (fibre

inflation), while K
T T̄

/ (Vp⌧')�1 if the inflaton is associated to the blow-up modulus
(blow-up inflation). At first order, the entry of the Kähler metric associated to the

inflaton field is K
T T̄

/ h⌧'i�2. Therefore we can write @0KTT̄

K
TT̄

= � ⌧̇'

⌧'
, where � = 2 for

fibre inflation.3 Finally, the equations of motion become
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where

m2

#,e↵(⌧') =
⇤4(⌧')

f2

#

e�a'⌧' . (7.71)

Parametrizing the inflaton oscillations as '(t) ' h'i+�'1

t
cos(m't), and defining ⌧̃' ⌘

a'⌧', the mass of the axion field becomes

m2

#,e↵(⌧') = m2

#
e��⌧̃'

1
s
cos(2s) , (7.72)

3We keep the generic factor implicit so that the analysis can be carried over to e.g. blow-up inflation
by using � = 1

2 .
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where m2

#
= ⇤

4
(⌧')

f
2
#

e�h⌧̃'i, and s = m't

2
is a new time variable that counts the number of

oscillations of the inflaton field. We shift the field as

⇥k ⌘ #k
t0
t

, (7.73)

where t0 =
⇡

4m
corresponds to a quarter of oscillation of the inflaton field.4 Changing the

time variable to s, the equations of motion become
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with
⌧̃ 0'
⌧̃'

= �s0
s

�⌧̃'(cos(2s)/s + 2 sin(2s))

h⌧̃'i+�⌧̃' cos(2s)
. (7.75)

The e�ciency of parametric resonance is governed by the e↵ective mass parameter, which
is directly tied to the mass of the axion field. For extremely light axions, the oscillating
term is suppressed by the small axion mass, rendering parametric resonance less e↵ective.
To contribute to the e↵ective number of relativistic species today, axions must remain
in the form of radiation, requiring their mass to satisfy m# . eV ' 10�27MPl. Conse-
quently, the e↵ective mass squared, as defined in eq. (7.72), is suppressed by approximately
O(10�54).

This suppression arises from the exponential dependence on the vev of the inflaton field,
e�h⌧̃'i. Initially, this suppression can be o↵set by the wide oscillations of the inflaton
field. However, as the oscillations are damped and their amplitude decreases as t�1, this
compensating e↵ect diminishes rapidly.

In an expanding universe, additional terms from the derivative of the Kähler metric
become significant when performing a full analysis. As the inflaton oscillates with a
decaying amplitude, the kinetic mixing term in the equation of motion eq. (7.74) initially

dominates but weakens over time. When the axion is heavy, such that
4m

2
#,e↵

m2
'

& �
⌧̃
0
'

⌧̃'
H,

the kinetic mixing term introduces only minor oscillations. Conversely, for a light axion
with a small m2

#,e↵
, this term grows in relative importance, eventually surpassing the mass

term. In this regime, the kinetic mixing term becomes the primary driver of parametric
resonance.

Thus, there exists a threshold below which the resonance e↵ect becomes independent of
the axion mass. For compactifications that result in extremely small axion masses —
allowing axions to remain as radiation until today — parametric resonance can still occur
even when the e↵ective mass is negligible. However, the overall impact of this resonance
in such cases is minor and not observationally significant.

Mathieu limit

Let us first ignore the expansion of the universe and set H = 0, a = 1. In order to
have production of particles in the expanding universe, it is indeed a necessary, but not

4We start our analysis from t0 in this section in order to trust the approximation of the oscillatory
behavior of the inflaton field. Once a specific inflationary model is chosen, one should consider the whole
trajectory of the inflaton field starting from the end of inflation, when the slow roll conditions are broken.
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su�cient, condition that the exponential instability be present in the absence of the
expansion.
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The damping term
⌧̃
0
'

⌧̃'
#0
k
= �2 �⌧̃' sin(2s)

h⌧̃'i+�⌧̃' cos(2s)
at first order in �⌧̃'/h⌧̃'i, is a function

oscillating between positive and negative values of �⌧̃'

h⌧̃'i < 1.

When the displacement is small, �⌧̃' < 1, the equation of motion can be reduced to the
Mathieu equation by truncating the exponential series and neglecting the damping term.
Therefore, we can write eq. (7.76) as
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with Ak = 4

m2
'

(k2+ ⇤
4
(⌧')

f
2
#

e�h⌧̃'i) and q = 2

m2
'

⇤
4
(⌧')

f
2
#

�⌧̃'e�h⌧̃'i. Since we are in the regime

where �⌧̃' < 1, then the resonance parameter q has to satisfy
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As we mentioned before, an important feature of the solutions to the Mathieu equation
is the existence of an exponential instability #k / eµks within the set of resonance bands
of frequency �k. This instability corresponds to an exponential growth of the occupa-
tion numbers of quantum fluctuations nk(t) / e2µks that can be interpreted as particle
production. The parameter q determines the amount of parametric resonance, and, in
agreement with the Mathieu analysis, when there is narrow resonance (q < 1) we find
the most amount of growth for modes with k ' kmax, where kmax is the mode for which
Ak = 1 (this is the so-called stability band), for which µk,max = q

2
. However, given that

during the expansion of the universe the momenta will redshift, the narrow bands that
characterize the resonance in the q < 1 regime, will obstacle the production of particles.
In the limit q ! 0 instead there will be no resonance.

fig. 7.1 shows an example of a solution and number density of particles eq. (7.24) for
this limit, where m' ' 5⇥ 10�5MPl, and the mass of the axion in this case reads m# '
2.3⇥ 10�10MPl. Lower masses heavily suppress the parameter q, and the displacement is
not able to o↵set this suppression. Therefore, in the limit of extremely small displacement
and narrow resonance, the production of quanta that will stay radiation until now is
extremely suppressed.

Hill limit

When the displacement of the inflaton field is �⌧̃' > 1, the full equation of motion
eq. (7.74) is needed in order to fully capture the complexity of the system. We can write

the equation at first order in �⌧̃'

h⌧̃'i as

#00
k
� 2�

�⌧̃'
h⌧̃'i

#0
k
sin(2s) +

✓
4k2

m2
'

+
4

m2
'

⇤4(⌧')

f2

#

e�h⌧̃'ie��⌧̃' cos(2s)

◆
#k = 0 . (7.79)

In the regime where the amplitude of the inflaton oscillations is small, this equation
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Figure 7.1: On the left: narrow parametric resonance for the field # in Minkowski space, for
Ak = 1, and q ' 0.19, for the momentum kmax that corresponds to the maximal speed of growth.
The pink line corresponds to the solution #k ' exp ( µk

2m'
t), where µk = q/2. On the right: the

logarithm of the occupation number of particles nk in this mode, see eq. (7.24). The number of
particles grows exponentially, and the lnnk looks like a straight line with a constant slope. This
slope, divided by 2⇡, gives the Floquet exponent µk, which in this case is µk ' 0.1. The set of

parameters used for these figures are �⌧̃' ' 1
2 , ⌧̃' ' 5⇡, ⇤4(⌧')

f2
#

' 10�4.

resembles the Hill equation, and is known as the Whittaker-Hill equation:

#00
k
+ 2p sin (2s)#0

k
+ [Bk + 2qF (s)]#k = 0 , (7.80)

with, at first order in �⌧̃'

h⌧̃'i ,

p = ���⌧̃'h⌧̃'i
, Bk =

4k2

m2
'

, q =
2

m2
'

⇤4(⌧')

f2

#

e�h⌧̃'i , F (s) = e��⌧̃' cos(2s) . (7.81)

By defining the new function f(s) = e�p cos(2s)/2#k, we can write the Whittaker-Hill
equation as

f 00 +


Bk �

p2

2
� 2p cos(2s) +

p2

2
cos(4s) + 2qF (s)

�
f = 0 . (7.82)

This equation is a second order di↵erential equation with periodic coe�cients, and there-
fore it has the form of the Hill equation. Therefore we can study it with a Floquet analysis.
The solutions of this equation are

#k(t) = #k+(t)e
µkt + #k�(t)e

�µkt , (7.83)

where #k± are periodic functions in time and µk are complex coe�cients. A necessary, but
not su�cient, condition for parametric resonance is Re[µk] > 0: larger values of Re[µk]
indicate stronger parametric resonance.

fig. 7.2 shows an example of solutions in this limit for m' ' 5⇥ 10�5MPl and a very light
produced axion: m# ⇠ 1.5⇥10�31MPl. The axion therefore stays relativistic up to today,
and contributes to �Ne↵ .

fig. 7.3 shows the momenta that get excited and their corresponding Floquet exponent.
We can see that the peak of the excited momenta is around k ⇠ m'

2
, as expected in

the Mathieu case. However, in contrast to the Mathieu case, the other momenta in the
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Figure 7.2: On the left: parametric resonance for the field # in Minkowski space, for Bk = 1, for
the momentum kmax that corresponds to the maximal speed of growth. The pink line corresponds

to the solution #k ' e
µk

2m'
t
, where µk is the Floquet exponent obtained via the Floquet theorem.

Time is shown as s
⇡ = m't

2⇡ , which is the number of oscillations of the inflaton field. On the right:
the logarithm of the occupation number of particles nk in this mode, see eq. (7.24). The number
of particles grows exponentially, and the lnnk looks like a straight line with a constant slope. This
slope, divided by 2⇡, gives the Floquet exponent µk, which in this case is µk ' 0.106. The set of

parameters used are �⌧̃' ' 6⇡ and h⌧̃'i = 41⇡, and m2
# = ⇤4(⌧')

f2
#

e�h⌧̃'i ' 2⇥ 10�62M2
Pl.

secondary bands are much less excited and therefore their contribution will be negligible.

In fig. 7.4 we show the stability charts of the Hill equation in eq. (7.82) for some choice
of parameters, where the red points correspond to values of (h⌧̃'i, �⌧̃') whose solutions
are exponentially unstable. We compute the instability only for k = kmax, as fig. 7.3
shows that this mode gives the main contribution. We require the initial displacement
of the inflaton field to be lower than its vev — that is why there is a lack of unstable
solutions below the line �⌧̃' = h⌧̃'i. The two di↵erent charts correspond to two separate
sets of axion masses: the left panel shows the stability chart of heavy axions (m# 2
(10�11, 10�5)MPl), while the one on the right shows the stability chart of light axions
(m# 2 (10�38, 10�27)MPl). For both charts there are regions of exponential instability,
and we expect production of both light and heavy fields.

Hill equation on expanding background

We now analyze how an expanding universe influences axion production. After inflation
ends, the inflaton field behaves as a harmonic oscillator with a frequency approximately
! ' m'. Assuming the scale factor evolves as a ⇠ t2/3, the system can be approximated
using eq. (7.74).

There are some caveats to this approach. First, we must account for the transition
period between the end of inflation and the onset of the oscillatory regime, during which
the inflaton does not behave like a harmonic oscillator. Therefore, we set t0 = ⇡

2m'
,

corresponding to the time after a quarter of one oscillation of the field '. This provides
su�cient time for the inflaton to enter the harmonic oscillatory regime. Second, the
validity of this equation of motion breaks down when the backreaction of the axions and
the fragmentation of the inflaton become significant. If the inflaton loses too much energy
during the preheating process and the energy density of the axions becomes comparable to
that of the inflaton, the problem is better addressed with a lattice simulation. However,



150 Chapter 7. Post-Inflationary Dynamics

0.5 1 1.5 2 2.5 3
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

Figure 7.3: Floquet exponents as a function of the momentum k. In this case the exponential
instability is only active in one band around the maximum kmax, for which B(k) ' 1.

Figure 7.4: Stability charts for the Hill equation at k = kmax: the plot shows in red the points

of ⌧̃', �⌧̃' for which the Floquet exponent µk � 0.01 for ⇤4(⌧')
f2
#

' 4 ⇥ 10�6. The colored points

represent the set of �⌧̃' and h⌧̃'i for which the Floquet exponent is µk � 0.01, and therefore
we have parametric resonance. The left plot shows the stability chart for those values of the
inflaton vev that correspond to heavy axions — m# 2 (10�11, 10�5)MPl — that would make up
dark matter, while the plot on the right shows higher values of h⌧̃'i, which corresponds to lighter
axions — m# 2 (10�38, 10�27)MPl — that stay relativistic until today.

backreaction and rescattering generally halt parametric resonance and the subsequent
particle production. Thus, we stop our analysis once the energy density of the axions
becomes comparable to that of the inflaton, i.e. when ⇢# ' O(10�1)⇢'. Consequently,
we expect that a lattice simulation will not significantly alter the overall results.

eq. (7.74) can be considered analogous to the equation of a damped harmonic oscillator
with a time-dependent frequency

!2(s) =
4k2

m2
'

✓
1

a

◆2

� �
⌧̃ 0'
⌧̃'

s0
s2

+ 4
⇤4(⌧')

f2

#
m2

'

e�h⌧̃'ie��⌧̃' cos(2s) . (7.84)
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Figure 7.5: Di↵erent stages of parametric resonance for di↵erent modes k varying around kmax '
m'/2, in our theory in an expanding background with scale factor a ⇠ t2/3. The values used in
these plots are ⇤4(⌧') ' 7 ⇥ 10�4, m' ' 5 ⇥ 10�5, h⌧̃'i = 6.3⇡ and �⌧̃' = 5⇡, giving the axion
mass m# ' 2⇥ 10�5MPl. From left to right we show longer periods of time. On the top, we plot
the mode evolution, while on the bottom the number of particles nk. The time is shown in units
of 2⇡/m', which corresponds to the number of oscillations of the inflaton field. After around 20
oscillations, the resonance ceases, and the occupation number becomes constant.

As the inflaton oscillations dampen over time, the displacement �⌧̃'(t) decreases as
�⌧̃'(t) = �⌧̃'(t0)

t0
t
. Eventually, �⌧̃' < 1, allowing the oscillatory exponential term

to be expanded, simplifying the equation to the Mathieu equation. In this regime, para-
metric resonance becomes e�cient when the computed Floquet exponents exceed the
Hubble scale, i.e., µk > H. However, when �⌧̃' > 1, higher-order terms in the oscillatory
exponential must be included:

e�h⌧̃'ie��⌧̃'
s0
s

cos (2s) = e�h⌧̃'i
✓
1��⌧̃'

s0
s
cos (2s) +

1

2
�⌧̃2'

⇣s0
s

⌘2
cos2 (2s) + ...

◆
.

(7.85)
When a = 1, in a non-expanding background, the periodic sign change of cos(2s) term
temporarily o↵sets the suppression from h⌧̃'i. In an expanding universe (a 6= const.), the
displacement �⌧̃' decreases due to cosmic expansion, making the suppression from h⌧̃'i
increasingly significant over time.

To quantify resonance in an expanding background, even when �⌧̃' > 1, we define a
resonance parameter q:

q = 4
⇤4(⌧')

f2

#
m2

'

�⌧̃'e�h⌧̃'i = 4�⌧̃'
m2

#

m2
'

. (7.86)

A larger q corresponds to stronger parametric resonance. While q scales linearly with
⇤4(⌧') and �⌧̃', it decreases quadratically with m', implying that lower inflationary
scales enhance resonance. The dependence of q on h⌧̃'i is non-trivial: q initially increases
but eventually drops sharply beyond a critical value.

fig. 7.5 illustrates the growth of the modes and its number density in an expanding
background. Over time, the oscillations of #k slow down, deviating from solutions derived
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Figure 7.6: Number and energy density of particles created via parametric resonance for the
model of fig. 7.5. We see that both quantities stop growing and start redshifting before the end
of parametric resonance (shown by the pink vertical line).

from the Mathieu equation. Initially, axion production grows significantly, but resonance
ceases after approximately 20 inflaton oscillations, as shown by the occupation number
nk plateauing in the bottom panels of fig. 7.5.

For the axion field to behave as radiation today, its mass must satisfy m# . TCMB '
10�31MPl. Under this condition, the resonance parameter q is constrained as:

q . 4⇥ 10�58

m2
'

�⌧̃'

✓
1� 1

h⌧̃'i

◆
' 10�48�⌧̃' . (7.87)

In this regime, q becomes extremely small, limiting the e↵ectiveness of parametric reso-
nance for low-mass axions. Thus, as discussed earlier, for very light axions the driving
oscillations primarily arise from the kinetic mixing between the axion and the inflaton
fields.

However, q grows exponentially when heavier axions are considered, allowing them to
serve as viable dark matter candidates. The total number and the energy density of the
created particles can be computed using eqs. (7.25) and (7.26), with the results shown in
fig. 7.6. During the period of parametric resonance, both quantities increase significantly,
but as preheating concludes, they begin to dilute as the expansion of the universe becomes
non-negligible. The particle number redshifts as a�3, while the energy density as a�4.
Interestingly, both quantities cease their growth slightly before the end of the parametric
resonance, which is marked by the pink line in fig. 7.6. This subtle discrepancy amounts
to roughly ⇠ 1%: n#(t22.7) ' 5.2⇥ 10�16M3

Pl
, while n#(t17.7) ' 6.8⇥ 10�16M3

Pl
.

For this parameter set, the axion density parameter ⌦# can also be computed using
eq. (7.47), revealing a significant overproduction of DM. As detailed in the previous
section, such an overproduction shifts the time of matter-radiation equality to an ear-
lier epoch. To quantify this, the time of matter-radiation equality is calculated using
eq. (7.52). Specifically, for the chosen parameters, the ratio of the scale factors is given
by aeq

a⇤CDM
eq

' O(10�14), which is significantly less than unity. This result implies that

matter-radiation equality occurs much earlier than in the standard ⇤CDM cosmology,
leading to a universe whose evolution diverges notably from our observed one. We can
find the mass of the produced axions for which the axions saturate the DM bound and
would make up of all DM (⌦#h2 ' ⌦DMh2 ' 0.12). We find that this condition is satisfied
for m# ' 8.2 ⇥ 10�14MPl. This result provides a constraint on the model parameters.
By fixing the axion mass to this value, we can derive bounds on the remaining parame-
ters of the model. These constraints are depicted in fig. 7.7, where we plot the values of
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Figure 7.7: ⇤4(⌧') vs h⌧̃'i such that the mass of the axion satisfies the equality ⌦#h2 ' ⌦DMh2 '
0.12, and makes up all of DM.

(⌧̃', ⇤4) under the requirement that axions make up the entirety of the dark matter in
the universe.

7.2.2 The Fate of Preheated Axions

We now turn to the fate of axions produced via parametric resonance within string-
inspired models. Addressing this requires examination of the possible axion decay chan-
nels into both visible and hidden sector states. This in turn depends critically on how
the standard model (SM) and dark sectors are realized in the string construction. In
Type IIB compactifications, for instance, the placement of the SM in extra dimensions
— specifically its relation to the four-cycles whose volume moduli drive inflation — di-
rectly a↵ects the coupling between the inflaton-partner axions and the SM. This, in turn,
governs the axion decay rates into visible sector particles.

Without diving into the specifics of reheating channels, some general observations can
be made, Firstly, axions sourced predominantly from kinetic mixing are ultralight. Irre-
spective of the reheating channel, their contribution to the e↵ective number of relativistic
degrees of freedom is negligible, �Ne↵ . 10�6. For heavier axions, parametric resonance
production is more e�cient, but these massive axions cannot always persist through cos-
mic evolution without consequences. In the limit where m# ⇠ m', the axion becomes
non-relativistic soon after production. During radiation domination, these axions redshift
slower than radiation, potentially overtaking the universe’s energy density and leading to
overclosure. To prevent this, the axion decay must be e�cient. If the axion decays to
visible sectors particles, then it simply modifies the process of reheating. If instead the
axions decay to hidden sector states, it could lead to an enhancement of �Ne↵ . We now
enumerate the most obvious decay channels for the axions produced during preheating.

Axions couple to gauge fields via the usual Chern-Simons coupling

L � �
g#��
4
#F eF . (7.88)

where g#�� ⇠ 1

f#
. Therefore, the axion can decay into two gauge bosons with a decay rate

�#!�� =
g2
#��

m3

#

64⇡
. (7.89)
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If the PR axions couple directly to the visible sector, the above allows a direct decay into
visible sector gauge bosons. Alternatively, the gauge boson could be part of the hidden
sector. In the context of type IIB, this can occur when a stack of D7-branes is supported
on a blow-up cycle. In such a situation, the PR axions would eventually turn into a
component of dark radiation. However, this is a di�cult scenario to make consistent with
reheating. Via N = 1 supersymmetry, one expects that the scalar partner of the PR
axion couples to the dark gauge bosons via an operator 'F 2. If this scalar field is the
inflaton, then this operator yields a direct decay channel in dark radiation, disrupting the
latter process of reheating. For fibred CY compactifications in fiber inflation models, this
issue was first raised in [391]. Excessive dark radiation from these decays places significant
constraints on such constructions. Current studies often avoid including this U(1) due
to these challenges. More generally, it is di�cult to construct scenarios where the axion
interacts with a hidden sector while the corresponding saxion remains decoupled. In most
cases, the inflaton decays perturbatively into the dark sector, saturating or exceeding the
bounds on dark radiation.

A similar decay channel occurs via the gravitational Chern-Simons coupling of the axion.
The relevant operator is

L � g#hh
4
#R eR , (7.90)

with g#hh ⇠ 1/f# which arises naturally in string theories [54, 106–108, 392–394], see
chapter D. The Feynman diagram of this process is shown as the middle image of fig. 7.8.
This interaction is characterized by the decay rate [395–398]

�#!hh =
g2
#hh

m7

#

512⇡M4

Pl

. (7.91)

We can give an estimate of the order of magnitude by using the coupling as in eq. (D.13):

�#!hh =

✓
N

384⇡2f#

◆2 m7

#

512⇡M4

Pl

⇠ O(10�11)
m7

#

f2

#
M4

Pl

⇠ O(10�7)
m7

#

M6

Pl

, (7.92)

where in the last equality we used f# ⇠ 10�2MPl. While gravitons produced this way
would constitute a contribution to �Ne↵ , the decay rate is so small as to be negligible. If
the PR axions have no decay channel other than to gravitons, we can approximate them
as stable for the purposes of their cosmological impact.

Most inflationary models in string compactifications are characterized by the presence of
more than one axion. Via the kinetic mixing of the heavy and light axions (respectively
#h and #l), one obtains the following coupling

L � �#h#
3

l
. (7.93)

This represents the possibility of a three body decay (see the left Feynman diagram in
fig. 7.8) that, in the limit m#l

! 0, has a decay rate

�#h!#l#l#l
=

9�2m#h

2(4⇡)3
. (7.94)

However, the coupling of the kinetic mixing between the axions depends on the mass of

the light axion is � ⇠
m

2
#
l

f
2
#

. Indeed, when the mass of the light axion is very suppressed,

the decay rate will be as well.
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Figure 7.8: Feynman diagrams of the relevant processes for Case II-c where the produced axion
is heavy and not stable. On the left, we depict the three body decay of the heavy axion into
the light ones (green dashed lines). The middle diagram shows the heavy axion (blue dashed
lines) decaying into gravitons (double squiggly orange lines). The right diagram instead shows
the gravity-mediated scattering of the heavy axion into every other d.o.f. of the theory, which we
label as x (continued green line).

The produced axions have a cross-section to produce all other particles of the theory via
intermediary gravitons. We call these particles x, and they represent both the visible
and the hidden sectors. The Feynman diagram of this interaction is shown as the right
figure of fig. 7.8. Such an idea was also used for gravitational reheating in [399–401]. The
scattering rate, in the case where mx ! 0 reads

�##!xx ⇠ 1

1024⇡

n#m2

#

M4

Pl

=
1

1024⇡

⇢#m#

M4

Pl

. (7.95)

To estimate this scattering rate, we can relate the axion properties to those of the inflaton
field: in our analysis we stop the resonance when the energy density of the produced axions
is at most ⇢# ⇠ 0.1 ⇢' = 0.1 ⇥3H2M2

Pl
, which at the end of inflation reads ⇢' = 3m2

'M2

Pl
.

Furthermore, we are producing axions whose masses are not many orders of magnitudes
away from that of the inflaton field. Having postulated this, the scattering rate can be
roughly estimated as

�##!xx ⇠ O(10�5)
m3

#

M2

Pl

. (7.96)

We can therefore write the following set of equalities, relating the decay rates to that of
the axion photon decay �#!�� :

�#!hh ' O(10�2)�##!xx

m4

#

M4

Pl

⇠ O(10�5)�#!��

m4

#

M4

Pl

f2

#

M2

Pl

. (7.97)

Taking f# ⇠ 10�2MPl, and specifying the mass of the axion to be lower than H, then by
taking H ⇠ 10�5MPl, the biggest values we obtain result in �#!�� ⇠ 10�13MPl and

�#!hh ⇠ O(10�22)�##!xx ⇠ O(10�29)�#!�� ⇠ 10�42MPl . (7.98)

It is clear from this that the main decay channel, if it is present, will be the axion photon
decay, as the gravitons-mediated interactions are very suppressed. However, if there is
no axion-photon coupling, and the only possible interactions are the gravitational ones,
the scattering of axions into x particles will be the predominant channel. Indeed, the
gravitational axion scattering rate is greater than the axion-graviton decay rate. This
happens because the scattering rate is enhanced by the number density of the axion
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particles, which grows during preheating, and overcomes the suppression factor ( 1

M
4
Pl
)

common between the two rates.

We note that this hierarchy is valid at early times, when we can neglect the dilution of
the energy densities due to expansion. At later times, the redshifting of the axion energy
density will reverse the hierarchy.

7.3 Application: Fibre Inflation

We now specialize to a particular realization of string-inspired inflation models in the
context of fibre inflation models embedded in the Large Volume Scenario (LVS) compact-
ifications.

7.3.1 Review of LVS & Fibre Inflation

We will consider a fibred CY 3-fold with volume

V = ↵
⇣p

⌧1⌧2 � �⌧3/2
3

⌘
. (7.99)

Crucially, the Kähler moduli and their axionic partners are stabilized by quantum cor-
rections to K and W . The Kähler potential including perturbative corrections is given
by

K = K(gs, hzai) + K0 + K↵0 + Kgs ,

K0 = �2 ln(V) ,

K↵0 = �⇠̂/V .

(7.100)

where K0 is the tree-level Kähler potential that depends on the volume of X6, V , while
K(gs, hzai) encloses the contributions from gs and the stabilized complex structure moduli
za, and contributes an overall factor to the potential. The corrections come from higher
derivatives (K↵0) and string loops (Kgs). The ↵

0 correction depends on the Euler number

of X6, �(X6), via the parameter ⇠̂ := � ⇣(3)�(X6)

2(2⇡)3g
3/2
s

[121] while loop corrections depend

on the vacuum value of the complex structure moduli which are stabilized at tree-level
by fluxes [402–404]. Additionally, one can also consider higher superspace-derivative
corrections, which might be relevant for fibre inflation [405–407].5

The non-perturbative contributions to W that we consider arise from D7-branes or ED3s
wrapping 4-dimensional cycles in the CY. Those take the form

W = W0 +
X

i

Aie
�aiTi , (7.101)

where Ai are the one-loop Pfa�an (that can depend on the complex structure moduli,
the axiodilaton, and the brane moduli, which we take to be stabilized such that Ai is
e↵ectively a real constant), and a = 2⇡ for ED3s or a = 2⇡/N for D7-branes, where N is
the dual Coxeter number of the gauge group generated by the stack of branes.

For the purpose of computing an inflationary potential in the next sections, we focus on
the large volume limit of the e↵ective theory: in this way we can recast the potential

5We omit a detailed treatment of both higher derivative and string loop corrections as their precise
form will not a↵ect the analysis in this work.
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in inverse powers of V . At first order, which corresponds to O(V�3) , we have the LVS
potential [31]

VLVS ·e�K =
8a2

3
A2

3

3↵�

p
⌧3 e�2a3⌧3

V +4a3A3W0

⌧3e�a3⌧3

V2
cos(a3✓3)+

3⇠̂W 2
0

4V3
+�Vuplift . (7.102)

At this order, the axion ✓3, small cycle modulus and the overall volume are stabilized
respectively at

✓3 =
⇡

a3
, ⌧3 =

✓
2↵�

⇠̂

◆�2/3

, V =
3↵�

p
⌧3 W0

4a3A3

ea3⌧3 , (7.103)

and the vacuum is a SUSY-breaking AdS minimum, which can be tuned to near-zero CC
of either sign by the uplift term �Vuplift (for a discussion of the possible sources of uplifting
see e.g. [408]). The fibre volume modulus ⌧1 obtains a vev due to the Kähler potential
string loop corrections Kgs . The relevant terms in the potential arise at O(V�10/3) and
are
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where we used ⌧2 ' hVi/↵p⌧1. We can recast eq. (7.104) into the inflaton potential by
defining the canonically normalized field [47]

' ⌘
p
3

2
ln ⌧1 , (7.105)

and considering its shift from the vacuum value, ' = h'i + '̂, such that Vinf(h'i) = 0,
the inflaton potential from fibre inflation reads

Vinf = VLVS +
W 2
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Here, we defined A = Aloope�2h'i, B = Bloope�h'i/2 and C = Cloopeh'i in terms of
Aloop, Bloop, and Cloop which contain the string 1-loop corrections to the Kähler potential
of the Kähler moduli.

The ✓1 and ✓2 axions obtain their masses only at O(V� 4
3 e�V

2
3 ) from the terms
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Thus the axions have vanishing vevs h✓1i = h✓2i = 0. Akin to the inflaton, we will need the
canonically normalized axions to study parametric resonance. Following the procedure
discussion in section 7.2, the Kähler metric gij = 2 @

2
K

@T i@T̄ j
at leading order reads
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where we replaced the modulus ⌧2 with its vev. Thus we find decay constants

f1 =
1p

2 a1⌧1
and f2 =

↵

a2⌧2
, (7.110)
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and ai✓i = #i/fi. For the axionic partner of the inflaton, the canonically normalized
potential is

�Vax ' 8a1|A1W0|⌧1
V2

e�a1⌧1 cos (#1/f1) . (7.111)

7.3.2 The Visible Sector and Perturbative Reheating in Fibre Inflation

The above ingredients stabilize the compactification and realize inflationary physics. From
here, we can study the preheating of axions in the model. Before doing so, we first review
certain requirements for viable fibre inflation models. These requirements illuminate
the visible and hidden sector content of the EFT, which is critical for predicting the
eventual fate of preheated axions. This step is also essential for constructing a complete
cosmological model, as the compactification must feature a sector that mimics the minimal
supersymmetric standard model (MSSM) or an extension thereof, as well as a mechanism
to reheat this MSSM-like sector.

The interplay between the SM-like sector, fibre inflation, and axion physics can lead to
two main possible outcomes for the inflaton-partner axion:

I- If the SM sector resides on one of the fibration four-cycles that drive inflation, this
setup enforces the absence of stringy instantons on that cycle, leaving the partnered
axion extremely light. Due to the shared four-cycle, this axion may interact with
the SM gauge fields. In such a scenario, the axion could manifest as an ultra-light
Cosmic Axion Background (CaB), contributing negligibly to dark radiation with a
maximal �Ne↵ . 10�6. If the axion decays into SM particles, such as photons, no
observable axion relic would remain.

II- If the SM is instead located on an additional, smaller blow-up four-cycle, the inflaton-
partner axion becomes sequestered from the SM and forms part of the dark sector.
This case leads to several sub-scenarios:

a. A super-sequestered axion scenario, where the axion decays solely within the dark
sector. If the axion is su�ciently light, it behaves as a CaB; otherwise, it risks
overproduction, contributing excessively to dark matter.

b. The axion decays into heavier dark sector states, such as those associated with a
condensing gauge group. The outcome mirrors the super-sequestered case (II-a).

c. Couplings between axions and additional light sectors allow the axion to decay
further. In the absence of such couplings, the only remaining interaction would
be gravitational.

To better understand these scenarios, we now outline the necessary conditions for a consis-
tent fibre inflation framework and reheating mechanisms in these setups. The MSSM-like
sector can arise from either D7-branes wrapping 4-cycles of eX6 or D3-branes localized
at singularities. The coexistence of a SM-like particle physics sector and successful fibre
inflation within the same CY orientifold compactification places certain constraints on
the total setup:

• Fibre inflation requires a certain set of string loop corrections to generate the infla-
tionary scalar potential.

One generic way often studied in literature to ensure this condition consists of
putting D7-brane stacks on the ⌧1 and ⌧2 fibration 4-cycles [409]. This condition
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becomes significantly less constraining if some of the loop corrections arise from 10D
bulk loops of closed strings as argued in [410].

• The LVS mechanism of Kähler moduli stabilization underlying a viable setup for
fibre inflation requires the presence of a non-perturbative e↵ect on the LVS blow-up
4-cycle responsible for the stabilization of the CY volume.

This condition can be satisfied by either wrapping a Euclidean D3-brane (producing
an ED3 instanton) or a small D7-brane stack (producing gaugino condensation) on
the LVS blowup 4-cycle. Using the ED3 variant is unfeasible as this results in LVS
stabilization of the overall CY volume at a value which renders the scale of the fibre
inflation scalar potential incompatible with CMB normalization [409]. Hence, the
first possibility to implement this and the above condition unavoidably give rise to
hidden sectors.

• A SM-like particle physics sector only works if the 4-cycle carrying the SM sector
7-branes carries no brane instantons and does not intersect with any other instanton-
generating 4-cycle in the CY orientifold.

This condition in turn requires [411,412] a judicious choice of D7-brane gauge fluxes
to avoid the unwanted intersections and/or to de-rigidify the fibre or base 4-cycle
in case the SM sector 7-branes were wrapped on one of them. Finally, there is
the phenomenological requirement [409] of putting the SM sector, when realized on
7-branes, on a small 4-cycle (typically this limits placement to one of the blow-ups)
to avoid too weak SM sector gauge couplings.

Let us now briefly review the literature on reheating in fibre inflation models [47, 96, 97,
372, 413–416]. Reheating mechanisms vary depending on whether the SM sector arises
from D7-branes or D3-branes. If the MSSM-like sector arises from D7-branes on the fibre
divisor, the inflaton directly couples to the visible sector. This leads to dominant inflaton
decay modes into visible gauge bosons and Higgs degrees of freedom. On the other hand,
for a visible sector realized by D3-branes at a singularity, reheating is more challenging
due to the absence of direct couplings. Modifications to the Giudice-Masiero term in the
Kähler potential have been proposed [416] to facilitate reheating while avoiding excessive
dark radiation production. These terms read
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(7.112)

where y1+y2 = w1+w2 = 1 and ki = yi+wi/2 for i = 1, 2, Hu and Hd are the MSSM Higgs
doublets and Z represents a bilinear coupling of the Higgs fields. The Giudice-Masiero
mechanism traditionally introduces terms that couple the moduli to visible-sector fields,
enabling the generation of soft supersymmetry-breaking terms in supergravity. However,
in this context, it serves an additional purpose: facilitating reheating by allowing the
inflaton to decay into MSSM fields indirectly.

The Giudice-Masiero terms also a↵ect the dynamics of axions. In cases where the SM
sector is on D3-branes, the axion, being the imaginary part of the fibre Kähler modulus,
does not directly couple to visible-sector fields. The introduction of the Giudice-Masiero
terms provides an indirect decay channel for the inflaton as well as for its partner axion,
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ensuring that the energy initially stored in the axion field can be transferred to MSSM
particles, such as Higgs bosons or gauge fields. As we will see, this interaction is crucial if
one wants to mitigate overclosure: in the absence of such terms, the axion could dominate
the energy budget of the Universe, either as a component of dark radiation or dark matter.

7.3.3 Preheating in Fibre Inflation

We now turn to preheating in fibre inflation models. We will take the inflationary potential
given in eq. (7.106) and consider the non-perturbative production of # ⌘ #1 axions, whose
potential is given in eq. (7.111). After Fourier transforming the # axion field, the relevant
system of equations to be solved is as in eq. (7.13)
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which can be rewritten in terms of ⇥k = a3/2#k, with 0 = d
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Here, we again define as in (7.105) the canonically normalized inflaton as ' ⌘
p
3

2
ln ⌧1

and split this as ' = h'i + '̂ into the vacuum expectation value h'i =
p
3

2
lnh⌧1i at the

stabilized minimum and the displacement '̂ =
p
3

2
ln ⌧1

h⌧1i .

We plot in fig. 7.9 the mode functions and the evolution of the particle number density.
We can again compute the reheating temperature, and the DM abundance. We find also
here that ⌦# > ⌦DM . During the evolution of the universe, the produced axion particles
overcome the radiation produced during reheating before a⇤CDM

eq , and therefore would
change the history of the universe.

We note that one should also consider the possible self-resonance from the inflaton field
induced on itself. The equations one needs to solve will look fairly similar:
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We check that this produces a negligible amount of parametric self-resonance. Let us
consider the following parameters

⇠ a3 A3 W0 gs ↵ � h⌧3i h⌧1i hVi
0.894 ⇡/4 1 10 0.28 0.25 3.01 3.09 6.28 936

(7.116)

By taking the second derivative of eq. (7.111) we see that the axion mass is

m#i
' 8ai|AiW0|

V2f2
i

⌧ie
�ai⌧i . (7.117)
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Figure 7.9: Di↵erent stages of parametric resonance in our theory in an expanding universe, for the
values in eq. (7.116), inflaton mass m' ' 7.710�4MPl, and axion mass m# ' 6.77⇥10�5MPl. From
left to right, we show longer periods of time. On the top, we display the mode evolution, while on
the bottom the number of particles nk. The time is shown in units of 2⇡/m', which corresponds
to the number of oscillations of the inflaton field. After around 10 oscillations, resonance ceases
and the occupation number becomes constant.

For concreteness, we take the approximated value for the vev of the fibre modulus ⌧1,

stabilized as h⌧1i ' g4/3s

�
4A

B
hVi
�2/3 ⇠ 6.28, then the base modulus ⌧2 acquires a vev

h⌧2i = hVi
↵

p
h⌧1i

⇠ O(103). The mass of the base axion will be exponentially suppressed by

⌧2, and therefore we can safely approximate m#2 ! 0. We note that, if one of the axions
is heavy, the other one has to be very light. This is because the volume modulus is fixed,
and the fibre and base moduli vary accordingly.

In order to keep track of the complete evolution of the inflaton field from the end of
inflation on, we keep the full potential. We note that the validity of this analysis is limited
once backreaction of the axions and fragmentation of the inflaton become important. If
the inflaton loses too much energy in the preheating process, and the energy density
of the axions becomes comparable to that of the inflaton, a lattice simulation would
be in place. However, the generic e↵ects of backreaction and rescattering are to stop
parametric resonance, and subsequently to stop particle production. Therefore, we stop
our analysis once the energy density of the axions becomes comparable to that of the
inflaton, i.e. ⇢# ' ⇢', and we expect that a lattice simulation will not change much the
overall result. While this regime of strong backreaction is beyond the scope of our work,
we note that a full treatment with lattice simulations may show further non-perturbative
phenomena such as the formation of oscillons [417] or axion stars [418] (i.e. a Bose-Einstein
condensate).

7.3.4 Constraints on Fibre Inflation

There are two possible constructions of the SM compatible with fibre inflation. These
correspond to Cases I and II discussed earlier. In Case I, the SM resides on a stack
of D7-branes that wrap the same 4-cycle as the inflaton. This configuration leads to
an unsequestered SM, where the soft terms are of the same order as the gravitino mass.
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Figure 7.10: Blue: Case II-a, idealized case where the axion does not decay. Purple: Case II-c,
axion decays to Higgses. Ratio of matter radiation equality scale factor aeq over the one from
⇤CDM vs. the ratio between the axion and the inflaton mass. Underneath the pink line, where
the ratio is 1, the produced heavy axions are “overclosing” the universe. The parameters used for
computing this plot are corresponding to eq. (7.116).

Since the inflaton instead is much lighter than the gravitino, its decay into supersymmetric
particles is kinematically forbidden [372]. Consequently, the primary decay channels of the
inflaton are into Higgs bosons, SM gauge bosons, and hidden sector axions. In this case,
the branching ratio of inflaton perturbative decay into the two axions is small, significantly
less than unity. Parametric resonance e↵ects will non-perturbatively produce light axions,
contributing to dark radiation, but the observational e↵ect will remain in agreement with
observational constraints (�Ne↵ . 10�6).

If, however, the produced axions are heavier, their interactions with the SM particles will
cause them to decay into visible sector particles. This would accelerate the reheating
process, leading to a higher reheating temperature.

In Case II, the SM is living on D3-branes at singularities, and it is sequestered from the
bulk, resulting in an e↵ective decoupling of the inflaton sector from the visible degrees
of freedom. This case in its most simple realization has been ruled out in [372] because
it produces too much dark radiation. A later construction [416] solves this problem by
considering a more general moduli-dependence of the Giudice-Masiero term that allows
to considerably reduce the production of dark radiation by introducing an additional cou-
pling between the inflaton fields and the Higgses in the Kähler potential (cf. eq. (7.112)).

In Case II-a, if the produced axions are heavy and remain stable, they contribute to the
universe’s dark matter energy density. In this case, if their density is too high, they could
lead to the overclosure of the universe, thus imposing stringent constraints on the model
parameters to avoid such a scenario. The heavier the axion, the earlier the time of matter-
radiation equality is reached. We can use eq. (7.52) to find the maximum value of the
axion mass such that we do not obtain an early matter radiation equality: we want ↵0 =

aeq

a⇤CDM
eq

< 1. This provides an upper bound on m#, depending on the model parameters.

In fig. 7.10, we plot this ratio as the blue line. Since the produced axions remain as
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non-relativistic particles and do not decay, values below the pink line in the shaded blue
region (↵0 = 1) indicate overproduction of dark matter, leading to an overclosed universe.
Therefore this leads to a bound on the axion mass m# . 10�19m' ⇠ 10�2 MeV. However,
we stress that this is an idealized benchmark case, as in a realistic scenario the heavy
fields will find some channel through which they decay.

Case II-b describes the case in which the axions decay products are massive. Here, we
need to distinguish further between two cases: if they decay into massive non-relativistic
fields or into massive but relativistic fields. In both cases, the universe still faces the
risk of overclosure. In the first case we are in a similar situation as in the stable axion
scenario II-a, and the expression for aeq/a⇤CDM

eq does not change from eq. (7.52). If
the decay products are relativistic instead, they will initially redshift as radiation, and
as they become non-relativistic, they transition to behaving like matter, modifying the
redshift dynamics and slightly relaxing the constraints on the model since the energy
density redshifts more rapidly when the particles are relativistic. The new aeq,1 comes
from eq. (7.55) and we can use eq. (7.56) to constraint the axion mass via the new ratio
↵1. Case II-c instead corresponds to axions decaying into relativistic degrees of freedom,
that will therefore contribute to �Ne↵ as eq. (7.60).

The di↵erent possible decay channels are illustrated in the previous section; let us now
expand on them. As discussed in section 7.2.2, a light dark sector arising from D7-branes
wrapping a blow-up 4-cycle is disfavored. This is because perturbative decays of the
inflaton into such a sector tend to overproduce dark radiation. In the context of fiber
inflation, the same reasoning applies directly, leading to a similar issue. Consequently,
we exclude the possibility of a 7-brane dark sector associated with additional blow-ups in
this setup.

We now estimate the decay of the fibre axion in the base axion via kinetic mixing (cf.
the left diagram of fig. 7.8). Indeed, in fibre inflation, the vev of the fibre modulus
defines the vev of the base modulus by keeping the overall volume fixed, and therefore
the mass of the base axion is set by fixing the mass of the fibre axion: if one is heavy, the
other will be very light. Therefore, the three body decay defined above will be extremely
suppressed, as the decay rate �#h!#l#l#l

depends on the mass of the light axion #l, where
now #l = #2 and #h = #1. For the values we chose in eq. (7.116), m#1 ' 8.6⇥ 10�5MPl,
and m#2 ⇠ 10�370MPl ⇠ 0.

The two other interactions in fig. 7.8 do not require any direct coupling, but rely on
gravitational interaction. First, the axion can decay to gravitons via a two body decay
with decay rate
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|g#hh|2m7

#

M4

Pl
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, (7.118)

where g#hh ⇠ 1

384⇡2f#
is derived in eq. (D.13). The time for the axion to decay into the
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Another interesting possibility is the scattering ## ! xx, where with xx we mean both
hidden sector and visible sector particles, as it is a gravitational interaction. The decay
rate, independently of the decay products, can be approximated, as explained in the above
section, by

�##!xx ⇠ 1

1024⇡

m3
'

M2

Pl

. (7.121)

This interaction will lead to a contribution to �Ne↵ when x is a dark sector or the light
axion — even if a negligible one — while it will contribute and fasten the reheating
process when x is a SM particle. There will therefore be a branching ratio that takes
into account the amount of visible or hidden degrees of freedom if we want to compute
these contributions in any given su�ciently concrete specific string model with an explicit
SM-like sector.

Finally, we consider the terms in eq. (7.112) used to obtain a direct channel with the
MSSM and achieve an e�cient reheating. These introduce additional derivative couplings
between the axion and the Higgs fields, that lead to a scattering ##! HH, as we derive
in section D.1. The decay rate (considering y1 = 1 and y2=0) reads
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Since the resonance is most e�cient when the momentum of the produced axion is |~p#| ⇠
m'/2, we can estimate
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This decay will contribute to the reheating of the standard model, if e�cient enough.
However, before decaying, this axion behaves as matter, and will contribute to dark
matter. Depending on its mass and its energy density, it might take over the energy
budget of the universe before a⇤CDM

eq , and therefore overclose the universe. To check this,
we need to estimate ↵1 ⌘ aeq,1

a⇤CDM
. We can estimate the time of decay as:
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Therefore,
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With eq. (7.56), we find
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where we defined ↵0 in eq. (7.52) as the ratio between the matter radiation equality in
the ⇤CDM model and in the idealized case where the axion does not decay. We plot the
two curves ↵0 and ↵1 in fig. 7.10. This case is much less constraining, as we expected,
with respect to the idealized case where the axion did not decay. The axion mass is now
constrained to m# . 10�8m' ⇠ 100TeV.

7.3.5 Influence of axion initial conditions

Our approach relies on taking the initial condition of the axion for parametric resonance
to be h#i = 0. However, this may not be the state of the axion field after inflation. During
inflation, the axion can undergo a random walk if its mass is below the Hubble scale Hinf

during inflation. If the axion walks, the initial condition for parametric resonance may be
non-zero. As long as the displacement of the axion at the end of inflation is such that the
e↵ective axion mass is positive, one can modify the discussion above by keeping track of
the axion zero mode. However, if m2

#,e↵
< 0 initially, there will be a tachyonic instability

which will lead to a non-perturbative production of axions as well — we do not enter into
details as this was already well studied in [419]. This issue is relevant only if the axion
is su�ciently lighter than H. Above we have illustrated that parametric resonance for
closed string axions is most e�cient when the axion mass is roughly that of the inflaton.
In this case, the axion will not undergo large displacements from random walks during
inflation and instead finds its minimum rapidly.

7.4 Remarks

Certain string compactifications give rise to axion potentials that depend on an expo-
nential function of the Kähler moduli. Identifying one of these moduli with the inflaton
results in an axion mass that varies with time as the inflaton oscillates about the minimum
of its potential, which sets the stage for parametric resonance. However, this exponential
coupling gives rise to di↵erent phenomenology compared to typical parametric resonance
studies. Furthermore, the inflaton couples kinetically with the axion, and so the axion
equation of motion is described by the Whittaker-Hill equation, a generalization of the
typical Mathieu equation found in preheating literature.

In this framework, particle production occurs most e↵ectively when the inflaton reaches
its maximum negative displacement relative to its vacuum expectation value, where the
produced particles remain light. As the inflaton oscillates to positive values, these particles
become heavy. In an expanding universe, the oscillations of the inflaton field are dampened
due to the Hubble expansion. This damping plays a key role because it gradually shifts
the resonance from being broad, where particle production is very e�cient, to narrow,
where particle production becomes much less e�cient, before eventually slowing it to a
halt. In the case of string inflation, the damping is even more severe. The oscillations in
the exponential coupling lead to exponential damping, which means that the conditions
for resonance can change dramatically compared to standard QFT models. This drastic
damping highlights an important point: it is not enough to simply compare the growth
rate of resonance in a non-expanding universe to the expansion rate of the universe in
order to predict resonance in an expanding universe. In fact, the exponential suppression
due to damping must be carefully accounted for to understand when and if resonance
occurs.

Moreover, the oscillation strength, and consequently the particle production rate, de-
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pends on the axion mass, as this is determined by the same coupling that drives the
oscillations. Parametric resonance produces a very light axions primarily through kinetic
mixing, independent of the non-perturbative mass terms. In contrast, for a heavier axion,
the instanton contribution to the superpotential dominates production via parametric
resonance. This di↵erence arises because the kinetic mixing produces e↵ectively a bi-
linear coupling between inflaton and axion resulting in small amounts of production by
parametric resonance. The coupling provided by the instanton, however, is highly non-
linear and thus drives strong parametric resonance unless its overall scale is suppressed
by dialing the axion mass to be small.

This results in two major classes of outcomes. Case I characterizes axions that are light
enough to contribute to the e↵ective number of relativistic degrees of freedom �Ne↵ .
On the other hand, Case II describes the situation where the axion is heavy. From the
time of its production onward, it can either stay heavy throughout the cosmic evolution
(which we call Case II-a), or it can decay into massive stable fields (Case II-b), or lastly
it can decay into massless or very light particles (Case II-c). In Cases II-a and II-b, the
axion makes up a fraction of DM, depending on how much and how energetically they are
produced. Bounding the amount of DM today with ⌦DMh2 ' 0.12 we can put a bound
on the axion mass. Case II-c instead characterizes a universe filled with non-relativistic
degrees of freedom — the decay products of the axions. These contribute to dark matter
abundance, but the details depend on the decay rate, the mass of the final particles, and
other details of the compactification and the inflationary model under consideration. We
provide expressions for each Case, including final observable quantities and the associated
limits. As an illustrative example, we examine fibre inflation, considering the evolution
of both the inflaton and axion fields.

In order to simplify the study of parametric resonance, we considered scenarios where
complicating factors such as self-resonance of the inflaton field, or tachyonic preheating
from an imaginary e↵ective axion mass, could be safely neglected. We achieved this by
choosing to assign as initial condition of the classical mode of the axion field the minimum
of the potential, such that m2

#,e↵
> 0. However, in models of inflation where H > m#, the

axion field value can undergo random walks. In the case where the axion field initially
is displaced from its vev, one needs to take into account also the motion of the axion
field towards the minimum of the potential. This can lead to a delay in the start of
preheating, or to tachyonic reheating if m2

#,e↵
< 0. We note that parametric resonance in

string inflation may also allow for a process akin to “instant reheating,” where particles
decay almost immediately after being produced, in the case where the axion decay is very
rapid and is energetically allowed.

Finally, we wish to highlight that for fibre inflation there is no self resonance of the in-
flaton quanta, as was found instead for blow-up inflaton in [375]. The di↵erence lies in
the very sharp minimum of the blow-up modulus inflationary potential, such that [375]
finds a periodic tachyonic instability where the e↵ective mass of the inflaton field be-
comes imaginary. The scalar potential that characterizes fibre inflation does not have a
sharp minimum, and therefore also the oscillations of the inflaton field around its min-
imum will not be that violent. The e↵ective mass therefore can, but does not have to,
become imaginary. The e↵ect of parametric resonance as a non-perturbative mechanism
to produce axions from preheating is most visible when it is the lone non-perturbative
e↵ect present, and therefore we assume to be in a situation where we can neglect these
additional phenomena. We note that for a complete analysis, one should consider both
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of these types of preheating together, on a lattice. For our purposes, that is, to illustrate
the role parametric resonance plays in a non-perturbative production of axions, staying
below the limit of inflaton fragmentation and backreaction, separating the two e↵ects is
a reasonable assumption.
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Chapter 8

Conclusions

There are questions that lie just beyond the reach of our best instruments, questions about
the beginning of time, the structure of space, and the laws that shape the Universe. What
happened in the earliest instants after the Big Bang? Why do the forces of nature look
so di↵erent at low energies yet appear to unify in the ultraviolet? Is there a consistent
quantum theory of gravity—and how could we ever test it?

Remarkably, the Universe itself may o↵er the answers. The largest structures, the
cosmic microwave background (CMB), large-scale structure, and perhaps a stochastic
gravitational-wave background are relics of extreme-energy epochs. Cosmology, once data-
starved, is now a precision science, beginning to probe scales far beyond the reach of any
collider.

New observational windows have opened. Pulsar timing arrays are sensitive to nanohertz
gravitational waves and have reported evidence for a common-spectrum background.
While astrophysical sources may dominate, a cosmological origin such as inflation is tan-
talizing. A confirmed background would provide our first direct glimpse of physics at
energies where gravity is quantum and the fundamental forces converge.

This is the regime of string theory. As a consistent ultraviolet completion of gravity, it
o↵ers a framework in which spacetime geometry, gauge symmetries, and quantum fields
emerge from a unified structure. The challenge is to connect this framework to the real
world.

Axions provide one of the most promising bridges. Proposed originally to solve the strong-
CP problem in QCD, axions arise generically in string compactifications. They are plen-
tiful, often extremely light, and their masses and couplings are set by the topology and
geometry of the extra dimensions. They can play many cosmological roles—from dark
matter to inflationary relics to sources of gravitational waves.

In this thesis we explored the dynamics, phenomenology, and string-theoretic origins
of axions in cosmology, with emphasis on observational signatures and embeddings in
concrete compactifications. Our guiding question has been how the multitude of axions
predicted by string theory—the axiverse—can leave imprints on early-Universe physics,
and how such imprints can inform us about the compactification data, field content, and
mechanisms of mass generation.

Taken together, these studies chart a map across several axes of the axiverse: from light
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relics to heavy dark-matter candidates; from smooth backgrounds to sharply peaked,
sourced perturbations; and from bottom-up phenomenology to top-down string construc-
tions (and back again). They also reveal the challenges: realistic, observable models in
string theory are strongly constrained. Nonetheless, we identified consistent regions where
theory and observation can meet.

We have started the study of central aspects of the heterotic axiverse building on the foun-
dations for axions in heterotic string theory and clarified when the strong–CP problem
is solved or left unresolved. Several natural directions now suggest themselves. First, it
would be valuable to construct an explicit compactification that simultaneously (i) yields
a realistic Standard Model sector, (ii) solves strong CP with a QCD–aligned light axion,
and (iii) hosts a hidden-sector multi-axion spectator (MASA) dynamics capable of sourc-
ing a gravitational-wave signal. Concretely, this calls for a geometry–bundle–coupling
pipeline. On the geometry side, one should pick a Calabi–Yau threefold with h1,1 � 2
(to permit a nontrivial axion basis and kinetic mixings) and a polystable holomorphic
vector bundle satisfying the DUY equations and the heterotic Bianchi identity. The vis-
ible bundle data must engineer a SM-like gauge sector with massless hypercharge (no
Green–Schwarz Stückelberg mass) and a chiral spectrum. The hidden bundle/gauge fac-
tors provide the non-perturbative dynamics (e.g. gaugino condensation) that generate
axion masses and, in the MASA setup, the gauge fields that couple to spectator axions.
On the axion side, one should compute the kinetic matrix from the Kähler potential, the
charge/Stc̈kelberg matrix for anomalous U(1)’s to identify eaten directions, the anomaly
coe�cients governing Chern–Simons couplings, and the non-perturbative superpotential
terms (gauge and worldsheet instantons) that lift axion combinations. Diagonalizing the
kinetic and mass matrices then reveals whether a QCD-aligned light eigenstate exists with
the required decay constant and domain-wall number, and how strongly the remaining
spectators couple to hidden gauge fields. For the MASA phenomenology, the goal is a
hidden Abelian or non-Abelian sector with e↵ective couplings large enough during infla-
tion to source scalar/tensor modes without violating isocurvature, backreaction, or �Ne↵

bounds. Multi-axion dynamics naturally lead to multi-peaked, correlated features (“GW
forest”), so a key deliverable is a map from discrete heterotic data (intersection numbers,
Chern classes, bundle fluxes, instanton numbers) to the e↵ective parameters controlling
the sourcing e�ciency and to the predicted signal across CMB-to-PTA/LISA frequen-
cies. Finally, consistency must be checked globally: moduli stabilization compatible with
the axion sector, tadpole/Bianchi constraints, absence of a Stückelberg mass, control of
worldsheet/gauge instanton expansions, and a viable thermal history. With such a model
in hand, one can quantify the allowed Chern–Simons and gauge couplings, delineate the
viable parameter space, and present sharp, multi-channel observational targets (GW,
spectral distortions, isocurvature) that tie heterotic constructions to data.

We quantified the conditions under which a spectator sector generates a correlated GW
forest, together with its concomitant CMB spectral distortions. We also spelled out
the compactification ingredients needed to embed a MASA spectator sector in Type IIB
orientifold compactifications (e.g., adequate Chern–Simons couplings, absence of Stückel-
berg masses, and tadpole cancellation). Finally, we identified regions of parameter space
consistent with all theoretical and observational constraints (including isocurvature and
backreaction) that predict a gravitational-wave signal in the pulsar–timing–array (PTA)
band. There are numerous directions that can be pursued from this work. First, an obvi-
ous direction is to attempt a bonafide embedding of Abelian MASA models into concrete
string compactifications with specific orientifolds. Since the spectator mechanism hinges
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on the existence of an inflationary sector, a natural place to start is extensions of models
with fibre inflation, Kähler inflation, or monodromy inflation. Along a similar vein, it
would be interesting to perform scans of the type IIB orientifold landscape to determine
how common are the structures required to realize the field content of Abelian spectator
models. We have focused entirely on models with O7-planes, but it would be worthwhile
to explore other scenarios, such as compactifications with both O3- and O7-planes. Fur-
thermore, we have only considered Chern-Simons couplings of axions to gauge fields, but
one could also consider gravitational Chern-Simons couplings of the form / �GR�RR̃.
We also note that we have entirely ignored any potential signals from axions with Stück-
elberg couplings, but an interesting direction would be the study of spectator models with
massive vector bosons.

Furthermore, we quantified the e↵ect of parametric resonance during preheating in string
theoretic models of inflation. It provides a means to produce a Cosmic axion Background
(CaB) of ultralight axions utilizing the kinetic coupling of the inflaton to axions. How-
ever, this population is small and lies far below upcoming experimental probes of �Ne↵ .
Nonetheless, these CaB populations are unavoidable and may be observable in future
experiments. On the other hand, heavy axions are much more e�ciently produced. Thus
parametric resonance in string inflation could be utilized as a means to produce dark mat-
ter or alternative routes of reheating. These results were largely couched in the framework
of type IIB string theory, and it would be interesting to understand the situation in other
perturbative frameworks, such as heterotic compactifications. Beyond these considera-
tions, parametric resonance can produce compact objects such as oscillons or axion stars.
This would require a lattice treatment, but would nonethless be a natural extension of the
current work in order to completely categorize the observational consequences of para-
metric resonance of axions in string inflation. Finally, we expect parametric resonance to
produce spectator axions via kinetic or instanton couplings also in setups where inflation
is driven by a string axion as well. We leave this interesting issue for future work.

Spectator axions remain powerful diagnostics of hidden-sector structure, and their corre-
lated signals across cosmological observables could serve as a practical “spectroscopy” of
extra dimensions. If a common axion fingerprint were to emerge, i.e., coherent features
in the CMB, spectral distortions, and a multi-band gravitational-wave background, it
would not merely hint at new physics; it would amount to a measurement of the extra
dimensions themselves, turning the sky into a laboratory for quantum gravity.
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Appendix A

Geometry and String Conventions

This appendix summarizes the geometric and string-theoretic tools used throughout the
thesis. We begin with a brief review of di↵erential forms, cohomology, and characteristic
classes on Calabi–Yau manifolds, and then describe conventions for Type IIB orientifold
compactifications, axion kinetic terms, and gauge couplings arising from D7-branes.

A.1 Geometry

Di↵erential Forms and Exterior Calculus

On a d-dimensional oriented Riemannian manifold M , a p-form is a totally antisymmetric
covariant tensor field of degree p:

!µ1...µp
(x) = ![µ1...µp]

(x) , 0  p  d . (A.1)

The space of smooth p-forms is ⌦p(M) = � (^pT ⇤M) .

Basis and exterior derivative.

In local coordinates the natural basis is dxµ1 ^ . . . ^ dxµp and

!p =
1

p!
!µ1...µp

dxµ1 ^ · · · ^ dxµp . (A.2)

The exterior derivative d : ⌦p(M) ! ⌦p+1(M) acts as

d!p =
1

p!
@⌫!µ1...µp

dx⌫ ^ dxµ1 ^ · · · ^ dxµp , (A.3)

and satisfies d2 = 0. A form is closed if d!p = 0 and exact if !p = d⌘p�1 for some (p�1)-
form ⌘p�1. Exact ) closed by nilpotency; the converse holds only locally (Poincaré
lemma).

Hodge theory.

Given the metric g on M we define the Hodge star ? : ⌦p(M) ! ⌦d�p(M), the coderivative
� = ?d?, and the Laplacian � = d � + � d. Forms obeying �!p = 0 are called harmonic.
They provide a particularly convenient basis for cohomology classes.
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Stokes in one line.

For an oriented (p + 1)-chain cp+1 with boundary @cp+1,

Z

cp+1

d!p =

Z

@cp+1

!p. (A.4)

Gauss’, Stokes’ and Green’s theorems are all special cases of (A.4).

A.2 Cohomology

The de Rham cohomology group is the quotient

Hp

dR
(M) =

ker d |⌦p

im d |⌦p�1
, dimHp

dR
(M) =: hp. (A.5)

Every cohomology class contains a unique harmonic representative.

Homology and Poincaré duality.

Dually, the homology group Hp(M) is closed p-cycles mod boundaries. Poincaré duality
identifies Hp(M) ' Hd�p(M) and allows us to rewrite integrals as

R
cp
!p =

R
M

PD(cp) ^
!p.

Complexes and exact sequences

A chain of vector spaces and linear maps · · · ! A
f1�! B

f2�! C ! · · · with fi+1�fi = 0 is a

complex ; it is exact if im fi = ker fi+1. The de Rham complex 0 ! ⌦0 d�! ⌦1 d�! ⌦2 ! · · ·
fails to be exact precisely by the amount measured by Hp

dR
(M).

Dolbeault cohomology

On a complex manifold (M, J) the tangent bundle decomposes into holomorphic and anti-
holomorphic parts, and forms split into types (p, q). The exterior derivative decomposes
as d = @ + @̄ with @2 = @̄2 = 0. Dolbeault cohomology is then

Hp,q

@̄
(M) =

ker @̄ |⌦p,q

im @̄ |⌦p,q�1

, dimHp,q

@̄
= hp,q. (A.6)

For Calabi–Yau threefolds the resulting Hodge diamond will be our main bookkeeping
device.

Vector-bundle cohomology

For a holomorphic vector bundle V ! M we denote by Hq(M, V ) the sheaf (Čech or
Dolbeault) cohomology groups. Serre duality gives Hq(M, V ) ' Hd�q(M, V ⇤ ⌦ KM )⇤,
and on Calabi–Yau manifolds (KM ' O) this reduces to hq(M, V ) = hd�q(M, V ⇤). The
chiral index �(M, V ) =

P
d

q=0
(�1)qhq(M, V ) is topological and often far easier to compute

than each hq.
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A.3 Topological invariants

Chern classes.

Given a connection ! on a rank-r complex bundle V ! M with curvature ⌦ = d!+!^!,
the total Chern class is

c(V) = det
⇣
1+

i⌦

2⇡

⌘
= 1 + c1(V) + c2(V) + · · ·+ cr(V). (A.7)

For the tangent bundle TM the same formula with ⌦ = R reproduces the usual curvature
forms.

Chern character and Todd class.

They are defined by

ch(V) = tr exp
⇣ i⌦

2⇡

⌘
, Td(V) =

rY

j=1

�j
1� e��j

, (A.8)

where �j are the Chern roots. Expanding gives the familiar series used in index calcula-
tions.

Hirzebruch–Riemann–Roch.

For a holomorphic vector bundle V on a d-complex-dimensional manifold

�(M,V) =
dX

q=0

(�1)qhq(M,V) =
Z

M

ch(V) Td(TM). (A.9)

On a Calabi–Yau threefold (c1(TM) = 0) this collapses to �(M,V) = 1

2

R
M

c3(V) for
SU(N) bundles, and to the well-known cubic expression for line bundles.

A.4 Divisors

Divisors and Line Bundles

A divisor D on a complex threefold X is a formal Z-linear combination of irreducible
codimension-one subvarieties. Equivalently, it can be defined as the zero locus {f = 0}
of a global holomorphic section f 2 H0(X,OX(D)). Two divisors are said to be linearly
equivalent if their di↵erence is the divisor of a global meromorphic function. The set of
equivalence classes forms the divisor class group Cl(X), which embeds into H1,1(X,Z)
via the first Chern class.poli

From divisors to line bundles.

To every divisor D we associate the holomorphic line bundle OX(D) whose transition
functions keep track of how the local equations fi = 0 glue together. Conversely, the
vanishing of H1(X,OX) implies that line bundles are classified by their (divisor) first
Chern class.
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Intersection numbers and volumes.

Choosing a basis {Di} of Cl(X) the triple intersection numbers ijk =
R
X

Di ^ Dj ^
Dk are topological invariants and determine the classical Kähler potential through V =
1

6
ijk titjtk with ti =

R
Di

J . In Type IIB compactifications the Di support wrapped
D7-branes, Euclidean D3-instantons, and fluxes, so keeping track of their volumes and
intersection form is indispensable.

E↵ective, nef and ample.

A divisor is e↵ective if it has a holomorphic representative, nef if D · C � 0 for every
curve C, and ample if some positive multiple embeds X into projective space. Physically,
ample (or at least nef) divisors guarantee positive volumes inside the Kähler cone, i.e.
control over ↵0 corrections and a good supergravity limit.

A.5 String Conventions

A.5.1 Type IIB Orientifolds

In this subsection, we outline further details of 4d type IIB orientifold models. We will
list only the essential details – for more in-depth discussion, see [17, 331,332,340].

We consider type IIB string theory on Calabi-Yau 3-fold X3 with cohomology groups
Hp,q(X3) and independent Hodge numbers (h1,1, h2,1). The orientifold is defined by a
projection operator composed of a holomorphic involution on X3 and a worldsheet partity
operator. Under the involution, the cohomology groups split into positive and negative
eigenspaces as Hp,q = Hp,q

+ � Hp,q

� such that

h1,1 = h1,1

+ + h1,1

� h2,1 = h2,1

+ + h2,1

� . (A.10)

As in the main text, we will use lower case Latin (Greek) indices to enumerate elements
of the positive (negative) cohomologies as ↵,�, � = 1, .., h1,1

+ and a, b = 1, .., h1,1

� .

The particle content of the 4d, N = 1 supergravity e↵ective field theory includes h2,1

+

vector multiplets and chiral supermultiplets for the axiodilaton, h1,1

+ complexified Kähler

moduli, h1,1

� odd moduli, and h2,1

� complex structure moduli. The vacuum expectation

values of the h1,1

+ scalars ⌧↵ control the size of 4-cycles in X3 and are related to 2-cycle
volumes v↵ via the intersection numbers ↵�� as ⌧↵ = 1

2
k↵��v�v� . The axions of the

model are C0, ba, ⇢↵, and ca. The latter two sets have kinetic terms

Saxions � �e�Gab dca ^ ?dcb +
1

16V2
G↵� d⇢↵ ^ ?d⇢� . (A.11)

Above we have introduced metrics on the space of harmonic 2-forms as

Gab = � Tab
4V2

G↵� =
1

4V2

✓
⌧↵⌧�
V2

� T↵�
◆

,
(A.12)

with G↵� = (G�1)↵� . Here V = 1

6
↵��v↵v�v� is the volume of X3 and

T↵� = ↵��v
�

Tab = ab�v
� .

(A.13)



A.5. String Conventions 177

These define the metrics used in eq. (6.12). In the presence of D7-branes, the axions ca

and ⇢↵ can become charged under gauge U(1) interactions. In the Calabi-Yau X3, we
consider two divisors D and D0 that are mapped to each other under the involution. One
can then define D+ = D [ D0 and D� = D [ (�D0), where the negative sign refers to

orientation reversal. Note that in the main text, D+ is denoted as eD. If we wrap one
D7-brane on both D and D0, the exterior derivatives in eq. (A.11) are promoted to the
covariant derivatives

rca = dca � qaA (A.14)

r⇢↵ = d⇢↵ � iq↵A . (A.15)

Where A is the 1-form of the worldvolume gauge theory and the axion charges are

qa =
1

2⇡
ND7w

a (A.16)

q↵ = �ND7

2⇡
(↵��m̃

�
w

� + ↵bcm
b
w

c) , (A.17)

where m̃
↵ (mc) is worldvolume flux supported on even (odd) 2-cycles1. The w

↵ (wa)
are wrapping numbers along the basis elements !̃↵ (!̃a) of H2,2

+ (X3,Z) (H2,2

� (X3,Z)):

w
↵ =

Z

D+
!̃↵ , w

a =

Z

D�
!̃a . (A.18)

Notably, the charge qa is independent of flux and is determined by the odd wrapping
number w

a. This motivates the description of C2-axion Stückelberg couplings as being
geometric in nature, as discussed in the main text. If [D] = [D0], so that the divisor and
image divisor are homologous, then w

a vanishes and the Stückelberg mechanism can be
avoided as discussed in ??.

A.5.2 Worldvolume Theory of D7-branes and Induced Tadpoles

In this section, we briefly review the relation between 4d gauge theories and the worldvol-
ume theory of D7-branes wrapped on 4-cycles. We will follow here the conventions used
in [420] as well as in [331]. In string frame, the bosonic portion of the low-energy 10d
type IIB action in the democratic formulation is

SIIB � 2⇡

`8s

✓Z
e�2�R ?10 1 �1

2

Z
e�2�

✓
8d� ^ ?10d�� H3 ^ ?10H3

◆

+
1

4

Z X

p=1,3,5,7,9

Gp ^ ?10Gp

1

A
(A.19)

Here � is the dilaton, H3 = dB2, and the various field strengths are defined is terms of
the p-form gauge potentials Cp by G1 = dC0 for p = 1 and Gp = dCp�1 � dB2 ^ Cp�2

otherwise. Here we define the string length as `s ⌘ 2⇡
p
↵0. Dimensional reduction

of eq. (A.19) on the 6d orientifold, and transition to the Einstein frame, yields the kinetic
terms in eq. (A.15) addition to the kinetic terms of moduli.

1Technically m̃
↵ is a combined flux of the worldvolume gauge theory and the pullback of B2.
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Contributions to the 10d bosonic e↵ective action from the various supersymmetric (BPS)
Dp-branes take the form of the Dirac-Born-Infeld (DBI) action and the Chern-Simons
action:

SDp = � 2⇡

`p+1
s

Z
dp+1x

r
� det('⇤[g10 + B2]�

`2s
2⇡

F2)

+
2⇡

`p+1
s

Z
e

`
2
s

2⇡F2�'
⇤
[B2] ^

s
Â[`2sRT ]

Â[`2sRN ]
^
M

q

'⇤[Cq] .

(A.20)

Where '⇤[· · · ] denotes the pullback to the D7-brane worldvolume, Â[· · · ] is the A-roof
genus, and RT (RN ) is the curvature 2-form of the tangent (normal) bundle of the brane
worldvolume embedding. From here we set `s = 1 and restore proper mass dimensions in
the usual manner.

We now consider the dimensional reduction of eq. (A.20) for the scenario of a D7-brane
(p = 7) filling 4D macroscopic space-time M4 and wrapping a properly chosen 4-cycle e⇧ of
a suitable Calabi-Yau (CY) O7-orientifold compactification. Keeping only relevant terms,
we look at the Kaluza-Klein (KK) zero mode of C4 on ⇧4 and set C4 = c4!⇧4 + · · · and
F2 =

1

2
Fµ⌫dxµdx⌫ . Using F2^F2 =

1

4
"µ⌫⇢�Fµ⌫F⇢�d4x and F2^?4F2 =

1

2
Fµ⌫Fµ⌫

p
�g4d4x

as well as Z

M4⇥e⇧

d8x
p

�'⇤[g10] =

Z

e⇧
d4y
q

g(e⇧)
| {z }

=⌧

·
Z

M4

d4x
p
�g4

Z X

q

e
1
2⇡F2�'

⇤
[B2] ^ Cq �

Z

⇧4

C4

| {z }
=c4

·
Z

M4

1

2

1

4⇡2
F2 ^ F2 ,

(A.21)

the two-derivative part of the D7-brane action to be

SD7�gauge = �2⇡

Z 
1

4⇡2
⌧
1

2
F2 ^ ?4F2 +

1

4⇡2
c4
1

2
F2 ^ F2

�

=

Z
d4x

p
�g4


�1

4

✓
1

2⇡
⌧

◆
Fµ⌫F

µ⌫ � 1

8

✓
1

2⇡
c4

◆
"µ⌫⇢�Fµ⌫F⇢�

�
.(A.22)

We can compare this to the standard form of a 4D N = 1 supersymmetric U(1) gauge
theory with holomorphic gauge kinetic function f(T ) of a chiral superfield T = ⌧ + ic4,
given by

SU(1) =

Z

M4

d4x
p
�g4


1

4

Z
d2✓f(T )W�W � + h.c.

�
, (A.23)

where the ✓2 component of the square of the super field strength W↵ evaluates to (�
denotes the gaugino superpartner of the gauge field)

W�W �

���
✓✓

= �2i��µ@µ�̄� 1

2
Fµ⌫F

µ⌫ + D2 +
i

4
"µ⌫⇢�Fµ⌫F⇢� . (A.24)

Plugging this into eq. (A.22) we get, for unbroken SUSY (D = 0), for the bosonic sector

SU(1),bos. =

Z

M4

d4x
p
�g4


�1

4
Re f(T )Fµ⌫F

µ⌫ � 1

8
Im f(T )"µ⌫⇢�Fµ⌫F⇢�

�
. (A.25)
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Direct comparison with eq. (A.22) reveals that we must choose

f(T ) =
1

2⇡
T , (A.26)

to match the D7-brane e↵ective action. Up to this point everything was done for a
single D7-brane generating a single U(1) supersymmetric gauge field theory. If we replace
this with a stack of ND7 coincident D7-branes wrapping the same 4-cycle, this stack
will generate a non-Abelian 4D super-Yang-Mills (SYM) gauge theory. What e↵ectively
changes in this case in the expressions above is that every occurrence of F2 ^ F2 and
F2^?F2 gets replaced by trF2^F2 and trF2^?F2, respectively, where the trace pertains to
F2 = F a

2
T a (with T a the generators of the Lie group in a given representation) now being

Lie algebra valued in the SYM gauge group. The additional trace will thus evaluate to
trT aT b producing an additional factor 1/2 for the T a in the fundamental representation.
As explained in ??, we can introduce an additional CS coupling of the gauge field to
C2-axions if we allow for the presence of magnetic flux in the D7-branes. Inclusion of
these magnetic fluxes modifies the D7-brane gauge kinetic function to the expression
in eq. (6.8). However, there is one more e↵ect of turning on gauge flux-the D7-branes
contribute additional terms to the D3-brane tadpole . The relevant contribution can be
determined from dimensional reduction of the CS term in eq. (A.20):
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(A.27)

Where we have used the definition of the A-roof genus Â[R] = 1� 1

24
p1[R] + ... expressed

in terms of Pontryagin classes pn, while c2 corresponds to the second Chern class [421].
The subscripts T, N denote the tangent and normal bundle of ⇧4.

The whole prefactor of
R
M4

C4 thus constitutes a D3-brane charge induced on the D7-
brane world volume.

QD3,ind. = +��(m1)
2 +

1

24
�(⇧4) . (A.28)

The first term comes from turning on quantized internal gauge flux, while the second
corresponds to the intrinsic curvature-induced amount of D3-brane charge which any D7-
brane or O7-plane wrapping a non-flat 4-cycle acquires. This induced D3-brane charge
grows quadratically in the gauge flux quanta m

G and linearly in the wrapping number.
D3-brane charge, like any localized charge sourcing a long-range gauge field strength,
satisfies a Gauss’ law constraint. Hence, in the compact 6 dimensions of the CY the
field lines emanating from DD3,ind. must end on equal in magnitude and sign-opposite
D3-charge. In a consistent type IIB string theory compactification on CY orientifolds
this balancing D3-charge is generated by higher-curvature couplings in the CS terms of
single D7-branes wrapping all the 4-cycles of the CY. Any such consistent type IIB CY
orientifold compactification has a lift to F-theory, where the orientifolded CY 3-fold of
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type IIB string theory gets lifted into an elliptically fibred CY 4-fold X4. The total
D3-brane charge from curvature couplings on D7-branes wrapping 4-cycles in type IIB
becomes in F-theory equal to QD3,tot.(X4) = �(X4)/24 and is thus completely fixed by
the topology of X4.



Appendix B

CY examples

In this appendix we’ll review the geometric information needed for the examples of the
heterotic axions.

B.0.1 Quintic Calabi-Yau

Consider the simplest example of a Calabi–Yau threefold: the quintic hypersurface CP4[5],
defined by

5X

i=1

z5i = 0 (B.1)

in CP4, with homogeneous coordinates zi and divisors Di = {zi = 0}. All Di are linearly
equivalent, so we may identify the hyperplane class H ⌘ Di for all i.

Geometry of the quintic

The geometric F̃ -term encodes the hypersurface condition, while the D̃-term describes
the Kähler quotient:

F̃ : z51 + z52 + z53 + z54 + z55 = 0 , D̃ : |z1|2 + · · ·+ |z5|2 = b , (B.2)

with b � 0 for X to be in the Kähler cone.

Since all Za have the same gauge charge, the divisors Di are equivalent and generate
H1,1(X):

D ⌘ H , h1,1(X) = 1 . (B.3)

Triple intersection number

To compute H3, set z1 = z2 = z3 = 0. The F̃ -term reduces to

z54 + z55 = 0 . (B.4)

This equation in CP1 has 5 distinct solutions for the ratio z4/z5:

z4
z5

= ei(2k+1)⇡/5 , k = 0, 1, 2, 3, 4 . (B.5)

Thus, the three divisors intersect in five points, and we find

H3 = 5 . (B.6)
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Tangent bundle Chern classes

The total Chern class of the tangent bundle is

c(TX) =
c(TCP4)

c(NX)
=

(1 + H)5

(1 + 5H)
. (B.7)

Expanding the denominator as (1 + 5H)�1 = 1� 5H + 25H2 + . . . and multiplying out,
we find

c(TX) = 1 + 10H2 + . . . (B.8)

so that c1(TX) = 0 (as required for a Calabi–Yau) and c2(TX) = 10H2.

B.0.2 Bi-cubic CICY

Consider the bi-cubic complete intersection Calabi-Yau defined as a degree-(3, 3) hyper-
surface in P2

x ⇥ P2
y, with Hodge numbers (h1,1, h2,1) = (2, 83):

P2

P2


3
3

�
. (B.9)

Let h1 and h2 denote the hyperplane classes of the two P2 factors, pulled back to the
ambient space A = P2

x ⇥ P2
y, so that

h3 = 0 , k3 = 0 ,

Z

A

h2

1h
2

2 = 1 . (B.10)

The bicubic hypersurface X has class

[X] = 3h1 + 3h2 . (B.11)

We take the basis of divisors on X to be H1 = h1|X and H2 = h2|X . The triple intersection
numbers are then

111 =

Z

A

h3

1 ^ (3h1 + 3h2) = 0 ,
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Z

A

h3
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2
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Z
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h1h
2

2 ^ (3h1 + 3h2) = 3

Z

A

h2

1h
2

2 = 3 .

(B.12)

By symmetry of abc, we have 121 = 211 = 3 and 212 = 221 = 3.

The intersection polynomial is therefore

I(v1, v2) =
X

a,b,c

abc vavbvc = 3 v21v2 + 3 v1v
2

2 = 3 v1v2 (v1 + v2) . (B.13)

Volume With Kähler form J = v1H1 + v2H2, the Calabi-Yau volume is

V =
1

6

Z
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J3 =
1

6

�
3 v21v2 + 3 v1v

2

2

�
=

1

2

�
v21v2 + v1v

2

2

�
. (B.14)
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Chern classes Let A = P2
x ⇥ P2

y with hyperplane classes h1, h2 pulled back from the
two factors. For A one has c(TA) = c(TP2

x
) c(TP2

y
) = (1 + h1)3(1 + h2)3. The bi-cubic

hypersurface X ⇢ A has class [X] = 3h1 + 3h2. By adjunction,

c(TX) =
(1 + h1)3(1 + h2)3

1 + 3h1 + 3h2

����
X

=
(1 + H1)3(1 + H2)3

1 + 3H1 + 3H2

. (B.15)

Expanding to second order, we find

c(TX)1 +
�
3H2

1 + 9H1H2 + 3H2

2

�
+ · · · . (B.16)

Hence

c1(TX) = 0 , c2(TX) = 3H2

1 + 9H1H2 + 3H2

2 = 3 (H2

1 + 3H1H2 + H2

2 ) , (B.17)

B.0.3 CS couplings

We report the �̃i defined in the text at eq. (4.144) for the noGC - anisotropic case:
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, (B.19)
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Appendix C

MASA Power Spectra
Calculations

C.1 Tensor Perturbations

The mode functions in eq. (5.57) satisfy the equation

Ai00
± +

✓
k2 ⌥ k

�i#0i
fi

◆
Ai

± = 0 . (C.1)

with the helicity vectors obeying the following relations

~k · ~"(±) = 0 , i~k ⇥ ~"(±) = ±k~"(±) , ~"(±) · ~"(⌥) = 1 , ~"(±) · ~"(±) = 0 . (C.2)

In a spatially flat, inflating Universe, the second term in parentheses reads k�i#0i/fi =
�2k⇠i/⌧ and eq. (5.58) follows.
Plugging in the WKB solution in eq. (5.59) into eq. (5.57) , we get the following expressions
for the gauge fields

Â1

m(⌧,~k) =

Z
d3k

(2⇡)3/2
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~k·~x"(+)

m (k̂)A1

+(⌧, k)
h
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ei
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h
b̂+(~k) + b̂†+(�~k)

i
.

(C.3)

Next, to tie the above to the tensor perturbations, we write the metric as:

ds2 = a2(⌧)[�d⌧2 +
⇣
�mn + ĥmn(⌧, ~x)

⌘
dxmdxn] , (C.4)

where the ĥij have the mode expansion in eq. (5.62). Expanding the Einstein-Hilbert and

gauge field action to second order in ĥij , including the first order interaction term with
the gauge field, one obtains

SGW =

Z
d4x

"
M2

pa2

8

⇣
|ĥ0

mn|2 � |ĥmn,p|2
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�a4
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1

+
⇣
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⌘

2

i�
.

(C.5)

Here the electric and magnetic fields are defined in eq. (5.61) and the subscripts “1” and
“2” correspond to the spectators’ labels.
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C.2 Curvature Perturbations

Beginning with the action in eq. (5.70), one can derive the following equations of motion
for the modes Q̂� and Q̂#
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��
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fi

Z
d3x

(2⇡)3/2
e�i~k·~xEi ·Bi . (C.6)

Taking the slow-roll expansion of the mass matrix in eq. (5.71), one finds

M̃2

ii = � 2

⌧2
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3

⌧2
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6

⌧2
"i , (C.7)

M̃2

ij = � 6

⌧2
p
"i"j , (C.8)

where slow-roll parameters have been introduced for each of the fields �i, (�1,�2,�3) =
(�,#1,#2). To leading order terms in slow roll, the mass matrix reads
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To solve the equations of motion, one can introduce the retarded Green’s function
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, (C.10)

where J and Y denote the Bessel functions with real arguments. This yields the particular
solution presented in eq. (5.78), which can be rewritten more explicitly by defining the
new vector ~̃p ⌘ ~p

k
as:
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, (C.11)

where we introduced the quantities x = �k⌧ and x⇤ = �k⌧⇤ and denoted with k̂ the
unit vector. The coe�cients Ni appearing in Eq. (C.11) arise from the gauge field mode
functions:
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(C.12)

In Eq. (C.11), we also introduced the function
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and defined the operators:

Ŵi[~p,~k] ⌘ "(+)

j
(~̃p)"(+)

j
(k̂ � ~̃p)

h
â+(~p) + â†+(�~p)

i h
â+(~k � ~p) + â†+(�~k + ~p)

i
, (C.14)

for which the following relation holds (to leading order in slow-roll):

hŴ1Ŵ2i = 0 . (C.15)

As a result, the contributions from the di↵erent axions are decoupled from one another
and one can compute the total power spectrum as the sum of two separate contributions.

C.3 Backreaction and Perturbativity

Given a set of model parameters, such as those provided in Table 5.3, consistency with
the working assumptions in the previous sections demands that one verifies that the back-
reaction of the spectator fields on the Friedmann equation and the backreaction on the
evolution of the axion background remain negligible. In addition, a self-consistent anal-
ysis requires the implementation of perturbativity bounds 1. The study of backreaction
in the case of a single (Abelian) spectator sector was worked out in [161]. Perturbativ-
ity constraints were also derived in [161], following [422]. We will now generalise those
bounds to our model.

Following [161], we begin by requiring that the energy density of the axion fields gives a
negligible contribution to the total energy density of the universe, in other words:
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where N is the number of spectator sectors. For each spectator, the maximum value of
the kinetic energy is
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. (C.17)

The maximum of the potential, V max

Si
(#i) = ⇤4

i
, can also be written in terms of the slow-

roll parameter "#i⇤ using the expression #̇i⇤ = fiH�i from Eq. (5.54), in combination with
the relation �i = ⇤4

i
/(6H2f2

i
):
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. (C.18)

With Eqs. (C.17) and (C.18), one obtains
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(C.19)

1Perturbativity bounds are, ultimately, conditions imposed on loop corrections (induced by the Chern-
Simons coupling) to the tree-level propagators of axion and gauge fields (see e.g. Fig. 3 of [161]).
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This condition can be rewritten as

NX

i=1

�if
2

i ⌧ M2

P

2
. (C.20)

where the relation "#i⇤ = �2
i
f2
i
/(2M2

P
) was employed. As an example, for values of the

axion decay constant of order 10�3MP to 0.1MP , Eq. (C.20) provides the corresponding
upper bounds on the total number of axions, Nmax 2 [102, 106] (assuming �i values of
order 0.5, as in the main text, and the same value of f for all spectators).

The second backreaction constraint arises from requiring that the gauge fields amplifica-
tion does not alter the motion of the axions. To this end, it was verified in [161] that it
su�ces to impose the condition ⇢max

A
⌧ #̇2⇤/2 (⇢A being the gauge field energy density).

Explicit expressions, and the corresponding inequalities, were derived for ⇢max

A
in [161].

Those results straightforwardly apply to the case of multiple spectators, as the various
sectors are only minimally coupled to one another. The same goes for the perturbativity
constraints worked out in the same paper, these being inherent to each individual sec-
tor. These combined backreaction and perturbativity constraints lead to the following
conditions [161]:
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i
. f

Mp

. 0.28 ,
(C.21)

where � = 0.2, 0.5 are two of the sample values of � considered also in the present
manuscript. In each case, the second inequality is automatically satisfied given that
f . Mp.
In the main text, for the computation of the power spectra, we used the value "� ⇠ 10�3.
If we take as reference f ⇠ 0.3Mp, the bounds in ?? can then be rewritten as:

� = 0.2 : 6.32 · 10�7e2.74⇠⇤ . 0.3 =) ⇠⇤ . 4.8 ,

� = 0.5 : Max
h
4.4 · 10�7e2.42⇠⇤ , 1.6 · 10�7e2.60⇠⇤

i
. 0.3 =) ⇠⇤ . 5.5 ,

(C.22)

These ⇠max
⇤ values are fairly close to the benchmark points in Table 5.3. A signal at

the level of the stochastic background observed with PTA would therefore saturate both
perturbativity and weak backreaction constraints. Similar conclusions can be drawn for
the other cases we considered, � = 0.3 and � = 0.6.



Appendix D

Gravitational Chern-Simons
Couplings in Type IIB
Orientifolds

In this appendix we derive the coupling of 4D C4 axions to R eR terms in Type IIB
orientifolds. Following [331], we assume a product ansatz for spacetime of the form
R3,1 ⇥ eX6. Here eX6 = X6/P is the orientifold, while X6 is a Calabi-Yau 3-fold and P is
an orientifold projection defined via an isomorphic and holomorphic involution � of X6.
We assume a product metric:

g10 := gµ⌫ dxµ ⌦ dx⌫ + 2gij̄(y) dyi ⌦ dȳj̄ . (D.1)

The e↵ective 4D action bulk terms can be obtained from dimensional reduction of the
10D type IIB fields. In particular, the C4 expansion is

C4 = ⇢↵(x)e!↵(y) + . . . , (D.2)

where the {e!↵}, ↵ = 1, .., h+

2,2
, form a basis for H(2,2)

@̄,+
(X6) We will assume that there

is a D7-brane permeating spacetime and wrapping a 4-cycle S+ of eX6 such that the
worldvolume of the brane is

W := R3,1 ⇥ S+ . (D.3)

We will denote the embedding map of the worldvolume as ' : W ,�! R3,1⇥ eX6. Note also
that S+ 2 H4(X6,Z) and is the union of two 4-cycles S1 and S2 in X6. We will denote
the embedding map as ◆ : S+ ,�! X6. The pullback of eq. (D.1) is

'⇤g10 = gµ⌫dxµ ⌦ dx⌫ + 2gij̄(y) dyi ⌦ dȳj̄ + 2gij̄(y) @µ⇠
i@⌫ ⇠̄

j̄dxµ ⌦ dx⌫ , (D.4)

where the internal part is suitably restricted to the wrapped 4-cycle. For the moment,
we will set the fluctuations ⇠i = 0. Then the worldvolume metric can be written as

'⇤g10 = ⌘↵�✓
↵ ⌦ ✓↵ + 2�

IJ̄
e✓I ^ e✓J , (D.5)

where ✓↵ := e↵µdxµ and e✓I := eI
i
dyi define a non-coordinate basis via the external

and internal vielbeins. Since the internal and external vielbeins depend only on external
and internal coordinates, respectively, the Cartan structure equations imply that the
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connection 1-form splits into independent external and internal pieces. The curvature
2-form follows the same behavior. Therefore, the curvature 2-form of the tangent bundle
is block-diagonal between the external and internal pieces.

The relevant parts of the D7-brane Chern-Simons action are

SD7 � µ7

Z

W

1

2
(2⇡↵0)2'⇤(C4) ^

N

48

⇣
tr(RT ^ RT )� tr(RN ^ RN )

⌘
. (D.6)

Where RT/N are the curvature forms of the tangent/normal bundle of W . From the
above, we know that

tr(RT ^ RT ) = tr(RST ^ RST ) + tr(R+ ^ R+) . (D.7)

Thus we find a 4D coupling

S4D � Nµ7

48

Z

M4

1

2
(2⇡↵0)2`4S ⇢+ tr(RST ^ RST )

=
N

192⇡

Z

M4

⇢+tr(RST ^ RST )

=
2⇡N

48

Z
⇢+p1(RST ) .

(D.8)

Where p1(RST ) is the first Pontrjagin class. For a 4D spin manifold, the integral of
Pontrjagin class is quantized as

Z

X4

p1(R2) = 48m (D.9)

with m 2 Z. Thus eiS4D is invariant under ⇢+ ! ⇢+ + n with n 2 Z. We can define a
canonically-normalized axion via

⇢+ =
#

2⇡f#
(D.10)

Then we have a coupling

S4D � N

1536⇡2

Z

M4

#

f#
Rµ⌫

⇢�Rµ⌫↵�"
⇢�↵�d4x (D.11)

We can now define the coupling g✓hh we use in the action:

L � g✓hh
4
#"µ⌫⇢�Rµ⌫

↵�
R⇢�↵� , (D.12)

g✓hh =
N

384⇡2f#
. (D.13)

D.1 Axion Higgs coupling

In this appendix we derive the contribution to the kinetic terms of the axion fields coming
from the Giudice-Masiero terms in the Kähler potential (cf. eq. (7.112)), introduced in
order to allow a reheating process.

Recall that the kinetic terms will be given by Kij̄@µ✓
i@µ✓j̄ where the Kähler metric is

given by
Kij̄ = @Ti

@
T̄j

K . (D.14)
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Let us then consider the Giudice-Masiero terms of the form:

K � HH̄�
T1 + T̄1

�
y1
�
T2 + T̄2

�
y2

. (D.15)

The contribution to the kinetic terms then reads:

L � y1(y1 + 1)
�
T1 + T̄1

�
y1+2 �

T2 + T̄2

�
y2

HH̄@µ✓1@
µ✓1

+
y1y2�

T1 + T̄1

�
y1+1 �

T2 + T̄2

�
y2+1

HH̄@µ✓1@
µ✓2

+
y2(y2 + 1)

�
T1 + T̄1

�
y1
�
T2 + T̄2

�
y2+2

HH̄@µ✓2@
µ✓2 .

(D.16)

Canonically normalizing the axions with the decay constants derived from the tree level
Kähler potential fi ⇠ 1

(Ti+T̄i)
in units of MPl, we can rewrite the equation above as

L �HH̄fy1
1

fy2
2

(y1(y1 + 1)@µ#1@
µ#1 + y1y2@µ#1@

µ#2 + y2(y2 + 1)@µ#2@
µ#2) . (D.17)

If we now reduce to the simple case where y1 = 1 and y2 = 0, the above reduces to the
single term

L � 2f1HH̄@µ#1@
µ#1 . (D.18)

This corresponds to a 2 ! 2 scattering for which we can simply compute the cross-section
and the corresponding decay rate, knowing now that the vertex is ⇠ f1|p#|2 in units of
MPl. The di↵erential cross section thus reads

d�

d⌦CM

=
1

64⇡2s
|M|2

|pf |
|pi|

, (D.19)

where the Feynman amplitude |M| ⇠
���fqp

2
#

MPl

��� and s = (p + p0)2 = 4(m2

#
+ |p#|2). The

scattering rate �✓✓!HH = n�v therefore reads:

�##!HH ⇠ 1

64⇡

⇢#
m#

1

m2

#
+ |~p#|2

f2

#
|~p#|4

| ~p#|
m#

s

1 +
m2

#

m2
'

. (D.20)

In the above we used the fact that n# = ⇢#/m# and v = p#

m#

.
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